WorldWideScience

Sample records for reactive-inspired ball-milling multiscale

  1. Nano-oxide nucleation in a 14Cr-ODS steel elaborated by reactive-inspired ball-milling: Multiscale characterizations

    International Nuclear Information System (INIS)

    Brocq, M.; Legendre, F.; Sakasegawa, H.; Radiguet, B.; Cuvilly, F.; Pareige, P.; Mathon, M.H.

    2009-01-01

    Oxide dispersion strengthened (ODS) steels are promising structural materials for both fusion and fission Generation IV reactors. Indeed, they exhibit excellent mechanical and creep properties and radiation resistance thanks to a fine and dense dispersion of complex nanometric oxides. ODS steels are usually elaborated by ball-milling iron based and yttrium oxide powders and then by thermomechanical treatments. It is expected that ball-milling dissolves yttrium oxides in the metallic matrix and that annealing induces nano-oxide precipitation. However the formation mechanism remains unclear and as a consequence the process is still uncontrolled. In this context, we proposed a new approach based on reactive ball milling of iron oxide (Fe 2 O 3 ), yttria (YFe 3 ) and iron based alloy in a dedicated instrumented ball-milling device. Also, a fine scale characterization, after each step of the process including ball-milling, is performed. A Fe-14Cr-2W-1Ti-0.8Y-0.2O (%wt) ODS steel was synthesized by reactive ball-milling and was characterized at very fine scale in both as-milled and as-annealed state. Atom Probe Tomography (APT) and Small Angle Neutron Scattering (SANS) were combined. After ballmilling, most of Y and O were, as expected, in solution in the ferritic matrix but some complex Y-Ti nano-oxides were also observed, indicating that oxide nucleation can start during ball-milling. With annealing the number of nano-oxides increases. In this presentation, experimental results of APT and SANS will be detailed and compared with what is usually observed in ODS steels elaborated by conventional ball milling. Finally, a formation mechanism of nano-oxides deduced from these results will be proposed. (author)

  2. Reactive-inspired ball-milling synthesis of an ODS steel: study of the influence of ball-milling and annealing

    International Nuclear Information System (INIS)

    Brocq, M.

    2010-10-01

    In the context of the development of new ODS (Oxide Dispersion Strengthened) steels as core materials in future nuclear reactors, we investigated a new process inspired by reactive ball-milling which consists in using YFe 3 andFe 2 O 3 as starting reactants instead of Y 2 O 3 to produce a dispersion of nano-oxides in a steel matrix and the influence of synthesis conditions on the nano-oxide characteristics were studied. For that aim, ODS steels were prepared by ball-milling and then annealed. Multi-scale characterizations were performed after each synthesis step, using notably atom probe tomography and small angle neutron scattering. The process inspired by reactive ball-milling was shown to be efficient for ODS steel synthesis, but it does not modify the nano-oxide characteristics as compared to those of oxides directly incorporated in the matrix by ball-milling. Broadly speaking, the nature of the starting oxygen bearing reactants has no influence on nano-oxide formation. Moreover, we showed that the nucleation of nano-oxides nucleation can start during milling and continues during annealing with a very fast kinetic. The final characteristics of nano-oxides formed in this way can be monitored through ball-milling parameters (intensity, temperature and atmosphere) and annealing parameters (duration and temperature). (author)

  3. Reactive-inspired ball-milling synthesis of an ODS steel: study of the influence of ball-milling and annealing; Synthese et caracterisation d'un acier ODS prepare par un procede inspiredu broyage reactif: etude de l'influence des conditions de broyage et recuit

    Energy Technology Data Exchange (ETDEWEB)

    Brocq, M.

    2010-10-15

    In the context of the development of new ODS (Oxide Dispersion Strengthened) steels as core materials in future nuclear reactors, we investigated a new process inspired by reactive ball-milling which consists in using YFe{sub 3} andFe{sub 2}O{sub 3} as starting reactants instead of Y{sub 2}O{sub 3} to produce a dispersion of nano-oxides in a steel matrix and the influence of synthesis conditions on the nano-oxide characteristics were studied. For that aim, ODS steels were prepared by ball-milling and then annealed. Multi-scale characterizations were performed after each synthesis step, using notably atom probe tomography and small angle neutron scattering. The process inspired by reactive ball-milling was shown to be efficient for ODS steel synthesis, but it does not modify the nano-oxide characteristics as compared to those of oxides directly incorporated in the matrix by ball-milling. Broadly speaking, the nature of the starting oxygen bearing reactants has no influence on nano-oxide formation. Moreover, we showed that the nucleation of nano-oxides nucleation can start during milling and continues during annealing with a very fast kinetic. The final characteristics of nano-oxides formed in this way can be monitored through ball-milling parameters (intensity, temperature and atmosphere) and annealing parameters (duration and temperature). (author)

  4. Multifractal properties of ball milling dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Budroni, M. A., E-mail: mabudroni@uniss.it; Pilosu, V.; Rustici, M. [Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, Sassari 07100 (Italy); Delogu, F. [Dipartimento di Ingegneria Meccanica, Chimica, e dei Materiali, Università degli Studi di Cagliari, via Marengo 2, Cagliari 09123 (Italy)

    2014-06-15

    This work focuses on the dynamics of a ball inside the reactor of a ball mill. We show that the distribution of collisions at the reactor walls exhibits multifractal properties in a wide region of the parameter space defining the geometrical characteristics of the reactor and the collision elasticity. This feature points to the presence of restricted self-organized zones of the reactor walls where the ball preferentially collides and the mechanical energy is mainly dissipated.

  5. Attempted - to -Phase Conversion of Croconic Acid via Ball Milling

    Science.gov (United States)

    2017-05-18

    ARL-TN-0824 MAY 2017 US Army Research Laboratory Attempted α- to β-Phase Conversion of Croconic Acid via Ball Milling by...Laboratory Attempted α- to β-Phase Conversion of Croconic Acid via Ball Milling by Steven W Dean, Rose A Pesce-Rodriguez, and Jennifer A Ciezak...

  6. Improved hydrogen sorption kinetics in wet ball milled Mg hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Li

    2011-05-04

    In this work, wet ball milling method is used in order to improve hydrogen sorption behaviour due to its improved microstructure of solid hydrogen materials. Compared to traditional ball milling method, wet ball milling has benefits on improvement of MgH{sub 2} microstructure and further influences on its hydrogen sorption behavior. With the help of solvent tetrahydrofuran (THF), wet ball milled MgH{sub 2} powder has much smaller particle size and its specific surface area is 7 times as large as that of dry ball milled MgH{sub 2} powder. Although after ball milling the grain size is decreased a lot compared to as-received MgH{sub 2} powder, the grain size of wet ball milled MgH{sub 2} powder is larger than that of dry ball milled MgH{sub 2} powder due to the lubricant effect of solvent THF during wet ball milling. The improved particle size and specific surface area of wet ball milled MgH{sub 2} powder is found to be determining its hydrogen sorption kinetics especially at relatively low temperatures. And it also shows good cycling sorption behavior, which decides on its industrial applicability. With three different catalysts MgH{sub 2} powder shows improved hydrogen sorption behavior as well as the cyclic sorption behavior. Among them, the Nb{sub 2}O{sub 5} catalyst is found to be the most effective one in this work. Compared to the wet ball milled MgH{sub 2} powder, the particle size and specific surface area of the MgH{sub 2} powder with catalysts are similar to the previous ones, while the grain size of the MgH{sub 2} with catalysts is much finer. In this case, two reasons for hydrogen sorption improvement are suggested: one is the reduction of the grain size. The other may be as pointed out in some literatures that formation of new oxidation could enhance the hydrogen sorption kinetics, which is also the reason why its hydrogen capacity is decreased compared to without catalysts. After further ball milling, the specific surface area of wet ball milled Mg

  7. CVD carbon powders modified by ball milling

    Directory of Open Access Journals (Sweden)

    Kazmierczak Tomasz

    2015-09-01

    Full Text Available Carbon powders produced using a plasma assisted chemical vapor deposition (CVD methods are an interesting subject of research. One of the most interesting methods of synthesizing these powders is using radio frequency plasma. This method, originally used in deposition of carbon films containing different sp2/sp3 ratios, also makes possible to produce carbon structures in the form of powder. Results of research related to the mechanical modification of these powders have been presented. The powders were modified using a planetary ball mill with varying parameters, such as milling speed, time, ball/powder mass ratio and additional liquids. Changes in morphology and particle sizes were measured using scanning electron microscopy and dynamic light scattering. Phase composition was analyzed using Raman spectroscopy. The influence of individual parameters on the modification outcome was estimated using statistical method. The research proved that the size of obtained powders is mostly influenced by the milling speed and the amount of balls. Powders tend to form conglomerates sized up to hundreds of micrometers. Additionally, it is possible to obtain nanopowders with the size around 100 nm. Furthermore, application of additional liquid, i.e. water in the process reduces the graphitization of the powder, which takes place during dry milling.

  8. Micro structrual characterization and analysis of ball milled silicon carbide

    Science.gov (United States)

    Madhusudan, B. M.; Raju, H. P.; Ghanaraja., S.

    2018-04-01

    Mechanical alloying has been one of the prominent methods of powder synthesis technique in solid state involving cyclic deformation, cold welding and fracturing of powder particles. Powder particles in this method are subjected to greater mechanical deformation due to the impact of ball-powder-ball and ball-powder-container collisions that occurs during mechanical alloying. Strain hardening and fracture of particles decreases the size of the particles and creates new surfaces. The objective of this Present work is to use ball milling of SiC powder for different duration of 5, 10, 15 and 20 hours by High energy planetary ball milling machine and to evaluate the effect of ball milling on SiC powder. Micro structural Studies using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and EDAX has been investigated.

  9. Ball milling of chalcopyrite: Moessbauer spectroscopy and XRD studies

    International Nuclear Information System (INIS)

    Pollak, H.; Fernandes, M.; Levendis, D.; Schonig, L.

    1999-01-01

    The aim of this project is to study the behavior of chalcopyrite under ball milling for extended periods in order to determine how it's decompose or transform. Tests were done with chalcopyrite mixed with iron and zinc with and without surfactant. The use of surfactants has various effects such as avoiding oxidation and clustering of the fine particles. In all case magnetic chalcopyrite is transformed into a paramagnetic component showing a disordered structure, thus revealing that Cu atoms have replaced Fe atoms. In the case of ball milling in air, chalcopyrite is decomposed with the lost of iron, while in milling under surfactants, iron enters into the chalcopyrite structure. (author)

  10. High-Energy Ball-Milling of Alloys and Compounds

    International Nuclear Information System (INIS)

    Le Caer, G.; Delcroix, P.; Begin-Colin, S.; Ziller, T.

    2002-01-01

    After outlining some characteristics of high-energy ball-milling, we discuss selected examples of phase transformation and of alloy synthesis which focus on deviations from archetypal behaviours and throw light on the milling mechanisms. Some contributions of Moessbauer spectrometry to the characterization of ground materials are described.

  11. Reduced graphene oxide synthesis by high energy ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, O. [Department of Physics, M.U.C Women' s College, Burdwan 713104 (India); Mitra, S. [MLS Prof' s Unit, Indian Association for the Cultivation of Science, Kolkata 700032 (India); Pal, M. [CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032 (India); Datta, A. [University School of Basic and Applied Science (USBAS), Guru Gobind Singh Indraprastha University, New Delhi 110075 (India); Dhara, S. [Surface and Nanoscience Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Chakravorty, D., E-mail: mlsdc@iacs.res.in [MLS Prof' s Unit, Indian Association for the Cultivation of Science, Kolkata 700032 (India)

    2015-07-01

    Graphene oxide is transformed to reduced graphene oxide by high energy ball milling in inert atmosphere. The process of ball milling introduces defects and removes oxygen functional groups, thereby creating the possibility of fine tuning the band gap of all intermediate stages of the structural evolution. A limit of the backbone sp{sup 2} network structure has been found which should be able to accommodate defects, before amorphization sets in. The amorphization of graphene oxide is achieved rather quickly in comparison to that of graphite. From thermogravimetric and differential scanning calorimetric analysis along with Fourier transform infrared (FTIR) and Raman spectroscopic studies, it is found that the number of oxygen-containing groups decreases at a faster rate than that of aromatic double bonds with increasing ball milling time with a maximum limit of 3 h. Several characterization techniques (FTIR, Raman, UV–Visible and X-ray photoelectron spectroscopy) have confirmed that the material synthesized is, indeed, reduced graphene oxide. - Highlights: • Graphene oxide is transformed to reduced graphene oxide by high energy ball milling in inert atmosphere. • Fine tuning the band gap by introducing defects and removing oxygen functional groups. • Introduction of excess defects leads to amorphization. • Photoluminescence has been observed in the UV-blue region.

  12. Suppressing Heavy Metal Leaching through Ball Milling of Fly Ash

    Directory of Open Access Journals (Sweden)

    Zhiliang Chen

    2016-07-01

    Full Text Available Ball milling is investigated as a method of reducing the leaching concentration (often termed stablilization of heavy metals in municipal solid waste incineration (MSWI fly ash. Three heavy metals (Cu, Cr, Pb loose much of their solubility in leachate by treating fly ash in a planetary ball mill, in which collisions between balls and fly ash drive various physical processes, as well as chemical reactions. The efficiency of stabilization is evaluated by analysing heavy metals in the leachable fraction from treated fly ash. Ball milling reduces the leaching concentration of Cu, Cr, and Pb, and water washing effectively promotes stabilization efficiency by removing soluble salts. Size distribution and morphology of particles were analysed by laser particle diameter analysis and scanning electron microscopy. X-ray diffraction analysis reveals significant reduction of the crystallinity of fly ash by milling. Fly ash particles can be activated through this ball milling, leading to a significant decrease in particle size, a rise in its BET-surface, and turning basic crystals therein into amorphous structures. The dissolution rate of acid buffering materials present in activated particles is enhanced, resulting in a rising pH value of the leachate, reducing the leaching out of some heavy metals.

  13. Synthesis of Randomly Substituted Anionic Cyclodextrins in Ball Milling

    Directory of Open Access Journals (Sweden)

    László Jicsinszky

    2017-03-01

    Full Text Available A number of influencing factors mean that the random substitution of cyclodextrins (CD in solution is difficult to reproduce. Reaction assembly in mechanochemistry reduces the number of these factors. However, lack of water can improve the reaction outcomes by minimizing the reagent’s hydrolysis. High-energy ball milling is an efficient, green and simple method for one-step reactions and usually reduces degradation and byproduct formation. Anionic CD derivatives have successfully been synthesized in the solid state, using a planetary ball mill. Comparison with solution reactions, the solvent-free conditions strongly reduced the reagent hydrolysis and resulted in products of higher degree of substitution (DS with more homogeneous DS distribution. The synthesis of anionic CD derivatives can be effectively performed under mechanochemical activation without significant changes to the substitution pattern but the DS distributions were considerably different from the products of solution syntheses.

  14. Dry grinding of talc in a stirred ball mill

    Directory of Open Access Journals (Sweden)

    Cayirli Serkan

    2016-01-01

    Full Text Available The aim of this work was to investigate micro fine size dry grindability of talc in a stirred ball mill. The effects of various parameters such as grinding time, stirrer speed, powder filling ratio and ball filling ratio were investigated. Alumina balls were used as grinding media. Experiments were carried out using the 24 full factorial design. The main and interaction effects were evaluated using the Yates method. Test results were evaluated on the basis of product size and surface area.

  15. Preparation of iron sulphides by high energy ball milling

    DEFF Research Database (Denmark)

    Lin, R.; Jiang, Jianzhong; Larsen, R.K.

    1998-01-01

    The reaction of a powder mixture consisting of 50 a.% Fe and 50 a.% S during high energy ball milling has been studied by x-ray diffraction and Mossbauer spectroscopy. After around 19 h of milling FeS2 and FeS havebeen formed. By further milling the FeS compound becomes dominating and only Fe......S with an average crystallite size of about 10 nm was observed after milling times longer than 67 h. Mossbauer spectra obtained with applied fields show that the particles are antiferromagnetic or have a strongly canted spin structure....

  16. Tungsten-nanodiamond composite powders produced by ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, D., E-mail: daniela.nunes@ist.utl.pt [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); LNEG, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal); ICEMS, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Livramento, V. [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); LNEG, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal); Mardolcar, U.V. [Departamento de Fisica, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Centro de Ciencias Moleculares e Materiais, Faculdade de Ciencias da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa (Portugal); Correia, J.B. [LNEG, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal); Carvalho, P.A. [ICEMS, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Departamento de Bioengenharia, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2012-07-15

    The major challenge in producing tungsten-nanodiamond composites by ball milling lies in successfully dispersing carbon nanoparticles in the metallic matrix while keeping carbide formation at a minimum. Processing windows for carbide minimization have been established through systematic variation of the nanodiamond fraction, milling energy and milling time. Materials characterization has been carried out by X-ray diffraction, scanning and transmission electron microscopy and microhardness testing. Nanostructured matrices with homogeneously dispersed particles that preserved the diamond structure have been produced. Differential thermal analysis has been used to evaluate the composites thermal stability.

  17. Preparation of tungsten-iron carbide by ball milling

    International Nuclear Information System (INIS)

    Wang, G.M.; Campbell, S.J.; Calka, A.; Kaczmarek, W.A.

    1996-01-01

    Several sets of elemental powder mixtures of Fe-W-C (W 46 Fe 46 C 8 , W 60 Fe 20 C 20 and W 34 Fe 33 C 33 ) were ball milled using Uni-Ball mill for periods of up to 550 h in vacuum with a ball - to - powder ratio of about 35:1. Depending on the milling time, the main component of the as-milled materials was found to be solid solutions of Fe-W-C or Fe-C. Ternary phase W 3 Fe 3 C was obtained on annealing the as-milled materials at about 700 deg C. This product was then found to transfer to (FeW) 6 C on heat treatment at about 800 deg C. The resultant products of the annealing processes were found to depend not only on the annealing temperature, but also the starting composition, especially the initial carbon concentration. Detailed information on the structural and phase evolution during thermal treatment as measured using x-ray diffraction, Moessbauer spectroscopy and thermal analysis is presented. Special interest is focused on the competition for formation in this system between the Fe-C, W-Fe and W-C phases

  18. Structural and magnetic properties of ball milled copper ferrite

    DEFF Research Database (Denmark)

    Goya, G.F.; Rechenberg, H.R.; Jiang, Jianzhong

    1998-01-01

    The structural and magnetic evolution in copper ferrite (CuFe2O4) caused by high-energy ball milling are investigated by x-ray diffraction, Mössbauer spectroscopy, and magnetization measurements. Initially, the milling process reduces the average grain size of CuFe2O4 to about 6 nm and induces....... The canted spin configuration is also suggested by the observed reduction in magnetization of particles in the blocked state. Upon increasing the milling time, nanometer-sized CuFe2O4 particles decompose, forming alpha-Fe2O3 and other phases, causing a further decrease of magnetization. After a milling time...... of 98 h, alpha-Fe2O3 is reduced to Fe3O4, and magnetization increases accordingly to the higher saturation magnetization value of magnetite. Three sequential processes during high-energy ball milling are established: (a) the synthesis of partially inverted CuFe2O4 particles with a noncollinear spin...

  19. Ammonia synthesis over multi-promoted iron catalysts obtained by high-energy ball-milling

    DEFF Research Database (Denmark)

    Jacobsen, C.J.H.; Jiang, Jianzhong; Mørup, Steen

    1999-01-01

    The feasibility of producing ammonia synthesis catalysts from high-energy ball-milling of a simple mixture of the constituent oxides has been investigated. The effect of ball-milling the fused oxidic precursor of the industrial KM1 ammonia synthesis catalyst has also been studied. The results show...

  20. Memory effect of ball-milled and annealed nanosized hematite

    International Nuclear Information System (INIS)

    Bercoff, P.G.; Bertorello, H.R.; Oliva, M.I.

    2007-01-01

    Fine particles of hematite (mean size 55 nm) were produced by ball milling a mixture of hematite and pure Fe and annealing at 1000 o C. X-ray diffraction (XRD) and Moessbauer spectroscopy show that only α-Fe 2 O 3 is present in the final product, with lattice and Moessbauer parameters that correspond to bulk hematite. ZFC and FC magnetization measurements were performed from 5 to 300 K, at different applied fields. Two magnetic regimes were observed: one at low temperatures (≤100 K) that we ascribe to the magnetic moments in the outer shell of the particles that couple to the magnetic moments in the core, and another at higher temperature that corresponds to the Morin transition, finding that the Morin temperature is T M =246 K. The memory effect is clearly observed in magnetic measurements that start from different remanence states and explained as dependent on the ordering of the magnetic moments within the particles

  1. Surface modification of titanium hydride with epoxy resin via microwave-assisted ball milling

    International Nuclear Information System (INIS)

    Ning, Rong; Chen, Ding; Zhang, Qianxia; Bian, Zhibing; Dai, Haixiong; Zhang, Chi

    2014-01-01

    Highlights: • TiH 2 was modified with epoxy resin by microwave-assisted ball milling. • The epoxy ring was opened under the coupling effect of microwave and ball milling. • Microwave-assisted ball milling improved the compatibility of TiH 2 with epoxy. - Abstract: Surface modification of titanium hydride with epoxy resin was carried out via microwave-assisted ball milling and the products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), thermo-gravimetry (TG) and Fourier transform infrared spectroscopy (FT-IR). A sedimentation test was performed to investigate the compatibility of the modified nano titanium hydride with the epoxy resin. The results show that the epoxy resin molecules were grafted on the surface of nano titanium hydride particles during the microwave-assisted ball milling process, which led to the improvement of compatibility between the nanoparticles and epoxy resin. According to the FT-IR, the grafting site was likely to be located around the epoxy group due to the fact that the epoxy ring was opened. However, compared with microwave-assisted ball milling, the conventional ball milling could not realize the surface modification, indicating that the coupling effect of mechanical force and microwave played a key role during the process

  2. Reversible a-Fe2O3 to Fe3O4 transformation during ball milling

    DEFF Research Database (Denmark)

    Linderoth, Søren; Jiang, Jianzhong; Mørup, Steen

    1997-01-01

    The transformation of hematite to magnetite by high-energy ball milling in a sealed container has been studied by Mossbauer spectroscopy and x-ray diffraction. Mechanisms for this transformation are critically discussed. The dominant mechanism is concluded to be due to bond breaking during the high...... energy ball milling followed by release of the oxygen from the vial. The reverse transformation, magnetite to hematite, is demonstrated to occur by ball milling in air. Mechanisms for this reverse transformation are also put forward....

  3. Efficiency of ball milled South African bentonite clay for remediation of acid mine drainage

    CSIR Research Space (South Africa)

    Masindi, Vhahangwele

    2015-12-01

    Full Text Available The feasibility of using vibratory ball milled South African bentonite clay for neutralization and attenuation of inorganic contaminants from acidic and metalliferous mine effluents has been evaluated. Treatment of acid mine drainage (AMD...

  4. Crystallite sizes of LiH before and after ball milling and thermal exposure

    International Nuclear Information System (INIS)

    Ortiz, Angel L.; Osborn, William; Markmaitree, Tippawan; Shaw, Leon L.

    2008-01-01

    The powder characteristics of lithium hydride (LiH) as a function of high-energy ball milling condition are systematically investigated via quantitative X-ray diffraction (XRD) analysis. The results obtained from the XRD analysis are compared with those attained from scanning electron microscopy (SEM), transmission electron microscopy (TEM), and specific surface area (SSA) analyses. The thermal stability of the ball-milled LiH is also investigated in order to provide physical insights into its cyclic stability in hydrogen sorption and desorption cycles. The results indicate that ball milling is effective in obtaining nano-crystalline LiH powder which is relatively stable with retention of nano-crystals after thermal exposure at 285 deg. C (equivalent to 0.58T m ) for 1 h. The good thermal stability observed is attributed to the presence of many pores in the agglomerates at the ball-milled condition. These pores effectively prevent crystal growth during the thermal exposure

  5. Hydrophilic functionalized silicon nanoparticles produced by high energy ball milling

    Science.gov (United States)

    Hallmann, Steffen

    The mechanochemical synthesis of functionalized silicon nanoparticles using High Energy Ball Milling (HEBM) is described. This method facilitates the fragmentation of mono crystalline silicon into the nanometer regime and the simultaneous surface functionalization of the formed particles. The surface functionalization is induced by the reaction of an organic liquid, such as alkynes and alkenes with reactive silicon sites. This method can be applied to form water soluble silicon nanoparticles by lipid mediated micelle formation and the milling in organic liquids containing molecules with bi-functional groups, such as allyl alcohol. Furthermore, nanometer sized, chloroalkyl functionalized particles can be synthesized by milling the silicon precursor in the presence of an o-chloroalkyne with either alkenes or alkynes as coreactants. This process allows tuning of the concentration of the exposed, alkyl linked chloro groups, simply by varying the relative amounts of the coreactant. The silicon nanoparticles that are formed serve as the starting point for a wide variety of chemical reactions, which may be used to alter the surface properties of the functionalized nanoparticles. Finally, the use of functionalized silicon particles for the production of superhydrophobic films is described. Here HEBM proves to be an efficient method to produce functionalized silicon particles, which can be deposited to form a stable coating exhibiting superhydrophobic properties. The hydrophobicity of the silicon film can be tuned by the milling time and thus the resulting surface roughness of the films.

  6. Ball Milling Treatment of Black Dross for Selective Dissolution of Alumina in Sodium Hydroxide Leaching

    OpenAIRE

    Thi Thuy Nhi Nguyen; Man Seung Lee; Thi Hong Nguyen

    2018-01-01

    A process consisting of ball milling followed by NaOH leaching was developed to selectively dissolve alumina from black dross. From the ball milling treatment, it was found that milling speed greatly affected the leaching behavior of silica and the oxides of Ca, Fe, Mg, and Ti present in dross. The leaching behavior of the mechanically activated dross was investigated by varying NaOH concentration, leaching temperature and time, and pulp density. In most of the leaching conditions, only alumi...

  7. Phase transition of Ni-Mn-Ga alloy powders prepared by vibration ball milling

    International Nuclear Information System (INIS)

    Tian, B.; Chen, F.; Tong, Y.X.; Li, L.; Zheng, Y.F.; Liu, Y.; Li, Q.Z.

    2011-01-01

    Research highlights: → The vibration ball milling with a high milling energy introduces the atomic disorder and large lattice distortion in the alloy during milling and makes the formation of disordered fcc structure phase in the alloy. → The transition temperature and activation energy for disordered fcc → disordered bcc are ∼320 o C and 209 ± 8 kJ/mol, respectively. → The alloy powders annealed at 800 o C for 1 h show a one-stage martensitic transformation with quite lower latent heat compared to the bulk alloy. - Abstract: This study investigated the phase transformation of the flaky shaped Ni-Mn-Ga powder particles with thickness around 1 μm prepared by vibration ball milling and post-annealing. The SEM, XRD, DSC and ac magnetic susceptibility measurement techniques were used to characterize the Ni-Mn-Ga powders. The structural transition of Heusler → disordered fcc occurred in the powders prepared by vibration ball milling (high milling energy) for 4 h, which was different from the structural transition of Heusler → disordered fct of the powders fabricated by planetary ball milling (low milling energy) for 4 h. The two different structures after ball milling should be due to the larger lattice distortion occurred in the vibration ball milling process than in the planetary ball milling process. The structural transition of disordered fcc → disordered bcc took place at ∼320 o C during heating the as-milled Ni-Mn-Ga powders, which was attributed to the elimination of lattice distortion caused by ball milling. The activation energy for this transition was 209 ± 8 kJ/mol. The Ni-Mn-Ga powder annealed at 800 o C mainly contained Heusler austenite phase at room temperature and showed a low volume of martensitic transformation upon cooling. The inhibition of martensitic transformation might be attributed to the reduction of grain size in the annealed Ni-Mn-Ga particles.

  8. Response to Thermal Exposure of Ball-Milled Aluminum-Borax Powder Blends

    Science.gov (United States)

    Birol, Yucel

    2013-04-01

    Aluminum-borax powder mixtures were ball milled and heated above 873 K (600 °C) to produce Al-B master alloys. Ball-milled powder blends reveal interpenetrating layers of deformed aluminum and borax grains that are increasingly refined with increasing milling time. Thermal exposure of the ball-milled powder blends facilitates a series of thermite reactions between these layers. Borax, dehydrated during heating, is reduced by Al, and B thus generated reacts with excess Al to produce AlB2 particles dispersed across the aluminum grains starting at 873 K (600 °C). AlB2 particles start to form along the interface of the aluminum and borax layers. Once nucleated, these particles grow readily to become hexagonal-shaped crystals that traverse the aluminum grains with increasing temperatures as evidenced by the increase in the size as well as in the number of the AlB2 particles. Ball milling for 1 hour suffices to achieve a thermite reaction between borax and aluminum. Ball milling further does not impact the response of the powder blend to thermal exposure. The nucleation-reaction sites are multiplied, however, with increasing milling time and thus insure a higher number of smaller AlB2 particles. The size of the AlB2 platelets may be adjusted with the ball milling time.

  9. Determination of the boundary conditions of the grinding load in ball mills

    Science.gov (United States)

    Sharapov, Rashid R.

    2018-02-01

    The prospects of application in ball mills for grinding cement clinker with inclined partitions are shown. It is noted that ball mills with inclined partitions are more effective. An algorithm is proposed for calculating the power consumed by a ball mill with inclined inter-chamber partitions in which an axial movement of the ball load takes place. The boundary conditions in which the ball load is located are determined. The equations of bounding the grinding load are determined. The behavior of a grinding load is considered in view of the characteristic cross sections. The coordinates of the centers of gravity of the grinding load with a definite step and the shape of the cross sections are determined. It is theoretically shown that grinding load in some parts of the ball mill not only consumes, but also helps to rotate the ball mill. Methods for calculating complex analytical expressions for determining the coordinates of the centers of gravity of the grinding load under the conditions of its longitudinal motion have developed. The carried out researches allow to approach from the general positions to research of behavior of a grinding load in the ball mills equipped with various in-mill devices.

  10. Ball-milling-induced crystallization and ball-milling effect on thermal crystallization kinetics in an amorphous FeMoSiB alloy

    International Nuclear Information System (INIS)

    Guo, F.Q.; Lu, K.

    1997-01-01

    Microstructure evolution in a melt-spun amorphous Fe 77.2 Mo 0.8 Si 9 B 13 alloy subjected to high-energy ball milling was investigated by means of X-ray diffraction (XRD), a transmission electron microscope (TEM), and a differential scanning calorimeter (DSC). It was found that during ball milling, crystallization occurs in the amorphous ribbon sample with precipitation of an α-Fe solid solution, and the amorphous sample crystallizes completely into a single α-Fe nanostructure (rather than α-Fe and borides as in the usual thermal crystallization products) when the milling time exceeds 135 hours. The volume fraction of material crystallized was found to be approximately proportional to the milling time. The fully crystallized sample with a single α-Fe nanophase exhibits an intrinsic thermal stability against phase separation upon annealing at high temperatures. The ball-milling effect on the subsequent thermal crystallization of the amorphous phase in an as-milled sample was studied by comparison of the crystallization products and kinetic parameters between the as-quenched amorphous sample and the as-milled sample was studied by comparison of the crystallization products and kinetic parameters between the as-quenched amorphous sample and the as-milled partially crystallized samples. The crystallization temperatures and activation energies for the crystallization processes of the residual amorphous phase were considerably decreased due to ball milling, indicating that ball milling has a significant effect on the depression of thermal stability of the residual amorphous phase

  11. Process intensification effect of ball milling on the hydrothermal pretreatment for corn straw enzymolysis

    International Nuclear Information System (INIS)

    Yuan, Zhengqiu; Long, Jinxing; Wang, Tiejun; Shu, Riyang; Zhang, Qi; Ma, Longlong

    2015-01-01

    Highlights: • Novel pretreatment of ball milling combined with hydrothermal method was presented. • Intensification effect of ball milling was significant for corn straw enzymolysis. • Ball milling destroyed the physical structure of corn straw. • Chemical (liquid mixture) method removed lignin and hemicellulose. • Glucose yield increased from 0.41 to 13.86 mg mL −1 under the optimized condition. - Abstract: Enhancement of the cellulose accessibility is significant for biomass enzymatic hydrolysis. Here, we reported an efficient combined pretreatment for corn straw enzymolysis using ball milling and dilute acid hydrothermal method (a mixture solvent of H 2 O/ethanol/sulfuric acid/hydrogen peroxide liquid). The process intensification effect of ball milling on the pretreatment of the corn straw was studied through the comparative characterization of the physical–chemical properties of the raw and pretreated corn straw using FT-IR, BET, XRD, SEM, and HPLC analysis. The effect of the pretreatment temperature was also investigated. Furthermore, various pretreatment methods were compared as well. Moreover, the pretreatment performance was measured by enzymolysis. The results showed that ball milling had a significant process intensification effect on the corn straw enzymolysis. The glucose concentration was dramatically increased from 0.41 to 13.86 mg mL −1 after the combined treatment of ball milling and hydrothermal. The efficient removal of lignin and hemicellulose and the enlargement of the surface area were considered to be responsible for this significant increase based on the intensive analysis on the main components and the physical–chemical properties of the raw and pretreated corn straw

  12. Ferromagnetic behavior of nanocrystalline Cu–Mn alloy prepared by ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, B.N., E-mail: bholanath_mondal@yahoo.co.in [Department of Central Scientific Services, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Sardar, G. [Department of Zoology, Baruipur College, South 24 parganas 743 610 (India); Nath, D.N. [Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Chattopadhyay, P.P. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah 711 103 (India)

    2014-12-15

    50Cu–50Mn (wt%) alloy was produced by ball milling. The milling was continued up to 30 h followed by isothermal annealing over a four interval of temperature from 350 to 650 °C held for 1 h. Crystallite size, lattice strain, lattice parameter were determined by Rietveld refinement structure analysis of X-ray diffraction data. The amount of dissolved/precipitated Mn (wt%) after ball milling/milling followed by annealing was calculated by quantative phase analysis (QPA). The increase of coercivity could be attributed to the introduction of lattice strain and reduction of crystallite size as a function of milling time. Electron paramagnetic resonance and superconducting quantum interface device analysis indicate that soft ferromagnetic behavior has been achieved by ball milled and annealed Cu–Mn alloy. The maximum coercivity value of Cu–Mn alloy obtained after annealing at 350 °C for 1 h is 277 Oe. - Highlights: • A small amount of Mn has dissolved in Cu after ball milling for 30 h. • Coercivity of the Cu–Mn alloy has increased with an increase in milling time. • Substantial MnO has formed after annealing at 650 °C for 1 h. • The ball milled and annealed alloy have revealed soft ferromagnetic behavior. • The alloy annealed at 350 °C shows the maximum value of coercivity.

  13. Study on the bonding state for carbon-boron nitrogen with different ball milling time

    International Nuclear Information System (INIS)

    Xiong, Y.H.; Xiong, C.S.; Wei, S.Q.; Yang, H.W.; Mai, Y.T.; Xu, W.; Yang, S.; Dai, G.H.; Song, S.J.; Xiong, J.; Ren, Z.M.; Zhang, J.; Pi, H.L.; Xia, Z.C.; Yuan, S.L.

    2006-01-01

    The varied bonding state and microstructure characterization were discussed for carbon-boron nitrogen (CBN) with abundant phase structure and nanostructure, which were synthesized directly by mechanical alloying technique at room temperature. According to the results of SEM and X-ray photoelectron spectroscopy (XPS) of CBN with different ball milling time, it is substantiated that the bonding state and microstructure for CBN were closely related to the ball milling time. With the increase of the ball milling time, some new chemical bonding states of CBN were observed, which implies that some new bonding state and microstructures have been formed. The results of XPS are accordance with that of X-ray diffraction of CBN

  14. A study on a new algorithm to optimize ball mill system based on modeling and GA

    International Nuclear Information System (INIS)

    Wang Heng; Jia Minping; Huang Peng; Chen Zuoliang

    2010-01-01

    Aiming at the disadvantage of conventional optimization method for ball mill pulverizing system, a novel approach based on RBF neural network and genetic algorithm was proposed in the present paper. Firstly, the experiments and measurement for fill level based on vibration signals of mill shell was introduced. Then, main factors which affected the power consumption of ball mill pulverizing system were analyzed, and the input variables of RBF neural network were determined. RBF neural network was used to map the complex non-linear relationship between the electric consumption and process parameters and the non-linear model of power consumption was built. Finally, the model was optimized by genetic algorithm and the optimal work conditions of ball mill pulverizing system were determined. The results demonstrate that the method is reliable and practical, and can reduce the electric consumption obviously and effectively.

  15. Transforming from paramagnetism to room temperature ferromagnetism in CuO by ball milling

    Directory of Open Access Journals (Sweden)

    Daqiang Gao

    2011-12-01

    Full Text Available In this work, we experimentally demonstrate that it is possible to induce ferromagnetism in CuO by ball milling without any ferromagnetic dopant. The magnetic measurements indicate that paramagnetic CuO is driven to the ferromagnetic state at room temperature by ball milling gradually. The saturation magnetization of the milled powders is found to increase with expanding the milling time and then decrease by annealing under atmosphere. The fitted X-ray photoelectron spectroscopy results indicate that the observed induction and weaken of the ferromagnetism shows close relationship with the valence charged oxygen vacancies (Cu1+-VO in CuO.

  16. Nitrogen-doped graphene by ball-milling graphite with melamine for energy conversion and storage

    International Nuclear Information System (INIS)

    Xue, Yuhua; Chen, Hao; Qu, Jia; Dai, Liming

    2015-01-01

    N-doped graphene was prepared by ball milling of graphite with melamine. It was found that ball-milling reduced the size of graphite particles from 30 to 1 μm and facilitated the exfoliation of the resultant small particles into few-layer N-doped graphene nanosheets under ultrasonication. The as-prepared N-doped graphene nanoplatelets (NGnPs) exhibited a nitrogen content as high as 11.4 at.%, making them attractive as efficient electrode materials in supercapacitors for energy storage and as highly-active metal-free catalysts for oxygen reduction in fuel cells for energy conversion. (paper)

  17. THEORETICAL AND EXPERIMENTAL STUDIES OF ENERGY-EFFICIENT GRINDING PROCESS OF CEMENT CLINKER IN A BALL MILL

    Directory of Open Access Journals (Sweden)

    Kuznetsova M.M.

    2014-08-01

    Full Text Available The article presents results of theoretical and experimental research of grinding process of bulk materials in a ball mill. The new method of determination of energy efficiently mode of operation of ball mills in a process of a cement clinker grinding is proposed and experimentally tested.

  18. Comprehensive characterization of ball-milled powders simulating a tribofilm system

    Energy Technology Data Exchange (ETDEWEB)

    Häusler, I., E-mail: ines.haeusler@bam.de; Dörfel, I., E-mail: Ilona.doerfel@bam.de; Peplinski, B., E-mail: Burkhard.peplinski@bam.de; Dietrich, P.M., E-mail: Paul.dietrich@yahoo.de; Unger, W.E.S., E-mail: Wolfgang.Unger@bam.de; Österle, W., E-mail: Werner.Oesterle@bam.de

    2016-01-15

    A model system was used to simulate the properties of tribofilms which form during automotive braking. The model system was prepared by ball milling of a blend of 70 vol.% iron oxides, 15 vol.% molybdenum disulfide and 15 vol.% graphite. The resulting mixture was characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and various transmission electron microscopic (TEM) methods, including energy dispersive X-ray spectroscopy (EDXS), high resolution investigations (HRTEM) with corresponding simulation of the HRTEM images, diffraction methods such as scanning nano-beam electron diffraction (SNBED) and selected area electron diffraction (SAED). It could be shown that the ball milling caused a reduction of the grain size of the initial components to the nanometer range. Sometimes even amorphization or partial break-down of the crystal structure was observed for MoS{sub 2} and graphite. Moreover, chemical reactions lead to a formation of surface coverings of the nanoparticles by amorphous material, molybdenum oxides, and iron sulfates as derived from XPS. - Highlights: • Ball milling of iron oxides, MoS{sub 2}, and graphite to simulate a tribofilm • Increasing coefficient of friction after ball milling of the model blend • Drastically change of the diffraction pattern of the powder mixture • TEM & XPS showed the components of the milled mixture and the process during milling. • MoS{sub 2} and graphite suffered a loss in translation symmetry or became amorphous.

  19. Thermogravimetric and Differential Scanning Calorimetric Behavior of Ball-Milled Nuclear Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eung Seon; Kim, Min Hwan; Kim, Yong Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Yi Hyun; Cho, Seung Yon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    An examination was made to characterize the oxidation behavior of ball-milled nuclear graphite powder through a TG-DSC analysis. With the ball milling time, the BET surface area increased with the reduction of particle size, but decreased with the chemisorptions of O{sub 2} on the activated surface. The enhancement of the oxidation after the ball milling is attributed to both increases in the specific surface area and atomic scale defects in the graphite structure. In a high temperature gas-cooled reactor, nuclear graphite has been widely used as fuel elements, moderator or reflector blocks, and core support structures owing to its excellent moderating power, mechanical properties and machinability. For the same reason, it will be used in a helium cooled ceramic reflector test blanket module for the ITER. Each submodule has a seven-layer breeding zone, including three neutron multiplier layers packed with beryllium pebbles, three lithium ceramic pebbles packed tritium breeder layers, and a reflector layer packed with 1 mm diameter graphite pebbles to reduce the volume of beryllium. The abrasion of graphite structures owing to relative motion or thermal cycle during operation may produce graphite dust. It is expected that graphite dust will be more oxidative than bulk graphite, and thus the oxidation behavior of graphite dust must be examined to analyze the safety of the reactors during an air ingress accident. In this study, the thermal stability of ball-milled graphite powder was investigated using a simultaneous thermogravimeter-differential scanning calorimeter.

  20. Processing of magnetically anisotropic MnBi particles by surfactant assisted ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Kanari, K. [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Sarafidis, C., E-mail: hsara@physics.auth.gr [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Gjoka, M.; Niarchos, D. [INN, NCSR Demokritos, Athens 15310 (Greece); Kalogirou, O. [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2017-03-15

    MnBi particles are obtained from bulk MnBi using mechanochemical processing. The structure and magnetic properties of the MnBi particles are investigated by means of X-ray diffraction analysis, scanning electron microscopy and magnetometry. Surfactant assisted high energy ball milling results to the samples’ degradation even after one hour of milling. In the case of surfactant assisted low energy ball milling the increase of ball milling duration decreases the average particle size while the particles seem to be more separated. The saturation magnetization (M{sub s}) was found to decrease for large milling times beginning from 61 Am{sup 2}/kg, while the coercivity (μ{sub 0}H{sub c}) increases with the increase of ball milling duration up to 35 min where it reaches 1.62 T and thereafter it decreases. - Highlights: • Effect of surfactants in processing of MnBi. • Magnetization degradation due to air storage and due to processing. • Coercivity of 1.6 T in epoxy resin oriented material.

  1. Matrix model of the grinding process of cement clinker in the ball mill

    Science.gov (United States)

    Sharapov, Rashid R.

    2018-02-01

    In the article attention is paid to improving the efficiency of production of fine powders, in particular Portland cement clinker. The questions of Portland cement clinker grinding in closed circuit ball mills. Noted that the main task of modeling the grinding process is predicting the granulometric composition of the finished product taking into account constructive and technological parameters used ball mill and separator. It is shown that the most complete and informative characterization of the grinding process in a ball mill is a grinding matrix taking into account the transformation of grain composition inside the mill drum. Shows how the relative mass fraction of the particles of crushed material, get to corresponding fraction. Noted, that the actual task of reconstruction of the matrix of grinding on the experimental data obtained in the real operating installations. On the basis of experimental data obtained on industrial installations, using matrix method to determine the kinetics of the grinding process in closed circuit ball mills. The calculation method of the conversion of the grain composition of the crushed material along the mill drum developed. Taking into account the proposed approach can be optimized processing methods to improve the manufacturing process of Portland cement clinker.

  2. Reliable Mechanochemistry: Protocols for Reproducible Outcomes of Neat and Liquid Assisted Ball-mill Grinding Experiments.

    Science.gov (United States)

    Belenguer, Ana M; Lampronti, Giulio I; Sanders, Jeremy K M

    2018-01-23

    The equilibrium outcomes of ball mill grinding can dramatically change as a function of even tiny variations in the experimental conditions such as the presence of very small amounts of added solvent. To reproducibly and accurately capture this sensitivity, the experimentalist needs to carefully consider every single factor that can affect the ball mill grinding reaction under investigation, from ensuring the grinding jars are clean and dry before use, to accurately adding the stoichiometry of the starting materials, to validating that the delivery of solvent volume is accurate, to ensuring that the interaction between the solvent and the powder is well understood and, if necessary, a specific soaking time is added to the procedure. Preliminary kinetic studies are essential to determine the necessary milling time to achieve equilibrium. Only then can exquisite phase composition curves be obtained as a function of the solvent concentration under ball mill liquid assisted grinding (LAG). By using strict and careful procedures analogous to the ones here presented, such milling equilibrium curves can be obtained for virtually all milling systems. The system we use to demonstrate these procedures is a disulfide exchange reaction starting from the equimolar mixture of two homodimers to obtain at equilibrium quantitative heterodimer. The latter is formed by ball mill grinding as two different polymorphs, Form A and Form B. The ratio R = [Form B] / ([Form A] + [Form B]) at milling equilibrium depends on the nature and concentration of the solvent in the milling jar.

  3. A vertical ball mill as a new reactor design for biomass hydrolysis and fermentation process

    DEFF Research Database (Denmark)

    de Assis Castro, Rafael Cunha; Mussatto, Solange I.; Conceicao Roberto, Inês

    2017-01-01

    A vertical ball mill (VBM) reactor was evaluated for use in biomass conversion processes. The effects of agitation speed (100–200 rpm), number of glass spheres (0–30 units) and temperature (40–46 °C) on enzymatic hydrolysis of rice straw and on glucose fermentation by a thermotolerant Kluyveromyces...

  4. Crystallite sizes of LiH before and after ball milling and thermal exposure

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Angel L. [Departamento de Electronica e Ingenieria Electromecanica, Universidad de Extremadura, Badajoz (Spain); Osborn, William; Markmaitree, Tippawan [Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, 97 North Eagleville Road, U-3136 Storrs, CT 06269-3136 (United States); Shaw, Leon L. [Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, 97 North Eagleville Road, U-3136 Storrs, CT 06269-3136 (United States)], E-mail: leon.shaw@uconn.edu

    2008-04-24

    The powder characteristics of lithium hydride (LiH) as a function of high-energy ball milling condition are systematically investigated via quantitative X-ray diffraction (XRD) analysis. The results obtained from the XRD analysis are compared with those attained from scanning electron microscopy (SEM), transmission electron microscopy (TEM), and specific surface area (SSA) analyses. The thermal stability of the ball-milled LiH is also investigated in order to provide physical insights into its cyclic stability in hydrogen sorption and desorption cycles. The results indicate that ball milling is effective in obtaining nano-crystalline LiH powder which is relatively stable with retention of nano-crystals after thermal exposure at 285 deg. C (equivalent to 0.58T{sub m}) for 1 h. The good thermal stability observed is attributed to the presence of many pores in the agglomerates at the ball-milled condition. These pores effectively prevent crystal growth during the thermal exposure.

  5. Magnetoresistivity and microstructure of YBa2Cu3Oy prepared using planetary ball milling

    International Nuclear Information System (INIS)

    Hamrita, A.; Ben Azzouz, F.; Madani, A.; Ben Salem, M.

    2012-01-01

    Superconducting properties of YBa 2 Cu 3 O y prepared using planetary ball milling were studied. Y-deficient YBa 2 Cu 3 O y nanoparticles are embedded in the superconducting matrix. Ball milled sample exhibits a large magnetoresistivity in weak magnetic fields at 77 K. We have studied the microstructure and the magnetoresistivity of polycrystalline YBa 2 Cu 3 O y (YBCO or Y-123 for brevity) embedded with nanoparticles of Y-deficient YBCO, generated by the planetary ball milling technique. Bulk samples were synthesized from a precursor YBCO powder, which was prepared from commercial high purity Y 2 O 3 , Ba 2 CO 3 and CuO via a one-step annealing process in air at 950 °C. After planetary ball milling of the precursor, the powder was uniaxially pressed and subsequently annealed at 950 °C in air. Phase analysis by X-ray diffraction (XRD), granular structure examination by scanning electron microscopy (SEM), microstructure investigation by transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectroscopy (EDXS) were carried out. TEM analyses show that nanoparticles of Y-deficient YBCO, generated by ball milling, are embedded in the superconducting matrix. Electrical resistance as a function of temperature, ρ(T), revealed that the zero resistance temperature, T co , is 84.5 and 90 K for the milled and unmilled samples respectively. The milled ceramics exhibit a large magnetoresistance in weak magnetic fields at liquid nitrogen temperature. This attractive effect is of high significance as it makes these materials promising candidates for practical application in magnetic field sensor devices.

  6. Microstructural Evolution, Thermodynamics, and Kinetics of Mo-Tm2O3 Powder Mixtures during Ball Milling

    Directory of Open Access Journals (Sweden)

    Yong Luo

    2016-10-01

    Full Text Available The microstructural evolution, thermodynamics, and kinetics of Mo (21 wt % Tm2O3 powder mixtures during ball milling were investigated using X-ray diffraction and transmission electron microscopy. Ball milling induced Tm2O3 to be decomposed and then dissolved into Mo crystal. After 96 h of ball milling, Tm2O3 was dissolved completely and the supersaturated nanocrystalline solid solution of Mo (Tm, O was obtained. The Mo lattice parameter increased with increasing ball-milling time, opposite for the Mo grain size. The size and lattice parameter of Mo grains was about 8 nm and 0.31564 nm after 96 h of ball milling, respectively. Ball milling induced the elements of Mo, Tm, and O to be distributed uniformly in the ball-milled particles. Based on the semi-experimental theory of Miedema, a thermodynamic model was developed to calculate the driving force of phase evolution. There was no chemical driving force to form a crystal solid solution of Tm atoms in Mo crystal or an amorphous phase because the Gibbs free energy for both processes was higher than zero. For Mo (21 wt % Tm2O3, it was mechanical work, not the negative heat of mixing, which provided the driving force to form a supersaturated nanocrystalline Mo (Tm, O solid solution.

  7. Synthesis of free standing nanocrystalline Cu by ball milling at cryogenic temperature

    Energy Technology Data Exchange (ETDEWEB)

    Barai, K. [Department of Metallurgy and Materials Engineering, Bengal Engineering College, Shibpur, Howrah 711103 (India); Tiwary, C.S. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Chattopadhyay, P.P. [Department of Metallurgy and Materials Engineering, Bengal Engineering College, Shibpur, Howrah 711103 (India); Chattopadhyay, K., E-mail: kamanio@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2012-12-15

    This paper reports for the first time synthesis of free standing nano-crystalline copper crystals of a {approx}30-40 nm by ball milling of copper powder at 150 K under Argon atmosphere in a specially designed cryomill. The detailed characterization of these particles using multiple techniques that includes transmission electron microscopy confirms our conclusion. Careful analysis of the chemistry of these particles indicates that these particles are essentially contamination free. Through the analysis of existing models of grain size refinements during ball milling and low temperature deformation, we argue that the suppression of thermal processes and low temperature leads to formation of free nanoparticles as the process of fracture dominates over possible cold welding at low temperatures.

  8. Ball mill tool for crushing coffee and cocoa beans base on fraction size sieving results

    Science.gov (United States)

    Haryanto, B.; Sirait, M.; Azalea, M.; Alvin; Cahyani, S. E.

    2018-02-01

    Crushing is one of the operation units that aimed to convert the size of solid material to be smoother particle’s size. The operation unit that can be used in this crushing is ball mill. The purpose of this study is to foresee the effect of raw material mass, grinding time, and the number of balls that are used in the ball mill tool related to the amount of raw material of coffee and cocoa beans. Solid material that has become smooth is then sieved with sieve mesh with size number: 50, 70, 100, and 140. It is in order to obtain the mass fraction that escaped from each sieve mesh. From the experiment, it can be concluded that mass percentage fraction of coffee powder is bigger than cocoa powder that escaped from the mesh. Hardness and humidity of coffee beans and cocoa beans have been the important factors that made coffee beans is easier to be crushed than cocoa beans.

  9. Effect of high-energy ball milling in the structural and textural properties of kaolinite

    Directory of Open Access Journals (Sweden)

    E. C. Leonel

    2014-06-01

    Full Text Available Through the process of high-energy ball milling it is possible to obtain solid materials with higher surface area and different particle sizes. These characteristics are very important for some application such as adsorption. Besides, applications of some clays depend on the functionalization which, for kaolinite, takes place in the aluminol groups. Modification in the structural and textural properties of kaolinite by high-energy milling can improve functionalization of kaolinite due to the exposure of aluminol groups. In this work studies were done on the influence of high-energy ball milling on the morphological properties of kaolinite, taking into account parameters such as filling of the miller, number of balls and amount of mass to be milled. Moreover, studies involving milling kinetics of purified kaolinite were carried out to verify modification in the morphology of kaolinite with milling time.

  10. Effect of ball milling time on thermoelectric properties of bismuth telluride nanomaterials

    Science.gov (United States)

    Khade, Poonam; Bagwaiya, Toshi; Bhattacharaya, Shovit; Singh, Ajay; Jha, Purushottam; Shelke, Vilas

    2018-04-01

    The effect of different milling time on thermoelectric properties of bismuth telluride (Bi2Te3) was investigated. The nanomaterial was prepared by varying the ball milling time and followed by hot press sintering. The crystal structure and phase formation were verified by X-ray diffraction and Raman Spectroscopy. The experimental results show that electrical conductivity increases whereas thermal conductivity decreases with increasing milling time. The negative sign of seebeck coefficient indicate the n-type nature with majority charge carriers of electrons. A maximum figure of merit about 0.55 is achieved for l5hr ball milled Bi2Te3 sample. The present study demonstrates the simple and cost-effective method for synthesis of Bi2Te3 thermoelectric material at large scale thermoelectric applications.

  11. Sintered Fe-Ni-Cu-Sn-C Alloys Made of Ball-Milled Powders

    Directory of Open Access Journals (Sweden)

    Romański A.

    2014-10-01

    Full Text Available The main objective of this paper was to perform sinterability studies of ball-milled Fe-12%Ni-6.4%Cu-1.6%Sn-0.6%C powders. A mixture of precisely weighed amounts of elemental iron, nickel and graphite, and pre-alloyed 80/20 bronze powders was ball-milled for 8, 30 and 120 hours. After cold-pressing at 400 MPa the specimens were sintered at 900oC for 30 minutes in a reducing atmosphere and subsequently tested for density and hardness as well as subjected to structural studies using scanning electron microscopy (SEM and X-ray diffraction (XRD analysis.

  12. Low-temperature magnetic behavior of ball-milled copper ferrite

    DEFF Research Database (Denmark)

    Goya, G.F.; Rechenberg, H.R.; Jiang, Jianzhong

    1999-01-01

    We present a study on magnetic properties of CuFe2O4 nanoparticles, produced by high-energy ball milling. The series of samples obtained, with average particle sizes LFAN alpha d RTAN ranging from 61 nm to 9 nm, display increasing relaxation effects at room temperature. Irreversibility of the mag......We present a study on magnetic properties of CuFe2O4 nanoparticles, produced by high-energy ball milling. The series of samples obtained, with average particle sizes LFAN alpha d RTAN ranging from 61 nm to 9 nm, display increasing relaxation effects at room temperature. Irreversibility...... of the magnetization and shifts to negative fields in the hysteresis loops are observed below T-f APEQ 55 K, indicating unidirectional magnetic anisotropy in milled samples. These features could be explained by assuming the formation of a spin-disordered surface layer, which is exchange-coupled to the ferrimagnetic...

  13. Fe-Al2O3 nanocomposites prepared by high-energy ball milling

    DEFF Research Database (Denmark)

    Linderoth, Søren; Pedersen, M.S.

    1994-01-01

    Nanocomposites of alpha-Fe and alpha-Al2O3, prepared by high-energy ball milling, exhibit coercivities which are enhanced by about two orders of magnitude with respect to the bulk value. The degree of enhancement depends on the volume fraction (x(upsilon)) of Fe, with a maximum for x(upsilon) alm......Nanocomposites of alpha-Fe and alpha-Al2O3, prepared by high-energy ball milling, exhibit coercivities which are enhanced by about two orders of magnitude with respect to the bulk value. The degree of enhancement depends on the volume fraction (x(upsilon)) of Fe, with a maximum for x...

  14. Excess lithium storage in LiFePO4-Carbon interface by ball-milling

    Science.gov (United States)

    Guo, Hua; Song, Xiaohe; Zheng, Jiaxin; Pan, Feng

    2016-07-01

    As one of the most popular cathode materials for high power lithium ion batteries (LIBs) of the electrical-vehicle (EV), lithium iron phosphate (LiFePO4 (LFP)) is limited to its relatively lower theoretical specific capacity of 170mAh g-1. To break the limits and further improve the capacity of LFP is promising but challenging. In this study, the ball-milling method is applied to the mixture of LFP and carbon, and the effective capacity larger than the theoretical one by 30mAh g-1 is achieved. It is demonstrated that ball-milling leads to the LFP-Carbon interface to store the excess Li-ions.

  15. Comparative Study by MS and XRD of Fe50Al50 Alloys Produced by Mechanical Alloying, Using Different Ball Mills

    International Nuclear Information System (INIS)

    Rojas Martinez, Y.; Perez Alcazar, G. A.; Bustos Rodriguez, H.; Oyola Lozano, D.

    2005-01-01

    In this work we report a comparative study of the magnetic and structural properties of Fe 50 Al 50 alloys produced by mechanical alloying using two different planetary ball mills with the same ball mass to powder mass relation. The Fe 50 Al 50 sample milled during 48 h using the Fritsch planetary ball mill pulverisette 5 and balls of 20 mm, presents only a bcc alloy phase with a majority of paramagnetic sites, whereas that sample milled during the same time using the Fritsch planetary ball mill pulverisette 7 with balls of 15 mm, presents a bcc alloy phase with paramagnetic site (doublet) and a majority of ferromagnetic sites which include pure Fe. However for 72 h of milling this sample presents a bcc paramagnetic phase, very similar to that prepared with the first system during 48 h. These results show that the conditions used in the first ball mill equipment make more efficient the milling process.

  16. Reverse martensitic transformation in alumina-15 vol% zirconia nanostructured powder synthesized by high energy ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Maneshian, M.H. [Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, P.O. Box 11365-9466, Tehran (Iran, Islamic Republic of)], E-mail: mh_maneshian@yahoo.com; Banerjee, M.K. [National Institute of Foundry and Forge Technology, Hatia, Ranchi 834003 (India)

    2008-07-14

    In the present work, three alumina-15 vol% zirconia composites with Y{sub 2}O{sub 3}, MgO as dopants and without oxide as dopant have been investigated. High energy ball milling (HEBM) provides the positive thermodynamic driving force for monoclinic to tetragonal transformation and it reduces starting temperature for the reverse martensitic transformation, meanwhile mobility of zirconium cations and oxygen anions are enhanced in zirconia by HEBM. The general, albeit heuristic, reasoning is corroborated by nanocrystallity, particle size and also the retained monoclinic seem to play an important role. After 10 h HEBM, approximately 28% zirconia tetragonal phase is achieved. Non-stoichiometric tetragonal zirconia phase; Zr{sub 0.95}O{sub 2} is seen to have been achieved by high energy ball milling (HEBM). The structural and compositional evolutions during HEBM have been investigated using X-ray diffraction method (XRD) and scanning electron microscopy (SEM). High resolution transmission electron microscope (TEM) is also used for further understanding about the phenomenological changes taking place during high energy ball milling.

  17. Mechanically Induced Graphite-Nanodiamonds-Phase Transformations During High-Energy Ball Milling

    Science.gov (United States)

    El-Eskandarany, M. Sherif

    2017-05-01

    Due to their unusual mechanical, chemical, physical, optical, and biological properties, nearly spherical-like nanodiamonds have received much attention as desirable advanced nanomaterials for use in a wide spectrum of applications. Although, nanodiamonds can be successfully synthesized by several approaches, applications of high temperature and/or high pressure may restrict the real applications of such strategic nanomaterials. Distinct from the current preparation approaches used for nanodiamonds preparation, here we show a new process for preparing ultrafine nanodiamonds (3-5 nm) embedded in a homogeneous amorphous-carbon matrix. Our process started from high-energy ball milling of commercial graphite powders at ambient temperature under normal atmospheric helium gas pressure. The results have demonstrated graphite-single wall carbon nanotubes-amorphous-carbon-nanodiamonds phase transformations carried out through three subsequent stages of ball milling. Based on XRD and RAMAN analyses, the percentage of nanodiamond phase + C60 (crystalline phase) produced by ball milling was approximately 81%, while the amorphous phase amount was 19%. The pressure generated on the powder together the with temperature increase upon the ball-powder-ball collision is responsible for the phase transformations occurring in graphite powders.

  18. High-energy ball milling of powder B-C mixtures

    International Nuclear Information System (INIS)

    Ramos, Alfeu S.; Taguchi, Simone P.; Ramos, Erika C.T.; Arantes, Vera L.; Ribeiro, Sebastiao

    2006-01-01

    The present work reports on the preparation of B-10 at.% C and B-18 at.% C powders by high-energy ball milling and further heat treatment. The milling process was carried out in a planetary ball mill. Following the milling process, powder samples were heat-treated at 1200 deg. C for 4 h using inert atmosphere. The milled and heat-treated B-10C and B-18C powders were characterized by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. A reduction on the intensity of B and C peaks was noticed after milling for 2 h, probably due the fine powder particle sizes because the pronounced fracture mechanism during ball milling of brittle starting components. The XRD patterns of B-10C and B-18C powders milled for 6 h indicated the presence of other peaks, suggesting that a metastable structure could have been formed. After milling for 90 h, these unknown peaks were still present. A large amount of B 4 C was formed after heat treatment at 1200 deg. C for 4 h beside these unknown peaks

  19. Fabrication of Ti-Ni-Cu shape memory alloy powders by ball milling method

    International Nuclear Information System (INIS)

    Kang, S.; Nam, T.

    2001-01-01

    Ti-Ni and Ti-Ni-Cu shape memory alloy powders have been fabricated by ball milling method, and then alloying behavior and transformation behavior were investigated by means of optical microscopy, electron microscopy, X-ray diffraction and differential scanning calorimetry. As milled Ti-Ni powders fabricated with milling time less than 20 hrs was a mixture of pure elemental Ti and Ni, and therefore it was unable to obtain alloy powders because the combustion reaction between Ti and Ni occurred during heat treatment. Since those fabricated with milling time more than 20 hrs was a mixture of Ti-rich and Ni-rich Ti-Ni solid solution, however, it was possible to obtain alloy powders without the combustion reaction during heat treatment. Clear exothermic and endothermic peaks appeared in the cooling and heating curves, respectively in DSC curves of 20 hrs and 30 hrs milled Ti-Ni powders. On the other hand, in DSC curves of 1 hr, 10 hrs, 50 hrs and 100 hrs, the thermal peaks were almost discernible. The most optimum ball milling time for fabricating Ti-Ni alloy powders was 30 hrs. Ti-40Ni-10Cu(at%) alloy powders were fabricated successfully by ball milling conditions with rotating speed of 100 rpm and milling time of 30 hrs. (author)

  20. Performance Study of Graphite Anode Slurry in Lithium-ion Flow Battery by Ball Milling

    Directory of Open Access Journals (Sweden)

    FENG Cai-mei

    2018-02-01

    Full Text Available Graphite anode slurry of lithium-ion flow battery was prepared by the method of ball milling. The morphology, conductivity, specific capacity and cycle performance of graphite anode slurry were studied. Results show that the addition of conductive carbon material can improve the suspension stability of the electrode slurry; the ball milling process can not only improve the suspension stability but also reduce the resistivity of the mixed powders of graphite and conductive carbon materials, the ball milling effect is satisfactory when the mass ratio of the balls and the solid particles is 5:1, but too high ratio of the milling ball and the solid materials can destroy the layer structure of the graphite and affect the stability of the slurry. Increasing the fraction of the graphite and conductive carbon materials can form stable electrical network structure in the slurry and improve the reversible capacity; at the premise of keeping the flowability of the electrode slurry, the reversible specific capacity can be more than 40mAh/g. The capacity loss of graphite anode slurry mainly occurs in the first charging-discharging process, as the increase of the cycles, the capacity loss rate decreases, the capacity goes stable after 5 cycles.

  1. Ball milled bauxite residue as a reinforcing filler in phosphate-based intumescent system

    Directory of Open Access Journals (Sweden)

    Adiat Ibironke Arogundade

    2018-01-01

    Full Text Available Bauxite residue (BR is an alumina refinery waste with a global disposal problem. Of the 120 MT generated annually, only 3 MT is disposed via utilization. One of the significant challenges to sustainable utilization has been found to be the cost of processing. In this work, using ball milling, we achieved material modification of bauxite residue. Spectrometric imaging with FESEM showed the transformation from an aggregate structure to nano, platy particulates, leading to particle size homogeneity. BET analysis showed surface area was increased by 23%, while pH was reduced from 10.8 to 9.1 due to collapsing of the hydroxyl surface by the fracturing action of the ball mill. Incorporation of this into a phosphate-based fire retardant, intumescent formulation led to improved material dispersion and the formation of reinforcing heat shielding char nodules. XRD revealed the formation of ceramic metal phosphates which acted as an additional heat sink to the intumescent system, thereby reducing char oxidation and heat transfer to the substrate. Steel substrate temperature from a Bunsen burner test reduced by 33%. Therefore, ball milling can serve as a simple, low-cost processing route for the reuse of bauxite residue in intumescent composites.

  2. Effect of additional nickel on crystallization degree evolution of expanded graphite during ball-milling and annealing

    International Nuclear Information System (INIS)

    Wang Liqin; Yue Xueqing; Zhang Fucheng; Zhang Ruijun

    2010-01-01

    Expanded graphite (EG) and a mixture of EG and nickel (EG-Ni system) were ball-milled and subsequently annealed, respectively. The products were characterized by X-ray diffraction (XRD), Raman spectra and transmission electron microscopy (TEM). After 100 h milling, the average crystallite thickness (L c ) of EG and EG-Ni system deceases from 14.5 to 8.0 and 9.6 nm, respectively, while the interlayer spacing (d 002 ) increases from 0.3341 to 0.3371 and 0.3348 nm, respectively. It can be concluded that ball-milling decreases the crystallization degree of EG, while the additional nickel restrains this process. For the samples ball-milled for 80 h, the disorder parameter I D /(I D + I G ) ratio of EG and EG-Ni system is in the range of 20.7-55.8% and 31.7-45.8%, respectively, implying that the presence of nickel is beneficial to more homogeneous ball-milling of EG. When the samples after ball-milling for 80 h were annealed for 4 h, the average crystallite thickness of EG and EG-Ni system increases from 8.5 to 9.0 nm and from 11.8 to 15.5 nm, respectively. It is deduced that annealing improves the crystallization degree of ball-milled EG, and the additional nickel is helpful for this process.

  3. Effects of ball milling on microstructures and thermoelectric properties of higher manganese silicides

    International Nuclear Information System (INIS)

    Chen, Xi; Shi, Li; Zhou, Jianshi; Goodenough, John B.

    2015-01-01

    Highlights: • The already low κ L of HMS can be suppressed further by decreasing the grain size. • The ball milling process can lead to the formation of secondary MnSi and W/C-rich phases. • The formation of the MnSi ad W/C rich phases is found to suppress the thermoelectric power factor. - Abstract: Bulk nanostructured higher manganese silicide (HMS) samples with different grain size are prepared by melting, subsequent ball milling (BM), and followed by spark plasma sintering (SPS). The effects of BM time on the microstructures and thermoelectric properties of these samples are investigated. It is found that BM effectively reduces the grain size to about 90 nm in the sample after SPS, which leads to a decrease in both the thermal conductivity and electrical conductivity. By prolonging the BM time, MnSi and tungsten/carbon-rich impurity phases are formed due to the impact-induced decomposition of HMS and contamination from the tungsten carbide jar and balls during the BM, respectively. These impurities result in a reduced Seebeck coefficient and increased thermal conductivity above room temperature. The measured size-dependent lattice thermal conductivities agree qualitatively with the reported calculation results based on a combined phonon and diffuson model. The size effects are found to be increasingly significant as temperature decreases. Because of the formation of the impurity phases and a relatively large grain size, the ZT values are not improved in the ball-milled HMS samples. These findings suggest the need of alternative approaches for the synthesis of pure HMS with further reduced grain size and controlled impurity doping in order to enhance the thermoelectric figure-of-merit of HMS via nanostructuring

  4. Effects of ball milling on microstructures and thermoelectric properties of higher manganese silicides

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xi [Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712 (United States); Shi, Li, E-mail: lishi@mail.utexas.edu [Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712 (United States); Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712 (United States); Zhou, Jianshi; Goodenough, John B. [Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712 (United States); Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712 (United States)

    2015-08-25

    Highlights: • The already low κ{sub L} of HMS can be suppressed further by decreasing the grain size. • The ball milling process can lead to the formation of secondary MnSi and W/C-rich phases. • The formation of the MnSi ad W/C rich phases is found to suppress the thermoelectric power factor. - Abstract: Bulk nanostructured higher manganese silicide (HMS) samples with different grain size are prepared by melting, subsequent ball milling (BM), and followed by spark plasma sintering (SPS). The effects of BM time on the microstructures and thermoelectric properties of these samples are investigated. It is found that BM effectively reduces the grain size to about 90 nm in the sample after SPS, which leads to a decrease in both the thermal conductivity and electrical conductivity. By prolonging the BM time, MnSi and tungsten/carbon-rich impurity phases are formed due to the impact-induced decomposition of HMS and contamination from the tungsten carbide jar and balls during the BM, respectively. These impurities result in a reduced Seebeck coefficient and increased thermal conductivity above room temperature. The measured size-dependent lattice thermal conductivities agree qualitatively with the reported calculation results based on a combined phonon and diffuson model. The size effects are found to be increasingly significant as temperature decreases. Because of the formation of the impurity phases and a relatively large grain size, the ZT values are not improved in the ball-milled HMS samples. These findings suggest the need of alternative approaches for the synthesis of pure HMS with further reduced grain size and controlled impurity doping in order to enhance the thermoelectric figure-of-merit of HMS via nanostructuring.

  5. FePt magnetic particles prepared by surfactant-assisted ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Velasco, V., E-mail: vvjimeno@fis.ucm.es [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, P.O. Box 155, Las Rozas 28230 (Spain); Departamento de Física de Materiales, Universidad Complutense de Madrid, Madrid 28040 (Spain); Hernando, A.; Crespo, P. [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, P.O. Box 155, Las Rozas 28230 (Spain); Departamento de Física de Materiales, Universidad Complutense de Madrid, Madrid 28040 (Spain)

    2013-10-15

    High-energy ball milling of Fe and Pt elemental powders has been carried out under dry and wet (in presence of solvent and surfactants) conditions. Dry milling leads to the formation of the disordered FCC-FePt alloy whereas by the wet milling procedure the main process is the decrease of Fe and Pt particle size, although some dissolution of Pt into Fe grains cannot be ruled out, and no hint of the formation of the FCC-FePt phase is observed even to milling times up to 20 h, as X-ray diffraction, electron microscopy and Mössbauer spectroscopy indicates. The as-milled particles were annealed at 600 °C for 2 h under Ar atmosphere. It is noticed that the disordered fcc-FePt phase observed in particles milled under dry conditions transform to ordered fct phase characterized by a hard magnetic behavior with a coercive field up to 10,000 Oe. However, those particles milled in the surfactant/solvent medium exhibit a soft magnetic behavior with a coercive field of 600 Oe. These results indicate that wet high-energy ball milling is not an adequate technique for obtaining single-phase FePt particles. - Highlights: • FePt particles have been obtained by high-energy ball milling. • In the presence of surfactants and solvents, almost no alloying process takes place. • After annealing, the coercive field of the FePt alloy particles increases from 150 Oe to 10,000 Oe.

  6. Generation of drugs coated iron nanoparticles through high energy ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Radhika Devi, A.; Murty, B. S. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Chelvane, J. A. [Defence Metallurgical Research Laboratory, Hyderabad 500058 (India); Prabhakar, P. K.; Padma Priya, P. V.; Doble, Mukesh [Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036 (India)

    2014-03-28

    The iron nanoparticles coated with oleic acid and drugs such as folic acid/Amoxicillin were synthesized by high energy ball milling and characterized by X-ray diffraction, Transmission electron microscope, zeta potential, dynamic light scattering, Fourier Transform Infra red (FT-IR) measurements, and thermo gravimetric analysis (TGA). FT-IR and TGA measurements show good adsorption of drugs on oleic acid coated nanoparticles. Magnetic measurements indicate that saturation magnetization is larger for amoxicillin coated particles compared to folic acid coated particles. The biocompatibility of the magnetic nanoparticles prepared was evaluated by in vitro cytotoxicity assay using L929 cells as model cells.

  7. Ferromagnetic resonance parameters of ball-milled Ni-Zn ferrite nanoparticles

    International Nuclear Information System (INIS)

    Rao, B. Parvatheeswara; Caltun, Ovidiu; Dumitru, Ioan; Spinu, Leonard

    2006-01-01

    Ferrite nanoparticles of the size about 6 nm have been made by using high-energy ball mill on the sintered pellets of the system Ni 0.65 Zn 0.375 In x Ti 0.025 Fe 1.95- x O 4 . XRD, VSM and FMR techniques were used for structural and magnetic characterizations of the samples. The magnetic characteristics of indium-doped samples are compared with those for bulk samples. The differences are discussed in terms of the particle size and small-particle magnetism

  8. Partial amorphization of an α-FeCr alloy by ball-milling

    International Nuclear Information System (INIS)

    Loureiro, J. M.; Costa, B. F. O.; Caer, G. Le; Delcroix, P.

    2008-01-01

    The structural changes of near-equiatomic α-FeCr alloys, ground in a vibratory mill in vacuum and in argon, were followed as a function of milling time. An amorphous phase forms in both cases but at a much faster rate when milling in argon than when milling in vacuum. Amorphisation by ball-milling of α-FeCr alloys is deduced to be an intrinsic phenomenon which is however speeded-up by oxygen. The amorphous phase crystallizes into a bcc Cr-rich phase and a bcc Fe-rich phase when annealed for short times.

  9. The crystallization of amorphous Fe2MnGe powder prepared by ball milling

    International Nuclear Information System (INIS)

    Zhang, L.; Brueck, E.; Tegus, O.; Buschow, K.H.J.; Boer, F.R. de

    2003-01-01

    We synthesized for the first time the intermetallic compound Fe 2 MnGe. To avoid preferential evaporation of volatile components we exploited mechanical alloying. Amorphous Fe 2 MnGe alloy powder was prepared by planetary ball milling elemental starting materials. The amorphous-to-crystalline transition was studied by means of differential scanning calorimetry (DSC) and X-ray diffraction (XRD). A cubic D0 3 phase is formed at low temperature and transforms to a high-temperature hexagonal D0 19 phase. The apparent activation energy was determined by means of the Kissinger method

  10. Ball Milling Assisted Solvent and Catalyst Free Synthesis of Benzimidazoles and Their Derivatives.

    Science.gov (United States)

    El-Sayed, Taghreed H; Aboelnaga, Asmaa; Hagar, Mohamed

    2016-08-24

    Benzoic acid and o-phenylenediamine efficiently reacted under the green solvent-free Ball Milling method. Several reaction parameters were investigated such as rotation frequency; milling balls weight and milling time. The optimum reaction condition was milling with 56.6 g weight of balls at 20 Hz frequency for one hour milling time. The study was extended for synthesis of a series of benzimidazol-2-one or benzimidazol-2-thione using different aldehydes; carboxylic acids; urea; thiourea or ammonium thiocyanate with o-phenylenediamine. Moreover; the alkylation of benzimidazolone or benzimidazolthione using ethyl chloroacetate was also studied.

  11. Electrochemical properties of the ball-milled LaMg10NiMn alloy with Ni powders

    International Nuclear Information System (INIS)

    Wang Yi; Wang Xin; Gao Xueping; Shen Panwen

    2008-01-01

    The electrochemical characteristics of the ball-milled LaMg 10 NiMn alloys with Ni powders were investigated. It was found that the ball-milled LaMg 10 NiMn + 150 wt.% Ni composite exhibited higher first discharge capacity and better cycle performance. By means of the analysis of electrochemical impedance spectra (EIS), it was shown that the existence of manganese in LaMg 10 NiMn alloy increased the electrocatalytic activity due to its catalytic effect, and destabilized metal hydrides, and so reduced the hydrogen diffusion resistance. These contributed to the higher discharge capacity of the ball-milled LaMg 10 NiMn-Ni composite. According to the analytical results of X-ray diffraction (XRD), EIS and steady-state polarization (SSP) experiments, the inhibition of metal corrosion is not the main reason for the better cycle performance. The main reason is that the electrochemical reaction resistance of the ball-milled LaMg 10 NiMn-Ni composite is always lower than that of the ball-milled LaMg 10 Ni 2 -Ni composite because the former one contains manganese, which is a catalyst for the electrode reaction

  12. Refinement of Crystalline Boron and the Superconducting Properties of MgB2 by Attrition Ball Milling

    International Nuclear Information System (INIS)

    Lee, J. H.; Shin, S. Y.; Park, H. W.; Jun, B. H.; Kim, C. J.

    2008-01-01

    We report refinement of crystalline boron by an attrition ball milling system and the superconducting properties of the MgB 2 pellets prepared from the refined boron. In this work, we have conducted the ball milling with only crystalline boron powder, in order to improve homogeneity and control the grain size of the MgB 2 that is formed from it. We observed that the crystalline responses in the ball-milled boron became broader and weaker when the ball-milling time was further increased. On the other hand, the B 2 O 3 peak became stronger in the powders, resulting in an increase in the amount of MgO within the MgB 2 volume. The main reason for this is a greater oxygen uptake. From the perspective of the superconducting properties, however, the sample prepared from boron that was ball milled for 5 hours showed an improvement of critical current density (J c ), even with increased MgO phase, under an external magnetic field at 5 and 20 K.

  13. Effect of expansion temperature of expandable graphite on microstructure evolution of expanded graphite during high-energy ball-milling

    International Nuclear Information System (INIS)

    Yue Xueqing; Li Liang; Zhang Ruijun; Zhang Fucheng

    2009-01-01

    Two expanded graphites (EG), marked as EG-1 and EG-2, were prepared by rapid heating of expandable graphite to 600 and 1000 deg. C, respectively, and ball milled in a high-energy mill (planetary-type) under air atmosphere. The microstructure evolution of the ball-milled samples was characterized by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). XRD analysis shows that the evolution degree of the average crystallite thickness along the c-axis (L c ) of EG-2 is lower than that of EG-1 during the milling process. From the HRTEM images of the samples after 100 h ball-milling, slightly curved graphene planes can be frequently observed both in the two EGs, however, EG-1 and EG-2 exhibit sharply curved graphene planes and smoothly curved graphene planes with high bending angles, respectively.

  14. Synthesis of Cu(In,Ga)Se{sub 2} crystals using a crank ball mill

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Suzuka; Noji, Hideki; Akaki, Yoji [Miyakonojo National College of Technology, 473-1 Yoshio, Miyakonojo Miyazaki 885-8567 (Japan); Okamoto, Tomoichiro [Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188 (Japan)

    2015-06-15

    Cu(In,Ga)Se{sub 2} (CIGS) crystals were synthesized by a mechanochemical (MC) process using a crank ball mill. The molar ratios of starting materials were Cu:In:Ga:Se=1:1-x:x:2 (0≤x≤1) and Cu:In:Ga:Se=1:0.7:0.3:y (2≤y≤3). The reaction time reduced with decreasing Se and Ga molar ratios. The collection rate decreased with longer reaction times. From XRD patterns, we confirmed that the CuInSe{sub 2} and/or CuGaSe{sub 2}crystals were successfully grown when the powders reacted. Although the crystals grown with a selenium molar ration of 2 were Se-poor, those grown at a molar ratio of 3 were Se-rich. When Se increasing molar ratio, Cu, In, and Ga were away from the stoichiometric. With a molar ratio of Cu:In:Ga:Se=1:0.7:0.3:2.5∝2.7, their composition became stoichiometric. Crystal morphology was varied. CIGS crystals were thus successfully synthesized using a crank ball mill. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Defect induced electronic states and magnetism in ball-milled graphite.

    Science.gov (United States)

    Milev, Adriyan; Dissanayake, D M A S; Kannangara, G S K; Kumarasinghe, A R

    2013-10-14

    The electronic structure and magnetism of nanocrystalline graphite prepared by ball milling of graphite in an inert atmosphere have been investigated using valence band spectroscopy (VB), core level near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and magnetic measurements as a function of the milling time. The NEXAFS spectroscopy of graphite milled for 30 hours shows simultaneous evolution of new states at ~284.0 eV and at ~290.5 eV superimposed upon the characteristic transitions at 285.4 eV and 291.6 eV, respectively. The modulation of the density of states is explained by evolution of discontinuities within the sheets and along the fracture lines in the milled graphite. The magnetic measurements in the temperature interval 2-300-2 K at constant magnetic field strength show a correlation between magnetic properties and evolution of the new electronic states. With the reduction of the crystallite sizes of the graphite fragments, the milled material progressively changes its magnetic properties from diamagnetic to paramagnetic with contributions from both Pauli and Curie paramagnetism due to the evolution of new states at ~284 and ~290.5 eV, respectively. These results indicate that the magnetic behaviour of ball-milled graphite can be manipulated by changing the milling conditions.

  16. Simulation of ball motion and energy transfer in a planetary ball mill

    International Nuclear Information System (INIS)

    Lu Sheng-Yong; Mao Qiong-Jing; Li Xiao-Dong; Yan Jian-Hua; Peng Zheng

    2012-01-01

    A kinetic model is proposed for simulating the trajectory of a single milling ball in a planetary ball mill, and a model is also proposed for simulating the local energy transfer during the ball milling process under no-slip conditions. Based on the kinematics of ball motion, the collision frequency and power are described, and the normal impact forces and effective power are derived from analyses of collision geometry. The Hertzian impact theory is applied to formulate these models after having established some relationships among the geometric, dynamic, and thermophysical parameters. Simulation is carried out based on two models, and the effects of the rotation velocity of the planetary disk Ω and the vial-to-disk speed ratio ω/Ω on other kinetic parameters is investigated. As a result, the optimal ratio ω/Ω to obtain high impact energy in the standard operating condition at Ω = 800 rpm is estimated, and is equal to 1.15. (interdisciplinary physics and related areas of science and technology)

  17. Hydrogen storage in Mg-Ni-Fe compounds prepared by melt spinning and ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Palade, P. [Settore Materiali, Dipartimento di Ingegneria Meccanica, Universita di Padova, via Marzolo 9, 35131 Padova (Italy); National Institute for Physics of Materials, Atomistilor 105 bis, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania); Sartori, S. [Settore Materiali, Dipartimento di Ingegneria Meccanica, Universita di Padova, via Marzolo 9, 35131 Padova (Italy); Maddalena, A. [Settore Materiali, Dipartimento di Ingegneria Meccanica, Universita di Padova, via Marzolo 9, 35131 Padova (Italy); Principi, G. [Settore Materiali, Dipartimento di Ingegneria Meccanica, Universita di Padova, via Marzolo 9, 35131 Padova (Italy)]. E-mail: giovanni.principi@unipd.it; Lo Russo, S. [Dipartimento di Fisica, Universita di Padova, Via Marzolo 8, 35131 Padova (Italy); Lazarescu, M. [National Institute for Physics of Materials, Atomistilor 105 bis, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania); Schinteie, G. [National Institute for Physics of Materials, Atomistilor 105 bis, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania); Kuncser, V. [National Institute for Physics of Materials, Atomistilor 105 bis, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania); Filoti, G. [National Institute for Physics of Materials, Atomistilor 105 bis, P.O. Box MG-7, 077125 Bucharest-Magurele (Romania)

    2006-05-18

    Magnesium-rich Mg-Ni-Fe intermetallic compounds have been prepared by two different routes: (a) short time ball milling of ribbons obtained by melt spinning; (b) long time ball milling of a mixture of MgH{sub 2}, Ni and Fe powders. The first type of samples displays an hydrogen desorption kinetics better than the second one. Pressure composition isotherm measurements exhibit for both type of samples two plateaux, the lower and wider corresponding to the MgH{sub 2} phase and the upper and shorter corresponding to the Mg{sub 2}NiH{sub 4} phase. The presence of the two types of hydrides is confirmed by X-ray diffraction analysis. Moessbauer spectroscopy shows that in melt spun and subsequently milled samples iron is mainly in a disordered structure and segregates after hydrogenation, while in directly milled powders remains mainly unalloyed. After multiple hydrogen absorption/desorption cycles the main part of iron is in metallic state in samples of both types, those of first type preserving better hydrogen desorption kinetics.

  18. Magnetic properties of nanocrystalline Fe–10%Ni alloy obtained by planetary ball mills

    International Nuclear Information System (INIS)

    Hamzaoui, Rabah; Elkedim, Omar

    2013-01-01

    Highlights: •Solid solution formation accompanied by a grain refinement for nanocrystalline Fe-Ni. •The shock mode process (SMP) prevails when Ω > >ω. •The friction mode process (FMP) is stronger when Ω < <ω. •The FMP leads to the formation of alloys exhibiting a soft magnetic behavior. -- Abstract: Planetary ball mill PM 400 from Retsch (with different milling times for Ω = 400 rpm, ω = 800 rpm) and P4 vario ball mill from Fritsch (with different milling conditions (Ω/ω), Ω and ω being the disc and the vial rotation speeds, respectively) are used for obtaining nanocrystalline Fe–10wt% Ni. The structure and magnetic properties are studied by using X-ray diffraction, SEM and hysteresis measurements, respectively. The bcc-Fe(Ni) phase formation is identified by X-ray diffraction. The higher the shock power and the higher milling time are, the larger the bcc lattice parameter and the lower the grain size. The highest value of the coercivity is 1600 A/m for Fe–10 wt.%Ni (with shock mode (424 rpm/100 rpm) after 36 h of milling), while the lowest value is 189 A/m for (400 rpm/800 rpm) after 72 h of milling. The milling performed in the friction mode has been found to lead the formation of alloys exhibiting a soft magnetic behavior for nanocrystalline Fe–10%Ni

  19. Design and Testing of UMM Vertical Ball Mill (UVBM) for producing Aluminium Powder

    Science.gov (United States)

    Aisyah, I. S.; Caesarendra, Wahyu; Suprihanto, Agus

    2018-04-01

    UMM Vertical Ball Mill (UVBM) was intended to be the apparatus to produce metal powder with superior characteristic in production rate while retaining good quality of metal powder. The concept of design was adopting design theory of Phal and Beitz with emphasis on increasing of probability of success in engineering and economy aspects.Since it was designed as vertical ball mill, a new way to produce powder, then it need to be tested for the performance after manufactured. The test on UVBM was carried out by milling of aluminium chip for 5 (five) different milling time of 0.5 hours, 1 hour, 3 hours, 5 hours and 7 hours, and the powder product then be characterized for it morphology and size using Scanning Electron Microscope (SEM) and Sieve.The results of the study were the longer of the milling time, the finer of the powder. From the test results of SEM, the morphology of the powder with 5 variations of milling time were most of the powder in form of flake (flat), small round and angular (irregular). The distribution of powder size was best obtained on the variation of milling time 3 hours, 5 hours, and 7 hours with percentage of 200 mesh in size of 22.14 %, 64 % and 91.25 % respectively.

  20. A co-production of sugars, lignosulfonates, cellulose, and cellulose nanocrystals from ball-milled woods.

    Science.gov (United States)

    Du, Lanxing; Wang, Jinwu; Zhang, Yang; Qi, Chusheng; Wolcott, Michael P; Yu, Zhiming

    2017-08-01

    This study demonstrated the technical potential for the large-scale co-production of sugars, lignosulfonates, cellulose, and cellulose nanocrystals. Ball-milled woods with two particle sizes were prepared by ball milling for 80min or 120min (BMW 80 , BMW 120 ) and then enzymatically hydrolyzed. 78.3% cellulose conversion of BMW 120 was achieved, which was three times as high as the conversion of BMW 80 . The hydrolyzed residues (HRs) were neutrally sulfonated cooking. 57.72g/L and 88.16g/L lignosulfonate concentration, respectively, were harvested from HR 80 and HR 120 , and 42.6±0.5% lignin were removed. The subsequent solid residuals were purified to produce cellulose and then this material was acid-hydrolyzed to produce cellulose nanocrystals. The BMW 120 maintained smaller particle size and aspect ratio during each step of during the multiple processes, while the average aspect ratio of its cellulose nanocrystals was larger. The crystallinity of both materials increased with each step of wet processing, reaching to 74% for the cellulose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Effect of ball-milling to the surface morphology of CaCO3

    Science.gov (United States)

    Sulimai, N. H.; Rani, Rozina Abdul; Khusaimi, Z.; Abdullah, S.; Salifairus, M. J.; Alrokayan, Salman; Khan, Haseeb; Rusop, M.

    2018-05-01

    Calcium Carbonate can be synthesized in many approaches. This work studied on the physical changes to Calcium Carbonate (CaCO3) by ball-milling activity in different parameters; number of ball; collision duration; revolution per minute (RPM). Zirconia balls were used in the work because it has the best durability to withstand ball-milling conditions set. Industrial grade CaCO3 particles that were run in aforementioned parameters were characterized by Field Emission Scanning Electron Microscope (FE-SEM) to study the physical changes on the size and surface of the CaCO3. They were also characterized with Fourier Transform Infra-red Spectroscopy (FTIR) were fingerprint of CaCO3 regions were identified and any changes in the band position and intensity were discussed. Number of Zirconia balls and collision duration is directly proportional to the absorbance intensity whereas it is inversely proportional for the rpm. The best number of parameters producing the highest Absorbance is 100 Zirconia balls in duration of 1 hour and 100rpm.

  2. Fabrication of lanthanum-doped thorium dioxide by high-energy ball milling and spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Spencer M.; Yao, Tiankai [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States); Lu, Fengyuan [Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States); Xin, Guoqing; Zhu, Weiguang [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States); Lian, Jie, E-mail: lianj@rpi.edu [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States)

    2017-03-15

    Abstract: High-energy ball milling was used to synthesize Th{sub 1-x}La{sub x}O{sub 2-0.5x} (x = 0.09, 0.23) solid solutions, as well as improve the sinterability of ThO{sub 2} powders. Dense La-doped ThO{sub 2} pellets with theoretical density above 94% were consolidated by spark plasma sintering at temperatures above 1400 °C for 20 min, and the densification behavior and the non-equilibrium effects on phase and structure were investigated. A lattice contraction of the SPS-densified pellets occurred with increasing ball milling duration, and a secondary phase with increased La-content was observed in La-doped pellets. A dependence on the La-content and sintering duration for the onset of localized phase segregation has been proposed. The effects of high-energy ball milling, La-content, and phase formation on the thermal diffusivity were also studied for La-doped ThO{sub 2} pellets by laser flash measurement. Increasing La-content and high energy ball milling time decreases thermal diffusivity; while the sintering peak temperature and holding time beyond 1600 °C dramatically altered the temperature dependence of the thermal diffusivity beyond 600 °C. - Highlights: • Lanthanum incorporation into ThO{sub 2} by high energy ball milling and rapid consolidation by spark plasma sintering. • Elucidation of phase behavior of the La-doped ThO{sub 2} and the contributions of La incorporation and SPS sintering conditions. • Investigation of the effects of La incorporation and high energy ball milling on the thermal behavior of La-doped ThO{sub 2}.

  3. Polycrystalline Nd2Fe14B/α-Fe nanocomposite flakes with a sub-micro/nanometre thickness prepared by surfactant-assisted high-energy ball milling

    International Nuclear Information System (INIS)

    Tang, Xin; Chen, Xi; Chen, Renjie; Yan, Aru

    2015-01-01

    Highlights: • Nd 2 Fe 14 B/α-Fe flakes are formed by peeling along preferential planes. • (0 0 l) planes are found to be preferential cleavage planes. • Magnetic properties degrade with increasing ball milling time. • Anisotropic nanocomposite magnets are fabricated. - Abstract: A surfactant-assisted high-energy ball milling technique was employed to synthesize Nd 2 Fe 14 B/α-Fe nanoparticles and nanoflakes from melt-spun nanocrystalline powders. The microstructure evolution in ball milling process was investigated. In the beginning stage (0–4 h) of ball milling, raw powders were crushed into micrometre-sized particles. While flakes were mainly formed by reducing thickness of particles via peeling layer by layer along preferential planes in the late stage (8–16 h). The selected area electron diffraction and high-resolution transmission electron microscopy images show that preferential cleavage planes are basal planes. With ball milling proceeding, more and more defects were induced by ball milling. As a result, the coercivity and remanence decreased to 1.6 kOe and 3.2 kGs, respectively. After 16 h ball milling, the exchange decoupling occurred due to severe amorphorization. A weakly-textured nanocomposite magnet was fabricated after 12 h ball milling and the anisotropy in magnetic properties can be further improved by employing settling down process to select particle size and aligning particles in external field

  4. Hydrogen sorption properties of ball-milled Mg-C nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Spassov, Tony; Zlatanova, Zlatina; Spassova, Maya; Todorova, Stanislava [Faculty of Chemistry, University of Sofia ' ' St.Kl.Ohridski' ' , 1 James Bourchier str. 1164 Sofia (Bulgaria)

    2010-10-15

    MgH{sub 2} 75 at.%-C 25 at.% composites are synthesized by ball milling using different kinds of carbon additives: carbon black (CB), nanodiamonds (ND) and amorphous carbon soot (AC). X-ray diffraction analysis showed that the MgH{sub 2} phase in the as-obtained composite powders is nanocrystalline (80-100 nm). The SEM observations revealed that the samples consist of 5-15 {mu}m MgH{sub 2} particles, surrounded and in some cases coated by carbon flakes. The composite containing nanodiamonds revealed strong decrease of the MgH{sub 2} decomposition temperature with more than 100 C, compared to ball-milled pure MgH{sub 2}. Important issue of the present study is also the low temperature hydriding of the ball-milled Mg-C nanocomposites, investigated by high-pressure DSC. The process starts at about 200 C for all materials studied, but the hydriding mechanism looks different for the composites with different kinds of carbon additives. Whereas for Mg-carbon black it takes place in a relatively narrow temperature range, expressed by a single exothermic peak (200-300 C) for the other two composites the hydriding is a multi-step process, featured by two overlapped exothermic peaks for Mg-nanodiamonds and by two well separated exothermic effects (at about 300 C and 400 C) for Mg-amorphous carbon soot. The observed difference in the hydriding behavior of the Mg-C composites is attributed to the different kind of carbon component, which is supposed to play a catalytic role as well as protects magnesium from oxidation. The incorporation of carbon into the MgH{sub 2} particles results in the formation of high density of defects (dislocations and grain boundaries), which is supposed to be among the most possible reasons for the decreased hydride decomposition temperature. The Mg-C nanocomposites show reproducible hydriding/dehydriding behavior (thermodynamics and kinetics) during multiple cycling. Among the composites in the present study ''Mg-carbon black

  5. Effect of milling time on microstructure and properties of Nano-titanium polymer by high-energy ball milling

    Science.gov (United States)

    Wang, Bo; Wei, Shicheng; Wang, Yujiang; Liang, Yi; Guo, Lei; Xue, Junfeng; Pan, Fusheng; Tang, Aitao; Chen, Xianhua; Xu, Binshi

    2018-03-01

    Nano-titanium (Nano-Ti) was prepared by high-energy ball milling from pure Ti power and grinding agents (Epoxy resin) at room temperature. The effect of milling time on structure and properties of Nano-Ti polymer were investigated systematically. The results show that high-energy ball milling is an effective way to produce Nano-Ti polymer. The dispersion stability and compatibility between Ti power and grinding agents are improved by prolonging the milling time at a certain degree, that is to say, the optimization milling time is 240 min. The particle size of Ti powder and the diffraction peaks intensity of Ti decrease obviously as the milling time increases due to the compression stress, shear friction and other mechanical forces are formed during ball milling. FT-IR result displays that the wavenumber of all the bands move to lower wavenumber after ball milling, and the epoxy ring is open. The system internal energy rises owing to the broken epoxy group and much more Nano-Ti is formed to promote the grafting reaction between Nano-Ti and epoxy resin. The results from TEM and XPS also prove that. And the grafting ration is maximum as the milling time is 240 min, the mass loss ratio is 17.53%.

  6. Influence of cation disorder on the magnetic properties of ball-milled ilmenite (FeTiO3)

    DEFF Research Database (Denmark)

    Mørup, Steen; Rasmussen, Helge Kildahl; Brok, Erik

    2012-01-01

    We have investigated the evolution of crystal structure, cation disorder and magnetic properties of ilmenite (FeTiO3) after increasing time of high-energy ball-milling in an inert atmosphere. Refinement of X-ray diffraction data show that the hexagonal crystal structure of ilmenite is maintained...

  7. One step conversion of wheat straw to sugars by simultaneous ball milling, mild acid, and fungus Penicillium simplicissimum treatment.

    Science.gov (United States)

    Yuan, Li; Chen, Zhenhua; Zhu, Yonghua; Liu, Xuanming; Liao, Hongdong; Chen, Ding

    2012-05-01

    Wheat straw is one of the major lignocellulosic plant residues in many countries including China. An attractive alternative is the utilization of wheat straw for bioethanol production. This article mainly studies a simple one-step wet milling with Penicillium simplicissimum and weak acid to hydrolysis of wheat straw. The optimal condition for hydrolysis was ball milling 48 h in citrate solvent (pH = 4) with P. simplicissimum H5 at the speed of 500 rpm and the yield of sugar increased with increased milling time. Corresponding structure transformations before and after milling analyzed by X-ray diffraction, transmission Fourier transform infrared spectroscopy, and environmental scanning electron microscopy clearly indicated that this combined treatment could be attributed to the crystalline and chemical structure changes of cellulose in wheat straw during ball milling. This combined treatment of ball milling, mild acid, and fungus hydrolysis enabled the conversion of the wheat straw. Compared with traditional method of ball milling, this work showed a more simple, novel, and environmentally friendly way in mechanochemical treatment of wheat straw.

  8. Structural study of ball-milled sodium alanate under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Selva Vennila, R. [Center for Study of Matter at Extreme Conditions, Florida International University, Miami, FL 33199 (United States)], E-mail: selva.raju@fiu.edu; Drozd, Vadym; George, Lyci; Saxena, Surendra K. [Center for Study of Matter at Extreme Conditions, Florida International University, Miami, FL 33199 (United States); Liermann, Hanns-Peter [High Pressure Collaboration Access Team (HPCAT) and Geophysical Laboratory, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Liu, H.Z. [HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, Building 434E, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Stowe, Ashley C.; Berseth, Polly; Anton, Donald; Zidan, Ragaiy [Savannah River National Laboratory, Energy Security Department, Aiken, SC 29808 (United States)

    2009-04-03

    Ball-milled NaAlH{sub 4} was studied up to 15 GPa in a diamond anvil cell (DAC) by X-ray diffraction using a synchrotron radiation source. Lattice parameters were determined from the X-ray diffraction data at various pressures up to 6.5 GPa. Intensity of the powder diffraction patterns decreased with increasing pressure. Amorphisation started at a pressure of {approx}6.5 GPa and completed at 13.5 GPa. Reversible phase transformation from amorphous phase to the tetragonal phase was observed. A fit to the pressure-volume data equation of state was obtained using the Birch-Murnaghan equation of state and the bulk modulus was found to be 52.16 {+-} 0.9 GPa which is twice higher than the unmilled NaAlH{sub 4}.

  9. Utilization of aluminum to obtaining a duplex type stainless steel using high energy ball milling

    International Nuclear Information System (INIS)

    Pavlak, I.E.; Cintho, O.M.; Capocchi, J.D.T.

    2010-01-01

    The obtaining of stainless steel using aluminum in its composition - FeMnAl system, has been researches subject since the sixties, by good mechanical properties and resistance to oxidation presented, when compared with conventional FeNiCr stainless steel system. In another point, the aluminum and manganese are low cost then traditional elements. This work, metallic powders of iron, manganese and pure aluminum, were processed in a Spex type high-energy ball mill in nitrogen atmosphere. The milling products were compressed into pastille form and sintered under inert atmosphere. The final products were characterized by optical and electronic microscopy and microhardness test. The metallographic analysis shows a typical austenite and ferrite duplex type microstructure. The presence of these phases was confirmed according X ray diffraction analysis. (author)

  10. Structural evolution of Ni-20Cr alloy during ball milling of elemental powders

    International Nuclear Information System (INIS)

    Lopez B, I.; Trapaga M, L. G.; Martinez F, E.; Zoz, H.

    2011-01-01

    The ball milling (B M) of blended Ni and Cr elemental powders was carried out in a Simoloyer performing on high-energy scale mode at maximum production to obtain a nano structured Ni-20Cr alloy. The phase transformations and structural changes occurring during mechanical alloying were investigated by X-ray diffraction (XRD) and optical microscopy (Om). A gradual solid solubility of Cr and the subsequent formation of crystalline metastable solid solutions described in terms of the Avrami-Ero fe ev kinetics model were calculated. The XRD analysis of the structure indicates that cumulative lattice strain contributes to the driving force for solid solution between Ni and Cr during B M. Microstructure evolution has shown, additionally to the lamellar length refinement commonly observed, the folding of lamellae in the final processing stage. Om observations revealed that the lamellar spacing of Ni rich zones reaches a steady value near 500 nm and almost disappears after 30 h of milling. (Author)

  11. Hydrogen storage materials discovery via high throughput ball milling and gas sorption.

    Science.gov (United States)

    Li, Bin; Kaye, Steven S; Riley, Conor; Greenberg, Doron; Galang, Daniel; Bailey, Mark S

    2012-06-11

    The lack of a high capacity hydrogen storage material is a major barrier to the implementation of the hydrogen economy. To accelerate discovery of such materials, we have developed a high-throughput workflow for screening of hydrogen storage materials in which candidate materials are synthesized and characterized via highly parallel ball mills and volumetric gas sorption instruments, respectively. The workflow was used to identify mixed imides with significantly enhanced absorption rates relative to Li2Mg(NH)2. The most promising material, 2LiNH2:MgH2 + 5 atom % LiBH4 + 0.5 atom % La, exhibits the best balance of absorption rate, capacity, and cycle-life, absorbing >4 wt % H2 in 1 h at 120 °C after 11 absorption-desorption cycles.

  12. Transformation of Goethite to Hematite Nanocrystallines by High Energy Ball Milling

    Directory of Open Access Journals (Sweden)

    O. M. Lemine

    2014-01-01

    Full Text Available α-Fe2O3 nanocrystallines were prepared by direct transformation via high energy ball milling treatment for α-FeOOH powder. X-ray diffraction, Rietveld analysis, TEM, and vibrating sample magnetometer (VSM are used to characterize the samples obtained after several milling times. Phase identification using Rietveld analysis showed that the goethite is transformed to hematite nanocrystalline after 40 hours of milling. HRTEM confirm that the obtained phase is mostly a single-crystal structure. This result suggested that the mechanochemical reaction is an efficient way to prepare some iron oxides nanocrystallines from raw materials which are abundant in the nature. The mechanism of the formation of hematite is discussed in text.

  13. Structural study of ball-milled sodium alanate under high pressure

    International Nuclear Information System (INIS)

    Selva Vennila, R.; Drozd, Vadym; George, Lyci; Saxena, Surendra K.; Liermann, Hanns-Peter; Liu, H.Z.; Stowe, Ashley C.; Berseth, Polly; Anton, Donald; Zidan, Ragaiy

    2009-01-01

    Ball-milled NaAlH 4 was studied up to 15 GPa in a diamond anvil cell (DAC) by X-ray diffraction using a synchrotron radiation source. Lattice parameters were determined from the X-ray diffraction data at various pressures up to 6.5 GPa. Intensity of the powder diffraction patterns decreased with increasing pressure. Amorphisation started at a pressure of ∼6.5 GPa and completed at 13.5 GPa. Reversible phase transformation from amorphous phase to the tetragonal phase was observed. A fit to the pressure-volume data equation of state was obtained using the Birch-Murnaghan equation of state and the bulk modulus was found to be 52.16 ± 0.9 GPa which is twice higher than the unmilled NaAlH 4

  14. Magnetic Properties of Nanocrystalline FexCu1-x Alloys Prepared by Ball Milling

    International Nuclear Information System (INIS)

    Yousif, A.; Bouziane, K.; Elzain, M. E.; Ren, X.; Berry, F. J.; Widatallah, H. M.; Al Rawas, A.; Gismelseed, A.; Al-Omari, I. A.

    2004-01-01

    X-ray diffraction, Moessbauer and magnetization measurements were used to study Fe x Cu 1-x alloys prepared by ball-milling. The X-ray data show the formation of a nanocrystalline Fe-Cu solid solution. The samples with x≥0.8 and x≤0.5 exhibit bcc or fcc phase, respectively. Both the bcc and fcc phases are principally ferromagnetic for x≥0.2, but the sample with x=0.1 remains paramagnetic down to 78 K. The influence of the local environment on the hyperfine parameters and the local magnetic moment are discussed using calculations based on the discrete-variational method in the local density approximation.

  15. Structural evolution of Ni-20Cr alloy during ball milling of elemental powders

    Energy Technology Data Exchange (ETDEWEB)

    Lopez B, I.; Trapaga M, L. G. [IPN, Centro de Investigacion y de Estudios Avanzados, Unidad Queretaro, Libramiento Norponiente No. 2000, Juriquilla, 76230 Queretaro (Mexico); Martinez F, E. [Centro de Investigacion e Innovacion Tecnologica, Cerrada de Cecati s/n, Col. Santa Catarina Azcapotzalco, 02250 Mexico D. F. (Mexico); Zoz, H., E-mail: israelbaez@gmail.co [Zoz GmbH, D-57482, Wenden (Germany)

    2011-07-01

    The ball milling (B M) of blended Ni and Cr elemental powders was carried out in a Simoloyer performing on high-energy scale mode at maximum production to obtain a nano structured Ni-20Cr alloy. The phase transformations and structural changes occurring during mechanical alloying were investigated by X-ray diffraction (XRD) and optical microscopy (Om). A gradual solid solubility of Cr and the subsequent formation of crystalline metastable solid solutions described in terms of the Avrami-Ero fe ev kinetics model were calculated. The XRD analysis of the structure indicates that cumulative lattice strain contributes to the driving force for solid solution between Ni and Cr during B M. Microstructure evolution has shown, additionally to the lamellar length refinement commonly observed, the folding of lamellae in the final processing stage. Om observations revealed that the lamellar spacing of Ni rich zones reaches a steady value near 500 nm and almost disappears after 30 h of milling. (Author)

  16. Preparation, characterization and optoelectronic properties of nanodiamonds doped zinc oxide nanomaterials by a ball milling technique

    Science.gov (United States)

    Ullah, Hameed; Sohail, Muhammad; Malik, Uzma; Ali, Naveed; Bangash, Masroor Ahmad; Nawaz, Mohsan

    2016-07-01

    Zinc oxide (ZnO) is one of the very important metal oxides (MOs) for applications in optoelectronic devices which work in the blue and UV regions. However, to meet the challenges of obtaining ZnO nanomaterials suitable for practical applications, various modifications in physico-chemical properties are highly desirable. One of the ways adopted for altering the properties is to synthesize composite(s) of ZnO with various reinforcements. Here we report on the tuning of optoelectronic properties of ZnO upon doping by nanodiamonds (NDs) using the ball milling technique. A varying weight percent (wt.%) of NDs were ball milled for 2 h with ZnO nanoparticles prepared by a simple precipitation method. The effects of different parameters, the calcination temperature of ZnO, wt.% of NDs and mechanical milling upon the optoelectronic properties of the resulting ZnO-NDs nanocomposites have been investigated. The ZnO-NDs nanocomposites were characterized by IR spectroscopy, powder x-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX). The UV-vis spectroscopy revealed the alteration in the bandgap energy (Eg ) of ZnO as a function of the calcination temperature of ZnO, changing the concentration of NDs, and mechanical milling of the resulting nanocomposites. The photoluminescence (PL) spectroscopy showed a decrease in the deep level emission (DLE) peaks and an increase in near-band-edge transition peaks as a result of the increasing concentration of NDs. The decrease in DLE and increase in band to band transition peaks were due to the strong interaction between the NDs and the Zn+; consequently, the Zn+ concentration decreased on the interstitial sites.

  17. Highly anisotropic SmCo5 nanoflakes by surfactant-assisted ball milling at low temperature

    International Nuclear Information System (INIS)

    Liu, Lidong; Zhang, Songlin; Zhang, Jian; Ping Liu, J.; Xia, Weixing; Du, Juan; Yan, Aru; Yi, Jianhong; Li, Wei; Guo, Zhaohui

    2015-01-01

    Surfactant-assisted ball milling (SABM) has been shown to be a promising method for preparing rare earth-transition metal (RE-TM) nanoflakes and nanoparticles. In this work, we prepared SmCo 5 nanoflakes by SABM at low temperature, and 2-methyl pentane and trioctylamine were specially selected as solvent and surfactant, respectively, due to their low melting points. The effects of milling temperature on the morphology, microstructure and magnetic performance of SmCo 5 nanoflakes were investigated systematically. Comparing with the samples milled at room temperature, the SmCo 5 nanoflakes prepared at low temperature displayed more homogeneous morphology and lower oxygen content. Remarkably, better crystallinity, better grain alignment and larger remanence ratio were shown in the samples milled at low temperature, which resulted from the distinct microstructure caused by low milling temperature. The differences in structural evolution between the SmCo 5 nanoflakes milled at room temperature and low temperature, including the formation of nanocrystalline, grain boundary sliding, grain rotation, et al., were discussed. It was found that lowering the temperature of SABM was a powerful method for the fabrication of RE-TM nanoflakes, which showed better hard magnetic properties and lower oxygen content. This was important for the preparation of high-performance sintered magnets, bonded magnets and nanocomposite magnets. - Highlights: • We prepare SmCo 5 nanoflakes by surfactant-assisted ball milling at low temperature. • Better grain alignment and higher remanence ratio are achieved. • The oxygen content is reduced by lowering the milling temperature. • A distinct microstructural evolution caused by low milling temperature is clarified

  18. Fabrication mechanism of FeSe superconductors with high-energy ball milling aided sintering process

    International Nuclear Information System (INIS)

    Zhang, Shengnan; Liu, Jixing; Feng, Jianqing; Wang, Yao; Ma, Xiaobo; Li, Chengshan; Zhang, Pingxiang

    2015-01-01

    FeSe Superconducting bulks with high content of superconducting PbO-type β-FeSe phase were prepared with high-energy ball milling (HEBM) aided sintering process. During this process, precursor powders with certain Fe/Se ratio were ball milled first then sintered. The influences of HEBM process as well as initial Fe/Se ratio on the phase evolution process were systematically discussed. With HEBM process and proper initial Fe/Se ratio, the formation of non-superconducting hexagonal δ-FeSe phase were effectively avoided. FeSe bulk with the critical temperature of 9.0 K was obtained through a simple one-step sintering process with lower sintering temperature. Meanwhile, the phase evolution mechanism of the HEBM precursor powders during sintering was deduced based on both the thermodynamic analysis and step-by-step sintering results. The key function of the HEBM process was to provide a high uniformity of chemical composition distribution, thus to successfully avoide the formation of intermediate product during sintering, including FeSe 2 and Fe 7 Se 8 . Therefore, the fundamental principal for the synthesis of FeSe superconductors were concluded as: HEBM aided sintering process, with the sintering temperature of >635 °C and a slow cooling process. - Highlights: • A novel synthesis technique was developed for FeSe based superconductors. • FeSe bulks with high Tc and high β-FeSe phase content has been obtained. • Phase evolution process for the HEBM aided sintering process was proposed

  19. Optimum condition determination of Rirang uranium ores grinding using ball mill

    International Nuclear Information System (INIS)

    Affandi, Kosim; Waluyo, Sugeng; Sarono, Budi; Sujono; Muhammad

    2002-01-01

    The grinding experiment on Rirang Uranium ore has been carried out with the aim is to find out the optimum condition of wet grinding using ball mill to produce particle size -325, -200 and -100 mesh. This will be used for decomposition feed the test was done by examine the parameters comparison of ore's weight against ball's weight and time of grinding. The test shown that the product of particle size -325 meshes was achieved optimum condition at the comparison ore's weight: ball = 1:3, grinding time 150 minutes, % solid 60, speed rotation of ball mill 60 rpm and recovery of grinding was 93.51 % of -325 mesh. The product of particle size -200 mesh was achieved optimum condition at comparison ore's weight: ball = 1:2, time of grinding 60 minutes, the fraction of + 200 mesh was regrind, the recovery of grinding 6.82% at particle size of (-200 + 250) mesh, 5.75 % at (-250 + 325)m mesh and, 47.93 % -325 mesh. The product of particle size -100 mesh was achieved the optimum condition at comparison ore's weight: ball = 1:2, time of grinding at 30 minutes particle size +100 mesh regrinding using mortar grinder, recovery of grinding 30.10% at particle size (-100 + 150) m, 12.28 % at (-150 + 200) mesh, 15.92 % at (-200 + 250) mesh, 12.44 % at (-250 + 325) mesh and 29.26 % -325 mesh. The determination of specific gravity of Rirang uranium ore was between 4.15 - 4.55 g/cm 3

  20. Production of pyrite nanoparticles using high energy planetary ball milling for sonocatalytic degradation of sulfasalazine.

    Science.gov (United States)

    Khataee, Alireza; Fathinia, Siavash; Fathinia, Mehrangiz

    2017-01-01

    Sonocatalytic performance of pyrite nanoparticles was evaluated by the degradation of sulfasalazine (SSZ). Pyrite nanoparticles were produced via a high energy mechanical ball milling (MBM) in different processing time from 2h to 6h, in the constant milling speed of 320rpm. X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FT-IR) analysis and Brunauer-Emmett-Teller (BET) confirmed the production of pyrite nanoparticles during 6h of ball milling with the average size distribution of 20-80nm. The effects of various operational parameters including pH value, catalyst amount (mg/L), SSZ concentration (mg/L), ultrasonic frequency (kHz) and reaction time on the SSZ removal efficiency were examined. The obtained results showed that the maximum removal efficiency of 97.00% was obtained at pH value of 4, catalyst dosage of 0.5g/L, SSZ concentration of 10mg/L and reaction time of 30min. Experimental results demonstrated that the kinetic of the degradation process can be demonstrated using Langmuir-Hinshelwood (L-H) kinetic model. The effect of different inorganic ions such as Cl - , CO 3 2- and SO 4 2- was investigated on the L-H reaction rate (k r ) and adsorption (K s ) constants. Results showed that the presence of the mentioned ions significantly influenced the L-H constants. The impact of ethanol as a OH radical scavenger and some enhancers including H 2 O 2 and K 2 S 2 O 8 was investigated on the SSZ removal efficiency. Accordingly, the presence of ethanol suppressed SSZ degradation due to the quenching of OH radicals and the addition of K 2 S 2 O 8 and H 2 O 2 increased the SSZ removal efficiency, due to the formation of SO 4 - and additional OH radicals, respectively. Under the identical conditions of operating parameters, pyrite nanoparticles maintained their catalytic activity during four consecutive runs. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. ZnO nanoparticles obtained by ball milling technique: Structural, micro-structure, optical and photo-catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Balamurugan, S., E-mail: scandium.chemistry@gmail.com; Joy, Josny; Godwin, M. Anto; Selvamani, S.; Raja, T. S. Gokul [Advanced Nanomaterials Research Laboratory, Department of Nanotechnology, Noorul Islam Centre for Higher Education, Thuckalay, Kumaracoil - 629 180 (India)

    2016-05-23

    The ZnO nanoparticles were obtained by ball milling of commercial grade ZnO powder at 250 rpm for 20 h and studied their structural, micro-structure, optical and photo-catalytic properties. Due to ball milling significant decrease in lattice parameters and average crystalline size is noticed for the as-milled ZnO nano powder. The HRSEM images of the as-milled powder consist of agglomerated fine spherical nanoparticles in the range of ~10-20 nm. The room temperature PL spectrum of as-milled ZnO nano powder excited under 320 nm reveals two emission bands at ~406 nm (violet emission) and ~639 nm (green emission). Interestingly about 98 % of photo degradation of methylene (MB) by the ZnO catalyst is achieved at 100 minutes of solar light irradiation.

  2. Raman spectroscopy fingerprint of stainless steel-MWCNTs nanocomposite processed by ball-milling

    Directory of Open Access Journals (Sweden)

    Marcos Allan Leite dos Reis

    2018-01-01

    Full Text Available Stainless steel 304L alloy powder and multiwalled carbon nanotubes were mixed by ball-milling under ambient atmosphere and in a broad range of milling times, which spans from 0 to 120 min. Here, we provided spectroscopic signatures for several distinct composites produced, to show that the Raman spectra present interesting splittings of the D-band feature into two main sub-bands, D-left and D-right, together with several other secondary features. The G-band feature also presents multiple splittings that are related to the outer and inner diameter distributions intrinsic to the multiwalled carbon nanotube samples. A discussion about the second order 2D-band (also known as G′-band is also provided. The results reveal that the multiple spectral features observed in the D-band are related to an increased chemical functionalization. A lower content of amorphous carbon at 60 and 90 min of milling time is verified and the G-band frequencies associated to the tubes in the outer diameters distribution is upshifted, which suggests that doping induced by strain is taking place in the milled samples. The results indicate that Raman spectroscopy can be a powerful tool for a fast and non-destructive characterization of carbon nanocomposites used in powder metallurgy manufacturing processes.

  3. Investigation of nanostructured Al-10 wt.% Zr material prepared by ball milling for high temperature applications

    International Nuclear Information System (INIS)

    Prosviryakov, A.S.; Shcherbachev, K.D.; Tabachkova, N.Yu.

    2017-01-01

    Ground chips of as-cast Al-10 wt.% Zr alloy were subjected to mechanical alloying (MA) with 5 vol.% of nanodiamond addition in a high energy planetary ball-mill. The aim of this work was to investigate the microstructure, phase transformation and mechanical properties of the material both after MA and after subsequent annealing. Optical and transmission electron microscopes were used for morphological and microstructural analysis. The effect of milling time on powder microhardness, Al lattice parameter, lattice microstrain and crystallite size was determined. It was shown that mechanical alloying of as-cast Al-10wt.%Zr alloy during 20 h leads to a complete dissolution of the primary tetragonal Al 3 Zr crystals in aluminum. At the same time, the powder microhardness increases to 370 HV. Metastable cubic Al 3 Zr phase nanoparticles precipitate from the Al solution due to its decomposition after annealing, however, the Al solid solution remains supersaturated and nanocrystalline. Compression tests at room temperature and at 300 °C showed that the strength values of the hot-pressed samples reach 822 MPa and 344 MPa, respectively. - Highlights: •As-cast Al-10 wt.% Zr alloy was mechanically alloyed with 5 vol.% nanodiamond. •The primary tetragonal Al 3 Zr crystals were completely dissolved in Al after 20 h. •Cubic Al 3 Zr phase nanoparticles precipitated from Al solution after aging. •The aged bulk material showed a high strength at room and elevated temperatures.

  4. Characterization of prealloyed copper powders treated in high energy ball mill

    International Nuclear Information System (INIS)

    Rajkovic, Viseslava; Bozic, Dusan; Jovanovic, Milan T.

    2006-01-01

    The inert gas atomised prealloyed copper powders containing 3.5 wt.% Al were milled up to 20 h in the planetary ball mill in order to oxidize aluminium in situ with oxygen from the air. In the next procedure compacts from milled powder were synthesized by hot-pressing in argon atmosphere. Compacts from as-received Cu-3.5 wt.% Al powder and electrolytic copper powder were also prepared under the same conditions. Microstructural and morphological changes of high energy milled powder as well as changes of thermal stability and electrical conductivity of compacts were studied as a function of milling time and high temperature exposure at 800 deg. C. Optical, scanning electron microscopy (SEM) and X-ray diffraction analysis were performed for microstructural characterization, whereas thermal stability and electrical conductivity were evaluated by microhardness measurements and conductometer Sigmatest, respectively. The prealloyed 5 h-milled and compacted powder showed a significant increase in microhardness reaching the value of 2600 MPa, about 4 times greater than that of compacts synthesized from as-received electrolytic copper powder (670 MPa). The electrical conductivity of compacts from 5 h-milled powder was 52% IACS. The results were discussed in terms of the effect of small grain size and finely distributed alumina dispersoids on hardening and thermal stability of compacts

  5. Cold compaction behavior and pressureless sinterability of ball milled WC and WC/Cu powders

    Directory of Open Access Journals (Sweden)

    Hashemi Seyed R.

    2016-01-01

    Full Text Available In this research, cold compaction behavior and pressureless sinterability of WC, WC-10%wtCu and WC-30%wtCu powders were investigated. WC and WC/Cu powders were milled in a planetary ball mill for 20h. The milled powders were cold compacted at 100, 200, 300 and 400 MPa pressures. The compressibility behavior of the powders was evaluated using the Heckel, Panelli-Ambrosio and Ge models. The results showed that the Panelli-Ambrosio was the preferred equation for description the cold compaction behavior of the milled WC and WC-30%wtCu powders. Also, the most accurate model for describing the compressibility of WC-10%wtCu powders was the Heckel equation. The cold compacts were sintered at 1400°C. It was found that by increasing the cold compaction pressure of powder compacts before sintering, the sinterability of WC-30%wtCu powder compacts was enhanced. However, the cold compaction magnitude was not affected significantly on the sinterability of WC and WC-10%wtCu powders. The microstructural investigations of the sintered samples by Scanning Electron Microscopy (SEM confirmed the presence of porosities at the interface of copper-tungsten carbide phases.

  6. Niobium Carbide-Reinforced Al Matrix Composites Produced by High-Energy Ball Milling

    Science.gov (United States)

    Travessa, Dilermando Nagle; Silva, Marina Judice; Cardoso, Kátia Regina

    2017-06-01

    Aluminum and its alloys are key materials for the transportation industry as they contribute to the development of lightweight structures. The dispersion of hard ceramic particles in the Al soft matrix can lead to a substantial strengthening effect, resulting in composite materials exhibiting interesting mechanical properties and inspiring their technological use in sectors like the automotive and aerospace industries. Powder metallurgy techniques are attractive to design metal matrix composites, achieving a homogeneous distribution of the reinforcement into the metal matrix. In this work, pure aluminum has been reinforced with particles of niobium carbide (NbC), an extremely hard and stable refractory ceramic. Its use as a reinforcing phase in metal matrix composites has not been deeply explored. Composite powders produced after different milling times, with 10 and 20 vol pct of NbC were produced by high-energy ball milling and characterized by scanning electron microscopy and by X-ray diffraction to establish a relationship between the milling time and size, morphology, and distribution of the particles in the composite powder. Subsequently, an Al/10 pct NbC composite powder was hot extruded into cylindrical bars. The strength of the obtained composite bars is comparable to the commercial high-strength, aeronautical-grade aluminum alloys.

  7. A morphological evaluation of a duplex stainless steel processed by high energy Ball Mill

    International Nuclear Information System (INIS)

    Yonekubo, Ariane Emi; Cintho, Osvaldo Mitsuyuki; Aguiar, Denilson Jose Marcolino de; Capocchi, Jose Deodoro Trani

    2009-01-01

    The duplex stainless steels are formed by a ferrite and austenite mixture, giving them a combination of properties. Commercially, these steels are hot rolled, developing an anisotropic, alternated ferrite and austenite elongated lamellae microstructure. In this work, a duplex stainless steel was produced by the mixture of elementary powders with the composition Fe-19.5Cr-5Ni processed in an ATTRITOR ball mill during periods up to 15 hours. The powders obtained were compressed in specimens and were heat treated in the temperatures of 900, 1050 and 1200 °C during 1 hour and analysed by x ray diffraction, optic microscopy, scanning electron microscopy and energy dispersion spectroscopy. An optimized microstructure with ultrafine, equiaxial and regular duplex microstructure was obtained in the 15 hour milling and 1200 °C heat treatment. Afterwards, a commercially super duplex stainless steel UNS S32520 was aged at 800 °C aiming the precipitation of σ phase in order to reduce its toughness and then, milled in SPEX mill. The resulting microstructure was a very fine duplex type with irregular grain boundary morphology duo to the grain growth barrier promoted by the renascent σ phase particles during sintering process. (author)

  8. Raman spectroscopy fingerprint of stainless steel-MWCNTs nanocomposite processed by ball-milling

    Science.gov (United States)

    dos Reis, Marcos Allan Leite; Barbosa Neto, Newton Martins; de Sousa, Mário Edson Santos; Araujo, Paulo T.; Simões, Sónia; Vieira, Manuel F.; Viana, Filomena; Loayza, Cristhian R. L.; Borges, Diego J. A.; Cardoso, Danyella C. S.; Assunção, Paulo D. C.; Braga, Eduardo M.

    2018-01-01

    Stainless steel 304L alloy powder and multiwalled carbon nanotubes were mixed by ball-milling under ambient atmosphere and in a broad range of milling times, which spans from 0 to 120 min. Here, we provided spectroscopic signatures for several distinct composites produced, to show that the Raman spectra present interesting splittings of the D-band feature into two main sub-bands, D-left and D-right, together with several other secondary features. The G-band feature also presents multiple splittings that are related to the outer and inner diameter distributions intrinsic to the multiwalled carbon nanotube samples. A discussion about the second order 2D-band (also known as G'-band) is also provided. The results reveal that the multiple spectral features observed in the D-band are related to an increased chemical functionalization. A lower content of amorphous carbon at 60 and 90 min of milling time is verified and the G-band frequencies associated to the tubes in the outer diameters distribution is upshifted, which suggests that doping induced by strain is taking place in the milled samples. The results indicate that Raman spectroscopy can be a powerful tool for a fast and non-destructive characterization of carbon nanocomposites used in powder metallurgy manufacturing processes.

  9. Easily recycled Bi2O3 photocatalyst coatings prepared via ball milling followed by calcination

    Science.gov (United States)

    Cheng, Lijun; Hu, Xumin; Hao, Liang

    2017-06-01

    Bi2O3 photocatalyst coatings derived from Bi coatings were first prepared by a two-step method, namely ball milling followed by the calcination process. The as-prepared samples were characterized by XRD, SEM, XPS and UV-Vis spectra, respectively. The results showed that monoclinic Bi2O3 coatings were obtained after sintering Bi coatings at 673 or 773 K, while monoclinic and triclinic mixed phase Bi2O3 coatings were obtained at 873 or 973 K. The topographies of the samples were observably different, which varied from flower-like, irregular, polygonal to nanosized particles with the increase in calcination temperature. Photodegradation of malachite green under simulated solar irradiation for 180 min showed that the largest degradation efficiency of 86.2% was achieved over Bi2O3 photocatalyst coatings sintered at 873 K. The Bi2O3 photocatalyst coatings, encapsulated with Al2O3 ball with an average diameter around 1 mm, are quite easily recycled, which provides an alternative visible light-driven photocatalyst suitable for practical water treatment application.

  10. Surface modification of calcined kaolin with toluene diisocyanate based on high energy ball milling

    International Nuclear Information System (INIS)

    Yuan, Yongbing; Chen, Hongling; Lin, Jinbin; Ji, Yan

    2013-01-01

    The surface of calcined kaolin particle was modified with toluene diisocyanate (TDI) by using high energy ball milling. The prepared hybrids were characterized by FT-IR, MAS NMR, thermal analysis (TGA-DSC), static water contact angle (CA), apparent viscosity and transmission electron microscopy (TEM). FT-IR and MAS NMR spectra demonstrated that TDI molecules were chemically anchored to kaolin surface after modification. The results of thermal analysis showed that the maximum grafting ratio reached up to 446.61% when the mass ratio of TDI/kaolin was 0.5:1.0, and CA measurements revealed that the resultant hybrids exhibited strong hydrophobicity (148.82°). Apparent viscosity and TEM were employed to examine the dispersion properties of blank and modified kaolin particles in poly (dimenthylsiloxane) matrix. The results illustrated that the dispersion stability depended strongly on the grafting ratio of TDI, neither too low nor too high achieved uniform and stable dispersion, and the favorable grafting ratio was obtained when the mass ratio of TDI/kaolin was 0.2:1.0. Further modification of TDI/kaolin (mass ration of TDI/kaolin, 1.0:1.0) particles with bis(aminopropyl)-terminated-poly(dimethylsiloxane) (APS) was also investigated. TEM evidenced that the dispersion properties of the obtained TDI/APS/kaolin particles were remarkably improved in octamethyl cyclotetrasiloxane compared with the original TDI/kaolin particles.

  11. Surface modification of calcined kaolin with toluene diisocyanate based on high energy ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Yongbing; Chen, Hongling, E-mail: hlchen@njut.edu.cn; Lin, Jinbin; Ji, Yan

    2013-11-01

    The surface of calcined kaolin particle was modified with toluene diisocyanate (TDI) by using high energy ball milling. The prepared hybrids were characterized by FT-IR, MAS NMR, thermal analysis (TGA-DSC), static water contact angle (CA), apparent viscosity and transmission electron microscopy (TEM). FT-IR and MAS NMR spectra demonstrated that TDI molecules were chemically anchored to kaolin surface after modification. The results of thermal analysis showed that the maximum grafting ratio reached up to 446.61% when the mass ratio of TDI/kaolin was 0.5:1.0, and CA measurements revealed that the resultant hybrids exhibited strong hydrophobicity (148.82°). Apparent viscosity and TEM were employed to examine the dispersion properties of blank and modified kaolin particles in poly (dimenthylsiloxane) matrix. The results illustrated that the dispersion stability depended strongly on the grafting ratio of TDI, neither too low nor too high achieved uniform and stable dispersion, and the favorable grafting ratio was obtained when the mass ratio of TDI/kaolin was 0.2:1.0. Further modification of TDI/kaolin (mass ration of TDI/kaolin, 1.0:1.0) particles with bis(aminopropyl)-terminated-poly(dimethylsiloxane) (APS) was also investigated. TEM evidenced that the dispersion properties of the obtained TDI/APS/kaolin particles were remarkably improved in octamethyl cyclotetrasiloxane compared with the original TDI/kaolin particles.

  12. Moessbauer Study of the Ball Milling Disordering Process of FeAl Intermetallic Compounds

    International Nuclear Information System (INIS)

    Oleszak, Dariusz; Bruna, Pere; Crespo, Daniel; Pradell, Trinitat

    2005-01-01

    Structural changes during ball milling of ordered Fe50Al50 intermetallic compounds were studied. X-Ray diffraction allowed the computation of a Long Range Order parameter (LRO) which dropped to zero after a short milling time. The initial B2 ordered structure gradually transforms into a disordered BCC structure, with a final crystallite size of about 25 nm. Moessbauer spectroscopy was used for obtaining a Chemical Short Range Order parameter (CSRO). Using a semiempirical n-body noncentral potential a model of the partially disordered B2 structure was built allowing computing the distribution of Quadrupole Splitting during the disordering process. Comparison between experimental and simulated Moessbauer spectra shows a maximum of disorder in the system for 5h milling, related to the highest value of the lattice spacing and the broader quadrupole hyperfine distribution. However, after milling for times longer than 5h, there is a change on the behavior of the experimental data that cannot be explained by the simple disordering process

  13. Reduction of hydrogen desorption temperature of ball-milled MgH2 by NbF5 addition

    International Nuclear Information System (INIS)

    Recham, N.; Bhat, V.V.; Kandavel, M.; Aymard, L.; Tarascon, J.-M.; Rougier, A.

    2008-01-01

    Enhanced sorption properties of ball-milled MgH 2 are reported by adding NbF 5 . Among various catalyst amounts, 2 mol% of NbF 5 reveals to be the optimum concentration leading to significant reduction of the desorption temperature as well as faster kinetics of ball-milled MgH 2 . At 200 deg. C, temperature at which MgH 2 does not show any activity, MgH 2NbF 5 /2mol% composite desorbs 3.2 wt.% of H 2 in 50 mins. Interestingly, the addition of NbF 5 is also associated with an increase in the desorption pressure. At 300 deg. C, MgH 2NbF 5 /2mol% composite starts to desorb hydrogen at 600 mbar in comparison with 1 mbar for MgH 2 . Further improvements were successfully achieved by pre-grinding NbF 5 prior to ball-milling the catalyst with MgH 2 . Such pre-ground NbF 5 catalyzed MgH 2 composite desorbs 3 wt.% of H 2 at 150 deg. C. Improved properties are associated with smaller activation energies down to values close to the enthalpy of formation of MgH 2 . Finally, the mechanism at the origin of the enhancement is discussed in terms of catalyst stability, MgF 2 formation and electronic density localization

  14. CNTs/Al5083 Composites of High-performance Uniform and Dispersion Fabricated by High-energy Ball-milling

    Directory of Open Access Journals (Sweden)

    GUO Li

    2017-11-01

    Full Text Available Carbon nanotubes (CNTs, mass fraction of 0%-2% reinforced Al5083 composites were fabricated by horizontal high-energy ball milling. The effects of ball milling time and CNTs contents on the properties of composite materials were studied. The micro morphology of CNTs/Al5083 composites was characterized by scanning electron microscopy(SEM and transmission electron microscopy(TEM, the tensile strength and microhardness of the composites were tested. The results indicate that after high-energy ball milling for 1.5h, the carbon nanotubes are dispersed homogeneously in the Al5083 matrix, and good interfacial bonding strength between CNTs and Al5083 is obtained at the addition of 1.5%CNTs. Under these conditions, the tensile strength and microhardness of CNTs/Al5083 composites are 188.8MPa and 136HV, respectively. Compared to Al5083 matrix without CNTs reinforcement, tensile strength and microhardness of CNTs/Al5083 composites are increased by 32.2% and 36%, respectively.

  15. Magnetic and mechanical properties of Cu (75 wt%) – 316L grade stainless steels synthesized by ball milling and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Bholanath, E-mail: bholanath_mondal@yahoo.co.in [Department of Central Scientific Services, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Chabri, Sumit [Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India); Sardar, Gargi [Department of Zoology, Baruipur College, South 24 Parganas, 743610 (India); Bhowmik, Nandagopal [Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India); Sinha, Arijit, E-mail: arijitsinha2@yahoo.co.in [School of Materials Science and Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India); Chattopadhyay, Partha Protim [Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India)

    2015-05-01

    Elemental powders of Cu (75 wt%) and 316-stainless steel (25 wt%) has been subjected to ball milling upto 70 h followed by isothermal annealing at the temperature range of 350–750 °C for 1 h to investigate the microstructural evolution along with magnetic and mechanical properties. After 40 h of milling, the bcc Fe is almost dissolved in the solid solution of Cu but no significant change has been observed in the XRD pattern after 70 h of milling, Annealing of the alloy has resulted in precipitation of nanocrystalline bcc-Fe in Cu which triggers the soft ferromagnetic properties. The extensive mechanical characterization has been done at the microstructural scale by nanoindentation technique which demonstrates a hardening behavior of the compacted and annealed alloys due to possible precipitation of nanocrystalline bcc-Fe in Cu. - Highlights: • Nanocrystalline phases with partial amorphorization obtained after 70 h of milling. • Precipitation and grain coarsening of Fe and Cu after annealing as observed by XRD. • Annealing of the ball milled sample upto 550 {sup o}C has evolved ferromagnetic behavior. • Nanoindentation predicts a hardening behavior of annealed ball milled samples.

  16. Synthesis of Ni-YSZ cermet for an electrode of high temperature electrolysis by high energy ball milling

    International Nuclear Information System (INIS)

    Hong, H.S.; Chae, U.S.; Park, K.M.; Choo, S.T.

    2005-01-01

    Ni/YSZ composites for a cathode that can be used in high temperature electrolysis were prepared by ball milling of Ni and YSZ powder. Ball milling was performed in a dry process and in ethanol. The microstructure and electrical conductivity of the composites were examined by XRD, SEM, TEM and a 4-point probe. XRD patterns for both the dry and wet ball-milled powders showed that the composites were composed of crystalline Ni and YSZ particles. The patterns did not change with increases in the milling time up to 48 h. Dry-milling slightly increased the average particle size compared to starting Ni particles, but little change in the particle size was observed with the increase in milling time. On the other hand, the wet-milling reduced the average size and the increasing milling time induced a further decrease in the particle size. After cold-pressing and annealing at 900 C for 2 h, the dry-milled powder exhibited high stability against Ni sintering so that the particle size changed little, but the particle size increased in the wet-milled powder. The electrical conductivity increased after sintering at 900 C. Particles from the dry and wet process became denser and contacted closer after sintering, providing better electron migration paths. (orig.)

  17. Effect of ball-milling time on the structural characteristics of biomedical porous Ti-Sn-Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nouri, Alireza, E-mail: alireza_nouri@yahoo.com [CQM-Centro de Quimica da Madeira, MMRG, Universidade da Madeira, Campus Universitario da Penteada, 9000-390 Funchal (Portugal); Institute for Technology Research and Innovation, Deakin University, Geelong, Victoria 3217 (Australia); Hodgson, Peter D. [Institute for Technology Research and Innovation, Deakin University, Geelong, Victoria 3217 (Australia); Wen Cuie [IRIS, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, 543-454 Burwood Road, Hawthorn, Victoria 3122 Australia (Australia)

    2011-07-20

    The structural characteristics of biomedical porous materials are crucial for bone tissue to grow into a porous structure and can also influence the fixation and remodeling between the implant and the human tissues. The current study has been investigating the effect of the ball-milling variable of time on the structural characteristics and pore morphology of a biomedical porous Ti-16Sn-4Nb (wt.%) alloy. The alloy was synthesized using high-energy ball milling for different periods of time, and the porous Ti-16Sn-4Nb alloy was fabricated by using a space holder sintering process. The resultant powder particles, bulk, and porous samples were characterized using a scanning electron microscope (SEM), laser particle-size analyzer, chemical analysis, X-ray diffraction analysis (XRD), and the Vickers hardness test. The results indicated that the inner pore surface, pore wall architecture, degree of porosity, pore size and the inter-pore connectivity of the sintered porous alloy are all considerably affected by ball-milling time.

  18. A study of the mechanism of microwave-assisted ball milling preparing ZnFe{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingzhe; Wu, Yujiao [College of materials and metallurgical engineering, Guizhou Institute of Technology, Guiyang 550003 (China); 2011 Collaborative Innovation Center of Guizhou Province, Guiyang 550003 (China); Qin, Qingdong [College of materials and metallurgical engineering, Guizhou Institute of Technology, Guiyang 550003 (China); Wang, Fuchun [College of materials and metallurgical engineering, Guizhou Institute of Technology, Guiyang 550003 (China); 2011 Collaborative Innovation Center of Guizhou Province, Guiyang 550003 (China); Chen, Ding [College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082 (China)

    2016-07-01

    In this paper, well dispersed ZnFe{sub 2}O{sub 4} nano-particles with high magnetization saturation of 82.23 emu/g were first synthesized by microwave assisted ball milling and then the influences of pre-treatments and microwave powers to the progress were studied. It was found that under the both function of crack effect induced by ball milling and rotary motion induced by microwave the synthesized ferrtie nano-particles were well dispersed that is much different from the powders synthesized by normal high energy ball milling. The pre-treatment of ball milling can only enhance the reaction rate in the first several hours but the pre-irradiation of microwave can enhance the hole reaction rate. Further more, it was also been found that with increasing the microwave power, the more raw materials will converted into zinc ferrite in the first 5 h. 5 h latter the microwave power of 720 W is high enough for the coupling effect of microwave and ball milling with stirrer rotation speed of 256 rpm. - Highlights: • ZnFe{sub 2}O{sub 4} with 82.23 emu/g were synthesized without heat treatment. • The produced powder dispersed very well without any dispersant. • The pre-treatment of microwave enhanced the reaction rate much. • The pre-treatment of ball milling enhance chemical rate at beginning.

  19. Structure and electrochemical hydrogen storage properties of Ti2Ni alloy synthesized by ball milling

    International Nuclear Information System (INIS)

    Hosni, B.; Li, X.; Khaldi, C.; ElKedim, O.; Lamloumi, J.

    2014-01-01

    Highlights: • The Ti 2 Ni alloy activation requires only one cycle of charge and discharge, regardless of the temperature. • By increasing the temperature the capacity loss, undergoes an increase and it is more pronounced for the 60 °C. • A good correlation is found between the evolutions of the different electrochemical parameters according to the temperature. - Abstract: The structure and the electrochemical hydrogen storage properties of amorphous Ti 2 Ni alloy synthesized by ball milling and used as an anode in nickel–metal hydride batteries were studied. Nominal Ti 2 Ni was synthesized under argon atmosphere at room temperature using a planetary high-energy ball mill. The structural and morphological characterization of the amorphous Ti 2 Ni alloy is carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical characterization of the Ti 2 Ni electrodes is carried out by the galvanostatic charging and discharging, the constant potential discharge, the open circuit potential and the potentiodynamic polarization techniques. The Ti 2 Ni alloy activation requires only one cycle of charge and discharge, regardless of the temperature. The electrochemical discharge capacity of the Ti 2 Ni alloy, during the first eight cycles, and at a temperature of 30 °C, remained practically unchanged and a good held cycling is observed. By increasing the temperature, the electrochemical discharge capacity loss after eight cycles undergoes an increase and it is more pronounced for the temperature 60 °C. At 30 °C, the anodic corrosion current density is 1 mA cm −2 and then it undergoes a rapid drop, remaining substantially constant (0.06 mA cm −2 ) in the range 40–60 °C, before undergoing a slight increase to 70 °C (0.3 mA cm −2 ). This variation is in good agreement with the maximum electrochemical discharge capacity values found for the different temperatures. By increasing the

  20. Atomic disorder and amorphization of B2-structure CoZr by ball milling

    International Nuclear Information System (INIS)

    Zhou, G.F.; Bakker, H.

    1996-01-01

    For a considerable number of intermetallic compounds it has been found that ball milling introduces atomic (chemical) disorder. Disorder due to milling was demonstrated by x-ray diffraction in AlRu, crystallizing in the B2 structure (ordered b.c.c.) by a decrease of the intensity of superlattice reflections relative to fundamental reflections. The same technique was used to investigate disordering by milling in Ni 3 Al, crystallizing in the L1 2 structure (ordered f.c.c.). In both cases the disorder is anti-site disorder of both components, i.e. both atomic species substitute on the wrong sublattices. Besides x-ray diffraction measurements of magnetic properties turned out to be useful in monitoring structural changes due to milling. The change in the superconducting transition temperature, measured by magnetic a.c. susceptibility, was used to demonstrate atomic disordering by milling in Nb 3 Sn and Nb 3 Au. The type of disorder turned out to be anti-site disorder. Such a type of disorder occurs in the same materials also at high temperatures or after irradiation by neutrons. The disordering was accompanied by an increase of the lattice parameter. An increase in high-field magnetization accompanied by a decrease of the lattice parameter during milling was found in B2 CoGa and B2 CoAl. In principle in the completely ordered state both compounds are non-magnetic, because the CO atoms are shielded from one another by Ga and Al atoms, respectively. However, when a Co atom is transferred to the wrong sublattice, it is surrounded by Co atoms as nearest neighbors and bears a magnetic moment. This explains the strong increase of the magnetization due to milling

  1. Microstructural characteristics and mechanical properties of carbon nanotube reinforced aluminum alloy composites produced by ball milling

    International Nuclear Information System (INIS)

    Raviathul Basariya, M.; Srivastava, V.C.; Mukhopadhyay, N.K.

    2014-01-01

    Highlights: • 6082 Al alloy composite with 2 wt% multiwalled carbon nanotubes prepared by milling. • Effect of milling time on structure and property evolution has been studied. • The reinforced composite powders showed a drastic crystallite size refinement. • The presence of carbon nanotube led to a two fold increase in the hardness and modulus. • The composite powder showed good thermal stability studied by DTA. - Abstract: The influence of milling time on the structure, morphology and thermal stability of multi-walled carbon nanotubes (MWCNTs) reinforced EN AW6082 aluminum alloy powders has been studied. After structural and microstructural characterization of the mechanically milled powders micro- and nano-hardness of the composite powder particles were evaluated. The morphological and X-ray diffraction studies on the milled powders revealed that the carbon nanotubes (CNTs) were uniformly distributed and embedded within the aluminum matrix. No reaction products were detected even after long milling up to 50 h. Nanotubes became shorter in length as they fractured under the impact and shearing action during the milling process. A high hardness of about 436 ± 52 HV is achieved for the milled powders, due to the addition of MWCNTs, after milling for 50 h. The increased elastic modulus and nanohardness can be attributed to the finer grain size evolved during high energy ball milling and to the uniform distribution of hard CNTs in the Al-alloy matrix. The hardness values of the composite as well as the matrix alloy compares well with that predicted by the Hall–Petch relationship

  2. Investigation of nanostructured Al-10 wt.% Zr material prepared by ball milling for high temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Prosviryakov, A.S., E-mail: pro.alex@mail.ru; Shcherbachev, K.D.; Tabachkova, N.Yu.

    2017-01-15

    Ground chips of as-cast Al-10 wt.% Zr alloy were subjected to mechanical alloying (MA) with 5 vol.% of nanodiamond addition in a high energy planetary ball-mill. The aim of this work was to investigate the microstructure, phase transformation and mechanical properties of the material both after MA and after subsequent annealing. Optical and transmission electron microscopes were used for morphological and microstructural analysis. The effect of milling time on powder microhardness, Al lattice parameter, lattice microstrain and crystallite size was determined. It was shown that mechanical alloying of as-cast Al-10wt.%Zr alloy during 20 h leads to a complete dissolution of the primary tetragonal Al{sub 3}Zr crystals in aluminum. At the same time, the powder microhardness increases to 370 HV. Metastable cubic Al{sub 3}Zr phase nanoparticles precipitate from the Al solution due to its decomposition after annealing, however, the Al solid solution remains supersaturated and nanocrystalline. Compression tests at room temperature and at 300 °C showed that the strength values of the hot-pressed samples reach 822 MPa and 344 MPa, respectively. - Highlights: •As-cast Al-10 wt.% Zr alloy was mechanically alloyed with 5 vol.% nanodiamond. •The primary tetragonal Al{sub 3}Zr crystals were completely dissolved in Al after 20 h. •Cubic Al{sub 3}Zr phase nanoparticles precipitated from Al solution after aging. •The aged bulk material showed a high strength at room and elevated temperatures.

  3. Preparation of natural pyrite nanoparticles by high energy planetary ball milling as a nanocatalyst for heterogeneous Fenton process

    Energy Technology Data Exchange (ETDEWEB)

    Fathinia, Siavash [Department of Mining Engineering, Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin (Iran, Islamic Republic of); Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Fathinia, Mehrangiz [Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Rahmani, Ali Akbar [Department of Mining Engineering, Faculty of Engineering and Technology, Imam Khomeini International University, Qazvin (Iran, Islamic Republic of); Khataee, Alireza, E-mail: a_khataee@tabrizu.ac.ir [Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2015-02-01

    Graphical abstract: - Highlights: • Pyrite nanoparticles were successfully produced by planetary ball milling process. • The physical and chemical properties of pyrite nanoparticles were fully examined. • The degradation of AO7 was notably enhanced by pyrite nanoparticles Fenton system. • The influences of basic operational parameters were investigated using CCD. - Abstract: In the present study pyrite nanoparticles were prepared by high energy mechanical ball milling utilizing a planetary ball mill. Various pyrite samples were produced by changing the milling time from 2 h to 6 h, in the constant milling speed of 320 rpm. X-ray diffraction (XRD), scanning electron microscopy (SEM) linked with energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FT-IR) analysis and Brunauer–Emmett–Teller (BET) were performed to explain the characteristics of primary (unmilled) and milled pyrite samples. The average particle size distribution of the produced pyrite during 6 h milling was found to be between 20 nm and 100 nm. The catalytic performance of the different pyrite samples was examined in the heterogeneous Fenton process for degradation of C.I. Acid Orange 7 (AO7) solution. Results showed that the decolorization efficiency of AO7 in the presence of 6 h-milled pyrite sample was the highest. The impact of key parameters on the degradation efficiency of AO7 by pyrite nanoparticles catalyzed Fenton process was modeled using central composite design (CCD). Accordingly, the maximum removal efficiency of 96.30% was achieved at initial AO7 concentration of 16 mg/L, H{sub 2}O{sub 2} concentration of 5 mmol/L, catalyst amount of 0.5 g/L and reaction time of 25 min.

  4. Kinetic parameters of grinding media in ball mills with various liner design and mill speed based on DEM modeling

    Science.gov (United States)

    Khakhalev, P. A.; Bogdanov, VS; Kovshechenko, V. M.

    2018-03-01

    The article presents analysis of the experiments in the ball mill of 0.5x0.3 m with four different liner types based on DEM modeling. The numerical experiment always complements laboratory research and allow obtaining high accuracy output data. An important property of the numerical experiment is the possibility of visualization of the results. The EDEM software allows calculating trajectory of the grinding bodies and kinetic parameters of each ball for the relative mill speed and the different types of mill’s liners.

  5. Improved critical current densities in bulk FeSe superconductor using ball milled powders and high temperature sintering

    Energy Technology Data Exchange (ETDEWEB)

    Muralidhar, M.; Furutani, K.; Murakami, M. [Graduate School of Science and Engineering, Superconducting Materials Laboratory, Shibaura Institute of Technology, Tokyo (Japan); Kumar, Dinesh; Rao, M.S. Ramachandra [Department of Physics, Nano Functional Materials Technology Centre and Materials Science Research Centre, Indian Institute of Technology Madras, Chennai (India); Koblischka, M.R. [Institute of Experimental Physics, Saarland University, Saarbruecken (Germany)

    2016-12-15

    The present study is investigating the effect of high temperature sintering combined with ball milled powders for the preparation of FeSe material via solid state sintering technique. The commercial powders of Fe (99.9% purity) and Se (99.9% purity) were mixed in a nominal ratio Fe:Se = 1:1 and thoroughly ground and ball-milled in a glove box during 6 h. Then, the powder mixture was pressed into pellets of 5 mm in diameter and 2 mm thickness using an uniaxial pressure of 100 MPa. The samples were sealed in quartz tubes and sintered at 600 C for 24 h. Then, the pellets were again thoroughly ground and ball-milled in the glove box and pressed into pellets, and the final sintering was performed at two different temperatures, namely at 900 C for 24 h and at 950 C for 24 h. X-ray diffraction results confirmed that both samples showed mainly of the β-FeSe with tetragonal structure. The temperature dependence of magnetization (M-T) curves revealed a sharp superconducting transition T{sub c,} {sub onset} = 8.16 K for the sample sintered at 900 C. Further, scanning electron microscopy observations proved that samples sintered at 900 C show a platelike grain structure with high density. As a result, improved irreversibility fields around 5 T and the critical current density (J{sub c}) values of 6252 A cm{sup -2} at 5 K and self-field are obtained. Furthermore, the normalized volume pinning force versus the reduced field plots indicated a peak position at 0.4 for the sample sintered at 900 C. Improved flux pinning and the high J{sub c} values are attributed to the textured microstructure of the material, produced by a combination of high temperature sintering and ball milling. (copyright 2016 The Authors. Phys. Status Solidi A published by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Synthesis of carbon nanotubes from acetylene on the FeCoMgO catalytic system obtained by ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Biris, A R; Simon, S; Lupu, D; Misan, I [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania); Biris, A S; Dervishi, E; Li, Z; Watanabe, F [UALR Nanotechnology Center, University of Arkansas, 2801 S University Ave, Little Rock, AR 72204 (United States); Lucaci, M, E-mail: alexandru.biris@itim-cj.r [National Institute for Research and Development in Electrical Engineering ICPE-CA 313 Splaiul Unirii, 030138 Bucharest (Romania)

    2009-08-01

    Highly crystalline multi wall carbon nanotubes have been synthesized by RF-CVD from acetylene at 850{sup 0}C over a Fe:Co:MgO catalyst. The catalytic system was obtained by mixing for 100 h Fe, Co and MgO powders in a ball milling device under petroleum ether environment, followed by oxidation in air at 500{sup 0}C for 24 h. Most of the nanotubes had external diameters in order of dozens of nm and lengths of microns, resulting in an aspect ration of over 1000. Their external to internal diameter ratio varied between 2.5 and 3.

  7. The coercivity mechanism of Pr–Fe–B nanoflakes prepared by surfactant-assisted ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Wen-Liang, E-mail: wlzuo@iphy.ac.cn; Zhang, Ming; Niu, E.; Shao, Xiao-Ping; Hu, Feng-Xia; Sun, Ji-Rong; Shen, Bao-Gen, E-mail: shenbg@aphy.iphy.ac.cn

    2015-09-15

    The strong (00l) textured Pr{sub 12+x}Fe{sub 82−x}B{sub 6} (x=0, 1, 2, 3, 4) nanoflakes with high coercivity were prepared by surfactant-assisted ball milling (SABM). The thickness and length of the flakes are mainly in the range of 50−200 nm and 0.5−2 μm, respectively. A coercivity of 4.16 kOe for Pr{sub 15}Fe{sub 79}B{sub 6} nanoflakes was obtained, which is the maximum coercivity of R{sub 2}Fe{sub 14}B (R=Pr, Nd) nanoflakes or nanoparticles reported up to now. The results of XRD and SEM for the aligned Pr{sub 15}Fe{sub 79}B{sub 6} nanoflakes indicate that a strong (00l) texture is obtained and the easy magnetization direction is parallel to the surface of the flakes. The angular dependence of coercivity for aligned sample indicates that the coercivity mechanism of the as-milled nanoflakes is mainly dominated by domain wall pinning. Meanwhile, the field dependence of coercivity, isothermal (IRM) and dc demagnetizing (DCD) remanence curves also indicate that the coercivity is mainly determined by domain wall pinning, and nucleation also has an important effect. In addition, the mainly interaction of flakes is dipolar coupling. The research of coercivity mechanism for Pr{sub 15}Fe{sub 79}B{sub 6} nanoflakes is important for guidance the further increase its value, and is useful for the future development of the high performance nanocomposite magnets and soft/hard exchange spring magnets. - Highlights: • A coercivity of 4.16 kOe for Pr{sub 15}Fe{sub 79}B{sub 6} nanoflakes was obtained. • The strong (00l) textured is obtained for Pr{sub 15}Fe{sub 79}B{sub 6} nanoflakes. • The interaction of nanoflakes is mainly dipolar coupling. • Domain wall pinning is the mainly coercivity mechanism.

  8. Bismuth-ceramic nanocomposites through ball milling and liquid crystal synthetic methods

    Science.gov (United States)

    Dellinger, Timothy Michael

    Three methods were developed for the synthesis of bismuth-ceramic nanocomposites, which are of interest due to possible use as thermoelectric materials. In the first synthetic method, high energy ball milling of bismuth metal with either MgO or SiO2 was found to produce nanostructured bismuth dispersed on a ceramic material. The morphology of the resulting bismuth depended on its wetting behavior with respect to the ceramic: the metal wet the MgO, but did not wet on the SiO2. Differential Scanning Calorimetry measurements on these composites revealed unusual thermal stability, with nanostructure retained after multiple cycles of heating and cooling through the metal's melting point. The second synthesis methodology was based on the use of lyotropic liquid crystals. These mixtures of water and amphiphilic molecules self-assemble to form periodic structures with nanometer-scale hydrophilic and hydrophobic domains. A novel shear mixing methodology was developed for bringing together reactants which were added to the liquid crystals as dissolved salts. The liquid crystals served to mediate synthesis by acting as nanoreactors to confine chemical reactions within the nanoscale domains of the mesophase, and resulted in the production of nanoparticles. By synthesizing lead sulfide (PbS) and bismuth (Bi) particles as proof-of-concept, it was shown that nanoparticle size could be controlled by controlling the dimensionality of the nanoreactors through control of the liquid crystalline phase. Particle size was shown to decrease upon going from three-dimensionally percolating nanoreactors, to two dimensional sheet-like nanoreactors, to one dimensional rod-like nanoreactors. Additionally, particle size could be controlled by varying the precursor salt concentration. Since the nanoparticles did not agglomerate in the liquid crystal immediately after synthesis, bismuth-ceramic nanocomposites could be prepared by synthesizing Bi nanoparticles and mixing in SiO2 particles which

  9. Study of the preparation of Cu-TiC composites by reaction of soluble Ti and ball-milled carbon coating TiC

    Science.gov (United States)

    Xu, Xuexia; Li, Wenbin; Wang, Yong; Dong, Guozhen; Jing, Shangqian; Wang, Qing; Feng, Yanting; Fan, Xiaoliang; Ding, Haimin

    2018-06-01

    In this work, Cu-TiC composites have been successfully prepared by reaction of soluble Ti and carbon coating TiC. Firstly, the ball milling of graphite and TiC mixtures is used to obtain the carbon coating TiC which has fine size and improved reaction activity. After adding the ball milled carbon coating TiC into Cu-Ti melts, the soluble Ti will easily react with the carbon coating to form TiC. This process will also improve the wettability between Cu melts and TiC core. As a result, besides the TiC prepared by reaction of soluble Ti and carbon coating, the ball milled TiC will also be brought into the melts. Some of these ball-milled TiC particles will go on being coated by the formed TiC from the reaction of Ti and the coating carbon and left behind in the composites. However, most of TiC core will be further reacted with the excessive Ti and be transformed into the newly formed TiC with different stoichiometry. The results indicate that it is a feasible method to synthesize TiC in Cu melts by reaction of soluble Ti and ball-milled carbon coating TiC.

  10. Microstructures, Mechanical Properties and Thermal Conductivities of W-0.5 wt.%TiC Alloys Prepared via Ball Milling and Wet Chemical Method

    Science.gov (United States)

    Lang, Shaoting; Yan, Qingzhi; Sun, Ningbo; Zhang, Xiaoxin; Ge, Changchun

    2017-10-01

    Two kinds of W-0.5 wt.%TiC alloys were prepared, one by ball milling and the other by the wet chemical method. For comparison, pure tungsten powders were chemically prepared and sintered by the same process. The microstructures, mechanical properties and thermal conductivities of the prepared samples were characterized. It has been found that the wet chemical method resulted in finer sizes and more uniform distribution of TiC particles in the sintered tungsten matrix than the ball milling method. The W-TiC alloy prepared by the wet chemical method achieved the highest bending strength (1065.72 MPa) among the samples. Further, it also exhibited obviously higher thermal conductivities in the temperature range of room temperature to 600°C than did the W-TiC alloy prepared by ball milling, but the differences in their thermal conductivities could be ignored in the range of 600-800°C.

  11. Highly Al-doped TiO{sub 2} nanoparticles produced by Ball Mill Method: structural and electronic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Desireé M. de los, E-mail: desire.delossantos@uca.es; Navas, Javier, E-mail: javier.navas@uca.es; Sánchez-Coronilla, Antonio; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; Martín-Calleja, Joaquín

    2015-10-15

    Highlights: • Highly Al-doped TiO{sub 2} nanoparticles were synthesized using a Ball Mill Method. • Al doping delayed anatase to rutile phase transformation. • Al doping allow controlling the structural and electronic properties of nanoparticles. - Abstract: This study presents an easy method for synthesizing highly doped TiO{sub 2} nanoparticles. The Ball Mill method was used to synthesize pure and Al-doped titanium dioxide, with an atomic percentage up to 15.7 at.% Al/(Al + Ti). The samples were annealed at 773 K, 973 K and 1173 K, and characterized using ICP-AES, XRD, Raman spectroscopy, FT-IR, TG, STEM, XPS, and UV–vis spectroscopy. The effect of doping and the calcination temperature on the structure and properties of the nanoparticles were studied. The results show high levels of internal doping due to the substitution of Ti{sup 4+} ions by Al{sup 3+} in the TiO{sub 2} lattice. Furthermore, anatase to rutile transformation occurs at higher temperatures when the percentage of doping increases. Therefore, Al doping allows us to control the structural and electronic properties of the nanoparticle synthesized. So, it is possible to obtain nanoparticles with anatase as predominant phase in a higher range of temperature.

  12. Highly Al-doped TiO2 nanoparticles produced by Ball Mill Method: structural and electronic characterization

    International Nuclear Information System (INIS)

    Santos, Desireé M. de los; Navas, Javier; Sánchez-Coronilla, Antonio; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; Martín-Calleja, Joaquín

    2015-01-01

    Highlights: • Highly Al-doped TiO 2 nanoparticles were synthesized using a Ball Mill Method. • Al doping delayed anatase to rutile phase transformation. • Al doping allow controlling the structural and electronic properties of nanoparticles. - Abstract: This study presents an easy method for synthesizing highly doped TiO 2 nanoparticles. The Ball Mill method was used to synthesize pure and Al-doped titanium dioxide, with an atomic percentage up to 15.7 at.% Al/(Al + Ti). The samples were annealed at 773 K, 973 K and 1173 K, and characterized using ICP-AES, XRD, Raman spectroscopy, FT-IR, TG, STEM, XPS, and UV–vis spectroscopy. The effect of doping and the calcination temperature on the structure and properties of the nanoparticles were studied. The results show high levels of internal doping due to the substitution of Ti 4+ ions by Al 3+ in the TiO 2 lattice. Furthermore, anatase to rutile transformation occurs at higher temperatures when the percentage of doping increases. Therefore, Al doping allows us to control the structural and electronic properties of the nanoparticle synthesized. So, it is possible to obtain nanoparticles with anatase as predominant phase in a higher range of temperature

  13. High anisotropic NdFeB submicro/nanoflakes prepared by surfactant-assisted ball milling at low temperature

    Science.gov (United States)

    An, Xiaoxin; Jin, Kunpeng; Abbas, Nadeem; Fang, Qiuli; Wang, Fang; Du, Juan; Xia, Weixing; Yan, Aru; Liu, J. Ping; Zhang, Jian

    2017-11-01

    Hard magnetic NdFeB submicro/nanoflakes were successfully prepared by surfactant-assisted ball milling at low temperature (SABMLT) by specially using 2-methyl pentane and trioctylamine (TOA) as solvent and surfactant, respectively. Influences of the amount of TOA and milling temperature on the crystal structure, morphology and magnetic performances of the as-prepared NdFeB powders were investigated systematically. There is significant difference on morphology between the NdFeB powders milled at room and low temperature. The NdFeB powders with flaky morphology could be obtained even with a small amount of TOA by SABMLT, which could not be achieved by surfactant-assisted ball milling at room temperature (SABMRT). The better crystallinity, better grain alignment, higher coercivity, larger saturation magnetization and remanence ratio were achieved in the samples prepared by SABMLT. Furthermore, the final NdFeB powders prepared by SABMLT possessed a lower amount of residual TOA than those prepared by SABMRT. It was demonstrated that SABMLT is a promising way to fabricate rare-earth-transition metal nanoflakes with high anisotropy for permanent magnetic materials. The effective method of preparing NdFeB flakes by lowering temperature will be also useful to fabricate flakes of other functional materials.

  14. Synthesis of the Mg2Ni alloy prepared by mechanical alloying using a high energy ball mill

    International Nuclear Information System (INIS)

    Iturbe G, J. L.; Lopez M, B. E.; Garcia N, M. R.

    2010-01-01

    Mg 2 Ni was synthesized by a solid state reaction from the constituent elemental powder mixtures via mechanical alloying. The mixture was ball milled for 10 h at room temperature in an argon atmosphere. The high energy ball mill used here was fabricated at ININ. A hardened steel vial and three steel balls of 12.7 mm in diameter were used for milling. The ball to powder weight ratio was 10:1. A small amount of powder was removed at regular intervals to monitor the structural changes. All the steps were performed in a little lucite glove box under argon gas, this glove box was also constructed in our Institute. The structural evolution during milling was characterized by X-ray diffraction and scanning electron microscopy techniques. The hydrogen reaction was carried out in a micro-reactor under controlled conditions of pressure and temperature. The hydrogen storage properties of mechanically milled powders were evaluated by using a thermogravimetric analysis system. Although homogeneous refining and alloying take place efficiently by repeated forging, the process time can be reduced to one fiftieth of the time necessary for conventional mechanical milling and attrition. (Author)

  15. Synthesis of the Mg{sub 2}Ni alloy prepared by mechanical alloying using a high energy ball mill

    Energy Technology Data Exchange (ETDEWEB)

    Iturbe G, J. L.; Lopez M, B. E. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Garcia N, M. R., E-mail: joseluis.iturbe@inin.gob.m [UNAM, Facultad de Estudios Superiores Zaragoza, Batalla 5 de Mayo s/n, Esq. Fuerte de Loreto, Col. Ejercito de Oriente, 09230 Mexico D. F. (Mexico)

    2010-07-01

    Mg{sub 2}Ni was synthesized by a solid state reaction from the constituent elemental powder mixtures via mechanical alloying. The mixture was ball milled for 10 h at room temperature in an argon atmosphere. The high energy ball mill used here was fabricated at ININ. A hardened steel vial and three steel balls of 12.7 mm in diameter were used for milling. The ball to powder weight ratio was 10:1. A small amount of powder was removed at regular intervals to monitor the structural changes. All the steps were performed in a little lucite glove box under argon gas, this glove box was also constructed in our Institute. The structural evolution during milling was characterized by X-ray diffraction and scanning electron microscopy techniques. The hydrogen reaction was carried out in a micro-reactor under controlled conditions of pressure and temperature. The hydrogen storage properties of mechanically milled powders were evaluated by using a thermogravimetric analysis system. Although homogeneous refining and alloying take place efficiently by repeated forging, the process time can be reduced to one fiftieth of the time necessary for conventional mechanical milling and attrition. (Author)

  16. Preparation of 50Ni-45Ti-5Zr powders by high-energy ball milling and hot pressing

    Energy Technology Data Exchange (ETDEWEB)

    Marinzeck de Alcantara Abdala, Julia, E-mail: juabdala@yahoo.com.b [Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraiba, Av. Shishima Hifumi, 2911, 12244-000 Sao Jose dos Campos (Brazil); Bacci Fernandes, Bruno, E-mail: brunobacci@yahoo.com.b [Divisao de Engenharia Mecanica, Instituto Tecnologico de Aeronautica, Praca Marechal-do-Ar Eduardo Gomes, 50, 12228-904 Sao Jose dos Campos (Brazil); Santos, Dalcy Roberto dos, E-mail: dalcy@iae.cta.b [Instituto de Aeronautica e Espaco, Centro Tecnologico Aeroespacial, Praca Marechal-do-Ar Eduardo Gomes, 50, 12228-904 Sao Jose dos Campos (Brazil); Rodrigues Henriques, Vinicius Andre, E-mail: vinicius@iae.cta.b [Instituto de Aeronautica e Espaco, Centro Tecnologico Aeroespacial, Praca Marechal-do-Ar Eduardo Gomes, 50, 12228-904 Sao Jose dos Campos (Brazil); Moura Neto, Carlos de, E-mail: mneto@ita.b [Divisao de Engenharia Mecanica, Instituto Tecnologico de Aeronautica, Praca Marechal-do-Ar Eduardo Gomes, 50, 12228-904 Sao Jose dos Campos (Brazil); Saraiva Ramos, Alfeu, E-mail: alfeu@univap.b [Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraiba, Av. Shishima Hifumi, 2911, 12244-000 Sao Jose dos Campos (Brazil)

    2010-04-16

    This study reports on the preparation of the 50Ni-45Ti-5Zr (at.%) alloy by high-energy ball milling and hot pressing. The elemental powder mixture was processed in silicon nitride and hardened steel vials, and samples were collected after different milling times. To recover the previous powders in addition wet milling isopropyl alcohol (for 20 min) was adopted. The mechanically alloyed powders were hot-pressed under vacuum at 900 {sup o}C for 1 h using pressure levels close to 200 MPa. The milled powders were characterized by means of scanning electron microscopy, X-ray diffraction, and energy dispersive spectrometry techniques. It was noted that the ductile starting powders were continuously cold-welded during ball milling. This fact was more pronounced during the processing of 50Ni-45Ti-5Zr powders in hardened steel vial. After milling for 5 h, the results suggested that amorphous and nanocrystalline structures were achieved. The complete consolidation was found after hot pressing of mechanically alloyed 50Ni-45Ti-5Zr powders, and a large amount of the B2-NiTi phase was formed mainly after processing in stainless steel balls and vial.

  17. Si@SiOx/Graphene nanosheet anode materials for lithium-ion batteries synthesized by ball milling process

    Science.gov (United States)

    Tie, Xiaoyong; Han, Qianyan; Liang, Chunyan; Li, Bo; Zai, Jiantao; Qian, Xuefeng

    2017-12-01

    Si@SiOx/Graphene nanosheet (GNS) nanocomposites as high performance anode materials for lithium-ion batteries are synthesized by mechanically blending the mixture of expanded graphite with Si nanoparticles, and characterized by X-ray diffraction, Raman spectrum, field emission scanning electron microscopy and transmission electron microscopy. During the ball milling process, the size of Si nanoparticles will decrease, and the layer of expanded graphite can be peeled off to thin multilayers. Electrochemical performances reveal that the obtained Si@SiOx/GNS nanocomposites exhibit improved cycling stability, high reversible lithium storage capacity and superior rate capability, e.g. the discharge capacity is kept as high as 1055 mAh g-1 within 50 cycles at a current density of 200 mA g-1, retaining 63.6% of the initial value. The high performance of the obtained nanocomposites can be ascribed to GNS prepared through heat-treat and ball-milling methods, the decrease in the size of Si nanoparticles and SiOx layer on Si surface, which enhance the interactions between Si and GNS.

  18. Microstructural evolution of nanostructured Ti0.9Al0.1N prepared by reactive ball-milling

    International Nuclear Information System (INIS)

    Bhaskar, U.K.; Bid, S.; Pradhan, S.K.

    2011-01-01

    Research highlights: → Nanocrystalline stoichiometric Ti 0.9 Al 0.1 N powder has been prepared by ball-milling the 0.9 mol fraction of α-Ti (hcp) and 0.1 mol fraction of aluminum (fcc) powders under N 2 at room temperature. Initially, α-Ti phase partially transformed to the transient β-Ti phase and Ti 0.9 Al 0.1 N (fcc) phase is noticed to form after 3 h of milling. Nanocrystalline stoichiometric Ti 0.9 Al 0.1 N phase is formed after 7 h of milling. The main features which are observed in the present study are stated below: 1.During ball-milling of α-Ti, the α-Ti phase partially converted to transient cubic β-Ti phase within 1 h of milling. 2.Ti 0.9 Al 0.1 N (fcc) phase is noticed to form after 3 h of milling. Complete formation of Ti 0.9 Al 0.1 N (fcc) is obtained at 7 h of milling which is lesser than complete formation time (9 h) of TiN. Doping Al atoms accelerates the formation of (TiAl)N phase. 3.The particle size of Ti 0.9 Al 0.1 N decrease rapidly up to 3 h and then increase slightly due to agglomeration effect. 4.The particle size of Ti 0.9 Al 0.1 N estimated from X-ray is in good agreement with that measured from HRTEM. - Abstract: Nanocrystalline stoichiometric Ti 0.9 Al 0.1 N powder has been prepared by ball-milling the α-Ti (hcp) and aluminum (fcc) powders under N 2 at room temperature. Initially, α-Ti phase partially transformed to the transient cubic β-Ti phase and Ti 0.9 Al 0.1 N (fcc) phase is noticed to form after 3 h of milling. Nanocrystalline stoichiometric Ti 0.9 Al 0.1 N phase is formed after 7 h of milling. After 1 h of milling, all Al atoms are diffused into the α-Ti matrix. The transient β-Ti phase is noticed to form after 1 h of milling and disappears completely after 7 h of milling. Microstructure characterization of unmilled and ball-milled powders by analyzing XRD patterns employing the Rietveld structure refinement reveals the inclusion of Al and nitrogen atoms into the Ti lattice on the way to formation of Ti 0.9 Al 0.1 N

  19. Discrete element method based scale-up model for material synthesis using ball milling

    Science.gov (United States)

    Santhanam, Priya Radhi

    Mechanical milling is a widely used technique for powder processing in various areas. In this work, a scale-up model for describing this ball milling process is developed. The thesis is a combination of experimental and modeling efforts. Initially, Discrete Element Model (DEM) is used to describe energy transfer from milling tools to the milled powder for shaker, planetary, and attritor mills. The rolling and static friction coefficients are determined experimentally. Computations predict a quasisteady rate of energy dissipation, E d, for each experimental configuration. It is proposed that the milling dose defined as a product of Ed and milling time, t, divided by the mass of milled powder, mp characterizes the milling progress independently of the milling device or milling conditions used. Once the milling dose is determined for one experimental configuration, it can be used to predict the milling time required to prepare the same material in any milling configuration, for which Ed is calculated. The concept is validated experimentally for DEM describing planetary and shaker mills. For attritor, the predicted Ed includes substantial contribution from milling tool interaction events with abnormally high forces (>103 N). The energy in such events is likely dissipated to heat or plastically deform milling tools rather than refine material. Indeed, DEM predictions for the attritor correlate with experiments when such events are ignored in the analysis. With an objective of obtaining real-time indicators of milling progress, power, torque, and rotation speed of the impeller of an attritor mill are measured during preparation of metal matrix composite powders in the subsequent portion of this thesis. Two material systems are selected and comparisons made between in-situ parameters and experimental milling progress indicators. It is established that real-time measurements can certainly be used to describe milling progress. However, they need to be interpreted carefully

  20. Polycrystalline Nd{sub 2}Fe{sub 14}B/α-Fe nanocomposite flakes with a sub-micro/nanometre thickness prepared by surfactant-assisted high-energy ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xin, E-mail: tangshincn@gmail.com [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Chen, Xi [Mechanical and Electrical Engineering College, Xinxiang University, No. 192, Jinsui Road, Xinxiang, Henan 453003 (China); Chen, Renjie; Yan, Aru [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2015-09-25

    Highlights: • Nd{sub 2}Fe{sub 14}B/α-Fe flakes are formed by peeling along preferential planes. • (0 0 l) planes are found to be preferential cleavage planes. • Magnetic properties degrade with increasing ball milling time. • Anisotropic nanocomposite magnets are fabricated. - Abstract: A surfactant-assisted high-energy ball milling technique was employed to synthesize Nd{sub 2}Fe{sub 14}B/α-Fe nanoparticles and nanoflakes from melt-spun nanocrystalline powders. The microstructure evolution in ball milling process was investigated. In the beginning stage (0–4 h) of ball milling, raw powders were crushed into micrometre-sized particles. While flakes were mainly formed by reducing thickness of particles via peeling layer by layer along preferential planes in the late stage (8–16 h). The selected area electron diffraction and high-resolution transmission electron microscopy images show that preferential cleavage planes are basal planes. With ball milling proceeding, more and more defects were induced by ball milling. As a result, the coercivity and remanence decreased to 1.6 kOe and 3.2 kGs, respectively. After 16 h ball milling, the exchange decoupling occurred due to severe amorphorization. A weakly-textured nanocomposite magnet was fabricated after 12 h ball milling and the anisotropy in magnetic properties can be further improved by employing settling down process to select particle size and aligning particles in external field.

  1. Comparative Study by MS and XRD of Fe{sub 50}Al{sub 50} Alloys Produced by Mechanical Alloying, Using Different Ball Mills

    Energy Technology Data Exchange (ETDEWEB)

    Rojas Martinez, Y., E-mail: yarojas@ut.edu.co [University of Tolima, Department of Physics (Colombia); Perez Alcazar, G. A. [University of Valle, Department of Physics (Colombia); Bustos Rodriguez, H.; Oyola Lozano, D., E-mail: doyolalozano@yahoo.com.mx [University of Tolima, Department of Physics (Colombia)

    2005-02-15

    In this work we report a comparative study of the magnetic and structural properties of Fe{sub 50}Al{sub 50} alloys produced by mechanical alloying using two different planetary ball mills with the same ball mass to powder mass relation. The Fe{sub 50}Al{sub 50} sample milled during 48 h using the Fritsch planetary ball mill pulverisette 5 and balls of 20 mm, presents only a bcc alloy phase with a majority of paramagnetic sites, whereas that sample milled during the same time using the Fritsch planetary ball mill pulverisette 7 with balls of 15 mm, presents a bcc alloy phase with paramagnetic site (doublet) and a majority of ferromagnetic sites which include pure Fe. However for 72 h of milling this sample presents a bcc paramagnetic phase, very similar to that prepared with the first system during 48 h. These results show that the conditions used in the first ball mill equipment make more efficient the milling process.

  2. The Structure and Mechanical Properties of High-Strength Bulk Ultrafine-Grained Cobalt Prepared Using High-Energy Ball Milling in Combination with Spark Plasma Sintering

    Czech Academy of Sciences Publication Activity Database

    Marek, I.; Vojtěch, D.; Michalcová, A.; Kubatík, Tomáš František

    2016-01-01

    Roč. 9, č. 5 (2016), č. článku 391. ISSN 1996-1944 Institutional support: RVO:61389021 Keywords : ultrafine-grained material * cobalt * ball milling * spark plasma sintering * mechanical properties Subject RIV: JG - Metallurgy Impact factor: 2.654, year: 2016 www.mdpi.com/1996-1944/9/5/391/pdf

  3. Correlation of gas sensitivite properties with microstructure of Fe2O3-SnO2 ceramics prepared by high energy ball milling

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Lu, S.W.; Zhou, Y.X.

    1997-01-01

    A remarkable gas sensitivity to ethnaol gas has been observed in nanostructured Fe2O3-SnO2 materials with a composition of 6.4 mol% SnO2 prepared by high energy ball milling. The microstructure of the materials has been examined by x-ray diffraction (XRD) and Mossbauer spectroscopy. It was found...

  4. Unraveling the synthesis of homoleptic [Ag(N,N-diaryl-NHC)2]Y (Y = BF4, PF6) complexes by ball-milling.

    Science.gov (United States)

    Beillard, Audrey; Bantreil, Xavier; Métro, Thomas-Xavier; Martinez, Jean; Lamaty, Frédéric

    2016-11-28

    A user-friendly and general mechanochemical method was developed to access rarely described NHC (N-heterocyclic carbene) silver(i) complexes featuring N,N-diarylimidazol(idin)ene ligands and non-coordinating tetrafluoroborate or hexafluorophosphate counter anions. Comparison with syntheses in solution clearly demonstrated the superiority of the ball-milling conditions.

  5. The influence of ball-milling time on the dehydrogenation properties of the NaAlH4-MgH2 composite

    NARCIS (Netherlands)

    Bendyna, J.K.; Dyjak, S.M.; Notten, P.H.L.

    2015-01-01

    The recently developed NaAlH4eMgH2 composite shows improved hydrogen-storage properties compared to MgH2 and NaAlH4. However, the dehydrogenation reaction rates are still too limited, hampering practical applications. Mechanical ball milling is broadly used to improve the dehydrogenation reaction

  6. Synthesis, thermal properties and recrystallization of ball-milled high Tc superconductors. (Topological stabilization of metastable phases)

    International Nuclear Information System (INIS)

    Schulz, R.; Lanteigne, J.; Simoneau, M.; Tessier, P.; Neste, A. van; Strom Olsen, J.O.

    1995-01-01

    Amorphous and nanocrystalline phases have been formed by ball-milling Y-Ba-Cu-O and Bi-Ca-Sr-Cu-O. The strong mechanical deformations induce disorder on the oxygen sublattice and on the cation sites. These order-disorder transformations often produce simple cubic perovskite structures. During recrystallization, the chemical order is restored. Small ordered regions nucleate, grow and produce particular metastable configurations which minimize the total elastic strain energy. The sequence of events giving rise to the various metastable phases has been followed by x-ray diffraction and differential scanning calorimetry and is explained in terms of free energy diagrams. The stress and strain fields associated with the Y-Ba disorder are calculated using the elastic properties of the Y-Ba-Cu-O superconductor. A simple model is proposed to explain the stability of the structures observed after thermal treatments. (orig.)

  7. Influence of Process Control Agent on Characterization and Structure of Micron Chitosan Powders Prepared by Ball Milling Method

    Directory of Open Access Journals (Sweden)

    ZHANG Chuan-jie

    2016-12-01

    Full Text Available With ethyl alcohol or distilled water as process control agent (PCA, micron chitosan powder was prepared by ball milling method. The yield rate, particle size distribution, micro morphology, viscosity average molecular mass, chemical and crystal structures, and thermal properties of these different micron chitosan powders were measured. The results indicate that the yield rate of micron chitosan powders prepared with ethyl alcohol as PCA increases significantly, and improves to 94.7% from 25% while the amount of ethyl alcohol is 0.75mL/g. The particle size distribution of micron chitosan powder prepared with ethyl alcohol as PCA is concentrated, while the D50 and D90 in size are 824nm and 1629nm respectively. Chitosan do not react with ethyl alcohol used as PCA, but the viscosity average molecular mass of prepared micron chitosan powder decreases by 23%, the crystal structures are destroyed slightly, and its thermal stability is slightly weakened.

  8. Superthermostability of nanoscale TIC-reinforced copper alloys manufactured by a two-step ball-milling process

    Science.gov (United States)

    Wang, Fenglin; Li, Yunping; Xu, Xiandong; Koizumi, Yuichiro; Yamanaka, Kenta; Bian, Huakang; Chiba, Akihiko

    2015-12-01

    A Cu-TiC alloy, with nanoscale TiC particles highly dispersed in the submicron-grained Cu matrix, was manufactured by a self-developed two-step ball-milling process on Cu, Ti and C powders. The thermostability of the composite was evaluated by high-temperature isothermal annealing treatments, with temperatures ranging from 727 to 1273 K. The semicoherent nanoscale TiC particles with Cu matrix, mainly located along the grain boundaries, were found to exhibit the promising trait of blocking grain boundary migrations, which leads to a super-stabilized microstructures up to approximately the melting point of copper (1223 K). Furthermore, the Cu-TiC alloys after annealing at 1323 K showed a slight decrease in Vickers hardness as well as the duplex microstructure due to selective grain growth, which were discussed in terms of hardness contributions from various mechanisms.

  9. Solvent-Free Biginelli Reactions Catalyzed by Hierarchical Zeolite Utilizing a Ball Mill Technique: A Green Sustainable Process

    Directory of Open Access Journals (Sweden)

    Ameen Shahid

    2017-03-01

    Full Text Available A sustainable, green one-pot process for the synthesis of dihydropyrimidinones (DHPMs derivatives by a three-component reaction of β-ketoester derivatives, aldehyde and urea or thiourea over the alkali-treated H-ZSM-5 zeolite under ball-milling was developed. Isolation of the product with ethyl acetate shadowed by vanishing of solvent was applied. The hierachical zeolite catalyst (MFI27_6 showed high yield (86%–96% of DHPMs in a very short time (10–30 min. The recyclability of the catalyst for the subsequent reactions was examined in four subsequent runs. The catalyst was shown to be robust without a detectable reduction in catalytic activity, and high yields of products showed the efficient protocol of the Biginelli reactions.

  10. Magnetic Properties of Nanocrystalline Fe{sub x}Cu{sub 1-x} Alloys Prepared by Ball Milling

    Energy Technology Data Exchange (ETDEWEB)

    Yousif, A.; Bouziane, K., E-mail: bouzi@squ.edu.om; Elzain, M. E. [Sultan Qaboos University, Physics Department, College of Science (Oman); Ren, X.; Berry, F. J. [The Open University, Department of Chemistry (United Kingdom); Widatallah, H. M. [Sudan Atomic Energy Commission, Institute of Nuclear Research (Sudan); Al Rawas, A.; Gismelseed, A.; Al-Omari, I. A. [Sultan Qaboos University, Physics Department, College of Science (Oman)

    2004-12-15

    X-ray diffraction, Moessbauer and magnetization measurements were used to study Fe{sub x}Cu{sub 1-x} alloys prepared by ball-milling. The X-ray data show the formation of a nanocrystalline Fe-Cu solid solution. The samples with x{>=}0.8 and x{<=}0.5 exhibit bcc or fcc phase, respectively. Both the bcc and fcc phases are principally ferromagnetic for x{>=}0.2, but the sample with x=0.1 remains paramagnetic down to 78 K. The influence of the local environment on the hyperfine parameters and the local magnetic moment are discussed using calculations based on the discrete-variational method in the local density approximation.

  11. Determination of rational parameters for process of grinding materials pre-crushed by pressure in ball mill

    Science.gov (United States)

    Romanovich, A. A.; Romanovich, L. G.; Chekhovskoy, E. I.

    2018-03-01

    The article presents the results of experimental studies on the grinding process of a clinker preliminarily ground in press roller mills in a ball mill equipped with energy exchange devices. The authors studied the influence of the coefficients of loading for grinding bodies of the first and second mill chambers, their lengths, angles of inclination, and the mutual location of energy exchange devices (the ellipse segment and the double-acting blade) on the output parameters of the grinding process (productivity, drive power consumption and specific energy consumption). It is clarified that the best results of the disaggregation and grinding process, judging by the minimum specific energy consumption in the grinding of clinker with an anisotropic texture after force deformation between the rolls of a press roller shredder, are achieved at a certain angle of ellipse segment inclination; the length of the first chamber and the coefficients of loading the chambers with grinding bodies.

  12. Effect of the milling conditions on the degree of amorphization of selenium by milling in a planetary ball mill

    International Nuclear Information System (INIS)

    Ksiazek, K; Wacke, S; Gorecki, T; Gorecki, Cz

    2007-01-01

    The effect of the milling parameters (rotation speed of the milling device and duration of milling) on the phase composition of the products of milling of fully crystalline selenium has been investigated. The milling was conducted using a planetary micromill and the phase composition of the milling products was determined by differential thermal analysis. It has been found that ball milling leads to the partial amorphization of the starting crystalline material. The content of amorphous phase in the milling products depends, in a rather complicated way, on the milling parameters. At the milling parameters adopted in the present study, the milling product was never fully amorphous. The complicated way the milling parameters affect the content of amorphous phase in the milling products is a result of competition of two processes: amorphization due to deformation and refinement of grains of milled material and crystallization of the already produced amorphous material at the cost of heat evolved in the milling vial during the milling process

  13. Influence of emulsifiers on the optimization of processing parameters of refining milk chocolate in the ball mill

    Directory of Open Access Journals (Sweden)

    Pajin Biljana

    2011-01-01

    Full Text Available Chocolate manufacture is a complex process which includes a large number of technology operations. One of the obligatory phases is milling, called refining, which aims at obtaining the appropriate distribution of particle size, resulting in the chocolate with optimal physical and sensory characteristics. The aim of this work was to define and optimize the process parameters for the production of milk chocolate by a non-conventional procedure, using the ball mill. The quality of chocolate mass, produced on this way, is determined by measuring the following parameters: moisture, size of the largest cocoa particle, yield flow, and Casson plastic viscosity. A special consideration of this study is the optimization of the types and amounts of emulsifiers, which are responsible for achieving the appropriate rheological and physical characteristics of the chocolate mass. The obtained parameters are compared with those which are typical for the standard procedure.

  14. Effect of grain size on structural and dielectric properties of barium titanate piezoceramics synthesized by high energy ball milling

    Science.gov (United States)

    Verma, Narendra Kumar; Patel, Sandeep Kumar Singh; Kumar, Dinesh; Singh, Chandra Bhal; Singh, Akhilesh Kumar

    2018-05-01

    We have investigated the effect of sintering temperature on the densification behaviour, grain size, structural and dielectric properties of BaTiO3 ceramics, prepared by high energy ball milling method. The Powder x-ray diffraction reveals the tetragonal structure with space group P4mm for all the samples. The samples were sintered at four different temperatures, (T = 900°C, 1000°C, 1100°C, 1200°C and 1300°C). Density increased with increasing sintering temperature, reaching up to 97% at 1300°C. A grain growth was observed with increasing sintering temperature. Impedance analyses of the sintered samples at various temperatures were performed. Increase in dielectric constant and Curie temperature is observed with increasing sintering temperature.

  15. Use of high energy ball milling to study the role of graphene nanoplatelets and carbon nanotubes reinforced magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Rashad, Muhammad, E-mail: rashadphy87@gmail.com [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Pan, Fusheng, E-mail: fspan@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Chongqing Academy of Science and Technology, Chongqing, Chongqing 401123 (China); Zhang, Jianyue [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Asif, Muhammad [School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China)

    2015-10-15

    Graphene nanoplatelets (few layer graphene) and carbon nanotubes were used as reinforcement fillers to enhance the mechanical properties of AZ31 magnesium alloy through high energy ball milling, sintering, and hot extrusion techniques. Experimental results revealed that tensile fracture strain of AZ31 magnesium alloy was enhanced by +49.6% with 0.3 wt.% graphene nanoplatelets compared to −8.3% regression for 0.3 wt.% carbon nanotubes. The tensile strength of AZ31 magnesium alloy was decreased (−11.2%) with graphene nanoplatelets addition, while increased (+7.7%) with carbon nanotubes addition. Unlike tensile test, compression tests showed different trend. The compression strength of carbon nanotubes-AZ31 composite was +51.2% greater than AZ31 magnesium alloy as compared to +0.6% increase for graphene nanoplatelets. The compressive fracture strain of carbon nanotubes-AZ31 composite was decreased (−14.1%) while no significant change in fracture strain of graphene nanoplatelets-AZ31 composite was observed. The X-ray diffraction results revealed that addition of reinforcement particles weaken the basal textures which affect the composite's yield asymmetry. Microstructure evaluation revealed the absence of intermetallic phase formation between reinforcements and matrix. The carbon reinforcements in AZ31 magnesium alloy dissolve and isolate β phases throughout the matrix. The increased fracture strain and mechanical strength of graphene nanoplatelets and carbon nanotubes-AZ31 composites are attributed to large specific surface area of graphene nanoplatelets and stiffer nature of carbon nanotubes respectively. - Highlights: • Powder metallurgy method was used to fabricate magnesium composites. • The AZ31-carbon materials composite were blended using ball milling. • The reinforcement particles weaken the basal texture which affects yield asymmetry of composites. • AZ31-graphene nanoplatelets composite exhibited impressive increase in tensile elongation

  16. Structure and magnetism of SmCo5 nanoflakes prepared by surfactant-assisted ball milling with different ball sizes

    International Nuclear Information System (INIS)

    Nie, Junwu; Han, Xianghua; Du, Juan; Xia, Weixing; Zhang, Jian; Guo, Zhaohui; Yan, Aru; Li, Wei; Ping Liu, J.

    2013-01-01

    Anisotropic magnetic SmCo 5 nanoflakes have been fabricated by surfactant-assisted ball milling (SABM) using hardened steel balls of one of the following sizes: 4, 6.5, 9.5 and 12.7 mm in diameters. The magnetic properties of SmCo 5 particles prepared by SABM with different milling ball sizes in diameters were investigated systematically. It was showed that the nanoflakes milled by amount of small size balls had a higher coercivity and lower anisotropy, i.e., worse grain orientation although in a short milling time while the nanoflakes prepared with same weight of big balls tend to have a lower coercivity, better grain orientation. The coercivity mechanism of the nanoflake was studied and it was mainly dominated with the domain-wall pinning. The SEM analysis shows that the morphology of nanoflakes prepared with different ball sizes are almost the same when the balls to powder weight ratio is fixed. The different magnetic properties caused by different ball sizes are mainly due to the different microstructure changes, i.e, grain refinement and c-axis orientation, which are demonstrated by X-ray diffraction (XRD) analysis and transmission electron microscope (TEM). Based on the experiments above, a combined milling process was suggested and done to improve magnetic properties as your need. - Highlights: • We fabricated anisotropic magnetic SmCo 5 nanoflakes by surfactant-assisted ball milling (SABM). • We investigated the magnetic properties of SmCo 5 particles systematically. It was showed that the coercivity, high or low, and grain orientation, good or bad, were influenced strongly by balls size. The different magnetisms caused by different ball sizes is mainly due to the different microstructure changes. • The coercivity mechanism of the nanoflake was studied and it was mainly dominated with the domain-wall pinning

  17. Colloidal Precursors from 'Ball-Milling in Liquid Medium' Process for CuInSe{sub 2} Thin Film

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Jae Hoon; Kim, Seung Joo [Ajou University, Suwon (Korea, Republic of)

    2010-09-15

    CIS thin film can be fabricated by using the precursor obtained through ball-milling the elemental reagents in liquid media. The amorphous colloidal precursor with good dispersity was prepared in the medium that contains strong base and polar solvent (2 M ethylenediamine in DMF solution as used in this study). The 'ball-milling in liquid medium' method requires only elemental sources as starting materials and a proper solution so that it can be employed without additional processes for separation and purification. As a simple and less-toxic preparative route, this method would be practically available to prepare CIS-related solar cells. CuInSe{sub 2} (CIS) and related chalcopyrite compounds are very promising materials for thin film solar cells due to their favorable band gap, high optical absorption coefficient and long-term stability. CIS-based solar cells have shown the highest conversion efficiency reaching a value of 20%. However, the vacuum-based processes that are used to fabricate CIS thin-films have some drawbacks such as the complexity in process, high production cost and difficulty in scaling up. Recently, several research groups have proposed different non-vacuum deposition processes for CIS solar cell. For example, H. W. Hillhouse et al. prepared the CIS absorber layer by using 'nanocrystal ink method' in which a colloidal nanocrystal ink was obtained from reaction of CuCl, InCl{sub 3} and Se in oleylamine. D. B. Mitzi et al. used a solution-based precursor that was prepared by dissolution of Cu{sub 2}Se, In{sub 2}Se{sub 3}, Ga{sub 2}Se{sub 3} and Se in hydrazine to fabricate the Ga-containing absorber layer, Cu(In,Ga)Se{sub 2}.

  18. Removal of fluoride from drinking water using modified ultrafine tea powder processed using a ball-mill

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Huimei; Xu, Lingyun; Chen, Guijie; Peng, Chuanyi [School of Tea & Food Science and Technology, Anhui Agricultural University/State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui (China); Ke, Fei [School of Tea & Food Science and Technology, Anhui Agricultural University/State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui (China); School of Science, Anhui Agricultural University, Hefei 230036 (China); Liu, Zhengquan; Li, Daxiang; Zhang, Zhengzhu [School of Tea & Food Science and Technology, Anhui Agricultural University/State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui (China); Wan, Xiaochun, E-mail: xcwan@ahau.edu.cn [School of Tea & Food Science and Technology, Anhui Agricultural University/State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui (China)

    2016-07-01

    Highlights: • Ultrafine tea powder (UTP) was prepared by ball-milling. • A novel and high efficient biosorbent from ultrafine tea powder (UTP) for the removal of fluoride from drinking water was prepared. • Loaded ultrafine tea powder adsorbed more fluoride adsorption than loaded tea waste. • UTP-Zr performed well over a considerably wide pH range, from 3.0 to 10.0. • UTP-Zr retains Zr metal ion during defluoridation, limiting secondary pollution. - Abstract: A low-cost and highly efficient biosorbent was prepared by loading zirconium(IV) onto ball-milled, ultrafine tea powder (UTP-Zr) for removal of fluoride from drinking water. To evaluate the fluoride adsorption capacity of UTP-Zr over a wide range of conditions, the biosorbent dosage, contact time, initial pH, initial fluoride concentration and presence of other ions were varied. UTP-Zr performed well over the considerably wide pH range of 3–10. The residual concentration of Zr in the treated water was below the limit of detection (0.01 mg/L). Fluoride adsorption by the UTP-Zr biosorbent followed the Langmuir model, with a maximum adsorption capacity of 12.43 mgF/g at room temperature. The fluoride adsorption kinetics fit the pseudo-second-order kinetic model. The synthesized biosorbent was characterized by BET, SEM, EDS, XRD and XPS to reveal how UTP-Zr interacts with fluoride. Results from this study demonstrated that UTP-based biosorbents will be useful and safe for the removal of fluoride from drinking water.

  19. Highly anisotropic SmCo{sub 5} nanoflakes by surfactant-assisted ball milling at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lidong; Zhang, Songlin [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Zhang, Jian, E-mail: zhangj@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Ping Liu, J. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Xia, Weixing; Du, Juan; Yan, Aru [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Yi, Jianhong [Institute of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Li, Wei; Guo, Zhaohui [Division of Functional Materials, Central Iron and Steel Research Institute, Beijing 100081 (China)

    2015-01-15

    Surfactant-assisted ball milling (SABM) has been shown to be a promising method for preparing rare earth-transition metal (RE-TM) nanoflakes and nanoparticles. In this work, we prepared SmCo{sub 5} nanoflakes by SABM at low temperature, and 2-methyl pentane and trioctylamine were specially selected as solvent and surfactant, respectively, due to their low melting points. The effects of milling temperature on the morphology, microstructure and magnetic performance of SmCo{sub 5} nanoflakes were investigated systematically. Comparing with the samples milled at room temperature, the SmCo{sub 5} nanoflakes prepared at low temperature displayed more homogeneous morphology and lower oxygen content. Remarkably, better crystallinity, better grain alignment and larger remanence ratio were shown in the samples milled at low temperature, which resulted from the distinct microstructure caused by low milling temperature. The differences in structural evolution between the SmCo{sub 5} nanoflakes milled at room temperature and low temperature, including the formation of nanocrystalline, grain boundary sliding, grain rotation, et al., were discussed. It was found that lowering the temperature of SABM was a powerful method for the fabrication of RE-TM nanoflakes, which showed better hard magnetic properties and lower oxygen content. This was important for the preparation of high-performance sintered magnets, bonded magnets and nanocomposite magnets. - Highlights: • We prepare SmCo{sub 5} nanoflakes by surfactant-assisted ball milling at low temperature. • Better grain alignment and higher remanence ratio are achieved. • The oxygen content is reduced by lowering the milling temperature. • A distinct microstructural evolution caused by low milling temperature is clarified.

  20. Scale-up of organic reactions in ball mills: process intensification with regard to energy efficiency and economy of scale.

    Science.gov (United States)

    Stolle, Achim; Schmidt, Robert; Jacob, Katharina

    2014-01-01

    The scale-up of the Knoevenagel-condensation between vanillin and barbituric acid carried out in planetary ball mills is investigated from an engineering perspective. Generally, the reaction proceeded in the solid state without intermediate melting and afforded selectively only one product. The reaction has been used as a model to analyze the influence and relationship of different parameters related to operation in planetary ball mills. From the viewpoint of technological parameters the milling ball diameter, dMB, the filling degree with respect to the milling balls' packing, ΦMB,packing, and the filling degree of the substrates with respect to the void volume of the milling balls' packing, ΦGS, have been investigated at different reaction scales. It was found that milling balls with small dMB lead to higher yields within shorter reaction time, treaction, or lower rotation frequency, rpm. Thus, the lower limit is set considering the technology which is available for the separation of the milling balls from the product after the reaction. Regarding ΦMB,packing, results indicate that the optimal value is roughly 50% of the total milling beakers' volume, VB,total, independent of the reaction scale or reaction conditions. Thus, 30% of VB,total are taken by the milling balls. Increase of the initial batch sizes changes ΦGS significantly. However, within the investigated parameter range no negative influence on the yield was observed. Up to 50% of VB,total can be taken over by the substrates in addition to 30% for the total milling ball volume. Scale-up factors of 15 and 11 were realized considering the amount of substrates and the reactor volume, respectively. Beside technological parameters, variables which influence the process itself, treaction and rpm, were investigated also. Variation of those allowed to fine-tune the reaction conditions in order to maximize the yield and minimize the energy intensity.

  1. Use of high energy ball milling to study the role of graphene nanoplatelets and carbon nanotubes reinforced magnesium alloy

    International Nuclear Information System (INIS)

    Rashad, Muhammad; Pan, Fusheng; Zhang, Jianyue; Asif, Muhammad

    2015-01-01

    Graphene nanoplatelets (few layer graphene) and carbon nanotubes were used as reinforcement fillers to enhance the mechanical properties of AZ31 magnesium alloy through high energy ball milling, sintering, and hot extrusion techniques. Experimental results revealed that tensile fracture strain of AZ31 magnesium alloy was enhanced by +49.6% with 0.3 wt.% graphene nanoplatelets compared to −8.3% regression for 0.3 wt.% carbon nanotubes. The tensile strength of AZ31 magnesium alloy was decreased (−11.2%) with graphene nanoplatelets addition, while increased (+7.7%) with carbon nanotubes addition. Unlike tensile test, compression tests showed different trend. The compression strength of carbon nanotubes-AZ31 composite was +51.2% greater than AZ31 magnesium alloy as compared to +0.6% increase for graphene nanoplatelets. The compressive fracture strain of carbon nanotubes-AZ31 composite was decreased (−14.1%) while no significant change in fracture strain of graphene nanoplatelets-AZ31 composite was observed. The X-ray diffraction results revealed that addition of reinforcement particles weaken the basal textures which affect the composite's yield asymmetry. Microstructure evaluation revealed the absence of intermetallic phase formation between reinforcements and matrix. The carbon reinforcements in AZ31 magnesium alloy dissolve and isolate β phases throughout the matrix. The increased fracture strain and mechanical strength of graphene nanoplatelets and carbon nanotubes-AZ31 composites are attributed to large specific surface area of graphene nanoplatelets and stiffer nature of carbon nanotubes respectively. - Highlights: • Powder metallurgy method was used to fabricate magnesium composites. • The AZ31-carbon materials composite were blended using ball milling. • The reinforcement particles weaken the basal texture which affects yield asymmetry of composites. • AZ31-graphene nanoplatelets composite exhibited impressive increase in tensile elongation

  2. Physicochemical properties of direct compression tablets with spray dried and ball milled solid dispersions of tadalafil in PVP-VA.

    Science.gov (United States)

    Wlodarski, K; Tajber, L; Sawicki, W

    2016-12-01

    The aim of this research was to develop immediate release tablets comprising solid dispersion (IRSDTs) of tadalafil (Td) in a vinylpyrrolidone and vinyl acetate block copolymer (PVP-VA), characterized by improved dissolution profiles. The solid dispersion of Td in PVP-VA (Td/PVP-VA) in a weight ratio of 1:1 (w/w) was prepared using two different processes i.e. spray drying and ball milling. While the former process has been well established in the formulation of IRSDTs the latter has not been exploited in these systems yet. Regardless of the preparation method, both Td/PVP-VA solid dispersions were amorphous as confirmed by PXRD, DSC and FTIR. However, different morphology of particles (SEM) resulted in differences in water apparent solubility and disk intrinsic dissolution rate (DIDR). Both solid dispersions and crystalline Td were successfully made into directly compressible tablets at three doses of Td, i.e. 2.5mg, 10mgand20mg, yielding nine different formulations (D 1 -D 9 ). Each of the lots met the requirements set by Ph.Eur. and was evaluated with respect to appearance, diameter, thickness, mass, hardness, friability, disintegration time and content of Td. IRSDTs performed as supersaturable formulations and had significantly improved water dissolution profiles in comparison with equivalent tablets containing crystalline Td and the marketed formulations. Tablets with both spray dried and ball milled Td/PVP-VA revealed the greatest improvement in dissolution depending on the investigated doses, i.e. 2.5mgand20mg, respectively. Also, dissolution of Td from Td/PVP-VA delivered in different forms occurred in the following order: powders>tablets>capsules. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Removal of fluoride from drinking water using modified ultrafine tea powder processed using a ball-mill

    International Nuclear Information System (INIS)

    Cai, Huimei; Xu, Lingyun; Chen, Guijie; Peng, Chuanyi; Ke, Fei; Liu, Zhengquan; Li, Daxiang; Zhang, Zhengzhu; Wan, Xiaochun

    2016-01-01

    Highlights: • Ultrafine tea powder (UTP) was prepared by ball-milling. • A novel and high efficient biosorbent from ultrafine tea powder (UTP) for the removal of fluoride from drinking water was prepared. • Loaded ultrafine tea powder adsorbed more fluoride adsorption than loaded tea waste. • UTP-Zr performed well over a considerably wide pH range, from 3.0 to 10.0. • UTP-Zr retains Zr metal ion during defluoridation, limiting secondary pollution. - Abstract: A low-cost and highly efficient biosorbent was prepared by loading zirconium(IV) onto ball-milled, ultrafine tea powder (UTP-Zr) for removal of fluoride from drinking water. To evaluate the fluoride adsorption capacity of UTP-Zr over a wide range of conditions, the biosorbent dosage, contact time, initial pH, initial fluoride concentration and presence of other ions were varied. UTP-Zr performed well over the considerably wide pH range of 3–10. The residual concentration of Zr in the treated water was below the limit of detection (0.01 mg/L). Fluoride adsorption by the UTP-Zr biosorbent followed the Langmuir model, with a maximum adsorption capacity of 12.43 mgF/g at room temperature. The fluoride adsorption kinetics fit the pseudo-second-order kinetic model. The synthesized biosorbent was characterized by BET, SEM, EDS, XRD and XPS to reveal how UTP-Zr interacts with fluoride. Results from this study demonstrated that UTP-based biosorbents will be useful and safe for the removal of fluoride from drinking water.

  4. Effect of ball milling time on the hydrogen storage properties of TiF{sub 3}-doped LiAlH{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shu-Sheng [Materials and Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Sun, Li-Xian; Zhang, Yao; Zhang, Jian; Chu, Hai-Liang; Fan, Mei-Qiang; Zhang, Tao [Materials and Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023 (China); Xu, Fen [Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029 (China); Song, Xiao-Yan [College of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials, Chinese Education Ministry, Beijing University of Technology, Beijing 100124 (China); Grolier, Jean Pierre [Laboratory of Thermodynamics of Solutions and Polymers, Blaise Pascal University, 24 Avenue des Landais, 63177-Aubiere Cedex (France)

    2009-10-15

    In the present work, the catalytic effect of TiF{sub 3} on the dehydrogenation properties of LiAlH{sub 4} has been investigated. Decomposition of LiAlH{sub 4} occurs during ball milling in the presence of 4 mol% TiF{sub 3}. Different ball milling times have been used, from 0.5 h to 18 h. With ball milling time increasing, the crystallite sizes of LiAlH{sub 4} get smaller (from 69 nm to 43 nm) and the dehydrogenation temperature becomes lower (from 80 C to 60 C). Half an hour ball milling makes the initial dehydrogenation temperature of doped LiAlH{sub 4} reduce to 80 C, which is 70 C lower than as-received LiAlH{sub 4}. About 5.0 wt.% H{sub 2} can be released from TiF{sub 3}-doped LiAlH{sub 4} after 18 h ball milling in the range of 60 C-145 C (heating rate 2 C min{sup -1}). TiF{sub 3} probably reacts with LiAlH{sub 4} to form the catalyst, TiAl{sub 3}. The mechanochemical and thermochemical reactions have been clarified. However, the rehydrogenation of LiAlH{sub 4}/Li{sub 3}AlH{sub 6} can not be realized under 95 bar H{sub 2} in the presence of TiF{sub 3} because of their thermodynamic properties. (author)

  5. Effect of process variables on synthesis of MgB2 by a high energy ball mill

    Directory of Open Access Journals (Sweden)

    Kurama Haldun

    2016-01-01

    Full Text Available The discovery of superconductivity of MgB2 in 2001, with a critical temperature of 39 K, offered the promise of important large-scale applications at around 20 K. Except than the other featured synthesis methods, mechanical activation performed by high energy ball mills, as bulk form synthesis or as a first step of wire and thin film productions, has considered as an effective alternative production route in recent years. The process of mechanical activation (MA starts with mixing the powders in the right proportion and loading the powder mixture into the mill with the grinding media. The milled powder is then consolidated into a bulk shape and heat-treated to obtain desired microstructure and properties. Thus, the important components of the MA process are the raw materials, mill type and process variables. During the MA process, heavy deformation of particles occure. This is manifested by the presence of a variety of crystal defects such as dislocations, vacancies, stacking faults and increased number of particle boundaries. The presence of this defect structure enhances the diffusivity of solute hence the critical currents and magnetic flux pinning ability of MgB2 are improved. The aim of the present study is to determine the effects of process variables such as ball-to-powder mass ratio, size of balls, milling time, annealing temperature and contribution of process control agent (toluene on the product size, morphology and conversion level of precursor powders to MgB2 after subsequent heat treatment. The morphological analyses of the samples were performed by a high vacuum electron microscope ZEISS SUPRA VP 50. The phase compositions of the samples were performed with an Rigaku-Rint 2200 diffractometer, with nickel filtered Cu Kα radiation and conversion level. The MgB2 phase wt % was calculated by the Rietveld refinement method. The obtained results were discussed according to the process variables to find out their affect on the structure

  6. Effect of zirconium on grain growth and mechanical properties of a ball-milled nanocrystalline FeNi alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kotan, Hasan, E-mail: hkotan@ncsu.edu [Department of Materials Science and Engineering, NC State University, 911 Partners Way, Room 3078, Raleigh, NC 27606-7907 (United States); Darling, Kris A. [U.S. Army Research Laboratory, Weapons and Materials Research Directorate, RDRL-WMM-F, Aberdeen Proving Ground, MD 21005-5069 (United States); Saber, Mostafa; Koch, Carl C.; Scattergood, Ronald O. [Department of Materials Science and Engineering, NC State University, 911 Partners Way, Room 3078, Raleigh, NC 27606-7907 (United States)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer Pure Fe, Fe{sub 92}Ni{sub 8}, and Fe{sub 91}Ni{sub 8}Zr{sub 1} powders were hardened up to 10 GPa by ball milling. Black-Right-Pointing-Pointer Annealing of Fe and Fe{sub 92}Ni{sub 8} leads to reduced hardness and extensive grain growth. Black-Right-Pointing-Pointer The addition of Zr to Fe{sub 92}Ni{sub 8} increases its stability and strength by second phases. Black-Right-Pointing-Pointer The second phases are found to promote the stability of Fe{sub 91}Ni{sub 8}Zr{sub 1} by Zener pinning. Black-Right-Pointing-Pointer The Zr-containing precipitates contribute to the overall strength of the material. - Abstract: Grain growth of ball-milled pure Fe, Fe{sub 92}Ni{sub 8}, and Fe{sub 91}Ni{sub 8}Zr{sub 1} alloys has been studied using X-ray diffractometry (XRD), focused ion beam (FIB) microscopy and transmission electron microscopy (TEM). Mechanical properties with respect to compositional changes and annealing temperatures have been investigated using microhardness and shear punch tests. We found the rate of grain growth of the Fe{sub 91}Ni{sub 8}Zr{sub 1} alloy to be much less than that of pure Fe and the Fe{sub 92}Ni{sub 8} alloy at elevated temperatures. The microstructure of the ternary Fe{sub 91}Ni{sub 8}Zr{sub 1} alloy remains nanoscale up to 700 Degree-Sign C where only a few grains grow abnormally whereas annealing of pure iron and the Fe{sub 92}Ni{sub 8} alloy leads to extensive grain growth. The grain growth of the ternary alloy at high annealing temperatures is coupled with precipitation of Fe{sub 2}Zr. A fine dispersion of precipitated second phase is found to promote the microstructural stability at high annealing temperatures and to increase the hardness and ultimate shear strength of ternary Fe{sub 91}Ni{sub 8}Zr{sub 1} alloy drastically when the grain size is above nanoscale.

  7. Biodistribution of nanoparticles of hydrophobic gadopentetic-acid derivative prepared with a planetary ball mill for neutron-capture therapy of cancer

    International Nuclear Information System (INIS)

    Nabeta, Chika; Ichikawa, Hideki; Fukumori, Yoshinobu

    2006-01-01

    Nanoparticles of hydrophobic gadopentetic-acid derivatives (Gd-nanoGR) were prepared with a wet ball-milling process for gadolinium neutron-capture therapy. Ball-milling of solid mass of gadopentetic acid distearylamide with soybean lecithin as a dispersant in the presence of water and subsequent sonication at 70degC resulted in the Gd-nanoGR with the particle size of 63 nm. Biodistribution study using melanoma-bearing hamsters demonstrated that the i.v. injection of the Gd-nanoGR made a higher gadolinium accumulation in tumor (109 μg Gd/g wet tumor at 6h after administration), when compared with the gadolinium-loaded micellar-like nanoparticles previously reported. (author)

  8. Influence of B4C-doping and high-energy ball milling on phase formation and critical current density of (Bi,Pb)-2223 HTS

    Science.gov (United States)

    Margiani, N. G.; Mumladze, G. A.; Adamia, Z. A.; Kuzanyan, A. S.; Zhghamadze, V. V.

    2018-05-01

    In this paper, the combined effects of B4C-doping and planetary ball milling on the phase evolution, microstructure and transport properties of Bi1.7Pb0.3Sr2Ca2Cu3Oy(B4C)x HTS with x = 0 ÷ 0.125 were studied through X-ray diffraction (XRD), scanning electron microscopy (SEM), resistivity and critical current density measurements. Obtained results have shown that B4C additive leads to the strong acceleration of high-Tc phase formation and substantial enhancement in Jc. High-energy ball milling seems to produce a more homogeneous distribution of refined doped particles in the (Bi,Pb)-2223 HTS which results in an improved intergranular flux pinning and better self-field Jc performance.

  9. The effect of intermediate stop and ball size in fabrication of recycled steel powder using ball milling from machining steel chips

    International Nuclear Information System (INIS)

    Fitri, M.W.M.; Shun, C.H.; Rizam, S.S.; Shamsul, J.B.

    2007-01-01

    A feasibility study for producing recycled steel powder from steel scrap by ball milling was carried out. Steel scrap from machining was used as a raw material and was milled using planetary ball milling. Three samples were prepared in order to study the effect of intermediate stop and ball size. Sample with intermediate stop during milling process showed finer particle size compared to the sample with continuous milling. Decrease in the temperature of the vial during the intermediate stop milling gives less ductile behaviour to the steel powder, which is then easily work-hardened and fragmented to fine powder. Mixed small and big size ball give the best production of recycled steel powder where it gives higher impact force to the scrap and accelerate the fragmentation of the steel scrap into powder. (author)

  10. Hydroamination reactions of alkynes with ortho-substituted anilines in ball mills: synthesis of benzannulated N-heterocycles by a cascade reaction.

    Science.gov (United States)

    Weiße, Maik; Zille, Markus; Jacob, Katharina; Schmidt, Robert; Stolle, Achim

    2015-04-20

    It was demonstrated that ortho-substituted anilines are prone to undergo hydroamination reactions with diethyl acetylenedicarboxylate in a planetary ball mill. A sequential coupling of the intermolecular hydroamination reaction with intramolecular ring closure was utilized for the syntheses of benzooxazines, quinoxalines, and benzothiazines from readily available building blocks, that is, electrophilic alkynes and anilines with OH, NH, or SH groups in the ortho position. For the heterocycle formation, it was shown that several stress conditions were able to initiate the reaction in the solid state. Processing in a ball mill seemed to be advantageous over comminution with mortar and pestle with respect to process control. In the latter case, significant postreaction modification occurred during solid-state analysis. Cryogenic milling proved to have an adverse effect on the molecular transformation of the reagents. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A novel fabrication technology of in situ TiB2/6063Al composites: High energy ball milling and melt in situ reaction

    International Nuclear Information System (INIS)

    Zhang, S.-L.; Yang, J.; Zhang, B.-R.; Zhao, Y.-T.; Chen, G.; Shi, X.-X.; Liang, Z.-P.

    2015-01-01

    Highlights: • This paper presents a novel technology to fabricate the TiB 2 /6063Al composites. • The novel technology decreases in situ reaction temperature and shortens the time. • The reaction mechanism of in situ reaction at the low temperature is discussed. • Effect of ball milling time and in situ reaction time on the composites is studied. - Abstract: TiB 2 /6063Al matrix composites are fabricated from Al–TiO 2 –B 2 O 3 system by the technology combining high energy ball milling with melt in situ reaction. The microstructure and tensile properties of the composites are investigated by XRD, SEM, EDS, TEM and electronic tensile testing. The results indicate that high energy ball milling technology decreases the in situ reaction temperature and shortens the reaction time for Al–TiO 2 –B 2 O 3 system in contrast with the conventional melt in situ synthesis. The morphology of in situ TiB 2 particles is exhibited in irregular shape or nearly circular shape, and the average size of the particles is less than 700 nm, thereinto the minimum size is approximately 200 nm. In addition, the morphology and size of the reinforced particles are affected by the time of ball milling and in situ reaction. TEM images indicate that the interface between 6063Al matrix and TiB 2 particles is clear and no interfacial outgrowth is observed. Tensile testing results show that the as-cast TiB 2 /6063Al composites exhibit a much higher strength, reaching 191 MPa, which is 1.23 times as high as the as-cast 6063Al matrix. Besides, the tensile fracture surface of the composites displays the dimple-fracture character

  12. A novel fabrication technology of in situ TiB{sub 2}/6063Al composites: High energy ball milling and melt in situ reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.-L.; Yang, J. [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Zhang, B.-R. [School of Mechanical Engineering, Qilu University of Technology, Jinan, Shandong 250022 (China); Zhao, Y.-T., E-mail: 278075525@qq.com [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Chen, G.; Shi, X.-X.; Liang, Z.-P. [School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013 (China)

    2015-08-05

    Highlights: • This paper presents a novel technology to fabricate the TiB{sub 2}/6063Al composites. • The novel technology decreases in situ reaction temperature and shortens the time. • The reaction mechanism of in situ reaction at the low temperature is discussed. • Effect of ball milling time and in situ reaction time on the composites is studied. - Abstract: TiB{sub 2}/6063Al matrix composites are fabricated from Al–TiO{sub 2}–B{sub 2}O{sub 3} system by the technology combining high energy ball milling with melt in situ reaction. The microstructure and tensile properties of the composites are investigated by XRD, SEM, EDS, TEM and electronic tensile testing. The results indicate that high energy ball milling technology decreases the in situ reaction temperature and shortens the reaction time for Al–TiO{sub 2}–B{sub 2}O{sub 3} system in contrast with the conventional melt in situ synthesis. The morphology of in situ TiB{sub 2} particles is exhibited in irregular shape or nearly circular shape, and the average size of the particles is less than 700 nm, thereinto the minimum size is approximately 200 nm. In addition, the morphology and size of the reinforced particles are affected by the time of ball milling and in situ reaction. TEM images indicate that the interface between 6063Al matrix and TiB{sub 2} particles is clear and no interfacial outgrowth is observed. Tensile testing results show that the as-cast TiB{sub 2}/6063Al composites exhibit a much higher strength, reaching 191 MPa, which is 1.23 times as high as the as-cast 6063Al matrix. Besides, the tensile fracture surface of the composites displays the dimple-fracture character.

  13. Comparison of particle sizes between 238PuO2 before aqueous processing, after aqueous processing, and after ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Mulford, Roberta Nancy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-06

    Particle sizes determined for a single lot of incoming Russian fuel and for a lot of fuel after aqueous processing are compared with particle sizes measured on fuel after ball-milling. The single samples of each type are believed to have particle size distributions typical of oxide from similar lots, as the processing of fuel lots is fairly uniform. Variation between lots is, as yet, uncharacterized. Sampling and particle size measurement methods are discussed elsewhere.

  14. Effect of metal ion and ball milling on the electrochemical properties of M0.5TiOPO4 (M = Ni, Cu, Mg)

    International Nuclear Information System (INIS)

    Godbole, Vikram A.; Villevieille, Claire; Novák, Petr

    2013-01-01

    Various metal titanium oxyphosphates, M 0.5 TiOPO 4 (M = Ni, Cu, Mg) were synthesized via modified solution route synthesis. The as synthesized M 0.5 TiOPO 4 (M = Ni, Cu, Mg) were electrochemically tested using galvanostatic cycling, cyclic voltammetry, and rate performance measurements in order to investigate the effect of metal ion (M) on the electrochemical performance of this family of materials. All the studied materials reacted with 3 Li + during the 1st lithiation showing reaction plateaus at different potentials versus Lithium. Similar studies were performed on M 0.5 TiOPO 4 (M = Ni, Cu, Mg) samples with smaller particle size, obtained via ball milling, in order to understand the effect of particle size on the electrochemistry of the materials. The ball milled samples delivered higher specific charge during the 1st cycle showing reaction plateaus at different potentials, poorer capacity retention, and poorer rate capability as compared to the as synthesized ones. This was attributed to a change in morphology and particle size of the samples upon ball milling. Amongst all the tested materials, the as synthesized Cu 0.5 TiOPO 4 showed the best electrochemistry. The ball milled Mg 0.5 TiOPO 4 reacted with ∼5.5 Li + during 1st lithiation (as compared to 3 Li + expected from this family of compounds) and 3.3 Li + during the 1st delithiation (rather than the expected 2 Li + ). This suggests a reaction mechanism where Mg 0.5 TiOPO 4 undergoes a phase transformation forming Mg 0 , which reversibly alloys with 2.5 extra Li + . Thus the electrochemical cycling of Mg 0.5 TiOPO 4 gives insights into the reaction mechanism in this family of materials

  15. High surface area niobium oxides as catalysts for improved hydrogen sorption properties of ball milled MgH2

    International Nuclear Information System (INIS)

    Bhat, V.V.; Rougier, A.; Aymard, L.; Nazri, G.A.; Tarascon, J.-M.

    2008-01-01

    We report, high surface area (up to 200 m 2 /g) nanocrystalline niobium oxide (so called p-Nb 2 O 5 ) synthesized by 'chimie douce' route and its importance in enhancing the hydrogen sorption properties of MgH 2 . p-Nb 2 O 5 induces faster kinetics than commonly used commercial Nb 2 O 5 (c-Nb 2 O 5 ) when ball milled with MgH 2 (named (MgH 2 ) catalyst ) by reducing the time of desorption from 35 min in (MgH 2 ) c-Nb 2 O 5 to 12 min in (MgH 2 ) p-Nb 2 O 5 at 300 deg. C. The BET surface area of as-prepared Nb 2 O 5 was tuned by heat treatment and its effect on sorption properties was studied. Among them, both p-Nb 2 O 5 and Nb 2 O 5 :350 (p-Nb 2 O 5 heated to 350 deg. C with a BET specific surface area of 46 m 2 /g) desorb 5 wt.% within 12 min, exhibiting the best catalytic activity. Furthermore, thanks to the addition of high surface area Nb 2 O 5 , the desorption temperature was successfully lowered down to 200 deg. C, with a significant amount of desorbed hydrogen (4.5 wt.%). In contrast, the composite (MgH 2 ) c-Nb 2 O 5 shows no desorption at this 'low' temperature

  16. High-efficient production of boron nitride nanosheets via an optimized ball milling process for lubrication in oil.

    Science.gov (United States)

    Deepika; Li, Lu Hua; Glushenkov, Alexey M; Hait, Samik K; Hodgson, Peter; Chen, Ying

    2014-12-03

    Although tailored wet ball milling can be an efficient method to produce a large quantity of two-dimensional nanomaterials, such as boron nitride (BN) nanosheets, milling parameters including milling speed, ball-to-powder ratio, milling ball size and milling agent, are important for optimization of exfoliation efficiency and production yield. In this report, we systematically investigate the effects of different milling parameters on the production of BN nanosheets with benzyl benzoate being used as the milling agent. It is found that small balls of 0.1-0.2 mm in diameter are much more effective in exfoliating BN particles to BN nanosheets. Under the optimum condition, the production yield can be as high as 13.8% and the BN nanosheets are 0.5-1.5 μm in diameter and a few nanometers thick and of relative high crystallinity and chemical purity. The lubrication properties of the BN nanosheets in base oil have also been studied. The tribological tests show that the BN nanosheets can greatly reduce the friction coefficient and wear scar diameter of the base oil.

  17. Quenching ilmenite with a high-temperature and high-pressure phase using super-high-energy ball milling.

    Science.gov (United States)

    Hashishin, Takeshi; Tan, Zhenquan; Yamamoto, Kazuhiro; Qiu, Nan; Kim, Jungeum; Numako, Chiya; Naka, Takashi; Valmalette, Jean Christophe; Ohara, Satoshi

    2014-04-25

    The mass production of highly dense oxides with high-temperature and high-pressure phases allows us to discover functional properties that have never been developed. To date, the quenching of highly dense materials at the gramme-level at ambient atmosphere has never been achieved. Here, we provide evidence of the formation of orthorhombic Fe2TiO4 from trigonal FeTiO3 as a result of the high-temperature (>1250 K) and high-pressure (>23 GPa) condition induced by the high collision energy of 150 gravity generated between steel balls. Ilmenite was steeply quenched by the surrounding atmosphere, when iron-rich ilmenite (Fe2TiO4) with a high-temperature and high-pressure phase was formed by planetary collisions and was released from the collision points between the balls. Our finding allows us to infer that such intense planetary collisions induced by high-energy ball milling contribute to the mass production of a high-temperature and high-pressure phase.

  18. DEM modeling of ball mills with experimental validation: influence of contact parameters on charge motion and power draw

    Science.gov (United States)

    Boemer, Dominik; Ponthot, Jean-Philippe

    2017-01-01

    Discrete element method simulations of a 1:5-scale laboratory ball mill are presented in this paper to study the influence of the contact parameters on the charge motion and the power draw. The position density limit is introduced as an efficient mathematical tool to describe and to compare the macroscopic charge motion in different scenarios, i.a. with different values of the contact parameters. While the charge motion and the power draw are relatively insensitive to the stiffness and the damping coefficient of the linear spring-slider-damper contact law, the coefficient of friction has a strong influence since it controls the sliding propensity of the charge. Based on the experimental calibration and validation by charge motion photographs and power draw measurements, the descriptive and predictive capabilities of the position density limit and the discrete element method are demonstrated, i.e. the real position of the charge is precisely delimited by the respective position density limit and the power draw can be predicted with an accuracy of about 5 %.

  19. Nanocrystalline TiAl powders synthesized by high-energy ball milling: effects of milling parameters on yield and contamination

    International Nuclear Information System (INIS)

    Bhattacharya, Prajina; Bellon, Pascal; Averback, Robert S.; Hales, Stephen J.

    2004-01-01

    High-energy ball milling was employed to produce nanocrystalline Ti-Al powders. As sticking of the powders can be sufficiently severe to result in a near zero yield, emphasis was placed on varying milling conditions so as to increase the yield, while avoiding contamination of the powders. The effects of milling parameters such as milling tools, initial state of the powders and addition of process control agents (PCA's) were investigated. Cyclohexane, stearic acid and titanium hydride were used as PCA's. Milling was conducted either in a Cr-steel vial with C-steel balls, or in a tungsten carbide (WC) vial with WC balls, using either elemental or pre-alloyed powders. Powder samples were characterized using X-ray diffraction, scanning and transmission electron microscopy. In the absence of PCA's mechanical alloying in a WC vial and attrition milling in a Cr-steel vial were shown to lead to satisfactory yields, about 65-80%, without inducing any significant contamination of the powders. The results suggest that sticking of the powders on to the milling tools is correlated with the phase evolution occurring in these powders during milling

  20. Synthesis and characterization of FePt nanoparticles by high energy ball milling with and without surfactant

    International Nuclear Information System (INIS)

    Velasco, V.; Martinez, A.; Recio, J.; Hernando, A.; Crespo, P.

    2012-01-01

    Highlights: ► Fe and Pt powders in the presence of surfactants don’t alloyed by HEBM technique. ► FePt alloys obtained by dry milling exhibit particle sizes of around 10 μm. ► FePt alloys obtained by dry milling exhibit soft magnetic behavior. ► A thermal treatment induces a phase transformation from FCC to FCT. - Abstract: FePt nanoparticles were prepared by high energy ball milling (HEBM) in two different ways. In the first one, elemental powders were mixed and milled whereas in the second one the milling was performed in the presence of oleyl amine and oleic acid as surfactants and hexane as a solvent. X-ray diffraction shows that when the milling is performed in dry conditions, Fe and Pt are alloyed after 5 h, whereas in the wet milling procedure alloying does not take place. In the first case, the diffraction pattern corresponds to the disordered FCC phase. This behavior is also corroborated by the evolution of the magnetic characteristics. In the case of the alloy obtained in dry conditions, the powder was heat treated in order to induce the transformation to the ordered phase. Coercivities of 2.5 kOe are obtained after 650 °C for 2 h.

  1. Synthesis and characterization of FePt nanoparticles by high energy ball milling with and without surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Velasco, V., E-mail: vvjimeno@fis.ucm.es [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, 28230 Las Rozas (Spain); Martinez, A.; Recio, J. [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, 28230 Las Rozas (Spain); Hernando, A.; Crespo, P. [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, 28230 Las Rozas (Spain); Dpto. de Fisica de Materiales, UCM, 28040 Madrid (Spain)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Fe and Pt powders in the presence of surfactants don't alloyed by HEBM technique. Black-Right-Pointing-Pointer FePt alloys obtained by dry milling exhibit particle sizes of around 10 {mu}m. Black-Right-Pointing-Pointer FePt alloys obtained by dry milling exhibit soft magnetic behavior. Black-Right-Pointing-Pointer A thermal treatment induces a phase transformation from FCC to FCT. - Abstract: FePt nanoparticles were prepared by high energy ball milling (HEBM) in two different ways. In the first one, elemental powders were mixed and milled whereas in the second one the milling was performed in the presence of oleyl amine and oleic acid as surfactants and hexane as a solvent. X-ray diffraction shows that when the milling is performed in dry conditions, Fe and Pt are alloyed after 5 h, whereas in the wet milling procedure alloying does not take place. In the first case, the diffraction pattern corresponds to the disordered FCC phase. This behavior is also corroborated by the evolution of the magnetic characteristics. In the case of the alloy obtained in dry conditions, the powder was heat treated in order to induce the transformation to the ordered phase. Coercivities of 2.5 kOe are obtained after 650 Degree-Sign C for 2 h.

  2. Experimental and theoretical study of phase transitions under ball milling; Etude experimentale et modelisation des changements de phases sous broyage a haute energie

    Energy Technology Data Exchange (ETDEWEB)

    Pochet, P

    1998-12-31

    The aim of this work was to determine how phase transition s under ball-milling depend on the milling conditions and to find out if one can rationalize such transitions with the theory of driven alloys. We have chosen two phase transitions: the order-disorder transition in Fe Al and the precipitation-dissolution NiGe. In the case of Fe Al we have found that the steady-state long range order parameter achieved under ball milling intensity; moreover the same degree of order is achieved starting from an ordered alloy or a disordered solid solution. On the way to fully disordered state the degree of order either decreases monotonically or goes through a short lived transient state. This behaviour is reminiscent of a first order transition while the equilibrium transition is second order. All the above features are well reproduced by a simple model of driven alloys, which was originally build for alloys under irradiation. The stationary degree of order results of two competitive atomic jump mechanisms: the forced displacements induced by the shearing of the grains, and the thermally activated jumps caused by vacancies migrations. Finally we have performed atomistic simulations with a Monte Carlo kinetic algorithm, which revealed the role of the fluctuations in the intensity of the forcing. Moreover we have shown that specific atomistic mechanisms are active in a dilute NiGe solid solution which might lead to ball milling induced precipitation in under-saturated solid solution. (author). 149 refs.

  3. XRD and HREM studies from the decomposition of icosahedral AlCuFe single-phase by high-energy ball milling

    International Nuclear Information System (INIS)

    Patino-Carachure, C.; Tellez-Vazquez, O.; Rosas, G.

    2011-01-01

    Highlights: → Point defects induced during milling leading to an order-disorder quasicrystal transition. → Nanoquasicrystalline regions of 12 nm are obtained. → Highly ordered i-phase with high symmetry transforms to a crystalline phase of intermetallic character and lower symmetry. - Abstract: In this investigation the Al 64 Cu 24 Fe 12 alloy was melted in an induction furnace and solidified under normal casting conditions. In order to obtain the icosahedral phase (i-phase) in a single-phase region, the as-cast sample was subject to a heat treatment at 700 deg. C under argon atmosphere. Subsequently, the i-phase was milled for different times in order to evaluate phase stability under heavy deformation. X-ray diffraction (XRD) and high-resolution electron microscopy (HREM) analysis were conducted to the structural characterization of ball-milled powders. XRD results indicated a reduction in quasicrystal size during mechanical ball milling to about 30 h. HREM analysis revealed the presence of aperiodic nano-domains, for example, with apparent fivefold symmetry axis. Therefore, the i-phase remains stable over the first 30 h of ball-milling time. However, among 30-50 h of mechanical milling the i-phase transforms progressively into β-cubic phase.

  4. XRD and HREM studies from the decomposition of icosahedral AlCuFe single-phase by high-energy ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Patino-Carachure, C.; Tellez-Vazquez, O. [Instituto de Investigaciones Metalurgicas, UMSNH, Edificio U, Ciudad Universitaria, Morelia, Michoacan 58000 (Mexico); Rosas, G., E-mail: grtrejo@umich.mx [Instituto de Investigaciones Metalurgicas, UMSNH, Edificio U, Ciudad Universitaria, Morelia, Michoacan 58000 (Mexico)

    2011-10-13

    Highlights: > Point defects induced during milling leading to an order-disorder quasicrystal transition. > Nanoquasicrystalline regions of 12 nm are obtained. > Highly ordered i-phase with high symmetry transforms to a crystalline phase of intermetallic character and lower symmetry. - Abstract: In this investigation the Al{sub 64}Cu{sub 24}Fe{sub 12} alloy was melted in an induction furnace and solidified under normal casting conditions. In order to obtain the icosahedral phase (i-phase) in a single-phase region, the as-cast sample was subject to a heat treatment at 700 deg. C under argon atmosphere. Subsequently, the i-phase was milled for different times in order to evaluate phase stability under heavy deformation. X-ray diffraction (XRD) and high-resolution electron microscopy (HREM) analysis were conducted to the structural characterization of ball-milled powders. XRD results indicated a reduction in quasicrystal size during mechanical ball milling to about 30 h. HREM analysis revealed the presence of aperiodic nano-domains, for example, with apparent fivefold symmetry axis. Therefore, the i-phase remains stable over the first 30 h of ball-milling time. However, among 30-50 h of mechanical milling the i-phase transforms progressively into {beta}-cubic phase.

  5. Microstructural changes and effect of variation of lattice strain on positron annihilation lifetime parameters of zinc ferrite nanocomposites prepared by high enegy ball-milling

    Directory of Open Access Journals (Sweden)

    Abhijit Banerjee

    2012-12-01

    Full Text Available Zn-ferrite nanoparticles were synthesized at room temperature by mechanical alloying the stoichiometric (1:1 mol% mixture of ZnO and α-Fe2O3 powder under open air. Formation of both normal and inverse spinel ferrite phases was noticed after 30 minutes and 2.5 hours ball milling respectively and the content of inverse spinel phase increased with increasing milling time. The phase transformation kinetics towards formation of ferrite phases and microstructure characterization of ball milled ZnFe2O4 phases was primarily investigated by X-ray powder diffraction pattern analysis. The relative phase abundances of different phases, crystallite size, r.m.s. strain, lattice parameter change etc. were estimated from the Rietveld powder structure refinement analysis of XRD data. Positron annihilation lifetime spectra of all ball milled samples were deconvoluted with three lifetime parameters and their variation with milling time duration was explained with microstructural changes and formation of different phases with increase of milling time duration.

  6. Effect of Milling Time on the Microstructure, Physical and Mechanical Properties of Al-Al2O3 Nanocomposite Synthesized by Ball Milling and Powder Metallurgy

    Directory of Open Access Journals (Sweden)

    Meysam Toozandehjani

    2017-10-01

    Full Text Available The effect of milling time on the morphology, microstructure, physical and mechanical properties of pure Al-5 wt % Al2O3 (Al-5Al2O3 has been investigated. Al-5Al2O3 nanocomposites were fabricated using ball milling in a powder metallurgy route. The increase in the milling time resulted in the homogenous dispersion of 5 wt % Al2O3 nanoparticles, the reduction of particle clustering, and the reduction of distances between the composite particles. The significant grain refining during milling was revealed which showed as a reduction of particle size resulting from longer milling time. X-Ray diffraction (XRD analysis of the nanocomposite powders also showed that designated ball milling contributes to the crystalline refining and accumulation of internal stress due to induced severe plastic deformation of the particles. It can be argued that these morphological and microstructural variations of nanocomposite powders induced by designated ball milling time was found to contribute to an improvement in the density, densification, micro-hardness (HV, nano-hardness (HN, and Young’s modulus (E of Al-5Al2O3 nanocomposites. HV, HN, and E values of nanocomposites were increased by ~48%, 46%, and 40%, after 12 h of milling, respectively.

  7. Dehydriding and re-hydriding properties of high-energy ball milled LiBH{sub 4}+MgH{sub 2} mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Kyle; Shaw, Leon L. [Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, 97 North Eagleville Road, U-3136, Storrs, CT 06269 (United States)

    2010-07-15

    Here we report the first investigation of the dehydriding and re-hydriding properties of 2LiBH{sub 4} + MgH{sub 2} mixtures in the solid state. Such a study is made possible by high-energy ball milling of 2LiBH{sub 4}+MgH{sub 2} mixtures at liquid nitrogen temperature with the addition of graphite. The 2LiBH{sub 4}+MgH{sub 2} mixture ball milled under this condition exhibits a 5-fold increase in the released hydrogen at 265 C when compared with ineffectively ball milled counterparts. Furthermore, both LiBH{sub 4} and MgH{sub 2} contribute to hydrogen release in the solid state. The isothermal dehydriding/re-hydriding cycles at 265 C reveal that re-hydriding is dominated by re-hydriding of Mg. These unusual phenomena are explained based on the formation of nanocrystalline and amorphous phases, the increased defect concentration in crystalline compounds, and possible catalytic effects of Mg,MgH{sub 2} and LiBH{sub 4} on their dehydriding and re-hydriding properties. (author)

  8. Effect of Milling Time on the Microstructure, Physical and Mechanical Properties of Al-Al2O3 Nanocomposite Synthesized by Ball Milling and Powder Metallurgy

    Science.gov (United States)

    Matori, Khamirul Amin; Ostovan, Farhad; Abdul Aziz, Sidek; Mamat, Md Shuhazlly

    2017-01-01

    The effect of milling time on the morphology, microstructure, physical and mechanical properties of pure Al-5 wt % Al2O3 (Al-5Al2O3) has been investigated. Al-5Al2O3 nanocomposites were fabricated using ball milling in a powder metallurgy route. The increase in the milling time resulted in the homogenous dispersion of 5 wt % Al2O3 nanoparticles, the reduction of particle clustering, and the reduction of distances between the composite particles. The significant grain refining during milling was revealed which showed as a reduction of particle size resulting from longer milling time. X-Ray diffraction (XRD) analysis of the nanocomposite powders also showed that designated ball milling contributes to the crystalline refining and accumulation of internal stress due to induced severe plastic deformation of the particles. It can be argued that these morphological and microstructural variations of nanocomposite powders induced by designated ball milling time was found to contribute to an improvement in the density, densification, micro-hardness (HV), nano-hardness (HN), and Young’s modulus (E) of Al-5Al2O3 nanocomposites. HV, HN, and E values of nanocomposites were increased by ~48%, 46%, and 40%, after 12 h of milling, respectively. PMID:29072632

  9. Effect of Milling Time on the Microstructure, Physical and Mechanical Properties of Al-Al₂O₃ Nanocomposite Synthesized by Ball Milling and Powder Metallurgy.

    Science.gov (United States)

    Toozandehjani, Meysam; Matori, Khamirul Amin; Ostovan, Farhad; Abdul Aziz, Sidek; Mamat, Md Shuhazlly

    2017-10-26

    The effect of milling time on the morphology, microstructure, physical and mechanical properties of pure Al-5 wt % Al₂O₃ (Al-5Al₂O₃) has been investigated. Al-5Al₂O₃ nanocomposites were fabricated using ball milling in a powder metallurgy route. The increase in the milling time resulted in the homogenous dispersion of 5 wt % Al₂O₃ nanoparticles, the reduction of particle clustering, and the reduction of distances between the composite particles. The significant grain refining during milling was revealed which showed as a reduction of particle size resulting from longer milling time. X-Ray diffraction (XRD) analysis of the nanocomposite powders also showed that designated ball milling contributes to the crystalline refining and accumulation of internal stress due to induced severe plastic deformation of the particles. It can be argued that these morphological and microstructural variations of nanocomposite powders induced by designated ball milling time was found to contribute to an improvement in the density, densification, micro-hardness ( HV ), nano-hardness ( HN ), and Young's modulus ( E ) of Al-5Al₂O₃ nanocomposites. HV , HN , and E values of nanocomposites were increased by ~48%, 46%, and 40%, after 12 h of milling, respectively.

  10. Experimental and theoretical study of phase transitions under ball milling; Etude experimentale et modelisation des changements de phases sous broyage a haute energie

    Energy Technology Data Exchange (ETDEWEB)

    Pochet, P

    1997-12-31

    The aim of this work was to determine how phase transition s under ball-milling depend on the milling conditions and to find out if one can rationalize such transitions with the theory of driven alloys. We have chosen two phase transitions: the order-disorder transition in Fe Al and the precipitation-dissolution NiGe. In the case of Fe Al we have found that the steady-state long range order parameter achieved under ball milling intensity; moreover the same degree of order is achieved starting from an ordered alloy or a disordered solid solution. On the way to fully disordered state the degree of order either decreases monotonically or goes through a short lived transient state. This behaviour is reminiscent of a first order transition while the equilibrium transition is second order. All the above features are well reproduced by a simple model of driven alloys, which was originally build for alloys under irradiation. The stationary degree of order results of two competitive atomic jump mechanisms: the forced displacements induced by the shearing of the grains, and the thermally activated jumps caused by vacancies migrations. Finally we have performed atomistic simulations with a Monte Carlo kinetic algorithm, which revealed the role of the fluctuations in the intensity of the forcing. Moreover we have shown that specific atomistic mechanisms are active in a dilute NiGe solid solution which might lead to ball milling induced precipitation in under-saturated solid solution. (author). 149 refs.

  11. Structure and electrochemical hydrogen storage properties of Ti{sub 2}Ni alloy synthesized by ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Hosni, B. [Equipe des Hydrures Métalliques, Laboratoire de Mécanique, Matériaux et Procédés, Ecole Nationale Supérieure d’Ingénieurs de Tunis, ENSIT Ex ESSTT, Université de Tunis, 5 Avenue Taha Hussein, 1008 Tunis (Tunisia); Li, X. [FEMTO-ST, MN2S, Université de Technologie de Belfort-Montbéliard, Site de Sévenans, 90010 Belfort cedex (France); Khaldi, C., E-mail: chokri.khaldi@esstt.rnu.tn [Equipe des Hydrures Métalliques, Laboratoire de Mécanique, Matériaux et Procédés, Ecole Nationale Supérieure d’Ingénieurs de Tunis, ENSIT Ex ESSTT, Université de Tunis, 5 Avenue Taha Hussein, 1008 Tunis (Tunisia); ElKedim, O. [FEMTO-ST, MN2S, Université de Technologie de Belfort-Montbéliard, Site de Sévenans, 90010 Belfort cedex (France); Lamloumi, J. [Equipe des Hydrures Métalliques, Laboratoire de Mécanique, Matériaux et Procédés, Ecole Nationale Supérieure d’Ingénieurs de Tunis, ENSIT Ex ESSTT, Université de Tunis, 5 Avenue Taha Hussein, 1008 Tunis (Tunisia)

    2014-12-05

    Highlights: • The Ti{sub 2}Ni alloy activation requires only one cycle of charge and discharge, regardless of the temperature. • By increasing the temperature the capacity loss, undergoes an increase and it is more pronounced for the 60 °C. • A good correlation is found between the evolutions of the different electrochemical parameters according to the temperature. - Abstract: The structure and the electrochemical hydrogen storage properties of amorphous Ti{sub 2}Ni alloy synthesized by ball milling and used as an anode in nickel–metal hydride batteries were studied. Nominal Ti{sub 2}Ni was synthesized under argon atmosphere at room temperature using a planetary high-energy ball mill. The structural and morphological characterization of the amorphous Ti{sub 2}Ni alloy is carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The electrochemical characterization of the Ti{sub 2}Ni electrodes is carried out by the galvanostatic charging and discharging, the constant potential discharge, the open circuit potential and the potentiodynamic polarization techniques. The Ti{sub 2}Ni alloy activation requires only one cycle of charge and discharge, regardless of the temperature. The electrochemical discharge capacity of the Ti{sub 2}Ni alloy, during the first eight cycles, and at a temperature of 30 °C, remained practically unchanged and a good held cycling is observed. By increasing the temperature, the electrochemical discharge capacity loss after eight cycles undergoes an increase and it is more pronounced for the temperature 60 °C. At 30 °C, the anodic corrosion current density is 1 mA cm{sup −2} and then it undergoes a rapid drop, remaining substantially constant (0.06 mA cm{sup −2}) in the range 40–60 °C, before undergoing a slight increase to 70 °C (0.3 mA cm{sup −2}). This variation is in good agreement with the maximum electrochemical discharge capacity values found for the

  12. Mechanical ball-milling preparation of fullerene/cobalt core/shell nanocomposites with high electrochemical hydrogen storage ability.

    Science.gov (United States)

    Bao, Di; Gao, Peng; Shen, Xiande; Chang, Cheng; Wang, Longqiang; Wang, Ying; Chen, Yujin; Zhou, Xiaoming; Sun, Shuchao; Li, Guobao; Yang, Piaoping

    2014-02-26

    The design and synthesis of new hydrogen storage nanomaterials with high capacity at low cost is extremely desirable but remains challenging for today's development of hydrogen economy. Because of the special honeycomb structures and excellent physical and chemical characters, fullerenes have been extensively considered as ideal materials for hydrogen storage materials. To take the most advantage of its distinctive symmetrical carbon cage structure, we have uniformly coated C60's surface with metal cobalt in nanoscale to form a core/shell structure through a simple ball-milling process in this work. The X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectra, high-solution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectrometry (EDX) elemental mappings, and X-ray photoelectron spectroscopy (XPS) measurements have been conducted to evaluate the size and the composition of the composites. In addition, the blue shift of C60 pentagonal pinch mode demonstrates the formation of Co-C chemical bond, and which enhances the stability of the as-obtained nanocomposites. And their electrochemical experimental results demonstrate that the as-obtained C60/Co composites have excellent electrochemical hydrogen storage cycle reversibility and considerably high hydrogen storage capacities of 907 mAh/g (3.32 wt % hydrogen) under room temperature and ambient pressure, which is very close to the theoretical hydrogen storage capacities of individual metal Co (3.33 wt % hydrogen). Furthermore, their hydrogen storage processes and the mechanism have also been investigated, in which the quasi-reversible C60/Co↔C60/Co-Hx reaction is the dominant cycle process.

  13. Magnetic properties of ball-milled Fe0.6Mn0.1Al0.3 alloys

    International Nuclear Information System (INIS)

    Rebolledo, A.F.; Romero, J.J.; Cuadrado, R.; Gonzalez, J.M.; Pigazo, F.; Palomares, F.J.; Medina, M.H.; Perez Alcazar, G.A.

    2007-01-01

    The FeMnAl-disordered alloy system exhibits, depending on the composition and the temperature, a rich variety of magnetic phases including the occurrence of ferromagnetism, antiferromagnetism, paramagnetism and spin-glass and reentrant spin glass behaviors. These latter phases result from the presence of atomic disorder and magnetic dilution and from the competing exchange interactions taking place between an Fe atom and its Mn and Fe first neighbors. The use of mechanical alloying in order to prepare these alloys is specially interesting since it allows to introduce in a progressive way large amounts of disorder. In this work, we describe the evolution with the milling time of the temperature dependence of the magnetic properties of mechanically alloyed Fe 0.6 Mn 0.1 Al 0.3 samples. The materials were prepared in a planetary ball mill using a balls-to-powder mass ratio of 15:1 and pure (99.95 at%) Fe, Mn and Al powders for times up to 19 h. The X-rays diffraction (XRD) spectra show the coexistence of three phases at short milling times. For milling times over 6 h, only the FeMnAl ternary alloy BCC phase is observed. Moesbauer spectroscopy reveals the complete formation of the FeMnAl alloy after 9 h milling time. The magnetic characterization showed that all the samples were ferromagnetic at room temperature with coercivities decreasing from 105 Oe (3 h milled sample) down to 5 Oe in the case of the sample milled for 19 h

  14. Recycling process for recovery of gallium from GaN an e-waste of LED industry through ball milling, annealing and leaching.

    Science.gov (United States)

    Swain, Basudev; Mishra, Chinmayee; Kang, Leeseung; Park, Kyung-Soo; Lee, Chan Gi; Hong, Hyun Seon

    2015-04-01

    Waste dust generated during manufacturing of LED contains significant amounts of gallium and indium, needs suitable treatment and can be an important resource for recovery. The LED industry waste dust contains primarily gallium as GaN. Leaching followed by purification technology is the green and clean technology. To develop treatment and recycling technology of these GaN bearing e-waste, leaching is the primary stage. In our current investigation possible process for treatment and quantitative leaching of gallium and indium from the GaN bearing e-waste or waste of LED industry dust has been developed. To recycle the waste and quantitative leaching of gallium, two different process flow sheets have been proposed. In one, process first the GaN of the waste the LED industry dust was leached at the optimum condition. Subsequently, the leach residue was mixed with Na2CO3, ball milled followed by annealing, again leached to recover gallium. In the second process, the waste LED industry dust was mixed with Na2CO3, after ball milling and annealing, followed acidic leaching. Without pretreatment, the gallium leaching was only 4.91 w/w % using 4M HCl, 100°C and pulp density of 20g/L. After mechano-chemical processing, both these processes achieved 73.68 w/w % of gallium leaching at their optimum condition. The developed process can treat and recycle any e-waste containing GaN through ball milling, annealing and leaching. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Characterization of structures and novel magnetic response of Fe87.5Si7Al5.5 alloy processed by ball milling

    International Nuclear Information System (INIS)

    Duan, Yuping; Gu, Shuchao; Zhang, Zhonglun; Wen, Ming

    2012-01-01

    Highlights: ► The water atomized Fe 87.5 Si 7 Al 5.5 (Wt.%) alloy was processed by ball-milling. ► The microstructure and magnetic properties of alloy changed following milling. ► The powders milled for 10 h have the largest M s and strongest reflection loss. ► The permeability of the powders milled for 2 h is the largest. ► The charge exchange between Fe and Si is discussed base on first-principles. - Abstract: The water atomized Fe 87.5 Si 7 Al 5.5 (Wt.%) alloy was processed by a high-energy planetary ball-milling. The characterization of morphology, microstructure, and electromagnetic properties were measured by scanning electron microscope (SEM), X-ray diffractometer, vibrating sample magnetometer (VSM), vector network analyzer and the first principle method. The analysis results showed that the powders shape became flaky from fusiform. The powders showed a reduction of the average grain size and the increase of the internal strain, and then presented an adverse variation trend after 55 h milling. The powders that milled 10 h had the largest saturation magnetization M S (131 emu/g). The value μ′ of the powders decreased with increasing milling time at relatively lower frequency (2–8 GHz), but opposite variation tendency happened at higher frequency (8–18 GHz). Also, only short time milling can enhance the value of μ″ in the test frequency. The powders after 10 h milling showed excellent microwave absorption (RL < −10 dB) at the frequency 9.0–15.6 GHz and the absorption peak shifted regularly to the high frequency as the increased milling time. Furthermore, the effect of charge exchange between the Fe and Si on the saturation magnetization in the ball-milling process was also investigated by using density functional theory (DFT) of first principle.

  16. SnSe/carbon nanocomposite synthesized by high energy ball milling as an anode material for sodium-ion and lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Zhian; Zhao, Xingxing; Li, Jie

    2015-01-01

    Graphical abstract: A homogeneous nanocomposite of SnSe and carbon black was synthesised by high energy ball milling and empolyed as an anode material for sodium-ion batteries (SIBs) and lithium-ion batteries (LIBs). The nanocomposite anode exhibits excellent electrochemical performances in both SIBs and LIBs. - Highlights: • A homogeneous nanocomposite of SnSe and carbon black was fabricated by high energy ball milling. • SnSe and carbon black are homogeneously mixed at the nanoscale level. • The SnSe/C anode exhibits excellent electrochemical performances in both SIBs and LIBs. - Abstract: A homogeneous nanocomposite of SnSe and carbon black, denoted as SnSe/C nanocomposite, was fabricated by high energy ball milling and empolyed as a high performance anode material for both sodium-ion batteries and lithium-ion batteries. The X-ray diffraction patterns, scanning electron microscopy and transmission electron microscopy observations confirmed that SnSe in SnSe/C nanocomposite was homogeneously distributed within carbon black. The nanocomposite anode exhibited enhanced electrochemical performances including a high capacity, long cycling behavior and good rate performance in both sodium-ion batteries (SIBs) and lithium-ion batteries (LIBs). In SIBs, an initial capacitiy of 748.5 mAh g −1 was obtained and was maintained well on cycling (324.9 mAh g −1 at a high current density of 500 mA g −1 in the 200 th cycle) with 72.5% retention of second cycle capacity (447.7 mAh g −1 ). In LIBs, high initial capacities of approximately 1097.6 mAh g −1 was obtained, and this reduced to 633.1 mAh g −1 after 100 cycles at 500 mA g −1

  17. Fabrication, characterization and application of Cu{sub 2}ZnSn(S,Se){sub 4} absorber layer via a hybrid ink containing ball milled powders

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunran [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130023 (China); Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); College of Mathematics and Physics, Bohai University, Jinzhou 121013 (China); Yao, Bin, E-mail: binyao@jlu.edu.cn [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130023 (China); Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); Li, Yongfeng, E-mail: liyongfeng@jlu.edu.cn [Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); Xiao, Zhenyu [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130023 (China); Ding, Zhanhui [Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012 (China); Zhao, Haifeng; Zhang, Ligong; Zhang, Zhenzhong [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun 130033 (China)

    2015-09-15

    Highlights: • CZTS powders are prepared from binary sulfides by a low cost ball milling process. • Elaborated on phase evolution and formation mechanism of CZTS. • Proposed a hybrid ink approach to resolve difficulty in deposition of CZTS film. • CZTSSe solar cells with highest efficiency of 4.2% are fabricated. • Small-grained CZTS layer hinders the collection of minority carriers. - Abstract: Cu{sub 2}ZnSnS{sub 4} (CZTS) powder with kesterite structure was prepared by ball milling of mixture of Cu{sub 2}S, ZnS and SnS{sub 2} powders for more than 15 h. By dispersing the milled CZTS powder in a Cu-, Zn- and Sn-chalcogenide precursor solution, a hybrid ink was fabricated. With the hybrid ink, a precursor CZTS film was deposited on Mo coated soda-lime glass by spin-coating. In order to obtain Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) absorber film with kesterite structure, the CZTS film was annealed at 560 °C for 15 min in Se ambient. It is demonstrated that the annealed film is dominated by a thick layer of kesterite CZTSSe with larger grain size and Cu{sub 8}Fe{sub 3}Sn{sub 2}(S,Se){sub 12} impurity phase with the exception of a very thin layer of kesterite CZTS with smaller grain size at interface between the CZTSSe and Mo layers. Solar cell device was fabricated by using the annealed CZTSSe film as absorber layer, and its conversion efficiency reached 4.2%. Mechanism of formation of the kesterite CZTS powder and CZTSSe film as well as effect of impurity phases on conversion efficiency are discussed in the present paper. The present results suggest that the hybrid ink approach combining with ball milling is a simple, low cost and promising method for preparation of kesterite CZTSSe absorber film and CZTSSe-based solar cell.

  18. Influence of spark plasma sintering conditions on the sintering and functional properties of an ultra-fine grained 316L stainless steel obtained from ball-milled powder

    Energy Technology Data Exchange (ETDEWEB)

    Keller, C., E-mail: clement.keller@insa-rouen.fr [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Tabalaiev, K.; Marnier, G. [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Noudem, J. [Laboratoire de Cristallographie des Matériaux, CNRS-UMR 6508, Université de Caen, ENSICAEN, 7 bd du Maréchal Juin, 14050 Caen (France); Sauvage, X. [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Hug, E. [Laboratoire de Cristallographie des Matériaux, CNRS-UMR 6508, Université de Caen, ENSICAEN, 7 bd du Maréchal Juin, 14050 Caen (France)

    2016-05-17

    In this work, 316L samples with submicrometric grain size were sintered by spark plasma sintering. To this aim, 316L powder was first ball-milled with different conditions to obtain nanostructured powder. The process control agent quantity and milling time were varied to check their influence on the crystallite size of milled powder. Samples were then sintered by spark plasma sintering using different sets of sintering parameters (temperature, dwell time and pressure). For each sample, grain size and density were systematically measured in order to investigate the influence of the sintering process on these two key microstructure parameters. Results show that suitable ball-milling and subsequent sintering can be employed to obtain austenitic stainless steel samples with grain sizes in the nanometer range with porosity lower than 3%. However, ball-milling and subsequent sintering enhance chromium carbides formation at the sample surface in addition to intragranular and intergranular oxides in the sample as revealed by X-ray diffraction and transmission electron microscopy. It has been shown that using Boron nitride together with graphite foils to protect the mold from powder welding prevent such carbide formation. For mechanical properties, results show that the grain size refinement strongly increases the hardness of the samples without deviation from Hall-Petch relationship despite the oxides formation. For corrosion resistance, grain sizes lower than a few micrometers involve a strong decrease in the pitting potential and a strong increase in passivation current. As a consequence, spark plasma sintering can be considered as a promising tool for ultra-fine grained austenitic stainless steel.

  19. Band gap-engineered ZnO and Ag/ZnO by ball-milling method and their photocatalytic and Fenton-like photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young In [School of Chemistry and Biochemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541 (Korea, Republic of); Jung, Hye Jin [Department of Mechanical Engineering, Chungnam National University, Daejeon 34134 (Korea, Republic of); Shin, Weon Gyu, E-mail: wgshin@cnu.ac.kr [Department of Mechanical Engineering, Chungnam National University, Daejeon 34134 (Korea, Republic of); Sohn, Youngku, E-mail: youngkusohn@ynu.ac.kr [School of Chemistry and Biochemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541 (Korea, Republic of)

    2015-11-30

    Graphical abstract: - Highlights: • Ag/ZnO hybrid materials were prepared by a ball-milling method. • Adsorption and photocatalytic dye degradation were tested for pure RhB under visible light. • Adsorption and photocatalytic dye degradation were tested for mixed dye (MO + RhB + MB) under visible light. • Fenton-like photocatalytic activity (H{sub 2}O{sub 2} addition effects) was examined. - Abstract: The hybridization of ZnO with Ag has been performed extensively to increase the efficiency of ZnO in various applications, including catalysis. In this study, a wet (w) and dry (d) ball-milling method was used to hybridize Ag with ZnO nanoparticles, and their physicochemical properties were examined. Visible light absorption was enhanced and the band gap was engineered by ball-milling and Ag hybridization. Their photocatalytic activities were tested with rhodamine B (RhB) and a mixed dye (methyl orange + RhB + methylene blue) under visible light irradiation. For pure RhB, the photocatalytic activity was decreased by ball-milling and was observed in the order of ZnO(d) < Ag/ZnO(d) < ZnO(w) < Ag/ZnO(w) ≤ ZnO(ref). For the degradation of RhB and methylene blue (MB) in the mixed dye (or the simulated real contaminated water), the photocatalytic activity was observed in the order of Ag/ZnO(d) < ZnO(d) < ZnO(w) < Ag/ZnO(w) ≤ ZnO(ref). When the photodegradation tested with H{sub 2}O{sub 2} addition, however, the Fenton-like photocatalytic activity was reversed and the ZnO(ref) showed the poorest activity for the degradation of RhB and methylene blue (MB). In the mixed dye over all the catalysts, methyl orange (MO) was degraded most rapidly. The relative degradation rates of RhB and MB were found to be dependent on the catalyst and reaction conditions.

  20. Band gap-engineered ZnO and Ag/ZnO by ball-milling method and their photocatalytic and Fenton-like photocatalytic activities

    International Nuclear Information System (INIS)

    Choi, Young In; Jung, Hye Jin; Shin, Weon Gyu; Sohn, Youngku

    2015-01-01

    Graphical abstract: - Highlights: • Ag/ZnO hybrid materials were prepared by a ball-milling method. • Adsorption and photocatalytic dye degradation were tested for pure RhB under visible light. • Adsorption and photocatalytic dye degradation were tested for mixed dye (MO + RhB + MB) under visible light. • Fenton-like photocatalytic activity (H 2 O 2 addition effects) was examined. - Abstract: The hybridization of ZnO with Ag has been performed extensively to increase the efficiency of ZnO in various applications, including catalysis. In this study, a wet (w) and dry (d) ball-milling method was used to hybridize Ag with ZnO nanoparticles, and their physicochemical properties were examined. Visible light absorption was enhanced and the band gap was engineered by ball-milling and Ag hybridization. Their photocatalytic activities were tested with rhodamine B (RhB) and a mixed dye (methyl orange + RhB + methylene blue) under visible light irradiation. For pure RhB, the photocatalytic activity was decreased by ball-milling and was observed in the order of ZnO(d) < Ag/ZnO(d) < ZnO(w) < Ag/ZnO(w) ≤ ZnO(ref). For the degradation of RhB and methylene blue (MB) in the mixed dye (or the simulated real contaminated water), the photocatalytic activity was observed in the order of Ag/ZnO(d) < ZnO(d) < ZnO(w) < Ag/ZnO(w) ≤ ZnO(ref). When the photodegradation tested with H 2 O 2 addition, however, the Fenton-like photocatalytic activity was reversed and the ZnO(ref) showed the poorest activity for the degradation of RhB and methylene blue (MB). In the mixed dye over all the catalysts, methyl orange (MO) was degraded most rapidly. The relative degradation rates of RhB and MB were found to be dependent on the catalyst and reaction conditions.

  1. Mechanical and Microstructure Study of Nickel-Based ODS Alloys Processed by Mechano-Chemical Bonding and Ball Milling

    Science.gov (United States)

    Amare, Belachew N.

    Due to the need to increase the efficiency of modern power plants, land-based gas turbines are designed to operate at high temperature creating harsh environments for structural materials. The elevated turbine inlet temperature directly affects the materials at the hottest sections, which includes combustion chamber, blades, and vanes. Therefore, the hottest sections should satisfy a number of material requirements such as high creep strength, ductility at low temperature, high temperature oxidation and corrosion resistance. Such requirements are nowadays satisfied by implementing superalloys coated by high temperature thermal barrier coating (TBC) systems to protect from high operating temperature required to obtain an increased efficiency. Oxide dispersive strengthened (ODS) alloys are being considered due to their high temperature creep strength, good oxidation and corrosion resistance for high temperature applications in advanced power plants. These alloys operating at high temperature are subjected to different loading systems such as thermal, mechanical, and thermo-mechanical combined loads at operation. Thus, it is critical to study the high temperature mechanical and microstructure properties of such alloys for their structural integrity. The primary objective of this research work is to investigate the mechanical and microstructure properties of nickel-based ODS alloys produced by combined mechano-chemical bonding (MCB) and ball milling subjected to high temperature oxidation, which are expected to be applied for high temperature turbine coating with micro-channel cooling system. Stiffness response and microstructure evaluation of such alloy systems was studied along with their oxidation mechanism and structural integrity through thermal cyclic exposure. Another objective is to analyze the heat transfer of ODS alloy coatings with micro-channel cooling system using finite element analysis (FEA) to determine their feasibility as a stand-alone structural

  2. Effect of soya milk on nutritive, antioxidative, reological and textural properties of chocolate produced in a ball mill

    Directory of Open Access Journals (Sweden)

    Zarić Danica B.

    2011-01-01

    Full Text Available Chocolate is a complex rheological system in which non-fat cocoa particles and sugar particles are enveloped by crystal matrix of cocoa butter. Physical properties of chocolate depend on ingredient composition, method of production and properly performed pre-crystallization phase. In this work, chocolate was produced in an unconventional way, i.e. in a ball mill applying variable refining time (30, 60 and 90 min and pre-crystallization temperature in chocolate masses (26, 28 and 30⁰C. Two types of chocolate were produced: chocolate with 20% of powdered cow’s milk (R1 and chocolate with 20% of soya milk powder (R2. The quality of chocolate was followed by comparing nutritive composition, 23 polyphenol content, hardness of chocolate, solid triglyceride content (SFC and rheological parameters (Casson yield flow (Pa, Casson viscosity (Pas, the area of the thixotropic loop, elastic modulus and creep curves. The aim of this paper is determining changes caused by replacing cow’s milk with soya milk powder in respect of nutritive, rheological and sensory properties, as well as defining optimal parameters: precrystallization temperature and refining time of soya milk chocolate in order to obtain suitable sensory and physical properties identical to those of milk chocolate mass. The results show that replacing powdered cow’s milk with soya milk powder affects the increase in nutritive value of soya milk chocolate. R2 chocolate mass showed the increase in essential amino acids and fatty acids. This chocolate mass also showed the increase in total polyphenols by 28.1% comparing to R1 chocolate mass. By comparing viscosity, yield stress, shear stress and the area of the thixotropic loop, it can be observed that R1 chocolate mass represents a more organized and simpler system than the mass with soya milk (R2, as it shows lower values for all the above mentioned parameters, regardless of the refining time and pre-crystallization temperature

  3. Morphology and magnetic properties of CeCo5 submicron flakes prepared by surfactant-assisted high-energy ball milling

    International Nuclear Information System (INIS)

    Zhang, J.J.; Gao, H.M.; Yan, Y.; Bai, X.; Su, F.; Wang, W.Q.; Du, X.B.

    2012-01-01

    CeCo 5 permanent magnetic alloy has been processed by surfactant assisted high energy ball milling. Heptane and oleic acid were used as the solvent and surfactant, respectively. The amount of surfactant used was 50% by weight of the starting powder. The produced particles were deposited on a piece of copper (4 mm in length and width) under a magnetic field of 27 kOe applied along the copper surface and immobilized by ethyl α-cyanoacrylate. Scanning electron microscope pictures show that the particles are flakes, several μm in length and width and tens of nm in thickness. X-ray diffraction patterns and magnetic measurements prove that the flakes are crystalline with c-axes magnetic anisotropy. The easy magnetization axis is oriented perpendicular to the surface of the flake. A maximum coercivity of 3.3 kOe was obtained for the sample milled for 40 min. - Highlights: ► CeCo 5 permanent magnetic alloy has been processed by surfactant assisted high energy ball milling (HEBM). ► The particles show a flake-like morphology with several μm in length and width and tens nm in thickness. ► The flakes are crystallographic and magnetic anisotropic and the c-axes, also the easy magnetization directions are oriented perpendicular to the surface of the flake. ► Maximum coercivity of 3.3 kOe has been obtained for the sample milled for 40 min.

  4. Investigation of physical properties and stability of indomethacin-cimetidine and naproxen-cimetidine co-amorphous systems prepared by quench cooling, coprecipitation and ball milling

    DEFF Research Database (Denmark)

    Lim, Ai Wei; Löbmann, Korbinian; Grohganz, Holger

    2016-01-01

    the samples. Structural relaxation (i.e. molecular mobility) behaviour was obtained from the Kohlrausch-Williams-Watts (KWW) relationship. KEY FINDINGS: A glass transition temperature (Tg ), on average 20 °C higher than the predicted Tg (calculated from the Fox equation), was observed in all samples....... The structural relaxation was dependent on the preparative methods. At a storage temperature of 40 °C, a comparatively higher molecular mobility was observed in indomethacin-cimetidine samples prepared by ball milling (ln τ(β) = 0.8), while similar molecular mobility was found for the same sample prepared...... by quench cooling (ln τ(β) = 2.4) and co-evaporation (ln τ(β) = 2.5). In contrast, molecular mobility of the naproxen-cimetidine samples followed the order co-evaporation (ln τ(β) = 0.8), quench cooling (ln τ(β) = 1.6) and ball milling (ln τ(β) = 1.8). CONCLUSION: The estimated relaxation times by the DSC...

  5. Synthesis of stoichiometric Ca{sub 2}Fe{sub 2}O{sub 5} nanoparticles by high-energy ball milling and thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, B.F.; Morales, M.A.; Bohn, F.; Carriço, A.S. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Medeiros, S.N. de, E-mail: sndemedeiros@gmail.com [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Dantas, A.L. [Departamento de Física, Universidade do Estado do Rio Grande do Norte, 59610-210 Mossoró, RN (Brazil)

    2016-05-01

    We report the synthesis of Ca{sub 2}Fe{sub 2}O{sub 5} nanoparticles by high-energy ball milling and thermal annealing from α-Fe{sub 2}O{sub 3} and CaCO{sub 3}. Magnetization measurements, Mössbauer and X-ray spectra reveal that annealing at high temperatures leads to better quality samples. Our results indicate nanoparticles produced by 10 h high-energy ball milling and thermal annealing for 2 h at 1100 °C achieve improved stoichiometry and the full weak ferromagnetic signal of Ca{sub 2}Fe{sub 2}O{sub 5}. Samples annealed at lower temperatures show departure from stoichiometry, with a higher occupancy of Fe{sup 3+} in octahedral sites, and a reduced magnetization. Thermal relaxation for temperatures in the 700–1100 °C range is well represented by a Néel model, assuming a random orientation of the weak ferromagnetic moment of the Ca{sub 2}Fe{sub 2}O{sub 5} nanoparticles.

  6. Synthesis of Ni3Ta, Ni2Ta and NiTa by high-energy ball milling and subsequent heat treatment

    International Nuclear Information System (INIS)

    Benites, H.S.N.; Silva, B.P da; Ramos, A.S.; Silva, A.A.A.P.; Coelho, G.C.; Lima, B.B. de

    2014-01-01

    The tantalum has relevance for the development of multicomponent Ni-based superalloys which are hardened by solid solution and precipitation mechanisms. Master alloys are normally used in the production step in order to produce refractory metals and alloys. The present work reports on the synthesis of Ni_3Ta, Ni_2Ta and NiTa by high-energy ball milling and subsequent heat treatment. The elemental Ni-25Ta, Ni-33Ta and Ni-50Ta (at.-%) powder mixtures were ball milled under Ar atmosphere using stainless steel balls and vials, 300 rpm and a ball-to-powder weight ratio of 10:1. Following, the as-milled samples were uniaxially compacted and heat-treated at 1100 deg C for 4h under Ar atmosphere. The characterization of as-milled and heat-treated samples was conducted by means of X-ray diffraction, scanning electron microscopy, and energy dispersive spectrometry. A large amount of Ni_3Ta, Ni_2Ta and NiTa was formed in the mechanically alloyed heat-treated Ni-25Ta, Ni-33Ta and Ni-50Ta alloys. (author)

  7. The Effect of Powder Ball Milling on the Microstructure and Mechanical Properties of Sintered Fe-Cr-Mo-Mn-(Cu) Steel

    Science.gov (United States)

    Kulecki, P.; Lichańska, E.

    2017-12-01

    The effect of ball milling powder mixtures of Höganäs pre-alloyed iron Astaloy CrM, low-carbon ferromanganese Elkem, elemental electrolytic Cu and C-UF graphite on the sintered structure and mechanical properties was evaluated. The mixing was conducted using Turbula mixer for 30 minutes and CDI-EM60 frequency inverter for 1 and 2 hours. Milling was performed on 150 g mixtures with (in weight %) CrM + 1% Mn, CrM + 2% Mn, CrM + 1% Mn + 1% Cu and CrM + 2% Mn + 1% Cu, all with 0.6%C. The green compacts were single pressed at 660 MPa according to PN-EN ISO 2740. Sintering was carried out in a laboratory horizontal furnace Carbolite STF 15/450 at 1250°C for 60 minutes in 5%H2 - 95%N2 atmosphere with a heating rate of 75°C/min, followed by sintering hardening at 60°C/min cooling rate. All the steels were characterized by martensitic structures. Mechanical testing revealed that steels based on milled powders have slightly higher mechanical properties compared to those only mixed and sintered. The best combination of mechanical properties, for ball milled CrM + 1% Mn + 1% Cu was UTS 1046 MPa, TRS 1336 MPa and A 1.94%.

  8. Si/C composite lithium-ion battery anodes synthesized from coarse silicon and citric acid through combined ball milling and thermal pyrolysis

    International Nuclear Information System (INIS)

    Gu Peng; Cai Rui; Zhou Yingke; Shao Zongping

    2010-01-01

    Silicon and related materials have recently received considerable attention as potential anodes in Li-ion batteries for their high theoretical specific capacities. To overcome the problem of volume variations during the Li insertion/extraction process, in this work, Si/C composites with low carbon content were synthesized from cheap coarse silicon and citric acid by simple ball milling and subsequent thermal treatment. The effects of ball milling time and calcination temperature on the structure, composition and morphology of the composites were systematically investigated by the determination of specific surface area (BET) and particle-size distribution, X-ray diffraction (XRD), O 2 -TPO, and scanning electron microscopy (SEM). The capacity and cycling stability of the composites were systematically evaluated by electrochemical charge/discharge tests. It was found that both the initial capacity and the cycling stability of the composites were dependent on the milling and calcination conditions, and attractive overall electrochemical performance could be obtained by optimizing the synthesis process.

  9. Fabrication and characterization of Cu/YSZ cermet high temperature electrolysis cathode material prepared by high-energy ball-milling method

    International Nuclear Information System (INIS)

    Lee, Sungkyu; Kim, Jong-Min; Hong, Hyun Seon; Woo, Sang-Kook

    2009-01-01

    Cu/YSZ cermet (40 and 60 vol.% Cu powder with balance YSZ) is a more economical cathode material than the conventional Ni/YSZ cermet for high temperature electrolysis (HTE) of water vapor and it was successfully fabricated by high-energy ball-milling of Cu and YSZ powders, pressing into pellets (o 13 mm x 2 mm) and subsequent sintering process at 700 deg. C under flowing 5%-H 2 /Ar gas. The Cu/YSZ composite material thus fabricated was characterized using various analytical tools such as XRD, SEM, and laser diffraction and scattering method. Electrical conductivity of sintered Cu/YSZ cermet pellets thus fabricated was measured by using 4-probe technique for comparison with that of conventional Ni/YSZ cermets. The effect of composite composition on the electrical conductivity was investigated and a marked increase in electrical conductivity for copper contents greater than 40 vol.% in the composite was explained by percolation threshold. Also, Cu/YSZ cermet was selected as a candidate for HTE cathode of self-supporting planar unit cell and its electrochemical performance was investigated, paving the way for preliminary correlation of high-energy ball-milling parameters with observed physical and electrochemical performance of Cu/YSZ cermets

  10. Recycling process for recovery of gallium from GaN an e-waste of LED industry through ball milling, annealing and leaching

    Energy Technology Data Exchange (ETDEWEB)

    Swain, Basudev, E-mail: swain@iae.re.kr; Mishra, Chinmayee; Kang, Leeseung; Park, Kyung-Soo, E-mail: kspark@iae.re.kr; Lee, Chan Gi; Hong, Hyun Seon, E-mail: hshong@iae.re.kr

    2015-04-15

    Waste dust generated during manufacturing of LED contains significant amounts of gallium and indium, needs suitable treatment and can be an important resource for recovery. The LED industry waste dust contains primarily gallium as GaN. Leaching followed by purification technology is the green and clean technology. To develop treatment and recycling technology of these GaN bearing e-waste, leaching is the primary stage. In our current investigation possible process for treatment and quantitative leaching of gallium and indium from the GaN bearing e-waste or waste of LED industry dust has been developed. To recycle the waste and quantitative leaching of gallium, two different process flow sheets have been proposed. In one, process first the GaN of the waste the LED industry dust was leached at the optimum condition. Subsequently, the leach residue was mixed with Na{sub 2}CO{sub 3}, ball milled followed by annealing, again leached to recover gallium. In the second process, the waste LED industry dust was mixed with Na{sub 2}CO{sub 3}, after ball milling and annealing, followed acidic leaching. Without pretreatment, the gallium leaching was only 4.91 w/w % using 4 M HCl, 100 °C and pulp density of 20 g/L. After mechano-chemical processing, both these processes achieved 73.68 w/w % of gallium leaching at their optimum condition. The developed process can treat and recycle any e-waste containing GaN through ball milling, annealing and leaching. - Highlights: • Simplest process for treatment of GaN an LED industry waste developed. • The process developed recovers gallium from waste LED waste dust. • Thermal analysis and phase properties of GaN to Ga{sub 2}O{sub 3} and GaN to NaGaO{sub 2} revealed. • Solid-state chemistry involved in this process reported. • Quantitative leaching of the GaN was achieved.

  11. Influence of Temperature on the Performance of LiNi1/3Co1/3Mn1/3O2 Prepared by High-Temperature Ball-Milling Method

    Directory of Open Access Journals (Sweden)

    Ming Tian

    2018-01-01

    Full Text Available Aiming at the preparation of high electrochemical performance LiNi1/3Co1/3Mn1/3O2 cathode material for lithium-ion battery, LiNi1/3Co1/3Mn1/3O2 was prepared with lithium carbonate, nickel (II oxide, cobalt (II, III oxide, and manganese dioxide as raw materials by high-temperature ball-milling method. Influence of ball-milling temperature was investigated in this work. It was shown that the fine LiNi1/3Co1/3Mn1/3O2 powder with high electrochemical performance can be produced by the high-temperature ball-milling process, and the optimal ball-milling temperature obtained in the current study was 750°C. Its initial discharge capacity was 146.0 mAhg−1 at the rate of 0.1 C, and over 50 cycles its capacity retention rate was 90.2%.

  12. Morphology and magnetic properties of CeCo5 submicron flakes prepared by surfactant-assisted high-energy ball milling

    Science.gov (United States)

    Zhang, J. J.; Gao, H. M.; Yan, Y.; Bai, X.; Su, F.; Wang, W. Q.; Du, X. B.

    2012-10-01

    CeCo5 permanent magnetic alloy has been processed by surfactant assisted high energy ball milling. Heptane and oleic acid were used as the solvent and surfactant, respectively. The amount of surfactant used was 50% by weight of the starting powder. The produced particles were deposited on a piece of copper (4 mm in length and width) under a magnetic field of 27 kOe applied along the copper surface and immobilized by ethyl α-cyanoacrylate. Scanning electron microscope pictures show that the particles are flakes, several μm in length and width and tens of nm in thickness. X-ray diffraction patterns and magnetic measurements prove that the flakes are crystalline with c-axes magnetic anisotropy. The easy magnetization axis is oriented perpendicular to the surface of the flake. A maximum coercivity of 3.3 kOe was obtained for the sample milled for 40 min.

  13. Fabrication of Fe1.1Se0.5Te0.5 bulk by a high energy ball milling technique

    Science.gov (United States)

    Liu, Jixing; Li, Chengshan; Zhang, Shengnan; Feng, Jianqing; Zhang, Pingxiang; Zhou, Lian

    2017-11-01

    Fe1.1Se0.5Te0.5 superconducting bulks were successfully synthesized by a high energy ball milling (HEBM) aided sintering technique. Two advantages of this new technique have been revealed compared with traditional solid state sintering method. One is greatly increased the density of sintered bulks. It is because the precursor powders with β-Fe(Se, Te) and δ-Fe(Se, Te) were obtained directly by the HEBM process and without formation of liquid Se (and Te), which could avoid the huge volume expansion. The other is the obvious decrease of sintering temperature and dwell time due to the effective shortened length of diffusion paths. The superconducting critical temperature Tc of 14.2 K in our sample is comparable with those in previous reports, and further optimization of chemical composition is on the way.

  14. Long-Term Effects on Graphene Supercapacitors of Using a Zirconia Bowl and Zirconia Balls for Ball-Mill mixing of Active Materials

    Science.gov (United States)

    Song, Dae-Hoon; Kim, Jin-Young; Kahng, Yung Ho; Cho, Hoonsung; Kim, Eung-Sam

    2018-04-01

    Improving the energy storage performance of supercapacitor electrodes based on reduced graphene oxide (RGO) is one of the main subjects in this research field. However, when a zirconia bowl and zirconia balls were used for ball-mill mixing of the active materials for RGO supercapacitors, the energy storage performance deteriorated over time. Our study revealed that the source of the problem was the inclusion of zirconia bits from abrasion of the bowl and the balls during the ballmill mixing, which increased during a period of 1 year. We probed two solutions to this problem: 1) hydrofluoric (HF) acid treatment of the RGO supercapacitors and 2) use of a tempered steel bowl and tempered steel balls for the mixing. For both cases, the energy storage performance was restored to near the initial level, showing a specific capacitance ( C sp ) of 200 F/g. Our results should lead to progress in research on RGO supercapacitors.

  15. Formation of ultra-fine grained TiC-dispersed SUS316L by ball-milling and their consolidation by hot isostatic pressing

    International Nuclear Information System (INIS)

    Zheng, Yongjia; Yamasaki, Tohru; Fukami, Takeshi; Mitamura, Tohru; Terasawa, Mititaka

    2003-01-01

    In order to overcome the irradiation embrittlement in austenitic stainless steels, ultra-fine grained SUS316L steels with very fine TiC particles have been developed. The SUS316-TiC nanocomposite powders having 1.0 to 2.0 mass%TiC were prepared by ball-milling SUS316-TiC powder mixtures for 125h in an argon gas atmosphere. The milled powders were consolidated by hot isostatic pressing (HIP) under a pressure of 200 MPa at temperature between 700-1000degC, and the bulk materials with crystallite size ranging between 100-400 nm have been produced. The possibility of using fine-grained TiC particles for pinning grain boundaries and thereby to maintain the ultra-fine grained structures has been discussed. (author)

  16. Morphology and magnetic properties of CeCo{sub 5} submicron flakes prepared by surfactant-assisted high-energy ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.J.; Gao, H.M.; Yan, Y.; Bai, X.; Su, F.; Wang, W.Q. [State key Laboratory for Superhard Materials and Department of Physics, Jilin University, Changchun 130012 (China); Du, X.B., E-mail: duxb@jlu.edu.cn [State key Laboratory for Superhard Materials and Department of Physics, Jilin University, Changchun 130012 (China)

    2012-10-15

    CeCo{sub 5} permanent magnetic alloy has been processed by surfactant assisted high energy ball milling. Heptane and oleic acid were used as the solvent and surfactant, respectively. The amount of surfactant used was 50% by weight of the starting powder. The produced particles were deposited on a piece of copper (4 mm in length and width) under a magnetic field of 27 kOe applied along the copper surface and immobilized by ethyl {alpha}-cyanoacrylate. Scanning electron microscope pictures show that the particles are flakes, several {mu}m in length and width and tens of nm in thickness. X-ray diffraction patterns and magnetic measurements prove that the flakes are crystalline with c-axes magnetic anisotropy. The easy magnetization axis is oriented perpendicular to the surface of the flake. A maximum coercivity of 3.3 kOe was obtained for the sample milled for 40 min. - Highlights: Black-Right-Pointing-Pointer CeCo{sub 5} permanent magnetic alloy has been processed by surfactant assisted high energy ball milling (HEBM). Black-Right-Pointing-Pointer The particles show a flake-like morphology with several {mu}m in length and width and tens nm in thickness. Black-Right-Pointing-Pointer The flakes are crystallographic and magnetic anisotropic and the c-axes, also the easy magnetization directions are oriented perpendicular to the surface of the flake. Black-Right-Pointing-Pointer Maximum coercivity of 3.3 kOe has been obtained for the sample milled for 40 min.

  17. Colloidal Precursors from 'Ball-Milling in Liquid Medium' Process for CuInSe2 Thin Film

    International Nuclear Information System (INIS)

    Chung, Jae Hoon; Kim, Seung Joo

    2010-01-01

    CIS thin film can be fabricated by using the precursor obtained through ball-milling the elemental reagents in liquid media. The amorphous colloidal precursor with good dispersity was prepared in the medium that contains strong base and polar solvent (2 M ethylenediamine in DMF solution as used in this study). The 'ball-milling in liquid medium' method requires only elemental sources as starting materials and a proper solution so that it can be employed without additional processes for separation and purification. As a simple and less-toxic preparative route, this method would be practically available to prepare CIS-related solar cells. CuInSe 2 (CIS) and related chalcopyrite compounds are very promising materials for thin film solar cells due to their favorable band gap, high optical absorption coefficient and long-term stability. CIS-based solar cells have shown the highest conversion efficiency reaching a value of 20%. However, the vacuum-based processes that are used to fabricate CIS thin-films have some drawbacks such as the complexity in process, high production cost and difficulty in scaling up. Recently, several research groups have proposed different non-vacuum deposition processes for CIS solar cell. For example, H. W. Hillhouse et al. prepared the CIS absorber layer by using 'nanocrystal ink method' in which a colloidal nanocrystal ink was obtained from reaction of CuCl, InCl 3 and Se in oleylamine. D. B. Mitzi et al. used a solution-based precursor that was prepared by dissolution of Cu 2 Se, In 2 Se 3 , Ga 2 Se 3 and Se in hydrazine to fabricate the Ga-containing absorber layer, Cu(In,Ga)Se 2

  18. Microstructures and Dehydrogenation Properties of Ball-milled MgH2-K2Ti6O13-Ni Composite Systems

    Directory of Open Access Journals (Sweden)

    ZHANG Jian

    2016-11-01

    Full Text Available The K2Ti6O13 whisker separate-doped and K2Ti6O13 whisker and Ni powder multi-doped MgH2 hydrogen storage composite systems were prepared by mechanical milling method. The microstructures and dehydrogenation properties of the prepared samples were characterized by some testing methods such as X-ray diffraction (XRD, scanning electron microscope (SEM and differential scanning calorimeter (DSC. The results show that the K2Ti6O13 whisker not only plays the roles in refining the MgH2 crystalline grain, but also inhibit the agglomeration of MgH2 particles in K2Ti6O13 whisker separate-doped system, which results in the decreased dehydrogenation temperature of MgH2 matrix. When the mass ratio of K2Ti6O13 to MgH2 is 3:7, the improvement effect on dehydrogenation properties of MgH2 is the most remarkable. As compared with pure ball-milled MgH2, the dehydrogenation temperature of MgH2 in K2Ti6O13 whisker separate-doped system is decreased by nearly 75℃. For K2Ti6O13 whisker and Ni powder multi-dopedsystem, the dehydrogenation temperature of MgH2 matrix is further decreased compared to K2Ti6O13 whisker separate-doped one due to the dual effects of refined MgH2 crystalline grain by K2Ti6O13 whisker and destabilized MgH2 lattice by Ni solution. As compared with pure ball-milled MgH2, the dehydrogenation temperature of MgH2 in K2Ti6O13 whisker and Ni powder multi-doped system is decreased by nearly 87℃.

  19. Fabrication of Al/A206–Al2O3 nano/micro composite by combining ball milling and stir casting technology

    International Nuclear Information System (INIS)

    Tahamtan, S.; Halvaee, A.; Emamy, M.; Zabihi, M.S.

    2013-01-01

    Highlights: ► Uniform distribution of alumina particles in molten Al alloy by using MMMC. ► Improvement in wettability of alumina particles with molten Al alloy by using MMMC. ► Porosity content in Al/A206-alumina composite decreased by using MMMC. ► Improvement in tensile strength of Al/A206-alumina composite by using MMMC. ► Decrease in interfacial reaction product by incorporating MMMC in semi-solid state. - Abstract: Al206/5vol.%Al 2 O 3p cast composites were fabricated by the injection of reinforcing particles into molten Al alloy in two different forms, i.e. as Al 2 O 3 particles and milled particulates of alumina with Al and Mg powders. The resultant milled powders (Master Metal Matrix Composite (MMMC)) were then added into the molten Al alloy both in semi-solid state and above liquidus temperature. Effects of powder addition technique, reinforcement particle size and casting temperature on distribution and incorporation of reinforcing particles into molten Al alloy were investigated. Morphology evolution of powders during milling, microscopic examinations of composite and matrix alloy were studied by scanning electron microscopy (SEM). X-ray diffraction (XRD) analysis was also used to determine the possible interaction between powders after ball milling process. Results showed that injection of powders in the form of MMMC leads to considerable improvement in incorporation and distribution of Al 2 O 3p in the Al206 matrix alloy leading to the improvement in tensile properties. Improvement in tensile properties is attributed to the better wetting of Al 2 O 3p by melt as well as removing microchannels and roughness on alumina particles as a consequence of ball milling process

  20. Lignocellulose fermentation and residual solids characterization for senescent switchgrass fermentation by Clostridium thermocellum in the presence and absence of continuous in situ ball-milling

    Energy Technology Data Exchange (ETDEWEB)

    Balch, Michael L.; Holwerda, Evert K.; Davis, Mark F.; Sykes, Robert W.; Happs, Renee M.; Kumar, Rajeev; Wyman, Charles E.; Lynd, Lee R.

    2017-04-12

    Milling during lignocellulosic fermentation, henceforth referred to as cotreatment, is investigated as an alternative to thermochemical pretreatment as a means of enhancing biological solubilization of lignocellulose. We investigate the impact of milling on soluble substrate fermentation by Clostridium thermocellum with comparison to yeast, document solubilization for fermentation of senescent switchgrass with and without ball milling, and characterize residual solids. Soluble substrate fermentation by C. thermocellum proceeded readily in the presence of continuous ball milling but was completely arrested for yeast. Total fractional carbohydrate solubilization achieved after fermentation of senescent switchgrass by C. thermocellum for 5 days was 0.45 without cotreatment or pretreatment, 0.81 with hydrothermal pretreatment (200 degrees C, 15 minutes, severity 4.2), and 0.88 with cotreatment. Acetate and ethanol were the main fermentation products, and were produced at similar ratios with and without cotreatment. Analysis of solid residues was undertaken using molecular beam mass spectrometry (PyMBMS) and solid-state nuclear magnetic resonance spectroscopy (NMR) in order to provide insight into changes in plant cell walls during processing via various modes. The structure of lignin present in residual solids remaining after fermentation with cotreatment appeared to change little, with substantially greater changes observed for hydrothermal pretreatment - particularly with respect to formation of C-C bonds. The observation of high solubilization with little apparent modification of the residue is consistent with cotreatment enhancing solubilization primarily by increasing the access of saccharolytic enzymes to the feedstock, and C. thermocellum being able to attack all the major linkages in cellulosic biomass provided that these linkages are accessible.

  1. Heterogeneous sono-Fenton-like process using martite nanocatalyst prepared by high energy planetary ball milling for treatment of a textile dye.

    Science.gov (United States)

    Dindarsafa, Mahsa; Khataee, Alireza; Kaymak, Baris; Vahid, Behrouz; Karimi, Atefeh; Rahmani, Amir

    2017-01-01

    High energy planetary ball milling was applied to prepare sono-Fenton nanocatalyst from natural martite (NM). The NM samples were milled for 2-6h at the speed of 320rpm for production of various ball milled martite (BMM) samples. The catalytic performance of the BMMs was greater than the NM for treatment of Acid Blue 92 (AB92) in heterogeneous sono-Fenton-like process. The NM and the BMM samples were characterized by XRD, FT-IR, SEM, EDX and BET analyses. The particle size distribution of the 6h-milled martite (BMM 3 ) was in the range of 10-90nm, which had the highest surface area compared to the other samples. Then, the impact of main operational parameters was investigated on the process. Complete removal of the dye was obtained at the desired conditions including initial pH 7, 2.5g/L BMM 3 dosage, 10mg/L AB92 concentration, and 150W ultrasonic power after 30min of treatment. The treatment process followed pseudo-first order kinetic. Environmentally-friendly modification of the NM, low leached iron amount and repeated application at milder pH were the significant benefits of the BMM 3 . The GC-MS was successfully used to identify the generated intermediates. Eventually, an artificial neural network (ANN) was applied to predict the AB92 removal efficiency based upon the experimental data with a proper correlation coefficient (R 2 =0.9836). Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Phase transformation and magnetic properties of MnAl powders prepared by elemental-doping and salt-assisted ball milling

    Science.gov (United States)

    Qian, Hui-Dong; Si, Ping-Zhan; Choi, Chul-Jin; Park, Jihoon; Cho, Kyung Mox

    2018-05-01

    The effects of elemental doping of Si and Fe on the ɛ→τ phase transformation and the magnetic properties of MnAl were studied. The magnetic powders of Si- and Fe-doped MnAl were prepared by using induction melting followed by water-quenching, annealing, and salt-assisted ball-milling. The Fe-doped MnAl powders are mainly composed of the L10-structured τ-phase, while the Si-doped MnAl are composed of τ-phase and a small fraction of γ2- and β-phases. A unique thin leaves-like morphology with thickness of several tens of nanometers and diameter size up to 500 nm were observed in the Si-doped MnAl powders. The Fe-doped MnAl powders show irregular shape with much larger dimensions in the range from several to 10 μm. The morphology difference of the samples was ascribed to the variation of the mechanical properties affected by different doping elements. The phase transformation temperatures of the ɛ-phase of the samples were measured. The doping of Fe decreases the onset temperature of the massive phase transformation in MnAl, while the Si-doping increases the massive phase transformation temperature. Both Fe and Si increase the Curie temperature of MnAl. A substantially enhanced coercivity up to 0.45 T and 0.42 T were observed in the ball-milled MnAl powders doped with Si and Fe, respectively.

  3. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis.

    Science.gov (United States)

    Buaban, Benchaporn; Inoue, Hiroyuki; Yano, Shinichi; Tanapongpipat, Sutipa; Ruanglek, Vasimon; Champreda, Verawat; Pichyangkura, Rath; Rengpipat, Sirirat; Eurwilaichitr, Lily

    2010-07-01

    Sugarcane bagasse is one of the most promising agricultural by-products for conversion to biofuels. Here, ethanol fermentation from bagasse has been achieved using an integrated process combining mechanical pretreatment by ball milling, with enzymatic hydrolysis and fermentation. Ball milling for 2 h was sufficient for nearly complete cellulose structural transformation to an accessible amorphous form. The pretreated cellulosic residues were hydrolyzed by a crude enzyme preparation from Penicillium chrysogenum BCC4504 containing cellulase activity combined with Aspergillus flavus BCC7179 preparation containing complementary beta-glucosidase activity. Saccharification yields of 84.0% and 70.4% for glucose and xylose, respectively, were obtained after hydrolysis at 45 degrees C, pH 5 for 72 h, which were slightly higher than those obtained with a commercial enzyme mixture containing Acremonium cellulase and Optimash BG. A high conversion yield of undetoxified pretreated bagasse (5%, w/v) hydrolysate to ethanol was attained by separate hydrolysis and fermentation processes using Pichia stipitis BCC15191, at pH 5.5, 30 degrees C for 24 h resulting in an ethanol concentration of 8.4 g/l, corresponding to a conversion yield of 0.29 g ethanol/g available fermentable sugars. Comparable ethanol conversion efficiency was obtained by a simultaneous saccharification and fermentation process which led to production of 8.0 g/l ethanol after 72 h fermentation under the same conditions. This study thus demonstrated the potential use of a simple integrated process with minimal environmental impact with the use of promising alternative on-site enzymes and yeast for the production of ethanol from this potent lignocellulosic biomass. 2009. Published by Elsevier B.V.

  4. Crystallographic alignment evolution and magnetic properties of anisotropic Sm{sub 0.6}Pr{sub 0.4}Co{sub 5} nanoflakes prepared by surfactant-assisted ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Xu, M.L.; Wu, Q.; Li, Y.Q.; Liu, W.Q.; Lu, Q.M.; Yue, M., E-mail: yueming@bjut.edu.cn

    2015-08-01

    The microstructure, crystal structure and magnetic properties were studied for Sm{sub 0.6}Pr{sub 0.4}Co{sub 5} nanoflakes prepared by surfactant-assisted high-energy ball milling (SAHEBM). Effect of ball-milling time on the c-axis crystallographic alignment, morphology and magnetic properties of Sm{sub 0.6}Pr{sub 0.4}Co{sub 5} nanoflakes was systematically investigated. With increasing milling time from 1 h to 7 h, the intensity ratio between (002) and (111) reflection peaks indicating degree of c-axis crystal texture of the (Sm, Pr)Co{sub 5} phase increases first, peaks at 3 h, then drops again, revealing that the strongest c-axis crystal texture was obtained in the nanoflakes milled for 3 h. On the other hand, the coercivity (H{sub ci}) of the flakes increases gradually from 1.71 to 14.65 kOe with the increase of ball milling time. As a result, an optimal magnetic properties of M{sub r} of 10.23 kGs, H{sub ci} of 11.45 kOe and (BH){sub max} of 24.40 MGOe was obtained in Sm{sub 0.6}Pr{sub 0.4}Co{sub 5} nanoflakes milled for 3 h, which also displayed a high aspect ratio, small in-plane size, pronounced (001) out-of-plane texture. - Highlights: • Anisotropic Sm{sub 0.6}Pr{sub 0.4}Co{sub 5} nanoflakes with strong c-axis texture were prepared. • Effects of ball-milling time on structure and magnetic properties were studied. • (BH){sub max} value of Sm{sub 0.6}Pr{sub 0.4}Co{sub 5} nanoflakes is larger than that of SmCo{sub 5} nanoflakes.

  5. Magnetic properties of Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} spinel ferrite nanoparticles synthesized by starch-assisted sol–gel autocombustion method and its ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Raghvendra Singh, E-mail: yadav@fch.vutbr.cz [Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno (Czech Republic); Havlica, Jaromir [Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno (Czech Republic); Hnatko, Miroslav; Šajgalík, Pavol [Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 36 Bratislava (Slovakia); Alexander, Cigáň [Institute of Measurement Science, Slovak Academy of Sciences, Dúbravská cesta 9, SK-841 04 Bratislava (Slovakia); Palou, Martin; Bartoníčková, Eva; Boháč, Martin; Frajkorová, Františka; Masilko, Jiri; Zmrzlý, Martin; Kalina, Lukas; Hajdúchová, Miroslava; Enev, Vojtěch [Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno (Czech Republic)

    2015-03-15

    In this article, Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (x=0.0 and 0.5) spinel ferrite nanoparticles were achieved at 800 °C by starch-assisted sol–gel autocombustion method. To further reduce the particle size, these synthesized ferrite nanoparticles were ball-milled for 2 h. X-ray diffraction patterns demonstrated single phase formation of Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} (x=0.0 and 0.5) spinel ferrite nanoparticles. FE-SEM analysis indicated the nanosized spherical particles formation with spherical morphology. The change in Raman modes and relative intensity were observed due to ball milling and consequently decrease of particle size and cationic redistribution. An X-ray Photoelectron Spectroscopy (XPS) result indicated that Co{sup 2+}, Zn{sup 2+} and Fe{sup 3+} exist in octahedral and tetrahedral sites. The cationic redistribution of Zn{sup 2+} and consequently Fe{sup 3+} occurred between octahedral and tetrahedral sites after ball-milling. The change in saturation magnetization (M{sub s}) and coercivity (H{sub c}) with decrease of nanocrystalline size and distribution of cations in spinel ferrite were observed. - Highlights: • Co{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} spinel ferrite nanoparticles. • Starch-assisted sol–gel auto-combustion method. • Effect of ball-milling on particle size and cation distribution. • Magnetic property dependent on cations and particle size.

  6. Influence of octanoic acid on SmCo{sub 5} nanoflakes prepared by surfactant-assisted high-energy ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Liyun, E-mail: zheng@udel.ed [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); College of Electromechanical Engineering, Hebei University of Engineering, Handan, Hebei 056038 (China); Cui Baozhi; Akdogan, Nilay G.; Li Wanfeng; Hadjipanayis, George C. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2010-08-20

    High-energy ball milling (HEBM) of magnetically hard SmCo{sub 5} was conducted in heptane with octanoic acid as the surfactant. The effects of octanoic acid on the morphology and magnetic properties of the powders were investigated by scanning electron microscopy, X-ray diffraction and vibrating sample magnetometry. The results show an interesting unexpected fact that the SmCo{sub 5} powders processed by octanoic acid-assisted HEBM were in form of nanoflakes with aspect-ratio of 10{sup 2}-10{sup 3} without the presence of nanoparticles. The thickness of nanoflakes decreases with increasing milling time. X-ray diffraction patterns did not show the sign of oxidation and the diffraction peaks of SmCo{sub 5} were getting broader with the increase of milling time. The nanoflakes were magnetically anisotropic and had a higher coercivity than the micro-particles prepared by HEBM without surfactant. The coercivity of SmCo{sub 5} increased initially with the milling time and then it decreased after reaching the maximum value of 15.2 kOe. High-resolution transmission electron microscopy image showed that the SmCo{sub 5} nanoflakes are nanocrystalline with an average crystallite size approximately 12 nm.

  7. Spark-plasma sintering and mechanical property of mechanically alloyed NiAl powder compact and ball-milled (Ni+Al) mixed powder compact

    International Nuclear Information System (INIS)

    Kim, J.S.; Jang, Y.I.; Kwon, Y.S.; Kim, Y.D.; Ahn, I.S.

    2001-01-01

    Mechanically-alloyed NiAl powder and (Ni+Al) powder mixture prepared by ball-milling were sintered by spark-plasma sintering (SPS) process. Densification behavior and mechanical property were determined from the experimental results and analysis such as changes in linear shrinkage, shrinkage rate, microstructure, and phase during sintering process, Vicker's hardness and transverse rupture strength tests. Densification mechanisms for MA-NiAl powder compact and (Ni+Al) powder mixture were different from each other. While the former showed a rapid increase in densification rate only at higher temperature region of 800-900 o C, the latter revealed firstly a rapid increase in densification rate even at low temperature of 300 o C and a subsequent increase up to 500 o C. Densities of both powder compact (MA and mixture) sintered at 1150 o C for 5 min were 98 and above 99 %, respectively. Sintered bodies were composed mainly of NiAl phase with Ni 3 Al as secondary phase for both powders. Sintered body of MA-NiAl powder showed a very fine grain structure. Crystallite size determined by XRD result and the Sherrer's equation was approximately 80 nm. Vicker's hardness for the sintered bodies of (Ni+Al) powder mixture and MA-NiAl powder were 410±12 H v and 555±10 H v , respectively, whereas TRS values 1097±48 MPa and 1393±75 MPa. (author)

  8. The synthesis of Cu/Fe/Fe3O4 catalyst through the aqueous solution ball milling method assisted by high-frequency electromagnetic field

    Science.gov (United States)

    Yingzhe, Zhang; Yuxing, He; Qingdong, Qin; Fuchun, Wang; Wankun, Wang; Yongmei, Luo

    2018-06-01

    In this paper, nano-magnetic Cu/Fe/Fe3O4 catalyst was prepared by a new aqueous solution ball milling method assisted by high-frequency electromagnetic field at room temperature. The products were characterized by means of X-ray diffraction (XRD), high-resolution transmission electron microscope (HRTEM), selected area electron diffraction (SAED), and vibrating sample magnetometer (VSM). Microwave induced catalytic degradation of methylene blue (MB) was carried out in the presence of Cu/Fe/Fe3O4. The concentration of methylene blue was determined by UV-Vis spectrophotometry. The solid catalyst showed high catalytic activity of degrade MB and considerable saturation magnetization, lower remanence and coercivity. It indicate that the catalyst can be effectively separated for reuse by simply applying an external magnetic field and it can greatly promote their potential industrial application to eliminate organic pollutants from waste-water. Finally, we found that it is the non-thermal effect of microwave that activated the catalytic activity of Cu/Fe/Fe3O4 to degrade MB.

  9. Effect of ball milling and dynamic compaction on magnetic properties of Al{sub 2}O{sub 3}/Co(P) composite particles

    Energy Technology Data Exchange (ETDEWEB)

    Denisova, E. A. [Kirensky Institute of Physics SB RAS, Krasnoyarsk (Russian Federation); Krasnoyarsk Institute of Railways Transport, Krasnoyarsk (Russian Federation); Kuzovnikova, L. A. [Krasnoyarsk Institute of Railways Transport, Krasnoyarsk (Russian Federation); Iskhakov, R. S., E-mail: rauf@iph.krasn.ru; Eremin, E. V. [Kirensky Institute of Physics SB RAS, Krasnoyarsk (Russian Federation); Bukaemskiy, A. A. [Institut fur Sicherheitsforschung und Reaktortechnik, D-52425 Juelich (Germany); Nemtsev, I. V. [Krasnoyarsk Scientific Center SB RAS, Krasnoyarsk (Russian Federation)

    2014-05-07

    The evolution of the magnetic properties of composite Al{sub 2}O{sub 3}/Co(P) particles during ball milling and dynamic compaction is investigated. To prepare starting composite particles, the Al{sub 2}O{sub 3} granules were coated with a Co{sub 95}P{sub 5} shell by electroless plating. The magnetic and structural properties of the composite particles are characterized by scanning electron microscopy, X-ray diffraction, and the use of the Physical Property Measurement System. The use of composite core-shell particles as starting powder for mechanoactivation allows to decrease treatment duration to 1 h and to produce a more homogeneous bulk sample than in the case of the mixture of Co and Al{sub 2}O{sub 3} powders. The magnetic properties of the milled composite particles are correlated with changes in the microstructure. Reduction in grain size of Co during milling leads to an increase of the volume fraction of superparamagnetic particles and to a decrease of the saturation magnetization. The local magnetic anisotropy field depends on the amount of hcp-Co phase in sample. The anisotropy field value decreases from 8.4 kOe to 3.8 kOe with an increase in milling duration up to 75 min. The regimes of dynamic compaction were selected so that the magnetic characteristics—saturation magnetization and coercive field—remained unchanged.

  10. Formation of ultra-fine grained SUS316L steels by ball-milling and their mechanical properties after neutron irradiation

    International Nuclear Information System (INIS)

    Zheng, Y.J.; Yamasaki, T.; Fukami, T.; Terasawa, M.; Mitamura, T.

    2003-01-01

    In order to overcome the irradiation embrittlement in austenitic stainless steels, ultra-fine grained SUS316L steels with very fine TiC particles have been developed. The SUS316L-TiC nanocomposite powders having 1.0 to 2.0 mass% TiC were prepared by ball-milling SUS316L-TiC powder mixtures for 125 h in an argon gas atmosphere. The milled powders were consolidated by hot isostatic pressing (HIP) under a pressure of 200 MPa at temperatures between 700 and 1000 C, and the bulk materials with grain sizes between 100 and 400 nm have been produced. The possibility of using fine-grained TiC particles to pin grain boundaries and thereby maintain the ultra-fine grained structures has been discussed. In order to clarify the effects of the neutron irradiation on mechanical properties of the ultra-fine grained SUS316L steels, Vickers microhardness measurements were performed before and after the irradiation of 1.14 x 10 23 n/m 2 and 1.14 x 10 24 n/m 2 . The hardness increased with increasing the dose of the irradiation. However, these increasing rates of the ultra-fine grained steels were much smaller than those of the coarse-grained SUS316L steels having grain sizes between 13 and 50 μm. (orig.)

  11. Fe-FeS2 adsorbent prepared with iron powder and pyrite by facile ball milling and its application for arsenic removal.

    Science.gov (United States)

    Min, Xiaobo; Li, Yangwenjun; Ke, Yong; Shi, Meiqing; Chai, Liyuan; Xue, Ke

    2017-07-01

    Arsenic is one of the major pollutants and a worldwide concern because of its toxicity and chronic effects on human health. An adsorbent of Fe-FeS 2 mixture for effective arsenic removal was successfully prepared by mechanical ball milling. The products before and after arsenic adsorption were characterized with scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The adsorbent shows high arsenic removal efficiency when molar ratio of iron to pyrite is 5:5. The experimental data of As(III) adsorption are fitted well with the Langmuir isotherm model with a maximal adsorption capacity of 101.123 mg/g. And As(V) data were described perfectly by the Freundlich model with a maximal adsorption capacity of 58.341 L/mg. As(III) is partial oxidized to As(V) during the adsorption process. High arsenic uptake capability and cost-effectiveness of waste make it potentially attractive for arsenic removal.

  12. Performance enhancement of NdFeB nanoflakes prepared by surfactant-assisted ball milling at low temperature by using different surfactants

    Science.gov (United States)

    An, Xiaoxin; Jin, Kunpeng; Wang, Fang; Fang, Qiuli; Du, Juan; Xia, Weixing; Yan, Aru; Liu, J. Ping; Zhang, Jian

    2017-02-01

    Hard magnetic NdFeB submicron and nanoflakes were successfully prepared by surfactant-assisted ball milling at room temperature (SABMRT) and low temperature (SABMLT) by using oleic acid (OA), oleylamine (OLA) and trioctylamine (TOA) as surfactant, respectively. Among the surfactants used, OA and OLA have similar effects on the morphology of the NdFeB nanoflakes milled at both room and low temperature. In the case of TOA, irregular micron-sized particles and submirco/nanoflakes were obtained for the NdFeB powders prepared by SABMRT and SABMLT, respectively. Samples prepared by SABMLT show better crystallinity and better degree of grain alignment than that prepared by SABMRT with the same surfactant. Comparing with the samples milled at RT, higher coercivity and larger remanence ratio were achieved in the NdFeB samples prepared at LT. The amounts of residual surfactants in final NdFeB powders were also calculated, which reveals that the final NdFeB powders milled at LT possess lower amount of residual surfactants than those milled at RT. It was found that lowering milling temperature of SABM would be a promising way for fabricating permanent magnetic materials with better hard magnetic properties.

  13. Research kinetic of motion of milling bodies in ball mill, outfit heat-exchange unit and calculation of its energy performance

    Science.gov (United States)

    Romanovich, A. A.; Romanovich, M. A.; Apukhtina, I. V.

    2018-03-01

    The article considers topical issues of energy saving in cement production with the use of a technological grinding complex, which includes a press roller grinder and a ball mill. Rational conditions of grinding are proposed for pre-shredded material through the installation of blade energy exchange devices (BEED) in the mill drum. The loading level in the first chamber varies periodically depending on the drum rotation angle, equipped with BEED. In the zone of BEED’s active action, there is a “scooping” of a part of grinding bodies together with crushed material, raising them to a height and giving them a longitudinally transverse movement, which is different from movement created in the mill without BEED. At the same time, additional work that consumes engine power is being done. A technique is proposed for calculating the additional engine power consumption of a mill, equipped with a BEED. This power is spent on creating a longitudinal-transverse motion of grinding bodies and its first and second chambers in areas of active influence of the BEED. Comparative analysis of results obtained experimentally and calculations of proposed equations show a high convergence of results. These analytical dependencies may be interest to Russian and foreign organizations that carry out their activities in the field of design and manufacture of cement equipment, as well as to cement producers.

  14. Magneto-optical properties of α-Fe2O3@ZnO nanocomposites prepared by the high energy ball-milling technique

    Science.gov (United States)

    Chaudhury, Chandana Roy; Roychowdhury, Anirban; Das, Anusree; Das, Dipankar

    2016-05-01

    Magnetic-fluorescent nanocomposites (NCs) with 10 wt% of α-Fe2O3 in ZnO have been prepared by the high energy ball-milling. The crystallite sizes of α-Fe2O3 and ZnO in the NCs are found to vary from 65 nm to 20 nm and 47 nm to 15 nm respectively as milling time is increased from 2 to 30 h. XRD analysis confirms presence of α-Fe2O3 and ZnO in pure form in all the NCs. UV-vis study of the NCs shows a continuous blue-shift of the absorption peak and a steady increase of band gap of ZnO with increasing milling duration that are assigned to decreasing particle size of ZnO in the NCs. Photoluminescence (PL) spectra of the NCs reveal three weak emission bands in the visible region at 421, 445 and 485 nm along with the strong near band edge emission at 391 nm. These weak emission bands are attributed to different defect - related energy levels e.g. Zn-vacancy, Zn interstitial and oxygen vacancy. Dc and ac magnetization measurements show presence of weakly interacting superparamagnetic (SPM) α-Fe2O3 particles in the NCs. 57Fe-Mössbauer study confirms presence of SPM hematite in the sample milled for 30 h. Positron annihilation lifetime measurements indicate presence of cation vacancies in ZnO nanostructures confirming results of PL studies.

  15. Encaging palladium(0 in layered double hydroxide: A sustainable catalyst for solvent-free and ligand-free Heck reaction in a ball mill

    Directory of Open Access Journals (Sweden)

    Wei Shi

    2017-08-01

    Full Text Available In this paper, the synthesis of a cheap, reusable and ligand-free Pd catalyst supported on MgAl layered double hydroxides (Pd/MgAl-LDHs by co-precipitation and reduction methods is described. The catalyst was used in Heck reactions under high-speed ball milling (HSBM conditions at room temperature. The effects of milling-ball size, milling-ball filling degree, reaction time, rotation speed and grinding auxiliary category, which would influence the yields of mechanochemical Heck reactions, were investigated in detail. The characterization results of XRD, ICP–MS and XPS suggest that Pd/MgAl-LDHs have excellent textural properties with zero-valence Pd on its layers. The reaction results indicate that the catalyst could be utilized in HSBM systems to afford a wide range of Heck coupling products in satisfactory yields. Furthermore, this catalyst could be easily recovered and reused for at least five times without significant loss of catalytic activity.

  16. Mechanism of nanostructure formation in ball-milled Cu and Cu–3wt%Zn studied by X-ray diffraction line profile analysis

    International Nuclear Information System (INIS)

    Khoshkhoo, M. Samadi; Scudino, S.; Bednarcik, J.; Kauffmann, A.; Bahmanpour, H.; Freudenberger, J.; Scattergood, R.; Zehetbauer, M.J.; Koch, C.C.; Eckert, J.

    2014-01-01

    Highlights: • Nanostructured powders of Cu and Cu–3wt%Zn were produced using ball milling. • During cryomilling, nanostructure was formed by structural decomposition. • Dynamic recrystallization happened in room–temperature milling of Cu–3wt%Zn. • Structural decomposition took place during room–temperature milling of Cu. -- Abstract: The mechanism of nanostructure formation during cryogenic and room-temperature milling of Cu and Cu–3wt%Zn was investigated using X-ray diffraction line profile analysis. For that, the whole powder pattern modeling approach (WPPM) was used to analyze the evolution of microstructural features including coherently scattering domain size, dislocation density, and density of planar faults. It was found that for all sets of experiments, structural decomposition is the dominant mechanism of nanostructure formation during cryomilling. During subsequent RT-milling, grain refinement still occurs by structural decomposition for pure copper. On the other hand, discontinuous dynamic recrystallization is responsible for nanostructure formation during RT-milling of Cu–3wt%Zn. This is attributed to lower stacking-fault energy of Cu–3wt%Zn compared to pure copper. Finally, room temperature milling reveals the occurrence of a detwinning phenomenon

  17. The grinding behavior of ground copper powder for Cu/CNT nanocomposite fabrication by using the dry grinding process with a high-speed planetary ball mill

    Science.gov (United States)

    Choi, Heekyu; Bor, Amgalan; Sakuragi, Shiori; Lee, Jehyun; Lim, Hyung-Tae

    2016-01-01

    The behavior of ground copper powder for copper-carbon nanotube (copper-CNT) nanocomposite fabrication during high-speed planetary ball milling was investigated because the study of the behavior characteristics of copper powder has recently gained scientific interest. Also, studies of Cu/CNT composites have widely been done due to their useful applications to enhanced, advanced nano materials and components, which would significantly improve the properties of new mechatronics-integrated materials and components. This study varied experimental conditions such as the rotation speed and the grinding time with and without CNTs, and the particle size distribution, median diameter, crystal structure and size, and particle morphology were monitored for a given grinding time. We observed that pure copper powders agglomerated and that the morphology changed with changing rotation speed. The particle agglomerations were observed with maximum experiment conditions (700 rpm, 60 min) in this study of the grinding process for mechanical alloys in the case of pure copper powders because the grinding behavior of Cu/CNT agglomerations was affected by the addition of CNTs. Indeed, the powder morphology and the crystal size of the composite powder could be changed by increasing the grinding time and the rotation speed.

  18. Magnetic interactions in high-energy ball-milled NiZnFe2O4/SiO2 composites

    International Nuclear Information System (INIS)

    Pozo Lopez, G.; Silvetti, S.P.; Urreta, S.E.; Cabanillas, E.D.

    2007-01-01

    Composites Ni 0.5 Zn 0.5 Fe 2 O 4 /SiO 2 are obtained after high-energy ball milling precursor oxides, in stoichiometric proportions, for 200 h at room temperature and further isothermal annealing for 1 h at 1273 K, under air and argon atmosphere, respectively. After 200 h grinding, a complex microstructure develops with small hematite crystals mixed with SiO 2 and remanent NiO and ZnO particles, and very small NiZn ferrite clusters, reaching a mean size of ∼9 nm. The high temperature treatments remove the hematite grains from the powder and promote the growth of NiZn ferrite grains to reach mean sizes nearly ∼20 nm. For treatments in oxidizing atmospheres, the major phases are SiO 2 and NiZn ferrite, while for annealing in Ar a new phase appears, fayalite, which is paramagnetic at room temperature. The M-H loops are all well described by the sum of a ferromagnetic and a superparamagnetic-like contribution. The observed properties are interpreted considering the different magnetic phases obtained, their crystal sizes and their mutual interactions

  19. Fabrication and characterization of Cu/YSZ cermet high-temperature electrolysis cathode material prepared by high-energy ball-milling method

    International Nuclear Information System (INIS)

    Lee, Sungkyu; Kang, Kyoung-Hoon; Kim, Jong-Min; Hong, Hyun Seon; Yun, Yongseung; Woo, Sang-Kook

    2008-01-01

    Cu/YSZ composites (40 and 60 vol.% Cu powder with balance YSZ) was successfully fabricated by high-energy ball-milling of Cu and YSZ powders at 400 rpm for 24 h, pressing into pellets (O 13 mm x 2 mm) and subsequent sintering process at 900 deg. C under flowing 5%-H 2 /Ar gas for use as cermet cathode material of high-temperature electrolysis (HTE) of water vapor in a more economical way compared with conventional Ni/YSZ cermet cathode material. The Cu/YSZ composite powders thus synthesized and sintered were characterized using various analytical tools such as XRD, SEM, and laser diffraction and scattering method. Electrical conductivity of sintered Cu/YSZ cermet pellets thus fabricated was measured using 4-probe technique and compared with that of Ni/YSZ cermets. The effect of composites composition on the electrical conductivity was investigated and marked increase in electrical conductivity for copper contents greater than 40 vol.% in the composite was explained by percolation threshold

  20. Facile synthesis technology of Li_3V_2(PO_4)_3/C adding H_2O_2 in ball mill process

    International Nuclear Information System (INIS)

    Min, Xiujuan; Mu, Deying; Li, Ruhong; Dai, Changsong

    2016-01-01

    Highlights: • Sintering time of Li_3V_2(PO_4)_3 reduced to 6 hours by adding hydrogen peroxide. • Electrochemical performance of Li_3V_2(PO_4)_3 was improved by reducing sintering time. • The Li_3V_2(PO_4)_3 production process was simplified during material synthesis stage. - Abstract: Li_3V_2(PO_4)_3/C has stable structure, high theory specific capacity and good safety performance, therefore it has become the research focus of lithium-ion batteries in recent years. The facile synthesis technology of Li_3V_2(PO_4)_3/C was characterized by adding different amounts of H_2O_2. Structure and morphology characteristics were examined by XRD, TG, Raman Spectroscopy, XPS and SEM. Electrochemical performance was investigated by constant current charging and discharging test. The results revealed that the Li_3V_2(PO_4)_3/C electrochemical performance of adding 15 mL H_2O_2 was better after sintering during 6 h. At the charge cut-off voltage of 4.3 V, the first discharge capacity at 0.2 C rate reached 127 mAh g"−"1. Because of adding H_2O_2 in the ball-mill dispersant, the vanadium pentoxide formed the wet sol. The molecular-leveled mixture increased the homogeneity of raw materials. Therefore, the addition of H_2O_2 shortened the sintering time and significantly improved the electrochemical performance of Li_3V_2(PO_4)_3/C.

  1. Phase evolution during early stages of mechanical alloying of Cu–13 wt.% Al powder mixtures in a high-energy ball mill

    International Nuclear Information System (INIS)

    Dudina, Dina V.; Lomovsky, Oleg I.; Valeev, Konstantin R.; Tikhov, Serguey F.; Boldyreva, Natalya N.; Salanov, Aleksey N.; Cherepanova, Svetlana V.; Zaikovskii, Vladimir I.; Andreev, Andrey S.; Lapina, Olga B.; Sadykov, Vladislav A.

    2015-01-01

    Highlights: • Phase formation during early stages of Cu–Al mechanical alloying was studied. • The products of mechanical alloying are of highly non-equilibrium character. • X-ray amorphous phases are present in the products of mechanical alloying. • An Al-rich X-ray amorphous phase is distributed between the crystallites. - Abstract: We report the phase and microstructure evolution of the Cu–13 wt.% Al mixture during treatment in a high-energy planetary ball mill with a particular focus on the early stages of mechanical alloying. Several characterization techniques, including X-ray diffraction phase analysis, nuclear magnetic resonance spectroscopy, differential dissolution, thermal analysis, and electron microscopy/elemental analysis, have been combined to study the evolution of the phase composition of the mechanically alloyed powders and describe the microstructure of the multi-phase products of mechanical alloying at different length scales. The following reaction sequence has been confirmed: Cu + Al → CuAl 2 (+Cu) → Cu 9 Al 4 + (Cu) → Cu(Al). The phase evolution was accompanied by the microstructure changes, the layered structure of the powder agglomerates disappearing with milling time. This scheme is further complicated by the processes of copper oxidation, reduction of copper oxides by metallic aluminum, and by variation of the stoichiometry of Cu(Al) solid solutions with milling time. Substantial amounts of X-ray amorphous phases were detected as well. Differential dissolution technique has revealed that a high content of aluminum in the Cu(Al) solid solution-based powders is due to the presence of Al-rich phases distributed between the Cu(Al) crystallites

  2. Study of the influence of thermal treatment on the magnetic properties of lithium ferrite prepared by wet ball-milling using nitrates as raw material

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, S. Soreto, E-mail: silvia.soreto@ua.pt; Graça, M.P.F., E-mail: mpfg@ua.pt; Costa, L.C., E-mail: kady@ua.pt; Valente, M.A., E-mail: mav@ua.pt

    2014-08-01

    Graphical abstract: - Highlights: • The saturation magnetization increases with heat-treatment temperature until 1200 °C. • 1200 °C sample presents, at 5 K, a magnetic moment of 73 emu/g and 66 emu/g at 300 K. • Heat-treatment promotes the formation of lithium ferrate and hematite, decreasing the magnetic moment. - Abstract: Lithium ferrite (LiFe{sub 5}O{sub 8}) is an attractive material for several potential technological applications. Critical to such attractiveness are its physical properties, such as high Curie temperature, square hysteresis loop and high magnetization. Knowing that the properties of these crystals depend on the preparation method and raw materials, in this work LiFe{sub 5}O{sub 8} crystallites were obtained by controlled heat-treatments, between 200 and 1400 °C, of homogeneous Li{sub 2}O-Fe{sub 2}O{sub 3} powders prepared by wet ball-milling method and using lithium and iron nitrates as raw materials. LiFe{sub 5}O{sub 8} crystal phase was formed through heat-treatments at temperatures above 500 °C. At higher temperatures the formation of lithium ferrate and hematite is promoted, leading to a decrease in the magnetic moment. Heat-treated the sample at 1200 °C results in the highest levels of magnetic saturation, presenting a magnetic moment of 73 emu/g at 5 K and 66 emu/g at 300 K, respectively.

  3. Ball-milled nano-colloids of rare-earth compounds as liquid gain media for capillary optical amplifiers and lasers

    Science.gov (United States)

    Patel, Darayas; Blockmon, Avery; Ochieng, Vanesa; Lewis, Ashley; Wright, Donald M.; Lewis, Danielle; Valentine, Rueben; Valentine, Maucus; Wesley, Dennis; Sarkisov, Sergey S.; Darwish, Abdalla M.; Sarkisov, Avedik S.

    2017-02-01

    Nano-colloids and nano-crystals doped with ions of rare-earth elements have recently attracted a lot of attention in the scientific community due to their potential applications as biomarkers, fluorescent inks, gain media for lasers and optical amplifiers. Many rare-earth doped materials of different compositions, shapes and size distribution have been prepared by different synthetic methods, such as chemical vapor deposition, sol-gel process, micro-emulsion techniques, gas phase condensation methods, hydrothermal methods and laser ablation. In this paper micro-crystalline powder of the rare-earthdoped compound NaYF4:Yb3+, Er3+ was synthesized using a simple wet process followed by baking in open air. Under 980 nm diode laser excitation strong fluorescence in the 100 nm band around 1531-nm peak was observed from the synthesized micro-powder. The micro-powder was pulverized using a ball mill and prepared in the form of nano-colloids in different liquids. The particle size of the obtained nano-colloids was measured using an atomic force microscope and a dynamic light scatterometer. The size of the nano-particles was close to 100-nm. The nano-colloids were utilized as a filling media in capillary optical amplifiers and lasers. The gain of a 7-cm-long capillary optical amplifier (150-micron inner diameter) was as high as 6 dB at 200 mW pump power. The synthesized nano-colloids and the active optical components using them can be potentially used in optical communication, signal processing, optical computing, and other applications.

  4. Ball-milling and AlB2 addition effects on the hydrogen sorption properties of the CaH2 + MgB2 system

    International Nuclear Information System (INIS)

    Schiavo, B.; Girella, A.; Agresti, F.; Capurso, G.; Milanese, C.

    2011-01-01

    Research highlights: → Calcium hydride + magnesium-aluminum borides as candidates for hydrogen storage. → Long time ball milling improves hydrogen sorption kinetics of the CaH 2 +MgB 2 system. → Coexistence of MgB 2 and AlB 2 does not improve hydrogen sorption performances. → Total substitution of MgB 2 with AlB 2 improves the system kinetics and reversibility. → Below 400 deg. C almost the full hydrogen capacity of the CaH 2 + AlB 2 system is reached. - Abstract: Among the borohydrides proposed for solid state hydrogen storage, Ca(BH 4 ) 2 is particularly interesting because of its favourable thermodynamics and relatively cheap price. Composite systems, where other species are present in addition to the borohydride, show some advantages in hydrogen sorption properties with respect to the borohydrides alone, despite a reduction of the theoretical storage capacity. We have investigated the milling time influence on the sorption properties of the CaH 2 + MgB 2 system from which Ca(BH 4 ) 2 and MgH 2 can be synthesized by hydrogen absorption process. Manometric and calorimetric measurements showed better kinetics for long time milled samples. We found that the total substitution of MgB 2 with AlB 2 in the starting material can improve the sorption properties significantly, while the co-existence of both magnesium and aluminum borides in the starting mixture did not cause any improvement. Rietveld refinements of the X-ray powder diffraction spectra were used to confirm the hypothesized reactions.

  5. Real/binary co-operative and co-evolving swarms based multivariable PID controller design of ball mill pulverizing system

    International Nuclear Information System (INIS)

    Menhas, Muhammad Ilyas; Fei Minrui; Wang Ling; Qian Lin

    2012-01-01

    Highlights: ► We extend the concept of co-operation and co-evolution in some PSO variants. ► We use developed co-operative PSOs in multivariable PID controller design/tuning. ► We find that co-operative PSOs converge faster and give high quality solutions. ► Dividing the search space among swarms improves search efficiency. ► The proposed methods allow the practitioner for heterogeneous problem formulation. - Abstract: In this paper, multivariable PID controller design based on cooperative and coevolving multiple swarms is demonstrated. A simplified multi-variable MIMO process model of a ball mill pulverizing system with steady state decoupler is considered. In order to formulate computational models of cooperative and coevolving multiple swarms three different algorithms like real coded PSO, discrete binary PSO (DBPSO) and probability based discrete binary PSO (PBPSO) are employed. Simulations are carried out on three composite functions simultaneously considering multiple objectives. The cooperative and coevolving multiple swarms based results are compared with the results obtained through single swarm based methods like real coded particle swarm optimization (PSO), discrete binary PSO (DBPSO), and probability based discrete binary PSO (PBPSO) algorithms. The cooperative and coevolving swarms based techniques outperform the real coded PSO, PBPSO, and the standard discrete binary PSO (DBPSO) algorithm in escaping from local optima. Furthermore, statistical analysis of the simulation results is performed to calculate the comparative reliability of various techniques. All of the techniques employed are suitable for controller tuning, however, the multiple cooperative and coevolving swarms based results are considerably better in terms of mean fitness, variance of fitness, and success rate in finding a feasible solution in comparison to those obtained using single swarm based methods.

  6. Structural and Magnetic Properties Evolution of Co-Nd Substituted M-type Hexagonal Strontium Ferrites Synthesized by Ball-Milling-Assisted Ceramic Process

    Science.gov (United States)

    Chen, Wen; Wu, Wenwei; Zhou, Chong; Zhou, Shifang; Li, Miaoyu; Ning, Yu

    2018-03-01

    M-type hexagonal Sr1- x Co x Nd x Fe12- x O19 ( x = 0, 0.08, 0.16, and 0.24) has been synthesized by ball milling, followed by calcination in air. The calcined products have been characterized by x-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectra, and vibrating sample magnetometry. XRD and SEM analyses confirm the formation of M-type Sr hexaferrite with platelet-like morphology when Sr1- x Co x Nd x Fe12- x O19 ( x = 0, 0.08, 0.16, and 0.24) precursors are calcined at 950°C in air for 2.5 h. Lattice parameters " a" and " c" values of Sr1- x Co x Nd x Fe12- x O19 reflect a very small variation after doping of Nd3+ and Co2+ ions. Average crystallite size of Sr1- x Co x Nd x Fe12- x O19 sample, calcined at 1150°C, decreased obviously after doping of Co2+ and Nd3+ ions. This is because the bond energy of Nd3+-O2- is much larger than that of Sr2+-O2-. Magnetic characterization indicates that all the samples exhibit good magnetic properties. Substitution of Sr2+ and Fe3+ ions by Nd3+ and Co2+ ions can improve the specific saturation magnetizations and remanence of Sr1- x Co x Nd x Fe12- x O19. Sr0.84Co0.16Nd0.16Fe11.84O19, calcined at 1050°C, has the highest specific saturation magnetization value (74.75 ± 0.60 emu/g), remanence (45.15 ± 0.32 emu/g), and magnetic moment (14.34 ± 0.11 μ B); SrFe12O19, calcined at 1150°C, has the highest coercivity value (4037.01 ± 42.39 Oe). These magnetic parameters make this material a promising candidate for applications such as high-density magnetic recording and microwave absorbing materials.

  7. Effects of processing parameters on the synthesis of (K0.5Na0.5)NbO3 nanopowders by reactive high-energy ball milling method.

    Science.gov (United States)

    Nguyen, Duc Van

    2014-01-01

    The effects of ball milling parameters, namely, the ball-to-powder mass ratio and milling speed, on the synthesis of (K0.5Na0.5)NbO3 nanopowders by high-energy ball milling method from a stoichiometric mixture containing Na2CO3, K2CO3, and Nb2O5 were investigated in this paper. The results indicated that the single crystalline phase of (K0.5Na0.5)NbO3 was received in as-milled samples synthesized using optimized ball-to-powder mass ratio of 35 : 1 and at a milling speed of 600 rpm for 5 h. In the optimized as-milled samples, no remaining alkali carbonates that can provide the volatilizable potassium-containing species were found and (K0.5Na0.5)NbO3 nanopowders were readily obtained via the formation of an intermediate carbonato complex. This complex was mostly transformed into (K0.5Na0.5)NbO3 at temperature as low as 350°C and its existence was no longer detected at spectroscopic level when calcination temperature crossed over 700°C.

  8. Moessbauer spectroscopy study of the synthesis of SnFe2O4 by high energy ball milling (HEBM) of SnO and α-Fe2O3

    International Nuclear Information System (INIS)

    Uwakweh, Oswald N C; Perez Moyet, Richard; Mas, Rita; Morales, Carolyn; Vargas, Pedro; Silva, Josue; Rossa, Angel; Lopez, Neshma

    2010-01-01

    The formation of single phase nanoparticles of spinel structured ferrite, SnFe 2 O 4 , by mechanochemical syntheses using HEBM of stoichiometric amounts of solid SnO and α-Fe 2 O 3 with acetone as surfactant was achieved progressively as function of ball milling time. Single phase SnFe 2 O 4 formation commenced from five hours of continuous ball milling, and reached completion after 22 hours, thereby yielding a material with a lattice parameter of 8.543 A, and particle size of 10.91 nm. The coercivity was 4.44 mT, magnetic saturation value of 17.75 Am 2 /kg, and remanent magnetizations of 1.50 Am 2 /kg, correspondingly. The nanosized particles exhibited superparamagnetic behavior phenomenon based on Moessbauer spectroscopy measurements. The kinetic analyses based on the modified Kissinger method yielded four characteristic stages during the thermal evolution of the 22 hours milled state with activation energies of 0.23 kJ/mol, 2.52 kJ/mol, 0.024 kJ/mol, and 1.57 kJ/mol respectively.

  9. C, N co-doped TiO_2/TiC_0_._7N_0_._3 composite coatings prepared from TiC_0_._7N_0_._3 powder using ball milling followed by oxidation

    International Nuclear Information System (INIS)

    Hao, Liang; Wang, Zhenwei; Zheng, Yaoqing; Li, Qianqian; Guan, Sujun; Zhao, Qian; Cheng, Lijun; Lu, Yun; Liu, Jizi

    2017-01-01

    Highlights: • TiO_2/TiC_0_._7N_0_._3 coatings were prepared by ball milling followed by oxidation. • In situ co-doping of C and N with simultaneous TiO_2 formation was observed. • Improved photocatalytic activity under UV/visible light was noticed. • Synergism in co-doping and heterojunction formation promoted carrier separation. - Abstract: Ball milling followed by heat oxidation was used to prepared C, N co-doped TiO_2 coatings on the surfaces of Al_2O_3 balls from TiC_0_._7N_0_._3 powder. The as-prepared coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible spectrophotometer (UV–vis). The results show that continuous TiC_0_._7N_0_._3 coatings were formed after ball milling. C, N co-doped TiO_2/TiC_0_._7N_0_._3 composite coatings were prepared after the direct oxidization of TiC_0_._7N_0_._3 coatings in the atmosphere. However, TiO_2 was hardly formed in the surface layer of TiC_0_._7N_0_._3 coatings within a depth less than 10 nm during the heat oxidation of TiC_0_._7N_0_._3 coatings in carbon powder. Meanwhile, the photocatalytic activity evaluation of these coatings was conducted under the irradiation of UV and visible light. All the coatings showed photocatalytic activity in the degradation of MB no matter under the irradiation of UV or visible light. The C, N co-doped TiO_2/TiC_0_._7N_0_._3 composite coatings showed the most excellent performance. The enhancement under visible light irradiation should attribute to the co-doping of carbon and nitrogen, which enhances the absorption of visible light. The improvement of photocatalytic activity under UV irradiation should attribute to the synergistic effect of C, N co-doping, the formation of rutile-anatase mixed phases and the TiO_2/TiC_0_._7N_0_._3 composite microstructure.

  10. Record critical current densities in IG processed bulk YBa{sub 2}Cu{sub 3}O{sub y} fabricated using ball-milled Y{sub 2}Ba{sub 1}Cu{sub 1}O{sub 5} phase

    Energy Technology Data Exchange (ETDEWEB)

    Muralidhar, Miryala; Kenta, Nakazato; Murakami, Masato [Department of Materials Science and Engineering, Superconducting Materials Laboratory, Shibaura Institute of Technology, Tokyo (Japan); Zeng, XianLin; Koblischka, Michael R. [Institute of Experimental Physics, Saarland University, Saarbruecken (Germany); Diko, Pavel [Institute of Experimental Physics, Material Physics Laboratory, Slovak Academy of Sciences, Kosice (Slovakia)

    2016-02-15

    The infiltration-growth (IG) technique enables the uniform and controllable Y{sub 2}BaCuO{sub 5} (Y211) secondary phase particles formation within the YBa{sub 2}Cu{sub 3}O{sub y} (Y123) matrix. Recent results clarified that the flux pinning performance of the Y123 material was dramatically improved by optimizing the processing conditions during the IG process. In this paper, we adapted the IG technique and produced several samples with addition of nanometer-sized Y211 secondary phase particles, which were produced by a ball milling technique. We found that the performance of the IG processed Y123 material dramatically improved in the low field region for a ball milling time of 12 h as compared to the samples without a ball milling step. Magnetization measurements showed a sharp superconducting transition with an onset T{sub c} at around 92 K. The critical current density (J{sub c}) at 77 K and zero field was determined to be 224 022 Acm{sup -2}, which is higher than the not ball-milled sample. Furthermore, microstructural observations exhibited a uniform microstructure with homogenous distribution of nanosized Y-211 inclusions within the Y-123 matrix. The improved performance of the Y-123 material can be understood in terms of fine distribution of the secondary phases. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Utilization of aluminum to obtaining a duplex type stainless steel using high energy ball milling; Obtencao de um aco inoxidavel de estrutura duplex do sistema FeMnAl processado por moagem de alta energia

    Energy Technology Data Exchange (ETDEWEB)

    Pavlak, I.E.; Cintho, O.M., E-mail: eng.igorpavlak@yahoo.com.b [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil); Capocchi, J.D.T. [Universidade de Sao Paulo (USP), SP (Brazil)

    2010-07-01

    The obtaining of stainless steel using aluminum in its composition - FeMnAl system, has been researches subject since the sixties, by good mechanical properties and resistance to oxidation presented, when compared with conventional FeNiCr stainless steel system. In another point, the aluminum and manganese are low cost then traditional elements. This work, metallic powders of iron, manganese and pure aluminum, were processed in a Spex type high-energy ball mill in nitrogen atmosphere. The milling products were compressed into pastille form and sintered under inert atmosphere. The final products were characterized by optical and electronic microscopy and microhardness test. The metallographic analysis shows a typical austenite and ferrite duplex type microstructure. The presence of these phases was confirmed according X ray diffraction analysis. (author)

  12. Synthesis of the hydride mixtures (1 - x)AlH3/xMgH2 (0 ≤ x ≤ 0.3) by ball milling and their hydrogen storage properties

    International Nuclear Information System (INIS)

    Iosub, V.; Matsunaga, T.; Tange, K.; Ishikiriyama, M.; Miwa, K.

    2009-01-01

    In an effort to thermodynamically stabilize the alane (i.e., to increase the desorption enthalpy), partial substitution of Mg for Al was investigated by ball milling the mixtures (1 - x)AlH 3 /xMgH 2 (x = 0.1, 0.2 and 0.3). Rietveld analysis of the XRD profiles showed that the cell volume of α-AlH 3 increased with the Mg substitution rate, and thereby formation of solid solutions was assumed (x ≤ 0.05). In agreement with the experimental results, theoretical calculations indicated that a hypothetical supercell structure (MgAl 15 )H 47 (x = 0.0625), which contained a hydrogen vacancy, was at least metastable. However, the effect of alane stabilization by Mg substitution for Al was not observed, either by experiment or by simulation, and only an increase in the activation energy was measured.

  13. Ball-milling synthesis of ZnO@sulphur/carbon nanotubes and Ni(OH)_2@sulphur/carbon nanotubes composites for high-performance lithium-sulphur batteries

    International Nuclear Information System (INIS)

    Gu, Xingxing; Tong, Chuan-jia; Wen, Bo; Liu, Li-min; Lai, Chao; Zhang, Shanqing

    2016-01-01

    Highlights: • Metal oxides or hydroxides coating sulfur-based composite are successfully prepared. • Large-scale synthesis can be realized via the facile wet ball-milling strategy. • Density functional theory (DFT) calculation is applied to calculate adsorption energy. • ZnO exhibits a higher adsorption energy for Li_2S_8 than that Ni(OH)_2. • ZnO@sulphur/carbon nanotubes composite show excellent cycle and discharge performance. - Abstract: Zinc oxide wrapped sulphur/carbon nanotubes (ZnO@S/CNT) and nickel hydroxide wrapped sulphur/carbon nanotubes (Ni(OH)_2@S/CNT) nanocomposites are prepared using a simple, low cost and scalable ball-milling method. As the cathodes in Li-S batteries, the as-prepared ZnO@S/CNT composite illustrates a superior high initial capacity of 1663 mAh g"−"1 at a charge/discharge rate of 160 mA g"−"1, and maintains a reversible capacity at approximately 942 mAh g"−"1 after 70 cycles. While for Ni(OH)_2@S/CNT composites, its initial capacity is also as high as 1331 mAh g"−"1, but a poorer cycling stability is presented. When the charge/discharge current is increased to 1600 mA g"−"1, a high reversible capacity of 698 mAh g"−"1 after 200 cycles still can be obtained for the ZnO@S/CNT composite, far better than that of Ni(OH)_2@S/CNT composites. The better cycling performance and high discharge capacity can be attributed to the strong interactions between ZnO and S_x"2"− species, which is verified by the density functional theory (DFT) calculation result that the ZnO exhibits a higher adsorption energy for Li_2S_8 than the Ni(OH)_2.

  14. Coexistence of short- and long-range ferromagnetic order in nanocrystalline Fe2Mn1−xCuxAl (x=0.0, 0.1 and 0.3) synthesized by high-energy ball milling

    International Nuclear Information System (INIS)

    Thanh, Tran Dang; Nanto, Dwi; Tuyen, Ngo Thi Uyen; Nan, Wen-Zhe; Yu, YiKyung; Tartakovsky, Daniel M.; Yu, S.C.

    2015-01-01

    In this work, we prepared nanocrystalline Fe 2 Mn 1−x Cu x Al (x=0.0, 0.1 and 0.3) powders by the high energy ball milling technique, and then studied their critical properties. Our analysis reveals that the increase of Cu-doping concentration (up to x=0.3) in these powders leads to a gradual increase of the ferromagnetic–paramagnetic transition temperature from 406 to 452 K. The Banerjee criterion suggests that all the samples considered undergo a second-order phase transition. A modified Arrott plot and scaling analysis indicate that the critical exponents (β=0.419 and 0.442, γ=1.082 and 1.116 for x=0.0 and 0.1, respectively) are located in between those expected for the 3D-Heisenberg and the mean-field models; the values of β=0.495 and γ=1.046 for x=0.3 sample are very close to those of the mean-field model. These features reveal the coexistence of the short- and long-range ferromagnetic order in the nanocrystalline Fe 2 Mn 1−x Cu x Al powders. Particularly, as the concentration of Cu increases, values of the critical exponent shift towards those of the mean-field model. Such results prove the Cu doping favors establishing a long-range ferromagnetic order. - Highlights: • Fe 2 Mn 1−x Cu x Al nanocrystals were prepared by a high energy ball milling method. • A coexistence of the short- and long-range FM order in the nanocrystals. • Cu doping favors establishing a long-range FM order in the nanocrystals. • All the ΔS m (T, H) data are followed a universal master curve

  15. Non-isothermal synergetic catalytic effect of TiF{sub 3} and Nb{sub 2}O{sub 5} on dehydrogenation high-energy ball milled MgH{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tiebang, E-mail: tiebangzhang@nwpu.edu.cn; Hou, Xiaojiang; Hu, Rui; Kou, Hongchao; Li, Jinshan

    2016-11-01

    MgH{sub 2}-M (M = TiF{sub 3} or Nb{sub 2}O{sub 5} or both of them) composites prepared by high-energy ball milling are used in this work to illustrate the dehydrogenation behavior of MgH{sub 2} with the addition of catalysts. The phase compositions, microstructures, particle morphologies and distributions of MgH{sub 2} with catalysts have been evaluated. The non-isothermal synergetic catalytic-dehydrogenation effect of TiF{sub 3} and Nb{sub 2}O{sub 5} evaluated by differential scanning calorimetry gives the evidences that the addition of catalysts is an effective strategy to destabilize MgH{sub 2} and reduce hydrogen desorption temperatures and activation energies. Depending on additives, the desorption peak temperatures of catalyzed MgH{sub 2} reduce from 417 °C to 341 °C for TiF{sub 3} and from 417 °C to 336 °C for Nb{sub 2}O{sub 5}, respectively. The desorption peak temperature reaches as low as 310 °C for MgH{sub 2} catalyzed by TiF{sub 3} coupling with Nb{sub 2}O{sub 5}. The non-isothermal synergetic catalytic effect of TiF{sub 3} and Nb{sub 2}O{sub 5} is mainly attributed to electronic exchange reactions with hydrogen molecules, which improve the recombination of hydrogen atoms during dehydrogenation process of MgH{sub 2}. - Highlights: • Catalytic surface for MgH{sub 2} is achieved by high-energy ball milling. • Non-isothermal dehydrogenation behavior of MgH{sub 2} with TiF{sub 3} and/or Nb{sub 2}O{sub 5} is illustrated. • Dehydrogenation activation energies of synergetic catalyzed MgH{sub 2} are obtained. • Synergetic catalytic-dehydrogenation mechanism of TiF{sub 3} and Nb{sub 2}O{sub 5} is proposed.

  16. Magnetic properties and coercivity mechanism of Sm{sub 1-x}Pr{sub x}Co{sub 5} (x=0-0.6) nanoflakes prepared by surfactant-assisted ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Xu, M. L.; Yue, M., E-mail: yueming@bjut.edu.cn; Wu, Q.; Li, Y. Q.; Lu, Q. M. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China)

    2016-05-15

    Sm{sub 1-x}Pr{sub x}Co{sub 5} (x=0-0.6) nanoflakes with CaCu{sub 5} structure were successfully prepared by surfactant-assisted high-energy ball milling (SAHEBM). The crystal structure and magnetic properties of Sm{sub 1-x}Pr{sub x}Co{sub 5} (x=0-0.6) nanoflakes were studied by X-ray diffraction and vibrating sample magnetometer. Effects of Pr addition on the structure, magnetic properties and coercivity mechanism of Sm{sub 1-x}Pr{sub x}Co{sub 5} nanoflakes were systematically investigated. XRD results show that all the nanoflakes have a hexagonal CaCu{sub 5}-type (Sm, Pr){sub 1}Co{sub 5} main phase and the (Sm, Pr){sub 2}Co{sub 7} impurity phase, and all of the samples exhibit a strong (00l) texture after magnetic alignment. As the Pr content increases, remanence firstly increases, then slightly reduced, while anisotropy field (H{sub A}) and H{sub ci} of decrease monotonically. Maximum energy product [(BH){sub max}] of the flakes increases first, peaks at 24.4 MGOe with Pr content of x = 0.4, then drops again. Magnetization behavior analysis indicate that the coercivity mechanism is mainly controlled by inhomogeneous domain wall pinning, and the pinning strength weakens with the increased Pr content, suggesting the great influence of H{sub A} on the coercivity of flakes.

  17. In situ Fabrication of Fe-TiB{sub 2} Nanocomposite Powder by Planetary Ball Milling and Subsequent Heat-treatment of FeB and TiH{sub 2} Powder Mixture

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, Xuan-Khoa [Hanoi Uneversity of Science and Technology, Hanoi (Viet Nam); Bae, Sun-Woo; Kim, Ji Soon [University of Ulsan, Ulsan (Korea, Republic of)

    2017-01-15

    Fe-TiB{sub 2} powder was synthesized in-situ by the planetary ball milling and subsequent heat-treatment of an iron boride (FeB) and titanium hydride (TiH{sub 2}) powder mixture. Mechanical activation of the (FeB+TiH{sub 2}) powder mixtures was observed after a milling time of 3 hours at 700 rpm of rotation speed, but activation was not the same after 1 hour milling time. The particle size of the (FeB+ TiH{sub 2}) powder mixture was reduced to the nanometer scale, and each constituent was homogeneously distributed. A sharp exothermic peak was observed at a lower temperature (749 ℃) on the DSC curves for the (FeB+TiH{sub 2}) powder mixture milled for 3 hours, compared to the one milled for 1 hour (774 ℃). These peaks were confirmed to have resulted from the formation reaction of the TiB{sub 2} phase, from Ti and B elements in the FeB. The Fe-TiB{sub 2} composite powder fabricated in situ exhibited only two phases of Fe and TiB{sub 2} with homogeneous distribution. The size of the TiB{sub 2} particulates in the Fe matrix was less than 5 nm.

  18. Facile synthesis technology of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C adding H{sub 2}O{sub 2} in ball mill process

    Energy Technology Data Exchange (ETDEWEB)

    Min, Xiujuan [MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, School of Chemistry and Chemical Engineering, Harbin 150001 (China); Mu, Deying [MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, School of Chemistry and Chemical Engineering, Harbin 150001 (China); Department of Environmental Engineering, Harbin University of Commerce, Harbin 150076 (China); Li, Ruhong [MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, School of Chemistry and Chemical Engineering, Harbin 150001 (China); Dai, Changsong, E-mail: changsd@hit.edu.cn [MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, School of Chemistry and Chemical Engineering, Harbin 150001 (China)

    2016-11-15

    Highlights: • Sintering time of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} reduced to 6 hours by adding hydrogen peroxide. • Electrochemical performance of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} was improved by reducing sintering time. • The Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} production process was simplified during material synthesis stage. - Abstract: Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C has stable structure, high theory specific capacity and good safety performance, therefore it has become the research focus of lithium-ion batteries in recent years. The facile synthesis technology of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C was characterized by adding different amounts of H{sub 2}O{sub 2}. Structure and morphology characteristics were examined by XRD, TG, Raman Spectroscopy, XPS and SEM. Electrochemical performance was investigated by constant current charging and discharging test. The results revealed that the Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C electrochemical performance of adding 15 mL H{sub 2}O{sub 2} was better after sintering during 6 h. At the charge cut-off voltage of 4.3 V, the first discharge capacity at 0.2 C rate reached 127 mAh g{sup −1}. Because of adding H{sub 2}O{sub 2} in the ball-mill dispersant, the vanadium pentoxide formed the wet sol. The molecular-leveled mixture increased the homogeneity of raw materials. Therefore, the addition of H{sub 2}O{sub 2} shortened the sintering time and significantly improved the electrochemical performance of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}/C.

  19. Barium Ferrite Ball Milled in Vacuum

    International Nuclear Information System (INIS)

    Campbell, S.J.; Wu, E.; Kaczmarek, W.A.; Wang, G.

    1998-01-01

    The structural and magnetic behaviour of BaFe 12 O 19 subjected to milling in vacuum for 1000 h has been investigated by x-ray powder diffraction and Moessbauer effect spectroscopy techniques. Pronounced structural disorder is obtained along with partial decomposition of BaFe 12 O 19 to α-Fe 2 O 3 and evidence for superparamagnetic relaxation effects due to the fine particles produced on milling. Restoration of the fully crystallised BaFe 12 O 19 structure on annealing at 1000 deg. C is accompanied by a six fold enhancement in the magnetic coercivity. This behaviour is linked with the fine crystallites

  20. C, N co-doped TiO{sub 2}/TiC{sub 0.7}N{sub 0.3} composite coatings prepared from TiC{sub 0.7}N{sub 0.3} powder using ball milling followed by oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Liang, E-mail: haoliang@tust.edu.cn [Tianjin Key Lab of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, Tianjin (China); College of Mechanical Engineering, Tianjin University of Science & Technology, No. 1038 Dagu Nanlu, Hexi District, Tianjin 300222 (China); Wang, Zhenwei, E-mail: 1004329228@qq.com [School of Naval Architecture and Ocean Engineering, Harbin Institute of Technology, Weihai, No. 2, Wenhua West Road, Weihai 264209 (China); Zheng, Yaoqing, E-mail: 13612177268@163.com [College of Mechanical Engineering, Tianjin University of Science & Technology, No. 1038 Dagu Nanlu, Hexi District, Tianjin 300222 (China); Li, Qianqian, E-mail: 1482471595@qq.com [College of Mechanical Engineering, Tianjin University of Science & Technology, No. 1038 Dagu Nanlu, Hexi District, Tianjin 300222 (China); Guan, Sujun, E-mail: sujunguan1221@gmail.com [College of Mechanical Engineering & Graduate School, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Zhao, Qian, E-mail: zhaoqian@tust.edu.cn [Tianjin Key Lab of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, Tianjin (China); College of Mechanical Engineering, Tianjin University of Science & Technology, No. 1038 Dagu Nanlu, Hexi District, Tianjin 300222 (China); Cheng, Lijun, E-mail: chenglijun@tust.edu.cn [Tianjin Key Lab of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, Tianjin (China); College of Mechanical Engineering, Tianjin University of Science & Technology, No. 1038 Dagu Nanlu, Hexi District, Tianjin 300222 (China); Lu, Yun, E-mail: luyun@faculty.chiba-u.jp [College of Mechanical Engineering & Graduate School, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Liu, Jizi, E-mail: jzliu@njust.edu.cn [Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, No. 200, Xiaolingwei Street, Nanjing 210094 (China)

    2017-01-01

    Highlights: • TiO{sub 2}/TiC{sub 0.7}N{sub 0.3} coatings were prepared by ball milling followed by oxidation. • In situ co-doping of C and N with simultaneous TiO{sub 2} formation was observed. • Improved photocatalytic activity under UV/visible light was noticed. • Synergism in co-doping and heterojunction formation promoted carrier separation. - Abstract: Ball milling followed by heat oxidation was used to prepared C, N co-doped TiO{sub 2} coatings on the surfaces of Al{sub 2}O{sub 3} balls from TiC{sub 0.7}N{sub 0.3} powder. The as-prepared coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible spectrophotometer (UV–vis). The results show that continuous TiC{sub 0.7}N{sub 0.3} coatings were formed after ball milling. C, N co-doped TiO{sub 2}/TiC{sub 0.7}N{sub 0.3} composite coatings were prepared after the direct oxidization of TiC{sub 0.7}N{sub 0.3} coatings in the atmosphere. However, TiO{sub 2} was hardly formed in the surface layer of TiC{sub 0.7}N{sub 0.3} coatings within a depth less than 10 nm during the heat oxidation of TiC{sub 0.7}N{sub 0.3} coatings in carbon powder. Meanwhile, the photocatalytic activity evaluation of these coatings was conducted under the irradiation of UV and visible light. All the coatings showed photocatalytic activity in the degradation of MB no matter under the irradiation of UV or visible light. The C, N co-doped TiO{sub 2}/TiC{sub 0.7}N{sub 0.3} composite coatings showed the most excellent performance. The enhancement under visible light irradiation should attribute to the co-doping of carbon and nitrogen, which enhances the absorption of visible light. The improvement of photocatalytic activity under UV irradiation should attribute to the synergistic effect of C, N co-doping, the formation of rutile-anatase mixed phases and the TiO{sub 2}/TiC{sub 0.7}N{sub 0.3} composite microstructure.

  1. Distributed multiscale computing

    NARCIS (Netherlands)

    Borgdorff, J.

    2014-01-01

    Multiscale models combine knowledge, data, and hypotheses from different scales. Simulating a multiscale model often requires extensive computation. This thesis evaluates distributing these computations, an approach termed distributed multiscale computing (DMC). First, the process of multiscale

  2. Coexistence of short- and long-range ferromagnetic order in nanocrystalline Fe{sub 2}Mn{sub 1−x}Cu{sub x}Al (x=0.0, 0.1 and 0.3) synthesized by high-energy ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, Tran Dang, E-mail: thanhxraylab@yahoo.com [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi (Viet Nam); Nanto, Dwi [Physics Education, Syarif Hidayatullah States Islamic University, Jakarta 15412 (Indonesia); Tuyen, Ngo Thi Uyen [Department of Natural Science, Nha Trang Pedagogic College, Nguyen Chanh, Nha Trang, Khanh Hoa (Viet Nam); Nan, Wen-Zhe [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Yu, YiKyung [Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093-0411 (United States); Tartakovsky, Daniel M., E-mail: dmt@ucsd.edu [Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093-0411 (United States); Yu, S.C., E-mail: scyu@cbnu.ac.kr [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi (Viet Nam)

    2015-11-15

    In this work, we prepared nanocrystalline Fe{sub 2}Mn{sub 1−x}Cu{sub x}Al (x=0.0, 0.1 and 0.3) powders by the high energy ball milling technique, and then studied their critical properties. Our analysis reveals that the increase of Cu-doping concentration (up to x=0.3) in these powders leads to a gradual increase of the ferromagnetic–paramagnetic transition temperature from 406 to 452 K. The Banerjee criterion suggests that all the samples considered undergo a second-order phase transition. A modified Arrott plot and scaling analysis indicate that the critical exponents (β=0.419 and 0.442, γ=1.082 and 1.116 for x=0.0 and 0.1, respectively) are located in between those expected for the 3D-Heisenberg and the mean-field models; the values of β=0.495 and γ=1.046 for x=0.3 sample are very close to those of the mean-field model. These features reveal the coexistence of the short- and long-range ferromagnetic order in the nanocrystalline Fe{sub 2}Mn{sub 1−x}Cu{sub x}Al powders. Particularly, as the concentration of Cu increases, values of the critical exponent shift towards those of the mean-field model. Such results prove the Cu doping favors establishing a long-range ferromagnetic order. - Highlights: • Fe{sub 2}Mn{sub 1−x}Cu{sub x}Al nanocrystals were prepared by a high energy ball milling method. • A coexistence of the short- and long-range FM order in the nanocrystals. • Cu doping favors establishing a long-range FM order in the nanocrystals. • All the ΔS{sub m}(T, H) data are followed a universal master curve.

  3. Multiscale Retinex

    Directory of Open Access Journals (Sweden)

    Ana Belén Petro

    2014-04-01

    Full Text Available While the retinex theory aimed at explaining human color perception, its derivations have led to efficient algorithms enhancing local image contrast, thus permitting among other features, to "see in the shadows". Among these derived algorithms, Multiscale Retinex is probably the most successful center-surround image filter. In this paper, we offer an analysis and implementation of Multiscale Retinex. We point out and resolve some ambiguities of the method. In particular, we show that the important color correction final step of the method can be seriously improved. This analysis permits to come up with an automatic implementation of Multiscale Retinex which is as faithful as possible to the one described in the original paper. Overall, this implementation delivers excellent results and confirms the validity of Multiscale Retinex for image color restoration and contrast enhancement. Nevertheless, while the method parameters can be fixed, we show that a crucial choice must be left to the user, depending on the lightning condition of the image: the method must either be applied to each color independently if a color balance is required, or to the luminance only if the goal is to achieve local contrast enhancement. Thus, we propose two slightly different algorithms to deal with both cases.

  4. Catalytic effect of halide additives ball milled with magnesium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Malka, I.E.; Bystrzycki, J. [Department of Advanced Materials and Technologies, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); Czujko, T. [Department of Advanced Materials and Technologies, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); CanmetENERGY, Hydrogen Fuel Cells and Transportation Energy, Natural Resources (Canada)

    2010-02-15

    The influence of various halide additives milled with magnesium hydride (MgH{sub 2}) on its decomposition temperature was studied. The optimum amount of halide additive and milling conditions were evaluated. The MgH{sub 2} decomposition temperature and energy of activation reduction were measured by temperature programmed desorption (TPD) and differential scanning calorimetry (DSC). The difference in catalytic efficiency between chlorides and fluorides of the various metals studied is presented. The effects of oxidation state, valence and position in the periodic table for selected halides on MgH{sub 2} decomposition temperature were also studied. The best catalysts, from the halides studied, for magnesium hydride decomposition were ZrF{sub 4}, TaF{sub 5}, NbF{sub 5}, VCl{sub 3} and TiCl{sub 3}. (author)

  5. Rock Characteristics and Ball Mill Energy Requirements at ...

    African Journals Online (AJOL)

    These changes can have great impact on milling operations. ... Goldfields Ghana Limited, Tarkwa Gold Mine (TGM), processes ores which occur in ... The parameters examined had deviated from the design; Work Index (WI) for example was ...

  6. Mechanocatalytic Production of Lactic Acid from Glucose by Ball Milling

    Directory of Open Access Journals (Sweden)

    Luyang Li

    2017-06-01

    Full Text Available A solvent-free process was developed for the direct production of lactic acid from glucose in a mechanocatalytic process in the presence of Ba(OH2, and a moderate lactic acid yield of 35.6% was obtained. Glucose conversion and lactic acid formation were favorable at higher catalyst/glucose mass ratios. However, at relatively lower catalyst/glucose mass ratios, they were greatly inhibited, and the promotion of fructose formation was observed. The mechanocatalytic process was applicable for various carbohydrates such as C5 sugars, C6 sugars, and disaccharides with 20–36% lactic acid yields achieved. This work provides a new pathway for the production of value-added chemicals from biomass resources.

  7. Ball milling and annealing of Co-50 at% W Powders

    CSIR Research Space (South Africa)

    Bolokang, AS

    2013-04-01

    Full Text Available Broadening and height reduction of X-ray diffraction peaks were observed after cold-pressing of unmilled Co-W pow- der mixture. It seems the effect of cold pressing has slightly reduced the lattice parameter of W from 3.165 to 3.143 Å. Consequent...

  8. Functional nanometers for hydrogen storage produced by ball milling

    Energy Technology Data Exchange (ETDEWEB)

    Czujko, T. [Waterloo Univ., ON (Canada). Dept. of Mechanical and Mechatronics Engineering]|[Military Univ. of Technology, Warsaw (Poland). Dept. of Advanced Materials and Technologies; Varin, R.A. [Waterloo Univ., ON (Canada). Dept. of Mechanical and Mechatronics Engineering; Wronski, Z.S. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre, Hydrogen Fuel Cells and Transportation; Zaranski, Z. [Military Univ. of Technology, Warsaw (Poland). Dept. of Advanced Materials and Technologies

    2008-07-01

    It is becoming increasingly important to switch to cleaner alternative energy carriers such as hydrogen, as environmental concerns over greenhouse gas emissions from the burning of fossil fuel increase. Specifically, there is a need for efficient on-board hydrogen storage technologies for vehicular applications. This paper discussed three different methods of hydrogen desorption temperature reduction and desorption kinetics of nanostructured hydrides. The first method was based on substantial hydride particle size refinement. The second method utilized catalytic effects of nanometric n-alumina (Al{sub 2}O{sub 3}), n-yttrium oxide powder (Y{sub 2}O{sub 3}) and n-nickel (Ni) additives. The third method was based on a composite of nanohydride mixtures. The composite approach was applied to the magnesium hydride (MgH{sub 2}) plus sodium tetrahydridoborate (NaBH{sub 4}) and lithium aluminum hydride (LiAlH{sub 4}) systems. The paper presented the effects of nanostructuring and nanocatalytic additives on Mg hydride desorption properties as well as a composite behaviour of nanostructured complex hydrides. It was concluded that milling of commercial MgH{sub 2} with the nano-oxide additives had a limited effect on improving the hydrogen storage properties. The addition of specialty Inco nanometric Ni reduced the hydrogen desorption temperature considerably. 28 refs., 1 tab., 9 figs.

  9. Rock Characteristics and Ball Mill Energy Requirements at ...

    African Journals Online (AJOL)

    Michael

    2015-06-01

    Jun 1, 2015 ... Mineral processing plants often experience changes in throughput; blending ... Samples taken at the same depth from each of the pits showed that Akontasi Pit has the most ... All these factors contribute to vast variation of.

  10. Multiscale Cancer Modeling

    Science.gov (United States)

    Macklin, Paul; Cristini, Vittorio

    2013-01-01

    Simulating cancer behavior across multiple biological scales in space and time, i.e., multiscale cancer modeling, is increasingly being recognized as a powerful tool to refine hypotheses, focus experiments, and enable more accurate predictions. A growing number of examples illustrate the value of this approach in providing quantitative insight on the initiation, progression, and treatment of cancer. In this review, we introduce the most recent and important multiscale cancer modeling works that have successfully established a mechanistic link between different biological scales. Biophysical, biochemical, and biomechanical factors are considered in these models. We also discuss innovative, cutting-edge modeling methods that are moving predictive multiscale cancer modeling toward clinical application. Furthermore, because the development of multiscale cancer models requires a new level of collaboration among scientists from a variety of fields such as biology, medicine, physics, mathematics, engineering, and computer science, an innovative Web-based infrastructure is needed to support this growing community. PMID:21529163

  11. Multiscale Representations Phase II

    National Research Council Canada - National Science Library

    Bar-Yam, Yaneer

    2004-01-01

    .... Multiscale analysis provides an analytic tool that can be applied to evaluating force capabilities as well as the relevance of designs for technological innovations to support force structures and their modernization...

  12. Multiscale System Theory

    Science.gov (United States)

    1990-02-21

    LIDS-P-1953 Multiscale System Theory Albert Benveniste IRISA-INRIA, Campus de Beaulieu 35042 RENNES CEDEX, FRANCE Ramine Nikoukhah INRIA...TITLE AND SUBTITLE Multiscale System Theory 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...the development of a corresponding system theory and a theory of stochastic processes and their estimation. The research presented in this and several

  13. Multiscale Simulations Using Particles

    DEFF Research Database (Denmark)

    Walther, Jens Honore

    vortex methods for problems in continuum fluid dynamics, dissipative particle dynamics for flow at the meso scale, and atomistic molecular dynamics simulations of nanofluidic systems. We employ multiscale techniques to breach the atomistic and continuum scales to study fundamental problems in fluid...... dynamics. Recent work on the thermophoretic motion of water nanodroplets confined inside carbon nanotubes, and multiscale techniques for polar liquids will be discussed in detail at the symposium....

  14. Multiscale Computing with the Multiscale Modeling Library and Runtime Environment

    NARCIS (Netherlands)

    Borgdorff, J.; Mamonski, M.; Bosak, B.; Groen, D.; Ben Belgacem, M.; Kurowski, K.; Hoekstra, A.G.

    2013-01-01

    We introduce a software tool to simulate multiscale models: the Multiscale Coupling Library and Environment 2 (MUSCLE 2). MUSCLE 2 is a component-based modeling tool inspired by the multiscale modeling and simulation framework, with an easy-to-use API which supports Java, C++, C, and Fortran. We

  15. Multiscale Biological Materials

    DEFF Research Database (Denmark)

    Frølich, Simon

    of multiscale biological systems have been investigated and new research methods for automated Rietveld refinement and diffraction scattering computed tomography developed. The composite nature of biological materials was investigated at the atomic scale by looking at the consequences of interactions between...

  16. Towards distributed multiscale computing for the VPH

    NARCIS (Netherlands)

    Hoekstra, A.G.; Coveney, P.

    2010-01-01

    Multiscale modeling is fundamental to the Virtual Physiological Human (VPH) initiative. Most detailed three-dimensional multiscale models lead to prohibitive computational demands. As a possible solution we present MAPPER, a computational science infrastructure for Distributed Multiscale Computing

  17. Multiscale singularity trees

    DEFF Research Database (Denmark)

    Somchaipeng, Kerawit; Sporring, Jon; Johansen, Peter

    2007-01-01

    We propose MultiScale Singularity Trees (MSSTs) as a structure to represent images, and we propose an algorithm for image comparison based on comparing MSSTs. The algorithm is tested on 3 public image databases and compared to 2 state-of-theart methods. We conclude that the computational complexity...... of our algorithm only allows for the comparison of small trees, and that the results of our method are comparable with state-of-the-art using much fewer parameters for image representation....

  18. Multiscale modelling of nanostructures

    International Nuclear Information System (INIS)

    Vvedensky, Dimitri D

    2004-01-01

    Most materials phenomena are manifestations of processes that are operative over a vast range of length and time scales. A complete understanding of the behaviour of materials thereby requires theoretical and computational tools that span the atomic-scale detail of first-principles methods and the more coarse-grained description provided by continuum equations. Recent efforts have focused on combining traditional methodologies-density functional theory, molecular dynamics, Monte Carlo methods and continuum descriptions-within a unified multiscale framework. This review covers the techniques that have been developed to model various aspects of materials behaviour with the ultimate aim of systematically coupling the atomistic to the continuum descriptions. The approaches described typically have been motivated by particular applications but can often be applied in wider contexts. The self-assembly of quantum dot ensembles will be used as a case study for the issues that arise and the methods used for all nanostructures. Although quantum dots can be obtained with all the standard growth methods and for a variety of material systems, their appearance is a quite selective process, involving the competition between equilibrium and kinetic effects, and the interplay between atomistic and long-range interactions. Most theoretical models have addressed particular aspects of the ordering kinetics of quantum dot ensembles, with far fewer attempts at a comprehensive synthesis of this inherently multiscale phenomenon. We conclude with an assessment of the current status of multiscale modelling strategies and highlight the main outstanding issues. (topical review)

  19. Multiscale Signal Analysis and Modeling

    CERN Document Server

    Zayed, Ahmed

    2013-01-01

    Multiscale Signal Analysis and Modeling presents recent advances in multiscale analysis and modeling using wavelets and other systems. This book also presents applications in digital signal processing using sampling theory and techniques from various function spaces, filter design, feature extraction and classification, signal and image representation/transmission, coding, nonparametric statistical signal processing, and statistical learning theory. This book also: Discusses recently developed signal modeling techniques, such as the multiscale method for complex time series modeling, multiscale positive density estimations, Bayesian Shrinkage Strategies, and algorithms for data adaptive statistics Introduces new sampling algorithms for multidimensional signal processing Provides comprehensive coverage of wavelets with presentations on waveform design and modeling, wavelet analysis of ECG signals and wavelet filters Reviews features extraction and classification algorithms for multiscale signal and image proce...

  20. Multiscale computing in the exascale era

    NARCIS (Netherlands)

    Alowayyed, S.; Groen, D.; Coveney, P.V.; Hoekstra, A.G.

    We expect that multiscale simulations will be one of the main high performance computing workloads in the exascale era. We propose multiscale computing patterns as a generic vehicle to realise load balanced, fault tolerant and energy aware high performance multiscale computing. Multiscale computing

  1. Multiscale principal component analysis

    International Nuclear Information System (INIS)

    Akinduko, A A; Gorban, A N

    2014-01-01

    Principal component analysis (PCA) is an important tool in exploring data. The conventional approach to PCA leads to a solution which favours the structures with large variances. This is sensitive to outliers and could obfuscate interesting underlying structures. One of the equivalent definitions of PCA is that it seeks the subspaces that maximize the sum of squared pairwise distances between data projections. This definition opens up more flexibility in the analysis of principal components which is useful in enhancing PCA. In this paper we introduce scales into PCA by maximizing only the sum of pairwise distances between projections for pairs of datapoints with distances within a chosen interval of values [l,u]. The resulting principal component decompositions in Multiscale PCA depend on point (l,u) on the plane and for each point we define projectors onto principal components. Cluster analysis of these projectors reveals the structures in the data at various scales. Each structure is described by the eigenvectors at the medoid point of the cluster which represent the structure. We also use the distortion of projections as a criterion for choosing an appropriate scale especially for data with outliers. This method was tested on both artificial distribution of data and real data. For data with multiscale structures, the method was able to reveal the different structures of the data and also to reduce the effect of outliers in the principal component analysis

  2. The Magnetospheric Multiscale Magnetometers

    Science.gov (United States)

    Russell, C. T.; Anderson, B. J.; Baumjohann, W.; Bromund, K. R.; Dearborn, D.; Fischer, D.; Le, G.; Leinweber, H. K.; Leneman, D.; Magnes, W.; hide

    2014-01-01

    The success of the Magnetospheric Multiscale mission depends on the accurate measurement of the magnetic field on all four spacecraft. To ensure this success, two independently designed and built fluxgate magnetometers were developed, avoiding single-point failures. The magnetometers were dubbed the digital fluxgate (DFG), which uses an ASIC implementation and was supplied by the Space Research Institute of the Austrian Academy of Sciences and the analogue magnetometer (AFG) with a more traditional circuit board design supplied by the University of California, Los Angeles. A stringent magnetic cleanliness program was executed under the supervision of the Johns Hopkins University,s Applied Physics Laboratory. To achieve mission objectives, the calibration determined on the ground will be refined in space to ensure all eight magnetometers are precisely inter-calibrated. Near real-time data plays a key role in the transmission of high-resolution observations stored onboard so rapid processing of the low-resolution data is required. This article describes these instruments, the magnetic cleanliness program, and the instrument pre-launch calibrations, the planned in-flight calibration program, and the information flow that provides the data on the rapid time scale needed for mission success.

  3. Multiscale scenarios for nature futures

    CSIR Research Space (South Africa)

    Rosa, IMD

    2017-09-01

    Full Text Available & Evolution, vol. 1: 1416-1419 Multiscale scenarios for nature futures Rosa IMD Pereira HM Ferrier S Alkemade R Acosta LA Akcakaya HR den Belder E Fazel AM Fujimori S Sitas NE ABSTRACT: Targets for human development are increasingly...

  4. Multiscale mechanics of dynamical metamaterials

    NARCIS (Netherlands)

    Geers, M.G.D.; Kouznetsova, V.; Sridhar, A.; Krushynska, A.; Kleiber, M.; Burczynski, T.; Wilde, K.; Gorski, J.; Winkelmann, K.; Smakosz, L.

    2016-01-01

    This contribution focuses on the computational multi-scale solution of wave propagation phenomena in dynamic metamaterials. Taking the Bloch-Floquet solution for the standard elastic case as a point of departure, an extended scheme is presented to solve for heterogeneous visco-elastic materials. The

  5. Multiscale Thermohydrologic Model

    Energy Technology Data Exchange (ETDEWEB)

    T. Buscheck

    2004-10-12

    The purpose of the multiscale thermohydrologic model (MSTHM) is to predict the possible range of thermal-hydrologic conditions, resulting from uncertainty and variability, in the repository emplacement drifts, including the invert, and in the adjoining host rock for the repository at Yucca Mountain. Thus, the goal is to predict the range of possible thermal-hydrologic conditions across the repository; this is quite different from predicting a single expected thermal-hydrologic response. The MSTHM calculates the following thermal-hydrologic parameters: temperature, relative humidity, liquid-phase saturation, evaporation rate, air-mass fraction, gas-phase pressure, capillary pressure, and liquid- and gas-phase fluxes (Table 1-1). These thermal-hydrologic parameters are required to support ''Total System Performance Assessment (TSPA) Model/Analysis for the License Application'' (BSC 2004 [DIRS 168504]). The thermal-hydrologic parameters are determined as a function of position along each of the emplacement drifts and as a function of waste package type. These parameters are determined at various reference locations within the emplacement drifts, including the waste package and drip-shield surfaces and in the invert. The parameters are also determined at various defined locations in the adjoining host rock. The MSTHM uses data obtained from the data tracking numbers (DTNs) listed in Table 4.1-1. The majority of those DTNs were generated from the following analyses and model reports: (1) ''UZ Flow Model and Submodels'' (BSC 2004 [DIRS 169861]); (2) ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (BSC 2004); (3) ''Calibrated Properties Model'' (BSC 2004 [DIRS 169857]); (4) ''Thermal Conductivity of the Potential Repository Horizon'' (BSC 2004 [DIRS 169854]); (5) ''Thermal Conductivity of the Non-Repository Lithostratigraphic Layers

  6. MULTISCALE THERMOHYDROLOGIC MODEL

    International Nuclear Information System (INIS)

    T. Buscheck

    2005-01-01

    The intended purpose of the multiscale thermohydrologic model (MSTHM) is to predict the possible range of thermal-hydrologic conditions, resulting from uncertainty and variability, in the repository emplacement drifts, including the invert, and in the adjoining host rock for the repository at Yucca Mountain. The goal of the MSTHM is to predict a reasonable range of possible thermal-hydrologic conditions within the emplacement drift. To be reasonable, this range includes the influence of waste-package-to-waste-package heat output variability relevant to the license application design, as well as the influence of uncertainty and variability in the geologic and hydrologic conditions relevant to predicting the thermal-hydrologic response in emplacement drifts. This goal is quite different from the goal of a model to predict a single expected thermal-hydrologic response. As a result, the development and validation of the MSTHM and the associated analyses using this model are focused on the goal of predicting a reasonable range of thermal-hydrologic conditions resulting from parametric uncertainty and waste-package-to-waste-package heat-output variability. Thermal-hydrologic conditions within emplacement drifts depend primarily on thermal-hydrologic conditions in the host rock at the drift wall and on the temperature difference between the drift wall and the drip-shield and waste-package surfaces. Thus, the ability to predict a reasonable range of relevant in-drift MSTHM output parameters (e.g., temperature and relative humidity) is based on valid predictions of thermal-hydrologic processes in the host rock, as well as valid predictions of heat-transfer processes between the drift wall and the drip-shield and waste-package surfaces. Because the invert contains crushed gravel derived from the host rock, the invert is, in effect, an extension of the host rock, with thermal and hydrologic properties that have been modified by virtue of the crushing (and the resulting

  7. The Magnetospheric Multiscale Mission

    Science.gov (United States)

    Burch, James

    Magnetospheric Multiscale (MMS), a NASA four-spacecraft mission scheduled for launch in November 2014, will investigate magnetic reconnection in the boundary regions of the Earth’s magnetosphere, particularly along its dayside boundary with the solar wind and the neutral sheet in the magnetic tail. Among the important questions about reconnection that will be addressed are the following: Under what conditions can magnetic-field energy be converted to plasma energy by the annihilation of magnetic field through reconnection? How does reconnection vary with time, and what factors influence its temporal behavior? What microscale processes are responsible for reconnection? What determines the rate of reconnection? In order to accomplish its goals the MMS spacecraft must probe both those regions in which the magnetic fields are very nearly antiparallel and regions where a significant guide field exists. From previous missions we know the approximate speeds with which reconnection layers move through space to be from tens to hundreds of km/s. For electron skin depths of 5 to 10 km, the full 3D electron population (10 eV to above 20 keV) has to be sampled at rates greater than 10/s. The MMS Fast-Plasma Instrument (FPI) will sample electrons at greater than 30/s. Because the ion skin depth is larger, FPI will make full ion measurements at rates of greater than 6/s. 3D E-field measurements will be made by MMS once every ms. MMS will use an Active Spacecraft Potential Control device (ASPOC), which emits indium ions to neutralize the photoelectron current and keep the spacecraft from charging to more than +4 V. Because ion dynamics in Hall reconnection depend sensitively on ion mass, MMS includes a new-generation Hot Plasma Composition Analyzer (HPCA) that corrects problems with high proton fluxes that have prevented accurate ion-composition measurements near the dayside magnetospheric boundary. Finally, Energetic Particle Detector (EPD) measurements of electrons and

  8. MULTISCALE THERMOHYDROLOGIC MODEL

    Energy Technology Data Exchange (ETDEWEB)

    T. Buscheck

    2005-07-07

    The intended purpose of the multiscale thermohydrologic model (MSTHM) is to predict the possible range of thermal-hydrologic conditions, resulting from uncertainty and variability, in the repository emplacement drifts, including the invert, and in the adjoining host rock for the repository at Yucca Mountain. The goal of the MSTHM is to predict a reasonable range of possible thermal-hydrologic conditions within the emplacement drift. To be reasonable, this range includes the influence of waste-package-to-waste-package heat output variability relevant to the license application design, as well as the influence of uncertainty and variability in the geologic and hydrologic conditions relevant to predicting the thermal-hydrologic response in emplacement drifts. This goal is quite different from the goal of a model to predict a single expected thermal-hydrologic response. As a result, the development and validation of the MSTHM and the associated analyses using this model are focused on the goal of predicting a reasonable range of thermal-hydrologic conditions resulting from parametric uncertainty and waste-package-to-waste-package heat-output variability. Thermal-hydrologic conditions within emplacement drifts depend primarily on thermal-hydrologic conditions in the host rock at the drift wall and on the temperature difference between the drift wall and the drip-shield and waste-package surfaces. Thus, the ability to predict a reasonable range of relevant in-drift MSTHM output parameters (e.g., temperature and relative humidity) is based on valid predictions of thermal-hydrologic processes in the host rock, as well as valid predictions of heat-transfer processes between the drift wall and the drip-shield and waste-package surfaces. Because the invert contains crushed gravel derived from the host rock, the invert is, in effect, an extension of the host rock, with thermal and hydrologic properties that have been modified by virtue of the crushing (and the resulting

  9. Conductometry and Size Characterization of Polypyrrole Nanoparticles Produced by Ball Milling

    OpenAIRE

    Abbasi, Abdul Malik Rehan; Marsalkova, Miroslava; Militky, Jiri

    2013-01-01

    Polypyrrole (PPy), one of the most extensively investigated conducting polymers, has attracted a great deal of interest because of its good electrical conductivity, environmental stability, and easy synthesis. PPy films were produced by polymerization of pyrrole and tosylate (TsO−) as dopants in the presence of oxidant FeCl3 and polyethylene glycol (Mw 8000) at −5°C for 48 h. High energy milling was carried out at 850 rpm in the dry media with the balls of 10 mm. Particles were then character...

  10. Degradation of Trichloroethene with a Novel Ball Milled Fe–C Nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jie; Wang, Wei [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Rondinone, Adam J. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); He, Feng, E-mail: fenghe@zjut.edu.cn [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032 (China); Liang, Liyuan [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2015-12-30

    Highlights: • Novel, inexpensive iron–carbon (Fe–C) nanocomposite was obtained by milling. • Fe–C instantaneously sorbed >90% of trichloroethene and continuously degraded them. • The carbon reduced the generation of C{sub 3}−C{sub 6} intermediates and mainly produced C{sub 2}H{sub 4}. • Fe–C can attach to the DNAPL phase thus enhancing degradation efficiency. - Abstract: Nanoscale zero-valent iron (NZVI) is effective in reductively degrading dense non-aqueous phase liquids (DNAPLs), such as trichloroethene (TCE), in groundwater (i.e., dechlorination) although the NZVI technology itself still suffers from high material costs and inability to target hydrophobic contaminants in source zones. To address these problems, we developed a novel, inexpensive iron–carbon (Fe–C) nanocomposite material by simultaneously milling micron-size iron and activated carbon powder. Microscopic and X-ray diffraction (XRD) characterization of the composite material revealed that nanoparticles of Fe were dispersed in activated carbon and a new iron carbide phase was formed. Bench-scale studies showed that this material instantaneously sorbed >90% of TCE from aqueous solutions and subsequently decomposed TCE into non-chlorinated products. Compared to milled Fe, Fe–C nanocomposite dechlorinated TCE at a slightly slower rate and favored the production of ethene over other TCE degradation products such as C{sub 3}−C{sub 6} compounds. When placed in hexane-water mixture, the Fe–C nanocomposite materials are preferentially partitioned into the organic phase, indicating the ability of the composite materials to target DNAPL during remediation.

  11. Magnetic properties of ball-milled TbFe2 and TbFe2B

    Indian Academy of Sciences (India)

    Unknown

    1. Introduction. The RFe2 (R = rare earth) Laves phase compounds are known to possess large cubic anisotropy (Clark et al 1972) and highest Curie temperature (TC) of all RT2 compounds. (T = transition metal). RFe2 ... TbFe2 and TbFe2B were prepared by arc melting the high pure elements (Tb and B, 99⋅9% purity; Fe, ...

  12. Ball-milling effect on Indonesian natural bentonite for manganese removal from acid mine drainage

    Directory of Open Access Journals (Sweden)

    Prastistho Widyawanto

    2018-01-01

    Full Text Available The influences of mechanical milling on Indonesian Natural Bentonite (INB characteristics and manganese (Mn removal from acid mine drainage (AMD were investigated. The INB characteristics were observed by scanning electron microscope (SEM, X-ray diffraction (XRD, nitrogen adsorption-desorption for specific surface area (SSA and microporosity measurement, cation exchange capacity (CEC and particle size distribution (PSD analyzer. Four minutes milling with frequency 20 Hz on INB caused morphological change which showed more crumbled and destructed particle, lost the (001 peak but still retained the (100 peak that indicated delamination of montmorillonite mineral without breaking the tetrahedral-octahedral-tetrahedral (T-O-T structure, rose the CEC from 28.49 meq/100g to 35.51 meq/100g, increase in the SSA from 60.63 m2/g to 104.88 m2/g, significant increase in microporosity which described in the t plots and decrease in the mean particle size distribution peak from 49.28 μm to 38.84 μm. The effect of contact time and effect of adsorbent dosage on Mn sorption was studied. Both unmilled and milled samples reached equilibrium at 24 hours and the pH rose from 4 to 7 in first 30 minutes. The Mn removal percentage increased significantly after milling. Using Langmuir isotherm, the maximum adsorbed metals (qmax also increased from 0.570 to 4.219 mg/g.

  13. Effects of high energy ball milling on synthesis and characteristics of Ti-Mg alloys

    CSIR Research Space (South Africa)

    Chikwanda, HK

    2008-01-01

    Full Text Available The synthesis of Ti-Mg alloys using mechanical alloying method has been investigated. Effects of the mechanical alloying parameters on the resultant microstructural features have been studied. This work presents the effects of milling speed...

  14. Magnetic properties of Ni nanoparticles dispersed in silica prepared by high-energy ball milling

    Science.gov (United States)

    González, E. M.; Montero, M. I.; Cebollada, F.; de Julián, C.; Vicent, J. L.; González, J. M.

    1998-04-01

    We analyze the magnetic properties of mechanically ground nanosized Ni particles dispersed in a SiO2 matrix. Our magnetic characterization of the as-milled samples show the occurrence of two blocking processes and that of non-monotonic milling time evolutions of the magnetic-order temperature, the high-field magnetization and the saturation coercivity. The measured coercivities exhibit giant values and a uniaxial-type temperature dependence. Thermal treatment carried out in the as-prepared samples result in a remarkable coercivity reduction and in an increase of the high-field magnetization. We conclude, on the basis of the consideration of a core (pure Ni) and shell (Ni-Si inhomogeneous alloy) particle structure, that the magnetoelastic anisotropy plays the dominant role in determining the magnetic properties of our particles.

  15. Dependence of rates of breakage on fines content in wet ball mill grinding

    Science.gov (United States)

    Bhattacharyya, Anirban

    The following research fundamentally deals with the cause and implications of nonlinearities in breakage rates of materials in wet grinding systems. The innate dependence of such nonlinearities on fines content and the milling environment during wet grinding operations is also tested and observed. Preferential breakage of coarser size fractions as compared to the finer size fractions in a particle population were observed and discussed. The classification action of the pulp was deemed to be the probable cause for such a peculiarity. Ores with varying degrees of hardness and brittleness were used for wet grinding experiments, primarily to test the variations in specific breakage rates as a function of varying hardness. For this research, limestone, quartzite, and gold ore were used. The degree of hardness is of the order of: limestone, quartzite, gold ore. Selection and breakage function parameters were determined in the course of this research. Functional forms of these expressions were used to compare experimentally derived parameter estimates. Force-fitting of parameters was not done in order to examine the realtime behavior of particle populations in wet grinding systems. Breakage functions were established as being invariant with respect to such operating variables like ball load, mill speed, particle load, and particle size distribution of the mill. It was also determined that specific selection functions were inherently dependent on the particle size distribution in wet grinding systems. Also, they were consistent with inputs of specific energy, according to grind time. Nonlinearity trends were observed for 1st order specific selection functions which illustrated variations in breakage rates with incremental inputs of grind time and specific energy. A mean particle size called the fulcrum was noted below which the nonlinearities in the breakage trends were observed. This magnitude of the fulcrum value varied with percent solids and slurry filling, indicating that breakage rates were being influenced by the milling environment as a whole. Primarily, there was always an increase in the breakage rates of coarser fractions with an increase in the amount of fines in the particle population. Consequently, the breakage rates of the finer size fractions were observed to decrease with an increase in grind time. Similar trends were noticed for 2nd order specific selection functions, where incremental inputs of specific energy were provided to observe realtime trends in the nonlinearity of breakage rates closely. Although the breakage rates for coarser size fractions increase with an increase in the amount of fines, the nature of nonlinearities varied with extended grind times. 1st order and 2nd order energy-specific breakage rates were observed to notice the variation in trends with extended grind times. Implications of such nonlinearities in specific breakage rates of various materials were tested on predictive simulation techniques, using the normalized linear population balance model and compared with an incremental methodology of specific energy input.

  16. Improvement of hydrogen storage kinetics in ball-milled magnesium doped with antimony

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jiří; Král, Lubomír; Roupcová, Pavla

    2017-01-01

    Roč. 42, č. 9 (2017), s. 6144-6151 ISSN 0360-3199 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : Hydrogen * Hydrogen storage * Storage capacity * Magnesium alloys * Antimony Subject RIV: JJ - Other Materials OBOR OECD: Materials engineering Impact factor: 3.582, year: 2016

  17. Numerical Analysis of Multiscale Computations

    CERN Document Server

    Engquist, Björn; Tsai, Yen-Hsi R

    2012-01-01

    This book is a snapshot of current research in multiscale modeling, computations and applications. It covers fundamental mathematical theory, numerical algorithms as well as practical computational advice for analysing single and multiphysics models containing a variety of scales in time and space. Complex fluids, porous media flow and oscillatory dynamical systems are treated in some extra depth, as well as tools like analytical and numerical homogenization, and fast multipole method.

  18. Community effort endorsing multiscale modelling, multiscale data science and multiscale computing for systems medicine.

    Science.gov (United States)

    Zanin, Massimiliano; Chorbev, Ivan; Stres, Blaz; Stalidzans, Egils; Vera, Julio; Tieri, Paolo; Castiglione, Filippo; Groen, Derek; Zheng, Huiru; Baumbach, Jan; Schmid, Johannes A; Basilio, José; Klimek, Peter; Debeljak, Nataša; Rozman, Damjana; Schmidt, Harald H H W

    2017-12-05

    Systems medicine holds many promises, but has so far provided only a limited number of proofs of principle. To address this road block, possible barriers and challenges of translating systems medicine into clinical practice need to be identified and addressed. The members of the European Cooperation in Science and Technology (COST) Action CA15120 Open Multiscale Systems Medicine (OpenMultiMed) wish to engage the scientific community of systems medicine and multiscale modelling, data science and computing, to provide their feedback in a structured manner. This will result in follow-up white papers and open access resources to accelerate the clinical translation of systems medicine. © The Author 2017. Published by Oxford University Press.

  19. Differential Geometry Based Multiscale Models

    Science.gov (United States)

    Wei, Guo-Wei

    2010-01-01

    Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atom-istic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier–Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson–Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson–Nernst–Planck equations that

  20. Differential geometry based multiscale models.

    Science.gov (United States)

    Wei, Guo-Wei

    2010-08-01

    Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atomistic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier-Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson-Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson-Nernst-Planck equations that are

  1. Multiscale Simulation of Breaking Wave Impacts

    DEFF Research Database (Denmark)

    Lindberg, Ole

    compare reasonably well. The incompressible and inviscid ALE-WLS model is coupled with the potential flow model of Engsig-Karup et al. [2009], to perform multiscale calculation of breaking wave impacts on a vertical breakwater. The potential flow model provides accurate calculation of the wave...... with a potential flow model to provide multiscale calculation of forces from breaking wave impacts on structures....

  2. Multivariate refined composite multiscale entropy analysis

    International Nuclear Information System (INIS)

    Humeau-Heurtier, Anne

    2016-01-01

    Multiscale entropy (MSE) has become a prevailing method to quantify signals complexity. MSE relies on sample entropy. However, MSE may yield imprecise complexity estimation at large scales, because sample entropy does not give precise estimation of entropy when short signals are processed. A refined composite multiscale entropy (RCMSE) has therefore recently been proposed. Nevertheless, RCMSE is for univariate signals only. The simultaneous analysis of multi-channel (multivariate) data often over-performs studies based on univariate signals. We therefore introduce an extension of RCMSE to multivariate data. Applications of multivariate RCMSE to simulated processes reveal its better performances over the standard multivariate MSE. - Highlights: • Multiscale entropy quantifies data complexity but may be inaccurate at large scale. • A refined composite multiscale entropy (RCMSE) has therefore recently been proposed. • Nevertheless, RCMSE is adapted to univariate time series only. • We herein introduce an extension of RCMSE to multivariate data. • It shows better performances than the standard multivariate multiscale entropy.

  3. The Adaptive Multi-scale Simulation Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, William R. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2015-09-01

    The Adaptive Multi-scale Simulation Infrastructure (AMSI) is a set of libraries and tools developed to support the development, implementation, and execution of general multimodel simulations. Using a minimal set of simulation meta-data AMSI allows for minimally intrusive work to adapt existent single-scale simulations for use in multi-scale simulations. Support for dynamic runtime operations such as single- and multi-scale adaptive properties is a key focus of AMSI. Particular focus has been spent on the development on scale-sensitive load balancing operations to allow single-scale simulations incorporated into a multi-scale simulation using AMSI to use standard load-balancing operations without affecting the integrity of the overall multi-scale simulation.

  4. Multiscale empirical interpolation for solving nonlinear PDEs

    KAUST Repository

    Calo, Victor M.

    2014-12-01

    In this paper, we propose a multiscale empirical interpolation method for solving nonlinear multiscale partial differential equations. The proposed method combines empirical interpolation techniques and local multiscale methods, such as the Generalized Multiscale Finite Element Method (GMsFEM). To solve nonlinear equations, the GMsFEM is used to represent the solution on a coarse grid with multiscale basis functions computed offline. Computing the GMsFEM solution involves calculating the system residuals and Jacobians on the fine grid. We use empirical interpolation concepts to evaluate these residuals and Jacobians of the multiscale system with a computational cost which is proportional to the size of the coarse-scale problem rather than the fully-resolved fine scale one. The empirical interpolation method uses basis functions which are built by sampling the nonlinear function we want to approximate a limited number of times. The coefficients needed for this approximation are computed in the offline stage by inverting an inexpensive linear system. The proposed multiscale empirical interpolation techniques: (1) divide computing the nonlinear function into coarse regions; (2) evaluate contributions of nonlinear functions in each coarse region taking advantage of a reduced-order representation of the solution; and (3) introduce multiscale proper-orthogonal-decomposition techniques to find appropriate interpolation vectors. We demonstrate the effectiveness of the proposed methods on several nonlinear multiscale PDEs that are solved with Newton\\'s methods and fully-implicit time marching schemes. Our numerical results show that the proposed methods provide a robust framework for solving nonlinear multiscale PDEs on a coarse grid with bounded error and significant computational cost reduction.

  5. Peridynamic Multiscale Finite Element Methods

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moore, Stan Gerald [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic and local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the

  6. Multiscale modelling for tokamak pedestals

    Science.gov (United States)

    Abel, I. G.

    2018-04-01

    Pedestal modelling is crucial to predict the performance of future fusion devices. Current modelling efforts suffer either from a lack of kinetic physics, or an excess of computational complexity. To ameliorate these problems, we take a first-principles multiscale approach to the pedestal. We will present three separate sets of equations, covering the dynamics of edge localised modes (ELMs), the inter-ELM pedestal and pedestal turbulence, respectively. Precisely how these equations should be coupled to each other is covered in detail. This framework is completely self-consistent; it is derived from first principles by means of an asymptotic expansion of the fundamental Vlasov-Landau-Maxwell system in appropriate small parameters. The derivation exploits the narrowness of the pedestal region, the smallness of the thermal gyroradius and the low plasma (the ratio of thermal to magnetic pressures) typical of current pedestal operation to achieve its simplifications. The relationship between this framework and gyrokinetics is analysed, and possibilities to directly match our systems of equations onto multiscale gyrokinetics are explored. A detailed comparison between our model and other models in the literature is performed. Finally, the potential for matching this framework onto an open-field-line region is briefly discussed.

  7. Multifunctional multiscale composites: Processing, modeling and characterization

    Science.gov (United States)

    Qiu, Jingjing

    Carbon nanotubes (CNTs) demonstrate extraordinary properties and show great promise in enhancing out-of-plane properties of traditional polymer/fiber composites and enabling functionality. However, current manufacturing challenges hinder the realization of their potential. In the dissertation research, both experimental and computational efforts have been conducted to investigate effective manufacturing techniques of CNT integrated multiscale composites. The fabricated composites demonstrated significant improvements in physical properties, such as tensile strength, tensile modulus, inter-laminar shear strength, thermal dimension stability and electrical conductivity. Such multiscale composites were truly multifunctional with the addition of CNTs. Furthermore, a novel hierarchical multiscale modeling method was developed in this research. Molecular dynamic (MD) simulation offered reasonable explanation of CNTs dispersion and their motion in polymer solution. Bi-mode finite-extensible-nonlinear-elastic (FENE) dumbbell simulation was used to analyze the influence of CNT length distribution on the stress tensor and shear-rate-dependent viscosity. Based on the simulated viscosity profile and empirical equations from experiments, a macroscale flow simulation model on the finite element method (FEM) method was developed and validated to predict resin flow behavior in the processing of CNT-enhanced multiscale composites. The proposed multiscale modeling method provided a comprehensive understanding of micro/nano flow in both atomistic details and mesoscale. The simulation model can be used to optimize process design and control of the mold-filling process in multiscale composite manufacturing. This research provided systematic investigations into the CNT-based multiscale composites. The results from this study may be used to leverage the benefits of CNTs and open up new application opportunities for high-performance multifunctional multiscale composites. Keywords. Carbon

  8. Multiscale modelling in immunology: a review.

    Science.gov (United States)

    Cappuccio, Antonio; Tieri, Paolo; Castiglione, Filippo

    2016-05-01

    One of the greatest challenges in biomedicine is to get a unified view of observations made from the molecular up to the organism scale. Towards this goal, multiscale models have been highly instrumental in contexts such as the cardiovascular field, angiogenesis, neurosciences and tumour biology. More recently, such models are becoming an increasingly important resource to address immunological questions as well. Systematic mining of the literature in multiscale modelling led us to identify three main fields of immunological applications: host-virus interactions, inflammatory diseases and their treatment and development of multiscale simulation platforms for immunological research and for educational purposes. Here, we review the current developments in these directions, which illustrate that multiscale models can consistently integrate immunological data generated at several scales, and can be used to describe and optimize therapeutic treatments of complex immune diseases. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  9. Foundations for a multiscale collaborative Earth model

    KAUST Repository

    Afanasiev, M.; Peter, Daniel; Sager, K.; Simut, S.; Ermert, L.; Krischer, L.; Fichtner, A.

    2015-01-01

    . The CSEM as a computational framework is intended to help bridging the gap between local, regional and global tomography, and to contribute to the development of a global multiscale Earth model. While the current construction serves as a first proof

  10. Collaborating for Multi-Scale Chemical Science

    Energy Technology Data Exchange (ETDEWEB)

    William H. Green

    2006-07-14

    Advanced model reduction methods were developed and integrated into the CMCS multiscale chemical science simulation software. The new technologies were used to simulate HCCI engines and burner flames with exceptional fidelity.

  11. Multiscale Modeling of Wear Degradation

    KAUST Repository

    Moraes, Alvaro; Ruggeri, Fabrizio; Tempone, Raul; Vilanova, Pedro

    2016-01-01

    Cylinder liners of diesel engines used for marine propulsion are naturally subjected to a wear process, and may fail when their wear exceeds a specified limit. Since failures often represent high economical costs, it is utterly important to predict and avoid them. In this work [4], we model the wear process using a pure jump process. Therefore, the inference goal here is to estimate: the number of possible jumps, its sizes, the coefficients and the shapes of the jump intensities. We propose a multiscale approach for the inference problem that can be seen as an indirect inference scheme. We found that using a Gaussian approximation based on moment expansions, it is possible to accurately estimate the jump intensities and the jump amplitudes. We obtained results equivalent to the state of the art but using a simpler and less expensive approach.

  12. Multiscale Modeling of Wear Degradation

    KAUST Repository

    Moraes, Alvaro; Ruggeri, Fabrizio; Tempone, Raul; Vilanova, Pedro

    2015-01-01

    Cylinder liners of diesel engines used for marine propulsion are naturally subjected to a wear process, and may fail when their wear exceeds a specified limit. Since failures often represent high economical costs, it is utterly important to predict and avoid them. In this work [4], we model the wear process using a pure jump process. Therefore, the inference goal here is to estimate: the number of possible jumps, its sizes, the coefficients and the shapes of the jump intensities. We propose a multiscale approach for the inference problem that can be seen as an indirect inference scheme. We found that using a Gaussian approximation based on moment expansions, it is possible to accurately estimate the jump intensities and the jump amplitudes. We obtained results equivalent to the state of the art but using a simpler and less expensive approach.

  13. Multiscale Modeling of Wear Degradation

    KAUST Repository

    Moraes, Alvaro

    2015-01-07

    Cylinder liners of diesel engines used for marine propulsion are naturally subjected to a wear process, and may fail when their wear exceeds a specified limit. Since failures often represent high economical costs, it is utterly important to predict and avoid them. In this work [4], we model the wear process using a pure jump process. Therefore, the inference goal here is to estimate: the number of possible jumps, its sizes, the coefficients and the shapes of the jump intensities. We propose a multiscale approach for the inference problem that can be seen as an indirect inference scheme. We found that using a Gaussian approximation based on moment expansions, it is possible to accurately estimate the jump intensities and the jump amplitudes. We obtained results equivalent to the state of the art but using a simpler and less expensive approach.

  14. Multiscale Modeling of Wear Degradation

    KAUST Repository

    Moraes, Alvaro

    2014-01-06

    Cylinder liners of diesel engines used for marine propulsion are naturally subjected to a wear process, and may fail when their wear exceeds a specified limit. Since failures often represent high economical costs, it is utterly important to predict and avoid them. In this work [4], we model the wear process using a pure jump process. Therefore, the inference goal here is to estimate: the number of possible jumps, its sizes, the coefficients and the shapes of the jump intensities. We propose a multiscale approach for the inference problem that can be seen as an indirect inference scheme. We found that using a Gaussian approximation based on moment expansions, it is possible to accurately estimate the jump intensities and the jump amplitudes. We obtained results equivalent to the state of the art but using a simpler and less expensive approach.

  15. Multiscale Modeling of Wear Degradation

    KAUST Repository

    Moraes, Alvaro

    2016-01-06

    Cylinder liners of diesel engines used for marine propulsion are naturally subjected to a wear process, and may fail when their wear exceeds a specified limit. Since failures often represent high economical costs, it is utterly important to predict and avoid them. In this work [4], we model the wear process using a pure jump process. Therefore, the inference goal here is to estimate: the number of possible jumps, its sizes, the coefficients and the shapes of the jump intensities. We propose a multiscale approach for the inference problem that can be seen as an indirect inference scheme. We found that using a Gaussian approximation based on moment expansions, it is possible to accurately estimate the jump intensities and the jump amplitudes. We obtained results equivalent to the state of the art but using a simpler and less expensive approach.

  16. Wavelets and multiscale signal processing

    CERN Document Server

    Cohen, Albert

    1995-01-01

    Since their appearance in mid-1980s, wavelets and, more generally, multiscale methods have become powerful tools in mathematical analysis and in applications to numerical analysis and signal processing. This book is based on "Ondelettes et Traitement Numerique du Signal" by Albert Cohen. It has been translated from French by Robert D. Ryan and extensively updated by both Cohen and Ryan. It studies the existing relations between filter banks and wavelet decompositions and shows how these relations can be exploited in the context of digital signal processing. Throughout, the book concentrates on the fundamentals. It begins with a chapter on the concept of multiresolution analysis, which contains complete proofs of the basic results. The description of filter banks that are related to wavelet bases is elaborated in both the orthogonal case (Chapter 2), and in the biorthogonal case (Chapter 4). The regularity of wavelets, how this is related to the properties of the filters and the importance of regularity for t...

  17. Multiphysics/multiscale multifluid computations

    International Nuclear Information System (INIS)

    Yadigaroglu, George

    2014-01-01

    Regarding experimentation, interesting examples of multi-scale approaches are found: the small-scale experiments to understand the mechanisms of counter-current flow limitations (CCFL) such as the growth of instabilities on films, droplet entrainment, etc; meso-scale experiments to quantify the CCFL conditions in typical geometries such as tubes and gaps between parallel plates, and finally full-scale experimentation in a typical reactor geometry - the UPTF tests. Another example is the mixing of the atmosphere produced by plumes and jets in a reactor containment: one needs first basic turbulence information that can be obtained at the microscopic level; follow medium-scale experiments to understand the behaviour of jets and plumes; finally reactor-scale tests can be conducted in facilities such as PANDA at PSI, in Switzerland to study the phenomena at large scale

  18. Multiscale modelling of DNA mechanics

    International Nuclear Information System (INIS)

    Dršata, Tomáš; Lankaš, Filip

    2015-01-01

    Mechanical properties of DNA are important not only in a wide range of biological processes but also in the emerging field of DNA nanotechnology. We review some of the recent developments in modeling these properties, emphasizing the multiscale nature of the problem. Modern atomic resolution, explicit solvent molecular dynamics simulations have contributed to our understanding of DNA fine structure and conformational polymorphism. These simulations may serve as data sources to parameterize rigid base models which themselves have undergone major development. A consistent buildup of larger entities involving multiple rigid bases enables us to describe DNA at more global scales. Free energy methods to impose large strains on DNA, as well as bead models and other approaches, are also briefly discussed. (topical review)

  19. Multiscale modeling of pedestrian dynamics

    CERN Document Server

    Cristiani, Emiliano; Tosin, Andrea

    2014-01-01

    This book presents mathematical models and numerical simulations of crowd dynamics. The core topic is the development of a new multiscale paradigm, which bridges the microscopic and macroscopic scales taking the most from each of them for capturing the relevant clues of complexity of crowds. The background idea is indeed that most of the complex trends exhibited by crowds are due to an intrinsic interplay between individual and collective behaviors. The modeling approach promoted in this book pursues actively this intuition and profits from it for designing general mathematical structures susceptible of application also in fields different from the inspiring original one. The book considers also the two most traditional points of view: the microscopic one, in which pedestrians are tracked individually, and the macroscopic one, in which pedestrians are assimilated to a continuum. Selected existing models are critically analyzed. The work is addressed to researchers and graduate students.

  20. Integrated multi-scale modelling and simulation of nuclear fuels

    International Nuclear Information System (INIS)

    Valot, C.; Bertolus, M.; Masson, R.; Malerba, L.; Rachid, J.; Besmann, T.; Phillpot, S.; Stan, M.

    2015-01-01

    This chapter aims at discussing the objectives, implementation and integration of multi-scale modelling approaches applied to nuclear fuel materials. We will first show why the multi-scale modelling approach is required, due to the nature of the materials and by the phenomena involved under irradiation. We will then present the multiple facets of multi-scale modelling approach, while giving some recommendations with regard to its application. We will also show that multi-scale modelling must be coupled with appropriate multi-scale experiments and characterisation. Finally, we will demonstrate how multi-scale modelling can contribute to solving technology issues. (authors)

  1. A concurrent multiscale micromorphic molecular dynamics

    International Nuclear Information System (INIS)

    Li, Shaofan; Tong, Qi

    2015-01-01

    In this work, we have derived a multiscale micromorphic molecular dynamics (MMMD) from first principle to extend the (Andersen)-Parrinello-Rahman molecular dynamics to mesoscale and continuum scale. The multiscale micromorphic molecular dynamics is a con-current three-scale dynamics that couples a fine scale molecular dynamics, a mesoscale micromorphic dynamics, and a macroscale nonlocal particle dynamics together. By choosing proper statistical closure conditions, we have shown that the original Andersen-Parrinello-Rahman molecular dynamics is the homogeneous and equilibrium case of the proposed multiscale micromorphic molecular dynamics. In specific, we have shown that the Andersen-Parrinello-Rahman molecular dynamics can be rigorously formulated and justified from first principle, and its general inhomogeneous case, i.e., the three scale con-current multiscale micromorphic molecular dynamics can take into account of macroscale continuum mechanics boundary condition without the limitation of atomistic boundary condition or periodic boundary conditions. The discovered multiscale scale structure and the corresponding multiscale dynamics reveal a seamless transition from atomistic scale to continuum scale and the intrinsic coupling mechanism among them based on first principle formulation

  2. Multiscale Model Reduction with Generalized Multiscale Finite Element Methods in Geomathematics

    KAUST Repository

    Efendiev, Yalchin R.; Presho, Michael

    2015-01-01

    In this chapter, we discuss multiscale model reduction using Generalized Multiscale Finite Element Methods (GMsFEM) in a number of geomathematical applications. GMsFEM has been recently introduced (Efendiev et al. 2012) and applied to various problems. In the current chapter, we consider some of these applications and outline the basic methodological concepts.

  3. Distributed multiscale computing with MUSCLE 2, the Multiscale Coupling Library and Environment

    NARCIS (Netherlands)

    Borgdorff, J.; Mamonski, M.; Bosak, B.; Kurowski, K.; Ben Belgacem, M.; Chopard, B.; Groen, D.; Coveney, P.V.; Hoekstra, A.G.

    2014-01-01

    We present the Multiscale Coupling Library and Environment: MUSCLE 2. This multiscale component-based execution environment has a simple to use Java, C++, C, Python and Fortran API, compatible with MPI, OpenMP and threading codes. We demonstrate its local and distributed computing capabilities and

  4. A distributed multiscale computation of a tightly coupled model using the Multiscale Modeling Language

    NARCIS (Netherlands)

    Borgdorff, J.; Bona-Casas, C.; Mamonski, M.; Kurowski, K.; Piontek, T.; Bosak, B.; Rycerz, K.; Ciepiela, E.; Gubala, T.; Harezlak, D.; Bubak, M.; Lorenz, E.; Hoekstra, A.G.

    2012-01-01

    Nature is observed at all scales; with multiscale modeling, scientists bring together several scales for a holistic analysis of a phenomenon. The models on these different scales may require significant but also heterogeneous computational resources, creating the need for distributed multiscale

  5. Multiscale Model Reduction with Generalized Multiscale Finite Element Methods in Geomathematics

    KAUST Repository

    Efendiev, Yalchin R.

    2015-09-02

    In this chapter, we discuss multiscale model reduction using Generalized Multiscale Finite Element Methods (GMsFEM) in a number of geomathematical applications. GMsFEM has been recently introduced (Efendiev et al. 2012) and applied to various problems. In the current chapter, we consider some of these applications and outline the basic methodological concepts.

  6. Multiscale Simulation Framework for Coupled Fluid Flow and Mechanical Deformation

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Thomas [California Inst. of Technology (CalTech), Pasadena, CA (United States); Efendiev, Yalchin [Stanford Univ., CA (United States); Tchelepi, Hamdi [Texas A & M Univ., College Station, TX (United States); Durlofsky, Louis [Stanford Univ., CA (United States)

    2016-05-24

    Our work in this project is aimed at making fundamental advances in multiscale methods for flow and transport in highly heterogeneous porous media. The main thrust of this research is to develop a systematic multiscale analysis and efficient coarse-scale models that can capture global effects and extend existing multiscale approaches to problems with additional physics and uncertainties. A key emphasis is on problems without an apparent scale separation. Multiscale solution methods are currently under active investigation for the simulation of subsurface flow in heterogeneous formations. These procedures capture the effects of fine-scale permeability variations through the calculation of specialized coarse-scale basis functions. Most of the multiscale techniques presented to date employ localization approximations in the calculation of these basis functions. For some highly correlated (e.g., channelized) formations, however, global effects are important and these may need to be incorporated into the multiscale basis functions. Other challenging issues facing multiscale simulations are the extension of existing multiscale techniques to problems with additional physics, such as compressibility, capillary effects, etc. In our project, we explore the improvement of multiscale methods through the incorporation of additional (single-phase flow) information and the development of a general multiscale framework for flows in the presence of uncertainties, compressible flow and heterogeneous transport, and geomechanics. We have considered (1) adaptive local-global multiscale methods, (2) multiscale methods for the transport equation, (3) operator-based multiscale methods and solvers, (4) multiscale methods in the presence of uncertainties and applications, (5) multiscale finite element methods for high contrast porous media and their generalizations, and (6) multiscale methods for geomechanics.

  7. Multiscale analysis and computation for flows in heterogeneous media

    Energy Technology Data Exchange (ETDEWEB)

    Efendiev, Yalchin [Texas A & M Univ., College Station, TX (United States); Hou, T. Y. [California Inst. of Technology (CalTech), Pasadena, CA (United States); Durlofsky, L. J. [Stanford Univ., CA (United States); Tchelepi, H. [Stanford Univ., CA (United States)

    2016-08-04

    Our work in this project is aimed at making fundamental advances in multiscale methods for flow and transport in highly heterogeneous porous media. The main thrust of this research is to develop a systematic multiscale analysis and efficient coarse-scale models that can capture global effects and extend existing multiscale approaches to problems with additional physics and uncertainties. A key emphasis is on problems without an apparent scale separation. Multiscale solution methods are currently under active investigation for the simulation of subsurface flow in heterogeneous formations. These procedures capture the effects of fine-scale permeability variations through the calculation of specialized coarse-scale basis functions. Most of the multiscale techniques presented to date employ localization approximations in the calculation of these basis functions. For some highly correlated (e.g., channelized) formations, however, global effects are important and these may need to be incorporated into the multiscale basis functions. Other challenging issues facing multiscale simulations are the extension of existing multiscale techniques to problems with additional physics, such as compressibility, capillary effects, etc. In our project, we explore the improvement of multiscale methods through the incorporation of additional (single-phase flow) information and the development of a general multiscale framework for flows in the presence of uncertainties, compressible flow and heterogeneous transport, and geomechanics. We have considered (1) adaptive local-global multiscale methods, (2) multiscale methods for the transport equation, (3) operator-based multiscale methods and solvers, (4) multiscale methods in the presence of uncertainties and applications, (5) multiscale finite element methods for high contrast porous media and their generalizations, and (6) multiscale methods for geomechanics. Below, we present a brief overview of each of these contributions.

  8. Novel Multiscale Modeling Tool Applied to Pseudomonas aeruginosa Biofilm Formation

    OpenAIRE

    Biggs, Matthew B.; Papin, Jason A.

    2013-01-01

    Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet) as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM) and constraint-based metabolic modeling. The hybrid mod...

  9. Multiscale study of metal nanoparticles

    Science.gov (United States)

    Lee, Byeongchan

    Extremely small structures with reduced dimensionality have emerged as a scientific motif for their interesting properties. In particular, metal nanoparticles have been identified as a fundamental material in many catalytic activities; as a consequence, a better understanding of structure-function relationship of nanoparticles has become crucial. The functional analysis of nanoparticles, reactivity for example, requires an accurate method at the electronic structure level, whereas the structural analysis to find energetically stable local minima is beyond the scope of quantum mechanical methods as the computational cost becomes prohibitingly high. The challenge is that the inherent length scale and accuracy associated with any single method hardly covers the broad scale range spanned by both structural and functional analyses. In order to address this, and effectively explore the energetics and reactivity of metal nanoparticles, a hierarchical multiscale modeling is developed, where methodologies of different length scales, i.e. first principles density functional theory, atomistic calculations, and continuum modeling, are utilized in a sequential fashion. This work has focused on identifying the essential information that bridges two different methods so that a successive use of different methods is seamless. The bond characteristics of low coordination systems have been obtained with first principles calculations, and incorporated into the atomistic simulation. This also rectifies the deficiency of conventional interatomic potentials fitted to bulk properties, and improves the accuracy of atomistic calculations for nanoparticles. For the systematic shape selection of nanoparticles, we have improved the Wulff-type construction using a semi-continuum approach, in which atomistic surface energetics and crystallinity of materials are added on to the continuum framework. The developed multiscale modeling scheme is applied to the rational design of platinum

  10. Hierarchical multiscale modeling for flows in fractured media using generalized multiscale finite element method

    KAUST Repository

    Efendiev, Yalchin R.

    2015-06-05

    In this paper, we develop a multiscale finite element method for solving flows in fractured media. Our approach is based on generalized multiscale finite element method (GMsFEM), where we represent the fracture effects on a coarse grid via multiscale basis functions. These multiscale basis functions are constructed in the offline stage via local spectral problems following GMsFEM. To represent the fractures on the fine grid, we consider two approaches (1) discrete fracture model (DFM) (2) embedded fracture model (EFM) and their combination. In DFM, the fractures are resolved via the fine grid, while in EFM the fracture and the fine grid block interaction is represented as a source term. In the proposed multiscale method, additional multiscale basis functions are used to represent the long fractures, while short-size fractures are collectively represented by a single basis functions. The procedure is automatically done via local spectral problems. In this regard, our approach shares common concepts with several approaches proposed in the literature as we discuss. We would like to emphasize that our goal is not to compare DFM with EFM, but rather to develop GMsFEM framework which uses these (DFM or EFM) fine-grid discretization techniques. Numerical results are presented, where we demonstrate how one can adaptively add basis functions in the regions of interest based on error indicators. We also discuss the use of randomized snapshots (Calo et al. Randomized oversampling for generalized multiscale finite element methods, 2014), which reduces the offline computational cost.

  11. Multiscale Processes in Magnetic Reconnection

    Science.gov (United States)

    Surjalal Sharma, A.; Jain, Neeraj

    The characteristic scales of the plasma processes in magnetic reconnection range from the elec-tron skin-depth to the magnetohydrodynamic (MHD) scale, and cross-scale coupling among them play a key role. Modeling these processes requires different physical models, viz. kinetic, electron-magnetohydrodynamics (EMHD), Hall-MHD, and MHD. The shortest scale processes are at the electron scale and these are modeled using an EMHD code, which provides many features of the multiscale behavior. In simulations using initial conditions consisting of pertur-bations with many scale sizes the reconnection takes place at many sites and the plasma flows from these interact with each other. This leads to thin current sheets with length less than 10 electron skin depths. The plasma flows also generate current sheets with multiple peaks, as observed by Cluster. The quadrupole structure of the magnetic field during reconnection starts on the electron scale and the interaction of inflow to the secondary sites and outflow from the dominant site generates a nested structure. In the outflow regions, the interaction of the electron outflows generated at the neighboring sites lead to the development of electron vortices. A signature of the nested structure of the Hall field is seen in Cluster observations, and more details of these features are expected from MMS.

  12. Multiscale reconstruction for MR fingerprinting.

    Science.gov (United States)

    Pierre, Eric Y; Ma, Dan; Chen, Yong; Badve, Chaitra; Griswold, Mark A

    2016-06-01

    To reduce the acquisition time needed to obtain reliable parametric maps with Magnetic Resonance Fingerprinting. An iterative-denoising algorithm is initialized by reconstructing the MRF image series at low image resolution. For subsequent iterations, the method enforces pixel-wise fidelity to the best-matching dictionary template then enforces fidelity to the acquired data at slightly higher spatial resolution. After convergence, parametric maps with desirable spatial resolution are obtained through template matching of the final image series. The proposed method was evaluated on phantom and in vivo data using the highly undersampled, variable-density spiral trajectory and compared with the original MRF method. The benefits of additional sparsity constraints were also evaluated. When available, gold standard parameter maps were used to quantify the performance of each method. The proposed approach allowed convergence to accurate parametric maps with as few as 300 time points of acquisition, as compared to 1000 in the original MRF work. Simultaneous quantification of T1, T2, proton density (PD), and B0 field variations in the brain was achieved in vivo for a 256 × 256 matrix for a total acquisition time of 10.2 s, representing a three-fold reduction in acquisition time. The proposed iterative multiscale reconstruction reliably increases MRF acquisition speed and accuracy. Magn Reson Med 75:2481-2492, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  13. Multiscale modeling in biomechanics and mechanobiology

    CERN Document Server

    Hwang, Wonmuk; Kuhl, Ellen

    2015-01-01

    Presenting a state-of-the-art overview of theoretical and computational models that link characteristic biomechanical phenomena, this book provides guidelines and examples for creating multiscale models in representative systems and organisms. It develops the reader's understanding of and intuition for multiscale phenomena in biomechanics and mechanobiology, and introduces a mathematical framework and computational techniques paramount to creating predictive multiscale models.   Biomechanics involves the study of the interactions of physical forces with biological systems at all scales – including molecular, cellular, tissue and organ scales. The emerging field of mechanobiology focuses on the way that cells produce and respond to mechanical forces – bridging the science of mechanics with the disciplines of genetics and molecular biology. Linking disparate spatial and temporal scales using computational techniques is emerging as a key concept in investigating some of the complex problems underlying these...

  14. Deductive multiscale simulation using order parameters

    Science.gov (United States)

    Ortoleva, Peter J.

    2017-05-16

    Illustrative embodiments of systems and methods for the deductive multiscale simulation of macromolecules are disclosed. In one illustrative embodiment, a deductive multiscale simulation method may include (i) constructing a set of order parameters that model one or more structural characteristics of a macromolecule, (ii) simulating an ensemble of atomistic configurations for the macromolecule using instantaneous values of the set of order parameters, (iii) simulating thermal-average forces and diffusivities for the ensemble of atomistic configurations, and (iv) evolving the set of order parameters via Langevin dynamics using the thermal-average forces and diffusivities.

  15. Multiscale phase inversion of seismic marine data

    KAUST Repository

    Fu, Lei

    2017-08-17

    We test the feasibility of applying multiscale phase inversion (MPI) to seismic marine data. To avoid cycle-skipping, the multiscale strategy temporally integrates the traces several times, i.e. high-order integration, to produce low-boost seismograms that are used as input data for the initial iterations of MPI. As the iterations proceed, higher frequencies in the data are boosted by using integrated traces of lower order as the input data. Results with synthetic data and field data from the Gulf of Mexico produce robust and accurate results if the model does not contain strong velocity contrasts such as salt-sediment interfaces.

  16. Multiscale Modeling of Ceramic Matrix Composites

    Science.gov (United States)

    Bednarcyk, Brett A.; Mital, Subodh K.; Pineda, Evan J.; Arnold, Steven M.

    2015-01-01

    Results of multiscale modeling simulations of the nonlinear response of SiC/SiC ceramic matrix composites are reported, wherein the microstructure of the ceramic matrix is captured. This micro scale architecture, which contains free Si material as well as the SiC ceramic, is responsible for residual stresses that play an important role in the subsequent thermo-mechanical behavior of the SiC/SiC composite. Using the novel Multiscale Generalized Method of Cells recursive micromechanics theory, the microstructure of the matrix, as well as the microstructure of the composite (fiber and matrix) can be captured.

  17. Multivariate Generalized Multiscale Entropy Analysis

    Directory of Open Access Journals (Sweden)

    Anne Humeau-Heurtier

    2016-11-01

    Full Text Available Multiscale entropy (MSE was introduced in the 2000s to quantify systems’ complexity. MSE relies on (i a coarse-graining procedure to derive a set of time series representing the system dynamics on different time scales; (ii the computation of the sample entropy for each coarse-grained time series. A refined composite MSE (rcMSE—based on the same steps as MSE—also exists. Compared to MSE, rcMSE increases the accuracy of entropy estimation and reduces the probability of inducing undefined entropy for short time series. The multivariate versions of MSE (MMSE and rcMSE (MrcMSE have also been introduced. In the coarse-graining step used in MSE, rcMSE, MMSE, and MrcMSE, the mean value is used to derive representations of the original data at different resolutions. A generalization of MSE was recently published, using the computation of different moments in the coarse-graining procedure. However, so far, this generalization only exists for univariate signals. We therefore herein propose an extension of this generalized MSE to multivariate data. The multivariate generalized algorithms of MMSE and MrcMSE presented herein (MGMSE and MGrcMSE, respectively are first analyzed through the processing of synthetic signals. We reveal that MGrcMSE shows better performance than MGMSE for short multivariate data. We then study the performance of MGrcMSE on two sets of short multivariate electroencephalograms (EEG available in the public domain. We report that MGrcMSE may show better performance than MrcMSE in distinguishing different types of multivariate EEG data. MGrcMSE could therefore supplement MMSE or MrcMSE in the processing of multivariate datasets.

  18. A multiscale approach to mutual information matching

    NARCIS (Netherlands)

    Pluim, J.P.W.; Maintz, J.B.A.; Viergever, M.A.; Hanson, K.M.

    1998-01-01

    Methods based on mutual information have shown promising results for matching of multimodal brain images. This paper discusses a multiscale approach to mutual information matching, aiming for an acceleration of the matching process while considering the accuracy and robustness of the method. Scaling

  19. Multiscale Lyapunov exponent for 2-microlocal functions

    International Nuclear Information System (INIS)

    Dhifaoui, Zouhaier; Kortas, Hedi; Ammou, Samir Ben

    2009-01-01

    The Lyapunov exponent is an important indicator of chaotic dynamics. Using wavelet analysis, we define a multiscale representation of this exponent which we demonstrate the scale-wise dependence for functions belonging to C x 0 s,s ' spaces. An empirical study involving simulated processes and financial time series corroborates the theoretical findings.

  20. Multiscale phenomenology of the cosmic web

    NARCIS (Netherlands)

    Aragón-Calvo, Miguel A.; van de Weygaert, Rien; Jones, Bernard J. T.

    2010-01-01

    We analyse the structure and connectivity of the distinct morphologies that define the cosmic web. With the help of our multiscale morphology filter (MMF), we dissect the matter distribution of a cosmological Lambda cold dark matter N-body computer simulation into cluster, filaments and walls. The

  1. Multiscale Phase Inversion of Seismic Data

    KAUST Repository

    Fu, Lei; Guo, Bowen; Sun, Yonghe; Schuster, Gerard T.

    2017-01-01

    -skipping, the multiscale strategy temporally integrates the traces several times, i.e. high-order integration, to produce low-boost seismograms that are used as input data for the initial iterations of MPI. As the iterations proceed, higher frequencies in the data

  2. Multiscale Modeling of Poromechanics in Geologic Media

    Science.gov (United States)

    Castelletto, N.; Hajibeygi, H.; Klevtsov, S.; Tchelepi, H.

    2017-12-01

    We describe a hybrid MultiScale Finite Element-Finite Volume (h-MSFE-FV) framework for the simulation of single-phase Darcy flow through deformable porous media that exhibit highly heterogeneous poromechanical properties over a wide range of length scales. In such systems, high resolution characterizations are a key requirement to obtain reliable modeling predictions and motivate the development of multiscale solution strategies to cope with the computational burden. A coupled two-field fine-scale mixed FE-FV discretization of the governing equations, namely conservation laws of linear momentum and mass, is first implemented based on a displacement-pressure formulation. After imposing a coarse-scale grid on the given fine-scale problem, for the MSFE displacement stage, the coarse-scale basis functions are obtained by solving local equilibrium problems within coarse elements. Such MSFE stage is then coupled with the MSFV method for flow, in which a dual-coarse grid is introduced to obtain approximate but conservative multiscale solutions. Robustness and accuracy of the proposed multiscale framework is demonstrated using a variety of challenging test problems.

  3. Multiscale empirical interpolation for solving nonlinear PDEs

    KAUST Repository

    Calo, Victor M.; Efendiev, Yalchin R.; Galvis, Juan; Ghommem, Mehdi

    2014-01-01

    residuals and Jacobians on the fine grid. We use empirical interpolation concepts to evaluate these residuals and Jacobians of the multiscale system with a computational cost which is proportional to the size of the coarse-scale problem rather than the fully

  4. Multiscale information modelling for heart morphogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Abdulla, T; Imms, R; Summers, R [Department of Electronic and Electrical Engineering, Loughborough University, Loughborough (United Kingdom); Schleich, J M, E-mail: T.Abdulla@lboro.ac.u [LTSI Signal and Image Processing Laboratory, University of Rennes 1, Rennes (France)

    2010-07-01

    Science is made feasible by the adoption of common systems of units. As research has become more data intensive, especially in the biomedical domain, it requires the adoption of a common system of information models, to make explicit the relationship between one set of data and another, regardless of format. This is being realised through the OBO Foundry to develop a suite of reference ontologies, and NCBO Bioportal to provide services to integrate biomedical resources and functionality to visualise and create mappings between ontology terms. Biomedical experts tend to be focused at one level of spatial scale, be it biochemistry, cell biology, or anatomy. Likewise, the ontologies they use tend to be focused at a particular level of scale. There is increasing interest in a multiscale systems approach, which attempts to integrate between different levels of scale to gain understanding of emergent effects. This is a return to physiological medicine with a computational emphasis, exemplified by the worldwide Physiome initiative, and the European Union funded Network of Excellence in the Virtual Physiological Human. However, little work has been done on how information modelling itself may be tailored to a multiscale systems approach. We demonstrate how this can be done for the complex process of heart morphogenesis, which requires multiscale understanding in both time and spatial domains. Such an effort enables the integration of multiscale metrology.

  5. Multiscale information modelling for heart morphogenesis

    International Nuclear Information System (INIS)

    Abdulla, T; Imms, R; Summers, R; Schleich, J M

    2010-01-01

    Science is made feasible by the adoption of common systems of units. As research has become more data intensive, especially in the biomedical domain, it requires the adoption of a common system of information models, to make explicit the relationship between one set of data and another, regardless of format. This is being realised through the OBO Foundry to develop a suite of reference ontologies, and NCBO Bioportal to provide services to integrate biomedical resources and functionality to visualise and create mappings between ontology terms. Biomedical experts tend to be focused at one level of spatial scale, be it biochemistry, cell biology, or anatomy. Likewise, the ontologies they use tend to be focused at a particular level of scale. There is increasing interest in a multiscale systems approach, which attempts to integrate between different levels of scale to gain understanding of emergent effects. This is a return to physiological medicine with a computational emphasis, exemplified by the worldwide Physiome initiative, and the European Union funded Network of Excellence in the Virtual Physiological Human. However, little work has been done on how information modelling itself may be tailored to a multiscale systems approach. We demonstrate how this can be done for the complex process of heart morphogenesis, which requires multiscale understanding in both time and spatial domains. Such an effort enables the integration of multiscale metrology.

  6. Multiscale approach to equilibrating model polymer melts

    DEFF Research Database (Denmark)

    Svaneborg, Carsten; Ali Karimi-Varzaneh, Hossein; Hojdis, Nils

    2016-01-01

    We present an effective and simple multiscale method for equilibrating Kremer Grest model polymer melts of varying stiffness. In our approach, we progressively equilibrate the melt structure above the tube scale, inside the tube and finally at the monomeric scale. We make use of models designed...

  7. Multiscale optimization of saturated poroelastic actuators

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe; Sigmund, Ole

    A multiscale method for optimizing the material micro structure in a macroscopically heterogeneous saturated poroelastic media with respect to macro properties is presented. The method is based on topology optimization using the homogenization technique, here applied to the optimization of a bi...

  8. Generalized multiscale finite element methods: Oversampling strategies

    KAUST Repository

    Efendiev, Yalchin R.; Galvis, Juan; Li, Guanglian; Presho, Michael

    2014-01-01

    In this paper, we propose oversampling strategies in the generalized multiscale finite element method (GMsFEM) framework. The GMsFEM, which has been recently introduced in Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116-135, 2013], allows solving multiscale parameter-dependent problems at a reduced computational cost by constructing a reduced-order representation of the solution on a coarse grid. The main idea of the method consists of (1) the construction of snapshot space, (2) the construction of the offline space, and (3) construction of the online space (the latter for parameter-dependent problems). In Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116-135, 2013], it was shown that the GMsFEM provides a flexible tool to solve multiscale problems with a complex input space by generating appropriate snapshot, offline, and online spaces. In this paper, we develop oversampling techniques to be used in this context (see Hou and Wu (1997) where oversampling is introduced for multiscale finite element methods). It is known (see Hou and Wu (1997)) that the oversampling can improve the accuracy of multiscale methods. In particular, the oversampling technique uses larger regions (larger than the target coarse block) in constructing local basis functions. Our motivation stems from the analysis presented in this paper, which shows that when using oversampling techniques in the construction of the snapshot space and offline space, GMsFEM will converge independent of small scales and high contrast under certain assumptions. We consider the use of a multiple eigenvalue problems to improve the convergence and discuss their relation to single spectral problems that use oversampled regions. The oversampling procedures proposed in this paper differ from those in Hou and Wu (1997). In particular, the oversampling domains are partially used in constructing local

  9. A mathematical framework for multiscale science and engineering: the variational multiscale method and interscale transfer operators

    International Nuclear Information System (INIS)

    Shadid, John Nicolas; Lehoucq, Richard B.; Christon, Mark Allen; Slepoy, Alexander; Bochev, Pavel Blagoveston; Collis, Samuel Scott; Wagner, Gregory John

    2004-01-01

    Existing approaches in multiscale science and engineering have evolved from a range of ideas and solutions that are reflective of their original problem domains. As a result, research in multiscale science has followed widely diverse and disjoint paths, which presents a barrier to cross pollination of ideas and application of methods outside their application domains. The status of the research environment calls for an abstract mathematical framework that can provide a common language to formulate and analyze multiscale problems across a range of scientific and engineering disciplines. In such a framework, critical common issues arising in multiscale problems can be identified, explored and characterized in an abstract setting. This type of overarching approach would allow categorization and clarification of existing models and approximations in a landscape of seemingly disjoint, mutually exclusive and ad hoc methods. More importantly, such an approach can provide context for both the development of new techniques and their critical examination. As with any new mathematical framework, it is necessary to demonstrate its viability on problems of practical importance. At Sandia, lab-centric, prototype application problems in fluid mechanics, reacting flows, magnetohydrodynamics (MHD), shock hydrodynamics and materials science span an important subset of DOE Office of Science applications and form an ideal proving ground for new approaches in multiscale science.

  10. Multiscale Simulations for Coupled Flow and Transport Using the Generalized Multiscale Finite Element Method

    KAUST Repository

    Chung, Eric

    2015-12-11

    In this paper, we develop a mass conservative multiscale method for coupled flow and transport in heterogeneous porous media. We consider a coupled system consisting of a convection-dominated transport equation and a flow equation. We construct a coarse grid solver based on the Generalized Multiscale Finite Element Method (GMsFEM) for a coupled system. In particular, multiscale basis functions are constructed based on some snapshot spaces for the pressure and the concentration equations and some local spectral decompositions in the snapshot spaces. The resulting approach uses a few multiscale basis functions in each coarse block (for both the pressure and the concentration) to solve the coupled system. We use the mixed framework, which allows mass conservation. Our main contributions are: (1) the development of a mass conservative GMsFEM for the coupled flow and transport; (2) the development of a robust multiscale method for convection-dominated transport problems by choosing appropriate test and trial spaces within Petrov-Galerkin mixed formulation. We present numerical results and consider several heterogeneous permeability fields. Our numerical results show that with only a few basis functions per coarse block, we can achieve a good approximation.

  11. Multiscale Simulations for Coupled Flow and Transport Using the Generalized Multiscale Finite Element Method

    KAUST Repository

    Chung, Eric; Efendiev, Yalchin R.; Leung, Wing; Ren, Jun

    2015-01-01

    In this paper, we develop a mass conservative multiscale method for coupled flow and transport in heterogeneous porous media. We consider a coupled system consisting of a convection-dominated transport equation and a flow equation. We construct a coarse grid solver based on the Generalized Multiscale Finite Element Method (GMsFEM) for a coupled system. In particular, multiscale basis functions are constructed based on some snapshot spaces for the pressure and the concentration equations and some local spectral decompositions in the snapshot spaces. The resulting approach uses a few multiscale basis functions in each coarse block (for both the pressure and the concentration) to solve the coupled system. We use the mixed framework, which allows mass conservation. Our main contributions are: (1) the development of a mass conservative GMsFEM for the coupled flow and transport; (2) the development of a robust multiscale method for convection-dominated transport problems by choosing appropriate test and trial spaces within Petrov-Galerkin mixed formulation. We present numerical results and consider several heterogeneous permeability fields. Our numerical results show that with only a few basis functions per coarse block, we can achieve a good approximation.

  12. International Conference on Multiscale Methods and Partial Differential Equations.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Hou

    2006-12-12

    The International Conference on Multiscale Methods and Partial Differential Equations (ICMMPDE for short) was held at IPAM, UCLA on August 26-27, 2005. The conference brought together researchers, students and practitioners with interest in the theoretical, computational and practical aspects of multiscale problems and related partial differential equations. The conference provided a forum to exchange and stimulate new ideas from different disciplines, and to formulate new challenging multiscale problems that will have impact in applications.

  13. Residual-driven online generalized multiscale finite element methods

    KAUST Repository

    Chung, Eric T.; Efendiev, Yalchin R.; Leung, Wing Tat

    2015-01-01

    In the paper, theoretical and numerical results are presented. Our numerical results show that if the offline space is sufficiently large (in terms of the dimension) such that the coarse space contains all multiscale spectral basis functions that correspond to small eigenvalues, then the error reduction by adding online multiscale basis function is independent of the contrast. We discuss various ways computing online multiscale basis functions which include a use of small dimensional offline spaces.

  14. Multiscale Modeling of Point and Line Defects in Cubic Lattices

    National Research Council Canada - National Science Library

    Chung, P. W; Clayton, J. D

    2007-01-01

    .... This multiscale theory explicitly captures heterogeneity in microscopic atomic motion in crystalline materials, attributed, for example, to the presence of various point and line lattice defects...

  15. Towards practical multiscale approach for analysis of reinforced concrete structures

    Science.gov (United States)

    Moyeda, Arturo; Fish, Jacob

    2017-12-01

    We present a novel multiscale approach for analysis of reinforced concrete structural elements that overcomes two major hurdles in utilization of multiscale technologies in practice: (1) coupling between material and structural scales due to consideration of large representative volume elements (RVE), and (2) computational complexity of solving complex nonlinear multiscale problems. The former is accomplished using a variant of computational continua framework that accounts for sizeable reinforced concrete RVEs by adjusting the location of quadrature points. The latter is accomplished by means of reduced order homogenization customized for structural elements. The proposed multiscale approach has been verified against direct numerical simulations and validated against experimental results.

  16. Multiscale Cues Drive Collective Cell Migration

    Science.gov (United States)

    Nam, Ki-Hwan; Kim, Peter; Wood, David K.; Kwon, Sunghoon; Provenzano, Paolo P.; Kim, Deok-Ho

    2016-07-01

    To investigate complex biophysical relationships driving directed cell migration, we developed a biomimetic platform that allows perturbation of microscale geometric constraints with concomitant nanoscale contact guidance architectures. This permits us to elucidate the influence, and parse out the relative contribution, of multiscale features, and define how these physical inputs are jointly processed with oncogenic signaling. We demonstrate that collective cell migration is profoundly enhanced by the addition of contract guidance cues when not otherwise constrained. However, while nanoscale cues promoted migration in all cases, microscale directed migration cues are dominant as the geometric constraint narrows, a behavior that is well explained by stochastic diffusion anisotropy modeling. Further, oncogene activation (i.e. mutant PIK3CA) resulted in profoundly increased migration where extracellular multiscale directed migration cues and intrinsic signaling synergistically conspire to greatly outperform normal cells or any extracellular guidance cues in isolation.

  17. Multiscale Study of Currents Affected by Topography

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Multiscale Study of Currents Affected by Topography ...the effects of topography on the ocean general and regional circulation with a focus on the wide range of scales of interactions. The small-scale...details of the topography and the waves, eddies, drag, and turbulence it generates (at spatial scales ranging from meters to mesoscale) interact in the

  18. A multiscale approach to Brownian motors

    International Nuclear Information System (INIS)

    Pavliotis, G.A.

    2005-01-01

    The problem of Brownian motion in a periodic potential, under the influence of external forcing, which is either random or periodic in time, is studied in this Letter. Multiscale techniques are used to derive general formulae for the steady state particle current and the effective diffusion tensor. These formulae are then applied to calculate the effective diffusion coefficient for a Brownian particle in a periodic potential driven simultaneously by additive Gaussian white and colored noise. Our theoretical findings are supported by numerical simulations

  19. Multiscale modeling of mucosal immune responses

    Science.gov (United States)

    2015-01-01

    Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T cell differentiation and tissue level cell-cell interactions was developed to illustrate the capabilities, power and scope of ENISI MSM. Background Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Implementation Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. Conclusion We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut

  20. Multiscale modeling of mucosal immune responses.

    Science.gov (United States)

    Mei, Yongguo; Abedi, Vida; Carbo, Adria; Zhang, Xiaoying; Lu, Pinyi; Philipson, Casandra; Hontecillas, Raquel; Hoops, Stefan; Liles, Nathan; Bassaganya-Riera, Josep

    2015-01-01

    Computational techniques are becoming increasingly powerful and modeling tools for biological systems are of greater needs. Biological systems are inherently multiscale, from molecules to tissues and from nano-seconds to a lifespan of several years or decades. ENISI MSM integrates multiple modeling technologies to understand immunological processes from signaling pathways within cells to lesion formation at the tissue level. This paper examines and summarizes the technical details of ENISI, from its initial version to its latest cutting-edge implementation. Object-oriented programming approach is adopted to develop a suite of tools based on ENISI. Multiple modeling technologies are integrated to visualize tissues, cells as well as proteins; furthermore, performance matching between the scales is addressed. We used ENISI MSM for developing predictive multiscale models of the mucosal immune system during gut inflammation. Our modeling predictions dissect the mechanisms by which effector CD4+ T cell responses contribute to tissue damage in the gut mucosa following immune dysregulation.Computational modeling techniques are playing increasingly important roles in advancing a systems-level mechanistic understanding of biological processes. Computer simulations guide and underpin experimental and clinical efforts. This study presents ENteric Immune Simulator (ENISI), a multiscale modeling tool for modeling the mucosal immune responses. ENISI's modeling environment can simulate in silico experiments from molecular signaling pathways to tissue level events such as tissue lesion formation. ENISI's architecture integrates multiple modeling technologies including ABM (agent-based modeling), ODE (ordinary differential equations), SDE (stochastic modeling equations), and PDE (partial differential equations). This paper focuses on the implementation and developmental challenges of ENISI. A multiscale model of mucosal immune responses during colonic inflammation, including CD4+ T

  1. Multi-scale Regions from Edge Fragments

    DEFF Research Database (Denmark)

    Kazmi, Wajahat; Andersen, Hans Jørgen

    2014-01-01

    In this article we introduce a novel method for detecting multi-scale salient regions around edges using a graph based image compression algorithm. Images are recursively decomposed into triangles arranged into a binary tree using linear interpolation. The entropy of any local region of the image......), their performance is comparable to SIFT (Lowe, 2004).We also show that when they are used together with MSERs (Matas et al., 2002), the performance of MSERs is boosted....

  2. Controlling the number of walls in multi walled carbon nanotubes/alumina hybrid compound via ball milling of precipitate catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Nosbi, Norlin [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia); Akil, Hazizan Md, E-mail: hazizan@usm.my [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia); Cluster for Polymer Composite (CPC), Science and Engineering Research Centre, Engineering Campus, Universiti Sains Malaysia (USM), 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang (Malaysia)

    2015-06-15

    Graphical abstract: - Highlights: • We report that, to manipulate carbon nanotubes geometry and number of walls are by controlling the precipitate catalyst size. • Number of walls and geometry effects depend on the milling time of the precipitate catalyst. • Increasing milling of time will decrease the carbon nanotubes number of walls. • Increasing milling of time will increase the carbon nanotubes thermal conductivity. - Abstract: This paper reports the influence of milling time on the structure and properties of the precipitate catalyst of multi walled carbon nanotubes (MWCNT)/alumina hybrid compound, produced through the chemical vapour deposition (CVD) process. For this purpose, light green precipitate consisted of aluminium, nickel(II) nitrate hexahydrate and sodium hydroxide mixture was placed in a planetary mill equipped with alumina vials using alumina balls at 300 rpm rotation speed for various milling time (5–15 h) prior to calcinations and CVD process. The compound was characterized using various techniques. Based on high-resolution transmission electron microscopy analysis, increasing the milling time up to 15 h decreased the diameter of MWCNT from 32.3 to 13.1 nm. It was noticed that the milling time had a significant effect on MWCNT wall thickness, whereby increasing the milling time from 0 to 15 h reduced the number of walls from 29 to 12. It was also interesting to note that the carbon content increased from 23.29 wt.% to 36.37 wt.% with increasing milling time.

  3. Dispersion of silicon carbide nanoparticles in a AA2024 aluminum alloy by a high-energy ball mill

    International Nuclear Information System (INIS)

    Carreño-Gallardo, C.; Estrada-Guel, I.; López-Meléndez, C.; Martínez-Sánchez, R.

    2014-01-01

    Highlights: • Synthesis of 2024-SiC NP nanocomposite by mechanical milling process. • SiC nanoparticles improved mechanical properties of aluminum alloy 2024 matrix. • A homogeneous distribution of SiC nanoparticles were observed in the matrix • Compressive and hardness properties of the composite are improved significantly. -- Abstract: Al 2024 alloy was reinforced with silicon carbide nanoparticles (SiC NP ), whose concentration was varied in the range from 0 to 5 wt.%; some composites were synthesized with the mechanical milling (MM) process. Structure and microstructure of the consolidated samples were studied by X-ray diffraction and transmission electron microscopy, while mechanical properties were investigated by compressive tests and hardness measurements. The microstructural evidence shows that SiC NP were homogeneously dispersed into the Al 2024 alloy using high-energy MM after 2 h of processing. On the other hand, an increase of the mechanical properties (yield stress, maximum strength and hardness) was observed in the synthesized composites as a direct function of the SiC NP content. In this research several strengthening mechanisms were observed, but the main was the obstruction of dislocations movement by the addition of SiC NP

  4. Synthesis and dissolution behavior of nanosized silicon and magnesium co-doped fluorapatite obtained by high energy ball milling

    NARCIS (Netherlands)

    Ahmadi, T.; Monshi, A.; Mortazavi, V.; Fathi, M. H.; Sharifi, S.; Beni, B. Hashemi; Abed, A. Moghare; Kheradmandfard, M.; Sharifnabi, A.

    Nanosized hydroxyapatite (HA) powders exhibit a greater surface area than coarser crystals and are expected to show an improved bioactivity. In addition, properties of HA can be tailored over a wide range by incorporating different ions into HA lattice. The aim of this study was to prepare and

  5. Structure and thermal stability of nanostructured iron-doped zirconia prepared by high-energy ball milling

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Poulsen, Finn Willy; Mørup, Steen

    1999-01-01

    % alpha-Fe2O3. The unit-cell volume of the cubic ZrO2 phase decreases with increasing iron content. During heating hte cubic-to-tetragonal transition occurs at approximately 827 degrees C and the tetragonal-to-monoclinic transition seems to be absent at temperatures below 950 degrees C. During cooling...... the tetragonal-to-monoclinic transition occurs at 900-1100 degrees C....

  6. Mechanical behaviour of AlSiC nano composites produced by ball milling and spark plasma sintering =

    Science.gov (United States)

    Buchheim, Claudia Sofia de Andrade Redondo Murilhas

    Neste trabalho foram produzidos nanocompositos de AlSiC misturando aluminio puro com nano particulas de SiC com diâmetro de 45 - 55 nm, usando, de forma sequencial, a tecnica da metalurgia do po e a compactacao por "Spark Plasma Sintering". O composito obtido apresentava graos com 100 nm de diâmetro, encontrandose as particulas de SiC localizadas, principalmente, nas fronteiras de grao. O nanocomposito sob a forma de provetes cilindricos foi submetido a testes de compressao uniaxial e a testes de nanoindentacao para analisar a influencia das nanoparticulas de SiC, da fracao volumica de acido estearico e do tempo de moagem, nas propriedades mecânicas do material. Para efeitos de comparacao, utilizouse o comportamento mecânico do Al puro processado em condicoes similares e da liga de aluminio AA1050O. A tensao limite de elasticidade do nanocomposito com 1% Vol./Vol. de SiC e dez vezes superior a do AA1050. O refinamento de grao a escala nano constitui o principal mecanismo de aumento de resistencia mecânica. Na realidade, o Al nanocristalino sem reforco de particulas de SiC, apresenta uma tensao limite de elasticidade sete vezes superior a da liga AA1050O. A adicao de 0,5 % Vol./Vol. e de 1 % Vol./Vol. de SiC conduzem, respetivamente, ao aumento da tensao limite de elasticidade em 47 % e 50%. O aumento do tempo de moagem e a adicao de acido estearico ao po durante a moagem conduzem apenas a um pequeno aumento da tensao de escoamento. A dureza do material medida atraves de testes de nanoindentacao confirmaram os dados anteriores. A estabilidade das microestruturas do aluminio puro e do nanocomposito AlSiC, foi testada atraves de recozimento de restauracao realizado as temperaturas de 150 °C e 250 °C durante 2 horas. Aparentemente, o tratamento termico nao influenciou as propriedades mecânicas dos materiais, excepto do nanocomposito com 1 % Vol./Vol. de SiC restaurado a temperatura de 250 °C, para o qual se observou uma reducao da tensao limite de elasticidade na ordem dos 13 %. No aluminio nanocristalino, a tensao de escoamento e controlada pelo efeito de HallPetch. As particulas de SiC, sao segregadas pelas fronteiras do grao e nao contribuem para o aumento de resistencia mecânica segundo o mecanismo de Orowan. Alternativamente, as nanoparticulas de SiC constituem um reforco das fronteiras do grao, impedindo o seu escorregamento e estabilizando a nanoestrutura. Deste modo, as propriedades mecânicas do aluminio nanocristalino e do nanocomposito de AlSiC poderao estar relacionadas com a facilidade ou dificuldade do escorregamento das fronteiras de grao, embora nao seja apresentada prova explicita deste mecanismo a temperatura ambiente.

  7. A Mössbauer and magnetic study of ball milled Fe-doped ZnO Powders

    Energy Technology Data Exchange (ETDEWEB)

    Zamora, Ligia E., E-mail: ligia.zamora@correounivalle.edu.co; Paz, J. C.; Piamba, J. F.; Tabares, J. A.; Alcázar, G. A. Pérez [Universidad del Valle, Departamento de física (Colombia)

    2015-06-15

    The structural and magnetic properties of Fe-doped ZnO are reported in this study, as obtained by mechanical alloying from elemental powders of ZnO and Fe. The properties of Zn{sub 0.90}Fe{sub 0.10}O samples alloying while varying the milling time (6, 12, 24 and 36 h) are also reported. The Rietveld refinement of X-ray Diffraction (XRD) patterns revealed that the system presents two structures: the würtzite structure of ZnO and the bcc structure of α-Fe. The Mössbauer spectra show that the samples present three components: a ferromagnetic component, associated with the Fe phase and two paramagnetic components, associated with the Fe atoms, which penetrate inside the ZnO matrix behaving as Fe{sup 3+} and Fe{sup 2+}. The milling time contributes to an increase in the paramagnetic sites, and a solubility limit of the Fe atoms in the ZnO lattice was detected. The VSM measurements at room temperature detected ferromagnetic behavior with a saturation magnetization of 11 emu/g and a coercive field of 330 Oe for the sample alloyed over 24 h. A similar behavior was shown by the other samples.

  8. Effect of ball mill treatment on kinetics of amorphous Ni78Si10B12 alloy crystallization

    International Nuclear Information System (INIS)

    Tomilin, I.A.; Mochalova, T.Yu.; Kaloshkin, S.D.; Kostyukovich, T.G.; Lopatina, E.A.

    1993-01-01

    The effect of the parameters of Ni 78 Si 10 B 12 alloy amorphous strip milling in a ball planetary mill on the stability of powder amorphous state, crytallization kinetics and dispersity is studied by the methods of differential scanning microcaloremetry and X-ray diffraction analysis. Energy intensity of milling conditions is assessed. An increase of input energy results in a decrease of activation energy of powder crystallization. Strip milling parameters which enable to avaintain the amorphous state of the material are determined

  9. Enzymatic hydrolysis of rice straw and glucose fermentation using a Vertical Ball Mill Bioreactor (VBMB): Impact of operational conditions

    DEFF Research Database (Denmark)

    Castro, Rafael C.A.; Mussatto, Solange I.; Roberto, Inês C.

    ). This bioreactor was equipped with adjustable flat round plate impellers, allowing its operation with glass spheres as shear agent. For enzymatic hydrolysis, the spheres were the only variable with significant impact on the results, being achieved 87% cellulose conversion after 24 h when using the highest level...... saccharification and fermentation, in batch or fed-batch configurations, and with possibilities of operating at high solids content. Acknowledgments: FAPESP (2013/13953-6 and 2015/24813-6) and CNPq....

  10. Advances in Solid-State Transformations of Coordination Bonds: From the Ball Mill to the Aging Chamber

    Directory of Open Access Journals (Sweden)

    Cristina Mottillo

    2017-01-01

    Full Text Available Controlling the formation of coordination bonds is pivotal to the development of a plethora of functional metal-organic materials, ranging from coordination polymers, metal-organic frameworks (MOFs to metallodrugs. The interest in and commercialization of such materials has created a need for more efficient, environmentally-friendly routes for making coordination bonds. Solid-state coordination chemistry is a versatile greener alternative to conventional synthesis, offering quantitative yields, enhanced stoichiometric and topological selectivity, access to a wider range of precursors, as well as to molecules and materials not readily accessible in solution or solvothermally. With a focus on mechanochemical, thermochemical and “accelerated aging” approaches to coordination polymers, including pharmaceutically-relevant materials and microporous MOFs, this review highlights the recent advances in solid-state coordination chemistry and techniques for understanding the underlying reaction mechanisms.

  11. Engineering Digestion: Multiscale Processes of Food Digestion.

    Science.gov (United States)

    Bornhorst, Gail M; Gouseti, Ourania; Wickham, Martin S J; Bakalis, Serafim

    2016-03-01

    Food digestion is a complex, multiscale process that has recently become of interest to the food industry due to the developing links between food and health or disease. Food digestion can be studied by using either in vitro or in vivo models, each having certain advantages or disadvantages. The recent interest in food digestion has resulted in a large number of studies in this area, yet few have provided an in-depth, quantitative description of digestion processes. To provide a framework to develop these quantitative comparisons, a summary is given here between digestion processes and parallel unit operations in the food and chemical industry. Characterization parameters and phenomena are suggested for each step of digestion. In addition to the quantitative characterization of digestion processes, the multiscale aspect of digestion must also be considered. In both food systems and the gastrointestinal tract, multiple length scales are involved in food breakdown, mixing, absorption. These different length scales influence digestion processes independently as well as through interrelated mechanisms. To facilitate optimized development of functional food products, a multiscale, engineering approach may be taken to describe food digestion processes. A framework for this approach is described in this review, as well as examples that demonstrate the importance of process characterization as well as the multiple, interrelated length scales in the digestion process. © 2016 Institute of Food Technologists®

  12. Adaptive multiscale processing for contrast enhancement

    Science.gov (United States)

    Laine, Andrew F.; Song, Shuwu; Fan, Jian; Huda, Walter; Honeyman, Janice C.; Steinbach, Barbara G.

    1993-07-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through overcomplete multiresolution representations. We show that efficient representations may be identified from digital mammograms within a continuum of scale space and used to enhance features of importance to mammography. Choosing analyzing functions that are well localized in both space and frequency, results in a powerful methodology for image analysis. We describe methods of contrast enhancement based on two overcomplete (redundant) multiscale representations: (1) Dyadic wavelet transform (2) (phi) -transform. Mammograms are reconstructed from transform coefficients modified at one or more levels by non-linear, logarithmic and constant scale-space weight functions. Multiscale edges identified within distinct levels of transform space provide a local support for enhancement throughout each decomposition. We demonstrate that features extracted from wavelet spaces can provide an adaptive mechanism for accomplishing local contrast enhancement. We suggest that multiscale detection and local enhancement of singularities may be effectively employed for the visualization of breast pathology without excessive noise amplification.

  13. Acoustics of multiscale sorptive porous materials

    Science.gov (United States)

    Venegas, R.; Boutin, C.; Umnova, O.

    2017-08-01

    This paper investigates sound propagation in multiscale rigid-frame porous materials that support mass transfer processes, such as sorption and different types of diffusion, in addition to the usual visco-thermo-inertial interactions. The two-scale asymptotic method of homogenization for periodic media is successively used to derive the macroscopic equations describing sound propagation through the material. This allowed us to conclude that the macroscopic mass balance is significantly modified by sorption, inter-scale (micro- to/from nanopore scales) mass diffusion, and inter-scale (pore to/from micro- and nanopore scales) pressure diffusion. This modification is accounted for by the dynamic compressibility of the effective saturating fluid that presents atypical properties that lead to slower speed of sound and higher sound attenuation, particularly at low frequencies. In contrast, it is shown that the physical processes occurring at the micro-nano-scale do not affect the macroscopic fluid flow through the material. The developed theory is exemplified by introducing an analytical model for multiscale sorptive granular materials, which is experimentally validated by comparing its predictions with acoustic measurements on granular activated carbons. Furthermore, we provide empirical evidence supporting an alternative method for measuring sorption and mass diffusion properties of multiscale sorptive materials using sound waves.

  14. Multivariate multiscale entropy of financial markets

    Science.gov (United States)

    Lu, Yunfan; Wang, Jun

    2017-11-01

    In current process of quantifying the dynamical properties of the complex phenomena in financial market system, the multivariate financial time series are widely concerned. In this work, considering the shortcomings and limitations of univariate multiscale entropy in analyzing the multivariate time series, the multivariate multiscale sample entropy (MMSE), which can evaluate the complexity in multiple data channels over different timescales, is applied to quantify the complexity of financial markets. Its effectiveness and advantages have been detected with numerical simulations with two well-known synthetic noise signals. For the first time, the complexity of four generated trivariate return series for each stock trading hour in China stock markets is quantified thanks to the interdisciplinary application of this method. We find that the complexity of trivariate return series in each hour show a significant decreasing trend with the stock trading time progressing. Further, the shuffled multivariate return series and the absolute multivariate return series are also analyzed. As another new attempt, quantifying the complexity of global stock markets (Asia, Europe and America) is carried out by analyzing the multivariate returns from them. Finally we utilize the multivariate multiscale entropy to assess the relative complexity of normalized multivariate return volatility series with different degrees.

  15. Multiscale Phase Inversion of Seismic Data

    KAUST Repository

    Fu, Lei

    2017-12-02

    We present a scheme for multiscale phase inversion (MPI) of seismic data that is less sensitive to the unmodeled physics of wave propagation and a poor starting model than standard full waveform inversion (FWI). To avoid cycle-skipping, the multiscale strategy temporally integrates the traces several times, i.e. high-order integration, to produce low-boost seismograms that are used as input data for the initial iterations of MPI. As the iterations proceed, higher frequencies in the data are boosted by using integrated traces of lower order as the input data. The input data are also filtered into different narrow frequency bands for the MPI implementation. At low frequencies, we show that MPI with windowed reflections approximates wave equation inversion of the reflection traveltimes, except no traveltime picking is needed. Numerical results with synthetic acoustic data show that MPI is more robust than conventional multiscale FWI when the initial model is far from the true model. Results from synthetic viscoacoustic and elastic data show that MPI is less sensitive than FWI to some of the unmodeled physics. Inversion of marine data shows that MPI is more robust and produces modestly more accurate results than FWI for this data set.

  16. Multiscale Persistent Functions for Biomolecular Structure Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Kelin [Nanyang Technological University (Singapore). Division of Mathematical Sciences, School of Physical, Mathematical Sciences and School of Biological Sciences; Li, Zhiming [Central China Normal University, Wuhan (China). Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics; Mu, Lin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computer Science and Mathematics Division

    2017-11-02

    Here in this paper, we introduce multiscale persistent functions for biomolecular structure characterization. The essential idea is to combine our multiscale rigidity functions (MRFs) with persistent homology analysis, so as to construct a series of multiscale persistent functions, particularly multiscale persistent entropies, for structure characterization. To clarify the fundamental idea of our method, the multiscale persistent entropy (MPE) model is discussed in great detail. Mathematically, unlike the previous persistent entropy (Chintakunta et al. in Pattern Recognit 48(2):391–401, 2015; Merelli et al. in Entropy 17(10):6872–6892, 2015; Rucco et al. in: Proceedings of ECCS 2014, Springer, pp 117–128, 2016), a special resolution parameter is incorporated into our model. Various scales can be achieved by tuning its value. Physically, our MPE can be used in conformational entropy evaluation. More specifically, it is found that our method incorporates in it a natural classification scheme. This is achieved through a density filtration of an MRF built from angular distributions. To further validate our model, a systematical comparison with the traditional entropy evaluation model is done. Additionally, it is found that our model is able to preserve the intrinsic topological features of biomolecular data much better than traditional approaches, particularly for resolutions in the intermediate range. Moreover, by comparing with traditional entropies from various grid sizes, bond angle-based methods and a persistent homology-based support vector machine method (Cang et al. in Mol Based Math Biol 3:140–162, 2015), we find that our MPE method gives the best results in terms of average true positive rate in a classic protein structure classification test. More interestingly, all-alpha and all-beta protein classes can be clearly separated from each other with zero error only in our model. Finally, a special protein structure index (PSI) is proposed, for the first

  17. Multiscale methods in computational fluid and solid mechanics

    NARCIS (Netherlands)

    Borst, de R.; Hulshoff, S.J.; Lenz, S.; Munts, E.A.; Brummelen, van E.H.; Wall, W.; Wesseling, P.; Onate, E.; Periaux, J.

    2006-01-01

    First, an attempt is made towards gaining a more systematic understanding of recent progress in multiscale modelling in computational solid and fluid mechanics. Sub- sequently, the discussion is focused on variational multiscale methods for the compressible and incompressible Navier-Stokes

  18. Transitions of the Multi-Scale Singularity Trees

    DEFF Research Database (Denmark)

    Somchaipeng, Kerawit; Sporring, Jon; Kreiborg, Sven

    2005-01-01

    Multi-Scale Singularity Trees(MSSTs) [10] are multi-scale image descriptors aimed at representing the deep structures of images. Changes in images are directly translated to changes in the deep structures; therefore transitions in MSSTs. Because MSSTs can be used to represent the deep structure...

  19. Multi-Scale Validation of a Nanodiamond Drug Delivery System and Multi-Scale Engineering Education

    Science.gov (United States)

    Schwalbe, Michelle Kristin

    2010-01-01

    This dissertation has two primary concerns: (i) evaluating the uncertainty and prediction capabilities of a nanodiamond drug delivery model using Bayesian calibration and bias correction, and (ii) determining conceptual difficulties of multi-scale analysis from an engineering education perspective. A Bayesian uncertainty quantification scheme…

  20. Efficient algorithms for multiscale modeling in porous media

    KAUST Repository

    Wheeler, Mary F.; Wildey, Tim; Xue, Guangri

    2010-01-01

    We describe multiscale mortar mixed finite element discretizations for second-order elliptic and nonlinear parabolic equations modeling Darcy flow in porous media. The continuity of flux is imposed via a mortar finite element space on a coarse grid scale, while the equations in the coarse elements (or subdomains) are discretized on a fine grid scale. We discuss the construction of multiscale mortar basis and extend this concept to nonlinear interface operators. We present a multiscale preconditioning strategy to minimize the computational cost associated with construction of the multiscale mortar basis. We also discuss the use of appropriate quadrature rules and approximation spaces to reduce the saddle point system to a cell-centered pressure scheme. In particular, we focus on multiscale mortar multipoint flux approximation method for general hexahedral grids and full tensor permeabilities. Numerical results are presented to verify the accuracy and efficiency of these approaches. © 2010 John Wiley & Sons, Ltd.

  1. A complete categorization of multiscale models of infectious disease systems.

    Science.gov (United States)

    Garira, Winston

    2017-12-01

    Modelling of infectious disease systems has entered a new era in which disease modellers are increasingly turning to multiscale modelling to extend traditional modelling frameworks into new application areas and to achieve higher levels of detail and accuracy in characterizing infectious disease systems. In this paper we present a categorization framework for categorizing multiscale models of infectious disease systems. The categorization framework consists of five integration frameworks and five criteria. We use the categorization framework to give a complete categorization of host-level immuno-epidemiological models (HL-IEMs). This categorization framework is also shown to be applicable in categorizing other types of multiscale models of infectious diseases beyond HL-IEMs through modifying the initial categorization framework presented in this study. Categorization of multiscale models of infectious disease systems in this way is useful in bringing some order to the discussion on the structure of these multiscale models.

  2. Efficient algorithms for multiscale modeling in porous media

    KAUST Repository

    Wheeler, Mary F.

    2010-09-26

    We describe multiscale mortar mixed finite element discretizations for second-order elliptic and nonlinear parabolic equations modeling Darcy flow in porous media. The continuity of flux is imposed via a mortar finite element space on a coarse grid scale, while the equations in the coarse elements (or subdomains) are discretized on a fine grid scale. We discuss the construction of multiscale mortar basis and extend this concept to nonlinear interface operators. We present a multiscale preconditioning strategy to minimize the computational cost associated with construction of the multiscale mortar basis. We also discuss the use of appropriate quadrature rules and approximation spaces to reduce the saddle point system to a cell-centered pressure scheme. In particular, we focus on multiscale mortar multipoint flux approximation method for general hexahedral grids and full tensor permeabilities. Numerical results are presented to verify the accuracy and efficiency of these approaches. © 2010 John Wiley & Sons, Ltd.

  3. Multiscale approaches to high efficiency photovoltaics

    Directory of Open Access Journals (Sweden)

    Connolly James Patrick

    2016-01-01

    Full Text Available While renewable energies are achieving parity around the globe, efforts to reach higher solar cell efficiencies becomes ever more difficult as they approach the limiting efficiency. The so-called third generation concepts attempt to break this limit through a combination of novel physical processes and new materials and concepts in organic and inorganic systems. Some examples of semi-empirical modelling in the field are reviewed, in particular for multispectral solar cells on silicon (French ANR project MultiSolSi. Their achievements are outlined, and the limits of these approaches shown. This introduces the main topic of this contribution, which is the use of multiscale experimental and theoretical techniques to go beyond the semi-empirical understanding of these systems. This approach has already led to great advances at modelling which have led to modelling software, which is widely known. Yet, a survey of the topic reveals a fragmentation of efforts across disciplines, firstly, such as organic and inorganic fields, but also between the high efficiency concepts such as hot carrier cells and intermediate band concepts. We show how this obstacle to the resolution of practical research obstacles may be lifted by inter-disciplinary cooperation across length scales, and across experimental and theoretical fields, and finally across materials systems. We present a European COST Action “MultiscaleSolar” kicking off in early 2015, which brings together experimental and theoretical partners in order to develop multiscale research in organic and inorganic materials. The goal of this defragmentation and interdisciplinary collaboration is to develop understanding across length scales, which will enable the full potential of third generation concepts to be evaluated in practise, for societal and industrial applications.

  4. Structure and multiscale mechanics of carbon nanomaterials

    CERN Document Server

    2016-01-01

    This book aims at providing a broad overview on the relationship between structure and mechanical properties of carbon nanomaterials from world-leading scientists in the field. The main aim is to get an in-depth understanding of the broad range of mechanical properties of carbon materials based on their unique nanostructure and on defects of several types and at different length scales. Besides experimental work mainly based on the use of (in-situ) Raman and X-ray scattering and on nanoindentation, the book also covers some aspects of multiscale modeling of the mechanics of carbon nanomaterials.

  5. Multiscale agent-based cancer modeling.

    Science.gov (United States)

    Zhang, Le; Wang, Zhihui; Sagotsky, Jonathan A; Deisboeck, Thomas S

    2009-04-01

    Agent-based modeling (ABM) is an in silico technique that is being used in a variety of research areas such as in social sciences, economics and increasingly in biomedicine as an interdisciplinary tool to study the dynamics of complex systems. Here, we describe its applicability to integrative tumor biology research by introducing a multi-scale tumor modeling platform that understands brain cancer as a complex dynamic biosystem. We summarize significant findings of this work, and discuss both challenges and future directions for ABM in the field of cancer research.

  6. Multi-scale Modelling of Segmentation

    DEFF Research Database (Denmark)

    Hartmann, Martin; Lartillot, Olivier; Toiviainen, Petri

    2016-01-01

    pieces. In a second experiment on non-real-time segmentation, musicians indicated boundaries and their strength for six examples. Kernel density estimation was used to develop multi-scale segmentation models. Contrary to previous research, no relationship was found between boundary strength and boundary......While listening to music, people often unwittingly break down musical pieces into constituent chunks such as verses and choruses. Music segmentation studies have suggested that some consensus regarding boundary perception exists, despite individual differences. However, neither the effects...

  7. A multiscale model for virus capsid dynamics.

    Science.gov (United States)

    Chen, Changjun; Saxena, Rishu; Wei, Guo-Wei

    2010-01-01

    Viruses are infectious agents that can cause epidemics and pandemics. The understanding of virus formation, evolution, stability, and interaction with host cells is of great importance to the scientific community and public health. Typically, a virus complex in association with its aquatic environment poses a fabulous challenge to theoretical description and prediction. In this work, we propose a differential geometry-based multiscale paradigm to model complex biomolecule systems. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum domain of the fluid mechanical description of the aquatic environment from the microscopic discrete domain of the atomistic description of the biomolecule. A multiscale action functional is constructed as a unified framework to derive the governing equations for the dynamics of different scales. We show that the classical Navier-Stokes equation for the fluid dynamics and Newton's equation for the molecular dynamics can be derived from the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows.

  8. Neural network based multiscale image restoration approach

    Science.gov (United States)

    de Castro, Ana Paula A.; da Silva, José D. S.

    2007-02-01

    This paper describes a neural network based multiscale image restoration approach. Multilayer perceptrons are trained with artificial images of degraded gray level circles, in an attempt to make the neural network learn inherent space relations of the degraded pixels. The present approach simulates the degradation by a low pass Gaussian filter blurring operation and the addition of noise to the pixels at pre-established rates. The training process considers the degraded image as input and the non-degraded image as output for the supervised learning process. The neural network thus performs an inverse operation by recovering a quasi non-degraded image in terms of least squared. The main difference of the approach to existing ones relies on the fact that the space relations are taken from different scales, thus providing relational space data to the neural network. The approach is an attempt to come up with a simple method that leads to an optimum solution to the problem. Considering different window sizes around a pixel simulates the multiscale operation. In the generalization phase the neural network is exposed to indoor, outdoor, and satellite degraded images following the same steps use for the artificial circle image.

  9. Multiscale coherent structures in tokamak plasma turbulence

    International Nuclear Information System (INIS)

    Xu, G. S.; Wan, B. N.; Zhang, W.; Yang, Q. W.; Wang, L.; Wen, Y. Z.

    2006-01-01

    A 12-tip poloidal probe array is used on the HT-7 superconducting tokamak [Li, Wan, and Mao, Plasma Phys. Controlled Fusion 42, 135 (2000)] to measure plasma turbulence in the edge region. Some statistical analysis techniques are used to characterize the turbulence structures. It is found that the plasma turbulence is composed of multiscale coherent structures, i.e., turbulent eddies and there is self-similarity in a relative short scale range. The presence of the self-similarity is found due to the structural similarity of these eddies between different scales. These turbulent eddies constitute the basic convection cells, so the self-similar range is just the dominant scale range relevant to transport. The experimental results also indicate that the plasma turbulence is dominated by low-frequency and long-wavelength fluctuation components and its dispersion relation shows typical electron-drift-wave characteristics. Some large-scale coherent structures intermittently burst out and exhibit a very long poloidal extent, even longer than 6 cm. It is found that these large-scale coherent structures are mainly contributed by the low-frequency and long-wavelength fluctuating components and their presence is responsible for the observations of long-range correlations, i.e., the correlation in the scale range much longer than the turbulence decorrelation scale. These experimental observations suggest that the coexistence of multiscale coherent structures results in the self-similar turbulent state

  10. Multiscale structure in eco-evolutionary dynamics

    Science.gov (United States)

    Stacey, Blake C.

    In a complex system, the individual components are neither so tightly coupled or correlated that they can all be treated as a single unit, nor so uncorrelated that they can be approximated as independent entities. Instead, patterns of interdependency lead to structure at multiple scales of organization. Evolution excels at producing such complex structures. In turn, the existence of these complex interrelationships within a biological system affects the evolutionary dynamics of that system. I present a mathematical formalism for multiscale structure, grounded in information theory, which makes these intuitions quantitative, and I show how dynamics defined in terms of population genetics or evolutionary game theory can lead to multiscale organization. For complex systems, "more is different," and I address this from several perspectives. Spatial host--consumer models demonstrate the importance of the structures which can arise due to dynamical pattern formation. Evolutionary game theory reveals the novel effects which can result from multiplayer games, nonlinear payoffs and ecological stochasticity. Replicator dynamics in an environment with mesoscale structure relates to generalized conditionalization rules in probability theory. The idea of natural selection "acting at multiple levels" has been mathematized in a variety of ways, not all of which are equivalent. We will face down the confusion, using the experience developed over the course of this thesis to clarify the situation.

  11. Institute for Multiscale Modeling of Biological Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Paulaitis, Michael E; Garcia-Moreno, Bertrand; Lenhoff, Abraham

    2009-12-26

    The Institute for Multiscale Modeling of Biological Interactions (IMMBI) has two primary goals: Foster interdisciplinary collaborations among faculty and their research laboratories that will lead to novel applications of multiscale simulation and modeling methods in the biological sciences and engineering; and Building on the unique biophysical/biology-based engineering foundations of the participating faculty, train scientists and engineers to apply computational methods that collectively span multiple time and length scales of biological organization. The success of IMMBI will be defined by the following: Size and quality of the applicant pool for pre-doctoral and post-doctoral fellows; Academic performance; Quality of the pre-doctoral and post-doctoral research; Impact of the research broadly and to the DOE (ASCR program) mission; Distinction of the next career step for pre-doctoral and post-doctoral fellows; and Faculty collaborations that result from IMMBI activities. Specific details about accomplishments during the three years of DOE support for IMMBI have been documented in Annual Progress Reports (April 2005, June 2006, and March 2007) and a Report for a National Academy of Sciences Review (October 2005) that were submitted to DOE on the dates indicated. An overview of these accomplishments is provided.

  12. Multi-scale biomedical systems: measurement challenges

    International Nuclear Information System (INIS)

    Summers, R

    2016-01-01

    Multi-scale biomedical systems are those that represent interactions in materials, sensors, and systems from a holistic perspective. It is possible to view such multi-scale activity using measurement of spatial scale or time scale, though in this paper only the former is considered. The biomedical application paradigm comprises interactions that range from quantum biological phenomena at scales of 10-12 for one individual to epidemiological studies of disease spread in populations that in a pandemic lead to measurement at a scale of 10+7. It is clear that there are measurement challenges at either end of this spatial scale, but those challenges that relate to the use of new technologies that deal with big data and health service delivery at the point of care are also considered. The measurement challenges lead to the use, in many cases, of model-based measurement and the adoption of virtual engineering. It is these measurement challenges that will be uncovered in this paper. (paper)

  13. Mammographic feature enhancement by multiscale analysis

    International Nuclear Information System (INIS)

    Laine, A.F.; Schuler, S.; Fan, J.; Huda, W.

    1994-01-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis by overcomplete multiresolution representations. The authors show that efficient representations may be identified within a continuum of scale-space and used to enhance features of importance to mammography. Methods of contrast enhancement are described based on three overcomplete multiscale representations: (1) the dyadic wavelet transform (separable), (2) the var-phi-transform (nonseparable, nonorthogonal), and (3) the hexagonal wavelet transform (nonseparable). Multiscale edges identified within distinct levels of transform space provide local support for image enhancement. Mammograms are reconstructed from wavelet coefficients modified at one or more levels by local and global nonlinear operators. In each case, edges and gain parameters are identified adaptively by a measure of energy within each level of scale-space. The authors show quantitatively that transform coefficients, modified by adaptive nonlinear operators, can make more obvious unseen or barely seen features of mammography without requiring additional radiation. The results are compared with traditional image enhancement techniques by measuring the local contrast of known mammographic features. The authors demonstrate that features extracted from multiresolution representations can provide an adaptive mechanism for accomplishing local contrast enhancement. By improving the visualization of breast pathology, they can improve chances of early detection while requiring less time to evaluate mammograms for most patients

  14. Multiscale permutation entropy analysis of electrocardiogram

    Science.gov (United States)

    Liu, Tiebing; Yao, Wenpo; Wu, Min; Shi, Zhaorong; Wang, Jun; Ning, Xinbao

    2017-04-01

    To make a comprehensive nonlinear analysis to ECG, multiscale permutation entropy (MPE) was applied to ECG characteristics extraction to make a comprehensive nonlinear analysis of ECG. Three kinds of ECG from PhysioNet database, congestive heart failure (CHF) patients, healthy young and elderly subjects, are applied in this paper. We set embedding dimension to 4 and adjust scale factor from 2 to 100 with a step size of 2, and compare MPE with multiscale entropy (MSE). As increase of scale factor, MPE complexity of the three ECG signals are showing first-decrease and last-increase trends. When scale factor is between 10 and 32, complexities of the three ECG had biggest difference, entropy of the elderly is 0.146 less than the CHF patients and 0.025 larger than the healthy young in average, in line with normal physiological characteristics. Test results showed that MPE can effectively apply in ECG nonlinear analysis, and can effectively distinguish different ECG signals.

  15. A Multiscale Model for Virus Capsid Dynamics

    Directory of Open Access Journals (Sweden)

    Changjun Chen

    2010-01-01

    Full Text Available Viruses are infectious agents that can cause epidemics and pandemics. The understanding of virus formation, evolution, stability, and interaction with host cells is of great importance to the scientific community and public health. Typically, a virus complex in association with its aquatic environment poses a fabulous challenge to theoretical description and prediction. In this work, we propose a differential geometry-based multiscale paradigm to model complex biomolecule systems. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum domain of the fluid mechanical description of the aquatic environment from the microscopic discrete domain of the atomistic description of the biomolecule. A multiscale action functional is constructed as a unified framework to derive the governing equations for the dynamics of different scales. We show that the classical Navier-Stokes equation for the fluid dynamics and Newton's equation for the molecular dynamics can be derived from the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows.

  16. Multiscale Convolutional Neural Networks for Hand Detection

    Directory of Open Access Journals (Sweden)

    Shiyang Yan

    2017-01-01

    Full Text Available Unconstrained hand detection in still images plays an important role in many hand-related vision problems, for example, hand tracking, gesture analysis, human action recognition and human-machine interaction, and sign language recognition. Although hand detection has been extensively studied for decades, it is still a challenging task with many problems to be tackled. The contributing factors for this complexity include heavy occlusion, low resolution, varying illumination conditions, different hand gestures, and the complex interactions between hands and objects or other hands. In this paper, we propose a multiscale deep learning model for unconstrained hand detection in still images. Deep learning models, and deep convolutional neural networks (CNNs in particular, have achieved state-of-the-art performances in many vision benchmarks. Developed from the region-based CNN (R-CNN model, we propose a hand detection scheme based on candidate regions generated by a generic region proposal algorithm, followed by multiscale information fusion from the popular VGG16 model. Two benchmark datasets were applied to validate the proposed method, namely, the Oxford Hand Detection Dataset and the VIVA Hand Detection Challenge. We achieved state-of-the-art results on the Oxford Hand Detection Dataset and had satisfactory performance in the VIVA Hand Detection Challenge.

  17. Residual-driven online generalized multiscale finite element methods

    KAUST Repository

    Chung, Eric T.

    2015-09-08

    The construction of local reduced-order models via multiscale basis functions has been an area of active research. In this paper, we propose online multiscale basis functions which are constructed using the offline space and the current residual. Online multiscale basis functions are constructed adaptively in some selected regions based on our error indicators. We derive an error estimator which shows that one needs to have an offline space with certain properties to guarantee that additional online multiscale basis function will decrease the error. This error decrease is independent of physical parameters, such as the contrast and multiple scales in the problem. The offline spaces are constructed using Generalized Multiscale Finite Element Methods (GMsFEM). We show that if one chooses a sufficient number of offline basis functions, one can guarantee that additional online multiscale basis functions will reduce the error independent of contrast. We note that the construction of online basis functions is motivated by the fact that the offline space construction does not take into account distant effects. Using the residual information, we can incorporate the distant information provided the offline approximation satisfies certain properties. In the paper, theoretical and numerical results are presented. Our numerical results show that if the offline space is sufficiently large (in terms of the dimension) such that the coarse space contains all multiscale spectral basis functions that correspond to small eigenvalues, then the error reduction by adding online multiscale basis function is independent of the contrast. We discuss various ways computing online multiscale basis functions which include a use of small dimensional offline spaces.

  18. Analysis of complex time series using refined composite multiscale entropy

    International Nuclear Information System (INIS)

    Wu, Shuen-De; Wu, Chiu-Wen; Lin, Shiou-Gwo; Lee, Kung-Yen; Peng, Chung-Kang

    2014-01-01

    Multiscale entropy (MSE) is an effective algorithm for measuring the complexity of a time series that has been applied in many fields successfully. However, MSE may yield an inaccurate estimation of entropy or induce undefined entropy because the coarse-graining procedure reduces the length of a time series considerably at large scales. Composite multiscale entropy (CMSE) was recently proposed to improve the accuracy of MSE, but it does not resolve undefined entropy. Here we propose a refined composite multiscale entropy (RCMSE) to improve CMSE. For short time series analyses, we demonstrate that RCMSE increases the accuracy of entropy estimation and reduces the probability of inducing undefined entropy.

  19. Multi-Scale Scattering Transform in Music Similarity Measuring

    Science.gov (United States)

    Wang, Ruobai

    Scattering transform is a Mel-frequency spectrum based, time-deformation stable method, which can be used in evaluating music similarity. Compared with Dynamic time warping, it has better performance in detecting similar audio signals under local time-frequency deformation. Multi-scale scattering means to combine scattering transforms of different window lengths. This paper argues that, multi-scale scattering transform is a good alternative of dynamic time warping in music similarity measuring. We tested the performance of multi-scale scattering transform against other popular methods, with data designed to represent different conditions.

  20. Generalization Performance of Regularized Ranking With Multiscale Kernels.

    Science.gov (United States)

    Zhou, Yicong; Chen, Hong; Lan, Rushi; Pan, Zhibin

    2016-05-01

    The regularized kernel method for the ranking problem has attracted increasing attentions in machine learning. The previous regularized ranking algorithms are usually based on reproducing kernel Hilbert spaces with a single kernel. In this paper, we go beyond this framework by investigating the generalization performance of the regularized ranking with multiscale kernels. A novel ranking algorithm with multiscale kernels is proposed and its representer theorem is proved. We establish the upper bound of the generalization error in terms of the complexity of hypothesis spaces. It shows that the multiscale ranking algorithm can achieve satisfactory learning rates under mild conditions. Experiments demonstrate the effectiveness of the proposed method for drug discovery and recommendation tasks.

  1. Multi-scale salient feature extraction on mesh models

    KAUST Repository

    Yang, Yongliang; Shen, ChaoHui

    2012-01-01

    We present a new method of extracting multi-scale salient features on meshes. It is based on robust estimation of curvature on multiple scales. The coincidence between salient feature and the scale of interest can be established straightforwardly, where detailed feature appears on small scale and feature with more global shape information shows up on large scale. We demonstrate this multi-scale description of features accords with human perception and can be further used for several applications as feature classification and viewpoint selection. Experiments exhibit that our method as a multi-scale analysis tool is very helpful for studying 3D shapes. © 2012 Springer-Verlag.

  2. Variational multiscale models for charge transport.

    Science.gov (United States)

    Wei, Guo-Wei; Zheng, Qiong; Chen, Zhan; Xia, Kelin

    2012-01-01

    This work presents a few variational multiscale models for charge transport in complex physical, chemical and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors and ion channels. An essential ingredient of the present models, introduced in an earlier paper (Bulletin of Mathematical Biology, 72, 1562-1622, 2010), is the use of differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain from the microscopic domain, meanwhile, dynamically couple discrete and continuum descriptions. Our main strategy is to construct the total energy functional of a charge transport system to encompass the polar and nonpolar free energies of solvation, and chemical potential related energy. By using the Euler-Lagrange variation, coupled Laplace-Beltrami and Poisson-Nernst-Planck (LB-PNP) equations are derived. The solution of the LB-PNP equations leads to the minimization of the total free energy, and explicit profiles of electrostatic potential and densities of charge species. To further reduce the computational complexity, the Boltzmann distribution obtained from the Poisson-Boltzmann (PB) equation is utilized to represent the densities of certain charge species so as to avoid the computationally expensive solution of some Nernst-Planck (NP) equations. Consequently, the coupled Laplace-Beltrami and Poisson-Boltzmann-Nernst-Planck (LB-PBNP) equations are proposed for charge transport in heterogeneous systems. A major emphasis of the present formulation is the consistency between equilibrium LB-PB theory and non-equilibrium LB-PNP theory at equilibrium. Another major emphasis is the capability of the reduced LB-PBNP model to fully recover the prediction of the LB-PNP model at non-equilibrium settings. To account for the fluid impact on the charge transport, we derive coupled Laplace-Beltrami, Poisson-Nernst-Planck and Navier-Stokes equations from the variational principle

  3. Variational multiscale models for charge transport

    Science.gov (United States)

    Wei, Guo-Wei; Zheng, Qiong; Chen, Zhan; Xia, Kelin

    2012-01-01

    This work presents a few variational multiscale models for charge transport in complex physical, chemical and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors and ion channels. An essential ingredient of the present models, introduced in an earlier paper (Bulletin of Mathematical Biology, 72, 1562-1622, 2010), is the use of differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain from the microscopic domain, meanwhile, dynamically couple discrete and continuum descriptions. Our main strategy is to construct the total energy functional of a charge transport system to encompass the polar and nonpolar free energies of solvation, and chemical potential related energy. By using the Euler-Lagrange variation, coupled Laplace-Beltrami and Poisson-Nernst-Planck (LB-PNP) equations are derived. The solution of the LB-PNP equations leads to the minimization of the total free energy, and explicit profiles of electrostatic potential and densities of charge species. To further reduce the computational complexity, the Boltzmann distribution obtained from the Poisson-Boltzmann (PB) equation is utilized to represent the densities of certain charge species so as to avoid the computationally expensive solution of some Nernst-Planck (NP) equations. Consequently, the coupled Laplace-Beltrami and Poisson-Boltzmann-Nernst-Planck (LB-PBNP) equations are proposed for charge transport in heterogeneous systems. A major emphasis of the present formulation is the consistency between equilibrium LB-PB theory and non-equilibrium LB-PNP theory at equilibrium. Another major emphasis is the capability of the reduced LB-PBNP model to fully recover the prediction of the LB-PNP model at non-equilibrium settings. To account for the fluid impact on the charge transport, we derive coupled Laplace-Beltrami, Poisson-Nernst-Planck and Navier-Stokes equations from the variational principle

  4. RBF Multiscale Collocation for Second Order Elliptic Boundary Value Problems

    KAUST Repository

    Farrell, Patricio; Wendland, Holger

    2013-01-01

    In this paper, we discuss multiscale radial basis function collocation methods for solving elliptic partial differential equations on bounded domains. The approximate solution is constructed in a multilevel fashion, each level using compactly

  5. A multiscale mortar multipoint flux mixed finite element method

    KAUST Repository

    Wheeler, Mary Fanett; Xue, Guangri; Yotov, Ivan

    2012-01-01

    In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite

  6. Fast Multiscale Reservoir Simulations using POD-DEIM Model Reduction

    KAUST Repository

    Ghasemi, Mohammadreza; Yang, Yanfang; Gildin, Eduardo; Efendiev, Yalchin R.; Calo, Victor M.

    2015-01-01

    snapshots are inexpensively computed using local model reduction techniques based on Generalized Multiscale Finite Element Method (GMsFEM) which provides (1) a hierarchical approximation of snapshot vectors (2) adaptive computations by using coarse grids (3

  7. Multi-Scale Simulation of High Energy Density Ionic Liquids

    National Research Council Canada - National Science Library

    Voth, Gregory A

    2007-01-01

    The focus of this AFOSR project was the molecular dynamics (MD) simulation of ionic liquid structure, dynamics, and interfacial properties, as well as multi-scale descriptions of these novel liquids (e.g...

  8. Multi-scale modeling strategies in materials science—The ...

    Indian Academy of Sciences (India)

    Unknown

    Multi-scale models; quasicontinuum method; finite elements. 1. Introduction ... boundary with external stresses, and the interaction of a lattice dislocation with a grain ..... mum value of se over the elements that touch node α. The acceleration of ...

  9. Lifetime statistics of quantum chaos studied by a multiscale analysis

    KAUST Repository

    Di Falco, A.; Krauss, T. F.; Fratalocchi, Andrea

    2012-01-01

    on a silicon-on-insulator substrate. We calculate resonances through a multiscale procedure that combines energy landscape analysis and wavelet transforms. Experimental data is found to follow the universal predictions arising from random matrix theory

  10. Randomized Oversampling for Generalized Multiscale Finite Element Methods

    KAUST Repository

    Calo, Victor M.; Efendiev, Yalchin R.; Galvis, Juan; Li, Guanglian

    2016-01-01

    boundary conditions defined in a domain larger than the target region. Furthermore, we perform an eigenvalue decomposition in this small space. We study the application of randomized sampling for GMsFEM in conjunction with adaptivity, where local multiscale

  11. Toward the multiscale nature of stress corrosion cracking

    Directory of Open Access Journals (Sweden)

    Xiaolong Liu

    2018-02-01

    Full Text Available This article reviews the multiscale nature of stress corrosion cracking (SCC observed by high-resolution characterizations in austenite stainless steels and Ni-base superalloys in light water reactors (including boiling water reactors, pressurized water reactors, and supercritical water reactors with related opinions. A new statistical summary and comparison of observed degradation phenomena at different length scales is included. The intrinsic causes of this multiscale nature of SCC are discussed based on existing evidence and related opinions, ranging from materials theory to practical processing technologies. Questions of interest are then discussed to improve bottom-up understanding of the intrinsic causes. Last, a multiscale modeling and simulation methodology is proposed as a promising interdisciplinary solution to understand the intrinsic causes of the multiscale nature of SCC in light water reactors, based on a review of related supporting application evidence.

  12. Multiscale model reduction for shale gas transport in fractured media

    KAUST Repository

    Akkutlu, I. Y.; Efendiev, Yalchin R.; Vasilyeva, Maria

    2016-01-01

    fracture distributions on an unstructured grid; (2) develop GMsFEM for nonlinear flows; and (3) develop online basis function strategies to adaptively improve the convergence. The number of multiscale basis functions in each coarse region represents

  13. Distributed Multiscale Data Analysis and Processing for Sensor Networks

    National Research Council Canada - National Science Library

    Wagner, Raymond; Sarvotham, Shriram; Choi, Hyeokho; Baraniuk, Richard

    2005-01-01

    .... Second, the communication overhead of multiscale algorithms can become prohibitive. In this paper, we take a first step in addressing both shortcomings by introducing two new distributed multiresolution transforms...

  14. Examining Multiscale Movement Coordination in Collaborative Problem Solving

    DEFF Research Database (Denmark)

    Wiltshire, Travis; Steffensen, Sune Vork

    2017-01-01

    During collaborative problem solving (CPS), coordination occurs at different spatial and temporal scales. This multiscale coordination should, at least on some scales, play a functional role in facilitating effective collaboration outcomes. To evaluate this, we conducted a study of computer...

  15. Novel multiscale modeling tool applied to Pseudomonas aeruginosa biofilm formation.

    Directory of Open Access Journals (Sweden)

    Matthew B Biggs

    Full Text Available Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM and constraint-based metabolic modeling. The hybrid model correctly recapitulates oxygen-limited biofilm metabolic activity and predicts increased growth rate via anaerobic respiration with the addition of nitrate to the growth media. In addition, a genome-wide survey of metabolic mutants and biofilm formation exemplifies the powerful analyses that are enabled by this computational modeling tool.

  16. Novel multiscale modeling tool applied to Pseudomonas aeruginosa biofilm formation.

    Science.gov (United States)

    Biggs, Matthew B; Papin, Jason A

    2013-01-01

    Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet) as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM) and constraint-based metabolic modeling. The hybrid model correctly recapitulates oxygen-limited biofilm metabolic activity and predicts increased growth rate via anaerobic respiration with the addition of nitrate to the growth media. In addition, a genome-wide survey of metabolic mutants and biofilm formation exemplifies the powerful analyses that are enabled by this computational modeling tool.

  17. An approach to multiscale modelling with graph grammars.

    Science.gov (United States)

    Ong, Yongzhi; Streit, Katarína; Henke, Michael; Kurth, Winfried

    2014-09-01

    Functional-structural plant models (FSPMs) simulate biological processes at different spatial scales. Methods exist for multiscale data representation and modification, but the advantages of using multiple scales in the dynamic aspects of FSPMs remain unclear. Results from multiscale models in various other areas of science that share fundamental modelling issues with FSPMs suggest that potential advantages do exist, and this study therefore aims to introduce an approach to multiscale modelling in FSPMs. A three-part graph data structure and grammar is revisited, and presented with a conceptual framework for multiscale modelling. The framework is used for identifying roles, categorizing and describing scale-to-scale interactions, thus allowing alternative approaches to model development as opposed to correlation-based modelling at a single scale. Reverse information flow (from macro- to micro-scale) is catered for in the framework. The methods are implemented within the programming language XL. Three example models are implemented using the proposed multiscale graph model and framework. The first illustrates the fundamental usage of the graph data structure and grammar, the second uses probabilistic modelling for organs at the fine scale in order to derive crown growth, and the third combines multiscale plant topology with ozone trends and metabolic network simulations in order to model juvenile beech stands under exposure to a toxic trace gas. The graph data structure supports data representation and grammar operations at multiple scales. The results demonstrate that multiscale modelling is a viable method in FSPM and an alternative to correlation-based modelling. Advantages and disadvantages of multiscale modelling are illustrated by comparisons with single-scale implementations, leading to motivations for further research in sensitivity analysis and run-time efficiency for these models.

  18. Long-term Stable Conservative Multiscale Methods for Vortex Flows

    Science.gov (United States)

    2017-10-31

    Computing Department, Florida State (January 2016) - L. Rebholz, SIAM Southeast 2016, Special session on Recent advances in fluid flow and...Multiscale Methods for Vortex Flows (x) Material has been given an OPSEC review and it has been determined to be non sensitive and, except for...distribution is unlimited. UU UU UU UU 31-10-2017 1-Aug-2014 31-Jul-2017 Final Report: Long-term Stable Conservative Multiscale Methods for Vortex Flows

  19. RFP for the Auroral Multiscale Midex (AMM) Mission star tracker

    DEFF Research Database (Denmark)

    Riis, Troels; Betto, Maurizio; Jørgensen, John Leif

    1999-01-01

    This document is in response to the John Hopkins University - Applied Physics Laboratory RFP for the Auroral Multiscale Midex Mission star tracker.It describes the functionality, the requirements and the performance of the ASC Star Tracker.......This document is in response to the John Hopkins University - Applied Physics Laboratory RFP for the Auroral Multiscale Midex Mission star tracker.It describes the functionality, the requirements and the performance of the ASC Star Tracker....

  20. MUSIC: MUlti-Scale Initial Conditions

    Science.gov (United States)

    Hahn, Oliver; Abel, Tom

    2013-11-01

    MUSIC generates multi-scale initial conditions with multiple levels of refinements for cosmological ‘zoom-in’ simulations. The code uses an adaptive convolution of Gaussian white noise with a real-space transfer function kernel together with an adaptive multi-grid Poisson solver to generate displacements and velocities following first- (1LPT) or second-order Lagrangian perturbation theory (2LPT). MUSIC achieves rms relative errors of the order of 10-4 for displacements and velocities in the refinement region and thus improves in terms of errors by about two orders of magnitude over previous approaches. In addition, errors are localized at coarse-fine boundaries and do not suffer from Fourier space-induced interference ringing.

  1. Multi-scale modeling of composites

    DEFF Research Database (Denmark)

    Azizi, Reza

    A general method to obtain the homogenized response of metal-matrix composites is developed. It is assumed that the microscopic scale is sufficiently small compared to the macroscopic scale such that the macro response does not affect the micromechanical model. Therefore, the microscopic scale......-Mandel’s energy principle is used to find macroscopic operators based on micro-mechanical analyses using the finite element method under generalized plane strain condition. A phenomenologically macroscopic model for metal matrix composites is developed based on constitutive operators describing the elastic...... to plastic deformation. The macroscopic operators found, can be used to model metal matrix composites on the macroscopic scale using a hierarchical multi-scale approach. Finally, decohesion under tension and shear loading is studied using a cohesive law for the interface between matrix and fiber....

  2. Quantifying multiscale inefficiency in electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Uritskaya, Olga Y. [Department of Economics, University of Calgary, Calgary, Alberta T2N 1N4, and Department of Economics and Management, St. Petersburg Polytechnic University, St. Petersburg (Russian Federation); Serletis, Apostolos [Department of Economics, University of Calgary, Calgary, Alberta (Canada)

    2008-11-15

    One of the basic features of efficient markets is the absence of correlations between price increments over any time scale leading to random walk-type behavior of prices. In this paper, we propose a new approach for measuring deviations from the efficient market state based on an analysis of scale-dependent fractal exponent characterizing correlations at different time scales. The approach is applied to two electricity markets, Alberta and Mid Columbia (Mid-C), as well as to the AECO Alberta natural gas market (for purposes of providing a comparison between storable and non-storable commodities). We show that price fluctuations in all studied markets are not efficient, with electricity prices exhibiting complex multiscale correlated behavior not captured by monofractal methods used in previous studies. (author)

  3. On multiscale moving contact line theory.

    Science.gov (United States)

    Li, Shaofan; Fan, Houfu

    2015-07-08

    In this paper, a multiscale moving contact line (MMCL) theory is presented and employed to simulate liquid droplet spreading and capillary motion. The proposed MMCL theory combines a coarse-grained adhesive contact model with a fluid interface membrane theory, so that it can couple molecular scale adhesive interaction and surface tension with hydrodynamics of microscale flow. By doing so, the intermolecular force, the van der Waals or double layer force, separates and levitates the liquid droplet from the supporting solid substrate, which avoids the shear stress singularity caused by the no-slip condition in conventional hydrodynamics theory of moving contact line. Thus, the MMCL allows the difference of the surface energies and surface stresses to drive droplet spreading naturally. To validate the proposed MMCL theory, we have employed it to simulate droplet spreading over various elastic substrates. The numerical simulation results obtained by using MMCL are in good agreement with the molecular dynamics results reported in the literature.

  4. Numerical methods and analysis of multiscale problems

    CERN Document Server

    Madureira, Alexandre L

    2017-01-01

    This book is about numerical modeling of multiscale problems, and introduces several asymptotic analysis and numerical techniques which are necessary for a proper approximation of equations that depend on different physical scales. Aimed at advanced undergraduate and graduate students in mathematics, engineering and physics – or researchers seeking a no-nonsense approach –, it discusses examples in their simplest possible settings, removing mathematical hurdles that might hinder a clear understanding of the methods. The problems considered are given by singular perturbed reaction advection diffusion equations in one and two-dimensional domains, partial differential equations in domains with rough boundaries, and equations with oscillatory coefficients. This work shows how asymptotic analysis can be used to develop and analyze models and numerical methods that are robust and work well for a wide range of parameters.

  5. Quantifying multiscale inefficiency in electricity markets

    International Nuclear Information System (INIS)

    Uritskaya, Olga Y.; Serletis, Apostolos

    2008-01-01

    One of the basic features of efficient markets is the absence of correlations between price increments over any time scale leading to random walk-type behavior of prices. In this paper, we propose a new approach for measuring deviations from the efficient market state based on an analysis of scale-dependent fractal exponent characterizing correlations at different time scales. The approach is applied to two electricity markets, Alberta and Mid Columbia (Mid-C), as well as to the AECO Alberta natural gas market (for purposes of providing a comparison between storable and non-storable commodities). We show that price fluctuations in all studied markets are not efficient, with electricity prices exhibiting complex multiscale correlated behavior not captured by monofractal methods used in previous studies. (author)

  6. Multiscale modeling of three-dimensional genome

    Science.gov (United States)

    Zhang, Bin; Wolynes, Peter

    The genome, the blueprint of life, contains nearly all the information needed to build and maintain an entire organism. A comprehensive understanding of the genome is of paramount interest to human health and will advance progress in many areas, including life sciences, medicine, and biotechnology. The overarching goal of my research is to understand the structure-dynamics-function relationships of the human genome. In this talk, I will be presenting our efforts in moving towards that goal, with a particular emphasis on studying the three-dimensional organization, the structure of the genome with multi-scale approaches. Specifically, I will discuss the reconstruction of genome structures at both interphase and metaphase by making use of data from chromosome conformation capture experiments. Computationally modeling of chromatin fiber at atomistic level from first principles will also be presented as our effort for studying the genome structure from bottom up.

  7. Multiscale simulation approach for battery production systems

    CERN Document Server

    Schönemann, Malte

    2017-01-01

    Addressing the challenge of improving battery quality while reducing high costs and environmental impacts of the production, this book presents a multiscale simulation approach for battery production systems along with a software environment and an application procedure. Battery systems are among the most important technologies of the 21st century since they are enablers for the market success of electric vehicles and stationary energy storage solutions. However, the performance of batteries so far has limited possible applications. Addressing this challenge requires an interdisciplinary understanding of dynamic cause-effect relationships between processes, equipment, materials, and environmental conditions. The approach in this book supports the integrated evaluation of improvement measures and is usable for different planning horizons. It is applied to an exemplary battery cell production and module assembly in order to demonstrate the effectiveness and potential benefits of the simulation.

  8. Hybrid stochastic simplifications for multiscale gene networks

    Directory of Open Access Journals (Sweden)

    Debussche Arnaud

    2009-09-01

    Full Text Available Abstract Background Stochastic simulation of gene networks by Markov processes has important applications in molecular biology. The complexity of exact simulation algorithms scales with the number of discrete jumps to be performed. Approximate schemes reduce the computational time by reducing the number of simulated discrete events. Also, answering important questions about the relation between network topology and intrinsic noise generation and propagation should be based on general mathematical results. These general results are difficult to obtain for exact models. Results We propose a unified framework for hybrid simplifications of Markov models of multiscale stochastic gene networks dynamics. We discuss several possible hybrid simplifications, and provide algorithms to obtain them from pure jump processes. In hybrid simplifications, some components are discrete and evolve by jumps, while other components are continuous. Hybrid simplifications are obtained by partial Kramers-Moyal expansion 123 which is equivalent to the application of the central limit theorem to a sub-model. By averaging and variable aggregation we drastically reduce simulation time and eliminate non-critical reactions. Hybrid and averaged simplifications can be used for more effective simulation algorithms and for obtaining general design principles relating noise to topology and time scales. The simplified models reproduce with good accuracy the stochastic properties of the gene networks, including waiting times in intermittence phenomena, fluctuation amplitudes and stationary distributions. The methods are illustrated on several gene network examples. Conclusion Hybrid simplifications can be used for onion-like (multi-layered approaches to multi-scale biochemical systems, in which various descriptions are used at various scales. Sets of discrete and continuous variables are treated with different methods and are coupled together in a physically justified approach.

  9. MULTISCALE DYNAMICS OF SOLAR MAGNETIC STRUCTURES

    International Nuclear Information System (INIS)

    Uritsky, Vadim M.; Davila, Joseph M.

    2012-01-01

    Multiscale topological complexity of the solar magnetic field is among the primary factors controlling energy release in the corona, including associated processes in the photospheric and chromospheric boundaries. We present a new approach for analyzing multiscale behavior of the photospheric magnetic flux underlying these dynamics as depicted by a sequence of high-resolution solar magnetograms. The approach involves two basic processing steps: (1) identification of timing and location of magnetic flux origin and demise events (as defined by DeForest et al.) by tracking spatiotemporal evolution of unipolar and bipolar photospheric regions, and (2) analysis of collective behavior of the detected magnetic events using a generalized version of the Grassberger-Procaccia correlation integral algorithm. The scale-free nature of the developed algorithms makes it possible to characterize the dynamics of the photospheric network across a wide range of distances and relaxation times. Three types of photospheric conditions are considered to test the method: a quiet photosphere, a solar active region (NOAA 10365) in a quiescent non-flaring state, and the same active region during a period of M-class flares. The results obtained show (1) the presence of a topologically complex asymmetrically fragmented magnetic network in the quiet photosphere driven by meso- and supergranulation, (2) the formation of non-potential magnetic structures with complex polarity separation lines inside the active region, and (3) statistical signatures of canceling bipolar magnetic structures coinciding with flaring activity in the active region. Each of these effects can represent an unstable magnetic configuration acting as an energy source for coronal dissipation and heating.

  10. Parallel multiscale simulations of a brain aneurysm

    Energy Technology Data Exchange (ETDEWEB)

    Grinberg, Leopold [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States); Fedosov, Dmitry A. [Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich 52425 (Germany); Karniadakis, George Em, E-mail: george_karniadakis@brown.edu [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States)

    2013-07-01

    Cardiovascular pathologies, such as a brain aneurysm, are affected by the global blood circulation as well as by the local microrheology. Hence, developing computational models for such cases requires the coupling of disparate spatial and temporal scales often governed by diverse mathematical descriptions, e.g., by partial differential equations (continuum) and ordinary differential equations for discrete particles (atomistic). However, interfacing atomistic-based with continuum-based domain discretizations is a challenging problem that requires both mathematical and computational advances. We present here a hybrid methodology that enabled us to perform the first multiscale simulations of platelet depositions on the wall of a brain aneurysm. The large scale flow features in the intracranial network are accurately resolved by using the high-order spectral element Navier–Stokes solver NεκTαr. The blood rheology inside the aneurysm is modeled using a coarse-grained stochastic molecular dynamics approach (the dissipative particle dynamics method) implemented in the parallel code LAMMPS. The continuum and atomistic domains overlap with interface conditions provided by effective forces computed adaptively to ensure continuity of states across the interface boundary. A two-way interaction is allowed with the time-evolving boundary of the (deposited) platelet clusters tracked by an immersed boundary method. The corresponding heterogeneous solvers (NεκTαr and LAMMPS) are linked together by a computational multilevel message passing interface that facilitates modularity and high parallel efficiency. Results of multiscale simulations of clot formation inside the aneurysm in a patient-specific arterial tree are presented. We also discuss the computational challenges involved and present scalability results of our coupled solver on up to 300 K computer processors. Validation of such coupled atomistic-continuum models is a main open issue that has to be addressed in

  11. Multiscale sampling model for motion integration.

    Science.gov (United States)

    Sherbakov, Lena; Yazdanbakhsh, Arash

    2013-09-30

    Biologically plausible strategies for visual scene integration across spatial and temporal domains continues to be a challenging topic. The fundamental question we address is whether classical problems in motion integration, such as the aperture problem, can be solved in a model that samples the visual scene at multiple spatial and temporal scales in parallel. We hypothesize that fast interareal connections that allow feedback of information between cortical layers are the key processes that disambiguate motion direction. We developed a neural model showing how the aperture problem can be solved using different spatial sampling scales between LGN, V1 layer 4, V1 layer 6, and area MT. Our results suggest that multiscale sampling, rather than feedback explicitly, is the key process that gives rise to end-stopped cells in V1 and enables area MT to solve the aperture problem without the need for calculating intersecting constraints or crafting intricate patterns of spatiotemporal receptive fields. Furthermore, the model explains why end-stopped cells no longer emerge in the absence of V1 layer 6 activity (Bolz & Gilbert, 1986), why V1 layer 4 cells are significantly more end-stopped than V1 layer 6 cells (Pack, Livingstone, Duffy, & Born, 2003), and how it is possible to have a solution to the aperture problem in area MT with no solution in V1 in the presence of driving feedback. In summary, while much research in the field focuses on how a laminar architecture can give rise to complicated spatiotemporal receptive fields to solve problems in the motion domain, we show that one can reframe motion integration as an emergent property of multiscale sampling achieved concurrently within lamina and across multiple visual areas.

  12. Parallel multiscale simulations of a brain aneurysm

    International Nuclear Information System (INIS)

    Grinberg, Leopold; Fedosov, Dmitry A.; Karniadakis, George Em

    2013-01-01

    Cardiovascular pathologies, such as a brain aneurysm, are affected by the global blood circulation as well as by the local microrheology. Hence, developing computational models for such cases requires the coupling of disparate spatial and temporal scales often governed by diverse mathematical descriptions, e.g., by partial differential equations (continuum) and ordinary differential equations for discrete particles (atomistic). However, interfacing atomistic-based with continuum-based domain discretizations is a challenging problem that requires both mathematical and computational advances. We present here a hybrid methodology that enabled us to perform the first multiscale simulations of platelet depositions on the wall of a brain aneurysm. The large scale flow features in the intracranial network are accurately resolved by using the high-order spectral element Navier–Stokes solver NεκTαr. The blood rheology inside the aneurysm is modeled using a coarse-grained stochastic molecular dynamics approach (the dissipative particle dynamics method) implemented in the parallel code LAMMPS. The continuum and atomistic domains overlap with interface conditions provided by effective forces computed adaptively to ensure continuity of states across the interface boundary. A two-way interaction is allowed with the time-evolving boundary of the (deposited) platelet clusters tracked by an immersed boundary method. The corresponding heterogeneous solvers (NεκTαr and LAMMPS) are linked together by a computational multilevel message passing interface that facilitates modularity and high parallel efficiency. Results of multiscale simulations of clot formation inside the aneurysm in a patient-specific arterial tree are presented. We also discuss the computational challenges involved and present scalability results of our coupled solver on up to 300 K computer processors. Validation of such coupled atomistic-continuum models is a main open issue that has to be addressed in

  13. Expanded Mixed Multiscale Finite Element Methods and Their Applications for Flows in Porous Media

    KAUST Repository

    Jiang, L.; Copeland, D.; Moulton, J. D.

    2012-01-01

    We develop a family of expanded mixed multiscale finite element methods (MsFEMs) and their hybridizations for second-order elliptic equations. This formulation expands the standard mixed multiscale finite element formulation in the sense that four

  14. Multi-scale approximation of Vlasov equation

    International Nuclear Information System (INIS)

    Mouton, A.

    2009-09-01

    One of the most important difficulties of numerical simulation of magnetized plasmas is the existence of multiple time and space scales, which can be very different. In order to produce good simulations of these multi-scale phenomena, it is recommended to develop some models and numerical methods which are adapted to these problems. Nowadays, the two-scale convergence theory introduced by G. Nguetseng and G. Allaire is one of the tools which can be used to rigorously derive multi-scale limits and to obtain new limit models which can be discretized with a usual numerical method: this procedure is so-called a two-scale numerical method. The purpose of this thesis is to develop a two-scale semi-Lagrangian method and to apply it on a gyrokinetic Vlasov-like model in order to simulate a plasma submitted to a large external magnetic field. However, the physical phenomena we have to simulate are quite complex and there are many questions without answers about the behaviour of a two-scale numerical method, especially when such a method is applied on a nonlinear model. In a first part, we develop a two-scale finite volume method and we apply it on the weakly compressible 1D isentropic Euler equations. Even if this mathematical context is far from a Vlasov-like model, it is a relatively simple framework in order to study the behaviour of a two-scale numerical method in front of a nonlinear model. In a second part, we develop a two-scale semi-Lagrangian method for the two-scale model developed by E. Frenod, F. Salvarani et E. Sonnendrucker in order to simulate axisymmetric charged particle beams. Even if the studied physical phenomena are quite different from magnetic fusion experiments, the mathematical context of the one-dimensional paraxial Vlasov-Poisson model is very simple for establishing the basis of a two-scale semi-Lagrangian method. In a third part, we use the two-scale convergence theory in order to improve M. Bostan's weak-* convergence results about the finite

  15. Multiscale Modeling of Mesoscale and Interfacial Phenomena

    Science.gov (United States)

    Petsev, Nikolai Dimitrov

    we provide a novel and general framework for multiscale modeling of systems featuring one or more dissolved species. This makes it possible to retain molecular detail for parts of the problem that require it while using a simple, continuum description for parts where high detail is unnecessary, reducing the number of degrees of freedom (i.e. number of particles) dramatically. This opens the possibility for modeling ion transport in biological processes and biomolecule assembly in ionic solution, as well as electrokinetic phenomena at interfaces such as corrosion. The number of particles in the system is further reduced through an integrated boundary approach, which we apply to colloidal suspensions. In this thesis, we describe this general framework for multiscale modeling single- and multicomponent systems, provide several simple equilibrium and non-equilibrium case studies, and discuss future applications.

  16. Multiscale Mathematics for Biomass Conversion to Renewable Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Plechac, Petr [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Mathematics; Univ. of Delaware, Newark, DE (United States). Dept. of Mathematics; Vlachos, Dionisios [Univ. of Delaware, Newark, DE (United States). Dept. of Chemical and Biomolecular Engineering; Katsoulakis, Markos [Univ. of Massachusetts, Amherst, MA (United States). Dept. of Mathematics

    2013-09-05

    The overall objective of this project is to develop multiscale models for understanding and eventually designing complex processes for renewables. To the best of our knowledge, our work is the first attempt at modeling complex reacting systems, whose performance relies on underlying multiscale mathematics. Our specific application lies at the heart of biofuels initiatives of DOE and entails modeling of catalytic systems, to enable economic, environmentally benign, and efficient conversion of biomass into either hydrogen or valuable chemicals. Specific goals include: (i) Development of rigorous spatio-temporal coarse-grained kinetic Monte Carlo (KMC) mathematics and simulation for microscopic processes encountered in biomass transformation. (ii) Development of hybrid multiscale simulation that links stochastic simulation to a deterministic partial differential equation (PDE) model for an entire reactor. (iii) Development of hybrid multiscale simulation that links KMC simulation with quantum density functional theory (DFT) calculations. (iv) Development of parallelization of models of (i)-(iii) to take advantage of Petaflop computing and enable real world applications of complex, multiscale models. In this NCE period, we continued addressing these objectives and completed the proposed work. Main initiatives, key results, and activities are outlined.

  17. The Goddard multi-scale modeling system with unified physics

    Directory of Open Access Journals (Sweden)

    W.-K. Tao

    2009-08-01

    Full Text Available Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1 a cloud-resolving model (CRM, (2 a regional-scale model, the NASA unified Weather Research and Forecasting Model (WRF, and (3 a coupled CRM-GCM (general circulation model, known as the Goddard Multi-scale Modeling Framework or MMF. The same cloud-microphysical processes, long- and short-wave radiative transfer and land-surface processes are applied in all of the models to study explicit cloud-radiation and cloud-surface interactive processes in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator for comparison and validation with NASA high-resolution satellite data.

    This paper reviews the development and presents some applications of the multi-scale modeling system, including results from using the multi-scale modeling system to study the interactions between clouds, precipitation, and aerosols. In addition, use of the multi-satellite simulator to identify the strengths and weaknesses of the model-simulated precipitation processes will be discussed as well as future model developments and applications.

  18. 2D deblending using the multi-scale shaping scheme

    Science.gov (United States)

    Li, Qun; Ban, Xingan; Gong, Renbin; Li, Jinnuo; Ge, Qiang; Zu, Shaohuan

    2018-01-01

    Deblending can be posed as an inversion problem, which is ill-posed and requires constraint to obtain unique and stable solution. In blended record, signal is coherent, whereas interference is incoherent in some domains (e.g., common receiver domain and common offset domain). Due to the different sparsity, coefficients of signal and interference locate in different curvelet scale domains and have different amplitudes. Take into account the two differences, we propose a 2D multi-scale shaping scheme to constrain the sparsity to separate the blended record. In the domain where signal concentrates, the multi-scale scheme passes all the coefficients representing signal, while, in the domain where interference focuses, the multi-scale scheme suppresses the coefficients representing interference. Because the interference is suppressed evidently at each iteration, the constraint of multi-scale shaping operator in all scale domains are weak to guarantee the convergence of algorithm. We evaluate the performance of the multi-scale shaping scheme and the traditional global shaping scheme by using two synthetic and one field data examples.

  19. Conformal-Based Surface Morphing and Multi-Scale Representation

    Directory of Open Access Journals (Sweden)

    Ka Chun Lam

    2014-05-01

    Full Text Available This paper presents two algorithms, based on conformal geometry, for the multi-scale representations of geometric shapes and surface morphing. A multi-scale surface representation aims to describe a 3D shape at different levels of geometric detail, which allows analyzing or editing surfaces at the global or local scales effectively. Surface morphing refers to the process of interpolating between two geometric shapes, which has been widely applied to estimate or analyze deformations in computer graphics, computer vision and medical imaging. In this work, we propose two geometric models for surface morphing and multi-scale representation for 3D surfaces. The basic idea is to represent a 3D surface by its mean curvature function, H, and conformal factor function λ, which uniquely determine the geometry of the surface according to Riemann surface theory. Once we have the (λ, H parameterization of the surface, post-processing of the surface can be done directly on the conformal parameter domain. In particular, the problem of multi-scale representations of shapes can be reduced to the signal filtering on the λ and H parameters. On the other hand, the surface morphing problem can be transformed to an interpolation process of two sets of (λ, H parameters. We test the proposed algorithms on 3D human face data and MRI-derived brain surfaces. Experimental results show that our proposed methods can effectively obtain multi-scale surface representations and give natural surface morphing results.

  20. Multiscale Modeling in the Clinic: Drug Design and Development

    Energy Technology Data Exchange (ETDEWEB)

    Clancy, Colleen E.; An, Gary; Cannon, William R.; Liu, Yaling; May, Elebeoba E.; Ortoleva, Peter; Popel, Aleksander S.; Sluka, James P.; Su, Jing; Vicini, Paolo; Zhou, Xiaobo; Eckmann, David M.

    2016-02-17

    A wide range of length and time scales are relevant to pharmacology, especially in drug development, drug design and drug delivery. Therefore, multi-scale computational modeling and simulation methods and paradigms that advance the linkage of phenomena occurring at these multiple scales have become increasingly important. Multi-scale approaches present in silico opportunities to advance laboratory research to bedside clinical applications in pharmaceuticals research. This is achievable through the capability of modeling to reveal phenomena occurring across multiple spatial and temporal scales, which are not otherwise readily accessible to experimentation. The resultant models, when validated, are capable of making testable predictions to guide drug design and delivery. In this review we describe the goals, methods, and opportunities of multi-scale modeling in drug design and development. We demonstrate the impact of multiple scales of modeling in this field. We indicate the common mathematical techniques employed for multi-scale modeling approaches used in pharmacology and present several examples illustrating the current state-of-the-art regarding drug development for: Excitable Systems (Heart); Cancer (Metastasis and Differentiation); Cancer (Angiogenesis and Drug Targeting); Metabolic Disorders; and Inflammation and Sepsis. We conclude with a focus on barriers to successful clinical translation of drug development, drug design and drug delivery multi-scale models.

  1. Microphysics in Multi-scale Modeling System with Unified Physics

    Science.gov (United States)

    Tao, Wei-Kuo

    2012-01-01

    Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the microphysics development and its performance for the multi-scale modeling system will be presented.

  2. Multiscale image restoration in nulear medicine

    International Nuclear Information System (INIS)

    Jammal, G.

    2001-01-01

    This work develops, analyzes and validates a new multiscale restoration framework for denoising and deconvolution in photon limited imagery. Denoising means the estimation of the intensity of a Poisson process from a single observation of the counts, whereas deconvolution refers to the recovery of an object related through a linear system of equations to the intensity function of the Poisson data. The developed framework has been named DeQuant in analogy to Denoising when the noise is of Quantum nature. DeQuant works according to the following scheme. (1) It starts by testing the statistical significance of the wavelet coefficients of the Poisson process, based on the knowledge of their probability density function. (2) A regularization constraint assigns a new value to the non significant coefficients enabling therewith to reduce artifacts and incorporate realistic prior information into the estimation process. Finally, (3) the application of the inverse wavelet transform yields the restored object. The whole procedure is iterated before obtaining the final estimate. The validation of DeQuant on nuclear medicine images showed excellent results. The obtained estimates enable a greater diagnostic confidence in clinical nuclear medicine since they give the physician the access to the diagnosis relevant information with a measure of the significance of the detected structures [de

  3. Multiscale Reconstruction for Magnetic Resonance Fingerprinting

    Science.gov (United States)

    Pierre, Eric Y.; Ma, Dan; Chen, Yong; Badve, Chaitra; Griswold, Mark A.

    2015-01-01

    Purpose To reduce acquisition time needed to obtain reliable parametric maps with Magnetic Resonance Fingerprinting. Methods An iterative-denoising algorithm is initialized by reconstructing the MRF image series at low image resolution. For subsequent iterations, the method enforces pixel-wise fidelity to the best-matching dictionary template then enforces fidelity to the acquired data at slightly higher spatial resolution. After convergence, parametric maps with desirable spatial resolution are obtained through template matching of the final image series. The proposed method was evaluated on phantom and in-vivo data using the highly-undersampled, variable-density spiral trajectory and compared with the original MRF method. The benefits of additional sparsity constraints were also evaluated. When available, gold standard parameter maps were used to quantify the performance of each method. Results The proposed approach allowed convergence to accurate parametric maps with as few as 300 time points of acquisition, as compared to 1000 in the original MRF work. Simultaneous quantification of T1, T2, proton density (PD) and B0 field variations in the brain was achieved in vivo for a 256×256 matrix for a total acquisition time of 10.2s, representing a 3-fold reduction in acquisition time. Conclusions The proposed iterative multiscale reconstruction reliably increases MRF acquisition speed and accuracy. PMID:26132462

  4. Predicting FLDs Using a Multiscale Modeling Scheme

    Science.gov (United States)

    Wu, Z.; Loy, C.; Wang, E.; Hegadekatte, V.

    2017-09-01

    The measurement of a single forming limit diagram (FLD) requires significant resources and is time consuming. We have developed a multiscale modeling scheme to predict FLDs using a combination of limited laboratory testing, crystal plasticity (VPSC) modeling, and dual sequential-stage finite element (ABAQUS/Explicit) modeling with the Marciniak-Kuczynski (M-K) criterion to determine the limit strain. We have established a means to work around existing limitations in ABAQUS/Explicit by using an anisotropic yield locus (e.g., BBC2008) in combination with the M-K criterion. We further apply a VPSC model to reduce the number of laboratory tests required to characterize the anisotropic yield locus. In the present work, we show that the predicted FLD is in excellent agreement with the measured FLD for AA5182 in the O temper. Instead of 13 different tests as for a traditional FLD determination within Novelis, our technique uses just four measurements: tensile properties in three orientations; plane strain tension; biaxial bulge; and the sheet crystallographic texture. The turnaround time is consequently far less than for the traditional laboratory measurement of the FLD.

  5. Laser Writing of Multiscale Chiral Polymer Metamaterials

    Directory of Open Access Journals (Sweden)

    E. P. Furlani

    2012-01-01

    Full Text Available A new approach to metamaterials is presented that involves laser-based patterning of novel chiral polymer media, wherein chirality is realized at two distinct length scales, intrinsically at the molecular level and geometrically at a length scale on the order of the wavelength of the incident field. In this approach, femtosecond-pulsed laser-induced two-photon lithography (TPL is used to pattern a photoresist-chiral polymer mixture into planar chiral shapes. Enhanced bulk chirality can be realized by tuning the wavelength-dependent chiral response at both the molecular and geometric level to ensure an overlap of their respective spectra. The approach is demonstrated via the fabrication of a metamaterial consisting of a two-dimensional array of chiral polymer-based L-structures. The fabrication process is described and modeling is performed to demonstrate the distinction between molecular and planar geometric-based chirality and the effects of the enhanced multiscale chirality on the optical response of such media. This new approach to metamaterials holds promise for the development of tunable, polymer-based optical metamaterials with low loss.

  6. A multiscale modeling approach for biomolecular systems

    Energy Technology Data Exchange (ETDEWEB)

    Bowling, Alan, E-mail: bowling@uta.edu; Haghshenas-Jaryani, Mahdi, E-mail: mahdi.haghshenasjaryani@mavs.uta.edu [The University of Texas at Arlington, Department of Mechanical and Aerospace Engineering (United States)

    2015-04-15

    This paper presents a new multiscale molecular dynamic model for investigating the effects of external interactions, such as contact and impact, during stepping and docking of motor proteins and other biomolecular systems. The model retains the mass properties ensuring that the result satisfies Newton’s second law. This idea is presented using a simple particle model to facilitate discussion of the rigid body model; however, the particle model does provide insights into particle dynamics at the nanoscale. The resulting three-dimensional model predicts a significant decrease in the effect of the random forces associated with Brownian motion. This conclusion runs contrary to the widely accepted notion that the motor protein’s movements are primarily the result of thermal effects. This work focuses on the mechanical aspects of protein locomotion; the effect ATP hydrolysis is estimated as internal forces acting on the mechanical model. In addition, the proposed model can be numerically integrated in a reasonable amount of time. Herein, the differences between the motion predicted by the old and new modeling approaches are compared using a simplified model of myosin V.

  7. Multiscale wavelet representations for mammographic feature analysis

    Science.gov (United States)

    Laine, Andrew F.; Song, Shuwu

    1992-12-01

    This paper introduces a novel approach for accomplishing mammographic feature analysis through multiresolution representations. We show that efficient (nonredundant) representations may be identified from digital mammography and used to enhance specific mammographic features within a continuum of scale space. The multiresolution decomposition of wavelet transforms provides a natural hierarchy in which to embed an interactive paradigm for accomplishing scale space feature analysis. Choosing wavelets (or analyzing functions) that are simultaneously localized in both space and frequency, results in a powerful methodology for image analysis. Multiresolution and orientation selectivity, known biological mechanisms in primate vision, are ingrained in wavelet representations and inspire the techniques presented in this paper. Our approach includes local analysis of complete multiscale representations. Mammograms are reconstructed from wavelet coefficients, enhanced by linear, exponential and constant weight functions localized in scale space. By improving the visualization of breast pathology we can improve the changes of early detection of breast cancers (improve quality) while requiring less time to evaluate mammograms for most patients (lower costs).

  8. Multiscale modeling of polyisoprene on graphite

    International Nuclear Information System (INIS)

    Pandey, Yogendra Narayan; Brayton, Alexander; Doxastakis, Manolis; Burkhart, Craig; Papakonstantopoulos, George J.

    2014-01-01

    The local dynamics and the conformational properties of polyisoprene next to a smooth graphite surface constructed by graphene layers are studied by a multiscale methodology. First, fully atomistic molecular dynamics simulations of oligomers next to the surface are performed. Subsequently, Monte Carlo simulations of a systematically derived coarse-grained model generate numerous uncorrelated structures for polymer systems. A new reverse backmapping strategy is presented that reintroduces atomistic detail. Finally, multiple extensive fully atomistic simulations with large systems of long macromolecules are employed to examine local dynamics in proximity to graphite. Polyisoprene repeat units arrange close to a parallel configuration with chains exhibiting a distribution of contact lengths. Efficient Monte Carlo algorithms with the coarse-grain model are capable of sampling these distributions for any molecular weight in quantitative agreement with predictions from atomistic models. Furthermore, molecular dynamics simulations with well-equilibrated systems at all length-scales support an increased dynamic heterogeneity that is emerging from both intermolecular interactions with the flat surface and intramolecular cooperativity. This study provides a detailed comprehensive picture of polyisoprene on a flat surface and consists of an effort to characterize such systems in atomistic detail

  9. Multiscale Modeling of UHTC: Thermal Conductivity

    Science.gov (United States)

    Lawson, John W.; Murry, Daw; Squire, Thomas; Bauschlicher, Charles W.

    2012-01-01

    We are developing a multiscale framework in computational modeling for the ultra high temperature ceramics (UHTC) ZrB2 and HfB2. These materials are characterized by high melting point, good strength, and reasonable oxidation resistance. They are candidate materials for a number of applications in extreme environments including sharp leading edges of hypersonic aircraft. In particular, we used a combination of ab initio methods, atomistic simulations and continuum computations to obtain insights into fundamental properties of these materials. Ab initio methods were used to compute basic structural, mechanical and thermal properties. From these results, a database was constructed to fit a Tersoff style interatomic potential suitable for atomistic simulations. These potentials were used to evaluate the lattice thermal conductivity of single crystals and the thermal resistance of simple grain boundaries. Finite element method (FEM) computations using atomistic results as inputs were performed with meshes constructed on SEM images thereby modeling the realistic microstructure. These continuum computations showed the reduction in thermal conductivity due to the grain boundary network.

  10. Fast Plasma Investigation for Magnetospheric Multiscale

    Science.gov (United States)

    Pollock, C.; Moore, T.; Coffey, V.; Dorelli J.; Giles, B.; Adrian, M.; Chandler, M.; Duncan, C.; Figueroa-Vinas, A.; Garcia, K.; hide

    2016-01-01

    The Fast Plasma Investigation (FPI) was developed for flight on the Magnetospheric Multiscale (MMS) mission to measure the differential directional flux of magnetospheric electrons and ions with unprecedented time resolution to resolve kinetic-scale plasma dynamics. This increased resolution has been accomplished by placing four dual 180-degree top hat spectrometers for electrons and four dual 180-degree top hat spectrometers for ions around the periphery of each of four MMS spacecraft. Using electrostatic field-of-view deflection, the eight spectrometers for each species together provide 4pi-sr-field-of-view with, at worst, 11.25-degree sample spacing. Energy/charge sampling is provided by swept electrostatic energy/charge selection over the range from 10 eVq to 30000 eVq. The eight dual spectrometers on each spacecraft are controlled and interrogated by a single block redundant Instrument Data Processing Unit, which in turn interfaces to the observatory's Instrument Suite Central Instrument Data processor. This paper described the design of FPI, its ground and in-flight calibration, its operational concept, and its data products.

  11. Multiscale Concrete Modeling of Aging Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Hammi, Yousseff [Mississippi State Univ., Mississippi State, MS (United States); Gullett, Philipp [Mississippi State Univ., Mississippi State, MS (United States); Horstemeyer, Mark F. [Mississippi State Univ., Mississippi State, MS (United States)

    2015-07-31

    In this work a numerical finite element framework is implemented to enable the integration of coupled multiscale and multiphysics transport processes. A User Element subroutine (UEL) in Abaqus is used to simultaneously solve stress equilibrium, heat conduction, and multiple diffusion equations for 2D and 3D linear and quadratic elements. Transport processes in concrete structures and their degradation mechanisms are presented along with the discretization of the governing equations. The multiphysics modeling framework is theoretically extended to the linear elastic fracture mechanics (LEFM) by introducing the eXtended Finite Element Method (XFEM) and based on the XFEM user element implementation of Giner et al. [2009]. A damage model that takes into account the damage contribution from the different degradation mechanisms is theoretically developed. The total contribution of damage is forwarded to a Multi-Stage Fatigue (MSF) model to enable the assessment of the fatigue life and the deterioration of reinforced concrete structures in a nuclear power plant. Finally, two examples are presented to illustrate the developed multiphysics user element implementation and the XFEM implementation of Giner et al. [2009].

  12. Magnetospheric MultiScale (MMS) System Manager

    Science.gov (United States)

    Schiff, Conrad; Maher, Francis Alfred; Henely, Sean Philip; Rand, David

    2014-01-01

    The Magnetospheric MultiScale (MMS) mission is an ambitious NASA space science mission in which 4 spacecraft are flown in tight formation about a highly elliptical orbit. Each spacecraft has multiple instruments that measure particle and field compositions in the Earths magnetosphere. By controlling the members relative motion, MMS can distinguish temporal and spatial fluctuations in a way that a single spacecraft cannot.To achieve this control, 2 sets of four maneuvers, distributed evenly across the spacecraft must be performed approximately every 14 days. Performing a single maneuver on an individual spacecraft is usually labor intensive and the complexity becomes clearly increases with four. As a result, the MMS flight dynamics team turned to the System Manager to put the routine or error-prone under machine control freeing the analysts for activities that require human judgment.The System Manager is an expert system that is capable of handling operations activities associated with performing MMS maneuvers. As an expert system, it can work off a known schedule, launching jobs based on a one-time occurrence or on a set reoccurring schedule. It is also able to detect situational changes and use event-driven programming to change schedules, adapt activities, or call for help.

  13. Algorithmic foundation of multi-scale spatial representation

    CERN Document Server

    Li, Zhilin

    2006-01-01

    With the widespread use of GIS, multi-scale representation has become an important issue in the realm of spatial data handling. However, no book to date has systematically tackled the different aspects of this discipline. Emphasizing map generalization, Algorithmic Foundation of Multi-Scale Spatial Representation addresses the mathematical basis of multi-scale representation, specifically, the algorithmic foundation.Using easy-to-understand language, the author focuses on geometric transformations, with each chapter surveying a particular spatial feature. After an introduction to the essential operations required for geometric transformations as well as some mathematical and theoretical background, the book describes algorithms for a class of point features/clusters. It then examines algorithms for individual line features, such as the reduction of data points, smoothing (filtering), and scale-driven generalization, followed by a discussion of algorithms for a class of line features including contours, hydrog...

  14. Generalized multiscale finite element method. Symmetric interior penalty coupling

    KAUST Repository

    Efendiev, Yalchin R.; Galvis, Juan; Lazarov, Raytcho D.; Moon, M.; Sarkis, Marcus V.

    2013-01-01

    Motivated by applications to numerical simulations of flows in highly heterogeneous porous media, we develop multiscale finite element methods for second order elliptic equations. We discuss a multiscale model reduction technique in the framework of the discontinuous Galerkin finite element method. We propose two different finite element spaces on the coarse mesh. The first space is based on a local eigenvalue problem that uses an interior weighted L2-norm and a boundary weighted L2-norm for computing the "mass" matrix. The second choice is based on generation of a snapshot space and subsequent selection of a subspace of a reduced dimension. The approximation with these multiscale spaces is based on the discontinuous Galerkin finite element method framework. We investigate the stability and derive error estimates for the methods and further experimentally study their performance on a representative number of numerical examples. © 2013 Elsevier Inc.

  15. Generalized multiscale finite element method. Symmetric interior penalty coupling

    KAUST Repository

    Efendiev, Yalchin R.

    2013-12-01

    Motivated by applications to numerical simulations of flows in highly heterogeneous porous media, we develop multiscale finite element methods for second order elliptic equations. We discuss a multiscale model reduction technique in the framework of the discontinuous Galerkin finite element method. We propose two different finite element spaces on the coarse mesh. The first space is based on a local eigenvalue problem that uses an interior weighted L2-norm and a boundary weighted L2-norm for computing the "mass" matrix. The second choice is based on generation of a snapshot space and subsequent selection of a subspace of a reduced dimension. The approximation with these multiscale spaces is based on the discontinuous Galerkin finite element method framework. We investigate the stability and derive error estimates for the methods and further experimentally study their performance on a representative number of numerical examples. © 2013 Elsevier Inc.

  16. Integrated multiscale biomaterials experiment and modelling: a perspective

    Science.gov (United States)

    Buehler, Markus J.; Genin, Guy M.

    2016-01-01

    Advances in multiscale models and computational power have enabled a broad toolset to predict how molecules, cells, tissues and organs behave and develop. A key theme in biological systems is the emergence of macroscale behaviour from collective behaviours across a range of length and timescales, and a key element of these models is therefore hierarchical simulation. However, this predictive capacity has far outstripped our ability to validate predictions experimentally, particularly when multiple hierarchical levels are involved. The state of the art represents careful integration of multiscale experiment and modelling, and yields not only validation, but also insights into deformation and relaxation mechanisms across scales. We present here a sampling of key results that highlight both challenges and opportunities for integrated multiscale experiment and modelling in biological systems. PMID:28981126

  17. Complexity multiscale asynchrony measure and behavior for interacting financial dynamics

    Science.gov (United States)

    Yang, Ge; Wang, Jun; Niu, Hongli

    2016-08-01

    A stochastic financial price process is proposed and investigated by the finite-range multitype contact dynamical system, in an attempt to study the nonlinear behaviors of real asset markets. The viruses spreading process in a finite-range multitype system is used to imitate the interacting behaviors of diverse investment attitudes in a financial market, and the empirical research on descriptive statistics and autocorrelation behaviors of return time series is performed for different values of propagation rates. Then the multiscale entropy analysis is adopted to study several different shuffled return series, including the original return series, the corresponding reversal series, the random shuffled series, the volatility shuffled series and the Zipf-type shuffled series. Furthermore, we propose and compare the multiscale cross-sample entropy and its modification algorithm called composite multiscale cross-sample entropy. We apply them to study the asynchrony of pairs of time series under different time scales.

  18. Study on high density multi-scale calculation technique

    International Nuclear Information System (INIS)

    Sekiguchi, S.; Tanaka, Y.; Nakada, H.; Nishikawa, T.; Yamamoto, N.; Yokokawa, M.

    2004-01-01

    To understand degradation of nuclear materials under irradiation, it is essential to know as much about each phenomenon observed from multi-scale points of view; they are micro-scale in atomic-level, macro-level in structural scale and intermediate level. In this study for application to meso-scale materials (100A ∼ 2μm), computer technology approaching from micro- and macro-scales was developed including modeling and computer application using computational science and technology method. And environmental condition of grid technology for multi-scale calculation was prepared. The software and MD (molecular dynamics) stencil for verifying the multi-scale calculation were improved and their movement was confirmed. (A. Hishinuma)

  19. Coherent multiscale image processing using dual-tree quaternion wavelets.

    Science.gov (United States)

    Chan, Wai Lam; Choi, Hyeokho; Baraniuk, Richard G

    2008-07-01

    The dual-tree quaternion wavelet transform (QWT) is a new multiscale analysis tool for geometric image features. The QWT is a near shift-invariant tight frame representation whose coefficients sport a magnitude and three phases: two phases encode local image shifts while the third contains image texture information. The QWT is based on an alternative theory for the 2-D Hilbert transform and can be computed using a dual-tree filter bank with linear computational complexity. To demonstrate the properties of the QWT's coherent magnitude/phase representation, we develop an efficient and accurate procedure for estimating the local geometrical structure of an image. We also develop a new multiscale algorithm for estimating the disparity between a pair of images that is promising for image registration and flow estimation applications. The algorithm features multiscale phase unwrapping, linear complexity, and sub-pixel estimation accuracy.

  20. Generalized multiscale finite element methods (GMsFEM)

    KAUST Repository

    Efendiev, Yalchin R.; Galvis, Juan; Hou, Thomasyizhao

    2013-01-01

    In this paper, we propose a general approach called Generalized Multiscale Finite Element Method (GMsFEM) for performing multiscale simulations for problems without scale separation over a complex input space. As in multiscale finite element methods (MsFEMs), the main idea of the proposed approach is to construct a small dimensional local solution space that can be used to generate an efficient and accurate approximation to the multiscale solution with a potentially high dimensional input parameter space. In the proposed approach, we present a general procedure to construct the offline space that is used for a systematic enrichment of the coarse solution space in the online stage. The enrichment in the online stage is performed based on a spectral decomposition of the offline space. In the online stage, for any input parameter, a multiscale space is constructed to solve the global problem on a coarse grid. The online space is constructed via a spectral decomposition of the offline space and by choosing the eigenvectors corresponding to the largest eigenvalues. The computational saving is due to the fact that the construction of the online multiscale space for any input parameter is fast and this space can be re-used for solving the forward problem with any forcing and boundary condition. Compared with the other approaches where global snapshots are used, the local approach that we present in this paper allows us to eliminate unnecessary degrees of freedom on a coarse-grid level. We present various examples in the paper and some numerical results to demonstrate the effectiveness of our method. © 2013 Elsevier Inc.

  1. Generalized multiscale finite element methods (GMsFEM)

    KAUST Repository

    Efendiev, Yalchin R.

    2013-10-01

    In this paper, we propose a general approach called Generalized Multiscale Finite Element Method (GMsFEM) for performing multiscale simulations for problems without scale separation over a complex input space. As in multiscale finite element methods (MsFEMs), the main idea of the proposed approach is to construct a small dimensional local solution space that can be used to generate an efficient and accurate approximation to the multiscale solution with a potentially high dimensional input parameter space. In the proposed approach, we present a general procedure to construct the offline space that is used for a systematic enrichment of the coarse solution space in the online stage. The enrichment in the online stage is performed based on a spectral decomposition of the offline space. In the online stage, for any input parameter, a multiscale space is constructed to solve the global problem on a coarse grid. The online space is constructed via a spectral decomposition of the offline space and by choosing the eigenvectors corresponding to the largest eigenvalues. The computational saving is due to the fact that the construction of the online multiscale space for any input parameter is fast and this space can be re-used for solving the forward problem with any forcing and boundary condition. Compared with the other approaches where global snapshots are used, the local approach that we present in this paper allows us to eliminate unnecessary degrees of freedom on a coarse-grid level. We present various examples in the paper and some numerical results to demonstrate the effectiveness of our method. © 2013 Elsevier Inc.

  2. Multiscale Finite Element Methods for Flows on Rough Surfaces

    KAUST Repository

    Efendiev, Yalchin

    2013-01-01

    In this paper, we present the Multiscale Finite Element Method (MsFEM) for problems on rough heterogeneous surfaces. We consider the diffusion equation on oscillatory surfaces. Our objective is to represent small-scale features of the solution via multiscale basis functions described on a coarse grid. This problem arises in many applications where processes occur on surfaces or thin layers. We present a unified multiscale finite element framework that entails the use of transformations that map the reference surface to the deformed surface. The main ingredients of MsFEM are (1) the construction of multiscale basis functions and (2) a global coupling of these basis functions. For the construction of multiscale basis functions, our approach uses the transformation of the reference surface to a deformed surface. On the deformed surface, multiscale basis functions are defined where reduced (1D) problems are solved along the edges of coarse-grid blocks to calculate nodalmultiscale basis functions. Furthermore, these basis functions are transformed back to the reference configuration. We discuss the use of appropriate transformation operators that improve the accuracy of the method. The method has an optimal convergence if the transformed surface is smooth and the image of the coarse partition in the reference configuration forms a quasiuniform partition. In this paper, we consider such transformations based on harmonic coordinates (following H. Owhadi and L. Zhang [Comm. Pure and Applied Math., LX(2007), pp. 675-723]) and discuss gridding issues in the reference configuration. Numerical results are presented where we compare the MsFEM when two types of deformations are used formultiscale basis construction. The first deformation employs local information and the second deformation employs a global information. Our numerical results showthat one can improve the accuracy of the simulations when a global information is used. © 2013 Global-Science Press.

  3. Multiscale approach to the physics of radiation damage with ions

    Energy Technology Data Exchange (ETDEWEB)

    Surdutovich, Eugene [Physics Department, Oakland University, 2200 N. Squirrel Rd., Rochester MI 48309 (United States); Solov' yov, Andrey V. [Frankfurt Institute for Advanced Studies, Goethe University, Ruth-Moufang-Str. 1, Frankfurt am Main 60438 (Germany)

    2013-04-19

    We review a multiscale approach to the physics of ion-beam cancer therapy, an approach suggested in order to understand the interplay of a large number of phenomena involved in radiation damage scenario occurring on a range of temporal, spatial, and energy scales. We briefly overview its history and present the current stage of its development. The differences of the multiscale approach from other methods of understanding and assessment of radiation damage are discussed as well as its relationship to other branches of physics, chemistry and biology.

  4. Multiscale integration schemes for jump-diffusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Givon, D.; Kevrekidis, I.G.

    2008-12-09

    We study a two-time-scale system of jump-diffusion stochastic differential equations. We analyze a class of multiscale integration methods for these systems, which, in the spirit of [1], consist of a hybridization between a standard solver for the slow components and short runs for the fast dynamics, which are used to estimate the effect that the fast components have on the slow ones. We obtain explicit bounds for the discrepancy between the results of the multiscale integration method and the slow components of the original system.

  5. Multiscale simulation of molecular processes in cellular environments.

    Science.gov (United States)

    Chiricotto, Mara; Sterpone, Fabio; Derreumaux, Philippe; Melchionna, Simone

    2016-11-13

    We describe the recent advances in studying biological systems via multiscale simulations. Our scheme is based on a coarse-grained representation of the macromolecules and a mesoscopic description of the solvent. The dual technique handles particles, the aqueous solvent and their mutual exchange of forces resulting in a stable and accurate methodology allowing biosystems of unprecedented size to be simulated.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  6. Multi-scale analysis of lung computed tomography images

    CERN Document Server

    Gori, I; Fantacci, M E; Preite Martinez, A; Retico, A; De Mitri, I; Donadio, S; Fulcheri, C

    2007-01-01

    A computer-aided detection (CAD) system for the identification of lung internal nodules in low-dose multi-detector helical Computed Tomography (CT) images was developed in the framework of the MAGIC-5 project. The three modules of our lung CAD system, a segmentation algorithm for lung internal region identification, a multi-scale dot-enhancement filter for nodule candidate selection and a multi-scale neural technique for false positive finding reduction, are described. The results obtained on a dataset of low-dose and thin-slice CT scans are shown in terms of free response receiver operating characteristic (FROC) curves and discussed.

  7. Multiscale entropy based study of the pathological time series

    International Nuclear Information System (INIS)

    Wang Jun; Ma Qianli

    2008-01-01

    This paper studies the multiscale entropy (MSE) of electrocardiogram's ST segment and compares the MSE results of ST segment with that of electrocardiogram in the first time. Electrocardiogram complexity changing characteristics has important clinical significance for early diagnosis. Study shows that the average MSE values and the varying scope fluctuation could be more effective to reveal the heart health status. Particularly the multiscale values varying scope fluctuation is a more sensitive parameter for early heart disease detection and has a clinical diagnostic significance. (general)

  8. Multiscale Shannon entropy and its application in the stock market

    Science.gov (United States)

    Gu, Rongbao

    2017-10-01

    In this paper, we perform a multiscale entropy analysis on the Dow Jones Industrial Average Index using the Shannon entropy. The stock index shows the characteristic of multi-scale entropy that caused by noise in the market. The entropy is demonstrated to have significant predictive ability for the stock index in both long-term and short-term, and empirical results verify that noise does exist in the market and can affect stock price. It has important implications on market participants such as noise traders.

  9. Multiscale modeling of complex materials phenomenological, theoretical and computational aspects

    CERN Document Server

    Trovalusci, Patrizia

    2014-01-01

    The papers in this volume deal with materials science, theoretical mechanics and experimental and computational techniques at multiple scales, providing a sound base and a framework for many applications which are hitherto treated in a phenomenological sense. The basic principles are formulated of multiscale modeling strategies towards modern complex multiphase materials subjected to various types of mechanical, thermal loadings and environmental effects. The focus is on problems where mechanics is highly coupled with other concurrent physical phenomena. Attention is also focused on the historical origins of multiscale modeling and foundations of continuum mechanics currently adopted to model non-classical continua with substructure, for which internal length scales play a crucial role.

  10. Multi-scale magnetic field intermittence in the plasma sheet

    Directory of Open Access Journals (Sweden)

    Z. Vörös

    2003-09-01

    Full Text Available This paper demonstrates that intermittent magnetic field fluctuations in the plasma sheet exhibit transitory, localized, and multi-scale features. We propose a multifractal-based algorithm, which quantifies intermittence on the basis of the statistical distribution of the "strength of burstiness", estimated within a sliding window. Interesting multi-scale phenomena observed by the Cluster spacecraft include large-scale motion of the current sheet and bursty bulk flow associated turbulence, interpreted as a cross-scale coupling (CSC process.Key words. Magnetospheric physics (magnetotail; plasma sheet – Space plasma physics (turbulence

  11. Modeling Temporal Evolution and Multiscale Structure in Networks

    DEFF Research Database (Denmark)

    Herlau, Tue; Mørup, Morten; Schmidt, Mikkel Nørgaard

    2013-01-01

    Many real-world networks exhibit both temporal evolution and multiscale structure. We propose a model for temporally correlated multifurcating hierarchies in complex networks which jointly capture both effects. We use the Gibbs fragmentation tree as prior over multifurcating trees and a change......-point model to account for the temporal evolution of each vertex. We demonstrate that our model is able to infer time-varying multiscale structure in synthetic as well as three real world time-evolving complex networks. Our modeling of the temporal evolution of hierarchies brings new insights...

  12. Multiscale modeling of emergent materials: biological and soft matter

    DEFF Research Database (Denmark)

    Murtola, Teemu; Bunker, Alex; Vattulainen, Ilpo

    2009-01-01

    In this review, we focus on four current related issues in multiscale modeling of soft and biological matter. First, we discuss how to use structural information from detailed models (or experiments) to construct coarse-grained ones in a hierarchical and systematic way. This is discussed in the c......In this review, we focus on four current related issues in multiscale modeling of soft and biological matter. First, we discuss how to use structural information from detailed models (or experiments) to construct coarse-grained ones in a hierarchical and systematic way. This is discussed...

  13. Multiscale simulation of water flow past a C540 fullerene

    DEFF Research Database (Denmark)

    Walther, Jens Honore; Praprotnik, Matej; Kotsalis, Evangelos M.

    2012-01-01

    We present a novel, three-dimensional, multiscale algorithm for simulations of water flow past a fullerene. We employ the Schwarz alternating overlapping domain method to couple molecular dynamics (MD) of liquid water around the C540 buckyball with a Lattice–Boltzmann (LB) description for the Nav......We present a novel, three-dimensional, multiscale algorithm for simulations of water flow past a fullerene. We employ the Schwarz alternating overlapping domain method to couple molecular dynamics (MD) of liquid water around the C540 buckyball with a Lattice–Boltzmann (LB) description...

  14. Rough Set Approach to Incomplete Multiscale Information System

    Science.gov (United States)

    Yang, Xibei; Qi, Yong; Yu, Dongjun; Yu, Hualong; Song, Xiaoning; Yang, Jingyu

    2014-01-01

    Multiscale information system is a new knowledge representation system for expressing the knowledge with different levels of granulations. In this paper, by considering the unknown values, which can be seen everywhere in real world applications, the incomplete multiscale information system is firstly investigated. The descriptor technique is employed to construct rough sets at different scales for analyzing the hierarchically structured data. The problem of unravelling decision rules at different scales is also addressed. Finally, the reduct descriptors are formulated to simplify decision rules, which can be derived from different scales. Some numerical examples are employed to substantiate the conceptual arguments. PMID:25276852

  15. Integrated multiscale modeling of molecular computing devices

    International Nuclear Information System (INIS)

    Cummings, Peter T; Leng Yongsheng

    2005-01-01

    Molecular electronics, in which single organic molecules are designed to perform the functions of transistors, diodes, switches and other circuit elements used in current siliconbased microelecronics, is drawing wide interest as a potential replacement technology for conventional silicon-based lithographically etched microelectronic devices. In addition to their nanoscopic scale, the additional advantage of molecular electronics devices compared to silicon-based lithographically etched devices is the promise of being able to produce them cheaply on an industrial scale using wet chemistry methods (i.e., self-assembly from solution). The design of molecular electronics devices, and the processes to make them on an industrial scale, will require a thorough theoretical understanding of the molecular and higher level processes involved. Hence, the development of modeling techniques for molecular electronics devices is a high priority from both a basic science point of view (to understand the experimental studies in this field) and from an applied nanotechnology (manufacturing) point of view. Modeling molecular electronics devices requires computational methods at all length scales - electronic structure methods for calculating electron transport through organic molecules bonded to inorganic surfaces, molecular simulation methods for determining the structure of self-assembled films of organic molecules on inorganic surfaces, mesoscale methods to understand and predict the formation of mesoscale patterns on surfaces (including interconnect architecture), and macroscopic scale methods (including finite element methods) for simulating the behavior of molecular electronic circuit elements in a larger integrated device. Here we describe a large Department of Energy project involving six universities and one national laboratory aimed at developing integrated multiscale methods for modeling molecular electronics devices. The project is funded equally by the Office of Basic

  16. A multiscale approach to mapping seabed sediments.

    Directory of Open Access Journals (Sweden)

    Benjamin Misiuk

    Full Text Available Benthic habitat maps, including maps of seabed sediments, have become critical spatial-decision support tools for marine ecological management and conservation. Despite the increasing recognition that environmental variables should be considered at multiple spatial scales, variables used in habitat mapping are often implemented at a single scale. The objective of this study was to evaluate the potential for using environmental variables at multiple scales for modelling and mapping seabed sediments. Sixteen environmental variables were derived from multibeam echosounder data collected near Qikiqtarjuaq, Nunavut, Canada at eight spatial scales ranging from 5 to 275 m, and were tested as predictor variables for modelling seabed sediment distributions. Using grain size data obtained from grab samples, we tested which scales of each predictor variable contributed most to sediment models. Results showed that the default scale was often not the best. Out of 129 potential scale-dependent variables, 11 were selected to model the additive log-ratio of mud and sand at five different scales, and 15 were selected to model the additive log-ratio of gravel and sand, also at five different scales. Boosted Regression Tree models that explained between 46.4 and 56.3% of statistical deviance produced multiscale predictions of mud, sand, and gravel that were correlated with cross-validated test data (Spearman's ρmud = 0.77, ρsand = 0.71, ρgravel = 0.58. Predictions of individual size fractions were classified to produce a map of seabed sediments that is useful for marine spatial planning. Based on the scale-dependence of variables in this study, we concluded that spatial scale consideration is at least as important as variable selection in seabed mapping.

  17. Quantum theory of multiscale coarse-graining.

    Science.gov (United States)

    Han, Yining; Jin, Jaehyeok; Wagner, Jacob W; Voth, Gregory A

    2018-03-14

    Coarse-grained (CG) models serve as a powerful tool to simulate molecular systems at much longer temporal and spatial scales. Previously, CG models and methods have been built upon classical statistical mechanics. The present paper develops a theory and numerical methodology for coarse-graining in quantum statistical mechanics, by generalizing the multiscale coarse-graining (MS-CG) method to quantum Boltzmann statistics. A rigorous derivation of the sufficient thermodynamic consistency condition is first presented via imaginary time Feynman path integrals. It identifies the optimal choice of CG action functional and effective quantum CG (qCG) force field to generate a quantum MS-CG (qMS-CG) description of the equilibrium system that is consistent with the quantum fine-grained model projected onto the CG variables. A variational principle then provides a class of algorithms for optimally approximating the qMS-CG force fields. Specifically, a variational method based on force matching, which was also adopted in the classical MS-CG theory, is generalized to quantum Boltzmann statistics. The qMS-CG numerical algorithms and practical issues in implementing this variational minimization procedure are also discussed. Then, two numerical examples are presented to demonstrate the method. Finally, as an alternative strategy, a quasi-classical approximation for the thermal density matrix expressed in the CG variables is derived. This approach provides an interesting physical picture for coarse-graining in quantum Boltzmann statistical mechanics in which the consistency with the quantum particle delocalization is obviously manifest, and it opens up an avenue for using path integral centroid-based effective classical force fields in a coarse-graining methodology.

  18. First results from the Magnetospheric Multiscale mission

    Science.gov (United States)

    Lavraud, B.

    2017-12-01

    Since its launch in March 2015, NASA's Magnetospheric Multiscale mission (MMS) provides a wealth of unprecedented high resolution measurements of space plasma properties and dynamics in the near-Earth environment. MMS was designed in the first place to study the fundamental process of collision-less magnetic reconnection. The two first results reviewed here pertain to this topic and highlight how the extremely high resolution MMS data (electrons, in particular, with full three dimensional measurements at 30 ms in burst mode) have permitted to tackle electron dynamics in unprecedented details. The first result demonstrates how electrons become demagnetized and scattered near the magnetic reconnection X line as a result of increased magnetic field curvature, together with a decrease in its magnitude. The second result demonstrates that electrons form crescent-shaped, agyrotropic distribution functions very near the X line, suggestive of the existence of a perpendicular current aligned with the local electric field and consistent with the energy conversion expected in magnetic reconnection (such that J\\cdot E > 0). Aside from magnetic reconnection, we show how MMS contributes to topics such as wave properties and their interaction with particles. Thanks again to extremely high resolution measurements, the lossless and periodical energy exchange between wave electromagnetic fields and particles, as expected in the case of kinetic Alfvén waves, was confirmed. Although not discussed, MMS has the potential to solve many other outstanding issues in collision-less plasma physics, for example regarding shock or turbulence acceleration, with obvious broader impacts in astrophysics in general.

  19. Quantum theory of multiscale coarse-graining

    Science.gov (United States)

    Han, Yining; Jin, Jaehyeok; Wagner, Jacob W.; Voth, Gregory A.

    2018-03-01

    Coarse-grained (CG) models serve as a powerful tool to simulate molecular systems at much longer temporal and spatial scales. Previously, CG models and methods have been built upon classical statistical mechanics. The present paper develops a theory and numerical methodology for coarse-graining in quantum statistical mechanics, by generalizing the multiscale coarse-graining (MS-CG) method to quantum Boltzmann statistics. A rigorous derivation of the sufficient thermodynamic consistency condition is first presented via imaginary time Feynman path integrals. It identifies the optimal choice of CG action functional and effective quantum CG (qCG) force field to generate a quantum MS-CG (qMS-CG) description of the equilibrium system that is consistent with the quantum fine-grained model projected onto the CG variables. A variational principle then provides a class of algorithms for optimally approximating the qMS-CG force fields. Specifically, a variational method based on force matching, which was also adopted in the classical MS-CG theory, is generalized to quantum Boltzmann statistics. The qMS-CG numerical algorithms and practical issues in implementing this variational minimization procedure are also discussed. Then, two numerical examples are presented to demonstrate the method. Finally, as an alternative strategy, a quasi-classical approximation for the thermal density matrix expressed in the CG variables is derived. This approach provides an interesting physical picture for coarse-graining in quantum Boltzmann statistical mechanics in which the consistency with the quantum particle delocalization is obviously manifest, and it opens up an avenue for using path integral centroid-based effective classical force fields in a coarse-graining methodology.

  20. Multiscale peak detection in wavelet space.

    Science.gov (United States)

    Zhang, Zhi-Min; Tong, Xia; Peng, Ying; Ma, Pan; Zhang, Ming-Jin; Lu, Hong-Mei; Chen, Xiao-Qing; Liang, Yi-Zeng

    2015-12-07

    Accurate peak detection is essential for analyzing high-throughput datasets generated by analytical instruments. Derivatives with noise reduction and matched filtration are frequently used, but they are sensitive to baseline variations, random noise and deviations in the peak shape. A continuous wavelet transform (CWT)-based method is more practical and popular in this situation, which can increase the accuracy and reliability by identifying peaks across scales in wavelet space and implicitly removing noise as well as the baseline. However, its computational load is relatively high and the estimated features of peaks may not be accurate in the case of peaks that are overlapping, dense or weak. In this study, we present multi-scale peak detection (MSPD) by taking full advantage of additional information in wavelet space including ridges, valleys, and zero-crossings. It can achieve a high accuracy by thresholding each detected peak with the maximum of its ridge. It has been comprehensively evaluated with MALDI-TOF spectra in proteomics, the CAMDA 2006 SELDI dataset as well as the Romanian database of Raman spectra, which is particularly suitable for detecting peaks in high-throughput analytical signals. Receiver operating characteristic (ROC) curves show that MSPD can detect more true peaks while keeping the false discovery rate lower than MassSpecWavelet and MALDIquant methods. Superior results in Raman spectra suggest that MSPD seems to be a more universal method for peak detection. MSPD has been designed and implemented efficiently in Python and Cython. It is available as an open source package at .

  1. Multiscale Drivers of Global Environmental Health

    Science.gov (United States)

    Desai, Manish Anil

    In this dissertation, I motivate, develop, and demonstrate three such approaches for investigating multiscale drivers of global environmental health: (1) a metric for analyzing contributions and responses to climate change from global to sectoral scales, (2) a framework for unraveling the influence of environmental change on infectious diseases at regional to local scales, and (3) a model for informing the design and evaluation of clean cooking interventions at community to household scales. The full utility of climate debt as an analytical perspective will remain untapped without tools that can be manipulated by a wide range of analysts, including global environmental health researchers. Chapter 2 explains how international natural debt (IND) apportions global radiative forcing from fossil fuel carbon dioxide and methane, the two most significant climate altering pollutants, to individual entities -- primarily countries but also subnational states and economic sectors, with even finer scales possible -- as a function of unique trajectories of historical emissions, taking into account the quite different radiative efficiencies and atmospheric lifetimes of each pollutant. Owing to its straightforward and transparent derivation, IND can readily operationalize climate debt to consider issues of equity and efficiency and drive scenario exercises that explore the response to climate change at multiple scales. Collectively, the analyses presented in this chapter demonstrate how IND can inform a range of key question on climate change mitigation at multiple scales, compelling environmental health towards an appraisal of the causes and not just the consequences of climate change. The environmental change and infectious disease (EnvID) conceptual framework of Chapter 3 builds on a rich history of prior efforts in epidemiologic theory, environmental science, and mathematical modeling by: (1) articulating a flexible and logical system specification; (2) incorporating

  2. Front-end vision and multi-scale image analysis multi-scale computer vision theory and applications, written in Mathematica

    CERN Document Server

    Romeny, Bart M Haar

    2008-01-01

    Front-End Vision and Multi-Scale Image Analysis is a tutorial in multi-scale methods for computer vision and image processing. It builds on the cross fertilization between human visual perception and multi-scale computer vision (`scale-space') theory and applications. The multi-scale strategies recognized in the first stages of the human visual system are carefully examined, and taken as inspiration for the many geometric methods discussed. All chapters are written in Mathematica, a spectacular high-level language for symbolic and numerical manipulations. The book presents a new and effective

  3. Riparian ecosystems and buffers - multiscale structure, function, and management: introduction

    Science.gov (United States)

    Kathleen A. Dwire; Richard R. Lowrance

    2006-01-01

    Given the importance of issues related to improved understanding and management of riparian ecosystems and buffers, the American Water Resources Association (AWRA) sponsored a Summer Specialty Conference in June 2004 at Olympic Valley, California, entitled 'Riparian Ecosystems and Buffers: Multiscale Structure, Function, and Management.' The primary objective...

  4. A Multiscale Enrichment Procedure for Nonlinear Monotone Operators

    KAUST Repository

    Efendiev, Yalchin R.; Galvis, J.; Presho, M.; Zhou, J.

    2014-01-01

    . Galvis, R. Lazarov, S. Margenov and J. Ren, Robust two-level domain decomposition preconditioners for high-contrast anisotropic flows in multiscale media. Submitted.; Y. Efendiev, J. Galvis and X. Wu, J. Comput. Phys. 230 (2011) 937–955; J. Galvis and Y

  5. Multiscale Modeling of Wear Degradation in Cylinder Liners

    KAUST Repository

    Moraes, Alvaro; Ruggeri, Fabrizio; Tempone, Raul; Vilanova, Pedro

    2014-01-01

    both to predict and to avoid them. To achieve this, a monitoring system of the wear level should be implemented to decrease the risk of failure. In this work, we take a first step into the development of a multiscale indirect inference methodology

  6. Multiscale approach to the physics of radiation damage with ions

    International Nuclear Information System (INIS)

    Surdutovich, E.; Solov'yov, A.

    2014-01-01

    The multiscale approach to the assessment of bio-damage resulting upon irradiation of biological media with ions is reviewed, explained and compared to other approaches. The processes of ion propagation in the medium concurrent with ionization and excitation of molecules, transport of secondary products, dynamics of the medium, and biological damage take place on a number of different temporal, spatial and energy scales. The multiscale approach, a physical phenomenon-based analysis of the scenario that leads to radiation damage, has been designed to consider all relevant effects on a variety of scales and develop an approach to the quantitative assessment of biological damage as a result of irradiation with ions. Presently, physical and chemical effects are included in the scenario while the biological effects such as DNA repair are only mentioned. This paper explains the scenario of radiation damage with ions, overviews its major parts, and applies the multiscale approach to different experimental conditions. On the basis of this experience, the recipe for application of the multiscale approach is formulated. The recipe leads to the calculation of relative biological effectiveness. (authors)

  7. Multiscale modeling and simulation of brain blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Perdikaris, Paris, E-mail: parisp@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Grinberg, Leopold, E-mail: leopoldgrinberg@us.ibm.com [IBM T.J Watson Research Center, 1 Rogers St, Cambridge, Massachusetts 02142 (United States); Karniadakis, George Em, E-mail: george-karniadakis@brown.edu [Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912 (United States)

    2016-02-15

    The aim of this work is to present an overview of recent advances in multi-scale modeling of brain blood flow. In particular, we present some approaches that enable the in silico study of multi-scale and multi-physics phenomena in the cerebral vasculature. We discuss the formulation of continuum and atomistic modeling approaches, present a consistent framework for their concurrent coupling, and list some of the challenges that one needs to overcome in achieving a seamless and scalable integration of heterogeneous numerical solvers. The effectiveness of the proposed framework is demonstrated in a realistic case involving modeling the thrombus formation process taking place on the wall of a patient-specific cerebral aneurysm. This highlights the ability of multi-scale algorithms to resolve important biophysical processes that span several spatial and temporal scales, potentially yielding new insight into the key aspects of brain blood flow in health and disease. Finally, we discuss open questions in multi-scale modeling and emerging topics of future research.

  8. Multiscale Path Metrics for the Analysis of Discrete Geometric Structures

    Science.gov (United States)

    2017-11-30

    Report: Multiscale Path Metrics for the Analysis of Discrete Geometric Structures The views, opinions and/or findings contained in this report are those...Analysis of Discrete Geometric Structures Report Term: 0-Other Email: tomasi@cs.duke.edu Distribution Statement: 1-Approved for public release

  9. Multiscale analysis of structure development in expanded starch snacks

    Science.gov (United States)

    van der Sman, R. G. M.; Broeze, J.

    2014-11-01

    In this paper we perform a multiscale analysis of the food structuring process of the expansion of starchy snack foods like keropok, which obtains a solid foam structure. In particular, we want to investigate the validity of the hypothesis of Kokini and coworkers, that expansion is optimal at the moisture content, where the glass transition and the boiling line intersect. In our analysis we make use of several tools, (1) time scale analysis from the field of physical transport phenomena, (2) the scale separation map (SSM) developed within a multiscale simulation framework of complex automata, (3) the supplemented state diagram (SSD), depicting phase transition and glass transition lines, and (4) a multiscale simulation model for the bubble expansion. Results of the time scale analysis are plotted in the SSD, and give insight into the dominant physical processes involved in expansion. Furthermore, the results of the time scale analysis are used to construct the SSM, which has aided us in the construction of the multiscale simulation model. Simulation results are plotted in the SSD. This clearly shows that the hypothesis of Kokini is qualitatively true, but has to be refined. Our results show that bubble expansion is optimal for moisture content, where the boiling line for gas pressure of 4 bars intersects the isoviscosity line of the critical viscosity 106 Pa.s, which runs parallel to the glass transition line.

  10. On a multiscale approach for filter efficiency simulations

    KAUST Repository

    Iliev, Oleg

    2014-07-01

    Filtration in general, and the dead end depth filtration of solid particles out of fluid in particular, is intrinsic multiscale problem. The deposition (capturing of particles) essentially depends on local velocity, on microgeometry (pore scale geometry) of the filtering medium and on the diameter distribution of the particles. The deposited (captured) particles change the microstructure of the porous media what leads to change of permeability. The changed permeability directly influences the velocity field and pressure distribution inside the filter element. To close the loop, we mention that the velocity influences the transport and deposition of particles. In certain cases one can evaluate the filtration efficiency considering only microscale or only macroscale models, but in general an accurate prediction of the filtration efficiency requires multiscale models and algorithms. This paper discusses the single scale and the multiscale models, and presents a fractional time step discretization algorithm for the multiscale problem. The velocity within the filter element is computed at macroscale, and is used as input for the solution of microscale problems at selected locations of the porous medium. The microscale problem is solved with respect to transport and capturing of individual particles, and its solution is postprocessed to provide permeability values for macroscale computations. Results from computational experiments with an oil filter are presented and discussed.

  11. Multi-scale and multi-orientation medical image analysis

    NARCIS (Netherlands)

    Haar Romenij, ter B.M.; Deserno, T.M.

    2011-01-01

    Inspired by multi-scale and multi-orientation mechanisms recognized in the first stages of our visual system, this chapter gives a tutorial overview of the basic principles. Images are discrete, measured data. The optimal aperture for an observation with as little artefacts as possible, is derived

  12. Multiscale Modeling of Fracture Processes in Cementitious Materials

    NARCIS (Netherlands)

    Qian, Z.

    2012-01-01

    Concrete is a composite construction material, which is composed primarily of coarse aggregates, sands and cement paste. The fracture processes in concrete are complicated, because of the multiscale and multiphase nature of the material. In the past decades, comprehensive effort has been put to

  13. Multiscale time-dependent density functional theory: Demonstration for plasmons.

    Science.gov (United States)

    Jiang, Jiajian; Abi Mansour, Andrew; Ortoleva, Peter J

    2017-08-07

    Plasmon properties are of significant interest in pure and applied nanoscience. While time-dependent density functional theory (TDDFT) can be used to study plasmons, it becomes impractical for elucidating the effect of size, geometric arrangement, and dimensionality in complex nanosystems. In this study, a new multiscale formalism that addresses this challenge is proposed. This formalism is based on Trotter factorization and the explicit introduction of a coarse-grained (CG) structure function constructed as the Weierstrass transform of the electron wavefunction. This CG structure function is shown to vary on a time scale much longer than that of the latter. A multiscale propagator that coevolves both the CG structure function and the electron wavefunction is shown to bring substantial efficiency over classical propagators used in TDDFT. This efficiency follows from the enhanced numerical stability of the multiscale method and the consequence of larger time steps that can be used in a discrete time evolution. The multiscale algorithm is demonstrated for plasmons in a group of interacting sodium nanoparticles (15-240 atoms), and it achieves improved efficiency over TDDFT without significant loss of accuracy or space-time resolution.

  14. Covariance, correlation matrix, and the multiscale community structure of networks.

    Science.gov (United States)

    Shen, Hua-Wei; Cheng, Xue-Qi; Fang, Bin-Xing

    2010-07-01

    Empirical studies show that real world networks often exhibit multiple scales of topological descriptions. However, it is still an open problem how to identify the intrinsic multiple scales of networks. In this paper, we consider detecting the multiscale community structure of network from the perspective of dimension reduction. According to this perspective, a covariance matrix of network is defined to uncover the multiscale community structure through the translation and rotation transformations. It is proved that the covariance matrix is the unbiased version of the well-known modularity matrix. We then point out that the translation and rotation transformations fail to deal with the heterogeneous network, which is very common in nature and society. To address this problem, a correlation matrix is proposed through introducing the rescaling transformation into the covariance matrix. Extensive tests on real world and artificial networks demonstrate that the correlation matrix significantly outperforms the covariance matrix, identically the modularity matrix, as regards identifying the multiscale community structure of network. This work provides a novel perspective to the identification of community structure and thus various dimension reduction methods might be used for the identification of community structure. Through introducing the correlation matrix, we further conclude that the rescaling transformation is crucial to identify the multiscale community structure of network, as well as the translation and rotation transformations.

  15. Hybrid continuum–molecular modelling of multiscale internal gas flows

    International Nuclear Information System (INIS)

    Patronis, Alexander; Lockerby, Duncan A.; Borg, Matthew K.; Reese, Jason M.

    2013-01-01

    We develop and apply an efficient multiscale method for simulating a large class of low-speed internal rarefied gas flows. The method is an extension of the hybrid atomistic–continuum approach proposed by Borg et al. (2013) [28] for the simulation of micro/nano flows of high-aspect ratio. The major new extensions are: (1) incorporation of fluid compressibility; (2) implementation using the direct simulation Monte Carlo (DSMC) method for dilute rarefied gas flows, and (3) application to a broader range of geometries, including periodic, non-periodic, pressure-driven, gravity-driven and shear-driven internal flows. The multiscale method is applied to micro-scale gas flows through a periodic converging–diverging channel (driven by an external acceleration) and a non-periodic channel with a bend (driven by a pressure difference), as well as the flow between two eccentric cylinders (with the inner rotating relative to the outer). In all these cases there exists a wide variation of Knudsen number within the geometries, as well as substantial compressibility despite the Mach number being very low. For validation purposes, our multiscale simulation results are compared to those obtained from full-scale DSMC simulations: very close agreement is obtained in all cases for all flow variables considered. Our multiscale simulation is an order of magnitude more computationally efficient than the full-scale DSMC for the first and second test cases, and two orders of magnitude more efficient for the third case

  16. Randomized Oversampling for Generalized Multiscale Finite Element Methods

    KAUST Repository

    Calo, Victor M.

    2016-03-23

    In this paper, we develop efficient multiscale methods for flows in heterogeneous media. We use the generalized multiscale finite element (GMsFEM) framework. GMsFEM approximates the solution space locally using a few multiscale basis functions. This approximation selects an appropriate snapshot space and a local spectral decomposition, e.g., the use of oversampled regions, in order to achieve an efficient model reduction. However, the successful construction of snapshot spaces may be costly if too many local problems need to be solved in order to obtain these spaces. We use a moderate quantity of local solutions (or snapshot vectors) with random boundary conditions on oversampled regions with zero forcing to deliver an efficient methodology. Motivated by the randomized algorithm presented in [P. G. Martinsson, V. Rokhlin, and M. Tygert, A Randomized Algorithm for the approximation of Matrices, YALEU/DCS/TR-1361, Yale University, 2006], we consider a snapshot space which consists of harmonic extensions of random boundary conditions defined in a domain larger than the target region. Furthermore, we perform an eigenvalue decomposition in this small space. We study the application of randomized sampling for GMsFEM in conjunction with adaptivity, where local multiscale spaces are adaptively enriched. Convergence analysis is provided. We present representative numerical results to validate the method proposed.

  17. Multi-Scale Pattern Recognition for Image Classification and Segmentation

    NARCIS (Netherlands)

    Li, Y.

    2013-01-01

    Scale is an important parameter of images. Different objects or image structures (e.g. edges and corners) can appear at different scales and each is meaningful only over a limited range of scales. Multi-scale analysis has been widely used in image processing and computer vision, serving as the basis

  18. A Liver-centric Multiscale Modeling Framework for Xenobiotics

    Science.gov (United States)

    We describe a multi-scale framework for modeling acetaminophen-induced liver toxicity. Acetaminophen is a widely used analgesic. Overdose of acetaminophen can result in liver injury via its biotransformation into toxic product, which further induce massive necrosis. Our study foc...

  19. Adaptive Multiscale Finite Element Method for Subsurface Flow Simulation

    NARCIS (Netherlands)

    Van Esch, J.M.

    2010-01-01

    Natural geological formations generally show multiscale structural and functional heterogeneity evolving over many orders of magnitude in space and time. In subsurface hydrological simulations the geological model focuses on the structural hierarchy of physical sub units and the flow model addresses

  20. Multiscale topology optimization of solid and fluid structures

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe

    This thesis considers the application of the topology optimization method to multiscale problems, specifically the fluid-structure interaction problem. By multiple-scale methods the governing equations, the Navier-Cauchy and the incompressible Navier-Stokes equations are expanded and separated...