WorldWideScience

Sample records for reactive transport processesin

  1. Reactive transport models and simulation with ALLIANCES

    International Nuclear Information System (INIS)

    Leterrier, N.; Deville, E.; Bary, B.; Trotignon, L.; Hedde, T.; Cochepin, B.; Stora, E.

    2009-01-01

    Many chemical processes influence the evolution of nuclear waste storage. As a result, simulations based only upon transport and hydraulic processes fail to describe adequately some industrial scenarios. We need to take into account complex chemical models (mass action laws, kinetics...) which are highly non-linear. In order to simulate the coupling of these chemical reactions with transport, we use a classical Sequential Iterative Approach (SIA), with a fixed point algorithm, within the mainframe of the ALLIANCES platform. This approach allows us to use the various transport and chemical modules available in ALLIANCES, via an operator-splitting method based upon the structure of the chemical system. We present five different applications of reactive transport simulations in the context of nuclear waste storage: 1. A 2D simulation of the lixiviation by rain water of an underground polluted zone high in uranium oxide; 2. The degradation of the steel envelope of a package in contact with clay. Corrosion of the steel creates corrosion products and the altered package becomes a porous medium. We follow the degradation front through kinetic reactions and the coupling with transport; 3. The degradation of a cement-based material by the injection of an aqueous solution of zinc and sulphate ions. In addition to the reactive transport coupling, we take into account in this case the hydraulic retroaction of the porosity variation on the Darcy velocity; 4. The decalcification of a concrete beam in an underground storage structure. In this case, in addition to the reactive transport simulation, we take into account the interaction between chemical degradation and the mechanical forces (cracks...), and the retroactive influence on the structure changes on transport; 5. The degradation of the steel envelope of a package in contact with a clay material under a temperature gradient. In this case the reactive transport simulation is entirely directed by the temperature changes and

  2. Fluid-rock interaction: A reactive transport approach

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, C.; Maher, K.

    2009-04-01

    Fluid-rock interaction (or water-rock interaction, as it was more commonly known) is a subject that has evolved considerably in its scope over the years. Initially its focus was primarily on interactions between subsurface fluids of various temperatures and mostly crystalline rocks, but the scope has broadened now to include fluid interaction with all forms of subsurface materials, whether they are unconsolidated or crystalline ('fluid-solid interaction' is perhaps less euphonious). Disciplines that previously carried their own distinct names, for example, basin diagenesis, early diagenesis, metamorphic petrology, reactive contaminant transport, chemical weathering, are now considered to fall under the broader rubric of fluid-rock interaction, although certainly some of the key research questions differ depending on the environment considered. Beyond the broadening of the environments considered in the study of fluid-rock interaction, the discipline has evolved in perhaps an even more important way. The study of water-rock interaction began by focusing on geochemical interactions in the absence of transport processes, although a few notable exceptions exist (Thompson 1959; Weare et al. 1976). Moreover, these analyses began by adopting a primarily thermodynamic approach, with the implicit or explicit assumption of equilibrium between the fluid and rock. As a result, these early models were fundamentally static rather than dynamic in nature. This all changed with the seminal papers by Helgeson and his co-workers (Helgeson 1968; Helgeson et al. 1969) wherein the concept of an irreversible reaction path was formally introduced into the geochemical literature. In addition to treating the reaction network as a dynamically evolving system, the Helgeson studies introduced an approach that allowed for the consideration of a multicomponent geochemical system, with multiple minerals and species appearing as both reactants and products, at least one of which could be

  3. The Importance of Protons in Reactive Transport Modeling

    Science.gov (United States)

    McNeece, C. J.; Hesse, M. A.

    2014-12-01

    The importance of pH in aqueous chemistry is evident; yet, its role in reactive transport is complex. Consider a column flow experiment through silica glass beads. Take the column to be saturated and flowing with solution of a distinct pH. An instantaneous change in the influent solution pH can yield a breakthrough curve with both a rarefaction and shock component (composite wave). This behavior is unique among aqueous ions in transport and is more complex than intuition would tell. Analysis of the hyperbolic limit of this physical system can explain these first order transport phenomenon. This analysis shows that transport behavior is heavily dependent on the shape of the adsorption isotherm. Hence it is clear that accurate surface chemistry models are important in reactive transport. The proton adsorption isotherm has nonconstant concavity due to the proton's ability to partition into hydroxide. An eigenvalue analysis shows that an inflection point in the adsorption isotherm allows the development of composite waves. We use electrostatic surface complexation models to calculate realistic proton adsorption isotherms. Surface characteristics such as specific surface area, and surface site density were determined experimentally. We validate the model by comparison against silica glass bead flow through experiments. When coupled to surface complexation models, the transport equation captures the timing and behavior of breakthrough curves markedly better than with commonly used Langmuir assumptions. Furthermore, we use the adsorption isotherm to predict, a priori, the transport behavior of protons across pH composition space. Expansion of the model to multicomponent systems shows that proton adsorption can force composite waves to develop in the breakthrough curves of ions that would not otherwise exhibit such behavior. Given the abundance of reactive surfaces in nature and the nonlinearity of chemical systems, we conclude that building a greater understanding of

  4. Parameters estimation for reactive transport: A way to test the validity of a reactive model

    Science.gov (United States)

    Aggarwal, Mohit; Cheikh Anta Ndiaye, Mame; Carrayrou, Jérôme

    The chemical parameters used in reactive transport models are not known accurately due to the complexity and the heterogeneous conditions of a real domain. We will present an efficient algorithm in order to estimate the chemical parameters using Monte-Carlo method. Monte-Carlo methods are very robust for the optimisation of the highly non-linear mathematical model describing reactive transport. Reactive transport of tributyltin (TBT) through natural quartz sand at seven different pHs is taken as the test case. Our algorithm will be used to estimate the chemical parameters of the sorption of TBT onto the natural quartz sand. By testing and comparing three models of surface complexation, we show that the proposed adsorption model cannot explain the experimental data.

  5. Modeling of flow and reactive transport in IPARS

    KAUST Repository

    Wheeler, Mary Fanett

    2012-03-11

    In this work, we describe a number of efficient and locally conservative methods for subsurface flow and reactive transport that have been or are currently being implemented in the IPARS (Integrated Parallel and Accurate Reservoir Simulator). For flow problems, we consider discontinuous Galerkin (DG) methods and mortar mixed finite element methods. For transport problems, we employ discontinuous Galerkin methods and Godunov-mixed methods. For efficient treatment of reactive transport simulations, we present a number of state-of-the-art dynamic mesh adaptation strategies and implementations. Operator splitting approaches and iterative coupling techniques are also discussed. Finally, numerical examples are provided to illustrate the capability of IPARS to treat general biogeochemistry as well as the effectivity of mesh adaptations with DG for transport. © 2012 Bentham Science Publishers. All rights reserved.

  6. Framework for reactive mass transport

    DEFF Research Database (Denmark)

    Jensen, Mads Mønster; Johannesson, Björn; Geiker, Mette Rica

    2014-01-01

    Reactive transport modeling is applicable for a range of porous materials. Here the modeling framework is focused on cement-based materials, where ion diffusion and migration are described by the Poisson-Nernst-Planck equation system. A two phase vapor/liquid flow model, with a sorption hysteresis...... description is coupled to the system. The mass transport is solved by using the finite element method where the chemical equilibrium is solved explicitly by an operator splitting method. The IPHREEQC library is used as chemical equilibrium solver. The equation system, solved by IPHREEQC, is explained...

  7. A mobile-mobile transport model for simulating reactive transport in connected heterogeneous fields

    Science.gov (United States)

    Lu, Chunhui; Wang, Zhiyuan; Zhao, Yue; Rathore, Saubhagya Singh; Huo, Jinge; Tang, Yuening; Liu, Ming; Gong, Rulan; Cirpka, Olaf A.; Luo, Jian

    2018-05-01

    Mobile-immobile transport models can be effective in reproducing heavily tailed breakthrough curves of concentration. However, such models may not adequately describe transport along multiple flow paths with intermediate velocity contrasts in connected fields. We propose using the mobile-mobile model for simulating subsurface flow and associated mixing-controlled reactive transport in connected fields. This model includes two local concentrations, one in the fast- and the other in the slow-flow domain, which predict both the concentration mean and variance. The normalized total concentration variance within the flux is found to be a non-monotonic function of the discharge ratio with a maximum concentration variance at intermediate values of the discharge ratio. We test the mobile-mobile model for mixing-controlled reactive transport with an instantaneous, irreversible bimolecular reaction in structured and connected random heterogeneous domains, and compare the performance of the mobile-mobile to the mobile-immobile model. The results indicate that the mobile-mobile model generally predicts the concentration breakthrough curves (BTCs) of the reactive compound better. Particularly, for cases of an elliptical inclusion with intermediate hydraulic-conductivity contrasts, where the travel-time distribution shows bimodal behavior, the prediction of both the BTCs and maximum product concentration is significantly improved. Our results exemplify that the conceptual model of two mobile domains with diffusive mass transfer in between is in general good for predicting mixing-controlled reactive transport, and particularly so in cases where the transfer in the low-conductivity zones is by slow advection rather than diffusion.

  8. Reactive dispersive contaminant transport in coastal aquifers: Numerical simulation of a reactive Henry problem

    KAUST Repository

    Nick, H.M.

    2013-02-01

    The reactive mixing between seawater and terrestrial water in coastal aquifers influences the water quality of submarine groundwater discharge. While these waters come into contact at the seawater groundwater interface by density driven flow, their chemical components dilute and react through dispersion. A larger interface and wider mixing zone may provide favorable conditions for the natural attenuation of contaminant plumes. It has been claimed that the extent of this mixing is controlled by both, porous media properties and flow conditions. In this study, the interplay between dispersion and reactive processes in coastal aquifers is investigated by means of numerical experiments. Particularly, the impact of dispersion coefficients, the velocity field induced by density driven flow and chemical component reactivities on reactive transport in such aquifers is studied. To do this, a hybrid finite-element finite-volume method and a reactive simulator are coupled, and model accuracy and applicability are assessed. A simple redox reaction is considered to describe the degradation of a contaminant which requires mixing of the contaminated groundwater and the seawater containing the terminal electron acceptor. The resulting degradation is observed for different scenarios considering different magnitudes of dispersion and chemical reactivity. Three reactive transport regimes are found: reaction controlled, reaction-dispersion controlled and dispersion controlled. Computational results suggest that the chemical components\\' reactivity as well as dispersion coefficients play a significant role on controlling reactive mixing zones and extent of contaminant removal in coastal aquifers. Further, our results confirm that the dilution index is a better alternative to the second central spatial moment of a plume to describe the mixing of reactive solutes in coastal aquifers. © 2012 Elsevier B.V.

  9. Cement reactivity in CO2 saturated brines: use of a reactive transport code to highlight key degradation mechanisms

    International Nuclear Information System (INIS)

    Huet, B.M.; Prevost, J.H.; Scherer, G.W.

    2007-01-01

    A modular reactive transport code is proposed to analyze the reactivity of cement in CO 2 saturated brine. The coupling of the transport module and the geochemical module within Dynaflow TM is derived. Both modules are coupled in a sequential iterative approach to accurately model: (1) mineral dissolution/precipitation and (2) porosity dependent transport properties. Results of the model reproduce qualitatively the dissolution of cement hydrates (C-H, C-S-H, AFm, AFt) and intermediate products (CaCO 3 ) into the brine. Slight discrepancies between modeling and experimental results were found concerning the dynamics of the mineral zoning. Results suggest that the power law relationship to model effective transport properties from porosity values is not accurate for very reactive case. (authors)

  10. Reactive solute transport in physically and chemically heterogeneous porous media with multimodal reactive mineral facies: the Lagrangian approach.

    Science.gov (United States)

    Soltanian, Mohamad Reza; Ritzi, Robert W; Dai, Zhenxue; Huang, Chao Cheng

    2015-03-01

    Physical and chemical heterogeneities have a large impact on reactive transport in porous media. Examples of heterogeneous attributes affecting reactive mass transport are the hydraulic conductivity (K), and the equilibrium sorption distribution coefficient (Kd). This paper uses the Deng et al. (2013) conceptual model for multimodal reactive mineral facies and a Lagrangian-based stochastic theory in order to analyze the reactive solute dispersion in three-dimensional anisotropic heterogeneous porous media with hierarchical organization of reactive minerals. An example based on real field data is used to illustrate the time evolution trends of reactive solute dispersion. The results show that the correlation between the hydraulic conductivity and the equilibrium sorption distribution coefficient does have a significant effect on reactive solute dispersion. The anisotropy ratio does not have a significant effect on reactive solute dispersion. Furthermore, through a sensitivity analysis we investigate the impact of changing the mean, variance, and integral scale of K and Kd on reactive solute dispersion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Entropy-based critical reaction time for mixing-controlled reactive transport

    DEFF Research Database (Denmark)

    Chiogna, Gabriele; Rolle, Massimo

    2017-01-01

    Entropy-based metrics, such as the dilution index, have been proposed to quantify dilution and reactive mixing in solute transport problems. In this work, we derive the transient advection dispersion equation for the entropy density of a reactive plume. We restrict our analysis to the case where...... the concentration distribution of the transported species is Gaussian and we observe that, even in case of an instantaneous complete bimolecular reaction, dilution caused by dispersive processes dominates the entropy balance at early times and results in the net increase of the entropy density of a reactive species...

  12. Cement reactivity in CO{sub 2} saturated brines: use of a reactive transport code to highlight key degradation mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Huet, B.M.; Prevost, J.H.; Scherer, G.W. [Princeton Univ., NJ (United States)

    2007-07-01

    A modular reactive transport code is proposed to analyze the reactivity of cement in CO{sub 2} saturated brine. The coupling of the transport module and the geochemical module within Dynaflow{sup TM} is derived. Both modules are coupled in a sequential iterative approach to accurately model: (1) mineral dissolution/precipitation and (2) porosity dependent transport properties. Results of the model reproduce qualitatively the dissolution of cement hydrates (C-H, C-S-H, AFm, AFt) and intermediate products (CaCO{sub 3}) into the brine. Slight discrepancies between modeling and experimental results were found concerning the dynamics of the mineral zoning. Results suggest that the power law relationship to model effective transport properties from porosity values is not accurate for very reactive case. (authors)

  13. Reactive transport in a partially molten system with binary solid solution

    Science.gov (United States)

    Jordan, J.; Hesse, M. A.

    2017-12-01

    Melt extraction from the Earth's mantle through high-porosity channels is required to explain the composition of the oceanic crust. Feedbacks from reactive melt transport are thought to localize melt into a network of high-porosity channels. Recent studies invoke lithological heterogeneities in the Earth's mantle to seed the localization of partial melts. Therefore, it is necessary to understand the reaction fronts that form as melt flows across the lithological interface of a heterogeneity and the background mantle. Simplified melting models of such systems aide in the interpretation and formulation of larger scale mantle models. Motivated by the aforementioned facts, we present a chromatographic analysis of reactive melt transport across lithological boundaries, using theory for hyperbolic conservation laws. This is an extension of well-known linear trace element chromatography to the coupling of major elements and energy transport. Our analysis allows the prediction of the feedbacks that arise in reactive melt transport due to melting, freezing, dissolution and precipitation for frontal reactions. This study considers the simplified case of a rigid, partially molten porous medium with binary solid solution. As melt traverses a lithological contact-modeled as a Riemann problem-a rich set of features arise, including a reacted zone between an advancing reaction front and partial chemical preservation of the initial contact. Reactive instabilities observed in this study originate at the lithological interface rather than along a chemical gradient as in most studies of mantle dynamics. We present a regime diagram that predicts where reaction fronts become unstable, thereby allowing melt localization into high-porosity channels through reactive instabilities. After constructing the regime diagram, we test the one-dimensional hyperbolic theory against two-dimensional numerical experiments. The one-dimensional hyperbolic theory is sufficient for predicting the

  14. The reactive transport benchmark proposed by GdR MoMaS: presentation and first results

    Energy Technology Data Exchange (ETDEWEB)

    Carrayrou, J. [Institut de Mecanique des Fluides et des Solides, UMR ULP-CNRS 7507, 67 - Strasbourg (France); Lagneau, V. [Ecole des Mines de Paris, Centre de Geosciences, 77 - Fontainebleau (France)

    2007-07-01

    We present here the actual context of reactive transport modelling and the major numerical challenges. GdR MoMaS proposes a benchmark on reactive transport. We present this benchmark and some results obtained on it by two reactive transport codes HYTEC and SPECY. (authors)

  15. The reactive transport benchmark proposed by GdR MoMaS: presentation and first results

    International Nuclear Information System (INIS)

    Carrayrou, J.; Lagneau, V.

    2007-01-01

    We present here the actual context of reactive transport modelling and the major numerical challenges. GdR MoMaS proposes a benchmark on reactive transport. We present this benchmark and some results obtained on it by two reactive transport codes HYTEC and SPECY. (authors)

  16. From conservative to reactive transport under diffusion-controlled conditions

    Science.gov (United States)

    Babey, Tristan; de Dreuzy, Jean-Raynald; Ginn, Timothy R.

    2016-05-01

    We assess the possibility to use conservative transport information, such as that contained in transit time distributions, breakthrough curves and tracer tests, to predict nonlinear fluid-rock interactions in fracture/matrix or mobile/immobile conditions. Reference simulated data are given by conservative and reactive transport simulations in several diffusive porosity structures differing by their topological organization. Reactions includes nonlinear kinetically controlled dissolution and desorption. Effective Multi-Rate Mass Transfer models (MRMT) are calibrated solely on conservative transport information without pore topology information and provide concentration distributions on which effective reaction rates are estimated. Reference simulated reaction rates and effective reaction rates evaluated by MRMT are compared, as well as characteristic desorption and dissolution times. Although not exactly equal, these indicators remain very close whatever the porous structure, differing at most by 0.6% and 10% for desorption and dissolution. At early times, this close agreement arises from the fine characterization of the diffusive porosity close to the mobile zone that controls fast mobile-diffusive exchanges. At intermediate to late times, concentration gradients are strongly reduced by diffusion, and reactivity can be captured by a very limited number of rates. We conclude that effective models calibrated solely on conservative transport information like MRMT can accurately estimate monocomponent kinetically controlled nonlinear fluid-rock interactions. Their relevance might extend to more advanced biogeochemical reactions because of the good characterization of conservative concentration distributions, even by parsimonious models (e.g., MRMT with 3-5 rates). We propose a methodology to estimate reactive transport from conservative transport in mobile-immobile conditions.

  17. Simulations of reactive transport and precipitation with smoothed particle hydrodynamics

    Science.gov (United States)

    Tartakovsky, Alexandre M.; Meakin, Paul; Scheibe, Timothy D.; Eichler West, Rogene M.

    2007-03-01

    A numerical model based on smoothed particle hydrodynamics (SPH) was developed for reactive transport and mineral precipitation in fractured and porous materials. Because of its Lagrangian particle nature, SPH has several advantages for modeling Navier-Stokes flow and reactive transport including: (1) in a Lagrangian framework there is no non-linear term in the momentum conservation equation, so that accurate solutions can be obtained for momentum dominated flows and; (2) complicated physical and chemical processes such as surface growth due to precipitation/dissolution and chemical reactions are easy to implement. In addition, SPH simulations explicitly conserve mass and linear momentum. The SPH solution of the diffusion equation with fixed and moving reactive solid-fluid boundaries was compared with analytical solutions, Lattice Boltzmann [Q. Kang, D. Zhang, P. Lichtner, I. Tsimpanogiannis, Lattice Boltzmann model for crystal growth from supersaturated solution, Geophysical Research Letters, 31 (2004) L21604] simulations and diffusion limited aggregation (DLA) [P. Meakin, Fractals, scaling and far from equilibrium. Cambridge University Press, Cambridge, UK, 1998] model simulations. To illustrate the capabilities of the model, coupled three-dimensional flow, reactive transport and precipitation in a fracture aperture with a complex geometry were simulated.

  18. A Reactive Transport Model for Marcellus Shale Weathering

    Science.gov (United States)

    Li, L.; Heidari, P.; Jin, L.; Williams, J.; Brantley, S.

    2017-12-01

    Shale formations account for 25% of the land surface globally. One of the most productive shale-gas formations is the Marcellus, a black shale that is rich in organic matter and pyrite. As a first step toward understanding how Marcellus shale interacts with water, we developed a reactive transport model to simulate shale weathering under ambient temperature and pressure conditions, constrained by soil chemistry and water data. The simulation was carried out for 10,000 years, assuming bedrock weathering and soil genesis began right after the last glacial maximum. Results indicate weathering was initiated by pyrite dissolution for the first 1,000 years, leading to low pH and enhanced dissolution of chlorite and precipitation of iron hydroxides. After pyrite depletion, chlorite dissolved slowly, primarily facilitated by the presence of CO2 and organic acids, forming vermiculite as a secondary mineral. A sensitivity analysis indicated that the most important controls on weathering include the presence of reactive gases (CO2 and O2), specific surface area, and flow velocity of infiltrating meteoric water. The soil chemistry and mineralogy data could not be reproduced without including the reactive gases. For example, pyrite remained in the soil even after 10,000 years if O2 was not continuously present in the soil column; likewise, chlorite remained abundant and porosity remained small with the presence of soil CO2. The field observations were only simulated successfully when the specific surface areas of the reactive minerals were 1-3 orders of magnitude smaller than surface area values measured for powdered minerals, reflecting the lack of accessibility of fluids to mineral surfaces and potential surface coating. An increase in the water infiltration rate enhanced weathering by removing dissolution products and maintaining far-from-equilibrium conditions. We conclude that availability of reactive surface area and transport of H2O and gases are the most important

  19. Surrogate model approach for improving the performance of reactive transport simulations

    Science.gov (United States)

    Jatnieks, Janis; De Lucia, Marco; Sips, Mike; Dransch, Doris

    2016-04-01

    Reactive transport models can serve a large number of important geoscientific applications involving underground resources in industry and scientific research. It is common for simulation of reactive transport to consist of at least two coupled simulation models. First is a hydrodynamics simulator that is responsible for simulating the flow of groundwaters and transport of solutes. Hydrodynamics simulators are well established technology and can be very efficient. When hydrodynamics simulations are performed without coupled geochemistry, their spatial geometries can span millions of elements even when running on desktop workstations. Second is a geochemical simulation model that is coupled to the hydrodynamics simulator. Geochemical simulation models are much more computationally costly. This is a problem that makes reactive transport simulations spanning millions of spatial elements very difficult to achieve. To address this problem we propose to replace the coupled geochemical simulation model with a surrogate model. A surrogate is a statistical model created to include only the necessary subset of simulator complexity for a particular scenario. To demonstrate the viability of such an approach we tested it on a popular reactive transport benchmark problem that involves 1D Calcite transport. This is a published benchmark problem (Kolditz, 2012) for simulation models and for this reason we use it to test the surrogate model approach. To do this we tried a number of statistical models available through the caret and DiceEval packages for R, to be used as surrogate models. These were trained on randomly sampled subset of the input-output data from the geochemical simulation model used in the original reactive transport simulation. For validation we use the surrogate model to predict the simulator output using the part of sampled input data that was not used for training the statistical model. For this scenario we find that the multivariate adaptive regression splines

  20. Phase behavior and reactive transport of partial melt in heterogeneous mantle model

    Science.gov (United States)

    Jordan, J.; Hesse, M. A.

    2013-12-01

    The reactive transport of partial melt is the key process that leads to the chemical and physical differentiation of terrestrial planets and smaller celestial bodies. The essential role of the lithological heterogeneities during partial melting of the mantle is increasingly recognized. How far can enriched melts propagate while interacting with the ambient mantle? Can the melt flow emanating from a fertile heterogeneity be localized through a reactive infiltration feedback in a model without exogenous factors or contrived initial conditions? A full understanding of the role of heterogeneities requires reactive melt transport models that account for the phase behavior of major elements. Previous work on reactive transport in the mantle focuses on trace element partitioning; we present the first nonlinear chromatographic analysis of reactive melt transport in systems with binary solid solution. Our analysis shows that reactive melt transport in systems with binary solid solution leads to the formation of two separate reaction fronts: a slow melting/freezing front along which enthalpy change is dominant and a fast dissolution/precipitation front along which compositional changes are dominated by an ion-exchange process over enthalpy change. An intermediate state forms between these two fronts with a bulk-rock composition and enthalpy that are not necessarily bounded by the bulk-rock composition and enthalpy of either the enriched heterogeneity or the depleted ambient mantle. The formation of this intermediate state makes it difficult to anticipate the porosity changes and hence the stability of reaction fronts. Therefore, we develop a graphical representation for the solution that allows identification of the intermediate state by inspection, for all possible bulk-rock compositions and enthalpies of the heterogeneity and the ambient mantle. We apply the analysis to the partial melting of an enriched heterogeneity. This leads to the formation of moving precipitation

  1. Modeling of flow and reactive transport in IPARS

    KAUST Repository

    Wheeler, Mary Fanett; Sun, Shuyu; Thomas, Sunil G.

    2012-01-01

    In this work, we describe a number of efficient and locally conservative methods for subsurface flow and reactive transport that have been or are currently being implemented in the IPARS (Integrated Parallel and Accurate Reservoir Simulator

  2. Development of numerical methods for reactive transport

    International Nuclear Information System (INIS)

    Bouillard, N.

    2006-12-01

    When a radioactive waste is stored in deep geological disposals, it is expected that the waste package will be damaged under water action (concrete leaching, iron corrosion). Then, to understand these damaging processes, chemical reactions and solutes transport are modelled. Numerical simulations of reactive transport can be done sequentially by the coupling of several codes. This is the case of the software platform ALLIANCES which is developed jointly with CEA, ANDRA and EDF. Stiff reactions like precipitation-dissolution are crucial for the radioactive waste storage applications, but standard sequential iterative approaches like Picard's fail in solving rapidly reactive transport simulations with such stiff reactions. In the first part of this work, we focus on a simplified precipitation and dissolution process: a system made up with one solid species and two aqueous species moving by diffusion is studied mathematically. It is assumed that a precipitation dissolution reaction occurs in between them, and it is modelled by a discontinuous kinetics law of unknown sign. By using monotonicity properties, the convergence of a finite volume scheme on admissible mesh is proved. Existence of a weak solution is obtained as a by-product of the convergence of the scheme. The second part is dedicated to coupling algorithms which improve Picard's method and can be easily used in an existing coupling code. By extending previous works, we propose a general and adaptable framework to solve nonlinear systems. Indeed by selecting special options, we can either recover well known methods, like nonlinear conjugate gradient methods, or design specific method. This algorithm has two main steps, a preconditioning one and an acceleration one. This algorithm is tested on several examples, some of them being rather academical and others being more realistic. We test it on the 'three species model'' example. Other reactive transport simulations use an external chemical code CHESS. For a

  3. Coupled hydrogeological and reactive transport modelling of the Simpevarp area (Sweden)

    International Nuclear Information System (INIS)

    Molinero, Jorge; Raposo, Juan R.; Galindez, Juan M.; Arcos, David; Guimera, Jordi

    2008-01-01

    The Simpevarp area is one of the alternative sites being considered for the deep geological disposal of high level radioactive waste in Sweden. In this paper, a coupled regional groundwater flow and reactive solute transport model of the Simpevarp area is presented that integrates current hydrogeological and hydrochemical data of the area. The model simulates the current hydrochemical pattern of the groundwater system in the area. To that aim, a conceptual hydrochemical model was developed in order to represent the dominant chemical processes. Groundwater flow conditions were reproduced by taking into account fluid-density-dependent groundwater flow and regional hydrogeologic boundary conditions. Reactive solute transport calculations were performed on the basis of the velocity field so obtained. The model was calibrated and sensitivity analyses were carried out in order to investigate the effects of heterogeneities of hydraulic conductivity in the subsurface medium. Results provided by the reactive transport model are in good agreement with much of the measured hydrochemical data. This paper emphasizes the appropriateness of the use of reactive solute transport models when water-rock interaction reactions are involved, and demonstrates what powerful tools they are for the interpretation of hydrogeological and hydrochemical data from site geological repository characterization programs, by providing a qualitative framework for data analysis and testing of conceptual assumptions in a process-oriented approach

  4. A reactive transport model for Marcellus shale weathering

    Science.gov (United States)

    Heidari, Peyman; Li, Li; Jin, Lixin; Williams, Jennifer Z.; Brantley, Susan L.

    2017-11-01

    Shale formations account for 25% of the land surface globally and contribute a large proportion of the natural gas used in the United States. One of the most productive shale-gas formations is the Marcellus, a black shale that is rich in organic matter and pyrite. As a first step toward understanding how Marcellus shale interacts with water in the surface or deep subsurface, we developed a reactive transport model to simulate shale weathering under ambient temperature and pressure conditions, constrained by soil and water chemistry data. The simulation was carried out for 10,000 years since deglaciation, assuming bedrock weathering and soil genesis began after the last glacial maximum. Results indicate weathering was initiated by pyrite dissolution for the first 1000 years, leading to low pH and enhanced dissolution of chlorite and precipitation of iron hydroxides. After pyrite depletion, chlorite dissolved slowly, primarily facilitated by the presence of CO2 and organic acids, forming vermiculite as a secondary mineral. A sensitivity analysis indicated that the most important controls on weathering include the presence of reactive gases (CO2 and O2), specific surface area, and flow velocity of infiltrating meteoric water. The soil chemistry and mineralogy data could not be reproduced without including the reactive gases. For example, pyrite remained in the soil even after 10,000 years if O2 was not continuously present in the soil column; likewise, chlorite remained abundant and porosity remained small if CO2 was not present in the soil gas. The field observations were only simulated successfully when the modeled specific surface areas of the reactive minerals were 1-3 orders of magnitude smaller than surface area values measured for powdered minerals. Small surface areas could be consistent with the lack of accessibility of some fluids to mineral surfaces due to surface coatings. In addition, some mineral surface is likely interacting only with equilibrated pore

  5. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions

    International Nuclear Information System (INIS)

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C.; Brooks, Scott C; Pace, Molly; Kim, Young Jin; Jardine, Philip M.; Watson, David B.

    2007-01-01

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M. partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M. species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing NE equilibrium reactions and a set of reactive transport equations of M-NE kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions

  6. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions.

    Science.gov (United States)

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C; Brooks, Scott C; Pace, Molly N; Kim, Young-Jin; Jardine, Philip M; Watson, David B

    2007-06-16

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing N(E) equilibrium reactions and a set of reactive transport equations of M-N(E) kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.

  7. MoMaS reactive transport benchmark using PFLOTRAN

    Science.gov (United States)

    Park, H.

    2017-12-01

    MoMaS benchmark was developed to enhance numerical simulation capability for reactive transport modeling in porous media. The benchmark was published in late September of 2009; it is not taken from a real chemical system, but realistic and numerically challenging tests. PFLOTRAN is a state-of-art massively parallel subsurface flow and reactive transport code that is being used in multiple nuclear waste repository projects at Sandia National Laboratories including Waste Isolation Pilot Plant and Used Fuel Disposition. MoMaS benchmark has three independent tests with easy, medium, and hard chemical complexity. This paper demonstrates how PFLOTRAN is applied to this benchmark exercise and shows results of the easy benchmark test case which includes mixing of aqueous components and surface complexation. Surface complexations consist of monodentate and bidentate reactions which introduces difficulty in defining selectivity coefficient if the reaction applies to a bulk reference volume. The selectivity coefficient becomes porosity dependent for bidentate reaction in heterogeneous porous media. The benchmark is solved by PFLOTRAN with minimal modification to address the issue and unit conversions were made properly to suit PFLOTRAN.

  8. Simulation of reactive geochemical transport in groundwater using a semi-analytical screening model

    Science.gov (United States)

    McNab, Walt W.

    1997-10-01

    A reactive geochemical transport model, based on a semi-analytical solution to the advective-dispersive transport equation in two dimensions, is developed as a screening tool for evaluating the impact of reactive contaminants on aquifer hydrogeochemistry. Because the model utilizes an analytical solution to the transport equation, it is less computationally intensive than models based on numerical transport schemes, is faster, and it is not subject to numerical dispersion effects. Although the assumptions used to construct the model preclude consideration of reactions between the aqueous and solid phases, thermodynamic mineral saturation indices are calculated to provide qualitative insight into such reactions. Test problems involving acid mine drainage and hydrocarbon biodegradation signatures illustrate the utility of the model in simulating essential hydrogeochemical phenomena.

  9. Reactive solute transport in acidic streams

    Science.gov (United States)

    Broshears, R.E.

    1996-01-01

    Spatial and temporal profiles of Ph and concentrations of toxic metals in streams affected by acid mine drainage are the result of the interplay of physical and biogeochemical processes. This paper describes a reactive solute transport model that provides a physically and thermodynamically quantitative interpretation of these profiles. The model combines a transport module that includes advection-dispersion and transient storage with a geochemical speciation module based on MINTEQA2. Input to the model includes stream hydrologic properties derived from tracer-dilution experiments, headwater and lateral inflow concentrations analyzed in field samples, and a thermodynamic database. Simulations reproduced the general features of steady-state patterns of observed pH and concentrations of aluminum and sulfate in St. Kevin Gulch, an acid mine drainage stream near Leadville, Colorado. These patterns were altered temporarily by injection of sodium carbonate into the stream. A transient simulation reproduced the observed effects of the base injection.

  10. SeSBench - An initiative to benchmark reactive transport models for environmental subsurface processes

    Science.gov (United States)

    Jacques, Diederik

    2017-04-01

    As soil functions are governed by a multitude of interacting hydrological, geochemical and biological processes, simulation tools coupling mathematical models for interacting processes are needed. Coupled reactive transport models are a typical example of such coupled tools mainly focusing on hydrological and geochemical coupling (see e.g. Steefel et al., 2015). Mathematical and numerical complexity for both the tool itself or of the specific conceptual model can increase rapidly. Therefore, numerical verification of such type of models is a prerequisite for guaranteeing reliability and confidence and qualifying simulation tools and approaches for any further model application. In 2011, a first SeSBench -Subsurface Environmental Simulation Benchmarking- workshop was held in Berkeley (USA) followed by four other ones. The objective is to benchmark subsurface environmental simulation models and methods with a current focus on reactive transport processes. The final outcome was a special issue in Computational Geosciences (2015, issue 3 - Reactive transport benchmarks for subsurface environmental simulation) with a collection of 11 benchmarks. Benchmarks, proposed by the participants of the workshops, should be relevant for environmental or geo-engineering applications; the latter were mostly related to radioactive waste disposal issues - excluding benchmarks defined for pure mathematical reasons. Another important feature is the tiered approach within a benchmark with the definition of a single principle problem and different sub problems. The latter typically benchmarked individual or simplified processes (e.g. inert solute transport, simplified geochemical conceptual model) or geometries (e.g. batch or one-dimensional, homogeneous). Finally, three codes should be involved into a benchmark. The SeSBench initiative contributes to confidence building for applying reactive transport codes. Furthermore, it illustrates the use of those type of models for different

  11. Modification of the finite element heat and mass transfer code (FEHMN) to model multicomponent reactive transport

    International Nuclear Information System (INIS)

    Viswanathan, H.S.

    1995-01-01

    The finite element code FEHMN is a three-dimensional finite element heat and mass transport simulator that can handle complex stratigraphy and nonlinear processes such as vadose zone flow, heat flow and solute transport. Scientists at LANL have been developed hydrologic flow and transport models of the Yucca Mountain site using FEHMN. Previous FEHMN simulations have used an equivalent K d model to model solute transport. In this thesis, FEHMN is modified making it possible to simulate the transport of a species with a rigorous chemical model. Including the rigorous chemical equations into FEHMN simulations should provide for more representative transport models for highly reactive chemical species. A fully kinetic formulation is chosen for the FEHMN reactive transport model. Several methods are available to computationally implement a fully kinetic formulation. Different numerical algorithms are investigated in order to optimize computational efficiency and memory requirements of the reactive transport model. The best algorithm of those investigated is then incorporated into FEHMN. The algorithm chosen requires for the user to place strongly coupled species into groups which are then solved for simultaneously using FEHMN. The complete reactive transport model is verified over a wide variety of problems and is shown to be working properly. The simulations demonstrate that gas flow and carbonate chemistry can significantly affect 14 C transport at Yucca Mountain. The simulations also provide that the new capabilities of FEHMN can be used to refine and buttress already existing Yucca Mountain radionuclide transport studies

  12. Reactive solute transport in an asymmetrical fracture-rock matrix system

    Science.gov (United States)

    Zhou, Renjie; Zhan, Hongbin

    2018-02-01

    The understanding of reactive solute transport in a single fracture-rock matrix system is the foundation of studying transport behavior in the complex fractured porous media. When transport properties are asymmetrically distributed in the adjacent rock matrixes, reactive solute transport has to be considered as a coupled three-domain problem, which is more complex than the symmetric case with identical transport properties in the adjacent rock matrixes. This study deals with the transport problem in a single fracture-rock matrix system with asymmetrical distribution of transport properties in the rock matrixes. Mathematical models are developed for such a problem under the first-type and the third-type boundary conditions to analyze the spatio-temporal concentration and mass distribution in the fracture and rock matrix with the help of Laplace transform technique and de Hoog numerical inverse Laplace algorithm. The newly acquired solutions are then tested extensively against previous analytical and numerical solutions and are proven to be robust and accurate. Furthermore, a water flushing phase is imposed on the left boundary of system after a certain time. The diffusive mass exchange along the fracture/rock matrixes interfaces and the relative masses stored in each of three domains (fracture, upper rock matrix, and lower rock matrix) after the water flushing provide great insights of transport with asymmetric distribution of transport properties. This study has the following findings: 1) Asymmetric distribution of transport properties imposes greater controls on solute transport in the rock matrixes. However, transport in the fracture is mildly influenced. 2) The mass stored in the fracture responses quickly to water flushing, while the mass stored in the rock matrix is much less sensitive to the water flushing. 3) The diffusive mass exchange during the water flushing phase has similar patterns under symmetric and asymmetric cases. 4) The characteristic distance

  13. FASTREACT – An efficient numerical framework for the solution of reactive transport problems

    International Nuclear Information System (INIS)

    Trinchero, Paolo; Molinero, Jorge; Román-Ross, Gabriela; Berglund, Sten; Selroos, Jan-Olof

    2014-01-01

    Highlights: • We present a tool for the efficient solution of reactive transport problems. • The tool is used to simulate radionuclide transport in a two-dimensional medium. • The results are successfully compared with those obtained using an Eulerian approach. • A large-scale application example is also solved. • The results show that the proposed tool can efficiently solve large-scale models. - Abstract: In the framework of safety assessment studies for geological disposal, large scale reactive transport models are powerful inter-disciplinary tools aiming at supporting regulatory decision making as well as providing input to repository engineering activities. Important aspects of these kinds of models are their often very large temporal and spatial modelling scales and the need to integrate different non-linear processes (e.g., mineral dissolution and precipitation, adsorption and desorption, microbial reactions and redox transformations). It turns out that these types of models may be computationally highly demanding. In this work, we present a Lagrangian-based framework, denoted as FASTREACT, that aims at solving multi-component-reactive transport problems with a computationally efficient approach allowing complex modelling problems to be solved in large spatial and temporal scales. The tool has been applied to simulate radionuclide migration in a synthetic heterogeneous transmissivity field and the results have been successfully compared with those obtained using a standard Eulerian approach. Finally, the same geochemical model has been coupled to an ensemble of realistic three-dimensional transport pathways to simulate the migration of a set of radionuclides from a hypothetical repository for spent nuclear fuel to the surface. The results of this modelling exercise, which includes key processes such as the exchange of mass between the conductive fractures and the matrix, show that FASTREACT can efficiently solve large-scale reactive transport models

  14. Time space domain decomposition methods for reactive transport - Application to CO2 geological storage

    International Nuclear Information System (INIS)

    Haeberlein, F.

    2011-01-01

    Reactive transport modelling is a basic tool to model chemical reactions and flow processes in porous media. A totally reduced multi-species reactive transport model including kinetic and equilibrium reactions is presented. A structured numerical formulation is developed and different numerical approaches are proposed. Domain decomposition methods offer the possibility to split large problems into smaller subproblems that can be treated in parallel. The class of Schwarz-type domain decomposition methods that have proved to be high-performing algorithms in many fields of applications is presented with a special emphasis on the geometrical viewpoint. Numerical issues for the realisation of geometrical domain decomposition methods and transmission conditions in the context of finite volumes are discussed. We propose and validate numerically a hybrid finite volume scheme for advection-diffusion processes that is particularly well-suited for the use in a domain decomposition context. Optimised Schwarz waveform relaxation methods are studied in detail on a theoretical and numerical level for a two species coupled reactive transport system with linear and nonlinear coupling terms. Well-posedness and convergence results are developed and the influence of the coupling term on the convergence behaviour of the Schwarz algorithm is studied. Finally, we apply a Schwarz waveform relaxation method on the presented multi-species reactive transport system. (author)

  15. Flux and reactive contributions to electron transport in methane

    International Nuclear Information System (INIS)

    Ness, K.F.; Nolan, A.M.

    2000-01-01

    A previously developed theoretical analysis (Nolan et al. 1997) is applied to the study of electron transport in methane for reduced electric fields in the range 1 to 1000 Td. The technique of analysis identifies the flux and reactive components of the measurable transport, without resort to the two-term approximation. A comparison of the results of the Monte Carlo method with those of a multiterm Boltzmann equation analysis (Ness and Robson 1986) shows good agreement. The sensitivity of the modelled electron transport to post-ionisation energy partitioning is studied by comparison of three ionisation energy partitioning regimes at moderate (300 Td) and high (1000 Td) values of the reduced electric field. Copyright (2000) CSIRO Australia

  16. Abiotic/biotic coupling in the rhizosphere: a reactive transport modeling analysis

    Science.gov (United States)

    Lawrence, Corey R.; Steefel, Carl; Maher, Kate

    2014-01-01

    A new generation of models is needed to adequately simulate patterns of soil biogeochemical cycling in response changing global environmental drivers. For example, predicting the influence of climate change on soil organic matter storage and stability requires models capable of addressing complex biotic/abiotic interactions of rhizosphere and weathering processes. Reactive transport modeling provides a powerful framework simulating these interactions and the resulting influence on soil physical and chemical characteristics. Incorporation of organic reactions in an existing reactive transport model framework has yielded novel insights into soil weathering and development but much more work is required to adequately capture root and microbial dynamics in the rhizosphere. This endeavor provides many advantages over traditional soil biogeochemical models but also many challenges.

  17. Inverse modeling of multicomponent reactive transport through single and dual porosity media

    Science.gov (United States)

    Samper, Javier; Zheng, Liange; Fernández, Ana María; Montenegro, Luis

    2008-06-01

    Compacted bentonite is foreseen as buffer material for high-level radioactive waste in deep geological repositories because it provides hydraulic isolation, chemical stability, and radionuclide sorption. A wide range of laboratory tests were performed within the framework of FEBEX ( Full-scale Engineered Barrier EXperiment) project to characterize buffer properties and develop numerical models for FEBEX bentonite. Here we present inverse single and dual-continuum multicomponent reactive transport models of a long-term permeation test performed on a 2.5 cm long sample of FEBEX bentonite. Initial saline bentonite porewater was flushed with 5.5 pore volumes of fresh granitic water. Water flux and chemical composition of effluent waters were monitored during almost 4 years. The model accounts for solute advection and diffusion and geochemical reactions such as aqueous complexation, acid-base, cation exchange, protonation/deprotonation by surface complexation and dissolution/precipitation of calcite, chalcedony and gypsum. All of these processes are assumed at local equilibrium. Similar to previous studies of bentonite porewater chemistry on batch systems which attest the relevance of protonation/deprotonation on buffering pH, our results confirm that protonation/deprotonation is a key process in maintaining a stable pH under dynamic transport conditions. Breakthrough curves of reactive species are more sensitive to initial porewater concentration than to effective diffusion coefficient. Optimum estimates of initial porewater chemistry of saturated compacted FEBEX bentonite are obtained by solving the inverse problem of multicomponent reactive transport. While the single-continuum model reproduces the trends of measured data for most chemical species, it fails to match properly the long tails of most breakthrough curves. Such limitation is overcome by resorting to a dual-continuum reactive transport model.

  18. End-Member Formulation of Solid Solutions and Reactive Transport

    Energy Technology Data Exchange (ETDEWEB)

    Lichtner, Peter C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    A model for incorporating solid solutions into reactive transport equations is presented based on an end-member representation. Reactive transport equations are solved directly for the composition and bulk concentration of the solid solution. Reactions of a solid solution with an aqueous solution are formulated in terms of an overall stoichiometric reaction corresponding to a time-varying composition and exchange reactions, equivalent to reaction end-members. Reaction rates are treated kinetically using a transition state rate law for the overall reaction and a pseudo-kinetic rate law for exchange reactions. The composition of the solid solution at the onset of precipitation is assumed to correspond to the least soluble composition, equivalent to the composition at equilibrium. The stoichiometric saturation determines if the solid solution is super-saturated with respect to the aqueous solution. The method is implemented for a simple prototype batch reactor using Mathematica for a binary solid solution. Finally, the sensitivity of the results on the kinetic rate constant for a binary solid solution is investigated for reaction of an initially stoichiometric solid phase with an undersaturated aqueous solution.

  19. Modeling variably saturated multispecies reactive groundwater solute transport with MODFLOW-UZF and RT3D

    Science.gov (United States)

    Bailey, Ryan T.; Morway, Eric D.; Niswonger, Richard G.; Gates, Timothy K.

    2013-01-01

    A numerical model was developed that is capable of simulating multispecies reactive solute transport in variably saturated porous media. This model consists of a modified version of the reactive transport model RT3D (Reactive Transport in 3 Dimensions) that is linked to the Unsaturated-Zone Flow (UZF1) package and MODFLOW. Referred to as UZF-RT3D, the model is tested against published analytical benchmarks as well as other published contaminant transport models, including HYDRUS-1D, VS2DT, and SUTRA, and the coupled flow and transport modeling system of CATHY and TRAN3D. Comparisons in one-dimensional, two-dimensional, and three-dimensional variably saturated systems are explored. While several test cases are included to verify the correct implementation of variably saturated transport in UZF-RT3D, other cases are included to demonstrate the usefulness of the code in terms of model run-time and handling the reaction kinetics of multiple interacting species in variably saturated subsurface systems. As UZF1 relies on a kinematic-wave approximation for unsaturated flow that neglects the diffusive terms in Richards equation, UZF-RT3D can be used for large-scale aquifer systems for which the UZF1 formulation is reasonable, that is, capillary-pressure gradients can be neglected and soil parameters can be treated as homogeneous. Decreased model run-time and the ability to include site-specific chemical species and chemical reactions make UZF-RT3D an attractive model for efficient simulation of multispecies reactive transport in variably saturated large-scale subsurface systems.

  20. Modification of the finite element heat and mass transfer code (FEHM) to model multicomponent reactive transport

    International Nuclear Information System (INIS)

    Viswanathan, H.S.

    1996-08-01

    The finite element code FEHMN, developed by scientists at Los Alamos National Laboratory (LANL), is a three-dimensional finite element heat and mass transport simulator that can handle complex stratigraphy and nonlinear processes such as vadose zone flow, heat flow and solute transport. Scientists at LANL have been developing hydrologic flow and transport models of the Yucca Mountain site using FEHMN. Previous FEHMN simulations have used an equivalent Kd model to model solute transport. In this thesis, FEHMN is modified making it possible to simulate the transport of a species with a rigorous chemical model. Including the rigorous chemical equations into FEHMN simulations should provide for more representative transport models for highly reactive chemical species. A fully kinetic formulation is chosen for the FEHMN reactive transport model. Several methods are available to computationally implement a fully kinetic formulation. Different numerical algorithms are investigated in order to optimize computational efficiency and memory requirements of the reactive transport model. The best algorithm of those investigated is then incorporated into FEHMN. The algorithm chosen requires for the user to place strongly coupled species into groups which are then solved for simultaneously using FEHMN. The complete reactive transport model is verified over a wide variety of problems and is shown to be working properly. The new chemical capabilities of FEHMN are illustrated by using Los Alamos National Laboratory's site scale model of Yucca Mountain to model two-dimensional, vadose zone 14 C transport. The simulations demonstrate that gas flow and carbonate chemistry can significantly affect 14 C transport at Yucca Mountain. The simulations also prove that the new capabilities of FEHMN can be used to refine and buttress already existing Yucca Mountain radionuclide transport studies

  1. Accounting for the Decreasing Denitrification Potential of Aquifers in Travel-Time Based Reactive-Transport Models of Nitrate

    Science.gov (United States)

    Cirpka, O. A.; Loschko, M.; Wöhling, T.; Rudolph, D. L.

    2017-12-01

    Excess nitrate concentrations pose a threat to drinking-water production from groundwater in all regions of intensive agriculture worldwide. Natural organic matter, pyrite, and other reduced constituents of the aquifer matrix can be oxidized by aerobic and denitrifying bacteria, leading to self-cleaning of groundwater. Various studies have shown that the heterogeneity of both hydraulic and chemical aquifer properties influence the reactive behavior. Since the exact spatial distributions of these properties are not known, predictions on the temporal evolution of nitrate should be probabilistic. However, the computational effort of pde-based, spatially explicit multi-component reactive-transport simulations are so high that multiple model runs become impossible. Conversely, simplistic models that treat denitrification as first-order decay process miss important controls on denitrification. We have proposed a Lagrangian framework of nonlinear reactive transport, in which the electron-donor supply by the aquifer matrix is parameterized by a relative reactivity, that is the reaction rate relative to a standard reaction rate for identical solute concentrations (Loschko et al., 2016). We could show that reactive transport simplifies to solving a single ordinary dfferential equation in terms of the cumulative relative reactivity for a given combination of inflow concentrations. Simulating 3-D flow and reactive transport are computationally so inexpensive that Monte Carlo simulation become feasible. The original scheme did not consider a change of the relative reactivity over time, implying that the electron-donor pool in the matrix is infinite. We have modified the scheme to address the consumption of the reducing aquifer constituents upon the reactions. We also analyzed how a minimally complex model of aerobic respiration and denitrification could look like. With the revised scheme, we performed Monte Carlo simulations in 3-D domains, confirming that the uncertainty in

  2. Reactive Transport in a Pipe in Soluble Rock: a Theoretical and Experimental Study

    Science.gov (United States)

    Li, W.; Opolot, M.; Sousa, R.; Einstein, H. H.

    2015-12-01

    Reactive transport processes within the dominant underground flow pathways such as fractures can lead to the widening or narrowing of rock fractures, potentially altering the flow and transport processes in the fractures. A flow-through experiment was designed to study the reactive transport process in a pipe in soluble rock to serve as a simplified representation of a fracture in soluble rock. Assumptions were made to formulate the problem as three coupled, one-dimensional partial differential equations: one for the flow, one for the transport and one for the radius change due to dissolution. Analytical and numerical solutions were developed to predict the effluent concentration and the change in pipe radius. The positive feedback of the radius increase is captured by the experiment and the numerical model. A comparison between the experiment and the simulation results demonstrates the validity of the analytical and numerical models.

  3. Lattice Boltzmann based multicomponent reactive transport model coupled with geochemical solver for scale simulations

    NARCIS (Netherlands)

    Patel, R.A.; Perko, J.; Jaques, D.; De Schutter, G.; Ye, G.; Van Breugel, K.

    2013-01-01

    A Lattice Boltzmann (LB) based reactive transport model intended to capture reactions and solid phase changes occurring at the pore scale is presented. The proposed approach uses LB method to compute multi component mass transport. The LB multi-component transport model is then coupled with the

  4. Development of numerical methods for reactive transport; Developpement de methodes numeriques pour le transport reactif

    Energy Technology Data Exchange (ETDEWEB)

    Bouillard, N

    2006-12-15

    When a radioactive waste is stored in deep geological disposals, it is expected that the waste package will be damaged under water action (concrete leaching, iron corrosion). Then, to understand these damaging processes, chemical reactions and solutes transport are modelled. Numerical simulations of reactive transport can be done sequentially by the coupling of several codes. This is the case of the software platform ALLIANCES which is developed jointly with CEA, ANDRA and EDF. Stiff reactions like precipitation-dissolution are crucial for the radioactive waste storage applications, but standard sequential iterative approaches like Picard's fail in solving rapidly reactive transport simulations with such stiff reactions. In the first part of this work, we focus on a simplified precipitation and dissolution process: a system made up with one solid species and two aqueous species moving by diffusion is studied mathematically. It is assumed that a precipitation dissolution reaction occurs in between them, and it is modelled by a discontinuous kinetics law of unknown sign. By using monotonicity properties, the convergence of a finite volume scheme on admissible mesh is proved. Existence of a weak solution is obtained as a by-product of the convergence of the scheme. The second part is dedicated to coupling algorithms which improve Picard's method and can be easily used in an existing coupling code. By extending previous works, we propose a general and adaptable framework to solve nonlinear systems. Indeed by selecting special options, we can either recover well known methods, like nonlinear conjugate gradient methods, or design specific method. This algorithm has two main steps, a preconditioning one and an acceleration one. This algorithm is tested on several examples, some of them being rather academical and others being more realistic. We test it on the 'three species model'' example. Other reactive transport simulations use an external

  5. Development of numerical methods for reactive transport; Developpement de methodes numeriques pour le transport reactif

    Energy Technology Data Exchange (ETDEWEB)

    Bouillard, N

    2006-12-15

    When a radioactive waste is stored in deep geological disposals, it is expected that the waste package will be damaged under water action (concrete leaching, iron corrosion). Then, to understand these damaging processes, chemical reactions and solutes transport are modelled. Numerical simulations of reactive transport can be done sequentially by the coupling of several codes. This is the case of the software platform ALLIANCES which is developed jointly with CEA, ANDRA and EDF. Stiff reactions like precipitation-dissolution are crucial for the radioactive waste storage applications, but standard sequential iterative approaches like Picard's fail in solving rapidly reactive transport simulations with such stiff reactions. In the first part of this work, we focus on a simplified precipitation and dissolution process: a system made up with one solid species and two aqueous species moving by diffusion is studied mathematically. It is assumed that a precipitation dissolution reaction occurs in between them, and it is modelled by a discontinuous kinetics law of unknown sign. By using monotonicity properties, the convergence of a finite volume scheme on admissible mesh is proved. Existence of a weak solution is obtained as a by-product of the convergence of the scheme. The second part is dedicated to coupling algorithms which improve Picard's method and can be easily used in an existing coupling code. By extending previous works, we propose a general and adaptable framework to solve nonlinear systems. Indeed by selecting special options, we can either recover well known methods, like nonlinear conjugate gradient methods, or design specific method. This algorithm has two main steps, a preconditioning one and an acceleration one. This algorithm is tested on several examples, some of them being rather academical and others being more realistic. We test it on the 'three species model'' example. Other reactive transport simulations use an external chemical code CHESS. For a

  6. Subsurface Transport Over Reactive Multiphases (STORM): A Parallel, Coupled, Nonisothermal Multiphase Flow, Reactive Transport, and Porous Medium Alteration Simulator, Version 3.0

    International Nuclear Information System (INIS)

    Bacon, Diana H.; White, Mark D.; McGrail, B PETER

    2004-01-01

    The U.S. Department of Energy must approve a performance assessment (PA) to support the design, construction, approval, and closure of disposal facilities for immobilized low-activity waste (ILAW) currently stored in underground tanks at Hanford, Washington. A critical component of the PA is to provide quantitative estimates of radionuclide release rates from the engineered portion of the disposal facilities. Computer simulations are essential for this purpose because impacts on groundwater resources must be projected to periods of 10,000 years and longer. The computer code selected for simulating the radionuclide release rates is the Subsurface Transport Over Reactive Multiphases (STORM) simulator. The STORM simulator solves coupled conservation equations for component mass and energy that describe subsurface flow over aqueous and gas phases through variably saturated geologic media. The resulting flow fields are used to sequentially solve conservation equations for reactive aqueous phase transport through variably saturated geologic media. These conservation equations for component mass, energy, and solute mass are partial differential equations that mathematically describe flow and transport through porous media. The STORM simulator solves the governing-conservation equations and constitutive functions using numerical techniques for nonlinear systems. The partial differential equations governing thermal and fluid flow processes are solved by the integral volume finite difference method. These governing equations are solved simultaneously using Newton-Raphson iteration. The partial differential equations governing reactive solute transport are solved using either an operator split technique where geochemical reactions and solute transport are solved separately, or a fully coupled technique where these equations are solved simultaneously. The STORM simulator is written in the FORTRAN 77 language, following American National Standards Institute (ANSI) standards

  7. Enhancing the design of in situ chemical barriers with multicomponent reactive transport modeling

    International Nuclear Information System (INIS)

    Sevougian, S.D.; Steefel, C.I.; Yabusaki, S.B.

    1994-11-01

    This paper addresses the need for systematic control of field-scale performance in the emplacement and operation of in situ chemical treatment barriers; in particular, it addresses the issue of how the local coupling of reaction kinetics and material heterogeneities at the laboratory or bench scale can be accurately upscaled to the field. The authors have recently developed modeling analysis tools that can explicitly account for all relevant chemical reactions that accompany the transport of reagents and contaminants through a chemically and physically heterogeneous subsurface rock or soil matrix. These tools are incorporated into an enhanced design methodology for in situ chemical treatment technologies, and the new methodology is demonstrated in the ongoing design of a field experiment for the In Situ Redox Manipulation (ISRM) project at the U.S. Department of Energy (DOE) Hanford Site. The ISRM design approach, which systematically integrates bench-scale and site characterization information, provides an ideal test for the new reactive transport techniques. The need for the enhanced chemistry capability is demonstrated by an example that shows how intra-aqueous redox kinetics can affect the transport of reactive solutes. Simulations are carried out on massively parallel computer architectures to resolve the influence of multiscale heterogeneities on multicomponent, multidimensional reactive transport. The technology will soon be available to design larger-scale remediation schemes

  8. Mathematical description of adsorption and transport of reactive solutes in soil: a review of selected literature

    International Nuclear Information System (INIS)

    Travis, C.C.

    1978-10-01

    This report reviews selected literature related to the mathematical description of the transport of reactive solutes through soil. The primary areas of the literature reviewed are (1) mathematical models in current use for description of the adsorption-desorption interaction between the soil solution and the soil matrix and (2) analytic solutions of the differential equations describing the convective-dispersive transport of reactive solutes through soil

  9. Monte Carlo simulation of nonlinear reactive contaminant transport in unsaturated porous media

    International Nuclear Information System (INIS)

    Giacobbo, F.; Patelli, E.

    2007-01-01

    In the current proposed solutions of radioactive waste repositories, the protective function against the radionuclide water-driven transport back to the biosphere is to be provided by an integrated system of engineered and natural geologic barriers. The occurrence of several nonlinear interactions during the radionuclide migration process may render burdensome the classical analytical-numerical approaches. Moreover, the heterogeneity of the barriers' media forces approximations to the classical analytical-numerical models, thus reducing their fidelity to reality. In an attempt to overcome these difficulties, in the present paper we adopt a Monte Carlo simulation approach, previously developed on the basis of the Kolmogorov-Dmitriev theory of branching stochastic processes. The approach is here extended for describing transport through unsaturated porous media under transient flow conditions and in presence of nonlinear interchange phenomena between the liquid and solid phases. This generalization entails the determination of the functional dependence of the parameters of the proposed transport model from the water content and from the contaminant concentration, which change in space and time during the water infiltration process. The corresponding Monte Carlo simulation approach is verified with respect to a case of nonreactive transport under transient unsaturated flow and to a case of nonlinear reactive transport under stationary saturated flow. Numerical applications regarding linear and nonlinear reactive transport under transient unsaturated flow are reported

  10. Modeling non-isothermal multiphase multi-species reactive chemical transport in geologic media

    Energy Technology Data Exchange (ETDEWEB)

    Tianfu Xu; Gerard, F.; Pruess, K.; Brimhall, G.

    1997-07-01

    The assessment of mineral deposits, the analysis of hydrothermal convection systems, the performance of radioactive, urban and industrial waste disposal, the study of groundwater pollution, and the understanding of natural groundwater quality patterns all require modeling tools that can consider both the transport of dissolved species as well as their interactions with solid (or other) phases in geologic media and engineered barriers. Here, a general multi-species reactive transport formulation has been developed, which is applicable to homogeneous and/or heterogeneous reactions that can proceed either subject to local equilibrium conditions or kinetic rates under non-isothermal multiphase flow conditions. Two numerical solution methods, the direct substitution approach (DSA) and sequential iteration approach (SIA) for solving the coupled complex subsurface thermo-physical-chemical processes, are described. An efficient sequential iteration approach, which solves transport of solutes and chemical reactions sequentially and iteratively, is proposed for the current reactive chemical transport computer code development. The coupled flow (water, vapor, air and heat) and solute transport equations are also solved sequentially. The existing multiphase flow code TOUGH2 and geochemical code EQ3/6 are used to implement this SIA. The flow chart of the coupled code TOUGH2-EQ3/6, required modifications of the existing codes and additional subroutines needed are presented.

  11. Biogeochemical reactive transport of carbon, nitrogen and iron in the hyporheic zone

    Science.gov (United States)

    Dwivedi, D.; Steefel, C. I.; Newcomer, M. E.; Arora, B.; Spycher, N.; Hammond, G. E.; Moulton, J. D.; Fox, P. M.; Nico, P. S.; Williams, K. H.; Dafflon, B.; Carroll, R. W. H.

    2017-12-01

    To understand how biogeochemical processes in the hyporheic zone influence carbon and nitrogen cycling as well as stream biogeochemistry, we developed a biotic and abiotic reaction network and integrated it into a reactive transport simulator - PFLOTRAN. Three-dimensional reactive flow and transport simulations were performed to describe the hyporheic exchange of fluxes from and within an intra-meander region encompassing two meanders of East River in the East Taylor watershed, Colorado. The objectives of this study were to quantify (1) the effect of transience on the export of carbon, nitrogen, and iron; and (2) the biogeochemical transformation of nitrogen and carbon species as a function of the residence time. The model was able to capture reasonably well the observed trends of nitrate and dissolved oxygen values that decreased as well as iron (Fe (II)) values that increased along the meander centerline away from the stream. Hyporheic flow paths create lateral redox zonation within intra-meander regions, which considerably impact nitrogen export into the stream system. Simulation results further demonstrated that low water conditions lead to higher levels of dissolved iron in groundwater, which (Fe (II)> 80%) is exported to the stream on the downstream side during high water conditions. An important conclusion from this study is that reactive transport models representing spatial and temporal heterogeneities are required to identify important factors that contribute to the redox gradients at riverine scales.

  12. Transport of reactive and nonreactive solutes

    International Nuclear Information System (INIS)

    Garabedian, S.P.; Leblanc, D.R.

    1990-01-01

    A natural-gradient tracer test was conducted on Cape Cod, Massachusetts, to examine the transport and dispersion of solutes in a sand and gravel aquifer. A nonreactive tracer, bromide, and two reactive tracers, lithium and molybdate, were injected as a pulse in July 1985 and monitored in three dimensions for 3 years as they moved 280 meters downgradient through an array of multilevel samplers. The tracer transport was quantified using spatial moments. The calculated total mass of bromide for each sampling date varied from 86 to 105 percent of the injected mass, and the center of mass moved at a nearly constant horizontal velocity of 0.42 meters per day. The bromide cloud also moved downward about 4 meters, probably because of density-induced sinking and accretion of areal recharge from precipitation. After 200 meters of transport, the bromide cloud was more than 80 meters long but only 14 meters wide and 6 meters thick. The change in longitudinal dispersivity had reached a constant value (0.96 meters). The transverse horizontal and transverse vertical dispersivities were much smaller (1.8 centimeters and 1.5 millimeters, respectively) than the longitudinal value. The lithium and molybdate clouds followed the same path as the bromide cloud, but a significant amount of their mass was adsorbed onto the aquifer sediments, and their rates of movement were retarded about 50 percent relative to the bromide movement. (Author) (5 figs., 23 refs.)

  13. Reactive Transport Modeling of Microbe-mediated Fe (II) Oxidation for Enhanced Oil Recovery

    Science.gov (United States)

    Surasani, V.; Li, L.

    2011-12-01

    Microbially Enhanced Oil Recovery (MEOR) aims to improve the recovery of entrapped heavy oil in depleted reservoirs using microbe-based technology. Reservoir ecosystems often contain diverse microbial communities those can interact with subsurface fluids and minerals through a network of nutrients and energy fluxes. Microbe-mediated reactions products include gases, biosurfactants, biopolymers those can alter the properties of oil and interfacial interactions between oil, brine, and rocks. In addition, the produced biomass and mineral precipitates can change the reservoir permeability profile and increase sweeping efficiency. Under subsurface conditions, the injection of nitrate and Fe (II) as the electron acceptor and donor allows bacteria to grow. The reaction products include minerals such as Fe(OH)3 and nitrogen containing gases. These reaction products can have large impact on oil and reservoir properties and can enhance the recovery of trapped oil. This work aims to understand the Fe(II) oxidation by nitrate under conditions relevant to MEOR. Reactive transport modeling is used to simulate the fluid flow, transport, and reactions involved in this process. Here we developed a complex reactive network for microbial mediated nitrate-dependent Fe (II) oxidation that involves both thermodynamic controlled aqueous reactions and kinetic controlled Fe (II) mineral reaction. Reactive transport modeling is used to understand and quantify the coupling between flow, transport, and reaction processes. Our results identify key parameter controls those are important for the alteration of permeability profile under field conditions.

  14. Coupled Modeling of Rhizosphere and Reactive Transport Processes

    Science.gov (United States)

    Roque-Malo, S.; Kumar, P.

    2017-12-01

    The rhizosphere, as a bio-diverse plant root-soil interface, hosts many hydrologic and biochemical processes, including nutrient cycling, hydraulic redistribution, and soil carbon dynamics among others. The biogeochemical function of root networks, including the facilitation of nutrient cycling through absorption and rhizodeposition, interaction with micro-organisms and fungi, contribution to biomass, etc., plays an important role in myriad Critical Zone processes. Despite this knowledge, the role of the rhizosphere on watershed-scale ecohydrologic functions in the Critical Zone has not been fully characterized, and specifically, the extensive capabilities of reactive transport models (RTMs) have not been applied to these hydrobiogeochemical dynamics. This study uniquely links rhizospheric processes with reactive transport modeling to couple soil biogeochemistry, biological processes, hydrologic flow, hydraulic redistribution, and vegetation dynamics. Key factors in the novel modeling approach are: (i) bi-directional effects of root-soil interaction, such as simultaneous root exudation and nutrient absorption; (ii) multi-state biomass fractions in soil (i.e. living, dormant, and dead biological and root materials); (iii) expression of three-dimensional fluxes to represent both vertical and lateral interconnected flows and processes; and (iv) the potential to include the influence of non-stationary external forcing and climatic factors. We anticipate that the resulting model will demonstrate the extensive effects of plant root dynamics on ecohydrologic functions at the watershed scale and will ultimately contribute to a better characterization of efflux from both agricultural and natural systems.

  15. Multi-scales modeling of reactive transport mechanisms. Impact on petrophysical properties during CO2 storage

    International Nuclear Information System (INIS)

    Varloteaux, C.

    2012-01-01

    The geo-sequestration of carbon dioxide (CO 2 ) is an attractive option to reduce the emission of greenhouse gases. Within carbonate reservoirs, acidification of brine in place can occur during CO 2 injection. This acidification leads to mineral dissolution which can modify the transport properties of a solute in porous media. The aim of this study is to quantify the impact of reactive transport on a solute distribution and on the structural modification induced by the reaction from the pore to the reservoir scale. This study is focused on reactive transport problem in the case of single phase flow in the limit of long time. To do so, we used a multi-scale up-scaling method that takes into account (i) the local scale, where flow, reaction and transport are known; (ii) the pore scale, where the reactive transport is addressed by using averaged formulation of the local equations; (iii) the Darcy scale (also called core scale), where the structure of the rock is taken into account by using a three-dimensions network of pore-bodies connected by pore-throats; and (iv) the reservoir scale, where physical phenomenon, within each cell of the reservoir model, are taken into account by introducing macroscopic coefficients deduced from the study of these phenomenon at the Darcy scale, such as the permeability, the apparent reaction rate, the solute apparent velocity and dispersion. (author)

  16. Web-based reactive transport modeling using PFLOTRAN

    Science.gov (United States)

    Zhou, H.; Karra, S.; Lichtner, P. C.; Versteeg, R.; Zhang, Y.

    2017-12-01

    Actionable understanding of system behavior in the subsurface is required for a wide spectrum of societal and engineering needs by both commercial firms and government entities and academia. These needs include, for example, water resource management, precision agriculture, contaminant remediation, unconventional energy production, CO2 sequestration monitoring, and climate studies. Such understanding requires the ability to numerically model various coupled processes that occur across different temporal and spatial scales as well as multiple physical domains (reservoirs - overburden, surface-subsurface, groundwater-surface water, saturated-unsaturated zone). Currently, this ability is typically met through an in-house approach where computational resources, model expertise, and data for model parameterization are brought together to meet modeling needs. However, such an approach has multiple drawbacks which limit the application of high-end reactive transport codes such as the Department of Energy funded[?] PFLOTRAN code. In addition, while many end users have a need for the capabilities provided by high-end reactive transport codes, they do not have the expertise - nor the time required to obtain the expertise - to effectively use these codes. We have developed and are actively enhancing a cloud-based software platform through which diverse users are able to easily configure, execute, visualize, share, and interpret PFLOTRAN models. This platform consists of a web application and available on-demand HPC computational infrastructure. The web application consists of (1) a browser-based graphical user interface which allows users to configure models and visualize results interactively, and (2) a central server with back-end relational databases which hold configuration, data, modeling results, and Python scripts for model configuration, and (3) a HPC environment for on-demand model execution. We will discuss lessons learned in the development of this platform, the

  17. Stable isotope reactive transport modeling in water-rock interactions during CO2 injection

    Science.gov (United States)

    Hidalgo, Juan J.; Lagneau, Vincent; Agrinier, Pierre

    2010-05-01

    Stable isotopes can be of great usefulness in the characterization and monitoring of CO2 sequestration sites. Stable isotopes can be used to track the migration of the CO2 plume and identify leakage sources. Moreover, they provide unique information about the chemical reactions that take place on the CO2-water-rock system. However, there is a lack of appropriate tools that help modelers to incorporate stable isotope information into the flow and transport models used in CO2 sequestration problems. In this work, we present a numerical tool for modeling the transport of stable isotopes in groundwater reactive systems. The code is an extension of the groundwater single-phase flow and reactive transport code HYTEC [2]. HYTEC's transport module was modified to include element isotopes as separate species. This way, it is able to track isotope composition of the system by computing the mixing between the background water and the injected solution accounting for the dependency of diffusion on the isotope mass. The chemical module and database have been expanded to included isotopic exchange with minerals and the isotope fractionation associated with chemical reactions and mineral dissolution or precipitation. The performance of the code is illustrated through a series of column synthetic models. The code is also used to model the aqueous phase CO2 injection test carried out at the Lamont-Doherty Earth Observatory site (Palisades, New York, USA) [1]. References [1] N. Assayag, J. Matter, M. Ader, D. Goldberg, and P. Agrinier. Water-rock interactions during a CO2 injection field-test: Implications on host rock dissolution and alteration effects. Chemical Geology, 265(1-2):227-235, July 2009. [2] Jan van der Lee, Laurent De Windt, Vincent Lagneau, and Patrick Goblet. Module-oriented modeling of reactive transport with HYTEC. Computers & Geosciences, 29(3):265-275, April 2003.

  18. Biogeochemical processes in a clay formation in situ experiment: Part F - Reactive transport modelling

    Energy Technology Data Exchange (ETDEWEB)

    Tournassat, Christophe, E-mail: c.tournassat@brgm.fr [BRGM, French Geological Survey, Orleans (France); Alt-Epping, Peter [Rock-Water Interaction Group, Institute of Geological Sciences, University of Bern (Switzerland); Gaucher, Eric C. [BRGM, French Geological Survey, Orleans (France); Gimmi, Thomas [Rock-Water Interaction Group, Institute of Geological Sciences, University of Bern (Switzerland)] [Laboratory for Waste Management, Paul Scherrer Institut, Villigen (Switzerland); Leupin, Olivier X. [NAGRA, CH-5430 Wettingen (Switzerland); Wersin, Paul [Gruner Ltd., CH-4020 Basel (Switzerland)

    2011-06-15

    Highlights: > Reactive transport modelling was used to simulate simultaneously solute transport, thermodynamic reactions, ion exchange and biodegradation during an in-situ experiment in a clay-rock formation. > Opalinus clay formation has a high buffering capacity in terms of chemical perturbations caused by bacterial activity. > Buffering capacity is mainly attributed to the carbonate system and to the reactivity of clay surfaces (cation exchange, pH buffering). - Abstract: Reactive transport modelling was used to simulate solute transport, thermodynamic reactions, ion exchange and biodegradation in the Porewater Chemistry (PC) experiment at the Mont Terri Rock Laboratory. Simulations show that the most important chemical processes controlling the fluid composition within the borehole and the surrounding formation during the experiment are ion exchange, biodegradation and dissolution/precipitation reactions involving pyrite and carbonate minerals. In contrast, thermodynamic mineral dissolution/precipitation reactions involving alumo-silicate minerals have little impact on the fluid composition on the time-scale of the experiment. With the accurate description of the initial chemical condition in the formation in combination with kinetic formulations describing the different stages of bacterial activities, it has been possible to reproduce the evolution of important system parameters, such as the pH, redox potential, total organic C, dissolved inorganic C and SO{sub 4} concentration. Leaching of glycerol from the pH-electrode may be the primary source of organic material that initiated bacterial growth, which caused the chemical perturbation in the borehole. Results from these simulations are consistent with data from the over-coring and demonstrate that the Opalinus Clay has a high buffering capacity in terms of chemical perturbations caused by bacterial activity. This buffering capacity can be attributed to the carbonate system as well as to the reactivity of

  19. Reactive transport of aqueous protons in porous media

    KAUST Repository

    McNeece, Colin J.

    2016-10-09

    The sorption of protons determines the surface charge of natural media and is therefore a first-order control on contaminant transport. Significant effort has been extended to develop chemical models that quantify the sorption of protons at the mineral surface. To compare these models’ effect on predicted proton transport, we present analytic solutions for column experiments through silica sand. Reaction front morphology is controlled by the functional relationship between the total sorbed and total aqueous proton concentrations. An inflection point in this function near neutral pH leads to a reversal in the classic front formation mechanism under basic conditions, such that proton desorption leads to a self-sharpening front, while adsorption leads to a spreading front. A composite reaction front comprising both a spreading and self-sharpening segment can occur when the injected and initial concentrations straddle the inflection point. This behavior is unique in single component reactive transport and arises due to the auto-ionization of water rather than electrostatic interactions at the mineral surface. We derive a regime diagram illustrating conditions under which different fronts occur, highlighting areas where model predictions diverge. Chemical models are then compared and validated against a systematic set of column experiments.

  20. A parametric transfer function methodology for analyzing reactive transport in nonuniform flow.

    Science.gov (United States)

    Luo, Jian; Cirpka, Olaf A; Fienen, Michael N; Wu, Wei-min; Mehlhorn, Tonia L; Carley, Jack; Jardine, Philip M; Criddle, Craig S; Kitanidis, Peter K

    2006-02-01

    We analyze reactive transport during in-situ bioremediation in a nonuniform flow field, involving multiple extraction and injection wells, by the method of transfer functions. Gamma distributions are used as parametric models of the transfer functions. Apparent parameters of classical transport models may be estimated from those of the gamma distributions by matching temporal moments. We demonstrate the method by application to measured data taken at a field experiment on bioremediation conducted in a multiple-well system in Oak Ridge, TN. Breakthrough curves (BTCs) of a conservative tracer (bromide) and a reactive compound (ethanol) are measured at multi-level sampling (MLS) wells and in extraction wells. The BTCs of both compounds are jointly analyzed to estimate the first-order degradation rate of ethanol. To quantify the tracer loss, we compare the approaches of using a scaling factor and a first-order decay term. Results show that by including a scaling factor both gamma distributions and inverse-Gaussian distributions (transfer functions according to the advection-dispersion equation) are suitable to approximate the transfer functions and estimate the reactive rate coefficients for both MLS and extraction wells. However, using a first-order decay term for tracer loss fails to describe the BTCs at the extraction well, which is affected by the nonuniform distribution of travel paths.

  1. Effects of water content on reactive transport of Sr in Chernobyl sand columns

    International Nuclear Information System (INIS)

    Szenknect, S.; Dewiere, L.; Ardois, C.; Gaudet, J.P.

    2005-01-01

    Full text of publication follows: While transport of non-reactive solutes has been studied extensively in unsaturated porous media, much less is known about the factors that control the transport of sorbing solutes in unsaturated conditions. Three laboratory techniques were used to analyze the transport of Sr in the aeolian sand from Chernobyl Pilot Site [1] in both saturated and unsaturated flow conditions. Batch experiments were performed to study the chemical equilibrium state of the soil/solution system. Stirred flow-through reactor (SFTR) experiments were performed to study the kinetics and reversibility of sorption reactions at the surface of solid particles. Column experiments were also performed in saturated and unsaturated steady flow conditions. Experimental data pointed out a non-linear, instantaneous and reversible sorption process of Sr. A suitable cation-exchange model was used to describe the solute/soil reaction. The former model was coupled with transport models to describe behavior of Sr in saturated [2] and unsaturated flow conditions. Transport properties of sand packed columns have been determined with an inert tracer (HTO). BTCs obtained under saturated conditions exhibit a small amount of dispersion compared to those obtained under unsaturated conditions. Classical advection-dispersion model described successfully saturated tritium breakthrough curves (BTCs), whereas a mobile-immobile model (MIM) was required to described asymmetrical unsaturated BTCs. The MIM assumes that the porous medium contains a mobile water phase in which convective-dispersive transport occurs, and a immobile water phase with which solutes can exchange with a first order kinetic. In our experiments, transport by advection in the mobile phase is the predominant process whatever the flow conditions and mass transfer rate between the mobile and immobile regions is the predominant process for broadening the BTCs. Since dispersion is blurred by mass transfer resistance, the

  2. Marine phages as excellent tracers for reactive colloidal transport in porous media

    Science.gov (United States)

    Ghanem, Nawras; Chatzinotas, Antonis; Harms, Hauke; Wick, Lukas Y.

    2016-04-01

    Question: Here we evaluate marine phages as specific markers of hydrological flow and reactive transport of colloidal particles in the Earth's critical zone (CZ). Marine phages and their bacterial hosts are naturally absent in the CZ, and can be detected with extremely high sensitivity. In the framework of the DFG Collaborative Research Center AquaDiva, we asked the following questions: (1) Are marine phages useful specific markers of hydrological flow and reactive transport in porous media? and (2) Which phage properties are relevant drivers for the transport of marine phages in porous media? Methods: Seven marine phages from different families (as well two commonly used terrestrial phages) were selected based on their morphology, size and physico-chemical surface properties (surface charge and hydrophobicity). Phage properties were assessed by electron microscopy, dynamic light scattering and water contact angle analysis (CA). Sand-filled laboratory percolation columns were used to study transport. The breakthrough curves of the phages were analyzed using the clean bed filtration theory and the XDLVO theory of colloid stability, respectively. Phages were quantified by a modified high- throughput plaque assay and a culture-independent particle counting method approach. Results: Our data show that most marine tested phages exhibited highly variable transport rates and deposition efficiency, yet generally high colloidal stability and viability. We find that size, morphology and hydrophobicity are key factors shaping the transport efficiency of phages. Differing deposition efficiencies of the phages were also supported by calculated XDLVO interaction energy profile. Conclusion: Marine phages have a high potential for the use as sensitive tracers in terrestrial habitats with their surface properties playing a crucial role for their transport. Marine phages however, exhibit differences in their deposition efficiency depending on their morphology, hydrophobicity and

  3. VS2DRTI: Simulating Heat and Reactive Solute Transport in Variably Saturated Porous Media.

    Science.gov (United States)

    Healy, Richard W; Haile, Sosina S; Parkhurst, David L; Charlton, Scott R

    2018-01-29

    Variably saturated groundwater flow, heat transport, and solute transport are important processes in environmental phenomena, such as the natural evolution of water chemistry of aquifers and streams, the storage of radioactive waste in a geologic repository, the contamination of water resources from acid-rock drainage, and the geologic sequestration of carbon dioxide. Up to now, our ability to simulate these processes simultaneously with fully coupled reactive transport models has been limited to complex and often difficult-to-use models. To address the need for a simple and easy-to-use model, the VS2DRTI software package has been developed for simulating water flow, heat transport, and reactive solute transport through variably saturated porous media. The underlying numerical model, VS2DRT, was created by coupling the flow and transport capabilities of the VS2DT and VS2DH models with the equilibrium and kinetic reaction capabilities of PhreeqcRM. Flow capabilities include two-dimensional, constant-density, variably saturated flow; transport capabilities include both heat and multicomponent solute transport; and the reaction capabilities are a complete implementation of geochemical reactions of PHREEQC. The graphical user interface includes a preprocessor for building simulations and a postprocessor for visual display of simulation results. To demonstrate the simulation of multiple processes, the model is applied to a hypothetical example of injection of heated waste water to an aquifer with temperature-dependent cation exchange. VS2DRTI is freely available public domain software. © 2018, National Ground Water Association.

  4. Accounting for the Decreasing Reaction Potential of Heterogeneous Aquifers in a Stochastic Framework of Aquifer-Scale Reactive Transport

    Science.gov (United States)

    Loschko, Matthias; Wöhling, Thomas; Rudolph, David L.; Cirpka, Olaf A.

    2018-01-01

    Many groundwater contaminants react with components of the aquifer matrix, causing a depletion of the aquifer's reactivity with time. We discuss conceptual simplifications of reactive transport that allow the implementation of a decreasing reaction potential in reactive-transport simulations in chemically and hydraulically heterogeneous aquifers without relying on a fully explicit description. We replace spatial coordinates by travel-times and use the concept of relative reactivity, which represents the reaction-partner supply from the matrix relative to a reference. Microorganisms facilitating the reactions are not explicitly modeled. Solute mixing is neglected. Streamlines, obtained by particle tracking, are discretized in travel-time increments with variable content of reaction partners in the matrix. As exemplary reactive system, we consider aerobic respiration and denitrification with simplified reaction equations: Dissolved oxygen undergoes conditional zero-order decay, nitrate follows first-order decay, which is inhibited in the presence of dissolved oxygen. Both reactions deplete the bioavailable organic carbon of the matrix, which in turn determines the relative reactivity. These simplifications reduce the computational effort, facilitating stochastic simulations of reactive transport on the aquifer scale. In a one-dimensional test case with a more detailed description of the reactions, we derive a potential relationship between the bioavailable organic-carbon content and the relative reactivity. In a three-dimensional steady-state test case, we use the simplified model to calculate the decreasing denitrification potential of an artificial aquifer over 200 years in an ensemble of 200 members. We demonstrate that the uncertainty in predicting the nitrate breakthrough in a heterogeneous aquifer decreases with increasing scale of observation.

  5. Hybrid Multiscale Finite Volume method for multiresolution simulations of flow and reactive transport in porous media

    Science.gov (United States)

    Barajas-Solano, D. A.; Tartakovsky, A. M.

    2017-12-01

    We present a multiresolution method for the numerical simulation of flow and reactive transport in porous, heterogeneous media, based on the hybrid Multiscale Finite Volume (h-MsFV) algorithm. The h-MsFV algorithm allows us to couple high-resolution (fine scale) flow and transport models with lower resolution (coarse) models to locally refine both spatial resolution and transport models. The fine scale problem is decomposed into various "local'' problems solved independently in parallel and coordinated via a "global'' problem. This global problem is then coupled with the coarse model to strictly ensure domain-wide coarse-scale mass conservation. The proposed method provides an alternative to adaptive mesh refinement (AMR), due to its capacity to rapidly refine spatial resolution beyond what's possible with state-of-the-art AMR techniques, and the capability to locally swap transport models. We illustrate our method by applying it to groundwater flow and reactive transport of multiple species.

  6. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects

    Energy Technology Data Exchange (ETDEWEB)

    Lu, X., E-mail: luxinpei@hotmail.com [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Naidis, G.V. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Laroussi, M. [Plasma Engineering & Medicine Institute, Old Dominion University, Norfolk, VA 23529 (United States); Reuter, S. [Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Strasse 2, 17489 Greifswald (Germany); Graves, D.B. [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 (United States); Ostrikov, K. [Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000 (Australia); School of Physics, Chemistry, and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000 (Australia); Commonwealth Scientific and Industrial Research Organization, P.O.Box 218, Lindfield, NSW 2070 (Australia); School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia)

    2016-05-04

    Non-equilibrium atmospheric-pressure plasmas have recently become a topical area of research owing to their diverse applications in health care and medicine, environmental remediation and pollution control, materials processing, electrochemistry, nanotechnology and other fields. This review focuses on the reactive electrons and ionic, atomic, molecular, and radical species that are produced in these plasmas and then transported from the point of generation to the point of interaction with the material, medium, living cells or tissues being processed. The most important mechanisms of generation and transport of the key species in the plasmas of atmospheric-pressure plasma jets and other non-equilibrium atmospheric-pressure plasmas are introduced and examined from the viewpoint of their applications in plasma hygiene and medicine and other relevant fields. Sophisticated high-precision, time-resolved plasma diagnostics approaches and techniques are presented and their applications to monitor the reactive species and plasma dynamics in the plasma jets and other discharges, both in the gas phase and during the plasma interaction with liquid media, are critically reviewed. The large amount of experimental data is supported by the theoretical models of reactive species generation and transport in the plasmas, surrounding gaseous environments, and plasma interaction with liquid media. These models are presented and their limitations are discussed. Special attention is paid to biological effects of the plasma-generated reactive oxygen and nitrogen (and some other) species in basic biological processes such as cell metabolism, proliferation, survival, etc. as well as plasma applications in bacterial inactivation, wound healing, cancer treatment and some others. Challenges and opportunities for theoretical and experimental research are discussed and the authors’ vision for the emerging convergence trends across several disciplines and application domains is presented to

  7. THC-MP: High performance numerical simulation of reactive transport and multiphase flow in porous media

    Science.gov (United States)

    Wei, Xiaohui; Li, Weishan; Tian, Hailong; Li, Hongliang; Xu, Haixiao; Xu, Tianfu

    2015-07-01

    The numerical simulation of multiphase flow and reactive transport in the porous media on complex subsurface problem is a computationally intensive application. To meet the increasingly computational requirements, this paper presents a parallel computing method and architecture. Derived from TOUGHREACT that is a well-established code for simulating subsurface multi-phase flow and reactive transport problems, we developed a high performance computing THC-MP based on massive parallel computer, which extends greatly on the computational capability for the original code. The domain decomposition method was applied to the coupled numerical computing procedure in the THC-MP. We designed the distributed data structure, implemented the data initialization and exchange between the computing nodes and the core solving module using the hybrid parallel iterative and direct solver. Numerical accuracy of the THC-MP was verified through a CO2 injection-induced reactive transport problem by comparing the results obtained from the parallel computing and sequential computing (original code). Execution efficiency and code scalability were examined through field scale carbon sequestration applications on the multicore cluster. The results demonstrate successfully the enhanced performance using the THC-MP on parallel computing facilities.

  8. Predicting Reactive Transport Dynamics in Carbonates using Initial Pore Structure

    Science.gov (United States)

    Menke, H. P.; Nunes, J. P. P.; Blunt, M. J.

    2017-12-01

    Understanding rock-fluid interaction at the pore-scale is imperative for accurate predictive modelling of carbon storage permanence. However, coupled reactive transport models are computationally expensive, requiring either a sacrifice of resolution or high performance computing to solve relatively simple geometries. Many recent studies indicate that initial pore structure many be the dominant mechanism in determining the dissolution regime. Here we investigate how well the initial pore structure is predictive of distribution and amount of dissolution during reactive flow using particle tracking on the initial image. Two samples of carbonate rock with varying initial pore space heterogeneity were reacted with reservoir condition CO2-saturated brine and scanned dynamically during reactive flow at a 4-μm resolution between 4 and 40 times using 4D X-ray micro-tomography over the course of 1.5 hours using μ-CT. Flow was modelled on the initial binarized image using a Navier-Stokes solver. Particle tracking was then run on the velocity fields, the streamlines were traced, and the streamline density was calculated both on a voxel-by-voxel and a channel-by-channel basis. The density of streamlines was then compared to the amount of dissolution in subsequent time steps during reaction. It was found that for the flow and transport regimes studied, the streamline density distribution in the initial image accurately predicted the dominant pathways of dissolution and gave good indicators of the type of dissolution regime that would later develop. This work suggests that the eventual reaction-induced changes in pore structure are deterministic rather than stochastic and can be predicted with high resolution imaging of unreacted rock.

  9. Reactive transport modeling of coupled inorganic and organic processes in groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Adam

    1997-12-31

    The main goals of this project are to develop and apply a reactive transport code for simulation of coupled organic and inorganic processes in the pollution plume in the ground water down-gradient from the Vejen landfill, Denmark. The detailed field investigations in this aquifer have previously revealed a complex pattern of strongly interdependent organic and inorganic processes. These processes occur simultaneously in a flow and transport system where the mixing of reactive species is influenced by the rather complex geology in the vicinity of the landfill. The removal of organic matter is influenced by the presence of various electron acceptors that also are involved in various inorganic geochemical reactions. It was concluded from the investigations that degradation of organic matter, complexation, mineral precipitation and dissolution, ion-exchange and inorganic redox reactions, as a minimum, should be included in the formulation of the model. The coupling of the organic and inorganic processes is developed based on a literature study. All inorganic processes are as an approximation described as equilibriumm processes. The organic processes are described by a maximum degradation rate that is decreased according to the availability of the participants in the processes, the actual pH, and the presence of inhibiting species. The reactive transport code consists of three separate codes, a flow and transport code, a geochemical code, and a biodegradation code. An iterative solution scheme couples the three codes. The coupled code was successfully verified for simple problems for which analytical solutions exist. For more complex problems the code was tested on synthetic cases and expected plume behavior was successfully simulated. Application of the code to the Vejen landfill aquifer was successful to the degree that the redox zonation down-gradient from the landfill was simulated correctly and that several of the simulated plumes showed a reasonable agreement with

  10. Reactive transport simulations of the evolution of a cementitious repository in clay-rich host rocks

    Science.gov (United States)

    Kosakowski, Georg; Berner, Urs; Kulik, Dmitrii A.

    2010-05-01

    In Switzerland, the deep geological disposal in clay-rich rocks is foreseen not only for high-level radioactive waste, but also for intermediate-level (ILW) and low-level (LLW) radioactive waste. Typically, ILW and LLW repositories contain huge amounts of cementitious materials used for waste conditioning, confinement, and as backfill for the emplacement caverns. We are investigating the interactions of such a repository with the surrounding clay rocks and with other clay-rich materials such as sand/bentonite mixtures that are foreseen for backfilling the access tunnels. With the help of a numerical reactive transport model, we are comparing the evolution of cement/clay interfaces for different geochemical and transport conditions. In this work, the reactive transport of chemical components is simulated with the multi-component reactive transport code OpenGeoSys-GEM. It employs the sequential non-iterative approach to couple the mass transport code OpenGeoSys (http://www.ufz.de/index.php?en=18345) with the GEMIPM2K (http://gems.web.psi.ch/) code for thermodynamic modeling of aquatic geochemical systems which is using the Gibbs Energy Minimization (GEM) method. Details regarding code development and verification can be found in Shao et al. (2009). The mineral composition and the pore solution of a CEM I 52.5 N HTS hydrated cement as described by Lothenbach & Wieland (2006) are used as an initial state of the cement compartment. The setup is based on the most recent CEMDATA07 thermodynamic database which includes several ideal solid solutions for hydrated cement minerals and is consistent with the Nagra/PSI thermodynamic database 01/01. The smectite/montmorillonite model includes cation exchange processes and amphotheric≡SOH sites and was calibrated on the basis of data by Bradbury & Baeyens (2002). In other reactive transport codes based on the Law of Mass Action (LMA) for solving geochemical equilibria, cation exchange processes are usually calculated assuming

  11. Modeling biogechemical reactive transport in a fracture zone

    Energy Technology Data Exchange (ETDEWEB)

    Molinero, Jorge; Samper, Javier; Yang, Chan Bing, and Zhang, Guoxiang; Guoxiang, Zhang

    2005-01-14

    A coupled model of groundwater flow, reactive solute transport and microbial processes for a fracture zone of the Aspo site at Sweden is presented. This is the model of the so-called Redox Zone Experiment aimed at evaluating the effects of tunnel construction on the geochemical conditions prevailing in a fracture granite. It is found that a model accounting for microbially-mediated geochemical processes is able to reproduce the unexpected measured increasing trends of dissolved sulfate and bicarbonate. The model is also useful for testing hypotheses regarding the role of microbial processes and evaluating the sensitivity of model results to changes in biochemical parameters.

  12. Modeling biogeochemical reactive transport in a fracture zone

    International Nuclear Information System (INIS)

    Molinero, Jorge; Samper, Javier; Yang, Chan Bing; Zhang, Guoxiang; Guoxiang, Zhang

    2005-01-01

    A coupled model of groundwater flow, reactive solute transport and microbial processes for a fracture zone of the Aspo site at Sweden is presented. This is the model of the so-called Redox Zone Experiment aimed at evaluating the effects of tunnel construction on the geochemical conditions prevailing in a fracture granite. It is found that a model accounting for microbially-mediated geochemical processes is able to reproduce the unexpected measured increasing trends of dissolved sulfate and bicarbonate. The model is also useful for testing hypotheses regarding the role of microbial processes and evaluating the sensitivity of model results to changes in biochemical parameters

  13. Lattice Boltzmann simulation of CO2 reactive transport in network fractured media

    Science.gov (United States)

    Tian, Zhiwei; Wang, Junye

    2017-08-01

    Carbon dioxide (CO2) geological sequestration plays an important role in mitigating CO2 emissions for climate change. Understanding interactions of the injected CO2 with network fractures and hydrocarbons is key for optimizing and controlling CO2 geological sequestration and evaluating its risks to ground water. However, there is a well-known, difficult process in simulating the dynamic interaction of fracture-matrix, such as dynamic change of matrix porosity, unsaturated processes in rock matrix, and effect of rock mineral properties. In this paper, we develop an explicit model of the fracture-matrix interactions using multilayer bounce-back treatment as a first attempt to simulate CO2 reactive transport in network fractured media through coupling the Dardis's LBM porous model for a new interface treatment. Two kinds of typical fracture networks in porous media are simulated: straight cross network fractures and interleaving network fractures. The reaction rate and porosity distribution are illustrated and well-matched patterns are found. The species concentration distribution and evolution with time steps are also analyzed and compared with different transport properties. The results demonstrate the capability of this model to investigate the complex processes of CO2 geological injection and reactive transport in network fractured media, such as dynamic change of matrix porosity.

  14. The Development and Application of Reactive Transport Modeling Techniques to Study Radionuclide Migration at Yucca Mountain, NV

    International Nuclear Information System (INIS)

    Hari Selvi Viswanathan

    1999-01-01

    Yucca Mountain, Nevada has been chosen as a possible site for the first high level radioactive waste repository in the United States. As part of the site investigation studies, we need to make scientifically rigorous estimations of radionuclide migration in the event of a repository breach. Performance assessment models used to make these estimations are computationally intensive. We have developed two reactive transport modeling techniques to simulate radionuclide transport at Yucca Mountain: (1) the selective coupling approach applied to the convection-dispersion-reaction (CDR) model and (2) a reactive stream tube approach (RST). These models were designed to capture the important processes that influence radionuclide migration while being computationally efficient. The conventional method of modeling reactive transport models is to solve a coupled set of multi-dimensional partial differential equations for the relevant chemical components in the system. We have developed an iterative solution technique, denoted the selective coupling method, that represents a versatile alternative to traditional uncoupled iterative techniques and the filly coupled global implicit method. We show that selective coupling results in computational and memory savings relative to these approaches. We develop RST as an alternative to the CDR method for solving large two- or three-dimensional reactive transport simulations for cases in which one is interested in predicting the flux across a specific control plane. In the RST method, the multidimensional problem is reduced to a series of one-dimensional transport simulations along streamlines. The key assumption with RST is that mixing at the control plane approximates the transverse dispersion between streamlines. We compare the CDR and RST approaches for several scenarios that are relevant to the Yucca Mountain Project. For example, we apply the CDR and RST approaches to model an ongoing field experiment called the Unsaturated Zone

  15. Transport of secondary electrons and reactive species in ion tracks

    Science.gov (United States)

    Surdutovich, Eugene; Solov'yov, Andrey V.

    2015-08-01

    The transport of reactive species brought about by ions traversing tissue-like medium is analysed analytically. Secondary electrons ejected by ions are capable of ionizing other molecules; the transport of these generations of electrons is studied using the random walk approximation until these electrons remain ballistic. Then, the distribution of solvated electrons produced as a result of interaction of low-energy electrons with water molecules is obtained. The radial distribution of energy loss by ions and secondary electrons to the medium yields the initial radial dose distribution, which can be used as initial conditions for the predicted shock waves. The formation, diffusion, and chemical evolution of hydroxyl radicals in liquid water are studied as well. COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy.

  16. Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model

    International Nuclear Information System (INIS)

    Fang, Yilin; Scheibe, Timothy D.; Mahadevan, Radhakrishnan; Garg, Srinath; Long, Philip E.; Lovley, Derek R.

    2011-01-01

    The activity of microorganisms often plays an important role in dynamic natural attenuation or engineered bioremediation of subsurface contaminants, such as chlorinated solvents, metals, and radionuclides. To evaluate and/or design bioremediated systems, quantitative reactive transport models are needed. State-of-the-art reactive transport models often ignore the microbial effects or simulate the microbial effects with static growth yield and constant reaction rate parameters over simulated conditions, while in reality microorganisms can dynamically modify their functionality (such as utilization of alternative respiratory pathways) in response to spatial and temporal variations in environmental conditions. Constraint-based genome-scale microbial in silico models, using genomic data and multiple-pathway reaction networks, have been shown to be able to simulate transient metabolism of some well studied microorganisms and identify growth rate, substrate uptake rates, and byproduct rates under different growth conditions. These rates can be identified and used to replace specific microbially-mediated reaction rates in a reactive transport model using local geochemical conditions as constraints. We previously demonstrated the potential utility of integrating a constraint based microbial metabolism model with a reactive transport simulator as applied to bioremediation of uranium in groundwater. However, that work relied on an indirect coupling approach that was effective for initial demonstration but may not be extensible to more complex problems that are of significant interest (e.g., communities of microbial species, multiple constraining variables). Here, we extend that work by presenting and demonstrating a method of directly integrating a reactive transport model (FORTRAN code) with constraint-based in silico models solved with IBM ILOG CPLEX linear optimizer base system (C library). The models were integrated with BABEL, a language interoperability tool. The

  17. COMSOL-PHREEQC: a tool for high performance numerical simulation of reactive transport phenomena

    International Nuclear Information System (INIS)

    Nardi, Albert; Vries, Luis Manuel de; Trinchero, Paolo; Idiart, Andres; Molinero, Jorge

    2012-01-01

    Document available in extended abstract form only. Comsol Multiphysics (COMSOL, from now on) is a powerful Finite Element software environment for the modelling and simulation of a large number of physics-based systems. The user can apply variables, expressions or numbers directly to solid and fluid domains, boundaries, edges and points, independently of the computational mesh. COMSOL then internally compiles a set of equations representing the entire model. The availability of extremely powerful pre and post processors makes COMSOL a numerical platform well known and extensively used in many branches of sciences and engineering. On the other hand, PHREEQC is a freely available computer program for simulating chemical reactions and transport processes in aqueous systems. It is perhaps the most widely used geochemical code in the scientific community and is openly distributed. The program is based on equilibrium chemistry of aqueous solutions interacting with minerals, gases, solid solutions, exchangers, and sorption surfaces, but also includes the capability to model kinetic reactions with rate equations that are user-specified in a very flexible way by means of Basic statements directly written in the input file. Here we present COMSOL-PHREEQC, a software interface able to communicate and couple these two powerful simulators by means of a Java interface. The methodology is based on Sequential Non Iterative Approach (SNIA), where PHREEQC is compiled as a dynamic subroutine (iPhreeqc) that is called by the interface to solve the geochemical system at every element of the finite element mesh of COMSOL. The numerical tool has been extensively verified by comparison with computed results of 1D, 2D and 3D benchmark examples solved with other reactive transport simulators. COMSOL-PHREEQC is parallelized so that CPU time can be highly optimized in multi-core processors or clusters. Then, fully 3D detailed reactive transport problems can be readily simulated by means of

  18. Advective and diffusive contributions to reactive gas transport during pyrite oxidation in the unsaturated zone

    DEFF Research Database (Denmark)

    Binning, Philip John; Postma, Diederik Jan; Russel, T.F.

    2007-01-01

    Pyrite oxidation in unsaturated mine waste rock dumps and soils is limited by the supply of oxygen from the atmosphere. In models, oxygen transport through the subsurface is often assumed to be driven by diffusion. However, oxygen comprises 23.2% by mass of dry air, and when oxygen is consumed at...... parameters; for example, the time to approach steady state depends exponentially on the distance between the soil surface and the subsurface reactive zone. Copyright 2007 by the American Geophysical Union....... at depth in the unsaturated zone, a pressure gradient is created between the reactive zone and the ground surface, causing a substantial advective air flow into the subsurface. To determine the balance between advective and diffusive transport, a one-dimensional multicomponent unsaturated zone gas...

  19. Subsurface Transport Over Reactive Multiphases (STORM): A general, coupled, nonisothermal multiphase flow, reactive transport, and porous medium alteration simulator, Version 2 user's guide

    International Nuclear Information System (INIS)

    Bacon, D.H.; White, M.D.; McGrail, B.P.

    2000-01-01

    The Hanford Site, in southeastern Washington State, has been used extensively to produce nuclear materials for the US strategic defense arsenal by the Department of Energy (DOE) and its predecessors, the US Atomic Energy Commission and the US Energy Research and Development Administration. A large inventory of radioactive and mixed waste has accumulated in 177 buried single- and double shell tanks. Liquid waste recovered from the tanks will be pretreated to separate the low-activity fraction from the high-level and transuranic wastes. Vitrification is the leading option for immobilization of these wastes, expected to produce approximately 550,000 metric tons of Low Activity Waste (LAW) glass. This total tonnage, based on nominal Na 2 O oxide loading of 20% by weight, is destined for disposal in a near-surface facility. Before disposal of the immobilized waste can proceed, the DOE must approve a performance assessment, a document that described the impacts, if any, of the disposal facility on public health and environmental resources. Studies have shown that release rates of radionuclides from the glass waste form by reaction with water determine the impacts of the disposal action more than any other independent parameter. This report describes the latest accomplishments in the development of a computational tool, Subsurface Transport Over Reactive Multiphases (STORM), Version 2, a general, coupled non-isothermal multiphase flow and reactive transport simulator. The underlying mathematics in STORM describe the rate of change of the solute concentrations of pore water in a variably saturated, non-isothermal porous medium, and the alteration of waste forms, packaging materials, backfill, and host rocks

  20. Modelling reactive transport in a phosphogypsum dump, Venezia, Italia

    Science.gov (United States)

    Calcara, Massimo; Borgia, Andrea; Cattaneo, Laura; Bartolo, Sergio; Clemente, Gianni; Glauco Amoroso, Carlo; Lo Re, Fabio; Tozzato, Elena

    2013-04-01

    We develop a reactive-transport porous media flow model for a phosphogypsum dump located on the intertidal deposits of the Venetian Lagoon: 1. we construct a complex conceptual and geologic model from field data using the GMS™ graphical user interface; 2. the geological model is mapped onto a rectangular MODFLOW grid; 3. using the TMT2 FORTRAN90 code we translate this grid into the MESH, INCON and GENER input files for the TOUGH2 series of codes; 4. we run TOUGH-REACT to model flow and reactive transport in the dump and the sediments below it. The model includes 3 different dump materials (phosphogypsum, bituminous and hazardous wastes) with the pores saturated by specific fluids. The sediments below the dump are formed by an intertidal sequence of calcareous sands and silts, in addition to clays and organic deposits, all of which are initially saturated with lagoon salty waters. The recharge rain-water dilutes the dump fluids. In turn, the percolates from the dump react with the underlying sediments and the sea water that saturates them. Simulation results have been compared with chemical sampled analyses. In fact, in spite of the simplicity of our model we are able to show how the pH becomes neutral at a short distance below the dump, a fact observed during aquifer monitoring. The spatial and temporal evolution of dissolution and precipitation reactions occur in our model much alike reality. Mobility of some elements, such as divalent iron, are reduced by specific and concurrent conditions of pH from near-neutrality to moderately high values and positive redox potential; opposite conditions favour mobility of potentially toxic metals such as Cr, As Cd and Pb. Vertical movement are predominant. Trend should be therefore heavily influenced by pH and Eh values. If conditions are favourable to mobility, concentration of these substances in the bottom strata could be high. However, simulation suggest that the sediments tend to reduce the transport potential of

  1. Core 2D. A code for non-isothermal water flow and reactive solute transport. Users manual version 2

    Energy Technology Data Exchange (ETDEWEB)

    Samper, J.; Juncosa, R.; Delgado, J.; Montenegro, L. [Universidad de A Coruna (Spain)

    2000-07-01

    Understanding natural groundwater quality patterns, quantifying groundwater pollution and assessing the effects of waste disposal, require modeling tools accounting for water flow, and transport of heat and dissolved species as well as their complex interactions with solid and gases phases. This report contains the users manual of CORE ''2D Version V.2.0, a COde for modeling water flow (saturated and unsaturated), heat transport and multicomponent Reactive solute transport under both local chemical equilibrium and kinetic conditions. it is an updated and improved version of CORE-LE-2D V0 (Samper et al., 1988) which in turns is an extended version of TRANQUI, a previous reactive transport code (ENRESA, 1995). All these codes were developed within the context of Research Projects funded by ENRESA and the European Commission. (Author)

  2. Core2D. A code for non-isothermal water flow and reactive solute transport. Users manual version 2

    International Nuclear Information System (INIS)

    Samper, J.; Juncosa, R.; Delgado, J.; Montenegro, L.

    2000-01-01

    Understanding natural groundwater quality patterns, quantifying groundwater pollution and assessing the effects of waste disposal, require modeling tools accounting for water flow, and transport of heat and dissolved species as well as their complex interactions with solid and gases phases. This report contains the users manual of CORE ''2D Version V.2.0, a COde for modeling water flow (saturated and unsaturated), heat transport and multicomponent Reactive solute transport under both local chemical equilibrium and kinetic conditions. it is an updated and improved version of CORE-LE-2D V0 (Samper et al., 1988) which in turns is an extended version of TRANQUI, a previous reactive transport code (ENRESA, 1995). All these codes were developed within the context of Research Projects funded by ENRESA and the European Commission. (Author)

  3. Core 2D. A code for non-isothermal water flow and reactive solute transport. Users manual version 2

    Energy Technology Data Exchange (ETDEWEB)

    Samper, J; Juncosa, R; Delgado, J; Montenegro, L [Universidad de A Coruna (Spain)

    2000-07-01

    Understanding natural groundwater quality patterns, quantifying groundwater pollution and assessing the effects of waste disposal, require modeling tools accounting for water flow, and transport of heat and dissolved species as well as their complex interactions with solid and gases phases. This report contains the users manual of CORE ''2D Version V.2.0, a COde for modeling water flow (saturated and unsaturated), heat transport and multicomponent Reactive solute transport under both local chemical equilibrium and kinetic conditions. it is an updated and improved version of CORE-LE-2D V0 (Samper et al., 1988) which in turns is an extended version of TRANQUI, a previous reactive transport code (ENRESA, 1995). All these codes were developed within the context of Research Projects funded by ENRESA and the European Commission. (Author)

  4. Integrating Stable Isotope - Reactive Transport Model Approach for Assessment of Chlorinated Solvent Degradation

    Science.gov (United States)

    2016-06-01

    aerobic cometabolism, reductive dechlorination evidence was reported from the toe of the plume, where TCE enters the Lower Lithologic Unit. The CSM of the...modeling in reactive transport: 50 years of artificial recharge in the Amsterdam Water Supply Dunes . J. Hydrology 454: 7-25. Khan, F. I., et al

  5. Intercomparison of reactive transport models applied to degradation of a concrete / clay interface

    International Nuclear Information System (INIS)

    Burnol, A.; Blanc, P.; Tournassat, C.; Lassin, A.; Gaucher, E.C.

    2005-01-01

    Full text of publication follows: Assuming a future disposal of spent nuclear fuel in deep geologic formation of Callovian- Oxfordian argillite in France, concrete will be used extensively to construct the disposal chambers in the host formation, and also as radioactive waste containment material. After being sealed, the repository will become saturated with interstitial waters from the Callovian-Oxfordian argillite, which will produce high pH solutions through interaction with the concrete. The aggressiveness of these alkaline solutions may weaken the clay's confinement properties (bentonite and argillite) with respect to long-lived radionuclides by change of the mineralogy. Conversely, the clayey formation with a high partial pressure of CO 2 represents an aggressive media for the concrete. The hydrogeological and chemical reactions of deep-underground systems are therefore intimately coupled and reactive transport models are increasingly used for performance assessment of nuclear waste disposal [1]. The main objective of this study is to present an intercomparison study using different reactive transport codes, where among PHREEQC1D [2], PHAST [3] and TOUGHREACT [4] applied to determine, in space and time, the extension of the alkaline perturbation and the associated degradation of concrete. The calculations were carried out after the definition of a complete mineralogy for both media. The experimental work made in the European Ecoclay II project [5] allowed a selection of reaction paths and of new phases for the thermodynamic database. Calculations were carried out over a simulated period of 100,000 years at different temperatures. Results of the different codes are compared and discussed. [1] De Windt L., Burnol A., Montarnal P., Van Der Lee.J., (2003) Intercomparison of reactive transport models applied to UO 2 oxidative dissolution and uranium migration., Journal of Contaminant Hydrology, 61, 1-4, 303-312; [2] Parkhurst D.L., Appelo C.A.J. (1999) - User

  6. Investigating Uranium Mobility Using Stable Isotope Partitioning of 238U/235U and a Reactive Transport Model

    Science.gov (United States)

    Bizjack, M.; Johnson, T. M.; Druhan, J. L.; Shiel, A. E.

    2015-12-01

    We report a numerical reactive transport model which explicitly incorporates the effectively stable isotopes of uranium (U) and the factors that influence their partitioning in bioactive systems. The model reproduces trends observed in U isotope ratios and concentration measurements from a field experiment, thereby improving interpretations of U isotope ratios as a tracer for U reactive transport. A major factor contributing to U storage and transport is its redox state, which is commonly influenced by the availability of organic carbon to support metal-reducing microbial communities. Both laboratory and field experiments have demonstrated that biogenic reduction of U(VI) fractionates the stable isotope ratio 238U/235U, producing an isotopically heavy solid U(IV) product. It has also been shown that other common reactive transport processes involving U do not fractionate isotopes to a consistently measurable level, which suggests the capacity to quantify the extent of bioreduction occurring in groundwater containing U using 238U/235U ratios. A recent study of a U bioremediation experiment at the Rifle IFRC site (Colorado, USA) applied Rayleigh distillation models to quantify U stable isotope fractionation observed during acetate amendment. The application of these simplified models were fit to the observations only by invoking a "memory-effect," or a constant source of low-concentration, unfractionated U(VI). In order to more accurately interpret the measured U isotope ratios, we present a multi-component reactive transport model using the CrunchTope software. This approach is capable of quantifying the cycling and partitioning of individual U isotopes through a realistic network of transport and reaction pathways including reduction, oxidation, and microbial growth. The model incorporates physical heterogeneity of the aquifer sediments through zones of decreased permeability, which replicate the observed bromide tracer, major ion chemistry, U concentration, and U

  7. A Model to Couple Flow, Thermal and Reactive Chemical Transport, and Geo-mechanics in Variably Saturated Media

    Science.gov (United States)

    Yeh, G. T.; Tsai, C. H.

    2015-12-01

    This paper presents the development of a THMC (thermal-hydrology-mechanics-chemistry) process model in variably saturated media. The governing equations for variably saturated flow and reactive chemical transport are obtained based on the mass conservation principle of species transport supplemented with Darcy's law, constraint of species concentration, equation of states, and constitutive law of K-S-P (Conductivity-Degree of Saturation-Capillary Pressure). The thermal transport equation is obtained based on the conservation of energy. The geo-mechanic displacement is obtained based on the assumption of equilibrium. Conventionally, these equations have been implicitly coupled via the calculations of secondary variables based on primary variables. The mechanisms of coupling have not been obvious. In this paper, governing equations are explicitly coupled for all primary variables. The coupling is accomplished via the storage coefficients, transporting velocities, and conduction-dispersion-diffusion coefficient tensor; one set each for every primary variable. With this new system of equations, the coupling mechanisms become clear. Physical interpretations of every term in the coupled equations will be discussed. Examples will be employed to demonstrate the intuition and superiority of these explicit coupling approaches. Keywords: Variably Saturated Flow, Thermal Transport, Geo-mechanics, Reactive Transport.

  8. Experimental Study and Reactive Transport Modeling of Boric Acid Leaching of Concrete

    Directory of Open Access Journals (Sweden)

    Chiang K.-T. K.

    2013-07-01

    Full Text Available Borated water leakage through spent fuel pools (SFPs at pressurized water reactors is a concern because it could cause corrosion of reinforcement steel in the concrete structure, compromise the integrity of the structure, or cause unmonitored releases of contaminated water to the environment. Experimental data indicate that pH is a critical parameter that determines the corrosion susceptibility of rebar in borated water and the degree of concrete degradation by boric acid leaching. In this study, reactive transport modeling of concrete leaching by borated water was performed to provide information on the solution pH in the concrete crack or matrix and the degree of concrete degradation at different locations of an SFP concrete structure exposed to borated water. Simulations up to 100 years were performed using different boric acid concentrations, crack apertures, and solution flow rates. Concrete cylinders were immersed in boric acid solutions for several months and the mineralogical changes and boric acid penetration in the concrete cylinder were evaluated as a function of time. The depths of concrete leaching by boric acid solution derived from the reactive transport simulations were compared with the measured boric acid penetration depth.

  9. Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model.

    Science.gov (United States)

    Fang, Yilin; Scheibe, Timothy D; Mahadevan, Radhakrishnan; Garg, Srinath; Long, Philip E; Lovley, Derek R

    2011-03-25

    The activity of microorganisms often plays an important role in dynamic natural attenuation or engineered bioremediation of subsurface contaminants, such as chlorinated solvents, metals, and radionuclides. To evaluate and/or design bioremediated systems, quantitative reactive transport models are needed. State-of-the-art reactive transport models often ignore the microbial effects or simulate the microbial effects with static growth yield and constant reaction rate parameters over simulated conditions, while in reality microorganisms can dynamically modify their functionality (such as utilization of alternative respiratory pathways) in response to spatial and temporal variations in environmental conditions. Constraint-based genome-scale microbial in silico models, using genomic data and multiple-pathway reaction networks, have been shown to be able to simulate transient metabolism of some well studied microorganisms and identify growth rate, substrate uptake rates, and byproduct rates under different growth conditions. These rates can be identified and used to replace specific microbially-mediated reaction rates in a reactive transport model using local geochemical conditions as constraints. We previously demonstrated the potential utility of integrating a constraint-based microbial metabolism model with a reactive transport simulator as applied to bioremediation of uranium in groundwater. However, that work relied on an indirect coupling approach that was effective for initial demonstration but may not be extensible to more complex problems that are of significant interest (e.g., communities of microbial species and multiple constraining variables). Here, we extend that work by presenting and demonstrating a method of directly integrating a reactive transport model (FORTRAN code) with constraint-based in silico models solved with IBM ILOG CPLEX linear optimizer base system (C library). The models were integrated with BABEL, a language interoperability tool. The

  10. Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model

    Science.gov (United States)

    Fang, Yilin; Scheibe, Timothy D.; Mahadevan, Radhakrishnan; Garg, Srinath; Long, Philip E.; Lovley, Derek R.

    2011-03-01

    The activity of microorganisms often plays an important role in dynamic natural attenuation or engineered bioremediation of subsurface contaminants, such as chlorinated solvents, metals, and radionuclides. To evaluate and/or design bioremediated systems, quantitative reactive transport models are needed. State-of-the-art reactive transport models often ignore the microbial effects or simulate the microbial effects with static growth yield and constant reaction rate parameters over simulated conditions, while in reality microorganisms can dynamically modify their functionality (such as utilization of alternative respiratory pathways) in response to spatial and temporal variations in environmental conditions. Constraint-based genome-scale microbial in silico models, using genomic data and multiple-pathway reaction networks, have been shown to be able to simulate transient metabolism of some well studied microorganisms and identify growth rate, substrate uptake rates, and byproduct rates under different growth conditions. These rates can be identified and used to replace specific microbially-mediated reaction rates in a reactive transport model using local geochemical conditions as constraints. We previously demonstrated the potential utility of integrating a constraint-based microbial metabolism model with a reactive transport simulator as applied to bioremediation of uranium in groundwater. However, that work relied on an indirect coupling approach that was effective for initial demonstration but may not be extensible to more complex problems that are of significant interest (e.g., communities of microbial species and multiple constraining variables). Here, we extend that work by presenting and demonstrating a method of directly integrating a reactive transport model (FORTRAN code) with constraint-based in silico models solved with IBM ILOG CPLEX linear optimizer base system (C library). The models were integrated with BABEL, a language interoperability tool. The

  11. A Dual Regime Reactive Transport Model for Simulation of High Level Waste Tank Closure Scenarios - 13375

    International Nuclear Information System (INIS)

    Sarkar, Sohini; Kosson, David S.; Brown, Kevin; Garrabrants, Andrew C.; Meeussen, Hans; Van der Sloot, Hans

    2013-01-01

    A numerical simulation framework is presented in this paper for estimating evolution of pH and release of major species from grout within high-level waste tanks after closure. This model was developed as part of the Cementitious Barriers Partnership. The reactive transport model consists of two parts - (1) transport of species, and (2) chemical reactions. The closure grout can be assumed to have varying extents of cracking and composition for performance assessment purposes. The partially or completely degraded grouted tank is idealized as a dual regime system comprising of a mobile region having solid materials with cracks and macro-pores, and an immobile/stagnant region having solid matrix with micropores. The transport profiles of the species are calculated by incorporating advection of species through the mobile region, diffusion of species through the immobile/stagnant region, and exchange of species between the mobile and immobile regions. A geochemical speciation code in conjunction with the pH dependent test data for a grout material is used to obtain a mineral set that best describes the trends in the test data of the major species. The dual regime reactive transport model predictions are compared with the release data from an up-flow column percolation test. The coupled model is then used to assess effects of crack state of the structure, rate and composition of the infiltrating water on the pH evolution at the grout-waste interface. The coupled reactive transport model developed in this work can be used as part of the performance assessment process for evaluating potential risks from leaching of a cracked tank containing elements of human health and environmental concern. (authors)

  12. A Dual Regime Reactive Transport Model for Simulation of High Level Waste Tank Closure Scenarios - 13375

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Sohini; Kosson, David S.; Brown, Kevin; Garrabrants, Andrew C. [Consortium for Risk Assessment with Stakeholder Participation - CRESP, Vanderbilt University, Nashville, TN (United States); Meeussen, Hans [Consortium for Risk Assessment with Stakeholder Participation - CRESP, Nuclear Research and Consultancy Group, Petten (Netherlands); Van der Sloot, Hans [Consortium for Risk Assessment with Stakeholder Participation - CRESP, Hans Van der Sloot Consultancy (Netherlands)

    2013-07-01

    A numerical simulation framework is presented in this paper for estimating evolution of pH and release of major species from grout within high-level waste tanks after closure. This model was developed as part of the Cementitious Barriers Partnership. The reactive transport model consists of two parts - (1) transport of species, and (2) chemical reactions. The closure grout can be assumed to have varying extents of cracking and composition for performance assessment purposes. The partially or completely degraded grouted tank is idealized as a dual regime system comprising of a mobile region having solid materials with cracks and macro-pores, and an immobile/stagnant region having solid matrix with micropores. The transport profiles of the species are calculated by incorporating advection of species through the mobile region, diffusion of species through the immobile/stagnant region, and exchange of species between the mobile and immobile regions. A geochemical speciation code in conjunction with the pH dependent test data for a grout material is used to obtain a mineral set that best describes the trends in the test data of the major species. The dual regime reactive transport model predictions are compared with the release data from an up-flow column percolation test. The coupled model is then used to assess effects of crack state of the structure, rate and composition of the infiltrating water on the pH evolution at the grout-waste interface. The coupled reactive transport model developed in this work can be used as part of the performance assessment process for evaluating potential risks from leaching of a cracked tank containing elements of human health and environmental concern. (authors)

  13. Image-based modeling of flow and reactive transport in porous media

    Science.gov (United States)

    Qin, Chao-Zhong; Hoang, Tuong; Verhoosel, Clemens V.; Harald van Brummelen, E.; Wijshoff, Herman M. A.

    2017-04-01

    Due to the availability of powerful computational resources and high-resolution acquisition of material structures, image-based modeling has become an important tool in studying pore-scale flow and transport processes in porous media [Scheibe et al., 2015]. It is also playing an important role in the upscaling study for developing macroscale porous media models. Usually, the pore structure of a porous medium is directly discretized by the voxels obtained from visualization techniques (e.g. micro CT scanning), which can avoid the complex generation of computational mesh. However, this discretization may considerably overestimate the interfacial areas between solid walls and pore spaces. As a result, it could impact the numerical predictions of reactive transport and immiscible two-phase flow. In this work, two types of image-based models are used to study single-phase flow and reactive transport in a porous medium of sintered glass beads. One model is from a well-established voxel-based simulation tool. The other is based on the mixed isogeometric finite cell method [Hoang et al., 2016], which has been implemented in the open source Nutils (http://www.nutils.org). The finite cell method can be used in combination with isogeometric analysis to enable the higher-order discretization of problems on complex volumetric domains. A particularly interesting application of this immersed simulation technique is image-based analysis, where the geometry is smoothly approximated by segmentation of a B-spline level set approximation of scan data [Verhoosel et al., 2015]. Through a number of case studies by the two models, we will show the advantages and disadvantages of each model in modeling single-phase flow and reactive transport in porous media. Particularly, we will highlight the importance of preserving high-resolution interfaces between solid walls and pore spaces in image-based modeling of porous media. References Hoang, T., C. V. Verhoosel, F. Auricchio, E. H. van

  14. Effect of static porosity fluctuations on reactive transport in a porous medium

    Science.gov (United States)

    L'Heureux, Ivan

    2018-02-01

    Reaction-diffusive transport phenomena in porous media are ubiquitous in engineering applications, biological and geochemical systems. The porosity field is usually random in space, but most models consider the porosity field as a well-defined deterministic function of space and time and ignore the porosity fluctuations. They use a reaction-diffusion equation written in terms of an average porosity and average concentration fields. In this contribution, we treat explicitly the effect of spatial porosity fluctuations on the dynamics of a concentration field for the case of a one-dimensional reaction-transport system with nonlinear kinetics. Three basic assumptions are considered. (i) The porosity fluctuations are assumed to have Gaussian properties and an arbitrary variance; (ii) we assume that the noise correlation length is small compared to the relevant macroscopic length scale; (iii) and we assume that the kinetics of the reactive term in the equations for the fluctuations is a self-consistently determined constant. Elimination of the fluctuating part of the concentration field from the dynamics leads to a renormalized equation involving the average concentration field. It is shown that the noise leads to a renormalized (generally smaller) diffusion coefficient and renormalized kinetics. Within the framework of the approximations used, numerical simulations are in agreement with our theory. We show that the porosity fluctuations may have a significant effect on the transport of a reactive species, even in the case of a homogeneous average porosity.

  15. Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.; Ajo-Franklin, J.B.; Spycher, N.; Hubbard, S.S.; Zhang, G.; Williams, K.H.; Taylor, J.; Fujita, Y.; Smith, R.

    2011-07-15

    Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH{sub 4}{sup

  16. Reactive transport modeling of the ABM experiment with Comsol Multiphysics

    International Nuclear Information System (INIS)

    Pekala, Marek; Idiart, Andres; Arcos, David

    2012-01-01

    Document available in extended abstract form only. The Swedish Organisation for Radioactive Waste Disposal (SKB) is considering disposal of the High Level Waste in a deep underground repository in a crystalline rock. According to the disposal concept, bentonite clay will be used in the near-field of the waste packages as buffer material. From solute transport point of view, the bentonite buffer is expected to provide a favourable environment, where radionuclide migration would be limited to slow diffusion and further retarded by sorption. In the KBS-3 repository design, the MX-80 bentonite is the reference buffer material. However, SKB has also been investigating alternative buffer materials. To this end, the field experiment Alternative Buffer Materials (ABM) was started at the Aespoe URL in 2006. Three packages of eleven different compacted bentonite blocks in different configurations have been tested over varying time scales. The packages with outer diameter of 0.28 m were deposited into 3 meter deep boreholes. After installation, packages were saturated and heated differently to target values. This contribution concerns the evolution of Package 1, which was initiated in December 2006 and ran for about 2.5 years. Post-mortem examination after retrieval showed that the initially contrasting chloride concentrations and cation-exchanger compositions between different bentonite blocks became significantly homogenised. It is thought that this behaviour could be explained as a first approximation by diffusion of major ions between the bentonite blocks coupled with cation-exchange. In this work, a modelling study to verify this hypothesis has been undertaken. In addition, the feasibility of implementing a reactive transport model into the Finite Element code COMSOL Multiphysics has been tested. The model considers a two-dimensional axisymmetric geometry of the depositional borehole, and includes coupled diffusion and cation-exchange of Na, K, Ca and Mg (as a chloride

  17. Numerical simulation of two-phase multicomponent flow with reactive transport in porous media

    International Nuclear Information System (INIS)

    Vostrikov, Viatcheslav

    2014-01-01

    The subject of this thesis is the numerical simulation of water-gas flow in the subsurface together with chemical reactions. The subject has applications to various situations in environmental modeling, though we are mainly concerned with CO 2 storage in deep saline aquifers. In Carbon Capture and Storage studies, CO 2 is first captured from its sources of origin, transport in liquefied form and injected as gas under high pressure in deep saline aquifers. Numerical simulation is an essential tool to make sure that gaseous CO 2 will remain trapped for several hundreds or thousands of years. Several trapping mechanisms can be brought to bear to achieve this goal. Of particular interest in this thesis are solubility trapping (whereby gaseous CO 2 dissolves in the brine as it moves upward) and, on a longer term, mineral trapping (which causes CO 2 to react with the surrounding rock to form minerals such as calcite). Thus, understanding how CO 2 reacts chemically becomes an important issue for its long term fate. The thesis is composed of four chapters. The first chapter is an introduction to multicomponent two-phase flow in porous media, with or without chemical reactions. It presents a review of the existing literature, and gives an outline of the whole thesis. Chapter 2 presents a quantitative discussion of the physical and chemical phenomena involved, and of their mathematical modeling. The model we use is that of two-phase two-component flow in porous media, coupled to reactive transport. This model leads to a large set of partial differential equations, coupled to algebraic equations, describing the evolution of the concentration of each species at each grid point. A direct solution of this problem (a fully coupled solution) is possible, but presents many difficulties form the numerical point of view. Moreover, it makes it difficult to reuse codes already written, and validated, to simulate the simpler phenomena of (uncoupled) two-phase flow and reactive transport

  18. Reactive silica transport in fractured porous media: Analytical solutions for a system of parallel fractures

    Science.gov (United States)

    Yang, Jianwen

    2012-04-01

    A general analytical solution is derived by using the Laplace transformation to describe transient reactive silica transport in a conceptualized 2-D system involving a set of parallel fractures embedded in an impermeable host rock matrix, taking into account of hydrodynamic dispersion and advection of silica transport along the fractures, molecular diffusion from each fracture to the intervening rock matrix, and dissolution of quartz. A special analytical solution is also developed by ignoring the longitudinal hydrodynamic dispersion term but remaining other conditions the same. The general and special solutions are in the form of a double infinite integral and a single infinite integral, respectively, and can be evaluated using Gauss-Legendre quadrature technique. A simple criterion is developed to determine under what conditions the general analytical solution can be approximated by the special analytical solution. It is proved analytically that the general solution always lags behind the special solution, unless a dimensionless parameter is less than a critical value. Several illustrative calculations are undertaken to demonstrate the effect of fracture spacing, fracture aperture and fluid flow rate on silica transport. The analytical solutions developed here can serve as a benchmark to validate numerical models that simulate reactive mass transport in fractured porous media.

  19. Post Audit of a Field Scale Reactive Transport Model of Uranium at a Former Mill Site

    Science.gov (United States)

    Curtis, G. P.

    2015-12-01

    Reactive transport of hexavalent uranium (U(VI)) in a shallow alluvial aquifer at a former uranium mill tailings site near Naturita CO has been monitored for nearly 30 years by the US Department of Energy and the US Geological Survey. Groundwater at the site has high concentrations of chloride, alkalinity and U(VI) as a owing to ore processing at the site from 1941 to 1974. We previously calibrated a multicomponent reactive transport model to data collected at the site from 1986 to 2001. A two dimensional nonreactive transport model used a uniform hydraulic conductivity which was estimated from observed chloride concentrations and tritium helium age dates. A reactive transport model for the 2km long site was developed by including an equilibrium U(VI) surface complexation model calibrated to laboratory data and calcite equilibrium. The calibrated model reproduced both nonreactive tracers as well as the observed U(VI), pH and alkalinity. Forward simulations for the period 2002-2015 conducted with the calibrated model predict significantly faster natural attenuation of U(VI) concentrations than has been observed by the persistent high U(VI) concentrations at the site. Alternative modeling approaches are being evaluating evaluated using recent data to determine if the persistence can be explained by multirate mass transfer models developed from experimental observations at the column scale(~0.2m), the laboratory tank scale (~2m), the field tracer test scale (~1-4m) or geophysical observation scale (~1-5m). Results of this comparison should provide insight into the persistence of U(VI) plumes and improved management options.

  20. Real rock-microfluidic flow cell: A test bed for real-time in situ analysis of flow, transport, and reaction in a subsurface reactive transport environment.

    Science.gov (United States)

    Singh, Rajveer; Sivaguru, Mayandi; Fried, Glenn A; Fouke, Bruce W; Sanford, Robert A; Carrera, Martin; Werth, Charles J

    2017-09-01

    Physical, chemical, and biological interactions between groundwater and sedimentary rock directly control the fundamental subsurface properties such as porosity, permeability, and flow. This is true for a variety of subsurface scenarios, ranging from shallow groundwater aquifers to deeply buried hydrocarbon reservoirs. Microfluidic flow cells are now commonly being used to study these processes at the pore scale in simplified pore structures meant to mimic subsurface reservoirs. However, these micromodels are typically fabricated from glass, silicon, or polydimethylsiloxane (PDMS), and are therefore incapable of replicating the geochemical reactivity and complex three-dimensional pore networks present in subsurface lithologies. To address these limitations, we developed a new microfluidic experimental test bed, herein called the Real Rock-Microfluidic Flow Cell (RR-MFC). A porous 500μm-thick real rock sample of the Clair Group sandstone from a subsurface hydrocarbon reservoir of the North Sea was prepared and mounted inside a PDMS microfluidic channel, creating a dynamic flow-through experimental platform for real-time tracking of subsurface reactive transport. Transmitted and reflected microscopy, cathodoluminescence microscopy, Raman spectroscopy, and confocal laser microscopy techniques were used to (1) determine the mineralogy, geochemistry, and pore networks within the sandstone inserted in the RR-MFC, (2) analyze non-reactive tracer breakthrough in two- and (depth-limited) three-dimensions, and (3) characterize multiphase flow. The RR-MFC is the first microfluidic experimental platform that allows direct visualization of flow and transport in the pore space of a real subsurface reservoir rock sample, and holds potential to advance our understandings of reactive transport and other subsurface processes relevant to pollutant transport and cleanup in groundwater, as well as energy recovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Reactive transport modelling of biogeochemical processes and carbon isotope geochemistry inside a landfill leachate plume.

    NARCIS (Netherlands)

    van Breukelen, B.M.; Griffioen, J.; Roling, W.F.M.; van Verseveld, H.W.

    2004-01-01

    The biogeochemical processes governing leachate attenuation inside a landfill leachate plume (Banisveld, the Netherlands) were revealed and quantified using the 1D reactive transport model PHREEQC-2. Biodegradation of dissolved organic carbon (DOC) was simulated assuming first-order oxidation of two

  2. Modeling reactive geochemical transport of concentrated aqueous solutions in variably saturated media

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guoxiang; Zheng, Zuoping; Wan, Jiamin

    2004-01-28

    Concentrated aqueous solutions (CAS) have unique thermodynamic and physical properties. Chemical components in CAS are incompletely dissociated, especially those containing divalent or polyvalent ions. The problem is further complicated by the interaction between CAS flow processes and the naturally heterogeneous sediments. As the CAS migrates through the porous media, the composition may be altered subject to fluid-rock interactions. To effectively model reactive transport of CAS, we must take into account ion-interaction. A combination of the Pitzer ion-interaction and the ion-association model would be an appropriate way to deal with multiple-component systems if the Pitzer' parameters and thermodynamic data of dissolved components and the related minerals are available. To quantify the complicated coupling of CAS flow and transport, as well as the involved chemical reactions in natural and engineered systems, we have substantially extended an existing reactive biogeochemical transport code, BIO-CORE{sup 2D}{copyright}, by incorporating a comprehensive Pitzer ion-interaction model. In the present paper, the model, and two test cases against measured data were briefly introduced. Finally we present an application to simulate a laboratory column experiment studying the leakage of the high alkaline waste fluid stored in Hanford (a site of the U.S. Department of Energy, located in Washington State, USA). With the Pitzer ion-interaction ionic activity model, our simulation captures measured pH evolution. The simulation indicates that all the reactions controlling the pH evolution, including cation exchanges, mineral precipitation and dissolution, are coupled.

  3. River networks and ecological corridors: Reactive transport on fractals, migration fronts, hydrochory

    Science.gov (United States)

    Bertuzzo, E.; Maritan, A.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2007-04-01

    Moving from a recent quantitative model of the US colonization in the 19th century that relies on analytical and numerical results of reactive-diffusive transport on fractal river networks, this paper considers its generalization to include an embedded flow direction which biases transport. We explore the properties of biased reaction-dispersal models, in which the reaction rates are described by a logistic equation. The relevance of the work is related to the prediction of the role of hydrologic controls on invasion processes (of species, populations, propagules, or infective agents, depending on the specifics of reaction and transport) occurring in river basins. Exact solutions are obtained along with general numerical solutions, which are applied to fractal constructs like Peano basins and real rivers. We also explore similarities and departures from different one-dimensional invasion models where a bias is added to both the diffusion and the telegraph equations, considering their respective ecological insight. We find that the geometrical constraints imposed by the fractal networks imply strong corrections on the speed of traveling fronts that can be enhanced or smoothed by the bias. Applications to real river networks show that the chief morphological parameters affecting the front speed are those characterizing the node-to-node distances measured along the network structure. The spatial density and number of reactive sites thus prove to be a vital hydrologic control on invasions. We argue that our solutions, currently tied to the validity of the logistic growth, might be relevant to the general study of species' spreading along ecological corridors defined by the river network structure.

  4. Reactive transport modeling in the subsurface environment with OGS-IPhreeqc

    Science.gov (United States)

    He, Wenkui; Beyer, Christof; Fleckenstein, Jan; Jang, Eunseon; Kalbacher, Thomas; Naumov, Dimitri; Shao, Haibing; Wang, Wenqing; Kolditz, Olaf

    2015-04-01

    Worldwide, sustainable water resource management becomes an increasingly challenging task due to the growth of population and extensive applications of fertilizer in agriculture. Moreover, climate change causes further stresses to both water quantity and quality. Reactive transport modeling in the coupled soil-aquifer system is a viable approach to assess the impacts of different land use and groundwater exploitation scenarios on the water resources. However, the application of this approach is usually limited in spatial scale and to simplified geochemical systems due to the huge computational expense involved. Such computational expense is not only caused by solving the high non-linearity of the initial boundary value problems of water flow in the unsaturated zone numerically with rather fine spatial and temporal discretization for the correct mass balance and numerical stability, but also by the intensive computational task of quantifying geochemical reactions. In the present study, a flexible and efficient tool for large scale reactive transport modeling in variably saturated porous media and its applications are presented. The open source scientific software OpenGeoSys (OGS) is coupled with the IPhreeqc module of the geochemical solver PHREEQC. The new coupling approach makes full use of advantages from both codes: OGS provides a flexible choice of different numerical approaches for simulation of water flow in the vadose zone such as the pressure-based or mixed forms of Richards equation; whereas the IPhreeqc module leads to a simplification of data storage and its communication with OGS, which greatly facilitates the coupling and code updating. Moreover, a parallelization scheme with MPI (Message Passing Interface) is applied, in which the computational task of water flow and mass transport is partitioned through domain decomposition, whereas the efficient parallelization of geochemical reactions is achieved by smart allocation of computational workload over

  5. Serpentinization as a reactive transport process: The brucite silicification reaction

    Science.gov (United States)

    Tutolo, Benjamin M.; Luhmann, Andrew J.; Tosca, Nicholas J.; Seyfried, William E.

    2018-02-01

    Serpentinization plays a fundamental role in the biogeochemical and tectonic evolution of the Earth and perhaps many other rocky planetary bodies. Yet, geochemical models still fail to produce accurate predictions of the various modes of serpentinization, which limits our ability to predict a variety of related geological phenomena over many spatial and temporal scales. Here, we use kinetic and reactive transport experiments to parameterize the brucite silicification reaction and provide fundamental constraints on SiO2 transport during serpentinization. We show that, at temperatures characteristic of the sub-seafloor at the serpentinite-hosted Lost City Hydrothermal Field (150 °C), the assembly of Si tetrahedra onto MgOH2 (i.e., brucite) surfaces is a rate-limiting elementary reaction in the production of serpentine and/or talc from olivine. Moreover, this reaction is exponentially dependent on the activity of aqueous silica (a SiO2 (aq)), such that it can be calculated according to the rate law:

  6. A reactive transport investigation of a seawater intrusion experiment in a shallow aquifer, Skansehage Denmark

    DEFF Research Database (Denmark)

    Christensen, Flemming Damgaard; Engesgaard, Peter Knudegaard; Kipp, K.L.

    2001-01-01

    Previous investigations on seawater intrusion have mainly focused on either the physical density flow system with transport of a single non-reactive species or focused on the geochemical aspects neglecting density effects. This study focuses on both the geochemical and physical aspects of seawate...

  7. Semianalytical solutions of radioactive or reactive tracer transport in layered fractured media

    International Nuclear Information System (INIS)

    Moridis, G.J.; Bodvarsson, G.S.

    2001-01-01

    In this paper, semianalytical solutions are developed for the problem of transport of radioactive or reactive tracers (solutes or colloids) through a layered system of heterogeneous fractured media with misaligned fractures. The tracer transport equations in the matrix account for (a) diffusion, (b) surface diffusion (for solutes only), (c) mass transfer between the mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical, or combined solute sorption or colloid filtration, and (e) radioactive decay or first order chemical reactions. Any number of radioactive decay daughter products (or products of a linear, first-order reaction chain) can be tracked. The tracer-transport equations in the fractures account for the same processes, in addition to advection and hydrodynamic dispersion. Additionally, the colloid transport equations account for straining and velocity adjustments related to the colloidal size. The solutions, which are analytical in the Laplace space, are numerically inverted to provide the solution in time and can accommodate any number of fractured and/or porous layers. The solutions are verified using analytical solutions for limiting cases of solute and colloid transport through fractured and porous media. The effect of important parameters on the transport of 3 H, 237 Np and 239 Pu (and its daughters) is investigated in several test problems involving layered geological systems of varying complexity. 239 Pu colloid transport problems in multilayered systems indicate significant colloid accumulations at straining interfaces but much faster transport of the colloid than the corresponding strongly sorbing solute species

  8. Reactivity perturbation formulation for a discontinuous Galerkin-based transport solver and its use with adaptive mesh refinement

    International Nuclear Information System (INIS)

    Le Tellier, R.; Fournier, D.; Suteau, C.

    2011-01-01

    Within the framework of a Discontinuous Galerkin spatial approximation of the multigroup discrete ordinates transport equation, we present a generalization of the exact standard perturbation formula that takes into account spatial discretization-induced reactivity changes. It encompasses in two separate contributions the nuclear data-induced reactivity change and the reactivity modification induced by two different spatial discretizations. The two potential uses of such a formulation when considering adaptive mesh refinement are discussed, and numerical results on a simple two-group Cartesian two-dimensional benchmark are provided. In particular, such a formulation is shown to be useful to filter out a more accurate estimate of nuclear data-related reactivity effects from initial and perturbed calculations based on independent adaptation processes. (authors)

  9. Reactive transport modelling of a heating and radiation experiment in the Boom clay (Belgium)

    International Nuclear Information System (INIS)

    Montenegro, L.; Samper, J.; Delgado, J.

    2003-01-01

    Most countries around the world consider Deep Geological Repositories (DGR) as the most safe option for the final disposal of high level radioactive waste (HLW). DGR is based on adopting a system of multiple barriers between the HLW and the biosphere. Underground laboratories provide information about the behaviour of these barriers at real conditions. Here we present a reactive transport model for the CERBERUS experiment performed at the HADES underground laboratory at Mol (Belgium) in order to characterize the thermal (T), hydrodynamic (H) and geochemical (G) behaviour of the Boon clay. This experiment is unique because it addresses the combined effect of heat and radiation produced by the storage of HLW in a DGR. Reactive transport models which are solved with CORE, are used to perform quantitative predictions of Boom clay thermo-hydro-geochemical (THG) behaviour. Numerical results indicate that heat and radiation cause a slight oxidation near of the radioactive source, pyrite dissolution, a pH decrease and slight changes in the pore water chemical composition of the Boom clay. (Author) 33 refs

  10. Reactive Transport and Coupled THM Processes in Engineering Barrier Systems (EBS)

    International Nuclear Information System (INIS)

    Steefel, Carl; Rutqvist, Jonny; Tsang, Chin-Fu; Liu, Hui-Hai; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-01-01

    Geological repositories for disposal of high-level nuclear wastes generally rely on a multi-barrier system to isolate radioactive wastes from the biosphere. The multi-barrier system typically consists of a natural barrier system, including repository host rock and its surrounding subsurface environment, and an engineering barrier system (EBS). EBS represents the man-made, engineered materials placed within a repository, including the waste form, waste canisters, buffer materials, backfill and seals (OECD, 2003). EBS plays a significant role in the containment and long-term retardation of radionuclide release. EBS is involved in complex thermal, hydrogeological, mechanical, chemical and biological processes, such as heat release due to radionuclide decay, multiphase flow (including gas release due to canister corrosion), swelling of buffer materials, radionuclide diffusive transport, waste dissolution and chemical reactions. All these processes are related to each other. An in-depth understanding of these coupled processes is critical for the performance assessment (PA) for EBS and the entire repository. Within the EBS group of Used Fuel Disposition (UFD) Campaign, LBNL is currently focused on (1) thermal-hydraulic-mechanical-chemical (THMC) processes in buffer materials (bentonite) and (2) diffusive transport in EBS associated with clay host rock, with a long-term goal to develop a full understanding of (and needed modeling capabilities to simulate) impacts of coupled processes on radionuclide transport in different components of EBS, as well as the interaction between near-field host rock (e.g., clay) and EBS and how they effect radionuclide release. This final report documents the progress that LBNL has made in its focus areas. Specifically, Section 2 summarizes progress on literature review for THMC processes and reactive-diffusive radionuclide transport in bentonite. The literature review provides a picture of the state-of-the-art of the relevant research areas

  11. Reactive Transport and Coupled THM Processes in Engineering Barrier Systems (EBS)

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, Carl; Rutqvist, Jonny; Tsang, Chin-Fu; Liu, Hui-Hai; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    Geological repositories for disposal of high-level nuclear wastes generally rely on a multi-barrier system to isolate radioactive wastes from the biosphere. The multi-barrier system typically consists of a natural barrier system, including repository host rock and its surrounding subsurface environment, and an engineering barrier system (EBS). EBS represents the man-made, engineered materials placed within a repository, including the waste form, waste canisters, buffer materials, backfill and seals (OECD, 2003). EBS plays a significant role in the containment and long-term retardation of radionuclide release. EBS is involved in complex thermal, hydrogeological, mechanical, chemical and biological processes, such as heat release due to radionuclide decay, multiphase flow (including gas release due to canister corrosion), swelling of buffer materials, radionuclide diffusive transport, waste dissolution and chemical reactions. All these processes are related to each other. An in-depth understanding of these coupled processes is critical for the performance assessment (PA) for EBS and the entire repository. Within the EBS group of Used Fuel Disposition (UFD) Campaign, LBNL is currently focused on (1) thermal-hydraulic-mechanical-chemical (THMC) processes in buffer materials (bentonite) and (2) diffusive transport in EBS associated with clay host rock, with a long-term goal to develop a full understanding of (and needed modeling capabilities to simulate) impacts of coupled processes on radionuclide transport in different components of EBS, as well as the interaction between near-field host rock (e.g., clay) and EBS and how they effect radionuclide release. This final report documents the progress that LBNL has made in its focus areas. Specifically, Section 2 summarizes progress on literature review for THMC processes and reactive-diffusive radionuclide transport in bentonite. The literature review provides a picture of the state-of-the-art of the relevant research areas

  12. Deformation, static recrystallization, and reactive melt transport in shallow subcontinental mantle xenoliths (Tok Cenozoic volcanic field, SE Siberia)

    Science.gov (United States)

    Tommasi, Andréa; Vauchez, Alain; Ionov, Dmitri A.

    2008-07-01

    Partial melting and reactive melt transport may change the composition, microstructures, and physical properties of mantle rocks. Here we explore the relations between deformation and reactive melt transport through detailed microstructural analysis and crystallographic orientation measurements in spinel peridotite xenoliths that sample the shallow lithospheric mantle beneath the southeastern rim of the Siberian craton. These xenoliths have coarse-grained, annealed microstructures and show petrographic and chemical evidence for variable degrees of reaction with silicate melts and fluids, notably Fe-enrichment and crystallization of metasomatic clinopyroxene (cpx). Olivine crystal preferred orientations (CPO) range from strong to weak. [010]-fiber patterns, characterized by a point concentration of [010] normal to the foliation and by dispersion of [100] in the foliation plane with a weak maximum parallel to the lineation, predominate relative to the [100]-fiber patterns usually observed in lithospheric mantle xenoliths and peridotite massifs. Variations in olivine CPO patterns or intensity are not correlated with modal and chemical compositions. This, together with the analysis of microstructures, suggests that reactive melt percolation postdated both deformation and static recrystallization. Preferential crystallization of metasomatic cpx along (010) olivine grain boundaries points to an influence of the preexisting deformation fabrics on melt transport, with higher permeability along the foliation. Similarity between orthopyroxene (opx) and cpx CPO suggests that cpx orientations may be inherited from those of opx during melt-rock reaction. As observed in previous studies, reactive melt transport does not weaken olivine CPO and seismic anisotropy in the upper mantle, except in melt accumulation domains. In contrast, recovery and selective grain growth during static recrystallization may lead to development of [010]-fiber olivine CPO and, if foliations are

  13. GAPER-1D, 1-D Multigroup 1. Order Perturbation Transport Theory for Reactivity Coefficient

    International Nuclear Information System (INIS)

    Koch, P.K.

    1976-01-01

    1 - Description of problem or function: Reactivity coefficients are computed using first-order transport perturbation theory for one- dimensional multi-region reactor assemblies. The number of spatial mesh-points and energy groups is arbitrary. An elementary synthesis scheme is employed for treatment of two- and three-dimensional problems. The contributions to the change in inverse multiplication factor, delta(1/k), from perturbations in the individual capture, net fission, total scattering, (n,2n), inelastic scattering, and leakage cross sections are computed. A multi-dimensional prompt neutron lifetime calculation is also available. 2 - Method of solution: Broad group cross sections for the core and perturbing or sample materials are required as input. Scalar neutron fluxes and currents, as computed by SN transport calculations, are then utilized to solve the first-order transport perturbation theory equations. A synthesis scheme is used, along with independent SN calculations in two or three dimensions, to treat a multi- dimensional assembly. Spherical harmonics expansions of the angular fluxes and scattering source terms are used with leakage and anisotropic scattering treated in a P1 approximation. The angular integrations in the perturbation theory equations are performed analytically. Various reactivity coefficients and material worths are then easily computed at specified positions in the assembly. 3 - Restrictions on the complexity of the problem: The formulation of the synthesis scheme used for two- and three-dimensional problems assumes that the fluxes and currents were computed by the DTF4 code (NESC Abstract 209). Therefore, fluxes and currents from two- or three-dimensional transport or diffusion theory codes cannot be used

  14. Modelling of the reactive transport of organic pollutants in ground water; Modellierung des reaktiven Transports organischer Schadstoffe im Grundwasser

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, W [Heidelberg Univ. (Germany). Inst. fuer Umweltphysik

    1999-07-01

    The book describes reactive transport of organic pollutants in ground water and its quantitative monitoring by means of numerical reaction transport models. A brief introduction dealing with the importance of and hazards to ground water and opportunities for making use of ground water models is followed by a more detailed chapter on organic pollutants in ground water. Here the focus is on organochlorine compounds and mineral oil products. Described are propagation mechanisms for these substances in the ground and, especially, their degradability in ground water. A separate chapter is dedicated to possibilities for cleaning up polluted ground water aquifers. The most important decontamination techniques are presented, with special emphasis on in-situ processes with hydraulic components. Moreover, this chapter discusses the self-cleaning capability of aquifers and the benefits of the application of models to ground water cleanup. In the fourth chapter the individual components of reaction transport models are indicated. Here it is, inter alia, differences in the formulation of reaction models as to their complexity, and coupling between suspended matter transport and reaction processes that are dealt with. This chapter ends with a comprehensive survey of literature regarding the application of suspended matter transport models to real ground water accidents. Chapter 5 consists of a description of the capability and principle of function of the reaction transport model TBC (transport biochemism/chemism). This model is used in the two described applications to the reactive transport of organic pollutants in ground water. (orig.) [German] Inhalt des vorliegenden Buches ist die Darstellung des reaktiven Transports organischer Schadstoffe im Grundwasser und dessen quantitative Erfassung mithilfe numerischer Reaktions-Transportmodelle. Auf eine kurze Einleitung zur Bedeutung und Gefaehrdung von Grundwasser und zu den Einsatzmoeglichkeiten von Grundwassermodellen folgt ein

  15. Technical Basis for Peak Reactivity Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, William BJ J [ORNL; Ade, Brian J [ORNL; Bowman, Stephen M [ORNL; Gauld, Ian C [ORNL; Ilas, Germina [ORNL; Mertyurek, Ugur [ORNL; Radulescu, Georgeta [ORNL

    2015-01-01

    Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate application of burnup credit for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase (1) investigates applicability of peak reactivity methods currently used in spent fuel pools (SFPs) to storage and transportation systems and (2) evaluates validation of both reactivity (keff) calculations and burnup credit nuclide concentrations within these methods. The second phase will focus on extending burnup credit beyond peak reactivity. This paper documents the first phase, including an analysis of lattice design parameters and depletion effects, as well as both validation components. Initial efforts related to extended burnup credit are discussed in a companion paper. Peak reactivity analyses have been used in criticality analyses for licensing of BWR fuel in SFPs over the last 20 years. These analyses typically combine credit for the gadolinium burnable absorber present in the fuel with a modest amount of burnup credit. Gadolinium burnable absorbers are used in BWR assemblies to control core reactivity. The burnable absorber significantly reduces assembly reactivity at beginning of life, potentially leading to significant increases in assembly reactivity for burnups less than 15–20 GWd/MTU. The reactivity of each fuel lattice is dependent on gadolinium loading. The number of gadolinium-bearing fuel pins lowers initial lattice reactivity, but it has a small impact on the burnup and reactivity of the peak. The gadolinium concentration in each pin has a small impact on initial lattice reactivity but a significant effect on the reactivity of the peak and the burnup at which the peak occurs. The importance of the lattice parameters and depletion conditions are primarily determined by their impact on the gadolinium depletion. Criticality code validation for BWR burnup

  16. Two-relaxation-time lattice Boltzmann method and its application to advective-diffusive-reactive transport

    Science.gov (United States)

    Yan, Zhifeng; Yang, Xiaofan; Li, Siliang; Hilpert, Markus

    2017-11-01

    The lattice Boltzmann method (LBM) based on single-relaxation-time (SRT) or multiple-relaxation-time (MRT) collision operators is widely used in simulating flow and transport phenomena. The LBM based on two-relaxation-time (TRT) collision operators possesses strengths from the SRT and MRT LBMs, such as its simple implementation and good numerical stability, although tedious mathematical derivations and presentations of the TRT LBM hinder its application to a broad range of flow and transport phenomena. This paper describes the TRT LBM clearly and provides a pseudocode for easy implementation. Various transport phenomena were simulated using the TRT LBM to illustrate its applications in subsurface environments. These phenomena include advection-diffusion in uniform flow, Taylor dispersion in a pipe, solute transport in a packed column, reactive transport in uniform flow, and bacterial chemotaxis in porous media. The TRT LBM demonstrated good numerical performance in terms of accuracy and stability in predicting these transport phenomena. Therefore, the TRT LBM is a powerful tool to simulate various geophysical and biogeochemical processes in subsurface environments.

  17. Mineralogy controls on reactive transport of Marcellus Shale waters.

    Science.gov (United States)

    Cai, Zhang; Wen, Hang; Komarneni, Sridhar; Li, Li

    2018-07-15

    Produced or flowback waters from Marcellus Shale gas extraction (MSWs) typically are highly saline and contain chemicals including trace metals, which pose significant concerns on water quality. The natural attenuation of MSW chemicals in groundwater is poorly understood due to the complex interactions between aquifer minerals and MSWs, limiting our capabilities to monitor and predict. Here we combine flow-through experiments and process-based reactive transport modeling to understand mechanisms and quantify the retention of MSW chemicals in a quartz (Qtz) column, a calcite-rich (Cal) column, and a clay-rich (Vrm, vermiculite) column. These columns were used to represent sand, carbonate, and clay-rich aquifers. Results show that the types and extent of water-rock interactions differ significantly across columns. Although it is generally known that clay-rich media retard chemicals and that quartz media minimize water-rock interactions, results here have revealed insights that differ from previous thoughts. We found that the reaction mechanisms are much more complex than merely sorption and mineral precipitation. In clay rich media, trace metals participate in both ion exchange and mineral precipitation. In fact, the majority of metals (~50-90%) is retained in the solid via mineral precipitation, which is surprising because we typically expect the dominance of sorption in clay-rich aquifers. In the Cal column, trace metals are retained not only through precipitation but also solid solution partitioning, leading to a total of 75-99% retention. Even in the Qtz column, trace metals are retained at unexpectedly high percentages (~20-70%) due to precipitation. The reactive transport model developed here quantitatively differentiates the relative importance of individual processes, and bridges a limited number of experiments to a wide range of natural conditions. This is particularly useful where relatively limited knowledge and data prevent the prediction of complex rock

  18. Digital reactivity meter

    International Nuclear Information System (INIS)

    Akkus, B.; Anac, H.; Alsan, S.; Erk, S.

    1991-01-01

    Nowadays, various digital methods making use of microcomputers for neutron detector signals and determining the reactivity by numerical calculations are used in reactor control systems in place of classical reactivity meters. In this work, a calculation based on the ''The Time Dependent Transport Equation'' has been developed for determining the reactivity numerically. The reactivity values have been obtained utilizing a computer-based data acquisition and control system and compared with the analog reactivity meter values as well as the values calculated from the ''Inhour Equation''

  19. Modelization of reactive transport: application to the dedolomitization (Institut del Ciencies de la Tierr, CSIC, Barcelona (ES))

    International Nuclear Information System (INIS)

    Ayora, C.; Taberner, C.; Samper, J.

    1994-01-01

    The replacement of dolomite with calcite (dedolomization) has been analyzed by means of two numerical models of reactive transport. The results of successive calculations under different scenarios have been compared with the observations made on the dedolomites developed on the Triassic strata from Prades (Tarragona, Spain). The model based on the local equilibrium assumption for water-rock interaction does not predict the development of the porosity associated to the replacement. The model based on kinetic laws for mineral dissolution and precipitation does predict the observed proportions of calcite, dolomite and porosity. The result of modeling under kinetic laws is sensitive to parameters such as the flow velocity, the chemical composition of the recharge water and the reactive surface of the minerals. The replacement and associated porosity is only formed for infiltration flows higher than 100 mm/year. The water has a neutral to slightly alkaline pH, far from equilibrium with carbonates and the atmosphere. The calcium concentrations must be one order of magnitude higher the average of surficial waters, probably due to sulfate dissolution. The reactive surface of dolomite has been estimated from a simple geometric model of fractures, whereas that of calcite has been inferred from calculations based on nucleation and crystal growth theory. The reactive surface of calcite appears to be several orders of magnitude lower than that of dolomite, in agreement with what is required for reactive transport calculations to generate porosity. The dedolomization and associated porosity takes place in the first meter of aquifers, whereas downstream the replacement vanishes and does not create porosity

  20. Fringe-controlled biodegradation under dynamic conditions: Quasi 2-D flow-through experiments and reactive-transport modeling

    Science.gov (United States)

    Eckert, Dominik; Kürzinger, Petra; Bauer, Robert; Griebler, Christian; Cirpka, Olaf A.

    2015-01-01

    Biodegradation in contaminated aquifers has been shown to be most pronounced at the fringe of contaminant plumes, where mixing of contaminated water and ambient groundwater, containing dissolved electron acceptors, stimulates microbial activity. While physical mixing of contaminant and electron acceptor by transverse dispersion has been shown to be the major bottleneck for biodegradation in steady-state plumes, so far little is known on the effect of flow and transport dynamics (caused, e.g., by a seasonally fluctuating groundwater table) on biodegradation in these systems. Towards this end we performed experiments in quasi-two-dimensional flow-through microcosms on aerobic toluene degradation by Pseudomonas putida F1. Plume dynamics were simulated by vertical alteration of the toluene plume position and experimental results were analyzed by reactive-transport modeling. We found that, even after disappearance of the toluene plume for two weeks, the majority of microorganisms stayed attached to the sediment and regained their full biodegradation potential within two days after reappearance of the toluene plume. Our results underline that besides microbial growth, also maintenance and dormancy are important processes that affect biodegradation performance under transient environmental conditions and therefore deserve increased consideration in future reactive-transport modeling.

  1. Reactive transport modeling in variably saturated porous media with OGS-IPhreeqc

    Science.gov (United States)

    He, W.; Beyer, C.; Fleckenstein, J. H.; Jang, E.; Kalbacher, T.; Shao, H.; Wang, W.; Kolditz, O.

    2014-12-01

    Worldwide, sustainable water resource management becomes an increasingly challenging task due to the growth of population and extensive applications of fertilizer in agriculture. Moreover, climate change causes further stresses to both water quantity and quality. Reactive transport modeling in the coupled soil-aquifer system is a viable approach to assess the impacts of different land use and groundwater exploitation scenarios on the water resources. However, the application of this approach is usually limited in spatial scale and to simplified geochemical systems due to the huge computational expense involved. Such computational expense is not only caused by solving the high non-linearity of the initial boundary value problems of water flow in the unsaturated zone numerically with rather fine spatial and temporal discretization for the correct mass balance and numerical stability, but also by the intensive computational task of quantifying geochemical reactions. In the present study, a flexible and efficient tool for large scale reactive transport modeling in variably saturated porous media and its applications are presented. The open source scientific software OpenGeoSys (OGS) is coupled with the IPhreeqc module of the geochemical solver PHREEQC. The new coupling approach makes full use of advantages from both codes: OGS provides a flexible choice of different numerical approaches for simulation of water flow in the vadose zone such as the pressure-based or mixed forms of Richards equation; whereas the IPhreeqc module leads to a simplification of data storage and its communication with OGS, which greatly facilitates the coupling and code updating. Moreover, a parallelization scheme with MPI (Message Passing Interface) is applied, in which the computational task of water flow and mass transport is partitioned through domain decomposition, whereas the efficient parallelization of geochemical reactions is achieved by smart allocation of computational workload over

  2. Reactive transport modeling of interaction processes between clay stone and cement

    International Nuclear Information System (INIS)

    Windt, L. de; van der Lee, J.; Pellegrini, D.

    2001-01-01

    The disposal of radioactive wastes in clayey formations may require the use of large amounts of concrete and cement. The chemical interactions between these industrial materials and the host rock are modeled with the reactive transport code HYTEC for time scales and a geometry representative of disposal projects. The pH evolution, a key parameter in element mobility, is studied more specifically. It depends on several interdependent processes: i) diffusion of highly alkaline cement pore solution, ii) strong buffering related to important mineral transformations both in the cement and in the clay, and iii) cation exchange processes, beyond the zone of intense mineral transformations. In addition, precipitation of secondary minerals may lead to a partial or complete clogging of the pore space, almost stopping the propagation of the high pH plume. In a second step, preliminary results on the migration of strontium and uranium in these strongly coupled systems are presented as an example of transport parameter derivation. (authors)

  3. Experimental and Numerical Investigations on Colloid-facilitated Plutonium Reactive Transport in Fractured Tuffaceous Rocks

    Science.gov (United States)

    Dai, Z.; Wolfsberg, A. V.; Zhu, L.; Reimus, P. W.

    2017-12-01

    Colloids have the potential to enhance mobility of strongly sorbing radionuclide contaminants in fractured rocks at underground nuclear test sites. This study presents an experimental and numerical investigation of colloid-facilitated plutonium reactive transport in fractured porous media for identifying plutonium sorption/filtration processes. The transport parameters for dispersion, diffusion, sorption, and filtration are estimated with inverse modeling for minimizing the least squares objective function of multicomponent concentration data from multiple transport experiments with the Shuffled Complex Evolution Metropolis (SCEM). Capitalizing on an unplanned experimental artifact that led to colloid formation and migration, we adopt a stepwise strategy to first interpret the data from each experiment separately and then to incorporate multiple experiments simultaneously to identify a suite of plutonium-colloid transport processes. Nonequilibrium or kinetic attachment and detachment of plutonium-colloid in fractures was clearly demonstrated and captured in the inverted modeling parameters along with estimates of the source plutonium fraction that formed plutonium-colloids. The results from this study provide valuable insights for understanding the transport mechanisms and environmental impacts of plutonium in fractured formations and groundwater aquifers.

  4. Effect of chemical degradation on fluxes of reactive compounds – a study with a stochastic Lagrangian transport model

    Directory of Open Access Journals (Sweden)

    J. Rinne

    2012-06-01

    Full Text Available In the analyses of VOC fluxes measured above plant canopies, one usually assumes the flux above canopy to equal the exchange at the surface. Thus one assumes the chemical degradation to be much slower than the turbulent transport. We used a stochastic Lagrangian transport model in which the chemical degradation was described as first order decay in order to study the effect of the chemical degradation on above canopy fluxes of chemically reactive species. With the model we explored the sensitivity of the ratio of the above canopy flux to the surface emission on several parameters such as chemical lifetime of the compound, friction velocity, stability, and canopy density. Our results show that friction velocity and chemical lifetime affected the loss during transport the most. The canopy density had a significant effect if the chemically reactive compound was emitted from the forest floor. We used the results of the simulations together with oxidant data measured during HUMPPA-COPEC-2010 campaign at a Scots pine site to estimate the effect of the chemistry on fluxes of three typical biogenic VOCs, isoprene, α-pinene, and β-caryophyllene. Of these, the chemical degradation had a major effect on the fluxes of the most reactive species β-caryophyllene, while the fluxes of α-pinene were affected during nighttime. For these two compounds representing the mono- and sesquiterpenes groups, the effect of chemical degradation had also a significant diurnal cycle with the highest chemical loss at night. The different day and night time loss terms need to be accounted for, when measured fluxes of reactive compounds are used to reveal relations between primary emission and environmental parameters.

  5. Transport and Reactivity of Decontaminants to Provide Hazard Mitigation of Chemical Warfare Agents from Materials

    Science.gov (United States)

    2016-06-01

    2013 4. TITLE AND SUBTITLE Transport and Reactivity of Decontaminants to Provide Hazard Mitigation of Chemical Warfare Agents from Materials 5a...directions for future decontamination formulation approaches. 15. SUBJECT TERMS GD HD Decontamination Hazard mitigation VX Chemical warfare agent... DECONTAMINANTS TO PROVIDE HAZARD MITIGATION OF CHEMICAL WARFARE AGENTS FROM MATERIALS 1. INTRODUCTION Decontamination of materials is the

  6. Geometry-coupled reactive fluid transport at the fracture scale -Application to CO 2 geologic storage

    KAUST Repository

    Kim, Seunghee

    2015-08-19

    Water acidification follows CO2 injection and leads to reactive fluid transport through pores and rock fractures, with potential implications to reservoirs and wells in CO2 geologic storage and enhanced oil recovery. Kinetic rate laws for dissolution reactions in calcite and anorthite are combined with Navier-Stokes law and advection-diffusion transport to perform geometry-coupled numerical simulations in order to study the evolution of chemical reactions, species concentration and fracture morphology. Results are summarized as a function of two dimensionless parameters: the Damköhler number Da which is the ratio between advection and reaction times, and the transverse Peclet number Pe defined as the ratio between the time for diffusion across the fracture and the time for advection along the fracture. Reactant species are readily consumed near the inlet in a carbonate reservoir when the flow velocity is low (low transverse Peclet number and Da>10-1). At high flow velocities, diffusion fails to homogenize the concentration field across the fracture (high transverse Peclet number Pe>10-1). When the reaction rate is low as in anorthite reservoirs (Da<10-1) reactant species are more readily transported towards the outlet. At a given Peclet number, a lower Damköhler number causes the flow channel to experience a more uniform aperture enlargement along the length of the fracture. When the length-to-aperture ratio is sufficiently large, say l/d>30, the system response resembles the solution for 1-D reactive fluid transport. A decreased length-to-aperture ratio slows the diffusive transport of reactant species to the mineral fracture surface, and analyses of fracture networks must take into consideration both the length and slenderness of individual fractures in addition to Pe and Da numbers.

  7. Geometry-coupled reactive fluid transport at the fracture scale -Application to CO 2 geologic storage

    KAUST Repository

    Kim, Seunghee; Santamarina, Carlos

    2015-01-01

    Water acidification follows CO2 injection and leads to reactive fluid transport through pores and rock fractures, with potential implications to reservoirs and wells in CO2 geologic storage and enhanced oil recovery. Kinetic rate laws for dissolution reactions in calcite and anorthite are combined with Navier-Stokes law and advection-diffusion transport to perform geometry-coupled numerical simulations in order to study the evolution of chemical reactions, species concentration and fracture morphology. Results are summarized as a function of two dimensionless parameters: the Damköhler number Da which is the ratio between advection and reaction times, and the transverse Peclet number Pe defined as the ratio between the time for diffusion across the fracture and the time for advection along the fracture. Reactant species are readily consumed near the inlet in a carbonate reservoir when the flow velocity is low (low transverse Peclet number and Da>10-1). At high flow velocities, diffusion fails to homogenize the concentration field across the fracture (high transverse Peclet number Pe>10-1). When the reaction rate is low as in anorthite reservoirs (Da<10-1) reactant species are more readily transported towards the outlet. At a given Peclet number, a lower Damköhler number causes the flow channel to experience a more uniform aperture enlargement along the length of the fracture. When the length-to-aperture ratio is sufficiently large, say l/d>30, the system response resembles the solution for 1-D reactive fluid transport. A decreased length-to-aperture ratio slows the diffusive transport of reactant species to the mineral fracture surface, and analyses of fracture networks must take into consideration both the length and slenderness of individual fractures in addition to Pe and Da numbers.

  8. Integrating surrogate models into subsurface simulation framework allows computation of complex reactive transport scenarios

    Science.gov (United States)

    De Lucia, Marco; Kempka, Thomas; Jatnieks, Janis; Kühn, Michael

    2017-04-01

    Reactive transport simulations - where geochemical reactions are coupled with hydrodynamic transport of reactants - are extremely time consuming and suffer from significant numerical issues. Given the high uncertainties inherently associated with the geochemical models, which also constitute the major computational bottleneck, such requirements may seem inappropriate and probably constitute the main limitation for their wide application. A promising way to ease and speed-up such coupled simulations is achievable employing statistical surrogates instead of "full-physics" geochemical models [1]. Data-driven surrogates are reduced models obtained on a set of pre-calculated "full physics" simulations, capturing their principal features while being extremely fast to compute. Model reduction of course comes at price of a precision loss; however, this appears justified in presence of large uncertainties regarding the parametrization of geochemical processes. This contribution illustrates the integration of surrogates into the flexible simulation framework currently being developed by the authors' research group [2]. The high level language of choice for obtaining and dealing with surrogate models is R, which profits from state-of-the-art methods for statistical analysis of large simulations ensembles. A stand-alone advective mass transport module was furthermore developed in order to add such capability to any multiphase finite volume hydrodynamic simulator within the simulation framework. We present 2D and 3D case studies benchmarking the performance of surrogates and "full physics" chemistry in scenarios pertaining the assessment of geological subsurface utilization. [1] Jatnieks, J., De Lucia, M., Dransch, D., Sips, M.: "Data-driven surrogate model approach for improving the performance of reactive transport simulations.", Energy Procedia 97, 2016, p. 447-453. [2] Kempka, T., Nakaten, B., De Lucia, M., Nakaten, N., Otto, C., Pohl, M., Chabab [Tillner], E., Kühn, M

  9. Fringe-controlled biodegradation under dynamic conditions: quasi 2-D flow-through experiments and reactive-transport modeling.

    Science.gov (United States)

    Eckert, Dominik; Kürzinger, Petra; Bauer, Robert; Griebler, Christian; Cirpka, Olaf A

    2015-01-01

    Biodegradation in contaminated aquifers has been shown to be most pronounced at the fringe of contaminant plumes, where mixing of contaminated water and ambient groundwater, containing dissolved electron acceptors, stimulates microbial activity. While physical mixing of contaminant and electron acceptor by transverse dispersion has been shown to be the major bottleneck for biodegradation in steady-state plumes, so far little is known on the effect of flow and transport dynamics (caused, e.g., by a seasonally fluctuating groundwater table) on biodegradation in these systems. Towards this end we performed experiments in quasi-two-dimensional flow-through microcosms on aerobic toluene degradation by Pseudomonas putida F1. Plume dynamics were simulated by vertical alteration of the toluene plume position and experimental results were analyzed by reactive-transport modeling. We found that, even after disappearance of the toluene plume for two weeks, the majority of microorganisms stayed attached to the sediment and regained their full biodegradation potential within two days after reappearance of the toluene plume. Our results underline that besides microbial growth, also maintenance and dormancy are important processes that affect biodegradation performance under transient environmental conditions and therefore deserve increased consideration in future reactive-transport modeling. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Long-term reactive transport modelling of stabilized/solidified waste: from dynamic leaching tests to disposal scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Windt, Laurent de [Ecole des Mines de Paris, CG-Hydrodynamics and Reaction Group, 35 R. St-Honore, 77300 Fontainebleau (France)]. E-mail: laurent.dewindt@ensmp.fr; Badreddine, Rabia [INERIS, Direction des Risques Chroniques, Unite Dechets et Sites Pollues, Parc Technologique Alata BP 2, 60550 Verneuil-en-Halatte (France); Lagneau, Vincent [Ecole des Mines de Paris, CG-Hydrodynamics and Reaction Group, 35 R. St-Honore, 77300 Fontainebleau (France)

    2007-01-31

    Environmental impact assessment of hazardous waste disposal relies, among others, on standardized leaching tests characterized by a strong coupling between diffusion and chemical processes. In that respect, this study shows that reactive transport modelling is a useful tool to extrapolate laboratory results to site conditions characterized by lower solution/solid (L/S) ratios, site specific geometry, infiltration, etc. A cement solidified/stabilized (S/S) waste containing lead is investigated as a typical example. The reactive transport model developed in a previous study to simulate the initial state of the waste as well as laboratory batch and dynamic tests is first summarized. Using the same numerical code (HYTEC), this model is then integrated to a simplified waste disposal scenario assuming a defective cover and rain water infiltration. The coupled evolution of the S/S waste chemistry and the pollutant plume migration are modelled assessing the importance of the cracking state of the monolithic waste. The studied configurations correspond to an undamaged and fully sealed system, a few main fractures between undamaged monoliths and, finally, a dense crack-network in the monoliths. The model considers the potential effects of cracking, first the increase of rain water and carbon dioxide infiltration and, secondly, the increase of L/S ratio and reactive surfaces, using either explicit fracture representation or dual porosity approaches.

  11. Semianalytical Solutions of Radioactive or Reactive Transport in Variably-Fractured Layered Media: 1. Solutes

    International Nuclear Information System (INIS)

    George J. Moridis

    2001-01-01

    In this paper, semianalytical solutions are developed for the problem of transport of radioactive or reactive solute tracers through a layered system of heterogeneous fractured media with misaligned fractures. The tracer transport equations in the non-flowing matrix account for (a) diffusion, (b) surface diffusion, (c) mass transfer between the mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical, or combined solute sorption or colloid filtration, and (e) radioactive decay or first-order chemical reactions. The tracer-transport equations in the fractures account for the same processes, in addition to advection and hydrodynamic dispersion. Any number of radioactive decay daughter products (or products of a linear, first-order reaction chain) can be tracked. The solutions, which are analytical in the Laplace space, are numerically inverted to provide the solution in time and can accommodate any number of fractured and/or porous layers. The solutions are verified using analytical solutions for limiting cases of solute and colloid transport through fractured and porous media. The effect of important parameters on the transport of 3 H, 237 Np and 239 Pu (and its daughters) is investigated in several test problems involving layered geological systems of varying complexity

  12. Towards a realistic approach to validation of reactive transport models for performance assessment

    International Nuclear Information System (INIS)

    Siegel, M.D.

    1993-01-01

    Performance assessment calculations are based on geochemical models that assume that interactions among radionuclides, rocks and groundwaters under natural conditions, can be estimated or bound by data obtained from laboratory-scale studies. The data include radionuclide distribution coefficients, measured in saturated batch systems of powdered rocks, and retardation factors measured in short-term column experiments. Traditional approaches to model validation cannot be applied in a straightforward manner to the simple reactive transport models that use these data. An approach to model validation in support of performance assessment is described in this paper. It is based on a recognition of different levels of model validity and is compatible with the requirements of current regulations for high-level waste disposal. Activities that are being carried out in support of this approach include (1) laboratory and numerical experiments to test the validity of important assumptions inherent in current performance assessment methodologies,(2) integrated transport experiments, and (3) development of a robust coupled reaction/transport code for sensitivity analyses using massively parallel computers

  13. Modeling reactive transport with particle tracking and kernel estimators

    Science.gov (United States)

    Rahbaralam, Maryam; Fernandez-Garcia, Daniel; Sanchez-Vila, Xavier

    2015-04-01

    Groundwater reactive transport models are useful to assess and quantify the fate and transport of contaminants in subsurface media and are an essential tool for the analysis of coupled physical, chemical, and biological processes in Earth Systems. Particle Tracking Method (PTM) provides a computationally efficient and adaptable approach to solve the solute transport partial differential equation. On a molecular level, chemical reactions are the result of collisions, combinations, and/or decay of different species. For a well-mixed system, the chem- ical reactions are controlled by the classical thermodynamic rate coefficient. Each of these actions occurs with some probability that is a function of solute concentrations. PTM is based on considering that each particle actually represents a group of molecules. To properly simulate this system, an infinite number of particles is required, which is computationally unfeasible. On the other hand, a finite number of particles lead to a poor-mixed system which is limited by diffusion. Recent works have used this effect to actually model incomplete mix- ing in naturally occurring porous media. In this work, we demonstrate that this effect in most cases should be attributed to a defficient estimation of the concentrations and not to the occurrence of true incomplete mixing processes in porous media. To illustrate this, we show that a Kernel Density Estimation (KDE) of the concentrations can approach the well-mixed solution with a limited number of particles. KDEs provide weighting functions of each particle mass that expands its region of influence, hence providing a wider region for chemical reactions with time. Simulation results show that KDEs are powerful tools to improve state-of-the-art simulations of chemical reactions and indicates that incomplete mixing in diluted systems should be modeled based on alternative conceptual models and not on a limited number of particles.

  14. Modelling of reactive fluid transport in deformable porous rocks

    Science.gov (United States)

    Yarushina, V. M.; Podladchikov, Y. Y.

    2009-04-01

    One outstanding challenge in geology today is the formulation of an understanding of the interaction between rocks and fluids. Advances in such knowledge are important for a broad range of geologic settings including partial melting and subsequent migration and emplacement of a melt into upper levels of the crust, or fluid flow during regional metamorphism and metasomatism. Rock-fluid interaction involves heat and mass transfer, deformation, hydrodynamic flow, and chemical reactions, thereby necessitating its consideration as a complex process coupling several simultaneous mechanisms. Deformation, chemical reactions, and fluid flow are coupled processes. Each affects the others. Special effort is required for accurate modelling of the porosity field through time. Mechanical compaction of porous rocks is usually treated under isothermal or isoentropic simplifying assumptions. However, joint consideration of both mechanical compaction and reactive porosity alteration requires somewhat greater than usual care about thermodynamic consistency. Here we consider the modelling of multi-component, multi-phase systems, which is fundamental to the study of fluid-rock interaction. Based on the conservation laws for mass, momentum, and energy in the form adopted in the theory of mixtures, we derive a thermodynamically admissible closed system of equations describing the coupling of heat and mass transfer, chemical reactions, and fluid flow in a deformable solid matrix. Geological environments where reactive transport is important are located at different depths and accordingly have different rheologies. In the near surface, elastic or elastoplastic properties would dominate, whereas viscoplasticity would have a profound effect deeper in the lithosphere. Poorly understood rheologies of heterogeneous porous rocks are derived from well understood processes (i.e., elasticity, viscosity, plastic flow, fracturing, and their combinations) on the microscale by considering a

  15. Strong Coupling between Nanofluidic Transport and Interfacial Chemistry: How Defect Reactivity Controls Liquid-Solid Friction through Hydrogen Bonding.

    Science.gov (United States)

    Joly, Laurent; Tocci, Gabriele; Merabia, Samy; Michaelides, Angelos

    2016-04-07

    Defects are inevitably present in nanofluidic systems, yet the role they play in nanofluidic transport remains poorly understood. Here, we report ab initio molecular dynamics (AIMD) simulations of the friction of liquid water on defective graphene and boron nitride sheets. We show that water dissociates at certain defects and that these "reactive" defects lead to much larger friction than the "nonreactive" defects at which water molecules remain intact. Furthermore, we find that friction is extremely sensitive to the chemical structure of reactive defects and to the number of hydrogen bonds they can partake in with the liquid. Finally, we discuss how the insight obtained from AIMD can be used to quantify the influence of defects on friction in nanofluidic devices for water treatment and sustainable energy harvesting. Overall, we provide new insight into the role of interfacial chemistry on nanofluidic transport in real, defective systems.

  16. Reactive transport of CO2-rich fluids in simulated wellbore interfaces : Flow-through experiments on the 1–6 m length scale

    NARCIS (Netherlands)

    Wolterbeek, Timotheus K.T.; Peach, Colin J.; Raoof, Amir; Spiers, Christopher J.

    2016-01-01

    Debonding at casing-cement interfaces poses a leakage pathway risk that may compromise well integrity in CO2 storage systems. The present study addresses the effects of long-range, CO2-induced, reactive transport on the conductance of such interfacial pathways. This is done by means of reactive

  17. Modeling reactive transport processes in fractured rock using the time domain random walk approach within a dual-porosity framework

    Science.gov (United States)

    Roubinet, D.; Russian, A.; Dentz, M.; Gouze, P.

    2017-12-01

    Characterizing and modeling hydrodynamic reactive transport in fractured rock are critical challenges for various research fields and applications including environmental remediation, geological storage, and energy production. To this end, we consider a recently developed time domain random walk (TDRW) approach, which is adapted to reproduce anomalous transport behaviors and capture heterogeneous structural and physical properties. This method is also very well suited to optimize numerical simulations by memory-shared massive parallelization and provide numerical results at various scales. So far, the TDRW approach has been applied for modeling advective-diffusive transport with mass transfer between mobile and immobile regions and simple (theoretical) reactions in heterogeneous porous media represented as single continuum domains. We extend this approach to dual-continuum representations considering a highly permeable fracture network embedded into a poorly permeable rock matrix with heterogeneous geochemical reactions occurring in both geological structures. The resulting numerical model enables us to extend the range of the modeled heterogeneity scales with an accurate representation of solute transport processes and no assumption on the Fickianity of these processes. The proposed model is compared to existing particle-based methods that are usually used to model reactive transport in fractured rocks assuming a homogeneous surrounding matrix, and is used to evaluate the impact of the matrix heterogeneity on the apparent reaction rates for different 2D and 3D simple-to-complex fracture network configurations.

  18. Effects of Reactive Oxygen Species on Tubular Transport along the Nephron.

    Science.gov (United States)

    Gonzalez-Vicente, Agustin; Garvin, Jeffrey L

    2017-03-23

    Reactive oxygen species (ROS) are oxygen-containing molecules naturally occurring in both inorganic and biological chemical systems. Due to their high reactivity and potentially damaging effects to biomolecules, cells express a battery of enzymes to rapidly metabolize them to innocuous intermediaries. Initially, ROS were considered by biologists as dangerous byproducts of respiration capable of causing oxidative stress, a condition in which overproduction of ROS leads to a reduction in protective molecules and enzymes and consequent damage to lipids, proteins, and DNA. In fact, ROS are used by immune systems to kill virus and bacteria, causing inflammation and local tissue damage. Today, we know that the functions of ROS are not so limited, and that they also act as signaling molecules mediating processes as diverse as gene expression, mechanosensation, and epithelial transport. In the kidney, ROS such as nitric oxide (NO), superoxide (O₂ - ), and their derivative molecules hydrogen peroxide (H₂O₂) and peroxynitrite (ONO₂ - ) regulate solute and water reabsorption, which is vital to maintain electrolyte homeostasis and extracellular fluid volume. This article reviews the effects of NO, O₂ - , ONO₂ - , and H₂O₂ on water and electrolyte reabsorption in proximal tubules, thick ascending limbs, and collecting ducts, and the effects of NO and O₂ - in the macula densa on tubuloglomerular feedback.

  19. Efficient modeling of reactive transport phenomena by a multispecies random walk coupled to chemical equilibrium

    International Nuclear Information System (INIS)

    Pfingsten, W.

    1996-01-01

    Safety assessments for radioactive waste repositories require a detailed knowledge of physical, chemical, hydrological, and geological processes for long time spans. In the past, individual models for hydraulics, transport, or geochemical processes were developed more or less separately to great sophistication for the individual processes. Such processes are especially important in the near field of a waste repository. Attempts have been made to couple at least two individual processes to get a more adequate description of geochemical systems. These models are called coupled codes; they couple predominantly a multicomponent transport model with a chemical reaction model. Here reactive transport is modeled by the sequentially coupled code MCOTAC that couples one-dimensional advective, dispersive, and diffusive transport with chemical equilibrium complexation and precipitation/dissolution reactions in a porous medium. Transport, described by a random walk of multispecies particles, and chemical equilibrium calculations are solved separately, coupled only by an exchange term. The modular-structured code was applied to incongruent dissolution of hydrated silicate gels, to movement of multiple solid front systems, and to an artificial, numerically difficult heterogeneous redox problem. These applications show promising features with respect to applicability to relevant problems and possibilities of extensions

  20. A Green's function method for two-dimensional reactive solute transport in a parallel fracture-matrix system

    Science.gov (United States)

    Chen, Kewei; Zhan, Hongbin

    2018-06-01

    The reactive solute transport in a single fracture bounded by upper and lower matrixes is a classical problem that captures the dominant factors affecting transport behavior beyond pore scale. A parallel fracture-matrix system which considers the interaction among multiple paralleled fractures is an extension to a single fracture-matrix system. The existing analytical or semi-analytical solution for solute transport in a parallel fracture-matrix simplifies the problem to various degrees, such as neglecting the transverse dispersion in the fracture and/or the longitudinal diffusion in the matrix. The difficulty of solving the full two-dimensional (2-D) problem lies in the calculation of the mass exchange between the fracture and matrix. In this study, we propose an innovative Green's function approach to address the 2-D reactive solute transport in a parallel fracture-matrix system. The flux at the interface is calculated numerically. It is found that the transverse dispersion in the fracture can be safely neglected due to the small scale of fracture aperture. However, neglecting the longitudinal matrix diffusion would overestimate the concentration profile near the solute entrance face and underestimate the concentration profile at the far side. The error caused by neglecting the longitudinal matrix diffusion decreases with increasing Peclet number. The longitudinal matrix diffusion does not have obvious influence on the concentration profile in long-term. The developed model is applied to a non-aqueous-phase-liquid (DNAPL) contamination field case in New Haven Arkose of Connecticut in USA to estimate the Trichloroethylene (TCE) behavior over 40 years. The ratio of TCE mass stored in the matrix and the injected TCE mass increases above 90% in less than 10 years.

  1. Biogeochemical Reactive Transport Model of the Redox Zone Experiment of the sp Hard Rock Laboratory in Sweden

    International Nuclear Information System (INIS)

    Molinero-Huguet, Jorge; Samper-Calvete, F. Javier; Zhang, Guoxiang; Yang, Changbing

    2004-01-01

    Underground facilities are being operated by several countries around the world for performing research and demonstration of the safety of deep radioactive waste repositories. The ''sp'' Hard Rock Laboratory is one such facility launched and operated by the Swedish Nuclear Fuel and Waste Management Company where various in situ experiments have been performed in fractured granites. One such experiment is the redox zone experiment, which aimed at evaluating the effects of the construction of an access tunnel on the hydrochemical conditions of a fracture zone. Dilution of the initially saline groundwater by fresh recharge water is the dominant process controlling the hydrochemical evolution of most chemical species, except for bicarbonate and sulfate, which unexpectedly increase with time. We present a numerical model of water flow, reactive transport, and microbial processes for the redox zone experiment. This model provides a plausible quantitatively based explanation for the unexpected evolution of bicarbonate and sulfate, reproduces the breakthrough curves of other reactive species, and is consistent with previous hydrogeological and solute transport models

  2. Reactive transport modelling to infer changes in soil hydraulic properties induced by non-conventional water irrigation

    Science.gov (United States)

    Valdes-Abellan, Javier; Jiménez-Martínez, Joaquín; Candela, Lucila; Jacques, Diederik; Kohfahl, Claus; Tamoh, Karim

    2017-06-01

    The use of non-conventional water (e.g., treated wastewater, desalinated water) for different purposes is increasing in many water scarce regions of the world. Its use for irrigation may have potential drawbacks, because of mineral dissolution/precipitation processes, such as changes in soil physical and hydraulic properties (e.g., porosity, permeability), modifying infiltration and aquifer recharge processes or blocking root growth. Prediction of soil and groundwater impacts is essential for achieving sustainable agricultural practices. A numerical model to solve unsaturated water flow and non-isothermal multicomponent reactive transport has been modified implementing the spatio-temporal evolution of soil physical and hydraulic properties. A long-term process simulation (30 years) of agricultural irrigation with desalinated water, based on a calibrated/validated 1D numerical model in a semi-arid region, is presented. Different scenarios conditioning reactive transport (i.e., rainwater irrigation, lack of gypsum in the soil profile, and lower partial pressure of CO2 (pCO2)) have also been considered. Results show that although boundary conditions and mineral soil composition highly influence the reactive processes, dissolution/precipitation of carbonate species is triggered mainly by pCO2, closely related to plant roots. Calcite dissolution occurs in the root zone, precipitation takes place under it and at the soil surface, which will lead a root growth blockage and a direct soil evaporation decrease, respectively. For the studied soil, a gypsum dissolution up to 40 cm depth is expected at long-term, with a general increase of porosity and hydraulic conductivity.

  3. Flow and nutrient dynamics in a subterranean estuary (Waquoit Bay, MA, USA) : Field data and reactive transport modeling

    NARCIS (Netherlands)

    Spiteri, C.; Slomp, C.P.; Charette, M.A.; Tuncay, K.; Meile, C.

    2008-01-01

    A two-dimensional (2D) reactive transport model is used to investigate the controls on nutrient (NO3-, NH4+, PO4) dynamics in a coastal aquifer. The model couples density-dependent flow to a reaction network which includes oxic degradation of organic matter, denitrification, iron oxide reduction,

  4. Reactive transport model and apparent Kd of Ni in the near field of a HLW repository in granite

    Science.gov (United States)

    Lu, Chuanhe; Samper, Javier; Luis Cormenzana, José; Ma, Hongyun; Montenegro, Luis; Ángel Cuñado, Miguel

    2012-12-01

    Current performance assessment models for radionuclide migration through the near field of high-level radioactive waste repositories often rely on the assumption of a constant Kd for sorption. The validity of such assumption is evaluated here with a reactive transport model for Ni2+ in the near field of a repository in granite. Model results show that Ni2+ sorbs mainly by surface complexation on weak sorption sites. The apparent Kd of Ni2+, Kda, depends on the concentration of dissolved Ni and pH and is constant only when the concentration of dissolved Ni is smaller than 10-6 mol/L. The results of the sensitivity runs show that Kda is sensitive to the water flux at the bentonite-granite interface, the effective diffusion of the bentonite and the concentration of weak sorption sites of the bentonite. The competition of other nuclides such as Cs+ on Ni2+ sorption is not important. Corrosion products, however, affect significantly the sorption of Ni2+ on the bentonite. The model with a constant Kd does not reproduce the release rates of Ni2+ from the bentonite into the granite. A model with a variable Kd which depends on the concentration of dissolved Ni2+ and pH may provide an acceptable surrogate of the multicomponent reactive transport model for the conditions of the repository considered in our model. Simulations using the Kd-approach were performed with GoldSim based on the interpolation in the pH and concentration table, while the reactive transport model simulations were performed with CORE2D which incorporates multisite surface complexation.

  5. Considering a Threshold Energy in Reactive Transport Modeling of Microbially Mediated Redox Reactions in an Arsenic-Affected Aquifer

    Directory of Open Access Journals (Sweden)

    Marco Rotiroti

    2018-01-01

    Full Text Available The reductive dissolution of Fe-oxide driven by organic matter oxidation is the primary mechanism accepted for As mobilization in several alluvial aquifers. These processes are often mediated by microorganisms that require a minimum Gibbs energy available to conduct the reaction in order to sustain their life functions. Implementing this threshold energy in reactive transport modeling is rarely used in the existing literature. This work presents a 1D reactive transport modeling of As mobilization by the reductive dissolution of Fe-oxide and subsequent immobilization by co-precipitation in iron sulfides considering a threshold energy for the following terminal electron accepting processes: (a Fe-oxide reduction, (b sulfate reduction, and (c methanogenesis. The model is then extended by implementing a threshold energy on both reaction directions for the redox reaction pairs Fe(III reduction/Fe(II oxidation and methanogenesis/methane oxidation. The optimal threshold energy fitted in 4.50, 3.76, and 1.60 kJ/mol e− for sulfate reduction, Fe(III reduction/Fe(II oxidation, and methanogenesis/methane oxidation, respectively. The use of models implementing bidirectional threshold energy is needed when a redox reaction pair can be transported between domains with different redox potentials. This may often occur in 2D or 3D simulations.

  6. Residence-time framework for modeling multicomponent reactive transport in stream hyporheic zones

    Science.gov (United States)

    Painter, S. L.; Coon, E. T.; Brooks, S. C.

    2017-12-01

    Process-based models for transport and transformation of nutrients and contaminants in streams require tractable representations of solute exchange between the stream channel and biogeochemically active hyporheic zones. Residence-time based formulations provide an alternative to detailed three-dimensional simulations and have had good success in representing hyporheic exchange of non-reacting solutes. We extend the residence-time formulation for hyporheic transport to accommodate general multicomponent reactive transport. To that end, the integro-differential form of previous residence time models is replaced by an equivalent formulation based on a one-dimensional advection dispersion equation along the channel coupled at each channel location to a one-dimensional transport model in Lagrangian travel-time form. With the channel discretized for numerical solution, the associated Lagrangian model becomes a subgrid model representing an ensemble of streamlines that are diverted into the hyporheic zone before returning to the channel. In contrast to the previous integro-differential forms of the residence-time based models, the hyporheic flowpaths have semi-explicit spatial representation (parameterized by travel time), thus allowing coupling to general biogeochemical models. The approach has been implemented as a stream-corridor subgrid model in the open-source integrated surface/subsurface modeling software ATS. We use bedform-driven flow coupled to a biogeochemical model with explicit microbial biomass dynamics as an example to show that the subgrid representation is able to represent redox zonation in sediments and resulting effects on metal biogeochemical dynamics in a tractable manner that can be scaled to reach scales.

  7. Reactive transport impacts on recovered freshwater quality during multiple partially penetrating wells (MPPW-)ASR in a brackish heterogeneous aquifer

    NARCIS (Netherlands)

    Zuurbier, Koen G.; Hartog, Niels; Stuyfzand, Pieter J.

    The use of multiple partially penetrating wells (MPPW) during aquifer storage and recovery (ASR) in brackish aquifers can significantly improve the recovery efficiency (RE) of unmixed injected water. The water quality changes by reactive transport processes in a field MPPW-ASR system and their

  8. Sensitivity Analysis and Parameter Estimation for a Reactive Transport Model of Uranium Bioremediation

    Science.gov (United States)

    Meyer, P. D.; Yabusaki, S.; Curtis, G. P.; Ye, M.; Fang, Y.

    2011-12-01

    A three-dimensional, variably-saturated flow and multicomponent biogeochemical reactive transport model of uranium bioremediation was used to generate synthetic data . The 3-D model was based on a field experiment at the U.S. Dept. of Energy Rifle Integrated Field Research Challenge site that used acetate biostimulation of indigenous metal reducing bacteria to catalyze the conversion of aqueous uranium in the +6 oxidation state to immobile solid-associated uranium in the +4 oxidation state. A key assumption in past modeling studies at this site was that a comprehensive reaction network could be developed largely through one-dimensional modeling. Sensitivity analyses and parameter estimation were completed for a 1-D reactive transport model abstracted from the 3-D model to test this assumption, to identify parameters with the greatest potential to contribute to model predictive uncertainty, and to evaluate model structure and data limitations. Results showed that sensitivities of key biogeochemical concentrations varied in space and time, that model nonlinearities and/or parameter interactions have a significant impact on calculated sensitivities, and that the complexity of the model's representation of processes affecting Fe(II) in the system may make it difficult to correctly attribute observed Fe(II) behavior to modeled processes. Non-uniformity of the 3-D simulated groundwater flux and averaging of the 3-D synthetic data for use as calibration targets in the 1-D modeling resulted in systematic errors in the 1-D model parameter estimates and outputs. This occurred despite using the same reaction network for 1-D modeling as used in the data-generating 3-D model. Predictive uncertainty of the 1-D model appeared to be significantly underestimated by linear parameter uncertainty estimates.

  9. Evaluation and Computational Characterization of the Faciliated Transport of Glc Carbon C-1 Oxime Reactivators Across a Blood Brain Barrier Model

    Science.gov (United States)

    2013-01-01

    blood brain barrier (BBB) to reactivate inhibited brain acetylcholinesterase (AChE). We selected glucose (Glc) transporters (GLUT) for this purpose as...Eur. J. Pharm. 332 (1997) 43–52. [4] N.J. Abbott , L. Ronnback, E. Hansson, Astrocyte-endothelial interactions at the blood –brain barrier, Nat. Rev...5a. CONTRACT NUMBER oxime reactivators across a blood brain barrier model 5b. GRANT NUMBER 1.E005.08.WR 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  10. Study of reactive solutes transport and PAH migration in unsaturated soils

    International Nuclear Information System (INIS)

    Gujisaite, V.; Simonnot, M.O.; Gujisaite, V.; Morel, J.L.; Ouvrard, S.; Simonnot, M.O.; Gaudet, J.P.

    2005-01-01

    Experimental studies about solute transport in soil have most of the time been conducted under saturated conditions, whereas studies with unsaturated media are usually limited to hydrodynamic analysis. Those are mainly concerning the prediction of water flow, which is the main vector for the transport of contaminants in soil. Only a few studies have made the link between unsaturated flow and physical, chemical and biological interactions, which are controlling the availability of pollutants. However, the presence of a gaseous phase in soil can modify not only the movement of soil solution, but also chemical interactions and exchanges between soil aggregates and solution. Study of reactive solute transport in the vadose zone seems thus to be a necessary stage to predict contaminant fate in natural soils, for risk assessment as well as for the design of effective processes for the remediation of contaminated soils. This question is the main objective of the present work developed in the frame of our French Scientific Interest Group Industrial Wastelands called 'GISFI' (www.gisfi.prd.fr), based around a scientific and technological project dedicated to acquisition of knowledge for sustainable requalification of degraded sites polluted by past industrial activities. We will focus here on Polycyclic Aromatic Hydrocarbons (PAH), which are among the most widely discussed environmental contaminants because of their toxicity for human health and ecosystems. They are present in large quantities in soils polluted by former industrial activities, especially in relation to the coal extraction, exploitation and treatment. An experimental system has been specifically designed at the laboratory scale to carry out experiments under controlled conditions, with an unsaturated steady-state flow. The first experiments are performed on model soils, in order to investigate unsaturated steady-state flow in relation to interactions mechanisms. We have thus chosen to use a sandy

  11. Reactive transport modeling of nitrogen in Seine River sediments

    Science.gov (United States)

    Akbarzadeh, Z.; Laverman, A.; Raimonet, M.; Rezanezhad, F.; Van Cappellen, P.

    2016-02-01

    Biogeochemical processes in sediments have a major impact on the fate and transport of nitrogen (N) in river systems. Organic matter decomposition in bottom sediments releases inorganic N species back to the stream water, while denitrification, anammox and burial of organic matter remove bioavailable N from the aquatic environment. To simulate N cycling in river sediments, a multi-component reactive transport model has been developed in MATLAB®. The model includes 3 pools of particulate organic N, plus pore water nitrate, nitrite, nitrous oxide and ammonium. Special attention is given to the production and consumption of nitrite, a N species often neglected in early diagenetic models. Although nitrite is usually considered to be short-lived, elevated nitrite concentrations have been observed in freshwater streams, raising concerns about possible toxic effects. We applied the model to sediment data sets collected at two locations in the Seine River, one upstream, the other downstream, of the largest wastewater treatment plant (WWTP) of the Paris conurbation. The model is able to reproduce the key features of the observed pore water depth profiles of the different nitrogen species. The modeling results show that the presence of oxygen in the overlying water plays a major role in controlling the exchanges of nitrite between the sediments and the stream water. In August 2012, sediments upstream of the WWTP switch from being a sink to a source of nitrite as the overlying water becomes anoxic. Downstream sediments remain a nitrite sink in oxic and anoxic conditions. Anoxic bottom waters at the upstream location promote denitrification, which produces nitrite, while at the downstream site, anammox and DNRA are important removal processes of nitrite.

  12. Final Report, University of California Merced: Uranium and strontium fate in waste-weathered sediments: Scaling of molecular processes to predict reactive transport (DE-SC0007095)

    Energy Technology Data Exchange (ETDEWEB)

    O' Day, Peggy Anne [University of California Merced; Chorover, Jon [University of Arizona; Steefel, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mueller, Karl [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-06-30

    Objectives of the Project: 1. Determine the process coupling that occurs between mineral transformation and contaminant (U and Sr) speciation in acid-uranium waste weathered Hanford sediments. 2. Establish linkages between molecular-scale contaminant speciation and meso-scale contaminant lability, release and reactive transport. 3. Make conjunctive use of molecular- to bench-scale data to constrain the development of a mechanistic, reactive transport model that includes coupling of contaminant sorption-desorption and mineral transformation reactions. Hypotheses Tested: Uranium and strontium speciation in legacy sediments from the U-8 and U-12 Crib sites can be reproduced in bench-scale weathering experiments conducted on unimpacted Hanford sediments from the same formations; Reactive transport modeling of future uranium and strontium releases from the vadose zone of acid-waste weathered sediments can be effectively constrained by combining molecular-scale information on contaminant bonding environment with grain-scale information on contaminant phase partitioning, and meso-scale kinetic data on contaminant release from the waste-weathered porous media; Although field contamination and laboratory experiments differ in their diagenetic time scales (decades for field vs. months to years for lab), sediment dissolution, neophase nucleation, and crystal growth reactions that occur during the initial disequilibrium induced by waste-sediment interaction leave a strong imprint that persists over subsequent longer-term equilibration time scales and, therefore, give rise to long-term memory effects. Enabling Capabilities Developed: Our team developed an iterative measure-model approach that is broadly applicable to elucidate the mechanistic underpinnings of reactive contaminant transport in geomedia subject to active weathering.

  13. A coupling alternative to reactive transport simulations for long-term prediction of chemical reactions in heterogeneous CO2 storage systems

    Directory of Open Access Journals (Sweden)

    M. De Lucia

    2015-02-01

    Full Text Available Fully coupled, multi-phase reactive transport simulations of CO2 storage systems can be approximated by a simplified one-way coupling of hydrodynamics and reactive chemistry. The main characteristics of such systems, and hypotheses underlying the proposed alternative coupling, are (i that the presence of CO2 is the only driving force for chemical reactions and (ii that its migration in the reservoir is only marginally affected by immobilisation due to chemical reactions. In the simplified coupling, the exposure time to CO2 of each element of the hydrodynamic grid is estimated by non-reactive simulations and the reaction path of one single batch geochemical model is applied to each grid element during its exposure time. In heterogeneous settings, analytical scaling relationships provide the dependency of velocity and amount of reactions to porosity and gas saturation. The analysis of TOUGHREACT fully coupled reactive transport simulations of CO2 injection in saline aquifer, inspired to the Ketzin pilot site (Germany, both in homogeneous and heterogeneous settings, confirms that the reaction paths predicted by fully coupled simulations in every element of the grid show a high degree of self-similarity. A threshold value for the minimum concentration of dissolved CO2 considered chemically active is shown to mitigate the effects of the discrepancy between dissolved CO2 migration in non-reactive and fully coupled simulations. In real life, the optimal threshold value is unknown and has to be estimated, e.g. by means of 1-D or 2-D simulations, resulting in an uncertainty ultimately due to the process de-coupling. However, such uncertainty is more than acceptable given that the alternative coupling enables using grids of the order of millions of elements, profiting from much better description of heterogeneous reservoirs at a fraction of the calculation time of fully coupled models.

  14. Reactive Transport of Marcellus Shale Waters in Natural Aquifers: the Role of Mineralogical Compositions and Spatial Distribution Patterns

    Science.gov (United States)

    Cai, Z.; Wen, H.; Li, L.

    2017-12-01

    Accidental release of Marcellus Shale waters (MSW) can release high concentrations of chemicals that can deteriorate groundwater quality. It is important to understand the reactive transport and fate of chemicals from MSW. Natural aquifers typically have complex mineralogical compositions and are heterogeneous with large spatial variation in terms of physical and geochemical properties. To investigate the effects of mineralogical compositions, flow-through experiments and reactive transport modeling were carried out using 3 large columns (5 cm×50 cm, Quartz, Calcite, and Vermiculite). Results indicate calcite immobilizes heavy metals by precipitation and solid solution partitioning (coprecipitation). Vermiculite retards heavy metals through ion exchange. The sorbed chemicals however slowly release back to the groundwater. Na and Ca transport similarly to Br in Qtz and Cal columns however become sorbed in Vrm column during release through ion exchange by 27.8% and 46.5%, respectively and later slowly release back to aqueous phase. To understand the role of mineral spatial patterns, three 2D flow-cell (40 cm×12 cm×1 cm) experiments were carried out. All flow cells have the same clay mass within quartz matrix but different spatial patterns characterized by the relative length of the clay zone ( 0, ¼, ½) of the domain length (L). Results show that in the uniform column, ion exchange dominates and most Ba sorbs to the solid phase, to an extent Ba cannot precipitate out with SO4 as barite. In 1/2-Zone, however, most Ba precipitates as barite. In 1/4-Zone, both ion exchange and mineral precipitation occur. In general, the 1/2-Zone has the smallest ion exchange capacity for other species including Na, Ca, Mg, K and heavy metals (Mn, Cu, Zn, Cd and Pb) as well. Our flow cell experiment emphasizes the importance of mineral spatial patterns in regulating not only reaction rates but also the type of reactions in controlling the reactive transport of MSW chemicals. The

  15. Investigating Natural Analogues for Co{sub 2} Sequestration in Ultra Mafic Rocks: A Reactive Transport Modelling Approach

    Energy Technology Data Exchange (ETDEWEB)

    Gherardi, F. [Istituto di Geoscienze e Georisorse, Consiglio Nazionale delle Ricerche, Pisa (Italy)

    2013-07-15

    Serpentinites of Ligurian ophiolites are studied as natural analogues for CO{sub 2} mineral sequestration in Italy. Mineralogical and geochemical observations indicate that silicification and carbonation are typical alteration processes induced by the interaction of CO{sub 2} charged fluids with pristine ultramafic rocks. Multicomponent reactive transport models have been applied to reproduce natural patterns and investigate carbon sequestration efficiency under high P{sub CO2} conditions. Temporal changes in porosity and permeability are predicted to affect the spatial and temporal occurrence of secondary minerals. The feedback between mineralogical transformations and transport properties of the geological media emerges as a key factor controlling the mineral carbonation potential of the investigated ultramafic rocks. (author)

  16. Measurement and modelling of reactive transport in geological barriers for nuclear waste containment.

    Science.gov (United States)

    Xiong, Qingrong; Joseph, Claudia; Schmeide, Katja; Jivkov, Andrey P

    2015-11-11

    Compacted clays are considered as excellent candidates for barriers to radionuclide transport in future repositories for nuclear waste due to their very low hydraulic permeability. Diffusion is the dominant transport mechanism, controlled by a nano-scale pore system. Assessment of the clays' long-term containment function requires adequate modelling of such pore systems and their evolution. Existing characterisation techniques do not provide complete pore space information for effective modelling, such as pore and throat size distributions and connectivity. Special network models for reactive transport are proposed here using the complimentary character of the pore space and the solid phase. This balances the insufficient characterisation information and provides the means for future mechanical-physical-chemical coupling. The anisotropy and heterogeneity of clays is represented using different length parameters and percentage of pores in different directions. Resulting networks are described as mathematical graphs with efficient discrete calculus formulation of transport. Opalinus Clay (OPA) is chosen as an example. Experimental data for the tritiated water (HTO) and U(vi) diffusion through OPA are presented. Calculated diffusion coefficients of HTO and uranium species are within the ranges of the experimentally determined data in different clay directions. This verifies the proposed pore network model and validates that uranium complexes are diffusing as neutral species in OPA. In the case of U(vi) diffusion the method is extended to account for sorption and convection. Rather than changing pore radii by coarse grained mathematical formula, physical sorption is simulated in each pore, which is more accurate and realistic.

  17. Reactive Transport Models with Geomechanics to Mitigate Risks of CO2 Utilization and Storage

    Energy Technology Data Exchange (ETDEWEB)

    Deo, Milind [Univ. of Utah, Salt Lake City, UT (United States); Huang, Hai [Univ. of Utah, Salt Lake City, UT (United States); Kweon, Hyukmin [Univ. of Utah, Salt Lake City, UT (United States); Guo, Luanjing [Univ. of Utah, Salt Lake City, UT (United States)

    2016-03-28

    Reactivity of carbon dioxide (CO2), rocks and brine is important in a number of practical situations in carbon dioxide sequestration. Injectivity of CO2 will be affected by near wellbore dissolution or precipitation. Natural fractures or faults containing specific minerals may reactivate leading to induced seismicity. In this project, we first examined if the reactions between CO2, brine and rocks affect the nature of the porous medium and properties including petrophysical properties in the timeframe of the injection operations. This was done by carrying out experiments at sequestration conditions (2000 psi for corefloods and 2400 psi for batch experiments, and 600°C) with three different types of rocks – sandstone, limestone and dolomite. Experiments were performed in batch mode and corefloods were conducted over a two-week period. Batch experiments were performed with samples of differing surface area to understand the impact of surface area on overall reaction rates. Toughreact, a reactive transport model was used to interpret and understand the experimental results. The role of iron in dissolution and precipitation reactions was observed to be significant. Iron containing minerals – siderite and ankerite dissolved resulting in changes in porosity and permeability. Corefloods and batch experiments revealed similar patterns. With the right cationic balance, there is a possibility of precipitation of iron bearing carbonates. The results indicate that during injection operations mineralogical changes may lead to injectivity enhancements near the wellbore and petrophysical changes elsewhere in the system. Limestone and dolomite cores showed consistent dissolution at the entrance of the core. The dissolution led to formation of wormholes and interconnected dissolution zones. Results indicate that near wellbore dissolution in these rock-types may lead to rock failure. Micro-CT images of the cores before and after the experiments

  18. Variably Saturated Flow and Multicomponent Biogeochemical Reactive Transport Modeling of a Uranium Bioremediation Field Experiment

    International Nuclear Information System (INIS)

    Yabusaki, Steven B.; Fang, Yilin; Williams, Kenneth H.; Murray, Christopher J.; Ward, Anderson L.; Dayvault, Richard; Waichler, Scott R.; Newcomer, Darrell R.; Spane, Frank A.; Long, Philip E.

    2011-01-01

    Field experiments at a former uranium mill tailings site have identified the potential for stimulating indigenous bacteria to catalyze the conversion of aqueous uranium in the +6 oxidation state to immobile solid-associated uranium in the +4 oxidation state. This effectively removes uranium from solution resulting in groundwater concentrations below actionable standards. Three-dimensional, coupled variably-saturated flow and biogeochemical reactive transport modeling of a 2008 in situ uranium bioremediation field experiment is used to better understand the interplay of transport rates and biogeochemical reaction rates that determine the location and magnitude of key reaction products. A comprehensive reaction network, developed largely through previous 1-D modeling studies, was used to simulate the impacts on uranium behavior of pulsed acetate amendment, seasonal water table variation, spatially-variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. A principal challenge is the mechanistic representation of biologically-mediated terminal electron acceptor process (TEAP) reactions whose products significantly alter geochemical controls on uranium mobility through increases in pH, alkalinity, exchangeable cations, and highly reactive reduction products. In general, these simulations of the 2008 Big Rusty acetate biostimulation field experiment in Rifle, Colorado confirmed previously identified behaviors including (1) initial dominance by iron reducing bacteria that concomitantly reduce aqueous U(VI), (2) sulfate reducing bacteria that become dominant after ∼30 days and outcompete iron reducers for the acetate electron donor, (3) continuing iron-reducer activity and U(VI) bioreduction during dominantly sulfate reducing conditions, and (4) lower apparent U(VI) removal from groundwater during dominantly sulfate reducing conditions. New knowledge on simultaneously active metal and sulfate reducers has been

  19. Diffusive–Dispersive and Reactive Fronts in Porous Media

    DEFF Research Database (Denmark)

    Haberer, Christina M.; Muniruzzaman, Muhammad; Grathwohl, Peter

    2015-01-01

    , across the unsaturated–saturated interface, under both conservative and reactive transport conditions. As reactive system we considered the abiotic oxidation of Fe2+ in the presence of O2. We studied the reaction kinetics in batch experiments and its coupling with diffusive and dispersive transport...... processes by means of one-dimensional columns and two-dimensional flow-through experiments, respectively. A noninvasive optode technique was used to track O2 transport into the initially anoxic porous medium at highly resolved spatial and temporal scales. The results show significant differences...

  20. The importance of parameter variances, correlations lengths, and cross-correlations in reactive transport models: key considerations for assessing the need for microscale information

    Energy Technology Data Exchange (ETDEWEB)

    Reimus, Paul W [Los Alamos National Laboratory

    2010-12-08

    A process-oriented modeling approach is implemented to examine the importance of parameter variances, correlation lengths, and especially cross-correlations in contaminant transport predictions over large scales. It is shown that the most important consideration is the correlation between flow rates and retardation processes (e.g., sorption, matrix diffusion) in the system. lf flow rates are negatively correlated with retardation factors in systems containing multiple flow pathways, then characterizing these negative correlation(s) may have more impact on reactive transport modeling than microscale information. Such negative correlations are expected in porous-media systems where permeability is negatively correlated with clay content and rock alteration (which are usually associated with increased sorption). Likewise, negative correlations are expected in fractured rocks where permeability is positively correlated with fracture apertures, which in turn are negatively correlated with sorption and matrix diffusion. Parameter variances and correlation lengths are also shown to have important effects on reactive transport predictions, but they are less important than parameter cross-correlations. Microscale information pertaining to contaminant transport has become more readily available as characterization methods and spectroscopic instrumentation have achieved lower detection limits, greater resolution, and better precision. Obtaining detailed mechanistic insights into contaminant-rock-water interactions is becoming a routine practice in characterizing reactive transport processes in groundwater systems (almost necessary for high-profile publications). Unfortunately, a quantitative link between microscale information and flow and transport parameter distributions or cross-correlations has not yet been established. One reason for this is that quantitative microscale information is difficult to obtain in complex, heterogeneous systems. So simple systems that lack the

  1. PFLOTRAN: Reactive Flow & Transport Code for Use on Laptops to Leadership-Class Supercomputers

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Glenn E.; Lichtner, Peter C.; Lu, Chuan; Mills, Richard T.

    2012-04-18

    PFLOTRAN, a next-generation reactive flow and transport code for modeling subsurface processes, has been designed from the ground up to run efficiently on machines ranging from leadership-class supercomputers to laptops. Based on an object-oriented design, the code is easily extensible to incorporate additional processes. It can interface seamlessly with Fortran 9X, C and C++ codes. Domain decomposition parallelism is employed, with the PETSc parallel framework used to manage parallel solvers, data structures and communication. Features of the code include a modular input file, implementation of high-performance I/O using parallel HDF5, ability to perform multiple realization simulations with multiple processors per realization in a seamless manner, and multiple modes for multiphase flow and multicomponent geochemical transport. Chemical reactions currently implemented in the code include homogeneous aqueous complexing reactions and heterogeneous mineral precipitation/dissolution, ion exchange, surface complexation and a multirate kinetic sorption model. PFLOTRAN has demonstrated petascale performance using 2{sup 17} processor cores with over 2 billion degrees of freedom. Accomplishments achieved to date include applications to the Hanford 300 Area and modeling CO{sub 2} sequestration in deep geologic formations.

  2. Evaluating remedial alternatives for an acid mine drainage stream: Application of a reactive transport model

    Science.gov (United States)

    Runkel, R.L.; Kimball, B.A.

    2002-01-01

    A reactive transport model based on one-dimensional transport and equilibrium chemistry is applied to synoptic data from an acid mine drainage stream. Model inputs include streamflow estimates based on tracer dilution, inflow chemistry based on synoptic sampling, and equilibrium constants describing acid/base, complexation, precipitation/dissolution, and sorption reactions. The dominant features of observed spatial profiles in pH and metal concentration are reproduced along the 3.5-km study reach by simulating the precipitation of Fe(III) and Al solid phases and the sorption of Cu, As, and Pb onto freshly precipitated iron-(III) oxides. Given this quantitative description of existing conditions, additional simulations are conducted to estimate the streamwater quality that could result from two hypothetical remediation plans. Both remediation plans involve the addition of CaCO3 to raise the pH of a small, acidic inflow from ???2.4 to ???7.0. This pH increase results in a reduced metal load that is routed downstream by the reactive transport model, thereby providing an estimate of post-remediation water quality. The first remediation plan assumes a closed system wherein inflow Fe(II) is not oxidized by the treatment system; under the second remediation plan, an open system is assumed, and Fe(II) is oxidized within the treatment system. Both plans increase instream pH and substantially reduce total and dissolved concentrations of Al, As, Cu, and Fe(II+III) at the terminus of the study reach. Dissolved Pb concentrations are reduced by ???18% under the first remediation plan due to sorption onto iron-(III) oxides within the treatment system and stream channel. In contrast, iron(III) oxides are limiting under the second remediation plan, and removal of dissolved Pb occurs primarily within the treatment system. This limitation results in an increase in dissolved Pb concentrations over existing conditions as additional downstream sources of Pb are not attenuated by

  3. Reactive transport at the pore-scale: Geological Labs on Chip studies (GLoCs) for CO2 storage in saline aquifers

    Science.gov (United States)

    Azaroual, M. M.; Lassin, A., Sr.; André, L., Sr.; Devau, N., Sr.; Leroy, P., Sr.

    2017-12-01

    The near well bore of CO2 injection in saline aquifer is the main sensitive part of the targeted carbone storage reservoirs. The recent development of microfluidics tools mimicking porous media of geological reservoirs allowed studying physical, physico-chemical and thermodynamic mechanisms. We used the GLoCs "Geological Labs on Chip" to study dynamic and reactive transport processes at the pore scale induced by the CO2 geological storage. The present work is a first attempt to reproduce, by reactive transport modeling, an experiment of calcium carbonate precipitation during the co-injection of two aqueous solutions in a GLoC device. For that purpose, a new kinetics model, based on the transition-state-theory and on surface complexation modeling, was developed to describe the co-precipitation of amorphous calcium carbonate (ACC) and calcite. ACC precipitates and creates surface complexation sites from which calcite can nucleate and create new surface complexation sites. When the kinetics of calcite precipitation are fast enough, the consumption of matter leads to the dissolution of ACC. The modeling results were first compared to batch experiments (from the literature) and then applied with success to dynamic experiment observations carried out on a GLoC device (from the literature). On the other hand, we evaluated the solubility of CO2 in capillary waters that increases between 5 to 10 folds for reservoir conditions (200 bar and 100°C) compared to the bulk water. The GLoCs tools started to address an excellent and much finer degree of processes control (reactive transport processes, mixing effects, minerals precipitation and dissolution kinetics, etc.) thanks to in situ analysis and characterization techniques, allowing access in real time to relevant properties. Current investigations focus on key parameters influencing the flowing dynamics and trapping mechanisms (relative permeability, capillary conditions, kinetics of dissolution and precipitation of minerals).

  4. Use of a multi-species reactive transport model to simulate chloride ingress in mortar exposed to NaCl solution or sea-water

    DEFF Research Database (Denmark)

    Jensen, Mads Mønster; De Weerdt, K.; Johannesson, Björn

    2015-01-01

    Simulations of ion ingress in Portland cement mortar using a multi-species reactive mass transport model are compared with experimental test results. The model is an extended version of the Poisson–Nernst–Planck equations, accounting for chemical equilibrium. Saturated mortar samples were exposed...

  5. Imaging geochemical heterogeneities using inverse reactive transport modeling: An example relevant for characterizing arsenic mobilization and distribution

    DEFF Research Database (Denmark)

    Fakhreddine, Sarah; Lee, Jonghyun; Kitanidis, Peter K.

    2016-01-01

    groundwater parameters. Specifically, we simulate the mobilization of arsenic via kinetic oxidative dissolution of As-bearing pyrite due to dissolved oxygen in the ambient groundwater, which is an important mechanism for arsenic release in groundwater both under natural conditions and engineering applications......The spatial distribution of reactive minerals in the subsurface is often a primary factor controlling the fate and transport of contaminants in groundwater systems. However, direct measurement and estimation of heterogeneously distributed minerals are often costly and difficult to obtain. While...

  6. TOUGHREACT User's Guide: A Simulation Program for Non-isothermal Multiphase Reactive geochemical Transport in Variably Saturated Geologic Media

    International Nuclear Information System (INIS)

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2004-01-01

    Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of mineral alteration in hydrothermal systems, waste disposal sites, acid mine drainage remediation, contaminant transport, and groundwater quality. A comprehensive non-isothermal multi-component reactive fluid flow and geochemical transport simulator, TOUGHREACT, has been developed. A wide range of subsurface thermo-physical-chemical processes is considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. The program can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The model can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions are considered, such as aqueous complexation, gas dissolution/exsolution, and cation exchange. Mineral dissolution/precipitation can proceed either subject to local equilibrium or kinetic conditions. Changes in porosity and permeability due to mineral dissolution and precipitation can be considered. Linear adsorption and decay can be included. For the purpose of future extensions, surface complexation by double layer model is coded in the program. Xu and Pruess (1998) developed a first version of a non-isothermal reactive geochemical transport model, TOUGHREACT, by introducing reactive geochemistry into the framework of the existing multi-phase fluid and heat flow code TOUGH2 (Pruess, 1991). Xu, Pruess, and their colleagues have applied the program to a variety of problems such as: (1) supergene copper enrichment (Xu et al, 2001), (2) caprock mineral alteration in a hydrothermal system (Xu and Pruess, 2001a), and (3) mineral trapping for CO 2 disposal in deep saline aquifers (Xu et al, 2003b and 2004a). For modeling the coupled thermal, hydrological, and chemical processes during heater

  7. Attenuation of pyrite oxidation with a fly ash pre-barrier: Reactive transport modelling of column experiments

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Lopez, R.; Cama, J.; Nieto, J.M.; Ayora, C.; Saaltink, M.W. [University of Huelva, Huelva (Spain). Dept. of Geology

    2009-09-15

    Conventional permeable reactive barriers (PRBs) for passive treatment of groundwater contaminated by acid mine drainage (AMD) use limestone as reactive material that neutralizes water acidity. However, the limestone-alkalinity potential ceases as inevitable precipitation of secondary metal-phases on grain surfaces occurs, limiting its efficiency. In the present study, fly ash derived from coal combustion is investigated as an alternative alkalinity generating material for the passive treatment of AMD using solution-saturated column experiments. Unlike conventional systems, the utilization of fly ash in a pre-barrier to intercept the non-polluted recharge water before this water reacts with pyrite-rich wastes is proposed. Chemical variation in the columns was interpreted with the reactive transport code RETRASO. In parallel, kinetics of fly ash dissolution at alkaline pH were studied using flow-through experiments and incorporated into the model. In a saturated column filled solely with pyritic sludge-quartz sand (1: 10), oxidation took place at acidic conditions (pH 3.7). According to SO{sub 4}{sup 2-} release and pH, pyrite dissolution occurred favourably in the solution-saturated porous medium until dissolved O{sub 2} was totally consumed. In a second saturated column, pyrite oxidation took place at alkaline conditions (pH 10.45) as acidity was neutralized by fly ash dissolution in a previous level. At this pH Fe release from pyrite dissolution was immediately depleted as Fe-oxy(hydroxide) phases that precipitated on the pyrite grains, forming Fe-coatings (microencapsulation). With time, pyrite microencapsulation inhibited oxidation in practically 97% of the pyritic sludge. Rapid pyrite-surface passivation decreased its reactivity, preventing AMD production in the relatively short term.

  8. Inference of reactive transport model parameters using a Bayesian multivariate approach

    Science.gov (United States)

    Carniato, Luca; Schoups, Gerrit; van de Giesen, Nick

    2014-08-01

    Parameter estimation of subsurface transport models from multispecies data requires the definition of an objective function that includes different types of measurements. Common approaches are weighted least squares (WLS), where weights are specified a priori for each measurement, and weighted least squares with weight estimation (WLS(we)) where weights are estimated from the data together with the parameters. In this study, we formulate the parameter estimation task as a multivariate Bayesian inference problem. The WLS and WLS(we) methods are special cases in this framework, corresponding to specific prior assumptions about the residual covariance matrix. The Bayesian perspective allows for generalizations to cases where residual correlation is important and for efficient inference by analytically integrating out the variances (weights) and selected covariances from the joint posterior. Specifically, the WLS and WLS(we) methods are compared to a multivariate (MV) approach that accounts for specific residual correlations without the need for explicit estimation of the error parameters. When applied to inference of reactive transport model parameters from column-scale data on dissolved species concentrations, the following results were obtained: (1) accounting for residual correlation between species provides more accurate parameter estimation for high residual correlation levels whereas its influence for predictive uncertainty is negligible, (2) integrating out the (co)variances leads to an efficient estimation of the full joint posterior with a reduced computational effort compared to the WLS(we) method, and (3) in the presence of model structural errors, none of the methods is able to identify the correct parameter values.

  9. Modeling hydrology and reactive transport in roads: The effect of cracks, the edge, and contaminant properties

    International Nuclear Information System (INIS)

    Apul, Defne S.; Gardner, Kevin H.; Eighmy, T. Taylor

    2007-01-01

    The goal of this research was to provide a tool for regulators to evaluate the groundwater contamination from the use of virgin and secondary materials in road construction. A finite element model, HYDRUS2D, was used to evaluate generic scenarios for secondary material use in base layers. Use of generic model results for particular applications was demonstrated through a steel slag example. The hydrology and reactive transport of contaminants were modeled in a two-dimensional cross section of a road. Model simulations showed that in an intact pavement, lateral velocities from the edge towards the centerline may transport contaminants in the base layer. The dominant transport mechanisms are advection closer to the edge and diffusion closer to the centerline. A shoulder joint in the pavement allows 0.03 to 0.45 m 3 /day of infiltration per meter of joint length as a function of the base and subgrade hydrology and the rain intensity. Scenario simulations showed that salts in the base layer of pavements are depleted by 99% in the first 20 years, whereas the metals may not reach the groundwater in 20 years at any significant concentrations if the pavement is built on adsorbing soils

  10. Montmorillonite dissolution kinetics: Experimental and reactive transport modeling interpretation

    Science.gov (United States)

    Cappelli, Chiara; Yokoyama, Shingo; Cama, Jordi; Huertas, F. Javier

    2018-04-01

    The dissolution kinetics of K-montmorillonite was studied at 25 °C, acidic pH (2-4) and 0.01 M ionic strength by means of well-mixed flow-through experiments. The variations of Si, Al and Mg over time resulted in high releases of Si and Mg and Al deficit, which yielded long periods of incongruent dissolution before reaching stoichiometric steady state. This behavior was caused by simultaneous dissolution of nanoparticles and cation exchange between the interlayer K and released Ca, Mg and Al and H. Since Si was only involved in the dissolution reaction, it was used to calculate steady-state dissolution rates, RSi, over a wide solution saturation state (ΔGr ranged from -5 to -40 kcal mol-1). The effects of pH and the degree of undersaturation (ΔGr) on the K-montmorillonite dissolution rate were determined using RSi. Employing dissolution rates farthest from equilibrium, the catalytic pH effect on the K-montmorillonite dissolution rate was expressed as Rdiss = k·aH0.56±0.05 whereas using all dissolution rates, the ΔGr effect was expressed as a non-linear f(ΔGr) function Rdiss = k · [1 - exp(-3.8 × 10-4 · (|ΔGr|/RT)2.13)] The functionality of this expression is similar to the equations reported for dissolution of Na-montmorillonite at pH 3 and 50 °C (Metz, 2001) and Na-K-Ca-montmorillonite at pH 9 and 80 °C (Cama et al., 2000; Marty et al., 2011), which lends support to the use of a single f(ΔGr) term to calculate the rate over the pH range 0-14. Thus, we propose a rate law that also accounts for the effect of pOH and temperature by using the pOH-rate dependence and the apparent activation energy proposed by Rozalén et al. (2008) and Amram and Ganor (2005), respectively, and normalizing the dissolution rate constant with the edge surface area of the K-montmorillonite. 1D reactive transport simulations of the experimental data were performed using the Crunchflow code (Steefel et al., 2015) to quantitatively interpret the evolution of the released cations

  11. Release of Aged Contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    Energy Technology Data Exchange (ETDEWEB)

    Chorover, Jon [Univ. of Arizona, Tucson, AZ (United States); Perdrial, Nico [Univ. of Arizona, Tucson, AZ (United States); Mueller, Karl [Pennsylvania State Univ., University Park, PA (United States); Strepka, Caleb [Pennsylvania State Univ., University Park, PA (United States); O' Day, Peggy [Univ. of California, Merced, CA (United States); Rivera, Nelson [Univ. of California, Merced, CA (United States); Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chang, Hyun-Shik [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Steefel, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Thompson, Aaron [Univ. of Georgia, Athens, GA (United States)

    2012-08-14

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake (Chorover et al., 2008). In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided thorough characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, PCO2, and reaction time; (ii) improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions. Below, we provide some detailed descriptions of our results from this three year study, recently completed following a one-year no cost extension.

  12. Release of aged contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    Energy Technology Data Exchange (ETDEWEB)

    Chorover, Jon; Perdrial, Nico; Mueller, Karl; Strepka, Caleb; O’Day, Peggy; Rivera, Nelson; Um, Wooyong; Chang, Hyun-Shik; Steefel, Carl; Thompson, Aaron

    2012-11-05

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake. In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided thorough characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, partial pressure of carbon dioxide, and reaction time; (ii) improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions. In this final report, we provide detailed descriptions of our results from this three-year study, completed in 2012 following a one-year no cost extension.

  13. Reactive dispersive contaminant transport in coastal aquifers: Numerical simulation of a reactive Henry problem

    KAUST Repository

    Nick, H.M.; Raoof, A.; Centler, F.; Thullner, M.; Regnier, P.

    2013-01-01

    The reactive mixing between seawater and terrestrial water in coastal aquifers influences the water quality of submarine groundwater discharge. While these waters come into contact at the seawater groundwater interface by density driven flow

  14. TP1 - A computer program for the calculation of reactivity and kinetic parameters by one-dimensional neutron transport perturbation theory

    International Nuclear Information System (INIS)

    Kobayashi, K.

    1979-03-01

    TP1, a FORTRAN-IV program based on transport theory, has been developed to determine reactivity effects and kinetic parameters such as effective delayed neutron fractions and mean generation time by applying the usual perturbation formalism for one-dimensional geometry. Direct and adjoint angular dependent neutron fluxes are read from an interface file prepared by using the one-dimensional Ssub(n)-code DTK which provides options for slab, cylindrical and spherical geometry. Multigroup cross sections which are equivalent to those of the DTK-calculations are supplied in the SIGM-block which is also read from an interface file. This block which is usually produced by the code GRUCAL should contain the necessary delayed neutron data, which can be added to the original SIGMN-block by using the code SIGMUT. Two perturbation options are included in TP1: a) the usual first oder perturbation theory can be applied to determine probe reactivities, b) assuming that there are available direct fluxes for the unperturbed reactor system and adjoint fluxes for the perturbed system, the exact reactivity effect induced by the perturbation can be determined by an exact perturbation calculation. According to the input specifications, the output lists the reactivity contributions for each neutron reaction process in the desired detailed spatial and energy group resolution. (orig./RW) [de

  15. A chromate-contaminated site in southern Switzerland – Part 2: Reactive transport modeling to optimize remediation options

    International Nuclear Information System (INIS)

    Wanner, Christoph; Eggenberger, Urs; Mäder, Urs

    2012-01-01

    A 2D horizontal reactive transport model of a chromate-contaminated site near Rivera, Switzerland, was developed using the computer code CrunchFlow to evaluate site remediation strategies. Transport processes were defined according to the results of an existing hydrological model, and the definition of geochemical (reactive) processes is based on the results of a detailed mineralogical and geochemical site characterization leading to a comprehensive conceptual site model. Kinetics of naturally occurring Cr(VI) reduction by Fe(II) and natural solid organic matter is quantified by fitting measured Cr isotope ratios to a modeled 1D section along the best constrained flow line. The simulation of Cr isotope fractionation was also incorporated into the 2D model. Simulation of the measured present day Cr(VI) plume and δ 53 Cr value distribution was used for the 2D model calibration and corresponds to a situation where only monitored natural attenuation (MNA) is occurring. Other 2D model runs simulate alternate excavation scenarios. The simulations show that with an excavation of the top 2–4 m the groundwater Cr(VI) plume can be minimized, and that a deeper excavation depth only diminishes the plume if all the contaminants can be removed. A combination of an excavation of the top 2–4 m and monitoring of the ongoing natural Cr(VI) reduction is suggested as the most ecological and economical remediation strategy, even though a remaining time period with ongoing subsoil Cr(VI) contamination in the order of 1 ka is predicted.

  16. Reactive transport model of the formation of oxide-type Ni-laterite profiles (Punta Gorda, Moa Bay, Cuba)

    Science.gov (United States)

    Domènech, Cristina; Galí, Salvador; Villanova-de-Benavent, Cristina; Soler, Josep M.; Proenza, Joaquín A.

    2017-10-01

    Oxide-type Ni-laterite deposits are characterized by a dominant limonite zone with goethite as the economically most important Ni ore mineral and a thin zone of hydrous Mg silicate-rich saprolite beneath the magnesium discontinuity. Fe, less soluble, is mainly retained forming goethite, while Ni is redeposited at greater depth in a Fe(III) and Ni-rich serpentine (serpentine II) or in goethite, where it adsorbs or substitutes for Fe in the mineral structure. Here, a 1D reactive transport model, using CrunchFlow, of Punta Gorda oxide-type Ni-laterite deposit (Moa Bay, Cuba) formation is presented. The model reproduces the formation of the different laterite horizons in the profile from an initial, partially serpentinized peridotite, in 106 years, validating the conceptual model of the formation of this kind of deposits in which a narrow saprolite horizon rich in Ni-bearing serpentine is formed above peridotite parent rock and a thick limonite horizon is formed over saprolite. Results also confirm that sorption of Ni onto goethite can explain the weight percent of Ni found in the Moa goethite. Sensitivity analyses accounting for the effect of key parameters (composition, dissolution rate, carbonate concentration, quartz precipitation) on the model results are also presented. It is found that aqueous carbonate concentration and quartz precipitation significantly affects the laterization process rate, while the effect of the composition of secondary serpentine or of mineral dissolution rates is minor. The results of this reactive transport modeling have proven useful to validate the conceptual models derived from field observations.

  17. Final Project Report: Release of aged contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    Energy Technology Data Exchange (ETDEWEB)

    Jon Chorover, University of Arizona; Peggy O' €™Day, University of California, Merced; Karl Mueller, Penn State University; Wooyong Um, Pacific Northwest National Laboratory; Carl Steefel, Lawrence Berkeley National Laboratory

    2012-10-01

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake. In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided detailed characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, PCO2, and reaction time; (ii) improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions.

  18. Uncertainty in reactive transport geochemical modelling

    International Nuclear Information System (INIS)

    Oedegaard-Jensen, A.; Ekberg, C.

    2005-01-01

    Full text of publication follows: Geochemical modelling is one way of predicting the transport of i.e. radionuclides in a rock formation. In a rock formation there will be fractures in which water and dissolved species can be transported. The composition of the water and the rock can either increase or decrease the mobility of the transported entities. When doing simulations on the mobility or transport of different species one has to know the exact water composition, the exact flow rates in the fracture and in the surrounding rock, the porosity and which minerals the rock is composed of. The problem with simulations on rocks is that the rock itself it not uniform i.e. larger fractures in some areas and smaller in other areas which can give different water flows. The rock composition can be different in different areas. In additions to this variance in the rock there are also problems with measuring the physical parameters used in a simulation. All measurements will perturb the rock and this perturbation will results in more or less correct values of the interesting parameters. The analytical methods used are also encumbered with uncertainties which in this case are added to the uncertainty from the perturbation of the analysed parameters. When doing simulation the effect of the uncertainties must be taken into account. As the computers are getting faster and faster the complexity of simulated systems are increased which also increase the uncertainty in the results from the simulations. In this paper we will show how the uncertainty in the different parameters will effect the solubility and mobility of different species. Small uncertainties in the input parameters can result in large uncertainties in the end. (authors)

  19. Interaction of UV laser pulses with reactive dusty plasmas

    NARCIS (Netherlands)

    van de Wetering, F.M.J.H.; Beckers, J.; Nijdam, S.; Oosterbeek, W.; Kovacevic, E.; Berndt, J.

    2016-01-01

    This contribution deals with the effects of UV photons on the synthesis and transport of nanoparticles in reactive complex plasmas (capacitively coupled RF discharge). First measurements showed that the irradiation of a reactive acetylene-argon plasma with high-energy, ns UV laser pulses (355 nm, 75

  20. Coupling diffusion and high-pH precipitation/dissolution in the near field of a HLW repository in clay by means of reactive solute transport models

    Science.gov (United States)

    Samper, J.; Font, I.; Yang, C.; Montenegro, L.

    2004-12-01

    The reference concept for a HLW repository in clay in Spain includes a 75 cm thick bentonite buffer which surrounds canisters. A concrete sustainment 20 cm thick is foreseen between the bentonite buffer and the clay formation. The long term geochemical evolution of the near field is affected by a high-pH hyperalkaline plume induced by concrete. Numerical models of multicomponent reactive transport have been developped in order to quantify the evolution of the system over 1 Ma. Water flow is negligible once the bentonite buffer is saturated after about 20 years. Therefore, solute transport occurs mainly by diffusion. Models account for aqueous complexation, acid-base and redox reactions, cation exchange, and mineral dissolution precipitation in the bentonite, the concrete and the clay formation. Numerical results obtained witth CORE2D indicate that the high-pH plume causes significant changes in porewater chemistry both in the bentonite buffer and the clay formation. Porosity changes caused by mineral dissolution/precipitation are extremely important. Therefore, coupled modes of diffusion and reactive transport accounting for changes in porosity caused by mineral precipitation are required in order to obtain realistic predictions.

  1. An Assessment of Factors Affecting Reactive Transport of Biodegradable BTEX in an Unconfined Aquifer System, Tehran Oil Refinery, Iran

    Directory of Open Access Journals (Sweden)

    A. Agah

    2012-12-01

    Full Text Available Risk-based assessment methods are commonly used at the contaminated sites by hydrocarbon pollutants. This paper presents the results of a two-dimensional finite volume model of reactive transport of biodegradable BTEX which have been developed for the saturated zone of an unconfined aquifer in the Pump station area of Tehran oil refinery, Iran. The model governing equations were numerically solved by modification of a general commercial software called PHOENICS. To reduce costs in general, many input parameters of a model are often approximated based on the used values in the contaminated sites with same conditions. It was not fully recognised the effect of errors in these inputs on modelling outputs. Thus, a sensitivity analysis was carried out to determine the influence of parameters variability on the results of model. For this analysis, the sensitivity of the model to changes in the dispersivity, distribution coefficient, parameters of Monod, Michaelis-Menten, first- and zero- order kinetics modes on the BTEX contaminant plume were examined by performing several simulations. It was found that the model is sensitive to changes in dispersivity and parameters of Michaelis-Menten, first- and zero- order kinetics model. On the other hand, the predictions for plumes assuming Monod kinetics are similar, even if different values for parameterization are chosen. The reason for this insensibility is that degradation is not limited by microbial kinetics in the simulation, but by dispersive mixing. Quantifying the effect of changes in model input parameters on the modelling results is essential when it is desired to recognise which model parameters are more vital on the fate and transport of reactive pollutants. Furthermore, this process can provide an insight into understanding pollutant transportation mechanisms.

  2. Portable digital reactivity meter for power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, G [Nuklear-Ingenieur Service G.m.b.H., Hanau (Germany, F.R.)

    1977-07-01

    A digital reactivity meter has been developed, which can be used for all kinds of kinetic reactivity measurements in PWR's and BWR's. The input signals may be supplied by standard neutron detectors of the reactor. The hardware configuration consists of a minicomputer with ADC and DAC, a 'Silent' terminal and a high speed paper tape reader/punch. It is easily transportable. The reactivity meter solves the inverse kinetics equations for 6 delayed neutron groups, simultaneously for up to 8 logarithmic or linear neutron flux signals. It has been successfully tested at Biblis A PWR and the KRB BWR.

  3. Ab-Initio Modelling Of Surface Site Reactivity And Fluid Transport In Clay Minerals Case Study: Pyrophyllite

    International Nuclear Information System (INIS)

    Churakov, S.V.

    2005-01-01

    Pyrophyllite, Al 2 [Si 4 O 10 ](OH) 2 , is the simplest structural prototype for 2:1 dioctahedral phyllosilicate. Because the net electric charge in pyrophyllite is zero, it is the best candidate for investigating the non electrostatic contribution to sorption and transport phenomena in clays. Using ab-initio simulations, we have investigated the reactivity and structure of the water-solid interface on the basal plane and edge sites of pyrophyllite. The calculations predict slightly hydrophobic behaviour of the basal plane. For the high water coverage (100), (110) and (-110), lateral facets have a lower energy than for the (010), (130) and (-130) surfaces. Analysis of the surface reactivity reveals that the =Al-OH groups are most easily protonated on the (010), (130) and (-130) facets. The =Al-O-Si= sites will be protonated on the (100), (130), (110), (-110) and (-130) surfaces. The =Al-OH 2 complexes are more easily de-protonated than the =Si-OH and =Al-OH sites. A spontaneous, reversible exchange of the protons between the solution and the edge sites has been observed in ab-initio molecular dynamics simulations at 300 K. Such near-surface proton diffusion may result in a significant contribution to the diffusion coefficients measured in neutron scattering experiments. (author)

  4. Reactive transport modeling of chemical and isotope data to identify degradation processes of chlorinated ethenes in a diffusion-dominated media

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia; Damgaard, Ida; Jeannottat, Simon

    . Degradation and transport processes of chlorinated ethenes are not well understood in such geological settings, therefore risk assessment and remediation at these sites are particularly challenging. In this work, a combined approach of chemical and isotope analysis on core samples, and reactive transport...... the source zone (between 6 and 12 mbs). Concentrations and stable isotope ratios of the mother compounds and their daughter products, as well as redox parameters, fatty acids and microbial data, were analyzed with discrete sub-sampling along the cores. More samples (each 5 mm) were collected around...... of dechlorination and degradation pathways (biotic reductive dechlorination or abiotic β-elimination with iron minerals) in three core profiles. The model includes diffusion in the matrix, sequential reductive dechlorination, abiotic degradation, isotope fractionation due to degradation and due to diffusion...

  5. Phast4Windows: A 3D graphical user interface for the reactive-transport simulator PHAST

    Science.gov (United States)

    Charlton, Scott R.; Parkhurst, David L.

    2013-01-01

    Phast4Windows is a Windows® program for developing and running groundwater-flow and reactive-transport models with the PHAST simulator. This graphical user interface allows definition of grid-independent spatial distributions of model properties—the porous media properties, the initial head and chemistry conditions, boundary conditions, and locations of wells, rivers, drains, and accounting zones—and other parameters necessary for a simulation. Spatial data can be defined without reference to a grid by drawing, by point-by-point definitions, or by importing files, including ArcInfo® shape and raster files. All definitions can be inspected, edited, deleted, moved, copied, and switched from hidden to visible through the data tree of the interface. Model features are visualized in the main panel of the interface, so that it is possible to zoom, pan, and rotate features in three dimensions (3D). PHAST simulates single phase, constant density, saturated groundwater flow under confined or unconfined conditions. Reactions among multiple solutes include mineral equilibria, cation exchange, surface complexation, solid solutions, and general kinetic reactions. The interface can be used to develop and run simple or complex models, and is ideal for use in the classroom, for analysis of laboratory column experiments, and for development of field-scale simulations of geochemical processes and contaminant transport.

  6. Reactive Transport Modeling of the Yucca Mountain Site, Nevada

    International Nuclear Information System (INIS)

    G. Bodvarsson

    2004-01-01

    The Yucca Mountain site has a dry climate and deep water table, with the repository located in the middle of an unsaturated zone approximately 600 m thick. Radionuclide transport processes from the repository to the water table are sensitive to the unsaturated zone flow field, as well as to sorption, matrix diffusion, radioactive decay, and colloid transport mechanisms. The unsaturated zone flow and transport models are calibrated against both physical and chemical data, including pneumatic pressure, liquid saturation, water potential, temperature, chloride, and calcite. The transport model predictions are further compared with testing specific to unsaturated zone transport: at Alcove 1 in the Exploratory Studies Facility (ESF), at Alcove 8 and Niche 3 of the ESF, and at the Busted Butte site. The models are applied to predict the breakthroughs at the water table for nonsorbing and sorbing radionuclides, with faults shown as the important paths for radionuclide transport. Daughter products of some important radionuclides, such as 239 Pu and 241 Am, have faster transport than the parents and must be considered in the unsaturated zone transport model. Colloid transport is significantly affected by colloid size, but only negligibly affected by lunetic declogging (reverse filtering) mechanisms. Unsaturated zone model uncertainties are discussed, including the sensitivity of breakthrough to the active fracture model parameter, as an example of uncertainties related to detailed flow characteristics and fracture-matrix interaction. It is expected that additional benefits from the unsaturated zone barrier for transport can be achieved by full implementation of the shadow zone concept immediately below the radionuclide release points in the waste emplacement drifts

  7. A reactive transport model for mercury fate in contaminated soil--sensitivity analysis.

    Science.gov (United States)

    Leterme, Bertrand; Jacques, Diederik

    2015-11-01

    We present a sensitivity analysis of a reactive transport model of mercury (Hg) fate in contaminated soil systems. The one-dimensional model, presented in Leterme et al. (2014), couples water flow in variably saturated conditions with Hg physico-chemical reactions. The sensitivity of Hg leaching and volatilisation to parameter uncertainty is examined using the elementary effect method. A test case is built using a hypothetical 1-m depth sandy soil and a 50-year time series of daily precipitation and evapotranspiration. Hg anthropogenic contamination is simulated in the topsoil by separately considering three different sources: cinnabar, non-aqueous phase liquid and aqueous mercuric chloride. The model sensitivity to a set of 13 input parameters is assessed, using three different model outputs (volatilized Hg, leached Hg, Hg still present in the contaminated soil horizon). Results show that dissolved organic matter (DOM) concentration in soil solution and the binding constant to DOM thiol groups are critical parameters, as well as parameters related to Hg sorption to humic and fulvic acids in solid organic matter. Initial Hg concentration is also identified as a sensitive parameter. The sensitivity analysis also brings out non-monotonic model behaviour for certain parameters.

  8. Ultrafast Carrier Relaxation in InN Nanowires Grown by Reactive Vapor Transport

    Directory of Open Access Journals (Sweden)

    Zervos Matthew

    2008-01-01

    Full Text Available Abstract We have studied femtosecond carrier dynamics in InN nanowires grown by reactive vapor transport. Transient differential absorption measurements have been employed to investigate the relaxation dynamics of photogenerated carriers near and above the optical absorption edge of InN NWs where an interplay of state filling, photoinduced absorption, and band-gap renormalization have been observed. The interface between states filled by free carriers intrinsic to the InN NWs and empty states has been determined to be at 1.35 eV using CW optical transmission measurements. Transient absorption measurements determined the absorption edge at higher energy due to the additional injected photogenerated carriers following femtosecond pulse excitation. The non-degenerate white light pump-probe measurements revealed that relaxation of the photogenerated carriers occurs on a single picosecond timescale which appears to be carrier density dependent. This fast relaxation is attributed to the capture of the photogenerated carriers by defect/surface related states. Furthermore, intensity dependent measurements revealed fast energy transfer from the hot photogenerated carriers to the lattice with the onset of increased temperature occurring at approximately 2 ps after pulse excitation.

  9. Modelling the dispersion and transport of reactive pollutants in a deep urban street canyon: Using large-eddy simulation

    International Nuclear Information System (INIS)

    Zhong, Jian; Cai, Xiao-Ming; Bloss, William James

    2015-01-01

    This study investigates the dispersion and transport of reactive pollutants in a deep urban street canyon with an aspect ratio of 2 under neutral meteorological conditions using large-eddy simulation. The spatial variation of pollutants is significant due to the existence of two unsteady vortices. The deviation of species abundance from chemical equilibrium for the upper vortex is greater than that for the lower vortex. The interplay of dynamics and chemistry is investigated using two metrics: the photostationary state defect, and the inferred ozone production rate. The latter is found to be negative at all locations within the canyon, pointing to a systematic negative offset to ozone production rates inferred by analogous approaches in environments with incomplete mixing of emissions. This study demonstrates an approach to quantify parameters for a simplified two-box model, which could support traffic management and urban planning strategies and personal exposure assessment. - Highlights: • Large-eddy simulation reproduces two unsteady vortices seen in a lab experiment. • Reactive pollutants in an urban street canyon exhibit significant spatial variation. • O 3 production rate inferred by the NO x -O 3 -steady-state-defect approach is discussed. • Ground level sourced pollutants are largely trapped within the lower vortex. • A method of quantifying parameters of a two-box model is developed. - Reactive pollutants in a deep street canyon exhibit significant spatial variation driven by two unsteady vortices. A method of quantifying parameters of a two-box model is developed

  10. Modeling the fate transport of cesium in crushed granite

    International Nuclear Information System (INIS)

    Lee, C.B.; Kuo, Y.M.; Hsu, C.N.; Li, M.H.; Cheng, H.P.; Teng, S.P.

    2005-01-01

    Full text of publication follows: In order to assess the safety of a underground radwaste repository, reactive transport models suitable for evaluating the fate and transport of radionuclides need to be established based on experimental observation and analysis. The goal of this study is to construct adequate models simulating the reactive transport of cesium (Cs) in crushed granite through a systematic analysis, where synthetic groundwater (SGW) and synthetic seawater (SSW) were employed as the liquid phase. To build such models, this study applied N 2 -BET, x-ray diffraction (XRD), polar-microscopy/ auto-radiography, and solid-phase digestion for the analysis of granite, kinetic batch tests for the characterization of sorption/desorption of Cs, and multi-stage advection-dispersion column tests for the determination of major transport processes and the calibration/validation of hypothesized reactive transport models. Based on the results of solid phase analysis and batch tests, a two-site Langmuir kinetic model has been determined capable of appropriately describing Cs sorption/desorption under test conditions. From the results of non-reactive HTO column tests, a mobile/immobile transport model was proposed to capture the major transport processes in our column system. However, the combination of the two-site Langmuir model and the mobile/immobile transport model failed to provide numerical breakthrough curves matching the Cs experimental breakthroughs. It implied that our model needs to be further refined. To achieve this, the setup of our column test needs to be modified first to reduce the volume of column connecting space, so that the effect of extra diffusion/dispersion on breakthroughs would be minimized and major transport characteristics can be clearly revealed. Moreover, more investigations on the reaction mechanisms and transport processes of the reactive transport system must be conducted. (authors)

  11. Preliminary reactive geochemical transport simulation study on CO2 geological sequestration at the Changhua Coastal Industrial Park Site, Taiwan

    Science.gov (United States)

    Sung, R.; Li, M.

    2013-12-01

    assumed throughout the simulation domain. Comparisons among simulated results with different mesh systems of nested meshes and non-nested meshes and considerations of multiphase reactive transport and physical transport were demonstrated in this study. Preliminary results of injection CO2 for 50 years are: (1) about 7 wt.% of injected CO2 was trapped as carbonate minerals mainly as ankerite; (2) porosities were decreased by 0.014 % and increased by 0.102 % at the injection point and beneath the cap rock, respectively, and were subsequently decreased with time due to minerals precipitation mostly as illite and ankerite; (3) differences of simulated aquifer responses between reactive transport and physical transport were insignificant; and (4) projected CO2 plumes with the nested meshes was smaller than those by the non-nested meshes after cease of CO2 injection. Keywords: CO2-Saline-Mineral Interaction, Reactive Geochemical Transport, TOUGHREACT, Mineral Trapping Assessment, Changhua Costal Industrial Park Site, Taiwan Reference: Marini, L., 2006, Geological Sequestration of Carbon Dioxide, Volume 11: Thermodynamics, Kinetics, and Reaction Path Modeling, Elsevier Science, pp.470. Xu, T., J. A. Apps and K. Pruess, 2004, Numerical simulation of CO2 disposal by mineral trapping in deep aquifers, Applied Geochemistry, Vol. 19:917-936.

  12. Fracture Characterization in Reactive Fluid-Fractured Rock Systems Using Tracer Transport Data

    Science.gov (United States)

    Mukhopadhyay, S.

    2014-12-01

    Fractures, whether natural or engineered, exert significant controls over resource exploitation from contemporary energy sources including enhanced geothermal systems and unconventional oil and gas reserves. Consequently, fracture characterization, i.e., estimating the permeability, connectivity, and spacing of the fractures is of critical importance for determining the viability of any energy recovery program. While some progress has recently been made towards estimating these critical fracture parameters, significant uncertainties still remain. A review of tracer technology, which has a long history in fracture characterization, reveals that uncertainties exist in the estimated parameters not only because of paucity of scale-specific data but also because of knowledge gaps in the interpretation methods, particularly in interpretation of tracer data in reactive fluid-rock systems. We have recently demonstrated that the transient tracer evolution signatures in reactive fluid-rock systems are significantly different from those in non-reactive systems (Mukhopadhyay et al., 2013, 2014). For example, the tracer breakthrough curves in reactive fluid-fractured rock systems are expected to exhibit a long pseudo-state condition, during which tracer concentration does not change by any appreciable amount with passage of time. Such a pseudo-steady state condition is not observed in a non-reactive system. In this paper, we show that the presence of this pseudo-steady state condition in tracer breakthrough patterns in reactive fluid-rock systems can have important connotations for fracture characterization. We show that the time of onset of the pseudo-steady state condition and the value of tracer concentration in the pseudo-state condition can be used to reliably estimate fracture spacing and fracture-matrix interface areas.

  13. Calculations of reactivity based in the solution of the Neutron transport equation in X Y geometry and Lineal perturbation theory

    International Nuclear Information System (INIS)

    Valle G, E. del; Mugica R, C.A.

    2005-01-01

    In our country, in last congresses, Gomez et al carried out reactivity calculations based on the solution of the diffusion equation for an energy group using nodal methods in one dimension and the TPL approach (Lineal Perturbation Theory). Later on, Mugica extended the application to the case of multigroup so much so much in one as in two dimensions (X Y geometry) with excellent results. Presently work is carried out similar calculations but this time based on the solution of the neutron transport equation in X Y geometry using nodal methods and again the TPL approximation. The idea is to provide a calculation method that allows to obtain in quick form the reactivity solving the direct problem as well as the enclosed problem of the not perturbed problem. A test problem for the one that results are provided for the effective multiplication factor is described and its are offered some conclusions. (Author)

  14. Simulating the reactive transport of nitrogen species in a regional irrigated agricultural groundwater system

    Science.gov (United States)

    Bailey, R. T.; Gates, T. K.

    2011-12-01

    The fate and transport of nitrogen (N) species in irrigated agricultural groundwater systems is governed by irrigation patterns, cultivation practices, aquifer-surface water exchanges, and chemical reactions such as oxidation-reduction, volatilization, and sorption, as well as the presence of dissolved oxygen (O2). We present results of applying the newly-developed numerical model RT3D-AG to a 50,400-ha regional study site within the Lower Arkansas River Valley in southeastern Colorado, where elevated concentrations of NO3 have been observed in both groundwater and surface water during the recent decade. Furthermore, NO3 has a strong influence on the fate and transport of other contaminants in the aquifer system such as selenium (Se) through inhibition of reduction of dissolved Se as well as oxidation of precipitate Se from outcropped and bedrock shale. RT3D-AG, developed by appending the multi-species reactive transport finite-difference model RT3D with modular packages that account for variably-saturated transport, the cycling of carbon (C) and N, and the fate and transport of O2 within the soil and aquifer system, simulates organic C and organic N decomposition and mineralization, oxidation-reduction reactions, and sorption. System sources/sinks consist of applied fertilizer and manure; crop uptake of ammonium (NH4) and NO3 during the growing season; mass of O2, NO3, and NH4 associated with irrigation water and canal seepage; mass of O2, NO3, and NH4 transferred to canals and the Arkansas River from the aquifer; and dead root mass and after-harvest stover mass incorporated into the soil organic matter at the end of the growing season. Chemical reactions are simulated using first-order Monod kinetics, wherein the rate of reaction is dependent on the concentration of the reactants as well as temperature and water content of the soil. Fertilizer and manure application timing and loading, mass of seasonal crop uptake, and end-of-season root mass and stover mass are

  15. Interfacial microstructure and shear strength of reactive air brazed oxygen transport membrane ceramic-metal alloy joints

    Science.gov (United States)

    FR, Wahid Muhamad; Yoon, Dang-Hyok; Raju, Kati; Kim, Seyoung; Song, Kwang-sup; Yu, Ji Haeng

    2018-01-01

    To fabricate a multi-layered structure for maximizing oxygen production, oxygen transport membrane (OTM) ceramics need to be joined or sealed hermetically metal supports for interfacing with the peripheral components of the system. Therefore, in this study, Ag-10 wt% CuO was evaluated as an effective filler material for the reactive air brazing of dense Ce0.9Gd0.1O2-δ-La0.7Sr0.3MnO3±δ (GDC-LSM) OTM ceramics. Thermal decomposition in air and wetting behavior of the braze filler was performed. Reactive air brazing was performed at 1050 °C for 30 min in air to join GDC-LSM with four different commercially available high temperature-resistant metal alloys, such as Crofer 22 APU, Inconel 600, Fecralloy, and AISI 310S. The microstructure and elemental distribution of the ceramic-ceramic and ceramic-metal interfaces were examined from polished cross-sections. The mechanical shear strength at room temperature for the as-brazed and isothermally aged (800 °C for 24 h) joints of all the samples was compared. The results showed that the strength of the ceramic-ceramic joints was decreased marginally by aging; however, in the case of metal-ceramic joints, different decreases in strengths were observed according to the metal alloy used, which was explained based on the formation of different oxide layers at the interfaces.

  16. TOUGHREACT User's Guide: A Simulation Program for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media, V1.2.1

    International Nuclear Information System (INIS)

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2008-01-01

    Coupled modeling of subsurface multiphase fluid and heat flow, solute transport, and chemical reactions can be applied to many geologic systems and environmental problems, including geothermal systems, diagenetic and weathering processes, subsurface waste disposal, acid mine drainage remediation, contaminant transport, and groundwater quality. TOUGHREACT has been developed as a comprehensive non-isothermal multi-component reactive fluid flow and geochemical transport simulator to investigate these and other problems. A number of subsurface thermo-physical-chemical processes are considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. TOUGHREACT can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The code can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions are considered, such as aqueous complexation, gas dissolution/exsolution, and cation exchange. Mineral dissolution/precipitation can take place subject to either local equilibrium or kinetic controls, with coupling to changes in porosity and permeability and capillary pressure in unsaturated systems. Chemical components can also be treated by linear adsorption and radioactive decay. The first version of the non-isothermal reactive geochemical transport code TOUGHREACT was developed (Xu and Pruess, 1998) by introducing reactive geochemistry into the framework of the existing multi-phase fluid and heat flow code TOUGH2 (Pruess, 1991). TOUGHREACT was further enhanced with the addition of (1) treatment of mineral-water-gas reactive-transport under boiling conditions, (2) an improved HKF activity model for aqueous species, (3) gas species diffusion coefficients calculated as a function of pressure, temperature, and molecular properties, (4) mineral reactive surface area formulations for fractured

  17. Dual continuum models of fully coupled non-isothermal multiphase flow and reactive transport in porous media

    International Nuclear Information System (INIS)

    Zheng, L.; Samper, J.

    2005-01-01

    Full text of publication follows: Double porosity, double permeability and dual continuum models (DCM) are widely used for modeling preferential water flow and mass transport in unsaturated and fractured media. Here we present a DCM of fully coupled non-isothermal multiphase flow and reactive transport model for the FEBEX compacted bentonite, a material which exhibits a double porosity behavior.. FEBEX (Full-scale Engineered Barrier EXperiment) is a demonstration and research project dealing with the bentonite engineered barrier designed for sealing and containment of a high level radioactive waste repository. Our DCM considers inter-aggregate macro-pores, and intra-aggregate and interlayer micro-pores. Two types of DCMs are tested: the dual continuum connected matrix (DCCM) and the dual continuum dis connected matrix (DCDM). Liquid flow in macro-pores is described with a mass conservation equation accounting for Darcian flow, chemical and thermal osmosis. In DCCM, water flux in micropores is calculated with a modified Darcy's law by adding a chemical osmosis term. A simple mass balance equation is used for DCDM which contains a storage and a water exchange term for water in micropores. A mixed type of water exchange term is adopted which includes a second order term accounting for water transfer due to the difference in liquid pressure and a first order term accounting for the gradient in chemical osmosis pressure. Equations of mass conservation for liquid, gas and heat in macro-pores and liquid mass conservation in micropores are solved by using a Newton-Raphson method. Two transport equations with a coupling interaction term are used to describe solute transport in macro- and micro-pores. The coupling term contains a first order diffusion term and a convection term (solute exchange due to water exchange). Transport equations as well as chemical reactions in the two domains are solved by means of a sequential iteration method. All these feature have been

  18. Equilibrium, kinetic and reactive transport models for Pu: employing numerical methods to uncover the nature of the intrinsic colloid

    International Nuclear Information System (INIS)

    Schwantes, Jon M.; Batchelor, Bill

    2000-01-01

    Future missions for the Department of Defense include processing plutonium for vitrification and conversion to mixed oxide fuels for commercial use. Such processing could result in the production of Pu-containing waste and unplanned releases of Pu to the environment. Some releases related to plutonium processing have occurred in the past. However, scientists are currently not able to explain the observed behavior of plutonium in natural systems. For example, classical filtration theory predicts that plutonium transport within groundwater should be limited to a few tens of meters. Experimental observations, however, show that plutonium is present in groundwater at distances orders of magnitude farther away from its source than predicted. Before adequate disposal practices can be designed for plutonium, its behavior in these systems must be better understood. The overall goal of this project is to develop equilibrium, kinetic and reactive transport models that describe the behavior of Pu in aqueous systems and to apply these models to natural and engineered systems

  19. Reactive chemicals and process hazards

    International Nuclear Information System (INIS)

    Surianarayanan, M.

    2016-01-01

    Exothermic chemical reactions are often accompanied by significant heat release, and therefore, need a thorough investigation before they are taken to a plant scale. Sudden thermal energy releases from exothermic decompositions and runaway reactions have contributed to serious fire and explosions in several chemical process plants. Similarly, thermal runaway had also occurred in storage and transportation of reactive chemicals. The secondary events of thermal runaway reactions can be rupture of process vessel, toxic spills and release of explosive vapor clouds or combination of these also. The explosion hazards are governed by the system thermodynamics and kinetics of the thermal process. Theoretical prediction of limiting temperature is difficult due to process complexities. Further, the kinetic data obtained through classical techniques, at conditions far away from runaway situation, is often not valid for assessing the runaway behavior of exothermic processes. The main focus of this lecture is to discuss the causes and several contributing factors for thermal runaway and instability and present analyses of the methodologies of the new instrumental techniques for assessing the thermal hazards of reactive chemicals during processing, storage and transportation. (author)

  20. Reactive-transport model for the prediction of the uniform corrosion behaviour of copper used fuel containers

    International Nuclear Information System (INIS)

    King, F.; Kolar, M.; Maak, P.

    2008-01-01

    Used fuel containers in a deep geological repository will be subject to various forms of corrosion. For containers made from oxygen-free, phosphorus-doped copper, the most likely corrosion processes are uniform corrosion, underdeposit corrosion, stress corrosion cracking, and microbiologically influenced corrosion. The environmental conditions within the repository are expected to evolve with time, changing from warm and oxidizing initially to cool and anoxic in the long-term. In response, the corrosion behaviour of the containers will also change with time as the repository environment evolve. A reactive-transport model has been developed to predict the time-dependent uniform corrosion behaviour of the container. The model is based on an experimentally-based reaction scheme that accounts for the various chemical, microbiological, electrochemical, precipitation/dissolution, adsorption/desorption, redox, and mass-transport processes at the container surface and in the compacted bentonite-based sealing materials within the repository. Coupling of the electrochemical interfacial reactions with processes in the bentonite buffer material allows the effect of the evolution of the repository environment on the corrosion behaviour of the container to be taken into account. The Copper Corrosion Model for Uniform Corrosion predicts the time-dependent corrosion rate and corrosion potential of the container, as well as the evolution of the near-field environment

  1. Red blood cells augment transport of reactive metabolites of monocrotaline from liver to lung in isolated and tandem liver and lung preparations

    Energy Technology Data Exchange (ETDEWEB)

    Pan, L.C.; Lame, M.W.; Morin, D.; Wilson, D.W.; Segall, H.J. (Department of Veterinary Pharmacology, University of California, Davis (United States))

    1991-09-01

    Monocrotaline (MCT) is a pyrrolizidine alkaloid that causes pulmonary hypertension in rats by mechanisms which remain largely unknown. MCT is thought to be activated in the liver to a reactive intermediate that is transported to the lung where it causes endothelial injury. The authors previous pharmacokinetic work demonstrated significant sequestration of radioactivity in red blood cells (RBCs) of rats treated with (14C)MCT. To determine whether this RBC sequestration might be important in the transport of reactive MCT metabolites, they compared the effect of inclusion of RBCs in the perfusion buffer on the extent of covalent binding of (14C)MCT to rat lungs in tandem liver-lung preparations. The potential effect of RBCs in stabilizing reactive intermediates was evaluated by preperfusion of isolated liver preparations with (14C)MCT with and without RBCs, separation and washing of the RBC fraction, and subsequent (90 min later) perfusion of washed RBCs or buffer alone in isolated perfused lungs. Covalent binding to lung tissues was determined by exhaustive methanol/chloroform extractions of unbound label from homogenized lung tissue followed by scintillation counting of residual 14C. Covalent binding was expressed as picomole MCT molecular weight equivalents/mg protein. Comparison of the relative capability of these isolated organ preparations for conversion of MCT to polar metabolites was done by extraction and HPLC analysis of perfusate at the end of the experiment. Isolated livers converted 65-85% of MCT to polar metabolites compared with less than 5% conversion in the isolated lungs. Inclusion of RBCs in the buffer of tandem lung liver preparations perfused with 400 microM (14C)MCT increased the covalent binding to the lung from 97 {plus minus} 25 (buffer alone) to 182 {plus minus} 36 (buffer + RBC) pmol/mg protein.

  2. Red blood cells augment transport of reactive metabolites of monocrotaline from liver to lung in isolated and tandem liver and lung preparations

    International Nuclear Information System (INIS)

    Pan, L.C.; Lame, M.W.; Morin, D.; Wilson, D.W.; Segall, H.J.

    1991-01-01

    Monocrotaline (MCT) is a pyrrolizidine alkaloid that causes pulmonary hypertension in rats by mechanisms which remain largely unknown. MCT is thought to be activated in the liver to a reactive intermediate that is transported to the lung where it causes endothelial injury. The authors previous pharmacokinetic work demonstrated significant sequestration of radioactivity in red blood cells (RBCs) of rats treated with [14C]MCT. To determine whether this RBC sequestration might be important in the transport of reactive MCT metabolites, they compared the effect of inclusion of RBCs in the perfusion buffer on the extent of covalent binding of [14C]MCT to rat lungs in tandem liver-lung preparations. The potential effect of RBCs in stabilizing reactive intermediates was evaluated by preperfusion of isolated liver preparations with [14C]MCT with and without RBCs, separation and washing of the RBC fraction, and subsequent (90 min later) perfusion of washed RBCs or buffer alone in isolated perfused lungs. Covalent binding to lung tissues was determined by exhaustive methanol/chloroform extractions of unbound label from homogenized lung tissue followed by scintillation counting of residual 14C. Covalent binding was expressed as picomole MCT molecular weight equivalents/mg protein. Comparison of the relative capability of these isolated organ preparations for conversion of MCT to polar metabolites was done by extraction and HPLC analysis of perfusate at the end of the experiment. Isolated livers converted 65-85% of MCT to polar metabolites compared with less than 5% conversion in the isolated lungs. Inclusion of RBCs in the buffer of tandem lung liver preparations perfused with 400 microM [14C]MCT increased the covalent binding to the lung from 97 ± 25 (buffer alone) to 182 ± 36 (buffer + RBC) pmol/mg protein

  3. Reactive transport modeling of processes controlling the distribution and natural attenuation of phenolic compounds in a deep sandstone aquifer

    Science.gov (United States)

    Mayer, K. U.; Benner, S. G.; Frind, E. O.; Thornton, S. F.; Lerner, D. N.

    2001-12-01

    Reactive solute transport modeling was utilized to evaluate the potential for natural attenuation of a contaminant plume containing phenolic compounds at a chemical producer in the West Midlands, UK. The reactive transport simulations consider microbially mediated biodegradation of the phenolic compounds (phenols, cresols, and xylenols) by multiple electron acceptors. Inorganic reactions including hydrolysis, aqueous complexation, dissolution of primary minerals, formation of secondary mineral phases, and ion exchange are considered. One-dimensional (1D) and three-dimensional (3D) simulations were conducted. Mass balance calculations indicate that biodegradation in the saturated zone has degraded approximately 1-5% of the organic contaminant plume over a time period of 47 years. Simulations indicate that denitrification is the most significant degradation process, accounting for approximately 50% of the organic contaminant removal, followed by sulfate reduction and fermentation reactions, each contributing 15-20%. Aerobic respiration accounts for less than 10% of the observed contaminant removal in the saturated zone. Although concentrations of Fe(III) and Mn(IV) mineral phases are high in the aquifer sediment, reductive dissolution is limited, producing only 5% of the observed mass loss. Mass balance calculations suggest that no more than 20-25% of the observed total inorganic carbon (TIC) was generated from biodegradation reactions in the saturated zone. Simulations indicate that aerobic biodegradation in the unsaturated zone, before the contaminant entered the aquifer, may have produced the majority of the TIC observed in the plume. Because long-term degradation is limited to processes within the saturated zone, use of observed TIC concentrations to predict the future natural attenuation may overestimate contaminant degradation by a factor of 4-5.

  4. Arsenic in groundwater of the Red River floodplain, Vietnam: Controlling geochemical processes and reactive transport modeling

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Larsen, Flemming; Hue, N.T.M.

    2007-01-01

    The mobilization of arsenic (As) to the groundwater was studied in a shallow Holocene aquifer on the Red River flood plain near Hanoi, Vietnam. The groundwater chemistry was investigated in a transect of 100 piezometers. Results show an anoxic aquifer featuring organic carbon decomposition......(III) but some As(V) is always found. Arsenic correlates well with NH4, relating its release to organic matter decomposition and the source of As appears to be the Fe-oxides being reduced. Part of the produced Fe(II) is apparently reprecipitated as siderite containing less As. Results from sediment extraction...... chemistry over depth is homogeneous and a reactive transport model was constructed to quantify the geochemical processes along the vertical groundwater flow component. A redox zonation model was constructed using the partial equilibrium approach with organic carbon degradation in the sediment as the only...

  5. Phast4Windows: a 3D graphical user interface for the reactive-transport simulator PHAST.

    Science.gov (United States)

    Charlton, Scott R; Parkhurst, David L

    2013-01-01

    Phast4Windows is a Windows® program for developing and running groundwater-flow and reactive-transport models with the PHAST simulator. This graphical user interface allows definition of grid-independent spatial distributions of model properties-the porous media properties, the initial head and chemistry conditions, boundary conditions, and locations of wells, rivers, drains, and accounting zones-and other parameters necessary for a simulation. Spatial data can be defined without reference to a grid by drawing, by point-by-point definitions, or by importing files, including ArcInfo® shape and raster files. All definitions can be inspected, edited, deleted, moved, copied, and switched from hidden to visible through the data tree of the interface. Model features are visualized in the main panel of the interface, so that it is possible to zoom, pan, and rotate features in three dimensions (3D). PHAST simulates single phase, constant density, saturated groundwater flow under confined or unconfined conditions. Reactions among multiple solutes include mineral equilibria, cation exchange, surface complexation, solid solutions, and general kinetic reactions. The interface can be used to develop and run simple or complex models, and is ideal for use in the classroom, for analysis of laboratory column experiments, and for development of field-scale simulations of geochemical processes and contaminant transport. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  6. SCRAM reactivity calculations with the KIKO3D code

    International Nuclear Information System (INIS)

    Hordosy, G.; Kerszturi, A.; Maraczy, Cs.; Temesvari, E.

    1999-01-01

    Discrepancies between calculated static reactivities and measured reactivities evaluated with reactivity meters led to investigating SCRAM with the KIKO3D dynamic code, The time and space dependent neutron flux in the reactor core during the rod drop measurement was calculated by the KIKO3D nodal diffusion code. For calculating the ionisation chamber signals the Green function technique was applied. The Green functions of ionisation chambers were evaluated via solving the neutron transport equation in the reflector regions with the MCNP Monte Carlo code. The detector signals during asymmetric SCRAM measurements were calculated and compared with measured data using the inverse point kinetics transformation. The sufficient agreement validates the KIKO3D code to determine the reactivities after SCRAM. (Authors)

  7. Interplay between subsurface structural heterogeneity and multi-species reactive transport in human health risk predictions

    Science.gov (United States)

    Henri, C.; Fernandez-Garcia, D.; de Barros, F.

    2013-12-01

    The increasing presence of toxic chemicals released in the subsurface has led to a rapid growth of social concerns and to the need to develop and employ models that can predict the impact of groundwater contamination in human health under uncertainty. Monitored natural attenuation is a common remediation action in many contamination cases and represents an attractive decontamination method. However, natural attenuation can lead to the production of subspecies of distinct toxicity that may pose challenges in pollution management strategies. The actual threat that these contaminants pose to human health and ecosystems greatly depends on the interplay between the complexity of the geological system and the toxicity of the pollutants and their byproducts. In this work, we examine the interplay between multispecies reactive transport and the heterogeneous structure of the contaminated aquifer on human health risk predictions. The structure and organization of hydraulic properties of the aquifer can lead to preferential flow channels and fast contamination pathways. Early travel times, associated to channeling effects, are intuitively perceived as an indicator for high risk. However, in the case of multi-species systems, early travel times may also lead a limited production of daughter species that may contain higher toxicity as in the case of chlorinated compounds. In this work, we model a Perchloroethylene (PCE) contamination problem followed by the sequential first-order production/biodegradation of its daughter species Trichloroethylene (TCE), Dichloroethylene (DCE) and Vinyl Chlorine (VC). For this specific case, VC is known to be a highly toxic contaminant. By performing numerical experiments, we evaluate transport for two distinct three-dimensional aquifer structures. First, a multi-Gaussian hydraulic conductivity field and secondly, a geostatistically equivalent connected field. These two heterogeneity structures will provide two distinct ranges of mean travel

  8. On Perturbation Components Correspondence between Diffusion and Transport

    Energy Technology Data Exchange (ETDEWEB)

    G. Palmiotti

    2012-11-01

    We have established a correspondence between perturbation components in diffusion and transport theory. In particular we have established the correspondence between the leakage perturbation component of the diffusion theory to that of the group self scattering in transport theory. This has been confirmed by practical applications on sodium void reactivity calculations of fast reactors. Why this is important for current investigations? Recently, there has been a renewed interest in designing fast reactors where the sodium void reactivity coefficient is minimized. In particular the ASTRID8,9 reactor concept has been optimized with this goal in mind. The correspondence on the leakage term that has been established here has a twofold implication for the design of this kind of reactors. First, this type of reactor has a radial reflector; therefore, as shown before, the sodium void reactivity coefficient calculation requires the use of transport theory. The minimization of the sodium reactivity coefficient is normally done by increasing the leakage component that has a negative sign. The correspondence established in this paper allows to directly look at this component in transport theory. The second implication is related to the uncertainty evaluation on sodium void reactivity. As it has shown before, the total sodium void reactivity effect is the result of a large compensation (opposite sign) between the scattering (called often spectral) component and the leakage one. Consequently, one has to evaluate separately the uncertainty on each separate component and then combine them statistically. If one wants to compute the cross section sensitivity coefficients of the two different components, the formulation established in this paper allows to achieve this goal by playing on the contribution to the sodium void reactivity coming from the group self scattering of the sodium cross section.

  9. Reactivity and neutron emission measurements of highly burnt PWR fuel rod samples

    International Nuclear Information System (INIS)

    Murphy, M.F.; Jatuff, F.; Grimm, P.; Seiler, R.; Brogli, R.; Meier, G.; Berger, H.-D.; Chawla, R.

    2006-01-01

    Fuel rods with burnup values beyond 50 GWd/t are characterised by relatively large amounts of fission products and a high abundance of major and minor actinides. Of particular interest is the change in the reactivity of the fuel as a function of burnup and the capability of modern codes to predict this change. In addition, the neutron emission from burnt fuel has important implications for the design of transport and storage facilities. Measurements have been made of the reactivity effects and the neutron emission rates of highly burnt uranium oxide and mixed oxide fuel rod samples coming from a pressurised water reactor (PWR). The reactivity measurements have been made in a PWR lattice in the PROTEUS zero-energy reactor moderated in turn with: water, a water and heavy water mixture and water containing boron. A combined transport flask and sample changer was used to insert the 400 mm long burnt fuel rod segments into the reactor. Both control rod compensation and reactor period methods were used to determine the reactivities of the samples. For the range of burnup values investigated, an interesting exponential relationship has been found between the neutron emission rate and the measured reactivity

  10. TOUGHREACT User's Guide: A Simulation Program for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media, V1.2.1

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2008-09-29

    Coupled modeling of subsurface multiphase fluid and heat flow, solute transport, and chemical reactions can be applied to many geologic systems and environmental problems, including geothermal systems, diagenetic and weathering processes, subsurface waste disposal, acid mine drainage remediation, contaminant transport, and groundwater quality. TOUGHREACT has been developed as a comprehensive non-isothermal multi-component reactive fluid flow and geochemical transport simulator to investigate these and other problems. A number of subsurface thermo-physical-chemical processes are considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. TOUGHREACT can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The code can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions are considered, such as aqueous complexation, gas dissolution/exsolution, and cation exchange. Mineral dissolution/precipitation can take place subject to either local equilibrium or kinetic controls, with coupling to changes in porosity and permeability and capillary pressure in unsaturated systems. Chemical components can also be treated by linear adsorption and radioactive decay. The first version of the non-isothermal reactive geochemical transport code TOUGHREACT was developed (Xu and Pruess, 1998) by introducing reactive geochemistry into the framework of the existing multi-phase fluid and heat flow code TOUGH2 (Pruess, 1991). TOUGHREACT was further enhanced with the addition of (1) treatment of mineral-water-gas reactive-transport under boiling conditions, (2) an improved HKF activity model for aqueous species, (3) gas species diffusion coefficients calculated as a function of pressure, temperature, and molecular properties, (4) mineral reactive surface area formulations for fractured

  11. Desulfurization Sorbents for Transport-Bed Applications

    International Nuclear Information System (INIS)

    Gupta, Raghubir P.; Turk, Brian S.; Vierheilig, Albert A.

    1997-01-01

    This project extends the prior work on the development of fluidizable zinc titanate particles using a spray-drying technique to impart high reactivity and attrition resistance. The specific objectives are: (1) To develop highly reactive and attrition-resistant zinc titanate sorbents in 40- to 150-(micro)m particle size range for transport reactor applications; (2) To transfer sorbent production technology to private sector; and (3) To provide technical support to Sierra Pacific Clean Coal Technology Demonstration plant and FETC's Hot-Gas Desulfurization Process Development Unit (PDU), both employing a transport reactor system

  12. Using a Reactive Transport Simulator to Simulate CH4 Production from Bear Island Basin in the Barents Sea Utilizing the Depressurization Method†

    Directory of Open Access Journals (Sweden)

    Khadijeh Qorbani

    2017-02-01

    Full Text Available The enormous amount of methane stored in natural gas hydrates (NGHsworldwide offers a significant potential source of energy. NGHs will be generally unable to reach thermodynamic equilibrium at their in situ reservoir conditions due to the number of active phases involved. Lack of reliable field data makes it difficult to predict the production potential and safety of CH4 production from NGHs. While the computer simulations will never be able to replace field data, one can apply state-of-the-artmodellingtechniquestoevaluateseveralpossiblelong-termscenarios. Realistic kinetic models for hydrate dissociation and reformation will be required, as well as analysis of all phase transition routes. This work utilizes our in-house extension of RetrasoCodeBright (RCB, a reactive transport simulator, to perform a gas hydrate production case study of the Bjørnøya (Bear Island basin, a promising field with very limited geological data reported by available field studies. The use of a reactive transport simulator allowed us to implement non-equilibrium thermodynamics for analysisofCH4 production from the gas hydrates by treating each phase transition involving hydrates as a pseudo reaction. Our results showed a rapid propagation of the pressure drop through the reservoir following the imposition of pressure drawdown at the well. Consequently, gas hydrate dissociation and CH4 production began in the early stages of the five-year simulation period.

  13. Analysis of void reactivity measurements in full MOX BWR physics experiments

    International Nuclear Information System (INIS)

    Ando, Yoshihira; Yamamoto, Toru; Umano, Takuya

    2008-01-01

    In the full MOX BWR physics experiments, FUBILA, four 9x9 test assemblies simulating BWR full MOX assemblies were located in the center of the core. Changing the in-channel moderator condition of the four assemblies from 0% void to 40% and 70% void mock-up, void reactivity was measured using Amplified Source Method (ASM) technique in the subcritical cores, in which three fission chambers were located. ASM correction factors necessary to express the consistency of the detector efficiency between measured core configurations were calculated using collision probability cell calculation and 3D-transport core calculation with the nuclear data library, JENDL-3.3. Measured reactivity worth with ASM correction factor was compared with the calculated results obtained through a diffusion, transport and continuous energy Monte Carlo calculation respectively. It was confirmed that the measured void reactivity worth was reproduced well by calculations. (author)

  14. ''Use of perturbative methods to break down the variation of reactivity between two systems''

    International Nuclear Information System (INIS)

    Perruchot-Triboulet, S.; Sanchez, R.

    1997-01-01

    The modification of the isotopic composition, the temperature or even accounting for across section uncertainties in one part of a nuclear reactor core, affects the value of the effective multiplication factor. A new tool allows the analysis of the reactivity effect generated by the modification of the system. With the help of the direct and adjoint fluxes, a detailed balance of reactivity, between the compared systems, is done for each isotopic cross section. After the presentation of the direct and adjoint transport equations in the context of the multigroup code transport APOLLO2, this note describes the method, based on perturbation theory, for the analysis of the reactivity variation. An example application is also given. (author)

  15. Interconnection and transportation networks: adjustments and stability; Reseaux d'interconnexion et de transport: reglages et stabilite

    Energy Technology Data Exchange (ETDEWEB)

    Bornard, P. [Reseau de Transport d' Electricite (RTE), Div. Systeme Electrique, 92 - Paris la Defense (France); Pavard, M. [Electricite de France (EDF), 75 - Paris (France); Testud, G. [Reseau de Transport d' Electricite (RTE), Dept. Exploitation du Systeme Electrique, 92 - Paris la Defense (France)

    2005-10-01

    Keeping the mastery of the safety of a power transportation system and respecting the contractual commitments with respect to the network users implies the implementation of efficient frequency and voltage adjustment systems. This article presents a synthetic overview of the methods and means implemented to ensure the adjustment of the voltage and frequency and the stability of very-high voltage power transportation networks: 1 - recalls of the general problem; 2 - frequency and active power adjustment: adapting generation to consumption, adapting consumption to generation; 3 - voltage and reactive power adjustment: duality of the voltage-reactive compensation adjustment, compensation of the reactive power, voltage adjustment chain, voltage adjustment of very high voltage networks, collapse of the voltage plan; 4 - alternators stability: static stability, transient stability, numerical simulation methods, stability improvement; 5 - conclusion. (J.S.)

  16. Laboratory investigations into the reactive transport module of carbon dioxide sequestration and geochemical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Heidaryan, E. [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Masjidosolayman Branch; Enayati, M.; Mokhtari, B. [Iranian Offshore Oil Co., Tehran (Iran, Islamic Republic of)

    2008-07-01

    Over long time periods, geological sequestration in some systems shows mineralization effects or mineral sequestration of carbon dioxide, converting the carbon dioxide to a less mobile form. However, a detailed investigation of these geological systems is needed before disposing of carbon dioxide into these formations. Depleted oil and gas reservoirs and underground aquifers are proposed candidates for carbon dioxide injection. This paper presented an experimental investigation into the reactive transport module for handling aquifer sequestration of carbon dioxide and modeling of simultaneous geochemical reactions. Two cases of laboratory carbon dioxide sequestration experiments, conducted for different rock systems were modeled using the fully coupled geochemical compositional simulator. The relevant permeability relationships were compared to determine the best fit with the experimental results. The paper discussed the theory of modeling; geochemical reactions and mineral trapping of carbon dioxide; and application simulator for modeling including the remodeling of flow experiments. It was concluded that simulated changes in porosity and permeability could mimic experimental results to some extent. The study satisfactorily simulated the results of experimental observations and permeability results could be improved if the Kozeny-Carman equation was replaced by the Civan power law. 6 refs., 2 tabs., 21 figs.

  17. Comparing FRACHEM and TOUGHREACT for reactive transport modelingof brine-rock interactions in enhanced geothermal systems (EGS)

    Energy Technology Data Exchange (ETDEWEB)

    Andre, L.; Spycher, N.; Xu, T.; Pruess, K.; Vuataz, F.-D.

    2005-11-15

    Coupled modelling of fluid flow and reactive transport ingeothermal systems is challenging because of reservoir conditions such ashigh temperatures, elevated pressures and sometimes high salinities ofthe formation fluids. Thermal hydrological-chemical (THC) codes, such asFRACHEM and TOUGHREACT, have been developed to evaluate the long-termhydrothermal and chemical evolution of exploited reservoirs. In thisstudy, the two codes were applied to model the same geothermal reservoir,to forecast reservoir evolution using respective thermodynamic andkinetic input data. A recent (unreleased) TOUGHREACT version allows theuse of either an extended Debye-Hu?ckel or Pitzer activity model forcalculating activity coefficients, while FRACHEM was designed to use thePitzer formalism. Comparison of models results indicate that differencesin thermodynamic equilibrium constants, activity coefficients andkinetics models can result in significant differences in predictedmineral precipitation behaviour and reservoir-porosity evolution.Differences in the calculation schemes typically produce less differencein model outputs than differences in input thermodynamic and kineticdata, with model results being particularly sensitive to differences inion-interaction parameters for highsalinity systems.

  18. Reactive Transport Analysis of Fault 'Self-sealing' Associated with CO2 Storage

    Science.gov (United States)

    Patil, V.; McPherson, B. J. O. L.; Priewisch, A.; Franz, R. J.

    2014-12-01

    We present an extensive hydrologic and reactive transport analysis of the Little Grand Wash fault zone (LGWF), a natural analog of fault-associated leakage from an engineered CO2 repository. Injecting anthropogenic CO2 into the subsurface is suggested for climate change mitigation. However, leakage of CO2 from its target storage formation into unintended areas is considered as a major risk involved in CO2 sequestration. In the event of leakage, permeability in leakage pathways like faults may get sealed (reduced) due to precipitation or enhanced (increased) due to dissolution reactions induced by CO2-enriched water, thus influencing migration and fate of the CO2. We hypothesize that faults which act as leakage pathways can seal over time in presence of CO2-enriched waters. An example of such a fault 'self-sealing' is found in the LGWF near Green River, Utah in the Paradox basin, where fault outcrop shows surface and sub-surface fractures filled with calcium carbonate (CaCO3). The LGWF cuts through multiple reservoirs and seal layers piercing a reservoir of naturally occurring CO2, allowing it to leak into overlying aquifers. As the CO2-charged water from shallower aquifers migrates towards atmosphere, a decrease in pCO2 leads to supersaturation of water with respect to CaCO3, which precipitates in the fractures of the fault damage zone. In order to test the nature, extent and time-frame of the fault sealing, we developed reactive flow simulations of the LGWF. Model parameters were chosen based on hydrologic measurements from literature. Model geochemistry was constrained by water analysis of the adjacent Crystal Geyser and observations from a scientific drilling test conducted at the site. Precipitation of calcite in the top portion of the fault model led to a decrease in the porosity value of the damage zone, while clay precipitation led to a decrease in the porosity value of the fault core. We found that the results were sensitive to the fault architecture

  19. Contaminant transport at a waste residue deposit: 1. Inverse flow and non-reactive transport modelling

    DEFF Research Database (Denmark)

    Sonnenborg, Torben Obel; Engesgaard, Peter Knudegaard; Rosbjerg, Dan

    1996-01-01

    An application of an inverse flow and transport model to a contaminated aquifer is presented. The objective of the study is to identify physical and nonreactive flow and transport parameters through an optimization approach. The approach can be classified as a statistical procedure, where a flow...... to steady state versus transient flow conditions and to the amount of hydraulic and solute data used is investigated. The flow parameters, transmissivity and leakage factor, are estimated simultaneously with the transport parameters: source strength, porosity, and longitudinal dispersivity. This paper...

  20. An adaptive hybrid EnKF-OI scheme for efficient state-parameter estimation of reactive contaminant transport models

    KAUST Repository

    El Gharamti, Mohamad; Valstar, Johan R.; Hoteit, Ibrahim

    2014-01-01

    Reactive contaminant transport models are used by hydrologists to simulate and study the migration and fate of industrial waste in subsurface aquifers. Accurate transport modeling of such waste requires clear understanding of the system's parameters, such as sorption and biodegradation. In this study, we present an efficient sequential data assimilation scheme that computes accurate estimates of aquifer contamination and spatially variable sorption coefficients. This assimilation scheme is based on a hybrid formulation of the ensemble Kalman filter (EnKF) and optimal interpolation (OI) in which solute concentration measurements are assimilated via a recursive dual estimation of sorption coefficients and contaminant state variables. This hybrid EnKF-OI scheme is used to mitigate background covariance limitations due to ensemble under-sampling and neglected model errors. Numerical experiments are conducted with a two-dimensional synthetic aquifer in which cobalt-60, a radioactive contaminant, is leached in a saturated heterogeneous clayey sandstone zone. Assimilation experiments are investigated under different settings and sources of model and observational errors. Simulation results demonstrate that the proposed hybrid EnKF-OI scheme successfully recovers both the contaminant and the sorption rate and reduces their uncertainties. Sensitivity analyses also suggest that the adaptive hybrid scheme remains effective with small ensembles, allowing to reduce the ensemble size by up to 80% with respect to the standard EnKF scheme. © 2014 Elsevier Ltd.

  1. An adaptive hybrid EnKF-OI scheme for efficient state-parameter estimation of reactive contaminant transport models

    KAUST Repository

    El Gharamti, Mohamad

    2014-09-01

    Reactive contaminant transport models are used by hydrologists to simulate and study the migration and fate of industrial waste in subsurface aquifers. Accurate transport modeling of such waste requires clear understanding of the system\\'s parameters, such as sorption and biodegradation. In this study, we present an efficient sequential data assimilation scheme that computes accurate estimates of aquifer contamination and spatially variable sorption coefficients. This assimilation scheme is based on a hybrid formulation of the ensemble Kalman filter (EnKF) and optimal interpolation (OI) in which solute concentration measurements are assimilated via a recursive dual estimation of sorption coefficients and contaminant state variables. This hybrid EnKF-OI scheme is used to mitigate background covariance limitations due to ensemble under-sampling and neglected model errors. Numerical experiments are conducted with a two-dimensional synthetic aquifer in which cobalt-60, a radioactive contaminant, is leached in a saturated heterogeneous clayey sandstone zone. Assimilation experiments are investigated under different settings and sources of model and observational errors. Simulation results demonstrate that the proposed hybrid EnKF-OI scheme successfully recovers both the contaminant and the sorption rate and reduces their uncertainties. Sensitivity analyses also suggest that the adaptive hybrid scheme remains effective with small ensembles, allowing to reduce the ensemble size by up to 80% with respect to the standard EnKF scheme. © 2014 Elsevier Ltd.

  2. One-Dimensional Transport with Equilibrium Chemistry (OTEQ) - A Reactive Transport Model for Streams and Rivers

    Science.gov (United States)

    Runkel, Robert L.

    2010-01-01

    OTEQ is a mathematical simulation model used to characterize the fate and transport of waterborne solutes in streams and rivers. The model is formed by coupling a solute transport model with a chemical equilibrium submodel. The solute transport model is based on OTIS, a model that considers the physical processes of advection, dispersion, lateral inflow, and transient storage. The equilibrium submodel is based on MINTEQ, a model that considers the speciation and complexation of aqueous species, acid-base reactions, precipitation/dissolution, and sorption. Within OTEQ, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (waterborne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach. The model's ability to simulate pH, precipitation/dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between instream chemistry and hydrologic transport at the field scale. This report details the development and application of OTEQ. Sections of the report describe model theory, input/output specifications, model applications, and installation instructions. OTEQ may be obtained over the Internet at http://water.usgs.gov/software/OTEQ.

  3. Method of allowing for resonances in calculating reactivity values

    International Nuclear Information System (INIS)

    Kumpf, H.

    1985-01-01

    On the basis of the integral transport equation for the source density an expression has been derived for calculating reactivity values taking resonances in the core and in the sample into account. The model has been used for evaluating reactivities measured in the Rossendorf SEG IV configuration. It is shown that the influence of resonances in the core can be kept tolerable, if a sufficiently thick buffer zone of only slightly absorbing non-resonant material is arranged between the sample and the core. (author)

  4. Assessment of reactivity devices for CANDU-6 with DUPIC fuel

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Choi, Hang Bok

    1998-01-01

    Reactivity device characteristics for a CANDU-6 reactor loaded with DUPIC fuel have been assessed. A transport code WIMS-AECL and a three-dimensional diffusion code RFSP were used for the lattice parameter generation and the core calculation, respectively. Three major reactivity devices have been assessed for their inherent functions. For the zone controller system, damping capability for spatial oscillation was investigated. The restart capability of the adjuster system was investigated. The shim operation and power stepback calculation were also performed to confirm the compatibility of the current adjuster rod system. The mechanical control absorber was assessed for the capability to compensate the temperature reactivity feedback following a power reduction. This study has shown that the current reactivity device systems retain their functions when used in a DUPIC fuel CANDU reactor

  5. A reactive transport modelling approach to assess the leaching potential of hydraulic fracturing fluids associated with coal seam gas extraction

    Science.gov (United States)

    Mallants, Dirk; Simunek, Jirka; Gerke, Kirill

    2015-04-01

    Coal Seam Gas production generates large volumes of "produced" water that may contain compounds originating from the use of hydraulic fracturing fluids. Such produced water also contains elevated concentrations of naturally occurring inorganic and organic compounds, and usually has a high salinity. Leaching of produced water from storage ponds may occur as a result of flooding or containment failure. Some produced water is used for irrigation of specific crops tolerant to elevated salt levels. These chemicals may potentially contaminate soil, shallow groundwater, and groundwater, as well as receiving surface waters. This paper presents an application of scenario modelling using the reactive transport model for variably-saturated media HP1 (coupled HYDRUS-1D and PHREEQC). We evaluate the fate of hydraulic fracturing chemicals and naturally occurring chemicals in soil as a result of unintentional release from storage ponds or when produced water from Coal Seam Gas operations is used in irrigation practices. We present a review of exposure pathways and relevant hydro-bio-geo-chemical processes, a collation of physico-chemical properties of organic/inorganic contaminants as input to a set of generic simulations of transport and attenuation in variably saturated soil profiles. We demonstrate the ability to model the coupled processes of flow and transport in soil of contaminants associated with hydraulic fracturing fluids and naturally occurring contaminants.

  6. Simulation of variable-density flow and transport of reactive and nonreactive solutes during a tracer test at Cape Cod, Massachusetts

    Science.gov (United States)

    Zhang, Hubao; Schwartz, Frank W.; Wood, Warren W.; Garabedian, S.P.; LeBlanc, D.R.

    1998-01-01

    A multispecies numerical code was developed to simulate flow and mass transport with kinetic adsorption in variable-density flow systems. The two-dimensional code simulated the transport of bromide (Br−), a nonreactive tracer, and lithium (Li+), a reactive tracer, in a large-scale tracer test performed in a sand-and-gravel aquifer at Cape Cod, Massachusetts. A two-fraction kinetic adsorption model was implemented to simulate the interaction of Li+ with the aquifer solids. Initial estimates for some of the transport parameters were obtained from a nonlinear least squares curve-fitting procedure, where the breakthrough curves from column experiments were matched with one-dimensional theoretical models. The numerical code successfully simulated the basic characteristics of the two plumes in the tracer test. At early times the centers of mass of Br− and Li+ sank because the two plumes were closely coupled to the density-driven velocity field. At later times the rate of downward movement in the Br− plume due to gravity slowed significantly because of dilution by dispersion. The downward movement of the Li+ plume was negligible because the two plumes moved in locally different velocity regimes, where Li+ transport was retarded relative to Br−. The maximum extent of downward transport of the Li+ plume was less than that of the Br− plume. This study also found that at early times the downward movement of a plume created by a three-dimensional source could be much more extensive than the case with a two-dimensional source having the same cross-sectional area. The observed shape of the Br− plume at Cape Cod was simulated by adding two layers with different hydraulic conductivities at shallow depth across the region. The large dispersion and asymmetrical shape of the Li+ plume were simulated by including kinetic adsorption-desorption reactions.

  7. Markets in real electric networks require reactive prices

    International Nuclear Information System (INIS)

    Hogan, W.W.

    1996-01-01

    Extending earlier seminal work, the author finds that locational spot price differences in an electric network provide the natural measure of the appropriate internodal transport charge. However, the problem of loop flow requires different economic intuition for interpreting the implications of spot pricing. The Direct Current model, which is the usual approximation for estimating spot prices, ignores reactive power effects; this approximation is best when thermal constraints create network congestion. However, when voltage constraints are problematic, the DC Load model is insufficient; a full AC Model is required to determine both real and reactive spot prices. 16 figs., 3 tabs., 22 refs

  8. Numerical modelling of biophysicochemical effects on multispecies reactive transport in porous media involving Pseudomonas putida for potential microbial enhanced oil recovery application.

    Science.gov (United States)

    Sivasankar, P; Rajesh Kanna, A; Suresh Kumar, G; Gummadi, Sathyanarayana N

    2016-07-01

    pH and resident time of injected slug plays a critical role in characterizing the reservoir for potential microbial enhanced oil recovery (MEOR) application. To investigate MEOR processes, a multispecies (microbes-nutrients) reactive transport model in porous media was developed by coupling kinetic and transport model. The present work differs from earlier works by explicitly determining parametric values required for kinetic model by experimental investigations using Pseudomonas putida at different pH conditions and subsequently performing sensitivity analysis of pH, resident time and water saturation on concentrations of microbes, nutrients and biosurfactant within reservoir. The results suggest that nutrient utilization and biosurfactant production are found to be maximum at pH 8 and 7.5 respectively. It is also found that the sucrose and biosurfactant concentrations are highly sensitive to pH rather than reservoir microbial concentration, while at larger resident time and water saturation, the microbial and nutrient concentrations were lesser due to enhanced dispersion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Coupled models in porous media: reactive transport and fractures

    International Nuclear Information System (INIS)

    Amir, L.

    2008-12-01

    This thesis deals with numerical simulation of coupled models for flow and transport in porous media. We present a new method for coupling chemical reactions and transport by using a Newton-Krylov method, and we also present a model of flow in fractured media, based on a domain decomposition method that takes into account the case of intersecting fractures. This study is composed of three parts: the first part contains an analysis, and implementation, of various numerical methods for discretizing advection-diffusion problems, in particular by using operator splitting methods. The second part is concerned with a fully coupled method for modeling transport and chemistry problems. The coupled transport-chemistry model is described, after discretization in time, by a system of nonlinear equations. The size of the system, namely the number of grid points times the number a chemical species, precludes a direct solution of the linear system. To alleviate this difficulty, we solve the system by a Newton-Krylov method, so as to avoid forming and factoring the Jacobian matrix. In the last part, we present a model of flow in 3D for intersecting fractures, by using a domain decomposition method. The fractures are treated as interfaces between sub-domains. We show existence and uniqueness of the solution, and we validate the model by numerical tests. (author)

  10. Understanding arsenic mobilization using reactive transport modeling of groundwater hydrochemistry in the Datong basin study plot, China.

    Science.gov (United States)

    Mapoma, Harold Wilson Tumwitike; Xie, Xianjun; Pi, Kunfu; Liu, Yaqing; Zhu, Yapeng

    2016-03-01

    This paper discusses the reactive transport and evolution of arsenic along a selected flow path in a study plot within the central part of Datong basin. The simulation used the TOUGHREACT code. The spatial and temporal trends in hydrochemistry and mineral volume fraction along a flow path were observed. Furthermore, initial simulation of major ions and pH fits closely to the measured data. The study shows that equilibrium conditions may be attained at different stress periods for each parameter simulated. It is noted that the variations in ionic chemistry have a greater impact on arsenic distribution while reducing conditions drive the mobilization of arsenic. The study concluded that the reduction of Fe(iii) and As(v) and probably SO4/HS cycling are significant factors affecting localized mobilization of arsenic. Besides cation exchange and water-rock interaction, incongruent dissolution of silicates is also a significant control mechanism of general chemistry of the Datong basin aquifer.

  11. Reactive transport modeling of uranium 238 and radium 226 in groundwater of the Königstein uranium mine, Germany

    Science.gov (United States)

    Nitzsche, O.; Merkel, B.

    Knowledge of the transport behavior of radionuclides in groundwater is needed for both groundwater protection and remediation of abandoned uranium mines and milling sites. Dispersion, diffusion, mixing, recharge to the aquifer, and chemical interactions, as well as radioactive decay, should be taken into account to obtain reliable predictions on transport of primordial nuclides in groundwater. This paper demonstrates the need for carrying out rehabilitation strategies before closure of the Königstein in-situ leaching uranium mine near Dresden, Germany. Column experiments on drilling cores with uranium-enriched tap water provided data about the exchange behavior of uranium. Uranium breakthrough was observed after more than 20 pore volumes. This strong retardation is due to the exchange of positively charged uranium ions. The code TReAC is a 1-D, 2-D, and 3-D reactive transport code that was modified to take into account the radioactive decay of uranium and the most important daughter nuclides, and to include double-porosity flow. TReAC satisfactorily simulated the breakthrough curves of the column experiments and provided a first approximation of exchange parameters. Groundwater flow in the region of the Königstein mine was simulated using the FLOWPATH code. Reactive transport behavior was simulated with TReAC in one dimension along a 6000-m path line. Results show that uranium migration is relatively slow, but that due to decay of uranium, the concentration of radium along the flow path increases. Results are highly sensitive to the influence of double-porosity flow. Résumé La protection des eaux souterraines et la restauration des sites miniers et de prétraitement d'uranium abandonnés nécessitent de connaître le comportement des radionucléides au cours de leur transport dans les eaux souterraines. La dispersion, la diffusion, le mélange, la recharge de l'aquifère et les interactions chimiques, de même que la décroissance radioactive, doivent être

  12. Combining water-rock interaction experiments with reaction path and reactive transport modelling to predict reservoir rock evolution in an enhanced geothermal system

    Science.gov (United States)

    Kuesters, Tim; Mueller, Thomas; Renner, Joerg

    2016-04-01

    Reliably predicting the evolution of mechanical and chemical properties of reservoir rocks is crucial for efficient exploitation of enhanced geothermal systems (EGS). For example, dissolution and precipitation of individual rock forming minerals often result in significant volume changes, affecting the hydraulic rock properties and chemical composition of fluid and solid phases. Reactive transport models are typically used to evaluate and predict the effect of the internal feedback of these processes. However, a quantitative evaluation of chemo-mechanical interaction in polycrystalline environments is elusive due to poorly constrained kinetic data of complex mineral reactions. In addition, experimentally derived reaction rates are generally faster than reaction rates determined from natural systems, likely a consequence of the experimental design: a) determining the rate of a single process only, e.g. the dissolution of a mineral, and b) using powdered sample materials and thus providing an unrealistically high reaction surface and at the same time eliminating the restrictions on element transport faced in-situ for fairly dense rocks. In reality, multiple reactions are coupled during the alteration of a polymineralic rocks in the presence of a fluid and the rate determining process of the overall reactions is often difficult to identify. We present results of bulk rock-water interaction experiments quantifying alteration reactions between pure water and a granodiorite sample. The rock sample was chosen for its homogenous texture, small and uniform grain size (˜0.5 mm in diameter), and absence of pre-existing alteration features. The primary minerals are plagioclase (plg - 58 vol.%), quartz (qtz - 21 vol.%), K-feldspar (Kfs - 17 vol.%), biotite (bio - 3 vol.%) and white mica (wm - 1 vol.%). Three sets of batch experiments were conducted at 200 ° C to evaluate the effect of reactive surface area and different fluid path ways using (I) powders of the bulk rock with

  13. Expanding the role of reactive transport models in critical zone processes

    Science.gov (United States)

    Li, Li; Maher, Kate; Navarre-Sitchler, Alexis; Druhan, Jennifer; Meile, Christof; Lawrence, Corey; Moore, Joel; Perdrial, Julia; Sullivan, Pamela; Thompson, Aaron; Jin, Lixin; Bolton, Edward W.; Brantley, Susan L.; Dietrich, William E.; Mayer, K. Ulrich; Steefel, Carl; Valocchi, Albert J.; Zachara, John M.; Kocar, Benjamin D.; McIntosh, Jennifer; Tutolo, Benjamin M.; Kumar, Mukesh; Sonnenthal, Eric; Bao, Chen; Beisman, Joe

    2017-01-01

    Models test our understanding of processes and can reach beyond the spatial and temporal scales of measurements. Multi-component Reactive Transport Models (RTMs), initially developed more than three decades ago, have been used extensively to explore the interactions of geothermal, hydrologic, geochemical, and geobiological processes in subsurface systems. Driven by extensive data sets now available from intensive measurement efforts, there is a pressing need to couple RTMs with other community models to explore non-linear interactions among the atmosphere, hydrosphere, biosphere, and geosphere. Here we briefly review the history of RTM development, summarize the current state of RTM approaches, and identify new research directions, opportunities, and infrastructure needs to broaden the use of RTMs. In particular, we envision the expanded use of RTMs in advancing process understanding in the Critical Zone, the veneer of the Earth that extends from the top of vegetation to the bottom of groundwater. We argue that, although parsimonious models are essential at larger scales, process-based models offer tools to explore the highly nonlinear coupling that characterizes natural systems. We present seven testable hypotheses that emphasize the unique capabilities of process-based RTMs for (1) elucidating chemical weathering and its physical and biogeochemical drivers; (2) understanding the interactions among roots, micro-organisms, carbon, water, and minerals in the rhizosphere; (3) assessing the effects of heterogeneity across spatial and temporal scales; and (4) integrating the vast quantity of novel data, including “omics” data (genomics, transcriptomics, proteomics, metabolomics), elemental concentration and speciation data, and isotope data into our understanding of complex earth surface systems. With strong support from data-driven sciences, we are now in an exciting era where integration of RTM framework into other community models will facilitate process

  14. Transport perturbation theory in nuclear reactor analysis

    International Nuclear Information System (INIS)

    Nishigori, Takeo; Takeda, Toshikazu; Selvi, S.

    1985-01-01

    Perturbation theory is formulated on the basis of transport theory to obtain a formula for the reactivity changes due to possible variations of cross sections. Useful applications to cell homogenization are presented for the whole core calculation in transport and in diffusion theories. (author)

  15. Building Conceptual Models of Field-Scale Uranium Reactive Transport in a Dynamic Vadose Zone-Aquifer-River System

    International Nuclear Information System (INIS)

    Yabusaki, Steven B.; Fang, Yilin; Waichler, Scott R.

    2008-01-01

    Subsurface simulation is being used to build, test, and couple conceptual process models to better understand controls on a 0.4 km by 1.0 km uranium plume that has persisted above the drinking water standard in the groundwater of the Hanford 300 Area over the last 15 years. At this site, uranium-contaminated sediments in the vadose zone and aquifer are subject to significant variations in water levels and velocities driven by the diurnal, weekly, seasonal, and episodic Columbia River stage dynamics. Groundwater flow reversals typically occur twice a day with significant exchange of river water and groundwater in the near-river aquifer. Mixing of the dilute solution chemistry of the river with the groundwater complicates the uranium sorption behavior as the mobility of U(VI) has been shown experimentally to be a function of pH, carbonate, calcium, and uranium. Furthermore, uranium mass transfer between solid and aqueous phases has been observed to be rate-limited in the context of the high groundwater velocities resulting from the river stage fluctuations and the highly transmissive sediments (hydraulic conductivities ∼1500 m/d). One- and two-dimensional vertical cross-sectional simulations of variably-saturated flow and reactive transport, based on laboratory-derived models of distributed rate mass transfer and equilibrium multicomponent surface complexation, are used to assess uranium transport at the dynamic vadose zone aquifer interface as well as changes to uranium mobility due to incursions of river water into the aquifer

  16. The development of high performance numerical simulation code for transient groundwater flow and reactive solute transport problems based on local discontinuous Galerkin method

    International Nuclear Information System (INIS)

    Suzuki, Shunichi; Motoshima, Takayuki; Naemura, Yumi; Kubo, Shin; Kanie, Shunji

    2009-01-01

    The authors develop a numerical code based on Local Discontinuous Galerkin Method for transient groundwater flow and reactive solute transport problems in order to make it possible to do three dimensional performance assessment on radioactive waste repositories at the earliest stage possible. Local discontinuous Galerkin Method is one of mixed finite element methods which are more accurate ones than standard finite element methods. In this paper, the developed numerical code is applied to several problems which are provided analytical solutions in order to examine its accuracy and flexibility. The results of the simulations show the new code gives highly accurate numeric solutions. (author)

  17. Unsaturated transport of inorganic cations in undisturbed soil columns

    International Nuclear Information System (INIS)

    Jardine, P.M.; Jacobs, G.K.

    1990-01-01

    The unsaturated transport of Sr, Co, and Ca were studied in undisturbed soil columns (14 x 40 cm) of saprolitic shale to evaluate the significance of time dependent mass transfer and multispecies competitive exchange during transport. Observed breakthrough curves (BTCs) for Sr and Co were delayed relative to nonreactive Br BTC indicating that the former tracers were adsorbed by the soil. Effluent concentrations of Sr and Co were modeled with the classical convective dispersive (CD) equation and nonequilibrium mass transfer considerations did not appear necessary. Cation exchange equilibria relationships obtained from both shake batch and miscible displacement methods adequately described the thermodynamic processes which were prevalent during transport. These results suggest that the preferential transport of a reactive tracer is negligible for the realistic unsaturated conditions used in the study, and that the massive saprolite within the soil is a chemically active constituent during transport of reactive solutes. The implications of these findings for modeling in-situ subsurface contaminant transport are discussed. 7 refs., 9 figs

  18. Mixing induced reactive transport in fractured crystalline rocks

    International Nuclear Information System (INIS)

    Martinez-Landa, Lurdes; Carrera, Jesus; Dentz, Marco; Fernàndez-Garcia, Daniel; Nardí, Albert; Saaltink, Maarten W.

    2012-01-01

    In this paper the solute retention properties of crystalline fractured rocks due to mixing-induced geochemical reactions are studied. While fractured media exhibit paths of fast flow and transport and thus short residence times for conservative solutes, at the same time they promote mixing and dilution due to strong heterogeneity, which leads to sharp concentration contrasts. Enhanced mixing and dilution have a double effect that favors crystalline fractured media as a possible host medium for nuclear waste disposal. Firstly, peak radionuclide concentrations are attenuated and, secondly, mixing-induced precipitation reactions are enhanced significantly, which leads to radionuclide immobilization. An integrated framework is presented for the effective modeling of these flow, transport and reaction phenomena, and the interaction between them. In a simple case study, the enhanced dilution and precipitation potential of fractured crystalline rocks are systematically studied and quantified and contrasted it to retention and attenuation in an equivalent homogeneous formation.

  19. Multi-phase reactive transport theory

    International Nuclear Information System (INIS)

    Lichtner, P.C.

    1995-07-01

    Physicochemical processes in the near-field region of a high-level waste repository may involve a diverse set of phenomena including flow of liquid and gas, gaseous diffusion, and chemical reaction of the host rock with aqueous solutions at elevated temperatures. This report develops some of the formalism for describing simultaneous multicomponent solute and heat transport in a two-phase system for partially saturated porous media. Diffusion of gaseous species is described using the Dusty Gas Model which provides for simultaneous Knudsen and Fickian diffusion in addition to Darcy flow. A new form of the Dusty Gas Model equations is derived for binary diffusion which separates the total diffusive flux into segregative and nonsegregative components. Migration of a wetting front is analyzed using the quasi-stationary state approximation to the Richards' equation. Heat-pipe phenomena are investigated for both gravity- and capillary-driven reflux of liquid water. An expression for the burnout permeability is derived for a gravity-driven heat-pipe. Finally an estimate is given for the change in porosity and permeability due to mineral dissolution which could occur in the region of condensate formation in a heat-pipe

  20. Measurements of total OH reactivity during PROPHET-AMOS 2016

    Science.gov (United States)

    Rickly, P.; Sakowski, J.; Bottorff, B.; Lew, M.; Stevens, P. S.; Sklaveniti, S.; Locoge, N.; Dusanter, S.

    2017-12-01

    As one of the main oxidant in the atmosphere, the hydroxyl radical (OH) initiates the oxidation of volatile organic compounds that can lead to the formation of ozone and secondary organic aerosols. Understanding both the sources and sinks of OH is therefore important to address issues related to air quality and climate change. Measurements of total OH reactivity can provide an important test of our understanding of the OH radical budget. Recent measurements of total reactivity in many environments have been greater than calculated based on the measured concentration of VOCs, suggesting that important OH sinks in these environments are not well characterized. Measurements of total OH reactivity were performed in a forested environment during the PROPHET - AMOS field campaign (Program for Research on Oxidants: PHotochemisty, Emissions, and Transport - Atmospheric Measurements of Oxidants in Summer) using the Comparative Reactivity Method (CRM) and the Total OH Loss Rate Method (TOHLM). The site is characterized by large emissions of isoprene and monoterpenes and low anthropogenic influence. Measurements of total OH reactivity using these two techniques agree to within their respective uncertainties, giving confidence in the measured OH reactivity. In addition, measurements of trace gases (VOCs, NOx, O3) were used to perform a comprehensive apportionment of OH sinks. These measurements are used in a chemical model using the Master Chemical Mechanism to calculate the expected OH reactivity. The results will be compared to previous measurements of total OH reactivity at this site.

  1. Intrinsic photocatalytic assessment of reactively sputtered TiO₂ films.

    Science.gov (United States)

    Rafieian, Damon; Driessen, Rick T; Ogieglo, Wojciech; Lammertink, Rob G H

    2015-04-29

    Thin TiO2 films were prepared by DC magnetron reactive sputtering at different oxygen partial pressures. Depending on the oxygen partial pressure during sputtering, a transition from metallic Ti to TiO2 was identified by spectroscopic ellipsometry. The crystalline nature of the film developed during a subsequent annealing step, resulting in thin anatase TiO2 layers, displaying photocatalytic activity. The intrinsic photocatalytic activity of the catalysts was evaluated for the degradation of methylene blue (MB) using a microfluidic reactor. A numerical model was employed to extract the intrinsic reaction rate constants. High conversion rates (90% degradation within 20 s residence time) were observed within these microreactors because of the efficient mass transport and light distribution. To evaluate the intrinsic reaction kinetics, we argue that mass transport has to be accounted for. The obtained surface reaction rate constants demonstrate very high reactivity for the sputtered TiO2 films. Only for the thinnest film, 9 nm, slightly lower kinetics were observed.

  2. A Novel Nano/Micro-Fluidic Reactor for Evaluation of Pore-Scale Reactive Transport

    Science.gov (United States)

    Werth, C. J.; Alcalde, R.; Ghazvini, S.; Sanford, R. A.; Fouke, B. W.; Valocchi, A. J.

    2017-12-01

    The reactive transport of pollutants in groundwater can be affected by the presence of stressor chemicals, which inhibit microbial functions. The stressor can be a primary reactant (e.g., trichloroethene), a reaction product (e.g., nitrite from nitrate), or some other chemical present in groundwater (e.g., antibiotic). In this work, a novel nano/microfluidic cell was developed to examine the effect of the antibiotic ciprofloxacin on nitrate reduction coupled to lactate oxidation. The reactor contains parallel boundary channels that deliver flow and solutes on either side of a pore network. The boundary channels are separated from the pore network by one centimeter-long, one micrometer-thick walls perforated by hundreds of nanoslits. The nanoslits allow solute mass transfer from the boundary channels to the pore network, but not microbial passage. The pore network was inoculated with a pure culture of Shewanella oneidensis MR-1, and this was allowed to grow on lactate and nitrate in the presence of ciprofloxacin, all delivered through the boundary channels. Microbial growth patterns suggest inhibition from ciprofloxacin and the nitrate reduction product nitrite, and a dependence on nitrate and lactate mass transfer rates from the boundary channels. A numerical model was developed to interpret the controlling mechanisms, and results indicate cell chemotaxis also affects nitrate reduction and microbial growth. The results are broadly relevant to bioremediation efforts where one or more chemicals that inhibit microbial growth are present and inhibit pollutant degradation rates.

  3. porewater chemistry experiment at Mont Terri rock laboratory. Reactive transport modelling including bacterial activity

    International Nuclear Information System (INIS)

    Tournassat, Christophe; Gaucher, Eric C.; Leupin, Olivier X.; Wersin, Paul

    2010-01-01

    Document available in extended abstract form only. An in-situ test in the Opalinus Clay formation, termed pore water Chemistry (PC) experiment, was run for a period of five years. It was based on the concept of diffusive equilibration whereby traced water with a composition close to that expected in the formation was continuously circulated and monitored in a packed off borehole. The main original focus was to obtain reliable data on the pH/pCO 2 of the pore water, but because of unexpected microbially- induced redox reactions, the objective was then changed to elucidate the biogeochemical processes happening in the borehole and to understand their impact on pH/pCO 2 and pH in the low permeability clay formation. The biologically perturbed chemical evolution of the PC experiment was simulated with reactive transport models. The aim of this modelling exercise was to develop a 'minimal-' model able to reproduce the chemical evolution of the PC experiment, i.e. the chemical evolution of solute inorganic and organic compounds (organic carbon, dissolved inorganic carbon etc...) that are coupled with each other through the simultaneous occurrence of biological transformation of solute or solid compounds, in-diffusion and out-diffusion of solute species and precipitation/dissolution of minerals (in the borehole and in the formation). An accurate description of the initial chemical conditions in the surrounding formation together with simplified kinetics rule mimicking the different phases of bacterial activities allowed reproducing the evolution of all main measured parameters (e.g. pH, TOC). Analyses from the overcoring and these simulations evidence the high buffer capacity of Opalinus clay regarding chemical perturbations due to bacterial activity. This pH buffering capacity is mainly attributed to the carbonate system as well as to the clay surfaces reactivity. Glycerol leaching from the pH-electrode might be the primary organic source responsible for

  4. Controlling material reactivity using architecture

    Science.gov (United States)

    Sullivan, Kyle

    2017-06-01

    The reactivity of thermites can be tailored through selection of several parameters, and can range from very slow burns to rapid deflagrations. 3D printing is a rapidly emerging field, and offers the potential to build architected parts. Here we sought to explore whether controlling such features could be a suitable path forward for gaining additional control of the reactivity. This talk discusses several new methods for preparing thermite samples with controlled architectures using 3D printing. Additionally, we demonstrate that the architecture can play a role in the reactivity of an object. Our results suggest that architecture can be used to tailor the convective and/or advective energy transport during a deflagration, thus enhancing or retarding the reaction. The results are promising in that they give researchers an additional way of controlling the energy release rate without defaulting to the conventional approach of changing the formulation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. LLNL-ABS-708525. In collaboration with: Cheng Zhu, Eric Duoss, Matt Durban, Alex Gash, Alexandra Golobic, Michael Grapes, David Kolesky, Joshua Kuntz, Jennifer Lewis, Christopher Spadaccini; LAWRENCE LIVERMORE NATIONAL LAB.

  5. Reactive transport modelling of groundwater chemistry in a chalk aquifer at the watershed scale.

    Science.gov (United States)

    Mangeret, A; De Windt, L; Crançon, P

    2012-09-01

    This study investigates thermodynamics and kinetics of water-rock interactions in a carbonate aquifer at the watershed scale. A reactive transport model is applied to the unconfined chalk aquifer of the Champagne Mounts (France), by considering both the chalk matrix and the interconnected fracture network. Major element concentrations and main chemical parameters calculated in groundwater and their evolution along flow lines are in fair agreement with field data. A relative homogeneity of the aquifer baseline chemistry is rapidly reached in terms of pH, alkalinity and Ca concentration since calcite equilibrium is achieved over the first metres of the vadose zone. However, incongruent chalk dissolution slowly releases Ba, Mg and Sr in groundwater. Introducing dilution effect by rainwater infiltration and a local occurrence of dolomite improves the agreement between modelling and field data. The dissolution of illite and opal-CT, controlling K and SiO(2) concentrations in the model, can be approximately tackled by classical kinetic rate laws, but not the incongruent chalk dissolution. An apparent kinetic rate has therefore been fitted on field data by inverse modelling: 1.5×10(-5) mol(chalk)L (-1) water year (-1). Sensitivity analysis indicates that the CO(2) partial pressure of the unsaturated zone is a critical parameter for modelling the baseline chemistry over the whole chalk aquifer. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Final Report Coupling in silico microbial models with reactive transport models to predict the fate of contaminants in the subsurface.

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek R.

    2012-10-31

    This project successfully accomplished its goal of coupling genome-scale metabolic models with hydrological and geochemical models to predict the activity of subsurface microorganisms during uranium bioremediation. Furthermore, it was demonstrated how this modeling approach can be used to develop new strategies to optimize bioremediation. The approach of coupling genome-scale metabolic models with reactive transport modeling is now well enough established that it has been adopted by other DOE investigators studying uranium bioremediation. Furthermore, the basic principles developed during our studies will be applicable to much broader investigations of microbial activities, not only for other types of bioremediation, but microbial metabolism in diversity of environments. This approach has the potential to make an important contribution to predicting the impact of environmental perturbations on the cycling of carbon and other biogeochemical cycles.

  7. Comparison of mass transfer coefficient approach and Nernst-Planck formulation in the reactive transport modeling of Co, Ni, and Ag removal by mixed-bed ion-exchange resins

    International Nuclear Information System (INIS)

    Bachet, Martin; Jauberty, Loic; De Windt, Laurent; Dieuleveult, Caroline de; Tevissen, Etienne

    2014-01-01

    Experiments performed under chemical and flow conditions representative of pressurized water reactors (PWR) primary fluid purification by ion exchange resins (Amberlite IRN9882) are modeled with the OPTIPUR code, considering 1D reactive transport in the mixed-bed column with convective/dispersive transport between beads and electro-diffusive transport within the boundary film around the beads. The effectiveness of the purification in these dilute conditions is highly related to film mass transfer restrictions, which are accounted for by adjustment of a common mass transfer coefficient (MTC) on the experimental initial leakage or modeling of species diffusion through the bead film by the Nernst-Planck equation. A detailed analysis of the modeling against experimental data shows that the Nernst-Planck approach with no adjustable parameters performs as well as, or better than, the MTC approach, particularly to simulate the chromatographic elution of silver by nickel and the subsequent enrichment of the solution in the former metal. (authors)

  8. Modelling the dispersion and transport of reactive pollutants in a deep urban street canyon: using large-eddy simulation.

    Science.gov (United States)

    Zhong, Jian; Cai, Xiao-Ming; Bloss, William James

    2015-05-01

    This study investigates the dispersion and transport of reactive pollutants in a deep urban street canyon with an aspect ratio of 2 under neutral meteorological conditions using large-eddy simulation. The spatial variation of pollutants is significant due to the existence of two unsteady vortices. The deviation of species abundance from chemical equilibrium for the upper vortex is greater than that for the lower vortex. The interplay of dynamics and chemistry is investigated using two metrics: the photostationary state defect, and the inferred ozone production rate. The latter is found to be negative at all locations within the canyon, pointing to a systematic negative offset to ozone production rates inferred by analogous approaches in environments with incomplete mixing of emissions. This study demonstrates an approach to quantify parameters for a simplified two-box model, which could support traffic management and urban planning strategies and personal exposure assessment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Evaluation of criticality criteria for fissile class II packages in transportation

    International Nuclear Information System (INIS)

    Thomas, J.T.

    1976-01-01

    The nuclear criticality safety of packages in transportation is explored systematically by a surface density representation of reflected array criticality of air-spaced units. Typical perturbations to arrays are shown to be related analytically to the corresponding reactivity changes they produce. The reactivity change associated with the removal of three reflecting surfaces from a totally water reflected array is shown to depend upon the fissile material loading of the packages. For U(93.2) metal, the expected reactivity loss can range from 2 to 21%. Replacement of a three-sided reflector of water on a critical array by one of concrete results in a reactivity increase ranging from 0 to 6%. Mass limits established by criticality data for reflected arrays of air-spaced units can provide a minimum, uniform margin of safety, expressible in terms of reactivity, to more reliably specify subcriticality in transport. Mass limits less than those defined by air-spaced units in water-reflected arrays are unnecessary for Fissile Class II packages. (author)

  10. Simulating Hydrologic Flow and Reactive Transport with PFLOTRAN and PETSc on Emerging Fine-Grained Parallel Computer Architectures

    Science.gov (United States)

    Mills, R. T.; Rupp, K.; Smith, B. F.; Brown, J.; Knepley, M.; Zhang, H.; Adams, M.; Hammond, G. E.

    2017-12-01

    As the high-performance computing community pushes towards the exascale horizon, power and heat considerations have driven the increasing importance and prevalence of fine-grained parallelism in new computer architectures. High-performance computing centers have become increasingly reliant on GPGPU accelerators and "manycore" processors such as the Intel Xeon Phi line, and 512-bit SIMD registers have even been introduced in the latest generation of Intel's mainstream Xeon server processors. The high degree of fine-grained parallelism and more complicated memory hierarchy considerations of such "manycore" processors present several challenges to existing scientific software. Here, we consider how the massively parallel, open-source hydrologic flow and reactive transport code PFLOTRAN - and the underlying Portable, Extensible Toolkit for Scientific Computation (PETSc) library on which it is built - can best take advantage of such architectures. We will discuss some key features of these novel architectures and our code optimizations and algorithmic developments targeted at them, and present experiences drawn from working with a wide range of PFLOTRAN benchmark problems on these architectures.

  11. Process-based reactive transport model to quantify arsenic mobility during aquifer storage and recovery of potable water.

    Science.gov (United States)

    Wallis, Ilka; Prommer, Henning; Pichler, Thomas; Post, Vincent; Norton, Stuart B; Annable, Michael D; Simmons, Craig T

    2011-08-15

    Aquifer storage and recovery (ASR) is an aquifer recharge technique in which water is injected in an aquifer during periods of surplus and withdrawn from the same well during periods of deficit. It is a critical component of the long-term water supply plan in various regions, including Florida, USA. Here, the viability of ASR as a safe and cost-effective water resource is currently being tested at a number of sites due to elevated arsenic concentrations detected during groundwater recovery. In this study, we developed a process-based reactive transport model of the coupled physical and geochemical mechanisms controlling the fate of arsenic during ASR. We analyzed multicycle hydrochemical data from a well-documented affected southwest Floridan site and evaluated a conceptual/numerical model in which (i) arsenic is initially released during pyrite oxidation triggered by the injection of oxygenated water (ii) then largely complexes to neo-formed hydrous ferric oxides before (iii) being remobilized during recovery as a result of both dissolution of hydrous ferric oxides and displacement from sorption sites by competing anions.

  12. Assessment of the long-term stability of cementitious barriers of radioactive waste repositories by using digital-image-based microstructure generation and reactive transport modelling

    International Nuclear Information System (INIS)

    Galindez, Juan Manuel; Molinero, Jorge

    2010-01-01

    Cement-based grout plays a significant role in the design and performance of nuclear waste repositories: used correctly, it can enhance their safety. However, the high water-to-binder ratios, which are required to meet the desired workability and injection ability at early age, lead to high porosity that may affect the durability of this material and undermine its long-term geochemical performance. In this paper, a new methodology is presented in order to help the process of mix design which best meets the compromise between these two conflicting requirements. It involves the combined use of the computer programs CEMHYD3D for the generation of digital-image-based microstructures and CrunchFlow, for the reactive transport calculations affecting the materials so simulated. This approach is exemplified with two grout types, namely, the so-called Standard mix 5/5, used in the upper parts of the structure, and the 'low-pH' P308B, to be injected at higher depths. The results of the digital reconstruction of the mineralogical composition of the hardened paste are entirely logical, as the microstructures display high degrees of hydration, large porosities and low or nil contents of aluminium compounds. Diffusion of solutes in the pore solution was considered to be the dominant transport process. A single scenario was studied for both mix designs and their performances were compared. The reactive transport model adequately reproduces the process of decalcification of the C-S-H and the precipitation of calcite, which is corroborated by empirical observations. It was found that the evolution of the deterioration process is sensitive to the chemical composition of groundwater, its effects being more severe when grout is set under continuous exposure to poorly mineralized groundwater. Results obtained appear to indicate that a correct conceptualization of the problem was accomplished and support the assumption that, in absence of more reliable empirical data, it might

  13. Respiration and substrate transport rates as well as reactive oxygen species production distinguish mitochondria from brain and liver.

    Science.gov (United States)

    Gusdon, Aaron M; Fernandez-Bueno, Gabriel A; Wohlgemuth, Stephanie; Fernandez, Jenelle; Chen, Jing; Mathews, Clayton E

    2015-09-10

    Aberrant mitochondrial function, including excessive reactive oxygen species (ROS) production, has been implicated in the pathogenesis of human diseases. The use of mitochondrial inhibitors to ascertain the sites in the electron transport chain (ETC) resulting in altered ROS production can be an important tool. However, the response of mouse mitochondria to ETC inhibitors has not been thoroughly assessed. Here we set out to characterize the differences in phenotypic response to ETC inhibitors between the more energetically demanding brain mitochondria and less energetically demanding liver mitochondria in commonly utilized C57BL/6J mice. We show that in contrast to brain mitochondria, inhibiting distally within complex I or within complex III does not increase liver mitochondrial ROS production supported by complex I substrates, and liver mitochondrial ROS production supported by complex II substrates occurred primarily independent of membrane potential. Complex I, II, and III enzymatic activities and membrane potential were equivalent between liver and brain and responded to ETC. inhibitors similarly. Brain mitochondria exhibited an approximately two-fold increase in complex I and II supported respiration compared with liver mitochondria while exhibiting similar responses to inhibitors. Elevated NADH transport and heightened complex II-III coupled activity accounted for increased complex I and II supported respiration, respectively in brain mitochondria. We conclude that important mechanistic differences exist between mouse liver and brain mitochondria and that mouse mitochondria exhibit phenotypic differences compared with mitochondria from other species.

  14. Evaluation of synthetic zeolite as engineering passive permeable reactive barrier

    International Nuclear Information System (INIS)

    Ibrahim, O.A.A.

    2011-01-01

    models were used to describe the pollutant transport within the permeable reactive barrier. Based on the obtained results, the following can be concluded: 1. Synthetic zeolite X proposed as a reactive barrier material was successfully prepared and completely characterized using XRD, FTIR, EDX, and SEM techniques. 2. Sorption studies indicated the feasibility of using the prepared zeolite X as a reactive barrier material due to its high capacity, chemical stability and selectivity for the concerned heavy metals (Zn 2+ and Cd 2+ ions). 3. Transport properties of both zinc and cadmium ions through zeolite X packed column have been determined. The hydrodynamic dispersion coefficients needed for describe the migration of Zn 2+ and Cd 2+ ions were determined. 4. Retardation coefficients using linear and nonlinear isotherm models were utilized to determine the capability of the synthesized zeolite X to impede the movement of zinc and cadmium ions carried by the fluid. 5. Transport of contaminants in groundwater systems, which is based on the integration of advection dispersion equation using specific boundary conditions, provides a number of analytical solutions. Some of these solutions have been derived for one dimensional pulse contaminant input or a continuous input.

  15. Using Reactive Transport Modeling to Evaluate the Source Term at Yucca Mountain

    Energy Technology Data Exchange (ETDEWEB)

    Y. Chen

    2001-12-19

    The conventional approach of source-term evaluation for performance assessment of nuclear waste repositories uses speciation-solubility modeling tools and assumes pure phases of radioelements control their solubility. This assumption may not reflect reality, as most radioelements (except for U) may not form their own pure phases. As a result, solubility limits predicted using the conventional approach are several orders of magnitude higher then the concentrations of radioelements measured in spent fuel dissolution experiments. This paper presents the author's attempt of using a non-conventional approach to evaluate source term of radionuclide release for Yucca Mountain. Based on the general reactive-transport code AREST-CT, a model for spent fuel dissolution and secondary phase precipitation has been constructed. The model accounts for both equilibrium and kinetic reactions. Its predictions have been compared against laboratory experiments and natural analogues. It is found that without calibrations, the simulated results match laboratory and field observations very well in many aspects. More important is the fact that no contradictions between them have been found. This provides confidence in the predictive power of the model. Based on the concept of Np incorporated into uranyl minerals, the model not only predicts a lower Np source-term than that given by conventional Np solubility models, but also produces results which are consistent with laboratory measurements and observations. Moreover, two hypotheses, whether Np enters tertiary uranyl minerals or not, have been tested by comparing model predictions against laboratory observations, the results favor the former. It is concluded that this non-conventional approach of source term evaluation not only eliminates over-conservatism in conventional solubility approach to some extent, but also gives a realistic representation of the system of interest, which is a prerequisite for truly understanding the long

  16. Using Reactive Transport Modeling to Evaluate the Source Term at Yucca Mountain

    International Nuclear Information System (INIS)

    Y. Chen

    2001-01-01

    The conventional approach of source-term evaluation for performance assessment of nuclear waste repositories uses speciation-solubility modeling tools and assumes pure phases of radioelements control their solubility. This assumption may not reflect reality, as most radioelements (except for U) may not form their own pure phases. As a result, solubility limits predicted using the conventional approach are several orders of magnitude higher then the concentrations of radioelements measured in spent fuel dissolution experiments. This paper presents the author's attempt of using a non-conventional approach to evaluate source term of radionuclide release for Yucca Mountain. Based on the general reactive-transport code AREST-CT, a model for spent fuel dissolution and secondary phase precipitation has been constructed. The model accounts for both equilibrium and kinetic reactions. Its predictions have been compared against laboratory experiments and natural analogues. It is found that without calibrations, the simulated results match laboratory and field observations very well in many aspects. More important is the fact that no contradictions between them have been found. This provides confidence in the predictive power of the model. Based on the concept of Np incorporated into uranyl minerals, the model not only predicts a lower Np source-term than that given by conventional Np solubility models, but also produces results which are consistent with laboratory measurements and observations. Moreover, two hypotheses, whether Np enters tertiary uranyl minerals or not, have been tested by comparing model predictions against laboratory observations, the results favor the former. It is concluded that this non-conventional approach of source term evaluation not only eliminates over-conservatism in conventional solubility approach to some extent, but also gives a realistic representation of the system of interest, which is a prerequisite for truly understanding the long

  17. The reactivity meter and core reactivity

    International Nuclear Information System (INIS)

    Siltanen, P.

    1999-01-01

    This paper discussed in depth the point kinetic equations and the characteristics of the point kinetic reactivity meter, particularly for large negative reactivities. From a given input signal representing the neutron flux seen by a detector, the meter computes a value of reactivity in dollars (ρ/β), based on inverse point kinetics. The prompt jump point of view is emphasised. (Author)

  18. Open-Source Development of the Petascale Reactive Flow and Transport Code PFLOTRAN

    Science.gov (United States)

    Hammond, G. E.; Andre, B.; Bisht, G.; Johnson, T.; Karra, S.; Lichtner, P. C.; Mills, R. T.

    2013-12-01

    Open-source software development has become increasingly popular in recent years. Open-source encourages collaborative and transparent software development and promotes unlimited free redistribution of source code to the public. Open-source development is good for science as it reveals implementation details that are critical to scientific reproducibility, but generally excluded from journal publications. In addition, research funds that would have been spent on licensing fees can be redirected to code development that benefits more scientists. In 2006, the developers of PFLOTRAN open-sourced their code under the U.S. Department of Energy SciDAC-II program. Since that time, the code has gained popularity among code developers and users from around the world seeking to employ PFLOTRAN to simulate thermal, hydraulic, mechanical and biogeochemical processes in the Earth's surface/subsurface environment. PFLOTRAN is a massively-parallel subsurface reactive multiphase flow and transport simulator designed from the ground up to run efficiently on computing platforms ranging from the laptop to leadership-class supercomputers, all from a single code base. The code employs domain decomposition for parallelism and is founded upon the well-established and open-source parallel PETSc and HDF5 frameworks. PFLOTRAN leverages modern Fortran (i.e. Fortran 2003-2008) in its extensible object-oriented design. The use of this progressive, yet domain-friendly programming language has greatly facilitated collaboration in the code's software development. Over the past year, PFLOTRAN's top-level data structures were refactored as Fortran classes (i.e. extendible derived types) to improve the flexibility of the code, ease the addition of new process models, and enable coupling to external simulators. For instance, PFLOTRAN has been coupled to the parallel electrical resistivity tomography code E4D to enable hydrogeophysical inversion while the same code base can be used as a third

  19. Probabilistic, sediment-geochemical parameterisation of the groundwater compartment of the Netherlands for spatially distributed, reactive transport modelling

    Science.gov (United States)

    Janssen, Gijs; Gunnink, Jan; van Vliet, Marielle; Goldberg, Tanya; Griffioen, Jasper

    2017-04-01

    Pollution of groundwater aquifers with contaminants as nitrate is a common problem. Reactive transport models are useful to predict the fate of such contaminants and to characterise the efficiency of mitigating or preventive measures. Parameterisation of a groundwater transport model on reaction capacity is a necessary step during building the model. Two Dutch, national programs are combined to establish a methodology for building a probabilistic model on reaction capacity of the groundwater compartment at the national scale: the Geological Survey program and the NHI Netherlands Hydrological Instrument program. Reaction capacity is considered as a series of geochemical characteristics that control acid/base condition, redox condition and sorption capacity. Five primary reaction capacity variables are characterised: 1. pyrite, 2. non-pyrite, reactive iron (oxides, siderite and glauconite), 3. clay fraction, 4. organic matter and 5. Ca-carbonate. Important reaction capacity variables that are determined by more than one solid compound are also deduced: 1. potential reduction capacity (PRC) by pyrite and organic matter, 2. cation-exchange capacity (CEC) by organic matter and clay content, 3. carbonate buffering upon pyrite oxidation (CPBO) by carbonate and pyrite. Statistical properties of these variables are established based on c. 16,000 sediment geochemical analyses. The first tens of meters are characterised based on 25 regions using combinations of lithological class and geological formation as strata. Because of both less data and more geochemical uniformity, the deeper subsurface is characterised in a similar way based on 3 regions. The statistical data is used as input in an algoritm that probabilistically calculates the reaction capacity per grid cell. First, the cumulative frequency distribution (cfd) functions are calculated from the statistical data for the geochemical strata. Second, all voxel cells are classified into the geochemical strata. Third, the

  20. A Comparison of Analytical and Numerical Methods for Modeling Dissolution and Other Reactions in Transport Limited Systems

    Science.gov (United States)

    Hochstetler, D. L.; Kitanidis, P. K.

    2009-12-01

    Modeling the transport of reactive species is a computationally demanding problem, especially in complex subsurface media, where it is crucial to improve understanding of geochemical processes and the fate of groundwater contaminants. In most of these systems, reactions are inherently fast and actual rates of transformations are limited by the slower physical transport mechanisms. There have been efforts to reformulate multi-component reactive transport problems into systems that are simpler and less demanding to solve. These reformulations include defining conservative species and decoupling of reactive transport equations so that fewer of them must be solved, leaving mostly conservative equations for transport [e.g., De Simoni et al., 2005; De Simoni et al., 2007; Kräutle and Knabner, 2007; Molins et al., 2004]. Complex and computationally cumbersome numerical codes used to solve such problems have also caused De Simoni et al. [2005] to develop more manageable analytical solutions. Furthermore, this work evaluates reaction rates and has reaffirmed that the mixing rate,▽TuD▽u, where u is a solute concentration and D is the dispersion tensor, as defined by Kitanidis [1994], is an important and sometimes dominant factor in determining reaction rates. Thus, mixing of solutions is often reaction-limiting. We will present results from analytical and computational modeling of multi-component reactive-transport problems. The results have applications to dissolution of solid boundaries (e.g., calcite), dissolution of non-aqueous phase liquids (NAPLs) in separate phases, and mixing of saltwater and freshwater (e.g. saltwater intrusion in coastal carbonate aquifers). We quantify reaction rates, compare numerical and analytical results, and analyze under what circumstances which approach is most effective for a given problem. References: DeSimoni, M., et al. (2005), A procedure for the solution of multicomponent reactive transport problems, Water Resources Research, 41

  1. Effect of Freeze-Thaw Cycles on Soil Nitrogen Reactive Transport in a Polygonal Arctic Tundra Ecosystem at Barrow AK Using 3-D Coupled ALM-PFLOTRAN

    Science.gov (United States)

    Yuan, F.; Wang, G.; Painter, S. L.; Tang, G.; Xu, X.; Kumar, J.; Bisht, G.; Hammond, G. E.; Mills, R. T.; Thornton, P. E.; Wullschleger, S. D.

    2017-12-01

    In Arctic tundra ecosystem soil freezing-thawing is one of dominant physical processes through which biogeochemical (e.g., carbon and nitrogen) cycles are tightly coupled. Besides hydraulic transport, freezing-thawing can cause pore water movement and aqueous species gradients, which are additional mechanisms for soil nitrogen (N) reactive-transport in Tundra ecosystem. In this study, we have fully coupled an in-development ESM(i.e., Advanced Climate Model for Energy, ACME)'s Land Model (ALM) aboveground processes with a state-of-the-art massively parallel 3-D subsurface thermal-hydrology and reactive transport code, PFLOTRAN. The resulting coupled ALM-PFLOTRAN model is a Land Surface Model (LSM) capable of resolving 3-D soil thermal-hydrological-biogeochemical cycles. This specific version of PFLOTRAN has incorporated CLM-CN Converging Trophic Cascade (CTC) model and a full and simple but robust soil N cycle. It includes absorption-desorption for soil NH4+ and gas dissolving-degasing process as well. It also implements thermal-hydrology mode codes with three newly-modified freezing-thawing algorithms which can greatly improve computing performance in regarding to numerical stiffness at freezing-point. Here we tested the model in fully 3-D coupled mode at the Next Generation Ecosystem Experiment-Arctic (NGEE-Arctic) field intensive study site at the Barrow Environmental Observatory (BEO), AK. The simulations show that: (1) synchronous coupling of soil thermal-hydrology and biogeochemistry in 3-D can greatly impact ecosystem dynamics across polygonal tundra landscape; and (2) freezing-thawing cycles can add more complexity to the system, resulting in greater mobility of soil N vertically and laterally, depending upon local micro-topography. As a preliminary experiment, the model is also implemented for Pan-Arctic region in 1-D column mode (i.e. no lateral connection), showing significant differences compared to stand-alone ALM. The developed ALM-PFLOTRAN coupling

  2. Large-Eddy Simulation of Chemically Reactive Pollutant Transport from a Point Source in Urban Area

    Science.gov (United States)

    Du, Tangzheng; Liu, Chun-Ho

    2013-04-01

    Most air pollutants are chemically reactive so using inert scalar as the tracer in pollutant dispersion modelling would often overlook their impact on urban inhabitants. In this study, large-eddy simulation (LES) is used to examine the plume dispersion of chemically reactive pollutants in a hypothetical atmospheric boundary layer (ABL) in neutral stratification. The irreversible chemistry mechanism of ozone (O3) titration is integrated into the LES model. Nitric oxide (NO) is emitted from an elevated point source in a rectangular spatial domain doped with O3. The LES results are compared well with the wind tunnel results available in literature. Afterwards, the LES model is applied to idealized two-dimensional (2D) street canyons of unity aspect ratio to study the behaviours of chemically reactive plume over idealized urban roughness. The relation among various time scales of reaction/turbulence and dimensionless number are analysed.

  3. An X-ray diffractometer specimen holder for use with reactive and toxic materials

    International Nuclear Information System (INIS)

    Huyton, A.; Munden, A.B.

    1979-04-01

    An X-ray diffractometer specimen holder has been designed for analysis of reactive sodium compounds which will satisfactorily seal the sample from the atmosphere. The holder can be readily filled in a glove-box and is easily transported for mounting on a vertical Philips PW 1051 X-ray diffractometer. It is considered that this holder could also be applied to a wide range of other reactive and toxic materials, e.g. plutonium or its compounds. (author)

  4. Transport Visualization for Studying Mass Transfer and Solute Transport in Permeable Media

    International Nuclear Information System (INIS)

    Roy Haggerty

    2004-01-01

    Understanding and predicting mass transfer coupled with solute transport in permeable media is central to several energy-related programs at the US Department of Energy (e.g., CO 2 sequestration, nuclear waste disposal, hydrocarbon extraction, and groundwater remediation). Mass transfer is the set of processes that control movement of a chemical between mobile (advection-dominated) domains and immobile (diffusion- or sorption-dominated) domains within a permeable medium. Consequences of mass transfer on solute transport are numerous and may include (1) increased sequestration time within geologic formations; (2) reduction in average solute transport velocity by as much as several orders of magnitude; (3) long ''tails'' in concentration histories during removal of a solute from a permeable medium; (4) poor predictions of solute behavior over long time scales; and (5) changes in reaction rates due to mass transfer influences on pore-scale mixing of solutes. Our work produced four principle contributions: (1) the first comprehensive visualization of solute transport and mass transfer in heterogeneous porous media; (2) the beginnings of a theoretical framework that encompasses both macrodispersion and mass transfer within a single set of equations; (3) experimental and analytical tools necessary for understanding mixing and aqueous reaction in heterogeneous, granular porous media; (4) a clear experimental demonstration that reactive transport is often not accurately described by a simple coupling of the convection-dispersion equation with chemical reaction equations. The work shows that solute transport in heterogeneous media can be divided into 3 regimes--macrodispersion, advective mass transfer, and diffusive mass transfer--and that these regimes can be predicted quantitatively in binary media. We successfully predicted mass transfer in each of these regimes and verified the prediction by completing quantitative visualization experiments in each of the regimes, the

  5. Hybrid finite-volume/transported PDF method for the simulation of turbulent reactive flows

    Science.gov (United States)

    Raman, Venkatramanan

    A novel computational scheme is formulated for simulating turbulent reactive flows in complex geometries with detailed chemical kinetics. A Probability Density Function (PDF) based method that handles the scalar transport equation is coupled with an existing Finite Volume (FV) Reynolds-Averaged Navier-Stokes (RANS) flow solver. The PDF formulation leads to closed chemical source terms and facilitates the use of detailed chemical mechanisms without approximations. The particle-based PDF scheme is modified to handle complex geometries and grid structures. Grid-independent particle evolution schemes that scale linearly with the problem size are implemented in the Monte-Carlo PDF solver. A novel algorithm, in situ adaptive tabulation (ISAT) is employed to ensure tractability of complex chemistry involving a multitude of species. Several non-reacting test cases are performed to ascertain the efficiency and accuracy of the method. Simulation results from a turbulent jet-diffusion flame case are compared against experimental data. The effect of micromixing model, turbulence model and reaction scheme on flame predictions are discussed extensively. Finally, the method is used to analyze the Dow Chlorination Reactor. Detailed kinetics involving 37 species and 158 reactions as well as a reduced form with 16 species and 21 reactions are used. The effect of inlet configuration on reactor behavior and product distribution is analyzed. Plant-scale reactors exhibit quenching phenomena that cannot be reproduced by conventional simulation methods. The FV-PDF method predicts quenching accurately and provides insight into the dynamics of the reactor near extinction. The accuracy of the fractional time-stepping technique in discussed in the context of apparent multiple-steady states observed in a non-premixed feed configuration of the chlorination reactor.

  6. Reactive transport predictions for an Olkiluoto. Final repository tunnel unit

    International Nuclear Information System (INIS)

    Luukkonen, A.; Nordman, H.

    2007-09-01

    The presented hydrogeochemical reactive transport calculations concentrate to a defined unit piece (unit cell) of the planned Olkiluoto repository that is under design for spent nuclear fuel. The material properties assigned to the tunnel unit are based on literature as far as possible. Calculations make up geochemical future scenarios on the repository evolution. Most recent predictions on the potential future climate at Olkiluoto are utilised together with estimates how future hydraulic conditions affect the repository. Two climate scenarios are considered in detail. The Weichselian-R scenario is based on the repetition of the last glacial cycle, while the Emissions-M scenario attempts to predict the future groundwater conditions at Olkiluoto in the situation where the atmospheric greenhouse gasses delay the next glacial cycle at least for 100,000 years. The groundwater compositions, considered active at the repository depth in future, are judged in this study. Several geochemical processes are considered active at the repository depth. Calculations concentrate on the changes occurring with time within the tunnel unit. All simulations are done in geochemically reducing conditions. It turns out that sulphur cycling in these conditions is in central role considering the safety assessment studies of Olkiluoto repository. Furthermore, groundwater salinity and cation occupancy within the exchange sites of montmorillonite contributes to sealing properties of the engineered barrier system. Calculations attempt to estimate effects of possible future scenarios for the Olkiluoto repository. The results indicate that the buffer capacities assigned to the tunnel unit are large enough, at least to next 100,000 years, to maintain dissolved sulphide contents low in the groundwater infiltrating through the tunnel engineered barrier system. Geochemical reactions raise the bicarbonate levels within the groundwater. This is a useful buffer if low pH conditions emerge in the

  7. Colloid Genesis/Transport and Flow Pathway Alterations Resulting From Interactions of Reactive Waste Solutions and Hanford Vadose Zone Sediments

    International Nuclear Information System (INIS)

    Wan, Jiamin; Tokunaga, Tetsu K.

    2001-01-01

    Leakage of underground tanks containing high-level nuclear waste solutions has been identified at various DOE facilities. The Hanford Site is one the main facilities of concern, with about 2,300 to 3,400 m3 of leaked waste liquids. Radionuclides and other contaminants have been found in elevated concentrations in the vadose zone and groundwater underneath single shell tank farms. We do not currently know the mechanisms responsible for the unexpected deep migration of some contaminants through the vadose zone, and such understanding is urgently needed for planning remediation. Due to the extreme chemical conditions of the tank waste solutions (very high pH, aluminum concentration, and ionic strength), interactions between the highly reactive waste solutions and sediments underneath the tanks can result in dissolution of primary minerals of the sediments and precipitation of secondary phases including colloidal particles. Contaminants can sorb onto and/or co-precipitate with the secondary phases. Therefore transport of strongly associated contaminants on mobile colloids can be substantially greater than without colloids. The overall objective of this research is to improve our understanding on the effects of interactions between the tank waste solution and sediments on deep contaminant migration under Hanford Site conditions. This objective will be achieved through the following four tasks: (1) colloid generation and transport studies, (2) studies on sediment permeability and chemical composition alterations, (3) quantifying associations of contaminants with secondary colloids, and (4) studies on the combined effects of the aforementioned processes on deep contaminant migration

  8. A method to obtain new cross-sections transport equivalent

    International Nuclear Information System (INIS)

    Palmiotti, G.

    1988-01-01

    We present a method, that allows the calculation, by the mean of variational principle, of equivalent cross-sections in order to take into account the transport and mesh size effects on reactivity variation calculations. The method validation has been made in two and three dimensions geometries. The reactivity variations calculated in three dimensional hexagonal geometry with seven points by subassembly using two sets of equivalent cross-sections for control rods are in a very good agreement with the ones of a transport, extrapolated to zero mesh size, calculation. The difficulty encountered in obtaining a good flux distribution has lead to the utilisation of a single set of equivalent cross-sections calculated by starting from an appropriated R-Z model that allows to take into account also the axial transport effects for the control rod followers. The global results in reactivity variations are still satisfactory with a good performance for the flux distribution. The main interest of the proposed method is the possibility to simulate a full 3D transport calculation, with fine mesh size, using a 3D diffusion code, with a larger mesh size. The results obtained should be affected by uncertainties, which do not exceed ± 4% for a large LMFBR control rod worth and for very different rod configurations. This uncertainty is by far smaller than the experimental uncertainties. (author). 5 refs, 8 figs, 9 tabs

  9. Obtaining incremental multigroup cross sections for CANDU super cells with reactivity devices

    International Nuclear Information System (INIS)

    Balaceanu, V.; Constantin, M.

    2001-01-01

    In the last 20 years a multigroup methodology WIMS - PIJXYZ (WP) was developed and validated at INR Pitesti for obtaining incremental cross sections for reactivity devices in CANDU reactors. This is an alternate methodology to the CANDU classic methodology (experimentally adjusted) based on the POWDERPUFS and MULTICELL computer codes. The 2D supercell calculation performed with the WIMS code, that is a NEA Data Bank transport code, and which produces multigroup cross sections (on 18 energy groups) for CANDU supercell material (standard and perturbed, with and without reactivity devices). To obtain an as correct as possible 3D modelling for the CANDU supercells containing reactivity devices, the WIMS cross sections are used as input data for the PIJXYZ code, thus obtaining homogenized cross sections for CANDU supercells. PIJXYZ is an integral transport code based on the formalism of the first collision probabilities. It is analogue to the SHETAN code and it was created for neutron analyzes at cell level for CANDU type reactors were the reactivity devices are perpendicular to the fuel channels. The coordinate system used in PIJXYZ is a mixed one, namely a rectangular-cylindrical system. The geometric model used in PIJXYZ is presented. The fuel beam is represented by a horizontal cylinder and the reactivity device by a vertical one both cylinders being immersed in the moderator. Two supercell types were considered: a perturbed supercell (containing a reactivity device) and the standard supercell were the place of reactivity device is occupied by the moderator. The incremental cross sections for reactivity device are obtained as differences between the homogenized over supercell cross sections (with reactivity device) and homogenized over standards supercell (without device) cross sections. The PIJXYZ computation may be done on an energy cutting with 2 up to 18 groups. The validation of VIMS - PIJXYZ was done on the basis of several benchmark and by comparison with

  10. Kinetic Controls on the Desorption/Dissolution of Sorbed U(VI) and their Influence on Reactive Transport

    International Nuclear Information System (INIS)

    Zachara, John M.; Chongxuan Liu; Qafoku, Nikolla P.; McKinley, James P.; Catalano, Jeffrey G.; Brown, Gordon E. Jr.; Davis, James A.

    2006-01-01

    source to groundwater. (2) Measure desorption/dissolution rates of sorbed U(VI), quantify controlling factors, and develop descriptive kinetic models to provide a scientific basis to forecast U(VI) fluxes to groundwater, future plume dynamics, and long-term contaminant attenuation. (3) Establish reaction networks and determine geochemically/ physically realistic reaction parameters to drive state-of-the-art reactive transport modeling of U in vadose zone pore fluids and groundwater

  11. Kinetic Controls on the Desorption/Dissolution of Sorbed U(VI) and Their Influence on Reactive Transport

    International Nuclear Information System (INIS)

    J. M. Zachara; C. Liu; N. Qafoku; J. P. McKinley; J. A. Davis; D. Stoliker; Y. Arai; J. G. Catalano; G. E. Brown, Jr.

    2007-01-01

    disposal source to groundwater; (2) Measure desorption/dissolution rates of sorbed U(VI), quantify controlling factors, and develop descriptive kinetic models to provide a scientific basis to forecast U(VI) fluxes to groundwater, future plume dynamics, and long-term contaminant attenuation; and (3) Establish reaction networks and determine geochemically/ physically realistic reaction parameters to drive state-of-the-art reactive transport modeling of U in vadose zone pore fluids and groundwater

  12. Ceramic oxygen transport membrane array reactor and reforming method

    Science.gov (United States)

    Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R; Gonzalez, Javier E.; Doraswami, Uttam R.

    2017-10-03

    The invention relates to a commercially viable modular ceramic oxygen transport membrane system for utilizing heat generated in reactively-driven oxygen transport membrane tubes to generate steam, heat process fluid and/or provide energy to carry out endothermic chemical reactions. The system provides for improved thermal coupling of oxygen transport membrane tubes to steam generation tubes or process heater tubes or reactor tubes for efficient and effective radiant heat transfer.

  13. Methods for producing thin film charge selective transport layers

    Science.gov (United States)

    Hammond, Scott Ryan; Olson, Dana C.; van Hest, Marinus Franciscus Antonius Maria

    2018-01-02

    Methods for producing thin film charge selective transport layers are provided. In one embodiment, a method for forming a thin film charge selective transport layer comprises: providing a precursor solution comprising a metal containing reactive precursor material dissolved into a complexing solvent; depositing the precursor solution onto a surface of a substrate to form a film; and forming a charge selective transport layer on the substrate by annealing the film.

  14. Identifying key controls on the behavior of an acidic-U(VI) plume in the Savannah River Site using reactive transport modeling.

    Science.gov (United States)

    Bea, Sergio A; Wainwright, Haruko; Spycher, Nicolas; Faybishenko, Boris; Hubbard, Susan S; Denham, Miles E

    2013-08-01

    Acidic low-level waste radioactive waste solutions were discharged to three unlined seepage basins at the F-Area of the Department of Energy (DOE) Savannah River Site (SRS), South Carolina, USA, from 1955 through 1989. Despite many years of active remediation, the groundwater remains acidic and contaminated with significant levels of U(VI) and other radionuclides. Monitored Natural Attenuation (MNA) is a desired closure strategy for the site, based on the premise that regional flow of clean background groundwater will eventually neutralize the groundwater acidity, immobilizing U(VI) through adsorption. An in situ treatment system is currently in place to accelerate this in the downgradient portion of the plume and similar measures could be taken upgradient if necessary. Understanding the long-term pH and U(VI) adsorption behavior at the site is critical to assess feasibility of MNA along with the in-situ remediation treatments. This paper presents a reactive transport (RT) model and uncertainty quantification (UQ) analyses to explore key controls on the U(VI)-plume evolution and long-term mobility at this site. Two-dimensional numerical RT simulations are run including the saturated and unsaturated (vadose) zones, U(VI) and H(+) adsorption (surface complexation) onto sediments, dissolution and precipitation of Al and Fe minerals, and key hydrodynamic processes are considered. UQ techniques are applied using a new open-source tool that is part of the developing ASCEM reactive transport modeling and analysis framework to: (1) identify the complex physical and geochemical processes that control the U(VI) plume migration in the pH range where the plume is highly mobile, (2) evaluate those physical and geochemical parameters that are most controlling, and (3) predict the future plume evolution constrained by historical, chemical and hydrological data. The RT simulation results show a good agreement with the observed historical pH and concentrations of U(VI), nitrates

  15. Communication: Enhanced chemical reactivity of graphene on a Ni(111) substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosetti, Alberto; Silvestrelli, Pier Luigi [Dipartimento di Fisica e Astronomia, Università di Padova, via Marzolo 8, I–35131 Padova, Italy and DEMOCRITOS National Simulation Center of the Italian Istituto Officina dei Materiali (IOM) of the Italian National Research Council (CNR), Trieste (Italy)

    2016-03-21

    Due to the unique combination of structural, mechanical, and transport properties, graphene has emerged as an exceptional candidate for catalysis applications. The low chemical reactivity caused by sp{sup 2} hybridization and strongly delocalized π electrons, however, represents a main challenge for straightforward use of graphene in its pristine, free-standing form. Following recent experimental indications, we show that due to charge hybridization, a Ni(111) substrate can enhance the chemical reactivity of graphene, as exemplified by the interaction with the CO molecule. While CO only physisorbs on free-standing graphene, chemisorption of CO involving formation of ethylene dione complexes is predicted in Ni(111)-graphene. Higher chemical reactivity is also suggested in the case of oxidized graphene, opening the way to a simple and efficient control of graphene chemical properties, devoid of complex defect patterning or active metallic structures deposition.

  16. Communication: Enhanced chemical reactivity of graphene on a Ni(111) substrate

    International Nuclear Information System (INIS)

    Ambrosetti, Alberto; Silvestrelli, Pier Luigi

    2016-01-01

    Due to the unique combination of structural, mechanical, and transport properties, graphene has emerged as an exceptional candidate for catalysis applications. The low chemical reactivity caused by sp 2 hybridization and strongly delocalized π electrons, however, represents a main challenge for straightforward use of graphene in its pristine, free-standing form. Following recent experimental indications, we show that due to charge hybridization, a Ni(111) substrate can enhance the chemical reactivity of graphene, as exemplified by the interaction with the CO molecule. While CO only physisorbs on free-standing graphene, chemisorption of CO involving formation of ethylene dione complexes is predicted in Ni(111)-graphene. Higher chemical reactivity is also suggested in the case of oxidized graphene, opening the way to a simple and efficient control of graphene chemical properties, devoid of complex defect patterning or active metallic structures deposition.

  17. WWER safety analysis in case of simultaneous positive reactivity introduction by control rods withdrawal and pure condensate injection

    International Nuclear Information System (INIS)

    Kuchin, A.; Ovdiienko, I.; Khalimonchuk, V.

    2011-01-01

    Results of calculation assessment of positive reactivity insertion rate are presented under condition of simultaneous effect on reactivity of two provided by WWER project reactivity operation systems - extract of regulation group and decrease of boron acid concentration. Showed that maximal positive reactivity insertion rate is achieved at hot zero power and it's too less than limit value 0.07β eff /sec defined by normative document 'Nuclear safety regulation of NPP with pressurized water reactors'. For given reasons concluded that necessity of application of the extended protection PZ-2 actuation time is absent on interval of pure condensate transportation for full exclusion of possibility of positive reactivity insertion simultaneously by two different operation systems. (Authors)

  18. Complementary modelling of radionuclide retention in the near-surface system at Forsmark. Development of a reactive transport model using Forsmark 1.2 data

    Energy Technology Data Exchange (ETDEWEB)

    Sena, Clara; Grandia, Fidel; Arcos, David; Molinero, Jorge; Duro, Lara (Amphos XXI Consulting S.L., Barcelona (Spain))

    2008-10-15

    sensitivity analysis of the more relevant parameters considered in the reactive transport numerical models is also presented here. From the main report of the SR-Can project it is stated that Ra is one of the radionuclides with greater contribution to the radioactive doses that might be transferred to the biosphere in the context of repository release. For this reason, Ra was added to the set of radionuclides (Sr, Cs, and U). Another improvement in the numerical simulations presented here is the calculation of the hydrogeochemical steady state of the near-surface system, prior to repository release. This is done to approach the present-day conditions at Forsmark. In addition, radionuclides derived from repository release have been discriminated from those of natural origin, already present in the groundwaters. Radionuclides coming from repository were labelled as RDCs, RDSr, and RDU (RD stands for repository-derived). Ra was not labelled since the presence of this radionuclide in the modelled domain is exclusively attributed to repository release due to the extremely low concentrations observed in the natural waters of Forsmark. The results attained in the reactive transport models built in this work show that the near-surface systems at Forsmark constitute a geochemical reactive barrier able to retain radionuclides by several key processes, namely cation exchange, adsorption on mineral surfaces and precipitation of pure phases and solid solutions. The reactive transport simulations predict that repository-derived Sr, U, and Cs are retained in the solid phase of both Quaternary deposits under study, while Ra is effectively retained in the till deposit only. Ra is not retained in the glacial clay deposit since saturation of barite, which is the only retention mechanism considered in the simulations for this radionuclide, is not reached in this system. The simulations indicate that, in the till deposit, Sr is retained via cation exchange and coprecipitation with calcite, U is

  19. Evaluation of Front Morphological Development of Reactive Solute Transport Using Behavior Diagrams

    Directory of Open Access Journals (Sweden)

    Jui-Sheng Chen

    2009-01-01

    Full Text Available While flowing through porous medium, ground water flow dissolves minerals thereby in creasing medium porosity and ultimately permeability. Reactive fluid flows preferentially into highly permeable zones, which are therefore dissolved most rapidly, producing a further preferential permeability enhancement. Accordingly, slight non-uniformities present in porous medium can be amplified and lead to fingering reaction fronts. The objective of this study is to investigate dissolution-induced porosity changes on reaction front morphology in homogeneous porous medium with two non-uniformities. Four controlling parameters, including up stream pressure gradient, reaction rate constant, non-uniformities spacing and non-uniformity strength ratio are comprehensively considered. By using a modified version of the numerical code, NSPCRT, to conduct a series of numerical simulations, front behavior diagrams are constructed to illustrate the morphologies of reaction fronts under various combinations of these four factors. Simulation results indicate that the two non-uniformities are inhibited into a planar front under low up stream pressure gradient, merge into a single-fingering front under inter mediate up stream pressure gradient, or grow into a double-fingers front under high up stream pressure gradient. More over, the two non-uniformities tend to develop intoadouble-fingering front as the non-uniformity strength ratio in creases from 0.2 to 1.0, and merge into a single-fingering front while the non-uniformity strength ratio in creases from 1.0 to 1.8. When the reaction rate constant is small, the two non-uniformities merge into a single front. Reaction rate constant significantly affects front advancing velocity. The front advancing velocity decreases with the reaction rate constant. Based on these results, front behavior diagrams which de fine the morphologies of the reaction fronts for these four parameters are constructed. Moreover, non

  20. TOURGHREACT: A Simulation Program for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media

    OpenAIRE

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2004-01-01

    TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media. The program was written in Fortran 77 and developed by introducing reactive geochemistry into the multiphase fluid and heat flow simulator TOUGH2. A variety of subsurface thermo-physical-chemical processes are considered under a wide range of conditions of pressure, temperature, water saturation, ionic strength, and pH and Eh. Interactions between ...

  1. Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Burgos, W.D.

    2009-09-02

    This report summarizes research conducted in conjunction with a project entitled “Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center”, which was funded through the Integrative Studies Element of the former NABIR Program (now the Environmental Remediation Sciences Program) within the Office of Biological and Environmental Research. Dr. William Burgos (The Pennsylvania State University) was the overall PI/PD for the project, which included Brian Dempsey (Penn State), Gour-Tsyh (George) Yeh (Central Florida University), and Eric Roden (formerly at The University of Alabama, now at the University of Wisconsin) as separately-funded co-PIs. The project focused on development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. The work builds on our previous studies of microbial Fe(III) and U(VI) reduction, and was directly aligned with the Scheibe et al. ORNL FRC Field Project at Area 2.

  2. A Coupled Chemical and Mass Transport Model for Concrete Durability

    DEFF Research Database (Denmark)

    Jensen, Mads Mønster; Johannesson, Björn; Geiker, Mette Rica

    2012-01-01

    In this paper a general continuum theory is used to evaluate the service life of cement based materials, in terms of mass transport processes and chemical degradation of the solid matrix. The model established is a reactive mass transport model, based on an extended version of the Poisson-Nernst-...

  3. Preliminary characterization of materials for a reactive transport model validation experiment

    International Nuclear Information System (INIS)

    Siegel, M.D.; Ward, D.B.; Cheng, W.C.; Bryant, C.; Chocas, C.S.; Reynolds, C.G.

    1993-01-01

    The geochemical properties of a porous sand and several tracers (Ni, Br, and Li) have been characterized for use in a caisson experiment designed to validate sorption models used in models of inactive transport. The surfaces of the sand grains have been examined by a combination of techniques including potentiometric titration, acid leaching, optical microscopy, and scanning electron microscopy with energy-dispersive spectroscopy. The surface studies indicate the presence of small amounts of carbonate, kaolinite and iron-oxyhydroxides. Adsorption of nickel, lithium and bromide by the sand was measured using batch techniques. Bromide was not sorbed by the sand. A linear (K d ) or an isotherm sorption model may adequately describe transport of Li; however, a model describing the changes of pH and the concentrations of other solution species as a function of time and position within the caisson and the concomitant effects on Ni sorption may be required for accurate predictions of nickel transport

  4. Individual differences in emotion-cognition interactions: Emotional valence interacts with serotonin transporter genotype to influence brain systems involved in emotional reactivity and cognitive control

    Directory of Open Access Journals (Sweden)

    Melanie eStollstorff

    2013-07-01

    Full Text Available The serotonin transporter gene (5-HTTLPR influences emotional reactivity and attentional bias towards or away from emotional stimuli and has been implicated in psychopathological states, such as depression and anxiety disorder. The short allele is associated with increased reactivity and attention towards negatively-valenced emotional information, whereas the long allele is associated with that towards positively-valenced emotional information. The neural basis for individual differences in the ability to exert cognitive control over these bottom-up biases in emotional reactivity and attention is unknown, an issue investigated in the present study. Two groups, homozygous 5-HTTLPR long allele carriers or homozygous short allele carriers, underwent functional magnetic resonance imaging (fMRI while completing an Emotional Stroop-like task that varied with regards to the congruency of task-relevant and task-irrelevant information and the emotional valence of the task-irrelevant information. Behaviorally, participants demonstrated the classic Stroop effect (slower responses for incongruent than congruent trials, which did not differ by 5-HTTLPR genotype. However, fMRI results revealed that genotype influenced the degree to which neural systems were engaged depending on the valence of the conflicting task-irrelevant information. While the Long group recruited prefrontal control regions and superior temporal sulcus during conflict when task-irrelevant information was positively-valenced, the "Short" group recruited these regions when task-irrelevant information was negatively-valenced. Thus, participants successfully engaged cognitive control to overcome conflict in an emotional context using similar neural circuitry, but the engagement of this circuitry depended on emotional valence and 5-HTTLPR status. These results suggest that the interplay between emotion and cognition is modulated, in part, by a genetic polymorphism that influences serotonin

  5. Void coefficient of reactivity calculation for AP-600 core

    International Nuclear Information System (INIS)

    Suparlina, L.; Budiono, T.A.; Mardha, A.; Tukiran

    1998-01-01

    Void coefficient of reactivity as one of reactor kinetics parameters has been carried out. The calculation was done into two steps which is cell calculation using WIMSD/4 and core calculation using Batan-2DIFF code programs with the condition of beginning of cycle with all fresh fuels elements and all control rods withdrawn. The one dimension transport program in four neutron energy groups is used to calculate the cell generation of various core materials cell has been calculated in 1/4 fuel element with cluster model and square pitch arrange. Moderator density have been reduced until 20% for the void coefficient of reactivity calculation. Macroscopic cross-section as the out put of WIMSD/4 is being used as the input at the diffusion neutron program for core calculation. The void coefficient of reactivity of the AP-600 core can be determined with regular neutron flux and adjoint in four energy groups and X-Y geometry. The results is shown that the K eff calculation value is different 5.2% from the design data

  6. The addition of organic carbon and nitrate affects reactive transport of heavy metals in sandy aquifers

    KAUST Repository

    Satyawali, Yamini

    2011-04-01

    Organic carbon introduction in the soil to initiate remedial measures, nitrate infiltration due to agricultural practices or sulphate intrusion owing to industrial usage can influence the redox conditions and pH, thus affecting the mobility of heavy metals in soil and groundwater. This study reports the fate of Zn and Cd in sandy aquifers under a variety of plausible in-situ redox conditions that were induced by introduction of carbon and various electron acceptors in column experiments. Up to 100% Zn and Cd removal (from the liquid phase) was observed in all the four columns, however the mechanisms were different. Metal removal in column K1 (containing sulphate), was attributed to biological sulphate reduction and subsequent metal precipitation (as sulphides). In the presence of both nitrate and sulphate (K2), the former dominated the process, precipitating the heavy metals as hydroxides and/or carbonates. In the presence of sulphate, nitrate and supplemental iron (Fe(OH)3) (K3), metal removal was also due to precipitation as hydroxides and/or carbonates. In abiotic column, K4, (with supplemental iron (Fe(OH)3), but no nitrate), cation exchange with soil led to metal removal. The results obtained were modeled using the reactive transport model PHREEQC-2 to elucidate governing processes and to evaluate scenarios of organic carbon, sulphate and nitrate inputs. © 2010 Elsevier B.V.

  7. Multiphase Reactive Transport and Platelet Ice Accretion in the Sea Ice of McMurdo Sound, Antarctica

    Science.gov (United States)

    Buffo, J. J.; Schmidt, B. E.; Huber, C.

    2018-01-01

    Sea ice seasonally to interannually forms a thermal, chemical, and physical boundary between the atmosphere and hydrosphere over tens of millions of square kilometers of ocean. Its presence affects both local and global climate and ocean dynamics, ice shelf processes, and biological communities. Accurate incorporation of sea ice growth and decay, and its associated thermal and physiochemical processes, is underrepresented in large-scale models due to the complex physics that dictate oceanic ice formation and evolution. Two phenomena complicate sea ice simulation, particularly in the Antarctic: the multiphase physics of reactive transport brought about by the inhomogeneous solidification of seawater, and the buoyancy driven accretion of platelet ice formed by supercooled ice shelf water onto the basal surface of the overlying ice. Here a one-dimensional finite difference model capable of simulating both processes is developed and tested against ice core data. Temperature, salinity, liquid fraction, fluid velocity, total salt content, and ice structure are computed during model runs. The model results agree well with empirical observations and simulations highlight the effect platelet ice accretion has on overall ice thickness and characteristics. Results from sensitivity studies emphasize the need to further constrain sea ice microstructure and the associated physics, particularly permeability-porosity relationships, if a complete model of sea ice evolution is to be obtained. Additionally, implications for terrestrial ice shelves and icy moons in the solar system are discussed.

  8. Calculations of reactivity based in the solution of the Neutron transport equation in X Y geometry and Lineal perturbation theory; Calculos de reactividad basados en la solucion de la Ecuacion de transporte de neutrones en geometria XY y Teoria de perturbacion lineal

    Energy Technology Data Exchange (ETDEWEB)

    Valle G, E. del; Mugica R, C.A. [IPN, ESFM, Departamento de Ingenieria Nuclear, 07738 Mexico D.F. (Mexico)]. e-mail: cmugica@ipn.mx

    2005-07-01

    In our country, in last congresses, Gomez et al carried out reactivity calculations based on the solution of the diffusion equation for an energy group using nodal methods in one dimension and the TPL approach (Lineal Perturbation Theory). Later on, Mugica extended the application to the case of multigroup so much so much in one as in two dimensions (X Y geometry) with excellent results. Presently work is carried out similar calculations but this time based on the solution of the neutron transport equation in X Y geometry using nodal methods and again the TPL approximation. The idea is to provide a calculation method that allows to obtain in quick form the reactivity solving the direct problem as well as the enclosed problem of the not perturbed problem. A test problem for the one that results are provided for the effective multiplication factor is described and its are offered some conclusions. (Author)

  9. Observations of bromine monoxide transport in the Arctic sustained on aerosol particles

    Directory of Open Access Journals (Sweden)

    P. K. Peterson

    2017-06-01

    Full Text Available The return of sunlight in the polar spring leads to the production of reactive halogen species from the surface snowpack, significantly altering the chemical composition of the Arctic near-surface atmosphere and the fate of long-range transported pollutants, including mercury. Recent work has shown the initial production of reactive bromine at the Arctic surface snowpack; however, we have limited knowledge of the vertical extent of this chemistry, as well as the lifetime and possible transport of reactive bromine aloft. Here, we present bromine monoxide (BrO and aerosol particle measurements obtained during the March 2012 BRomine Ozone Mercury EXperiment (BROMEX near Utqiaġvik (Barrow, AK. The airborne differential optical absorption spectroscopy (DOAS measurements provided an unprecedented level of spatial resolution, over 2 orders of magnitude greater than satellite observations and with vertical resolution unable to be achieved by satellite methods, for BrO in the Arctic. This novel method provided quantitative identification of a BrO plume, between 500 m and 1 km aloft, moving at the speed of the air mass. Concurrent aerosol particle measurements suggest that this lofted reactive bromine plume was transported and maintained at elevated levels through heterogeneous reactions on colocated supermicron aerosol particles, independent of surface snowpack bromine chemistry. This chemical transport mechanism explains the large spatial extents often observed for reactive bromine chemistry, which impacts atmospheric composition and pollutant fate across the Arctic region, beyond areas of initial snowpack halogen production. The possibility of BrO enhancements disconnected from the surface potentially contributes to sustaining BrO in the free troposphere and must also be considered in the interpretation of satellite BrO column observations, particularly in the context of the rapidly changing Arctic sea ice and snowpack.

  10. Contaminated sediment transport during floods

    International Nuclear Information System (INIS)

    Fontaine, T.A.

    1992-01-01

    Over the past 48 years, operations and waste disposal activities at Oak Ridge National Laboratory have resulted in the contamination of parts of the White Oak Creek catchment. The contaminants presenting the highest risk to human health and the environment are particle reactive and are associated with the soils and sediments in the White Oak Creek drainage system. The erosion of these sediments during floods can result in the transport of contaminants both within the catchment and off-site into the Clinch River. A data collection program and a modeling investigation are being used to evaluate the probability of contaminated sediment transport during floods and to develop strategies for controlling off-site transport under present and future conditions

  11. Using travel times to simulate multi-dimensional bioreactive transport in time-periodic flows.

    Science.gov (United States)

    Sanz-Prat, Alicia; Lu, Chuanhe; Finkel, Michael; Cirpka, Olaf A

    2016-04-01

    In travel-time models, the spatially explicit description of reactive transport is replaced by associating reactive-species concentrations with the travel time or groundwater age at all locations. These models have been shown adequate for reactive transport in river-bank filtration under steady-state flow conditions. Dynamic hydrological conditions, however, can lead to fluctuations of infiltration velocities, putting the validity of travel-time models into question. In transient flow, the local travel-time distributions change with time. We show that a modified version of travel-time based reactive transport models is valid if only the magnitude of the velocity fluctuates, whereas its spatial orientation remains constant. We simulate nonlinear, one-dimensional, bioreactive transport involving oxygen, nitrate, dissolved organic carbon, aerobic and denitrifying bacteria, considering periodic fluctuations of velocity. These fluctuations make the bioreactive system pulsate: The aerobic zone decreases at times of low velocity and increases at those of high velocity. For the case of diurnal fluctuations, the biomass concentrations cannot follow the hydrological fluctuations and a transition zone containing both aerobic and obligatory denitrifying bacteria is established, whereas a clear separation of the two types of bacteria prevails in the case of seasonal velocity fluctuations. We map the 1-D results to a heterogeneous, two-dimensional domain by means of the mean groundwater age for steady-state flow in both domains. The mapped results are compared to simulation results of spatially explicit, two-dimensional, advective-dispersive-bioreactive transport subject to the same relative fluctuations of velocity as in the one-dimensional model. The agreement between the mapped 1-D and the explicit 2-D results is excellent. We conclude that travel-time models of nonlinear bioreactive transport are adequate in systems of time-periodic flow if the flow direction does not change

  12. Flow and nutrient dynamics in a subterranean estuary (Waquoit Bay, MA, USA): Field data and reactive transport modeling

    Science.gov (United States)

    Spiteri, Claudette; Slomp, Caroline P.; Charette, Matthew A.; Tuncay, Kagan; Meile, Christof

    2008-07-01

    A two-dimensional (2D) reactive transport model is used to investigate the controls on nutrient ( NO3-, NH4+, PO 4) dynamics in a coastal aquifer. The model couples density-dependent flow to a reaction network which includes oxic degradation of organic matter, denitrification, iron oxide reduction, nitrification, Fe 2+ oxidation and sorption of PO 4 onto iron oxides. Porewater measurements from a well transect at Waquoit Bay, MA, USA indicate the presence of a reducing plume with high Fe 2+, NH4+, DOC (dissolved organic carbon) and PO 4 concentrations overlying a more oxidizing NO3--rich plume. These two plumes travel nearly conservatively until they start to overlap in the intertidal coastal sediments prior to discharge into the bay. In this zone, the aeration of the surface beach sediments drives nitrification and allows the precipitation of iron oxide, which leads to the removal of PO 4 through sorption. Model simulations suggest that removal of NO3- through denitrification is inhibited by the limited overlap between the two freshwater plumes, as well as by the refractory nature of terrestrial DOC. Submarine groundwater discharge is a significant source of NO3- to the bay.

  13. Reactive Kripke semantics

    CERN Document Server

    Gabbay, Dov M

    2013-01-01

    This text offers an extension to the traditional Kripke semantics for non-classical logics by adding the notion of reactivity. Reactive Kripke models change their accessibility relation as we progress in the evaluation process of formulas in the model. This feature makes the reactive Kripke semantics strictly stronger and more applicable than the traditional one. Here we investigate the properties and axiomatisations of this new and most effective semantics, and we offer a wide landscape of applications of the idea of reactivity. Applied topics include reactive automata, reactive grammars, rea

  14. Feedback stabilization of electrostatic reactive instabilities

    International Nuclear Information System (INIS)

    Richards, R.K.

    1976-01-01

    A general theory for the feedback stabilization of electrostatic reactive instabilities is developed which includes the effects of dissipation in the plasma and frequency dependence in the sensor-suppressor elements and in the external feedback circuit. This theory is compared to experiments involving particular reactive instability, an interchange mode, found in a magnetic mirror device; these results are found to be in good agreement with theory. One noteworthy result is that a frequency dependence in the overall gain and phase shift of the feedback loop can cause destabilization at large gain. Multimode feedback stabilization is studied using the spatial variation of two interchange modes to separate them such that each can be acted upon individually by the feedback system. The transfer function of the plasma is also examined. This analysis is used for mode identification and location of the pole positions. As an example of using feedback as a diagnostic tool, instability induced transport is studied. Here feedback is used to control the amplitude of fluctuations at saturation

  15. Monte Carlo simulation of radioactive contaminant transport in unsaturated porous media

    International Nuclear Information System (INIS)

    Giacobbo, F.; Patelli, E.; Zio, E.

    2005-01-01

    In the current proposed solutions of radioactive waste repositories, the protective function against the radionuclide water-driven transport back to the biosphere is to be provided by an integrated system of artificial and natural geologic barriers. The complexity of the transport process in the barriers' heterogeneous media forces approximations to the classical analytical-numerical models, thus reducing their adherence to reality. In an attempt to overcome these difficulties, in the present paper we adopt a Monte Carlo simulation approach, previously developed on the basis of the Kolmogorov and Dmitriev theory of branching stochastic processes. The approach is here extended for describing transport through unsaturated porous media under unsteady flow conditions. This generalization entails the determination of the functional dependence of the parameters of the proposed transport model from the water content, which changes in space and time during the water infiltration process. The approach is verified with respect to a case of non-reactive transport under transient unsaturated field conditions by a comparison with a standard code based on the classical advection-dispersion equations. An application regarding linear reactive transport is then presented. (authors)

  16. Chemical controls on subsurface radionuclide transport

    International Nuclear Information System (INIS)

    King, K.J.; Killey, R.W.D.

    1990-01-01

    Chemical and biochemical processes can affect the movement of contaminants in groundwater. Materials can be almost completely removed from circulation by processes such as precipitation and coprecipitation. Organic compounds or contaminants that are hazardous may be degraded or formed during groundwater transport. Studies at the Chalk River Laboratories of AECL have focused on radionuclide transport, although other contaminants have been and are being investigated. This paper summarizes findings from research that extends back more than 30 years. Much of the work on reactive contaminant transport has centered on 90 Sr; other contaminants have also been considered, however, and features of their behaviour are also reviewed. (25 refs., 5 figs., 4 tabs.)

  17. Mineral paragenesis on Mars: The roles of reactive surface area and diffusion.

    Science.gov (United States)

    Fairén, Alberto G; Gil-Lozano, Carolina; Uceda, Esther R; Losa-Adams, Elisabeth; Davila, Alfonso F; Gago-Duport, Luis

    2017-09-01

    Geochemical models of secondary mineral precipitation on Mars generally assume semiopen systems (open to the atmosphere but closed at the water-sediment interface) and equilibrium conditions. However, in natural multicomponent systems, the reactive surface area of primary minerals controls the dissolution rate and affects the precipitation sequences of secondary phases, and simultaneously, the transport of dissolved species may occur through the atmosphere-water and water-sediment interfaces. Here we present a suite of geochemical models designed to analyze the formation of secondary minerals in basaltic sediments on Mars, evaluating the role of (i) reactive surface areas and (ii) the transport of ions through a basalt sediment column. We consider fully open conditions, both to the atmosphere and to the sediment, and a kinetic approach for mineral dissolution and precipitation. Our models consider a geochemical scenario constituted by a basin (i.e., a shallow lake) where supersaturation is generated by evaporation/cooling and the starting point is a solution in equilibrium with basaltic sediments. Our results show that cation removal by diffusion, along with the input of atmospheric volatiles and the influence of the reactive surface area of primary minerals, plays a central role in the evolution of the secondary mineral sequences formed. We conclude that precipitation of evaporites finds more restrictions in basaltic sediments of small grain size than in basaltic sediments of greater grain size.

  18. Coupling between solute transport and chemical reactions models

    International Nuclear Information System (INIS)

    Samper, J.; Ajora, C.

    1993-01-01

    During subsurface transport, reactive solutes are subject to a variety of hydrodynamic and chemical processes. The major hydrodynamic processes include advection and convection, dispersion and diffusion. The key chemical processes are complexation including hydrolysis and acid-base reactions, dissolution-precipitation, reduction-oxidation, adsorption and ion exchange. The combined effects of all these processes on solute transport must satisfy the principle of conservation of mass. The statement of conservation of mass for N mobile species leads to N partial differential equations. Traditional solute transport models often incorporate the effects of hydrodynamic processes rigorously but oversimplify chemical interactions among aqueous species. Sophisticated chemical equilibrium models, on the other hand, incorporate a variety of chemical processes but generally assume no-flow systems. In the past decade, coupled models accounting for complex hydrological and chemical processes, with varying degrees of sophistication, have been developed. The existing models of reactive transport employ two basic sets of equations. The transport of solutes is described by a set of partial differential equations, and the chemical processes, under the assumption of equilibrium, are described by a set of nonlinear algebraic equations. An important consideration in any approach is the choice of primary dependent variables. Most existing models cannot account for the complete set of chemical processes, cannot be easily extended to include mixed chemical equilibria and kinetics, and cannot handle practical two and three dimensional problems. The difficulties arise mainly from improper selection of the primary variables in the transport equations. (Author) 38 refs

  19. Effect of Anisotropy Structure on Plume Entropy and Reactive Mixing in Helical Flows

    DEFF Research Database (Denmark)

    Ye, Yu; Chiogna, Gabriele; Lu, Chunhui

    2018-01-01

    Plume dilution and reactive mixing can be considerably enhanced by helical flows occurring in three-dimensional anisotropic porous media. In this study, we perform conservative and reactive transport simulations considering different anisotropy structures of a single inclusion with the objective...... of exploring the effect of the inclusion’s geometry and orientation on the patterns of twisted streamlines and on the overall dilution and reaction of solute plumes. We analyzed 100 different scenarios by varying key parameters such as the angle of the anisotropic structures with respect to the average flow...... velocity, the spacing between alternated heterogeneous zones of coarse and fine materials, the permeability contrast between such matrices, and the magnitude of the seepage velocity. Entropy conservation equations and entropy-based metrics for both conservative and reactive species were adopted to quantify...

  20. Coupling between solute transport and chemical reactions models. Acoplamiento de modelos de transporte de solutos y de modelos de reacciones quimicas

    Energy Technology Data Exchange (ETDEWEB)

    Samper, J.; Ajora, C. (Instituto de Ciencias de la Tierra, CSIC, Barcerlona (Spain))

    1993-01-01

    During subsurface transport, reactive solutes are subject to a variety of hydrodynamic and chemical processes. The major hydrodynamic processes include advection and convection, dispersion and diffusion. The key chemical processes are complexation including hydrolysis and acid-base reactions, dissolution-precipitation, reduction-oxidation, adsorption and ion exchange. The combined effects of all these processes on solute transport must satisfy the principle of conservation of mass. The statement of conservation of mass for N mobile species leads to N partial differential equations. Traditional solute transport models often incorporate the effects of hydrodynamic processes rigorously but oversimplify chemical interactions among aqueous species. Sophisticated chemical equilibrium models, on the other hand, incorporate a variety of chemical processes but generally assume no-flow systems. In the past decade, coupled models accounting for complex hydrological and chemical processes, with varying degrees of sophistication, have been developed. The existing models of reactive transport employ two basic sets of equations. The transport of solutes is described by a set of partial differential equations, and the chemical processes, under the assumption of equilibrium, are described by a set of nonlinear algebraic equations. An important consideration in any approach is the choice of primary dependent variables. Most existing models cannot account for the complete set of chemical processes, cannot be easily extended to include mixed chemical equilibria and kinetics, and cannot handle practical two and three dimensional problems. The difficulties arise mainly from improper selection of the primary variables in the transport equations. (Author) 38 refs.

  1. Degassing, gas retention and release in Fe(0) permeable reactive barriers.

    Science.gov (United States)

    Ruhl, Aki S; Jekel, Martin

    2014-04-01

    Corrosion of Fe(0) has been successfully utilized for the reductive treatment of multiple contaminants. Under anaerobic conditions, concurrent corrosion leads to the generation of hydrogen and its liberation as a gas. Gas bubbles are mobile or trapped within the irregular pore structure leading to a reduction of the water filled pore volume and thus decreased residence time and permeability (gas clogging). With regard to the contaminant transport to the reactive site, the estimation of surface properties of the reactive material indicated that individual gas bubbles only occupied minor contact areas of the reactive surface. Quantification of gas entrapment by both gravimetrical and tracer investigations revealed that development of preferential flow paths was not significant. A novel continuous gravimetrical method was implemented to record variations in gas entrapment and gas bubble releases from the reactive filling. Variation of grain size fractions revealed that the pore geometry had a significant impact on gas release. Large pores led to the release of comparably large gas amounts while smaller volumes were released from finer pores with a higher frequency. Relevant processes are explained with a simplified pictorial sequence that incorporates relevant mechanisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Quantitative assessment of radionuclide retention in the near-surface system at Forsmark. Development of a reactive transport model using Forsmark 1.2 data

    International Nuclear Information System (INIS)

    Grandia, Fidel; Sena, Clara; Arcos, David; Molinero, Jorge; Duro, Lara; Bruno, Jordi

    2007-12-01

    The main objective of this work is to assess the migration behaviour of selected long-lived radionuclides through the near-surface system of Forsmark, with special focus on the evaluation of the capacity of the Quaternary deposits and sediments for radionuclide retention. The work reported here is based on data and information from Forsmark Site Descriptive Model version 1.2. From the geological point of view, the near-surface systems in the Forsmark area consist of Quaternary deposits and sediments that overlay the granitic bedrock. Glacial till is the more abundant outcropping Quaternary deposit and the remainder is made of clayey deposits. These types of near-surface sediments show distinctive hydraulic and geochemical features. The main reactive mineral in the till deposits, for the time horizons considered in this work, is calcium carbonate together with minor amounts of clay minerals (e.g. illite). The till deposits forms aquifers with relatively high hydraulic conductivities. In contrast, glacial and post-glacial clays are basically composed of illite with low to very low amounts of calcium carbonate, and containing organic matter-rich layers (gyttja), which can promote reducing conditions in the porewaters. All these clays exhibits relatively low hydraulic conductivity values. Five radionuclides have been selected for conceptualization and qualitative evaluation of retention process: U as an actinide, Se as a redox-sensitive radionuclide, Cs as a monovalent cation, Sr as a divalent cation, and I as an anion radionuclide. Overall, radionuclide retention capacity in the surface systems at Forsmark can be provided by sorption on charged surfaces of clays and oxyhydroxides, co-precipitation with sulphates, sulphides, oxyhydroxides and carbonates, and sorption on organic matter. Two-dimensional coupled hydrogeological and reactive solute transport models have been developed to simulate the geochemical behaviour of U, Cs and Sr. These three radionuclides have

  3. REDUCING UNCERTAINTIES IN MODEL PREDICTIONS VIA HISTORY MATCHING OF CO2 MIGRATION AND REACTIVE TRANSPORT MODELING OF CO2 FATE AT THE SLEIPNER PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Chen

    2015-03-31

    An important question for the Carbon Capture, Storage, and Utility program is “can we adequately predict the CO2 plume migration?” For tracking CO2 plume development, the Sleipner project in the Norwegian North Sea provides more time-lapse seismic monitoring data than any other sites, but significant uncertainties still exist for some of the reservoir parameters. In Part I, we assessed model uncertainties by applying two multi-phase compositional simulators to the Sleipner Benchmark model for the uppermost layer (Layer 9) of the Utsira Sand and calibrated our model against the time-lapsed seismic monitoring data for the site from 1999 to 2010. Approximate match with the observed plume was achieved by introducing lateral permeability anisotropy, adding CH4 into the CO2 stream, and adjusting the reservoir temperatures. Model-predicted gas saturation, CO2 accumulation thickness, and CO2 solubility in brine—none were used as calibration metrics—were all comparable with the interpretations of the seismic data in the literature. In Part II & III, we evaluated the uncertainties of predicted long-term CO2 fate up to 10,000 years, due to uncertain reaction kinetics. Under four scenarios of the kinetic rate laws, the temporal and spatial evolution of CO2 partitioning into the four trapping mechanisms (hydrodynamic/structural, solubility, residual/capillary, and mineral) was simulated with ToughReact, taking into account the CO2-brine-rock reactions and the multi-phase reactive flow and mass transport. Modeling results show that different rate laws for mineral dissolution and precipitation reactions resulted in different predicted amounts of trapped CO2 by carbonate minerals, with scenarios of the conventional linear rate law for feldspar dissolution having twice as much mineral trapping (21% of the injected CO2) as scenarios with a Burch-type or Alekseyev et al.–type rate law for feldspar dissolution (11%). So far, most reactive transport modeling (RTM) studies for

  4. Acid groundwater in an anoxic aquifer: Reactive transport modelling of buffering processes

    International Nuclear Information System (INIS)

    Franken, Gudrun; Postma, Dieke; Duijnisveld, Wilhelmus H.M.; Boettcher, Juergen; Molson, John

    2009-01-01

    The acidification of groundwater, due to acid rain, was investigated in a Quaternary sandy aquifer in the Fuhrberger Feld, near Hannover, Germany. The groundwater, recharged through an area covered by a coniferous forest, had a pH in the range 4-5 down to a depth of 5 m. The evolution in groundwater chemistry along the flow path was investigated in a transect of multisamplers. A 2D groundwater flow model was established delineating the groundwater flow field and a groundwater flow velocity of around 80 m/a along the flow path was derived. Speciation calculations showed the groundwater to be close to equilibrium with the mineral jurbanite (AlOHSO 4 ) over the pH range 4.0-6.5. This suggests an accumulation of acid rain derived SO 4 2- in the aquifer sediment during the decades with high atmospheric S deposition. The groundwater has a pH of around 4.5 in the upstream part of the flow path increasing to near 6 further downstream. 1D reactive transport modelling, using PHREEQC, was used to analyze different combinations of buffering processes. The first model contains ion exchange in combination with jurbanite dissolution. At the ion exchange front Al 3+ is adsorbed leading to the dissolution of jurbanite and an increase in pH. Comparison with field data showed that the simulated increases in pH and alkalinity are much lower than observed in the field. The second model includes organic matter degradation. In addition to ion exchange and jurbanite dissolution, the model included the reduction of SO 4 2- and Fe-oxides as well as the precipitation of Fe sulfide. This model matches the field data well and illustrates the importance of redox processes for pH buffering in the Fuhrberg aquifer. The current progress of the acidification front is about 4 m/a. This corresponds to an average value of 150 a of acid input, which covers large historical variations. Remediation is expected to take the same time span because it requires desorption and neutralization of adsorbed Al 3

  5. Review of reactive kinetic models describing reductive dechlorination of chlorinated ethenes in soil and groundwater

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia; Bjerg, Poul Løgstrup; Scheutz, Charlotte

    2013-01-01

    Reductive dechlorination is a major degradation pathway of chlorinated ethenes in anaerobic subsurface environments, and reactive kinetic models describing the degradation process are needed in fate and transport models of these contaminants. However, reductive dechlorination is a complex biologi...

  6. Public transport risk assessment through fault tree analysis

    Directory of Open Access Journals (Sweden)

    Z. Yaghoubpour

    2016-04-01

    Full Text Available This study focused on the public transport risk assessment in District one of ​​Tehran through Fault Tree Analysis involving the three criteria of human, vehicle and road in Haddon matrix. In fact, it examined the factors contributing to the occurrence of road accidents at several urban black spots within District 1. Relying on road safety checklists and survey of experts, this study made an effort to help urban managers to assess the risks in the public transport and prevent road accidents. Finally, the risk identification and assessment of public transport in District one yielded several results to answer the research questions. The hypotheses analysis suggested that safety issues involved in public transport are concerned by urban managers. The key reactive measures are investigation of accidents, identification of causes and correction of black spots. In addition to high costs, however, the reactive measures give rise to multiple operational problems such as traffic navigation and guaranteeing user safety in every operation. The case study highlighted the same fact. The macro-level management in the metropolis of Tehran is critical. The urban road casualties and losses can be curtailed by preventive measures such as continuous assessment of road safety.

  7. Predictive model for convective flows induced by surface reactivity contrast

    Science.gov (United States)

    Davidson, Scott M.; Lammertink, Rob G. H.; Mani, Ali

    2018-05-01

    Concentration gradients in a fluid adjacent to a reactive surface due to contrast in surface reactivity generate convective flows. These flows result from contributions by electro- and diffusio-osmotic phenomena. In this study, we have analyzed reactive patterns that release and consume protons, analogous to bimetallic catalytic conversion of peroxide. Similar systems have typically been studied using either scaling analysis to predict trends or costly numerical simulation. Here, we present a simple analytical model, bridging the gap in quantitative understanding between scaling relations and simulations, to predict the induced potentials and consequent velocities in such systems without the use of any fitting parameters. Our model is tested against direct numerical solutions to the coupled Poisson, Nernst-Planck, and Stokes equations. Predicted slip velocities from the model and simulations agree to within a factor of ≈2 over a multiple order-of-magnitude change in the input parameters. Our analysis can be used to predict enhancement of mass transport and the resulting impact on overall catalytic conversion, and is also applicable to predicting the speed of catalytic nanomotors.

  8. Reactive Transport Modeling Investigation of High Dissolved Sulfide Concentrations in Sedimentary Basin Rocks

    Science.gov (United States)

    Xie, M.; Mayer, U. K.; MacQuarrie, K. T. B.

    2017-12-01

    Water with total dissolved sulfide in excess of 1 mmol L-1is widely found in groundwater at intermediate depths in sedimentary basins, including regions of the Michigan basin in southeastern Ontario, Canada. Conversely, at deeper and shallower depths, relatively low total dissolved sulfide concentrations have been reported. The mechanisms responsible for the occurrence of these brackish sulfide-containing waters are not fully understood. Anaerobic microbial sulfate reduction is a common process resulting in the formation of high sulfide concentrations. Sulfate reduction rates depend on many factors including the concentration of sulfate, the abundance of organic substances, redox conditions, temperature, salinity and the species of sulfate reducing bacteria (SRB). A sedimentary basin-specific conceptual model considering the effect of salinity on the rate of sulfate reduction was developed and implemented in the reactive transport model MIN3P-THCm. Generic 2D basin-scale simulations were undertaken to provide a potential explanation for the dissolved sulfide distribution observed in the Michigan basin. The model is 440 km in the horizontal dimension and 4 km in depth, and contains fourteen sedimentary rock units including shales, sandstones, limestones, dolostone and evaporites. The main processes considered are non-isothermal density dependent flow, kinetically-controlled mineral dissolution/precipitation and its feedback on hydraulic properties, cation exchange, redox reactions, biogenic sulfate reduction, and hydromechanical coupling due to glaciation-deglaciation events. Two scenarios were investigated focusing on conditions during an interglacial period and the transient evolution during a glaciation-deglaciation cycle. Inter-glaciation simulations illustrate that the presence of high salinity brines strongly suppress biogenic sulfate reduction. The transient simulations show that glaciation-deglaciation cycles can have an impact on the maximum depth of

  9. Effect of thiol reactive reagents and ionizing radiation on the permeability of erythrocyte membrane for non-electrolyte spin labels

    International Nuclear Information System (INIS)

    Gwozdzinski, K.

    1986-01-01

    The paper presents some results on the effect of PCMB and NEM on the transport of non-electrolyte spin labels: TEMPO and TEMPOL across non-irradiated and irradiated porcine erythrocyte. Irradiated erythrocytes exhibited increased inhibitory effect of thiol reactive compounds in the TEMPO and TEMPOL transport compared to non-irradiated erythrocytes. (orig.)

  10. Evaluation of five strategies to limit the impact of fouling in permeable reactive barriers

    International Nuclear Information System (INIS)

    Li Lin; Benson, Craig H.

    2010-01-01

    Ground water flow and geochemical reactive transport models were used to assess the effectiveness of five strategies used to limit fouling and to enhance the long-term hydraulic behavior of continuous-wall permeable reactive barriers (PRBs) employing granular zero valent iron (ZVI). The flow model accounted for geological heterogeneity and the reactive transport model included a geochemical algorithm for simulating iron corrosion and mineral precipitation reactions that have been observed in ZVI PRBs. The five strategies that were evaluated are pea gravel equalization zones, a sacrificial pre-treatment zone, pH adjustment, large ZVI particles, and mechanical treatment. Results of simulations show that installation of pea gravel equalization zones results in flow equalization and a more uniform distribution of residence times within the PRB. Residence times within the PRB are less affected by mineral precipitation when a pre-treatment zone is employed. pH adjustment limits the total amount of hydroxide ions in ground water to reduce porosity reduction and to retain larger residence times. Larger ZVI particles reduce porosity reduction as a result of the smaller iron surface area for iron corrosion, and retain longer residence time. Mechanical treatment redistributes the porosity uniformly throughout the PRB over time, which is effective in maintaining residence time.

  11. Trans-Pacific transport of reactive nitrogen and ozone to Canada during spring

    Directory of Open Access Journals (Sweden)

    T. W. Walker

    2010-09-01

    Full Text Available We interpret observations from the Intercontinental Chemical Transport Experiment, Phase B (INTEX-B in spring 2006 using a global chemical transport model (GEOS-Chem to evaluate sensitivities of the free troposphere above the North Pacific Ocean and North America to Asian anthropogenic emissions. We develop a method to use satellite observations of tropospheric NO2 columns to provide timely estimates of trends in NOx emissions. NOx emissions increased by 33% for China and 29% for East Asia from 2003 to 2006. We examine measurements from three aircraft platforms from the INTEX-B campaign, including a Canadian Cessna taking vertical profiles of ozone near Whistler Peak. The contribution to the mean simulated ozone profiles over Whistler below 5.5 km is at least 7.2 ppbv for Asian anthropogenic emissions and at least 3.5 ppbv for global lightning NOx emissions. Tropospheric ozone columns from OMI exhibit a broad Asian outflow plume across the Pacific, which is reproduced by simulation. Mean modelled sensitivities of Pacific (30° N–60° N tropospheric ozone columns are at least 4.6 DU for Asian anthropogenic emissions and at least 3.3 DU for lightning, as determined by simulations excluding either source. Enhancements of ozone over Canada from Asian anthropogenic emissions reflect a combination of trans-Pacific transport of ozone produced over Asia, and ozone produced in the eastern Pacific through decomposition of peroxyacetyl nitrates (PANs. A sensitivity study decoupling PANs globally from the model's chemical mechanism establishes that PANs increase ozone production by removing NOx from regions of low ozone production efficiency (OPE and injecting it into regions with higher OPE, resulting in a global increase in ozone production by 2% in spring 2006. PANs contribute up to 4 ppbv to surface springtime ozone concentrations in western Canada. Ozone production due to PAN transport is

  12. KBS-3H. Reactive transport modelling of iron-bentonite interactions, an update for the Olkiluoto case

    International Nuclear Information System (INIS)

    Birgersson, M.; Wersin, P.

    2014-03-01

    According to the KBS-3H concept, each copper canister containing spent nuclear fuel will be surrounded by a bentonite buffer and a perforated cylinder. The originally planned material for the perforated steel cylinder shell has been carbon steel. After emplacement, the steel material will corrode anaerobically in contact with water and generate hydrogen, iron species and hydroxyl ions. Iron corrosion products will be formed at the steel surface, but in addition, the released species may interact with the clay and lead to undesirable effects, such as montmorillonite transformation and cementation. The impact of corrosion and iron-bentonite interactions has been assessed for Olkiluoto-specific conditions by reactive transport modelling using the CrunchFlow code. The main focus of this modelling exercise was to update the previous modelling study of Wersin et al. (2007). by accounting for new thermodynamic data on clays and uncertainties in precipitation rates of iron reaction products. The modelling strategy was first to select appropriate thermodynamic and kinetic mineral by review of current data, in particular of the THERMODDEM database, and by chemical equilibrium modelling. Second, a 1D reactive transport model which includes a corroding iron source from which solutes can diffuse into the buffer and interact with the clay and accessory minerals was set up in a similar way as that applied in Wersin et al. (2007). A number of test cases were defined, including a Base Case and various less likely as well as bounding cases. The modelling results largely confirmed previous findings in that the zone of alteration was predicted to remain spatially limited for very long times. However, they highlighted that under unfavourable conditions during the initial corrosion phase (before complete corrosion of the shell), pronounced increase in pH might occur, which would lead to enhanced dissolution of the montmorillonite clay. Factors favouring pH increase were found to be slow

  13. KBS-3H. Reactive transport modelling of iron-bentonite interactions, an update for the Olkiluoto case

    Energy Technology Data Exchange (ETDEWEB)

    Birgersson, M. [Clay Technology AB, Lund (Sweden); Wersin, P. [Bern Univ. (Switzerland)

    2014-03-15

    According to the KBS-3H concept, each copper canister containing spent nuclear fuel will be surrounded by a bentonite buffer and a perforated cylinder. The originally planned material for the perforated steel cylinder shell has been carbon steel. After emplacement, the steel material will corrode anaerobically in contact with water and generate hydrogen, iron species and hydroxyl ions. Iron corrosion products will be formed at the steel surface, but in addition, the released species may interact with the clay and lead to undesirable effects, such as montmorillonite transformation and cementation. The impact of corrosion and iron-bentonite interactions has been assessed for Olkiluoto-specific conditions by reactive transport modelling using the CrunchFlow code. The main focus of this modelling exercise was to update the previous modelling study of Wersin et al. (2007). by accounting for new thermodynamic data on clays and uncertainties in precipitation rates of iron reaction products. The modelling strategy was first to select appropriate thermodynamic and kinetic mineral by review of current data, in particular of the THERMODDEM database, and by chemical equilibrium modelling. Second, a 1D reactive transport model which includes a corroding iron source from which solutes can diffuse into the buffer and interact with the clay and accessory minerals was set up in a similar way as that applied in Wersin et al. (2007). A number of test cases were defined, including a Base Case and various less likely as well as bounding cases. The modelling results largely confirmed previous findings in that the zone of alteration was predicted to remain spatially limited for very long times. However, they highlighted that under unfavourable conditions during the initial corrosion phase (before complete corrosion of the shell), pronounced increase in pH might occur, which would lead to enhanced dissolution of the montmorillonite clay. Factors favouring pH increase were found to be slow

  14. Simulation of Reactive Constituent Fate and Transport in Hydrologic Simulator GSSHA

    National Research Council Canada - National Science Library

    Downer, Charles W

    2009-01-01

    The purpose of this System-Wide Water Resources Program (SWWRP) technical note is to describe the new fate and transport routines in the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model...

  15. A post audit and inverse modeling in reactive transport: 50 years of artificial recharge in the Amsterdam Water Supply Dunes

    Science.gov (United States)

    Karlsen, R. H.; Smits, F. J. C.; Stuyfzand, P. J.; Olsthoorn, T. N.; van Breukelen, B. M.

    2012-08-01

    SummaryThis article describes the post audit and inverse modeling of a 1-D forward reactive transport model. The model simulates the changes in water quality following artificial recharge of pre-treated water from the river Rhine in the Amsterdam Water Supply Dunes using the PHREEQC-2 numerical code. One observation dataset is used for model calibration, and another dataset for validation of model predictions. The total simulation time of the model is 50 years, from 1957 to 2007, with recharge composition varying on a monthly basis and the post audit is performed 26 years after the former model simulation period. The post audit revealed that the original model could reasonably predict conservative transport and kinetic redox reactions (oxygen and nitrate reduction coupled to the oxidation of soil organic carbon), but showed discrepancies in the simulation of cation exchange. Conceptualizations of the former model were inadequate to accurately simulate water quality changes controlled by cation exchange, especially concerning the breakthrough of potassium and magnesium fronts. Changes in conceptualization and model design, including the addition of five flow paths, to a total of six, and the use of parameter estimation software (PEST), resulted in a better model to measurement fit and system representation. No unique parameter set could be found for the model, primarily due to high parameter correlations, and an assessment of the predictive error was made using a calibration constrained Monte-Carlo method, and evaluated against field observations. The predictive error was found to be low for Na+ and Ca2+, except for greater travel times, while the K+ and Mg2+ error was restricted to the exchange fronts at some of the flow paths. Optimized cation exchange coefficients were relatively high, especially for potassium, but still within the observed range in literature. The exchange coefficient for potassium agrees with strong fixation on illite, a main clay mineral in

  16. Modeling multicomponent ionic transport in groundwater with IPhreeqc coupling: Electrostatic interactions and geochemical reactions in homogeneous and heterogeneous domains

    DEFF Research Database (Denmark)

    Muniruzzaman, Muhammad; Rolle, Massimo

    2016-01-01

    is coupled with the geochemical code PHREEQC-3 by utilizing the IPhreeqc module, thus enabling to perform the geochemical calculations included in the PHREEQC's reaction package. The multicomponent reactive transport code is benchmarked with different 1-D and 2-D transport problems. Successively...... the electrostatic interactions during transport of charged ions in physically and chemically heterogeneous porous media. The modeling approach is based on the local charge balance and on the description of compound-specific and spatially variable diffusive/dispersive fluxes. The multicomponent ionic transport code......, conservative and reactive transport examples are presented to demonstrate the capability of the proposed model to simulate transport of charged species in heterogeneous porous media with spatially variable physical and chemical properties. The results reveal that the Coulombic cross-coupling between dispersive...

  17. Reactive-brittle dynamics in peridotite alteration

    Science.gov (United States)

    Evans, O.; Spiegelman, M. W.; Kelemen, P. B.

    2017-12-01

    The interactions between reactive fluids and brittle solids are critical in Earth dynamics. Implications of such processes are wide-ranging: from earthquake physics to geologic carbon sequestration and the cycling of fluids and volatiles through subduction zones. Peridotite alteration is a common feature in many of these processes, which - despite its obvious importance - is relatively poorly understood from a geodynamical perspective. In particular, alteration reactions are thought to be self-limiting in nature, contradicting observations of rocks that have undergone 100% hydration/carbonation. One potential explanation of this observation is the mechanism of "reaction-driven cracking": that volume changes associated with these reactions are large enough to fracture the surrounding rock, leading to a positive feedback where new reactive surfaces are exposed and fluid pathways are created. The purpose of this study is to investigate the relative roles of reaction, elastic stresses and surface tension in alteration reactions. In this regard we derive a system of equations describing reactive fluid flow in an elastically deformable porous media, and explore them via a combination of analytic and numerical solutions. Using this model we show that the final stress state of a dry peridotite that has undergone reaction depends strongly on the rates of reaction versus fluid transport: significant fluid flow driven by pressure and/or surface tension gradients implies higher fractions of serpentinization, leaving behind a highly stressed residuum of partially reacted material. Using a model set-up that mimics a cylindrical triaxial apparatus we predict that the resulting stresses would lead to tensile failure and the generation of radially oriented cracks.

  18. Transport of the reactive substances eosin, uranium and lithium in a heterogeneous aquifer; Transport der reaktiven Stoffe Eosin, Uranin und Lithium in einem heterogenen Grundwasserleiter

    Energy Technology Data Exchange (ETDEWEB)

    Doering, U.

    1997-02-01

    To predict the movement of a contaminant plume in an aquifer is still a task of great uncertainty. This uncertainty is generally attributed to an insufficient understanding of the chemical reaction processes and/or to the natural aquifer heterogeneities. In an integrated approach of field experiments, laboratory experiments and numerical simulations, the transport of the weakly reactive solutes eosin, uranin and lithium was investigated at a test site near the Research Center in Juelich. The field scale transport behavior of the solutes was studied by large scale tracer tests. To characterize aquifer heterogeneities, in-situ and laboratory measurements were performed. In-situ measurements covered about 1500 flowmeter measurements and 90 determinations of the groundwater flow velocity by the borehole method. The spatial variability of hydraulic and physico-chemical parameters was further determined on 400 sediment samples. These parameters included: Grain size distribution, calculated hydraulic conductivity, unconformity and as physico-chemical parameters the organic carbon content, specific surface and the cation exchange capacity. Furthermore sorption coefficients were measured on 75 sediment samples for uranium and lithium. The statistical evaluation of these data showed that the hydraulic heterogeneity was larger but in the same order of magnitude as the physico-chemical parameters. (orig./SR) [Deutsch] Eine Schadstoff-Ausbreitung im Grundwasser vorherzusagen, ist noch immer eine Aufgabe mit unsicherem Ergebnis. Diese Prognose-Unsicherheiten werden im Allgemeinen auf ein unzureichendes Verstaendnis der chemischen Reaktionsprozesse und/oder auf die natuerliche Heterogenitaet des Grundwasserleiters zurueckgefuehrt. In dem hier beschriebenen Forschungsprojekt, das Feldversuche, Laborversuche und numerische Simulationen integriert, wurde der Transport der schwach reaktiven Substanzen Eosin, Uranin und Lithium auf einem Versuchsgelaende nahe des Forschungszentrums

  19. Internal Domains of Natural Porous Media Revealed: Critical Locations for Transport, Storage, and Chemical Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zachara, John M.; Brantley, Susan L.; Chorover, Jon D.; Ewing, Robert P.; Kerisit, Sebastien N.; Liu, Chongxuan; Perfect, E.; Rother, Gernot; Stack, Andrew G.

    2016-03-16

    Internal pore domains exist within rocks, lithic fragments, subsurface sediments and soil aggregates. These domains, which we term internal domains in porous media (IDPM), contain a significant fraction of their porosity as nanopores, dominate the reactive surface area of diverse porous media types, and are important locations for chemical reactivity and hydrocarbon storage. Traditionally difficult to interrogate, advances in instrumentation and imaging methods are providing new insights on the physical structures and chemical attributes of IDPM. In this review we: discuss analytical methods to characterize IDPM, evaluate what has been learned about their size distributions, connectivity, and extended structures; determine whether they exhibit unique chemical reactivity; and assess potential for their inclusion in reactive transport models. Three key findings are noteworthy. 1) A combination of methods now allows complete characterization of the porosity spectrum of natural materials and its connectivity; while imaging microscopies are providing three dimensional representations of the interconnected pore network. 2) Chemical reactivity in pores <10 nm is expected to be different from micro and macropores, yet research performed to date is inconclusive on the nature, direction, and magnitude of effect. 3) Existing continuum reactive transport models treat IDPM as a sub-grid feature with average, empirical, scale-dependent parameters; and are not formulated to include detailed information on pore networks. Overall we find that IDPM are key features controlling hydrocarbon release from shales in hydrofracking systems, organic matter stabilization and recalcitrance in soil, weathering and soil formation, and long term inorganic and organic contaminant behavior in the vadose zone and groundwater. We conclude with an assessment of impactful research opportunities to advance understanding of IDPM, and to incorporate their important effects in reactive transport models

  20. Status of burnup credit for transport of SNF in the United States

    International Nuclear Information System (INIS)

    Parks, C.V.; Wagner, J.C.

    2004-01-01

    Allowing credit for the reduction in reactivity associated with fuel depletion can enable more cost-effective, higher-density storage, transportation, and disposal of spent nuclear fuel (SNF) while maintaining a subcritical margin sufficient to establish an adequate safety basis. This paper reviews the current status of burnup credit applied to the design and transport of SNF casks in the United States. The existing U.S. regulatory guidance on burnup credit is limited to pressurized-water-reactor (PWR) fuel and to allowing credit only for actinides in the SNF. By comparing loading curves against actual SNF discharge data for U.S. reactors, the potential benefits that can be realized using the current regulatory guidance with actinide-only burnup credit are illustrated in terms of the inventory allowed in high-capacity casks and the concurrent reduction in SNF shipments. The additional benefits that might be realized by extending burnup credit to credit for select fission products are also illustrated. The curves show that, although fission products in SNF provide a small decrease in reactivity compared with actinides, the additional negative reactivity causes the SNF inventory acceptable for transportation to increase from roughly 30% to approximately 90% when fission products are considered. A savings of approximately $150M in transport costs can potentially be realized for the planned inventory of the repository. Given appropriate experimental data to support code validation, a realistic best-estimate analysis of burnup credit that includes validated credit for fission products is the enhancement that will yield the most significant impact on future transportation plans

  1. ``Use of perturbative methods to break down the variation of reactivity between two systems``; ``Decomposition par methodes perturbatives de la variation de reactivite de deux systemes``

    Energy Technology Data Exchange (ETDEWEB)

    Perruchot-Triboulet, S.; Sanchez, R.

    1997-12-01

    The modification of the isotopic composition, the temperature or even accounting for across section uncertainties in one part of a nuclear reactor core, affects the value of the effective multiplication factor. A new tool allows the analysis of the reactivity effect generated by the modification of the system. With the help of the direct and adjoint fluxes, a detailed balance of reactivity, between the compared systems, is done for each isotopic cross section. After the presentation of the direct and adjoint transport equations in the context of the multigroup code transport APOLLO2, this note describes the method, based on perturbation theory, for the analysis of the reactivity variation. An example application is also given. (author).

  2. Oxidation of trichloroethylene, toluene, and ethanol vapors by a partially saturated permeable reactive barrier

    Science.gov (United States)

    Mahmoodlu, Mojtaba G.; Hassanizadeh, S. Majid; Hartog, Niels; Raoof, Amir

    2014-08-01

    The mitigation of volatile organic compound (VOC) vapors in the unsaturated zone largely relies on the active removal of vapor by ventilation. In this study we considered an alternative method involving the use of solid potassium permanganate to create a horizontal permeable reactive barrier for oxidizing VOC vapors. Column experiments were carried out to investigate the oxidation of trichloroethylene (TCE), toluene, and ethanol vapors using a partially saturated mixture of potassium permanganate and sand grains. Results showed a significant removal of VOC vapors due to the oxidation. We found that water saturation has a major effect on the removal capacity of the permeable reactive layer. We observed a high removal efficiency and reactivity of potassium permanganate for all target compounds at the highest water saturation (Sw = 0.6). A change in pH within the reactive layer reduced oxidation rate of VOCs. The use of carbonate minerals increased the reactivity of potassium permanganate during the oxidation of TCE vapor by buffering the pH. Reactive transport of VOC vapors diffusing through the permeable reactive layer was modeled, including the pH effect on the oxidation rates. The model accurately described the observed breakthrough curve of TCE and toluene vapors in the headspace of the column. However, miscibility of ethanol in water in combination with produced water during oxidation made the modeling results less accurate for ethanol. A linear relationship was found between total oxidized mass of VOC vapors per unit volume of permeable reactive layer and initial water saturation. This behavior indicates that pH changes control the overall reactivity and longevity of the permeable reactive layer during oxidation of VOCs. The results suggest that field application of a horizontal permeable reactive barrier can be a viable technology against upward migration of VOC vapors through the unsaturated zone.

  3. Probabilistic models for reactive behaviour in heterogeneous condensed phase media

    Science.gov (United States)

    Baer, M. R.; Gartling, D. K.; DesJardin, P. E.

    2012-02-01

    This work presents statistically-based models to describe reactive behaviour in heterogeneous energetic materials. Mesoscale effects are incorporated in continuum-level reactive flow descriptions using probability density functions (pdfs) that are associated with thermodynamic and mechanical states. A generalised approach is presented that includes multimaterial behaviour by treating the volume fraction as a random kinematic variable. Model simplifications are then sought to reduce the complexity of the description without compromising the statistical approach. Reactive behaviour is first considered for non-deformable media having a random temperature field as an initial state. A pdf transport relationship is derived and an approximate moment approach is incorporated in finite element analysis to model an example application whereby a heated fragment impacts a reactive heterogeneous material which leads to a delayed cook-off event. Modelling is then extended to include deformation effects associated with shock loading of a heterogeneous medium whereby random variables of strain, strain-rate and temperature are considered. A demonstrative mesoscale simulation of a non-ideal explosive is discussed that illustrates the joint statistical nature of the strain and temperature fields during shock loading to motivate the probabilistic approach. This modelling is derived in a Lagrangian framework that can be incorporated in continuum-level shock physics analysis. Future work will consider particle-based methods for a numerical implementation of this modelling approach.

  4. BN600 reactivity definition

    International Nuclear Information System (INIS)

    Zheltyshev, V.; Ivanov, A.

    2000-01-01

    Since 1980, the fast BN600 reactor with sodium coolant has been operated at Beloyarsk Nuclear Power Plant. The periodic monitoring of the reactivity modifications should be implemented in compliance with the standards and regulations applied in nuclear power engineering. The reactivity measurements are carried out in order to confirm the basic neutronic features of a BN600 reactor. The reactivity measurements are aimed to justify that nuclear safety is provided in course of the in-reactor installation of the experimental core components. Two reactivity meters are to be used on BN600 operation: 1. Digital on-line reactivity calculated under stationary reactor operation on power (approximation of the point-wise kinetics is applied). 2. Second reactivity meter used to define the reactor control rod operating components efficiency under reactor startup and take account of the changing efficiency of the sensor, however, this is more time-consumptive than the on-line reactivity meter. The application of two reactivity meters allows for the monitoring of the reactor reactivity under every operating mode. (authors)

  5. Monte Carlo transport correction of sodium reactivity worth spatial distribution in perspective Sodium-Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Raskach, K.F.; Blyskavka, V; Kislitsyna, T.S.

    2011-01-01

    In this paper we apply Monte Carlo for calculating spatial distribution of sodium reactivity worth in the perspective Russian sodium-cooled fast reactor BN-1200. A special Monte Carlo technique applicable for calculating perturbations and derivatives of the effective multiplication factor is used. The numerical results obtained show that Monte Carlo has a good perspective to deal with such problems and to be used as a reference solution for engineering codes based on the diffusion approximation. They also allow to conclude that in the sodium blanket and in the neighboring region of the core the diffusion code used likely overestimates sodium reactivity worth. This conclusion has to be verified in future work. (author)

  6. A KDE-Based Random Walk Method for Modeling Reactive Transport With Complex Kinetics in Porous Media

    Science.gov (United States)

    Sole-Mari, Guillem; Fernà ndez-Garcia, Daniel; Rodríguez-Escales, Paula; Sanchez-Vila, Xavier

    2017-11-01

    In recent years, a large body of the literature has been devoted to study reactive transport of solutes in porous media based on pure Lagrangian formulations. Such approaches have also been extended to accommodate second-order bimolecular reactions, in which the reaction rate is proportional to the concentrations of the reactants. Rather, in some cases, chemical reactions involving two reactants follow more complicated rate laws. Some examples are (1) reaction rate laws written in terms of powers of concentrations, (2) redox reactions incorporating a limiting term (e.g., Michaelis-Menten), or (3) any reaction where the activity coefficients vary with the concentration of the reactants, just to name a few. We provide a methodology to account for complex kinetic bimolecular reactions in a fully Lagrangian framework where each particle represents a fraction of the total mass of a specific solute. The method, built as an extension to the second-order case, is based on the concept of optimal Kernel Density Estimator, which allows the concentrations to be written in terms of particle locations, hence transferring the concept of reaction rate to that of particle location distribution. By doing so, we can update the probability of particles reacting without the need to fully reconstruct the concentration maps. The performance and convergence of the method is tested for several illustrative examples that simulate the Advection-Dispersion-Reaction Equation in a 1-D homogeneous column. Finally, a 2-D application example is presented evaluating the need of fully describing non-bilinear chemical kinetics in a randomly heterogeneous porous medium.

  7. The Tournemire industrial analogue: reactive-transport modelling of cement-clay interfaces

    International Nuclear Information System (INIS)

    Watson, C.; Wilson, J.; Benbow, S.; Savage, D.; Walker, C.; Norris, S.

    2012-01-01

    , which remained in contact with the natural mud-stone for 15-20 years. Subsequently the boreholes have been over-cored, extracted and mineralogical characterisation has been performed. A reactive transport model of the Tournemire system has been set up using the general-purpose modelling tool QPAC (developed by Quintessa). Both the cement and mud-stone regions were represented in the model, which included aqueous speciation, kinetic models of mineral precipitation and dissolution and full coupling between porosity changes and transport of aqueous species. A solid solution model was used to represent the C-S-H gel in the cement section, with (tobermorite-like and jennite-like) C-S-H phases allowed to precipitate in the mud-stone. Full details can be found in Watson et al. (NDA RWMD Report QRS-1523A-1 v1.1, 2011). The main features observed at Tournemire were replicated by the model, including porosity variations and precipitation of carbonates, K-feldspar, ettringite and calcite. It was found that ion exchange needed to be included in order for C-S-H minerals to precipitate in the mud-stone, providing a better match with the mineralogical investigations. The inclusion of surface complexation processes on the montmorillonite present in the mud-stone, however, led to limited calcite growth at the cement-mud-stone interface; unlike samples taken from the Tournemire site that have a visible line of crusty carbonates along the interface. This perhaps indicates that surface complexation has not played an important role in the mineralogical evolution to date at Tournemire. This may be due to smectite (montmorillonite) not being the principal clay mineral in the mud-stone. This study was carried out as part of the Long-Term Cement Studies (LCS) project, an international collaboration between Posiva (Finland), JAEA (Japan), NDA (UK), SKB (Sweden) and Nagra (Switzerland) aimed at furthering the understanding of cement-rock interactions. (authors)

  8. French experience in research reactor fuel transportation

    International Nuclear Information System (INIS)

    Raisonnier, Daniele

    1996-01-01

    Since 1963 Transnucleaire has safely performed a large number of national and international transports of radioactive material. Transnucleaire has also designed and supplied suitable packaging for all types of nuclear fuel cycle radioactive material from front-end and back-end products and for power or for research reactors. Transportation of spent fuel from power reactors are made on a regular and industrial basis, but this is not yet the case for the transport of spent fuel coming from research reactors. Each shipment is a permanent challenge and requires a reactive organization dealing with all the transportation issues. This presentation will explain the choices made by Transnucleaire and its associates to provide and optimize the corresponding services while remaining in full compliance with the applicable regulations and customer requirements. (author)

  9. Biogenic silica dissolution in diatom aggregates: insights from reactive transport modelling

    KAUST Repository

    Moriceau, B; Laruelle, GG; Passow, U; Van Cappellen, P; Ragueneau, O

    2014-01-01

    , dSi transport out of the aggregate is modulated by alternatively considering retention (decrease of the dSi diffusion constant) and adsorption (reversible chemical bonds between dSi and the aggregate matrix) processes. Modelled bSiO2 dissolution

  10. Modeling Bimolecular Reactive Transport With Mixing-Limitation: Theory and Application to Column Experiments

    Science.gov (United States)

    Ginn, T. R.

    2018-01-01

    The challenge of determining mixing extent of solutions undergoing advective-dispersive-diffusive transport is well known. In particular, reaction extent between displacing and displaced solutes depends on mixing at the pore scale, that is, generally smaller than continuum scale quantification that relies on dispersive fluxes. Here a novel mobile-mobile mass transfer approach is developed to distinguish diffusive mixing from dispersive spreading in one-dimensional transport involving small-scale velocity variations with some correlation, such as occurs in hydrodynamic dispersion, in which short-range ballistic transports give rise to dispersed but not mixed segregation zones, termed here ballisticules. When considering transport of a single solution, this approach distinguishes self-diffusive mixing from spreading, and in the case of displacement of one solution by another, each containing a participant reactant of an irreversible bimolecular reaction, this results in time-delayed diffusive mixing of reactants. The approach generates models for both kinetically controlled and equilibrium irreversible reaction cases, while honoring independently measured reaction rates and dispersivities. The mathematical solution for the equilibrium case is a simple analytical expression. The approach is applied to published experimental data on bimolecular reactions for homogeneous porous media under postasymptotic dispersive conditions with good results.

  11. Coupled processes of fluid flow, solute transport, and geochemical reactions in reactive barriers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeongkon; Schwartz, Franklin W.; Xu, Tianfu; Choi, Heechul, and Kim, In S.

    2004-01-02

    A complex pattern of coupling between fluid flow and mass transport develops when heterogeneous reactions occur. For instance, dissolution and precipitation reactions can change a porous medium's physical properties, such as pore geometry and thus permeability. These changes influence fluid flow, which in turn impacts the composition of dissolved constituents and the solid phases, and the rate and direction of advective transport. Two-dimensional modeling studies using TOUGHREACT were conducted to investigate the coupling between flow and transport developed as a consequence of differences in density, dissolution precipitation, and medium heterogeneity. The model includes equilibrium reactions for aqueous species, kinetic reactions between the solid phases and aqueous constituents, and full coupling of porosity and permeability changes resulting from precipitation and dissolution reactions in porous media. In addition, a new permeability relationship is implemented in TOUGHREACT to examine the effects of geochemical reactions and density difference on plume migration in porous media. Generally, the evolutions in the concentrations of the aqueous phase are intimately related to the reaction-front dynamics. Plugging of the medium contributed to significant transients in patterns of flow and mass transport.

  12. Colloid facilitated transport in fractured rocks: parameter estimation and comparison with experimental data

    International Nuclear Information System (INIS)

    Viswanthan, H.S.; Wolfsberg, A.V.; Reimus, P.W.; Ware, D.; Lu, G.

    2003-01-01

    Colloid-facilitated migration of plutonium in fractured rock has been implicated in both field and laboratory studies. Other reactive radionuclides may also experience enhanced mobility due to groundwater colloids. Model prediction of this process is necessary for assessment of contaminant boundaries in systems for which radionuclides are already in the groundwater and for performance assessment of potential repositories for radioactive waste. Therefore, a reactive transport model is developed and parameterized using results from controlled laboratory fracture column experiments. Silica, montmorillonite and clinoptilolite colloids are used in the experiments along with plutonium and Tritium. The goal of the numerical model is to identify and parameterize the physical and chemical processes that affect the colloid-facilitated transport of plutonium in the fractures. The parameters used in this model are similar in form to those that might be used in a field-scale transport model

  13. Inference of reactive transport model parameters using a Bayesian multivariate approach

    NARCIS (Netherlands)

    Carniato, L.; Schoups, G.H.W.; Van de Giesen, N.C.

    2014-01-01

    Parameter estimation of subsurface transport models from multispecies data requires the definition of an objective function that includes different types of measurements. Common approaches are weighted least squares (WLS), where weights are specified a priori for each measurement, and weighted least

  14. PFLOTRAN User Manual: A Massively Parallel Reactive Flow and Transport Model for Describing Surface and Subsurface Processes

    Energy Technology Data Exchange (ETDEWEB)

    Lichtner, Peter C. [OFM Research, Redmond, WA (United States); Hammond, Glenn E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lu, Chuan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Karra, Satish [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bisht, Gautam [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Andre, Benjamin [National Center for Atmospheric Research, Boulder, CO (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Richard [Intel Corporation, Portland, OR (United States); Univ. of Tennessee, Knoxville, TN (United States); Kumar, Jitendra [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-20

    PFLOTRAN solves a system of generally nonlinear partial differential equations describing multi-phase, multicomponent and multiscale reactive flow and transport in porous materials. The code is designed to run on massively parallel computing architectures as well as workstations and laptops (e.g. Hammond et al., 2011). Parallelization is achieved through domain decomposition using the PETSc (Portable Extensible Toolkit for Scientific Computation) libraries for the parallelization framework (Balay et al., 1997). PFLOTRAN has been developed from the ground up for parallel scalability and has been run on up to 218 processor cores with problem sizes up to 2 billion degrees of freedom. Written in object oriented Fortran 90, the code requires the latest compilers compatible with Fortran 2003. At the time of this writing this requires gcc 4.7.x, Intel 12.1.x and PGC compilers. As a requirement of running problems with a large number of degrees of freedom, PFLOTRAN allows reading input data that is too large to fit into memory allotted to a single processor core. The current limitation to the problem size PFLOTRAN can handle is the limitation of the HDF5 file format used for parallel IO to 32 bit integers. Noting that 232 = 4; 294; 967; 296, this gives an estimate of the maximum problem size that can be currently run with PFLOTRAN. Hopefully this limitation will be remedied in the near future.

  15. Method of controlling reactivity

    International Nuclear Information System (INIS)

    Tochihara, Hiroshi.

    1982-01-01

    Purpose: To improve the reactivity controlling characteristics by artificially controlling the leakage of neutron from a reactor and providing a controller for controlling the reactivity. Method: A reactor core is divided into several water gaps to increase the leakage of neutron, its reactivity is reduced, a gas-filled control rod or a fuel assembly is inserted into the gap as required, the entire core is coupled in a system to reduce the leakage of the neutron, and the reactivity is increased. The reactor shutdown is conducted by the conventional control rod, and to maintain critical state, boron density varying system is used together. Futher, a control rod drive is used with that similar to the conventional one, thereby enabling fast reactivity variation, and the positive reactivity can be obtained by the insertion, thereby improving the reactivity controlling characteristics. (Yoshihara, H.)

  16. Reactive Arthritis

    Directory of Open Access Journals (Sweden)

    Eren Erken

    2013-06-01

    Full Text Available Reactive arthritis is an acute, sterile, non-suppurative and inflammatory arthropaty which has occured as a result of an infectious processes, mostly after gastrointestinal and genitourinary tract infections. Reiter syndrome is a frequent type of reactive arthritis. Both reactive arthritis and Reiter syndrome belong to the group of seronegative spondyloarthropathies, associated with HLA-B27 positivity and characterized by ongoing inflammation after an infectious episode. The classical triad of Reiter syndrome is defined as arthritis, conjuctivitis and urethritis and is seen only in one third of patients with Reiter syndrome. Recently, seronegative asymmetric arthritis and typical extraarticular involvement are thought to be adequate for the diagnosis. However, there is no established criteria for the diagnosis of reactive arthritis and the number of randomized and controlled studies about the therapy is not enough. [Archives Medical Review Journal 2013; 22(3.000: 283-299

  17. Quantitative assessment of radionuclide retention in the near-surface system at Forsmark. Development of a reactive transport model using Forsmark 1.2 data

    Energy Technology Data Exchange (ETDEWEB)

    Grandia, Fidel; Sena, Clara; Arcos, David; Molinero, Jorge; Duro, Lara; Bruno, Jordi (Amphos XXI Consulting S.L., Barcelona (Spain))

    2007-12-15

    The main objective of this work is to assess the migration behaviour of selected long-lived radionuclides through the near-surface system of Forsmark, with special focus on the evaluation of the capacity of the Quaternary deposits and sediments for radionuclide retention. The work reported here is based on data and information from Forsmark Site Descriptive Model version 1.2. From the geological point of view, the near-surface systems in the Forsmark area consist of Quaternary deposits and sediments that overlay the granitic bedrock. Glacial till is the more abundant outcropping Quaternary deposit and the remainder is made of clayey deposits. These types of near-surface sediments show distinctive hydraulic and geochemical features. The main reactive mineral in the till deposits, for the time horizons considered in this work, is calcium carbonate together with minor amounts of clay minerals (e.g. illite). The till deposits forms aquifers with relatively high hydraulic conductivities. In contrast, glacial and post-glacial clays are basically composed of illite with low to very low amounts of calcium carbonate, and containing organic matter-rich layers (gyttja), which can promote reducing conditions in the porewaters. All these clays exhibits relatively low hydraulic conductivity values. Five radionuclides have been selected for conceptualization and qualitative evaluation of retention process: U as an actinide, Se as a redox-sensitive radionuclide, Cs as a monovalent cation, Sr as a divalent cation, and I as an anion radionuclide. Overall, radionuclide retention capacity in the surface systems at Forsmark can be provided by sorption on charged surfaces of clays and oxyhydroxides, co-precipitation with sulphates, sulphides, oxyhydroxides and carbonates, and sorption on organic matter. Two-dimensional coupled hydrogeological and reactive solute transport models have been developed to simulate the geochemical behaviour of U, Cs and Sr. These three radionuclides have

  18. Cellular iron transport.

    Science.gov (United States)

    Garrick, Michael D; Garrick, Laura M

    2009-05-01

    Iron has a split personality as an essential nutrient that also has the potential to generate reactive oxygen species. We discuss how different cell types within specific tissues manage this schizophrenia. The emphasis in enterocytes is on regulating the body's supply of iron by regulating transport into the blood stream. In developing red blood cells, adaptations in transport manage the body's highest flux of iron. Hepatocytes buffer the body's stock of iron. Macrophage recycle the iron from effete red cells among other iron management tasks. Pneumocytes provide a barrier to prevent illicit entry that, when at risk of breaching, leads to a need to handle the dangers in a fashion essentially shared with macrophage. We also discuss or introduce cell types including renal cells, neurons, other brain cells, and more where our ignorance, currently still vast, needs to be removed by future research.

  19. Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion

    KAUST Repository

    Hong, Jongsup

    2012-07-01

    Ion transport membrane (ITM) based reactors have been suggested as a novel technology for several applications including fuel reforming and oxy-fuel combustion, which integrates air separation and fuel conversion while reducing complexity and the associated energy penalty. To utilize this technology more effectively, it is necessary to develop a better understanding of the fundamental processes of oxygen transport and fuel conversion in the immediate vicinity of the membrane. In this paper, a numerical model that spatially resolves the gas flow, transport and reactions is presented. The model incorporates detailed gas phase chemistry and transport. The model is used to express the oxygen permeation flux in terms of the oxygen concentrations at the membrane surface given data on the bulk concentration, which is necessary for cases when mass transfer limitations on the permeate side are important and for reactive flow modeling. The simulation results show the dependence of oxygen transport and fuel conversion on the geometry and flow parameters including the membrane temperature, feed and sweep gas flow, oxygen concentration in the feed and fuel concentration in the sweep gas. © 2012 Elsevier B.V.

  20. Multiphasic fluid models and multicomponents reactive transport in porous media

    International Nuclear Information System (INIS)

    Juncosa, R.

    2001-01-01

    The design and construction of repositories for toxic waste, such as radioactive waste of medium and high activity, require tools, that will enable us to predict how the system will behave. The rational behind this Dissertation is based precisely on developing numerical models to study and predict coupled thermal, mechanical, hydrodynamic and geochemical behavior of clays intended to be used as engineered barriers in radioactive waste repository. In order to meet the requirements of the FEBEX Project (Full Scale Engineered Barriers Experiment) it was necessary to develop thermo-hydro-geochemical conceptual and numerical models (THG). For this purpose a THG code was developed to simulate and predict the THG behavior of the clay barrier. The code was created after considering two options. a) The development of a completely new code, or b) the coupling of existing codes. In this Dissertation we chose the second option, and developed a new program (FADES-CORE), which was obtained by using the FADES thermo-hydro-mechanical code (Navarro, 1997) and the CORE-LE code (Samper et al., 1998). This process entailed the modification of FADES, the addition of new subroutines for the calculation of solute transport, the modification of CORE-LE and the introduction of additional geochemical and transport processes. (Author)

  1. 1D Thermal-Hydraulic-Chemical (THC) Reactive transport modeling for deep geothermal systems: A case study of Groß Schönebeck reservoir, Germany

    Science.gov (United States)

    Driba, D. L.; De Lucia, M.; Peiffer, S.

    2014-12-01

    Fluid-rock interactions in geothermal reservoirs are driven by the state of disequilibrium that persists among solid and solutes due to changing temperature and pressure. During operation of enhanced geothermal systems, injection of cooled water back into the reservoir disturbs the initial thermodynamic equilibrium between the reservoir and its geothermal fluid, which may induce modifications in permeability through changes in porosity and pore space geometry, consequently bringing about several impairments to the overall system.Modeling of fluid-rock interactions induced by injection of cold brine into Groß Schönebeck geothermal reservoir system situated in the Rotliegend sandstone at 4200m depth have been done by coupling geochemical modeling Code Phreeqc with OpenGeoSys. Through batch modeling the re-evaluation of the measured hydrochemical composition of the brine has been done using Quintessa databases, the results from the calculation indicate that a mineral phases comprising of K-feldspar, hematite, Barite, Calcite and Dolomite was found to match the hypothesis of equilibrium with the formation fluid, Reducing conditions are presumed in the model (pe = -3.5) in order to match the amount of observed dissolved Fe and thus considered as initial state for the reactive transport modeling. based on a measured composition of formation fluids and the predominant mineralogical assemblage of the host rock, a preliminary 1D Reactive transport modeling (RTM) was run with total time set to 30 years; results obtained for the initial simulation revealed that during this period, no significant change is evident for K-feldspar. Furthermore, the precipitation of calcite along the flow path in the brine results in a drop of pH from 6.2 to a value of 5.2 noticed over the simulated period. The circulation of cooled fluid in the reservoir is predicted to affect the temperature of the reservoir within the first 100 -150m from the injection well. Examination of porosity change in

  2. Reactive solute transport in streams: A surface complexation approach for trace metal sorption

    Science.gov (United States)

    Runkel, Robert L.; Kimball, Briant A.; McKnight, Diane M.; Bencala, Kenneth E.

    1999-01-01

    A model for trace metals that considers in-stream transport, metal oxide precipitation-dissolution, and pH-dependent sorption is presented. Linkage between a surface complexation submodel and the stream transport equations provides a framework for modeling sorption onto static and/or dynamic surfaces. A static surface (e.g., an iron- oxide-coated streambed) is defined as a surface with a temporally constant solid concentration. Limited contact between solutes in the water column and the static surface is considered using a pseudokinetic approach. A dynamic surface (e.g., freshly precipitated metal oxides) has a temporally variable solid concentration and is in equilibrium with the water column. Transport and deposition of solute mass sorbed to the dynamic surface is represented in the stream transport equations that include precipitate settling. The model is applied to a pH-modification experiment in an acid mine drainage stream. Dissolved copper concentrations were depressed for a 3 hour period in response to the experimentally elevated pH. After passage of the pH front, copper was desorbed, and dissolved concentrations returned to ambient levels. Copper sorption is modeled by considering sorption to aged hydrous ferric oxide (HFO) on the streambed (static surface) and freshly precipitated HFO in the water column (dynamic surface). Comparison of parameter estimates with reported values suggests that naturally formed iron oxides may be more effective in removing trace metals than synthetic oxides used in laboratory studies. The model's ability to simulate pH, metal oxide precipitation-dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between trace metal chemistry and hydrologic transport at the field scale.

  3. Pore scale study of multiphase multicomponent reactive transport during CO2 dissolution trapping

    Science.gov (United States)

    Chen, Li; Wang, Mengyi; Kang, Qinjun; Tao, Wenquan

    2018-06-01

    Solubility trapping is crucial for permanent CO2 sequestration in deep saline aquifers. For the first time, a pore-scale numerical method is developed to investigate coupled scCO2-water two-phase flow, multicomponent (CO2(aq), H+, HCO3-, CO32- and OH-) mass transport, heterogeneous interfacial dissolution reaction, and homogeneous dissociation reactions. Pore-scale details of evolutions of multiphase distributions and concentration fields are presented and discussed. Time evolutions of several variables including averaged CO2(aq) concentration, scCO2 saturation, and pH value are analyzed. Specific interfacial length, an important variable which cannot be determined but is required by continuum models, is investigated in detail. Mass transport coefficient or efficient dissolution rate is also evaluated. The pore-scale results show strong non-equilibrium characteristics during solubility trapping due to non-uniform distributions of multiphase as well as slow mass transport process. Complicated coupling mechanisms between multiphase flow, mass transport and chemical reactions are also revealed. Finally, effects of wettability are also studied. The pore-scale studies provide deep understanding of non-linear non-equilibrium multiple physicochemical processes during CO2 solubility trapping processes, and also allow to quantitatively predict some important empirical relationships, such as saturation-interfacial surface area, for continuum models.

  4. Oxidants, Antioxidants, and the Beneficial Roles of Exercise-Induced Production of Reactive Species

    Directory of Open Access Journals (Sweden)

    Elisa Couto Gomes

    2012-01-01

    Full Text Available This review offers an overview of the influence of reactive species produced during exercise and their effect on exercise adaptation. Reactive species and free radicals are unstable molecules that oxidize other molecules in order to become stable. Although they play important roles in our body, they can also lead to oxidative stress impairing diverse cellular functions. During exercise, reactive species can be produced mainly, but not exclusively, by the following mechanisms: electron leak at the mitochondrial electron transport chain, ischemia/reperfusion and activation of endothelial xanthine oxidase, inflammatory response, and autooxidation of catecholamines. Chronic exercise also leads to the upregulation of the body's antioxidant defence mechanism, which helps minimize the oxidative stress that may occur after an acute bout of exercise. Recent studies show a beneficial role of the reactive species, produced during a bout of exercise, that lead to important training adaptations: angiogenesis, mitochondria biogenesis, and muscle hypertrophy. The adaptations occur depending on the mechanic, and consequently biochemical, stimulus within the muscle. This is a new area of study that promises important findings in the sphere of molecular and cellular mechanisms involved in the relationship between oxidative stress and exercise.

  5. Oxidants, Antioxidants, and the Beneficial Roles of Exercise-Induced Production of Reactive Species

    Science.gov (United States)

    Gomes, Elisa Couto; Silva, Albená Nunes; de Oliveira, Marta Rubino

    2012-01-01

    This review offers an overview of the influence of reactive species produced during exercise and their effect on exercise adaptation. Reactive species and free radicals are unstable molecules that oxidize other molecules in order to become stable. Although they play important roles in our body, they can also lead to oxidative stress impairing diverse cellular functions. During exercise, reactive species can be produced mainly, but not exclusively, by the following mechanisms: electron leak at the mitochondrial electron transport chain, ischemia/reperfusion and activation of endothelial xanthine oxidase, inflammatory response, and autooxidation of catecholamines. Chronic exercise also leads to the upregulation of the body's antioxidant defence mechanism, which helps minimize the oxidative stress that may occur after an acute bout of exercise. Recent studies show a beneficial role of the reactive species, produced during a bout of exercise, that lead to important training adaptations: angiogenesis, mitochondria biogenesis, and muscle hypertrophy. The adaptations occur depending on the mechanic, and consequently biochemical, stimulus within the muscle. This is a new area of study that promises important findings in the sphere of molecular and cellular mechanisms involved in the relationship between oxidative stress and exercise. PMID:22701757

  6. Studies of the Reactivity Effect of Polythene in the Fast Reactor FR0

    Energy Technology Data Exchange (ETDEWEB)

    Tiren, I; Haakansson, R

    1967-12-15

    Measurements of the reactivity effect of polythene (CH{sub 2}){sub n} have been made in two FR0 assemblies having neutron spectra broadly similar to those of current steam cooled fast reactor concepts. The experiments include studies of the axial and radial distributions of the reactivity coefficient. The reactivity contributions from small polythene samples were found to be approximately additive. No large effects of heterogeneity or interaction between samples were observed. Comparisons with calculations using a homogeneous model are therefore relevant. The experimental results are largely in reasonable agreement with calculated values. The latter are very sensitive to moderate changes in the cross sections at low neutron energies. The agreement with experiment is improved if transport rather than diffusion theory is used. Although the geometrical size of FR0 is probably adequate for studies of steam coefficients in fast power reactors, Pu isotopes and fission products should be included in the core composition in order to obtain information of direct use in such studies.

  7. Second-order splitting schemes for a class of reactive systems

    International Nuclear Information System (INIS)

    Ren Zhuyin; Pope, Stephen B.

    2008-01-01

    We consider the numerical time integration of a class of reaction-transport systems that are described by a set of ordinary differential equations for primary variables. In the governing equations, the terms involved may require the knowledge of secondary variables, which are functions of the primary variables. Specifically, we consider the case where, given the primary variables, the evaluation of the secondary variables is computationally expensive. To solve this class of reaction-transport equations, we develop and demonstrate several computationally efficient splitting schemes, wherein the portions of the governing equations containing chemical reaction terms are separated from those parts containing the transport terms. A computationally efficient solution to the transport sub-step is achieved through the use of linearization or predictor-corrector methods. The splitting schemes are applied to the reactive flow in a continuously stirred tank reactor (CSTR) with the Davis-Skodjie reaction model, to the CO+H 2 oxidation in a CSTR with detailed chemical kinetics, and to a reaction-diffusion system with an extension of the Oregonator model of the Belousov-Zhabotinsky reaction. As demonstrated in the test problems, the proposed splitting schemes, which yield efficient solutions to the transport sub-step, achieve second-order accuracy in time

  8. Reactive Strength Index: A Poor Indicator of Reactive Strength?

    Science.gov (United States)

    Healy, Robin; Kenny, Ian; Harrison, Drew

    2017-11-28

    The primary aim was to assess the relationships between reactive strength measures and associated kinematic and kinetic performance variables achieved during drop jumps. A secondary aim was to highlight issues with the use of reactive strength measures as performance indicators. Twenty eight national and international level sprinters, consisting of fourteen men and women, participated in this cross-sectional analysis. Athletes performed drop jumps from a 0.3 m box onto a force platform with dependent variables contact time (CT), landing time (TLand), push-off time (TPush), flight time (FT), jump height (JH), reactive strength index (RSI, calculated as JH / CT), reactive strength ratio (RSR, calculated as FT / CT) and vertical leg spring stiffness (Kvert) recorded. Pearson's correlation test found very high to near perfect relationships between RSI and RSR (r = 0.91 to 0.97), with mixed relationships found between RSI, RSR and the key performance variables, (Men: r = -0.86 to -0.71 between RSI/RSR and CT, r = 0.80 to 0.92 between RSI/RSR and JH; Women: r = -0.85 to -0.56 between RSR and CT, r = 0.71 between RSI and JH). This study demonstrates that the method of assessing reactive strength (RSI versus RSR) may be influenced by the performance strategies adopted i.e. whether an athlete achieves their best reactive strength scores via low CTs, high JHs or a combination. Coaches are advised to limit the variability in performance strategies by implementing upper and / or lower CT thresholds to accurately compare performances between individuals.

  9. Electronic and transport properties of kinked graphene

    DEFF Research Database (Denmark)

    Rasmussen, Jesper Toft; Gunst, Tue; Bøggild, Peter

    2013-01-01

    Local curvature, or bending, of a graphene sheet is known to increase the chemical reactivity presenting an opportunity for templated chemical functionalisation. Using first-principles calculations based on density functional theory (DFT), we investigate the reaction barrier reduction for the ads......Local curvature, or bending, of a graphene sheet is known to increase the chemical reactivity presenting an opportunity for templated chemical functionalisation. Using first-principles calculations based on density functional theory (DFT), we investigate the reaction barrier reduction...... for the adsorption of atomic hydrogen at linear bends in graphene. We find a significant barrier lowering (≈15%) for realistic radii of curvature (≈20 Å) and that adsorption along the linear bend leads to a stable linear kink. We compute the electronic transport properties of individual and multiple kink lines......, and demonstrate how these act as efficient barriers for electron transport. In particular, two parallel kink lines form a graphene pseudo-nanoribbon structure with a semimetallic/semiconducting electronic structure closely related to the corresponding isolated ribbons; the ribbon band gap translates...

  10. Controls on the Environmental Fate of Compounds Controlled by Coupled Hydrologic and Reactive Processes

    Science.gov (United States)

    Hixson, J.; Ward, A. S.; McConville, M.; Remucal, C.

    2017-12-01

    Current understanding of how compounds interact with hydrologic processes or reactive processes have been well established. However, the environmental fate for compounds that interact with hydrologic AND reactive processes is not well known, yet critical in evaluating environmental risk. Evaluations of risk are often simplified to homogenize processes in space and time and to assess processes independently of one another. However, we know spatial heterogeneity and time-variable reactivities complicate predictions of environmental transport and fate, and is further complicated by the interaction of these processes, limiting our ability to accurately predict risk. Compounds that interact with both systems, such as photolytic compounds, require that both components are fully understood in order to predict transport and fate. Release of photolytic compounds occurs through both unintentional releases and intentional loadings. Evaluating risks associated with unintentional releases and implementing best management practices for intentional releases requires an in-depth understanding of the sensitivity of photolytic compounds to external controls. Lampricides, such as 3-trifluoromethyl-4-nitrophenol (TFM), are broadly applied in the Great Lakes system to control the population of invasive sea lamprey. Over-dosing can yield fish kills and other detrimental impacts. Still, planning accounts for time of passage and dilution, but not the interaction of the physical and chemical systems (i.e., storage in the hyporheic zone and time-variable decay rates). In this study, we model a series of TFM applications to test the efficacy of dosing as a function of system characteristics. Overall, our results demonstrate the complexity associated with photo-sensitive compounds through stream-hyporheic systems, and highlight the need to better understand how physical and chemical systems interact to control transport and fate in the environment.

  11. Energy transfer in reactive and non-reactive H2 + OH collisions

    International Nuclear Information System (INIS)

    Rashed, O.; Brown, N.J.

    1985-04-01

    We have used the methods of quasi-classical dynamics to compute energy transfer properties of non-reactive and reactive H 2 + OH collisions. Energy transfer has been investigated as function of translational temperature, reagent rotational energy, and reagent vibrational energy. The energy transfer mechanism is complex with ten types of energy transfer possible, and evidence was found for all types. There is much more exchange between the translational degree of freedom and the H 2 vibrational degree of freedom than there is between translation and OH vibration. Translational energy is transferred to the rotational degrees of freedom of each molecule. There is a greater propensity for the transfer of translation to OH rotation than H 2 rotation. In reactive collisions, increases in reagent translational temperature predominantly appear as vibrational energy in the water molecule. Energy transfer in non-reactive and reactive collisions does not depend strongly on the initial angular momentum in either molecule. In non-reactive collisions, vibrational energy is transferred to translation, to the rotational degree of freedom of the same molecule, and to the rotational and vibrational degrees of freedom of the other molecule. In reactive collisions, the major effect of increasing the vibrational energy in reagent molecules is that, on the average, the vibrational energy of the reagents appears as product vibrational energy. 18 refs., 16 figs., 6 tabs

  12. Early history and reactivation of the rand thrust, southern California

    Science.gov (United States)

    Postlethwaite, Clay E.; Jacobson, Carl E.

    The Rand thrust of the Rand Mountains in the northwestern Mojave Desert separates an upper plate of quartz monzonite and quartzofeldspathic to amphibolitic gneiss from a lower plate of metagraywacke and mafic schist (Rand Schist). The Rand thrust is considered part of the regionally extensive Vincent/Chocolate Mountain thrust system, which is commonly believed to represent a Late Cretaceous subduction zone. The initial direction of dip and sense of movement along the Vincent/Chocolate Mountain thrust are controversial. Microfabrics of mylonites and quartzites from the Rand Mountains were analyzed in an attempt to determine transport direction for this region, but the results are ambiguous. In addition, the southwestern portion of the Rand thrust was found to have been reactivated as a low-angle normal fault after subduction. Reactivation might have occurred shortly after subduction, in which case it could account for the preservation of high-pressure mineral assemblages in the Rand Schist, or it could be related to mid-Tertiary extension in the western United States. In either event, the reactivation might be responsible for the complicated nature of the microfabrics. The Rand Schist exhibits an inverted metamorphic zonation. Isograds in the schist are not significantly truncated by the reactivated segment of the Rand thrust. This indicates that other segments of the Vincent/Chocolate Mountain thrust should be re-evaluated for the possibility of late movement, even if they show an apparently undisturbed inverted metamorphic zonation.

  13. Two new sources of reactive gaseous mercury in the free troposphere

    OpenAIRE

    H. Timonen; J. L. Ambrose; D. A. Jaffe

    2012-01-01

    Mercury (Hg) is a neurotoxin that bioaccumulates in the food chain. Mercury is emitted to the atmosphere primarily in its elemental form, which has a long lifetime allowing global transport. It is known that atmospheric oxidation of gaseous elemental mercury (GEM) generates reactive gaseous mercury (RGM) which plays an important role in the atmospheric mercury cycle by enhancing the rate of mercury deposition to ecosystems. However, the primary GEM oxidants, and the sources and chemical ...

  14. Reactive sites influence in PMMA oligomers reactivity: a DFT study

    Science.gov (United States)

    Paz, C. V.; Vásquez, S. R.; Flores, N.; García, L.; Rico, J. L.

    2018-01-01

    In this work, we present a theoretical study of methyl methacrylate (MMA) living anionic polymerization. The study was addressed to understanding two important experimental observations made for Michael Szwarc in 1956. The unexpected effect of reactive sites concentration in the propagation rate, and the self-killer behavior of MMA (deactivating of living anionic polymerization). The theoretical calculations were performed by density functional theory (DFT) to obtain the frontier molecular orbitals values. These values were used to calculate and analyze the chemical interaction descriptors in DFT-Koopmans’ theorem. As a result, it was observed that the longest chain-length species (related with low concentration of reactive sites) exhibit the highest reactivity (behavior associated with the increase of the propagation rate). The improvement in this reactivity was attributed to the crosslinking produced in the polymethyl methacrylate chains. Meanwhile, the self-killer behavior was associated with the intermolecular forces present in the reactive sites. This behavior was associated to an obstruction in solvation, since the active sites remained active through all propagation species. The theoretical results were in good agreement with the Szwarc experiments.

  15. EFFECTS OF PORE STRUCTURE CHANGE AND MULTI-SCALE HETEROGENEITY ON CONTAMINANT TRANSPORT AND REACTION RATE UPSCALING

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Catherine A [Princeton University

    2013-05-15

    This project addressed the scaling of geochemical reactions to core and field scales, and the interrelationship between reaction rates and flow in porous media. We targeted reactive transport problems relevant to the Hanford site specifically the reaction of highly caustic, radioactive waste solutions with subsurface sediments, and the immobilization of 90Sr and 129I through mineral incorporation and passive flow blockage, respectively. We addressed the correlation of results for pore-scale fluid-soil interaction with field-scale fluid flow, with the specific goals of (i) predicting attenuation of radionuclide concentration; (ii) estimating changes in flow rates through changes of soil permeabilities; and (iii) estimating effective reaction rates. In supplemental work, we also simulated reactive transport systems relevant to geologic carbon sequestration. As a whole, this research generated a better understanding of reactive transport in porous media, and resulted in more accurate methods for reaction rate upscaling and improved prediction of permeability evolution. These scientific advancements will ultimately lead to better tools for management and remediation of DOE legacy waste problems.

  16. Formulation of chemically reactive foams for the dissolution of oxides polluting the secondary circuits of steam generators

    International Nuclear Information System (INIS)

    Provens, Helene

    1999-01-01

    The fouling of the Steam Generators (SG) secondary circuits, due to oxides deposits like magnetite (Fe 3 O 4 ), induces the degradation of the internal SG equipment, the reduction of the plant power, implying to clean these circuits. This operation made in liquid phase generates an important volume of effluents with an expensive cost of treatment. The use of a reactive foam allows the reduction of this volume by ten. Among the reactive tested, oxalic acid is the most efficient to dissolve a magnetite quantity of 10 g.l -1 , at ambient temperature for 24 hours, as imposed by the industrial wishes. The dissolution is not complete in our experimental conditions and is a complex reaction of autocatalytic type, composed of an acid attack, a reductive step, both followed by a slow diffusion. The surfactants generating the foam, which transport the reactive, are adsorbed on the magnetite but this affects weakly the dissolution. Its effectiveness is evaluated varying the experimental conditions. The wetting properties and the stability of the foam induce erosion and undissolved particles transport capacities, during its circulation into the SG. These particles trapped in the inter-bubble liquid films or carried by the piston effect of the foam bed, can be recovered on filters placed out of the SG. To quantify the transport, the influence of different parameters is studied: the more stable the foam is, the more important the transport is. Innocuousness tests showed that oxalic acid was not harmful for constitutive SG materials, either they were isolated or coupled. The cleaning by oxalic acid causes ferrous oxalates precipitation, representing 10 to 15 pc of the total iron quantity depending on the sample. A rinsing out with a foam containing 1 pc oxalic acid and 5 pc hydrogen peroxide allows the dissolution of these precipitates without corrosion problems. (author) [fr

  17. Diffusion Dominant Solute Transport Modelling in Fractured Media Under Deep Geological Environment - 12211

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, S. [National Nuclear Laboratory (United Kingdom); Jivkov, A.P. [Research Centre for Radwaste and Decommissioning and Modelling and Simulation Centre, University of Manchester (United Kingdom)

    2012-07-01

    Deep geologic disposal of high activity and long-lived radioactive waste is gaining increasing support in many countries, where suitable low permeability geological formation in combination with engineered barriers are used to provide long term waste contaminant and minimise the impacts to the environment and risk to the biosphere. This modelling study examines the solute transport in fractured media under low flow velocities that are relevant to a deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes. The effects of water velocity in the fracture, matrix porosity and diffusion on solute transport are investigated and discussed. Some illustrative modelled results are presented to demonstrate the use of the model to examine the effects of media degradation on solute transport, under the influences of hydrogeological (diffusion dominant) and microbially mediated chemical processes. The challenges facing the prediction of long term degradation such as cracks evolution, interaction and coalescence are highlighted. The potential of a novel microstructure informed modelling approach to account for these effects is discussed, particularly with respect to investigating multiple phenomena impact on material performance. The GRM code is used to examine the effects of media degradation for a geological waste disposal package, under the combined hydrogeological (diffusion dominant) and chemical effects in low groundwater flow conditions that are typical of deep geological disposal systems. An illustrative reactive transport modelling application demonstrates the use of the code to examine the interplay of kinetic controlled biogeochemical reactive processes with advective and diffusive transport, under the influence of media degradation. The initial model results are encouraging which show the

  18. Transcriptional and physiological changes during Mycobacterium tuberculosis reactivation from non-replicating persistence

    Directory of Open Access Journals (Sweden)

    Peicheng Du

    2016-08-01

    Full Text Available Mycobacterium tuberculosis can persist for years in the hostile environment of the host in a non-replicating or slowly replicating state. While active disease predominantly results from reactivation of a latent infection, the molecular mechanisms of M. tuberculosis reactivation are still poorly understood. We characterized the physiology and global transcriptomic profiles of M. tuberculosis during reactivation from hypoxia-induced non-replicating persistence. We found that M. tuberculosis reactivation upon reaeration was associated with a lag phase, in which the recovery of cellular physiological and metabolic functions preceded the resumption of cell replication. Enrichment analysis of the transcriptomic dynamics revealed changes to many metabolic pathways and transcription regulons/subnetworks that orchestrated the metabolic and physiological transformation in preparation for cell division. In particular, we found that M. tuberculosis reaeration lag phase is associated with down-regulation of persistence-associated regulons/subnetworks, including DosR, MprA, SigH, SigE and ClgR, as well as metabolic pathways including those involved in the uptake of lipids and their catabolism. More importantly, we identified a number of up-regulated transcription regulons and metabolic pathways, including those involved in metal transport and remobilization, second messenger-mediated responses, DNA repair and recombination, and synthesis of major cell wall components. We also found that inactivation of the major alternative sigma factors SigE or SigH disrupted exit from persistence, underscoring the importance of the global transcriptional reprogramming during M. tuberculosis reactivation. Our observations suggest that M. tuberculosis lag phase is associated with a global gene expression reprogramming that defines the initiation of a reactivation process.

  19. Reactivity on the Web

    OpenAIRE

    Bailey, James; Bry, François; Eckert, Michael; Patrânjan, Paula Lavinia

    2005-01-01

    Reactivity, the ability to detect simple and composite events and respond in a timely manner, is an essential requirement in many present-day information systems. With the emergence of new, dynamic Web applications, reactivity on the Web is receiving increasing attention. Reactive Web-based systems need to detect and react not only to simple events but also to complex, real-life situations. This paper introduces XChange, a language for programming reactive behaviour on the Web,...

  20. Fate and Transport of Nanoparticles in Porous Media: A Numerical Study

    Science.gov (United States)

    Taghavy, Amir

    Understanding the transport characteristics of NPs in natural soil systems is essential to revealing their potential impact on the food chain and groundwater. In addition, many nanotechnology-based remedial measures require effective transport of NPs through soil, which necessitates accurate understanding of their transport and retention behavior. Based upon the conceptual knowledge of environmental behavior of NPs, mathematical models can be developed to represent the coupling of processes that govern the fate of NPs in subsurface, serving as effective tools for risk assessment and/or design of remedial strategies. This work presents an innovative hybrid Eulerian-Lagrangian modeling technique for simulating the simultaneous reactive transport of nanoparticles (NPs) and dissolved constituents in porous media. Governing mechanisms considered in the conceptual model include particle-soil grain, particle-particle, particle-dissolved constituents, and particle- oil/water interface interactions. The main advantage of this technique, compared to conventional Eulerian models, lies in its ability to address non-uniformity in physicochemical particle characteristics. The developed numerical simulator was applied to investigate the fate and transport of NPs in a number of practical problems relevant to the subsurface environment. These problems included: (1) reductive dechlorination of chlorinated solvents by zero-valent iron nanoparticles (nZVI) in dense non-aqueous phase liquid (DNAPL) source zones; (2) reactive transport of dissolving silver nanoparticles (nAg) and the dissolved silver ions; (3) particle-particle interactions and their effects on the particle-soil grain interactions; and (4) influence of particle-oil/water interface interactions on NP transport in porous media.

  1. Perturbation theory and importance functions in integral transport formulations

    International Nuclear Information System (INIS)

    Greenspan, E.

    1976-01-01

    Perturbation theory expressions for the static reactivity derived from the flux, collision density, birth-rate density, and fission-neutron density formulations of integral transport theory, and from the integro-differential formulation, are intercompared. The physical meaning and relation of the adjoint functions corresponding to each of the five formulations are established. It is found that the first-order approximation of the perturbation expressions depends on the transport theory formulation and on the adjoint function used. The approximations of the integro-differential formulation corresponding to different first-order approximations of the integral transport theory formulations are identified. It is found that the accuracy of all first-order approximations of the integral transport formulations examined is superior to the accuracy of first-order integro-differential perturbation theory

  2. Digital reactivity meter

    International Nuclear Information System (INIS)

    Jiang Zongbing

    1996-02-01

    The importance and the usual methods of reactivity measurement in a nuclear reactor are presented. Emphasis is put upon the calculation principle, software and hardware components, main specifications, application, as well as the features of the digital reactivity meter. The test results of operation in various reactors shown that the meter possess the following features: high accuracy, short response time, low output noise, high resolution, wide measuring range, simple and flexible to operate, high stability and reliability. In addition, the reactivity meter can save the measuring data automatically and have a perfect capability of self-verifying. It not only meet the requirement of the reactivity measurement in nuclear power plant, but also can be applied to various types of reactors. (1 tab.)

  3. Understanding the Atomic Scale Mechanisms that Control the Attainment of Ultralow Friction and Wear in Carbon-Based Materials

    Science.gov (United States)

    2016-01-16

    materials to applications such as vibrating joints1,2, contacting and sliding surfaces in micro- and nanoelectromechanical systems for sensors and...Friction and Wear. R.W. Carpick, Midwest Mechanics 2014/2015 Invited Speaker , Iowa State University, Feb. 2015. 4. Invited. Atomic-Scale Processes...in Single Asperity Friction and Wear. R.W. Carpick, Midwest Mechanics 2014/2015 Invited Speaker , University of Minnesota, Feb. 2015. 5. Invited

  4. Observational constraints for the source strengths, transport and partitioning of reactive nitrogen on regional and global scales

    Science.gov (United States)

    Bertram, Timothy Hugh

    Reactive nitrogen (NOy) exerts control over the production of tropospheric ozone (O3) and the destruction of stratospheric O 3, plays an important role in the formation of secondary organic aerosol and represents a critical link between the atmosphere and biosphere. Accurate estimates of the spatial and temporal distribution of nitrogen oxide (NO x) emissions and their subsequent transport and chemical processing are critical to furthering our understanding of these processes. In this dissertation, several new approaches to understanding the role of nitrogen oxides in atmospheric chemistry are developed. Most of the observations and analyses presented are based on aircraft measurements used to describe and understand the distribution of NOx from the surface to the upper troposphere (UT) and to provide an understanding of the accuracy of satellite measurements. First, new experiments to establish the absolute accuracy and long term precision of the standards maintained at the National Institute of Standards and Technology (NIST) are described. These standards serve as the references upon which calibration of the instruments used to make atmospheric measurements of O3, nitric oxide (NO) and nitrogen dioxide (NO2) are based. Gas-phase titration of ozone with nitric oxide was used to show that the O3, NO and NO2 standards are self-consistent to within 1%. Prior experiments had only established these three to be self-consistent to 4%. Following this, the implementation of the Thermal Dissociation - Laser Induced Fluorescence (TD-LIF) Technique for measurements of NO2, total peroxy nitrates (SigmaPNs), total alkyl nitrates (SigmaANs) and nitric acid (HNO3) from an aircraft platform is discussed and the measurements obtained are compared directly to analogous measurements made aboard the same aircraft or different aircraft during in-flight comparisons. Detailed observations of the partitioning of reactive nitrogen in the upper troposphere, during a period of intense

  5. Effect of ionic strength on barium transport in porous media

    Science.gov (United States)

    Ye, Zi; Prigiobbe, Valentina

    2018-02-01

    Hydraulic fracturing (or fracking) is a well stimulation technique used to extract resources from a low permeability formation. Currently, the most common application of fracking is for the extraction of oil and gas from shale. During the operation, a large volume of brine, rich in hazardous chemicals, is produced. Spills of brine from wells or pits might negatively impact underground water resources and, in particular, one of the major concerns is the migration of radionuclides, such as radium (Ra2+), into the shallow subsurface. However, the transport behaviour of Ra2+ through a reactive porous medium under conditions typical of a brine, i.e., high salinity, is not well understood, yet. Here, a study on the transport behaviour of barium (Ba2+, congener of radium) through a porous medium containing a common mineral such as goethite (FeO(OH)) is presented. Batch and column flood tests were carried out at conditions resembling the produced brine, i.e., large values of ionic strength (I), namely, 1 to 3 mol/kg. The measurements were described with the triple layer surface complexation model coupled with the Pitzer activity coefficient method and a reactive transport model, in the case of the transport tests. The experimental results show that the adsorption of Ba2+ onto FeO(OH) increases with pH but decreases with I and it becomes negligible at the brine conditions. Moreover, even if isotherms show adsorption at large I, at the same conditions during transport, Ba2+ travels without retardation through the FeO(OH) porous medium. The triple layer model agrees very well with all batch data but it does not describe well the transport tests in all cases. In particular, the model cannot match the pH measurements at large I values. This suggests that the chemical reactions at the solid-liquid interface do not capture the mechanism of Ba2+ adsorption onto FeO(OH) at large salinity. Finally, this study suggests that barium, and potentially its congeners, namely, radium

  6. Predictability of solute transport in diffusion-controlled hydrogeologic regimes

    International Nuclear Information System (INIS)

    Gillham, R.W.; Cherry, J.A.

    1983-01-01

    Hydrogeologic regimes that are favourable for the subsurface management of low-level radioactive wastes must have transport properties that will limit the migration velocity of contaminants to some acceptably low value. Of equal importance, for the purpose of impact assessment and licensing, is the need to be able to predict, with a reasonable degree of certainty and over long time periods, what the migration velocity of the various contaminants of interest will be. This paper presents arguments to show that in addition to having favourable velocity characteristics, transport in saturated, diffusion-controlled hydrogeologic regimes is considerably more predictable than in the most common alternatives. The classical transport models for unsaturated, saturated-advection-controlled and saturated-diffusion-controlled environments are compared, with particular consideration being given to the difficulties associated with the characterization of the respective transport parameters. Results are presented which show that the diffusion of non-reactive solutes and solutes that react according to a constant partitioning ratio (K/sub d/) are highly predictable under laboratory conditions and that the diffusion coefficients for the reactive solutes can be determined with a reasonable degree of accuracy from independent measurements of bulk density, porosity, distribution coefficient and tortuosity. Field evidence is presented which shows that the distribution of environmental isotopes and chloride in thick clayey deposits is consistent with a diffusion-type transport process in these media. These results are particularly important in that they not only demonstrate the occurrence of diffusion-controlled hydrogeologic regimes, but they also demonstrate the predictability of the migration characteristics over very long time periods

  7. Monadic Functional Reactive Programming

    NARCIS (Netherlands)

    A.J. van der Ploeg (Atze); C Shan

    2013-01-01

    htmlabstractFunctional Reactive Programming (FRP) is a way to program reactive systems in functional style, eliminating many of the problems that arise from imperative techniques. In this paper, we present an alternative FRP formulation that is based on the notion of a reactive computation: a

  8. Criticality safety requirements for transporting EBR-II fuel bottles stored at INTEC

    International Nuclear Information System (INIS)

    Lell, R. M.; Pope, C. L.

    2000-01-01

    Two carrier/shipping cask options are being developed to transport bottles of EBR-II fuel elements stored at INTEC. Some fuel bottles are intact, but some have developed leaks. Reactivity control requirements to maintain subcriticality during the hypothetical transport accident have been examined for both transport options for intact and leaking bottles. Poison rods, poison sleeves, and dummy filler bottles were considered; several possible poison materials and several possible dummy filler materials were studied. The minimum number of poison rods or dummy filler bottles has been determined for each carrier for transport of intact and leaking bottles

  9. Reactivity costs in MARIA reactor

    International Nuclear Information System (INIS)

    Marcinkowska, Zuzanna E.; Pytel, Krzysztof M.; Frydrysiak, Andrzej

    2017-01-01

    Highlights: • The methodology for calculating consumed fuel cost of excess reactivity is proposed. • Correlation between time integral of the core excess reactivity and released energy. • Reactivity price gives number of fuel elements required for given excess reactivity. - Abstract: For the reactor operation at high power level and carrying out experiments and irradiations the major cost of reactor operation is the expense of nuclear fuel. In this paper the methodology for calculating consumed fuel cost-relatedness of excess reactivity is proposed. Reactivity costs have been determined on the basis of operating data. A number of examples of calculating the reactivity costs for processes such as: strong absorbing material irradiation, molybdenium-99 production, beryllium matrix poisoning and increased moderator temperature illustrates proposed method.

  10. Lattice Boltzmann simulation of dissolution-induced changes in permeability and porosity in 3D CO2 reactive transport

    Science.gov (United States)

    Tian, Zhiwei; Wang, Junye

    2018-02-01

    Dissolution and precipitation of rock matrix are one of the most important processes of geological CO2 sequestration in reservoirs. They change connections of pore channels and properties of matrix, such as bulk density, microporosity and hydraulic conductivity. This study builds on a recently developed multi-layer model to account for dynamic changes of microporous matrix that can accurately predict variations in hydraulic properties and reaction rates due to dynamic changes in matrix porosity and pore connectivity. We apply the model to simulate the dissolution and precipitation processes of rock matrix in heterogeneous porous media to quantify (1) the effect of the reaction rate on dissolution and matrix porosity, (2) the effect of microporous matrix diffusion on the overall effective diffusion and (3) the effect of heterogeneity on hydraulic conductivity. The results show the CO2 storage influenced by factors including the matrix porosity change, reaction front movement, velocity and initial properties. We also simulated dissolution-induced permeability enhancement as well as effects of initial porosity heterogeneity. The matrix with very low permeability, which can be unresolved on X-ray CT, do contribute to flow patterns and dispersion. The concentration of reactant H+ increases along the main fracture paths where the flow velocity increases. The product Ca++ shows the inversed distribution pattern against the H+ concentration. This demonstrates the capability of this model to investigate the complex CO2 reactive transport in real 3D heterogeneous porous media.

  11. Reactive perforating collagenosis

    Directory of Open Access Journals (Sweden)

    Yadav Mukesh

    2009-01-01

    Full Text Available Reactive perforating collagenosis is a rare cutaneous disorder of unknown etiology. We hereby describe a case of acquired reactive perforating collagenosis in a patient of diabetes and chronic renal failure.

  12. Immunological Reactivity Using Monoclonal and Polyclonal Antibodies of Autoimmune Thyroid Target Sites with Dietary Proteins

    Directory of Open Access Journals (Sweden)

    Datis Kharrazian

    2017-01-01

    Full Text Available Many hypothyroid and autoimmune thyroid patients experience reactions with specific foods. Additionally, food interactions may play a role in a subset of individuals who have difficulty finding a suitable thyroid hormone dosage. Our study was designed to investigate the potential role of dietary protein immune reactivity with thyroid hormones and thyroid axis target sites. We identified immune reactivity between dietary proteins and target sites on the thyroid axis that includes thyroid hormones, thyroid receptors, enzymes, and transport proteins. We also measured immune reactivity of either target specific monoclonal or polyclonal antibodies for thyroid-stimulating hormone (TSH receptor, 5′deiodinase, thyroid peroxidase, thyroglobulin, thyroxine-binding globulin, thyroxine, and triiodothyronine against 204 purified dietary proteins commonly consumed in cooked and raw forms. Dietary protein determinants included unmodified (raw and modified (cooked and roasted foods, herbs, spices, food gums, brewed beverages, and additives. There were no dietary protein immune reactions with TSH receptor, thyroid peroxidase, and thyroxine-binding globulin. However, specific antigen-antibody immune reactivity was identified with several purified food proteins with triiodothyronine, thyroxine, thyroglobulin, and 5′deiodinase. Laboratory analysis of immunological cross-reactivity between thyroid target sites and dietary proteins is the initial step necessary in determining whether dietary proteins may play a potential immunoreactive role in autoimmune thyroid disease.

  13. Adapting HYDRUS-1D to Simulate Overland Flow and Reactive Transport During Sheet Flow Deviations

    Science.gov (United States)

    Liang, J.; Bradford, S. A.; Simunek, J.; Hartmann, A.

    2017-12-01

    The HYDRUS-1D code is a popular numerical model for solving the Richards equation for variably-saturated water flow and solute transport in porous media. This code was adapted to solve rather than the Richards equation for subsurface flow the diffusion wave equation for overland flow at the soil surface. The numerical results obtained by the new model produced an excellent agreement with the analytical solution of the kinematic wave equation. Model tests demonstrated its applicability to simulate the transport and fate of many different solutes, such as non-adsorbing tracers, nutrients, pesticides, and microbes. However, the diffusion wave or kinematic wave equations describe surface runoff as sheet flow with a uniform depth and velocity across the slope. In reality, overland water flow and transport processes are rarely uniform. Local soil topography, vegetation, and spatial soil heterogeneity control directions and magnitudes of water fluxes, and strongly influence runoff characteristics. There is increasing evidence that variations in soil surface characteristics influence the distribution of overland flow and transport of pollutants. These spatially varying surface characteristics are likely to generate non-equilibrium flow and transport processes. HYDRUS-1D includes a hierarchical series of models of increasing complexity to account for both physical equilibrium and non-equilibrium, e.g., dual-porosity and dual-permeability models, up to a dual-permeability model with immobile water. The same conceptualization as used for the subsurface was implemented to simulate non-equilibrium overland flow and transport at the soil surface. The developed model improves our ability to describe non-equilibrium overland flow and transport processes and to improves our understanding of factors that cause this behavior. The HYDRUS-1D overland flow and transport model was additionally also extended to simulate soil erosion. The HYDRUS-1D Soil Erosion Model has been verified by

  14. Assessment of the contamination of drinking water supply wells by pesticides from surface water resources using a finite element reactive transport model and global sensitivity analysis techniques

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    2013-01-01

    A reactive transport model is employed to evaluate the potential for contamination of drinking water wells by surface water pollution. The model considers various geologic settings, includes sorption and degradation processes and is tested by comparison with data from a tracer experiment where...... fluorescein dye injected in a river is monitored at nearby drinking water wells. Three compounds were considered: an older pesticide MCPP (Mecoprop) which is mobile and relatively persistent, glyphosate (Roundup), a newer biodegradable and strongly sorbing pesticide, and its degradation product AMPA. Global...... sensitivity analysis using the Morris method is employed to identify the dominant model parameters. Results show that the characteristics of clay aquitards (degree of fracturing and thickness), pollutant properties and well depths are crucial factors when evaluating the risk of drinking water well...

  15. Quantifying solute transport processes: are chemically "conservative" tracers electrically conservative?

    Science.gov (United States)

    Singha, Kamini; Li, Li; Day-Lewis, Frederick D.; Regberg, Aaron B.

    2012-01-01

    The concept of a nonreactive or conservative tracer, commonly invoked in investigations of solute transport, requires additional study in the context of electrical geophysical monitoring. Tracers that are commonly considered conservative may undergo reactive processes, such as ion exchange, thus changing the aqueous composition of the system. As a result, the measured electrical conductivity may reflect not only solute transport but also reactive processes. We have evaluated the impacts of ion exchange reactions, rate-limited mass transfer, and surface conduction on quantifying tracer mass, mean arrival time, and temporal variance in laboratory-scale column experiments. Numerical examples showed that (1) ion exchange can lead to resistivity-estimated tracer mass, velocity, and dispersivity that may be inaccurate; (2) mass transfer leads to an overestimate in the mobile tracer mass and an underestimate in velocity when using electrical methods; and (3) surface conductance does not notably affect estimated moments when high-concentration tracers are used, although this phenomenon may be important at low concentrations or in sediments with high and/or spatially variable cation-exchange capacity. In all cases, colocated groundwater concentration measurements are of high importance for interpreting geophysical data with respect to the controlling transport processes of interest.

  16. What makes ecological systems reactive?

    Science.gov (United States)

    Snyder, Robin E

    2010-06-01

    Although perturbations from a stable equilibrium must ultimately vanish, they can grow initially, and the maximum initial growth rate is called reactivity. Reactivity thus identifies systems that may undergo transient population surges or drops in response to perturbations; however, we lack biological and mathematical intuition about what makes a system reactive. This paper presents upper and lower bounds on reactivity for an arbitrary linearized model, explores their strictness, and discusses their biological implications. I find that less stable systems (i.e. systems with long transients) have a smaller possible range of reactivities for which no perturbations grow. Systems with more species have a higher capacity to be reactive, assuming species interactions do not weaken too rapidly as the number of species increases. Finally, I find that in discrete time, reactivity is determined largely by mean interaction strength and neither discrete nor continuous time reactivity are sensitive to food web topology. 2010 Elsevier Inc. All rights reserved.

  17. Implications of one-year basalt weathering/reactivity study for a basalt repository environment

    International Nuclear Information System (INIS)

    Pine, G.L.; Jantzen, C.M.

    1987-03-01

    The Savannah River Laboratory is testing the performance of the Defense Waste Processing Facility glass under conditions representing potential repository environments. For a basalt repository, one of the important issues is how rapidly reducing conditions are re-established after placement of the waste. The objective of this study was to examine the factors affecting the reactivity of the basalt. Construction of a nuclear waste repository in basalt will temporarily perturb the groundwater conditions, creating more oxidizing (air-saturated) conditions than an undisturbed repository system. Reducing conditions can be beneficial to the performance of waste glass and canisters, and may limit the transport of certain radionuclides. The Basalt Waste Isolation Project intends to use a backfill containing crushed basalt to re-establish the reducing conditions of the groundwater. The reactivity of the basalt has been found to be minimal once the fresh crushed surfaces have been weathered and the reactive intergranular glass component has been leached, e.g., by long-term surface storage. Crushing of the basalt for pneumatic emplacement of the backfill should, therefore, occur shortly before placement in the repository. This backfill must contain a minimum of 5 percent reactive fines (<100 mesh), to rapidly achieve reducing conditions. 23 refs., 21 figs., 18 tabs

  18. Hollow Nanospheres with Fluorous Interiors for Transport of Molecular Oxygen in Water

    KAUST Repository

    Vu, Khanh B.; Chen, Tianyou; Almahdali, Sarah; Bukhriakov, Konstantin; Rodionov, Valentin

    2016-01-01

    are gas-permeable and feature reactive functional groups for easy modification of the exterior. These features make the SFC-filled nanospheres promising vehicles for respiratory oxygen storage and transport. Uptake of molecular oxygen into nanosphere

  19. Hijacking membrane transporters for arsenic phytoextraction

    Science.gov (United States)

    LeBlanc, Melissa S.; McKinney, Elizabeth C.; Meagher, Richard B.; Smith, Aaron P.

    2012-01-01

    Arsenic is a toxic metalloid and recognized carcinogen. Arsenate and arsenite are the most common arsenic species available for uptake by plants. As an inorganic phosphate (Pi) analog, arsenate is acquired by plant roots through endogenous Pi transport systems. Inside the cell, arsenate is reduced to the thiol-reactive form arsenite. Glutathione (GSH)-conjugates of arsenite may be extruded from the cell or sequestered in vacuoles by members of the ATP-binding cassette (ABC) family of transporters. In the present study we sought to enhance both plant arsenic uptake through Pi transporter overexpression, and plant arsenic tolerance through ABC transporter overexpression. We demonstrate that Arabidopsis thaliana plants overexpressing the high-affinity Pi transporter family members, AtPht1;1 or AtPht1;7, are hypersensitive to arsenate due to increased arsenate uptake. These plants do not exhibit increased sensitivity to arsenite. Co-overexpression of the yeast ABC transporter YCF1 in combination with AtPht1;1 or AtPht1;7 suppresses the arsenate-sensitive phenotype while further enhancing arsenic uptake. Taken together, our results support an arsenic transport mechanism in which arsenate uptake is increased through Pi transporter overexpression, and arsenic tolerance is enhanced through YCF1-mediated vacuolar sequestration. This work substantiates the viability of coupling enhanced uptake and vacuolar sequestration as a means for developing a prototypical engineered arsenic hyperaccumulator. PMID:23108027

  20. Chemically reactive species in liquids generated by atmospheric-pressure plasmas and their roles in plasma medicine

    International Nuclear Information System (INIS)

    Hamaguchi, Satoshi

    2013-01-01

    Plasmas whose gas temperatures are close to room temperature may be generated in ambient air or a gas at atmospheric pressure with the use of low-frequency high voltage or low-power radio-frequency (RF) or microwave power applied to electrodes. Such plasmas can serve as a powerful source of free radicals and/or chemically reactive species that arise from atoms and molecules of the ambient gas. Recently use of such plasmas for medical purposes has attracted much attention as they can be implemented in possible medical devices that can cause blood coagulation, heal wounds, facilitate angiogenesis, sterilize surgical devices as well as living tissues without harming healthy cells, and selectively inactivate cancer cells. Especially of interest among reactive species generated by atmospheric-pressure plasmas (APP) are reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are generated in liquid phase. Since most living tissues and cells are immersed in liquids (such as blood or culture media), reactive species generated by APPs in the gas phase are transported to the liquid phase and possibly converted to different types of reactive species therein before causing some influence on the tissues or cells. In this study, the rate equations are solved to evaluate concentrations of various reactive species in pure water that are originated by plasma reactions in atmosphere and possible effects of such species (including ROS/RNS) on living tissues and cells are discussed

  1. Chemically reactive species in liquids generated by atmospheric-pressure plasmas and their roles in plasma medicine

    Energy Technology Data Exchange (ETDEWEB)

    Hamaguchi, Satoshi [Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2013-07-11

    Plasmas whose gas temperatures are close to room temperature may be generated in ambient air or a gas at atmospheric pressure with the use of low-frequency high voltage or low-power radio-frequency (RF) or microwave power applied to electrodes. Such plasmas can serve as a powerful source of free radicals and/or chemically reactive species that arise from atoms and molecules of the ambient gas. Recently use of such plasmas for medical purposes has attracted much attention as they can be implemented in possible medical devices that can cause blood coagulation, heal wounds, facilitate angiogenesis, sterilize surgical devices as well as living tissues without harming healthy cells, and selectively inactivate cancer cells. Especially of interest among reactive species generated by atmospheric-pressure plasmas (APP) are reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are generated in liquid phase. Since most living tissues and cells are immersed in liquids (such as blood or culture media), reactive species generated by APPs in the gas phase are transported to the liquid phase and possibly converted to different types of reactive species therein before causing some influence on the tissues or cells. In this study, the rate equations are solved to evaluate concentrations of various reactive species in pure water that are originated by plasma reactions in atmosphere and possible effects of such species (including ROS/RNS) on living tissues and cells are discussed.

  2. The Effect of Reactive Ionic Liquid or Plasticizer Incorporation on the Physicochemical and Transport Properties of Cellulose Acetate Propionate-Based Membranes

    Directory of Open Access Journals (Sweden)

    Edyta Rynkowska

    2018-01-01

    Full Text Available Pervaporation is a membrane-separation technique which uses polymeric and/or ceramic membranes. In the case of pervaporation processes applied to dehydration, the membrane should transport water molecules preferentially. Reactive ionic liquid (RIL (3-(1,3-diethoxy-1,3-dioxopropan-2-yl-1-methyl-1H-imidazol-3-ium was used to prepare novel dense cellulose acetate propionate (CAP based membranes, applying the phase-inversion method. The designed polymer-ionic liquid system contained ionic liquid partially linked to the polymeric structure via the transesterification reaction. The various physicochemical, mechanical, equilibrium and transport properties of CAP-RIL membranes were determined and compared with the properties of CAP membranes modified with plasticizers, i.e., tributyl citrate (TBC and acetyl tributyl citrate (ATBC. Thermogravimetric analysis (TGA testified that CAP-RIL membranes as well as CAP membranes modified with TBC and ATBC are thermally stable up to at least 120 °C. Tensile tests of the membranes revealed improved mechanical properties reflected by reduced brittleness and increased elongation at break achieved for CAP-RIL membranes in contrast to pristine CAP membranes. RIL plasticizes the CAP matrix, and CAP-RIL membranes possess preferable mechanical properties in comparison to membranes with other plasticizers investigated. The incorporation of RIL into CAP membranes tuned the surface properties of the membranes, enhancing their hydrophilic character. Moreover, the addition of RIL into CAP resulted in an excellent improvement of the separation factor, in comparison to pristine CAP membranes, in pervaporation dehydration of propan-2-ol. The separation factor β increased from ca. 10 for pristine CAP membrane to ca. 380 for CAP-16.7-RIL membranes contacting an azeotropic composition of water-propan-2-ol mixture (i.e., 12 wt % water.

  3. Reactive power compensator

    Science.gov (United States)

    El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.; Chen, Mingliang; Andexler, George; Huang, Tony

    1992-01-01

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

  4. Reactive power compensator

    Energy Technology Data Exchange (ETDEWEB)

    El-Sharkawi, Mohamed A. (Renton, WA); Venkata, Subrahmanyam S. (Woodinville, WA); Chen, Mingliang (Kirkland, WA); Andexler, George (Everett, WA); Huang, Tony (Seattle, WA)

    1992-01-01

    A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

  5. Digital reactivity meter

    International Nuclear Information System (INIS)

    Copie, M.; Valantic, B.

    1978-01-01

    Digital reactivity meters (DRM) are mostly used as measuring instruments, e.g. for calibration of control rods, and there are only a few cases of their incorporation into the control systems of the reactors. To move in this direction there is more development work needed. First of all, fast algorithms are needed for inverse kinetics equations to relieve the computer for more important tasks of reactor model solving in real time. The next problem, currently under investigation, is the incorporation of the reactor thermal-hydraulic model into the DRM so that it can be used in the power range. Such an extension of DHM allows presentation not only of the instantaneous reactivity of the system, but also the inserted reactivity can be estimated from the temperature reactivity feed-backs. One of the applications of this concept is the anomalous digital reactivity monitor (ADRN) as part of the reactor protection system. As a solution of the first problem, a fast algorithm for solving the inverse kinetics equations has been implemented in the off-line program RODCAL on CDC 1700 computer and tested for its accuracy by performing different control rod calibrations on the reactor TRIGA

  6. TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, T.; Spycher, N.; Sonnenthal, E.; Zhang, G.; Zheng, L.; Pruess, K.

    2010-08-01

    TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media, and was developed by introducing reactive chemistry into the multiphase fluid and heat flow simulator TOUGH2 V2. The first version of TOUGHREACT was released to the public through the U.S. Department of Energy's Energy Science and Technology Software Center (ESTSC) in August 2004. It is among the most frequently requested of ESTSC's codes. The code has been widely used for studies in CO{sub 2} geological sequestration, nuclear waste isolation, geothermal energy development, environmental remediation, and increasingly for petroleum applications. Over the past several years, many new capabilities have been developed, which were incorporated into Version 2 of TOUGHREACT. Major additions and improvements in Version 2 are discussed here, and two application examples are presented: (1) long-term fate of injected CO{sub 2} in a storage reservoir and (2) biogeochemical cycling of metals in mining-impacted lake sediments.

  7. On the validity of travel-time based nonlinear bioreactive transport models in steady-state flow.

    Science.gov (United States)

    Sanz-Prat, Alicia; Lu, Chuanhe; Finkel, Michael; Cirpka, Olaf A

    2015-01-01

    Travel-time based models simplify the description of reactive transport by replacing the spatial coordinates with the groundwater travel time, posing a quasi one-dimensional (1-D) problem and potentially rendering the determination of multidimensional parameter fields unnecessary. While the approach is exact for strictly advective transport in steady-state flow if the reactive properties of the porous medium are uniform, its validity is unclear when local-scale mixing affects the reactive behavior. We compare a two-dimensional (2-D), spatially explicit, bioreactive, advective-dispersive transport model, considered as "virtual truth", with three 1-D travel-time based models which differ in the conceptualization of longitudinal dispersion: (i) neglecting dispersive mixing altogether, (ii) introducing a local-scale longitudinal dispersivity constant in time and space, and (iii) using an effective longitudinal dispersivity that increases linearly with distance. The reactive system considers biodegradation of dissolved organic carbon, which is introduced into a hydraulically heterogeneous domain together with oxygen and nitrate. Aerobic and denitrifying bacteria use the energy of the microbial transformations for growth. We analyze six scenarios differing in the variance of log-hydraulic conductivity and in the inflow boundary conditions (constant versus time-varying concentration). The concentrations of the 1-D models are mapped to the 2-D domain by means of the kinematic (for case i), and mean groundwater age (for cases ii & iii), respectively. The comparison between concentrations of the "virtual truth" and the 1-D approaches indicates extremely good agreement when using an effective, linearly increasing longitudinal dispersivity in the majority of the scenarios, while the other two 1-D approaches reproduce at least the concentration tendencies well. At late times, all 1-D models give valid approximations of two-dimensional transport. We conclude that the

  8. RESEARCH ACTIVITIES AT U.S. GOVERNMENT AGENCIES IN SUBSURFACE REACTIVE TRANSPORT MODELING

    Science.gov (United States)

    The fate of contaminants in the environment is controlled by both chemical reactions and transport phenomena in the subsurface. Our ability to understand the significance of these processes over time requires an accurate conceptual model that incorporates the various mechanisms ...

  9. Toward a better understanding of the complex geochemical processes governing subsurface contaminant transport

    International Nuclear Information System (INIS)

    Puls, R.W.

    1990-01-01

    Identification and understanding of the geochemical processes, including ion exchange, precipitation, organic partitioning, chemisorption, aqueous complexation, and colloidal stability and transport, controlling subsurface contamination is essential for making accurate predictions of the fate and transport of these constituents. Current approaches to quantify the effect of these processes primarily involve laboratory techniques, including the use of closed static systems (batch experiments) where small amounts of aquifer solids or minerals are contacted with an aqueous phase containing the components of interest for relatively short durations; and dynamic systems (column experiments) where a larger segment of the aquifer is investigated by analyzing the breakthrough profiles of reactive and non-reactive species. Both approaches are constrained by differences in scale, alteration of media during sample collection and use, and spatial variability. More field reactivity studies are needed to complement established laboratory approaches for the determination of retardation factors and scaling factors, corroboration of batch and column results, and validation of sampling techniques. These studies also serve to accentuate areas of geochemical process research where data deficiencies exist, such as the kinetics of adsorption-desorption, metal-organic-mineral interactions, and colloidal mobility. The advantages and disadvantages of the above approaches are discussed in the context of achieving a more completely integrated approach to geochemical transport experiments, with supportive data presented from selected studies. (Author) (16 refs., 4 figs., 2 tabs.)

  10. Nanoparticles in natural systems I: The effective reactive surface area of the natural oxide fraction in field samples.

    NARCIS (Netherlands)

    Hiemstra, T.; Antelo, J.; Rahnemaie, R.; Riemsdijk, van W.H.

    2010-01-01

    Information on the particle size and reactive surface area of natural samples is essential for the application of surface complexation models (SCM) to predict bioavailability, toxicity, and transport of elements in the natural environment. In addition, this information will be of great help to

  11. Scanning mass spectrometer setup for spatially resolved reactivity studies on model catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Roos, Matthias; Schirling, Christian; Kielbassa, Stefan; Bansmann, Joachim; Behm, Juergen [Institut fuer Oberflaechenchemie und Katalyse, Universitaet Ulm, D-89069 Ulm (Germany)

    2007-07-01

    A scanning mass spectrometer with micrometer-scale resolution was developed for investigations on the catalytic activity of microstructured planar model catalysts. Products of local surface reactions can be detected via a fine capillary orifice in a differentially pumped quadrupole mass spectrometer. The position of the sample with respect to the capillary is controlled by three piezo-driven translators. The surface reactivity of a resistive heated sample can be depicted in a spatially resolved topogram, taking into account the influence of the distance between sample and capillary on the magnitude of the QMS signal and the lateral resolution. Photolithographic structured reactive patterns on top of an inactive substrate enable investigations of mesoscopic transport effects such as coupling between catalytically active areas and of (reverse) spillover phenomena on one sample by varying the size and the distances of the active areas.

  12. CHMTRNS, Non-Equilibrium Chemical Transport Code

    International Nuclear Information System (INIS)

    Noorishad, J.; Carnahan, C.L.; Benson, L.V.

    1998-01-01

    1 - Description of program or function: CHMTRNS simulates solute transport for steady one-dimensional fluid flow by convection and diffusion or dispersion in a saturated porous medium based on the assumption of local chemical equilibrium. The chemical interactions included in the model are aqueous-phase complexation, solid-phase ion exchange of bare ions and complexes using the surface complexation model, and precipitation or dissolution of solids. The program can simulate the kinetic dissolution or precipitation for calcite and silica as well as irreversible dissolution of glass. Thermodynamic parameters are temperature dependent and are coupled to a companion heat transport simulator; thus, the effects of transient temperature conditions can be considered. Options for oxidation-reduction (redox) and C-13 fractionation as well as non-isothermal conditions are included. 2 - Method of solution: The governing equations for both reactive chemical and heat transport are discretized in time and space. For heat transport, the Crank-Nicolson approximation is used in conjunction with a LU decomposition and backward substitution solution procedure. To deal with the strong nonlinearity of the chemical transport equations, a generalized Newton-Raphson method is used

  13. RICE: a computer program for multicomponent chemically reactive flows at all speeds

    International Nuclear Information System (INIS)

    Rivard, W.C.; Farmer, O.A.; Butler, T.D.

    1974-11-01

    The fluid dynamics of chemically reactive mixtures are calculated at arbitrary flow speeds with the RICE program. The dynamics are governed by the two-dimensional, time-dependent Navier-Stokes equations together with the species transport equations and the mass-action rate equations for the chemical reactions. The mass and momentum equations for the mixture are solved implicitly by the ICE technique. The equations for total energy and species transport are solved explicitly while the chemical rate equations are solved implicitly with a time step that may be a submultiple of the hydrodynamic time step. Application is made to continuous wave HF chemical lasers to compute the supersonic mixing and chemical reactions that take place in the lasing cavity. (U.S.)

  14. Integrated Design and Control of Reactive and Non-Reactive Distillation Processes

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; Sales-Cruz, Mauricio; Huusom, Jakob Kjøbsted

    , an alternative approach is to tackle process design and controllability issues simultaneously, in the early stages of process design. This simultaneous synthesis approach provides optimal/near optimal operation and more efficient control of conventional (non-reactive binary distillation columns) (Hamid et al...... of methodologies have been proposed and applied on various problems to address the interactions between process design and control, and they range from optimization-based approaches to model-based methods (Sharifzadeh, 2013). In this work, integrated design and control of non-reactive distillation, ternary...... reactive distillation processes. The element concept (Pérez Cisneros et al., 1997) is used to translate a ternary system of compounds (A + B ↔ C) to a binary system of element (WA and WB). In the case of multicomponent reactive distillation processes the equivalent element concept is used to translate...

  15. Programming Reactive Extensions and LINQ

    CERN Document Server

    Liberty, Jesse

    2011-01-01

    Pro Reactive Extensions and LINQ is a deep dive into the next important technology for .NET developers: Reactive Extensions. This in-depth tutorial goes beyond what is available anywhere else to teach how to write WPF, Silverlight, and Windows Phone applications using the Reactive Extensions (Rx) to handle events and asynchronous method calls. Reactive programming allows you to turn those aspects of your code that are currently imperative into something much more event-driven and flexible. For this reason, it's sometimes referred to as LINQ for Events. Reactive programming hinges on the concep

  16. Central Reactivity Measurements on Assemblies 1 and 3 of the Fast Reactor FR0

    International Nuclear Information System (INIS)

    Londen, S.O.

    1966-01-01

    The reactivity effects of small samples of various materials have been measured, by the period method at the core centre of Assemblies 1 and 3 of the fast zero power reactor FR0. For some materials the reactivity change as a function of sample size has also been determined experimentally. The core of Assembly 1 consisted only of uranium enriched to 20 % whereas the core of Assembly 3 was diluted with 30 % graphite. The results have been compared with calculated values obtained with a second-order transport-theoretical perturbation model and using differently shielded cross sections depending upon sample size. Qualitative agreement has generally been found, although discrepancies still exist. The spectrum perturbation caused by the experimental arrangement has been analyzed and found to be rather important

  17. Central Reactivity Measurements on Assemblies 1 and 3 of the Fast Reactor FR0

    Energy Technology Data Exchange (ETDEWEB)

    Londen, S O

    1966-01-15

    The reactivity effects of small samples of various materials have been measured, by the period method at the core centre of Assemblies 1 and 3 of the fast zero power reactor FR0. For some materials the reactivity change as a function of sample size has also been determined experimentally. The core of Assembly 1 consisted only of uranium enriched to 20 % whereas the core of Assembly 3 was diluted with 30 % graphite. The results have been compared with calculated values obtained with a second-order transport-theoretical perturbation model and using differently shielded cross sections depending upon sample size. Qualitative agreement has generally been found, although discrepancies still exist. The spectrum perturbation caused by the experimental arrangement has been analyzed and found to be rather important.

  18. Chloroplast Iron Transport Proteins - Function and Impact on Plant Physiology.

    Science.gov (United States)

    López-Millán, Ana F; Duy, Daniela; Philippar, Katrin

    2016-01-01

    Chloroplasts originated about three billion years ago by endosymbiosis of an ancestor of today's cyanobacteria with a mitochondria-containing host cell. During evolution chloroplasts of higher plants established as the site for photosynthesis and thus became the basis for all life dependent on oxygen and carbohydrate supply. To fulfill this task, plastid organelles are loaded with the transition metals iron, copper, and manganese, which due to their redox properties are essential for photosynthetic electron transport. In consequence, chloroplasts for example represent the iron-richest system in plant cells. However, improvement of oxygenic photosynthesis in turn required adaptation of metal transport and homeostasis since metal-catalyzed generation of reactive oxygen species (ROS) causes oxidative damage. This is most acute in chloroplasts, where radicals and transition metals are side by side and ROS-production is a usual feature of photosynthetic electron transport. Thus, on the one hand when bound by proteins, chloroplast-intrinsic metals are a prerequisite for photoautotrophic life, but on the other hand become toxic when present in their highly reactive, radical generating, free ionic forms. In consequence, transport, storage and cofactor-assembly of metal ions in plastids have to be tightly controlled and are crucial throughout plant growth and development. In the recent years, proteins for iron transport have been isolated from chloroplast envelope membranes. Here, we discuss their putative functions and impact on cellular metal homeostasis as well as photosynthetic performance and plant metabolism. We further consider the potential of proteomic analyses to identify new players in the field.

  19. Influence of pore structure on solute transport in degraded and undegraded fen peat soils

    Directory of Open Access Journals (Sweden)

    C. Kleimeier

    2017-10-01

    Full Text Available In peat soils, decomposition and degradation reduce the proportion of large pores by breaking down plant debris into smaller fragments and infilling inter-particle pore spaces. This affects water flow and solute migration which, in turn, influence reactive transport processes and biogeochemical functions. In this study we conducted flow-through reactor experiments to investigate the interplay between pore structure and solute transport in samples of undegraded and degraded peat collected in Canada and Germany, respectively. The pore size distributions and transport parameters were characterised using the breakthrough curve and two-region non-equilibrium transport model analyses for a non-reactive solute. The results of transport characterisation showed a higher fraction of immobile pores in the degraded peat with higher diffusive exchanges of solutes between the mobile and immobile pores associated with the dual-porosity structure. The rates of steady-state potential nitrate reduction were compared with pore fractions and exchange coefficients to investigate the influence of pore structure on the rates of nitrate reduction. The results indicated that the degraded peat has potential to provide the necessary boundary conditions to support nitrate removal and serves as a favourable substrate for denitrification, due to the nature of its pore structure and its lower organic carbon content compared to undegraded peat.

  20. A simple reactivity-meter system

    International Nuclear Information System (INIS)

    Ferreira, P.S.B.

    1992-01-01

    This paper describes a new version of a reactivity meter developed at the Institute of Nuclear Energy Research (IPEN) (Brazil). The reactivity meter computes the reactor reactivity utilizing a programmable electrometer that performs the data aquisition. The software commands the main functions of the electrometer, the data acquisition, data transfer, and reactivity calculation. The necessary hardware for this reactivity meter are a programmable electrometer, a microcomputer, and interfaces for the microcomputer to communicate with the electrometer. If it is necessary, it is possible to connect a graphic register to the microcomputer. With this conventional hardware, available in any nuclear reactor facility, one can build a powerful reactivity meter. Adding to these advantages, one can use the microcomputer on-line to analyze the data, store the data on diskettes, or create graphics

  1. Benchscale Assessment of the Efficacy of a Reactive Core Mat to Isolate PAH-spiked Aquatic Sediments.

    Science.gov (United States)

    Meric, Dogus; Barbuto, Sara; Sheahan, Thomas C; Shine, James P; Alshawabkeh, Akram N

    2014-01-01

    This paper describes the results of a benchscale testing program to assess the efficacy of a reactive core mat (RCM) for short term isolation and partial remediation of contaminated, subaqueous sediments. The 1.25 cm thick RCM (with a core reactive material such as organoclay with filtering layers on top and bottom) is placed on the sediment, and approximately 7.5 - 10 cm of overlying soil is placed on the RCM for stability and protection. A set of experiments were conducted to measure the sorption characteristics of the mat core (organoclay) and sediment used in the experiments, and to determine the fate of semi-volatile organic contaminants and non-reactive tracers through the sediment and reactive mat. The experimental study was conducted on naphthalene-spiked Neponset River (Milton, MA) sediment. The results show nonlinear sorption behavior for organoclay, with sorption capacity increasing with increasing naphthalene concentration. Neponset River sediment showed a notably high sorption capacity, likely due to the relatively high organic carbon fraction (14%). The fate and transport experiments demonstrated the short term efficiency of the reactive mat to capture the contamination that is associated with the post-capping period during which the highest consolidation-induced advective flux occurs, driving solid particles, pore fluid and soluble contaminants toward the reactive mat. The goal of the mat placement is to provide a physical filtering and chemically reactive layer to isolate contamination from the overlying water column. An important finding is that because of the high sorption capacity of the Neponset River sediment, the physical filtering capability of the mat is as critical as its chemical reactive capacity.

  2. Reactive Transport at the Pore Scale with Applications to the Dissolution of Carbonate Rocks for CO2 Sequestration Operations

    Science.gov (United States)

    Boek, E.; Gray, F.; Welch, N.; Shah, S.; Crawshaw, J.

    2014-12-01

    In CO2 sequestration operations, CO2 injected into a brine aquifer dissolves in the liquid to create an acidic solution. This may result in dissolution of the mineral grains in the porous medium. Experimentally, it is hard to investigate this process at the pore scale. Therefore we develop a new hybrid particle simulation algorithm to study the dissolution of solid objects in a laminar flow field, as encountered in porous media flow situations. First, we calculate the flow field using a multi-relaxation-time lattice Boltzmann (LB) algorithm implemented on GPUs, which demonstrates a very efficient use of the GPU device and a considerable performance increase over CPU calculations. Second, using a stochastic particle approach, we solve the advection-diffusion equation for a single reactive species and dissolve solid voxels according to our reaction model. To validate our simulation, we first calculate the dissolution of a solid sphere as a function of time under quiescent conditions. We compare with the analytical solution for this problem [1] and find good agreement. Then we consider the dissolution of a solid sphere in a laminar flow field and observe a significant change in the sphericity with time due to the coupled dissolution - flow process. Second, we calculate the dissolution of a cylinder in channel flow in direct comparison with corresponding dissolution experiments. We discuss the evolution of the shape and dissolution rate. Finally, we calculate the dissolution of carbonate rock samples at the pore scale in direct comparison with micro-CT experiments. This work builds on our recent research on calculation of multi-phase flow [2], [3] and hydrodynamic dispersion and molecular propagator distributions for solute transport in homogeneous and heterogeneous porous media using LB simulations [4]. It turns out that the hybrid simulation model is a suitable tool to study reactive flow processes at the pore scale. This is of great importance for CO2 storage and

  3. Immobilization of non-point phosphorus using stabilized magnetite nanoparticles with enhanced transportability and reactivity in soils

    International Nuclear Information System (INIS)

    Pan Gang; Li Lei; Zhao Dongye; Chen Hao

    2010-01-01

    Laboratory batch and column experiments were conducted to investigate the immobilization of phosphorus (P) in soils using synthetic magnetite nanoparticles stabilized with sodium carboxymethyl cellulose (CMC-NP). Although CMC-stabilized magnetite particles were at the nanoscale, phosphorus removal by the nanoparticles was less than that of microparticles (MP) without the stabilizer due to the reduced P reactivity caused by the coating. The P reactivity of CMC-NP was effectively recovered when cellulase was added to degrade the coating. For subsurface non-point P pollution control for a water pond, it is possible to inject CMC-NP to form an enclosed protection wall in the surrounding soils. Non-stabilized 'nanomagnetite' could not pass through the soil column under gravity because it quickly agglomerated into microparticles. The immobilized P was 30% in the control soil column, 33% when treated by non-stabilized MP, 45% when treated by CMC-NP, and 73% when treated by both CMC-NP and cellulase. - CMC-stabilized magnetite nanoparticles can effectively penetrate soil columns and immobilize phosphate in situ.

  4. Effects of prenatal stress and emotional reactivity of the mother on emotional and cognitive abilities in lambs.

    Science.gov (United States)

    Coulon, Marjorie; Nowak, Raymond; Andanson, Stephane; Petit, Bérengère; Lévy, Frédéric; Boissy, Alain

    2015-07-01

    Consequences of prenatal stress on emotional reactivity and cognitive abilities in offspring are under-documented in precocial mammals. Here, we investigated to what extent emotional reactivity, judgment bias and spatial learning abilities of lambs are affected by chronic stress during late pregnancy and by their dams' emotional reactivity. The 20 highest-responsive (HR) and 20 lowest-responsive (LR) ewes from a population of 120 Romane ewes were selected according to their pre-mating reactivity to social isolation in a new environment. Over the final third of pregnancy, 10 HR ewes and 10 LR ewes were exposed daily to various unpredictable aversive events such as restraint, mixing groups and transport while the other 20 selected ewes were not. In a human and an object test, prenatally-stressed lambs were more fearful than control lambs, but the prenatal stress effect was moderated by the reactivity of the mothers: prenatally-stressed lambs from ewes with high emotional reactivity were more affected. Prenatally-stressed lambs did not perform as well as control lambs in a maze test and showed pessimistic-like judgment in a cognitive bias test. Prenatally-stressed lambs were thus characterized by a negative affective state with increased fear reactions and impaired cognitive evaluation. The development of negative moods could have long-lasting consequences on the coping strategies of the lambs in response to their rearing conditions. © 2015 Wiley Periodicals, Inc.

  5. Reactivity-based industrial volatile organic compounds emission inventory and its implications for ozone control strategies in China

    Science.gov (United States)

    Liang, Xiaoming; Chen, Xiaofang; Zhang, Jiani; Shi, Tianli; Sun, Xibo; Fan, Liya; Wang, Liming; Ye, Daiqi

    2017-08-01

    Increasingly serious ozone (O3) pollution, along with decreasing NOx emission, is creating a big challenge in the control of volatile organic compounds (VOCs) in China. More efficient and effective measures are assuredly needed for controlling VOCs. In this study, a reactivity-based industrial VOCs emission inventory was established in China based on the concept of ozone formation potential (OFP). Key VOCs species, major VOCs sources, and dominant regions with high reactivity were identified. Our results show that the top 15 OFP-based species, including m/p-xylene, toluene, propene, o-xylene, and ethyl benzene, contribute 69% of the total OFP but only 30% of the total emission. The architectural decoration industry, oil refinery industry, storage and transport, and seven other sources constituted the top 10 OFP subsectors, together contributing a total of 85%. The provincial and spatial characteristics of OFP are generally consistent with those of mass-based inventory. The implications for O3 control strategies in China are discussed. We propose a reactivity-based national definition of VOCs and low-reactive substitution strategies, combined with evaluations of health risks. Priority should be given to the top 15 or more species with high reactivity through their major emission sources. Reactivity-based policies should be flexibly applied for O3 mitigation based on the sensitivity of O3 formation conditions.

  6. A Tariff for Reactive Power

    Energy Technology Data Exchange (ETDEWEB)

    Kueck, John D [ORNL; Kirby, Brendan J [ORNL; Li, Fangxing [ORNL; Tufon, Christopher [Pacific Gas and Electric Company; Isemonger, Alan [California Independent System Operator

    2008-07-01

    Two kinds of power are required to operate an electric power system: real power, measured in watts, and reactive power, measured in volt-amperes reactive or VARs. Reactive power supply is one of a class of power system reliability services collectively known as ancillary services, and is essential for the reliable operation of the bulk power system. Reactive power flows when current leads or lags behind voltage. Typically, the current in a distribution system lags behind voltage because of inductive loads such as motors. Reactive power flow wastes energy and capacity and causes voltage droop. To correct lagging power flow, leading reactive power (current leading voltage) is supplied to bring the current into phase with voltage. When the current is in phase with voltage, there is a reduction in system losses, an increase in system capacity, and a rise in voltage. Reactive power can be supplied from either static or dynamic VAR sources. Static sources are typically transmission and distribution equipment, such as capacitors at substations, and their cost has historically been included in the revenue requirement of the transmission operator (TO), and recovered through cost-of-service rates. By contrast, dynamic sources are typically generators capable of producing variable levels of reactive power by automatically controlling the generator to regulate voltage. Transmission system devices such as synchronous condensers can also provide dynamic reactive power. A class of solid state devices (called flexible AC transmission system devices or FACTs) can provide dynamic reactive power. One specific device has the unfortunate name of static VAR compensator (SVC), where 'static' refers to the solid state nature of the device (it does not include rotating equipment) and not to the production of static reactive power. Dynamic sources at the distribution level, while more costly would be very useful in helping to regulate local voltage. Local voltage regulation would

  7. Grotthuss Transport of Iodide in EMIM/I3 Ionic Crystal.

    Science.gov (United States)

    McDaniel, Jesse G; Yethiraj, Arun

    2018-01-11

    Highly ionic environments can mediate unusual chemical reactions that would otherwise be considered impossible based on chemical intuition. For example, the formation of a chemical bond between two iodide anions to form a divalent polyiodide anion is seemingly prohibited due to Coulombic repulsion. Using ab initio molecular dynamics simulations, we show that in the 1-ethyl-3-methylimidazolium (EMIM)/I 3 ionic crystal, the reactive formation of divalent and even trivalent polyiodide anions occurs with extremely small energetic barriers, due to the electrostatic field of the ionic lattice. A practical consequence of this anomalous reactivity is that iodide anions are efficiently transported within the crystal through a "Grotthuss-exchange" mechanism involving bond-breaking and forming events. We characterize two distinct transport pathways, involving both I 4 2- and I 7 3- intermediates, with fast transport of iodide resulting from the release of an I - anion on the opposite side of the intermediate species from the initial bond formation. The ordered cation arrangement in the crystal provides the necessary electrostatic screening for close approach of anions, suggesting a new counterintuitive approach to obtain high ionic conductivity. This new design principle could be used to develop better solid-state electrolytes for batteries, fuel cells, and supercapacitors.

  8. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk

    OpenAIRE

    Chornokur, Ganna; Lin, Hui-Yi; Tyrer, Jonathan P.; Lawrenson, Kate; Dennis, Joe; Amankwah, Ernest K.; Qu, Xiaotao; Tsai, Ya-Yu; Jim, Heather S. L.; Chen, Zhihua; Chen, Ann Y.; Permuth-Wey, Jennifer; Aben, Katja KH.; Anton-Culver, Hoda; Antonenkova, Natalia

    2015-01-01

    Background\\ud \\ud Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contribu...

  9. Using laboratory flow experiments and reactive chemical transport modeling for designing waterflooding of the Agua Fria Reservoir, Poza Rica-Altamira Field, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Birkle, P.; Pruess, K.; Xu, T.; Figueroa, R.A. Hernandez; Lopez, M. Diaz; Lopez, E. Contreras

    2008-10-01

    Waterflooding for enhanced oil recovery requires that injected waters must be chemically compatible with connate reservoir waters, in order to avoid mineral dissolution-and-precipitation cycles that could seriously degrade formation permeability and injectivity. Formation plugging is a concern especially in reservoirs with a large content of carbonates, such as calcite and dolomite, as such minerals typically react rapidly with an aqueous phase, and have strongly temperature-dependent solubility. Clay swelling can also pose problems. During a preliminary waterflooding pilot project, the Poza Rica-Altamira oil field, bordering the Gulf coast in the eastern part of Mexico, experienced injectivity loss after five months of reinjection of formation waters into well AF-847 in 1999. Acidizing with HCl restored injectivity. We report on laboratory experiments and reactive chemistry modeling studies that were undertaken in preparation for long-term waterflooding at Agua Frma. Using analogous core plugs obtained from the same reservoir interval, laboratory coreflood experiments were conducted to examine sensitivity of mineral dissolution and precipitation effects to water composition. Native reservoir water, chemically altered waters, and distilled water were used, and temporal changes in core permeability, mineral abundances and aqueous concentrations of solutes were monitored. The experiments were simulated with the multi-phase, nonisothermal reactive transport code TOUGHREACT, and reasonable to good agreement was obtained for changes in solute concentrations. Clay swelling caused an additional impact on permeability behavior during coreflood experiments, whereas the modeled permeability depends exclusively on chemical processes. TOUGHREACT was then used for reservoir-scale simulation of injecting ambient-temperature water (30 C, 86 F) into a reservoir with initial temperature of 80 C (176 F). Untreated native reservoir water was found to cause serious porosity and

  10. Groundwater protection from cadmium contamination by permeable reactive barriers

    Energy Technology Data Exchange (ETDEWEB)

    Di Natale, F. [Dipartimento di Ingegneria chimica, Universita di Federico II, P.le Tecchio, 80-80125 Naples (Italy)], E-mail: fdinatal@unina.it; Di Natale, M.; Greco, R. [Centro Interdipartimentale di Ricerca in Ingegneria Ambientale (CIRIAM), Dipartimento di Ingegneria Civile, Seconda Universita di Napoli, via Roma 29-81031 Aversa (Caserta) (Italy); Lancia, A. [Dipartimento di Ingegneria chimica, Universita di Federico II, P.le Tecchio, 80-80125 Naples (Italy); Laudante, C.; Musmarra, D. [Centro Interdipartimentale di Ricerca in Ingegneria Ambientale (CIRIAM), Dipartimento di Ingegneria Civile, Seconda Universita di Napoli, via Roma 29-81031 Aversa (Caserta) (Italy)

    2008-12-30

    This work studies the reliability of an activated carbon permeable reactive barrier in removing cadmium from a contaminated shallow aquifer. Laboratory tests have been performed to characterize the equilibrium and kinetic adsorption properties of the activated carbon in cadmium-containing aqueous solutions. A 2D numerical model has been used to describe pollutant transport within a groundwater and the pollutant adsorption on the permeable adsorbing barrier (PRB). In particular, it has been considered the case of a permeable adsorbing barrier (PAB) used to protect a river from a Cd(II) contaminated groundwater. Numerical results show that the PAB can achieve a long-term efficiency by preventing river pollution for several months.

  11. Reactive Programming in Java

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Reactive Programming in gaining a lot of excitement. Many libraries, tools, and frameworks are beginning to make use of reactive libraries. Besides, applications dealing with big data or high frequency data can benefit from this programming paradigm. Come to this presentation to learn about what reactive programming is, what kind of problems it solves, how it solves them. We will take an example oriented approach to learning the programming model and the abstraction.

  12. Ferromagnetism in reactive sputtered Cu0.96Fe 0.04O1-δ nanocrystalline films evidenced by anomalous Hall effect

    KAUST Repository

    Mi, Wenbo; Bai, Haili; Zhang, Qiang; Zhang, Bei; Zhang, Xixiang

    2011-01-01

    Cu0.96Fe0.04O1-δ nanocrystalline films were fabricated using reactive sputtering at different oxygen partial pressures (PO2). The electrical transport properties of the films were measured in a broad temperature range (10-300 K) under magnetic

  13. Reactivity estimation during a reactivity-initiated accident using the extended Kalman filter

    International Nuclear Information System (INIS)

    Busquim e Silva, R.; Marques, A.L.F.; Cruz, J.J.; Shirvan, K.; Kazimi, M.S.

    2015-01-01

    Highlights: • The EKF is modeled using sophisticate strategies to make the algorithm robust and accurate. • For a supercritical reactor under RIA, the EKF presents better results compared to IPK method independent of magnitude of the noise loads. • A sensitivity for five distinct carry-over effects indicates that the EKF is less sensitive to the different set of noise. • Although the P3D/R5 simulates the reactivity using a spatial kinetics method, the use of PKRE to model the EKF provides accurate results. • The reactivity’s standard deviation is higher for the IKF method. • Under HZP (slow power response) the IPK reactivity varies widely from positive to negative values (add extra difficulty to controlling the supercritical reactor): the EKF method does not have similar behavior under the same conditions (better controlling the operation). - Abstract: This study implements the extended Kalman filter (EKF) to estimate the nuclear reactor reactivity behavior under a reactivity-initiated accident (RIA). A coupled neutronics/thermal hydraulics code PARCS/RELAP5 (P3D/R5) simulates a control rod assembly ejection (CRE) on a traditional 2272 MWt PWR to generate the reactor power profile. A MATLAB script adds random noise to the simulated reactor power. For comparison, the inverse point kinetics (IPK) deterministic method is also implemented. Three different cases of CRE are simulated and the EKF, IPK and the P3D/R5 reactivity are compared. It was found that the EKF method presents better results compared to the IPK method. Furthermore, under a RIA due to small reactivity insertion and slow power response, the IPK reactivity varies widely from positive to negative, which may add extra difficulty to the task of controlling a supercritical reactor. This feature is also confirmed by a sensitivity analysis for five different noise loads and three distinct noise measurements standard deviations (SD)

  14. Regarding KUR Reactivity Measurement System

    International Nuclear Information System (INIS)

    Nakamori, Akira; Hasegawa, Kei; Tsuchiyama, Tatsuo; Yamamoto, Toshihiro; Okumura, Ryo; Sano, Tadafumi

    2012-01-01

    This article reported: (1) the outline of the reactivity measurement system of Kyoto University Research Reactor (KUR), (2) the calibration data of control rod, (3) the problems and the countermeasures for range switching of linear output meter. For the laptop PC for the reactivity measurement system, there are four input signals: (1) linear output meter, (2) logarithmic output meter, (3) core temperature gauge, and (4) control rod position. The hardware of reactivity measurement system is controlled with Labview installed on the laptop. Output, reactivity, reactor period, and the change in reactivity due to temperature effect or Xenon effect are internally calculated and displayed in real-time with Labview based on the four signals above. Calculation results are recorded in the form of a spreadsheet. At KUR, the reactor core arrangement was changed, so the control rod was re-calibrated. At this time, calculated and experimental values of reactivity based on the reactivity measurement system were compared, and it was confirmed that the reactivity calculation by Labview was accurate. The range switching of linear output meter in the nuclear instrumentation should automatically change within the laptop, however sometimes this did not function properly in the early stage. It was speculated that undefined percent values during the transition of percent value were included in the calculation and caused calculation errors. The range switching started working properly after fixing this issue. (S.K.)

  15. Cardiovascular reactivity and proactive and reactive relational aggression among women with and without a history of sexual abuse.

    Science.gov (United States)

    Murray-Close, Dianna; Rellini, Alessandra H

    2012-01-01

    This study examined the association between cardiovascular reactivity and proactive and reactive functions of relational aggression among women with and without a history of sexual abuse. Heart rate reactivity, blood pressure reactivity, and respiratory sinus arrhythmia reactivity while recounting a relational stressor (e.g., being left out) were assessed. Participants provided self-reports of relational aggression and a history of sexual abuse prior to age 16. Results indicated that cardiovascular reactivity was only associated with relational aggression among women with a history of sexual abuse. In addition, whereas blunted reactivity was associated with proactive relational aggression, exaggerated reactivity was associated with reactive relational aggression. These findings highlight the importance of considering contextual moderators of the association between cardiovascular reactivity and aggression; moreover, results highlight distinct cardiovascular correlates of different functions of aggression. Finally, the findings underscore the need for additional research examining the physiological correlates of aggressive behavior among women. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Reactive Power Support of Electrical Vehicle Charging Station Upgraded with Flywheel Energy Storage System

    DEFF Research Database (Denmark)

    SUN, BO; Dragicevic, Tomislav; Savaghebi, Mehdi

    2015-01-01

    Electrical vehicles (EVs) are presenting increasingly potential to replace the conventional fossil fuel based vehicles due to environmental friendly characteristic. Accordingly, Charging Stations (CS), as an intermediate between grid and large numbers of EVs, are supposed to have more critical...... influence on future smart transportation network. This paper explores an off-board charging station upgraded with flywheel energy storage system that could provide a reactive power support to the grid utility. A supervisory control scheme based on distributed bus signaling is proposed to coordinate...... the operation of each component in the system. As a result, the charging station could supply the reactive power support to the utility grid without compromising the charging algorithm and preserve the battery’s lifetime. Finally, the real-time simulation results based on dSPACE1006 verifies the proposed...

  17. Biogeochemical reactive-diffusive transport of heavy metals in Lake Coeur d'Alene sediments

    International Nuclear Information System (INIS)

    Sevinc Sengoer, S.; Spycher, Nicolas F.; Ginn, Timothy R.; Sani, Rajesh K.; Peyton, Brent

    2007-01-01

    Decades of runoff from precious-metal mining operations in the Lake Coeur d'Alene Basin, Idaho, have left the sediments in this lake heavily enriched with toxic metals, most notably Zn, Pb and Cu, together with As. The bioavailability, fate and transport of these metals in the sediments are governed by complex biogeochemical processes. In particular, indigenous microbes are capable of catalyzing reactions that detoxify their environments, and thus constitute an important driving component in the biogeochemical cycling of these metals. Here, the development of a quantitative model to evaluate the transport and fate of Zn, Pb and Cu in Lake Coeur d'Alene sediments is reported. The current focus is on the investigation and understanding of local-scale processes, rather than the larger-scale dynamics of sedimentation and diagenesis, with particular emphasis on metal transport through reductive dissolution of Fe hydroxides. The model includes 1-D inorganic diffusive transport coupled to a biotic reaction network including consortium biodegradation kinetics with multiple terminal electron acceptors and syntrophic consortium biotransformation dynamics of redox front. The model captures the mobilization of metals initially sorbed onto hydrous ferric oxides, through bacterial reduction of Fe(III) near the top of the sediment column, coupled with the precipitation of metal sulfides at depth due to biogenic sulfide production. Key chemical reactions involve the dissolution of ferrihydrite and precipitation of siderite and Fe sulfide. The relative rates of these reactions play an important role in the evolution of the sediment pore-water chemistry, notably pH, and directly depend on the relative activity of Fe and SO 4 reducers. The model captures fairly well the observed trends of increased alkalinity, sulfide, Fe and heavy metal concentrations below the sediment-water interface, together with decreasing terminal electron acceptor concentrations with depth, including the

  18. Realization of PbS thin films by reactive evaporation technique for possible opto-electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    A, Abhilash, E-mail: abhiltp@cusat.ac.in; Nair, Aparna S.; S, Rajasree; E, Hiba Rahman; Pradeep, B. [Solid State Physics Laboratory, Department of Physics, Cochin University of Science and Technology, Kochi-682022 (India)

    2015-06-24

    Stoichiometric Lead sulphide (PbS) thin films were successfully prepared on glass substrates by reactive evaporation technique. Elemental evaporation of lead and sulphur taken in different sources onto substrates held at temperature of 400±5K employed in the present study. The structural as well as compositional studies compromises compound formation. Electrical transport properties and optical co-efficient were evaluated from appropriate characterization techniques.

  19. Peptide Reactivity of Isothiocyanates - Implications for Skin Allergy

    Science.gov (United States)

    Karlsson, Isabella; Samuelsson, Kristin; Ponting, David J.; Törnqvist, Margareta; Ilag, Leopold L.; Nilsson, Ulrika

    2016-02-01

    Skin allergy is a chronic condition that affects about 20% of the population of the western world. This disease is caused by small reactive compounds, haptens, able to penetrate into the epidermis and modify endogenous proteins, thereby triggering an immunogenic reaction. Phenyl isothiocyanate (PITC) and ethyl isothiocyanate (EITC) have been suggested to be responsible for allergic skin reactions to chloroprene rubber, the main constituent of wetsuits, orthopedic braces, and many types of sports gear. In the present work we have studied the reactivity of the isothiocyanates PITC, EITC, and tetramethylrhodamine-6-isothiocyanate (6-TRITC) toward peptides under aqueous conditions at physiological pH to gain information about the types of immunogenic complexes these compounds may form in the skin. We found that all three compounds reacted quickly with cysteine moieties. For PITC and 6-TRITC the cysteine adducts decomposed over time, while stable adducts with lysine were formed. These experimental findings were verified by DFT calculations. Our results may suggest that the latter are responsible for allergic reactions to isothiocyanates. The initial adduct formation with cysteine residues may still be of great importance as it prevents hydrolysis and facilitates the transport of isothiocyanates into epidermis where they can form stable immunogenic complexes with lysine-containing proteins.

  20. Reactively sputtered epitaxial γ′-Fe4N films: Surface morphology, microstructure, magnetic and electrical transport properties

    KAUST Repository

    Mi, Wenbo; Guo, Zaibing; Feng, X. P.; Bai, Haili

    2013-01-01

    Epitaxial γ′-Fe4N films with (1 0 0) and (1 1 0) orientations have been fabricated by reactive sputtering; these films were characterized by X-ray θ-2θ and φ scans, pole figures and high-resolution transmission electron microscopy. The film surface

  1. Transport at basin scales: 1. Theoretical framework

    Directory of Open Access Journals (Sweden)

    A. Rinaldo

    2006-01-01

    Full Text Available The paper describes the theoretical framework for a class of general continuous models of the hydrologic response including both flow and transport of reactive solutes. The approach orders theoretical results appeared in disparate fields into a coherent theoretical framework for both hydrologic flow and transport. In this paper we focus on the Lagrangian description of the carrier hydrologic runoff and of the processes embedding catchment-scale generation and transport of matter carried by runoff. The former defines travel time distributions, while the latter defines lifetime distributions, here thought of as contact times between mobile and immobile phases. Contact times are assumed to control mass transfer in a well-mixed approximation, appropriate in cases, like in basin-scale transport phenomena, where the characteristic size of the injection areas is much larger than that of heterogeneous features. As a result, we define general mass-response functions of catchments which extend to transport of matter geomorphologic theories of the hydrologic response. A set of examples is provided to clarify the theoretical results towards a computational framework for generalized applications, described in a companion paper.

  2. [Hyper-reactive malarial splenomegaly].

    Science.gov (United States)

    Maazoun, F; Deschamps, O; Barros-Kogel, E; Ngwem, E; Fauchet, N; Buffet, P; Froissart, A

    2015-11-01

    Hyper-reactive malarial splenomegaly is a rare and severe form of chronic malaria. This condition is a common cause of splenomegaly in endemic areas. The pathophysiology of hyper-reactive malarial splenomegaly involves an intense immune reaction (predominantly B cell-driven) to repeated/chronic infections with Plasmodium sp. The diagnosis may be difficult, due to a poorly specific clinical presentation (splenomegaly, fatigue, cytopenias), a long delay between residence in a malaria-endemic area and onset of symptoms, and a frequent absence of parasites on conventional thin and thick blood smears. A strongly contributive laboratory parameter is the presence of high levels of total immunoglobulin M. When the diagnostic of hyper-reactive malarial splenomegaly is considered, search for anti-Plasmodium antibodies and Plasmodium nucleic acids (genus and species) by PCR is useful. Diagnosis of hyper-reactive malarial splenomegaly relies on the simultaneous presence of epidemiological, clinical, biological and follow-up findings. Regression of both splenomegaly and hypersplenism following antimalarial therapy allows the differential diagnosis with splenic lymphoma, a common complication of hyper-reactive malarial splenomegaly. Although rare in Western countries, hyper-reactive malarial splenomegaly deserves increased medical awareness to reduce the incidence of incorrect diagnosis, to prevent progression to splenic lymphoma and to avoid splenectomy. Copyright © 2015 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  3. Interaction with the 5D3 monoclonal antibody is regulated by intramolecular rearrangements but not by covalent dimer formation of the human ABCG2 multidrug transporter

    DEFF Research Database (Denmark)

    Özvegy-Laczka, Csilla; Laczkó, Rozália; Hegedűs, Csilla

    2008-01-01

    D3 monoclonal antibody shows a function-dependent reactivity to an extracellular epitope of the ABCG2 transporter. In the current experiments we have further characterized the 5D3-ABCG2 interaction. The effect of chemical cross-linking and the modulation of extracellular S-S bridges...... on the transporter function and 5D3 reactivity of ABCG2 were investigated in depth. We found that several protein cross-linkers greatly increased 5D3 labeling in ABCG2 expressing HEK cells; however, there was no correlation between covalent dimer formation, the inhibition of transport activity, and the increase in 5...

  4. COLLOID-FACILITATED TRANSPORT OF RADIONUCLIDES THROUGH THE VADOSE ZONE

    International Nuclear Information System (INIS)

    Flury, Markus

    2003-01-01

    Contaminants have leaked into the vadose zone at the USDOE Hanford reservation. It is important to understand the fate and transport of these contaminants to design remediation strategies and long-term waste management plans at the Hanford reservation. Colloids may play an important role in fate and transport of strongly sorbing contaminants, such as Cs or Pu. This project seeks to improve the basic understanding of colloid and colloid-facilitated transport of contaminants in the vadose zone. The specific objectives addressed are: (1) Determine the structure, composition, and surface charge characteristics of colloidal particles formed under conditions similar to those occurring during leakage of waste typical of Hanford tank supernatants into soils and sediments surrounding the tanks. (2) Characterize the mutual interactions between colloids, contaminant, and soil matrix in batch experiments under various ionic strength and pH conditions. We will investigate the nature of the solid-liquid interactions and the kinetics of the reactions. (3) Evaluate mobility of colloids through soil under different degrees of water saturation and solution chemistry (ionic strength and pH). (4) Determine the potential of colloids to act as carriers to transport the contaminant through the vadose zone and verify the results through comparison with field samples collected under leaking tanks. (5) Improve conceptual characterization of colloid-contaminant-soil interactions and colloid-facilitated transport for implementation into reactive chemical transport models. This project was in part supported by an NSF-IGERT grant to Washington State University. The IGERT grant provided funding for graduate student research and education, and two graduate students were involved in the EMSP project. The IGERT program also supported undergraduate internships. The project is part of a larger EMSP program to study fate and transport of contaminants under leaking Hanford waste tanks. The project has

  5. Pollutant transport in clayey sands: reactive flows in saturated porous media and unsaturated flows

    International Nuclear Information System (INIS)

    Cadalen, Sebastien

    2008-01-01

    In the context of nuclear risk control associated to nuclear waste storage, the french nuclear agency plays an increasing role in terms of research and development in the area of subsurface contamination. This study focuses on an homogeneous porous media constituted of Fontainebleau sand and clay grains (illite) presenting sorption capacities. The modeling of the complex geometry and physical phenomena at different scales enables us to describe the average transport at Darcy's scale. The two main axes developed are the impact of an heterogeneous sorption on transport phenomena and the dispersivity of an unsaturated porous media. (author) [fr

  6. Core design of long life-cycle fast reactors operating without reactivity margin

    International Nuclear Information System (INIS)

    Aristova, E. N.; Baydin, D. F.; Gol'din, V. Y.; Pestryakova, G. A.; Stoynov, M. I.

    2012-01-01

    In this paper we consider a possibility of designing a fast reactor core that operates without reactivity margin for a long time. This study is based on the physical principle of fast reactor operating in a self-adjustable neutron-nuclear regime (SANNR-1) introduced by L.P. Feoktistov (1988-1993) and improved by V. Ya. Gol'din SANNR-2 (1995). The mathematical modeling of active zones of fast reactors in SANNR modes is held by authors since 1992. The numerical simulation is based on solving the neutron transport equation coupled with quasi-diffusion equations. The calculations have been performed using standard 26 energy groups. We use a hierarchy of spatial models of 1D, 1.5D, 2D, and 3D geometries. The spatial models of higher dimensionality are used for verification of results. The calculations showed that operation of the reactor in this mode increases its efficiency, safety and simplifies management. It is possible to achieve continuous work of the reactor in SANNR-2 during 7-10 years without fuel overloads by means of further optimization of the mode. Small reactivity margin is used only for the reactor start up. After first 10-15 days the reactor in SANNR-2 operates without reactivity margin. (authors)

  7. Weigle Reactivation in Acinetobacter Calcoaceticus

    DEFF Research Database (Denmark)

    Berenstein, Dvora

    1982-01-01

    phage and host survivals of about 5 times 10-6 and 1 times 10-1, respectively. Intracellular development of W-reactivated P78 was followed by one-step growth experiments. Conditions which allowed maximal W-reactivation also extended the period of phage production and yielded a somewhat reduced burst......Weigle (W)-reactivation was demonstrated in Acinetobacter calcoaceticus for the UV-irra-diated lysogenic phage P78. The reactivation factor (survival of irradiated phage on irradiated bacteria/ survival on unirradiated bacteria) reached a maximum value of 20. This was obtained at UV-doses giving...

  8. Optical and electron transport properties of reactively sputtered Cu/sub x/S

    International Nuclear Information System (INIS)

    Leong, J.Y.C.

    1980-01-01

    Thin films of Cu/sub x/S were deposited on glass slides by sputtering Cu in a reactive H 2 S/Ar environment. Optical transmittance and reflectance measurements were used to explore the infrared absorption spectra of the material. Analysis of the absorption edge characteristics resulted in the identification of an indirect bandgap at 1.15 (+-.05) eV, a direct bandgap at 1.30 (+-.05) eV, and an electron effective mass of 1.0 (+-0.2) m 0 . Electrical data consisting of resistivity and Hall effect measurements from liquid nitrogen to room temperature were analyzed to determine the dominant scattering mechanisms limiting the hole mobility in the material. Ionized impurity scattering was the dominant mechanism at low temperatures (T 0 K) and polar optical phonon scattering was most effective at high temperatures (T > 150 0 K). All films were p-type. Effects of sputtering gas pressure, heat treatments, and temperature on the properties were studied

  9. Quantifying Reactive Transport Processes Governing Arsenic Mobility after Injection of Reactive Organic Carbon into a Bengal Delta Aquifer.

    Science.gov (United States)

    Rawson, Joey; Siade, Adam; Sun, Jing; Neidhardt, Harald; Berg, Michael; Prommer, Henning

    2017-08-01

    Over the last few decades, significant progress has been made to characterize the extent, severity, and underlying geochemical processes of groundwater arsenic (As) pollution in S/SE Asia. However, comparably little effort has been made to merge the findings into frameworks that allow for a process-based quantitative analysis of observed As behavior and for predictions of its long-term fate. This study developed field-scale numerical modeling approaches to represent the hydrochemical processes associated with an in situ field injection of reactive organic carbon, including the reductive dissolution and transformation of ferric iron (Fe) oxides and the concomitant release of sorbed As. We employed data from a sucrose injection experiment in the Bengal Delta Plain to guide our model development and to constrain the model parametrization. Our modeling results illustrate that the temporary pH decrease associated with the sucrose transformation and mineralization caused pronounced, temporary shifts in the As partitioning between aqueous and sorbed phases. The results also suggest that while the reductive dissolution of Fe(III) oxides reduced the number of sorption sites, a significant fraction of the released As was rapidly scavenged through coprecipitation with neo-formed magnetite. These secondary reactions can explain the disparity between the observed Fe and As behavior.

  10. Incorporating Geochemical And Microbial Kinetics In Reactive Transport Models For Generation Of Acid Rock Drainage

    Science.gov (United States)

    Andre, B. J.; Rajaram, H.; Silverstein, J.

    2010-12-01

    Acid mine drainage, AMD, results from the oxidation of metal sulfide minerals (e.g. pyrite), producing ferrous iron and sulfuric acid. Acidophilic autotrophic bacteria such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans obtain energy by oxidizing ferrous iron back to ferric iron, using oxygen as the electron acceptor. Most existing models of AMD do not account for microbial kinetics or iron geochemistry rigorously. Instead they assume that oxygen limitation controls pyrite oxidation and thus focus on oxygen transport. These models have been successfully used for simulating conditions where oxygen availability is a limiting factor (e.g. source prevention by capping), but have not been shown to effectively model acid generation and effluent chemistry under a wider range of conditions. The key reactions, oxidation of pyrite and oxidation of ferrous iron, are both slow kinetic processes. Despite being extensively studied for the last thirty years, there is still not a consensus in the literature about the basic mechanisms, limiting factors or rate expressions for microbially enhanced oxidation of metal sulfides. An indirect leaching mechanism (chemical oxidation of pyrite by ferric iron to produce ferrous iron, with regeneration of ferric iron by microbial oxidation of ferrous iron) is used as the foundation of a conceptual model for microbially enhanced oxidation of pyrite. Using literature data, a rate expression for microbial consumption of ferrous iron is developed that accounts for oxygen, ferrous iron and pH limitation. Reaction rate expressions for oxidation of pyrite and chemical oxidation of ferrous iron are selected from the literature. A completely mixed stirred tank reactor (CSTR) model is implemented coupling the kinetic rate expressions, speciation calculations and flow. The model simulates generation of AMD and effluent chemistry that qualitatively agrees with column reactor and single rock experiments. A one dimensional reaction

  11. The iodine reactivity

    International Nuclear Information System (INIS)

    2003-01-01

    The iodine is an important element because it has long life isotopes (such as iodine 129) and a great mobility in natural media. Iodine presents a complex chemistry because of its volatility and its strong redox reactivity. The S.E.C.R. works to better understand the reactivity of this element in different natural, industrial or biological environments. It plays a part in thermochemical sites as a possible way of hydrogen formation. This seminar gives some aspects relative to the chemical reactivity of iodine, since its thermochemistry in the I/S cycles to produce hydrogen to its reactivity in the natural medium and its potential radiological impact. This document includes 4 presentations transparencies) dealing with: the 129 I cycle rejected in the low radioactive gaseous and liquid effluents of the La Hague reprocessing plant (C. Frechou); a bibliographic review of iodine retention in soils (F. Bazer-Bachi); the hydrogen production and the iodine/sulfur thermochemical cycle (role of iodine in the process); and the direct characterization by electro-spray ionization mass spectroscopy of iodine fixation by fulvic acids (P. Reiller, B. Amekraz, C. Moulin, V. Moulin)

  12. The Reactive Species Interactome: Evolutionary Emergence, Biological Significance, and Opportunities for Redox Metabolomics and Personalized Medicine.

    Science.gov (United States)

    Cortese-Krott, Miriam M; Koning, Anne; Kuhnle, Gunter G C; Nagy, Peter; Bianco, Christopher L; Pasch, Andreas; Wink, David A; Fukuto, Jon M; Jackson, Alan A; van Goor, Harry; Olson, Kenneth R; Feelisch, Martin

    2017-10-01

    Oxidative stress is thought to account for aberrant redox homeostasis and contribute to aging and disease. However, more often than not, administration of antioxidants is ineffective, suggesting that our current understanding of the underlying regulatory processes is incomplete. Recent Advances: Similar to reactive oxygen species and reactive nitrogen species, reactive sulfur species are now emerging as important signaling molecules, targeting regulatory cysteine redox switches in proteins, affecting gene regulation, ion transport, intermediary metabolism, and mitochondrial function. To rationalize the complexity of chemical interactions of reactive species with themselves and their targets and help define their role in systemic metabolic control, we here introduce a novel integrative concept defined as the reactive species interactome (RSI). The RSI is a primeval multilevel redox regulatory system whose architecture, together with the physicochemical characteristics of its constituents, allows efficient sensing and rapid adaptation to environmental changes and various other stressors to enhance fitness and resilience at the local and whole-organism level. To better characterize the RSI-related processes that determine fluxes through specific pathways and enable integration, it is necessary to disentangle the chemical biology and activity of reactive species (including precursors and reaction products), their targets, communication systems, and effects on cellular, organ, and whole-organism bioenergetics using system-level/network analyses. Understanding the mechanisms through which the RSI operates will enable a better appreciation of the possibilities to modulate the entire biological system; moreover, unveiling molecular signatures that characterize specific environmental challenges or other forms of stress will provide new prevention/intervention opportunities for personalized medicine. Antioxid. Redox Signal. 00, 000-000.

  13. Anthropogenic contamination of a phreatic drinking water winning: 3-dimensional reactive transport modelling

    NARCIS (Netherlands)

    Griffioen, J.|info:eu-repo/dai/nl/091129265; van der Grift, B.|info:eu-repo/dai/nl/373433484; Maas, D.; van den Brink, C.|info:eu-repo/dai/nl/187443416; Zaadnoordijk, J. W.

    2003-01-01

    Groundwater is contaminated at the regional scale by agricultural activities and atmospheric deposition. A 3-D transport model was set-up for a phreatic drinking water winning, where the groundwater composition was monitored accurately. The winning is situated at an area with unconsolidated

  14. Heptachlor induced mitochondria-mediated cell death via impairing electron transport chain complex III

    International Nuclear Information System (INIS)

    Hong, Seokheon; Kim, Joo Yeon; Hwang, Joohyun; Shin, Ki Soon; Kang, Shin Jung

    2013-01-01

    Highlights: •Heptachlor inhibited mitochondrial electron transport chain complex III activity. •Heptachlor promoted generation of reactive oxygen species. •Heptachlor induced Bax activation. •Heptachlor induced mitochondria-mediated and caspase-dependent apoptosis. -- Abstract: Environmental toxins like pesticides have been implicated in the pathogenesis of Parkinson’s disease (PD). Epidemiological studies suggested that exposures to organochlorine pesticides have an association with an increased PD risk. In the present study, we examined the mechanism of toxicity induced by an organochlorine pesticide heptachlor. In a human dopaminergic neuroblastoma SH-SY5Y cells, heptachlor induced both morphological and functional damages in mitochondria. Interestingly, the compound inhibited mitochondrial electron transport chain complex III activity. Rapid generation of reactive oxygen species and the activation of Bax were then detected. Subsequently, mitochondria-mediated, caspase-dependent apoptosis followed. Our results raise a possibility that an organochlorine pesticide heptachlor can act as a neurotoxicant associated with PD

  15. Heptachlor induced mitochondria-mediated cell death via impairing electron transport chain complex III

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seokheon; Kim, Joo Yeon; Hwang, Joohyun [Department of Molecular Biology, Sejong University, Seoul 143-747 (Korea, Republic of); Shin, Ki Soon [Department of Biology, Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kang, Shin Jung, E-mail: sjkang@sejong.ac.kr [Department of Molecular Biology, Sejong University, Seoul 143-747 (Korea, Republic of)

    2013-08-09

    Highlights: •Heptachlor inhibited mitochondrial electron transport chain complex III activity. •Heptachlor promoted generation of reactive oxygen species. •Heptachlor induced Bax activation. •Heptachlor induced mitochondria-mediated and caspase-dependent apoptosis. -- Abstract: Environmental toxins like pesticides have been implicated in the pathogenesis of Parkinson’s disease (PD). Epidemiological studies suggested that exposures to organochlorine pesticides have an association with an increased PD risk. In the present study, we examined the mechanism of toxicity induced by an organochlorine pesticide heptachlor. In a human dopaminergic neuroblastoma SH-SY5Y cells, heptachlor induced both morphological and functional damages in mitochondria. Interestingly, the compound inhibited mitochondrial electron transport chain complex III activity. Rapid generation of reactive oxygen species and the activation of Bax were then detected. Subsequently, mitochondria-mediated, caspase-dependent apoptosis followed. Our results raise a possibility that an organochlorine pesticide heptachlor can act as a neurotoxicant associated with PD.

  16. Nuclear criticality safety: general. 5. Reactivity Effect of Burnable Absorbers in Burnup Credit for the CASTOR X/32S Storage and Transport Cask

    International Nuclear Information System (INIS)

    Rombough, Charles T.; Lancaster, Dale B.; Diersch, Rudolf; Spilker, Harry

    2001-01-01

    When considering burnup credit in the licensing of storage and transportation casks, a significant effect is whether or not the burned fuel was depleted with burnable absorbers present. This paper presents the results of detailed calculations to quantitatively determine the burnable absorber effect for the CASTOR X/32S transport cask, which assumes burnup of the fuel in the criticality analysis. A radial view of the CASTOR X/32S cask is shown in Fig. 1. This is the actual plot of the geometry as modeled in KENO V.a. Note that there are no water-filled flux traps and the assemblies are tightly packed. This reduces the overall dimensions of the cask for a given number of fuel assemblies. Reactivity is held down by borated aluminum plates between the fuel assemblies and by placing absorber rod modules (ARMs) in the guide tubes of selected assemblies. If burnup of the fuel is not considered and the initial enrichment is 5.0 wt% 235 U, then 28 of the 32 fuel assemblies must contain an ARM to maintain a k eff 3 ; 4. moderator temperature of 604 K; 5. cooling time of 9.5 yr; 6. specific power of 60 W/g of U metal; 7. conservative axial and radial burnup shape distribution; 8. Westinghouse BP material containing 12.5 wt% B 4 C. Using the model described earlier, calculations were performed with varying numbers of BP fingers inserted for different exposure times. The results are shown in Tables I and II. The 1 s statistical error in these results is σ equals ±0.05%. Note that the BP finger and exposure effects decrease with fuel burnup and the effect is smaller when the cask contains ARMs. Conservatively combining the results from Tables I and II and interpolating, we can equate fewer BP fingers with longer BP exposure time as shown in Table III. The Table III results were checked by running the actual cases (for example, 20 BP fingers for 24 GWd/tonne exposure) to verify that the k eff 's for the cask were always less than the base-case values. These results can also be

  17. Stress Reactivity in Insomnia.

    Science.gov (United States)

    Gehrman, Philip R; Hall, Martica; Barilla, Holly; Buysse, Daniel; Perlis, Michael; Gooneratne, Nalaka; Ross, Richard J

    2016-01-01

    This study examined whether individuals with primary insomnia (PI) are more reactive to stress than good sleepers (GS). PI and GS (n = 20 per group), matched on gender and age, completed three nights of polysomnography. On the stress night, participants received a mild electric shock and were told they could receive additional shocks during the night. Saliva samples were obtained for analysis of cortisol and alpha amylase along with self-report and visual analog scales (VAS). There was very little evidence of increased stress on the stress night, compared to the baseline night. There was also no evidence of greater stress reactivity in the PI group for any sleep or for salivary measures. In the GS group, stress reactivity measured by VAS scales was positively associated with an increase in sleep latency in the experimental night on exploratory analyses. Individuals with PI did not show greater stress reactivity compared to GS.

  18. Physics-based hybrid method for multiscale transport in porous media

    Science.gov (United States)

    Yousefzadeh, Mehrdad; Battiato, Ilenia

    2017-09-01

    Despite advancements in the development of multiscale models for flow and reactive transport in porous media, the accurate, efficient and physics-based coupling of multiple scales in hybrid models remains a major theoretical and computational challenge. Improving the predictivity of macroscale predictions by means of multiscale algorithms relative to classical at-scale models is the primary motivation for the development of multiscale simulators. Yet, very few are the quantitative studies that explicitly address the predictive capability of multiscale coupling algorithms as it is still generally not possible to have a priori estimates of the errors that are present when complex flow processes are modeled. We develop a nonintrusive pore-/continuum-scale hybrid model whose coupling error is bounded by the upscaling error, i.e. we build a predictive tightly coupled multiscale scheme. This is accomplished by slightly enlarging the subdomain where continuum-scale equations are locally invalid and analytically defining physics-based coupling conditions at the interfaces separating the two computational sub-domains, while enforcing state variable and flux continuity. The proposed multiscale coupling approach retains the advantages of domain decomposition approaches, including the use of existing solvers for each subdomain, while it gains flexibility in the choice of the numerical discretization method and maintains the coupling errors bounded by the upscaling error. We implement the coupling in finite volumes and test the proposed method by modeling flow and transport through a reactive channel and past an array of heterogeneously reactive cylinders.

  19. Field studies of radionuclide transport at the Chalk River Laboratories

    International Nuclear Information System (INIS)

    Champ, D.R.; Killey, R.W.D.; Moltyaner, G.L.

    1991-01-01

    In this paper the authors summarize the results of: in situ field column experiments to study the transport behaviour of several long-lived radionuclides, 4 natural gradient non-reactive radiotracer injection experiments at the Chalk River Laboratories (CRL) Twin Lake Tracer Test Site, and a model validation study that used data for 90 Sr from two well-defined contaminated groundwater flow systems at CRL. The paper also describes a current re-evaluation of radionuclide release and transport from a 1960 experimental burial (in a CRL sand aquifer) of glass blocks containing fission and activation products. (J.P.N.)

  20. Reactive sputter deposition

    CERN Document Server

    Mahieu, Stijn

    2008-01-01

    In this valuable work, all aspects of the reactive magnetron sputtering process, from the discharge up to the resulting thin film growth, are described in detail, allowing the reader to understand the complete process. Hence, this book gives necessary information for those who want to start with reactive magnetron sputtering, understand and investigate the technique, control their sputtering process and tune their existing process, obtaining the desired thin films.

  1. World-wide French experience in research reactor fuel cycle transportation

    International Nuclear Information System (INIS)

    Raisonnier, D.

    1997-01-01

    Since 1963 Transnucleaire has safely performed a large number of national and international transports of radioactive material. Transnucleaire has also designed and supplied suitable packagings for all types of nuclear fuel cycle radioactive material from front-end and back-end products and for power or for research reactors. Transportation of the nuclear fuel material for power reactors is made on a regular and industrial basis. The transportation of material for the research reactor fuel cycle is quite different due to the small quantities involved, the categorisation of material and the numerous places of delivery world-wide. Adapted solutions exist, which require a reactive organisation dealing with all the transportation issues for LEU and HEU products as metal, oxide, fresh fuel elements, spent fuel elements including supply of necessary transport packaging and equipment. This presentation will: - explain the choices made by Transnucleaire and its associates to provide and optimise the corresponding services, - demonstrate the capability to achieve, through reliable partnership, transport operations involving new routes, specific equipment and new political constraints while respecting sophisticated safety and security regulations. (author)

  2. Reactive power supply by distributed generators

    OpenAIRE

    Braun, M.

    2008-01-01

    Distributed reactive power supply is necessary in distribution networks for an optimized network operation. This paper presents first the reactive power supply capabilities of generators connected to the distribution network (distributed generators). In a second step an approach is proposed of determining the energy losses resulting from reactive power supply by distributed generators. The costs for compensating these losses represent the operational costs of reactive power supply. These cost...

  3. Ex vivo preparations of human tissue for drug metabolism, toxicity and transport

    NARCIS (Netherlands)

    Groothuis, Genoveva

    2012-01-01

    Before new drugs are allowed on the market, their safety and metabolite profile should be extensively tested, as often reactive metabolites are the ultimate toxicant. The exposure of the target cell to the drug and its metabolites is determined by the expression levels of the transporters and the

  4. Atmospheric redistribution of reactive nitrogen and phosphorus by wildfires and implications for global carbon cycling

    Science.gov (United States)

    Randerson, J. T.; Xu, L.; Wiggins, E. B.; Chen, Y.; Riley, W. J.; Mekonnen, Z. A.; Pellegrini, A.; Mahowald, N. M.

    2017-12-01

    Fires are an important process regulating the redistribution of nutrients within terrestrial ecosystems. Frequently burning ecosystems such as savannas are a net source of N and P to the atmosphere each year, with atmospheric transport and dry and wet deposition increasing nutrient availability in downwind ecosystems and over the open ocean. Transport of N and P aerosols from savanna fires within the Hadley circulation contributes to nutrient deposition over tropical forests, yielding an important cross-biome nutrient transfer. Pyrodenitrification of reactive N increases with fire temperature and modified combustion efficiency, generating a global net biospheric loss of approximately 14 Tg N per year. Here we analyze atmospheric N and P redistribution using the Global Fire Emissions Database version 4s and the Accelerated Climate Modeling for Energy earth system model. We synthesize literature estimates of N and P concentrations in fire-emitted aerosols and ecosystem mass balance measurements to help constrain model estimates of these biosphere-atmosphere fluxes. In our analysis, we estimate the fraction of terrestrial net primary production (NPP) that is sustained by fire-emitted P and reactive N from upwind ecosystems. We then evaluate how recent global declines in burned area in savanna and grassland ecosystems may be changing nutrient availability in downwind ecosystems.

  5. Reactive programming in eventsourcing systems

    OpenAIRE

    Kučinskas, Žilvinas

    2017-01-01

    Eventsourcing describes current state as series of events that occurred in a system. Events hold all information that is needed to recreate current state. This method allows to achieve high volume of transactions, and enables efficient replication. Whereas reactive programming lets implement reactive systems in declarative style, decomposing logic into smaller, easier to understand components. Thesis aims to create reactive programming program interface, incorporating both principles. Applyin...

  6. Mood reactivity rather than cognitive reactivity is predictive of depressive relapse: a randomized study with 5.5-year follow-up

    NARCIS (Netherlands)

    van Rijsbergen, Gerard D.; Bockting, Claudi L. H.; Burger, Huibert; Spinhoven, Philip; Koeter, Maarten W. J.; Ruhé, Henricus G.; Hollon, Steven D.; Schene, Aart H.

    2013-01-01

    The current study examined whether cognitive reactivity, cognitive extremity reactivity, and mood reactivity following mood provocation predicted relapse in depression over 5.5 years. Additionally, this study was the 1st to examine whether changes in cognitive reactivity and mood reactivity

  7. Processing of polymers using reactive solvents

    NARCIS (Netherlands)

    Lemstra, P.J.; Kurja, J.; Meijer, H.E.H.; Meijer, H.E.H.

    1997-01-01

    A review with many refs. on processing of polymers using reactive solvents including classification of synthetic polymers, guidelines for the selection of reactive solvents, basic aspects of processing, examples of intractable and tractable polymer/reactive solvent system

  8. Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk

    NARCIS (Netherlands)

    Chornokur, G.; Lin, H.Y.; Tyrer, J.P.; Lawrenson, K.; Dennis, J.; Amankwah, E.K.; Qu, X.; Tsai, Y.Y.; Jim, H.S.; Chen, Z.; Chen, A.Y.; Permuth-Wey, J.; Aben, K.; Anton-Culver, H.; Antonenkova, N.; Bruinsma, F.; Bandera, E.V.; Bean, Y.T.; Beckmann, M.W.; Bisogna, M.; Bjorge, L.; Bogdanova, N.; Brinton, L.A.; Brooks-Wilson, A.; Bunker, C.H.; Butzow, R.; Campbell, I.G.; Carty, K.; Chang-Claude, J.; Cook, L.S.; Cramer, D.W; Cunningham, J.M.; Cybulski, C.; Dansonka-Mieszkowska, A.; Bois, A. du; Despierre, E.; Dicks, E.; Doherty, J.A.; Dork, T.; Durst, M.; Easton, D.F.; Eccles, D.M.; Edwards, R.P.; Ekici, A.B.; Fasching, P.A.; Fridley, B.L.; Gao, Y.T.; Gentry-Maharaj, A.; Giles, G.G.; Glasspool, R.; Goodman, M.T.; Gronwald, J.; Harrington, P.; Harter, P.; Hein, A.; Heitz, F.; Hildebrandt, M.A.T.; Hillemanns, P.; Hogdall, C.K.; Hogdall, E.; Hosono, S.; Jakubowska, A.; Jensen, A.; Ji, B.T.; Karlan, B.Y.; Kelemen, L.E.; Kellar, M.; Kiemeney, L.A.L.M.; Krakstad, C.; Kjaer, S.K.; Kupryjanczyk, J.; Lambrechts, D.; Lambrechts, S.; Le, N.D.; Lee, A.W.; Lele, S.; Leminen, A.; Lester, J.; Levine, D.A.; Liang, D.; Lim, B.K.; Lissowska, J.; Lu, K.; Lubinski, J.; Lundvall, L.; Massuger, L.F.A.G.; Matsuo, K.; McGuire, V.; McLaughlin, J.R.; McNeish, I.; Menon, U.; Milne, R.L.; Modugno, F.; Moysich, K.B.; Ness, R.B.; Nevanlinna, H.; Eilber, U.; Odunsi, K.; Olson, S.H.; Orlow, I., et al.

    2015-01-01

    BACKGROUND: Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As

  9. Rationality and emotionality: serotonin transporter genotype influences reasoning bias

    OpenAIRE

    Stollstorff, Melanie; Bean, Stephanie E.; Anderson, Lindsay M.; Devaney, Joseph M.; Vaidya, Chandan J.

    2012-01-01

    Reasoning often occurs under emotionally charged, opinion-laden circumstances. The belief-bias effect indexes the extent to which reasoning is based upon beliefs rather than logical structure. We examined whether emotional content increases this effect, particularly for adults genetically predisposed to be more emotionally reactive. SS/SLG carriers of the serotonin transporter genotype (5-HTTLPR) were less accurate selectively for evaluating emotional relational reasoning problems with belief...

  10. Definition of reactivity and its measurability

    International Nuclear Information System (INIS)

    Hu Dapu

    1986-01-01

    Reactivity is the fundamental and important physical quantity in the reactor physics. The different kinds of method for defining reactivity are represented, the difference between different definitions of reactivity is indicalted and the conditions under which they have nearly the same measurable value are discussed. It is demonstrated that when the static adjointed neutron density or the neutron importance is selected to be a weight function for generating kinetic parameters used in the neutron kinetic equations, the kinetic reactivity is approximately equal to the static reactivity. Due to the constraint of the normalization condition, the shape function must be so selected that the corresponding amplitude function is proportional to the fundamental mode of neutron density variating with time. Measured reactivity by the kinetic method may vary with the position of detector, owing to the different space distribution of the prompt neutrons density and the delayed neutrons density and the effect of the higher harmonics of the neutron density. Some corresponding correction must be made in order to obtain the real static reactivity

  11. Electrospinning of reactive mesogens

    NARCIS (Netherlands)

    Yao, J.; Picot, O.T.; Hughes-Brittain, N.F.; Bastiaansen, C.W.M.; Peijs, T.

    2016-01-01

    The reinforcement potential of reactive liquid crystals or reactive mesogens (RMs) in electrospun fibers was investigated through the blending of two types of RMs (RM257 and RM82) with two types of thermoplastics; polyamide 6 (PA6) and poly(methyl methacrylate) (PMMA). Polymer/RM blends were

  12. Reactive Power from Distributed Energy

    Energy Technology Data Exchange (ETDEWEB)

    Kueck, John; Kirby, Brendan; Rizy, Tom; Li, Fangxing; Fall, Ndeye

    2006-12-15

    Distributed energy is an attractive option for solving reactive power and distribution system voltage problems because of its proximity to load. But the cost of retrofitting DE devices to absorb or produce reactive power needs to be reduced. There also needs to be a market mechanism in place for ISOs, RTOs, and transmission operators to procure reactive power from the customer side of the meter where DE usually resides. (author)

  13. Reactive Power from Distributed Energy

    International Nuclear Information System (INIS)

    Kueck, John; Kirby, Brendan; Rizy, Tom; Li, Fangxing; Fall, Ndeye

    2006-01-01

    Distributed energy is an attractive option for solving reactive power and distribution system voltage problems because of its proximity to load. But the cost of retrofitting DE devices to absorb or produce reactive power needs to be reduced. There also needs to be a market mechanism in place for ISOs, RTOs, and transmission operators to procure reactive power from the customer side of the meter where DE usually resides. (author)

  14. Engine combustion control via fuel reactivity stratification

    Science.gov (United States)

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2013-12-31

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  15. Saturated and unsaturated salt transport in peat from a constructed fen

    Science.gov (United States)

    Simhayov, Reuven B.; Weber, Tobias K. D.; Price, Jonathan S.

    2018-02-01

    The underlying processes governing solute transport in peat from an experimentally constructed fen peatland were analyzed by performing saturated and unsaturated solute breakthrough experiments using Na+ and Cl- as reactive and non-reactive solutes, respectively. We tested the performance of three solute transport models, including the classical equilibrium convection-dispersion equation (CDE), a chemical non-equilibrium one-site adsorption model (OSA) and a model to account for physical non-equilibrium, the mobile-immobile (MIM) phases. The selection was motivated by the fact that the applicability of the MIM in peat soils finds a wide consensus. However, results from inverse modeling and a robust statistical evaluation of this peat provide evidence that the measured breakthrough of the conservative tracer, Cl-, could be simulated well using the CDE. Furthermore, the very high Damköhler number (which approaches infinity) suggests instantaneous equilibration between the mobile and immobile phases underscoring the redundancy of the MIM approach for this particular peat. Scanning electron microscope images of the peat show the typical multi-pore size distribution structures have been homogenized sufficiently by decomposition, such that physical non-equilibrium solute transport no longer governs the transport process. This result is corroborated by the fact the soil hydraulic properties were adequately described using a unimodal van Genuchten-Mualem model between saturation and a pressure head of ˜ -1000 cm of water. Hence, MIM was not the most suitable choice, and the long tailing of the Na+ breakthrough curve was caused by chemical non-equilibrium. Successful description was possible using the OSA model. To test our results for the unsaturated case, we conducted an unsaturated steady-state evaporation experiment to drive Na+ and Cl- transport. Using the parameterized transport models from the saturated experiments, we could numerically simulate the unsaturated

  16. Self-Propagating Reactive Fronts in Compacts of Multilayered Particles

    International Nuclear Information System (INIS)

    Sraj, I.; Vohra, M.; Alawieh, L.; Weihs, T.P.; Knio, O.M.

    2013-01-01

    Reactive multilayered foils in the form of thin films have gained interest in various applications such as joining, welding, and ignition. Typically, thin film multilayers support self-propagating reaction fronts with speeds ranging from 1 to 20 m/s. In some applications, however, reaction fronts with much smaller velocities are required. This recently motivated Fritz et al. (2011) to fabricate compacts of regular sized/shaped multilayered particles and demonstrate self-sustained reaction fronts having much smaller velocities than thin films with similar layering. In this work, we develop a simplified numerical model to simulate the self-propagation of reactive fronts in an idealized compact, comprising identical Ni/Al multilayered particles in thermal contact. The evolution of the reaction in the compact is simulated using a two-dimensional transient model, based on a reduced description of mixing, heat release, and thermal transport. Computed results reveal that an advancing reaction front can be substantially delayed as it crosses from one particle to a neighboring particle, which results in a reduced mean propagation velocity. A quantitative analysis is thus conducted on the dependence of these phenomena on the contact area between the particles, the thermal contact resistance, and the arrangement of the multilayered particles.

  17. Self-Propagating Reactive Fronts in Compacts of Multilayered Particles

    Directory of Open Access Journals (Sweden)

    Ihab Sraj

    2013-01-01

    Full Text Available Reactive multilayered foils in the form of thin films have gained interest in various applications such as joining, welding, and ignition. Typically, thin film multilayers support self-propagating reaction fronts with speeds ranging from 1 to 20 m/s. In some applications, however, reaction fronts with much smaller velocities are required. This recently motivated Fritz et al. (2011 to fabricate compacts of regular sized/shaped multilayered particles and demonstrate self-sustained reaction fronts having much smaller velocities than thin films with similar layering. In this work, we develop a simplified numerical model to simulate the self-propagation of reactive fronts in an idealized compact, comprising identical Ni/Al multilayered particles in thermal contact. The evolution of the reaction in the compact is simulated using a two-dimensional transient model, based on a reduced description of mixing, heat release, and thermal transport. Computed results reveal that an advancing reaction front can be substantially delayed as it crosses from one particle to a neighboring particle, which results in a reduced mean propagation velocity. A quantitative analysis is thus conducted on the dependence of these phenomena on the contact area between the particles, the thermal contact resistance, and the arrangement of the multilayered particles.

  18. Integrated Stable Isotope - Reactive Transport Model Approach for Assessment of Chlorinated Solvent Degradation

    Science.gov (United States)

    2016-05-01

    reported from the toe of the plume. The CSM of the Deep Plume proposed that the contaminants reside in mobile (sand) and immobile (clay and silt...transport: 50 years of artificial recharge in the Amsterdam Water Supply Dunes ." Journal of Hydrology 454: 7-25. Kuder, T. and P. Philp (2013

  19. Regional and long-range transport of air pollution

    International Nuclear Information System (INIS)

    Sandroni, S.

    1987-01-01

    The Course lectures presented are organised in four sections: atmospheric transport, conversion, deposition of atmospheric trace constituents and associated problems; conventional and sophisticated techniques for atmospheric sounding (e.g., Sodar, Lidar, Cospec, tetroons, instrument-carrying aircraft) and simulation techniques (non-reactive tracers); models available for various applications (long-range episodes, long-term averages, photochemical and deposition processes); a comparison of performances of different models and the linearity problem in the formation of acid deposition

  20. EFFECTS OF PORE STRUCTURE CHANGE AND MULTI-SCALE HETEROGENEITY ON CONTAMINANT TRANSPORT AND REACTION RATE UPSCALING

    Energy Technology Data Exchange (ETDEWEB)

    Lindquist, W. Brent; Jones, Keith W.; Um, Wooyong; Rockhold, mark; Peters, Catherine A.; Celia, Michael A.

    2013-02-15

    This project addressed the scaling of geochemical reactions to core and field scales, and the interrelationship between reaction rates and flow in porous media. We targeted reactive transport problems relevant to the Hanford site - specifically the reaction of highly caustic, radioactive waste solutions with subsurface sediments, and the immobilization of 90Sr and 129I through mineral incorporation and passive flow blockage, respectively. We addressed the correlation of results for pore-scale fluid-soil interaction with field-scale fluid flow, with the specific goals of (i) predicting attenuation of radionuclide concentration; (ii) estimating changes in flow rates through changes of soil permeabilities; and (iii) estimating effective reaction rates. In supplemental work, we also simulated reactive transport systems relevant to geologic carbon sequestration. As a whole, this research generated a better understanding of reactive transport in porous media, and resulted in more accurate methods for reaction rate upscaling and improved prediction of permeability evolution. These scientific advancements will ultimately lead to better tools for management and remediation of DOE’s legacy waste problems. We established three key issues of reactive flow upscaling, and organized this project in three corresponding thrust areas. 1) Reactive flow experiments. The combination of mineral dissolution and precipitation alters pore network structure and the subsequent flow velocities, thereby creating a complex interaction between reaction and transport. To examine this phenomenon, we conducted controlled laboratory experimentation using reactive flow-through columns. Results and Key Findings: Four reactive column experiments (S1, S3, S4, S5) have been completed in which simulated tank waste leachage (STWL) was reacted with pure quartz sand, with and without Aluminum. The STWL is a caustic solution that dissolves quartz. Because Al is a necessary element in the formation of

  1. Detection of Islet Cell Immune Reactivity with Low Glycemic Index Foods: Is This a Concern for Type 1 Diabetes?

    Directory of Open Access Journals (Sweden)

    Datis Kharrazian

    2017-01-01

    Full Text Available Dietary management of autoimmune diabetes includes low glycemic foods classified from the glycemic index, but it does not consider the role that immunoreactive foods may play with the immunological etiology of the disease. We measured the reactivity of either monoclonal or polyclonal affinity-purified antibodies to insulin, insulin receptor alpha, insulin receptor beta, zinc transporter 8 (ZnT8, tyrosine phosphatase-based islet antigen 2 (IA2, and glutamic acid decarboxylase (GAD 65 and 67 against 204 dietary proteins that are commonly consumed. Dietary protein determinants included unmodified (raw and modified (cooked and roasted foods, herbs, spices, food gums, brewed beverages, and additives. There was no immune reactivity between insulin or insulin receptor beta and dietary proteins. However, we identified strong to moderate immunological reactivity with antibodies against insulin receptor alpha, ZnT8, IA2, GAD-65, and GAD-67 with several dietary proteins. We also identified 49 dietary proteins found in foods classified as low glycemic foods with immune reactivity to autoimmune target sites. Laboratory analysis of immunological cross-reactivity between pancreas target sites and dietary proteins is the initial step necessary in determining whether dietary proteins may play a potential immunoreactive role in autoimmune diabetes.

  2. Influence of void effects on reactivity of coupled fast-thermal system HERBE

    International Nuclear Information System (INIS)

    Ljubenov, V.; Milovanovic, S.; Milovanovic, T.; Cuknic, O.

    1997-01-01

    Coupled fast-thermal system HERBE at the experimental zero power heavy water reactor RB is a system with the significant effects of the neutron leakage and neutron absorption. Presence of a coolant void introduces a new structure in an extremely heterogeneous core. In those conditions satisfactory results of the calculation are acquired only using specified space-energy homogenization procedure. In order to analyze transient appearances and accidental cases of the reactor systems, a procedure for modeling of influence of moderator and coolant loss on reactivity ('void effect') is developed. Reduction of the moderator volume fraction in some fuel channels due to air gaps or steam generation during the accidental moderator boiling, restricts validity of the diffusion approximation in the reactor calculations. In cases of high neutron flux gradients, which are consequence of high neutron absorption, application of diffusion approximation is questionable too. The problem may be solved using transport or Monte Carlo methods, but they are not acceptable in the routine applications. Applying new techniques based on space-energy core homogenization, such as the SPH method or the discontinuity factor method, diffusion calculations become acceptable. Calculations based on the described model show that loss of part of moderator medium introduce negative reactivity in the HERBE system. Calculated local void reactivity coefficients are used in safety analysis of hypothetical accidents

  3. Biodecolorization and biodegradation of Reactive Blue by ...

    African Journals Online (AJOL)

    SERVER

    2007-06-18

    Jun 18, 2007 ... Aspergillus sp. effectively decolorized Reactive Blue and other structurally different synthetic dyes. Agitation was found to be an important ... Few chemically different dyes such as Reactive Black (75%), Reactive Yellow (70%),. Reactive Red (33%) and ..... Degradation of azo dyes by the lignin degrading ...

  4. Interaction Between 5-HTTLPR and BDNF Val66Met Polymorphisms on HPA Axis Reactivity in Preschoolers

    OpenAIRE

    Dougherty, Lea R.; Klein, Daniel N.; Congdon, Eliza; Canli, Turhan; Hayden, Elizabeth P.

    2009-01-01

    This study examined whether the interaction between the serotonin transporter promoter region (5-HTTLPR) and brain-derived neurotrophic factor (BDNF) Val66Met polymorphisms was associated with hypothalamic-pituitary-adrenal (HPA) axis reactivity to stress. A community sample of 144 preschool-aged children was genotyped and exposed to stress-inducing laboratory tasks. Salivary cortisol was obtained at four time points during a standardized laboratory assessment before and after stressors invol...

  5. Evaluation of the reactive nitrogen budget of the remote atmosphere in global models using airborne measurements

    Science.gov (United States)

    Murray, L. T.; Strode, S. A.; Fiore, A. M.; Lamarque, J. F.; Prather, M. J.; Thompson, C. R.; Peischl, J.; Ryerson, T. B.; Allen, H.; Blake, D. R.; Crounse, J. D.; Brune, W. H.; Elkins, J. W.; Hall, S. R.; Hintsa, E. J.; Huey, L. G.; Kim, M. J.; Moore, F. L.; Ullmann, K.; Wennberg, P. O.; Wofsy, S. C.

    2017-12-01

    Nitrogen oxides (NOx ≡ NO + NO2) in the background atmosphere are critical precursors for the formation of tropospheric ozone and OH, thereby exerting strong influence on surface air quality, reactive greenhouse gases, and ecosystem health. The impact of NOx on atmospheric composition and climate is sensitive to the relative partitioning of reactive nitrogen between NOx and longer-lived reservoir species of the total reactive nitrogen family (NOy) such as HNO3, HNO4, PAN and organic nitrates (RONO2). Unfortunately, global chemistry-climate models (CCMs) and chemistry-transport models (CTMs) have historically disagreed in their reactive nitrogen budgets outside of polluted continental regions, and we have lacked in situ observations with which to evaluate them. Here, we compare and evaluate the NOy budget of six global models (GEOS-Chem CTM, GFDL AM3 CCM, GISS E2.1 CCM, GMI CTM, NCAR CAM CCM, and UCI CTM) using new observations of total reactive nitrogen and its member species from the NASA Atmospheric Tomography (ATom) mission. ATom has now completed two of its four planned deployments sampling the remote Pacific and Atlantic basins of both hemispheres with a comprehensive suite of measurements for constraining reactive photochemistry. All six models have simulated conditions climatologically similar to the deployments. The GMI and GEOS-Chem CTMs have in addition performed hindcast simulations using the MERRA-2 reanalysis, and have been sampled along the flight tracks. We evaluate the performance of the models relative to the observations, and identify factors contributing to their disparate behavior using known differences in model oxidation mechanisms, heterogeneous loss pathways, lightning and surface emissions, and physical loss processes.

  6. Reactive Programming in Standard ML

    OpenAIRE

    Pucella, Riccardo

    2004-01-01

    Reactive systems are systems that maintain an ongoing interaction with their environment, activated by receiving input events from the environment and producing output events in response. Modern programming languages designed to program such systems use a paradigm based on the notions of instants and activations. We describe a library for Standard ML that provides basic primitives for programming reactive systems. The library is a low-level system upon which more sophisticated reactive behavi...

  7. Significance of isolated reactive treponemal chemiluminescence immunoassay results.

    Science.gov (United States)

    Hunter, Michael G; Robertson, Peter W; Post, Jeffrey J

    2013-05-01

    Isolated reactive serum treponemal chemiluminescence immunoassay (CIA) specimens cause clinical uncertainty. Sera were screened by CIA, and reactive samples underwent reflex testing with rapid plasma reagin (RPR), Treponema pallidum particle agglutination (TPPA), and fluorescent treponemal antibody absorption (FTA Abs) assays. Samples reactive only on the CIA were deemed "isolated" reactive CIA samples. We undertook detailed review of a subset of subjects with isolated reactive CIA specimens. Of 28 261 specimens, 1171 (4.1%) were reactive on CIA, of which 133 (11.3%) had isolated CIA reactivity. Most subjects (66 of 82 [80.5%]) with isolated reactive CIA specimens were from high-prevalence populations. We found evidence of CIA, TPPA, and FTA Abs seroreversion. The median chemiluminescent signal-to-cutoff ratio was similar for isolated reactive CIA sera and sera that were reactive on either FTA Abs or TPPA assays (2.19 vs 2.32; P = .15) but lower than for sera reactive on both FTA Abs and TPPA assays (12.37; P < .001) or for sera reactive on RPR assays (25.53; P < .001). A total of 11 of 20 patients (55%) with an isolated reactive CIA specimen who underwent medical record review had previous or subsequent evidence of syphilis infection. Isolated reactive CIA specimens may represent true T. pallidum infection and may be found after seroreversion of traditional treponemal assays.

  8. Event-Based Modularization of Reactive Systems

    NARCIS (Netherlands)

    Malakuti Khah Olun Abadi, Somayeh; Aksit, Mehmet

    2014-01-01

    There is a large number of complex software systems that have reactive behavior. As for any other software system, reactive systems are subject to evolution demands. This paper defines a set requirements that must be fulfilled so that reuse of reactive software systems can be increased. Detailed

  9. NOVEL FLUORESCENT PROBES FOR THE DOPAMINE TRANSPORTER

    DEFF Research Database (Denmark)

    Cha, J; Vægter, Christian Bjerggaard; Adkins, Erica

    -reactive rhodamine red derivatives. The resulting N-substituted (JHC 1-64) and 2-substituted (JHC 1-53) ligands showed high affinity binding to DAT expressed in HEK 293 cells (Ki= 6.4 and 29 nM, respectively). Their ability to selectively label the DAT was demonstrated by confocal laser scanning microscopy of HEK......To enable visualization of the dopamine transporter (DAT) through fluorescence technologies we have synthesized a novel series of fluorescently tagged analogs of cocaine. Previous structure-activity relationship (SAR) studies have demonstrated that the dopamine transporter (DAT) can tolerate...... in untransfected control cells. The possibility of using these ligands for direct labeling of the DAT in living cells represents a new and important approach for understanding cellular targeting and trafficking of the DAT. Moreover, these fluorescent ligands might also provide the molecular tools...

  10. An introduction to neutron transport

    International Nuclear Information System (INIS)

    Wiesenfeld, Bernard

    2015-01-01

    Neutron transport science is the study of neutron transport in a nuclear reactor and of associated nuclear reactions, notably fission reactions. Heat released by these reactions can be used for several purposes: electricity production, hydrogen production, sea water desalination, urban heating, naval propulsion, space propulsion, and so on. This publication contains the course proposed at Mines ParisTech and at the Arts et Metiers ParisTech. It is an introduction to neutron transport science and aims at presenting fundamental physical principles of this original branch of nuclear physics, a so called 'low energies' branch whereas 'high energy' nuclear physics focuses on elementary particles. It addresses complex computation methods which have been developed during the last decades with computation codes of always higher performance. The first part presents elements of atom physics: origin of matter, properties of nuclei and atoms, notion of quantum mechanics, interaction between radiation and matter (ray absorption, Compton Effect and scattering, photoelectric effect). The second part introduces neutron transport by addressing the following issues: nuclear structure, the various aspects of the interaction between neutrons and matter, the evolution of the reactivity of a reactor in normal operation, the chain fission reaction kinetics, and neutron slowing down. The third part addresses various aspects of neutron transport calculation: expression of neutron assessment, scattering approximation, critical condition of a nuclear reactor, introduction to transport theory, peculiarities of fast breeder reactors. The last chapter 'from theory to practice' addresses the approach of the neutron scientist, proposes an overview of the main calculation codes, and presents fields of application (within or without nuclear fission)

  11. Biogenic silica dissolution in diatom aggregates: insights from reactive transport modelling

    KAUST Repository

    Moriceau, B

    2014-12-15

    © Inter-Research 2014. Diatom aggregates contribute significantly to the vertical sinking flux of particulate matter in the ocean. These fragile structures form a specific microhabitat for the aggregated cells, but their internal chemical and physical characteristics remain largely unknown. Studies on the impact of aggregation on the Si cycle led to apparent inconsistency. Despite a lower biogenic silica (bSiO2) dissolution rate and diffusion of the silicic acid (dSi) being similar in aggregates and in sea-water, dSi surprisingly accumulates in aggregates. A reaction-diffusion model helps to clarify this incoherence by reconstructing dSi accumulation measured during batch experiments with aggregated and non-aggregated Skeletonema marinoi and Chaetoceros decipiens. The model calculates the effective bSiO2 dissolution rate as opposed to the experimental apparent bSiO2 dissolution rate, which is the results of the effective dissolution of bSiO2 and transport of dSi out of the aggregate. In the model, dSi transport out of the aggregate is modulated by alternatively considering retention (decrease of the dSi diffusion constant) and adsorption (reversible chemical bonds between dSi and the aggregate matrix) processes. Modelled bSiO2 dissolution is modulated by the impact of dSi concentration inside aggregates and diatom viability, as enhanced persistence of metabolically active diatoms has been observed in aggregates. Adsorption better explains dSi accumulation within and outside aggregates, raising the possible importance of dSi travelling within aggregates to the deep sea (potentially representing 20% of the total silica flux). The model indicates that bSiO2 dissolution is effectively decreased in aggregates mainly due to higher diatom viability but also to other parameters discussed herein.

  12. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  13. Spring 5 & reactive streams

    CERN Multimedia

    CERN. Geneva; Clozel, Brian

    2017-01-01

    Spring is a framework widely used by the world-wide Java community, and it is also extensively used at CERN. The accelerator control system is constituted of 10 million lines of Java code, spread across more than 1000 projects (jars) developed by 160 software engineers. Around half of this (all server-side Java code) is based on the Spring framework. Warning: the speakers will assume that people attending the seminar are familiar with Java and Spring’s basic concepts. Spring 5.0 and Spring Boot 2.0 updates (45 min) This talk will cover the big ticket items in the 5.0 release of Spring (including Kotlin support, @Nullable and JDK9) and provide an update on Spring Boot 2.0, which is scheduled for the end of the year. Reactive Spring (1h) Spring Framework 5.0 has been released - and it now supports reactive applications in the Spring ecosystem. During this presentation, we'll talk about the reactive foundations of Spring Framework with the Reactor project and the reactive streams specification. We'll al...

  14. Transport Properties of a Kinetic Model for Chemical Reactions without Barriers

    International Nuclear Information System (INIS)

    Alves, Giselle M.; Kremer, Gilberto M.; Soares, Ana Jacinta

    2011-01-01

    A kinetic model of the Boltzmann equation for chemical reactions without energy barrier is considered here with the aim of evaluating the reaction rate and characterizing the transport coefficient of shear viscosity for the reactive system. The Chapman-Enskog solution of the Boltzmann equation is used to compute the chemical reaction effects, in a flow regime for which the reaction process is close to the final equilibrium state. Some numerical results are provided illustrating that the considered chemical reaction without energy barrier can induce an appreciable influence on the reaction rate and on the transport coefficient of shear viscosity.

  15. Making real-time reactive systems reliable

    Science.gov (United States)

    Marzullo, Keith; Wood, Mark

    1990-01-01

    A reactive system is characterized by a control program that interacts with an environment (or controlled program). The control program monitors the environment and reacts to significant events by sending commands to the environment. This structure is quite general. Not only are most embedded real time systems reactive systems, but so are monitoring and debugging systems and distributed application management systems. Since reactive systems are usually long running and may control physical equipment, fault tolerance is vital. The research tries to understand the principal issues of fault tolerance in real time reactive systems and to build tools that allow a programmer to design reliable, real time reactive systems. In order to make real time reactive systems reliable, several issues must be addressed: (1) How can a control program be built to tolerate failures of sensors and actuators. To achieve this, a methodology was developed for transforming a control program that references physical value into one that tolerates sensors that can fail and can return inaccurate values; (2) How can the real time reactive system be built to tolerate failures of the control program. Towards this goal, whether the techniques presented can be extended to real time reactive systems is investigated; and (3) How can the environment be specified in a way that is useful for writing a control program. Towards this goal, whether a system with real time constraints can be expressed as an equivalent system without such constraints is also investigated.

  16. System-Scale Model of Aquifer, Vadose Zone, and River Interactions for the Hanford 300 Area - Application to Uranium Reactive Transport

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, Mark L.; Bacon, Diana H.; Freedman, Vicky L.; Parker, Kyle R.; Waichler, Scott R.; Williams, Mark D.

    2013-10-01

    This report represents a synthesis and integration of basic and applied research into a system-scale model of the Hanford 300 Area groundwater uranium plume, supported by the U.S. Department of Energy’s Richland Operations (DOE-RL) office. The report integrates research findings and data from DOE Office of Science (DOE-SC), Office of Environmental Management (DOE-EM), and DOE-RL projects, and from the site remediation and closure contractor, Washington Closure Hanford, LLC (WCH). The three-dimensional, system-scale model addresses water flow and reactive transport of uranium for the coupled vadose zone, unconfined aquifer, and Columbia River shoreline of the Hanford 300 Area. The system-scale model of the 300 Area was developed to be a decision-support tool to evaluate processes of the total system affecting the groundwater uranium plume. The model can also be used to address “what if” questions regarding different remediation endpoints, and to assist in design and evaluation of field remediation efforts. For example, the proposed cleanup plan for the Hanford 300 Area includes removal, treatment, and disposal of contaminated sediments from known waste sites, enhanced attenuation of uranium hot spots in the vadose and periodically rewetted zone, and continued monitoring of groundwater with institutional controls. Illustrative simulations of polyphosphate infiltration were performed to demonstrate the ability of the system-scale model to address these types of questions. The use of this model in conjunction with continued field monitoring is expected to provide a rigorous basis for developing operational strategies for field remediation and for defining defensible remediation endpoints.

  17. Cross-reactivity of human nickel-reactive T-lymphocyte clones with copper and palladium

    NARCIS (Netherlands)

    Pistoor, F. H.; Kapsenberg, M. L.; Bos, J. D.; Meinardi, M. M.; von Blomberg, M. E.; Scheper, R. J.

    1995-01-01

    Twenty Ni-reactive T-lymphocyte clones were obtained from eight different donors and analyzed for their ability to cross-react with other metals. All Ni-reactive T-lymphocyte clones were CD4+CD8- and recognized Ni in association with either HLA-DR or -DQ molecules. Based on the periodic table of the

  18. Development of Waste Acceptance Criteria at 221-U Building: Initial Flow and Transport Scoping Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Vicky L.; Zhang, Z. F.; Keller, Jason M.; Chen, Yousu

    2007-05-30

    This report documents numerical flow and transport simulations performed that establish initial waste acceptance criteria for the potential waste streams that may be safely sequestered in the 221-U Building and similar canyon structures. Specifically, simulations were executed to identify the maximum loading of contaminant mass (without respect to volume) that can be emplaced within the 221-U Building with no more than 1 pCi/m2 of contaminant migrating outside the structure within a 1,000 year time period. The initial scoping simulations were executed in one dimension to assess important processes, and then two dimensions to establish waste acceptance criteria. Two monolithic conditions were assessed: (1) a grouted canyon monolith; and (2) a canyon monolith filled with sand, both assuming no cracks or fissures were present to cause preferential transport. A three-staged approach was taken to account for different processes that may impact the amount of contaminant that can be safely sequestered in canyon structure. In the first stage, flow and transport simulations established waste acceptance criteria based on a linear (Kd) isotherm approach. In the second stage, impacts on thermal loading were examined and the differences in waste acceptance criteria quantified. In the third stage of modeling, precipitation/dissolution reactions were considered on the release and transport of the contaminants, and the subsequent impact on the maximum contaminant loading. The reactive transport modeling is considered a demonstration of the reactive transport capability, and shows the importance of its use for future performance predictions once site-specific data have been obtained.

  19. Using a Mechanistic Reactive Transport Model to Represent Soil Organic Matter Dynamics and Climate Sensitivity

    Science.gov (United States)

    Guerry, N.; Riley, W. J.; Maggi, F.; Torn, M. S.; Kleber, M.

    2011-12-01

    The nature of long term Soil Organic Matter (SOM) dynamics is uncertain and the mechanisms involved are crudely represented in site, regional, and global models. Recent work challenging the paradigm that SOM is stabilized because of its sequential transformations to more intrinsically recalcitrant compounds motivated us to develop a mechanistic modeling framework that can be used to test hypotheses of SOM dynamics. We developed our C cycling model in TOUGHREACT, an established 3-dimensional reactive transport solver that accounts for multiple phases (aqueous, gaseous, sorbed), multiple species, advection and diffusion, and multiple microbial populations. Energy and mass exchange through the soil boundaries are accounted for via ground heat flux, rainfall, C sources (e.g., exudation, woody, leaf, root litter) and C losses (e.g., CO2 emissions and DOC deep percolation). SOM is categorized according to the various types of compounds commonly found in the above mentioned C sources and microbial byproducts, including poly- and monosaccharides, lignin, amino compounds, organic acids, nucleic acids, lipids, and phenols. Each of these compounds is accounted for by one or more representative species in the model. A reaction network was developed to describe the microbially-mediated processes and chemical interactions of these species, including depolymerization, microbial assimilation, respiration and deposition of byproducts, and incorporation of dead biomass into SOM stocks. Enzymatic reactions are characterized by Michaelis-Menten kinetics, with maximum reaction rates determined by the species' O/C ratio. Microbial activity is further regulated by soil moisture content, O2 availability, pH, and temperature. For the initial set of simulations, literature values were used to constrain microbial Monod parameters, Michaelis-Menten parameters, sorption parameters, physical protection, partitioning of microbial byproducts, and partitioning of litter inputs, although there is

  20. Mood reactivity rather than cognitive reactivity is predictive of depressive relapse : a randomized study with 5.5-year follow-up

    NARCIS (Netherlands)

    van Rijsbergen, Gerard D; Bockting, Claudi L H; Burger, Huibert; Spinhoven, Philip; Koeter, Maarten W J; Ruhe, Eric; Hollon, Steven D; Schene, Aart H

    OBJECTIVE: The current study examined whether cognitive reactivity, cognitive extremity reactivity, and mood reactivity following mood provocation predicted relapse in depression over 5.5 years. Additionally, this study was the 1st to examine whether changes in cognitive reactivity and mood

  1. On the Construction of Sorted Reactive Systems

    DEFF Research Database (Denmark)

    Birkedal, Lars; Debois, Søren; Hildebrandt, Thomas

    2008-01-01

    We develop a theory of sorted bigraphical reactive systems. Every application of bigraphs in the literature has required an extension, a sorting, of pure bigraphs. In turn, every such application has required a redevelopment of the theory of pure bigraphical reactive systems for the sorting at hand...... bigraphs. Technically, we give our construction for ordinary reactive systems, then lift it to bigraphical reactive systems. As such, we give also a construction of sortings for ordinary reactive systems. This construction is an improvement over previous attempts in that it produces smaller and much more...

  2. A roadmap for OH reactivity research

    Science.gov (United States)

    Williams, Jonathan; Brune, William

    2015-04-01

    A fundamental property of the atmosphere is the frequency of gas-phase reactions with the OH radical, the atmosphere's primary oxidizing agent. This reaction frequency is called the OH reactivity and is the inverse the lifetime of the OH radical itself, which varies from a few seconds in the clean upper troposphere to below 10 ms in forests and polluted city environments. Ever since the discovery of the OH radical's importance to tropospheric chemistry, the characterization of its overall loss rate (OH reactivity) has remained a key question. At first, this property was assessed by summing the reactivity contributions of individually measured compounds; however, as improving analytical technology revealed ever more reactive species in ambient air, it became clear that this approach could provide only a lower limit. Approximately 15 years ago, the direct measurement of total OH reactivity was conceived independently by two groups. The first publications demonstrated direct OH reactivity measurements in the laboratory (Calpini et al., 1999) based on LIDAR and in the ambient air (Kovacs and Brune, 2001) based on in situ laser induced fluorescence detection of OH.

  3. Reactivity prediction of uniform PuO2-UO2 fuelled lattices and Pu(NO3)4 solutions in light water

    International Nuclear Information System (INIS)

    Mohankrishnan, P.; Huria, H.C.

    A theoretical analysis of the reactivities of the experimentally measured uniform light water moderated and reflected PuO 2 in UO 2 lattices and Pu(NO 3 ) 4 solutions is presented here. The mixed oxide single rod lattices are homogenised by the use of multigroup integral transport theory and diffusion theory is used for the cylindrical core calculations. The cross-sections are derived from the WTIS library. The homogeneous spherical Pu(NO 3 ) 4 solutions are analysed by discrete ordinate transport theory. Due to the small size of these criticals, it is necessary that one dimensional core calculations also be performed with a cross-section energy group structure which can represent neutron slowing down and thermalisation at the core reflector interface accurately. Due to the absence of such core calculation in the BNWL analyses of the mixed oxide lattices, the agreement of or predictions for these lattices with measurement is considered to be more satisfactory. These reactivity predictions are found to agree generally within +- 0.6% of measurements for the mixed oxide lattices and within 1% for the solution system. (author)

  4. The improvement of all-solid-state electrochromic devices fabricated with the reactive sputter and cathodic arc technology

    Directory of Open Access Journals (Sweden)

    Min-Chuan Wang

    2016-11-01

    Full Text Available The all-solid-state electrochromic device (ECD with the one substrate structure fabricated by the reactive dc magnetron sputtering (DCMS and cathodic vacuum arc plasma (CVAP technology has been developed for smart electrochromic (EC glass application. The EC layer and ion conductor layer were deposited by reactive DCMS and CVAP technology, respectively. The ion conductor layer Ta2O5 deposited by the CVAP technology has provided the better porous material structure for ion transportation and showed 1.76 times ion conductivity than devices with all sputtering process. At the same time, the EC layer WO3 and NiO deposited by the reactive DCMS have also provided the high quality and uniform characteristic to overcome the surface roughness effect of the CVAP ion conductor layer in multilayer device structure. The all-solid-state ECD with the CVAP ion conductor layer has demonstrated a maximum transmittance variation (ΔT of 55% at 550nm and a faster-switching speed. Furthermore, the lower equipment cost and higher deposition rate could be achieved by the application of CVAP technology.

  5. Chemical Modeling of the Reactivity of Short-Lived Greenhouse Gases: A Model Inter-Comparison Prescribing a Well-Measured, Remote Troposphere

    Science.gov (United States)

    Prather, Michael J.; Flynn, Clare M.; Zhu, Xin; Steenrod, Stephen D.; Strode, Sarah A.; Fiore, Arlene M.; Correa, Gustavo; Murray, Lee T.; Lamarque, Jean-Francois

    2018-01-01

    We develop a new protocol for merging in situ measurements with 3-D model simulations of atmospheric chemistry with the goal of integrating over the data to identify the most reactive air parcels in terms of tropospheric production and loss of the greenhouse gases ozone and methane. Presupposing that we can accurately measure atmospheric composition, we examine whether models constrained by such measurements agree on the chemical budgets for ozone and methane. In applying our technique to a synthetic data stream of 14,880 parcels along 180W, we are able to isolate the performance of the photochemical modules operating within their global chemistry-climate and chemistry-transport models, removing the effects of modules controlling tracer transport, emissions, and scavenging. Differences in reactivity across models are driven only by the chemical mechanism and the diurnal cycle of photolysis rates, which are driven in turn by temperature, water vapor, solar zenith angle, clouds, and possibly aerosols and overhead ozone, which are calculated in each model. We evaluate six global models and identify their differences and similarities in simulating the chemistry through a range of innovative diagnostics. All models agree that the more highly reactive parcels dominate the chemistry (e.g., the hottest 10% of parcels control 25-30% of the total reactivities), but do not fully agree on which parcels comprise the top 10%. Distinct differences in specific features occur, including the regions of maximum ozone production and methane loss, as well as in the relationship between photolysis and these reactivities. Unique, possibly aberrant, features are identified for each model, providing a benchmark for photochemical module development. Among the 6 models tested here, 3 are almost indistinguishable based on the inherent variability caused by clouds, and thus we identify 4, effectively distinct, chemical models. Based on this work, we suggest that water vapor differences in

  6. Borylnitrenes: electrophilic reactive intermediates with high reactivity towards C-H bonds.

    Science.gov (United States)

    Bettinger, Holger F; Filthaus, Matthias

    2010-12-21

    Borylnitrenes (catBN 3a and pinBN 3b; cat = catecholato, pin = pinacolato) are reactive intermediates that show high tendency towards insertion into the C-H bonds of unactivated hydrocarbons. The present article summarizes the matrix isolation investigations that were aimed at identifying, characterizing and investigating the chemical behaviour of 3a by spectroscopic means, and of the experiments in solution and in the gas phase that were performed with 3b. Comparison with the reactivity reported for difluorovinylidene 1a in solid argon indicates that 3a shows by and large similar reactivity, but only after photochemical excitation. The derivative 3b inserts into the C-H bonds of hydrocarbon solvents in high yields and thus allows the formation of primary amines, secondary amines, or amides from "unreactive" hydrocarbons. It can also be used for generation of methylamine or methylamide from methane in the gas phase at room temperature. Remaining challenges in the chemistry of borylnitrenes are briefly summarized.

  7. Vadose Zone Transport Field Study: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Andy L.; Conrad, Mark E.; Daily, William D.; Fink, James B.; Freedman, Vicky L.; Gee, Glendon W.; Hoversten, Gary M.; Keller, Jason M.; Majer, Ernest L.; Murray, Christopher J.; White, Mark D.; Yabusaki, Steven B.; Zhang, Z. F.

    2006-07-31

    migration (e.g. BC Cribs and Trenches). The improved models have been also coupled with inverse models and newly-developed parameter scaling techniques to allow estimation of field-scale and effective transport parameters for the vadose zone. The development and utility of pedotransfer functions for describing fine-scale hydrogeochemical heterogeneity and for incorporating this heterogeneity into reactive transport models was explored. An approach based on grain-size statistics appears feasible and has been used to describe heterogeneity in hydraulic properties and sorption properties, such as the cation exchange capacity and the specific surface area of Hanford sediments. This work has also led to the development of inverse modeling capabilities for time-dependent, subsurface, reactive transport with transient flow fields using an automated optimization algorithm. In addition, a number of geophysical techniques investigated for their potential to provide detailed information on the subtle changes in lithology and bedding surfaces; plume delineation, leak detection. High-resolution resistivity is now being used for detecting saline plumes at several waste sites at Hanford, including tank farms. Results from the field studies and associated analysis have appeared in more than 46 publications generated over the past 4 years. These publications include test plans and status reports, in addition to numerous technical notes and peer reviewed papers.

  8. Pay-as-bid based reactive power market

    International Nuclear Information System (INIS)

    Amjady, N.; Rabiee, A.; Shayanfar, H.A.

    2010-01-01

    In energy market clearing, the offers are stacked in increasing order and the offer that intersects demand curve, determines the market clearing price (MCP). In reactive power market, the location of reactive power compensator is so important. A low cost reactive producer may not essentially be favorable if it is far from the consumer. Likewise, a high cost local reactive compensator at a heavily loaded demand center of network could be inevitably an alternative required to produce reactive power to maintain the integrity of power system. Given the background, this paper presents a day-ahead reactive power market based on pay-as-bid (PAB) mechanism. Generators expected payment function (EPF) is used to construct a bidding framework. Then, total payment function (TPF) of generators is used as the objective function of optimal power flow (OPF) problem to clear the PAB based market. The CIGRE-32 bus test system is used to examine the effectiveness of the proposed reactive power market.

  9. Pay-as-bid based reactive power market

    Energy Technology Data Exchange (ETDEWEB)

    Amjady, N. [Department of Electrical Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Rabiee, A., E-mail: Rabiee@iust.ac.i [Center of Excellence for Power System Automation and Operation, Department of Electrical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Department of Electrical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2010-02-15

    In energy market clearing, the offers are stacked in increasing order and the offer that intersects demand curve, determines the market clearing price (MCP). In reactive power market, the location of reactive power compensator is so important. A low cost reactive producer may not essentially be favorable if it is far from the consumer. Likewise, a high cost local reactive compensator at a heavily loaded demand center of network could be inevitably an alternative required to produce reactive power to maintain the integrity of power system. Given the background, this paper presents a day-ahead reactive power market based on pay-as-bid (PAB) mechanism. Generators expected payment function (EPF) is used to construct a bidding framework. Then, total payment function (TPF) of generators is used as the objective function of optimal power flow (OPF) problem to clear the PAB based market. The CIGRE-32 bus test system is used to examine the effectiveness of the proposed reactive power market.

  10. Synthesis and processing of composites by reactive metal penetration

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E.; Ewsuk, K.G. [Sandia National Labs., Albuquerque, NM (United States); Tomsia, A.P. [Pask Research and Engineering, Berkeley, CA (United States)] [and others

    1997-04-01

    Achieving better performance in commercial products and processes often is dependent on availability of new and improved materials. Ceramic-metal composites have advantages over more conventional materials because of their high stiffness-to-weight ratios, good fracture toughness, and because their electrical and thermal properties can be varied through control of their compositions and microstructures. However, ceramic composites will be more widely used only when their costs are competitive with other materials and when designers have more confidence in their reliability. Over the past four years reactive metal penetration has been shown to be a promising technique for making ceramic and metal-matrix composites to near-net-shape with control of both composition and microstructure. It appears that, with sufficient development, reactive metal penetration could be an economical process for manufacturing many of the advanced ceramic composites that are needed for light-weight structural and wear applications for transportation and energy conversion devices. Near-net-shape fabrication of parts is a significant advantage because costly and energy intensive grinding and machining operations are substantially reduced, and the waste generated from such finishing operations is minimized. The most promising compositions to date consist of Al and Al{sub 2}O{sub 3}; thus, these composites should be of particular interest to the aluminum industry. The goals of this ceramic-metal composite research and development program are: (1) to identify compositions favorable for making composites by reactive metal penetration; (2) to understand the mechanism(s) by which these composites are formed; (3) to control and optimize the process so that composites and composite coatings can be made economically; and (4) to apply R&D results to problems of interest to the aluminum industry.

  11. Preservation and reactivation of Candidatus Jettenia asiatica and Anammoxoglobus propionicus using different preservative agents.

    Science.gov (United States)

    Viancelli, A; Pra, M C; Scussiato, L A; Cantão, M; Ibelli, A M G; Kunz, A

    2017-11-01

    Anaerobic ammonium oxidation (anammox) bacteria have peculiar characteristics that make them difficult to cultivate. The conservation of these microorganisms in culture collections or laboratories requires successful preservation and reactivation techniques. Furthermore, studies have shown that successful reactivation may be preservative dependent. Considering this, the present study aimed to evaluate the preservation and reactivation of anammox consortia enriched from swine manure treatment lagoons, by using different preservative agents at different temperatures: KNO 3 (at 4 °C), glycerol (-20 °C, -80 °C), and skimmed cow milk (-20 °C, -80 °C, -200 °C). After 4 months, the biomass was thawed (except for KNO 3 ), and the reestablishment of anammox activity was evaluated by stoichiometric coefficients. Microbial community transformation during the reactivation process was also studied by 16S rDNA sequence analysis. The results showed that the anammox biomass preserved with glycerol or skimmed cow milk at -80 °C recovered activity, while the biomass preserved with other methodologies did not reestablish activity during the studied time (90 days). The bacterial community from the biomass with anammox activity was characterized and showed the presence of Candidatus Brocadia anammoxidans, Candidatus Jettenia asiatica, and Candidatus Anammoxoglobus propionicus. Preservation with skimmed cow milk at -80 °C favored the selection of Candidatus Anammoxoglobus propionicus, while preservation with glycerol at -80 °C was successful for Candidatus Jettenia asiatica. The present study was effective on anammox sludge preservation and reactivation using low-cost processes for anammox cultures preservation, which is important for biomass transport and deammonification reactor start up. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Reactivity indexes for different geometries of palladium leads

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Carrillo, S C; Bolcatto, P G [Departamento de Fisica, Facultad de Ingenieria Quimica, Universidad Nacional de Litoral, Santiago del Estero 2829 S3000AOM Santa Fe Argentina (Argentina); Ortega, J, E-mail: scgomez@fiq.unl.edu.a [Departamento de Fisica Teorica de la Materia Condensada, Universidad Autonoma de Madrid (Spain)

    2009-05-01

    Electronic transport through metallic break junctions or molecules is clearly dependent not only on the electronic structure of the central nanodevice connecting the leads, but also the shape and crystalline orientation of the contacts which can define the possible conduction channels. In this work we examine different geometries of contacts of palladium characterizing them through global and local reactivity indexes as electrophilicity, chemical hardness and Fukui functions. In molecules, these indicators are essentially defined by the energies of the frontier molecular orbitals and in solids they are related with the local and partial density of states. We use for this purpose an ab-initio based code (FIREBALL), applied to plane contacts with (001) fcc faces and also pyramidal tips grown following a (001) and (111) packaging. The results allow us to have an insight about the chemical features of this type of nanojunctions.

  13. Calculation of Reactivity Build up in KANUPP core in Case of Large Break LOCA

    International Nuclear Information System (INIS)

    Arshad, M. W.

    2012-01-01

    Loss of Coolant Accident (LOCA) in a Pressurized Heavy Water Reactor (PHWR) leads to coolant expulsion in a primary heat transport system resulting in depressurization and possible core voiding. This results in deterioration of cooling conditions in reactor channels and increase in power before reactor shutdown, leading to higher fuel temperatures.The objective of this thesis is to couple Thermal Hydraulics Data for finding status of 2288 fuel bundles having unique coolant density along with continuous changing state of coolant. WIMCER and CITCER are used for the core calculation in case of LOCA and Thermal Hydraulic Data is obtained from the Thermal Hydraulic code TUF (two unequal flows). These codes are coupled with each other in C programming. Due to degradation of coolant in case of LOCA, the power and reactivity start increasing. Near to 5 mk of reactivity the moderator dump start and reactor goes shut down. The result obtained from these code is followed the same trend as shown in KFSAR. (author)

  14. Review: Selenium contamination, fate, and reactive transport in groundwater in relation to human health

    Science.gov (United States)

    Bailey, Ryan T.

    2017-06-01

    Selenium (Se) is an essential micro-nutrient for humans, but can be toxic at high levels of intake. Se deficiency and Se toxicity are linked with serious diseases, with some regions worldwide experiencing Se deficiency due to Se-poor rocks and soils and other areas dealing with Se toxicity due to the presence of Se-enriched geologic materials. In addition, Se is consumed primarily through plants that take up Se from soil and through animal products that consume these plants. Hence, the soil and groundwater system play important roles in determining the effect of Se on human health. This paper reviews current understanding of Se fate and transport in soil and groundwater systems and its relation to human health, with a focus on alluvial systems, soil systems, and the interface between alluvial systems and Cretaceous shale that release Se via oxidation processes. The review focuses first on the relation between Se and human health, followed by a summary of Se distribution in soil-aquifer systems, with an emphasis on the quantitative relationship between Se content in soil and Se concentration in underlying groundwater. The physical, chemical, and microbial processes that govern Se fate and transport in subsurface systems then are presented, followed by numerical modeling techniques used to simulate these processes in study regions and available remediation strategies for either Se-deficient or Se-toxic regions. This paper can serve as a guide to any field, laboratory or modeling study aimed at assessing Se fate and transport in groundwater systems and its relation to human health.

  15. Aquifer Thermal Energy Storage as an ecosystem service for Brussels, Belgium: investigating iron (hydr)oxide precipitation with reactive transport modeling

    Science.gov (United States)

    Anibas, Christian; Possemiers, Mathias; Huysmans, Marijke

    2016-04-01

    In an evolving energy system it is important that urbanized areas contribute to their own energy demands. To reduce greenhouse gas emissions sustainable energy systems with a high efficiency are required, e.g. using urban aquifers as an ecosystem service. Here the potential of seasonal aquifer thermal energy storage and recovery (ATES) for the Brussels-Capital Region, Belgium is investigated. An important shallow geologic formation in the Brussels Capital Region is the Brussels Sand formation, a 20-60 m thick phreatic aquifer. The Brussels Sand Formation is known for its potential for ATES systems, but also for its varying redox and hydraulic conditions. Important limiting factors for ATES systems in the Brussels Sand Formation therefore are the hydraulic conductivity and the geochemical composition of the groundwater. Near the redox boundary iron hydroxide precipitation can negatively influence ATES well performance due to clogging. The interactions between physical processes (e.g. particle transport and clogging in the wider proximity of the ATES well) and chemical processes (e.g. influence of the operation temperatures on precipitation processes) during ATES operation are complex but not well understood. Therefore we constructed numerical groundwater flow models in MODFLOW to estimate maximum pumping and injection rates of different hydraulic conditions and competing water uses in the Brussels Sand Formation. In further steps the thermal potential for ATES was quantified using MT3DMS and the reactive transport model PHT3D was applied to assess the effects of operating ATES systems near the redox boundary. Results show that initial mixing plays an important role in the development of iron(hydr)oxide precipitation around the ATES wells, with the highest concentrations around the cold wells. This behavior is enhanced by the temperature effect; temperature differences of ΔT≈10°C already influence the iron (hydr)oxide concentration. The initial injection into the

  16. Neighborhood disadvantage and adolescent stress reactivity

    Directory of Open Access Journals (Sweden)

    Daniel A. Hackman

    2012-10-01

    Full Text Available Lower socioeconomic status (SES is associated with higher levels of life stress, which in turn affect stress physiology. SES is related to basal cortisol and diurnal change, but it is not clear if SES is associated with cortisol reactivity to stress. To address this question, we examined the relationship between two indices of SES, parental education and concentrated neighborhood disadvantage, and the cortisol reactivity of African-American adolescents to a modified version of the Trier Social Stress Test. We found that concentrated disadvantage was associated with cortisol reactivity and this relationship was moderated by gender, such that higher concentrated disadvantage predicted higher cortisol reactivity and steeper recovery in boys but not in girls. Parental education, alone or as moderated by gender, did not predict reactivity or recovery, while neither education nor concentrated disadvantage predicted estimates of baseline cortisol. This finding is consistent with animal literature showing differential vulnerability, by gender, to the effects of adverse early experience on stress regulation and the differential effects of neighborhood disadvantage in adolescent males and females. This suggests that the mechanisms underlying SES differences in brain development and particularly reactivity to environmental stressors may vary across genders.

  17. [Effects of allelochemical dibutyl phthalate on Gymnodinium breve reactive oxygen species].

    Science.gov (United States)

    Bie, Cong-Cong; Li, Feng-Min; Li, Yuan-Yuan; Wang, Zhen-Yu

    2012-02-01

    The purpose of this study was to investigate the mechanism of inhibitory action of dibutyl phthalate (DBP) on red tide algae Gymnodinium breve. Reactive oxygen species (ROS) level, contents of *OH and H2O2, and O2*(-) production rate were investigated, and also for the effects of electron transfer inhibitors on the ROS induction of DBP. The results showed that DBP triggered the synthesis of reactive oxygen species ROS, and with the increase of concentration of DBP, *OH and H2O2 contents in cells accumulated, as for the 3 mg x L(-1) DBP treated algae cultures, OH showed a peak of 33 U x mL(-1) at 48 h, which was about 2. 4 times higher than that in the controlled, and H2O2 contents was about 250 nmol x (10(7) cells)(-1) at 72 h, which was about 5 times higher and also was the highest during the whole culture. Rotenone (an inhibitor of complex I in the mitochondria electron transport chain) decreased the DBP induced ROS production, and dicumarol (an inhibitor of the redox enzyme system in the plasma membrane) stimulated the DBP induced ROS production. Taken all together, the results demonstrated DBP induced over production of reactive oxygen species in G. breve, which is the main inhibitory mechanism, and mitochondria and plasma membrane seem to be the main target site of DBP. These conclusions were of scientific meaning on uncovering the inhibitory mechanism of allelochemical on algae.

  18. 5-HTTLPR Expression Outside the Skin: An Experimental Test of the Emotional Reactivity Hypothesis in Children.

    Science.gov (United States)

    Weeland, Joyce; Slagt, Meike; Brummelman, Eddie; Matthys, Walter; de Castro, Bram Orobio; Overbeek, Geertjan

    2015-01-01

    There is increasing evidence that variation in the promoter region of the serotonin transporter gene SLC6A4 (i.e., the 5-HTTLPR polymorphism) moderates the impact of environmental stressors on child psychopathology. Emotional reactivity -the intensity of an individual's response to other's emotions- has been put forward as a possible mechanism underlying these gene-by-environment interactions (i.e., G×E). Compared to children homozygous for the L-allele (LL-genotypes), children carrying an S-allele (SS/SL-genotypes), specifically when they have been frequently exposed to negative emotions in the family environment, might be more emotionally reactive and therefore more susceptible to affective environmental stressors. However, the association between 5-HTTLPR and emotional reactivity in children has not yet been empirically tested. Therefore, the goal of this study was to test this association in a large-scale experiment. Children (N = 521, 52.5% boys, Mage = 9.72 years) were genotyped and randomly assigned to happy, angry or neutral dynamic facial expressions and vocalizations. Motor and affective emotional reactivity were assessed through children's self-reported negative and positive affect (n = 460) and facial electromyography activity (i.e., fEMG: the zygomaticus or "smile" muscle and the corrugator or "frown" muscle, n = 403). Parents reported on their negative and positive parenting behaviors. Children mimicked and experienced the emotion they were exposed to. However, neither motor reactivity nor affective reactivity to these emotions depended on children's 5-HTTLPR genotype: SS/SL-genotypes did not manifest any stronger response to emotional stimuli than LL-genotypes. This finding remained the same when taking the broader family environment into account, controlling for kinship, age, gender and genetic ancestry, and when including a tri-allelic factor. We found no evidence for an association between the 5-HTTLPR polymorphism and children's emotional

  19. Diffusion Dominant Solute Transport Modelling In Deep Repository Under The Effect of Emplacement Media Degradation - 13285

    International Nuclear Information System (INIS)

    Kwong, S.; Jivkov, A.P.

    2013-01-01

    Deep geologic disposal of high activity and long-lived radioactive waste is being actively considered and pursued in many countries, where low permeability geological formations are used to provide long term waste contaminant with minimum impact to the environment and risk to the biosphere. A multi-barrier approach that makes use of both engineered and natural barriers (i.e. geological formations) is often used to further enhance the containment performance of the repository. As the deep repository system subjects to a variety of thermo-hydro-chemo-mechanical (THCM) effects over its long 'operational' lifespan (e.g. 0.1 to 1.0 million years, the integrity of the barrier system will decrease over time (e.g. fracturing in rock or clay)). This is broadly referred as media degradation in the present study. This modelling study examines the effects of media degradation on diffusion dominant solute transport in fractured media that are typical of deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes, while the effects of degradation is studied using a pore network model that considers the media diffusivity and network changes. Model results are presented to demonstrate the use of a 3D pore-network model, using a novel architecture, to calculate macroscopic properties of the medium such as diffusivity, subject to pore space changes as the media degrade. Results from a reactive transport model of a representative geological waste disposal package are also presented to demonstrate the effect of media property change on the solute migration behaviour, illustrating the complex interplay between kinetic biogeochemical processes and diffusion dominant transport. The initial modelling results demonstrate the feasibility of a coupled modelling approach (using pore-network model and reactive

  20. Analytical model for the design of in situ horizontal permeable reactive barriers (HPRBs) for the mitigation of chlorinated solvent vapors in the unsaturated zone

    NARCIS (Netherlands)

    Verginelli, Iason; Capobianco, Oriana; Hartog, Niels; Baciocchi, Renato

    In this work we introduce a 1-D analytical solution that can be used for the design of horizontal permeable reactive barriers (HPRBs) as a vapor mitigation system at sites contaminated by chlorinated solvents. The developed model incorporates a transient diffusion-dominated transport with a