Reactive power compensating system
Energy Technology Data Exchange (ETDEWEB)
Williams, Timothy J. (Redondo Beach, CA); El-Sharkawi, Mohamed A. (Renton, WA); Venkata, Subrahmanyam S. (Seattle, WA)
1987-01-01
The reactive power of an induction machine is compensated by providing fixed capacitors on each phase line for the minimum compensation required, sensing the current on one line at the time its voltage crosses zero to determine the actual compensation required for each phase, and selecting switched capacitors on each line to provide the balance of the compensation required.
El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.; Chen, Mingliang; Andexler, George; Huang, Tony
1992-01-01
A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.
Energy Technology Data Exchange (ETDEWEB)
El-Sharkawi, Mohamed A. (Renton, WA); Venkata, Subrahmanyam S. (Woodinville, WA); Chen, Mingliang (Kirkland, WA); Andexler, George (Everett, WA); Huang, Tony (Seattle, WA)
1992-01-01
A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.
Reactive Power Compensating System.
Energy Technology Data Exchange (ETDEWEB)
Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.
1985-01-04
The circuit was designed for the specific application of wind-driven induction generators. It has great potential for application in any situation where a varying reactive power load is present, such as with induction motors or generators, or for transmission network compensation.
Reactive power compensation a practical guide
Hofmann, Wolfgang; Just, Wolfgang
2012-01-01
The comprehensive resource on reactive power compensation, presenting the design, application and operation of reactive power equipment and installations The area of reactive power compensation is gaining increasing importance worldwide. If suitably designed, it is capable of improving voltage quality significantly, meaning that losses in equipment and power systems are reduced, the permissible loading of equipment can be increased, and the over-all stability of system operation improved. Ultimately, energy use and CO2 emisson are reduced. This unique guide discusses the
An introduction to reactive power compensation for wind farms
International Nuclear Information System (INIS)
Nigim, K.A.; Cairo Univ., Giza; Zobaa, A.F.; El Amin, I.
2005-01-01
The paper summarises the refereed contributions of seven articles reviewed for publication in the IJETP - Special Issue on 'Reactive compensation for wind farms'. The main goal of the special issue is to provide a forum to exchange information on the reactive power compensation requirements for wind farms and introducing possible price mechanisms for today's deregulated power industry. Uncompensated reactive power causes stress on the hosting utility grid as well as added expenses, which create in difficulties for power purchasing agreements from independent wind energy producers. Wind power producers need to comply with the hosting utility grid interconnection standards, e.g., voltage and frequency, as well as to provide controllable active and reactive sources of power. Active power supply is mainly dependent on the potential of wind power produced and the turbine design. Reactive power demand on the other hand depends on the conversion devices and the recovered power quantity fed to the grid. Static Var Compensators (SVC), Unified Power Quality Conditioners (UPQC), Unified Power Flow Controllers (UPFC), and the Distributed Static Synchronous Compensators (DSTATCOM) are all new emerging devices aimed at regulating the reactive power requirements. The excellent controllability of these devices has paved the way to flexible and dynamic controllers that are capable of regulating the flow of active and reactive power components. These devices are now suggested for the control of the reactive power requirement of wind generators. Studies have demonstrated acceptable voltage stabilisation results. This has increased the penetration level of wind power into existing distribution networks in many countries. (Author)
Voltage Sag Mitigation and Load Reactive Power Compensation by UPQC
Ajitha, P; Jananisri, D
2014-01-01
This paper presents Unified Power Quality Conditioner(UPQC) that consist of series inverter and shunt inverter in back to back configuration which simultaneously compensate the power quality(PQ) problems of both voltage sag and load reactive power compensation . In this paper ,Neural network is tool which is considered for solving power quality problems. The simulation results from MATLAB/SIMULINK are discussed to validate the proposed method.
An introduction to reactive power compensation for wind farms
Energy Technology Data Exchange (ETDEWEB)
Nigim, K.A. [Waterloo Univ., Ont. (Canada). Dept. of Electrical and Computer Engineering; Cairo Univ., Giza (Egypt). Faculty of Engineering; Zobaa, A.F.; El Amin, I. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia). Dept. of Electrical Engineering
2005-07-01
The paper summarises the refereed contributions of seven articles reviewed for publication in the IJETP - Special Issue on 'Reactive compensation for wind farms'. The main goal of the special issue is to provide a forum to exchange information on the reactive power compensation requirements for wind farms and introducing possible price mechanisms for today's deregulated power industry. Uncompensated reactive power causes stress on the hosting utility grid as well as added expenses, which create in difficulties for power purchasing agreements from independent wind energy producers. Wind power producers need to comply with the hosting utility grid interconnection standards, e.g., voltage and frequency, as well as to provide controllable active and reactive sources of power. Active power supply is mainly dependent on the potential of wind power produced and the turbine design. Reactive power demand on the other hand depends on the conversion devices and the recovered power quantity fed to the grid. Static Var Compensators (SVC), Unified Power Quality Conditioners (UPQC), Unified Power Flow Controllers (UPFC), and the Distributed Static Synchronous Compensators (DSTATCOM) are all new emerging devices aimed at regulating the reactive power requirements. The excellent controllability of these devices has paved the way to flexible and dynamic controllers that are capable of regulating the flow of active and reactive power components. These devices are now suggested for the control of the reactive power requirement of wind generators. Studies have demonstrated acceptable voltage stabilisation results. This has increased the penetration level of wind power into existing distribution networks in many countries. (Author)
Reactive power compensation and loss reduction in large industrial enterprises
Energy Technology Data Exchange (ETDEWEB)
Jovanovic, S; Gajic, B; Mijailovic, S [Institute Nikola Tesla, Beograd (Yugoslavia)
1991-12-01
This paper considers the reactive power compensation and the active power and energy loss reduction of large radial power networks in the Serbian mine and smelting industry. It gives an efficient optimization procedure for positioning and sizing capacitors in large industrial systems integrated with a simple network analysis method. (Author).
Dynamic Performance of the ITER Reactive Power Compensation System
International Nuclear Information System (INIS)
Sheng Zhicai; Fu Peng; Xu Liuwei
2011-01-01
Dynamic performance of a reactive power compensation (RPC) system for the international thermonuclear experimental reactor (ITER) power supply is presented. Static var compensators (SVCs) are adopted to mitigate voltage fluctuation and reduce the reactive power down to a level acceptable for the French/European 400 kV grid. A voltage feedback and load power feedforward controller for SVC is proposed, with the feedforward loop intended to guarantee short response time and the feedback loop ensuring good dynamics and steady characteristics of SVC. A mean filter was chosen to measure the control signals to improve the dynamic response. The dynamic performance of the SVC is verified by simulations using PSCAD/EMTDC codes.
Coordination of baseload power plant group control with static reactive power compensator control
Directory of Open Access Journals (Sweden)
Zbigniew Szczerba
2012-06-01
Full Text Available Reactive power sources in power system nodes: generators and static reactive power compensators, are controlled by control systems. Generators – by generator node group controllers, compensators – by voltage controllers. The paper presents issues of these control systems’ coordination and proposals for its implementation.
Index-based reactive power compensation scheme for voltage regulation
Dike, Damian Obioma
2008-10-01
Increasing demand for electrical power arising from deregulation and the restrictions posed to the construction of new transmission lines by environment, socioeconomic, and political issues had led to higher grid loading. Consequently, voltage instability has become a major concern, and reactive power support is vital to enhance transmission grid performance. Improved reactive power support to distressed grid is possible through the application of relatively unfamiliar emerging technologies of "Flexible AC Transmission Systems (FACTS)" devices and "Distributed Energy Resources (DERS)." In addition to these infrastructure issues, a lack of situational awareness by system operators can cause major power outages as evidenced by the August 14, 2003 widespread North American blackout. This and many other recent major outages have highlighted the inadequacies of existing power system indexes. In this work, a novel "Index-based reactive compensation scheme" appropriate for both on-line and off-line computation of grid status has been developed. A new voltage stability index (Ls-index) suitable for long transmission lines was developed, simulated, and compared to the existing two-machine modeled L-index. This showed the effect of long distance power wheeling amongst regional transmission organizations. The dissertation further provided models for index modulated voltage source converters (VSC) and index-based load flow analysis of both FACTS and microgrid interconnected power systems using the Newton-Raphson's load flow model incorporated with multi-FACTS devices. The developed package has been made user-friendly through the embodiment of interactive graphical user interface and implemented on the IEEE 14, 30, and 300 bus systems. The results showed reactive compensation has system wide-effect, provided readily accessible system status indicators, ensured seamless DERs interconnection through new islanding modes and enhanced VSC utilization. These outcomes may contribute
Compensation of Reactive Power from Wind Turbines with Power Electronics Equipment
DEFF Research Database (Denmark)
Pedersen, Jørgen Kaas
1996-01-01
Wind turbines with induction generators consume reactive power. Apart from the no load consumption, which is nearing constant and is being compensated for using capacitors, the consumption of reactive power varies almost proportional with the power production, which can vary immensely. Except tha...
Efficient Reactive Power Compensation Algorithm for Distribution Network
Directory of Open Access Journals (Sweden)
J. Jerome
2017-12-01
Full Text Available The use of automation and energy efficient equipment with electronic control would greatly improve industrial production. These new devices are more sensitive to supply voltage deviation and the characteristics of the power system that was previously ignored are now very important. Hence the benefits of distribution automation have been widely acknowledged in recent years. This paper proposes an efficient load flow solution technique extended to find optimum location for reactive power compensation and network reconfiguration for planning and day-to-day operation of distribution networks. This is required as a part of the distribution automation system (DAS for taking various control and operation decisions. The method exploits the radial nature of the network and uses forward and backward propagation technique to calculate branch currents and node voltages. The proposed method has been tested to analyze several practical distribution networks of various voltage levels and also having high R/X ratio.
Directory of Open Access Journals (Sweden)
V. N. Radkevich
2016-01-01
Full Text Available The paper considers evaluation procedure for the degree of active power losses reduction in the power transmission lines under 1 kV and 6–10 kV of the systems of electric power supply of industrial enterprises with compensating installations mounted at the side of the customer. The capacitor installations conform to the applied voltage level and factor in dielectric losses in the capacitors. The voltage at the compensating device terminal changes from 0.95 to 1.05 of the capacitors nominal voltage. The study did not account for reactive power losses in the line, nor did it for its charge capacity, conditioned by relative shortness of the cable lines generally operating in the mains of industrial enterprises. For this reason, the quantities of reactive power being consumed and generated by the transmission line are negligible and do not significantly affect the reactive power flux. The researchers obtain functional relations that allow estimating the degree of power loss reduction in the transmission line factoring in its explicit initial data. They perform mathematical analysis of the obtained functional relations and study the function by means of derivatives. The function extremum points are found as well as the intervals of its increment and decrement. A graphical research of the obtained functional relation is performed. It is ascertained that reduction of the active power losses is contingent on the line and the capacitor-installation engineering factors, the electrical energy consumer reactive load value as well as the voltage applied to the capacitor installation. The functional relations presented in the article can be employed in scoping calculation necessary for decision making on the reactive power compensation in systems of the industrial facilities electric power supply. Their account will allow a more accurate estimate of technical and economic effect of the capacitor bank installation in the electrical mains under 1 kV and 6
Advanced configuration of hybrid passive filter for reactive power and harmonic compensation.
Kececioglu, O Fatih; Acikgoz, Hakan; Sekkeli, Mustafa
2016-01-01
Harmonics is one of the major power quality problems for power systems. The harmonics can be eliminated by power filters such as passive, active, and hybrid. In this study, a new passive filter configuration has been improved in addition to the existing passive filter configurations. Conventional hybrid passive filters are not successful to compensate rapidly changing reactive power demand. The proposed configure are capable of compensating both harmonics and reactive power at the same time. Simulation results show that performance of reactive power and harmonic compensation with advanced hybrid passive filter is better than conventional hybrid passive filters.
Advanced configuration of hybrid passive filter for reactive power and harmonic compensation
Kececioglu, O. Fatih; Acikgoz, Hakan; Sekkeli, Mustafa
2016-01-01
Harmonics is one of the major power quality problems for power systems. The harmonics can be eliminated by power filters such as passive, active, and hybrid. In this study, a new passive filter configuration has been improved in addition to the existing passive filter configurations. Conventional hybrid passive filters are not successful to compensate rapidly changing reactive power demand. The proposed configure are capable of compensating both harmonics and reactive power at the same time. ...
Energy Technology Data Exchange (ETDEWEB)
Grosse-Gehling, Martin; Just, Wolfgang; Reese, Juergen; Schlabbach, Juergen
2013-11-01
Reactive power compensation is playing an increasingly important role as the need for an efficient use of operating equipment and power grids continues to grow. This book presents the fundamentals of reactive power compensation in low and medium voltage grids, offering a wealth of application and calculation examples that will further the reader's understanding of the following topics: 1. design, dimensioning and operation of capacitors and capacitor installations; 2. long-term stability and ageing of capacitor installations; 3. use of passive and active filters; 4. improvement of voltage quality by means of filters and capacitor installations; 5. provision of reactive power compensation by means of power electronics; 6. costs and economic efficiency of reactive power compensation and filter equipment; 7. considerations from the viewpoint of the power supply industry; price regulations; 8. information requirements concerning PCB-containing capacitors; 9. climate protection and energy efficiency through reactive power compensation; 10. technical connection requirements and guidelines; 11. special technical issues concerning the use of reactive power compensation installations. [German] Die Blindleistungskompensation gewinnt angesichts der Notwendigkeit zur erhoehten Ausnutzung der Betriebsmittel und Netze zunehmend an Bedeutung. In diesem Buch werden die Grundlagen der Blindleistungskompensation in Nieder- und Mittelspannungsnetzen beschrieben und folgende Themen anhand zahlreicher Anwendungs- und Berechnungsbeispiele vertieft: 1. Aufbau, Auslegung und Betrieb von Kondensatoren und Kondensatoranlagen, 2. Langzeitstabilitaet und Alterung von Kondensatoranlagen, 3. Einsatz passiver und aktiver Filter, 4. Verbesserung der Spannungsqualitaet durch Filter und Kondensatoranlagen, 5. Blindleistungsbereitstellung mit Leistungselektronik, 6. Kosten und Wirtschaftlichkeit von Kompensations- und Filteranlagen, 7. Elektrizitaetswirtschaftliche Betrachtungen
Improvement of the dynamic response of the ITER Reactive Power Compensation system
International Nuclear Information System (INIS)
Finotti, Claudio; Gaio, Elena; Song, Inho; Tao, Jun; Benfatto, Ivone
2015-01-01
Highlights: • The slow response reasons of the classic ITER Reactive Power Compensation (RPC) control are explained. • The dynamic behaviors of the ac/dc converter and of the RPC are characterized. • New control concept to speed up the RPC response is developed. • Good performance of the new RPC control is verified even during fast transient conditions. - Abstract: The ITER ac/dc conversion system can absorb a total active and reactive power up to 500 MW and 950 Mvar, respectively. The Reactive Power Compensation (RPC) system is rated for a nominal power of 750 Mvar necessary to comply with the allowable reactive power limit value from the grid of 200 Mvar. This system is currently under construction and is based on Static Var Compensation technology with Thyristor Controlled Reactor (TCR) and Tuned Filters. The RPC has to minimize the demand of reactive power from the grid; its control is based on a feed-forward method, where the corrective input is the measurement of the reactive power consumption of the ac/dc converters, derived from the 50 Hz component of the Fast Fourier Transform (FFT) of the three-phase voltages and currents. The delay introduced by the FFT calculation and the slow response of the TCR could make the response speed of the RPC not sufficient to face fast variations of the reactive power demand and therefore in this paper a new controller of the RPC able to overcome this shortcoming is proposed and evaluated. It is based on the calculation of the predicted consumption of the reactive power by using the voltage reference signals coming from the Plasma Control System and the measurements of the dc current of the ac/dc converters and of the 66 kV busbar voltage, and on the speed up of the RPC control by introducing a lead–lag transfer function.
Improvement of the dynamic response of the ITER Reactive Power Compensation system
Energy Technology Data Exchange (ETDEWEB)
Finotti, Claudio, E-mail: claudio.finotti@igi.cnr.it [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Gaio, Elena [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Song, Inho; Tao, Jun; Benfatto, Ivone [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)
2015-10-15
Highlights: • The slow response reasons of the classic ITER Reactive Power Compensation (RPC) control are explained. • The dynamic behaviors of the ac/dc converter and of the RPC are characterized. • New control concept to speed up the RPC response is developed. • Good performance of the new RPC control is verified even during fast transient conditions. - Abstract: The ITER ac/dc conversion system can absorb a total active and reactive power up to 500 MW and 950 Mvar, respectively. The Reactive Power Compensation (RPC) system is rated for a nominal power of 750 Mvar necessary to comply with the allowable reactive power limit value from the grid of 200 Mvar. This system is currently under construction and is based on Static Var Compensation technology with Thyristor Controlled Reactor (TCR) and Tuned Filters. The RPC has to minimize the demand of reactive power from the grid; its control is based on a feed-forward method, where the corrective input is the measurement of the reactive power consumption of the ac/dc converters, derived from the 50 Hz component of the Fast Fourier Transform (FFT) of the three-phase voltages and currents. The delay introduced by the FFT calculation and the slow response of the TCR could make the response speed of the RPC not sufficient to face fast variations of the reactive power demand and therefore in this paper a new controller of the RPC able to overcome this shortcoming is proposed and evaluated. It is based on the calculation of the predicted consumption of the reactive power by using the voltage reference signals coming from the Plasma Control System and the measurements of the dc current of the ac/dc converters and of the 66 kV busbar voltage, and on the speed up of the RPC control by introducing a lead–lag transfer function.
Reactive Power Compensation Using an Energy Management System
2014-09-01
compiled to VHDL code using Xilinx System Generator software [12], which is used by the FPGA to command the EMS. The FPGA development board is the middle...controller was implemented in the lab to correct iems because the EMS hardware currently does not have a sensor on the source current. Adding a...shown in Figure 13 as φsource changes over time. 20 The function of the power factor correction diagram shown in Figure 14 is to implement the power
DEFF Research Database (Denmark)
Wickramasinghe Abeywardana, Damith Buddika; Acuna, Pablo; Hredzak, Branislav
2018-01-01
Vehicle to grid (V2G) reactive power compensation using electric vehicle (EV) onboard chargers helps to ensure grid power quality by achieving unity power factor operation. However, the use of EVs for V2G reactive power compensation increases the second-order harmonic ripple current component...... from the grid, exposes the EV battery to these undesirable ripple current components for a longer period and discharges the battery due to power conversion losses. This paper presents a way to provide V2G reactive power compensation through a boost inverter-based single stage EV charger and a DC...
Economic analysis of reactive power compensation in a wind farm: Influence of Spanish energy policy
Energy Technology Data Exchange (ETDEWEB)
Martinez, E.; Daroca, F. [Grupo Eolicas Riojanas, Carretera de Laguardia, 91-93, 26006 Logrono, La Rioja (Spain); Sanz, F.; Blanco, J. [Department of Mechanical Engineering, University of La Rioja, Logrono, La Rioja (Spain); Jimenez, E. [Department of Electrical Engineering, University of La Rioja, Logrono, La Rioja (Spain)
2008-08-15
Presently, renewable energies and especially wind energy are gaining a special relevance in the electrical market worldwide. This current rate of growth brings with it the need for the various wind farms to not limit themselves to producing energy but also provide stability to the network within its capabilities. So, the actual objective is to adapt the installations that produce wind energy in such a way that they give a maximum amount of support in any given moment to the electrical network. For this purpose, there are governing techno-economic parameters that influence the economic behavior of commercial wind farms. A complete cost-benefit analysis model is developed, focused on incorporating automatic capacitor banks into wind farms for the compensation of reactive power. This economic analysis is about doubly fed induction generator (DFIG) wind turbines. Although this kind of wind turbines have a certain capability in terms of modulating reactive power, this capacity is not enough to achieve the new requirements of reactive power regulation in Spain and it is necessary to invest in systems of external compensation. In this paper, we have studied the case of DFIG wind turbine and capacitor banks, although the used methodology can be applied to other technologies as well by simply amplifying the algorithms according to the specific characteristics of the option elected. Following this premise, a detailed analysis of the specific needs of a wind farm has been carried out, as well as a search for the optimum performance for the compensation of reactive power. (author)
Economic analysis of reactive power compensation in a wind farm: Influence of Spanish energy policy
International Nuclear Information System (INIS)
Martinez, E.; Daroca, F.; Sanz, F.; Blanco, J.; Jimenez, E.
2008-01-01
Presently, renewable energies and especially wind energy are gaining a special relevance in the electrical market worldwide. This current rate of growth brings with it the need for the various wind farms to not limit themselves to producing energy but also provide stability to the network within its capabilities. So, the actual objective is to adapt the installations that produce wind energy in such a way that they give a maximum amount of support in any given moment to the electrical network. For this purpose, there are governing techno-economic parameters that influence the economic behavior of commercial wind farms. A complete cost-benefit analysis model is developed, focused on incorporating automatic capacitor banks into wind farms for the compensation of reactive power. This economic analysis is about doubly fed induction generator (DFIG) wind turbines. Although this kind of wind turbines have a certain capability in terms of modulating reactive power, this capacity is not enough to achieve the new requirements of reactive power regulation in Spain and it is necessary to invest in systems of external compensation. In this paper, we have studied the case of DFIG wind turbine and capacitor banks, although the used methodology can be applied to other technologies as well by simply amplifying the algorithms according to the specific characteristics of the option elected. Following this premise, a detailed analysis of the specific needs of a wind farm has been carried out, as well as a search for the optimum performance for the compensation of reactive power. (author)
Settlement of reactive power compensation in the light of white certificates
Zajkowski, Konrad
2017-10-01
The article discusses the problem of the determination of savings on active energy as a result of a reactive power compensation. Statutory guidance on the required energy audit to obtain white certificates in the European Union was followed. The analysis was made on the basis of the Polish Law. The paper presents a detailed analytical method and an estimation method taking into account the impact on the line, the transformer and the generator. According to the relevant guidelines in the European Union, the reduction of CO2 emissions by calculating the saving of active power should be determined. The detailed method and an estimation method proposed for the determination of savings on active energy as a result of the reactive power compensation carried out possess some errors and inconvenience. The detailed method requires knowledge of the network topology and a determination of reactive power Q at each point of the network. The estimation method of analysis is easy in execution, especially if the consumer of energy is the main or the most significant purchaser of electricity in the network. Unfortunately, this latter method can be used only for activities that do not require high computational accuracy. The results obtained by this method are approximate values that can be used for the calculation of economic indicators. The estimation method is suitable for determining the number of white certificates when a power audit concerns a recipient of electricity, the structure of which is a large number of divisions scattered at many different locations in the power system.
Settlement of reactive power compensation in the light of white certificates
Directory of Open Access Journals (Sweden)
Zajkowski Konrad
2017-01-01
The detailed method and an estimation method proposed for the determination of savings on active energy as a result of the reactive power compensation carried out possess some errors and inconvenience. The detailed method requires knowledge of the network topology and a determination of reactive power Q at each point of the network. The estimation method of analysis is easy in execution, especially if the consumer of energy is the main or the most significant purchaser of electricity in the network. Unfortunately, this latter method can be used only for activities that do not require high computational accuracy. The results obtained by this method are approximate values that can be used for the calculation of economic indicators. The estimation method is suitable for determining the number of white certificates when a power audit concerns a recipient of electricity, the structure of which is a large number of divisions scattered at many different locations in the power system.
Energy Technology Data Exchange (ETDEWEB)
Albuquerque, F.L.; Moraes, A.J.; Guimaraes, G.C.; Sanhueza, S.M.R.; Vaz, A.R. [Federal University of Uberlandia (UFU), MG (Brazil)
2009-07-01
In the case of photovoltaic solar systems (PV) acting as a distributed generation (DG), the DC energy obtained is fed through the power-conditioning unit (inverter) to the grid. The majority of contemporary inverters used in DG systems are current source inverters (CSI) operating at unity power factor. If, however, we assume that voltage source inverters (VSI) can be utilized instead of CSI, we can generate reactive power commensurate with the remaining unused capacity at any given point in time. According to the theory of instantaneous power, the reactive and active power of inverter can be regulated by changing the amplitude and the phase of the output voltage of the inverter. Based on this theory, the active power output and the reactive power compensation (RPC) of the system are realized simultaneously. When the insolation is weak or the PV modules are inoperative at night, the RPC feature of PV system can still be used to improve the utilization factor of the inverter. The MATLAB simulation results validate the feasibility of the method. (author)
Dynamic Reactive Power Compensation of Large Scale Wind Integrated Power System
DEFF Research Database (Denmark)
Rather, Zakir Hussain; Chen, Zhe; Thøgersen, Paul
2015-01-01
wind turbines especially wind farms with additional grid support functionalities like dynamic support (e,g dynamic reactive power support etc.) and ii) refurbishment of existing conventional central power plants to synchronous condensers could be one of the efficient, reliable and cost effective option......Due to progressive displacement of conventional power plants by wind turbines, dynamic security of large scale wind integrated power systems gets significantly compromised. In this paper we first highlight the importance of dynamic reactive power support/voltage security in large scale wind...... integrated power systems with least presence of conventional power plants. Then we propose a mixed integer dynamic optimization based method for optimal dynamic reactive power allocation in large scale wind integrated power systems. One of the important aspects of the proposed methodology is that unlike...
Study on offshore wind farm integration mode and reactive power compensation
Energy Technology Data Exchange (ETDEWEB)
Bian, Xiaoyan; Hong, Lijun; Fu, Yang [Shanghai Univ. of Electrical Power (China). Power and Automation Engineering Dept.
2013-07-01
Two typical offshore wind farm grid-connected modes are introduced and dynamic characteristics under their modes are compared from the simulation by PSS/E. The result shows that offshore wind farm with VSC-HVDC has better dynamic characteristics on fault isolation, reactive power compensation, and fault ride through ability. In addition, STATCOM has been applied to the offshore wind farm, the simulation results indicates that it can improve the bus voltage stability in fault and maintain the voltage level under a small perturbation.
Directory of Open Access Journals (Sweden)
E. P. Zabello
2005-01-01
Full Text Available The method is proposed to make a correction in payment for consumption of reactive energy and power which is attributed to deviation of actual activation energy losses for reactive power compensation from their standard value. It is recommended to calculate standard loss values for every voltage level and actual loss values are to be determined with the help of application of remote electronic accounting means in the current mode of power consumption.
Directory of Open Access Journals (Sweden)
T. Demirdelen
2016-10-01
Full Text Available In recent years, shunt hybrid active power filters are being increasingly considered as a viable alternative to both passive filters and active power filters for compensating harmonics. In literature, their applications are restricted to balanced systems and low voltage applications and therefore not for industrial applications. This paper investigates the performance of a modular cascaded multilevel inverter based Shunt Hybrid Active Power Filter (SHAPF for reactive power compensation and selective harmonics elimination under distorted/unbalanced grid voltage conditions in medium voltage levels. In the proposed control method, reactive power compensation is achieved successfully with a perceptible amount and the performance results of harmonic compensation are satisfactory. Theoretical analysis and simulation results are obtained from an actual industrial network model in PSCAD. The simulation results are presented for a proposed system in order to demonstrate that the harmonic compensation performance meets the IEEE-519 standard.
DEFF Research Database (Denmark)
Mousazadeh, Seyyed Yousef; Jalilain, Alireza; Savaghebi, Mehdi
2018-01-01
In microgrids, Voltage Source Inverters (VSIs) interfacing Distributed Generation (DG) units can be operated in Voltage or Current Controlled Modes (VCM/CCM). In this paper, a coordinated control of CCM and VCM units for reactive power sharing and voltage harmonics compensation is proposed....... This decentralized control scheme is based on the local measurement of signals. In this way, the need for communication links is removed which results in a simpler and more reliable structure compared to the communication based control structures. To be more exact, the VCM units contribute to harmonics compensation....... Experimental and simulation studies show that the harmonics compensation is achieved by using only local measurements in presence of virtual admittance/impedance schemes of CCM/VCM units. Furthermore, it is demonstrated that the reactive power sharing among the CCM and VCM units is obtained based...
Assessment of transient stability of cable based transmission grids with reactive power compensation
DEFF Research Database (Denmark)
Foo, Yii; Dall, Laurids; Silva, Filipe Miguel Faria da
2017-01-01
Underground transmission cables are gaining popularity due to its applications near cities and aesthetic purpose. For example in Denmark, the transmission power grid is changing significantly as many conventional overhead lines (OHL) are replaced by cables and more is expected over the coming years...... through a series of sensitivity analysis with respect to the cables compensation degree. A separate case of disconnecting the SRs of the faulted line is also carried out. The tendencies are initially observed and explained for smaller systems, Single-Machine Infinite Bus (SMIB) and 9-bus system...
O. I. Bondar; I. L. Bondar
2009-01-01
In this work the generalized mathematical model of an electrical network of the electrified railway junction is proposed. An estimation of influence of static var compensators installation on electric power losses in a network is executed on the basis of given model.
Reactive Power Compensation of a 24 MW Wind Farm using a 12-Pulse Voltage Source Converter
DEFF Research Database (Denmark)
Pedersen, Knud Ole Helgesen; Pedersen, Jørgen Kaas
1998-01-01
Integration of large wind farms in distribution and transmission systems may have severe influence on the power quality at the connection point and may also influence the voltage controlling capability of the electrical system. The purpose of the described project has been to develop and investig......Integration of large wind farms in distribution and transmission systems may have severe influence on the power quality at the connection point and may also influence the voltage controlling capability of the electrical system. The purpose of the described project has been to develop...... and investigate the use of a STATCOM by modelling and field testing an 8 MVar unit in a 24 MW wind farm....
Reactive Power Compensation of a 24 MW Wind Farm using a 12-Pulse Voltage Source Converter
DEFF Research Database (Denmark)
Søbrink, K.H.; Pedersen, Jørgen Kaas; Pedersen, Knud Ole Helgesen
1998-01-01
Integration of large wind farms in distribution and transmission systems may have severe influence on the power quality at the connection point and may also influence the voltage controlling capability of the electrical system. The purpose of the described project has been to develop and investig...
Vlasayevsky, Stanislav; Klimash, Stepan; Klimash, Vladimir
2017-10-01
A set of mathematical modules was developed for evaluation the energy performance in the research of electrical systems and complexes in the MatLab. In the electrotechnical library SimPowerSystems of the MatLab software, there are no measuring modules of energy coefficients characterizing the quality of electricity and the energy efficiency of electrical apparatus. Modules are designed to calculate energy coefficients characterizing the quality of electricity (current distortion and voltage distortion) and energy efficiency indicators (power factor and efficiency) are presented. There are described the methods and principles of building the modules. The detailed schemes of modules built on the elements of the Simulink Library are presented, in this connection, these modules are compatible with mathematical models of electrical systems and complexes in the MatLab. Also there are presented the results of the testing of the developed modules and the results of their verification on the schemes that have analytical expressions of energy indicators.
Directory of Open Access Journals (Sweden)
José Luis Monroy-Morales
2017-03-01
Full Text Available Active Power Filters (APFs have been used for reducing waveform distortion and improving power quality. However, this function can be improved by means of a selective harmonic compensation. Since an APF has rating restrictions, it is convenient to have the option of selecting an individual or a set of particular harmonics in order to compensate and apply the total APF capabilities to eliminate these harmonics, in particular those with a greater impact on the Total Harmonic Distortion (THD. This paper presents the development of a new APF prototype based on a three-phase three-level Neutral Point Clamped (NPC inverter with selective harmonic compensation capabilities and reactive power compensation. The selective harmonic compensation approach uses several Synchronous Rotating Frames (SRF, to detect and control individual or a set of harmonics using d and q variables. The APF includes a Three-Dimensional Space Vector Modulator (3D-SVPWM in order to generate the compensation currents. Because of its multilevel topology, the proposed active power filter can be used in diverse power quality applications at sub-transmission and distribution voltage levels. Simulation and experimental results are shown to validate the proposed solution and assess the prototype performance in different scenarios.
Directory of Open Access Journals (Sweden)
Ignacio Pérez Abril
2011-02-01
Full Text Available A pesar de que los sistemas de distribución primaria y secundaria son desbalanceados por naturaleza, lacompensación de potencia reactiva en estos sistemas, se realiza comúnmente mediante bancos decondensadores trifásicos balanceados. En este trabajo se presenta la formulación general para el problemade compensación de potencia reactiva en sistemas desbalanceados mediante bancos de condensadoresdesbalanceados. Se presentan cuatro ejemplos de compensación en el secundario de bancos desbalanceadosde transformadores monofásicos. Todos los ejemplos muestran que la compensación por bancosdesbalanceados de capacitores incrementa los beneficios con respecto al uso de bancos balanceados In spite of the fact that primary and secondary distribution systems are unbalanced by nature, thereactive power compensation on these systems is commonly developed by the use of balanced capacitorbanks. In this paper, the general formulation for the reactive power compensation problem onunbalanced systems with unbalanced capacitor banks is developed. Four examples of reactive powercompensation on the secondary of unbalanced three-phase transformers banks are presented. All theexamples show that the compensation by unbalanced capacitor banks increases the active power lossessaving as well as reduce the transformer’s load and contributes to balance the line currents when the loadis unbalanced.
Reactive Power Management in Electric Power Systems
African Journals Online (AJOL)
(Ferranti effect) would limit the power transfer and the transmission range in the absence of any compensation measures. Journal of EAEA, Vol 14, 1997. In this paper, the management of the reactive power is explored with the aim of improving the quality and the reliability of the supply in the EELPA's interconnected system ...
Static compensators (STATCOMs) in power systems
Shahnia, Farhad; Ghosh, Arindam
2014-01-01
A static compensator (STATCOM), also known as static synchronous compensator, is a member of the flexible alternating current transmission system (FACTS) devices. It is a power-electronics based regulating device which is composed of a voltage source converter (VSC) and is shunt-connected to alternating current electricity transmission and distribution networks. The voltage source is created from a DC capacitor and the STATCOM can exchange reactive power with the network. It can also supply some active power to the network, if a DC source of power is connected across the capacitor. A STATCOM
Reactive power supply by distributed generators
Braun, M.
2008-01-01
Distributed reactive power supply is necessary in distribution networks for an optimized network operation. This paper presents first the reactive power supply capabilities of generators connected to the distribution network (distributed generators). In a second step an approach is proposed of determining the energy losses resulting from reactive power supply by distributed generators. The costs for compensating these losses represent the operational costs of reactive power supply. These cost...
Energy Technology Data Exchange (ETDEWEB)
Kueck, John D [ORNL; Kirby, Brendan J [ORNL; Li, Fangxing [ORNL; Tufon, Christopher [Pacific Gas and Electric Company; Isemonger, Alan [California Independent System Operator
2008-07-01
Two kinds of power are required to operate an electric power system: real power, measured in watts, and reactive power, measured in volt-amperes reactive or VARs. Reactive power supply is one of a class of power system reliability services collectively known as ancillary services, and is essential for the reliable operation of the bulk power system. Reactive power flows when current leads or lags behind voltage. Typically, the current in a distribution system lags behind voltage because of inductive loads such as motors. Reactive power flow wastes energy and capacity and causes voltage droop. To correct lagging power flow, leading reactive power (current leading voltage) is supplied to bring the current into phase with voltage. When the current is in phase with voltage, there is a reduction in system losses, an increase in system capacity, and a rise in voltage. Reactive power can be supplied from either static or dynamic VAR sources. Static sources are typically transmission and distribution equipment, such as capacitors at substations, and their cost has historically been included in the revenue requirement of the transmission operator (TO), and recovered through cost-of-service rates. By contrast, dynamic sources are typically generators capable of producing variable levels of reactive power by automatically controlling the generator to regulate voltage. Transmission system devices such as synchronous condensers can also provide dynamic reactive power. A class of solid state devices (called flexible AC transmission system devices or FACTs) can provide dynamic reactive power. One specific device has the unfortunate name of static VAR compensator (SVC), where 'static' refers to the solid state nature of the device (it does not include rotating equipment) and not to the production of static reactive power. Dynamic sources at the distribution level, while more costly would be very useful in helping to regulate local voltage. Local voltage regulation would
Substation Reactive Power Regulation Strategy
Zhang, Junfeng; Zhang, Chunwang; Ma, Daqing
2018-01-01
With the increasing requirements on the power supply quality and reliability of distribution network, voltage and reactive power regulation of substations has become one of the indispensable ways to ensure voltage quality and reactive power balance and to improve the economy and reliability of distribution network. Therefore, it is a general concern of the current power workers and operators that what kind of flexible and effective control method should be used to adjust the on-load tap-changer (OLTC) transformer and shunt compensation capacitor in a substation to achieve reactive power balance in situ, improve voltage pass rate, increase power factor and reduce active power loss. In this paper, based on the traditional nine-zone diagram and combining with the characteristics of substation, a fuzzy variable-center nine-zone diagram control method is proposed and used to make a comprehensive regulation of substation voltage and reactive power. Through the calculation and simulation of the example, this method is proved to have satisfactorily reconciled the contradiction between reactive power and voltage in real-time control and achieved the basic goal of real-time control of the substation, providing a reference value to the practical application of the substation real-time control method.
Directory of Open Access Journals (Sweden)
Davel Borges Vasconcellos
2012-12-01
Full Text Available La eficiencia energética de un sistema eléctrico depende en gran medida del factor de potencia con que opera y de una eficaz compensación de potencia reactiva si esta es necesaria. Una de las vías más utilizadas para efectuar la compensación del reactivo es el empleo de bancos de capacitores. La óptima aplicación de estos presupone tres aspectos: la selección de la capacidad más adecuada de los bancos, el tipo de compensador a utilizar, fijo o variable, así como la ubicación en el sistema de suministro eléctrico. En determinadas publicaciones, estos aspectos se tratan de forma independiente. Sin embargo, desde el punto de vista técnico ellos están mutuamente vinculados y todos poseen una implicación económica, lo que obliga a la necesidad de considerarlos en conjunto para un problema de optimización dado. Existen referencias de otros trabajos que desarrollan métodos que consideran estos aspectos de manera conjunta, pero presentan limitantes para ser aplicados en los sistemas de suministro eléctrico del sector terciario y donde predominan condiciones de desbalance. En este trabajo se presenta un método con el empleo de los algoritmos genéticos que posibilita una formulación más exacta del problema arrojando soluciones de mayor calidad. El programa desarrollado se soporta sobre software MATLAB, versión 7.8 (R2009a, utilizando las estructuras de programación de Genetic Algorithm and Direct Search Toolbox. La efectividad de su aplicación se muestra en casos de estudio correspondientes a sistemas de suministro eléctrico de dos hoteles pertenecientes al sector terciario en la provincia de Camagüey, Cuba.The energy efficiency of an electric system depends in great extent of the reactive power compensation that is carried out. One of the ways most used for reactive is power of capacitor banks. A good selection of these, presupposes three aspects: the selection of the banks capacity, the compensator type to be used and the
Multiobjective clearing of reactive power market in deregulated power systems
International Nuclear Information System (INIS)
Rabiee, A.; Shayanfar, H.; Amjady, N.
2009-01-01
This paper presents a day-ahead reactive power market which is cleared in the form of multiobjective context. Total payment function (TPF) of generators, representing the payment paid to the generators for their reactive power compensation, is considered as the main objective function of reactive power market. Besides that, voltage security margin, overload index, and also voltage drop index are the other objective functions of the optimal power flow (OPF) problem to clear the reactive power market. A Multiobjective Mathematical Programming (MMP) formulation is implemented to solve the problem of reactive power market clearing using a fuzzy approach to choose the best compromise solution according to the specific preference among various non-dominated (pareto optimal) solutions. The effectiveness of the proposed method is examined based on the IEEE 24-bus reliability test system (IEEE 24-bus RTS). (author)
Pay-as-bid based reactive power market
International Nuclear Information System (INIS)
Amjady, N.; Rabiee, A.; Shayanfar, H.A.
2010-01-01
In energy market clearing, the offers are stacked in increasing order and the offer that intersects demand curve, determines the market clearing price (MCP). In reactive power market, the location of reactive power compensator is so important. A low cost reactive producer may not essentially be favorable if it is far from the consumer. Likewise, a high cost local reactive compensator at a heavily loaded demand center of network could be inevitably an alternative required to produce reactive power to maintain the integrity of power system. Given the background, this paper presents a day-ahead reactive power market based on pay-as-bid (PAB) mechanism. Generators expected payment function (EPF) is used to construct a bidding framework. Then, total payment function (TPF) of generators is used as the objective function of optimal power flow (OPF) problem to clear the PAB based market. The CIGRE-32 bus test system is used to examine the effectiveness of the proposed reactive power market.
Pay-as-bid based reactive power market
Energy Technology Data Exchange (ETDEWEB)
Amjady, N. [Department of Electrical Engineering, Semnan University, Semnan (Iran, Islamic Republic of); Rabiee, A., E-mail: Rabiee@iust.ac.i [Center of Excellence for Power System Automation and Operation, Department of Electrical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Department of Electrical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)
2010-02-15
In energy market clearing, the offers are stacked in increasing order and the offer that intersects demand curve, determines the market clearing price (MCP). In reactive power market, the location of reactive power compensator is so important. A low cost reactive producer may not essentially be favorable if it is far from the consumer. Likewise, a high cost local reactive compensator at a heavily loaded demand center of network could be inevitably an alternative required to produce reactive power to maintain the integrity of power system. Given the background, this paper presents a day-ahead reactive power market based on pay-as-bid (PAB) mechanism. Generators expected payment function (EPF) is used to construct a bidding framework. Then, total payment function (TPF) of generators is used as the objective function of optimal power flow (OPF) problem to clear the PAB based market. The CIGRE-32 bus test system is used to examine the effectiveness of the proposed reactive power market.
Fail-safe reactivity compensation method for a nuclear reactor
Nygaard, Erik T.; Angelo, Peter L.; Aase, Scott B.
2018-01-23
The present invention relates generally to the field of compensation methods for nuclear reactors and, in particular to a method for fail-safe reactivity compensation in solution-type nuclear reactors. In one embodiment, the fail-safe reactivity compensation method of the present invention augments other control methods for a nuclear reactor. In still another embodiment, the fail-safe reactivity compensation method of the present invention permits one to control a nuclear reaction in a nuclear reactor through a method that does not rely on moving components into or out of a reactor core, nor does the method of the present invention rely on the constant repositioning of control rods within a nuclear reactor in order to maintain a critical state.
Directory of Open Access Journals (Sweden)
Davel Borges Vasconcellos
2012-08-01
Full Text Available Se presentan los inconvenientes de la potencia reactiva y a partir de allí se realiza la modelación matemática de los efectos económicos de ésta, aplicable a sistemas de suministro eléctrico. Los efectos tomados en cuenta son: los costos de inversión de los bancos de capacitores, los gastos de amortización de los bancos, los gastos de pérdidas de energía activa de los bancos, los beneficios por la mejora del factor de potencia, incluida la reducción de pérdidas de energía activa en el sistema, así como los beneficios por la liberación de la capacidad de carga, para el caso de empresas donde este aspecto pueda representar un atractivo económico. Para el análisis de los estados de carga antes y después de la compensación se utilizan algoritmos de flujos de potencia trifásicos, con el empleo de modelos de gráficos de carga ajustados, como aspecto novedoso. Estos efectos, de acuerdo con el sistema de tarifas eléctricas de Cuba, son integrados en una función de análisis económico, en este caso el Valor Actual Neto (VAN, la cual sirve de base para el planteamiento del problema de optimización, que puede derivar en la correcta selección de los dispositivos compensadores.The inconveniences of the reactive power are presented and from this are carried out the mathematical models of its economic effects applicable to secondary power systems. The effects taken into account are: the costs of the capacitors banks, the expenses of paying-off to the banks, the expenses of power losses to the banks, the benefits for the improvement of the power factor, included the reduction of power loss in the system, as well as the benefits for the liberation of the load capacity, to the case of companies where the latest aspect can represent an economic attractiveness. For the analysis after and before compensation, are consider load flow algorithm witch load model adjust. According to electrical tariff structures in Cuba, these effects are
Reactive Power from Distributed Energy
Energy Technology Data Exchange (ETDEWEB)
Kueck, John; Kirby, Brendan; Rizy, Tom; Li, Fangxing; Fall, Ndeye
2006-12-15
Distributed energy is an attractive option for solving reactive power and distribution system voltage problems because of its proximity to load. But the cost of retrofitting DE devices to absorb or produce reactive power needs to be reduced. There also needs to be a market mechanism in place for ISOs, RTOs, and transmission operators to procure reactive power from the customer side of the meter where DE usually resides. (author)
Reactive Power from Distributed Energy
International Nuclear Information System (INIS)
Kueck, John; Kirby, Brendan; Rizy, Tom; Li, Fangxing; Fall, Ndeye
2006-01-01
Distributed energy is an attractive option for solving reactive power and distribution system voltage problems because of its proximity to load. But the cost of retrofitting DE devices to absorb or produce reactive power needs to be reduced. There also needs to be a market mechanism in place for ISOs, RTOs, and transmission operators to procure reactive power from the customer side of the meter where DE usually resides. (author)
Directory of Open Access Journals (Sweden)
Davel Borges Vasconcellos
2011-02-01
Full Text Available En los sistemas eléctricos industriales es muy frecuente la existencia de cargas variables. La compensacióndel factor de potencia en la mayoría de estos casos, se realiza por medio de dispositivos compensadoresestáticos que proporcionan una potencia reactiva diferente en función de las necesidades de los receptoresdel sistema. Tales pueden ser: de compensación continua o de compensación discreta o escalonada.Estos últimos han sido ampliamente difundidos por sus ventajas. Sin embargo, los criterios para laselección de los parámetros técnicos del dispositivo, no siempre han sido adecuados. En el trabajo sepresenta un procedimiento a la hora de seleccionar dichos parámetros a nivel global en los mayormenteconocidos como compensadores automáticos del factor de potencia. Paralelamente se discute un ejemploreal de aplicación al sistema eléctrico de un pequeño taller de producción. TIn the industrial electric systems it is very frequent the existence of variables loads. The power factorcompensation in most of these cases is carried out by means of static compensations devises thatprovide a different reactive power in function of the load demands. Such they can be: of continuouscompensation or of discreet or staggered compensation. These last ones have been broadly diffused bytheir advantages. However, the approaches for the selection of the technical parameters they have notalways been adapted. A procedure is presented when selecting these parameters at global level in themostly well-known ones as automatic compensators of power factor. At the same time, a real example ofapplication is discusses to the electric system of a small production shop.
Inverted Unified Power Quality Conditioner to compensate overvoltage
Directory of Open Access Journals (Sweden)
Yeison Alberto Garcés Gómez
2017-07-01
Full Text Available Introduction: The use of unified power quality conditioners UPQC in the electric systems can correct waveform distortions in a steady state, like harmonics, flicker, and the power factor. Objective: This paper presents a novel approach for active compensation of overvoltage with a UPQC in dual topology or iUPQC. Methodology: The study it is presented in five stages, the section I shows an introduction and the state of the art, section II presents the unified power quality conditioner UPQC, section III describes the generalized reactive power theory applied to the iUPQC (dual topology, section IV shows the numerical simulations and the results and section V presents the conclusions of the study. Results: The results for the application of the iUPQC to the compensation of overvoltage are proved and compared with the more representative theory related to compensation of harmonics and low power factor. Conclusions: The control algorithm presented for the unified power quality conditioner in dual topology allows to compensate the overvoltage in three-phase systems as well as voltage and current harmonics and the low power factor.
Advanced Reactive Power Reserve Management Scheme to Enhance LVRT Capability
Directory of Open Access Journals (Sweden)
Hwanik Lee
2017-10-01
Full Text Available Abstract: To increase the utilization of wind power in the power system, grid integration standards have been proposed for the stable integration of large-scale wind power plants. In particular, fault-ride-through capability, especially Low-Voltage-Ride-Through (LVRT, has been emphasized, as it is related to tripping in wind farms. Therefore, this paper proposes the Wind power plant applicable-Effective Reactive power Reserve (Wa-ERPR, which combines both wind power plants and conventional generators at the Point of Interconnection (POI. The reactive power capability of the doubly-fed induction generator wind farm was considered to compute the total Wa-ERPR at the POI with reactive power capability of existing generators. By using the Wa-ERPR management algorithm, in case of a violation of the LVRT standards, the amount of reactive power compensation is computed using the Wa-ERPR management scheme. The proposed scheme calculates the Wa-ERPR and computes the required reactive power, reflecting the change of the system topology pre- and post-contingency, to satisfy the LVRT criterion when LVRT regulation is not satisfied at the POI. The static synchronous compensator (STATCOM with the capacity corresponding to calculated amount of reactive power through the Wa-ERPR management scheme is applied to the POI. Therefore, it is confirmed that the wind power plant satisfies the LVRT criteria by securing the appropriate reactive power at the POI, by applying of the proposed algorithm.
Dynamic impedance compensation for wireless power transfer using conjugate power
Liu, Suqi; Tan, Jianping; Wen, Xue
2018-02-01
Wireless power transfer (WPT) via coupled magnetic resonances has been in development for over a decade. However, the frequency splitting phenomenon occurs in the over-coupled region. Thus, the output power of the two-coil system achieves the maximum output power at the two splitting angular frequencies, and not at the natural resonant angular frequency. According to the maximum power transfer theorem, the impedance compensation method was adopted in many WPT projects. However, it remains a challenge to achieve the maximum output power and transmission efficiency in a fixed-frequency mode. In this study, dynamic impedance compensation for WPT was presented by utilizing the compensator within a virtual three-coil WPT system. First, the circuit model was established and transfer characteristics of a system were studied by utilizing circuit theories. Second, the power superposition of the WPT system was carefully researched. When a pair of compensating coils was inserted into the transmitter loop, the conjugate power of the compensator loop was created via magnetic coupling of the two compensating coils that insert into the transmitter loop. The mechanism for dynamic impedance compensation for wireless power transfer was then provided by investigating a virtual three-coil WPT system. Finally, the experimental circuit of a virtual three-coil WPT system was designed, and experimental results are consistent with the theoretical analysis, which achieves the maximum output power and transmission efficiency.
Dynamic impedance compensation for wireless power transfer using conjugate power
Directory of Open Access Journals (Sweden)
Suqi Liu
2018-02-01
Full Text Available Wireless power transfer (WPT via coupled magnetic resonances has been in development for over a decade. However, the frequency splitting phenomenon occurs in the over-coupled region. Thus, the output power of the two-coil system achieves the maximum output power at the two splitting angular frequencies, and not at the natural resonant angular frequency. According to the maximum power transfer theorem, the impedance compensation method was adopted in many WPT projects. However, it remains a challenge to achieve the maximum output power and transmission efficiency in a fixed-frequency mode. In this study, dynamic impedance compensation for WPT was presented by utilizing the compensator within a virtual three-coil WPT system. First, the circuit model was established and transfer characteristics of a system were studied by utilizing circuit theories. Second, the power superposition of the WPT system was carefully researched. When a pair of compensating coils was inserted into the transmitter loop, the conjugate power of the compensator loop was created via magnetic coupling of the two compensating coils that insert into the transmitter loop. The mechanism for dynamic impedance compensation for wireless power transfer was then provided by investigating a virtual three-coil WPT system. Finally, the experimental circuit of a virtual three-coil WPT system was designed, and experimental results are consistent with the theoretical analysis, which achieves the maximum output power and transmission efficiency.
DEFF Research Database (Denmark)
Chen, Zhe; Pedersen, John Kim; Blaabjerg, Frede
2004-01-01
A hybrid compensation system consisting of an active filter and a group of distributed passive filters has been studied previously. The passive filters are used for each distorting load or Dispersed Generation (DG) unit to remove major harmonics and provide reactive power compensation. The active...... filter is connected in parallel with the distributed passive filters and loads/DGs to correct the system unbalance and remove the remaining harmonic components. The effectiveness of the presented compensation system has also been demonstrated. This paper studies the performance of the hybrid compensation...... demonstrated that the harmonic resonance can be damped effectively. The hybrid filter system is an effective compensation system for dispersed generation systems. In the compensation system, the passive filters are mainly responsible for main harmonic and reactive power compensation of each individual load/ DG...
Energy Technology Data Exchange (ETDEWEB)
Cervantes Jaramillo, Enrique L.; Loredo Gutierrez, Miguel Angel; Hernandez Hernandez, Eduardo [Comision Federal de Electricidad, Mexico, D. F. (Mexico)
1996-12-31
This paper presents the proposal for establishing in a parallel way to Flamex project, the compensation in the intermediate tension network for the increment in reactive power supplied to the domestic user. This is due to the following three phenomena that occur in replacing incandescent light bulbs with fluorescent lamps: a) A fluorescent lamp has a power factor of 0.9; consequently it requires the supply of a reactive power of about 50% of its capacity. b) In replacing an incandescent light bulb for a fluorescent lamp, approximately 80% of its capacity is not supplied, this leads to the disappearance of a good deal of the user`s purely resistive load, that will cause that its natural power factor is decreased from 0.91 to 0.86 lagging. c) In decreasing the annual maximum demand in the distribution circuit in a greater proportion than the decrease of the annual consumption, their load factors and the annual losses will be increased and therefore the share of its annual energy losses will be increased in about 18.9%. The above, gives rise to the fact that the compensation of reactive power by means of the installation of capacitor banks in the main leads of the distribution circuit, turns out to be a highly appealing technical-economical solution, with a Benefit/Cost rate of 4, a return time of the investment of 2 years and a net benefit of $4.78/user (Pesos). [Espanol] Se presenta la propuesta para establecer en una forma paralela al proyecto FILUMEX, la compensacion en la red de media tension del incremento de la potencia reactiva suministrada al usuario domestico. Este es debido a los siguientes tres fenomenos que ocurren al sustituir los focos incandescentes por lamparas fluorescentes: a) Una lampara fluorescente tiene un factor de potencia de 0.9, por lo que requiere el suministro de una potencia reactiva de aproximadamente el 50% de su capacidad. b) Al sustituirse un foco incandescente por una lampara fluorescente, se deja de suministrar aproximadamente el 80
Energy Technology Data Exchange (ETDEWEB)
Cervantes Jaramillo, Enrique L; Loredo Gutierrez, Miguel Angel; Hernandez Hernandez, Eduardo [Comision Federal de Electricidad, Mexico, D. F. (Mexico)
1997-12-31
This paper presents the proposal for establishing in a parallel way to Flamex project, the compensation in the intermediate tension network for the increment in reactive power supplied to the domestic user. This is due to the following three phenomena that occur in replacing incandescent light bulbs with fluorescent lamps: a) A fluorescent lamp has a power factor of 0.9; consequently it requires the supply of a reactive power of about 50% of its capacity. b) In replacing an incandescent light bulb for a fluorescent lamp, approximately 80% of its capacity is not supplied, this leads to the disappearance of a good deal of the user`s purely resistive load, that will cause that its natural power factor is decreased from 0.91 to 0.86 lagging. c) In decreasing the annual maximum demand in the distribution circuit in a greater proportion than the decrease of the annual consumption, their load factors and the annual losses will be increased and therefore the share of its annual energy losses will be increased in about 18.9%. The above, gives rise to the fact that the compensation of reactive power by means of the installation of capacitor banks in the main leads of the distribution circuit, turns out to be a highly appealing technical-economical solution, with a Benefit/Cost rate of 4, a return time of the investment of 2 years and a net benefit of $4.78/user (Pesos). [Espanol] Se presenta la propuesta para establecer en una forma paralela al proyecto FILUMEX, la compensacion en la red de media tension del incremento de la potencia reactiva suministrada al usuario domestico. Este es debido a los siguientes tres fenomenos que ocurren al sustituir los focos incandescentes por lamparas fluorescentes: a) Una lampara fluorescente tiene un factor de potencia de 0.9, por lo que requiere el suministro de una potencia reactiva de aproximadamente el 50% de su capacidad. b) Al sustituirse un foco incandescente por una lampara fluorescente, se deja de suministrar aproximadamente el 80
Directory of Open Access Journals (Sweden)
Zaidi Maryam Nabihah
2018-01-01
Full Text Available This paper present the project designed to correcting power factor for medical industries in Malaysia automatically. Which with hope to make the cost and energy usage efficient, because the energy source are depleting due to increase in population. Power factor is the ratio of real power and apparent power. This definition is mathematically represented as kW/kVA where kW is active power and kVA is apparent power (active + reactive. Reactive power is the non-working power generated by the magnetic and inductive load to generate magnetic flux. The increase in reactive power increase the apparent power so the power factor will decrease. Low pF will cause the industry to meet high demand thus making it less efficient. The main aim of this project is to increasing the current power factor of medical industries from 0.85 to 0.90. Power factor compensation contribute to reduction in current-dependent losses and increase energy efficiency while expanding the reliability of planning for future energy network. As technology develops, the gradual cost and efficiency penalty should reduce. Therefore, automatic power factor compensation device should become cost-effective and smaller device over time. That is the reason this project is using programmable device as it is a miniature architecture device.
Active power compensator of the current harmonics based on the instantaneous power theory
Directory of Open Access Journals (Sweden)
Marian GAICEANU
2005-12-01
Full Text Available The quality of the electrical current becomes a major concern. The proliferation of the power electronic converters, which are used extensively to control electrical apparatus in industrial and commercial applications (dc and ac variable speed motor drives, induction furnaces, power line conditioners, and industrial power supplies, is at the origin of the AC current distribution network pollution and the reactive power demand. These power electronic converters typically draw non-sinusoidal currents from the utility, causing interference with adjacent sensitive loads and limit the utilization of the available electrical supply. The quality of the electrical current thus becomes a significant concern for the distributors of energy and their customers. Recent progress as regards technology of the power electronics brings a capacity of compensation and correction of the harmonic distortion generated by the nonlinear loads. In this paper a parallel active filter prototype capable of reducing the total harmonic distortion in the supply for most current source or adjustable speed drive type loads is presented. A 33 kVA active power filter was developed for harmonic and reactive power compensation based on the instantaneous power theory. The active filter configuration requires the measurement of both the load and filter currents. Experimental results from a prototype active power filter confirm the suitability of the proposed approach. The actual 33kVA prototype converter has been built and tested in the SIEI S.p.A. (Italy laboratory under the Marie Curie Post Doctoral research. The active power compensator is controlled by a high performance DSP platform, resulting in the following active filter features: source current reduction up to the 25th harmonic, 10% THD achievable for current source type loads, efficiency above 97%, does not cause resonance with other loads, operation in the presence of unbalanced loads, reactive power and harmonics
Transients in reactors for power systems compensation
Abdul Hamid, Haziah
This thesis describes new models and investigations into switching transient phenomena related to the shunt reactors and the Mechanically Switched Capacitor with Damping Network (MSCDN) operations used for reactive power control in the transmission system. Shunt reactors and MSCDN are similar in that they have reactors. A shunt reactor is connected parallel to the compensated lines to absorb the leading current, whereas the MSCDN is a version of a capacitor bank designed as a C-type filter for use in the harmonic-rich environment. In this work, models have been developed and transient overvoltages due to shunt reactor deenergisation were estimated analytically using MathCad, a mathematical program. Computer simulations used the ATP/EMTP program to reproduce both single-phase and three-phase shunt reactor switching at 275 kV operational substations. The effect of the reactor switching on the circuit breaker grading capacitor was also examined by considering various switching conditions.. The main original achievement of this thesis is the clarification of failure mechanisms occurring in the air-core filter reactor due to MSCDN switching operations. The simulation of the MSCDN energisation was conducted using the ATP/EMTP program in the presence of surge arresters. The outcome of this simulation shows that extremely fast transients were established across the air-core filter reactor. This identified transient event has led to the development of a detailed air-core reactor model, which accounts for the inter-turn RLC parameters as well as the stray capacitances-to-ground. These parameters are incorporated into the transient simulation circuit, from which the current and voltage distribution across the winding were derived using electric field and equivalent circuit modelling. Analysis of the results has revealed that there are substantial dielectric stresses imposed on the winding insulation that can be attributed to a combination of three factors. (i) First, the
Natural zeolite reactivity towards ozone: The role of compensating cations
International Nuclear Information System (INIS)
Valdés, Héctor; Alejandro, Serguei; Zaror, Claudio A.
2012-01-01
Highlights: ► Chemical and thermal treatment enhances catalytic activity of natural zeolite. ► Modified natural zeolite exhibits high stability after thermal treatment. ► Reducing the compensating cation content leads to an increase on ozone abatement. ► Surface active atomic oxygen was detected using the DRIFT technique. ► The highest reactivity toward ozone was performed by NH4Z3 zeolite sample. - Abstract: Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L −1 ). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77 K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH 3 -TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal.
Natural zeolite reactivity towards ozone: The role of compensating cations
Energy Technology Data Exchange (ETDEWEB)
Valdes, Hector, E-mail: hvaldes@ucsc.cl [Laboratorio de Tecnologias Limpias (F. Ingenieria), Universidad Catolica de la Santisima Concepcion, Alonso de Ribera 2850, Concepcion (Chile); Alejandro, Serguei; Zaror, Claudio A. [Departamento de Ingenieria Quimica (F. Ingenieria), Universidad de Concepcion, Concepcion (Chile)
2012-08-15
Highlights: Black-Right-Pointing-Pointer Chemical and thermal treatment enhances catalytic activity of natural zeolite. Black-Right-Pointing-Pointer Modified natural zeolite exhibits high stability after thermal treatment. Black-Right-Pointing-Pointer Reducing the compensating cation content leads to an increase on ozone abatement. Black-Right-Pointing-Pointer Surface active atomic oxygen was detected using the DRIFT technique. Black-Right-Pointing-Pointer The highest reactivity toward ozone was performed by NH4Z3 zeolite sample. - Abstract: Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L{sup -1}). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77 K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH{sub 3}-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal.
Dynamic impedance compensation for wireless power transfer using conjugate power
Suqi Liu; Jianping Tan; Xue Wen
2018-01-01
Wireless power transfer (WPT) via coupled magnetic resonances has been in development for over a decade. However, the frequency splitting phenomenon occurs in the over-coupled region. Thus, the output power of the two-coil system achieves the maximum output power at the two splitting angular frequencies, and not at the natural resonant angular frequency. According to the maximum power transfer theorem, the impedance compensation method was adopted in many WPT projects. However, it remains a c...
Transient Stability Enhancement in Power System Using Static VAR Compensator (SVC
Directory of Open Access Journals (Sweden)
Youssef MOULOUDI
2012-12-01
Full Text Available In this paper, an indirect adaptive fuzzy excitation and static VAR (unit of reactive power, volt-ampere reactive compensator (SVC controller is proposed to enhance transient stability for the power system, which based on input-output linearization technique. A three-bus system, which contains a generator and static VAR compensator (SVC, is considered in this paper, the SVC is located at the midpoint of the transmission lines. Simulation results show that the proposed controller compared with a controller based on tradition linearization technique can enhance the transient stability of the power system under a large sudden fault, which may occur nearly at the generator bus terminal.
Study on A Control Method of PAPF for Resonance Damping and Harmonics Compensation in Power System
DEFF Research Database (Denmark)
Zhou, Fang; Wu, Longhui; Chen, Zhe
2009-01-01
In power system, capacitors are widely used to compensate reactive power, which generally cause resonance problems in harmonic distorted network. In this paper, A method of using a parallel active power filter (PAPF) to damp the resonances is proposed. The proposed method is compound with traditi......In power system, capacitors are widely used to compensate reactive power, which generally cause resonance problems in harmonic distorted network. In this paper, A method of using a parallel active power filter (PAPF) to damp the resonances is proposed. The proposed method is compound...... with traditional method, it shows that whether the capacitor current is included in the detecting current of PAPF or not. Also the PAPF with proposed method has strong ability in harmonic compensation. Finally, the experiment results are presented to verify the analysis....
Active and reactive power control of a current-source PWM-rectifier using space vectors
Energy Technology Data Exchange (ETDEWEB)
Salo, M.; Tuusa, H. [Tampere University of Technology (Finland). Department of Electrical Engineering, Power Electronics
1997-12-31
In this paper the current-source PWM-rectifier with active and reactive power control is presented. The control system is realized using space vector methods. Also, compensation of the reactive power drawn by the line filter is discussed. Some simulation results are shown. (orig.) 8 refs.
Application of Load Compensation in Voltage Controllers of Large Generators in the Polish Power Grid
Directory of Open Access Journals (Sweden)
Bogdan Sobczak
2014-03-01
Full Text Available The Automatic Voltage Regulator normally controls the generator stator terminal voltage. Load compensation is used to control the voltage which is representative of the voltage at a point either within or external to the generator. In the Polish Power Grid (PPG compensation is ready to use in every AVR of a large generator, but it is utilized only in the case of generators operating at the same medium voltage buses. It is similar as in most European Power Grids. The compensator regulating the voltage at a point beyond the machine terminals has significant advantages in comparison to the slower secondary Voltage and Reactive Power Control System (ARNE1. The compensation stiffens the EHV grid, which leads to improved voltage quality in the distribution grid. This effect may be particularly important in the context of the dynamic development of wind and solar energy.
A stochastic framework for clearing of reactive power market
International Nuclear Information System (INIS)
Amjady, N.; Rabiee, A.; Shayanfar, H.A.
2010-01-01
This paper presents a new stochastic framework for clearing of day-ahead reactive power market. The uncertainty of generating units in the form of system contingencies are considered in the reactive power market-clearing procedure by the stochastic model in two steps. The Monte-Carlo Simulation (MCS) is first used to generate random scenarios. Then, in the second step, the stochastic market-clearing procedure is implemented as a series of deterministic optimization problems (scenarios) including non-contingent scenario and different post-contingency states. In each of these deterministic optimization problems, the objective function is total payment function (TPF) of generators which refers to the payment paid to the generators for their reactive power compensation. The effectiveness of the proposed model is examined based on the IEEE 24-bus Reliability Test System (IEEE 24-bus RTS). (author)
DEFF Research Database (Denmark)
Han, Yang; Shen, Pan; Zhao, Xin
2016-01-01
In this paper, an enhanced hierarchical control structure with multiple current loop damping schemes for voltage unbalance and harmonics compensation in ac islanded microgrid is proposed to address unequal power sharing problems. The distributed generation (DG) is properly controlled to autonomou......In this paper, an enhanced hierarchical control structure with multiple current loop damping schemes for voltage unbalance and harmonics compensation in ac islanded microgrid is proposed to address unequal power sharing problems. The distributed generation (DG) is properly controlled...... to autonomously compensate voltage unbalance and harmonics while sharing the compensation effort for the real power, reactive power, unbalance and harmonic powers. The proposed control system of the microgrid mainly consists of the positive sequence real and reactive power droop controllers, voltage and current......) technique is adopted to send the compensation command of the secondary control and auxiliary control from the microgrid control center (MGCC) to the local controllers of DG unit. Finally, the hardware-in-the-loop (HIL) results using dSPACE 1006 platform are presented to demonstrate the effectiveness...
International Nuclear Information System (INIS)
Bansal, R.C.
2008-01-01
This paper presents an artificial neural network (ANN) based approach to tune the parameters of the static var compensator (SVC) reactive power controller over a wide range of typical load model parameters. The gains of PI (proportional integral) based SVC are optimised for typical values of the load voltage characteristics (n q ) by conventional techniques. Using the generated data, the method of multi-layer feed forward ANN with error back propagation training is employed to tune the parameters of the SVC. An ANN tuned SVC controller has been applied to control the reactive power of a variable slip/speed isolated wind-diesel hybrid power system. It is observed that the maximum deviations of all parameters are more for larger values of n q . It has been shown that initially synchronous generator supplies the reactive power required by the induction generator and/or load, and the latter reactive power is purely supplied by the SVC
Energy Technology Data Exchange (ETDEWEB)
Bansal, R.C. [Electrical and Electronics Engineering Division, School of Engineering and Physics, The University of the South Pacific, Suva (Fiji)
2008-02-15
This paper presents an artificial neural network (ANN) based approach to tune the parameters of the static var compensator (SVC) reactive power controller over a wide range of typical load model parameters. The gains of PI (proportional integral) based SVC are optimised for typical values of the load voltage characteristics (n{sub q}) by conventional techniques. Using the generated data, the method of multi-layer feed forward ANN with error back propagation training is employed to tune the parameters of the SVC. An ANN tuned SVC controller has been applied to control the reactive power of a variable slip/speed isolated wind-diesel hybrid power system. It is observed that the maximum deviations of all parameters are more for larger values of n{sub q}. It has been shown that initially synchronous generator supplies the reactive power required by the induction generator and/or load, and the latter reactive power is purely supplied by the SVC. (author)
Standard compensation for power cuts. Working group report
International Nuclear Information System (INIS)
2002-07-01
The Working Group was commissioned to draw up a proposal in the form of a Government Bill for provisions to be included in the Electricity Market Act on imposing an obligation on the distribution net operator to pay a standard compensation to the users of electricity for the event that they get no access to electricity. The Working Group should consider especially a model of standard compensation presented in the final report by Mr. Jarl Forsten, Deputy Director General of the Technical Research Centre of Finland VTT, published on 30 April 2002 that the amount of standard compensation should not depend on the reason for the power cut. The Working Group proposes that the Electricity Market Act should be amended by provisions providing that a distribution net operator shall pay to the user of electricity a standard compensation for power cuts lasting over 12 hours. The amount of compensation shall be based on the annual network service fee and a sliding scale of compensation related to the duration of the power cut shall be applied. The maximum compensation shall be paid when the power cut lasts more than five days. The maximum amount of individual compensations shall be fixed at EUR 700. The proposed provisions on standard compensation in the event of power cuts are aimed at amending the provisions in Chapter 6a of the Electricity Market Act on price reduction and compensation because of fault in the supply of electricity. The aim of the introduction of standard compensation for power cuts is to persuade distribution net operators to make an effort to minimize the time for power cuts. (orig.)
DEFF Research Database (Denmark)
Yang, Dongsheng; Wang, Xiongfei; Liu, Fangcheng
2018-01-01
with the unity power factor. Then, considering the reactive power compensation from PV inverters, the minimum SCR in respect to Power Factor (PF) is derived, and the optimized coordination of the active and reactive power is exploited. It is revealed that the power transfer capability of PV power plant under...... of a 200 MW PV power plant demonstrate that the proposed method can ensure the rated power transfer of PV power plant with the SCR of 1.25, provided that the PV inverters are operated with the minimal PF=0.9.......This paper analyzes the power transfer limitation of the PV power plant under the ultra-weak grid condition, i.e., when the Short-Circuit Ratio (SCR) is close to 1. It explicitly identifies that a minimum SCR of 2 is required for the PV power plant to deliver the rated active power when operating...
Coupled energy and reactive power market clearing considering power system security
International Nuclear Information System (INIS)
Rabiee, Abdorreza; Shayanfar, Heidarali; Amjady, Nima
2009-01-01
In a deregulated environment, when talking about electricity markets, one usually refers to energy market, paying less attention to the reactive power market. Active and reactive powers are, however, coupled through the AC power flow equations and branch loading limits as well as the synchronous generators capability curves. However, the sequential approach for energy and reactive power markets cannot present the optimal solution due to the interactions between these markets. For instance, clearing of the reactive power market can change active power dispatch (e.g. due to a change of transmission system losses and the capability curve limitation), which can lead to degradation of the energy market clearing point. This paper presents a coupled day ahead energy and reactive power market based on the pay-at-MCP settlement mechanism. Besides, the proposed coupled framework considers voltage stability and security issues and branch loading limits. The coupled market is cleared through optimal power flow (OPF). Its objective function includes total payment of generating units for their active power production along with the total payment function (TPF) of units for their reactive power compensation. Moreover, lost opportunity cost (LOC) of the units is also considered. The effectiveness of the proposed framework is examined on the IEEE 24 bus Reliability Test System
Coupled energy and reactive power market clearing considering power system security
Energy Technology Data Exchange (ETDEWEB)
Rabiee, Abdorreza; Shayanfar, Heidarali [Center of Excellence for Power System Automation and Operation, Electrical Engineering Department, Iran University of Science and Technology (IUST), Tehran (Iran); Amjady, Nima [Department of Electrical Engineering, Semnan University, Semnan (Iran)
2009-04-15
In a deregulated environment, when talking about electricity markets, one usually refers to energy market, paying less attention to the reactive power market. Active and reactive powers are, however, coupled through the AC power flow equations and branch loading limits as well as the synchronous generators capability curves. However, the sequential approach for energy and reactive power markets cannot present the optimal solution due to the interactions between these markets. For instance, clearing of the reactive power market can change active power dispatch (e.g. due to a change of transmission system losses and the capability curve limitation), which can lead to degradation of the energy market clearing point. This paper presents a coupled day ahead energy and reactive power market based on the pay-at-MCP settlement mechanism. Besides, the proposed coupled framework considers voltage stability and security issues and branch loading limits. The coupled market is cleared through optimal power flow (OPF). Its objective function includes total payment of generating units for their active power production along with the total payment function (TPF) of units for their reactive power compensation. Moreover, lost opportunity cost (LOC) of the units is also considered. The effectiveness of the proposed framework is examined on the IEEE 24 bus Reliability Test System. (author)
Estimation of reactive power sources dynamic limits for Volt / VAr control
International Nuclear Information System (INIS)
Orozco Alvarado, Juan Jose
2013-01-01
A generic model of capacity curves is obtained from the theoretical capacity curves of the distribution generators and reactive compensation elements. The obtained generic model is structured in a simplified method of points, taking eight strategic points of two detailed curves of a generator and through a series of interpolations, achieving the estimation of limits of capacity of delivery / consumption of the generator. The theory of electric generation elements and reactive power compensation is reviewed. The curves of capacity 'Reactive Power / Active Power' are achieved for different values of tension: from wind generators with complete converter and doubly fed, photovoltaic generators with inverter and synchronous generators. The 'Reactive Power / Line Tension' capacity curves are acquired from static var compensators (SVC). The generic limits of generators and SVC are estimated from the capacity curves [es
Power and reactive power simultaneous control by 0.5 MJ superconducting magnet energy storage
International Nuclear Information System (INIS)
Ise, Toshifumi; Tsuji, Kiichiro; Murakami, Yoshishige
1984-01-01
Superconducting magnet energy storage (SMES) is expected to be widely applied to the pulsed sources for fusion reactor research and to the energy storage substituting for pumping-up power stations, because of its fast energy storing and discharging and very high efficiency. Some results have been obtained so far. In this paper, however, the simultaneous control of power and reactive power is considered for an energy storage composed of two sets of thyristorized power conversion system and superconducting magnets in series connection, and a direct digital control system is described on the principle, design and configuration including the compensator, and on the experiment using the 0.5 MJ superconducting magnet energy storage installed in the Superconduction Engineering Experiment Center, Osaka University. The results obtained are as follows: (1) P control priority mode and Q control priority mode (in which power and reactive power control has priority, respectively) were proposed as the countermeasures when the simultaneous control of power and reactive power became impossible; (2) the design method was established, by which power and reactive power control loops can independently be designed as a result of simulation; (3) the achievement of the simultaneous control of power and reactive power was confirmed by using P-control priority mode and Q-control priority mode, in the experiment using the control system designed by simulation. The validity of simulation model was also confirmed by actual response waveforms. (Wakatsuki, Y.)
Manufacture of sockets of volume compensators in nuclear power plants
International Nuclear Information System (INIS)
Andreev, V.P.; Tshekotilo, L.V.; Shevtshenko, N.T.; Sevruk, A.N.; Wolacek, W.J.; Irsicek, L.; Vrbensky, J.
1982-01-01
Experience is reported with regard to electroslag casting of sockets of volume compensators or steam separators used in nuclear power plants. According to the method the raw pieces are casted directly at the surface of the enclosures
Water reactive hydrogen fuel cell power system
Wallace, Andrew P; Melack, John M; Lefenfeld, Michael
2014-01-21
A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.
Natural zeolite reactivity towards ozone: the role of compensating cations.
Valdés, Héctor; Alejandro, Serguei; Zaror, Claudio A
2012-08-15
Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L(-1)). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH(3)-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal. Copyright © 2012 Elsevier B.V. All rights reserved.
The Large Customer Reactive Power Control Possibilities
Directory of Open Access Journals (Sweden)
Robert Małkowski
2014-03-01
Full Text Available In this paper the authors wish to draw attention to the rationale for, and the possibility of, the use of local reactive power sources by the Transmission Node Master Controller (TNMC. Large Customers (LC are one of the possible reactive power sources. The paper presents the issues related to the need for coordination between the control systems installed in the LC network, and coordination between control systems of the LC as well as master control systems in the network.
Research on Compensating Power Converter used for Artillery
Directory of Open Access Journals (Sweden)
Xing Wang
2014-11-01
Full Text Available Aiming at the low efficiency shortage of traditional power supply converter used for artillery, a novel compensating power converter used for artillery was proposed, and its work mode was analyzed. The current expression of inductor was given and work statuses under two working modes were analyzed. Finally an experimental prototype based on DSP was built, the results indicate that the compensating power converter own low current and voltage stress and high efficiency because only part of power pass through the converter, thus, the converter own large potential application value.
Multi-objective Reactive Power Optimization Based on Improved Particle Swarm Algorithm
Cui, Xue; Gao, Jian; Feng, Yunbin; Zou, Chenlu; Liu, Huanlei
2018-01-01
In this paper, an optimization model with the minimum active power loss and minimum voltage deviation of node and maximum static voltage stability margin as the optimization objective is proposed for the reactive power optimization problems. By defining the index value of reactive power compensation, the optimal reactive power compensation node was selected. The particle swarm optimization algorithm was improved, and the selection pool of global optimal and the global optimal of probability (p-gbest) were introduced. A set of Pareto optimal solution sets is obtained by this algorithm. And by calculating the fuzzy membership value of the pareto optimal solution sets, individuals with the smallest fuzzy membership value were selected as the final optimization results. The above improved algorithm is used to optimize the reactive power of IEEE14 standard node system. Through the comparison and analysis of the results, it has been proven that the optimization effect of this algorithm was very good.
Static synchronous compensator (Statcom) for dynamic reactive-compensation of wind turbines
Energy Technology Data Exchange (ETDEWEB)
Akhmatov, Vladislav; Soebrink, Kent
2006-01-15
This paper reviews the common control characteristics of a Statcom and presents the control strategies which may be applied for compensation of large wind farms. The Statcom's control and protection are modelled with the simulation tool Powerfactory (DigSilent). The analysis evaluates (i) a realistic test grid containing local wind turbines in the distribution network, and (ii) a large offshore windfarm connected to the transmission system. (Author)
Modelling of power-reactivity coefficient measurement
International Nuclear Information System (INIS)
Strmensky, C.; Petenyi, V.; Jagrik, J.; Minarcin, M.; Hascik, R.; Toth, L.
2005-01-01
Report describes results of modeling of power-reactivity coefficient analysis on power-level. In paper we calculate values of discrepancies arisen during transient process. These discrepancies can be arisen as result of experiment evaluation and can be caused by disregard of 3D effects on neutron distribution. The results are critically discussed (Authors)
An Improved Droop Control Strategy for Reactive Power Sharing in Islanded Microgrid
DEFF Research Database (Denmark)
Han, Hua; Liu, Yao; Sun, Yao
2015-01-01
For microgrid in islanded operation, due to the effects of mismatched line impedance, the reactive power could not be shared accurately with the conventional droop method. To improve the reactive power sharing accuracy, this paper proposes an improved droop control method. The proposed method...... in output voltage amplitude. Therefore, the voltage recovery operation is proposed to compensate the decrease. The needed communication in this method is very simple, and the plug-and-play is reserved. Simulations and experimental results show that the improved droop controller can share load active...... and reactive power, improve the power quality of the microgrid, and also have a good dynamic performance....
Reactive power management of power networks with wind generation
Amaris, Hortensia; Ortega, Carlos Alvarez
2012-01-01
As the energy sector shifts and changes to focus on renewable technologies, the optimization of wind power becomes a key practical issue. Reactive Power Management of Power Networks with Wind Generation brings into focus the development and application of advanced optimization techniques to the study, characterization, and assessment of voltage stability in power systems. Recent advances on reactive power management are reviewed with particular emphasis on the analysis and control of wind energy conversion systems and FACTS devices. Following an introduction, distinct chapters cover the 5 key
International Nuclear Information System (INIS)
Rahman, M.S.; Mahmud, M.A.; Oo, A.M.T.; Pota, H.R.; Hossain, M.J.
2016-01-01
Highlights: • A coordinated multi-agent system is proposed for reactive power management. • A linear quadratic regulator with a proportional integral controller is designed. • Proposed multi-agent scheme provides accurate estimation and control of the system. • Voltage stability is improved with proper power management for different scenarios. • Results obtained from the proposed scheme is compared to the traditional approach. - Abstract: In this paper, a new agent-based distributed reactive power management scheme is proposed to improve the voltage stability of energy distribution systems with distributed generation units. Three types of agents – distribution system agent, estimator agent, and control agent are developed within the multi-agent framework. The agents simultaneously coordinated their activities through the online information and energy flow. The overall achievement of the proposed scheme depends on the coordination between two tasks – (i) estimation of reactive power using voltage variation formula and (ii) necessary control actions to provide the estimated reactive power to the distribution networks through the distributed static synchronous compensators. A linear quadratic regulator with a proportional integrator is designed for the control agent in order to control the reactive component of the current and the DC voltage of the compensators. The performance of the proposed scheme is tested on a 10-bus power distribution network under various scenarios. The effectiveness is validated by comparing the proposed approach to the conventional proportional integral control approach. It is found that, the agent-based scheme provides excellent robust performance under various operating conditions of the power distribution network.
International Nuclear Information System (INIS)
Wu, H.; Yu, C.W.; Xu, N.; Lin, X.J.
2008-01-01
Reactive power support is an important ancillary service for secure and reliable operation in power markets. It has recently been recognized that the reactive power support for a generator has two components: one for supporting its own real power transmission and the other for supplying reactive demand, improving system security, and controlling system voltage; and that only the second part should receive financial compensation in competitive power markets. This makes the problem of separating these two components a new focus of current research. An OPF based reactive power optimization model along with a power flow tracing based method is proposed in this paper to tackle this problem. The methodology is tested on four test systems. Detailed analysis of the results of the 39-bus test system is reported. (author)
Compulsator, a high power compensated pulsed alternator
International Nuclear Information System (INIS)
Weldon, W.F.; Bird, W.L.; Driga, M.D.; Rylander, H.G.; Tolk, K.M.; Woodson, H.H.
1983-01-01
This chapter describes a pulsed power supply utilizing inertial energy storage as a possible replacement for large capacitor banks. The compulsator overcomes many of the limitations of the pulsed homopolar generators previously developed by the Center for Electromechanics and elsewhere in that it offers high voltage (10's of kV) and consequently higher pulse rise times, is self commutating, and offers the possibility of generating repetitive pulses. The compulsator converts rotational inertial energy directly into electrical energy utilizing the principles of both magnetic induction and flux compression. The theory of operation, a prototype compulsator design, and advanced compulsator designs are discussed
Joint excitation and reactive power control in thermal power plant
Directory of Open Access Journals (Sweden)
Dragosavac Jasna
2013-01-01
Full Text Available The coordinated voltage and reactive power controller, designed for the thermal power plant, is presented in the paper. A brief explanation of the need for such device is given and justification for commissioning of such equipment is outlined. After short description of the theoretical background of the proposed control design, the achieved features of the commissioned equipment are fully given. Achieved performances are illustrated by recorded reactive power and bus voltage responses after commissioning of the described equipment into the largest thermal power plant in Serbia. As it can be seen in presented records, all design targets are met.
An accurate reactive power control study in virtual flux droop control
Wang, Aimeng; Zhang, Jia
2017-12-01
This paper investigates the problem of reactive power sharing based on virtual flux droop method. Firstly, flux droop control method is derived, where complicated multiple feedback loops and parameter regulation are avoided. Then, the reasons for inaccurate reactive power sharing are theoretically analyzed. Further, a novel reactive power control scheme is proposed which consists of three parts: compensation control, voltage recovery control and flux droop control. Finally, the proposed reactive power control strategy is verified in a simplified microgrid model with two parallel DGs. The simulation results show that the proposed control scheme can achieve accurate reactive power sharing and zero deviation of voltage. Meanwhile, it has some advantages of simple control and excellent dynamic and static performance.
Improved cable compensation technique for self powered neutron detectors
International Nuclear Information System (INIS)
Nieuwenhove, R. van
1996-01-01
Measurements with cobalt self powered neutron detectors on the BR2 reactor have revealed that the currents induced by external gamma radiation can be of the same order as the neutron induced signal and that the gamma induced current on the emitter and the compensator wires are not symmetric. In this case, the standard detection electronic setup leads to erroneous results. It is shown that a slightly modified electronic setup, in which this asymmetry is compensated for, can nevertheless allow to obtain correct neutron flux measurements. Measures to reduce the influence of external gamma radiation in general will also be discussed. (orig.)
Effects of series compensation on spot price power markets
International Nuclear Information System (INIS)
Shrestha, G.B.; Wang Feng
2005-01-01
The operation of a deregulated power market becomes more complex as the generation scheduling is dependent on suppliers' and consumers' bids. With large number of transactions in the power market changing in time, it is more likely for some transmission lines to face congestion. Series compensation, such as TCSC, with its ability to directly control the power flow can be very helpful to improve the operation of transmission networks. The effects of TCSC on the operation of a spot price power market are studied in this paper using the modified IEEE 14-bus system. Optimal Power Flow incorporating TCSC is used to implement the spot price market. Linear bids are used to model suppliers' and consumers' bids. Issues of location and cost of TCSC are discussed. The effects of levels of TCSC compensation on wide range of system quantities are studied. The effects on the total social benefit, the spot prices, transmission congestion, total generation and consumption, benefit to individual supplier and consumer etc. are discussed. It is demonstrated that though use of TCSC makes the system more efficient and augments competition in the market, it is not easy to establish general relationships between the levels of compensation and various market quantities. Simulation studies like these can be used to assess the effects of TCSC in specific systems. (Author)
Reactive power management and voltage control in deregulated power markets
Spangler, Robert G.
The research that is the subject of this dissertation is about the management of reactive power and voltage support in the wholesale open access power markets in the United States (US). The purpose of this research is to place decisions about open access market structures, as they relate to reactive power and voltage control, on a logical and consistent economic basis, given the engineering needs of a commercial electric power system. An examination of the electricity markets operating in the US today reveals that current approaches to reactive power management and voltage support are extensions of those based on historical, regulated monopoly electric service. A case for change is built by first looking at the subject of reactive power from an engineering viewpoint and then from an economic perspective. Ultimately, a set of market rules for managing reactive power and voltage support is proposed. The proposal suggests that cost recovery for static and dynamic VARs is appropriately accomplished through the regulated transmission cost of service. Static VAR cost recovery should follow traditional rate recovery methodologies. In the case of dynamic VARs, this work provides a methodology based on the microeconomic theory of the firm for determining such cost. It further suggests that an operational strategy that reduces and limits the use of dynamic VARs, during normal operations, is appropriate. This latter point leads to an increase in the fixed cost of the transmission network but prevents price spikes and short supply situations from affecting, or being affected by, the reactive capability limitations associated with dynamic VARs supplied from synchronous generators. The rules are consistent with a market structure that includes competitive generation and their application will result in the communication of a clear understanding of the responsibilities, related to voltage control, of each type of market entity. In this sense, their application will contribute to
DEFF Research Database (Denmark)
Anurag, Anup; Yang, Yongheng; Blaabjerg, Frede
2015-01-01
, the analysis enables the translation from long-term mission profiles to device thermal loading, considering the operation at night. An analytical lifetime model is then used for lifetime quantization based on the Palgrem Miner rule. Thereafter, considering the lifetime reduction of the PV inverter......Current energy paradigm of mixed renewables seems to urgently require reactive power provision at various feed-in points of the utility grid. Photovoltaic (PV) inverters are able to provide reactive power in a decentralized manner at the grid-connection point even outside active power feed......-in operation, especially at night. This serves as a motivation for utilizing the PV inverters at night for reactive power compensation. Thus, a detailed analysis on the impact of reactive power injection by PV inverters outside feed-in operation on the thermal performance and also the reliability is performed...
Multiagent voltage and reactive power control system
Directory of Open Access Journals (Sweden)
I. Arkhipov
2014-12-01
Full Text Available This paper is devoted to the research of multiagent voltage and reactive power control system development. The prototype of the system has been developed by R&D Center at FGC UES (Russia. The control system architecture is based on the innovative multiagent system theory application that leads to the achievement of several significant advantages (in comparison to traditional control systems implementation such as control system efficiency enhancement, control system survivability and cyber security.
Operational experience with reactive power control methods optimized for tokamak power supplies
International Nuclear Information System (INIS)
Sihler, C.; Huart, M.; Kaesemann, C.-P.; Streibl, B.
2003-01-01
The power and energy of the ASDEX Upgrade (AUG) tokamak are provided by two separate 10.5 kV, 110-85 Hz networks based on the flywheel generators EZ3-EZ4 in addition to the generator EZ2 dedicated to the toroidal field coil. The 10.5 kV networks supply the thyristor converters allowing fast control of the DC currents in the AUG poloidal field coils. Two methods for improving the load power factor in the present experimental campaign of AUG have been investigated, namely the control of the phase-to-neutral voltage in thyristor converters fitted with neutral thyristors, such as the new 145 MVA modular thyristor converter system (Group 6), and reactive power control achieved by means of static VAr compensators (SVC). The paper shows that reliable compensation up to 90 MVAr was regularly achieved and that electrical transients in SVC modules can be kept at an acceptable level. The paper will discuss the results from the reactive power reduction by SVC and neutral thyristor control and draw a comparative conclusion
Design of reactive power procurement in deregulated electricity market
African Journals Online (AJOL)
Reactive power management is different in the deregulated electricity market of various countries. In this paper, a novel reactive power procurement model is proposed, which ensure secure and reliable operation of deregulated electricity market. Various issues of reactive power management in the deregulated electricity ...
Microgrid Reactive and Harmonic Power Sharing Using Enhanced Virtual Impedance
DEFF Research Database (Denmark)
He, Jinwei; Wei Li, Yun; Guerrero, Josep M.
2013-01-01
To address the load sharing problem in islanding microgrids, this paper proposes an improved approach which regulates the distributed generation (DG) unit interfacing virtual impedance at fundamental and selected harmonic frequencies. In contrast to the conventional virtual impedance control where...... only a line current feed-forward term is added to the DG voltage reference, the proposed virtual impedances at fundamental and harmonic frequencies are realized using DG line current and point of common coupling (PCC) voltage feed-forward terms, respectively. With this modification, the mismatched DG...... feeder impedances can be properly compensated, resulting in accurate reactive and harmonic power sharing at the same time. In addition, this paper shows that the microgrid PCC harmonic voltages can be mitigated by reducing the magnitude of DG unit equivalent harmonic impedance. Finally, an improved...
Comprehensive Reactive Power Support of DFIG Adapted to Different Depth of Voltage Sags
Directory of Open Access Journals (Sweden)
Yangwu Shen
2017-06-01
Full Text Available The low voltage ride-through (LVRT capability of the doubly-fed induction generator (DFIG significantly impacts upon the integration of wind power into the power grid. This paper develops a novel comprehensive control strategy to enhance the LVRT and reactive power support capacities of the DFIG by installing the energy storage system (ESS. The ESS is connected to the DC-link capacitor of the DFIG and used to regulate the DC-link voltage during normal or fault operations. The unbalanced power between the captured wind power and the power injected to the grid during the transient process is absorbed or compensated by the ESS. The rotor-side converter (RSC is used to control the maximum power production and the grid-side converter (GSC is used to control the reactive power before participating in the voltage support. When the supply voltage continues to drop, the rotor speed is increased by controlling the RSC to realize the LVRT capability and help the GSC further enhance the reactive power support capability. The capacity of the GSC is dedicated to injecting the reactive power to the grid. An auxiliary transient pitch angle controller is proposed to protect the generator’s over speed. Both RSC and GSC act as reactive power sources to further enhance the voltage support capability with serious voltage sags. Simulations based on a single-machine infinite-bus power system verify the effectiveness of the developed comprehensive control strategy.
Zaidi Maryam Nabihah; Ali Adlan
2018-01-01
This paper present the project designed to correcting power factor for medical industries in Malaysia automatically. Which with hope to make the cost and energy usage efficient, because the energy source are depleting due to increase in population. Power factor is the ratio of real power and apparent power. This definition is mathematically represented as kW/kVA where kW is active power and kVA is apparent power (active + reactive). Reactive power is the non-working power generated by the mag...
Investigating power factor compensation capacity calculation in medium sized industry
International Nuclear Information System (INIS)
Chudhry, M.A.; Hanif, A.
2008-01-01
There are a variety of techniques developed in order to improve the efficiency of electrical systems and reduce cost of providing electricity to the consumer. This paper presents a new technique for power-factor capacity calculation in medium-sized industrial/ commercial setups. Various loads of similar nominal power-factor are categorized and demand-factor of loads is so selected that it has engineering justifications. The developed system works on the principle of low-voltage power-factor correction, which substantially reduces electricity bill and increases loading-capacity of the electrical system. It allows commercial and industrial consumers to save on their power cost appreciably. This work utilizes software, which takes few inputs and produces numerous useful results. Adoption of this system can help the user in computing compensation-capacity, system KVA (size of transformer) and cost of compensation. A feature of this system is prediction of low PF penalty. Moreover, it also suggests the tentative payback period. (author)
Enhanced Electric Power Transmission by Hybrid Compensation Technique
International Nuclear Information System (INIS)
Palanichamy, C; Kiu, G Q
2015-01-01
In today's competitive environment, new power system engineers are likely to contribute immediately to the task, without years of seasoning via on-the-job training, mentoring, and rotation assignments. At the same time it is becoming obligatory to train power system engineering graduates for an increasingly quality-minded corporate environment. In order to achieve this, there is a need to make available better-quality tools for educating and training power system engineering students and in-service system engineers too. As a result of the swift advances in computer hardware and software, many windows-based computer software packages were developed for the purpose of educating and training. In line with those packages, a simulation package called Hybrid Series-Shunt Compensators (HSSC) has been developed and presented in this paper for educational purposes. (paper)
Compensator design for corrector magnet power supply of TPS facility
International Nuclear Information System (INIS)
Wong, Y.-S.; Chen, J.-F.; Liu, K.-B.; Liu, C.-Y.; Wang, B.-S.
2017-01-01
From 2012 to 2015, Taiwan government has a most important technology project is Taiwan Photon Source (TPS), the total budget of TPS fund to over US300 million. It set up a synchrotron storage ring (electron energy of 3.3 GeV, circumference of 518 m, and low emittance) that provides one of the world's brightest synchrotron sources of x-rays. This study presents a compensator design for corrector magnet power supply to avoid limitations in stabilizing the frequency when the machine output current load is valid. A lead-lag compensator had been built in a full-bridge converter to improve the system bandwidth. Lead-lag compensators influence various disciplines, such as robotics, satellite control, automobile diagnostics, and laser frequency stabilization. These components are important building blocks in analog control systems and can also be used in digital control. A 50V output voltage and 10A output current prototype converter is fabricated in the laboratory. From the experimental results, the effectiveness of the control loop design can be verified from the gain margin and phase margin.
Compensator design for corrector magnet power supply of TPS facility
Wong, Y.-S.; Chen, J.-F.; Liu, K.-B.; Liu, C.-Y.; Wang, B.-S.
2017-10-01
From 2012 to 2015, Taiwan government has a most important technology project is Taiwan Photon Source (TPS), the total budget of TPS fund to over US300 million. It set up a synchrotron storage ring (electron energy of 3.3 GeV, circumference of 518 m, and low emittance) that provides one of the world's brightest synchrotron sources of x-rays. This study presents a compensator design for corrector magnet power supply to avoid limitations in stabilizing the frequency when the machine output current load is valid. A lead-lag compensator had been built in a full-bridge converter to improve the system bandwidth. Lead-lag compensators influence various disciplines, such as robotics, satellite control, automobile diagnostics, and laser frequency stabilization. These components are important building blocks in analog control systems and can also be used in digital control. A 50V output voltage and 10A output current prototype converter is fabricated in the laboratory. From the experimental results, the effectiveness of the control loop design can be verified from the gain margin and phase margin.
Directory of Open Access Journals (Sweden)
EMIROGLU, S.
2017-11-01
Full Text Available This paper proposes a distributed reactive power control based approach to deploy Volt/VAr optimization (VVO / Conservation Voltage Reduction (CVR algorithm in a distribution network with distributed generations (DG units and distribution static synchronous compensators (D-STATCOM. A three-phase VVO/CVR problem is formulated and the reactive power references of D-STATCOMs and DGs are determined in a distributed way by decomposing the VVO/CVR problem into voltage and reactive power control. The main purpose is to determine the coordination between voltage regulator (VR and reactive power sources (Capacitors, D-STATCOMs and DGs based on VVO/CVR. The study shows that the reactive power injection capability of DG units may play an important role in VVO/CVR. In addition, it is shown that the coordination of VR and reactive power sources does not only save more energy and power but also reduces the power losses. Moreover, the proposed VVO/CVR algorithm reduces the computational burden and finds fast solutions. To illustrate the effectiveness of the proposed method, the VVO/CVR is performed on the IEEE 13-node test system feeder considering unbalanced loading and line configurations. The tests are performed taking the practical voltage-dependent load modeling and different customer types into consideration to improve accuracy.
Directory of Open Access Journals (Sweden)
Pedro Roncero-Sànchez
2014-04-01
Full Text Available Electric power systems are among the greatest achievements of the last century. Today, important issues, such as an ever-increasing demand, the flexible and reliable integration of distributed generation or a growth in disturbing loads, must be borne in mind. In this context, smart grids play a key role, allowing better efficiency of power systems. Power electronics provides solutions to the aforementioned matters, since it allows various energy sources to be integrated into smart grids. Nevertheless, the design of the various control schemes that are necessary for the correct operation of the power-electronic interface is a very important issue that must always be taken into consideration. This paper deals with the design of the control system of a distribution static synchronous compensator (DSTATCOM based on flying-capacitor multilevel converters. The control system is tailored to compensate for both voltage sags by means of reactive-power injection and voltage imbalances caused by unbalanced loads. The design of the overall control is carried out by using the root-locus and frequency-response techniques, improving both the transient response and the steady-state error of the closed-loop system. Simulation results obtained using PSCADTM/EMTDCTM (Manitoba Hydro International Ltd., Commerce Drive, Winnipeg, MB, Canada show the resultant voltage regulation.
Amelioration of Electrical Power Quality based on Modulated Power Filter Compensator
Directory of Open Access Journals (Sweden)
Karrar Hameed Kadhim
2017-08-01
Full Text Available This paper deals with the performance of modeling and implementation of Modulated Power Filter Compensator ( MPFC based on synchronous generator to enhance Electrical Power Quality (EPQ performance , rectification power factor , voltage fixity and decreasing transmission line losses for 300 km transmission line . In this paper (MPFC sketch attendants for intelligent network stability and optimum exploitation. The proposal Flexible AC Transmission Systems ( FACTS can be expanded to distributed renewable energy interface and exploitation systems and also will be easy to modify for voltage fixity, Achieve the required stability, perfect usage and Compensation requirements. MATLAB SIMLINK version R2009b were used as a model of (MPFC.
Identification of fast power reactivity effect in nuclear power reactor
International Nuclear Information System (INIS)
Efanov, A.I.; Kaminskas, V.A.; Lavrukhin, V.S.; Rimidis, A.P.; Yanitskene, D.Yu.
1987-01-01
A nuclear power reactor is an object of control with distributed parameters, characteristics of which vary during operation time. At the same time the reactor as the object of control has internal feedback circuits, which are formed as a result of the effects of fuel parameters and a coolant (pressure, temperature, steam content) on the reactor breeding properties. The problem of internal feedback circuit identification in a nuclear power reactor is considered. Conditions for a point reactor identification are obtained and algorithms of parametric identification are constructed. Examples of identification of fast power reactivity effect for the RBMK-1000 reactor are given. Results of experimental testing have shown that the developed method of fast power reactivity effect identification permits according to the data of normal operation to construct adaptive models for the point nuclear reactor, designed for its behaviour prediction in stationary and transition operational conditions. Therefore, the models considered can be used for creating control systems of nuclear power reactor thermal capacity (of RBMK type reactor, in particular) which can be adapted to the change in the internal feedback circuit characteristics
Design of reactive power procurement in deregulated electricity market
African Journals Online (AJOL)
user
novel reactive power procurement model is proposed, which ensure secure and ..... The simulation is performed in the Matlab. .... focus of this paper is a reactive procurement market model, which is a basically two-step optimization process.
DEFF Research Database (Denmark)
Anurag, Anup; Yang, Yongheng; Blaabjerg, Frede
2015-01-01
loading, considering the operation outside active feed-in hours. An analytical lifetime model is then employed for lifetime quantization based on the Palgrem Miner rule. Thereafter, considering the lifetime reduction of the PV inverter under different mission profiles with reactive power injection......The widespread adoption of mixed renewables urgently require reactive power exchange at various feed-in points of the utility grid. Photovoltaic (PV) inverters are able to provide reactive power in a decentralized manner at the grid-connection points even outside active power feed-in operation......, especially at night when there is no solar irradiance. This serves as a motivation for utilizing the PV inverters at night for reactive power compensation. Thus, an analysis on the impact of reactive power injection by PV inverters outside feed-in operation on the thermal performance and the reliability has...
An Enhanced Islanding Microgrid Reactive Power, Imbalance Power, and Harmonic Power Sharing Scheme
DEFF Research Database (Denmark)
He, Jinwei; Lin, Yun Wei; Blaabjerg, Frede
2015-01-01
To address inaccurate power sharing problems in autonomous islanding microgrids, an enhanced droop control method through online virtual impedance adjustment is proposed. First, a term associated with DG reactive power, imbalance power, or harmonic power is added to the conventional real power...
DEFF Research Database (Denmark)
He, Jinwei; Li, Yun Wei; Blaabjerg, Frede
2013-01-01
To address inaccurate power sharing problems in autonomous islanding microgrids, an enhanced droop control method through adaptive virtual impedance adjustment is proposed. First, a term associated with DG reactive power, imbalance power or harmonic power is added to the conventional real power...
Directory of Open Access Journals (Sweden)
Aouss Gabash
2016-02-01
Full Text Available It has recently been shown that using battery storage systems (BSSs to provide reactive power provision in a medium-voltage (MV active distribution network (ADN with embedded wind stations (WSs can lead to a huge amount of reverse power to an upstream transmission network (TN. However, unity power factors (PFs of WSs were assumed in those studies to analyze the potential of BSSs. Therefore, in this paper (Part-I, we aim to further explore the pure reactive power potential of WSs (i.e., without BSSs by investigating the issue of variable reverse power flow under different limits on PFs in an electricity market model. The main contributions of this work are summarized as follows: (1 Introducing the reactive power capability of WSs in the optimization model of the active-reactive optimal power flow (A-R-OPF and highlighting the benefits/impacts under different limits on PFs. (2 Investigating the impacts of different agreements for variable reverse power flow on the operation of an ADN under different demand scenarios. (3 Derivation of the function of reactive energy losses in the grid with an equivalent-π circuit and comparing its value with active energy losses. (4 Balancing the energy curtailment of wind generation, active-reactive energy losses in the grid and active-reactive energy import-export by a meter-based method. In Part-II, the potential of the developed model is studied through analyzing an electricity market model and a 41-bus network with different locations of WSs.
Energy Technology Data Exchange (ETDEWEB)
Mino Aguilar, Gerardo
1999-05-01
In here it is presented a brief review of the state of art of power active filters used in the common coupling points between AC sources and nonlinear loads formed by static converters of AC/DC, for the suppression of harmonic currents and instantaneous compensation of the reactive power. Starting off from the active filters that affect only the three balanced currents of the three-phase systems of 3 wires, it is arrived at the subject of this thesis, whose objective is to solve the problem of the reactive compensation and suppression of harmonic currents in the three phases as well as in the neuter of the three-phase systems of 4 wires. The main contribution of this thesis is the design, analysis and simulation of an active filter that besides of suppressing the harmonic currents and compensating the power factor in the three phases of an unbalanced three-phase system, also has the capacity of removing the current that circulates in the neuter due to the unbalance of the phase currents. This design is based on the extension of the theory of the instantaneous reactive power that includes the existence of the zero sequence components of in the phase currents. It is set out in the thesis a novel filter based on an three-phase inverter of 4 branches, 3 branches of phase and one branch of neuter, that to the best knowledge of the author it has not been reported in the literature. Use is made of an extensive number of simulation results to prove the validity of this filter, whose behavior is superior to the filters for suppression of currents in the neuter existing in the literature, of which also a comparative study is presented. The thesis also includes a mathematical and graphical analysis of the symmetrical components in balanced and unbalanced systems in order to know the nature of the harmonic currents of zero sequence. It is included a section on causes and effects of the harmonic contamination problem. [Spanish] Se presenta un breve revision del estado del
(statcom) in synchronous compensator
African Journals Online (AJOL)
eobe
with fast response and low cost for stabilizing electricity grid power and voltage. ... The conventional and modified Newton-Raphson-based power flow equations .... The control of the reactive power exchange between .... because of its faster rate of convergence and accuracy ..... compensator, North American Power System.
REACTIVE POWER DEVICES IN SYSTEMS OF ELECTRIC TRACTION
Directory of Open Access Journals (Sweden)
M. O. Kostin
2010-04-01
Full Text Available A comparative characteristic of different concepts and expressions for determination of reactive power in the circuits with non-sinusoidal electric values has been given. For the first Ukrainian electric locomotives of DE1 type with the system of DC electric traction, the values of reactive power after Budeany, Fryze, and also the differential, integral and generalized reactive powers have been determined. Some measures on reducing its consumption by the DC electric rolling stock have been suggested.
Energy Technology Data Exchange (ETDEWEB)
Li, Fangxing [ORNL; Kueck, John D [ORNL; Rizy, D Tom [ORNL; King, Thomas F [ORNL
2006-04-01
A major blackout affecting 50 million people in the Northeast United States, where insufficient reactive power supply was an issue, and an increased number of filings made to the Federal Energy Regulatory Commission by generators for reactive power has led to a closer look at reactive power supply and compensation. The Northeastern Massachusetts region is one such area where there is an insufficiency in reactive power compensation. Distributed energy due to its close proximity to loads seems to be a viable option for solving any present or future reactive power shortage problems. Industry experts believe that supplying reactive power from synchronized distributed energy sources can be 2 to 3 times more effective than providing reactive support in bulk from longer distances at the transmission or generation level. Several technology options are available to supply reactive power from distributed energy sources such as small generators, synchronous condensers, fuel cells or microturbines. In addition, simple payback analysis indicates that investments in DG to provide reactive power can be recouped in less than 5 years when capacity payments for providing reactive power are larger than $5,000/kVAR and the DG capital and installation costs are lower than $30/kVAR. However, the current institutional arrangements for reactive power compensation present a significant barrier to wider adoption of distributed energy as a source of reactive power. Furthermore, there is a significant difference between how generators and transmission owners/providers are compensated for reactive power supplied. The situation for distributed energy sources is even more difficult, as there are no arrangements to compensate independent DE owners interested in supplying reactive power to the grid other than those for very large IPPs. There are comparable functionality barriers as well, as these smaller devices do not have the control and communications requirements necessary for automatic
Magallanes, Francisco Cabaleiro; Viarouge, Philippe; Cros, Jérôme
2015-01-01
This paper proposes a novel topological solution for pulsed power converters based on capacitor-discharge topologies, integrating a Fast Voltage Compensator which allows an operation at constant power consumption from the utility grid. This solution has been retained as a possible candidate for the CLIC project under study at CERN, which requires more than a thousand synchronously-operated klystron modulators producing a total pulsed power of almost 40 GW. The proposed Fast Voltage Compensator is integrated in the modulator such that it only has to treat the capacitor charger current and a fraction of the charging voltage, meaning that its dimensioning power and cost are minimized. This topology can be used to improve the AC power quality of any pulsed converters based on capacitor-discharge concept. A prototype has been built and exploited to validate the operating principle and demonstrate the benefits of the proposed solution.
Directory of Open Access Journals (Sweden)
Руслан Володимирович Власенко
2016-07-01
Full Text Available Electricity quality improving is extremely relevant nowadays. With such industrial loads as induction motors, induction furnaces, welding machines, controlled or uncontrolled rectifiers, frequency converters and others reactive power, harmonics and unbalance are generated in power grid. Reactive power, higher harmonic currents and asymmetry loads influence the functioning of electric devices and electrical mains. An effective technical solution is the use of new compensating devices, that is active power filters. The emergence of consumers with a unit capacity of four wire networks requires a new approach to building system control active power filter. When designing the active power filter control system the current flowing in the neutral wire must be taken into account. To assess the power balance in the four wire active power filter, scientists have proposed to apply pqr theory of power based on the Clarke transformation. There are different topologies of three-phase four wire active power filters. A visual simulation of Matlab / Simulink model with an active power filter based on pqr theory of power has been created. A method of pulse width modulation with four control channels was used as pulses forming systems with transistor keys. Operating conditions of three-phase four wire active power filter with asymmetry, non-sinosoidal voltage source and asymmetric load have been studied. The correction taking into account the means improving the active power filter has been offered as pqr theory of power does not take into account non-sinosoidal voltage
Distribution factors for reactive power in the presence of bilateral transactions
International Nuclear Information System (INIS)
De Tuglie, E.; Torelli, F.
2004-01-01
The twin factors of limited investment in electric transmission systems and the overexploitation of electrical resources results in an increase in the need for reactive power to support system voltage profile and to supply loads. It is reasonable to expect that generators and compensators, heavily involved in reactive support on a voluntary basis, will be remunerated for their service by market transactions. This remuneration will depend on the network topology, i.e. of buyers, sellers and reactive injection locations, on the active power exchanged and the reactive power required by loads. All these aspects are taken into account in developing a methodology based on circuit considerations. Using this approach, at a given system operating point characterised by a predefined set of transactions, reactive responsibilities can be formulated as the sum of two terms: one strictly related to transactions and the other dependent on electric network parameters. Test results demonstrate the efficacy of the proposed methodology in sharing reactive power responsibilities in a fair way among market participants. (author)
Dynamic Reactive Power Control in Offshore HVDC Connected Wind Power Plants
DEFF Research Database (Denmark)
Sakamuri, Jayachandra N.; Cutululis, Nicolaos Antonio; Rather, Zakir Hussain
2016-01-01
This paper presents a coordinated reactive power control for a HVDC connected cluster of offshore wind power plants (WPPs). The reactive power reference for the WPP cluster is estimated by an optimization algorithm aiming at minimum active power losses in the offshore AC Grid. For each optimal......, such as wind turbine (WT) terminal, collector cable, and export cable, on the dynamic voltage profile of the offshore grid is investigated. Furthermore, the dynamic reactive power contribution from WTs from different WPPs of the cluster for such faults has also been studied....... reactive power set point, the OWPP cluster controller generates reactive power references for each WPP which further sends the AC voltage/ reactive power references to the associated WTs based on their available reactive power margin. The impact of faults at different locations in the offshore grid...
Reactive power control with CHP plants - A demonstration
DEFF Research Database (Denmark)
Nyeng, Preben; Østergaard, Jacob; Andersen, Claus A.
2010-01-01
power rating of 7.3 MW on two synchronous generators. A closed-loop control is implemented, that remote controls the CHP plant to achieve a certain reactive power flow in a near-by substation. The solution communicates with the grid operator’s existing SCADA system to obtain measurements from...... lines to underground cables has changed the reactive power balance, and third, the TSO has introduced restrictions in the allowed exchange of reactive power between the transmission system and distribution grids (known as the Mvar-arrangement). The demonstration includes a CHP plant with an electric......In this project the potential for ancillary services provision by distributed energy resources is investigated. Specifically, the provision of reactive power control by combined heat and power plants is examined, and the application of the new standard for DER communication systems, IEC 61850...
Portable digital reactivity meter for power reactors
Energy Technology Data Exchange (ETDEWEB)
Steffen, G [Nuklear-Ingenieur Service G.m.b.H., Hanau (Germany, F.R.)
1977-07-01
A digital reactivity meter has been developed, which can be used for all kinds of kinetic reactivity measurements in PWR's and BWR's. The input signals may be supplied by standard neutron detectors of the reactor. The hardware configuration consists of a minicomputer with ADC and DAC, a 'Silent' terminal and a high speed paper tape reader/punch. It is easily transportable. The reactivity meter solves the inverse kinetics equations for 6 delayed neutron groups, simultaneously for up to 8 logarithmic or linear neutron flux signals. It has been successfully tested at Biblis A PWR and the KRB BWR.
Formation for the calculation of reactivity without nuclear power history
International Nuclear Information System (INIS)
Suescun Diaz, Daniel; Senra Martinez, Aquilino; Carvalho Da Silva, Fernando
2007-01-01
This paper presents a new method for the solution of the inverse point kinetics equation. This method is based on the integration by parts of the integral of the inverse point kinetics equation, which results in a power series in terms of the nuclear power in time dependence. With the imposition of conditions to the nuclear power, the reactivity is represented as first and second derivatives of this nuclear power. This new calculation method for reactivity has very special characteristics, amongst which the possibility of using longer sampling period, and the possibility of restarting the calculation, after its interruption, allowing the calculation of reactivity in a non-continuous way. Beside that, the reactivity can be obtained independent of the nuclear power memory. (author)
Energy Technology Data Exchange (ETDEWEB)
1980-01-01
The Proceedings of the Conference comprises 12 papers dealing with the following themes: the history of apparent power; active and apparent power of periodical currents in single-phase and multiphase systems with periodical voltages of any shape of curve; power values in unsteady state processes; power and harmonic relations in mains-controlled direct frequency converters; power electronic devices for apparent power compensation; electric arc effects on power system: characteristics, measurement methods, compensation; harmonic compensation by means of impedance wave trap filters in rectifiers; compensation of apparent power by filter circuits; apparent power effects on ac railroad power systems; effects of apparent power in low-voltage networks of public power supply.
DEFF Research Database (Denmark)
Ma, Ke; Liserre, Marco; Blaabjerg, Frede
2012-01-01
method to relieve the thermal cycling of power switching devices under severe wind speed variations, by circulating reactive power among the parallel power converters in a WTS or among the WTS's in a wind park. The amount of reactive power is adjusted to limit the junction temperature fluctuation...
Broadband and High power Reactive Jamming Resilient Wireless Communication
2017-10-21
Broadband and High -power Reactive Jamming Resilient Wireless Communication The views, opinions and/or findings contained in this report are those of... available in extremely hostile environments, where FHSS and DSSS are completely defeated by a broadband and high -power reactive jammer. b. Wireless...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS
A New Framework for Reactive Power Market Considering Power System Security
Directory of Open Access Journals (Sweden)
A. Rabiee
2009-09-01
Full Text Available This paper presents a new framework for the day-ahead reactive power market based on the uniform auction price. Voltage stability and security have been considered in the proposed framework. Total Payment Function (TPF is suggested as the objective function of the Optimal Power Flow (OPF used to clear the reactive power market. Overload, voltage drop and voltage stability margin (VSM are included in the constraints of the OPF. Another advantage of the proposed method is the exclusion of Lost Opportunity Cost (LOC concerns from the reactive power market. The effectiveness of the proposed reactive power market is studied based on the CIGRÉ-32 bus test system.
Longer operating times of nuclear power plants. Options for compensating public utility advantages
International Nuclear Information System (INIS)
Bode, Sven; Kondziella, Hendrik; Bruckner, Thomas
2010-01-01
The current German government of CDU/CSU and FDP intends to prolong the operating time of existing nuclear power plants in Germany. The advantages resulting for public utilities are to be compensated. The authors discuss how compensation may be achieved and outline the available instruments. (orig.)
A DFIG Islanding Detection Scheme Based on Reactive Power Infusion
Wang, M.; Liu, C.; He, G. Q.; Li, G. H.; Feng, K. H.; Sun, W. W.
2017-07-01
A lot of research has been done on photovoltaic (the “PV”) power system islanding detection in recent years. As a comparison, much less attention has been paid to islanding in wind turbines. Meanwhile, wind turbines can work in islanding conditions for quite a long period, which can be harmful to equipments and cause safety hazards. This paper presents and examines a double fed introduction generation (the “DFIG”) islanding detection scheme based on feedback of reactive power and frequency and uses a trigger signal of reactive power infusion which can be obtained by dividing the voltage total harmonic distortion (the "THD") by the voltage THD of last cycle to avoid the deterioration of power quality. This DFIG islanding detection scheme uses feedback of reactive power current loop to amplify the frequency differences in islanding and normal conditions. Simulation results show that the DFIG islanding detection scheme is effective.
DEFF Research Database (Denmark)
Zhou, Dao; Blaabjerg, Frede; Lau, Mogens
2015-01-01
. In order to fulfill the modern grid codes, over-excited reactive power injection will further reduce the lifetime of the rotor-side converter. In this paper, the additional stress of the power semiconductor due to the reactive power injection is firstly evaluated in terms of modulation index...
Energy Technology Data Exchange (ETDEWEB)
Tsengenes, Georgios; Adamidis, Georgios [Department of Electrical Engineering and Computer Engineering, Democritus University of Thrace, University Campus Kimmeria, 67100 Xanthi (Greece)
2011-01-15
In this paper, a photovoltaic (PV) system, with maximum power point tracking (MPPT), connected to a three phase grid is presented. The connection of photovoltaic system on the grid takes place in one stage using voltage source inverter (VSI). For a better utilization of the photovoltaic system, the control strategy applied is based on p-q theory. According to this strategy during sunlight the system sends active power to the grid and at the same time compensates the reactive power of the load. In case there is no sunlight (during the night for instance), the inverter only compensates the reactive power of the load. In this paper the use of p-q theory to supply the grid with active power and compensate the reactive power of the load is investigated. The advantage of this control strategy is that the photovoltaic system is operated the whole day. Furthermore, the p-q theory uses simple algebraic calculations without demanding the use of PLL to synchronize the inverter with the grid. (author)
International Nuclear Information System (INIS)
Peng, Xingjie; Li, Qing; Wang, Kan
2017-01-01
Highlights: • The current spike problem is observed in the dynamic compensation process of SPNDs. • The current spike is caused by unphysical current change due to range switching. • Modification on the compensation algorithm is introduced to deal with current spike. - Abstract: Dynamic compensation methods are required to improve the response speed of the Self-Powered Neutron Detectors (SPNDs) and make it possible to apply the SPNDs for core monitoring and surveillance. During the experimental test of the compensation method based on linear matrix inequality (LMI), spikes are observed in the compensated SPND current. After analyzing the measurement data, the cause is fixed on the unphysical change of the uncompensated SPND current due to range switching. Then some modifications on the dynamic compensation algorithms are proposed to solve the current spike problem.
Directory of Open Access Journals (Sweden)
M. SUSITHRA
2017-01-01
Full Text Available Competitive trend towards restructuring and unbundling of transmission services has resulted in the need to discover the impact of a particular generator to load. This paper initially presents the analysis of three different reactive power valuation methods namely, Modified Ybus , Virtual flow approach and modified power flow tracing to compute the reactive power output from a particular generator to particular load. Among these methods, the modified power flow electricity tracing method is identified as the best method to trace the reactive power contribution from various reactive power sources to loads, transmission line, etc. Also this proposed method breakdown the total reactive power loss in a transmission line into components to be allocated to individual loads. Secondly, based on this Method a novel allocation method for reactive power service for practical system is proposed. Hence, this method can be useful in providing additional insight into power system operation and can be used to modify existing tariffs of charging for reactive power transmission loss and reactive power transmission services. Simulation and comparison results are shown by taking WSCC 9 and IEEE 30 bus system as test system.
DEFF Research Database (Denmark)
Anurag, Anup; Yang, Yongheng; Blaabjerg, Frede
2015-01-01
Reactive power support by photovoltaic (PV) systems is of increasingly interest, when compared to the conventional reactive power compensation devices. PV inverters can exchange reactive power with the utility grid in a decentralized manner even outside feed-in operation, especially at nights when...... there is no solar irradiance. However, reactive power injection causes additional power losses in the switching components leading to a temperature rise in the devices. Thus, this paper analyses the impact of reactive power injection by PV inverters outside feed-in operation on the thermal performance...... of their power switching components. A thermal analysis based on the mission profile (i.e., solar irradiance and ambient temperature) has been incorporated, so as to determine the additional temperature rise in the components induced by the operation outside feed-in hours. An analytical lifetime model has been...
A new computational method for reactive power market clearing
International Nuclear Information System (INIS)
Zhang, T.; Elkasrawy, A.; Venkatesh, B.
2009-01-01
After deregulation of electricity markets, ancillary services such as reactive power supply are priced separately. However, unlike real power supply, procedures for costing and pricing reactive power supply are still evolving and spot markets for reactive power do not exist as of now. Further, traditional formulations proposed for clearing reactive power markets use a non-linear mixed integer programming formulation that are difficult to solve. This paper proposes a new reactive power supply market clearing scheme. Novelty of this formulation lies in the pricing scheme that rewards transformers for tap shifting while participating in this market. The proposed model is a non-linear mixed integer challenge. A significant portion of the manuscript is devoted towards the development of a new successive mixed integer linear programming (MILP) technique to solve this formulation. The successive MILP method is computationally robust and fast. The IEEE 6-bus and 300-bus systems are used to test the proposed method. These tests serve to demonstrate computational speed and rigor of the proposed method. (author)
DEFF Research Database (Denmark)
Vlachogiannis, Ioannis (John)
2009-01-01
grids is a major issue for system operators. Under these circumstances an online reactive power management strategy with minimum risk concerning all uncertain and stochastic parameters is proposed. Therefore, new concepts such as reactive power-weighted node-to-node linking and reactive power control......In the current released energy market, the large-scale complex transmission networks and the distribution ones with dispersed energy sources and "intelligent" components operate under uncertainties, stochastic and prior incomplete information. A safe and reliable operation of such complex power...... capability are introduced. A distributed and interconnected stochastic learning automata system is implemented to manage, in a unified and unique way, the reactive power in complex power grids with stochastic reactive power demand and detect the vulnerable part. The proposed simplified strategy can also...
Reactive power planning with FACTS devices using gravitational search algorithm
Directory of Open Access Journals (Sweden)
Biplab Bhattacharyya
2015-09-01
Full Text Available In this paper, Gravitational Search Algorithm (GSA is used as optimization method in reactive power planning using FACTS (Flexible AC transmission system devices. The planning problem is formulated as a single objective optimization problem where the real power loss and bus voltage deviations are minimized under different loading conditions. GSA based optimization algorithm and particle swarm optimization techniques (PSO are applied on IEEE 30 bus system. Results show that GSA can also be a very effective tool for reactive power planning.
Directory of Open Access Journals (Sweden)
Bin Zhao
2014-05-01
Full Text Available This study presents the auxiliary damping control with the reactive power loop on the rotor-side converter of doubly-fed induction generator (DFIG-based wind farms to depress the sub-synchronous resonance oscillations in nearby turbogenerators. These generators are connected to a series capacitive compensation transmission system. First, the damping effect of the reactive power control of the DFIG-based wind farms was theoretically analyzed, and a transfer function between turbogenerator speed and the output reactive power of the wind farms was introduced to derive the analytical expression of the damping coefficient. The phase range to obtain positive damping was determined. Second, the PID phase compensation parameters of the auxiliary damping controller were optimized by a genetic algorithm to obtain the optimum damping in the entire subsynchronous frequency band. Finally, the validity and effectiveness of the proposed auxiliary damping control were demonstrated on a modified version of the IEEE first benchmark model by time domain simulation analysis with the use of DigSILENT/PowerFactory. Theoretical analysis and simulation results show that this derived damping factor expression and the condition of the positive damping can effectively analyze their impact on the system sub-synchronous oscillations, the proposed wind farms reactive power additional damping control strategy can provide the optimal damping effect over the whole sub-synchronous frequency band, and the control effect is better than the active power additional damping control strategy based on the power system stabilizator.
Ant colony search algorithm for optimal reactive power optimization
Directory of Open Access Journals (Sweden)
Lenin K.
2006-01-01
Full Text Available The paper presents an (ACSA Ant colony search Algorithm for Optimal Reactive Power Optimization and voltage control of power systems. ACSA is a new co-operative agents’ approach, which is inspired by the observation of the behavior of real ant colonies on the topic of ant trial formation and foraging methods. Hence, in the ACSA a set of co-operative agents called "Ants" co-operates to find good solution for Reactive Power Optimization problem. The ACSA is applied for optimal reactive power optimization is evaluated on standard IEEE, 30, 57, 191 (practical test bus system. The proposed approach is tested and compared to genetic algorithm (GA, Adaptive Genetic Algorithm (AGA.
Analysis of losses within SMES system for compensating output fluctuation of wind power farm
Energy Technology Data Exchange (ETDEWEB)
Park, S. I.; Kim, J. H.; Le, T. D.; Lee, D. H.; Kim, H. M. [Jeju National University, Jeju (Korea, Republic of); Yoon, Y. S. [Dept. of Electrical Engineering, Shin Ansan University, Ansan (Korea, Republic of); Yoon, K. Y. [Dept. of lectrical and Electronic Engineering, Yonsei University, Seoul (Korea, Republic of)
2014-12-15
Output fluctuation which is generated in wind power farm can hinder stability of total power system. The electric energy storage (EES) reduces unstable output, and superconducting magnetic energy storage (SMES) of various EESs has the proper performance for output compensation of wind power farm since it charges and discharges large scale power quickly with high efficiency. However, because of the change of current within SMES, the electromagnetic losses occur in the process of output compensation. In this paper, the thermal effect of the losses that occur in SMES system while compensating in wind power farm is analyzed. The output analysis of wind power farm is processed by numerical analysis, and the losses of SMES system is analyzed by 3D finite element analysis (FEA) simulation tool.
Analysis of losses within SMES system for compensating output fluctuation of wind power farm
International Nuclear Information System (INIS)
Park, S. I.; Kim, J. H.; Le, T. D.; Lee, D. H.; Kim, H. M.; Yoon, Y. S.; Yoon, K. Y.
2014-01-01
Output fluctuation which is generated in wind power farm can hinder stability of total power system. The electric energy storage (EES) reduces unstable output, and superconducting magnetic energy storage (SMES) of various EESs has the proper performance for output compensation of wind power farm since it charges and discharges large scale power quickly with high efficiency. However, because of the change of current within SMES, the electromagnetic losses occur in the process of output compensation. In this paper, the thermal effect of the losses that occur in SMES system while compensating in wind power farm is analyzed. The output analysis of wind power farm is processed by numerical analysis, and the losses of SMES system is analyzed by 3D finite element analysis (FEA) simulation tool.
Calculation of research reactor RA power at uncontrolled reactivity changes
International Nuclear Information System (INIS)
Cupac, S.
1978-01-01
The safety analysis of research reactor RA involves also the calculation of reactor power at uncontrolled reactivity changes. The corresponding computer code, based on Point Kinetics Model has been made. The short review of method applied for solving kinetic equations is given and several examples illustrating the reactor behaviour at various reactivity changes are presented. The results already obtained are giving rather rough picture of reactor behaviour in considered situations. This is the consequence of using simplified feed back and reactor cooling models, as well as temperature reactivity coefficients, which do not correspond to the actual reactor RA structure (which is now only partly fulfilled with 80% enriched uranium fuel). (author) [sr
Application of VSC-HVDC with Shunt Connected SMES for Compensation of Power Fluctuation
Linn, Zarchi; Kakigano, Hiroaki; Miura, Yushi; Ise, Toshifumi
This paper describes the application of VSC-HVDC (High Voltage DC Transmission using Voltage Source Converter) with shunt connected SMES (Superconducting Magnetic Energy Storage) for compensation of power fluctuation caused by fluctuating power source such as photovoltaics and wind turbines. The objectives of this proposed system is to smooth out fluctuating power in one terminal side of HVDC in order to avoid causing power system instability and frequency deviation by absorbing or providing power according to the system requirement while another terminal side power is fluctuated. The shunt connected SMES charges and discharges the energy to and from the dc side and it compensates required power of fluctuation to obtain constant power flow in one terminal side of VSC-HVDC system. This system configuration has ability for power system stabilization in the case of power fluctuation from natural energy source. PSCAD/EMTDC simulation is used to evaluate the performance of applied system configuration and control method.
Economic Decision-Making for Coal Power Flexibility Retrofitting and Compensation in China
Directory of Open Access Journals (Sweden)
Chunning Na
2018-01-01
Full Text Available In China, in order to integrate more renewable energy into the power grid, coal power flexibility retrofitting is imperative. This paper elaborates a generic method for estimating the flexibility potential from the rapid ramp rate and peak shaving operation using nonlinear programming, and defines three flexibility elastic coefficients to quantify the retrofitted targets. The optimized range of the retrofitted targets determined by the flexibility elastic coefficients have a reference significance on coal power flexibility retrofitting. Then, in order to enable economic decisions for coal power flexibility retrofitting, we address a profit maximizing issue regarding optimization decisions for coal power flexibility retrofitting under an assumption of perfect competition, further analyzing the characteristic roots of marginal cost equal to marginal revenue. The rationality of current compensation standards for peak shaving in China can also be judged in the analysis. The case study results show that economic decision-making depends on the compensation standard and the peak shaving depth and time. At a certain peak shaving depth and time, with rational compensation standard power plants are willing to carry out coal power flexibility retrofitting. The current compensation standard in Northeast China is high enough to carry out coal power flexibility retrofitting. These research conclusions have theoretical significance for China’s peak shaving compensation standards formulation.
Compensating active power imbalances in power system with large-scale wind power penetration
DEFF Research Database (Denmark)
Basit, Abdul; Hansen, Anca Daniela; Altin, Müfit
2016-01-01
Large-scale wind power penetration can affectthe supply continuity in the power system. This is a matterof high priority to investigate, as more regulating reservesand specified control strategies for generation control arerequired in the future power system with even more highwind power penetrat...
Characteristics of a reactor with power reactivity feedback
International Nuclear Information System (INIS)
Li Fengyu; Zhang Yusheng; Zhang Guangfu; Liu Ying
2008-01-01
The point-reactor model with power reactivity feedback becomes a nonlinear system. Its dynamic characteristic shows great complexity. According to the mathematic definition of stability in differential equation qualitative theory, the model of a reactor with power reactivity feedback is judged unstable. The equilibrium point is a saddle-node point. A portion of the trajectory in the neighborhood of the equilibrium point is parabolic fan curve, and the other is hyperbolic fan curve. Based on phase locus near the equilibrium point, it is pointed out that the model is still stable within physical limits. The difference between stabilities in the mathematical sense and in the physical sense is indicated. (authors)
Reactive adsorption: A cleaner technology in nuclear power plants
International Nuclear Information System (INIS)
Marton, G.; Szanya, T.; Hanak, L.
1996-01-01
Cleaner technology prefers work with minimal loss and the wastes cause the less environmental damages. In the spirit of the previous sentence in the present paper reactive adsorption is investigated for the removal of radioactive nuclides from nuclear power plant decontamination solutions. During alkaline, oxidative decontamination of nuclear power plant equipment a radioactive solution is produced. Owing to the storing difficulties of radioactive solutions it is necessary to develop a method for the in situ treatment of radioactive, alkaline, oxidative decontamination solutions, and for the concentration of radioactive components. Reactive adsorption seems to be promising for this purpose. 3 refs., 8 figs., 1 tab
Reactive Power Pricing Model Considering the Randomness of Wind Power Output
Dai, Zhong; Wu, Zhou
2018-01-01
With the increase of wind power capacity integrated into grid, the influence of the randomness of wind power output on the reactive power distribution of grid is gradually highlighted. Meanwhile, the power market reform puts forward higher requirements for reasonable pricing of reactive power service. Based on it, the article combined the optimal power flow model considering wind power randomness with integrated cost allocation method to price reactive power. Meanwhile, considering the advantages and disadvantages of the present cost allocation method and marginal cost pricing, an integrated cost allocation method based on optimal power flow tracing is proposed. The model realized the optimal power flow distribution of reactive power with the minimal integrated cost and wind power integration, under the premise of guaranteeing the balance of reactive power pricing. Finally, through the analysis of multi-scenario calculation examples and the stochastic simulation of wind power outputs, the article compared the results of the model pricing and the marginal cost pricing, which proved that the model is accurate and effective.
Reactivity calculation with reduction of the nuclear power fluctuations
International Nuclear Information System (INIS)
Suescun Diaz, Daniel; Senra Martinez, Aquilino
2009-01-01
A new formulation is presented in this paper for the calculation of reactivity, which is simpler than the formulation that uses the Laplace and Z transforms. A treatment is also made to reduce the intensity of the noise found in the nuclear power signal used in the calculation of reactivity. Two classes of different filters are used for that. This treatment is based on the fact that the reactivity can be written by using the compose Simpson's rule resulting in a sum of two convolution terms with response to the impulse that is characteristic of a linear system. The linear part is calculated by using the filter named finite impulse response filter (FIR). The non-linear part is calculated using the filter exponentially adjusted by the least squares method, which does not cause attenuation in the reactivity calculation.
Reactivity calculation with reduction of the nuclear power fluctuations
Energy Technology Data Exchange (ETDEWEB)
Suescun Diaz, Daniel [COPPE/UFRJ, Programa de Engenharia Nuclear, Caixa Postal 68509, CEP 21941-914 RJ (Brazil)], E-mail: dsuescun@hotmail.com; Senra Martinez, Aquilino [COPPE/UFRJ, Programa de Engenharia Nuclear, Caixa Postal 68509, CEP 21941-914 RJ (Brazil)
2009-05-15
A new formulation is presented in this paper for the calculation of reactivity, which is simpler than the formulation that uses the Laplace and Z transforms. A treatment is also made to reduce the intensity of the noise found in the nuclear power signal used in the calculation of reactivity. Two classes of different filters are used for that. This treatment is based on the fact that the reactivity can be written by using the compose Simpson's rule resulting in a sum of two convolution terms with response to the impulse that is characteristic of a linear system. The linear part is calculated by using the filter named finite impulse response filter (FIR). The non-linear part is calculated using the filter exponentially adjusted by the least squares method, which does not cause attenuation in the reactivity calculation.
Comparison of dynamic compensation methods for delayed self-powered neutron detector
International Nuclear Information System (INIS)
In, Wang Kee; Kim, Joon Sung; Auh, Geun Sun; Yoon, Tae Young
1993-01-01
Dynamic compensation methods for rhodium self-powered neutron detector have been developed by Banda and Hoppe to compensate for the time delay associated with detector signals. The time delay is due to the decay of the neutron-activated rhodium and results in delayed detector response. Two digital dynamic compensation methods, were compared for step change of neutron flux in this paper. The inverse kinetics method gave slightly better response time and noise gain. However, the inverse kinetics method also showed overshooting of neutron flux for the step change. (Author)
Reactive Power Impact on Lifetime Prediction of Two-level Wind Power Converter
DEFF Research Database (Denmark)
Zhou, Dao; Blaabjerg, Frede; Lau, M.
2013-01-01
The influence of reactive power injection on the dominating two-level wind power converter is investigated and compared in terms of power loss and thermal behavior. Then the lifetime of both the partial-scale and full-scale power converter is estimated based on the widely used Coffin-Manson model...
Economic estimation of risk and compensation of damage from accidents in power engineering objects
International Nuclear Information System (INIS)
Lesnykh, V.V.
1996-01-01
Place and basic peculiarities of the task relative to compensation of damage due to accidents in the problem on technical-economical studies of the power engineering objects, including NPPs, are analyzed. Certain approaches in the task of the risk economical estimates and basic provisions of the economical damage compensation system are presented. Description of imitated and analytical approach in the task of estimating financial state is given and certain study results are presented. 11 refs., 8 figs
Control of a hybrid compensator in a power network by an artificial neural network
Directory of Open Access Journals (Sweden)
I. S. Shaw
1998-07-01
Full Text Available Increased interest in the elimination of distortion in electrical power networks has led to the development of various compensator topologies. The increasing cost of electrical energy necessitates the cost-effective operation of any of these topologies. This paper considers the development of an artificial neural network based controller, trained by means of the backpropagation method, that ensures the cost-effective operation of the hybrid compensator consisting of various converters and filters.
Autonomous Active and Reactive Power Distribution Strategy in Islanded Microgrids
DEFF Research Database (Denmark)
Wu, Dan; Tang, Fen; Guerrero, Josep M.
2014-01-01
This paper proposes an autonomous active and reactive power distribution strategy that can be applied directly on current control mode (CCM) inverters, being compatible as well with conventional droop-controlled voltage control mode (VCM) converters. In a microgrid, since renewable energy sources...
Distributed multi-agent scheme for reactive power management with renewable energy
International Nuclear Information System (INIS)
Rahman, M.S.; Mahmud, M.A.; Pota, H.R.; Hossain, M.J.
2014-01-01
Highlights: • A distributed multi-agent scheme is proposed to enhance the dynamic voltage stability. • A control agent is designed where control actions are performed through PI controller. • Proposed scheme is compared with the conventional approach with DSTATCOM. • Proposed scheme adapts the capability of estimation and control under various operating conditions. - Abstract: This paper presents a new distributed multi-agent scheme for reactive power management in smart coordinated distribution networks with renewable energy sources (RESs) to enhance the dynamic voltage stability, which is mainly based on controlling distributed static synchronous compensators (DSTATCOMs). The proposed control scheme is incorporated in a multi-agent framework where the intelligent agents simultaneously coordinate with each other and represent various physical models to provide information and energy flow among different physical processes. The reactive power is estimated from the topology of distribution networks and with this information, necessary control actions are performed through the proposed proportional integral (PI) controller. The performance of the proposed scheme is evaluated on a 8-bus distribution network under various operating conditions. The performance of the proposed scheme is validated through simulation results and these results are compared to that of conventional PI-based DSTATCOM control scheme. From simulation results, it is found that the distributed MAS provides excellence performance for improving voltage profiles by managing reactive power in a smarter way
Directory of Open Access Journals (Sweden)
Rachid DEHINI
2010-12-01
Full Text Available In this paper, the main aim is to confront the performance of shunt active power filter (SAPF and the shunt hybrid active power filter (SHAPF to achieve flexibility and reliability of the filter devices. Both of the two devices used the classical proportional-integral controller for pulse generation to trigger the inventers MOSFETs. In the adopted hybrid active filter there is a passive power filter with high power rating to filter the low order harmonies and one active filter with low power rating to filter the other high order harmonies. In order to investigate the effectiveness of (SHAPF, the studies have been accomplished using simulation with the MATLAB-SIMULINK. The results show That (SHAPF is more effective than (SAPF, and has lower cost.
Li, Cheng
compensate the reactive power demand, the DG operation no longer imposes a significant effect on the voltage fluctuations in the distribution system. And the proposed approach is efficient, simple and straightforward.
Compensating for Tissue Changes in an Ultrasonic Power Link for Implanted Medical Devices.
Vihvelin, Hugo; Leadbetter, Jeff; Bance, Manohar; Brown, Jeremy A; Adamson, Robert B A
2016-04-01
Ultrasonic power transfer using piezoelectric devices is a promising wireless power transfer technology for biomedical implants. However, for sub-dermal implants where the separation between the transmitter and receiver is on the order of several acoustic wavelengths, the ultrasonic power transfer efficiency (PTE) is highly sensitive to the distance between the transmitter and receiver. This sensitivity can cause large swings in efficiency and presents a serious limitation on battery life and overall performance. A practical ultrasonic transcutaneous energy transfer (UTET) system design must accommodate different implant depths and unpredictable acoustic changes caused by tissue growth, hydration, ambient temperature, and movement. This paper describes a method used to compensate for acoustic separation distance by varying the transmit (Tx) frequency in a UTET system. In a benchtop UTET system we experimentally show that without compensation, power transfer efficiency can range from 9% to 25% as a 5 mm porcine tissue sample is manipulated to simulate in situ implant conditions. Using an active frequency compensation method, we show that the power transfer efficiency can be kept uniformly high, ranging from 20% to 27%. The frequency compensation strategy we propose is low-power, non-invasive, and uses only transmit-side measurements, making it suitable for active implanted medical device applications.
Application of Newton's optimal power flow in voltage/reactive power control
Energy Technology Data Exchange (ETDEWEB)
Bjelogrlic, M.; Babic, B.S. (Electric Power Board of Serbia, Belgrade (YU)); Calovic, M.S. (Dept. of Electrical Engineering, University of Belgrade, Belgrade (YU)); Ristanovic, P. (Institute Nikola Tesla, Belgrade (YU))
1990-11-01
This paper considers an application of Newton's optimal power flow to the solution of the secondary voltage/reactive power control in transmission networks. An efficient computer program based on the latest achievements in the sparse matrix/vector techniques has been developed for this purpose. It is characterized by good robustness, accuracy and speed. A combined objective function appropriate for various system load levels with suitable constraints, for treatment of the power system security and economy is also proposed. For the real-time voltage/reactive power control, a suboptimal power flow procedure has been derived by using the reduced set of control variables. This procedure is based on the sensitivity theory applied to the determination of zones for the secondary voltage/reactive power control and corresponding reduced set of regulating sources, whose reactive outputs represent control variables in the optimal power flow program. As a result, the optimal power flow program output becomes a schedule to be used by operators in the process of the real-time voltage/reactive power control in both normal and emergency operating states.
Optimum Arrangement of Reactive Power Sources While Using Genetic Algori
Directory of Open Access Journals (Sweden)
A. M. Gashimov
2010-01-01
Full Text Available Reduction of total losses in distribution electricity supply network is considered as an important measure which serves for improvement of efficiency of electric power supply systems. This objective can be achieved by optimum distribution of reactive power sources in proper places of distribution electricity supply network. The proposed methodology is based on application of a genetic algorithm. Total expenses for installation of capacitor banks, their operation and also expenses related to electric power losses are considered as an efficiency function which is used for determination of places with optimum values of capacitor bank power. The methodology is the most efficient for selection of optimum places in the network where it is necessary to install capacitor banks with due account of their power control depending on a switched-on load value in the units.
Device for measuring active, reactive and apparent power
Energy Technology Data Exchange (ETDEWEB)
Bartosinski, E.; Wieland, J.
1982-09-30
The plan consists of a traditional electrodynamic mechanism for measuring power (IM) supplemented by three switches, two rectifiers, resistor, included in parallel, and phaseshifting throttle included in series with the voltage coil of the IM. This makes it possible by selection to perform three types of measurements: active power of alternating current or power of direct current, only the voltage coils and the IM current are engaged; reactive power, the resistor and the throttle are additionally engaged by the aforementioned method; complete (apparent) power--the current and the voltage are supplied directly to the IM coils, but in contrast to the first case, through rectifiers. The influence of the highest harmonic components of voltage and current which are not significant for industrial measurements can be eliminated in necessary cases using filtering devices.
Stochastic reactive power dispatch in hybrid power system with intermittent wind power generation
International Nuclear Information System (INIS)
Taghavi, Reza; Seifi, Ali Reza; Samet, Haidar
2015-01-01
Environmental concerns besides fuel costs are the predominant reasons for unprecedented escalating integration of wind turbine on power systems. Operation and planning of power systems are affected by this type of energy due to the intermittent nature of wind speed inputs with high uncertainty in the optimization output variables. Consequently, in order to model this high inherent uncertainty, a PRPO (probabilistic reactive power optimization) framework should be devised. Although MC (Monte-Carlo) techniques can solve the PRPO with high precision, PEMs (point estimate methods) can preserve the accuracy to attain reasonable results when diminishing the computational effort. Also, this paper introduces a methodology for optimally dispatching the reactive power in the transmission system, while minimizing the active power losses. The optimization problem is formulated as a LFP (linear fuzzy programing). The core of the problem lay on generation of 2m + 1 point estimates for solving PRPO, where n is the number of input stochastic variables. The proposed methodology is investigated using the IEEE-14 bus test system equipped with HVDC (high voltage direct current), UPFC (unified power flow controller) and DFIG (doubly fed induction generator) devices. The accuracy of the method is demonstrated in the case study. - Highlights: • This paper uses stochastic loads in optimization process. • AC–DC load flow is modified to use some advantages of DC part in optimization process. • UPFC and DFIG are simulated in a way that could be effective in optimization process. • Fuzzy set has been used as an uncertainty analysis tool in the optimization
Dispersion compensated mid-infrared quantum cascade laser frequency comb with high power output
Directory of Open Access Journals (Sweden)
Q. Y. Lu
2017-04-01
Full Text Available Chromatic dispersion control plays an underlying role in optoelectronics and spectroscopy owing to its enhancement to nonlinear interactions by reducing the phase mismatching. This is particularly important to optical frequency combs based on quantum cascade lasers which require negligible dispersions for efficient mode locking of the dispersed modes into equally spaced comb modes. Here, we demonstrated a dispersion compensated mid-IR quantum cascade laser frequency comb with high power output at room temperature. A low-loss dispersive mirror has been engineered to compensate the device’s dispersion residue for frequency comb generation. Narrow intermode beating linewidths of 40 Hz in the comb-working currents were identified with a high power output of 460 mW and a broad spectral coverage of 80 cm-1. This dispersion compensation technique will enable fast spectroscopy and high-resolution metrology based on QCL combs with controlled dispersion and suppressed noise.
Agent-based Distributed Unbalance Compensation for Optimal Power Quality in Islanded Microgrids
DEFF Research Database (Denmark)
Meng, Lexuan; Dragicevic, Tomislav; Guerrero, Josep M.
2014-01-01
-based distributed hierarchical control method. Communication links are required between neighboring units. Consensus algorithm and optimization algorithm are implemented in tertiary control for global information discovery and local optimal decision-making respectively. The tertiary control gives lower level......In microgrids, the distributed generators (DG) can be used as distributed compensators so as to compensate the voltage unbalances in the critical bus. However, the power quality disturbance in generator sides and local buses may be affected and exceeds the limit. It can be more convenient...... to implement tertiary control so as to adjust the compensation efforts among DGs and ensure the acceptable power quality in local buses. Moreover, as centralized control methods have certain disadvantages, such as low flexibility, expandability and heavy computation burden, this paper proposes an agent...
Wolf Search Algorithm for Solving Optimal Reactive Power Dispatch Problem
Directory of Open Access Journals (Sweden)
Kanagasabai Lenin
2015-03-01
Full Text Available This paper presents a new bio-inspired heuristic optimization algorithm called the Wolf Search Algorithm (WSA for solving the multi-objective reactive power dispatch problem. Wolf Search algorithm is a new bio – inspired heuristic algorithm which based on wolf preying behaviour. The way wolves search for food and survive by avoiding their enemies has been imitated to formulate the algorithm for solving the reactive power dispatches. And the speciality of wolf is possessing both individual local searching ability and autonomous flocking movement and this special property has been utilized to formulate the search algorithm .The proposed (WSA algorithm has been tested on standard IEEE 30 bus test system and simulation results shows clearly about the good performance of the proposed algorithm .
Modified artificial bee colony algorithm for reactive power optimization
Sulaiman, Noorazliza; Mohamad-Saleh, Junita; Abro, Abdul Ghani
2015-05-01
Bio-inspired algorithms (BIAs) implemented to solve various optimization problems have shown promising results which are very important in this severely complex real-world. Artificial Bee Colony (ABC) algorithm, a kind of BIAs has demonstrated tremendous results as compared to other optimization algorithms. This paper presents a new modified ABC algorithm referred to as JA-ABC3 with the aim to enhance convergence speed and avoid premature convergence. The proposed algorithm has been simulated on ten commonly used benchmarks functions. Its performance has also been compared with other existing ABC variants. To justify its robust applicability, the proposed algorithm has been tested to solve Reactive Power Optimization problem. The results have shown that the proposed algorithm has superior performance to other existing ABC variants e.g. GABC, BABC1, BABC2, BsfABC dan IABC in terms of convergence speed. Furthermore, the proposed algorithm has also demonstrated excellence performance in solving Reactive Power Optimization problem.
Power Swing Detection in UPFC-Compensated Line by Phase Angle of Current
DEFF Research Database (Denmark)
Khodaparast, Jalal; Khederzadeh, M.; Silva, Filipe Miguel Faria da
2017-01-01
Power swing blocker (PSB) is a complementary part of distance relay protection, that detects power swing, in order to prevent unintended operation of a distance relay. Unified power flow controller (UPFC) is used in power system to control both active and reactive powers and its operation during...... condition. The results show that these indices may no longer work in systems with UPFC. In addition, this paper proposes a new method for detecting power swing based on the phase angle of current at relay point and compares it with two other methods. The new method distinguishes power swing from a fault...
International Nuclear Information System (INIS)
Vlachogiannis, John G.
2009-01-01
In the current released energy market, the large-scale complex transmission networks and the distribution ones with dispersed energy sources and 'intelligent' components operate under uncertainties, stochastic and prior incomplete information. A safe and reliable operation of such complex power grids is a major issue for system operators. Under these circumstances an online reactive power management strategy with minimum risk concerning all uncertain and stochastic parameters is proposed. Therefore, new concepts such as reactive power-weighted node-to-node linking and reactive power control capability are introduced. A distributed and interconnected stochastic learning automata system is implemented to manage, in a unified and unique way, the reactive power in complex power grids with stochastic reactive power demand and detect the vulnerable part. The proposed simplified strategy can also consider more stochastic aspects such as variable grid's topology. Results of the proposed strategy obtained on the networks of IEEE 30-bus and IEEE 118-bus systems demonstrate the effectiveness of the proposed strategy.
Reactive power control of wind farm using facts devices
International Nuclear Information System (INIS)
Ashfaq, S.; Arif, A.; Shakeel, A.; Mahmood, T.
2014-01-01
Wind energy is an attainable option to complement other types of pollution-free green generation Grid connections of renewable energy resources are vital if they are to be effectively exploited, but grid connection brings problems of voltage fluctuation and harmonic distortion. FACTs devices are one of the power electronics revolutions to improve voltage profile, system stability, and reactive power control and to reduce transmission losses. The studied system here is a variable speed wind generation system based on Induction Generator (IG) with integration of different FACTs controllers in the wind farm. To harness the wind power efficiently the most reliable and expensive system in the present era is grid connected doubly fed induction generator. Induction generator with FACTs devices is a suitable economical replacement. The suggested scheme is implemented in MATLAB Simulink with real time parameters of GHARO wind power plant in Sind, and corresponding results and output waveforms proves the potential strength of proposed methodology. (author)
A High Power Density Integrated Charger for Electric Vehicles with Active Ripple Compensation
Pan, Liwen; Zhang, Chengning
2015-01-01
This paper suggests a high power density on-board integrated charger with active ripple compensation circuit for electric vehicles. To obtain a high power density and high efficiency, silicon carbide devices are reported to meet the requirement of high-switching-frequency operation. An integrated bidirectional converter is proposed to function as AC/DC battery charger and to transfer energy between battery pack and motor drive of the traction system. In addition, the conventional H-bridge cir...
An EMTDC Model of a Three Level four MVAR Compensator
DEFF Research Database (Denmark)
Rasmussen, Tonny Wederberg
1997-01-01
The paper discusses the dynamic characteristics of a three level ±4mvar solid state var compensator which is built and will be used for dynamic reactive power compensation in a wind farm. An investigation has been carried out of the influence of the compensator reactor, the DC intermediate voltage...
A High Power Density Integrated Charger for Electric Vehicles with Active Ripple Compensation
Directory of Open Access Journals (Sweden)
Liwen Pan
2015-01-01
Full Text Available This paper suggests a high power density on-board integrated charger with active ripple compensation circuit for electric vehicles. To obtain a high power density and high efficiency, silicon carbide devices are reported to meet the requirement of high-switching-frequency operation. An integrated bidirectional converter is proposed to function as AC/DC battery charger and to transfer energy between battery pack and motor drive of the traction system. In addition, the conventional H-bridge circuit suffers from ripple power pulsating at second-order line frequency, and a scheme of active ripple compensation circuit has been explored to solve this second-order ripple problem, in which a pair of power switches shared traction mode, a ripple energy storage capacitor, and an energy transfer inductor. Simulation results in MATLAB/Simulink validated the eligibility of the proposed topology. The integrated charger can work as a 70 kW motor drive circuit or a converter with an active ripple compensation circuit for 3 kW charging the battery. The impact of the proposed topology and control strategy on the integrated charger power losses, efficiency, power density, and thermal performance has also been analysed and simulated.
DEFF Research Database (Denmark)
Liu, Chengxi; Qin, Nan; Bak, Claus Leth
2015-01-01
This paper proposes a hybrid optimization method to optimally control the voltage and reactive power with minimum power loss in transmission grid. This approach is used for the Danish automatic voltage control (AVC) system which is typically a non-linear non-convex problem mixed with both...
Directory of Open Access Journals (Sweden)
Ryuto Shigenobu
2017-05-01
Full Text Available High penetration of distributed generators (DGs using renewable energy sources (RESs is raising some important issues in the operation of modern power system. The output power of RESs fluctuates very steeply, and that include uncertainty with weather conditions. This situation causes voltage deviation and reverse power flow. Several methods have been proposed for solving these problems. Fundamentally, these methods involve reactive power control for voltage deviation and/or the installation of large battery energy storage system (BESS at the interconnection point for reverse power flow. In order to reduce the installation cost of static var compensator (SVC, Distribution Company (DisCo gives reactive power incentive to the cooperating customers. On the other hand, photovoltaic (PV generator, energy storage and electric vehicle (EV are introduced in customer side with the aim of achieving zero net energy homes (ZEHs. This paper proposes not only reactive power control but also active power flow control using house BESS and EV. Moreover, incentive method is proposed to promote participation of customers in the control operation. Demand response (DR system is verified with several DR menu. To create profit for both side of DisCo and customer, two level optimization approach is executed in this research. Mathematical modeling of price elasticity and detailed simulations are executed by case study. The effectiveness of the proposed incentive menu is demonstrated by using heuristic optimization method.
Blind spot in free power market debate. Reactive power problems are unavoidable
International Nuclear Information System (INIS)
Maessen, T.
2002-01-01
Import restrictions, switching problems, remotely readable meters appear to be temporary problems in a liberalised power market, according to statement of the Dutch the government. However, the issues surrounding reactive power management in the Dutch transmission and distribution networks are of a far more fundamental nature. The import of cheap foreign electricity could overload the domestic power grid sufficiently to compromise the security of supply [nl
Robust filtering for dynamic compensation of self-powered neutron detectors
International Nuclear Information System (INIS)
Peng, Xingjie; Li, Qing; Zhao, Wenbo; Gong, Helin; Wang, Kan
2014-01-01
Highlights: • Three dynamic compensation methods based on robust filtering theory are proposed. • Filter design problems are converted into linear matrix inequality problems. • Rhodium and Vanadium self-powered neutron detectors are used to validate the use of these three dynamic compensation methods. • The numerical simulation results show that all three methods can provide a reasonable balance between response speed and noise suppression. - Abstract: Self-powered neutron detectors (SPNDs), which are widely used in nuclear reactors to obtain core neutron flux distribution, are accurate at steady state but respond slowly to changes in neutron flux. Dynamic compensation methods are required to improve the response speed of the SPNDs and make it possible to apply the SPNDs for core monitoring and surveillance. In this paper, three digital dynamic compensation methods are proposed. All the three methods are based on the convex optimization framework using linear matrix inequalities (LMIs). The simulation results show that all three methods can provide a reasonable balance between response speed and noise suppression
To the issue of increasing efficiency of VAR compensation
Directory of Open Access Journals (Sweden)
Світлана Костянтинівна Поднебенна
2015-11-01
Full Text Available This article describes the features of VAR compensation of variable loads. One of the most common non-symmetric non-linear power consumers are welding power sources. Time and duration of the work of these sources vary randomly. To compensate the consumption of reactive power on the basis of consumption data from the three-phase electricity meters is inefficient. Compensation devices power should be calculated taking into account the asymmetrical consumption/generation of reactive power per phase and changing consumption patterns. Thyristor-controlled reactor, thyristor-switched capacitors, hybrid VAR compensators, active compensators (STATCOMs, «dynamic capacitors» can be used as the VAR compensation devices. Thyristor-controlled reactors can provide smooth regulation of reactive power, but they have high weight and size parameters and are additional sources of higher harmonics. Thyristor-switched capacitors provide stepwise adjustment of reactive power and are subject to the current higher harmonics. Hybrid VAR compensators make it possible to isolate capacitors from the higher harmonics and ensure smooth regulation, which is achieved by active filter introduction to the reactive power compensation devices based on thyristor-switched capacitors. However, this increases the cost of a compensator and complicates its control system. STATCOMs provide smooth regulation of reactive power, but they are too expensive.Perspective direction in the development of effective VAR compensation devices is «dynamic capacitor». As a result of a feasibility study the prospects for further research of electrical grids power efficiency through the development of effective devices for VAR compensation have been established
Reactivity control of nuclear power reactors: new options
International Nuclear Information System (INIS)
Alcala, F.
1984-01-01
Some actual aspects (referring to economy, non-proliferation and environmental impact) of nuclear power reactors has been analyzed from the point of view of the reactivity control physics. Specially studied have been the physical mechanisms related with the spectral shift control method and their general positive effects on those aspects. The analysis carried out suggested the application of the above method of control to reactors with non-hydrogenous fuel cells, which are mainly characterized by their high moderator/fuel ratio. Finally three different types of such fuel cells are presented and some results about one of them (belonging to a PHWR controlled by graphite rods) are given. (author)
Basic study on dynamic reactive-power control method with PV output prediction for solar inverter
Directory of Open Access Journals (Sweden)
Ryunosuke Miyoshi
2016-01-01
Full Text Available To effectively utilize a photovoltaic (PV system, reactive-power control methods for solar inverters have been considered. Among the various methods, the constant-voltage control outputs less reactive power compared with the other methods. We have developed a constant-voltage control to reduce the reactive-power output. However, the developed constant-voltage control still outputs unnecessary reactive power because the control parameter is constant in every waveform of the PV output. To reduce the reactive-power output, we propose a dynamic reactive-power control method with a PV output prediction. In the proposed method, the control parameter is varied according to the properties of the predicted PV waveform. In this study, we performed numerical simulations using a distribution system model, and we confirmed that the proposed method reduces the reactive-power output within the voltage constraint.
Losses compensation; Compensation des pertes
Energy Technology Data Exchange (ETDEWEB)
NONE
2001-07-01
One mission of RTE (Electric Power Transportation), is to watch over the losses compensation resulting from the power transport on the electric power network. Since january 2001, RTE makes good the electric losses by the purchase of energy. To choose the marketers, a consultation has been realized by RTE. This document presents the rules concerning these losses compensation. (A.L.B.)
DEFF Research Database (Denmark)
Ding, Tao; Yang, Qingrun; Yang, Yongheng
2018-01-01
To address the uncertain output of distributed generators (DGs) for reactive power optimization in active distribution networks, the stochastic programming model is widely used. The model is employed to find an optimal control strategy with minimum expected network loss while satisfying all......, in this paper, a data-driven modeling approach is introduced to assume that the probability distribution from the historical data is uncertain within a confidence set. Furthermore, a data-driven stochastic programming model is formulated as a two-stage problem, where the first-stage variables find the optimal...... control for discrete reactive power compensation equipment under the worst probability distribution of the second stage recourse. The second-stage variables are adjusted to uncertain probability distribution. In particular, this two-stage problem has a special structure so that the second-stage problem...
Stochastic reactive power market with volatility of wind power considering voltage security
International Nuclear Information System (INIS)
Kargarian, A.; Raoofat, M.
2011-01-01
While wind power generation is growing rapidly around the globe; its stochastic nature affects the system operation in many different aspects. In this paper, the impact of wind power volatility on the reactive power market is taken into account. The paper presents a novel stochastic method for optimal reactive power market clearing considering voltage security and volatile nature of the wind. The proposed optimization algorithm uses a multiobjective nonlinear programming technique to minimize market payment and simultaneously maximize voltage security margin. Considering a set of probable wind speeds, in the first stage, the proposed algorithm seeks to minimize expected system payment which is summation of reactive power payment and transmission loss cost. The object of the second stage is maximization of expected voltage security margin to increase the system loadability and security. Finally, in the last stage, a multiobjective function is presented to schedule the stochastic reactive power market using results of two previous stages. The proposed algorithm is applied to IEEE 14-bus test system. As a benchmark, Monte Carlo Simulation method is utilized to simulate the actual market of given period of time to evaluate results of the proposed algorithm, and satisfactory results are achieved. -- Highlights: →The paper proposes a new algorithm for stochastic reactive power market clearing. →The stochastic nature of the wind which impacts the system operation and market clearing process, is taken into account. →The paper suggests an expected voltage stability margin and optimizes it in conjunction with expected total market payment. →To clear the market with two mentioned objective functions, a three-stage multiobjective nonlinear programming is implemented. →Also, a simple method is suggested to determine a suitable priority coefficient between two individual objective functions.
Kumar, Sanjiv; Kumar, Narendra
2017-06-01
In this work, supplementary sub-synchronous damping controllers (SSDC) are proposed for damping sub-synchronous oscillations in power systems with series compensated transmission lines. Series compensation have extensively been used as effective means of increasing the power transfer capability of a transmission lines and improving transient stability limits of power systems. Series compensation with transmission lines may cause sub-synchronous resonance (SSR). The eigenvalue investigation tool is used to ascertain the existence of SSR. It is shown that the addition of supplementary controller is able to stabilize all unstable modes for T-network model. Eigenvalue investigation and time domain transient simulation of detailed nonlinear system are considered to investigate the performance of the controllers. The efficacies of the suggested supplementary controllers are compared on the IEEE first benchmark model for computer simulations of SSR by means of time domain simulation in Matlab/Simulink environment. Supplementary SSDC are considered in order to compare effectiveness of SSDC during higher loading in alleviating the small signal stability problem.
International Nuclear Information System (INIS)
Ketabi, Abbas; Alibabaee, Ahmad; Feuillet, R.
2010-01-01
Reactive power management is essential to transfer real energy and support power system security. Developing an accurate and feasible method for reactive power pricing is important in the electricity market. In conventional optimal power flow models the production cost of reactive power was ignored. In this paper, the production cost of reactive power and investment cost of capacitor banks were included into the objective function of the OPF problem. Then, using ant colony search algorithm, the optimal problem was solved. Marginal price theory was used for calculation of the cost of active and reactive power at each bus in competitive electric markets. Application of the proposed method on IEEE 14-bus system confirms its validity and effectiveness. Results from several case studies show clearly the effects of various factors on reactive power price. (author)
Reactive power influence on the thermal cycling of multi-MW wind power inverter
DEFF Research Database (Denmark)
Ma, Ke; Liserre, Marco; Blaabjerg, Frede
2012-01-01
converter system are first presented at different wind speeds. Furthermore, the interaction between paralleled converter systems in a wind park is also considered and analyzed. By controlling the reactive power circulated among paralleled converters, a new concept is then proposed to stabilize the thermal...
Challenges facing the European power transmission tariffs: The case of inter-TSO compensation
International Nuclear Information System (INIS)
Stoilov, Dimo; Dimitrov, Yulian; Francois, Bruno
2011-01-01
This article draws attention to problems important for all EU power consumers-the unfairness in individual payments for power transmission and in the cross-border subsidy element in the mechanism of Inter-Transmission System Operators (TSO) Compensation (ITC). A brief review of power transmission tariffs brings out the structure of the problems. A short retrospection explains their growth. The essence of the ITC mechanism is explained and existing shortcomings are illustrated. The deficiencies of existing regulations for transmission pricing are analyzed. In the light of this analysis, the ITC problem is reconsidered and defined more precisely. The basic prerequisites to an ITC reformulation process are presented. The main principles of a new simple, transparent and equitable approach are suggested, in accordance with the contemporary legal positions and functions of the TSOs. - Highlights: → Investigations in the mechanism known as Inter-TSO Compensation (ITC). → Deficiencies in European regulations for cross-border power transmission payments. → Main principles of a new approach avoiding the existing cross-subsidies. → Appeal for reconsideration and a more precise definition of the ITC problem. → Public welfare enhancement by fairness in payment for power transmission.
A combined compensation method for the output voltage of an insulated core transformer power supply
Energy Technology Data Exchange (ETDEWEB)
Yang, L.; Yang, J., E-mail: jyang@mail.hust.edu.cn; Liu, K. F.; Qin, B.; Chen, D. Z. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)
2014-06-15
An insulated core transformer (ICT) power supply is an ideal high-voltage generator for irradiation accelerators with energy lower than 3 MeV. However, there is a significant problem that the structure of the segmented cores leads to an increase in the leakage flux and voltage differences between rectifier disks. A high level of consistency in the output of the disks helps to achieve a compact structure by improving the utilization of both the rectifier components and the insulation distances, and consequently increase the output voltage of the power supply. The output voltages of the disks which are far away from the primary coils need to be improved to reduce their inhomogeneity. In this study, by investigating and comparing the existing compensation methods, a new combined compensation method is proposed, which increases the turns on the secondary coils and employs parallel capacitors to improve the consistency of the disks, while covering the entire operating range of the power supply. This method turns out to be both feasible and effective during the development of an ICT power supply. The non-uniformity of the output voltages of the disks is less than 3.5% from no-load to full-load, and the power supply reaches an output specification of 350 kV/60 mA.
Kotenev, A. V.; Kotenev, V. I.; Kochetkov, V. V.; Elkin, D. A.
2018-01-01
For the purpose of reactive power control error reduction and decrease of the voltage sags in the electric power system caused by the asynchronous motors started the mathematical model of the load bus was developed. The model was built up of the sub-models of the following elements: a transformer, a transmission line, a synchronous and an asynchronous loads and a capacitor bank load, and represents the automatic reactive power control system taking into account electromagnetic processes of the asynchronous motors started and reactive power changing of the electric power system elements caused by the voltage fluctuation. The active power/time and reactive power/time characteristics based on the recommended procedure of the equivalent electric circuit parameters calculation were obtained. The derived automatic reactive power control system was shown to eliminate the voltage sags in the electric power system caused by the asynchronous motors started.
Reactive power dispatch considering voltage stability with seeker optimization algorithm
Energy Technology Data Exchange (ETDEWEB)
Dai, Chaohua; Chen, Weirong; Zhang, Xuexia [The School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Zhu, Yunfang [Department of Computer and Communication Engineering, E' mei Campus, Southwest Jiaotong University, E' mei 614202 (China)
2009-10-15
Optimal reactive power dispatch (ORPD) has a growing impact on secure and economical operation of power systems. This issue is well known as a non-linear, multi-modal and multi-objective optimization problem where global optimization techniques are required in order to avoid local minima. In the last decades, computation intelligence-based techniques such as genetic algorithms (GAs), differential evolution (DE) algorithms and particle swarm optimization (PSO) algorithms, etc., have often been used for this aim. In this work, a seeker optimization algorithm (SOA) based method is proposed for ORPD considering static voltage stability and voltage deviation. The SOA is based on the concept of simulating the act of human searching where search direction is based on the empirical gradient by evaluating the response to the position changes and step length is based on uncertainty reasoning by using a simple Fuzzy rule. The algorithm's performance is studied with comparisons of two versions of GAs, three versions of DE algorithms and four versions of PSO algorithms on the IEEE 57 and 118-bus power systems. The simulation results show that the proposed approach performed better than the other listed algorithms and can be efficiently used for the ORPD problem. (author)
Directory of Open Access Journals (Sweden)
Guozhen Hu
2017-12-01
Full Text Available A loosely coupled inductive power transfer (IPT system for industrial track applications has been researched in this paper. The IPT converter using primary Inductor-Capacitor-Inductor (LCL network and secondary parallel-compensations is analyzed combined coil design for optimal operating efficiency. Accurate mathematical analytical model and expressions of self-inductance and mutual inductance are proposed to achieve coil parameters. Furthermore, the optimization process is performed combined with the proposed resonant compensations and coil parameters. The results are evaluated and discussed using finite element analysis (FEA. Finally, an experimental prototype is constructed to verify the proposed approach and the experimental results show that the optimization can be better applied to industrial track distributed IPT system.
Modelling and Simulation of Single-Phase Series Active Compensator for Power Quality Improvement
Verma, Arun Kumar; Mathuria, Kirti; Singh, Bhim; Bhuvaneshwari, G.
2017-10-01
A single-phase active series compensator is proposed in this work to reduce harmonic currents at the ac mains and to regulate the dc link voltage of a diode bridge rectifier (DBR) that acts as the front end converter for a voltage source inverter feeding an ac motor. This ac motor drive is used in any of the domestic, commercial or industrial appliances. Under fluctuating ac mains voltages, the dc link voltage of the DBR depicts wide variations and hence the ac motor is used at reduced rating as compared to its name-plate rating. The active series compensator proposed here provides dual functions of improving the power quality at the ac mains and regulating the dc link voltage thus averting the need for derating of the ac motor.
Directory of Open Access Journals (Sweden)
Jongpal Kim
2015-12-01
Full Text Available To overcome light interference, including a large DC offset and ambient light variation, a robust photoplethysmogram (PPG readout chip is fabricated using a 0.13-μm complementary metal–oxide–semiconductor (CMOS process. Against the large DC offset, a saturation detection and current feedback circuit is proposed to compensate for an offset current of up to 30 μA. For robustness against optical path variation, an automatic emitted light compensation method is adopted. To prevent ambient light interference, an alternating sampling and charge redistribution technique is also proposed. In the proposed technique, no additional power is consumed, and only three differential switches and one capacitor are required. The PPG readout channel consumes 26.4 μW and has an input referred current noise of 260 pArms.
Kim, Jongpal; Kim, Jihoon; Ko, Hyoungho
2015-12-31
To overcome light interference, including a large DC offset and ambient light variation, a robust photoplethysmogram (PPG) readout chip is fabricated using a 0.13-μm complementary metal-oxide-semiconductor (CMOS) process. Against the large DC offset, a saturation detection and current feedback circuit is proposed to compensate for an offset current of up to 30 μA. For robustness against optical path variation, an automatic emitted light compensation method is adopted. To prevent ambient light interference, an alternating sampling and charge redistribution technique is also proposed. In the proposed technique, no additional power is consumed, and only three differential switches and one capacitor are required. The PPG readout channel consumes 26.4 μW and has an input referred current noise of 260 pArms.
Robust Adaptive Reactive Power Control for Doubly Fed Induction Generator
Directory of Open Access Journals (Sweden)
Huabin Wen
2014-01-01
Full Text Available The problem of reactive power control for mains-side inverter (MSI in doubly fed induction generator (DFIG is studied in this paper. To accommodate the modelling nonlinearities and inherent uncertainties, a novel robust adaptive control algorithm for MSI is proposed by utilizing Lyapunov theory that ensures asymptotic stability of the system under unpredictable external disturbances and significant parametric uncertainties. The distinguishing benefit of the aforementioned scheme consists in its capabilities to maintain satisfactory performance under varying operation conditions without the need for manually redesigning or reprogramming the control gains in contrast to the commonly used PI/PID control. Simulations are also built to confirm the correctness and benefits of the control scheme.
Dynamic control modeling and simulation of a UPFC–SMES compensator in power systems
Directory of Open Access Journals (Sweden)
Saravanan Kandasamy
2015-12-01
Full Text Available Flexible AC Transmission Systems (FACTS is granting a new group of advanced power electronic devices emerging for the enhancement of the power system performance. Unified Power Flow Controller (UPFC is a recent version of FACTS devices for power system applications. The back-up energy supply system incorporated with UPFC is providing a complete control of real and reactive power at the same time and hence is competent to improve the performance of an electrical power system. In this article, backup energy supply units such as superconducting magnetic energy storage (SMES are integrated with UPFC. In addition, comparative exploration of UPFC–battery, UPFC–UC and UPFC–SMES performance is evaluated through the vibrant simulation by using MATLAB/Simulink software.
International Nuclear Information System (INIS)
Grimm, K.N.; Meneghetti, D.
1989-01-01
Reactivity transfer functions are important in determining the reactivity history during a power transient. Overall nodal transfer functions have been calculated for different subassembly types in the Experimental Breeder Reactor II (EBR-II). Steady-state calculations for temperature changes and, hence, reactivities for power changes have been separated into power and power-to-flow-dependent terms. Axial nodal transfer functions separated into power and power-to-flow-dependent components are reported in this paper for a typical EBR-II fuel pin. This provides an improved understanding of the time dependence of these components in transient situations
An islanding microgrid reactive power sharing scheme enhanced by programmed virtual impedances
DEFF Research Database (Denmark)
He, Jinwei; Li, Yun Wei; Guerrero, Josep M.
2012-01-01
harmonic currents. With the knowledge of feeder impedances, reactive power sharing performance can be enhanced by the regulation of DG unit output virtual impedance. The proposed method realizes accurate real and reactive power sharing in proportion to DG unit rated power. Simulated and experimental...
Energy Technology Data Exchange (ETDEWEB)
Watanabe, Edson H.; Aredes, Mauricio [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Lab. de Eletronica de Potencia]. E-mail: watanabe@coe.ufrj.br, aredes@cce.ufrj.br
1998-07-01
A tutorial about the instantaneous active and reactive power theory, which is valid for balanced and unbalanced three-phase systems, with and without harmonics is presented. Based on this theory the basic concepts involving the operation and design of shunt and series active and passive filters are also discussed. The advantage of the association of active and passive filters are also discussed. The association of shunt and series active filters to form the UPQC (Universal Power Quality Conditions), which guarantees the total compensation of voltage and current harmonics is also presented. As a result of the generalization of the UPFC (Unified Power Flow Controller) associated with the UPQC, the UPLC (Universal Active Power Line Conditioner) is proposed to compensate voltage and current harmonics as well as to control the power flow in a transmission line and regulate the ac bus voltage. (author)
Secure provision of reactive power ancillary services in competitive electricity markets
El-Samahy, Ismael
The research work presented in this thesis discusses various complex issues associated with reactive power management and pricing in the context of new operating paradigms in deregulated power systems, proposing appropriate policy solutions. An integrated two-level framework for reactive power management is set forth, which is both suitable for a competitive market and ensures a secure and reliable operation of the associated power system. The framework is generic in nature and can be adopted for any electricity market structure. The proposed hierarchical reactive power market structure comprises two stages: procurement of reactive power resources on a seasonal basis, and real-time reactive power dispatch. The main objective of the proposed framework is to provide appropriate reactive power support from service providers at least cost, while ensuring a secure operation of the power system. The proposed procurement procedure is based on a two-step optimization model. First, the marginal benefits of reactive power supply from each provider, with respect to system security, are obtained by solving a loadability-maximization problem subject to transmission security constraints imposed by voltage and thermal limits. Second, the selected set of generators is determined by solving an optimal power flow (OPF)-based auction. This auction maximizes a societal advantage function comprising generators' offers and their corresponding marginal benefits with respect to system security, and considering all transmission system constraints. The proposed procedure yields the selected set of generators and zonal price components, which would form the basis for seasonal contracts between the system operator and the selected reactive power service providers. The main objective of the proposed reactive power dispatch model is to minimize the total payment burden on the Independent System Operator (ISO), which is associated with reactive power dispatch. The real power generation is
DEFF Research Database (Denmark)
Pedersen, Jørgen Kaas; Pedersen, Knud Ole Helgesen; Rasmussen, Tonny Wederberg
1999-01-01
current with ensuing losses, the strong variationS also will cause varying inductive voltage losses in the supply with flicker as a consequence. With power electronic equipment it is possible to produce the reactive power on location and thus reduce the losses and voltage fluctuations in the grid....... This paper describes a 100 kvar power electronic reactive power compensator. The compensator was tested in a wind farm in Western Denmark. The electrical circuit and the working principle of the compensator are described and some survey data are shown. The paper also describes a 2x4 Mvar reactive power...
Ancillary reactive power service allocation cost in deregulated markets: a methodology
International Nuclear Information System (INIS)
Hernandez, J. Horacio Tovar; Jimenez-Guzman, Miguel; Gutierrez-Alcaraz, Guillermo
2005-01-01
This paper presents a methodology to allocate reactive power costs in deregulated markets. Reactive power supply service is decomposed into voltage regulation and reactive power spinning reserve. The proposed methodology is based on sensitivities and the postage-stamp method in order to allocate the total costs service among all participants. With the purpose of achieving this goal, the system operator identifies voltage support and/or reactive power requirements, and looks out for suitable providers. One case study is presented here to illustrate the methodology over a simplified southeastern Mexican grid. (Author)
Z-Source Inverter Based Power Quality Compensator with Enhanced Ride-Through Capability
DEFF Research Database (Denmark)
Gajanayake, C.J.; Vilathgamuwa, D.M.; Loh, P.C.
2007-01-01
Distributed generation has been gaining acceptance over the years and it has the potential to provide reliable power to sensitive loads. However, distributed networks are prone to unbalanced faults conditions. This makes single inverter DG systems unsuitable as UPS systems. This paper proposes...... a Zsource inverter based power quality compensator and a control structure that supplies high quality voltage to the connected sensitive load in the presence of other non linear loads. The proposed topology consists of combination of shunt and series inverters connected to a common Z-source impedance...... network. The shunt inverter is controlled to maintain a quality voltage waveform at the load bus. Whereas the series inverter enhances the ride-through capability during grid faults, protects the shunt inverter by limiting the current and also controls the power delivered to the grid. The performance...
International Nuclear Information System (INIS)
Molina, Marcelo G.; Mercado, Pedro E.; Watanabe, Edson H.
2007-01-01
Power systems security in the case of contingencies is ensured by maintaining adequate 'short-term generation reserve'. This reserve must be appropriately activated by means of the primary frequency control (PFC). Because the generation is an electro-mechanical process, the primary control reserve controllability is not as fast as required, especially by modern power systems. Since the new improvements achieved on the conventional control methods have not been enough to satisfy the high requirements established, the necessity of enhancing the performance of the PFC has arisen. At present, the new energy storage systems (ESS) are a feasible alternative to store excess energy for substituting for the primary control reserve. In this way, it is possible to combine this new ESS with power converter based flexible ac transmission systems (FACTS). This allows an effective exchange of active power with the electric grid and, thus, enhances the PFC. This paper presents an improved PFC scheme incorporating a static synchronous compensator (STATCOM) coupled with a superconducting magnetic energy storage (SMES) device. A detailed full model and a control algorithm based on a decoupled current control strategy of the enhanced compensator are proposed. The integrated STATCOM/SMES controller topology includes three level, multi-pulse, voltage source inverters (VSI) with phase control and incorporates a two quadrant, three level, dc-dc chopper as the interface between the STATCOM and the SMES coil. A novel three level control scheme is proposed by using concepts of instantaneous power in the synchronous rotating d-q reference frame. The dynamic performance of the presented control algorithms is evaluated through digital simulation performed by using SimPowerSystems of SIMULINK/MATLAB T M , and technical analysis is performed to obtain conclusions about the benefits of using SMES devices in the PFC of the electric system. Presently, a laboratory scale prototype device based on
Hybrid VAR compensator with improved efficiency
Directory of Open Access Journals (Sweden)
V. V. Burlaka
2015-03-01
Full Text Available In modern electrical networks thyristor-switched capacitors (TSC are most used devices for VAR compensation. These devices don’t contain rotating parts and mechanical contacts, provide a stepwise control of reactive power and no generation of harmonics to the network. However, with the help of TSC it’s not possible to ensure smooth control of reactive power and capacitor banks (CB are exposed to the negative impact of higher harmonic components of the network voltage. Hybrid VAR compensator don’t have such drawbacks. It consists of active filter (AF and capacitor bank with discrete regulation. The main drawback of such systems is the necessity of accessing all six terminals of CB, while most of them are manufactured with three terminals, internally delta-connected. In the article, the topology and control system of hybrid VAR compensator free from beforementioned drawback, is proposed. The control system provides operating modes of overcompensation or undercompensation reactive power. VAR distribution regulator performs redistribution of reactive power between active filter and capacitor banks with the condition to minimize active filter’s power. Scheme of the hybrid VAR compensator, which includes a three-phase three-terminal delta-connected capacitor banks, is shown. Proposed approach allows to provide smooth control of reactive power, isolate the capacitor bank from harmonic currents and use a more effective low-voltage power components
A novel method for combating dispersion induced power fading in dispersion compensating fiber
DEFF Research Database (Denmark)
Lebedev, Alexander; Vegas Olmos, Juan José; Iglesias Olmedo, Miguel
2013-01-01
We experimentally investigate the performance of 60 GHz double sideband (DSB) radio over fiber (RoF) links that employ dispersion compensating fiber (DCF). Error free transmission of 3 Gbps signals over 1 m of wireless distance is reported. In order to overcome experimentally observed chromatic...... dispersion (CD) induced power fading of radio frequency (RF) signal, we propose a method for improvement of RF carrier-to-noise (C/N) ratio through introduction of a degree of RF frequency tunability. Overall results improve important aspects of directly modulated RoF systems and demonstrate the feasibility...
M. Sokolyk
2011-01-01
The trends of the real growth rates of the GDP, of productivity and wages per employee and of aver-age monthly salary in Ukraine for a long period of time (1990-2010) are evaluated in this article. The author makes comparative analysis of labor productivity and wages per one employee on the basis of the data on purchasing power parity in Ukraine and in other countries during the pre-crisis period. He justifies the measures to bring the levels of labor productivity and compensation per employe...
Compensated-power differential calorimeter -196 deg. C/400 deg. C
International Nuclear Information System (INIS)
Bonjour, E.; Pierre, J.; Agagliate, S.; Bertrand, P.; Faivre, J.; Lagnier, R.
1967-06-01
A differential calorimetric device of original design is described. Its allows direct measurements of thermal effects (adsorption or release) during a linear rise of temperature. The self compensated power method which is applied by means of a very sensitive control system, gives a direct value of the different heat capacity between the sample and a dummy of it. The detection threshold is about ± 100 micro-watts to ± 250 micro-watts. Applications: - Generally measurements of enthalpy changes of massive or powdered samples. - Measurement of Wigner energy after low temperature irradiation (77 deg. K). - Measurements of energy release in low temperature (77 deg. K) cold worked metals. (authors) [fr
Local Dynamic Reactive Power for Correction of System Voltage Problems
Energy Technology Data Exchange (ETDEWEB)
Kueck, John D [ORNL; Rizy, D Tom [ORNL; Li, Fangxing [ORNL; Xu, Yan [ORNL; Li, Huijuan [University of Tennessee, Knoxville (UTK); Adhikari, Sarina [ORNL; Irminger, Philip [ORNL
2008-12-01
Distribution systems are experiencing outages due to a phenomenon known as local voltage collapse. Local voltage collapse is occurring in part because modern air conditioner compressor motors are much more susceptible to stalling during a voltage dip than older motors. These motors can stall in less than 3 cycles (.05s) when a fault, such as on the sub-transmission system, causes voltage to sag to 70 to 60%. The reasons for this susceptibility are discussed in the report. During the local voltage collapse, voltages are depressed for a period of perhaps one or two minutes. There is a concern that these local events are interacting together over larger areas and may present a challenge to system reliability. An effective method of preventing local voltage collapse is the use of voltage regulation from Distributed Energy Resources (DER) that can supply or absorb reactive power. DER, when properly controlled, can provide a rapid correction to voltage dips and prevent motor stall. This report discusses the phenomenon and causes of local voltage collapse as well as the control methodology we have developed to counter voltage sag. The problem is growing because of the use of low inertia, high efficiency air conditioner (A/C) compressor motors and because the use of electric A/C is growing in use and becoming a larger percentage of system load. A method for local dynamic voltage regulation is discussed which uses reactive power injection or absorption from local DER. This method is independent, rapid, and will not interfere with conventional utility system voltage control. The results of simulations of this method are provided. The method has also been tested at the ORNL s Distributed Energy Communications and Control (DECC) Laboratory using our research inverter and synchronous condenser. These systems at the DECC Lab are interconnected to an actual distribution system, the ORNL distribution system, which is fed from TVA s 161kV sub-transmission backbone. The test results
Multimedia transmission in MC-CDMA using adaptive subcarrier power allocation and CFO compensation
Chitra, S.; Kumaratharan, N.
2018-02-01
Multicarrier code division multiple access (MC-CDMA) system is one of the most effective techniques in fourth-generation (4G) wireless technology, due to its high data rate, high spectral efficiency and resistance to multipath fading. However, MC-CDMA systems are greatly deteriorated by carrier frequency offset (CFO) which is due to Doppler shift and oscillator instabilities. It leads to loss of orthogonality among the subcarriers and causes intercarrier interference (ICI). Water filling algorithm (WFA) is an efficient resource allocation algorithm to solve the power utilisation problems among the subcarriers in time-dispersive channels. The conventional WFA fails to consider the effect of CFO. To perform subcarrier power allocation with reduced CFO and to improve the capacity of MC-CDMA system, residual CFO compensated adaptive subcarrier power allocation algorithm is proposed in this paper. The proposed technique allocates power only to subcarriers with high channel to noise power ratio. The performance of the proposed method is evaluated using random binary data and image as source inputs. Simulation results depict that the bit error rate performance and ICI reduction capability of the proposed modified WFA offered superior performance in both power allocation and image compression for high-quality multimedia transmission in the presence of CFO and imperfect channel state information conditions.
Energy Technology Data Exchange (ETDEWEB)
Kerszberg, Ernesto M; Dravnovsky, Mario Carlos [Administradora del Mercado Mayorista Eletrico S.A. (Argentina)
1996-05-01
This work presents the standards and legislation about power reactive consumption by involved agents in the market electric power supply. It discusses how to remunerate this reactive and the compromises among the actors of the power electric system
DEFF Research Database (Denmark)
Zecchino, Antonio; Marinelli, Mattia; Træholt, Chresten
2017-01-01
The increasing success of electric vehicles is bringing new technical challenges to power system operators. This work intends to provide guidelines for distribution system operators in terms of reactive power requirements when evaluating and authorizing electric vehicles supply equipment with fast...... the amount of reactive power that an individual electric vehicle is expected to provide when connected to a low voltage feeder, in order to benefit of the desired voltage rise effect in comparison to the case of unitary power factor....
DEFF Research Database (Denmark)
Naderipour, A.; Mohd Zin, A. A.; Habibuddin, M.H.
2015-01-01
devices, such as Active Power Filters (APFs). The proposed control method is composed of the Adjustable Synchronous Reference Frame (ASRF) and the Synchronous Reference Frame (SRF) methods. The ASRF and SRF are proposed to control the power injection and harmonic current compensation, respectively......In this paper, a new method is proposed to control the interface Inverter of distributed generators (DGs) in a microgrid. The objective of this method is to effectively compensate for the harmonic currents at the Point of Common Coupling (PCC) and the MG with the Absence of dedicated compensation....... The merged control methods are proposed for the interface inverter to perform the comprehensive activity of compensating for the harmonics, such as a correction of the system imbalance and the removal of the harmonics. The operation principle of the proposed control method is analyzed in detail, and its...
Extended reactivity trace curves for nuclear power control with no power shooting
International Nuclear Information System (INIS)
Ratemi, W. M.; Elbuni, M. S.
1995-01-01
This paper introduces a new concept of reactivity trace curve (RTC) for nuclear power control with no power shooting. The concept is based on recent work of bernard et al. on the dynamic period of nuclear reactors. RTC-method is simulated for both a static effective decay constant corresponding to a one-group delayed neutrons model, and a dynamic effective decay constant corresponding to a six-group delayed neutrons model. A fitting to the RTC of a six-group reactor model resulted in a closed from formula for the RTC that couples the effect of both static and dynamic decay constants. Hence, introducing two 'fingerprints' for the reactor in concern to identify a closed from RTC formula capable of controlling the reactor power. Integration of the RTC with control rod integral curves results in the ρ-z-t diagram. This diagram relates the amount of recommended reactivity (RTC), the position of control rod, and the time required for power control. 8 figs
Extended reactivity trace curves for nuclear power control with no power shooting
Energy Technology Data Exchange (ETDEWEB)
Ratemi, W M; Elbuni, M S [Faculty of engineering, Al Fateh universty Tripoli (Libyan Arab Jamahiriya)
1995-10-01
This paper introduces a new concept of reactivity trace curve (RTC) for nuclear power control with no power shooting. The concept is based on recent work of bernard et al. on the dynamic period of nuclear reactors. RTC-method is simulated for both a static effective decay constant corresponding to a one-group delayed neutrons model, and a dynamic effective decay constant corresponding to a six-group delayed neutrons model. A fitting to the RTC of a six-group reactor model resulted in a closed from formula for the RTC that couples the effect of both static and dynamic decay constants. Hence, introducing two `fingerprints` for the reactor in concern to identify a closed from RTC formula capable of controlling the reactor power. Integration of the RTC with control rod integral curves results in the {rho}-z-t diagram. This diagram relates the amount of recommended reactivity (RTC), the position of control rod, and the time required for power control. 8 figs.
Directory of Open Access Journals (Sweden)
Davel Borges Vasconcellos
2011-05-01
Full Text Available Una óptima selección de estos, presupone tres aspectos: la selección de la capacidad de los bancos, el tipo de compensador a utilizar, así como la ubicación en el sistema eléctrico de baja tensión Existen referencias de métodos que consideran los tres aspectos de manera conjunta, basados en la programación matemática, pero estos presentan limitantes dado que no pueden representar todos los efectos de la compensación y se basan en técnicas de programación continua, siendo este un problema de optimización complejo de espacio de búsqueda discreto.En tal sentido, hemos desarrollado un método con el empleo de los algoritmos genéticos que posibilita una formulación más exacta del problema. El método ha sido programado con ayuda del MATLAB, versión 7.5 (R2007b, utilizando las estructuras de programación de Genetic Algorithm and Direct Search Toolbox. La efectividad del mismo se muestra en un ejemplo real de aplicación al sistema eléctrico de baja tensión de una instalación hotelera del Grupo Cubanacan de la provincia de Camagüey. A good selection of these, presupposes three aspects: the selection of the banks capacity, the compensador type to use, as well as the location in the low voltage system.References of methods that consider the three aspects in a same problem are based on the mathematical programming, but these cannot represent all the effects of the compensation and these based in technical of continuous programming, being this a complex optimization problem of discreet search space.In the paper, we have developed a method with the employment of the genetic algorithms, which facilitates a more exact problem formulation. The method has been programmed in MATLAB, version 7.5 (R2007b, using programming structures of Genetic Algorithm and Direct Search Toolbox.The effectiveness is shown in an example of real application to the low voltage system of a hotel installation of the Cubanacan Company in Camagüey.
Directory of Open Access Journals (Sweden)
Yi Wang
2017-12-01
Full Text Available In this study, in order to determine the reasonable accuracy of the compensation capacitances satisfying the requirements on the output characteristics for a wireless power transfer (WPT system, taking the series-series (SS compensation structure as an example, the calculation formulas of the output characteristics, such as the power factor, output power, coil transfer efficiency, and capacitors’ voltage stress, are given under the condition of incomplete compensation according to circuit theory. The influence of compensation capacitance errors on the output characteristics of the system is then analyzed. The Taylor expansions of the theoretical formulas are carried out to simplify the formulas. The influence degrees of compensation capacitance errors on the output characteristics are calculated according to the simplified formulas. The reasonable error ranges of the compensation capacitances are then determined according to the requirements of the output characteristics of the system in the system design. Finally, the validity of the theoretical analysis and the simplified processing is verified through experiments. The proposed method has a certain guiding role for practical engineering design, especially in mass production.
International Nuclear Information System (INIS)
McDonald, M.; Colton, A.; Pencer, J.
2015-01-01
The Canadian supercritical water-cooled reactor (SCWR) is a conceptual heavy water moderated, supercritical light water cooled pressure tube reactor. In contrast to current heavy water power reactors, the Canadian SCWR will be a batch fuelled reactor. Associated with batch fuelling is a large beginning-of-cycle excess reactivity. Furthermore, radial power peaking arising as a consequence of batch refuelling must be mitigated in some way. In this paper, burnable neutron absorber (BNA) added to fuel and absorbing rods inserted into the core are considered for reactivity management and power flattening. A combination of approaches appears adequate to reduce the core radial power peaking, while also providing reactivity suppression. (author)
International Nuclear Information System (INIS)
Lopeandia, A.F.; Cerdo, Ll.; Clavaguera-Mora, M.T.; Arana, Leonel R.; Jensen, K.F.; Munoz, F.J.; Rodriguez-Viejo, J.
2005-01-01
We have designed and developed a sensitive scanning calorimeter for use with microgram or submicrogram, thin film, or powder samples. Semiconductor processing techniques are used to fabricate membrane based microreactors with a small heat capacity of the addenda, 120 nJ/K at room temperature. At heating rates below 10 K/s the heat released or absorbed by the sample during a given transformation is compensated through a resistive Pt heater by a digital controller so that the calorimeter works as a power compensated device. Its use and dynamic sensitivity is demonstrated by analyzing the melting behavior of thin films of indium and high density polyethylene. Melting enthalpies in the range of 40-250 μJ for sample masses on the order of 1.5 μg have been measured with accuracy better than 5% at heating rates ∼0.2 K/s. The signal-to-noise ratio, limited by the electronic setup, is 200 nW
Framework for the analysis of reactive power dispatch in energy pools
International Nuclear Information System (INIS)
Salgado, R.S.; Irving, M.R.
2004-01-01
This paper proposes a framework for the simulation and analysis of the reactive power distribution in electric energy markets of the pool type. Firstly, the analytical formulation of the OPF problem, with three optional performance indexes for the reactive power dispatch, is discussed. These OPF objectives are used to determine the reactive power distribution for a given active power dispatch (obtained through merit-order strategy, for instance). An allocation strategy is used to assess the participation of each power system agent in the loss/reactive power distribution. This strategy uses the premise of co-operative game theory. Numerical results obtained with the Ward-Hale 6-bus test system illustrate the main aspects of the proposed methodology. (author)
Strategies for reactive power control in wind farms with STATCOM
Energy Technology Data Exchange (ETDEWEB)
Diaz Gonzalez, Francisco [Catalonia Institute for Energy Research (IREC), Barcelona (Spain); Martinez-Rojas, Marcela [Centre d' Innovacio Tecnologica en Convertidors Estatics i Accionaments (CITCEA-UPC), Barcelona (Spain). Dept. d' Enginyeria Electrica; Sumper, Andreas; Gomis-Bellmunt, Oriol [Catalonia Institute for Energy Research (IREC), Barcelona (Spain); Centre d' Innovacio Tecnologica en Convertidors Estatics i Accionaments (CITCEA-UPC), Barcelona (Spain). Dept. d' Enginyeria Electrica
2010-07-01
This paper presents two strategies for reactive current control in wind farms with STATCOM under fault ride-through (FRT) situations. First, the technical requirements of the Spanish and German grid codes related to the reactive current under FRT situations are presented. Second, STATCOM and its control system are introduced. Third, the modeling done of the wind farm, the STATCOM, and the network are presented. Finally, control strategies for reactive current delivered by the park to the network under FRT situations are shown. The result of the implementation of each control strategy is shown by simulation. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Prabakar, Kumaraguru [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ainsworth, Nathan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pratt, Annabelle [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Baggu, Murali M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hariri, Ali [Formerly NREL
2017-10-06
Power hardware-in-the-loop (PHIL) simulation, where actual hardware under text is coupled with a real-time digital model in closed loop, is a powerful tool for analyzing new methods of control for emerging distributed power systems. However, without careful design and compensation of the interface between the simulated and actual systems, PHIL simulations may exhibit instability and modeling inaccuracies. This paper addresses issues that arise in the PHIL simulation of a hardware battery inverter interfaced with a simulated distribution feeder. Both the stability and accuracy issues are modeled and characterized, and a methodology for design of PHIL interface compensation to ensure stability and accuracy is presented. The stability and accuracy of the resulting compensated PHIL simulation is then shown by experiment.
Nonlinear Robust Disturbance Attenuation Control Design for Static Var Compensator in Power System
Directory of Open Access Journals (Sweden)
Ting Liu
2013-01-01
Full Text Available The problem of designing an adaptive backstepping controller for nonlinear static var compensator (SVC system is addressed adopting two perspectives. First, instead of artificially assuming an upper bound or inequality scaling, the minimax theory is used to treat the external unknown disturbances. The system is insensitive to effects of large disturbances due to taking into account the worst case disturbance. Second, a parameter projection mechanism is introduced in adaptive control to force the parameter estimate within a prior specified interval. The proposed controller handles the nonlinear parameterization without compromising control smoothness and at the same time the parameter estimate speed is improved and the robustness of system is strengthened. Considering the short-circuit ground fault and mechanical power perturbation, a simulation study is carried out. The results show the effectiveness of the proposed control method.
Gamma compensated pulsed ionization chamber wide range neutron/reactor power measurement system
International Nuclear Information System (INIS)
Ellis, W.H.
1975-01-01
An improved method and system of pulsed mode operation of ionization chambers is described in which a single sensor system with gamma compensation is provided by sampling, squaring, automatic gate selector, and differential amplifier circuit means, employed in relation to chambers sensitized to neutron plus gamma and gamma only to subtract out the gamma component, wherein squaring functions circuits, a supplemental high performance pulse rate system, and operational and display mode selection and sampling gate circuits are utilized to provide automatic wide range linear measurement capability for neutron flux and reactor power. Neon is employed as an additive in the ionization chambers to provide independence of ionized gas kinetics temperature effects, and the pulsed mode of operation provide independence of high temperature insulator leakage effects. (auth)
de Rooij, Michael Andrew; Steigerwald, Robert Louis; Delgado, Eladio Clemente
2008-12-16
Photovoltaic power converter system including a controller configured to reduce load harmonics is provided. The system comprises a photovoltaic array and an inverter electrically coupled to the array to generate an output current for energizing a load connected to the inverter and to a mains grid supply voltage. The system further comprises a controller including a first circuit coupled to receive a load current to measure a harmonic current in the load current. The controller includes a second circuit to generate a fundamental reference drawn by the load. The controller further includes a third circuit for combining the measured harmonic current and the fundamental reference to generate a command output signal for generating the output current for energizing the load connected to the inverter. The photovoltaic system may be configured to compensate harmonic currents that may be drawn by the load.
International Nuclear Information System (INIS)
Hooshmand, Rahmat-Allah; Hemmati, Reza; Parastegari, Moein
2012-01-01
Highlights: ► To overcome the disadvantages of DC model in Transmission Expansion Planning, AC model should be used. ► The Transmission Expansion Planning associated with Reactive Power Planning results in fewer new transmission lines. ► Electricity market concepts should be considered in Transmission Expansion Planning problem. ► Reliability aspects should be considered in Transmission Expansion Planning problem. ► Particle Swarm Optimization is a suitable optimization method to solve Transmission Expansion Planning problem. - Abstract: Transmission Expansion Planning (TEP) is an important issue in power system studies. It involves decisions on location and number of new transmission lines. Before deregulation of the power system, the goal of TEP problem was investment cost minimization. But in the restructured power system, nodal prices, congestion management, congestion surplus and so on, have been considered too. In this paper, an AC model of TEP problem (AC-TEP) associated with Reactive Power Planning (RPP) is presented. The goals of the proposed planning problem are to minimize investment cost and maximize social benefit at the same time. In the proposed planning problem, in order to improve the reliability of the system the Expected Energy Not Supplied (EENS) index of the system is limited by a constraint. For this purpose, Monte Carlo simulation method is used to determine the EENS. Particle Swarm Optimization (PSO) method is used to solve the proposed planning problem which is a nonlinear mixed integer optimization problem. Simulation results on Garver and RTS systems verify the effectiveness of the proposed planning problem for reduction of the total investment cost, EENS index and also increasing social welfare of the system.
Measurements of the Reactivity Properties of the Aagesta Nuclear Power Reactor at Zero Power
Energy Technology Data Exchange (ETDEWEB)
Bernander, G
1967-07-15
The moderator level and temperature coefficients of reactivity and control rod differential reactivity worths have been determined at zero power by means of period measurements. The moderator level coefficient and the corresponding critical level have been measured for the 32, 68 and 136 fuel assembly cores at room temperature for cores with and without control rods. From these results the worths of control rods have been derived. HETERO calculations give up to 15 % lower values than the experimental results. The cold fresh core has an excess reactivity of 9.0 {+-} 0.2 %. The temperature coefficient and differential control rod worths were measured for the fully loaded core with filled tank in the temperature range between 30 and 210 deg C. Critical positions as a function of temperature were obtained for the corresponding control rod groups. No relevant calculations of the temperature coefficient for comparison with the experimental values have yet been made, but the experimental results together with measured critical control rod positions give good opportunities to check calculational programs. HETERO has been shown in these cases to reproduce differential control rod worths and critical positions fairly well. However, a certain underestimation of the rod effectiveness is quite noticeable. The relative increase in control rod effectiveness with a temperature change from 20 to 220 deg C has been estimated to be 0.29 {+-} 0.06.
Directory of Open Access Journals (Sweden)
Zhe Dong
2014-02-01
Full Text Available Small modular reactors (SMRs could be beneficial in providing electricity power safely and also be viable for applications such as seawater desalination and heat production. Due to its inherent safety features, the modular high temperature gas-cooled reactor (MHTGR has been seen as one of the best candidates for building SMR-based nuclear power plants. Since the MHTGR dynamics display high nonlinearity and parameter uncertainty, it is necessary to develop a nonlinear adaptive power-level control law which is not only beneficial to the safe, stable, efficient and autonomous operation of the MHTGR, but also easy to implement practically. In this paper, based on the concept of shifted-ectropy and the physically-based control design approach, it is proved theoretically that the simple proportional-differential (PD output-feedback power-level control can provide asymptotic closed-loop stability. Then, based on the strong approximation capability of the multi-layer perceptron (MLP artificial neural network (ANN, a compensator is established to suppress the negative influence caused by system parameter uncertainty. It is also proved that the MLP-compensated PD power-level control law constituted by an experientially-tuned PD regulator and this MLP-based compensator can guarantee bounded closed-loop stability. Numerical simulation results not only verify the theoretical results, but also illustrate the high performance of this MLP-compensated PD power-level controller in suppressing the oscillation of process variables caused by system parameter uncertainty.
Directory of Open Access Journals (Sweden)
W. F. Harris
2009-12-01
Full Text Available If an intraocular lens is displaced or if its power is changed what are the consequences for the refractive compensation of the eye? Gaussian optics is used to obtain explicit formulae for the sensitivityof the corneal-plane refractive compensation (also called the refraction, refractive state, etc to change in power and axial displacement of a thin intraocular lens implanted in a simple eye. In particular, for a pseudophakic Gullstrand simplified eye with intraocular lens placed 5 mm behind the cornea the sensitivity to errors in the power of the intraocular lens is about 71 . 0 − 71 for an intraocular lens of power for an intraocular lens of power 20 D, that is, the refractive compensation decreases by about 0.71 dioptres per dioptre increase in the power of the intraocular lens. More generally the sensitivity is approximately ( m 0037 . 0 63 . 0 F − − 0.63 ( 003 . 0 63 . 0 − − (0.0037mF where FI is the power of the intraocular lens. Also for Gullstrand’s simplified eye the sensitivity of refractive compensation to axial displacement of the intraocular lens is approximately linear in FI about (64D FI, in fact. That is, for each dioptre of the power of the intraocular lens the refractive compensation increases by about 0.064 dioptres per millimetre of axial displacement towards the retina.
Multiagent-Based Reactive Power Sharing and Control Model for Islanded Microgrids
DEFF Research Database (Denmark)
Chen, Feixiong; Chen, Minyou; Li, Qiang
2016-01-01
of the control model, in which the uncertainty of intermittent DGs, variations in load demands, as well as impacts of time delays are considered. The simulation results demonstrate the eectiveness of the control model in proportional reactive power sharing, and the plug and play capability of the control model......In islanded microgrids (MGs), the reactive power cannot be shared proportionally among distributed generators (DGs) with conventional droop control, due to the mismatch in feeder impedances. For the purpose of proportional reactive power sharing, a multiagent system (MAS) based distributed control...
Real-Time Reactive Power Distribution in Microgrids by Dynamic Programing
DEFF Research Database (Denmark)
Levron, Yoash; Beck, Yuval; Katzir, Liran
2017-01-01
In this paper a new real-time optimization method for reactive power distribution in microgrids is proposed. The method enables location of a globally optimal distribution of reactive power under normal operating conditions. The method exploits the typical compact structure of microgrids to obtain...... combination of reactive powers, by means of dynamic programming. Since every single step involves a one-dimensional problem, the complexity of the solution is only linear with the number of clusters, and as a result, a globally optimal solution may be obtained in real time. The paper includes the results...
Review of Active and Reactive Power Sharing Strategies in Hierarchical Controlled Microgrids
DEFF Research Database (Denmark)
Han, Yang; Li, Hong; Shen, Pan
2017-01-01
Microgrids consist of multiple parallel-connected distributed generation (DG) units with coordinated control strategies, which are able to operate in both grid-connected and islanded mode. Microgrids are attracting more and more attention since they can alleviate the stress of main transmission...... systems, reduce feeder losses, and improve system power quality. When the islanded microgrids are concerned, it is important to maintain system stability and achieve load power sharing among the multiple parallel-connected DG units. However, the poor active and reactive power sharing problems due...... in this paper for active power sharing. Moreover, nonlinear and unbalanced loads could further affect the reactive power sharing when regulating the active power, and it is difficult to share the reactive power accurately only by using the enhanced virtual impedance method. Therefore, the hierarchical control...
Influencing Power Flow and Transient Stability by Static Synchronous Series Compensator
Directory of Open Access Journals (Sweden)
Md. Imran Azim
2015-04-01
Full Text Available In the present world, modern power system networks, being a complicated combination of generators, transmission lines, transformers, circuit breakers and other devices, are more vulnerable to various types of faults causing stability problems. Among these faults, transient fault is believed to be a major disturbance as it causes large damage to a sound system within a certain period of time. Therefore, the protection against transient faults, better known as transient stability control is one of the major considerations for the power system engineers. This paper presents the control approach in the transmission line during transient faults by means of Static Synchronous Series Compensator (SSSC in order to stabilize Single Machine Infinite Bus (SMIB system. In this paper, SSSC is represented by variable voltage injection associated with the transformer leakage reactance and the voltage source. The comparative results depict that the swing curve of a system increases monotonically after the occurrence of transient faults However, SSSC is effective enough to make it stable after a while.
Biodiesel by catalytic reactive distillation powered by metal oxides
Kiss, A.A.; Dimian, A.C.; Rothenberg, G.
2008-01-01
The properties and use of biodiesel as a renewable fuel as well as the problems associated with its current production processes are outlined. A novel sustainable esterification process based on catalytic reactive distillation is proposed. The pros and cons of manufacturing biodiesel via fatty acid
A Hierarchical Control Scheme for Reactive Power and Harmonic Current Sharing in Islanded Microgrids
DEFF Research Database (Denmark)
Lorzadeh, Iman; Firoozabadi, Mehdi Savaghebi; Askarian Abyaneh, Hossein
2015-01-01
In this paper, a hierarchical control scheme consisting of primary and secondary levels is proposed for achieving accurate reactive power and harmonic currents sharing among interface inverters of distributed generators (DGs) in islanded microgrids. Firstly, fundamental and main harmonic componen...
Review of reactive power dispatch strategies for loss minimization in a DFIG-based wind farm
DEFF Research Database (Denmark)
Zhang, Baohua; Hu, Weihao; Hou, Peng
2017-01-01
power control strategies are investigated. All of the combined strategies are formulated based on the comprehensive loss models of WFs, including the loss models of DFIGs, converters, filters, transformers, and cables of the collection system. Optimization problems are solved by a Modified Particle......This paper reviews and compares the performance of reactive power dispatch strategies for the loss minimization of Doubly Fed Induction Generator (DFIG)-based Wind Farms (WFs). Twelve possible combinations of three WF level reactive power dispatch strategies and fourWind Turbine (WT) level reactive...... Swarm Optimization (MPSO) algorithm. The effectiveness of these strategies is evaluated by simulations on a carefully designed WF under a series of cases with different wind speeds and reactive power requirements of the WF. The wind speed at each WT inside the WF is calculated using the Jensen wake...
Reactive power balance in a distribution network with wind farms and CHPS
DEFF Research Database (Denmark)
Lund, Torsten; Nielsen, John Eli; Hylle, Per
2007-01-01
In Denmark, a large part of the electricity is generated by wind turbines and combined heat and power plants. Most of them are connected to the distribution systems. In periods with high wind speeds, large flows of reactive power have been observed between the 150kV and the 60 kV systems. The tra......In Denmark, a large part of the electricity is generated by wind turbines and combined heat and power plants. Most of them are connected to the distribution systems. In periods with high wind speeds, large flows of reactive power have been observed between the 150kV and the 60 kV systems....... The transfer of reactive power reduces the capacity of the lines, causes thermal losses and can in some cases reduce the voltage stability margin of the system. To identify the origin of the problem, an actual distribution system with a high penetration of wind power and distributed generation has been...
DEFF Research Database (Denmark)
Demirok, Erhan; Gonzalez, Pablo Casado; Frederiksen, Kenn H. B.
2011-01-01
on sensitivity analysis. The sensitivity analysis shows that the same amount of reactive power becomes more effective for grid voltage support if the solar inverter is located at the end of a feeder. Based on this fundamental knowledge, a location-dependent power factor set value can be assigned to each inverter......voltage (LV) grids by means of solar inverters with reactive power control capability. This paper underlines weak points of standard reactive power strategies which are already imposed by certain grid codes, and then, the study introduces a new reactive power control method that is based......, and the grid voltage support can be achieved with less total reactive power consumption. In order to prevent unnecessary reactive power absorption from the grid during admissible voltage range or to increase reactive power contribution from the inverters that are closest to the transformer during grid...
A heuristic technique to determine corrective control actions for reactive power flows
Energy Technology Data Exchange (ETDEWEB)
Trigo, Angel L.; Martinez, Jose L.; Riquelme, Jesus; Romero, Esther [Department of Electrical Engineering, University of Sevilla (Spain)
2011-01-15
This paper presents a sensitivity-based heuristic tool designed to help the system operator in the reactive power flow control problem. The objective of the proposed technique is to determine control actions to ensure that reactive power flows in transmission-subtransmission boundary transformers remain within specified limits, satisfying the new regulatory constraints imposed in most of deregulated markets. With this new constraint the utilities want to guarantee that the utility is able to satisfy its own reactive power requirements, avoiding reactive power flows through long distances in order to reduce the well known disadvantages that reactive power circulation has in the system. A 5-bus tutorial system is used to present the proposed algorithm. The results of the application of the proposed technique to the IEEE 118 buses system and to a regional subtransmission network of the South of Spain are reported and analyzed. In this last actual case, the aim is to maintain reactive power flows in transmission/distribution transformers between those limits set by the Spanish Regulation. A comparison between the proposed tool and a conventional OPF is discussed. (author)
DEFF Research Database (Denmark)
Zhou, Jianguo; Kim, Sunghyok; Zhang, Huaguang
2018-01-01
This paper investigates the issue of accurate reactive, harmonic and imbalance power sharing in a microgrid. Harmonic and imbalance droop controllers are developed to proportionally share the harmonic power and the imbalance power among distributed generation (DG) units and improve the voltage...... voltage. With the proposed methods, the microgrid system reliability and flexibility can be enhanced and the knowledge of the line impedance is not required. And the reactive, harmonic and imbalance power can be proportionally shared among the DG units. Moreover, the quality of the voltage at PCC can...
Subcritical reactivity measurement at Angra 1 nuclear power plant
International Nuclear Information System (INIS)
Kuramoto, Renato Yoichi Ribeiro; Miranda, Anselmo Ferreira
2011-01-01
In order to speed up the Angra 1 NPP physics tests, this work intends to develop a digital reactivity meter combined with a methodology of the modified Neutron Source Multiplication (NSM) method with correction factors for subcriticality measurements at Angra 1 NPP. In the first part of this work, we have applied the Modified Neutron Source Multiplication (MNSM) Method with fundamental mode extraction, in order to improve the monitoring of the subcriticality at Angra 1 NPP during the criticality approach. In the second part, we developed a preliminary subcritical reactivity meter algorithm based on the point-reactor inverse kinetic model with six delayed neutron groups and external neutron source. The source strength was obtained through the Least Squares Inverse Kinetics Method (LSIKM). (author)
Directory of Open Access Journals (Sweden)
Ruiqing Shao
2012-12-01
Full Text Available According to optimal contracting theory, compensation contracts are effective in solving the agency problem between stockholders and managers. Executive compensation is naturally related to firm performance. However, contracts are not always perfect. Managers may exert influence on the formulation and implementation of compensation contracts by means of their managerial power. As fair value has been introduced into the new accounting standards in China, new concerns have arisen over the relationship between profits and losses from changes in fair value (CFV and levels of executive compensation. In this study, we find that executive compensation is significantly related to CFV. However, this sensitivity is asymmetric in that increases to compensation due to profits from changes in fair value (PCFV are higher than reductions to compensation due to losses from changes in fair value (LCFV. Furthermore, we find that managerial power determines the strength of this asymmetry.
Simulation and study on reactivity disturbs dynamic character of HTR-10 nuclear power system
International Nuclear Information System (INIS)
Huang Xiaojin; Feng Yuankun
2002-01-01
In order to not only know 10 MW High Temperature Gas Cooled Reactor (HTR-10) nuclear power system's dynamic character more deeply but also to satisfy requirements of control system's design and analysis, the dynamic model of HTR-10 nuclear power system is established on the basis of dynamic model of HTR-10 nuclear system, which supplies turbine and generate electricity system model. Using this model, system's main variables' dynamic processes are simulated when control rod takes step reactivity disturb. The concussive progresses which is caused by reactivity disturb are analyzed. The results indicate that fuel temperature changing more slowly than nuclear power makes reactivity negative feedback not to restrain power changing, and then power concussive progress comes to being
Wang, Wu; Huang, Wei; Zhang, Yongjun
2018-03-01
The grid-integration of Photovoltaic-Storage System brings some undefined factors to the network. In order to make full use of the adjusting ability of Photovoltaic-Storage System (PSS), this paper puts forward a reactive power optimization model, which are used to construct the objective function based on power loss and the device adjusting cost, including energy storage adjusting cost. By using Cataclysmic Genetic Algorithm to solve this optimization problem, and comparing with other optimization method, the result proved that: the method of dynamic extended reactive power optimization this article puts forward, can enhance the effect of reactive power optimization, including reducing power loss and device adjusting cost, meanwhile, it gives consideration to the safety of voltage.
Coordinated Reactive Power and Voltage Management for Offshore Wind Farms with AC-connection
DEFF Research Database (Denmark)
Heussen, Kai
2008-01-01
This paper analyzes voltage and reactive power in a wind farm in dependence on switchable shunt and tap-changer settings in connection with the control ranges of flexible reactive power sources. Attention is paid to their interdependent effects on central control variables, such as voltage...... in the collection grid, reactive power exported to the grid and internal active power losses. An aggregated steady-state model of an offshore wind farm is presented and a reduced mathematical representation suitable for symbolic analysis is developed. A coordination scheme is proposed to coordinate fast continuous...... control inputs with slow tap-changing devices using a short-term prediction. The proposed scheme is aimed at balancing cost factors such as wear of switching components, active power loss within the wind farm and STATCOM capacity....
Energy Technology Data Exchange (ETDEWEB)
Behnke, M; Luettig, K; Radtke, H [Verbundnetz Elektroenergie AG, Berlin (Germany)
1991-01-01
With the preparation for restoring a German power network after nearly 40 years of separate development of the EES of the former DDR, the voltage/reactive power regulation must be examined and evaluated in the conditions of: - parting the connections to the present VES partners Poland and Czechoslovakia with the option of rectification - taking up parallel operation with the adjacent network undertakings of the old West German Laender (Preussen Elektra AG and Bayernwerke AG), ie: combined operation with DVG (superregional network of old West German Laender) and UCPTE (European electrical energy union). The aim is to configure this in the 380/220 kV network of the new German Laender, so that with a regionally compensated reactive power system, the voltage can be kept steady much better at times of heavy and light load, and the network losses can be reduced. (orig./GL).
DEFF Research Database (Denmark)
Lorzadeh, Iman; Askarian Abyaneh, Hossein; Savaghebi, Mehdi
2017-01-01
To address inaccurate load demand sharing problems among parallel inverter-interfaced voltage-controlled distributed generation (DG) units in islanded microgrids with different DG power ratings and mismatched feeder impedances, an enhanced voltage control scheme based on actively compensation of ...
Kim, Kyuwon; Kim, Boemjun; Go, Youngil; Park, Jaeyong; Park, Joonhong; Suh, Insoo; Yi, Kyongsu
2014-07-01
This paper describes a lateral disturbance compensation algorithm for an application to a motor-driven power steering (MDPS)-based driver assistant system. The lateral disturbance including wind force and lateral load transfer by bank angle reduces the driver's steering refinement and at the same time increases the possibility of an accident. A lateral disturbance compensation algorithm is designed to determine the motor overlay torque of an MDPS system for reducing the manoeuvreing effort of a human driver under lateral disturbance. Motor overlay torque for the compensation of driver's steering torque induced by the lateral disturbance consists of human torque feedback and feedforward torque. Vehicle-driver system dynamics have been investigated using a combined dynamic model which consists of a vehicle dynamic model, driver steering dynamic model and lateral disturbance model. The human torque feedback input has been designed via the investigation of the vehicle-driver system dynamics. Feedforward input torque is calculated to compensate additional tyre self-aligning torque from an estimated lateral disturbance. The proposed compensation algorithm has been implemented on a developed driver model which represents the driver's manoeuvreing characteristics under the lateral disturbance. The developed driver model has been validated with test data via a driving simulator in a crosswind condition. Human-in-the-loop simulations with a full-scale driving simulator on a virtual test track have been conducted to investigate the real-time performance of the proposed lateral disturbance compensation algorithm. It has been shown from simulation studies and human-in-the-loop simulation results that the driver's manoeuvreing effort and a lateral deviation of the vehicle under the lateral disturbance can be significantly reduced via the lateral disturbance compensation algorithm.
Aguglia, Davide; Viarouge, Philippe; Cros, Jerome
2014-01-01
This paper proposes a novel topological solution for klystron modulators integrating a Fast Voltage Compensator which allows an operation at constant power consumption from the utility grid. This kind of solution is mandatory for the CLIC project under study, which requires several hundreds of synchronously operated klystron modulators for a total pulsed power of 39 GW. The topology is optimized for the challenging CLIC specifications, which require a very precise output voltage flat-top as well as fast rise and fall times (3µs). The Fast Voltage Compensator is integrated in the modulator such that it only has to manage the capacitor charger current and a fraction of the charging voltage. Consequently, its dimensioning power and cost is minimized.
Study for reactive power on distribution system line B RSG-GAS
International Nuclear Information System (INIS)
Yan Bony Marsahala
2010-01-01
Study for reactive power on distribution system line B RSG-GA is already done. The study intended to evaluate how much inductive load need the reactive power (positive), how much power factor, and what will be done to increase the power factor. The reactive power is the losses power, can't be changed into energy, but it is need for transmission process and it is cause the energy losses. The loads on distribution system line B consist of induction motors which are used for primary cooling system and secondary cooling system, lift, blower on cooling tower, and air condition system. Due to the motors using, the power factor are falling down to low. By the calculation results give that the inductive loads on distribution line B are 850 KVA and these loads caused the low power factor 0.80. If we want to increase the power factor up to 0.95, it is need to install the reactive loads likes capacitor bank 250 KVAR. (author)
Sivov, Oleg Viktorovich
Series compensated lines are protected from overvoltage by metal-oxide-varistors (MOVs) connected in parallel with the capacitor bank. The nonlinear characteristics of MOV devices add complexity to fault analysis and distance protection operation. During faults, the impedance of the line is modified by an equivalent impedance of the parallel MOV/capacitor circuit, which affects the distance protection. The intermittent wind generation introduces additional complexity to the system performance and distance protection. Wind variation affects the fault current level and equivalent MOV/capacitor impedance during a fault, and hence the distance relay operation. This thesis studies the impact of the intermittent wind power generation on the operation of MOV during faults. For the purpose of simulation, an equivalent wind farm model is proposed to generate a wind generation profile using wind farm generation from California independent system operator (ISO) as a guide for wind power variation to perform the study. The IEEE 12-bus test system is modified to include MOV-protected series capacitor and the equivalent wind farm model. The modified test system is simulated in the MATLAB/Simulink environment. The study has been achieved considering three phase and single line to ground (SLG) faults on the series compensated line to show the effect of wind variation on the MOV operation. This thesis proposes an adaptive setting method for the mho relay distance protection of series compensated line considering effects of wind power variation and MOV operation. The distributed parameters of a transmission line are taken into account to avoid overreaching and underreaching of distance relays. The study shows that variable wind power affects system power flow and fault current in the compensated line during a fault which affects the operation of MOVs for different fault conditions. The equivalent per-phase impedance of the MOV/capacitor circuit has an effect on the system operation
DEFF Research Database (Denmark)
Knüppel, Thyge; Kumar, Sathess; Thuring, Patrik
2012-01-01
In this paper a power oscillation damping controller (POD) based on modulation of reactive power (Q POD) is analyzed where the modular and distributed characteristics of the wind power plant (WPP) are considered. For a Q POD it is essential that the phase of the modulated output is tightly...... contributes to a collective response. This ability is shown with a 150 wind turbine (WT) WPP with all WTs represented, and it is demonstrated that the WPP contributes to the inter-area damping. The work is based on a nonlinear, dynamic model of the 3.6 MW Siemens Wind Power WT....... controlled to achieve a positive damping contribution. It is investigated how a park level voltage, reactive power, and power factor control at different grid strengths interact with the Q POD in terms of a resulting phase shift. A WPP is modular and distributed and a WPP Q POD necessitate that each WT...
THE IMPACT OF POWER COEFFICIENT OF REACTIVITY ON CANDU 6 REACTORS
Directory of Open Access Journals (Sweden)
D. KASTANYA
2013-10-01
Full Text Available The combined effects of reactivity coefficients, along with other core nuclear characteristics, determine reactor core behavior in normal operation and accident conditions. The Power Coefficient of Reactivity (PCR is an aggregate indicator representing the change in reactor core reactivity per unit change in reactor power. It is an integral quantity which captures the contributions of the fuel temperature, coolant void, and coolant temperature reactivity feedbacks. All nuclear reactor designs provide a balance between their inherent nuclear characteristics and the engineered reactivity control features, to ensure that changes in reactivity under all operating conditions are maintained within a safe range. The CANDU® reactor design takes advantage of its inherent nuclear characteristics, namely a small magnitude of reactivity coefficients, minimal excess reactivity, and very long prompt neutron lifetime, to mitigate the demand on the engineered systems for controlling reactivity and responding to accidents. In particular, CANDU reactors have always taken advantage of the small value of the PCR associated with their design characteristics, such that the overall design and safety characteristics of the reactor are not sensitive to the value of the PCR. For other reactor design concepts a PCR which is both large and negative is an important aspect in the design of their engineered systems for controlling reactivity. It will be demonstrated that during Loss of Regulation Control (LORC and Large Break Loss of Coolant Accident (LBLOCA events, the impact of variations in power coefficient, including a hypothesized larger than estimated PCR, has no safety-significance for CANDU reactor design. Since the CANDU 6 PCR is small, variations in the range of values for PCR on the performance or safety of the reactor are not significant.
Hareli, Shlomo; David, Shlomo
2017-06-01
Social perception of emotions is influenced by the context in which it occurs. One such context is a social interaction involving an exchange of emotions. The way parties to the interaction are perceived is shaped by the combination of emotions exchanged. This idea was examined by assessing the extent to which expressions of anger toward a target-which, in isolation, are perceived as signals of high social power-are influenced by the target's emotional reaction to it (i.e., reactive emotions). Three studies show that the angry person was perceived as having a higher level of social power when this anger was responded by fear or sadness than when it was responded by neutrality or anger. Study 1 indicated that reactive emotions have a stronger effect on perceived social power when emotions were incongruent with gender stereotypes. Study 2 indicated that these effects are a result of these emotions serving as reactive emotions rather than a benchmark against which the angry person's power is assessed. Study 3 showed that reactive emotions affect perceived social power by serving as signals of the level to which the high social power suggested by the first person's expression is confirmed by its target. Comparing effects of reactive emotions to anger with reactive emotions to sadness, showed that perceived social power of the expresser is determined by the nature of the expression, with some adjustment caused by the reactive emotions. This underscores the importance of social interaction as a context for the social perception of emotions. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Reactive power and voltage control strategy based on dynamic and adaptive segment for DG inverter
Zhai, Jianwei; Lin, Xiaoming; Zhang, Yongjun
2018-03-01
The inverter of distributed generation (DG) can support reactive power to help solve the problem of out-of-limit voltage in active distribution network (ADN). Therefore, a reactive voltage control strategy based on dynamic and adaptive segment for DG inverter is put forward to actively control voltage in this paper. The proposed strategy adjusts the segmented voltage threshold of Q(U) droop curve dynamically and adaptively according to the voltage of grid-connected point and the power direction of adjacent downstream line. And then the reactive power reference of DG inverter can be got through modified Q(U) control strategy. The reactive power of inverter is controlled to trace the reference value. The proposed control strategy can not only control the local voltage of grid-connected point but also help to maintain voltage within qualified range considering the terminal voltage of distribution feeder and the reactive support for adjacent downstream DG. The scheme using the proposed strategy is compared with the scheme without the reactive support of DG inverter and the scheme using the Q(U) control strategy with constant segmented voltage threshold. The simulation results suggest that the proposed method has a significant improvement on solving the problem of out-of-limit voltage, restraining voltage variation and improving voltage quality.
An iterative method for controlling reactive power flow in boundary transformers
Energy Technology Data Exchange (ETDEWEB)
Trigo, Angel L.; Martinez, Jose L.; Riquelme, Jesus; Romero, Esther [Department of Electrical Engineering, University of Seville (Spain)
2011-02-15
This paper presents an operational tool designed to help the system operator to control the reactive power flow in transmission-subtransmission boundary transformers. The main objective is to determine the minimum number of control actions necessary to ensure that reactive power flows in transmission/subtransmission transformers remain within limits. The proposed iterative procedure combines the use of a linear programming problem and a load flow tool. The linear programming assumes a linear behaviour between dependent and control variables around an operating point, modelled with sensitivities. Experimental results regarding IEEE systems are provided comparing the performance of the proposed approach with that of a conventional optimal power flow. (author)
Experimental evaluation of voltage unbalance compensation in an islanded microgrid
DEFF Research Database (Denmark)
Savaghebi, Mehdi; Guerrero, Josep M.; Jalilian, Alireza
2011-01-01
In this paper, a method for voltage unbalance compensation in an islanded microgrid based on the proper control of distributed generators (DGs) interface converter is proposed. In this method, active and reactive power control loops are considered to control the power sharing among the DGs. Also......, a virtual impedance loop and voltage and current proportional-resonant controllers are included. Experimental results show the effectiveness of the proposed method for compensating voltage unbalance to an acceptable level....
Calculation methods of reactivity using derivatives of nuclear power and Filter fir
International Nuclear Information System (INIS)
Diaz, Daniel Suescun
2007-01-01
This work presents two new methods for the solution of the inverse point kinetics equation. The first method is based on the integration by parts of the integral of the inverse point kinetics equation, which results in a power series in terms of the nuclear power in time dependence. Applying some conditions to the nuclear power, the reactivity is represented as first and second derivatives of this nuclear power. This new calculation method for reactivity has special characteristics, amongst which the possibility of using different sampling periods, and the possibility of restarting the calculation, after its interruption associated it with a possible equipment malfunction, allowing the calculation of reactivity in a non-continuous way. Apart from this reactivity can be obtained with or without dependency on the nuclear power memory. The second method is based on the Laplace transform of the point kinetics equations, resulting in an expression equivalent to the inverse kinetics equation as a function of the power history. The reactivity can be written in terms of the summation of convolution with response to impulse, characteristic of a linear system. For its digital form the Z-transform is used, which is the discrete version of the Laplace transform. In this method it can be pointed out that the linear part is equivalent to a filter named Finite Impulse Response (Fir). The Fir filter will always be, stable and non-varying in time, and, apart from this, it can be implemented in the non-recursive way. This type of implementation does not require feedback, allowing the calculation of reactivity in a continuous way. The proposed methods were validated using signals with random noise and showing the relationship between the reactivity difference and the degree of the random noise. (author)
Active and reactive power neurocontroller for grid-connected photovoltaic generation system
Directory of Open Access Journals (Sweden)
I. Abadlia
2016-03-01
Full Text Available Many researchers have contributed to the development of a firm foundation for analysis and design of control applications in grid-connected renewable energy sources. This paper presents an intelligent control algorithm fond on artificial neural networks for active and reactive power controller in grid-connected photovoltaic generation system. The system is devices into two parts in which each part contains an inverter with control algorithm. A DC/DC converter in output voltage established by control magnitude besides maximum power point tracker algorithm always finds optimal power of the PV array in use. A DC/AC hysteresis inverter designed can synchronize a sinusoidal current output with the grid voltage and accurate an independent active and reactive power control. Simulation results confirm the validation of the purpose. Neurocontroller based active and reactive power presents an efficiency control that guarantees good response to the steps changing in active and reactive power with an acceptable current/voltage synchronism. In this paper the power circuit and the control system of the presented grid-connected photovoltaic generation system is simulated and tested by MatLab/Simulink.
Duque, Álvaro Jaramillo; Castronuovo, Edgardo D.; Sánchez, Ismael; Usaola, Julio
2011-01-01
The participation of wind energy in electricity markets requires providing a forecast for future energy production of a wind generator, whose value will be its scheduled energy. Deviations from this schedule because of prediction errors could imply the payment of imbalance costs. In order to decrease these costs, a joint operation between a wind farm and a hydro-pump plant is proposed; the hydro-pump plant changes its production to compensate wind power prediction errors. In order to optimize...
Energy Technology Data Exchange (ETDEWEB)
Auer, Jan-Hendrik von [Alstom Grid GmbH, Berlin (Germany). Team Leistungselektronik und Kompensationsanlagen
2012-07-01
Even today, many HP lines have reached their limits. It is therefore highly urgent to find measures for optimum utilization of the available overhead transmssion capacities, e.g. by idle power compensation. Together with a filter for harmonics reduction, this will ensure higher grid stability and enhance transport capacities while reducing transport losses, thus saving money and reducing CO{sub 2} emissions. (orig./AKB)
Energy Technology Data Exchange (ETDEWEB)
Fernandez Krekeler, Ubaldo [Administracion Nacional de Electricidad (ANDE), Asuncion (Paraguay)]. E-mail: ufernandez@ieee.org; Cardozo Sanchez, Freddy [Mirant Americas (United States)
2001-07-01
This work presents a determination verification of the compensation range and the location of reactive static compensator (RSC) in 220 kV. The verification is accomplished by analyses of the RSC effects in relation to the losses, loading and system voltage stability. The needed compensation range is investigated in full details, whereas that the required conversion level is directly related to this range. It is concluded that the RSC installation, foreseen for 2002, might be postponed for 2005/10 still without reinforcements in 500 kV. The Limpio substation seems to be the more suitable location in relation to the most analysed cases.
International Nuclear Information System (INIS)
Kato, Takaaki; Hatta, Masahisa; Matsumoto, Shiro; Nishikawa, Masashi
2007-01-01
Although dwellers living near a nuclear power station are entitled to economic/financial benefits such as increased job opportunities and local tax revenues pertaining to the power station, it is not clear whether such benefits are appreciated by the dwellers. Two findings of this study based upon a social survey of local dwellers living near the Kashiwazaki-Kariwa Nuclear Power Station are summarized as follows. First, an increase in the per capita sizes of the local tax revenue and national subsidies resulted in a larger share of respondents who thought that those revenues are beneficial. Therefore, local dwellers are aware of the sizes of economic/financial benefits. Second, given the same risk level of nuclear disaster, a larger per capita financial benefit resulted in a larger share of respondents who felt compensated for the nuclear risk. However, this increase in the number of compensated respondents is low relative to the increase in the amount of financial benefits. (author)
Reactive power interconnection requirements for PV and wind plants : recommendations to NERC.
Energy Technology Data Exchange (ETDEWEB)
McDowell, Jason (General Electric, Schenectady, NY); Walling, Reigh (General Electric, Schenectady, NY); Peter, William (SunPower, Richmond, CA); Von Engeln, Edi (NV Energy, Reno, NV); Seymour, Eric (AEI, Fort Collins, CO); Nelson, Robert (Siemens Wind Turbines, Orlando, FL); Casey, Leo (Satcon, Boston, MA); Ellis, Abraham; Barker, Chris. (SunPower, Richmond, CA)
2012-02-01
Voltage on the North American bulk system is normally regulated by synchronous generators, which typically are provided with voltage schedules by transmission system operators. In the past, variable generation plants were considered very small relative to conventional generating units, and were characteristically either induction generator (wind) or line-commutated inverters (photovoltaic) that have no inherent voltage regulation capability. However, the growing level of penetration of non-traditional renewable generation - especially wind and solar - has led to the need for renewable generation to contribute more significantly to power system voltage control and reactive power capacity. Modern wind-turbine generators, and increasingly PV inverters as well, have considerable dynamic reactive power capability, which can be further enhanced with other reactive support equipment at the plant level to meet interconnection requirements. This report contains a set of recommendations to the North-America Electricity Reliability Corporation (NERC) as part of Task 1-3 (interconnection requirements) of the Integration of Variable Generation Task Force (IVGTF) work plan. The report discusses reactive capability of different generator technologies, reviews existing reactive power standards, and provides specific recommendations to improve existing interconnection standards.
Voltage Control of Distribution Grids with Multi-Microgrids Using Reactive Power Management
Directory of Open Access Journals (Sweden)
WLODARCZYK, P.
2015-02-01
Full Text Available Low-voltage Microgrids can be valuable sources of ancillary services for the Distribution System Operators (DSOs. The aim of this paper was to study if and how multi-microgrids can contribute to Voltage Control (VC in medium-voltage distribution grids by means of reactive power generation and/or absorption. The hierarchical control strategy was proposed with the main focus on the tertiary control which was defined as optimal power flow problem. The interior-point algorithm was applied to optimise experimental benchmark grid with the presence of Distributed Energy Resources (DERs. Moreover, two primary objectives were formulated: active power losses and amount of reactive power used to reach the voltage profile. As a result the active power losses were minimised to the high extent achieving the savings around 22% during entire day.
MILP Approach for Bilevel Transmission and Reactive Power Planning Considering Wind Curtailment
DEFF Research Database (Denmark)
Ugranli, Faruk; Karatepe, Engin; Nielsen, Arne Hejde
2017-01-01
In this study, two important planning problems in power systems that are transmission expansion and reactive power are formulated as a mixed-integer linear programming taking into account the bilevel structure due to the consideration of market clearing under several load-wind scenarios....... The objective of the proposed method is to minimize the installation cost of transmission lines, reactive power sources, and the annual operation costs of conventional generators corresponding to the curtailed wind energy while maintaining the reliable system operation. Lower level problems of the bilevel...... structure are designated for the market clearing which is formulated by using the linearized optimal power flow equations. In order to obtain mixed-integer linear programming formulation, the so-called lower level problems are represented by using primal-dual formulation. By using the proposed method, power...
Optimal Coordinated EV Charging with Reactive Power Support in Constrained Distribution Grids
Energy Technology Data Exchange (ETDEWEB)
Paudyal, Sumit; Ceylan, Oğuzhan; Bhattarai, Bishnu P.; Myers, Kurt S.
2017-07-01
Electric vehicle (EV) charging/discharging can take place in any P-Q quadrants, which means EVs could support reactive power to the grid while charging the battery. In controlled charging schemes, distribution system operator (DSO) coordinates with the charging of EV fleets to ensure grid’s operating constraints are not violated. In fact, this refers to DSO setting upper bounds on power limits for EV charging. In this work, we demonstrate that if EVs inject reactive power into the grid while charging, DSO could issue higher upper bounds on the active power limits for the EVs for the same set of grid constraints. We demonstrate the concept in an 33-node test feeder with 1,500 EVs. Case studies show that in constrained distribution grids in coordinated charging, average costs of EV charging could be reduced if the charging takes place in the fourth P-Q quadrant compared to charging with unity power factor.
Transient Control of Synchronous Machine Active and Reactive Power in Micro-grid Power Systems
Weber, Luke G.
There are two main topics associated with this dissertation. The first is to investigate phase-to-neutral fault current magnitude occurring in generators with multiple zero-sequence current sources. The second is to design, model, and tune a linear control system for operating a micro-grid in the event of a separation from the electric power system. In the former case, detailed generator, AC8B excitation system, and four-wire electric power system models are constructed. Where available, manufacturers data is used to validate the generator and exciter models. A gain-delay with frequency droop control is used to model an internal combustion engine and governor. The four wire system is connected through a transformer impedance to an infinite bus. Phase-to-neutral faults are imposed on the system, and fault magnitudes analyzed against three-phase faults to gauge their severity. In the latter case, a balanced three-phase system is assumed. The model structure from the former case - but using data for a different generator - is incorporated with a model for an energy storage device and a net load model to form a micro-grid. The primary control model for the energy storage device has a high level of detail, as does the energy storage device plant model in describing the LC filter and transformer. A gain-delay battery and inverter model is used at the front end. The net load model is intended to be the difference between renewable energy sources and load within a micro-grid system that has separated from the grid. Given the variability of both renewable generation and load, frequency and voltage stability are not guaranteed. This work is an attempt to model components of a proposed micro-grid system at the University of Wisconsin Milwaukee, and design, model, and tune a linear control system for operation in the event of a separation from the electric power system. The control module is responsible for management of frequency and active power, and voltage and reactive
Change in CANDU-6 reactivity following a power reduction at low PHT purity
International Nuclear Information System (INIS)
Whitlock, J.J.; Soulard, M.R.; Baudouin, A.
1995-01-01
The reactivity effect of a power reduction in CANDU-6 is examined using a three-dimensional, steady-state, coupled neutronics/thermalhydraulics methodology, starting from a global irradiation distribution matched to site data. The power reduction is sufficient to suppress coolant boiling in the fuel channels, and thus the significant parameters affecting reactivity are an increase in coolant density and a decrease in fuel temperature. These individual components are estimated using infinite-lattice-cell methodology. The effect of using newer methodology, particularly for the thermalhydraulic analysis, is examined by comparison with previous simulations. (author). 10 refs., 7 tabs., 1 fig
DEFF Research Database (Denmark)
Ding, Tao; Li, Cheng; Huang, Can
2018-01-01
–slave structure and improves traditional centralized modeling methods by alleviating the big data problem in a control center. Specifically, the transmission-distribution-network coordination issue of the hierarchical modeling method is investigated. First, a curve-fitting approach is developed to provide a cost......In order to solve the reactive power optimization with joint transmission and distribution networks, a hierarchical modeling method is proposed in this paper. It allows the reactive power optimization of transmission and distribution networks to be performed separately, leading to a master...... optimality. Numerical results on two test systems verify the effectiveness of the proposed hierarchical modeling and curve-fitting methods....
A fast method for optimal reactive power flow solution
Energy Technology Data Exchange (ETDEWEB)
Sadasivam, G; Khan, M A [Anna Univ., Madras (IN). Coll. of Engineering
1990-01-01
A fast successive linear programming (SLP) method for minimizing transmission losses and improving the voltage profile is proposed. The method uses the same compactly stored, factorized constant matrices in all the LP steps, both for power flow solution and for constructing the LP model. The inherent oscillatory convergence of SLP methods is overcome by proper selection of initial step sizes and their gradual reduction. Detailed studies on three systems, including a 109-bus system, reveal the fast and reliable convergence property of the method. (author).
DEFF Research Database (Denmark)
Bak-Jensen, Birgitte; El-Moursi, M. S.; Abdel-Rahman, Mansour Hassan
2010-01-01
This paper addresses implementation issues associated with a novel damping control algorithm for a STATCOM in a series compensated wind park for mitigating SSR (subsynchronous resonance) and damping power system oscillations. The IEEE first benchmark model on subsynchronous resonance is adopted...... the SSR, damping the power system oscillation and enhancing the transient stability margin in response to different SCRs....... in the STATCOM control structure. The performances of the controllers are tested in steady state operation and in response to system contingencies, taking into account the impact of short circuit ratios (SCRs). Simulation results are presented to demonstrate the capability of the controllers for mitigating...
Directory of Open Access Journals (Sweden)
Yuyu Geng
2017-01-01
Full Text Available In the application of rail transit vehicles, when using typical wireless power transfer (WPT systems with series–series (SS compensation supply power for supercapacitors, the output current is in an approximately inverse relationship with the duty cycle in a wide range. This renders the typical buck circuit control inappropriate. In order to help resolve the above issues, this paper designs inductor/capacitor/capacitor (LCC compensation with new compensation parameters, which can achieve an adjustable quasi-constant voltage from the input of the inverter to the output of the rectifier. In addition, the two-port network method is used to analyze the resonant compensation circuit. The analysis shows that LCC compensation is more suitable for the WPT system using the supercapacitor as the energy storage device. In the case of LCC compensation topology combined with the charging characteristics of the supercapacitor, an efficient charging strategy is designed, namely first constant current charging, followed by constant power charging. Based on the analysis of LCC compensation, the system has an optimal load, by which the system works at the maximum efficiency point. Combined with the characteristics of the constant voltage output, the system can maintain high efficiency in the constant power stage by making constant output power the same as the optimal power point. Finally, the above design is verified through experiments.
Optimal Control of Wind Farms for Coordinated TSO-DSO Reactive Power Management
Directory of Open Access Journals (Sweden)
David Sebastian Stock
2018-01-01
Full Text Available The growing importance of renewable generation connected to distribution grids requires an increased coordination between transmission system operators (TSOs and distribution system operators (DSOs for reactive power management. This work proposes a practical and effective interaction method based on sequential optimizations to evaluate the reactive flexibility potential of distribution networks and to dispatch them along with traditional synchronous generators, keeping to a minimum the information exchange. A modular optimal power flow (OPF tool featuring multi-objective optimization is developed for this purpose. The proposed method is evaluated for a model of a real German 110 kV grid with 1.6 GW of installed wind power capacity and a reduced order model of the surrounding transmission system. Simulations show the benefit of involving wind farms in reactive power support reducing losses both at distribution and transmission level. Different types of setpoints are investigated, showing the feasibility for the DSO to fulfill also individual voltage and reactive power targets over multiple connection points. Finally, some suggestions are presented to achieve a fair coordination, combining both TSO and DSO requirements.
Neutron and thermo - hydraulic model of a reactivity transient in a nuclear power plant fuel element
International Nuclear Information System (INIS)
Oliva, Jose de Jesus Rivero
2012-01-01
A reactivity transient without reactor scram was modeled and calculated using analytical expressions for the space distributions of the temperature fields, combined with discrete numerical calculations for the time dependences of thermal power and temperatures. The transient analysis covered the time dependencies of reactivity, global thermal power, fuel heat flux and temperatures in fuel, cladding and cooling water. The model was implemented in Microsoft Office Excel, dividing the Excel file in several separated worksheets for input data, initial steady-state calculations, calculation of parameters non-depending on eigenvalues, eigenvalues determination, calculation of parameters depending on eigenvalues, transient calculation and graphical representation of intermediate and final results. The results show how the thermal power reaches a new equilibrium state due to the negative reactivity feedback derived from the fuel temperature increment. Nevertheless, the reactor mean power increases 40% during the first second and, in the hottest channel, the maximum fuel temperature goes to a significantly high value, slightly above 2100 deg C, after 8 seconds of transient. Consequently, the results confirm that certain degree of fuel damage could be expected in case of a reactor scram failure. Once the basic model has being established the scope of accidents for future analyses can be extended, modifying the nuclear power behavior (reactivity) during transient and the boundary conditions for coolant temperature. A more complex model is underway for an annular fuel element. (author)
DEFF Research Database (Denmark)
Zhou, Dao; Blaabjerg, Frede; Franke, Toke
2014-01-01
The modern grid requirement has caused that the wind power system behaves more like conventional rotating generators and it is able to support certain amount of the reactive power. For a typical doubly-fed induction generator wind turbine system, the reactive power can be supported either through...... for the generator and the wind power converter in terms of the reactive power done by the rotor-side converter or the grid-side converter with various grid filters. Afterwards, the annual energy loss is also estimated based on yearly wind profile. Finally, experimental results of the loss distribution are performed...... the rotor-side converter or the grid-side converter. This paper firstly compares the current ripples and supportive reactive power ranges between the conventional L and optimized LCL filter, if the reactive power is injected from the grid-side converter. Then, the loss distribution is evaluated both...
DEFF Research Database (Denmark)
Zhou, Dao; Blaabjerg, Frede; Franke, Toke
2015-01-01
The modern grid requirement has caused that the wind power system behaves more like conventional rotating generators, and it is able to support certain amount of the reactive power. For a typical doubly fed induction generator (DFIG) wind turbine system, the reactive power can be supported either...... for the generator and the wind power converter in terms of the reactive power done by the rotor-side converter or the grid-side converter with various grid filters. Afterward, the annual energy loss is also estimated based on yearly wind profile. Finally, experimental results of the loss distribution are performed...... through the rotor-side converter or the grid-side converter. This paper first compares the current ripples and supportive reactive power ranges between the conventional L and optimized LCL filter, if the reactive power is injected from the grid-side converter. Then, the loss distribution is evaluated both...
Directory of Open Access Journals (Sweden)
Kunwar Aditya
2016-11-01
Full Text Available The extended describing function (EDF is a well-known method for modelling resonant converters due to its high accuracy. However, it requires complex mathematical formulation effort. This paper presents a simplified non-linear mathematical model of series-series (SS compensated inductive power transfer (IPT system, considering zero-voltage switching in the inverter. This simplified mathematical model permits the user to derive the small-signal model using the EDF method, with less computational effort, while maintaining the accuracy of an actual physical model. The derived model has been verified using a frequency sweep method in PLECS. The small-signal model has been used to design the voltage loop controller for a SS compensated IPT system. The designed controller was implemented on a 3.6 kW experimental setup, to test its robustness.
76 FR 11177 - Frequency Regulation Compensation in the Organized Wholesale Power Markets
2011-03-01
... Comments Regarding Rates, Accounting and Financial Reporting for Electric Storage Technologies, Docket No..., neither compensates for the resource's actual ramping contribution. As a result, Alcoa's fast ramp rate... equal to its entire capacity in one minute. The study's authors determined the ramping ability for...
Design and Optimisation of a Simple Filter Group for Reactive Power Distribution
Directory of Open Access Journals (Sweden)
Ryszard Klempka
2016-01-01
Full Text Available Basic methods are presented to design a simple filter group and a method of shaping the resultant of the filter group’s impedance characteristics (distribution of the characteristics’ extremes and then project equations were transformed into a uniform, common form that addresses issues of the reactive power distribution between component filters. The analysis also takes into account the filters’ detuning from the reduced harmonics and quality factors of passive elements. Another important factor of the analysis considered was the power grid equivalent impedance affecting the filtration effectiveness. A criterion for the filter group’s filtration effectiveness evaluation was proposed and optimisation was completed for the reactive power distribution between separate filters in the function of the power grid’s equivalent inductance.
Opposition-Based Improved PSO for Optimal Reactive Power Dispatch and Voltage Control
Directory of Open Access Journals (Sweden)
Shengrang Cao
2015-01-01
Full Text Available An opposition-based improved particle swarm optimization algorithm (OIPSO is presented for solving multiobjective reactive power optimization problem. OIPSO uses the opposition learning to improve search efficiency, adopts inertia weight factors to balance global and local exploration, and takes crossover and mutation and neighborhood model strategy to enhance population diversity. Then, a new multiobjective model is built, which includes system network loss, voltage dissatisfaction, and switching operation. Based on the market cost prices, objective functions are converted to least-cost model. In modeling process, switching operation cost is described according to the life cycle cost of transformer, and voltage dissatisfaction penalty is developed considering different voltage quality requirements of customers. The experiment is done on the new mathematical model. Through the simulation of IEEE 30-, 118-bus power systems, the results prove that OIPSO is more efficient to solve reactive power optimization problems and the model is more accurate to reflect the real power system operation.
Use of reactivity constraints for the automatic control of reactor power
International Nuclear Information System (INIS)
Bernard, J.A.; Lanning, D.D.; Ray, A.
1985-01-01
A theoretical framework for the automatic control of reactor power has been developed and experimentally evaluated on the 5 MWt Research Reactor that is operated by the Massachusetts Institute of Technology. The controller functions by restricting the net reactivity so that it is always possible to make the reactor period infinite at the desired termination point of a transient by reversing the direction of motion of whatever control mechanism is associated with the controller. This capability is formally designated as ''feasibility of control''. It has been shown experimentally that maintenance of feasibility of control is a sufficient condition for the automatic control of reactor power. This research should be of value in the design of closed-loop controllers, in the creation of reactivity displays, in the provision of guidance to operators regarding the timing of reactivity changes, and as an experimental envelope within which alternate control strategies can be evaluated
DEFF Research Database (Denmark)
Baohua, Zhang; Hu, Weihao; Chen, Zhe
2014-01-01
The paper deals with control techniques for minimizing the operating loss of doubly fed induction generator based wind generation systems when providing reactive power. The proposed method achieves its goal through controlling the rotor side q-axis current in the synchronous reference frame...
Reactive Power Control for Improving Wind Turbine System Behavior Under Grid Faults
DEFF Research Database (Denmark)
Rodriguez, P.; Timbus, A.; Teodorescu, Remus
2009-01-01
This letter aims to present a generalized vector-based formulation for calculating the grid-side current reference to control reactive power delivered to the grid. Strategies for current reference generation were implemented on the abc stationary reference frame, and their effectivenesswas...... demonstrated experimentally, perhaps validating the theoretical analysis even under grid fault conditions....
77 FR 21555 - Reactive Power Resources; Supplemental Notice of Technical Conference
2012-04-10
.... This panel will discuss: Methods used to determine the reactive power requirements for a transmission... Jenkins, Director--Utility Interconnection, First Solar Kris Zadlo, Vice President, Invenergy Richard..., Director--Utility Interconnection, First Solar Michael Jacobs, Director Market and Regulatory Policy...
Autonomous Voltage Unbalance Compensation in an Islanded Droop-Controlled Microgrid
DEFF Research Database (Denmark)
Savaghebi, Mehdi; Jalilian, Alireza; Vasquez, Juan Carlos
2013-01-01
Recently, there is an increasing interest in using distributed generators (DGs) not only to inject power into the grid, but also to enhance the power quality. In this paper, a stationary-frame control method for voltage unbalance compensation in an islanded microgrid is proposed. This method...... is based on the proper control of DGs interface converters. The DGs are controlled to compensate voltage unbalance autonomously while share the compensation effort and also active and reactive power, properly. The control system of the DGs mainly consists of active and reactive power droop controllers......, virtual impedance loop, voltage and current controllers and unbalance compensator. The design approach of the control system is discussed in detail and simulation and experimental results are presented. The results demonstrate the effectiveness of the proposed method in compensation of voltage unbalance....
DEFF Research Database (Denmark)
Lund, Torsten
2007-01-01
The paper presents an investigation of the active and reactive power losses in a distribution network with wind turbines and combined heat and power plants. The investigation is based on 15 min average power measurements and load flow calculations in the power system simulation tool PowerFactory...
Directory of Open Access Journals (Sweden)
Suresh Chintalapudi Venkata
2015-09-01
Full Text Available In this paper a novel non-linear optimization problem is formulated to maximize the social welfare in restructured environment with generalized unified power flow controller (GUPFC. This paper presents a methodology to optimally allocate the reactive power by minimizing voltage deviation at load buses and total transmission power losses so as to maximize the social welfare. The conventional active power generation cost function is modified by combining costs of reactive power generated by the generators, shunt capacitors and total power losses to it. The formulated objectives are optimized individually and simultaneously as multi-objective optimization problem, while satisfying equality, in-equality, practical and device operational constraints. A new optimization method, based on two stage initialization and random distribution processes is proposed to test the effectiveness of the proposed approach on IEEE-30 bus system, and the detailed analysis is carried out.
Directory of Open Access Journals (Sweden)
Shichang Chen
2018-01-01
Full Text Available This paper proposes a new broadband Doherty power amplifier topology with extended back-off range. A shunted λ/4 short line or λ/2 open line working as compensating reactance is introduced to the conventional load modulation network, which greatly improves its bandwidth. Underlying bandwidth extension mechanism of the proposed configuration is comprehensively analyzed. A three-device Doherty power amplifier is implemented for demonstration based on Cree’s 10 W HEMTs. Measurements show that at least 41% drain efficiency is maintained from 2.0 GHz to 2.6 GHz at 8 dB back-off range. In the same operating band, saturation power is larger than 43.6 dBm and drain efficiency is higher than 53%.
Experimental evaluation of reactivity constraints for the closed-loop control of reactor power
International Nuclear Information System (INIS)
Bernard, J.A.; Lanning, D.D.; Ray, A.
1984-01-01
General principles for the closed-loop, digital control of reactor power have been identified, quantitatively enumerated, and experimentally demonstrated on the 5 MWt Research Reactor, MITR-II. The basic concept is to restrict the net reactivity so that it is always possible to make the reactor period infinite at the desired termination point of a transient by reversing the direction of motion of whatever control mechanism is associated with the controller. This capability is formally referred to as ''feasibility of control''. A series of ten experiments have been conducted over a period of eighteen months to demonstrate the efficacy of this property for the automatic control of reactor power. It has been shown that a controller which possesses this property is capable of both raising and lowering power in a safe, efficient manner while using a control rod of varying differential worth, that the reactivity constraints are a sufficient condition for the automatic control of reactor power, and that the use of a controller based on reactivity constraints can prevent overshoots either due to attempts to control a transient with a control rod of insufficient differential worth or due to failure to properly estimate when to commence rod insertion. Details of several of the more significant tests are presented together with a discussion of the rationale for the development of closed-loop control in large commercial power systems. Specific consideration is given to the motivation for designing a controller based on feasibility of control and the associated licensing issues
Energy Technology Data Exchange (ETDEWEB)
Karimi, S.; Saadate, S. [Groupe de Recherche en Electrotechnique et Electronique de Nancy, GREEN-UHP, CNRS UMR 7037 (France); Poure, P. [Laboratoire d' Instrumentation Electronique de Nancy, LIEN, EA 3440, France Nancy Universite - Universite Henri Poincare de Nancy I, BP 239, 54506 Vandoeuvre les Nancy cedex (France)
2008-11-15
This paper discusses the design, implementation, experimental validation and performances of a fully digital fast power switch fault detection and compensation for three-phase shunt active power filters. The approach introduced in this paper minimizes the time interval between the fault occurrence and its diagnosis. This paper demonstrates the possibility to detect a faulty switch of the active filter in less than 10 {mu}s by using simultaneously a ''time criterion'' and a ''voltage criterion''. In order to attain this fast detection time a FPGA (Field Programmable Gate Array) is used. The other feature introduced in this approach is that the control scheme used to compensate the current load harmonics and fault tolerant scheme are both programmed in only one FPGA. ''FPGA in the loop'' prototyping results and fully experimental results based on a real active power filter verify satisfactory performances of the proposed method. (author)
Combined Active and Reactive Power Control of Wind Farms based on Model Predictive Control
DEFF Research Database (Denmark)
Zhao, Haoran; Wu, Qiuwei; Wang, Jianhui
2017-01-01
This paper proposes a combined wind farm controller based on Model Predictive Control (MPC). Compared with the conventional decoupled active and reactive power control, the proposed control scheme considers the significant impact of active power on voltage variations due to the low X=R ratio...... of wind farm collector systems. The voltage control is improved. Besides, by coordination of active and reactive power, the Var capacity is optimized to prevent potential failures due to Var shortage, especially when the wind farm operates close to its full load. An analytical method is used to calculate...... the sensitivity coefficients to improve the computation efficiency and overcome the convergence problem. Two control modes are designed for both normal and emergency conditions. A wind farm with 20 wind turbines was used to verify the proposed combined control scheme....
DEFF Research Database (Denmark)
Yang, Yongheng; Wang, Huai; Blaabjerg, Frede
2014-01-01
.g. Germany and Italy. Those advanced features can be provided by next generation PV systems, and will be enhanced in the future to ensure an even efficient and reliable utilization of PV systems. In light of this, Reactive Power Injection (RPI) strategies for single-phase PV systems are explored...... in this paper. The RPI possibilities are: a) constant average active power control, b) constant active current control, c) constant peak current control and d) thermal optimized control strategy. All those strategies comply with the currently active grid codes, but are with different objectives. The proposed...... RPI strategies are demonstrated firstly by simulations and also tested experimentally on a 1 kW singe-phase grid-connected system in LVRT operation mode. Those results show the effectiveness and feasibilities of the proposed strategies with reactive power control during LVRT operation. The design...
Laithwaite, E. R.; Kuznetsov, S. B.
1980-09-01
A new technique of continuously generating reactive power from the stator of a brushless induction machine is conceived and tested on a 10-kw linear machine and on 35 and 150 rotary cage motors. An auxiliary magnetic wave traveling at rotor speed is artificially created by the space-transient attributable to the asymmetrical stator winding. At least two distinct windings of different pole-pitch must be incorporated. This rotor wave drifts in and out of phase repeatedly with the stator MMF wave proper and the resulting modulation of the airgap flux is used to generate reactive VA apart from that required for magnetization or leakage flux. The VAR generation effect increases with machine size, and leading power factor operation of the entire machine is viable for large industrial motors and power system induction generators.
EBRPOCO - a program to calculate detailed contributions of power reactivity components of EBR-II
International Nuclear Information System (INIS)
Meneghetti, D.; Kucera, D.A.
1981-01-01
The EBRPOCO program has been developed to facilitate the calculations of the power coefficients of reactivity of EBR-II loadings. The program enables contributions of various components of the power coefficient to be delineated axially for every subassembly. The program computes the reactivity contributions of the power coefficients resulting from: density reduction of sodium coolant due to temperature; displacement of sodium coolant by thermal expansions of cladding, structural rods, subassembly cans, and lower and upper axial reflectors; density reductions of these steel components due to temperature; displacement of bond-sodium (if present) in gaps by differential thermal expansions of fuel and cladding; density reduction of bond-sodium (if present) in gaps due to temperature; free axial expansion of fuel if unrestricted by cladding or restricted axial expansion of fuel determined by axial expansion of cladding. Isotopic spatial contributions to the Doppler component my also be obtained. (orig.) [de
Long term storage effects of irradiated fuel elements on power distribution and reactivity
Energy Technology Data Exchange (ETDEWEB)
Ponzoni Filho, P.; Sato, Sadakatu; Santos, Teresinha Ipojuca Cardoso T.I.C.; Fernandes Vanderlei Borba [FURNAS, Rio de Janeiro, RJ (Brazil); Fetterman, R.J. [Westinghouse Electric Corp., Pittsburgh, PA (United States)
1995-12-31
The ALPHA/PHOENIX-P/ANC (APA) code package was used to calculate the pin by pin power distribution and reactivity for Angra 1 Power Plant, Cycle 5. The Angra 1 Cycle 5 core was loaded with several irradiated fuel elements which were stored in the Spent Fuel Pool (SFP) for more than 8 years. Generally, neutronic codes take into account the buildup and depletion of just a few key fission, products such as Sm-149. In this paper it is shown that the buildup effects of other fission products must be considered for fuel which has been out of the core for significant periods of time. Impacts of these other fission products can change core reactivity and power distribution. (author). 3 refs, 4 figs, 4 tabs.
Long term storage effects of irradiated fuel elements on power distribution and reactivity
International Nuclear Information System (INIS)
Ponzoni Filho, P.; Sato, Sadakatu; Santos, Teresinha Ipojuca Cardoso T.I.C.; Fernandes Vanderlei Borba; Fetterman, R.J.
1995-01-01
The ALPHA/PHOENIX-P/ANC (APA) code package was used to calculate the pin by pin power distribution and reactivity for Angra 1 Power Plant, Cycle 5. The Angra 1 Cycle 5 core was loaded with several irradiated fuel elements which were stored in the Spent Fuel Pool (SFP) for more than 8 years. Generally, neutronic codes take into account the buildup and depletion of just a few key fission, products such as Sm-149. In this paper it is shown that the buildup effects of other fission products must be considered for fuel which has been out of the core for significant periods of time. Impacts of these other fission products can change core reactivity and power distribution. (author). 3 refs, 4 figs, 4 tabs
Reactivity and Power Distribution Management in LEU-loaded Linear B and BR
International Nuclear Information System (INIS)
Hartanto, Donny; Kim, Yonghee
2013-01-01
In this paper, the relatively high excess reactivity issue during the initial transitional period was addressed. The design target is to achieve a maximum excess reactivity of about 1.0 dollar to prevent the possibility of the prompt jump critical accident. The initial core is divided into 2 radial Zr-zones in order to reduce the excess reactivity. By doing this, the power profile at the BOC can also be flattened. After the optimum initial core configuration has been found, the blanket region is also divided into 2 radial Zr-zones in order to flatten the power distribution at EOC. The neutronic analyses were all performed using the Monte Carlo code McCARD with ENDF-B/VII.0 library. It was found that by using the concave Zr-zoning in the initial core of B and BR, the maximum excess reactivity can be effectively lowered. The radial power profile can also be successfully flattened by using the Zr-zoning and concave initial core. The concave concept deserves more investigations for better performances of the B and BR core
Sensitivity analysis of power excursion in RSG-GAS reactor due to reactivity insertion
International Nuclear Information System (INIS)
Pinem, Surian; Sembiring, Tagor Malem
2002-01-01
Reactor kinetics has a very important role in reactor operation safety and nuclear reactor control. One of the important aspects in reactor kinetics is power behavior as function of time due to chain reaction in the core. The calculation was performed using kinetic equation and feedback reactivity and evaluated using static power coefficient. Analysis was performed for oxide 250 g, silicide 250 g and silicide 300 g fuel elements with insertion of positive reactivity, negative reactivity and reactivity close to delay neutron fraction. The calculation of power excursion sensitivity showed that the insertion of 0,5 % Δk/k, in the fuel element of silicide 300 g is bigger 5 % than the one of oxide 250 g or silicide 250 g. If inserted by - 1,2 % Δk/k, there is no change among three fuel elements. Therefore, in kinetic point of view, it is showed there is no significant influence in the RSG-GAS reactor operation safety is the current core of oxide 250 g is converted to silicide 250 g or to silicide 300 g
Core concept of fast power reactor with zero sodium void reactivity
International Nuclear Information System (INIS)
Matveev, V.I.; Chebeskov, A.N.; Krivitsky, I.Y.
1991-01-01
The paper presents a core concept of BN-800 - type fast power reactor with zero sodium void reactivity (SVR). Consideration is given to the layout-and some design features of such a core. Some considerations on the determination of the required SVR value as one of the fast reactor safety criteria in accidents with coolant boiling are presented. Some methodical considerations an the development of calculation models that give a correct description of the new core features are stated. The results of the integral SVR calculation studies are included. reactivity excursions under different scenarios of sodium boiling are estimated, some corrections into the calculated SVR value are discussed. (author)
International Nuclear Information System (INIS)
Khan, L.A.; Jabbar, A.; Anwar, A.R.; Ahmad, N.
1998-01-01
It is essential to study the reactor behavior under different accidental conditions and take proper measures for its safe operation. We have studied the effect of reactivity insertion, with and without scram conditions, on peak power and temperatures of fuel, cladding and coolant in typical swimming pool type research reactor. The reactivity ranging from 1 $ to 2 $ and insertion times from 0.25 to 1 second have been considered. The computer code PARET has been used and results are presented in this article. (author)
Reduced order generalized integrators with phase compensation for three-phase active power filter
DEFF Research Database (Denmark)
Xie, Chuan; Li, Kai; Zhao, Xin
2017-01-01
-order generalized integrators (SOGIs) are utilized to achieve those objectives. However, it will increase the computational burden due to calculation of the multiple paralleled SOGIs. To overcome this issue, phase compensated reduced order generalized integrator (ROGI) is proposed in this paper. Compared...... paralleled ROGIs in positive and negative resonant frequencies. Moreover, the controller parameters are designed and optimized by means of Nyquist diagrams and sensitivity functions in z-domain for directly digital implementation. Finally, the laboratory tests of APF are performed to validate the feasibility...
DEFF Research Database (Denmark)
Kamel, S.; Jurado, F.; Chen, Zhe
2015-01-01
This paper presents an implicit modeling of Static Synchronous Series Compensator (SSSC) in Newton–Raphson load flow method. The algorithm of load flow is based on the revised current injection formulation. The developed model of SSSC is depended on the current injection approach. In this model...... will be in the mismatches vector. Finally, this modeling solves the problem that happens when the SSSC is only connected between two areas. Numerical examples on the WSCC 9-bus, IEEE 30-bus system, and IEEE 118-bus system are used to illustrate the feasibility of the developed SSSC model and performance of the Newton–Raphson...
International Nuclear Information System (INIS)
Moulin, D.J.
1994-01-01
The Silver self-powered neutron detector (SPND) is a common detector used in the ramp program at the OSIRIS reactor. The Silver SPND signal is a reference during steady states, but its response is too slow for monitoring transient tests. In order to compensate for the inherent time delay a mathematical processing method of the Silver SPND signal was developed. Based on a convolution-type resolution of the kinetics equations, a dynamic compensation algorithm can be used for transient conditions as well as steady state conditions. A computer program reconstructs, in real-time, the dynamic neutron flux sensed by the Silver detector from the current measured between the emitter and the collector of the SPND. Although this method decreases slightly the signal-to-noise ratio, it maintains the SPND's characteristics and reduces the response time from about 10 minutes to less than 4 seconds for a step change in flux. This provides for prompt and accurate measurement of fuel rod power during ramp experiments in the OSIRIS reactor. This development makes the Silver SPND very suitable for many on-line monitoring applications
Directory of Open Access Journals (Sweden)
Abouzar Samimi
2016-01-01
Full Text Available One of the most significant control schemes in optimal operation of distribution networks is Volt/Var control (VVC. Owing to the radial structure of distribution systems and distribution lines with a small X/R ratio, the active power scheduling affects the VVC issue. A Distribution System Operator (DSO procures its active and reactive power requirements from Distributed Generations (DGs along with the wholesale electricity market. This paper proposes a new operational scheduling method based on a joint day-ahead active/reactive power market at the distribution level. To this end, based on the capability curve, a generic reactive power cost model for DGs is developed. The joint active/reactive power dispatch model presented in this paper motivates DGs to actively participate not only in the energy markets, but also in the VVC scheme through a competitive market. The proposed method which will be performed in an offline manner aims to optimally determine (i the scheduled active and reactive power values of generation units; (ii reactive power values of switched capacitor banks; and (iii tap positions of transformers for the next day. The joint active/reactive power dispatch model for daily VVC is modeled in GAMS and solved with the DICOPT solver. Finally, the plausibility of the proposed scheduling framework is examined on a typical 22-bus distribution test network over a 24-h period.
DEFF Research Database (Denmark)
SUN, BO; Dragicevic, Tomislav; Savaghebi, Mehdi
2015-01-01
Electrical vehicles (EVs) are presenting increasingly potential to replace the conventional fossil fuel based vehicles due to environmental friendly characteristic. Accordingly, Charging Stations (CS), as an intermediate between grid and large numbers of EVs, are supposed to have more critical...... influence on future smart transportation network. This paper explores an off-board charging station upgraded with flywheel energy storage system that could provide a reactive power support to the grid utility. A supervisory control scheme based on distributed bus signaling is proposed to coordinate...... the operation of each component in the system. As a result, the charging station could supply the reactive power support to the utility grid without compromising the charging algorithm and preserve the battery’s lifetime. Finally, the real-time simulation results based on dSPACE1006 verifies the proposed...
An Optimized Reactive Power Control of Distributed Solar Inverters in Low Voltage Networks
DEFF Research Database (Denmark)
Demirok, Erhan; Sera, Dezso; Teodorescu, Remus
2011-01-01
This study examines the reactive power ancillary services of solar inverters which are connected to low voltage (LV) distribution networks by giving attention to the grid voltage support service and grid losses. Two typical reference LV distribution network models as suburban and farm...... are introduced from the literature in order to evaluate contribution of two static droop strategies cosφ(P) and Q(U) on the grid voltage. Photovoltaic (PV) hosting capacities of the suburban and farm networks are estimated and the most predominant limitations of connecting more solar inverters are emphasized...... for each network type. Regarding the overloading of MV/LV distribution transformers, overloading of lines and the grid overvoltage limitations, new local grid voltage support methods (cosφ(P,U) and Q(U,P)) are also proposed. Resulting maximum allowable penetration levels with different reactive power...
Selective Compensation of Voltage Harmonics in a Grid-Connected Microgrid
DEFF Research Database (Denmark)
Savaghebi, M.; Guerrero, Josep M.; Jalilian, A.
2011-01-01
In this paper, a method for selective voltage harmonic compensation in a grid-connected microgrid is presented. Harmonic compensation is done through proper control of distributed generators (DGs) interface converters. In order to achieve proper sharing of compensation effort among the DGs, a power...... named “Harmonic Distortion Power (HDP)” is defined. In the proposed method, active and reactive power control loops are considered to control the powers injected by the DGs. Also, a virtual impedance loop and voltage and current proportional-resonant controllers are included. Simulation results show...
International Nuclear Information System (INIS)
Spangler, M.B.
1986-07-01
Prior to the TMI-2 accident on March 28, 1979, four nuclear power plant units that had previously been issued a construction permit were cancelled, principally because of reduced projections of regional power demand. Since that time, an additional 31 units with CPs have been cancelled and eight units deferred. On December 23, 1985 one of the deferred units (Limerick-2) was reactivated and construction resumed. The primary objective of this policy study is to identify the principal issues requiring office-level consideration in the event of reactivation of the construction of one or more of the nuclear power plants falling into two categories: (1) LWR units issued a construction permit whose construction has been cancelled, and (2) LWR units whose construction has been deferred. The study scope is limited to identifying regulatory issues or questions deserving analysis rather than providing, at this time, answers or recommended actions. Five tasks are addressed: a tabulation and discussion of the status of all cancelled and deferred LWR units; and identification of potential safety and environmental issues; an identification of regulatory or policy issues and needed information to determine the desirability of revising certain rules and policies; and identification of regulatory options and decision criteria; and an identification of decision considerations in determining staff requirements and organizational coordination of LWR reactivation policy and implementation efforts. 41 refs
Modified Monkey Optimization Algorithm for Solving Optimal Reactive Power Dispatch Problem
Directory of Open Access Journals (Sweden)
Kanagasabai Lenin
2015-04-01
Full Text Available In this paper, a novel approach Modified Monkey optimization (MMO algorithm for solving optimal reactive power dispatch problem has been presented. MMO is a population based stochastic meta-heuristic algorithm and it is inspired by intelligent foraging behaviour of monkeys. This paper improves both local leader and global leader phases. The proposed (MMO algorithm has been tested in standard IEEE 30 bus test system and simulation results show the worthy performance of the proposed algorithm in reducing the real power loss.
Characteristics of earth faults in power systems with a compensated or an unearthed neutral
Energy Technology Data Exchange (ETDEWEB)
Haenninen, S; Lehtonen, M [VTT Energy, Espoo (Finland); Antila, E [ABB Transmit Oy (Finland); Stroem, J [Espoo Electricity Co (Finland); Ingman, S [Vaasa Electricity Co (Finland)
1998-08-01
The most common fault type in the electrical distribution networks is the single phase to earth fault. For instance in the Nordic countries, about 80 % of all faults are of this type. To develop the protection and fault location systems, it is important to obtain real case data of disturbances and faults which occurred in the networks. Therefore, data of fault occurrences have been recorded and analyzed in the medium voltage distribution networks (20 kV) at two substations, of which one has an isolated and the other a compensated neutral. In the occurring disturbances, the traces of phase currents and neutral currents in the beginning of two feeder and the traces of phase voltages and neutral voltage from the voltage measuring bay were recorded. In addition to the measured data, other information of the fault occurrences was also collected (data of the line, cause and location of permanent faults and so on)
Directory of Open Access Journals (Sweden)
Amir Nagizadeh Ghoogdareh
2013-01-01
Full Text Available One of the most important power quality aspects in wind farms is voltage fluctuation or flicker which should be investigated due to the nature of wind speed variations. These variations result in power and voltage fluctuations at the load bus. Moreover, the wind generation systems may be assumed as a harmonics source because of their power electronic converters. There are numerous factors that affect flicker and harmonic emission of grid-connected wind turbines during continuous operation, such as wind characteristics (e.g. mean wind speed, turbulence intensity, type of generator and grid conditions (e.g. short circuit capacity, grid impedance angle. In this paper, an IEC based flickermeter is first modeled and then a variable speed wind turbine has been simulated by Matlab/Simulink software. The flicker and harmonics emissions of wind turbines equipped with DFIG during continuous operation and using output reactive control are investigated. The simulation results show that control of wind turbine output reactive power is an effective means for flicker mitigation during continuous operation. However, there should be a compromise between flicker reduction and harmonics level increase to enhance the whole power quality of wind turbine.
Voltage Feedback based Harmonic Compensation for an Offshore Wind Power Plant
DEFF Research Database (Denmark)
Chaudhary, Sanjay K.; Lascu, Cristian; Teodorescu, Remus
2016-01-01
When an offshore wind power plant is connected to the grid, there is a risk of amplification of certain harmonics and appearance resonances at the point of connection due to the interaction between the grid network and the wind power plant network. Hence, the plant developer is obliged to maintain...
Instantaneous Power Compensation in Three-Phase Systems by Using p-q-r Theory
DEFF Research Database (Denmark)
Kim, Hyosung; Blaabjerg, Frede; Bak-Jensen, Birgitte
2002-01-01
Three linearly independent instantaneous powers have been defined in the time domain in three-phase four-wire systems with the use of p-q-r theory. Any three-phase circuit can be transformed into three single-phase circuits by the p-q-r transformation Thus the instantaneous powers in any three...
Distributed control of hybrid AC microgrids with dynamic active and reactive power capacity tuning
DEFF Research Database (Denmark)
Nutkani, Inam Ullah; Loh, Poh Chiang; Blaabjerg, Frede
2012-01-01
Microgrids comprise of emerging generation technologies such as fuel cell, solar PV, wind turbine generator, storage and loads. They can, in principle, operate at different voltages and frequencies. Tying them either to the mains grid or among themselves would certainly require some interlinking...... power converters, whose control should preferably be done autonomously without demanding communication links. This paper proposes distributed control for power management between two Microgrids interlinked through inverters. The control scheme aims to reduce the reactive power loading stress on DERs...... and also allows active power transfer from overloaded grid to under- loaded grid. The performance of proposed control has been verified in simulation and through a scaled-down experimental system....
DEFF Research Database (Denmark)
Demirok, Erhan; Sera, Dezso; Teodorescu, Remus
2014-01-01
load and power loss on the feeders and individual inverters. Simplified energy loss evaluation is carried out here by using analytical average loss modeling of 2-level full bridge inverter coupled with network load flow analysis simulating one month period. The study shows that whatever Q control......Grid-connected photovoltaic (PV) inverters tailored with reactive power management feature can support the grid voltage especially when the voltage fluctuates near its admissible limits. Although Q control allows reducing the grid voltage elevation along the distribution feeder, it brings extra...... is selected, extra power loss is not a substantial amount to take into consideration. Similarly, loss difference among the inverters located at the various points is negligible....
International Nuclear Information System (INIS)
Delfin L, A.; Alonso V, G.; Valle G, E. del
2003-01-01
In this work two nodal schemes of finite element are presented, one of second and the other of third order of accurate that allow to determine the radial distribution of power starting from the corresponding reactivities.The schemes here developed were obtained taking as starting point the equation developed by Driscoll et al, the one which is based on the diffusion approach of 1-1/2 energy groups. This equation relates the power fraction of an assemble with their reactivity and with the power fractions and reactivities of the assemblies that its surround it. Driscoll and collaborators they solve in form approximate such equation supposing that the reactivity of each assemble it is but a lineal function of the burnt one of the fuel. The spatial approach carries out it with the classic technique of finite differences centered in mesh. Nevertheless that the algebraic system to which its arrive it can be solved without more considerations introduce some additional suppositions and adjustment parameters that it allows them to predict results comparable to those contributed by three dimensions analysis and this way to reduce the one obtained error when its compare their results with those of a production code like CASMO. Also in the two schemes that here are presented the same approaches of Driscoll were used being obtained errors of the one 10% and of 5% for the second schemes and third order respectively for a test case that it was built starting from data of the Cycle 1 of the Unit 1 of the Laguna Verde Nucleo electric plant. These errors its were obtained when comparing with a computer program based on the matrix response method. It is sought to have this way a quick and efficient tool for the multicycle analysis in the fuel management. However, this model presents problems in the appropriate prediction of the average burnt of the nucleus and of the burnt one by lot. (Author)
DEFF Research Database (Denmark)
Török, Lajos; Mathe, Laszlo; Munk-Nielsen, Stig
2014-01-01
The purpose of this work was to investigate a three-phase-grid connected power supply using small DC link capacitor for electrolyser application. The hydrogen generation system requires low voltage and high current power supply. Thus the structure of the 3-phase power supply is defined as follows......: a three phase rectification, a small DC-link capacitor and a phase-shifted full-bridge converter with current doubler rectification. Design constraints and control problems are investigated. The advantages and problems caused by the use of small DC link capacitor are presented. The control of the system...
Vu, Lien T; Chen, Chao-Chang A; Lee, Chia-Cheng; Yu, Chia-Wei
2018-04-20
This study aims to develop a compensating method to minimize the shrinkage error of the shell mold (SM) in the injection molding (IM) process to obtain uniform optical power in the central optical zone of soft axial symmetric multifocal contact lenses (CL). The Z-shrinkage error along the Z axis or axial axis of the anterior SM corresponding to the anterior surface of a dry contact lens in the IM process can be minimized by optimizing IM process parameters and then by compensating for additional (Add) powers in the central zone of the original lens design. First, the shrinkage error is minimized by optimizing three levels of four IM parameters, including mold temperature, injection velocity, packing pressure, and cooling time in 18 IM simulations based on an orthogonal array L 18 (2 1 ×3 4 ). Then, based on the Z-shrinkage error from IM simulation, three new contact lens designs are obtained by increasing the Add power in the central zone of the original multifocal CL design to compensate for the optical power errors. Results obtained from IM process simulations and the optical simulations show that the new CL design with 0.1 D increasing in Add power has the closest shrinkage profile to the original anterior SM profile with percentage of reduction in absolute Z-shrinkage error of 55% and more uniform power in the central zone than in the other two cases. Moreover, actual experiments of IM of SM for casting soft multifocal CLs have been performed. The final product of wet CLs has been completed for the original design and the new design. Results of the optical performance have verified the improvement of the compensated design of CLs. The feasibility of this compensating method has been proven based on the measurement results of the produced soft multifocal CLs of the new design. Results of this study can be further applied to predict or compensate for the total optical power errors of the soft multifocal CLs.
DEFF Research Database (Denmark)
Mousazadeh, Seyyed Yousef; Jalilian, Alireza; Savaghebi, Mehdi
2018-01-01
In this paper, a coordinated harmonic compensation and voltage support scheme is presented for distributed generations’ (DGs’) interface inverters in a resistive grid-connected microgrid. Voltage support is performed by reactive power compensation which can mitigate the over/under voltage problem...
DEFF Research Database (Denmark)
Gohil, Ghanshyamsinh Vijaysinh; Wang, Huai; Liserre, Marco
2014-01-01
A method to selectively control the amount of dc link voltage ripple by processing desired reactive power by a DC/DC converter in isolated AC/DC or AC/DC/AC system is proposed. The concept can reduce the dc link capacitors used for balancing the input and output power and thereby limiting...... the voltage ripple. It allows the use of smaller dc link capacitor and hence a longer lifetime and at the same time high power density and low cost can be achieved. The isolated DC/DC converter is controlled to process the desired reactive power in addition to the active power. The control system to achieve...
Directory of Open Access Journals (Sweden)
Zhiqun Cheng
2017-01-01
Full Text Available The design, implementation, and measurements of a high efficiency and high power wideband GaN HEMT power amplifier are presented. Package parasitic effect is reduced significantly by a novel compensation circuit design to improve the accuracy of impedance matching. An improved structure is proposed based on the traditional Class-F structure with all even harmonics and the third harmonic effectively controlled, respectively. Also the stepped-impedance matching method is applied to the third harmonic control network, which has a positive effect on the expansion bandwidth. CGH40025F power transistor is utilized to build the power amplifier working at 0.8 to 2.7 GHz, with the measured saturated output power 20–50 W, drain efficiency 52%–76%, and gain level above 10 dB. The second and the third harmonic suppression levels are maintained at −16 to −36 dBc and −16 to −33 dBc, respectively. The simulation and the measurement results of the proposed power amplifier show good consistency.
International Nuclear Information System (INIS)
Ghoudjehbaklou, H.; Danai, B.
2001-01-01
Reactive power dispatch for voltage profile modification has been of interest to power utilities. Usually local bus voltages can be altered by changing generator voltages, reactive shunts, ULTC transformers and SVCs. Determination of optimum values for control parameters, however, is not simple for modern power system networks. Heuristic and rather intelligent algorithms have to be sought. In this paper a new algorithm is proposed that is based on a variant of a genetic algorithm combined with simulated annealing updates. In this algorithm a fuzzy multi-objective a approach is used for the fitness function of the genetic algorithm. This fuzzy multi-objective function can efficiently modify the voltage profile in order to minimize transmission lines losses, thus reducing the operating costs. The reason for such a combination is to utilize the best characteristics of each method and overcome their deficiencies. The proposed algorithm is much faster than the classical genetic algorithm and cna be easily integrated into existing power utilities software. The proposed algorithm is tested on an actual system model of 1284 buses, 799 lines, 1175 fixed and ULTC transformers, 86 generators, 181 controllable shunts and 425 loads
Directory of Open Access Journals (Sweden)
Mahin K. Atiq
2013-09-01
Full Text Available Measurement of the active, reactive, and apparent power is one of the most fundamental tasks of smart meters in energy systems. Recently, a number of studies have employed the discrete wavelet transform (DWT for power measurement in smart meters. The most common way to implement DWT is the pyramid algorithm; however, this is not feasible for practical DWT computation because it requires either a log N cascaded filter or O (N word size memory storage for an input signal of the N-point. Both solutions are too expensive for practical applications of smart meters. It is proposed that the recursive pyramid algorithm is more suitable for smart meter implementation because it requires only word size storage of L × Log (N-L, where L is the length of filter. We also investigated the effect of varying different system parameters, such as the sampling rate, dc offset, phase offset, linearity error in current and voltage sensors, analog to digital converter resolution, and number of harmonics in a non-sinusoidal system, on the reactive energy measurement using DWT. The error analysis is depicted in the form of the absolute difference between the measured and the true value of the reactive energy.
DEFF Research Database (Denmark)
Pahlevani, Majid; Eren, Suzan; Guerrero, Josep M.
2016-01-01
This paper presents a new active/reactive power closed-loop control system for a hybrid renewable energy generation system used for single-phase residential/commercial applications. The proposed active/reactive control method includes a hybrid estimator, which is able to quickly and accurately es...
Siemaszko, Daniel
2015-06-15
The handling of weak networks with asymmetric loads and disturbances im- plies the accurate handling of the second-harmonic component that appears in an unbalanced network. This paper proposes a classic vector control approach using a PI-based controller with superior decoupling capabilities for operation in weak networks with unbalanced phase voltages. A synchronization method for weak unbalanced networks is detailed, with dedicated dimensioning rules. The use of a double-frame controller allows a current symmetry or controlled imbalance to be forced for compensation of power oscillations by controlling the negative current sequence. This paper also serves as a useful reminder of the proper way to cancel the inherent coupling effect due to the transformation to the synchronous rotating reference frame, and of basic considerations of the relationship between switching frequency and control bandwidth.
Energy Technology Data Exchange (ETDEWEB)
Park, M.G.; Kim, Y.H.; Cha, K.H.; Kim, M.K. [Korea Electric Power Research Institute, Taejon (Korea)
1999-07-01
A method is described to develop and H{infinity} filtering method for the dynamic compensation of self-powered neutron detectors normally used for fixed incore instruments. An H{infinity} norm of the filter transfer matrix is used as the optimization criteria in the worst-case estimation error sense. Filter modeling is performed for both continuous- and discrete-time models. The filter gains are optimized in the sense of noise attenuation level of H{infinity} setting. By introducing Bounded Real Lemma, the conventional algebraic Riccati inequalities are converted into Linear Matrix Inequalities (LMIs). Finally, the filter design problem is solved via the convex optimization framework using LMIs. The simulation results show that remarkable improvements are achieved in view of the filter response time and the filter design efficiency. (author). 15 refs., 4 figs., 3 tabs.
DEFF Research Database (Denmark)
Yang, Dongsheng; Wang, Xiongfei; Liu, Fangcheng
2017-01-01
The Photovoltaic (PV) power plants are usually deployed in remote areas with the high solar irradiance, and their power transfer capabilities can be greatly limited by the large impedance of long-distance transmission lines. This paper investigates first the power transfer limit of the PV power p...
Directory of Open Access Journals (Sweden)
Fatima Zohra GHERBI
2008-07-01
Full Text Available The energy transportation networks can be improved by multiplying or creating new lines. This is not always the case for various reasons. The series capacities controlled by SCRs (Silicon Controlled Rectifiers represent a good alternative to optimize the existing or the new electric links, because they allow the increase of the dynamic stability, the damping of the power oscillations, while balancing the loads between the parallel circuits. This paper presents a resolution method to the power distribution by inserting the TCSC transit controller in the network. The insertion of the TCSC devices has given satisfying results that are, an increase of the transmitted active power and reduction of active losses, an improvement of the angular stability and the voltage stability without decreasing the transportation capacity.
Reactivity control in HTR power plants with respect to passive safety system. Summary
Energy Technology Data Exchange (ETDEWEB)
Barnert, H; Kugeler, K [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Sicherheitsforschung und Reaktortechnik
1996-12-01
The R and D and Demonstration of the High Temperature Reactor (HTR) is described in overview. The HTR-MODULE power plant, as the most advanced concept, is taken for the description of the reactivity control in general. The idea of the ``modularization of the core`` of the HTR has been developed as the answer on the experiences of the core melt accident at Three Miles Island. The HTR module has two shutdown systems: The ``6 rods``-system for hot shutdown at the ``18 small absorber pebbles units`` - system for cold shutdown. With respect to the definition of ``Passive Systems`` of IAEA-TECDOC-626 the total reactivity control system of the HTR-MODULE is a passive system of category D, because it is an emergency reactor shutdown system based on gravity driven rods, and devices, activated by fail-safe trip logic. But reactivity control of the HTR does not only consist of these engineered safety system but does have a self-acting stabilization by the negative temperature coefficient of the reactivity, being rather effective in reactivity control. Examples from computer calculations are presented, and, in addition, experimental results from the ``Stuck Rod Experiment`` at the AVR reactor in Juelich. On the basis of this the proposal is made that ``self-acting stabilization as a quality of the function`` should be discussed as a new category in addition to the active and passive engineered safety systems, structures and components of IAEA-TECDOC-626. The requirements for a future ``catastrophe-free`` nuclear technology are presented. In the appendix the 7th amendment of the atomic energy act of the Federal Republic of Germany, effective 28 July 94, is given. (author).
Load Torque Compensator for Model Predictive Direct Current Control in High Power PMSM Drive Systems
DEFF Research Database (Denmark)
Preindl, Matthias; Schaltz, Erik
2011-01-01
The widely used cascade speed and torque controllers have a limited control performance in most high power applications due to the low switching frequency of power electronic converters and the convenience to avoid speed overshoots and oscillations for lifetime considerations. Model Predictive...... Direct Current Control (MPDCC) leads to an increase of torque control performance taking into account the discrete nature of inverters but temporary offsets and poor responses to load torque variations are still issues in speed control. A load torque estimator is proposed in this paper in order...
Regulation System for the 18 kV/90 Mvar Compensators
Burdet, G
2001-01-01
Two 18 kV/90 Mvar static compensators are involved to stabilise the voltage, filter the harmonics and compensate the reactive power generated by the power converters used to supply the SPS accelerator magnets. The in-house hardware and software used by the regulation systems, difficult to maintain and upgrade, shall be renovated. Industrial solution based on PLC will be implemented. This paper describes the future system and its integration to the Electrical Network Supervisor.
Directory of Open Access Journals (Sweden)
Jiashen Teh
2018-04-01
Full Text Available The integration of renewable energy sources, especially wind energy, has been on the rise throughout power systems worldwide. Due to this relatively new introduction, the integration of wind energy is often not optimized. Moreover, owing to the technical constraints and transmission congestions of the power network, most of the wind energy has to be curtailed. Due to various factors that influence the connectivity of wind energy, this paper proposes a well-organized posterior multi-objective (MO optimization algorithm for maximizing the connections of wind energy. In this regard, the dynamic thermal rating (DTR system and the static VAR compensator (SVC have been identified as effective tools for improving the loadability of the network. The propose MO algorithm in this paper aims to minimize: (1 wind energy curtailment, (2 operation cost of the network considering all investments and operations, also known as the total social cost, and (3 SVC operation cost. The proposed MO problem was solved using the non-dominated sorting genetic algorithm (NSGA II and it was tested on the modified IEEE reliability test system (IEEE-RTS. The results demonstrate the applicability of the proposed algorithm in aiding power system enhancement planning for integrating wind energy.
Schormans, Matthew; Valente, Virgilio; Demosthenous, Andreas
2016-08-04
Inductive powering for implanted medical devices, such as implantable biosensors, is a safe and effective technique that allows power to be delivered to implants wirelessly, avoiding the use of transcutaneous wires or implanted batteries. Wireless powering is very sensitive to a number of link parameters, including coil distance, alignment, shape, and load conditions. The optimum drive frequency of an inductive link varies depending on the coil spacing and load. This paper presents an optimum frequency tracking (OFT) method, in which an inductive power link is driven at a frequency that is maintained at an optimum value to ensure that the link is working at resonance, and the output voltage is maximised. The method is shown to provide significant improvements in maintained secondary voltage and system efficiency for a range of loads when the link is overcoupled. The OFT method does not require the use of variable capacitors or inductors. When tested at frequencies around a nominal frequency of 5 MHz, the OFT method provides up to a twofold efficiency improvement compared to a fixed frequency drive. The system can be readily interfaced with passive implants or implantable biosensors, and lends itself to interfacing with designs such as distributed implanted sensor networks, where each implant is operating at a different frequency.
Digital compensation of receiver clipping for DVB reception on low-power mobile
Linnartz, J.P.M.G.; Rietman, R.
2007-01-01
Battery life-time is a critical issue for digital television (DVB) viewing on mobile phones. The number of quantization steps used in the analog-to-digital converter (ADC) is an important factor in the total power consumption of a DVB receiver. The OFDM signals require a large resolution of the ADC.
Directory of Open Access Journals (Sweden)
Matthew Schormans
2016-08-01
Full Text Available Inductive powering for implanted medical devices, such as implantable biosensors, is a safe and effective technique that allows power to be delivered to implants wirelessly, avoiding the use of transcutaneous wires or implanted batteries. Wireless powering is very sensitive to a number of link parameters, including coil distance, alignment, shape, and load conditions. The optimum drive frequency of an inductive link varies depending on the coil spacing and load. This paper presents an optimum frequency tracking (OFT method, in which an inductive power link is driven at a frequency that is maintained at an optimum value to ensure that the link is working at resonance, and the output voltage is maximised. The method is shown to provide significant improvements in maintained secondary voltage and system efficiency for a range of loads when the link is overcoupled. The OFT method does not require the use of variable capacitors or inductors. When tested at frequencies around a nominal frequency of 5 MHz, the OFT method provides up to a twofold efficiency improvement compared to a fixed frequency drive. The system can be readily interfaced with passive implants or implantable biosensors, and lends itself to interfacing with designs such as distributed implanted sensor networks, where each implant is operating at a different frequency.
Directory of Open Access Journals (Sweden)
Dariusz Kołodziej
2012-06-01
Full Text Available This paper presents examples of coordination between automatic voltage and reactive power control systems (ARST covering adjacent and strongly related extra high voltage substations. Included are conclusions resulting from the use of these solutions. The Institute of Power Engineering, Gdańsk Division has developed and deployed ARST systems in the national power system for a dozen or so years.
A static VAR compensator model for improved ride-through capability of wind farms
Energy Technology Data Exchange (ETDEWEB)
Akhmatov, V.; Soebrink, K.
2004-12-01
Dynamic reactive compensation is associated with reactive power and voltage control of induction generator based wind turbines. With regard to wind power, application areas of dynamic reactive compensation can be improvement of the power quality and the voltage stability, the control of the reactive power exchange between the wind farm and the power grid in the wind farm connection point as well as improvement of the ride-through capability of the wind farm. This article presents a model of a Static VAR Compensator (SVC) with dynamic generic control that is a kind of dynamic reactive compensation device. The term 'generic' implies that the model is general and must cover a variety of the SVC units and their specific controls from different manufacturers. The SVC model with dynamic generic control is implemented by Eltra in the simulation tool Powerfactory and validated from the SVC model in the tool PSCAD/EMTDC. Implementation in the tool Powerfactory makes it possible to apply the SVC model with dynamic generic control in investigations of power system stability with regard to establishment of large wind farms without restrictions on the model size of the power grid. (Author)
Photovoltaic Hosting Capacity of Feeders with Reactive Power Control and Tap Changers
Energy Technology Data Exchange (ETDEWEB)
Ceylan, Oğuzhan; Paudyal, Sumit; Bhattarai, Bishnu P.; Myers, Kurt S.
2017-06-01
This paper proposes an algorithm to determine photovoltaic (PV) hosting capacity of power distribution networks as a function of number of PV injection nodes, reactive power support from the PVs, and the sub-station load tap changers (LTCs). In the proposed method, several minute by minute simulations are run based on randomly chosen PV injection nodes, daily PV output profiles, and daily load profiles from a pool of high-resolution realistic data set. The simulation setup is built using OpenDSS and MATLAB. The performance of the proposed method is investigated in the IEEE 123-node distribution feeder for multiple scenarios. The case studies are performed particularly for one, two, five and ten PV injection nodes, and looking at the maximum voltage deviations. Case studies show that the PV hosting capacity of the 123-node feeder greatly differs with the number of PV injection nodes. We have also observed that the PV hosting capacity increases with reactive power support and higher tap position of sub-station LTC.
Voltage stability in low voltage microgrids in aspects of active and reactive power demand
Directory of Open Access Journals (Sweden)
Parol Mirosław
2016-03-01
Full Text Available Low voltage microgrids are autonomous subsystems, in which generation, storage and power and electrical energy consumption appear. In the paper the main attention has been paid to the voltage stability issue in low voltage microgrid for different variants of its operation. In the introduction a notion of microgrid has been presented, and also the issue of influence of active and reactive power balance on node voltage level has been described. Then description of voltage stability issue has been presented. The conditions of voltage stability and indicators used to determine voltage stability margin in the microgrid have been described. Description of the low voltage test microgrid, as well as research methodology along with definition of considered variants of its operation have been presented further. The results of exemplary calculations carried out for the daily changes in node load of the active and reactive power, i.e. the voltage and the voltage stability margin indexes in nodes have been presented. Furthermore, the changes of voltage stability margin indexes depending on the variant of the microgrid operation have been presented. Summary and formulation of conclusions related to the issue of voltage stability in microgrids have been included at the end of the paper.
Loss of Excitation Detection in Doubly Fed Induction Generator by Voltage and Reactive Power Rate
Directory of Open Access Journals (Sweden)
M. J. Abbasi
2016-12-01
Full Text Available The doubly fed induction generator (DFIG is one of the most popular technologies used in wind power systems. With the growing use of DFIGs and increasing power system dependence on them in recent years, protecting of these generators against internal faults is more considered. Loss of excitation (LOE event is among the most frequent failures in electric generators. However, LOE detection studies heretofore were usually confined to synchronous generators. Common LOE detection methods are based on impedance trajectory which makes the system slow and also prone to interpret a stable power swing (SPS as a LOE fault. This paper suggests a new method to detect the LOE based on the measured variables from the DFIG terminal. In this combined method for LOE detection, the rate of change of both the terminal voltage and the output reactive power are utilized and for SPS detection, the fast Fourier transform (FFT analysis of the output instantaneous active power has been used. The performance of the proposed method was evaluated using Matlab/Simulink interface for various power capacities and operating conditions. The results proved the method's quickness, simplicity and security.
Directory of Open Access Journals (Sweden)
Ioannis Bouloumpasis
2015-03-01
Full Text Available This work presents a method of current harmonic reduction in a distorted distribution system. In order to evaluate the proposed method a grid with high-order current harmonics is assumed. The reduction of current distortion is feasible due to the pulse modulation of an active filter, which consists of a buck-boost converter connected back-to-back to a polarity swapping inverter. For a practical application, this system would be the power electronic interface of a Renewable Energy Source (RES and therefore it changes a source of harmonics to a damping harmonics system. Using the proposed method, the current Total Harmonic Distortion (THD of the grid is reduced below the acceptable limits and thus the general power quality of the system is improved. Simulations in the MATLAB/SIMULINK platform and experiments have been performed in order to verify the effectiveness of the proposed method.
Ali, Anum Z.
2013-12-01
Linearization of user equipment power amplifiers driven by orthogonal frequency division multiplexing signals is addressed in this paper. Particular attention is paid to the power efficient operation of an orthogonal frequency division multiple access cognitive radio system and realization of such a system using compressed sensing. Specifically, precompensated overdriven amplifiers are employed at the mobile terminal. Over-driven amplifiers result in in-band distortions and out of band interference. Out of band interference mostly occupies the spectrum of inactive users, whereas the in-band distortions are mitigated using compressed sensing at the receiver. It is also shown that the performance of the proposed scheme can be further enhanced using multiple measurements of the distortion signal in single-input multi-output systems. Numerical results verify the ability of the proposed setup to improve error vector magnitude, bit error rate, outage capacity and mean squared error. © 2011 IEEE.
Ali, Anum Z.; Hammi, Oualid; Al-Naffouri, Tareq Y.
2013-01-01
Linearization of user equipment power amplifiers driven by orthogonal frequency division multiplexing signals is addressed in this paper. Particular attention is paid to the power efficient operation of an orthogonal frequency division multiple access cognitive radio system and realization of such a system using compressed sensing. Specifically, precompensated overdriven amplifiers are employed at the mobile terminal. Over-driven amplifiers result in in-band distortions and out of band interference. Out of band interference mostly occupies the spectrum of inactive users, whereas the in-band distortions are mitigated using compressed sensing at the receiver. It is also shown that the performance of the proposed scheme can be further enhanced using multiple measurements of the distortion signal in single-input multi-output systems. Numerical results verify the ability of the proposed setup to improve error vector magnitude, bit error rate, outage capacity and mean squared error. © 2011 IEEE.
Optimization-based reactive power control in HVDC-connected wind power plants
Schönleber, Kevin; Collados Rodríguez, Carlos; Teixeira Pinto, Rodrigo; Ratés Palau, Sergi; Gomis Bellmunt, Oriol
2017-01-01
One application of high–voltage dc (HVdc) systems is the connection of remotely located offshore wind power plants (WPPs). In these systems, the offshore WPP grid and the synchronous main grid operate in decoupled mode, and the onshore HVdc converter fulfills the grid code requirements of the main grid. Thus, the offshore grid can be operated independently during normal conditions by the offshore HVdc converter and the connected wind turbines. In general, it is well known that optimized react...
Load Torque Compensator for Model Predictive Direct Current Control in High Power PMSM Drive Systems
DEFF Research Database (Denmark)
Preindl, Matthias; Schaltz, Erik
2010-01-01
In drive systems the most used control structure is the cascade control with an inner torque, i.e. current and an outer speed control loop. The fairly small converter switching frequency in high power applications, e.g. wind turbines lead to modest speed control performance. An improvement bring...... the use of a current controller which takes into account the discrete states of the inverter, e.g. DTC or a more modern approach: Model Predictive Direct Current Control (MPDCC). Moreover overshoots and oscillations in the speed are not desired in many applications, since they lead to mechanical stress...
DEFF Research Database (Denmark)
Zou, Zhixiang; Wang, Zheng; Cheng, Ming
2012-01-01
This paper presents an digital dual-mode-structure repetitive control approach for the single-phase shunt active power filter (APF), which aims to enhance the tracking ability and eliminate arbitrary order harmonic. The proposed repetitive control scheme blends the characteristics of both odd......-harmonic repetitive control and even-harmonic repetitive control. Moreover, the convergence rate is faster than conventional repetitive controller. Additionally, the parameters have been designed and optimized for the dual-mode structure repetitive control to improve the performance of APF system. Experimental...
Measurement of xenon reactivity in the reactor of the nuclear ship 'MUTSU'
International Nuclear Information System (INIS)
Itagaki, Masafumi; Miyoshi, Yoshinori; Gakuhari, Kazuhiko; Okada, Noboru.
1993-01-01
This report deals with the measurement of reactivity changes caused by the increase and decrease of xenon concentration in the reactor core of the nuclear ship 'MUTSU' after a change from long-term operation at 70 % to zero power. The change in xenon reactivity was compensated by control-rod movements and the compensated reactivity was measured using a digital reactivity meter. The xenon override peak was recognized five and half hours after the start of power reduction. The equilibrium and peak reactivities of xenon were estimated by reading the initial and peak values of a theoretical curve which was fitted to the measured variation in xenon reactivity. The xenon reactivity results obtained by the present method can be considered to be accurate since no control-rod worth data were used and the measured quantity was the reactivity itself. (author)
Active and reactive power support of MV distribution systems using battery energy storage
DEFF Research Database (Denmark)
Wang, Jiawei; Hashemi Toghroljerdi, Seyedmostafa; You, Shi
2017-01-01
shaving and voltage support service from the perspective of Distribution System Operators (DSOs). An active power support algorithm is implemented and the effects of various load profiles as well as different Photovoltaic (PV) penetration scenarios on the operation of BESS and the optimal BESS converter......Adoption of Battery Energy Storage Systems (BESSs) for provision of grid services is increasing. This paper investigates the applications of BESS for the grid upgrade deferral and voltage support of Medium Voltage (MV) distribution systems. A BESS is modelled in Matlab/Simulink to perform peak load...... size for peak load shaving are investigated. The BESS annual lifetime degradation is also estimated using a rainflow counting algorithm. A reactive power support algorithm embedded with Q-U droop control is proposed in order to reduce the voltage drop in a part of 10 kV distribution network of Nordhavn...
Effects of Radial Reflector Composition on Core Reactivity and Peak Power
International Nuclear Information System (INIS)
Park, Sang Yoon; Lee, Kyung Hoon; Song, Jae Seung
2007-10-01
The effects of radial SA-240 alloy shroud on core reactivity and peak power are evaluated. The existence of radial SA-240 alloy shroud makes reflector water volume decrease, so the thermal absorption cross section of radial reflector is lower than without SA-240 alloy shroud case. Finally, the cycle length is increased from 788 EFPD to 845 EFPD and the peak power is decreased from 1.66 to 1.49. In the case of without SA-240 alloy shroud, a new core loading pattern search has been performed. For the guarantee of the same equivalent cycle length of with SA-240 alloy shroud case, the enrichment of U-235 should be increased from 4.22 w/o to 4.68 w/o. The nuclear key safety parameters of new core loading pattern have been calculated and recorded for the future
Effects of Radial Reflector Composition on Core Reactivity and Peak Power
Energy Technology Data Exchange (ETDEWEB)
Park, Sang Yoon; Lee, Kyung Hoon; Song, Jae Seung
2007-10-15
The effects of radial SA-240 alloy shroud on core reactivity and peak power are evaluated. The existence of radial SA-240 alloy shroud makes reflector water volume decrease, so the thermal absorption cross section of radial reflector is lower than without SA-240 alloy shroud case. Finally, the cycle length is increased from 788 EFPD to 845 EFPD and the peak power is decreased from 1.66 to 1.49. In the case of without SA-240 alloy shroud, a new core loading pattern search has been performed. For the guarantee of the same equivalent cycle length of with SA-240 alloy shroud case, the enrichment of U-235 should be increased from 4.22 w/o to 4.68 w/o. The nuclear key safety parameters of new core loading pattern have been calculated and recorded for the future.
Estimation of power feedback parameters of the IBR-2M reactor by square wave reactivity
International Nuclear Information System (INIS)
Pepelyshev, Yu.N.; Popov, A.K.; Sumkhuu, D.
2016-01-01
Parameters of the IBR-2M reactor power feedback (PFB) are estimated based on the analysis of power transients caused by deliberate square wave reactivity when the pulsed reactor operates in the self-regulation mode. The PFB of the IBR-2M is described by three linear first-order differential equations. Two components of the PFB are responsible for the negative feedback and one, for the positive. The overall feedback is negative, i.e., it has a stabilizing effect for the operation of the reactor. The slowest negative component of the PFB is probably caused by heating of the fuel. Periodically repeated in the process of exploitation, estimation of the PFB parameters is one of the methods to ensure safety operation of the reactor. [ru
Comparisons of PRD [power-reactivity-decrements] components for various EBR-II configurations
International Nuclear Information System (INIS)
Meneghetti, D.; Kucera, D.A.
1986-01-01
Comparison of detailed calculations of contributions by region and component of the power-reactivity-decrements (PRD) for four differing loading configurations of the Experimental Breeder Reactor-II (EBR-II) are given. The linear components and Doppler components are calculated. The non-linear (primarily subassembly bowing) components are deduced by differences relative to measured total PRD values. Variations in linear components range from about 10% to as much as about 100% depending upon the component. The deduced non-linear components differ both in magnitude and sign as functions of reactor power. Effects of differing assumptions of the nature of the fuel-to-clad interactions upon the PRD components are also calculated
Solar pv fed stand-alone excitation system of a synchronous machine for reactive power generation
Sudhakar, N.; Jain, Siddhartha; Jyotheeswara Reddy, K.
2017-11-01
This paper presents a model of a stand-alone solar energy conversion system based on synchronous machine working as a synchronous condenser in overexcited state. The proposed model consists of a Synchronous Condenser, a DC/DC boost converter whose output is fed to the field of the SC. The boost converter is supplied by the modelled solar panel and a day time variable irradiance is fed to the panel during the simulation time. The model also has one alternate source of rechargeable batteries for the time when irradiance falls below a threshold value. Also the excess power produced when there is ample irradiance is divided in two parts and one is fed to the boost converter while other is utilized to recharge the batteries. A simulation is done in MATLAB-SIMULINK and the obtained results show the utility of such modelling for supplying reactive power is feasible.
International Nuclear Information System (INIS)
Samimi, Abouzar; Kazemi, Ahad; Siano, Pierluigi
2015-01-01
Highlights: • A new market-based approach is proposed to schedule active and reactive powers. • Multi-component reactive power bidding structures for DERs is introduced. • A new economical/environmental operational scheduling method is proposed. • At distribution level, a reactive power market is developed in presence of DERs. - Abstract: Distribution System Operator (DSO) is responsible for active and reactive power scheduling in a distribution system. DSO purchases its active and reactive power requirements from Distributed Energy Resources (DERs) as well as the wholesale electricity market. In this paper, a new economical/environmental operational scheduling method based on sequential day-ahead active and reactive power markets at distribution level is proposed to dispatch active and reactive powers in distribution systems with high penetration of DERs. In the proposed model, after day-ahead active power market was cleared the participants submit their reactive power bids and then the reactive power market will be settled. At distribution level, developing a Var market, in which DERs like synchronous machine-based Distributed Generation (DG) units and Wind Turbines (WTs) could offer their reactive power prices, DERs are motivated to actively participate in the Volt/VAr Control (VVC) problem. To achieve this purpose, based on the capability curves of considered DERs, innovative multi-component reactive power bidding structures for DERs are introduced. Moreover, the effect of reactive power market clearing on the active power scheduling is explicitly considered into the proposed model by rescheduling of active power by usage of energy-balance service bids. On the other hand, environmental concerns that arise from the operation of fossil fuel fired electric generators are included in the proposed model by employing CO_2 emission penalty cost. The suggested reactive power market is cleared through a mixed-integer nonlinear optimization program. The
DEFF Research Database (Denmark)
Török, Lajos; Mathe, L.
2017-01-01
The purpose of this work was to investigate effect of the DC-link voltage feed-forward compensation on the stability of the three-phase-grid connected DC power supply, used for electrolysis application, equipped with small DC link capacitor. In case of weak grid condition, the system...
stability analysis of a three-phase solid-state var compensator
African Journals Online (AJOL)
2012-11-03
Nov 3, 2012 ... solid-state devices (bipolar junction transistor (BJT), insulated-gate bipolar transistor (IGBT), gate-turn- off thyristor (GTO) and power MOSFET has elim- inated these problems. The voltage source inverter. (VSI) employing any one of these devices is an efficient equipment for reactive power compensation or ...
Multi-channel programmable power supply with temperature compensation for silicon sensors
International Nuclear Information System (INIS)
Shukla, R. A.; Achanta, V. G.; Dugad, S. R.; Kurup, A. M.; Lokhandwala, S. S.; Prabhu, S. S.; Freeman, J.; Los, S.; Garde, C. S.; Khandekar, P. D.; Gupta, S. K.; Rakshe, P. S.
2016-01-01
Silicon Photo-Multipliers (SiPMs) are increasingly becoming popular for discrete photon counting applications due to the wealth of advantages they offer over conventional photo-detectors such as photo-multiplier tubes and hybrid photo-diodes. SiPMs are used in variety of applications ranging from high energy physics and nuclear physics experiments to medical diagnostics. The gain of a SiPM is directly proportional to the difference between applied and breakdown voltage of the device. However, the breakdown voltage depends critically on the ambient temperature and has a large temperature co-efficient in the range of 40-60 mV/°C resulting in a typical gain variation of 3%-5%/°C [Dinu et al., in IEEE Nuclear Science Symposium, Medical Imaging Conference and 17th Room Temperature Semiconductor Detector Workshop (IEEE, 2010), p. 215]. We plan to use the SiPM as a replacement for PMT in the cosmic ray experiment (GRAPES-3) at Ooty [Gupta et al., Nucl. Instrum. Methods Phys. Res., Sect. A 540, 311 (2005)]. There the SiPMs will be operated in an outdoor environment subjected to temperature variation of about 15 °C over a day. A gain variation of more than 50% was observed for such large variations in the temperature. To stabilize the gain of the SiPM under such operating conditions, a low-cost, multi-channel programmable power supply (0-90 V) was designed that simultaneously provides the bias voltage to 16 SiPMs. The programmable power supply (PPS) was designed to automatically adjust the operating voltage for each channel with a built-in closed loop temperature feedback mechanism. The PPS provides bias voltage with a precision of 6 mV and measures the load current with a precision of 1 nA. Using this PPS, a gain stability of 0.5% for SiPM (Hamamatsu, S10931-050P) has been demonstrated over a wide temperature range of 15 °C. The design methodology of the PPS system, its validation, and the results of the tests carried out on the SiPM is presented in this
Multi-channel programmable power supply with temperature compensation for silicon sensors
Energy Technology Data Exchange (ETDEWEB)
Shukla, R. A.; Achanta, V. G.; Dugad, S. R., E-mail: dugad@cern.ch; Kurup, A. M.; Lokhandwala, S. S.; Prabhu, S. S. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Freeman, J.; Los, S. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States); Garde, C. S.; Khandekar, P. D. [Vishwakarma Institute of Information Technology, Pune 411048 (India); Gupta, S. K. [Tata Institute of Fundamental Research, Mumbai 400005 (India); GRAPES-3 Experiment, Cosmic Ray Laboratory, Raj Bhavan, Ooty 643001 (India); Rakshe, P. S. [Vishwakarma Institute of Information Technology, Pune 411048 (India); GRAPES-3 Experiment, Cosmic Ray Laboratory, Raj Bhavan, Ooty 643001 (India)
2016-01-15
Silicon Photo-Multipliers (SiPMs) are increasingly becoming popular for discrete photon counting applications due to the wealth of advantages they offer over conventional photo-detectors such as photo-multiplier tubes and hybrid photo-diodes. SiPMs are used in variety of applications ranging from high energy physics and nuclear physics experiments to medical diagnostics. The gain of a SiPM is directly proportional to the difference between applied and breakdown voltage of the device. However, the breakdown voltage depends critically on the ambient temperature and has a large temperature co-efficient in the range of 40-60 mV/°C resulting in a typical gain variation of 3%-5%/°C [Dinu et al., in IEEE Nuclear Science Symposium, Medical Imaging Conference and 17th Room Temperature Semiconductor Detector Workshop (IEEE, 2010), p. 215]. We plan to use the SiPM as a replacement for PMT in the cosmic ray experiment (GRAPES-3) at Ooty [Gupta et al., Nucl. Instrum. Methods Phys. Res., Sect. A 540, 311 (2005)]. There the SiPMs will be operated in an outdoor environment subjected to temperature variation of about 15 °C over a day. A gain variation of more than 50% was observed for such large variations in the temperature. To stabilize the gain of the SiPM under such operating conditions, a low-cost, multi-channel programmable power supply (0-90 V) was designed that simultaneously provides the bias voltage to 16 SiPMs. The programmable power supply (PPS) was designed to automatically adjust the operating voltage for each channel with a built-in closed loop temperature feedback mechanism. The PPS provides bias voltage with a precision of 6 mV and measures the load current with a precision of 1 nA. Using this PPS, a gain stability of 0.5% for SiPM (Hamamatsu, S10931-050P) has been demonstrated over a wide temperature range of 15 °C. The design methodology of the PPS system, its validation, and the results of the tests carried out on the SiPM is presented in this
Inherent Safety Feature of Hybrid Low Power Research Reactor during Reactivity Induced Accident
Energy Technology Data Exchange (ETDEWEB)
Kim, DongHyun; Yum, Soo Been; Hong, Sung Teak; Lim, In-Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2016-10-15
Hybrid low power research reactor(H-LPRR) is the new design concept of low power research reactor for critical facility as well as education and training. In the case of typical low power research reactor, the purposes of utilization are the experiments for education of nuclear engineering students, Neutron Activation Analysis(NAA) and radio-isotope production for research purpose. H-LPRR is a light-water cooled and moderated research reactor that uses rod-type LEU UO{sub 2} fuels same as those for commercial power plants. The maximum core thermal power is 70kW and, the core is placed in the bottom of open pool. There are 1 control rod and 2 shutdown rods in the core. It is designed to cool the core by natural convection, retain negative feedback coefficient for entire fuel periods and operate for 20 years without refueling. Inherent safety in H-LPRR is achieved by passive design features such as negative temperature feedback coefficient and core cooling by natural convection during normal and emergency conditions. The purpose of this study is to find out that the inherent safety characteristics of H-LPRR is able to control the power and protect the reactor from the RIA(Reactivity induced accident). RIA analysis was performed to investigate the inherent safety feature of H-LPRR. As a result, it was found that the reactor controls its power without fuel damage in the event and that the reactor remains safe states inherently. Therefore, it is believed that high degree of safety inheres in H-LPRR.
2013-10-23
... the obligation to follow a voltage schedule.'' \\19\\ The Commission distinguished Hot Spring Power Co..., to explore the mechanics of public utilities filing reactive power rate schedules for which there is...'' jurisdictional service and, accordingly, must be filed for Commission review); Sulphur Springs Valley Elec. Coop...
Preliminary study on the reactivation of the WERAP small hydro power station in Bubikon
International Nuclear Information System (INIS)
Bretscher, A.; Gutzwiller, S.
2003-01-01
This study on the revitalisation of a small hydro power station belonging to old spinning mill in Bubikon, Switzerland, proposes ideas for the reactivation of an old hydropower installation that once helped power a spinning mill. Details are given on the history of the mill and the hydrological conditions to be expected at the site. Three variants are proposed for the refurbishment, including the revision of the power station's existing 44 kW Francis turbine dating from 1908, the addition of further, similar Francis turbine or its replacement with a new 61 kW Francis turbine. The costs and amortisation of the refurbishment variants are examined, the revenues that can be expected from its operation and other financial factors are discussed. Further, environmental and legal aspects of the project are examined and suggestions are made for the next steps to be taken towards the realisation of this small hydropower plant. An annex provides photographs of the location and the power station's equipment
THERMAL POWER LOSS COMPENSATION IN THE PRODUCTION OF COOKED AND DRIED GRAINS WITH HEAT PUMPS USING
Directory of Open Access Journals (Sweden)
S. A. Shevtsov
2015-01-01
Full Text Available Using scientificand practical experience and analysis of recent innovative activity on modernization of food concentrates production, a new variant of the energy-efficient processing of cereal crops using superheated steam and direct involvement in the cooking and drying process waste energy using the vapor compression heat pump was suggested. A method for production of cereal concentrates, which is realized using microprocessor control of technological parameters. According to the information on the processes of cereals washing, cooking, drying and cooling microprocessor provides regime parameters control under the restrictions due to both yield of cooked and dried cereal of high quality and economic feasibility. At the same time the amount of moisture is continuously determined in the recirculation loop formed by the evaporation from the cereals in the drying process. To implement the proposed method of cooked and dried cereals production it is offered to use refrigerationand compressor unit operating in a heat pump mode. The refrigerant to be used is khladon 12V1 CF2ClBr with a boiling point in the evaporator of 4°C and the condensing temperature of 153.7 °C. The use of the heat pump in the heat supply system of cooked and dried cereals production instead of electric heaters will reduce power costs by 1.72 times. The proposed method for the production and control of technological parameters in the field of the product acceptable technological properties will provide high quality cooked and dried cereals; an increase in thermal efficiency by making full use of the waste heat of superheated steam; the reduction of specific energy consumption by 25-30 %; the creation of waste-free and environmentally friendly technologies for cereal production.
Fuzzy-TLBO optimal reactive power control variables planning for energy loss minimization
International Nuclear Information System (INIS)
Moghadam, Ahmad; Seifi, Ali Reza
2014-01-01
Highlights: • A new approach to the problem of optimal reactive power control variables planning is proposed. • The energy loss minimization problem has been formulated by modeling the load of system as a Load Duration Curve. • To solving the energy loss problem, the classic methods and the evolutionary methods are used. • A new proposed fuzzy teaching–learning based algorithm is applied to energy loss problem. • Simulations are done to show the effectiveness and superiority of the proposed algorithm compared with other methods. - Abstract: This paper offers a new approach to the problem of optimal reactive power control variables planning (ORPVCP). The basic idea is division of Load Duration Curve (LDC) into several time intervals with constant active power demand in each interval and then solving the energy loss minimization (ELM) problem to obtain an optimal initial set of control variables of the system so that is valid for all time intervals and can be used as an initial operating condition of the system. In this paper, the ELM problem has been solved by the linear programming (LP) and fuzzy linear programming (Fuzzy-LP) and evolutionary algorithms i.e. MHBMO and TLBO and the results are compared with the proposed Fuzzy-TLBO method. In the proposed method both objective function and constraints are evaluated by membership functions. The inequality constraints are embedded into the fitness function by the membership function of the fuzzy decision and the problem is modeled by fuzzy set theory. The proposed Fuzzy-TLBO method is performed on the IEEE 30 bus test system by considering two different LDC; and it is shown that using this method has further minimized objective function than original TLBO and other optimization techniques and confirms its potential to solve the ORPCVP problem with considering ELM as the objective function
Directory of Open Access Journals (Sweden)
Wanxing Sheng
2016-05-01
Full Text Available In this paper, a reactive power optimization method based on historical data is investigated to solve the dynamic reactive power optimization problem in distribution network. In order to reflect the variation of loads, network loads are represented in a form of random matrix. Load similarity (LS is defined to measure the degree of similarity between the loads in different days and the calculation method of the load similarity of load random matrix (LRM is presented. By calculating the load similarity between the forecasting random matrix and the random matrix of historical load, the historical reactive power optimization dispatching scheme that most matches the forecasting load can be found for reactive power control usage. The differences of daily load curves between working days and weekends in different seasons are considered in the proposed method. The proposed method is tested on a standard 14 nodes distribution network with three different types of load. The computational result demonstrates that the proposed method for reactive power optimization is fast, feasible and effective in distribution network.
Almasoudi, Fahad M.; Alatawi, Khaled S.; Matin, Mohammad
2017-08-01
Implementation of transformerless inverters in PV grid-tied system offer great benefits such as high efficiency, light weight, low cost, etc. Most of the proposed transformerless inverters in literature are verified for only real power application. Currently, international standards such as VDE-AR-N 4105 has demanded that PV grid-tied inverters should have the ability of controlling a specific amount of reactive power. Generation of reactive power cannot be accomplished in single phase transformerless inverter topologies because the existing modulation techniques are not adopted for a freewheeling path in the negative power region. This paper enhances a previous high efficiency proposed H6 trnasformerless inverter with SiC MOSFETs and demonstrates new operating modes for the generation of reactive power. A proposed pulse width modulation (PWM) technique is applied to achieve bidirectional current flow through freewheeling state. A comparison of the proposed H6 transformerless inverter using SiC MOSFETs and Si MOSFTEs is presented in terms of power losses and efficiency. The results show that reactive power control is attained without adding any additional active devices or modification to the inverter structure. Also, the proposed modulation maintains a constant common mode voltage (CM) during every operating mode and has low leakage current. The performance of the proposed system verifies its effectiveness in the next generation PV system.
Schultz, A.; Bonner, L. R., IV
2017-12-01
Current efforts to assess risk to the power grid from geomagnetic disturbances (GMDs) that result in geomagnetically induced currents (GICs) seek to identify potential "hotspots," based on statistical models of GMD storm scenarios and power distribution grounding models that assume that the electrical conductivity of the Earth's crust and mantle varies only with depth. The NSF-supported EarthScope Magnetotelluric (MT) Program operated by Oregon State University has mapped 3-D ground electrical conductivity structure across more than half of the continental US. MT data, the naturally occurring time variations in the Earth's vector electric and magnetic fields at ground level, are used to determine the MT impedance tensor for each site (the ratio of horizontal vector electric and magnetic fields at ground level expressed as a complex-valued frequency domain quantity). The impedance provides information on the 3-D electrical conductivity structure of the Earth's crust and mantle. We demonstrate that use of 3-D ground conductivity information significantly improves the fidelity of GIC predictions over existing 1-D approaches. We project real-time magnetic field data streams from US Geological Survey magnetic observatories into a set of linear filters that employ the impedance data and that generate estimates of ground level electric fields at the locations of MT stations. The resulting ground electric fields are projected to and integrated along the path of power transmission lines. This serves as inputs to power flow models that represent the power transmission grid, yielding a time-varying set of quasi-real-time estimates of reactive power loss at the power transformers that are critical infrastructure for power distribution. We demonstrate that peak reactive power loss and hence peak risk for transformer damage from GICs does not necessarily occur during peak GMD storm times, but rather depends on the time-evolution of the polarization of the GMD's inducing fields
Energy Technology Data Exchange (ETDEWEB)
Hernandez Galicia, Julio A.; Nieva Gomez, Rolando [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)
2001-07-01
In the present work it is considered the mathematical formulation of the problem of the reactive compensation planning, The solution technique based on evolutionary programming is described and the results of compensation in the Northwest subsystem of the Mexican electrical system are shown. A technique of optimization based on the Evolutionary Programming is proposed to solve the problem of the Planning of the Reactive Compensation in transmission of electrical energy networks. The problem consists in determining how much compensation to add and where to locate it in such a way that the investment cost of the compensation equipment is diminished, plus the operation costs associated to the transmission losses, plus a penalty function associated to the violations of the operative limits of voltage. The compensation that is determined must allow that the network operates in normal conditions before any contingency of a pre-established assembly. The problem considered is non-linear and whole compound. Tests made to a representative system of the Northwest area of the Mexican electrical system of 171 nodes and 284 branches are reported. [Spanish] En el presente trabajo se plantea la formulacion matematica del problema de planificacion de la compensacion reactiva, se describe la tecnica de solucion basada en programacion evolutiva y se muestra resultados de compensacion en el subsistema Noroeste del sistema electrico mexicano. Se propone una tecnica de optimizacion basada en la Programacion Evolutiva para resolver el problema de la Planificacion de la Compensacion Reactiva en redes de transmision de energia electrica. El problema consiste en determinar cuanta compensacion agregar y donde ubicarla de tal manera que se minimice el costo de inversion del equipo de compensacion, mas los costos de operacion asociados a las perdidas de transmision, mas una funcion de penalizacion asociada a la violaciones de los limites operativos de voltaje. La compensacion que se determine
Directory of Open Access Journals (Sweden)
Noorazliza Sulaiman
2015-01-01
Full Text Available The standard artificial bee colony (ABC algorithm involves exploration and exploitation processes which need to be balanced for enhanced performance. This paper proposes a new modified ABC algorithm named JA-ABC5 to enhance convergence speed and improve the ability to reach the global optimum by balancing exploration and exploitation processes. New stages have been proposed at the earlier stages of the algorithm to increase the exploitation process. Besides that, modified mutation equations have also been introduced in the employed and onlooker-bees phases to balance the two processes. The performance of JA-ABC5 has been analyzed on 27 commonly used benchmark functions and tested to optimize the reactive power optimization problem. The performance results have clearly shown that the newly proposed algorithm has outperformed other compared algorithms in terms of convergence speed and global optimum achievement.
Sulaiman, Noorazliza; Mohamad-Saleh, Junita; Abro, Abdul Ghani
2015-01-01
The standard artificial bee colony (ABC) algorithm involves exploration and exploitation processes which need to be balanced for enhanced performance. This paper proposes a new modified ABC algorithm named JA-ABC5 to enhance convergence speed and improve the ability to reach the global optimum by balancing exploration and exploitation processes. New stages have been proposed at the earlier stages of the algorithm to increase the exploitation process. Besides that, modified mutation equations have also been introduced in the employed and onlooker-bees phases to balance the two processes. The performance of JA-ABC5 has been analyzed on 27 commonly used benchmark functions and tested to optimize the reactive power optimization problem. The performance results have clearly shown that the newly proposed algorithm has outperformed other compared algorithms in terms of convergence speed and global optimum achievement.
DEFF Research Database (Denmark)
Chen, Shuheng; Hu, Weihao; Chen, Zhe
2016-01-01
In this paper, an efficient methodology is proposed to deal with segmented-time reconfiguration problem of distribution networks coupled with segmented-time reactive power control of distributed generators. The target is to find the optimal dispatching schedule of all controllable switches...... and distributed generators’ reactive powers in order to minimize comprehensive cost. Corresponding constraints, including voltage profile, maximum allowable daily switching operation numbers (MADSON), reactive power limits, and so on, are considered. The strategy of grouping branches is used to simplify...... (FAHPSO) is implemented in VC++ 6.0 program language. A modified version of the typical 70-node distribution network and several real distribution networks are used to test the performance of the proposed method. Numerical results show that the proposed methodology is an efficient method for comprehensive...
Energy Technology Data Exchange (ETDEWEB)
Imura, T; Ushita, K; Mogi, K; Hiraki, A [Osaka Univ., Suita (Japan). Faculty of Engineering
1981-06-01
Infrared absorption spectra at stretching bands of Si-H were investigated in hydrogenated amorphous silicon fabricated by reactive sputtering in the atmosphere of Ar and H/sub 2/ (10 mole%) at various input rf powers in the range from 0.8 to 3.8 W/cm/sup 2/. Hydrogen content mainly due to the configuration of Si=H/sub 2/ in the film increased with the decreasing rf power, as the deposition rate was decreased. On the other hand, the quantity of the monohydride (Si-H) configuration depended less on the power. Attachment of hydrogen molecules onto the fresh and reactive surface of silicon deposited successively was proposed for possible process of hydrogen incusion into amorphous silicon resulting in Si=H/sub 2/ configuration. The photoconductivity increased as the input power became higher, when the deposition rate also increased linearly with the power.
Harmonic currents Compensator Grid-Connected Inverter at the Microgrid
DEFF Research Database (Denmark)
Asuhaimi Mohd Zin, A.; Naderipour, A.; Habibuddin, M.H.
2016-01-01
The main challenge associated with the grid-connected inverter in distributed generation (DG) systems is to maintain the harmonic contents in output current below the specified values and compensates for unbalanced loads even when the grid is subject to disturbances such as harmonic distortion...... and unbalanced loads. To overcome these challenges, a current control strategy for a three-phase grid-connected inverter under unbalanced and nonlinear load conditions is presented. It enables grid-connected inverter by the proposed control method to inject balanced clean currents to the grid even when the local...... loads are unbalanced and/or nonlinear and also compensate of the harmonic currents and control the active and reactive power. The main advantage and objective of this method is to effectively compensate for the harmonic currents content of the grid current and microgrid without using any compensation...
Heo, Seo Weon; Kim, Hyungsuk
2010-05-01
An estimation of ultrasound attenuation in soft tissues is critical in the quantitative ultrasound analysis since it is not only related to the estimations of other ultrasound parameters, such as speed of sound, integrated scatterers, or scatterer size, but also provides pathological information of the scanned tissue. However, estimation performances of ultrasound attenuation are intimately tied to the accurate extraction of spectral information from the backscattered radiofrequency (RF) signals. In this paper, we propose two novel techniques for calculating a block power spectrum from the backscattered ultrasound signals. These are based on the phase-compensation of each RF segment using the normalized cross-correlation to minimize estimation errors due to phase variations, and the weighted averaging technique to maximize the signal-to-noise ratio (SNR). The simulation results with uniform numerical phantoms demonstrate that the proposed method estimates local attenuation coefficients within 1.57% of the actual values while the conventional methods estimate those within 2.96%. The proposed method is especially effective when we deal with the signal reflected from the deeper depth where the SNR level is lower or when the gated window contains a small number of signal samples. Experimental results, performed at 5MHz, were obtained with a one-dimensional 128 elements array, using the tissue-mimicking phantoms also show that the proposed method provides better estimation results (within 3.04% of the actual value) with smaller estimation variances compared to the conventional methods (within 5.93%) for all cases considered. Copyright 2009 Elsevier B.V. All rights reserved.
Solving multiobjective optimal reactive power dispatch using modified NSGA-II
Energy Technology Data Exchange (ETDEWEB)
Jeyadevi, S.; Baskar, S.; Babulal, C.K.; Willjuice Iruthayarajan, M. [Department of Electrical and Electronics Engineering, Thiagarajar College of Engineering, Madurai, Tamilnadu 625 015 (India)
2011-02-15
This paper addresses an application of modified NSGA-II (MNSGA-II) by incorporating controlled elitism and dynamic crowding distance (DCD) strategies in NSGA-II to multiobjective optimal reactive power dispatch (ORPD) problem by minimizing real power loss and maximizing the system voltage stability. To validate the Pareto-front obtained using MNSGA-II, reference Pareto-front is generated using multiple runs of single objective optimization with weighted sum of objectives. For simulation purposes, IEEE 30 and IEEE 118 bus test systems are considered. The performance of MNSGA-II, NSGA-II and multiobjective particle swarm optimization (MOPSO) approaches are compared with respect to multiobjective performance measures. TOPSIS technique is applied on obtained non-dominated solutions to determine best compromise solution (BCS). Karush-Kuhn-Tucker (KKT) conditions are also applied on the obtained non-dominated solutions to substantiate a claim on optimality. Simulation results are quite promising and the MNSGA-II performs better than NSGA-II in maintaining diversity and authenticates its potential to solve multiobjective ORPD effectively. (author)
Real And Reactive Power Saving In Three Phase Induction Machine Using Star-Delta Switching Schemes
Directory of Open Access Journals (Sweden)
Ramesh Daravath
2017-04-01
Full Text Available Induction machines are the most commonly used industrial drives for variety of applications. It has been estimated that induction motors consumes approximately 50 of all the electric energy generated. Further in the area of renewable energy sources such as wind or bio-mass energy induction machines have been found suitable for functioning as generators. In this context it may be mentioned that a star-delta switching is common for the starting of three-phase induction motor. Now it is proposed to use this star-delta switching for energy conservation of induction machines i.e. at times of reduced loads the machine switched back to star connection. Using a three-phase 400 V 50 Hz 4-pole induction machine it has been demonstrated that the star-delta switching of stator winding of three-phase induction machine motor generator operations reconnected in star at suitable reduced loads with a switching arrangement can result in improved efficiency and power factor as compared to a fixed delta or star connection. The predetermined values along with the experimental results have also been presented in this report. A simulation program has been developed for the predetermination of performance of the three-phase induction machine using exact equivalent circuit. A case study on a 250 kW 400 V 4-pole three-phase induction machine operated with different load cycles reveals the significant real and reactive power savings that could be obtained in the present proposal.
National supply of reactivity control rods for Embalse nuclear power plant (CNE)
International Nuclear Information System (INIS)
Biondo, C.D.; Carloni, J.G.; Aba, J.A.
1987-01-01
The manufacture and supply on industrial scale of reactivity control rods for CNE (Embalse nuclear power plant) were developed by the National Atomic Energy Commission (CNEA) together with the private industry, as part of a program aimed to the substitution of imported supplies used in the operation of power plants by materials manufactured in Argentina. So far, the control rods were imported from Canada. In this work, the different development stages performed by CNEA and CONUAR S.A. are described, leading to the supply of a set of 21 cobalt rods to be included in a reactor of CNE in order to qualify this component. Among the main activities performed, the following stand out: specifications development, particularly those concerning to cobalt cores, evaluation of design documentation and elaboration of bidding conditions and a plan of manufacture and control. According to the results obtained during the service and the post-irradiation measurements, the design will be reviewed in order to undertake new manufacturing plans. (Author)
Directory of Open Access Journals (Sweden)
Raúl Nicolás - Carvajal Pérez
2013-10-01
Full Text Available El modelo matemático representativo de un problema de compensación de reactivo en un circuito eléctrico de distribución contiene una restricción que limita el máximo valor de reactivo capacitivo que puede ser instalado en cada nodo para que no exista sobre compensación. Esta restricción se aplica a los bancos de condensadores fijos y controlados. En este trabajo se estudia el problema de la compensación óptima de reactivo utilizando un algoritmo genético de uso específico, se analiza como éste brinda la posibilidad de aumentar la diversidad de soluciones para evitar el estatismo y se argumenta el criterio seguido en la formación de la matriz de los cromosomas de realizar la recombinación sin que los hijos hereden, con obligatoriedad, en cada banco, el tamaño de sus progenitores. Entonces se utiliza la restricción de sobre compensación como límite y se escoge aleatoriamente el tamaño del banco .al final del “Crossover”.The mathematical Model of reactive compensation model in Electrical Distribution Circuits include a restriction about maximum compensation value in each node. This restriction is applied to fixed a variable capacitor. This work try about the optimal reactive compensation using Genetic algorithm. Analyze diversity of solutions to avoid the statism. Propose realize crossover without consider the capacitor banks magnitude and then using overcompensation restriction to choose this magnitude in random form. Show the resulties to apply this criteria in a real circuit.
International Nuclear Information System (INIS)
Khorramdel, Benyamin; Raoofat, Mahdi
2012-01-01
Distributed Generators (DGs) in a microgrid may operate in three different reactive power control strategies, including PV, PQ and voltage droop schemes. This paper proposes a new stochastic programming approach for reactive power scheduling of a microgrid, considering the uncertainty of wind farms. The proposed algorithm firstly finds the expected optimal operating point of each DG in V-Q plane while the wind speed is a probabilistic variable. A multi-objective function with goals of loss minimization, reactive power reserve maximization and voltage security margin maximization is optimized using a four-stage multi-objective nonlinear programming. Then, using Monte Carlo simulation enhanced by scenario reduction technique, the proposed algorithm simulates actual condition and finds optimal operating strategy of DGs. Also, if any DGs are scheduled to operate in voltage droop scheme, the optimum droop is determined. Also, in the second part of the research, to enhance the optimality of the results, PSO algorithm is used for the multi-objective optimization problem. Numerical examples on IEEE 34-bus test system including two wind turbines are studied. The results show the benefits of voltage droop scheme for mitigating the impacts of the uncertainty of wind. Also, the results show preference of PSO method in the proposed approach. -- Highlights: ► Reactive power scheduling in a microgrid considering loss and voltage security. ► Stochastic nature of wind farms affects reactive power scheduling and is considered. ► Advantages of using the voltage droop characteristics of DGs in voltage security are shown. ► Power loss, voltage security and VAR reserve are three goals of a multi-objective optimization. ► Monte Carlo method with scenario reduction is used to determine optimal control strategy of DGs.
Secondary control for voltage unbalance compensation in an islanded microgrid
DEFF Research Database (Denmark)
Savaghebi, Mehdi; Guerrero, Josep M.; Jalilian, Alireza
2011-01-01
In this paper, the concept of secondary control is applied for voltage unbalance compensation in an islanded microgrid. The aim of the proposed control approach is to enhance the voltage quality at the point of common coupling (PCC). Unbalance compensation is achieved by proper control...... of distributed generators (DGs). The DGs control structure mainly consists of active and reactive power controllers, virtual impedance loop and voltage and current proportional-resonant controllers. Simulation results are presented for different cases. The results show the effectiveness of the proposed approach...
DEFF Research Database (Denmark)
Han, Renke; Meng, Lexuan; Guerrero, Josep M.
2016-01-01
Based on the hierarchical control structure in islanded Micro-Grid (MG) systems, the coupling/tradeoff effects in different control levels are analyzed in details. In the primary level, analyses of the coupling effects among droop control gains, line impedance differences, output reactive power...
Abdelfatah, Nasri; Brahim, Gasbaoui
2011-01-01
The Reactive power flow’s is one of the most electrical distribution systems problem wich have great of interset of the electrical network researchers, it’s cause’s active power transmission reduction, power losses decreasing, and the drop voltage’s increase. In this research we described the efficiency of the FLC-GAO approach to solve the optimal power flow (OPF) combinatorial problem. The proposed approach employ tow algorithms, Fuzzy logic controller (FLC) algorithm for critical nodal de...
International Nuclear Information System (INIS)
Coll, D.
1994-01-01
A discussion is presented of executive compensation in Canada's petroleum industry. Mandatory disclosure of executive compensation and benefits is regulated by the Ontario Securities Commission. Examination of the compensation packages of 80 oilpatch CEOs shows a clear difference in philosophy between large and small companies. Larger companies pay larger salaries, offer pension plans, and reward long-term loyalty. Within smaller companies, compensation tends to be linked with stock performance. Trends in compensation are to lower base salaries with more variables such as bonuses, cash incentives and gain-sharing programs. Increasing shareholder scrutiny is prompting more stringent guidelines on stock option plans. Some companies place performance conditions on stock vesting. Another option is to grant premium priced options to executives, to increase the gains required for the executive to post a profit. Other comapanies are granting stock options to their field personnel, or are granting stock to all employees. Directors are playing an increasing role in executive compensation. 4 tabs
Energy Technology Data Exchange (ETDEWEB)
Silva, J.C.; Colvara, L.D. [Universidade Estadual Paulista (FEIS/UNESP), Ilha Solteira, SP (Brazil). Dept. de Engenharia Eletrica], Emails: jadiel_silva@hotmail.com, laurence@dee.feis.unesp.br
2009-07-01
The problem of stability of electric power systems, from the standpoint of ability to sync and how FACTS (Flexible Alternating Current Transmission Systems) devices affect this ability in particular the TSCS (Thyristor Controlled Series Compensator) inserted into an environment multi machine, is addressed. The effects of this device on the power synchronizing are considered through analysis of the matrix admittance of the bar, focusing on the transfer admittances between machines.
Hybrid compensation arrangement in dispersed generation systems
DEFF Research Database (Denmark)
Chen, Zhe; Blaabjerg, Frede; Pedersen, John Kim
2005-01-01
This paper presents a hybrid compensation system consisting of an active filter and distributed passive filters. In the system, each individual passive filter is connected to a distortion source and designed to eliminate main harmonics and supply reactive power for the distortion source, while...... filter system consisting of distributed passive filters and an active filter....... the active filter is responsible for the correction of the system unbalance and the cancellation of the remaining harmonics. The paper also analyzes the effects of the circuit configuration on the system impedance characteristics and consequently the effectiveness of the filter system. Simulation studies...
DEFF Research Database (Denmark)
Zhao, Bin; Li, Hui; Wang, Mingyu
2014-01-01
This study presents the auxiliary damping control with the reactive power loop on the rotor-side converter of doubly-fed induction generator (DFIG)-based wind farms to depress the sub-synchronous resonance oscillations in nearby turbogenerators. These generators are connected to a series capaciti...
Rutile TiO2 thin films grown by reactive high power impulse magnetron sputtering
International Nuclear Information System (INIS)
Agnarsson, B.; Magnus, F.; Tryggvason, T.K.; Ingason, A.S.; Leosson, K.; Olafsson, S.; Gudmundsson, J.T.
2013-01-01
Thin TiO 2 films were grown on Si(001) substrates by reactive dc magnetron sputtering (dcMS) and high power impulse magnetron sputtering (HiPIMS) at temperatures ranging from 300 to 700 °C. Optical and structural properties of films were compared both before and after post-annealing using scanning electron microscopy, low angle X-ray reflection (XRR), grazing incidence X-ray diffractometry and spectroscopic ellipsometry. Both dcMS- and HiPIMS-grown films reveal polycrystalline rutile TiO 2 , even prior to post-annealing. The HiPIMS-grown films exhibit significantly larger grains compared to that of dcMC-grown films, approaching 100% of the film thickness for films grown at 700 °C. In addition, the XRR surface roughness of HiPIMS-grown films was significantly lower than that of dcMS-grown films over the whole temperature range 300–700 °C. Dispersion curves could only be obtained for the HiPIMS-grown films, which were shown to have a refractive index in the range of 2.7–2.85 at 500 nm. The results show that thin, rutile TiO 2 films, with high refractive index, can be obtained by HiPIMS at relatively low growth temperatures, without post-annealing. Furthermore, these films are smoother and show better optical characteristics than their dcMS-grown counterparts. - Highlights: • We demonstrate growth of rutile TiO 2 on Si (111) by high power impulse magnetron sputtering. • The films exhibit significantly larger grains than dc magnetron sputtered films • TiO 2 films with high refractive index are obtained without post-growth annealing
Energy Technology Data Exchange (ETDEWEB)
Andrade, Moacyr Trindade de Oliveira
1993-07-01
Among expectations of optimization of electric power systems and the national electric rating laws, there is the important factors of consumption and transmission of reactive energy which concerns the objectives of electric sector. Related to it, the DNAEE, ELETROBRAS and the concessionaires have been developing studies in order to optimize the electric system performance, and consequently the investments of concessionaires and consumers, reducing costs imposed to society due to the form of consumption and/or compensation of reactive loads. This work shows the evolution and consolidation of tariff studies and electric performance of the system, indicating the ways which attend the expectations os all segments of the society through a small adaptation of present regulations an rules related to reactive energy, making possible the system growing in supply by the minimum cost. The main objective of this work is to reinforce the real necessity of to remain intact all the new regulation of power factor, that has been consolidated by the DNAEE's document number 085/92 and your revaluation document number 613/93, including the interval of hourly integration for reactive energy at the determinate date and show the damages for the society caused by the postponement of this condition, that has been considerate in the document number 613/93, from April 1994 until April 1996, however keeping in 1994 the introduction of the new power factor reference of 0.92. (author)
Energy Technology Data Exchange (ETDEWEB)
Andrade, Moacyr Trindade de Oliveira
1993-07-01
Among expectations of optimization of electric power systems and the national electric rating laws, there is the important factors of consumption and transmission of reactive energy which concerns the objectives of electric sector. Related to it, the DNAEE, ELETROBRAS and the concessionaires have been developing studies in order to optimize the electric system performance, and consequently the investments of concessionaires and consumers, reducing costs imposed to society due to the form of consumption and/or compensation of reactive loads. This work shows the evolution and consolidation of tariff studies and electric performance of the system, indicating the ways which attend the expectations os all segments of the society through a small adaptation of present regulations an rules related to reactive energy, making possible the system growing in supply by the minimum cost. The main objective of this work is to reinforce the real necessity of to remain intact all the new regulation of power factor, that has been consolidated by the DNAEE's document number 085/92 and your revaluation document number 613/93, including the interval of hourly integration for reactive energy at the determinate date and show the damages for the society caused by the postponement of this condition, that has been considerate in the document number 613/93, from April 1994 until April 1996, however keeping in 1994 the introduction of the new power factor reference of 0.92. (author)
DEFF Research Database (Denmark)
Hasheminamin, Maryam; Agelidis, Vassilios; Ahmadi, Abdollah
2018-01-01
Voltage rise (VR) due to reverse power flow is an important obstacle for high integration of Photovoltaic (PV) into residential networks. This paper introduces and elaborates a novel methodology of an index-based single-point-reactive power-control (SPRPC) methodology to mitigate voltage rise by ...... system with high r/x ratio. Efficacy, effectiveness and cost study of SPRPC is compared to droop control to evaluate its advantages.......Voltage rise (VR) due to reverse power flow is an important obstacle for high integration of Photovoltaic (PV) into residential networks. This paper introduces and elaborates a novel methodology of an index-based single-point-reactive power-control (SPRPC) methodology to mitigate voltage rise...... by absorbing adequate reactive power from one selected point. The proposed index utilizes short circuit analysis to select the best point to apply this Volt/Var control method. SPRPC is supported technically and financially by distribution network operator that makes it cost effective, simple and efficient...
International Nuclear Information System (INIS)
Shimizu, T; Villamayor, M; Helmersson, U; Lundin, D
2016-01-01
A simple and cost effective approach to stabilize the sputtering process in the transition zone during reactive high-power impulse magnetron sputtering (HiPIMS) is proposed. The method is based on real-time monitoring and control of the discharge current waveforms. To stabilize the process conditions at a given set point, a feedback control system was implemented that automatically regulates the pulse frequency, and thereby the average sputtering power, to maintain a constant maximum discharge current. In the present study, the variation of the pulse current waveforms over a wide range of reactive gas flows and pulse frequencies during a reactive HiPIMS process of Hf-N in an Ar–N 2 atmosphere illustrates that the discharge current waveform is a an excellent indicator of the process conditions. Activating the reactive HiPIMS peak current regulation, stable process conditions were maintained when varying the N 2 flow from 2.1 to 3.5 sccm by an automatic adjustment of the pulse frequency from 600 Hz to 1150 Hz and consequently an increase of the average power from 110 to 270 W. Hf–N films deposited using peak current regulation exhibited a stable stoichiometry, a nearly constant power-normalized deposition rate, and a polycrystalline cubic phase Hf-N with (1 1 1)-preferred orientation over the entire reactive gas flow range investigated. The physical reasons for the change in the current pulse waveform for different process conditions are discussed in some detail. (paper)
Energy Technology Data Exchange (ETDEWEB)
Stancari, Giulio
2014-09-11
Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.
Energy Technology Data Exchange (ETDEWEB)
Väliviita, Jussi, E-mail: jussi.valiviita@helsinki.fi [University of Helsinki, Department of Physics and Helsinki Institute of Physics, P.O. Box 64, FIN-00014 University of Helsinki (Finland)
2017-04-01
Compensated isocurvature perturbations (CIP), where the primordial baryon and cold dark matter density perturbations cancel, do not cause total matter isocurvature perturbation. Consequently, at the linear order in the baryon density contrast Δ, a mixture of CIP and the adiabatic mode leads to the same CMB spectra as the pure adiabatic mode. Only recently, Muñoz et al. showed that at the second order CIP leaves an imprint in the observable CMB by smoothing the power spectra in a similar manner as lensing. This causes a strong degeneracy between the CIP variance Δ{sub rms}{sup 2} ≡ (Δ{sup 2}) and the phenomenological lensing parameter A {sub L}. We study several combinations of the Planck 2015 data and show that the measured lensing potential power spectrum C {sub ℓ}{sup φφ} breaks the degeneracy. Nested sampling of the ΛCDM+Δ{sub rms}{sup 2}(+ A {sub L}) model using the Planck 2015 temperature, polarization, and lensing data gives Δ{sub rms}{sup 2} = (6.9{sup +3.0}{sub −3.1}) × 10{sup −3} at 68% CL. A non-zero value is favoured at 2.3σ (or without the polarization data at 2.8σ). CIP with Δ{sub rms}{sup 2} ≈ 7 × 10{sup −3} improves the bestfit χ{sup 2} by 3.6 compared to the adiabatic ΛCDM model. In contrast, although the temperature data favour A {sub L} ≅ 1.22, allowing A {sub L} ≠ 1 does not improve the joint fit at all, since the lensing data disfavour A {sub L} ≠ 1. Indeed, CIP provides a rare example of a simple model, which is capable of reducing the Planck lensing anomaly significantly and fitting well simultaneously the high (and low) multipole temperature and lensing data, as well as the polarization data. Finally, we derive forecasts for two future satellite missions (LiteBIRD proposal to JAXA/NASA and Exploring Cosmic Origins with CORE proposal to ESA's M5 call) and compare these to simulated Planck data. Due to its coarse angular resolution, LiteBIRD is not able to improve the constraints on Δ{sub rms}{sup 2} or A
International Nuclear Information System (INIS)
Hoppe, P.; Mitzel, F.
1977-02-01
The Reactivity-to-Power-Transfer-Function for the sodium cooled nuclear power plant KNK I (Kompakte Natriumgekuehlte Kernenergieanlage) has been measured and compared with theoretical results. The measurements have been performed with the help of pseudostochastic reactivity perturbations. The transfer function has been determined by computing the auto- and cross-power-spectral-densities for the reactivity- and neutron flux signals. The agreement between the experimental and theoretical transfer function could be improved by adjusting the reactivity coefficients. The applications of these measurements with respect to reactor diagnosis and malfunction detection are discussed. For this purpose the accuracy of the measured transfer function is of great importance. Therefore an extensive error analysis has been performed. It turned out, that the inherent instability of the reactor without control system and the feedback by the primary coolant system were the reasons for comparatively big systematical errors. The conditions have been derived under which these types of errors can be considerably reduced. The conclusions can also be applied to analogical measurements at fast sodium cooled reactors. Because of their inherent stability the systematical errors will be reduced. (orig.) [de
International Nuclear Information System (INIS)
Zuniga, Agustin; Tapia, Jose
2014-01-01
This work presents experimental results which show that the critical position of a given nuclear configuration changes with the reactor power (expressed by the current measurement). Thus, if the current is 0.6 x 10 -11 A (1 W), then the critical position is, BC1 = 0.0 % while 0.6 x 10 -9 A (100 W), BC1= 46.5 %. The difference is apparent because under a current of 10 -10 A, the reactivity is not significant. Therefore, it is recommended that for reactors like the RP-10 with a lot of neutrons at the 'background' level, the excess reactivity must be measured in current as 0.6 x 10 -9 A (100 W) not less. Finally, the excess of reactivity for the N o 42 configuration was determined, which was 3032 pcm with uncertainty less than 1 %. (authors).
Rensing, N; Westermann, A; Möller, D; von Piekartz, H
2015-12-01
Studies have shown changes in the technical and physical demands in modern handball. The game has increased considerably in speed, power and dynamics. Jump training has, therefore, become ever more important in the training of the athletes. These developments contribute to the fact that handball is now one of the most injury-prone types of sport, with the lower extremities being most frequently affected. Reactive jump training is not only used in training by now, but also increasingly in injury prevention. The aim of this study was to investigate the effectiveness of reactive jump training with handball players. 21 regional league handball players were randomly divided into an intervention group (n = 12) and a control group (n = 9). The intervention group completed a six-week reactive jump training programme while the control group went through a non-specific training programme. Jump height (squat and counter movement jump), isokinetic and isometric maximum power as well as muscle activity served as measuring parameters. A comparison of the intervention and control groups revealed that the reactive jump training led to significant improvements in jump height. The isometric and isokinetic maximum power measurements and the electromyographic activities of the triceps surae muscle demonstrated an improvement in the values within the intervention group. However, this improvement was not significant compared with the control group. Likewise both jumps correlated with the muscle activity of the soleus muscle as shown by electromyography. A moderate correlation was noticed between the isokinetic maximum power measurement and the electromyographic activity of the soleus and gastrocnemius medialis muscles. Furthermore, the correlations of the isometric and isokinetic maximum power meas-urements resulted in a strong correlation coefficient. This study revealed a significant increase in jump height after reactive jump training. There was no significant difference in
Design of power control system using SMES and SVC for fusion power plant
International Nuclear Information System (INIS)
Niiyama, K; Yagai, T; Tsuda, M; Hamajima, T
2008-01-01
A SMES (Superconducting Magnetic Energy Storage System) system with converter composed of self-commutated valve devices such as GTO and IGBT is available to control active and reactive power simultaneously. A SVC (Static Var Compensators) or STATCOM (Static Synchronous Compensator) is widely employed to reduce reactive power in power plants and substations. Owing to progress of power electronics technology using GTO and IGBT devices, power converters in the SMES system and the SVC can easily control power flow in few milliseconds. Moreover, since the valve devices for the SMES are equivalent to those for the SVC, the device cost must be reduced. In this paper the basic control system combined with the SMES and SVC is designed for large pulsed loads of a nuclear fusion power plant. This combined system largely expands the reactive power control region as well as the active one. The simulation results show that the combined system is effective and prospective for the nuclear fusion power plant
Directory of Open Access Journals (Sweden)
Jian Zuo
2017-04-01
Full Text Available The potential of utilizing doubly-fed induction generator (DFIG-based wind farms to improve power system damping performance and to enhance small signal stability has been proposed by many researchers. However, the simultaneous coordinated tuning of a DFIG power oscillation damper (POD with other damping controllers is rarely involved. A simultaneous robust coordinated multiple damping controller design strategy for a power system incorporating power system stabilizer (PSS, static var compensator (SVC POD and DFIG POD is presented in this paper. This coordinated damping control design strategy is addressed as an eigenvalue-based optimization problem to increase the damping ratios of oscillation modes. Both local and inter-area electromechanical oscillation modes are intended in the optimization design process. Wide-area phasor measurement unit (PMU signals, selected by the joint modal controllability/ observability index, are utilized as SVC and DFIG POD feedback modulation signals to suppress inter-area oscillation modes. The robustness of the proposed coordinated design strategy is achieved by simultaneously considering multiple power flow situations and operating conditions. The recently proposed Grey Wolf optimizer (GWO algorithm is adopted to efficiently optimize the parameter values of multiple damping controllers. The feasibility and effectiveness of the proposed coordinated design strategy are demonstrated through frequency-domain eigenvalue analysis and nonlinear time-domain simulation studies in two modified benchmark test systems. Moreover, the dynamic response simulation results also validate the robustness of the recommended coordinated multiple damping controllers under various system operating conditions.
Directory of Open Access Journals (Sweden)
Geon Park
2016-01-01
Full Text Available This paper proposes a transient voltage control scheme of a doubly fed induction generator (DFIG-based wind power plant (WPP using a reactive current reduction loop to suppress the overvoltage at a point of interconnection (POI and DFIG terminal after a fault clearance. The change of terminal voltage of a DFIG is monitored at every predefined time period to detect the fault clearance. If the voltage change exceeds a set value, then the reactive current reduction loop reduces the reactive current reference in the DFIG controller using the step function. The reactive current injection of DFIGs in a WPP is rapidly reduced, and a WPP can rapidly suppress the overvoltage at a fault clearance because the reactive current reference is reduced. Using an electromagnetic transients program–released version (EMTP–RV simulator, the performance of the proposed scheme was validated for a model system comprising 20 units of a 5-MW DFIG considering various scenarios, such as fault and wind conditions. Test results show that the proposed scheme enables a WPP to suppress the overvoltage at the POI and DFIG terminal within a short time under grid fault conditions.
New Application’s Approach to Unified Power Quality Conditioners for Mitigation of Surge Voltages
Directory of Open Access Journals (Sweden)
Yeison Alberto Garcés Gomez
2016-01-01
Full Text Available This paper outlines a new approach for the compensation of power systems presented through the use of a unified power quality conditioner (UPQC which compensates impulsive and oscillatory electromagnetic transients. The newly proposed control technique involves a dual analysis of the UPQC where the parallel compensator is modelled as a sinusoidal controlled voltage source, while the series compensator is modelled as a sinusoidal controlled current source, opposed to the traditional approach where the parallel and series compensators are modelled as current and voltage nonsinusoidal sources, respectively. Also a new compensation algorithm is proposed through the application of the theory of generalized reactive power; this is then compared with the theory of active and reactive instantaneous power, or pq theory. The results are presented by means of simulations in MATLAB-Simulink®.
Liu, Xiaoxin; Feng, Peilei; Jan, Lisheng; Dai, Xiaozhong; Cai, Pengcheng
2018-01-01
In recent years, Nujiang Prefecture vigorously develop hydropower, the grid structure in the northwest of Yunnan Province is not perfect, which leads to the research and construction of the power grid lags behind the development of the hydropower. In 2015, the company in view of the nu river hydropower dilemma decided to change outside the nu river to send out a passage with series compensation device in order to improve the transmission capacity, the company to the main problems related to the system plan, but not too much in the region distribution network and detailed study. Nujiang power grid has unique structure and properties of the nujiang power grid after respectively, a whole rack respectively into two parts, namely power delivery channels, load power supply, the whole grid occurred fundamental changes, the original strategy of power network is not applicable, especially noteworthy is the main failure after network of independent operation problem, how to avoid the local series, emergency problem is more urgent, very tolerance test area power grid, this paper aims at the analysis of existing data, simulation, provide a reference for respectively after the operation for the stable operation of the power grid.
Energy Technology Data Exchange (ETDEWEB)
Matrose, Claas; Goedde, Markus; Cramer, Moritz; Potratz, Fabian; Pollok, Thomas; Schnettler, Armin [RWTH Aachen Univ. (Germany). Inst. fuer Hochspannungstechnik
2012-07-01
The integration of decentralized generation into power distribution grids in Germany has reached a level at which more and more grid reinforcement is required in order to keep voltages within the given limits. The consumption of reactive power by decentralized generation systems can reduce the voltage rise, which is caused by active power in-feed of such systems. Caused by different characteristics of overhead lines and cables, this effect significantly varies. Parameter studies of four commonly used types of lines, of different power ratings of decentralized generation systems as well as different lengths of lines can quantify the effects. It can be shown that - depending on the characteristics of a specific grid - the grid capacity for power in-feed can be increased by factors between 1.5 and 10. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Elizondo, Marcelo A.; Samaan, Nader A.; Makarov, Yuri V.; Holzer, Jesse T.; Vallem, Mallikarjuna R.; Huang, Renke; Vyakaranam, Bharat GNVSR; Ke, Xinda; Pan, Feng
2017-10-02
Voltage and reactive power system control is generally performed following usual patterns of loads, based on off-line studies for daily and seasonal operations. This practice is currently challenged by the inclusion of distributed renewable generation, such as solar. There has been focus on resolving this problem at the distribution level; however, the transmission and sub-transmission levels have received less attention. This paper provides a literature review of proposed methods and solution approaches to coordinate and optimize voltage control and reactive power management, with an emphasis on applications at transmission and sub-transmission level. The conclusion drawn from the survey is that additional research is needed in the areas of optimizing switch shunt actions and coordinating all available resources to deal with uncertain patterns from increasing distributed renewable generation in the operational time frame. These topics are not deeply explored in the literature.
DEFF Research Database (Denmark)
Han, Renke; Meng, Lexuan; Ferrari-Trecate, Giancarlo
2017-01-01
This paper offers a highly flexible and reliable control strategy to achieve voltage bounded regulation and accurate reactive power sharing coordinately in AC Micro-Grids. A containment and consensus-based distributed coordination controller is proposed, by which each output voltage magnitude can...... be bounded within a reasonable range and the accurate reactive power sharing among distributed generators can be also achieved. Combined with the two proposed controllers and electrical part of the AC Micro-Grid, a small signal model is fully developed to analyze the sensitivity of different control...... parameters. The effectiveness of the proposed controller in case of load variation, communication failure, plug-and-play capability are verified by the experimental setup as an islanded Micro-Grid....
Energy Technology Data Exchange (ETDEWEB)
Paulsson, L; Silva, A; Thorvaldsson, B [ABB Power Systems AB, Vaesteraas (Sweden); Gonzalez, R [Northern States Power Co., Minneapolis, MN (United States)
1994-12-31
One efficient way to improve the power transmission performance is to provide appropriate reactive power balance and control in the network. Reactive power compensation by means of static var compensation (SVC) and series compensation (SC) are well established ways to achieve such improvement. The SVC, which is a relatively new concept, has now been used successfully for more than 15 years in EHV systems. This paper discusses a more general type of shunt compensation, designated Static var System (SVS), which may include breaker switched capacitor banks and other special features besides conventional SVC technology. (author) 4 figs.
Yan Lu; Wing-Hung Ki
2014-06-01
A full-wave active rectifier switching at 13.56 MHz with compensated bias current for a wide input range for wirelessly powered high-current biomedical implants is presented. The four diodes of a conventional passive rectifier are replaced by two cross-coupled PMOS transistors and two comparator- controlled NMOS switches to eliminate diode voltage drops such that high voltage conversion ratio and power conversion efficiency could be achieved even at low AC input amplitude |VAC|. The comparators are implemented with switched-offset biasing to compensate for the delays of active diodes and to eliminate multiple pulsing and reverse current. The proposed rectifier uses a modified CMOS peaking current source with bias current that is quasi-inversely proportional to the supply voltage to better control the reverse current over a wide AC input range (1.5 to 4 V). The rectifier was fabricated in a standard 0.35 μm CMOS N-well process with active area of 0.0651 mm(2). For the proposed rectifier measured at |VAC| = 3.0 V, the voltage conversion ratios are 0.89 and 0.93 for RL=500 Ω and 5 kΩ, respectively, and the measured power conversion efficiencies are 82.2% to 90.1% with |VAC| ranges from 1.5 to 4 V for RL=500 Ω.
Flexible Compensation of Voltage and Current Unbalance and Harmonics in Microgrids
Directory of Open Access Journals (Sweden)
Seyyed Yousef Mousazadeh Mousavi
2017-10-01
Full Text Available In recent years, the harmonics and unbalance problems endanger the voltage and current quality of power systems, due to increasing usage of nonlinear and unbalanced loads. Use of Distributed Generation (DG-interfacing inverters is proposed for voltage or current compensation. In this paper, a flexible control method is proposed to compensate voltage and current unbalance and harmonics using the distributed generation (DG-interfacing inverters. This method is applicable to both grid-connected and islanded Microgrids (MGs. In the proposed method, not only the proper control of active and reactive powers can be achieved, but also there is flexibility in compensating the voltage or current quality problems at DG terminals or Points of Common Coupling (PCCs. This control strategy consists of active and reactive power controllers and a voltage/current quality-improvement block. The controller is designed in a stationary (αβ frame. An extensive simulation study has been performed and the results demonstrate the effectiveness of the proposed control scheme. Depending on the compensation modes, the harmonics and unbalance compensation of DG output current, MG-injected current to the grid, as well as PCC and DG voltages, can be achieved in grid-connected operation of MG while in the islanded operation, and the PCC and DG voltages compensation can be obtained through the proposed control scheme.
Energy Technology Data Exchange (ETDEWEB)
Coll, D
1994-09-19
A discussion is presented of executive compensation in Canada's petroleum industry. Mandatory disclosure of executive compensation and benefits is regulated by the Ontario Securities Commission. Examination of the compensation packages of 80 oilpatch CEOs shows a clear difference in philosophy between large and small companies. Larger companies pay larger salaries, offer pension plans, and reward long-term loyalty. Within smaller companies, compensation tends to be linked with stock performance. Trends in compensation are to lower base salaries with more variables such as bonuses, cash incentives and gain-sharing programs. Increasing shareholder scrutiny is prompting more stringent guidelines on stock option plans. Some companies place performance conditions on stock vesting. Another option is to grant premium priced options to executives, to increase the gains required for the executive to post a profit. Other comapanies are granting stock options to their field personnel, or are granting stock to all employees. Directors are playing an increasing role in executive compensation. 4 tabs.
A Multi-Functional Power Electronic Converter in Distributed Generation Power Systems
DEFF Research Database (Denmark)
Chen, Zhe; Blaabjerg, Frede; Pedersen, John Kim
2005-01-01
of the converter interfacing a wind power generation unit is also given. The power electronic interface performs the optimal operation in the wind turbine system to extract the maximum wind power, while it also plays a key role in a hybrid compensation system that consists of the active power electronic converter......This paper presents a power electronic converter which is used as an interface for a distributed generation unit/energy storage device, and also functioned as an active power compensator in a hybrid compensation system. The operation and control of the converter have been described. An example...... and passive filters connected to each distorting load or distributed generation (DG) unit. The passive filters are distributely located to remove major harmonics and provide reactive power compensation. The active power electronic filter corrects the system unbalance, removes the remaining harmonic components...
International Nuclear Information System (INIS)
Peng, Fei; Zhao, Yuanzhe; Li, Xiaopeng; Liu, Zhixiang; Chen, Weirong; Liu, Yang; Zhou, Donghua
2017-01-01
Highlights: •A power system model for the PEMFC based commercial hybrid tramway was established. •An energy management strategy based on master FuHSM and slave DPPC was proposed. •The optimal OER operation of PEMFC subsystem was achieved. •The real-time EMS based HCM optimization was achieved. •The influence on system fuel economy and PEMFC performance degradation was verified. -- Abstract: A hybrid power system configuration based on proton exchange membrane fuel cell (PEMFC), lion-lithium battery (LIB) and supercapacitor (SC) was designed without grid connection for the hybrid tramway. To adapt to the rapid load power change and achieve higher fuel efficiency and optimal oxygen excess ratio (OER) operation of the PEMFC power subsystem, a master-slave energy management strategy based on fuzzy logic hysteresis state machine (FuHSM) and differential power processing compensation (DPPC) was proposed for the hybrid tramway, effectively taking into consideration of the dynamic response and optimum OER tracing of the integrated PEMFC subsystem. The master FuHSM controller was utilized to grantee the optimal power coordination of the multiple power sources and the slave DPPC controller was responsible for further compensating the load power demand to enhance the dynamic performance and bus voltage stability. Furthermore, the equivalent H 2 consumption minimization optimization considering characteristics of the proposed energy management strategy was realized by means of EIA-PSO algorithm to further improve the fuel economy of the overall hybrid power system. The results demonstrate that the proposed energy management strategy can guarantee the stability of the hybrid power system throughout the driving cycle. In addition, more efficient power coordination dynamics among the PEMFC, LIB and SC subsystems could be achieved without additional performance degradation of the integrated PEMFC subsystem, and the results of the comparisons with other control strategies
Monitoring temperature reactivity coefficient by noise method in a NPP at full power
International Nuclear Information System (INIS)
Aguilar, O.; Por, G.
1987-04-01
A new method based on noise measurement was used to estimate the temperature reactivity coefficient of the PAKS-2 reactor during the entire fuel cycle. Based on the measurements it is possible to measure the dependence of reactivity coefficient on boron concentration. Good agreement was found between the results obtained by the new method and by the conventional ones. Based on this method a new equipment can be develop which assures permanent measurements during operation. (author)
International Nuclear Information System (INIS)
Chen, Chung-Yuan; Tung, Wu-Hsiung; Yaur, Shung-Jung; Kuo, Weng-Sheng
2014-01-01
Highlights: • Linear reactivity model (LRM) was modified and applied to Boiling Water Reactor. • The power sharing and fuel requirement study of the last cycle and two cycles before decommissioning was implemented. • The loading pattern design concept for the cycles before decommissioning is carried out. - Abstract: A study of in-core power sharing and fuel requirement for a decommissioning BWR (Boiling Water Reactor) was carried out using the linear reactivity model (LRM). The power sharing of each fuel batch was taken as an independent variable, and the related parameters were set and modified to simulate actual cases. Optimizations of the last cycle and two cycles before decommissioning were both implemented; in the last-one-cycle optimization, a single cycle optimization was carried out with different upper limits of fuel batch power, whereas, in the two-cycle optimization, two cycles were optimized with different cycle lengths, along with two different optimization approaches which are the simultaneous optimization of two cycles (MO) and two successive single-cycle optimizations (SO). The results of the last-one-cycle optimization show that it is better to increase the fresh fuel power and decrease the thrice-burnt fuel power as much as possible. It also shows that relaxing the power limit is good to the fresh fuel requirement which will be reduced under lower power limit. On the other hand, the results of the last-two-cycle (cycle N-1 and N) optimization show that the MO is better than SO, and the power of fresh fuel batch should be decreased in cycle N-1 to save its energy for the next cycle. The results of the single-cycle optimization are found to be the same as that in cycle N of the multi-cycle optimization. Besides that, under the same total energy requirement of two cycles, a long-short distribution of cycle length design can save more fresh fuel
International Nuclear Information System (INIS)
MM Hall
2006-01-01
A major materials selection and qualification issue identified in the Space Materials Plan is the potential for creating materials compatibility problems by combining dissimilar reactor core, Brayton Unit and other power conversion plant materials in a recirculating, inert He/Xe gas loop containing reactive impurity gases. Reported here are results of equilibrium thermochemical analyses that address the compatibility of space nuclear power plant (SNPP) materials in high temperature impure He gas environments. These studies provide early information regarding the constraints that exist for SNPP materials selection and provide guidance for establishing test objectives and environments for SNPP materials qualification testing
Directory of Open Access Journals (Sweden)
Abouzar Samimi
2015-11-01
Full Text Available One of the most important Distribution System Operators (DSO schemes addresses the Volt/Var control (VVC problem. Developing a cost-based reactive power dispatch model for distribution systems, in which the reactive powers are appropriately priced, can motivate Distributed Energy Resources (DERs to participate actively in VVC. In this paper, new reactive power cost models for DERs, including synchronous machine-based DGs and wind turbines (WTs, are formulated based on their capability curves. To address VVC in the context of competitive electricity markets in distribution systems, first, in a day-ahead active power market, the initial active power dispatch of generation units is estimated considering environmental and economic aspects. Based on the results of the initial active power dispatch, the proposed VVC model is executed to optimally allocate reactive power support among all providers. Another novelty of this paper lies in the pricing scheme that rewards transformers and capacitors for tap and step changing, respectively, while incorporating the reactive power dispatch model. A Benders decomposition algorithm is employed as a solution method to solve the proposed reactive power dispatch, which is a mixed integer non-linear programming (MINLP problem. Finally, a typical 22-bus distribution network is used to verify the efficiency of the proposed method.
Impact of wind power plant reactive current injection during asymmetrical grid faults
DEFF Research Database (Denmark)
Göksu, Ömer; Teodorescu, Remus; Bak, Claus Leth
2013-01-01
As more renewable energy sources, especially more wind turbines (WTs) are installed in the power system; grid codes for wind power integration are being generated to sustain stable power system operation with non-synchronous generation. Common to most of the grid codes, wind power plants (WPPs...... faults, is investigated, which was not considered in the wind power impact studies before....
Flexible Compensation of Voltage and Current Unbalance and Harmonics in Microgrids
DEFF Research Database (Denmark)
Mousazadeh, Seyyed Yousef; Jalilian, Alireza; Savaghebi, Mehdi
2017-01-01
In recent years, the harmonics and unbalance problem endanger the voltage and current quality of power systems due to increasing usage of nonlinear and unbalance loads. Using DG interfacing inverters is proposed for voltage or current compensation. In this paper, a flexible control method...... is proposed to compensate voltage and current unbalance and harmonics using the Distributed Generation (DG) interfacing inverters. This method is applicable to both grid-connected and islanded microgrids. In the proposed method, not only the proper control of active and reactive powers can be achieved......) frame. An extensive simulation study has been performed and the results demonstrate the effectiveness of the proposed control scheme. The results show that depending on the compensation mode, the harmonics and unbalance compensation of DGs’ output current, MG’s injected current to the grid as well...
Optimal Allocation of Static Var Compensator via Mixed Integer Conic Programming
Energy Technology Data Exchange (ETDEWEB)
Zhang, Xiaohu [ORNL; Shi, Di [Global Energy Interconnection Research Institute North America (GEIRI North America), California; Wang, Zhiwei [Global Energy Interconnection Research Institute North America (GEIRI North America), California; Huang, Junhui [Global Energy Interconnection Research Institute North America (GEIRI North America), California; Wang, Xu [Global Energy Interconnection Research Institute North America (GEIRI North America), California; Liu, Guodong [ORNL; Tomsovic, Kevin [University of Tennessee, Knoxville (UTK)
2017-01-01
Shunt FACTS devices, such as, a Static Var Compensator (SVC), are capable of providing local reactive power compensation. They are widely used in the network to reduce the real power loss and improve the voltage profile. This paper proposes a planning model based on mixed integer conic programming (MICP) to optimally allocate SVCs in the transmission network considering load uncertainty. The load uncertainties are represented by a number of scenarios. Reformulation and linearization techniques are utilized to transform the original non-convex model into a convex second order cone programming (SOCP) model. Numerical case studies based on the IEEE 30-bus system demonstrate the effectiveness of the proposed planning model.
Energy Technology Data Exchange (ETDEWEB)
Hsu, Ping; Wu, Ziping; Muljadi, Eduard; Gao, Wenzhong
2015-08-24
A wind power plant (WPP) is often operated at unity power factor, and the utility host where the WPP connects prefers to regulate the voltage. Although this may not be an issue in a stiff grid, the connection to a weak grid can be a problematic. This paper explores the advantages of having voltage regulation capability via reactive power control. Another issue in wind power generation is that not all turbines are able to control their reactive power due to technical reasons or contractual obligations. A synchronous condenser (SC) using a permanent magnet synchronous generator (PMSG) is proposed to provide necessary reactive power for regulating voltage at a weak grid connection. A PMSG has the advantage of higher efficiency and reliability. Because of its lack of a field winding, a PMSG is typically controlled by a full-power converter, which can be costly. In the proposed system, the reactive power of the SC is controlled by a serially connected compensator operating in a closed-loop configuration. The compensator also damps the PMSG’s tendency to oscillate. The compensator’s VA rating is only a fraction of the rating of the SC and the PMSG. In this initial investigation, the proposed scheme is shown to be effective by computer simulations.
Energy Technology Data Exchange (ETDEWEB)
Zhao, Xiaoli; Jin, Jie [Tianjin University, School of Electronic Information Engineering, Tianjin (China); Cheng, Jui-Ching, E-mail: juiching@ntut.edu.tw [Chang-Gung University, Department of Electronics, Taoyuan, Taiwan (China); Lee, Jyh-Wei [Ming Chi University of Technology, College of Materials Engineering, New Taipei City, Taiwan (China); Wu, Kuo-Hong [Chang-Gung University, Department of Electronics, Taoyuan, Taiwan (China); Lin, Kuo-Cheng; Tsai, Jung-Ruey [Asia University, Department of Photonics and Communication Engineering, Taichung, Taiwan (China); Liu, Kou-Chen, E-mail: jacobliu@mail.cgu.edu.tw [Chang-Gung University, Department of Electronics, Taoyuan, Taiwan (China)
2014-11-03
Zirconia films are deposited by reactive high power impulse magnetron sputtering (HiPIMS) technology on glass and indium-tin-oxide (ITO)/glass substrates. Preparation, microstructure and optical characteristics of the films have been studied. During deposition, the influence of the target power and duty cycle on the peak current–voltage and power density has been observed in oxide mode. Transparent thin films under different oxygen proportions are obtained on the two substrates. Atomic force microscopy measurements showed that the surface roughness of the films was lower by reactive HiPIMS than DC sputtering for all oxygen contents. The transmission and reflectance properties of differently grown zirconia films were also investigated using an ultraviolet–visible spectrophotometer. The optical transmittance of films grown on glass substrates by HiPIMS reached maximum values above 90%, which exceeded that by DC sputtering. The band edge near 5.86 eV shifted to a lower wavelength for zirconia films prepared with oxygen flow rates lower than 4.5 sccm. For the films prepared on ITO/glass substrates, the transmittance and the band gap of zirconia films were limited by ITO films; a maximum average transmittance of 84% was obtained at 4.5 sccm O{sub 2} and the energy band gap was in the range of 3.7–3.8 eV for oxygen flow rates ranging from 3.5 to 5.0 sccm. Finally, the electrical properties of zirconia films have also been discussed. - Highlights: • Zirconia films are deposited by reactive high power impulse magnetron sputtering. • Low roughness films are obtained. • Films show a high transmittance (> 90%). • Films prepared on glass have a band gap of 5.9 eV.
Directory of Open Access Journals (Sweden)
Seyedmohammad Shayestehaminzadeh
2015-11-01
Full Text Available This paper reports the observation of a periodic runaway of plasma to a higher density for the reactive discharge of the target material (Ti with moderate sputter yield. Variable emission of secondary electrons, for the alternating transition of the target from metal mode to oxide mode, is understood to be the main reason for the runaway occurring periodically. Increasing the pulsing frequency can bring the target back to a metal (or suboxide mode, and eliminate the periodic transition of the target. Therefore, a pulsing frequency interval is defined for the reactive Ar/O2 discharge in order to sustain the plasma in a runaway-free mode without exceeding the maximum power that the magnetron can tolerate.
Energy Technology Data Exchange (ETDEWEB)
Facchini, A.; Giusti, V.; Ciolini, R. [Department of Civil and Industrial Engineering (DICI), University of Pisa, Largo Lucio Lazzarino 2, I-56126 Pisa (Italy); Tuček, K.; Thomas, D. [Joint Research Centre, Institute for Energy and Transport (JRC - IET), European Commission, P.O. Box 2, NL-1755 ZG Petten (Netherlands); D' Agata, E., E-mail: elio.dagata@ec.europa.eu [Joint Research Centre, Institute for Energy and Transport (JRC - IET), European Commission, P.O. Box 2, NL-1755 ZG Petten (Netherlands)
2017-03-15
Highlights: • This paper studies the effect of an unexpected runway of a control rod in the ESFR. • The power peaked fuel pin within the core was identified. • The increase of the fission power density of the fuel pin has been evaluated. • Radial/axial fission power density of the power peaked fuel pin has been evaluated. - Abstract: The new reactor concepts proposed in the Generation IV International Forum require the development and validation of new components and new materials. Inside the Collaborative Project on the European Sodium Fast Reactor, several accidental scenario have been studied. Nevertheless, none of them coped with mechanical safety assessment of the fuel cladding under accidental conditions. Among the accidental conditions considered, there is the unprotected transient of overpower (UTOP), due to the insertion, at the end of the first fuel cycle, of a positive reactivity into the reactor core as a consequence of the unexpected runaway of one control rod. The goal of the study was the search for a detailed distribution of the fission power, in the radial and axial directions, within the power peaked fuel pin under the above accidental conditions. Results show that after the control rod ejection an increase from 658 W/cm{sup 3} to 894 W/cm{sup 3}, i.e. of some 36%, is expected for the power peaked fuel pin. This information will represent the base to investigate, in a future work, the fuel cladding safety margin.
Reactivity anomalies in the FFTF [Fast Flux Test Facility
International Nuclear Information System (INIS)
Knutson, B.J.; Harris, R.A.
1987-04-01
Experience using an automated core reactivity monitoring technique at the Fast Flux Test Facility (FFTF) through eight operating cycles is described. This technique relies on comparing predicted to measured rod positions to detect any anomalous (or unpredicted) core reactivity changes. Reactivity worth predictions of core state changes (e.g., temperature and irradiation changes) and compensating control rod movements are required for the rod position comparison. A substantial data base now exists to evaluate changes in temperature reactivity feedback effects operational in the FFTF, rod worth changes due to core loading, temperature and irradiation effects and burnup effects associated with transmutation of fuel materials. This report summarizes preliminary work of correlating zero power and at-power rod worth measurement data, calculated burnup rates and rod worths using the latest ENDF/B-V cross section set for each cycle to evaluate the prediction models and attempt to resolve observed reactivity anomalies. 2 figs., 2 tabs
Nuclear damage compensation and energy reform
International Nuclear Information System (INIS)
Yokemoto, Masafumi
2013-01-01
Nuclear damage compensation and energy reform were closely related. Nuclear damage compensation cost should be part of generation cost of nuclear power. Extend of nuclear damage compensation was limited by compensation standard of Tokyo Electric Power Co. (TEPCO) following guidelines of Dispute Reconciliation Committee for Nuclear Damage Compensation. TEPCO had already paid compensation of about two trillion yen until now, which was only a part of total damage compensation cost. TEPCO had been provided more than 3.4 trillion yen by Nuclear Damage Liability Facilitation Cooperation, which would be put back by nuclear operators including TEPCO. TEPCO could obtain present raising funds and try to reconstruct business with restart of nuclear power, which might disturb energy reform. Present nuclear damage compensation scheme had better be reformed with learning more from Minamata disease case in Japan. (T. Tanaka)
Energy Technology Data Exchange (ETDEWEB)
Parlak, Koray Sener; Oezdemir, Mehmet [Dept. of Electrical and Electronic Engineering, Firat University, Elazig, 23119 (Turkey); Aydemir, M. Timur [Dept. of Electrical and Electronic Engineering, Gazi University, Maltepe-Ankara 06570 (Turkey)
2009-06-15
A distributed power system consisting of two uninterrupted power supplies (UPS) is investigated in this paper. Parallel operation of the two sources increases the established power rating of the system. One of the sources can supply the system even when the other system is disconnected due to some faults, and this is an important feature. The control algorithm makes sure that the total load is shared between the supplies in accordance with their rated power levels, and the frequency of the supplies are restored to the rated values after the transitions. As the UPSs operate at an optimum power level, losses and faults due to overloading are prevented. The units safely operate without any means of communication between each other. The focus of the work is on the inverter stages of the UPSs. Simulations performed in Matlab Simulink environment have been verified with experimental work via DS1103 controller card. (author)
DEFF Research Database (Denmark)
Batra, Tushar; Schaltz, Erik
2014-01-01
Inductive power transfer is non-contact transfer of energy by means of magnetic fields. A higher secondary side quality factor at fixed input current ensures a linear increase in power transfer across the air gap. But also at the same time magnetic emissions to the surroundings increase. First...... of all in this paper an analytic expression for comparing the magnetic emissions at different quality factors is introduced. It is shown with help of simulations on Comsol that emissions have a lower increase as compared to linear increase in the power transferred with the quality factor as suggested...
Energy Technology Data Exchange (ETDEWEB)
Bonjour, E; Pierre, J; Agagliate, S; Bertrand, P; Faivre, J; Lagnier, R [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires, Section physico-chimie et basses temperatures
1967-06-01
A differential calorimetric device of original design is described. Its allows direct measurements of thermal effects (adsorption or release) during a linear rise of temperature. The self compensated power method which is applied by means of a very sensitive control system, gives a direct value of the different heat capacity between the sample and a dummy of it. The detection threshold is about {+-} 100 micro-watts to {+-} 250 micro-watts. Applications: - Generally measurements of enthalpy changes of massive or powdered samples. - Measurement of Wigner energy after low temperature irradiation (77 deg. K). - Measurements of energy release in low temperature (77 deg. K) cold worked metals. (authors) [French] On decrit un dispositif de calorimetrie differentielle, de conception originale, qui permet de mesurer directement des effets thermiques en absorption ou en degagement de chaleur, au cours d'une montee en temperature lineaire. La methode de compensation automatique de puissance qui est mise en oeuvre au moyen de cha es d'asservissement tres sensibles, conduit a une determination directe de la capacite calorifique differencielle entre l'echantillon et sa reference. Le seuil de detection est de l'ordre de {+-} 100 a {+-} 250 microwatts. Applications: - D'une facon generale, mesure des variations enthalpiques, sur echantillons massifs ou en poudre. - Mesure de l'energie Wigner apres irradiation a basse temperature (77 deg. K). - Mesure de l'energie restauree apres deformation des metaux a basse temperature (77 deg. K). (auteurs)
DEFF Research Database (Denmark)
Chen, Yandong; Guerrero, Josep M.; Shuai, Zhikang
2016-01-01
In this paper, an inverter using resistivecapacitive output impedance (RC-type inverter) is proposed not only to provide fast reactive power sharing to support microgrid voltage, and but also to reduce circulating currents and damp high-frequency resonances among inverters. Introducing the RC......-frequency resonances among parallel inverters are quantitatively analyzed. The control parameters are systematically selected, and effect of virtual complex impedance on the inverter output voltage is depicted. The RC-type inverter can reduce circulating currents and damp resonances due to different equivalent output...
Ji, Yu; Sheng, Wanxing; Jin, Wei; Wu, Ming; Liu, Haitao; Chen, Feng
2018-02-01
A coordinated optimal control method of active and reactive power of distribution network with distributed PV cluster based on model predictive control is proposed in this paper. The method divides the control process into long-time scale optimal control and short-time scale optimal control with multi-step optimization. The models are transformed into a second-order cone programming problem due to the non-convex and nonlinear of the optimal models which are hard to be solved. An improved IEEE 33-bus distribution network system is used to analyse the feasibility and the effectiveness of the proposed control method
DEFF Research Database (Denmark)
Raboni, Pietro; Chaudhary, Sanjay K.; Chen, Zhe
2016-01-01
functions are formulated on the basis of the integral of an error. This difference makes them suitable for the cases where the entire step-response data series are unavailable. The performances of differently tuned regulators are compared considering a test system including a 100 kW Diesel Generator Set......Effects of low reactance to resistance ratio in distribution networks are widely studied but little work dealing with the tuning of voltage and reactive power regulators of small synchronous generators has been reported. This study endeavours the design of a proportional integral controller...
Measurement of reactivity temperature coefficient by noise method in a power reactor
International Nuclear Information System (INIS)
Aguilar, O.
1986-07-01
The temperature reactivity coefficient was estimated on the basis of noise measurements performed in a PWR. The magnitude of the coefficient was evaluated by relating the values of the APSD and CPSD between ex-core neutron detector signals and fuel assembly outlet thermocouple in the low frequency range. Comparison with δρ/δT measurements performed in PWR by standard methods supports the validity of the results. (author)
Vegh, János; Kiss, Sándor; Lipcsei, Sándor; Horvath, Csaba; Pos, István; Kiss, Gábor
2010-10-01
The paper deals with two recently developed, high-precision nuclear measurement systems installed at the VVER-440 units of the Hungarian Paks NPP. Both developments were motivated by the reactor power increase to 108%, and by the planned plant service time extension. The first part describes the RMR start-up reactivity measurement system with advanced services. High-precision picoampere meters were installed at each reactor unit and measured ionization chamber current signals are handled by a portable computer providing data acquisition and online reactivity calculation service. Detailed offline evaluation and analysis of reactor start-up measurements can be performed on the portable unit, too. The second part of the paper describes a new reactor noise diagnostics system using state-of-the-art data acquisition hardware and signal processing methods. Details of the new reactor noise measurement evaluation software are also outlined. Noise diagnostics at Paks NPP is a standard tool for core anomaly detection and for long-term noise trend monitoring. Regular application of these systems is illustrated by real plant data, e.g., results of standard reactivity measurements during a reactor startup session are given. Noise applications are also illustrated by real plant measurements; results of core anomaly detection are presented.
Amir Nagizadeh Ghoogdareh; Aref Doroudi; Mohammad Poormonfared Azimi
2013-01-01
One of the most important power quality aspects in wind farms is voltage fluctuation or flicker which should be investigated due to the nature of wind speed variations. These variations result in power and voltage fluctuations at the load bus. Moreover, the wind generation systems may be assumed as a harmonics source because of their power electronic converters. There are numerous factors that affect flicker and harmonic emission of grid-connected wind turbines during continuous operation, su...
Dong, Hui-juan; Wu, Jian; Zhang, Guang-yu; Wu, Han-fu
2012-02-01
The phase-locked loop (PLL) method is widely used for automatic resonance frequency tracing (ARFT) of high-power ultrasonic transducers, which are usually vibrating systems with high mechanical quality factor (Qm). However, a heavily-loaded transducer usually has a low Qm because the load has a large mechanical loss. In this paper, a series of theoretical analyses is carried out to detail why the traditional PLL method could cause serious frequency tracing problems, including loss of lock, antiresonance frequency tracing, and large tracing errors. The authors propose an improved ARFT method based on static capacitance broadband compensation (SCBC), which is able to address these problems. Experiments using a generator based on the novel method were carried out using crude oil as the transducer load. The results obtained have demonstrated the effectiveness of the novel method, compared with the conventional PLL method, in terms of improved tracing accuracy (±9 Hz) and immunity to antiresonance frequency tracing and loss of lock.
DEFF Research Database (Denmark)
Chen, Shuheng; Hu, Weihao; Su, Chi
2015-01-01
A new and efficient methodology for optimal reactive power and voltage control of distribution networks with distributed generators based on fuzzy adaptive hybrid PSO (FAHPSO) is proposed. The objective is to minimize comprehensive cost, consisting of power loss and operation cost of transformers...... that the proposed method can search a more promising control schedule of all transformers, all capacitors and all distributed generators with less time consumption, compared with other listed artificial intelligent methods....... algorithm is implemented in VC++ 6.0 program language and the corresponding numerical experiments are finished on the modified version of the IEEE 33-node distribution system with two newly installed distributed generators and eight newly installed capacitors banks. The numerical results prove...
Energy Technology Data Exchange (ETDEWEB)
Hänninen, Tuomas, E-mail: tuoha@ifm.liu.se; Schmidt, Susann; Jensen, Jens; Hultman, Lars; Högberg, Hans [Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping SE-581 83 (Sweden)
2015-09-15
Silicon oxynitride thin films were synthesized by reactive high power impulse magnetron sputtering of silicon in argon/nitrous oxide plasmas. Nitrous oxide was employed as a single-source precursor supplying oxygen and nitrogen for the film growth. The films were characterized by elastic recoil detection analysis, x-ray photoelectron spectroscopy, x-ray diffraction, x-ray reflectivity, scanning electron microscopy, and spectroscopic ellipsometry. Results show that the films are silicon rich, amorphous, and exhibit a random chemical bonding structure. The optical properties with the refractive index and the extinction coefficient correlate with the film elemental composition, showing decreasing values with increasing film oxygen and nitrogen content. The total percentage of oxygen and nitrogen in the films is controlled by adjusting the gas flow ratio in the deposition processes. Furthermore, it is shown that the film oxygen-to-nitrogen ratio can be tailored by the high power impulse magnetron sputtering-specific parameters pulse frequency and energy per pulse.
Zheng, B. C.; Wu, Z. L.; Wu, B.; Li, Y. G.; Lei, M. K.
2017-05-01
A spatially averaged, time-dependent global plasma model has been developed to describe the reactive deposition of a TiAlSiN thin film by modulated pulsed power magnetron sputtering (MPPMS) discharges in Ar/N2 mixture gas, based on the particle balance and the energy balance in the ionization region, and considering the formation and erosion of the compound at the target surface. The modeling results show that, with increasing the N2 partial pressure from 0% to 40% at a constant working pressure of 0.3 Pa, the electron temperature during the strongly ionized period increases from 4 to 7 eV and the effective power transfer coefficient, which represents the power fraction that effectively heats the electrons and maintains the discharge, increases from about 4% to 7%; with increasing the working pressure from 0.1 to 0.7 Pa at a constant N2 partial pressure of 25%, the electron temperature decreases from 10 to 4 eV and the effective power transfer coefficient decreases from 8% to 5%. Using the modeled plasma parameters to evaluate the kinetic energy of arriving ions, the ion-to-neutral flux ratio of deposited species, and the substrate heating, the variations of process parameters that increase these values lead to an enhanced adatom mobility at the target surface and an increased input energy to the substrate, corresponding to the experimental observation of surface roughness reduction, the microstructure transition from the columnar structure to the dense featureless structure, and the enhancement of phase separation. At higher N2 partial pressure or lower working pressure, the modeling results demonstrate an increase in electron temperature, which shifts the discharge balance of Ti species from Ti+ to Ti2+ and results in a higher return fraction of Ti species, corresponding to the higher Al/Ti ratio of deposited films at these conditions. The modeling results are well correlated with the experimental observation of the composition variation and the microstructure
Active and reactive power control schemes for distributed generation systems under voltage dips
Wang, F.; Duarte, J.L.; Hendrix, M.A.M.
2009-01-01
During voltage dips continuous power delivery from distributed generation systems to the grid is desirable for the purpose of grid support. In order to facilitate the control of distributed generation systems adapted to the expected change of grid requirements, generalized power control schemes
Cho, Kangwoo; Qu, Yan; Kwon, Daejung; Zhang, Hao; Cid, Clément A; Aryanfar, Asghar; Hoffmann, Michael R
2014-02-18
We have investigated electrochemical treatment of real domestic wastewater coupled with simultaneous production of molecular H2 as useful byproduct. The electrolysis cells employ multilayer semiconductor anodes with electroactive bismuth-doped TiO2 functionalities and stainless steel cathodes. DC-powered laboratory-scale electrolysis experiments were performed under static anodic potentials (+2.2 or +3.0 V NHE) using domestic wastewater samples, with added chloride ion in variable concentrations. Greater than 95% reductions in chemical oxygen demand (COD) and ammonium ion were achieved within 6 h. In addition, we experimentally determined a decreasing overall reactivity of reactive chlorine species toward COD with an increasing chloride ion concentration under chlorine radicals (Cl·, Cl2(-)·) generation at +3.0 V NHE. The current efficiency for COD removal was 12% with the lowest specific energy consumption of 96 kWh kgCOD(-1) at the cell voltage of near 4 V in 50 mM chloride. The current efficiency and energy efficiency for H2 generation were calculated to range from 34 to 84% and 14 to 26%, respectively. The hydrogen comprised 35 to 60% by volume of evolved gases. The efficacy of our electrolysis cell was further demonstrated by a 20 L prototype reactor totally powered by a photovoltaic (PV) panel, which was shown to eliminate COD and total coliform bacteria in less than 4 h of treatment.
Directory of Open Access Journals (Sweden)
Ester Hamatwi
2017-01-01
Full Text Available Due to the intermittent nature of wind, the wind power output tends to be inconsistent, and hence maximum power point tracking (MPPT is usually employed to optimize the power extracted from the wind resource at a wide range of wind speeds. This paper deals with the rotor speed control of a 2 MW direct-driven permanent magnet synchronous generator (PMSG to achieve MPPT. The proportional-integral (PI, proportional-derivative (PD, and proportional-integral-derivative (PID controllers have widely been employed in MPPT studies owing to their simple structure and simple design procedure. However, there are a number of shortcomings associated with these controllers; the trial-and-error design procedure used to determine the P, I, and D gains presents a possibility for poorly tuned controller gains, which reduces the accuracy and the dynamic performance of the entire control system. Moreover, these controllers’ linear nature, constricted operating range, and their sensitivity to changes in machine parameters make them ineffective when applied to nonlinear and uncertain systems. On the other hand, phase-lag compensators are associated with a design procedure that is well defined from fundamental principles as opposed to the aforementioned trial-and-error design procedure. This makes the latter controller type more accurate, although it is not well developed yet, and hence it is the focus of this paper. The simulation results demonstrated the effectiveness of the proposed MPPT controller.
Directory of Open Access Journals (Sweden)
Nasri Abdelfatah
2011-01-01
Full Text Available The Reactive power flow’s is one of the most electrical distribution systems problem wich have great of interset of the electrical network researchers, it’s cause’s active power transmission reduction, power losses decreasing, and the drop voltage’s increase. In this research we described the efficiency of the FLC-GAO approach to solve the optimal power flow (OPF combinatorial problem. The proposed approach employ tow algorithms, Fuzzy logic controller (FLC algorithm for critical nodal detection and gentic algorithm optimization (GAO algorithm for optimal seizing capacitor.GAO method is more efficient in combinatory problem solutions. The proposed approach has been examined and tested on the standard IEEE 57-bus the resulats show the power loss minimization denhancement, voltage profile, and stability improvement. The proposed approach results have been compared to those that reported in the literature recently. The results are promising and show the effectiveness and robustness of the proposed approach.
K 4R - Knowledge to the Power of RESTful, Resourceful and Reactive Rules
Amador, Ricardo
The Web of today clearly answers questions of the form "What is the representation of ...?". The Semantic Web (SW) of tomorrow aims at answering questions of the form "What is the meaning of ...?". It is our stance that in order to realize the full potential of the original concept proposed by Tim Berners-Lee et al. (in Scientific American, May 2001), the SW must also answer, in a meaningful way, questions of a dynamic and active nature, like "What to do if ...?" or "What to do when ...?". Moreover, SW questions of the form "What to do ...?" must be expressed and answered in a declarative, compositional and language agnostic way. It is our (hypo)thesis that formally established concepts, viz. the Web's REST architectural style, declarative SW representation of resources based on Description Logics (e.g., OWL-DL), and Reactive Rules (e.g., "on Event if Condition do Action" -ECA- rules), provide the proper theoretical foundations to achieve this goal. This paper describes our current research proposal, K 4R (pronounced, with an Italian flavor, "Che fare?"), towards achieving a declarative model for expressing (re)active behavior in and for the SW.
Aeromagnetic Compensation for UAVs
Naprstek, T.; Lee, M. D.
2017-12-01
Aeromagnetic data is one of the most widely collected types of data in exploration geophysics. With the continuing prevalence of unmanned air vehicles (UAVs) in everyday life there is a strong push for aeromagnetic data collection using UAVs. However, apart from the many political and legal barriers to overcome in the development of UAVs as aeromagnetic data collection platforms, there are also significant scientific hurdles, primary of which is magnetic compensation. This is a well-established process in manned aircraft achieved through a combination of platform magnetic de-noising and compensation routines. However, not all of this protocol can be directly applied to UAVs due to fundamental differences in the platforms, most notably the decrease in scale causing magnetometers to be significantly closer to the avionics. As such, the methodology must be suitably adjusted. The National Research Council of Canada has collaborated with Aeromagnetic Solutions Incorporated to develop a standardized approach to de-noising and compensating UAVs, which is accomplished through a series of static and dynamic experiments. On the ground, small static tests are conducted on individual components to determine their magnetization. If they are highly magnetic, they are removed, demagnetized, or characterized such that they can be accounted for in the compensation. Dynamic tests can include measuring specific components as they are powered on and off to assess their potential effect on airborne data. The UAV is then flown, and a modified compensation routine is applied. These modifications include utilizing onboard autopilot current sensors as additional terms in the compensation algorithm. This process has been applied with success to fixed-wing and rotary-wing platforms, with both a standard manned-aircraft magnetometer, as well as a new atomic magnetometer, much smaller in scale.
International Nuclear Information System (INIS)
Laghari, J.A.; Mokhlis, H.; Bakar, A.H.A.; Karimi, M.
2013-01-01
Highlights: • The requirement of DG interconnection with existing power system is discussed. • Various islanding detection techniques are discussed with their merits and demerits. • New islanding detection strategy is proposed for multiple mini hydro type DGs. • The proposed strategy is based on dq/dt and load connecting strategy. • The effectiveness of strategy is verified on various other cases. - Abstract: The interconnection of distributed generation (DG) into distribution networks is undergoing a rapid global expansion. It enhances the system’s reliability, while simultaneously reduces pollution problems related to the generation of electrical power. To fully utilize the benefits of DGs, certain technical issues need to be addressed. One of the most important issues in this context is islanding detection. This paper presents a new islanding detection technique that is suitable for multiple mini-hydro type DG units. The proposed strategy is based on the rate of change of reactive power and load connecting strategy to detect islanding within the system. For a large power mismatch, islanding is detected by rate of change of reactive power only. However, for a close power mismatch, the rate of change of reactive power initiates a load connecting strategy, which in turn alters the load on the distribution network. This load variation in the distribution network causes a variation in the rate of change of reactive power, which is utilized to distinguish islanding and other events. The simulation results show that the proposed strategy is effective in detecting islanding occurrence in a distribution network
International Nuclear Information System (INIS)
Waldman, R.M.; Gomez, A.
1990-01-01
Measurements were made on integral and differential calibration of rod 16, fuel racks RG and R3 and extinction reactivity during Atucha I nuclear power plant's commissioning on January 8th., 1990. These were the first physical measurements performed after the first critical nuclear power plant's commissioning. (Author) [es
DEFF Research Database (Denmark)
Rostami, Ali; Bagheri, Marzieh; Naderi, Seyed Behzad
2017-01-01
, the reactive power at DG-side and exciter voltage parameters are selected. The performance of the proposed method is investigated in MATLAB/Simulink software on a sample network in the presence of synchronous diesel-generator. The simulation results indicate that the proposed method is capable to detect all......Penetration of distributed generation (DG) in distribution networks is rapidly increasing. DGs' application enhances system's reliability and power quality. However, along their benefits, there are some issues. One of the most important issues of DGs' application is the islanding. This paper...... of the synchronous generator. Therefore, due to lack of inertia, response of these parameters to small changes is faster than the other passive parameters such as frequency. However, the sensitivity of reactive power at the DG-side and the exciter voltage is much more than reactive power and voltage of the load. So...
Directory of Open Access Journals (Sweden)
Fuka Ikeda
2017-06-01
Full Text Available This paper discusses harmonic current compensation of the constant DC-capacitor voltage-control (CDCVC-based strategy of smart chargers for electric vehicles (EVs in single-phase three-wire distribution feeders (SPTWDFs under nonlinear load conditions. The basic principle of the CDCVC-based harmonics compensation strategy under nonlinear load conditions is discussed in detail. The instantaneous power flowing into the three-leg pulse-width modulated (PWM rectifier, which performs as a smart charger, shows that the CDCVC-based strategy achieves balanced and sinusoidal source currents with a unity power factor. The CDCVC-based harmonics compensation strategy does not require any calculation blocks of fundamental reactive, unbalanced active, and harmonic currents. Thus, the authors propose a simplified algorithm to compensate for reactive, unbalanced active, and harmonic currents. A digital computer simulation is implemented to confirm the validity and high practicability of the CDCVC-based harmonics compensation strategy using PSIM software. Simulation results demonstrate that balanced and sinusoidal source currents with a unity power factor in SPTWDFs are obtained on the secondary side of the pole-mounted distribution transformer (PMDT during both the battery-charging and discharging operations in EVs, compensating for the reactive, unbalanced active, and harmonic currents.
Energy Technology Data Exchange (ETDEWEB)
Diaz, Daniel Suescun
2007-07-01
This work presents two new methods for the solution of the inverse point kinetics equation. The first method is based on the integration by parts of the integral of the inverse point kinetics equation, which results in a power series in terms of the nuclear power in time dependence. Applying some conditions to the nuclear power, the reactivity is represented as first and second derivatives of this nuclear power. This new calculation method for reactivity has special characteristics, amongst which the possibility of using different sampling periods, and the possibility of restarting the calculation, after its interruption associated it with a possible equipment malfunction, allowing the calculation of reactivity in a non-continuous way. Apart from this reactivity can be obtained with or without dependency on the nuclear power memory. The second method is based on the Laplace transform of the point kinetics equations, resulting in an expression equivalent to the inverse kinetics equation as a function of the power history. The reactivity can be written in terms of the summation of convolution with response to impulse, characteristic of a linear system. For its digital form the Z-transform is used, which is the discrete version of the Laplace transform. In this method it can be pointed out that the linear part is equivalent to a filter named Finite Impulse Response (Fir). The Fir filter will always be, stable and non-varying in time, and, apart from this, it can be implemented in the non-recursive way. This type of implementation does not require feedback, allowing the calculation of reactivity in a continuous way. The proposed methods were validated using signals with random noise and showing the relationship between the reactivity difference and the degree of the random noise. (author)
Reactive power and voltage control based on general quantum genetic algorithms
DEFF Research Database (Denmark)
Vlachogiannis, Ioannis (John); Østergaard, Jacob
2009-01-01
This paper presents an improved evolutionary algorithm based on quantum computing for optima l steady-state performance of power systems. However, the proposed general quantum genetic algorithm (GQ-GA) can be applied in various combinatorial optimization problems. In this study the GQ-GA determines...... techniques such as enhanced GA, multi-objective evolutionary algorithm and particle swarm optimization algorithms, as well as the classical primal-dual interior-point optimal power flow algorithm. The comparison demonstrates the ability of the GQ-GA in reaching more optimal solutions....
Directory of Open Access Journals (Sweden)
Nurettin Çetinkaya
2017-01-01
Full Text Available The effects of the wind/PV grid-connected system (GCS can be categorized as technical, environmental, and economic impacts. It has a vital impact for improving the voltage in the power systems; however, it has some negative effects such as interfacing and fault clearing. This paper discusses different grounding methods for fault protection of High-voltage (HV power systems. Influences of these grounding methods for various fault characteristics on wind/PV GCSs are discussed. Simulation models are implemented in the Alternative Transient Program (ATP version of the Electromagnetic Transient Program (EMTP. The models allow for different fault factors and grounding methods. Results are obtained to evaluate the impact of each grounding method on the 3-phase short-circuit fault (SCF, double-line-to-ground (DLG fault, and single-line-to-ground (SLG fault features. Solid, resistance, and Petersen coil grounding are compared for different faults on wind/PV GCSs. Transient overcurrent and overvoltage waveforms are used to describe the fault case. This paper is intended as a guide to engineers in selecting adequate grounding and ground fault protection schemes for HV, for evaluating existing wind/PV GCSs to minimize the damage of the system components from faults. This research presents the contribution of wind/PV generators and their comparison with the conventional system alone.
Static compensators using thyristor control with saturated or low-reactance linear reactors
Energy Technology Data Exchange (ETDEWEB)
Thanawala, H L; Kelham, W O; Crawshaw, A W
1982-01-01
Alternative key components of variable static equipment for reactive power compensation and voltage control in a.c. transmission systems are saturated reactors (SR) and thyristor-controlled reactors (TCR). This paper reports some recent developments aimed at improving the performance and economy of both types of scheme. Advantages of using low-percentage reactance values in a TCR scheme are considered, and methods of dealing with the increased harmonic distortions and of employing transformer leakage reactance. The paper discusses the possibility of combining the advantages of 'external' thyristor control with the 'inherent' action of the harmonic-compensated SR, and the performance of a practical TCSR is presented.
Assessment of reactivity devices for CANDU-6 with DUPIC fuel
International Nuclear Information System (INIS)
Jeong, Chang Joon; Choi, Hang Bok
1998-01-01
Reactivity device characteristics for a CANDU-6 reactor loaded with DUPIC fuel have been assessed. A transport code WIMS-AECL and a three-dimensional diffusion code RFSP were used for the lattice parameter generation and the core calculation, respectively. Three major reactivity devices have been assessed for their inherent functions. For the zone controller system, damping capability for spatial oscillation was investigated. The restart capability of the adjuster system was investigated. The shim operation and power stepback calculation were also performed to confirm the compatibility of the current adjuster rod system. The mechanical control absorber was assessed for the capability to compensate the temperature reactivity feedback following a power reduction. This study has shown that the current reactivity device systems retain their functions when used in a DUPIC fuel CANDU reactor
International Nuclear Information System (INIS)
Lestrat, Patrice.
1982-11-01
This study aims to analyze and explain the structure of a reactive jet of water steam in liquid sodium, as from a ligh pressure tank and an orifice of very small section. The prior understanding of this reactive jet makes it possible to explain certain results of erosion-corrosion (Wastage) that can occur in the steam generators of breader reactor power stations. This study gave rise to an experimental simulation (plane jet of water steam on a bed of sodium), as well as to suggesting a reactive jet model according to the principle of an ''immersed Na-H 2 O diffusion flame'' [fr
Reactive Power Control in Eight Bus System Using FC-TCR
Directory of Open Access Journals (Sweden)
Thangavelu Vijayakumar
2010-02-01
Full Text Available This paper deals with the simulation of eight bus system having fixed capacitor and thyristor controlled reactor. The system is modeled and simulated using MATLAB.The simulation results are presented. The power and control circuits are simulated. The current drawn by the TCR varies with the variation in the firing angle. The simulation results are compared with the theoretical results.
International Nuclear Information System (INIS)
Mosteller, R.D.; Hall, R.A.; Lancaster, D.B.; Young, E.H.; Gavin, P.H.; Robertson, S.T.
1998-01-01
The contents of ANS 19.11, the standard for ''Calculation and Measurement of the Moderator Temperature Coefficient of Reactivity in Water-Moderated Power Reactors,'' are described. The standard addresses the calculation of the moderator temperature coefficient (MTC) both at standby conditions and at power. In addition, it describes several methods for the measurement of the at-power MTC and assesses their relative advantages and disadvantages. Finally, it specifies a minimum set of documentation requirements for compliance with the standard
Fukushima: liability and compensation
International Nuclear Information System (INIS)
Vasquez-Maignan, Ximena
2012-01-01
On 11 March 2011, Japan endured one of the worst natural disasters in its history when a massive earthquake struck the Pacific coast of the country and was followed by a tsunami which led to considerable loss of lives. It also led to a major accident at the Fukushima Daiichi nuclear power plant. Soon afterwards, the operator of the plant, Tokyo Electric Power Company (TEPCO), assumed responsibility and liability for the nuclear accident. On 28 April 2011, TEPCO established a dedicated contact line to provide consulting services for financial compensation related to the damage caused
Active superconducting DC fault current limiter based on flux compensation
International Nuclear Information System (INIS)
Shi Jing; Tang Yuejin; Wang, Chen; Zhou Yusheng; Li Jingdong; Ren Li; Chen Shijie
2006-01-01
With the extensive application of DC power systems, suppression of DC fault current is an important subject that guarantees system security. This paper presents an active superconducting DC fault current limiter (DC-SFCL) based on flux compensation. The DC-SFCL is composed of two superconducting windings wound on a single iron core, the primary winding is in series with DC power system, and the second winding is connected with AC power system through a PWM converter. In normal operating state, the flux in the iron core is compensated to zero, and the SFCL has no influence on DC power system. In the case of DC system accident, through regulating the active power exchange between the SFCL's second winding and the AC power system, the current on the DC side can be limited to different level complying with the system demand. Moreover, the PWM converter that interface the DC system and AC system can be controlled as a reactive power source to supply voltage support for the AC side, which has little influence on the performance of SFCL. Using MATLAB SIMULINK, the mathematic model of the DC-SFCL is created, simulation results validate the dynamics of system, and the performance of DC-SFCL is confirmed
Wind Power Impact to Transient and Voltage Stability of the Power System in Eastern Denmark
DEFF Research Database (Denmark)
Rasmussen, Joana; Jørgensen, Preben; Palsson, Magni Thor
2005-01-01
Voltage stability, transient stability and reactive power compensation are extremely important issues for largescale integration of wind power in areas distant from the main transmission system in Eastern Denmark. This paper describes the application of a dynamic wind farm model in simulation...... studies for assessments of a large wind power penetration. The simulation results reveal problems with voltage stability due to the characteristic of wind turbine generation as well as the inability of the power system to meet the reactive power demand. Furthermore, the established model is applied...
Directory of Open Access Journals (Sweden)
A. V. Korolyev
2017-01-01
Full Text Available The research presented in the article conforms to the severe accident that took place at the Three Mail Island nuclear power plant in the USA. The research is focused on improving the reliability of the pressure compensator that is an important equipment of the primary circuit. In order to simulate such a situation, the stand has been developed to simulate the design of the pressurizer of the PWR-440 reactor, in particular an elliptical shape of the upper lid which has a steam outlet pipe at the top of the construction that creates conditions for occurrence of such water hammers. For the experiments, an installation has been created that makes it possible to measure and record the water hammering that occur when the tanks are filled. Measurement of the amplitude of the water hammering was carried out by a specially developed piezoelectric sensor, and the registration – by a light-beam oscilloscope. The technique of carrying out the experiment is described and the results of an experimental study of the water hammers arising when the vessels are completely filled are presented. Quantitative data were obtained on the amplitudes of the hydraulic impacts depending on the rate of filling of the vessel and the diameter of the outlet, the maximum pressure of the hydraulic shock was 7–9 atm. Comparison of calculated and experimental data has been performed. The allowable discrepancy is explained by the calculated value of the system stiffness coefficient, which did not take into account the presence of welded seams in the tank that imparts the system with additional rigidity. The calculated relationships are obtained, that make it possible to estimate the amplitudes of the water hammers through the acceleration of the water level in front of the outlet from a vessel with an elliptical bottom. The possibility of a water hammer in the pressure compensator is demonstrated by experiment and by theoretical calculations. Based on the experimental data, a
International Nuclear Information System (INIS)
Hobson, G.H.; Turinsky, P.J.
1986-01-01
Computational capability has been developed to automatically determine a good estimate of the core loading pattern, which minimizes fuel cycle costs for a pressurized water reactor (PWR). Equating fuel cycle cost minimization with core reactivity maximization, the objective is to determine the loading pattern that maximizes core reactivity while satisfying power peaking, discharge burnup, and other constraints. The method utilizes a two-dimensional, coarse-mesh, finite difference scheme to evaluate core reactivity and fluxes for an initial reference loading pattern. First-order perturbation theory is applied to determine the effects of assembly shuffling on reactivity, power distribution, end-of-cycle burnup. Monte Carlo integer programming is then used to determine a near-optimal loading pattern within a range of loading patterns near the reference pattern. The process then repeats with the new loading pattern as the reference loading pattern and terminates when no better loading pattern can be determined. The process was applied with both reactivity maximization and radial power-peaking minimization as objectives. Results on a typical large PWR indicate that the cost of obtaining an 8% improvement in radial power-peaking margin is ≅2% in fuel cycle costs, for the reload core loaded without burnable poisons that was studied
Performance of FACTS Devices for Power System Stability
Directory of Open Access Journals (Sweden)
Bhupendra Sehgal
2015-09-01
Full Text Available When a power grid is connected to an induction type wind electric generator (WEG, when there is variation in load and wind speed, grid voltage also vary. In this paper, we study what is the impact when there is a variation of load and wind by variation of real power and reactive power consumed by WEG effect of load and wind speed variations on real power supplied and reactive power consumed by the WEG as well as voltage on the grid are studied. The voltage variation in the grid is controlled by reactive power compensation using shunt connected Static VAR Compensator (SVC comprising Thyristor Controlled Reactor (TCR and Fixed Capacitor (FC. With the help of Fuzzy Logic Controller (FLC, TCR is operated automatically.
Shunt PWM advanced var compensators based on voltage source inverters for Facts applications
Energy Technology Data Exchange (ETDEWEB)
Barbosa, Pedro G; Misaka, Isamu; Watanabe, Edson H [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia
1994-12-31
Increased attention has been given to improving power system operation. This paper presents modeling, analysis and design of reactive shunt power compensators based on PWM-Voltage Source Inverters (Pulse Width Modulation -Voltage Source Inverters). (Pulse Width Modulation - Voltage Source Inverters). The control algorithm is based on new concepts of instantaneous active and reactive power theory. The objective is to show that with a small capacitor in the side of a 3-phase PWM-VSI it is possible to synthesize a variable reactive (capacitive or inductive) device. Design procedures and experimental results are presented. The feasibility of this method was verified by digital simulations and measurements on a small scale model. (author) 9 refs., 12 figs.
Sensitivity analysis for reactivity and power density investigations in nuclear reactors
International Nuclear Information System (INIS)
Naguib, K.; Morcos, H.N.; Sallam, O.H.; Abdelsamei, SH.
1993-01-01
Sensitivity analysis theory based on the variational functional approaches was applied to evaluate sensitivities of eigenvalues and power densities due to variation of the absorber concentration in the reactor core. The practical usefulness of this method is illustrated by considering test cases. The result indicates that this method is as accurate as those obtained from direct calculations, yet it provides an economical means in saving computational time since it requires fewer calculations. The SARC-1/2 code have been written in Fortran-77 to solve this problem.3 tab. 1 fig
Reactive Inkjet Printing of Biocompatible Enzyme Powered Silk Micro-Rockets.
Gregory, David A; Zhang, Yu; Smith, Patrick J; Zhao, Xiubo; Ebbens, Stephen J
2016-08-01
Inkjet-printed enzyme-powered silk-based micro-rockets are able to undergo autonomous motion in a vast variety of fluidic environments including complex media such as human serum. By means of digital inkjet printing it is possible to alter the catalyst distribution simply and generate varying trajectory behavior of these micro-rockets. Made of silk scaffolds containing enzymes these micro-rockets are highly biocompatible and non-biofouling. © 2016 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evaluation of reactivity and Xe behavior during daily load following operation
International Nuclear Information System (INIS)
Sakamoto, Yasunori; Araki, Tsuneyasu; Yamamoto, Fumiaki
1992-01-01
A boiling water reactor (BWR) has an excellent load following capability provided by a core flow control, which is used for changing a reactor power level and for compensating the subsequent Xe concentration change. The core characteristics during load following operations are investigated in detail, using our reactor core simulator. Comparisons of changes of the Doppler reactivity, the void reactivity and the Xe reactivity during transients are performed. Also the features of Xe transient during load following operations are shown. It has been shown that the core flow change required to compensate the Xe reactivity change produces much greater change of the void reactivity than that required for power level changes, and that the resulting local power change in the lower part of the core is greater than that in the upper part, because the Xe concentration change in the lower part is hardly compensated by the core flow control. Also the effects of power level changes, cycle patterns, and initial concentration of Xe and I on the Xe transient behavior have been investigated. (author)
Supervisory Control for Real Time Reactive Power Flow Optimization in Islanded Microgrids
DEFF Research Database (Denmark)
Milczarek, Adam; Vasquez, Juan Carlos; Malinowski, Mariusz
2013-01-01
-line measurements. Similarly to any process system, MG hierarchical control is divided into three levels. However, an additional control algorithm is required to manage power transmission between sources and loads, maximizing efficiency and minimizing transmission losses. This real-time optimization problem......A microgrid (MG) is a local energy system consisting of a number of energy sources, energy storage units and loads that operate connected to the main electrical grid or autonomously. MGs include wind, solar or other renewable energy sources. MGs provide flexibility, reduce the main electricity grid...... dependence and contribute to change the large centralized production paradigm to local and distributed generation. However, such energy systems require complex management, advanced control and optimization. Interest on MGs hierarchical control has increased due to the availability of cheap on...
Greczynski, G.; Mráz, S.; Schneider, J. M.; Hultman, L.
2018-02-01
The nitride layer formed in the target race track during the deposition of stoichiometric TiN thin films is a factor 2.5 thicker for high power impulse magnetron sputtering (HIPIMS), compared to conventional dc processing (DCMS). The phenomenon is explained using x-ray photoelectron spectroscopy analysis of the as-operated Ti target surface chemistry supported by sputter depth profiles, dynamic Monte Carlo simulations employing the TRIDYN code, and plasma chemical investigations by ion mass spectrometry. The target chemistry and the thickness of the nitride layer are found to be determined by the implantation of nitrogen ions, predominantly N+ and N2+ for HIPIMS and DCMS, respectively. Knowledge of this method-inherent difference enables robust processing of high quality functional coatings.
International Nuclear Information System (INIS)
Ozaki, Yoshihiko; Sunagawa, Takeyoshi
2014-01-01
In this paper, it is reported about some experiments that have been carried out in the reactor training that targets sophomore of the department of applied nuclear engineering, FUT. Reactor of Kinki University Atomic Energy Research Institute (UTR-KINKI) was used for reactor training. When each critical state was achieved at different reactor output respectively in reactor operating, it was confirmed that the control rod position at that time does not change. Further, control rod reactivity calibration experiments using positive Period method were carried out for shim safety rod and regulating rod, respectively. The results were obtained as reasonable values in comparison with the nominal value of the UTR-KINKI. The measurement of reactor power change after reactor scram was performed, and the presence of the delayed neutron precursor was confirmed by calculating the half-life. The spatial dose rate measurement experiment of neutrons and γ-rays in the reactor room in a reactor power 1W operating conditions were also performed. (author)
Directory of Open Access Journals (Sweden)
P. Anjana
2017-03-01
Full Text Available This paper presents a Modified Gravitational Search Algorithm (MGSA to improve the performance of PI controller in varying load condition. The proposed approach is capable of mitigating reactive power, neutral current, source current THD and significant improvement in power factor nearly unity (0.997. The DC link voltage across the capacitor is controlled by PI controller which is deciding the performance of shunt APF. Hence, the robust optimization technique based integral time square error (ITSE with consideration of weight factor (α & β, maximum overshoot ((|(∆_Ve ̅〖(n〗_max | and setling time t_s-t_0, is providing the optimum solution of Kp & Ki. The robustness of proposed objective function and algorithm compared with GSA based three other error criterion techniques. The efficiency of the proposed controller has been tested over nonlinear and unbalance loading condition. The performance of ITSE based MGSA-PI controller is batter then other three error criterion techniques. The values of THD are below the mark of 5% specified in IEEE-519 standard.
Directory of Open Access Journals (Sweden)
A. F. Zobaa
2006-09-01
Full Text Available Many of today utility interconnected wind farms use induction generator (IG to convert the captured wind mechanical power into electricity. Induction generator has some advantages over the synchronous generator (SG. The main advantages are its robustness and its capability to be synchronized directly to the grid. The main disadvantage, however, is its dependency on the grid for supplying its own reactive power ‘VAr’. Whether fixed or adjustable VAr systems are connected across its terminal, IG must operate at unity power factor at the rated loading while the wind power varies. With supervised control and appropriate coordination, VAr can be used to the benefits of both the wind farm developer and the hosting utility. The incorporation of today adjustable reactive power compensators such as the Static VAr Compensation (SVC and Static Synchronous Compensator (STATCOM with IG are vital ingredient toward a successful penetration of wind energy in today distribution grid to ensure voltage stability during the steady state and transient periods.
International Nuclear Information System (INIS)
Murray, J.J.
1977-10-01
Rotational and focal effects of solenoids used in PEP detectors will cause severe perturbations of machine beam optics and must be corrected. Ordinarily this would be accomplished by the addition of compensating solenoids and adjustment of insertion quadrupole strengths. It has been found that an arbitrary cross plane coupling representing the effects of solenoids and/or skew quads in any combination can be synthesized (or compensated) exactly using a quartet of skew quads combined with other erect transport elements in a wide variety of configurations. Specific skew quad compensating systems for PEP have been designed and are under study by PEP staff. So far no fundamental flaws have been discovered. In view of that, PEP management has tentatively authorized the use of such a system in the PEP-4, PEP-9 experiments and proposes to leave the question open ''without prejudice'' for other experiments. Use of skew quad compensation involves an imponderable risk, of course, simply because the method is new and untested. But in addition to providing the only known method for dealing with skew quad perturbations, skew quad compensation, as an alternate to compensating solenoids, promises to be much cheaper, to require much less power and to occupy much less space in the IR's. The purpose of this note is to inform potential users of the foregoing situation and to explain skew quad compensation more fully. 2 refs., 1 fig., 1 tab
Power quality issues current harmonics
Mikkili, Suresh
2015-01-01
Power Quality Issues: Current Harmonics provides solutions for the mitigation of power quality problems related to harmonics. Focusing on active power filters (APFs) due to their excellent harmonic and reactive power compensation in two-wire (single phase), three-wire (three-phase without neutral), and four-wire (three-phase with neutral) AC power networks with nonlinear loads, the text:Introduces the APF technology, describing various APF configurations and offering guidelines for the selection of APFs for specific application considerationsCompares shunt active filter (SHAF) control strategi
Hydro-Quebec to complete series compensation protection by 1995
Energy Technology Data Exchange (ETDEWEB)
Champagne, L
1991-09-01
Hydro-Quebec's 735-kV transmission system is characterized by remote hydroelectric power plants located far north of main load centers, making it difficult to maintain dynamic stability of the system in the case of faults. The utility is planning to install series compensation on its 735-kV network from 1992 to 1995 in order to correct for the reactive impedance of the transmission lines, thereby removing load electrically closer to the points of generation. Series compensation in the form of capacitor banks with overvoltage protection will be installed at line ends and will replace large numbers of conventional electromagnetic or electronic distance relays currently used as line protection equipment. Three Manicouagan-Levis lines and the Micoua-Laurentides line will be center-compensated at 17%. A total of thirty-seven 735-kV lines will be series-compensated at ca 40%. Two separate sets of tests were conducted to select the new series compensation system. Following a market study, eight systems of line protection relays were selected as most likely to operate on a series compensated system. All were performance tested on a transient network analyzer in a simulation involving all components of the 735-kV system with some exceptions. Relays singled out in standard tests were put to a series of more specific tests on the Abitibi-LaVerendrye line, where the largest number of relay malfunctions had been recorded. A current differential relay and a superimposed directional relay were recommended as the two primary protective systems to be installed. Backup protection will be provided by using one of the distance relays with memory polarization. 3 figs.
Systems of mechanized and reactive droplets powered by multi-responsive surfactants
Yang, Zhijie; Wei, Jingjing; Sobolev, Yaroslav I.; Grzybowski, Bartosz A.
2018-01-01
Although ‘active’ surfactants, which are responsive to individual external stimuli such as temperature, electric or magnetic fields, light, redox processes or chemical agents, are well known, it would be interesting to combine several of these properties within one surfactant species. Such multi-responsive surfactants could provide ways of manipulating individual droplets and possibly assembling them into larger systems of dynamic reactors. Here we describe surfactants based on functionalized nanoparticle dimers that combine all of these and several other characteristics. These surfactants and therefore the droplets that they cover are simultaneously addressable by magnetic, optical and electric fields. As a result, the surfactant-covered droplets can be assembled into various hierarchical structures, including dynamic ones, in which light powers the rapid rotation of the droplets. Such rotating droplets can transfer mechanical torques to their non-nearest neighbours, thus acting like systems of mechanical gears. Furthermore, droplets of different types can be merged by applying electric fields and, owing to interfacial jamming, can form complex, non-spherical, ‘patchy’ structures with different surface regions covered with different surfactants. In systems of droplets that carry different chemicals, combinations of multiple stimuli can be used to control the orientations of the droplets, inter-droplet transport, mixing of contents and, ultimately, sequences of chemical reactions. Overall, the multi-responsive active surfactants that we describe provide an unprecedented level of flexibility with which liquid droplets can be manipulated, assembled and reacted.
DEFF Research Database (Denmark)
Liu, Yan; Chen, Zhe
2013-01-01
With increasing application of both Line Commutated Converter based High Voltage Direct Current (LCC-HVDC) systems and Voltage Source Converter based HVDC (VSC-HVDC) links, a new type of system structure named Hybrid Multi-Infeed HVDC (HMIDC) system is formed in the modern power systems. This paper...... presents the operation and control method of the wind farm connected HMIDC system. The wind power fluctuation takes large influence to the system voltages. In order to reduce the voltage fluctuation of LCC-HVDC infeed bus caused by the wind power variation, a voltage sensitivity-based reactive power...
International Nuclear Information System (INIS)
Motalab, Mohammad Abdul; Kim, Woosong; Kim, Yonghee
2015-01-01
Highlights: • The PCR of the CANDU6 reactor is slightly negative at low power, e.g. <80% P. • Doppler broadening of scattering resonances improves noticeably the FTC and make the PCR more negative or less positive in CANDU6. • The elevated inlet coolant condition can worsen significantly the PCR of CANDU6. • Improved design tools are needed for the safety evaluation of CANDU6 reactor. - Abstract: The power coefficient of reactivity (PCR) is a very important parameter for inherent safety and stability of nuclear reactors. The combined effect of a relatively less negative fuel temperature coefficient and a positive coolant temperature coefficient make the CANDU6 (CANada Deuterium Uranium) PCR very close to zero. In the original CANDU6 design, the PCR was calculated to be clearly negative. However, the latest physics design tools predict that the PCR is slightly positive for a wide operational range of reactor power. It is upon this contradictory observation that the CANDU6 PCR is re-evaluated in this work. In our previous study, the CANDU6 PCR was evaluated through a standard lattice analysis at mid-burnup and was found to be negative at low power. In this paper, the study was extended to a detailed 3-D CANDU6 whole-core model using the Monte Carlo code Serpent2. The Doppler broadening rejection correction (DBRC) method was implemented in the Serpent2 code in order to take into account thermal motion of the heavy uranium nucleus in the neutron-U scattering reactions. Time-average equilibrium core was considered for the evaluation of the representative PCR of CANDU6. Two thermal hydraulic models were considered in this work: one at design condition and the other at operating condition. Bundle-wise distributions of the coolant properties are modeled and the bundle-wise fuel temperature is also considered in this study. The evaluated nuclear data library ENDF/B-VII.0 was used throughout this Serpent2 evaluation. In these Monte Carlo calculations, a large number
International Nuclear Information System (INIS)
Soleymani, S.
2013-01-01
Highlights: ► We model the behavior of Gencos in the active and reactive power markets. ► Genco’s strategy is modeled as a bi-level optimization problem. ► The ISO’s market clearing model is modified with applying generator APFs. ► Good forecast of Genco’s information will increase the accuracy of proposed method. ► Obtained profit of Gencos depend on their bidding strategy. - Abstract: As Gencos are responsible for providing active and reactive power generation, they should devise good bidding strategies for energy and reactive power market. The paper describes a method for analyzing the competition among transmission-constrained Gencos with incomplete information. The proposed methodology employs the Supply Function Equilibrium (SFE) for modeling a Genco’s bidding strategy in energy market and uses Expected Payment Function (EPF) to construct a bidding framework in the reactive power market. The problem of finding the optimum strategy of Gencos is modeled as a bi-level optimization problem, where the upper sub-problem represents individual Genco’s payoff and the lower sub-problem solves the ISO’s market clearing problem. The ISO’s market clearing model is modified with applying generator Active Participation Factors to improve the voltage stability margin. The IEEE 39 bus test system is used to verify the effectiveness of the proposed method.
Ripple characteristic of the main ring magnet power supply for the KEK 12 GeV PS
International Nuclear Information System (INIS)
Sato, Hikaru; Sueno, Tuyosi; Mikawa, Katsuhiko
1995-01-01
First of all, general description of the main ring magnet power supply for the KEK 12 GeV PS will be described. The main power supply consists of thyristor rectifiers, DC filters, reactive power compensators, AC harmonic filters and control systems. Devices and control systems for suppressing ripple component of magnet field will be described. (author)
Stranak, V.; Hubicka, Z.; Cada, M.; Bogdanowicz, R.; Wulff, H.; Helm, C. A.; Hippler, R.
2018-03-01
Iron oxide films were deposited using high power impulse magnetron sputtering (HiPIMS) of an iron cathode in an argon/oxygen gas mixture at different gas pressures (0.5 Pa, 1.5 Pa, and 5.0 Pa). The HiPIMS system was operated at a repetition frequency f = 100 Hz with a duty cycle of 1%. A main goal is a comparison of film growth during conventional and electron cyclotron wave resonance-assisted HiPIMS. The deposition plasma was investigated by means of optical emission spectroscopy and energy-resolved mass spectrometry. Active oxygen species were detected and their kinetic energy was found to depend on the gas pressure. Deposited films were characterized by means of spectroscopic ellipsometry and grazing incidence x-ray diffraction. Optical properties and crystallinity of as-deposited films were found to depend on the deposition conditions. Deposition of hematite iron oxide films with the HiPIMS-ECWR discharge is attributed to the enhanced production of reactive oxygen species.
International Nuclear Information System (INIS)
Jatuff, F.; Krouthen, J.; Helmersson, S.; Chawla, R.
2004-01-01
A significant source of uncertainty in Boiling Water Reactor physics is associated with the precise characterisation of the axially-dependent neutron moderation properties of the coolant inside the fuel assembly channel, and the corresponding effects on reactor physics parameters such as the lattice neutron multiplication, the neutron migration length, and the pin-by-pin power distribution. In this paper, the effects of particularly relevant void fraction uncertainties on reactor physics parameters have been studied for a BWR assembly of type Westinghouse SVEA-96 using the CASMO-4, HELIOS/PRESTO-2 and MCNP4C codes. The SVEA-96 geometry is characterised by the sub-division of the assembly into four different sub-bundles by means of an inner bypass with a cruciform shape. The study has covered the following issues: (a) the effects of different cross-section data libraries on the void coefficient of reactivity, for a wide range of void fractions; (b) the effects due to a heterogeneous vs. homogeneous void distribution inside the sub-bundles; and (c) the consequences of partly inserted absorber blades producing different void fractions in different sub-bundles. (author)
Energy Technology Data Exchange (ETDEWEB)
Gomes, Mario Helder [Departamento de Engenharia Electrotecnica, Instituto Politecnico de Tomar, Quinta do Contador, Estrada da Serra, 2300 Tomar (Portugal); Saraiva, Joao Tome [INESC Porto and Faculdade de Engenharia da Universidade do Porto, Campus da FEUP, Rua Dr. Roberto Frias, 4200 - 465 Porto (Portugal)
2010-10-15
MicroGrids represent a new paradigm for the operation of distribution systems and there are several advantages as well as challenges regarding their development. One of the advantages is related with the participation of MicroGrid agents in electricity markets and in the provision of ancillary services. This paper describes two optimization models to allocate three ancillary services among MicroGrid agents - reactive power/voltage control, active loss balancing and demand interruption. These models assume that MicroGrid agents participate in the day-ahead market sending their bids to the MicroGrid Central Controller, MGCC, that acts as an interface with the Market Operator. Once the Market Operator returns the economic dispatch of the MicroGrid agents, the MGCC checks its technical feasibility (namely voltage magnitude and branch flow limits) and activates an adjustment market to change the initial schedule and to allocate these three ancillary services. One of the models has crisp nature considering that voltage and branch flow limits are rigid while the second one admits that voltage and branch flow limits are modeled in a soft way using Fuzzy Set concepts. Finally, the paper illustrates the application of these models with a Case Study using a 55 node MV/LV network. (author)
Directory of Open Access Journals (Sweden)
Faa-Jeng Lin
2014-01-01
Full Text Available This study presents a new active and reactive power control scheme for a single-stage three-phase grid-connected photovoltaic (PV system during grid faults. The presented PV system utilizes a single-stage three-phase current-controlled voltage-source inverter to achieve the maximum power point tracking (MPPT control of the PV panel with the function of low voltage ride through (LVRT. Moreover, a formula based on positive sequence voltage for evaluating the percentage of voltage sag is derived to determine the ratio of the injected reactive current to satisfy the LVRT regulations. To reduce the risk of overcurrent during LVRT operation, a current limit is predefined for the injection of reactive current. Furthermore, the control of active and reactive power is designed using a two-dimensional recurrent fuzzy cerebellar model articulation neural network (2D-RFCMANN. In addition, the online learning laws of 2D-RFCMANN are derived according to gradient descent method with varied learning-rate coefficients for network parameters to assure the convergence of the tracking error. Finally, some experimental tests are realized to validate the effectiveness of the proposed control scheme.
Comparison Study of Power System Small Signal Stability Improvement Using SSSC and STATCOM
DEFF Research Database (Denmark)
Hu, Weihao; Su, Chi; Fang, Jiakun
2013-01-01
the connected power system, both SSSC and STATCOM are able to participate in the power system inter-area oscillation damping by changing the compensated reactance or the provided reactive power. This paper analyses the influence of SSSC and STATCOM on power system small signal stability. The damping controller...... schemes for SSSC and STATCOM are presented and discussed. The IEEE 39-bus New England system model as the test system is built in DIgSIELNT PowerFactory, in which the damping control strategies for both SSSC and STATCOM are validated by time domain simulations and modal analysis. Furthermore, comparison......A static synchronous series compensator (SSSC) has the ability to emulate a reactance in series with the connected transmission line. A static synchronous compensator (STATCOM) is able to provide the reactive power to an electricity network. When fed with some supplementary signals from...
Reactivity balance for a soluble boron-free small modular reactor
Directory of Open Access Journals (Sweden)
Lezani van der Merwe
2018-06-01
Full Text Available Elimination of soluble boron from reactor design eliminates boron-induced reactivity accidents and leads to a more negative moderator temperature coefficient. However, a large negative moderator temperature coefficient can lead to large reactivity feedback that could allow the reactor to return to power when it cools down from hot full power to cold zero power. In soluble boron-free small modular reactor (SMR design, only control rods are available to control such rapid core transient.The purpose of this study is to investigate whether an SMR would have enough control rod worth to compensate for large reactivity feedback. The investigation begins with classification of reactivity and completes an analysis of the reactivity balance in each reactor state for the SMR model.The control rod worth requirement obtained from the reactivity balance is a minimum control rod worth to maintain the reactor critical during the whole cycle. The minimum available rod worth must be larger than the control rod worth requirement to manipulate the reactor safely in each reactor state. It is found that the SMR does have enough control rod worth available during rapid transient to maintain the SMR at subcritical below k-effectives of 0.99 for both hot zero power and cold zero power. Keywords: Control Rod Worth, Reactivity Balance, Reactivity Feedback, Small Modular Reactor, Soluble Boron Free
Voltage Control in Wind Power Plants with Doubly Fed Generators
DEFF Research Database (Denmark)
Garcia, Jorge Martinez
In this work, the process of designing a wind power plant composed of; doubly fed induction generators, a static compensator unit, mechanically switched capacitors and on-load tap changer, for voltage control is shown. The selected control structure is based on a decentralized system, since...... supplied by the doubly fed induction generator wind turbines is overcome by installing a reactive power compensator, i.e. a static compensator unit, which is coordinated with the plant control by a specific dispatcher. This dispatcher is set according to the result of the wind power plant load flow....... To release the operation of the converters during steady-state disturbances, mechanically switched capacitors are installed in the wind power plant, which due to their characteristics, they are appropriate for permanent disturbances compensation. The mechanically switched capacitors are controlled to allow...
Instantaneous power theory and applications to power conditioning
Akagi, Hirofumi; Aredes, Mauricio
2017-01-01
This new edition, written by a team of experts in the field, is fully updated with information on the latest electric power technology. The instantaneous power theory, or “the p-q theory,” makes clear the physical meaning of what instantaneous real and imaginary power is in a three-phase circuit. Moreover, it provides insight into how energy flows from a source to a load, or circulates between phases, in a three-phase circuit. This theory can be used in the design and understanding of FACTS (Flexible AC Transmission System) compensators. The book introduces many concepts in the field of active filtering that are unique to this edition. It provides a study tool for final year undergraduate students, graduate students and engineers dealing ith harmonic pollution problems, reactive power compensation or power quality in general.
Venkateswara Rao, B.; Kumar, G. V. Nagesh; Chowdary, D. Deepak; Bharathi, M. Aruna; Patra, Stutee
2017-07-01
This paper furnish the new Metaheuristic algorithm called Cuckoo Search Algorithm (CSA) for solving optimal power flow (OPF) problem with minimization of real power generation cost. The CSA is found to be the most efficient algorithm for solving single objective optimal power flow problems. The CSA performance is tested on IEEE 57 bus test system with real power generation cost minimization as objective function. Static VAR Compensator (SVC) is one of the best shunt connected device in the Flexible Alternating Current Transmission System (FACTS) family. It has capable of controlling the voltage magnitudes of buses by injecting the reactive power to system. In this paper SVC is integrated in CSA based Optimal Power Flow to optimize the real power generation cost. SVC is used to improve the voltage profile of the system. CSA gives better results as compared to genetic algorithm (GA) in both without and with SVC conditions.
Energy Technology Data Exchange (ETDEWEB)
Barragan Gomez, Sergio Baruch
2004-05-15
The changes in the structures of the electric systems of vertical schemes to horizontal schemes have caused systems to be formed by four segments: generation, transmission, distribution and commercialization. Under this scheme the system operator is the one in charge of guaranteeing an economic and secure administration-operation. One of the main tasks of this organization together with the transmission net is achieving the movement of power from the generation centers until the consumption points, however in order to make this activity possible, a group of auxiliary service is needed. In a horizontal scheme, the voltage support of the generators is considered as an auxiliary service, which is necessary for the operation of the system. Although compensation of reactive power should be achieved in a local way through shunt compensation, static compensators, synchronous condensers and transformers with under load tap changer, because transmitting reactive power flow from generators causes an increment in the transmission system losses, however although the main function of the synchronous generators is the production of active power, in an implicit way these generate reactive power under certain operation conditions. Therefore the need of determining a cost for the voltage support of the generators exists, since this action is considered as an auxiliary service and it is rewarded in an independent way. In this work, the gradient method is used to solve the reactive power dispatch and determine the cost for voltage support of each participant generator in the system. The reactive power dispatch is subject to equality restrictions that represent the balance equations of active and reactive power of each node and to inequality restrictions that correspond to limits in the voltage profiles of all the system nodes. The equality restrictions are considered with the Lagrange multipliers method and the inequality restrictions with quadratic penalty functions. The total cost
Energy Technology Data Exchange (ETDEWEB)
1986-01-01
The various methods used for releasing active and reactive power reserves in the seconds range have different static and dynamics effects and involve different investment and operation cost. This two-day conference concerns different methods available to power plants and network for seconds stand-by reserve based on network requirements. Measurements and simulation studies are compared to assess the efficiency of individual methods. The profitability of individual methods is assessed in a comparative study.
SMART core power control method by coolant temperature variation
International Nuclear Information System (INIS)
Lee, Chung Chan; Cho, Byung Oh
2001-08-01
SMART is a soluble boron-free integral type pressurized water reactor. Its moderator temperature coefficient (MTC) is strongly negative throughout the cycle. The purpose of this report is how to utilize the primary coolant temperature as a second reactivity control system using the strong negative MTC. The reactivity components associated with reactor power change are Doppler reactivity due to fuel temperature change, moderator temperature reactivity and xenon reactivity. Doppler reactivity and moderator temperature reactivity take effects almost as soon as reactor power changes. On the other hand, xenon reactivity change takes more than several hours to reach an equilibrium state. Therefore, coolant temperature at equilibrium state is chosen as the reference temperature. The power dependent reference temperature line is limited above 50% power not to affect adversely in reactor safety. To compensate transient xenon reactivity, coolant temperature operating range is expanded. The suggested coolant temperature operation range requires minimum control rod motion for 50% power change. For smaller power changes such as 25% power change, it is not necessary to move control rods to assure that fuel design limits are not exceeded
Energy Technology Data Exchange (ETDEWEB)
Filippiadis, D., E-mail: dfilippiadis@yahoo.gr; Gkizas, C., E-mail: chgkizas@gmail.com; Kostantos, C., E-mail: drkarpen@yahoo.gr; Mazioti, A., E-mail: argyromazioti@yahoo.gr; Reppas, L., E-mail: l.reppas@yahoo.com; Brountzos, E., E-mail: ebrountz@med.uoa.gr; Kelekis, N., E-mail: kelnik@med.uoa.gr; Kelekis, A., E-mail: akelekis@med.uoa.gr [University General Hospital “ATTIKON”, 2nd Radiology Department (Greece)
2016-10-15
PurposeTo report our experience with the use of a battery-powered drill in biopsy and radiofrequency ablation of osteoid osteoma with excess reactive new bone formation. The battery-powered drill enables obtaining the sample while drilling.Materials and MethodsDuring the last 18 months, 14 patients suffering from painful osteoid osteoma with excess reactive new bone formation underwent CT-guided biopsy and radiofrequency ablation. In order to assess and sample the nidus of the osteoid osteoma, a battery-powered drill was used. Biopsy was performed in all cases. Then, coaxially, a radiofrequency electrode was inserted and ablation was performed with osteoid osteoma protocol. Procedure time (i.e., drilling including local anesthesia), amount of scans, technical and clinical success, and the results of biopsy are reported.ResultsAccess to the nidus through the excess reactive new bone formation was feasible in all cases. Median procedure time was 50.5 min. Histologic verification of osteoid osteoma was performed in all cases. Radiofrequency electrode was coaxially inserted within the nidus and ablation was successfully performed in all lesions. Median amount CT scans, performed to control correct positioning of the drill and precise electrode placement within the nidus was 11. There were no complications or material failure reported in our study.ConclusionsThe use of battery-powered drill facilitates access to the osteoid osteoma nidus in cases where excess reactive new bone formation is present. Biopsy needle can be used for channel creation during the access offering at the same time the possibility to extract bone samples.
Directory of Open Access Journals (Sweden)
Aman Abdulla Tanvir
2015-09-01
Full Text Available This paper presents the modeling, rapid control prototyping, and hardware-in-the-loop testing for real-time simulation and control of a grid-connected doubly fed induction generator (DFIG in a laboratory-size wind turbine emulator for wind energy conversation systems. The generator is modeled using the direct-quadrature rotating reference frame circuit along with the aligned stator flux, and the field-oriented control approach is applied for independent control of the active and reactive power and the DC-link voltage at the grid side. The control of the active, reactive power and the DC-link voltage are performed using a back-to-back converter at sub- and super-synchronous as well as at variable speeds. The control strategy is experimentally validated on an emulated wind turbine driven by the Opal-RT real-time simulator (OP5600 for simultaneous control of the DC-link voltage, active and reactive power.
Energy Technology Data Exchange (ETDEWEB)
Silva, Alexandre Alves Sampaio e
1996-07-01
The obtention of the electrical and mechanical parameters of a squirrel-cage induction motor is investigated. Two methods of identification are studied: the reactive power method, used to determine the electrical parameters and an acceleration method on a startup test used to to find the mechanical ones. The method of reactive power is developed by analysing the machine steady state operation. In this analysis, a relationship between the electrical parameters and the reactive power is obtained. A minimization algorithm is used to determine the parameters based on this relationship. The acceleration method uses an acquisition of the transient variables, which is used in a recursive least square method furnishing the mechanical parameters. Both of methods are implemented on a special hardware and software system, consisting of sensors and A/D boards that make a digital acquisition of voltage, current and speed values. The validation procedures for the method and parameters are based on comparing between the real and simulated evaluation of the dynamical behavior of the motor in a startup test. The skin-effect influence over some of the motor parameters was also discussed. (author)
International Nuclear Information System (INIS)
Bobrov, A. A.; Glushkov, E. S.; Zimin, A. A.; Kapitonova, A. V.; Kompaniets, G. V.; Nosov, V. I.; Petrushenko, R. P.; Smirnov, O. N.
2012-01-01
A method for experimental determination of the relative power density distribution in a heterogeneous reactor based on measurements of fuel reactivity effects and importance of neutrons from a californium source is proposed. The method was perfected on two critical assembly configurations at the NARCISS facility of the Kurchatov Institute, which simulated a small-size heterogeneous nuclear reactor. The neutron importance measurements were performed on subcritical and critical assemblies. It is shown that, along with traditionally used activation methods, the developed method can be applied to experimental studies of special features of the power density distribution in critical assemblies and reactors.
Hysteresis current control technique of VSI for compensation of grid-connected unbalanced loads
DEFF Research Database (Denmark)
Pouresmaeil, Edris; Akorede, Mudathir Funsho; Montesinos-Miracle, Daniel
2014-01-01
interconnection issues that usually arise as DG units connect to the electric grid. The proposed strategy, implemented in Matlab/Simulink environment in different operating scenarios, provides compensation for active, reactive, unbalanced, and harmonic current components of grid-connected nonlinear unbalanced...... resources as they connect to the exiting power grid could provoke many power quality problems on the grid side. For this reason, due considerations must be given to power generation and safe running before DG units is actually integrated into the power grid. The main aim of this paper is to address the grid...... loads. The simulation results obtained in this study demonstrate the level of accuracy of the proposed technique, which ensure a balance in the overall grid phase currents, injection of maximum available power from DG resources to the grid, improvement of the utility grid power factor, and a reduction...