WorldWideScience

Sample records for reactive porous transport

  1. Langevin model for reactive transport in porous media

    Science.gov (United States)

    Tartakovsky, Alexandre M.

    2010-08-01

    Existing continuum models for reactive transport in porous media tend to overestimate the extent of solute mixing and mixing-controlled reactions because the continuum models treat both the mechanical and diffusive mixings as an effective Fickian process. Recently, we have proposed a phenomenological Langevin model for flow and transport in porous media [A. M. Tartakovsky, D. M. Tartakovsky, and P. Meakin, Phys. Rev. Lett. 101, 044502 (2008)10.1103/PhysRevLett.101.044502]. In the Langevin model, the fluid flow in a porous continuum is governed by a combination of a Langevin equation and a continuity equation. Pore-scale velocity fluctuations, the source of mechanical dispersion, are represented by the white noise. The advective velocity (the solution of the Langevin flow equation) causes the mechanical dispersion of a solute. Molecular diffusion and sub-pore-scale Taylor-type dispersion are modeled by an effective stochastic advection-diffusion equation. Here, we propose a method for parameterization of the model for a synthetic porous medium, and we use the model to simulate multicomponent reactive transport in the porous medium. The detailed comparison of the results of the Langevin model with pore-scale and continuum (Darcy) simulations shows that: (1) for a wide range of Peclet numbers the Langevin model predicts the mass of reaction product more accurately than the Darcy model; (2) for small Peclet numbers predictions of both the Langevin and the Darcy models agree well with a prediction of the pore-scale model; and (3) the accuracy of the Langevin and Darcy model deteriorates with the increasing Peclet number but the accuracy of the Langevin model decreases more slowly than the accuracy of the Darcy model. These results show that the separate treatment of advective and diffusive mixing in the stochastic transport model is more accurate than the classical advection-dispersion theory, which uses a single effective diffusion coefficient (the dispersion

  2. Reactive solute transport in physically and chemically heterogeneous porous media with multimodal reactive mineral facies: The Lagrangian approach

    CERN Document Server

    Soltanian, Mohamad Reza; Dai, Zhenxue; Huang, Chaocheng

    2014-01-01

    Physical and chemical heterogeneities have a large impact on reactive transport in porous media. Examples of heterogeneous attributes affecting reactive mass transport are the hydraulic conductivity (K), and the equilibrium sorption distribution coefficient (Kd). This paper uses the Deng et al. (2013) conceptual model for multimodal reactive mineral facies and a Lagrangian-based stochastic theory in order to analyze the reactive solute dispersion in three-dimensional anisotropic heterogeneous porous media with hierarchical organization of reactive minerals. An example based on real field data is used to illustrate the time evolution trends of reactive solute dispersion. The results show that the correlation between the hydraulic conductivity and the equilibrium sorption distribution coefficient does have a significant effect on reactive solute dispersion. The anisotropy ratio does not have a significant effect on reactive solute dispersion. Furthermore, through a sensitivity analysis we investigate the impact...

  3. Reactive transport of aqueous protons in porous media

    KAUST Repository

    McNeece, Colin J.

    2016-10-09

    The sorption of protons determines the surface charge of natural media and is therefore a first-order control on contaminant transport. Significant effort has been extended to develop chemical models that quantify the sorption of protons at the mineral surface. To compare these models’ effect on predicted proton transport, we present analytic solutions for column experiments through silica sand. Reaction front morphology is controlled by the functional relationship between the total sorbed and total aqueous proton concentrations. An inflection point in this function near neutral pH leads to a reversal in the classic front formation mechanism under basic conditions, such that proton desorption leads to a self-sharpening front, while adsorption leads to a spreading front. A composite reaction front comprising both a spreading and self-sharpening segment can occur when the injected and initial concentrations straddle the inflection point. This behavior is unique in single component reactive transport and arises due to the auto-ionization of water rather than electrostatic interactions at the mineral surface. We derive a regime diagram illustrating conditions under which different fronts occur, highlighting areas where model predictions diverge. Chemical models are then compared and validated against a systematic set of column experiments.

  4. Marine phages as excellent tracers for reactive colloidal transport in porous media

    Science.gov (United States)

    Ghanem, Nawras; Chatzinotas, Antonis; Harms, Hauke; Wick, Lukas Y.

    2016-04-01

    Question: Here we evaluate marine phages as specific markers of hydrological flow and reactive transport of colloidal particles in the Earth's critical zone (CZ). Marine phages and their bacterial hosts are naturally absent in the CZ, and can be detected with extremely high sensitivity. In the framework of the DFG Collaborative Research Center AquaDiva, we asked the following questions: (1) Are marine phages useful specific markers of hydrological flow and reactive transport in porous media? and (2) Which phage properties are relevant drivers for the transport of marine phages in porous media? Methods: Seven marine phages from different families (as well two commonly used terrestrial phages) were selected based on their morphology, size and physico-chemical surface properties (surface charge and hydrophobicity). Phage properties were assessed by electron microscopy, dynamic light scattering and water contact angle analysis (CA). Sand-filled laboratory percolation columns were used to study transport. The breakthrough curves of the phages were analyzed using the clean bed filtration theory and the XDLVO theory of colloid stability, respectively. Phages were quantified by a modified high- throughput plaque assay and a culture-independent particle counting method approach. Results: Our data show that most marine tested phages exhibited highly variable transport rates and deposition efficiency, yet generally high colloidal stability and viability. We find that size, morphology and hydrophobicity are key factors shaping the transport efficiency of phages. Differing deposition efficiencies of the phages were also supported by calculated XDLVO interaction energy profile. Conclusion: Marine phages have a high potential for the use as sensitive tracers in terrestrial habitats with their surface properties playing a crucial role for their transport. Marine phages however, exhibit differences in their deposition efficiency depending on their morphology, hydrophobicity and

  5. Impact of carbonate precipitation on flow and reactive transport in porous media

    Science.gov (United States)

    Noiriel, C. N.; Yang, L.; Ajo Franklin, J. B.; Steefel, C.

    2010-12-01

    Precipitation of carbonates during CO2 sequestration can affect both flow and transport in porous media, leading to reservoir injectivity decrease. This process has been studied experimentally during early stages of carbonate crystal growth. Supersaturated CO2-rich solutions at saturations states of Ω= 5 or 27 were flowed through cylindrical cores packed with glass beads, calcite spar crystals and aragonite ooids over the course of several weeks to induce calcite precipitation. Samples were characterized using X-ray microtomography at the Berkeley Laboratory (Advanced Light Source) to provide 3D imaging of crystal growth. Observations of the two different supersatuations indicate differences both in the crystal growth rate and morphology, and thus the modification of pore geometry. Porosity decreases most close to the column inlet as expected, where the saturation index is highest. Changes in porosity were modelled at the continuum scale using the multicomponent reactive transport software, CrunchFlow, which accounts for the change in saturation states and rates over the length of the column. Comparison with the results of well-stirred reactor precipitation experiments allow a quantification of the evolving reactive surface area and rates within the porous medium of the column.

  6. Image-based modeling of flow and reactive transport in porous media

    Science.gov (United States)

    Qin, Chao-Zhong; Hoang, Tuong; Verhoosel, Clemens V.; Harald van Brummelen, E.; Wijshoff, Herman M. A.

    2017-04-01

    Due to the availability of powerful computational resources and high-resolution acquisition of material structures, image-based modeling has become an important tool in studying pore-scale flow and transport processes in porous media [Scheibe et al., 2015]. It is also playing an important role in the upscaling study for developing macroscale porous media models. Usually, the pore structure of a porous medium is directly discretized by the voxels obtained from visualization techniques (e.g. micro CT scanning), which can avoid the complex generation of computational mesh. However, this discretization may considerably overestimate the interfacial areas between solid walls and pore spaces. As a result, it could impact the numerical predictions of reactive transport and immiscible two-phase flow. In this work, two types of image-based models are used to study single-phase flow and reactive transport in a porous medium of sintered glass beads. One model is from a well-established voxel-based simulation tool. The other is based on the mixed isogeometric finite cell method [Hoang et al., 2016], which has been implemented in the open source Nutils (http://www.nutils.org). The finite cell method can be used in combination with isogeometric analysis to enable the higher-order discretization of problems on complex volumetric domains. A particularly interesting application of this immersed simulation technique is image-based analysis, where the geometry is smoothly approximated by segmentation of a B-spline level set approximation of scan data [Verhoosel et al., 2015]. Through a number of case studies by the two models, we will show the advantages and disadvantages of each model in modeling single-phase flow and reactive transport in porous media. Particularly, we will highlight the importance of preserving high-resolution interfaces between solid walls and pore spaces in image-based modeling of porous media. References Hoang, T., C. V. Verhoosel, F. Auricchio, E. H. van

  7. Reactive silica transport in fractured porous media: Analytical solutions for a system of parallel fractures

    Science.gov (United States)

    Yang, Jianwen

    2012-04-01

    A general analytical solution is derived by using the Laplace transformation to describe transient reactive silica transport in a conceptualized 2-D system involving a set of parallel fractures embedded in an impermeable host rock matrix, taking into account of hydrodynamic dispersion and advection of silica transport along the fractures, molecular diffusion from each fracture to the intervening rock matrix, and dissolution of quartz. A special analytical solution is also developed by ignoring the longitudinal hydrodynamic dispersion term but remaining other conditions the same. The general and special solutions are in the form of a double infinite integral and a single infinite integral, respectively, and can be evaluated using Gauss-Legendre quadrature technique. A simple criterion is developed to determine under what conditions the general analytical solution can be approximated by the special analytical solution. It is proved analytically that the general solution always lags behind the special solution, unless a dimensionless parameter is less than a critical value. Several illustrative calculations are undertaken to demonstrate the effect of fracture spacing, fracture aperture and fluid flow rate on silica transport. The analytical solutions developed here can serve as a benchmark to validate numerical models that simulate reactive mass transport in fractured porous media.

  8. Measurement and modeling of engineered nanoparticle transport and aging dynamics in a reactive porous medium

    Science.gov (United States)

    Naftaly, Aviv; Dror, Ishai; Berkowitz, Brian

    2016-07-01

    A continuous time random walk particle tracking (CTRW-PT) method was employed to model flow cell experiments that measured transport of engineered nanoparticles (ENPs) in a reactive porous medium. The experiments involved a water-saturated medium containing negatively charged, polyacrylamide beads, resembling many natural soils and aquifer materials, and having the same refraction index as water. Negatively and positively charged ENPs were injected into a uniform flow field in a 3-D horizontal flow cell, and the spatial and temporal concentrations of the evolving ENP plumes were obtained via image analysis. As a benchmark, and to calibrate the model, Congo red tracer was employed in 1-D column and 3-D flow cell experiments, containing the same beads. Negatively charged Au and Ag ENPs demonstrated migration patterns resembling those of the tracer but were slightly more dispersive; the transport was well represented by the CTRW-PT model. In contrast, positively charged AgNPs displayed an unusual behavior: establishment of an initial plume of essentially immobilized ENPs, followed by development of a secondary, freely migrating plume. The mobile plume was found to contain ENPs that, with aging, exhibited aggregation and charge inversion, becoming negatively charged and mobile. In this case, the CTRW-PT model was modified to include a probabilistic law for particle immobilization, to account for the decreasing tendency (over distance and time) of the positively charged AgNPs to attach to the porous medium. The agreement between experimental results and modeling suggests that the CTRW-PT framework can account for the non-Fickian and surface-charge-dependent transport and aging exhibited by ENPs in porous media.

  9. Transport of Oil-in-Water Emulsions Designed to Deliver Reactive Iron Particles in Porous Media

    Science.gov (United States)

    Crocker, J. J.; Berge, N. D.; Ramsburg, C. A.

    2007-05-01

    Treatment of subsurface regions contaminated with DNAPL is a significant challenge to environmental restoration. The focus of remediation has recently shifted from technologies that recover the contamination to technologies that destroy the contamination in situ. One method of in situ contaminant destruction employs nano- or submicron-size particles of reactive iron metal. Application of iron-based destruction technologies is currently limited by poor delivery of the reactive particles (i.e., lack of contact between the iron particles and the DNAPL). Encapsulation of the reactive particles within an oil-in-water emulsion is a novel approach that may facilitate delivery. The goal of this project was to investigate the transport behavior of emulsions (Tallow oil, Tween 80, and Span 80) within porous media. One-dimensional column experiments were conducted to evaluate pore-clogging when emulsions containing encapsulated reactive particles were passed through two homogeneous sands with an order of magnitude difference in intrinsic permeability. In these experiments, passing an emulsion through the sand column (4.8 cm i.d.) at a constant flow rate (0.86 mL/min) increased the hydraulic gradient by a factor of approximately three. The hydraulic gradient in each experiment was observed to stabilize after one pore volume of emulsion. Subsequent flushing with water recovered the initial hydraulic gradient. Together, these observations indicate that conductivity reductions during emulsion flushing were the result of viscosity and not the result of extensive pore-clogging. Analysis of effluent samples confirmed that there was minimal retention of the emulsion within the sand column. Results from these experiments suggest that emulsion encapsulation may be an effective means for transporting reactive iron particles within the subsurface environment.

  10. Pore network and pore scale modeling of reactive transport in porous media

    Science.gov (United States)

    Adler, P. M.; Vu, T. M.; Varloteaux, C.; Bekri, S.

    2012-12-01

    The study of the evolution of a porous medium where a reactive fluid flows is conditioned by the accurate determination of three macroscopic parameters governing the solute displacement, namely the solute velocity, dispersion and mean reaction rate. Of course, a possible application of such studies is CO2 sequestration. This presentation proposes to approach the determination of these parameters by two different ways and to compare them; both are on the pore scale. In the first one called PNM (for pore-network model), a pore-network is extracted from micro tomography images of a real porous medium. This network is composed of spherical pores joined by circular tubes; it is used to calculate transport macroscopic parameters and porosity-permeability evolution during the reactive transport flow as functions of dimensionless numbers representing the reaction and flow rate regimes. The flow is calculated by using Kirchhoff laws. Transport is determined in the asymptotic regime where the solute concentration undergoes an exponential evolution with time. In the second approach called PSM (for pore scale model), the pore-network model is used as a three dimensional medium which is discretized by the Level Set Method. The Stokes equations are solved in order to determine the local flow field and the corresponding permeability. The solute concentration is obtained by solving the local convection-diffusion equation in the 3D pore-network; numerical dispersion is reduced by a Flux Limiting Scheme. Two different geometries of porous media are addressed by both numerical codes. The first pore-network geometry is used to validate the PNM assumptions, whereas the second pore-network is defined for a better understanding of the dominant solute distribution. One of the main results obtained with the first pore-network is the dependence of the concentration profile on the Péclet number Pe in the pore-bodies. When this number increases, one has to switch from an assumption of

  11. Reactive transport and mineral dissolution in fractured and porous rock: experiments, models and field observations

    Science.gov (United States)

    Dutka, Filip; Osselin, Florian; Kondratiuk, Paweł; Szymczak, Piotr

    2017-04-01

    We analyze the evolution of the shape of a dissolving porous body immersed in a reactive fluid. First, we consider the case of a semi-infinite body and transport-limited dissolution and show that in this case the resulting shape is parabolic. We derive the dissolution rate of such shapes depending on the contrast of permeabilities between the body and the surrounding matrix both in two and three spatial dimensions. Next, we consider a problem of the dissolution of a finite-sized porous object in a Hele-Shaw cell. We study this system both experimentally and numerically. In the experiment, we use a microfluidic chip with a gypsum block inserted in between two parallel polycarbonate plates. By changing the flow rate and the distance between the plates we can scan a relatively wide range of Péclet and Damköhler numbers, which characterize the relative magnitude of advection, diffusion and reaction in the system. The evolving geometries are captured by a camera and then analyzed by image-processing techniques. The experiments show a number of unexpected regularities. In particular, the upstream (trailing) edge of the dissolving object is shown to advance with a constant velocity whereas its curvature is changing in time. If the object had initially a sharp tip pointing upstream, its radius of curvature first increases and then decreases in time. Finally, we compare the obtained dissolution shapes with the natural forms such as pinnacles in a surface karst.

  12. Reactive transport modeling in variably saturated porous media with OGS-IPhreeqc

    Science.gov (United States)

    He, W.; Beyer, C.; Fleckenstein, J. H.; Jang, E.; Kalbacher, T.; Shao, H.; Wang, W.; Kolditz, O.

    2014-12-01

    Worldwide, sustainable water resource management becomes an increasingly challenging task due to the growth of population and extensive applications of fertilizer in agriculture. Moreover, climate change causes further stresses to both water quantity and quality. Reactive transport modeling in the coupled soil-aquifer system is a viable approach to assess the impacts of different land use and groundwater exploitation scenarios on the water resources. However, the application of this approach is usually limited in spatial scale and to simplified geochemical systems due to the huge computational expense involved. Such computational expense is not only caused by solving the high non-linearity of the initial boundary value problems of water flow in the unsaturated zone numerically with rather fine spatial and temporal discretization for the correct mass balance and numerical stability, but also by the intensive computational task of quantifying geochemical reactions. In the present study, a flexible and efficient tool for large scale reactive transport modeling in variably saturated porous media and its applications are presented. The open source scientific software OpenGeoSys (OGS) is coupled with the IPhreeqc module of the geochemical solver PHREEQC. The new coupling approach makes full use of advantages from both codes: OGS provides a flexible choice of different numerical approaches for simulation of water flow in the vadose zone such as the pressure-based or mixed forms of Richards equation; whereas the IPhreeqc module leads to a simplification of data storage and its communication with OGS, which greatly facilitates the coupling and code updating. Moreover, a parallelization scheme with MPI (Message Passing Interface) is applied, in which the computational task of water flow and mass transport is partitioned through domain decomposition, whereas the efficient parallelization of geochemical reactions is achieved by smart allocation of computational workload over

  13. Effective grid-dependent dispersion coefficient for conservative and reactive transport simulations in heterogeneous porous media

    Science.gov (United States)

    Cortinez, J. M.; Valocchi, A. J.; Herrera, P. A.

    2013-12-01

    Because of the finite size of numerical grids, it is very difficult to correctly account for processes that occur at different spatial scales to accurately simulate the migration of conservative and reactive compounds dissolved in groundwater. In one hand, transport processes in heterogeneous porous media are controlled by local-scale dispersion associated to transport processes at the pore-scale. On the other hand, variations of velocity at the continuum- or Darcy-scale produce spreading of the contaminant plume, which is referred to as macro-dispersion. Furthermore, under some conditions both effects interact, so that spreading may enhance the action of local-scale dispersion resulting in higher mixing, dilution and reaction rates. Traditionally, transport processes at different spatial scales have been included in numerical simulations by using a single dispersion coefficient. This approach implicitly assumes that the separate effects of local-dispersion and macro-dispersion can be added and represented by a unique effective dispersion coefficient. Moreover, the selection of the effective dispersion coefficient for numerical simulations usually do not consider the filtering effect of the grid size over the small-scale flow features. We have developed a multi-scale Lagragian numerical method that allows using two different dispersion coefficients to represent local- and macro-scale dispersion. This technique considers fluid particles that carry solute mass and whose locations evolve according to a deterministic component given by the grid-scale velocity and a stochastic component that corresponds to a block-effective macro-dispersion coefficient. Mass transfer between particles due to local-scale dispersion is approximated by a meshless method. We use our model to test under which transport conditions the combined effect of local- and macro-dispersion are additive and can be represented by a single effective dispersion coefficient. We also demonstrate that for

  14. Simulation of experimental breakthrough curves using multiprocess non-equilibrium model for reactive solute transport in stratified porous media

    Indian Academy of Sciences (India)

    Deepak Swami; P K Sharma; C S P Ojha

    2014-12-01

    In this paper, we have studied the behaviour of reactive solute transport through stratified porous medium under the influence of multi-process nonequilibrium transport model. Various experiments were carried out in the laboratory and the experimental breakthrough curves were observed at spatially placed sampling points for stratified porous medium. Batch sorption studies were also performed to estimate the sorption parameters of the material used in stratified aquifer system. The effects of distance dependent dispersion and tailing are visible in the experimental breakthrough curves. The presence of physical and chemical non-equilibrium are observed from the pattern of breakthrough curves. Multi-process non-equilibrium model represents the combined effect of physical and chemical non-ideality in the stratified aquifer system. The results show that the incorporation of distance dependent dispersivity in multi-process non-equilibrium model provides best fit of observed data through stratified porous media. Also, the exponential distance dependent dispersivity is more suitable for large distances and at small distances, linear or constant dispersivity function can be considered for simulating reactive solute in stratified porous medium.

  15. PHT3D-UZF: A reactive transport model for variably-saturated porous media

    Science.gov (United States)

    Wu, Ming Zhi; Post, Vincent E. A.; Salmon, S. Ursula; Morway, Eric; Prommer, H.

    2016-01-01

    A modified version of the MODFLOW/MT3DMS-based reactive transport model PHT3D was developed to extend current reactive transport capabilities to the variably-saturated component of the subsurface system and incorporate diffusive reactive transport of gaseous species. Referred to as PHT3D-UZF, this code incorporates flux terms calculated by MODFLOW's unsaturated-zone flow (UZF1) package. A volume-averaged approach similar to the method used in UZF-MT3DMS was adopted. The PHREEQC-based computation of chemical processes within PHT3D-UZF in combination with the analytical solution method of UZF1 allows for comprehensive reactive transport investigations (i.e., biogeochemical transformations) that jointly involve saturated and unsaturated zone processes. Intended for regional-scale applications, UZF1 simulates downward-only flux within the unsaturated zone. The model was tested by comparing simulation results with those of existing numerical models. The comparison was performed for several benchmark problems that cover a range of important hydrological and reactive transport processes. A 2D simulation scenario was defined to illustrate the geochemical evolution following dewatering in a sandy acid sulfate soil environment. Other potential applications include the simulation of biogeochemical processes in variably-saturated systems that track the transport and fate of agricultural pollutants, nutrients, natural and xenobiotic organic compounds and micropollutants such as pharmaceuticals, as well as the evolution of isotope patterns.

  16. A model for reactive porous transport during re-wetting of hardened concrete

    CERN Document Server

    Chapwanya, Michael; Stockie, John M

    2008-01-01

    We develop a mathematical model that captures the transport of liquid water in hardened concrete, as well as the chemical reactions that occur between the infiltrating water and the residual calcium silicate compounds that reside in the porous concrete matrix. We investigate the hypothesis that the reaction product -- calcium silicate hydrate gel -- clogs the pores within the concrete thereby hindering water transport. Using numerical simulations, we determine the sensitivity of the model solution to changes in various physical parameters, and compare to experimental results available in the literature.

  17. Transport and Reactivity of Engineered Nanoparticles in Partially Saturated Porous Media

    Science.gov (United States)

    Dror, I.; Yecheskel, Y.; Berkowitz, B.

    2015-12-01

    Engineered nanoparticles (ENPs) are being produced in increasing amounts and have numerous applications in a variety of products and industrial processes. The same properties that make these substances so appealing may also cause them to act as persistent and toxic pollutants. The post-use release of ENPs to the environment is inevitable and soil appears to be one of the largest sinks of these potential contaminants. To date, despite the significant attention that ENP behavior in the environment has received, only a few studies have considered the fate and transport of ENPs in partially saturated systems. Here, we report measurements on the transport and fate of three commonly used ENPs - silver (Ag), gold (Au) and zinc oxide (ZnO) - in partially saturated porous media. The results show that ENP interactions with the solid matrix and solution components affect the fate of the ENPs and their transport. The negatively charged ENPs (AgNPs and AuNPs) are shown to be mobile in sand (which is also negatively charged) under various conditions, including water saturation levels and inlet concentration, with transport behavior resembling conservative tracer movement. Various aging scenarios were considered and the interaction of AgNPs with sulfides, chlorides, and calcium ions, all of which are known to interact and change AgNP properties, are shown to affect AgNP fate; however, in some cases, the changed particles remained suspended in solution and mobile. The positively charged ZnO showed very low mobility, but when humic acid was present in the inlet solution, interactions leading to enhanced mobility were observed. The presence of humic acid also changes ENP size and surface charge, transforming them to negatively charged larger aggregates that can be transported through the sand. Finally, remobilization of particles that were retained in the porous media was also demonstrated for ZnO ENPs, indicating possible release of entrapped ENPs upon changes in solution chemistry.

  18. Exposure-time based modeling of nonlinear reactive transport in porous media subject to physical and geochemical heterogeneity

    Science.gov (United States)

    Sanz-Prat, Alicia; Lu, Chuanhe; Amos, Richard T.; Finkel, Michael; Blowes, David W.; Cirpka, Olaf A.

    2016-09-01

    Transport of reactive solutes in groundwater is affected by physical and chemical heterogeneity of the porous medium, leading to complex spatio-temporal patterns of concentrations and reaction rates. For certain cases of bioreactive transport, it could be shown that the concentrations of reactive constituents in multi-dimensional domains are approximately aligned with isochrones, that is, lines of identical travel time, provided that the chemical properties of the matrix are uniform. We extend this concept to combined physical and chemical heterogeneity by additionally considering the time that a water parcel has been exposed to reactive materials, the so-called exposure time. We simulate bioreactive transport in a one-dimensional domain as function of time and exposure time, rather than space. Subsequently, we map the concentrations to multi-dimensional heterogeneous domains by means of the mean exposure time at each location in the multi-dimensional domain. Differences in travel and exposure time at a given location are accounted for as time difference. This approximation simplifies reactive-transport simulations significantly under conditions of steady-state flow when reactions are restricted to specific locations. It is not expected to be exact in realistic applications because the underlying assumption, such as neglecting transverse mixing altogether, may not hold. We quantify the error introduced by the approximation for the hypothetical case of a two-dimensional, binary aquifer made of highly-permeable, non-reactive and low-permeable, reactive materials releasing dissolved organic matter acting as electron donor for aerobic respiration and denitrification. The kinetically controlled reactions are catalyzed by two non-competitive bacteria populations, enabling microbial growth. Even though the initial biomass concentrations were uniform, the interplay between transport, non-uniform electron-donor supply, and bio-reactions led to distinct spatial patterns of

  19. Exposure-time based modeling of nonlinear reactive transport in porous media subject to physical and geochemical heterogeneity.

    Science.gov (United States)

    Sanz-Prat, Alicia; Lu, Chuanhe; Amos, Richard T; Finkel, Michael; Blowes, David W; Cirpka, Olaf A

    2016-09-01

    Transport of reactive solutes in groundwater is affected by physical and chemical heterogeneity of the porous medium, leading to complex spatio-temporal patterns of concentrations and reaction rates. For certain cases of bioreactive transport, it could be shown that the concentrations of reactive constituents in multi-dimensional domains are approximately aligned with isochrones, that is, lines of identical travel time, provided that the chemical properties of the matrix are uniform. We extend this concept to combined physical and chemical heterogeneity by additionally considering the time that a water parcel has been exposed to reactive materials, the so-called exposure time. We simulate bioreactive transport in a one-dimensional domain as function of time and exposure time, rather than space. Subsequently, we map the concentrations to multi-dimensional heterogeneous domains by means of the mean exposure time at each location in the multi-dimensional domain. Differences in travel and exposure time at a given location are accounted for as time difference. This approximation simplifies reactive-transport simulations significantly under conditions of steady-state flow when reactions are restricted to specific locations. It is not expected to be exact in realistic applications because the underlying assumption, such as neglecting transverse mixing altogether, may not hold. We quantify the error introduced by the approximation for the hypothetical case of a two-dimensional, binary aquifer made of highly-permeable, non-reactive and low-permeable, reactive materials releasing dissolved organic matter acting as electron donor for aerobic respiration and denitrification. The kinetically controlled reactions are catalyzed by two non-competitive bacteria populations, enabling microbial growth. Even though the initial biomass concentrations were uniform, the interplay between transport, non-uniform electron-donor supply, and bio-reactions led to distinct spatial patterns of

  20. Subsurface Transport Over Reactive Multiphases (STORM): A general, coupled, nonisothermal multiphase flow, reactive transport, and porous medium alteration simulator, Version 2 user's guide

    Energy Technology Data Exchange (ETDEWEB)

    DH Bacon; MD White; BP McGrail

    2000-03-07

    The Hanford Site, in southeastern Washington State, has been used extensively to produce nuclear materials for the US strategic defense arsenal by the Department of Energy (DOE) and its predecessors, the US Atomic Energy Commission and the US Energy Research and Development Administration. A large inventory of radioactive and mixed waste has accumulated in 177 buried single- and double shell tanks. Liquid waste recovered from the tanks will be pretreated to separate the low-activity fraction from the high-level and transuranic wastes. Vitrification is the leading option for immobilization of these wastes, expected to produce approximately 550,000 metric tons of Low Activity Waste (LAW) glass. This total tonnage, based on nominal Na{sub 2}O oxide loading of 20% by weight, is destined for disposal in a near-surface facility. Before disposal of the immobilized waste can proceed, the DOE must approve a performance assessment, a document that described the impacts, if any, of the disposal facility on public health and environmental resources. Studies have shown that release rates of radionuclides from the glass waste form by reaction with water determine the impacts of the disposal action more than any other independent parameter. This report describes the latest accomplishments in the development of a computational tool, Subsurface Transport Over Reactive Multiphases (STORM), Version 2, a general, coupled non-isothermal multiphase flow and reactive transport simulator. The underlying mathematics in STORM describe the rate of change of the solute concentrations of pore water in a variably saturated, non-isothermal porous medium, and the alteration of waste forms, packaging materials, backfill, and host rocks.

  1. A nonequilibrium model for reactive contaminant transport through fractured porous media: Model development and semianalytical solution

    Science.gov (United States)

    Joshi, Nitin; Ojha, C. S. P.; Sharma, P. K.

    2012-10-01

    In this study a conceptual model that accounts for the effects of nonequilibrium contaminant transport in a fractured porous media is developed. Present model accounts for both physical and sorption nonequilibrium. Analytical solution was developed using the Laplace transform technique, which was then numerically inverted to obtain solute concentration in the fracture matrix system. The semianalytical solution developed here can incorporate both semi-infinite and finite fracture matrix extent. In addition, the model can account for flexible boundary conditions and nonzero initial condition in the fracture matrix system. The present semianalytical solution was validated against the existing analytical solutions for the fracture matrix system. In order to differentiate between various sorption/transport mechanism different cases of sorption and mass transfer were analyzed by comparing the breakthrough curves and temporal moments. It was found that significant differences in the signature of sorption and mass transfer exists. Applicability of the developed model was evaluated by simulating the published experimental data of Calcium and Strontium transport in a single fracture. The present model simulated the experimental data reasonably well in comparison to the model based on equilibrium sorption assumption in fracture matrix system, and multi rate mass transfer model.

  2. Reactive transport in porous media for CO2 sequestration: Pore scale modeling using the lattice Boltzmann method

    Science.gov (United States)

    Gao, Jinfang; Xing, Huilin; Tian, Zhiwei; Pearce, Julie K.; Sedek, Mohamed; Golding, Suzanne D.; Rudolph, Victor

    2017-01-01

    Injection of CO2 subsurface may lead to chemical reactivity of rock where CO2 is dissolved in groundwater. This process can modify pore networks to increase or decrease porosity through mineral dissolution and precipitation. A lattice Boltzmann (LB) based computational model study on the pore scale reactive transport in three dimensional heterogeneous porous media (sandstone consisting of both reactive and non-reactive minerals) is described. This study examines how fluid transport in porous materials subject to reactive conditions is affected by unsteady state local reactions and unstable dissolution fronts. The reaction of a calcite cemented core sub-plug from the Hutton Sandstone of the Surat Basin, Australia, is used as a study case. In particular, the work studies the interaction of acidic fluid (an aqueous solution with an elevated concentration of carbonic acid) with reactive (e.g. calcite) and assumed non-reactive (e.g. quartz) mineral surfaces, mineral dissolution and mass transfer, and resultant porosity change. The proposed model is implemented in our custom LBM code and suitable for studies of multiple mineral reactions with disparate reaction rates. A model for carbonic acid reaction with calcite cemented sandstone in the CO2-water-rock system is verified through laboratory experimental data including micro-CT characterization before and after core reaction at reservoir conditions. The experimentally validated model shows: (1) the dissolution of calcite cement forms conductive channels at the pore scale, and enables the generation of pore throats and connectivity; (2) the model is able to simulate the reaction process until the reaction equilibrium status is achieved (around 1440 days); (3) calcite constituting a volume of around 9.6% of the whole core volume is dissolved and porosity is consequently increased from 1.1% to 10.7% on reaching equilibrium; (4) more than a third of the calcite (constituting 7.4% of the total core volume) is unaffected

  3. Development of Modeling Methods and Tools for Predicting Coupled Reactive Transport Processes in Porous Media at Multiple Scales

    Energy Technology Data Exchange (ETDEWEB)

    Clement, T Prabhakar; Barnett, Mark O; Zheng, Chunmiao; Jones, Norman L

    2010-05-05

    DE-FG02-06ER64213: Development of Modeling Methods and Tools for Predicting Coupled Reactive Transport Processes in Porous Media at Multiple Scales Investigators: T. Prabhakar Clement (PD/PI) and Mark O. Barnett (Auburn), Chunmiao Zheng (Univ. of Alabama), and Norman L. Jones (BYU). The objective of this project was to develop scalable modeling approaches for predicting the reactive transport of metal contaminants. We studied two contaminants, a radioactive cation [U(VI)] and a metal(loid) oxyanion system [As(III/V)], and investigated their interactions with two types of subsurface materials, iron and manganese oxyhydroxides. We also developed modeling methods for describing the experimental results. Overall, the project supported 25 researchers at three universities. Produced 15 journal articles, 3 book chapters, 6 PhD dissertations and 6 MS theses. Three key journal articles are: 1) Jeppu et al., A scalable surface complexation modeling framework for predicting arsenate adsorption on goethite-coated sands, Environ. Eng. Sci., 27(2): 147-158, 2010. 2) Loganathan et al., Scaling of adsorption reactions: U(VI) experiments and modeling, Applied Geochemistry, 24 (11), 2051-2060, 2009. 3) Phillippi, et al., Theoretical solid/solution ratio effects on adsorption and transport: uranium (VI) and carbonate, Soil Sci. Soci. of America, 71:329-335, 2007

  4. Flow and Reactive Transport of Miscible and Immiscible Solutions in Fractured & Porous Media

    Science.gov (United States)

    Ryerson, F. J.; Ezzedine, S. M.; Antoun, T.

    2012-12-01

    Miscible and immiscible flows are important phenomena encountered in many industrial and engineering applications such as hydrothermal systems, oil and gas reservoirs, salt/water intrusion, geological carbon sequestration etc… Under the influence of gravity, the flow of fluids with sufficiently large density ratios may become unstable leading to instabilities, mixing and in some instances reactions at the interfacial contact between fluids. Flow is governed by a combination of momentum and mass conservation equations that describe the flow of the fluid phase and a convection-diffusion equation describing the change of concentration in the fluid phase. When hydrodynamic instabilities develop it may be difficult to use standard grid-based methods to model miscible/immiscible flow because the domains occupied by fluids evolve constantly with time. In the current study, adaptive mesh refinement finite elements method has been used to solve for flow and transport equations. Furthermore, a particle tracking scheme has also been implemented to track the kinematics of swarm of particles injected into the porous fractured media to quantify surface area, sweeping zones, and their impact on porosity changes. Spatial and temporal moments of the fingering instabilities and the development of reaction zones and the impact of kinetic reaction at the fluid/solution interfaces have also been analyzed. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  5. Comparative assessment of continuum-scale models of bimolecular reactive transport in porous media under pre-asymptotic conditions

    Science.gov (United States)

    Porta, G. M.; Ceriotti, G.; Thovert, J.-F.

    2016-02-01

    We compare the ability of various continuum-scale models to reproduce the key features of a transport setting associated with a bimolecular reaction taking place in the fluid phase and numerically simulated at the pore-scale level in a disordered porous medium. We start by considering a continuum-scale formulation which results from formal upscaling of this reactive transport process by means of volume averaging. The resulting (upscaled) continuum-scale system of equations includes nonlocal integro-differential terms and the effective parameters embedded in the model are quantified directly through computed pore-scale fluid velocity and pore space geometry attributes. The results obtained through this predictive model formulation are then compared against those provided by available effective continuum models which require calibration through parameter estimation. Our analysis considers two models recently proposed in the literature which are designed to embed incomplete mixing arising from the presence of fast reactions under advection-dominated transport conditions. We show that best estimates of the parameters of these two models heavily depend on the type of data employed for model calibration. Our upscaled nonlocal formulation enables us to reproduce most of the critical features observed through pore-scale simulation without any model calibration. As such, our results clearly show that embedding into a continuum-scale model the information content associated with pore-scale geometrical features and fluid velocity yields improved interpretation of typically available continuum-scale transport observations.

  6. Reactive Transport Modeling of Induced Calcite Precipitation Reaction Fronts in Porous Media Using A Parallel, Fully Coupled, Fully Implicit Approach

    Science.gov (United States)

    Guo, L.; Huang, H.; Gaston, D.; Redden, G. D.; Fox, D. T.; Fujita, Y.

    2010-12-01

    to homogeneous and heterogeneous porous media, respectively. In 1D columns, calcium carbonate mineral precipitation was driven by urea hydrolysis catalyzed by urease enzyme, and in 2D flow cells, calcium carbonate mineral forming reactants were injected sequentially, forming migrating reaction fronts that are typically highly nonuniform. The RAT simulation results for the spatial and temporal distributions of precipitates, reaction rates and major species in the system, and also for changes in porosity and permeability, were compared to both laboratory experimental data and computational results obtained using other reactive transport simulators. The comparisons demonstrate the ability of RAT to simulate complex nonlinear systems and the advantages of fully coupled approaches, over de-coupled methods, for accurate simulation of complex, dynamic processes such as engineered mineral precipitation in subsurface environments.

  7. A time-asymptotic one equation non-equilibrium model for reactive transport in a two phase porous medium

    Science.gov (United States)

    Yohan, D.; Gerald, D.; Magali, G.; Michel, Q.

    2008-12-01

    The general problem of transport and reaction in multiphase porous media has been a subject of extensive studies during the last decades. For example, biologically mediated porous media have seen a long history of research from the environmental engineering point of view. Biofilms (aggregate of microorganisms coated in a polymer matrix generated by bacteria) have been particularly examined within the context of bioremediation in the subsurface zone. Five types of models may be used to describe these kinds of physical system: 1) one-equation local mass equilibrium models when the assumption of local mass equilibrium is valid 2) two equations models when the assumption of local mass equilibrium is not valid 3) one equation non-equilibrium models 4) mixed models coupling equations solved at two different scales 5) one equation time-asymptotic models. In this presentation, we use the method of volume averaging with closure to extend the time- asymptotic model at the Darcy scale to the reactive case. Closure problems are solved for simple unit cells, and the macro-scale model is validated against pore-scale simulations.

  8. Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport

    Science.gov (United States)

    Xiong, Qingrong; Baychev, Todor G.; Jivkov, Andrey P.

    2016-09-01

    Pore network models have been applied widely for simulating a variety of different physical and chemical processes, including phase exchange, non-Newtonian displacement, non-Darcy flow, reactive transport and thermodynamically consistent oil layers. The realism of such modelling, i.e. the credibility of their predictions, depends to a large extent on the quality of the correspondence between the pore space of a given medium and the pore network constructed as its representation. The main experimental techniques for pore space characterisation, including direct imaging, mercury intrusion porosimetry and gas adsorption, are firstly summarised. A review of the main pore network construction techniques is then presented. Particular focus is given on how such constructions are adapted to the data from experimentally characterised pore systems. Current applications of pore network models are considered, with special emphasis on the effects of adsorption, dissolution and precipitation, as well as biomass growth, on transport coefficients. Pore network models are found to be a valuable tool for understanding and predicting meso-scale phenomena, linking single pore processes, where other techniques are more accurate, and the homogenised continuum porous media, used by engineering community.

  9. Modeling reactive transport in deformable porous media using the theory of interacting continua.

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Daniel Zack

    2012-01-01

    This report gives an overview of the work done as part of an Early Career LDRD aimed at modeling flow induced damage of materials involving chemical reactions, deformation of the porous matrix, and complex flow phenomena. The numerical formulation is motivated by a mixture theory or theory of interacting continua type approach to coupling the behavior of the fluid and the porous matrix. Results for the proposed method are presented for several engineering problems of interest including carbon dioxide sequestration, hydraulic fracturing, and energetic materials applications. This work is intended to create a general framework for flow induced damage that can be further developed in each of the particular areas addressed below. The results show both convincing proof of the methodologies potential and the need for further validation of the models developed.

  10. Reactive/Adsorptive transport in (partially-) saturated porous media: from pore scale to core scale

    NARCIS (Netherlands)

    Raoof, A.

    2011-01-01

    Pore-scale modeling provides opportunities to study transport phenomena in fundamental ways because detailed information is available at the microscopic pore scale. This offers the best hope for bridging the traditional gap that exists between pore scale and macro (lab) scale description of the proc

  11. Porous media geometry and transports

    CERN Document Server

    Adler, Pierre

    1992-01-01

    The goal of ""Porous Media: Geometry and Transports"" is to provide the basis of a rational and modern approach to porous media. This book emphasizes several geometrical structures (spatially periodic, fractal, and random to reconstructed) and the three major single-phase transports (diffusion, convection, and Taylor dispersion).""Porous Media"" serves various purposes. For students it introduces basic information on structure and transports. Engineers will find this book useful as a readily accessible assemblage of al the major experimental results pertaining to single-phase tr

  12. Diffusive–Dispersive and Reactive Fronts in Porous Media

    DEFF Research Database (Denmark)

    Haberer, Christina M.; Muniruzzaman, Muhammad; Grathwohl, Peter

    2015-01-01

    , across the unsaturated–saturated interface, under both conservative and reactive transport conditions. As reactive system we considered the abiotic oxidation of Fe2+ in the presence of O2. We studied the reaction kinetics in batch experiments and its coupling with diffusive and dispersive transport......Diffusive–dispersive mass transfer is important for many groundwater quality problems as it drives the interaction between different reactants, thus influencing a wide variety of biogeochemical processes. In this study, we performed laboratory experiments to quantify O2 transport in porous media...

  13. Modeling of coupled heat transfer and reactive transport processesin porous media: Application to seepage studies at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Sumit; Sonnenthal, Eric L.; Spycher, Nicolas

    2007-01-15

    When hot radioactive waste is placed in subsurface tunnels, a series of complex changes occurs in the surrounding medium. The water in the pore space of the medium undergoes vaporization and boiling. Subsequently, vapor migrates out of the matrix pore space, moving away from the tunnel through the permeable fracture network. This migration is propelled by buoyancy, by the increased vapor pressure caused by heating and boiling, and through local convection. In cooler regions, the vapor condenses on fracture walls, where it drains through the fracture network. Slow imbibition of water thereafter leads to gradual rewetting of the rock matrix. These thermal and hydrological processes also bring about chemical changes in the medium. Amorphous silica precipitates from boiling and evaporation, and calcite from heating and CO2 volatilization. The precipitation of amorphous silica, and to a much lesser extent calcite, results in long-term permeability reduction. Evaporative concentration also results in the precipitation of gypsum (or anhydrite), halite, fluorite and other salts. These evaporative minerals eventually redissolve after the boiling period is over, however, their precipitation results in a significant temporary decrease in permeability. Reduction of permeability is also associated with changes in fracture capillary characteristics. In short, the coupled thermal-hydrological-chemical (THC) processes dynamically alter the hydrological properties of the rock. A model based on the TOUGHREACT reactive transport software is presented here to investigate the impact of THC processes on flow near an emplacement tunnel at Yucca Mountain, Nevada. We show how transient changes in hydrological properties caused by THC processes often lead to local flow channeling and saturation increases above the tunnel. For models that include only permeability changes to fractures, such local flow channeling may lead to seepage relative to models where THC effects are ignored. However

  14. Modeling of coupled heat transfer and reactive transport processesin porous media: Application to seepage studies at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, S.; Sonnenthal, E.L.; Spycher, N.

    2007-01-15

    When hot radioactive waste is placed in subsurface tunnels, a series of complex changes occurs in the surrounding medium. The water in the pore space of the medium undergoes vaporization and boiling. Subsequently, vapor migrates out of the matrix pore space, moving away from the tunnel through the permeable fracture network. This migration is propelled by buoyancy, by the increased vapor pressure caused by heating and boiling, and through local convection. In cooler regions, the vapor condenses on fracture walls, where it drains through the fracture network. Slow imbibition of water thereafter leads to gradual rewetting of the rock matrix. These thermal and hydrological processes also bring about chemical changes in the medium. Amorphous silica precipitates from boiling and evaporation, and calcite from heating and CO{sub 2} volatilization. The precipitation of amorphous silica, and to a much lesser extent calcite, results in long-term permeability reduction. Evaporative concentration also results in the precipitation of gypsum (or anhydrite), halite, fluorite and other salts. These evaporative minerals eventually redissolve after the boiling period is over, however, their precipitation results in a significant temporary decrease in permeability. Reduction of permeability is also associated with changes in fracture capillary characteristics. In short, the coupled thermal-hydrological-chemical (THC) processes dynamically alter the hydrological properties of the rock. A model based on the TOUGHREACT reactive transport software is presented here to investigate the impact of THC processes on flow near an emplacement tunnel at Yucca Mountain, Nevada. We show how transient changes in hydrological properties caused by THC processes often lead to local flow channeling and saturation increases above the tunnel. For models that include only permeability changes to fractures, such local flow channeling may lead to seepage relative to models where THC effects are ignored

  15. Numerical modelling of biophysicochemical effects on multispecies reactive transport in porous media involving Pseudomonas putida for potential microbial enhanced oil recovery application.

    Science.gov (United States)

    Sivasankar, P; Rajesh Kanna, A; Suresh Kumar, G; Gummadi, Sathyanarayana N

    2016-07-01

    pH and resident time of injected slug plays a critical role in characterizing the reservoir for potential microbial enhanced oil recovery (MEOR) application. To investigate MEOR processes, a multispecies (microbes-nutrients) reactive transport model in porous media was developed by coupling kinetic and transport model. The present work differs from earlier works by explicitly determining parametric values required for kinetic model by experimental investigations using Pseudomonas putida at different pH conditions and subsequently performing sensitivity analysis of pH, resident time and water saturation on concentrations of microbes, nutrients and biosurfactant within reservoir. The results suggest that nutrient utilization and biosurfactant production are found to be maximum at pH 8 and 7.5 respectively. It is also found that the sucrose and biosurfactant concentrations are highly sensitive to pH rather than reservoir microbial concentration, while at larger resident time and water saturation, the microbial and nutrient concentrations were lesser due to enhanced dispersion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A new multi-species pore-scale reactive transport modeling of arsenic sorption in dissolving porous media using lattice Boltzmann method

    Science.gov (United States)

    Shafei, B.; Huber, C.; Parmigiani, A.; Taillefert, M.

    2012-12-01

    Physical and chemical heterogeneities associated with biogeochemical processes influence the fate and transport of contaminants in subsurface environments. We develop a new multi-species pore-scale reactive transport model based on the lattice Boltzmann method (LBM) to examine the temporal and spatial evolution of chemical species during the sorption of Arsenic. This model couples a fluid flow solver to an optimal advection-diffusion transport model where transport and reactions between chemical species are solved iteratively yielding a better stability and accuracy over a wide range of peclet numbers. It has already been applied to study 1) the permeability change of a porous medium during dissolution and precipitation and 2) the effect of spatial and chemical heterogeneities on the uptake of arsenic from the aqueous solution. By combining these two scenarios, we extend the model to incorporate arsenic speciation (i.e. As(III) and As(V)) and solid iron phase transformation, explore the distribution of iron, arsenic and partitioning of arsenic on various iron bearing solid phases. We investigate how the multitude of pore-domains affects the formation of redox gradients. As(III) and magnetite concentrations increase toward the anoxic zones while ferrihydrite and As(V) remains the dominant species in oxic conditions. The proposed reaction network includes: biotic reduction of ferrihydrite and magnetite to Fe2+(aq), of ferrihydrite to magnetite, biologically-mediated organic matter oxidation coupled with reduction of O2(aq) and As(V) , abiotic oxidation of Fe(II) by O2(aq) and sorption of As(V) and As(III) on Fe (hydr)oxide(s). All of these reactions are treated as kinetically controlled except As(V) and As(III) adsorption/desorption reactions which are expressed by equilibrium mass action laws. Similar set of reactions has been applied to simulate the distribution of As within constructed soil aggregates using continuum-scale model MIN3P (Masue-Slowey et al., 2010

  17. Transport phenomena in porous media

    CERN Document Server

    Ingham, Derek B

    1998-01-01

    Research into thermal convection in porous media has substantially increased during recent years due to its numerous practical applications. These problems have attracted the attention of industrialists, engineers and scientists from many very diversified disciplines, such as applied mathematics, chemical, civil, environmental, mechanical and nuclear engineering, geothermal physics and food science. Thus, there is a wealth of information now available on convective processes in porous media and it is therefore appropriate and timely to undertake a new critical evaluation of this contemporary information. Transport Phenomena in Porous Media contains 17 chapters and represents the collective work of 27 of the world's leading experts, from 12 countries, in heat transfer in porous media. The recent intensive research in this area has substantially raised the expectations for numerous new practical applications and this makes the book a most timely addition to the existing literature. It includes recent major deve...

  18. Gas transport in porous media

    CERN Document Server

    Ho, Clifford K

    2006-01-01

    This book presents a compilation of state-of-the art studies on gas and vapor transport processes in porous and fractured media. A broad set of models and processes are presented, including advection/diffusion, the Dusty Gas Model, enhanced vapor diffusion, phase change, coupled processes, solid/vapor sorption, and vapor-pressure lowering. Numerous applications are also presented that illustrate these processes and models in current problems facing the scientific community. This book fills a gap in the general area of transport in porous and fractured media; an area that has historically been dominated by studies of liquid-phase flow and transport. This book identifies gas and vapor transport processes that may be important or dominant in various applications, and it exploits recent advances in computational modeling and experimental methods to present studies that distinguish the relative importance of various mechanisms of transport in complex media.

  19. Modeling and Simulation of Pore Scale Multiphase Fluid Flow and Reactive Transport in Fractured and Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Paul Meakin; Alexandre Tartakovsky

    2009-07-01

    In the subsurface fluids play a critical role by transporting dissolved minerals, colloids and contaminants (sometimes over long distances), by mediating dissolution and precipitation processes and enabling chemical transformations in solution and at mineral surfaces. Although the complex geometries of fracture apertures, fracture networks and pore spaces may make it difficult to accurately predict fluid flow in saturated (single-phase) subsurface systems, well developed methods are available. The simulation of multiphase fluid flow in the subsurface is much more challenging because of the large density and/or viscosity ratios found in important applications (water/air in the vadose zone, water/oil, water/gas, gas/oil and water/oil/gas in oil reservoirs, water/air/non-aqueous phase liquids (NAPL) in contaminated vadose zone systems and gas/molten rock in volcanic systems, for example). In addition, the complex behavior of fluid-fluid-solid contact lines, and its impact on dynamic contact angles, must also be taken into account, and coupled with the fluid flow. Pore network models and simple statistical physics based models such as the invasion percolation and diffusion-limited aggregation models have been used quite extensively. However, these models for multiphase fluid flow are based on simplified models for pore space geometries and simplified physics. Other methods such a lattice Boltzmann and lattice gas models, molecular dynamics, Monte Carlo methods, and particle methods such as dissipative particle dynamics and smoothed particle hydrodynamics are based more firmly on first principles, and they do not require simplified pore and/or fracture geometries. However, they are less (in some cases very much less) computationally efficient that pore network and statistical physics models. Recently a combination of continuum computation fluid dynamics, fluid-fluid interface tracking or capturing and simple models for the dependence of contact angles on fluid velocity

  20. Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media

    Energy Technology Data Exchange (ETDEWEB)

    Meakin, Paul; Tartakovsky, Alexandre M.

    2009-01-01

    In the subsurface fluids play a critical role by transporting dissolved minerals, colloids and contaminants (sometimes over long distances), by mediating dissolution and precipitation processes and enabling chemical transformations in solution and at mineral surfaces. Although the complex geometries of fracture apertures, fracture networks and pore spaces may make it difficult to accurately predict fluid flow in saturated (single-phase) subsurface systems, well developed methods are available. The simulation of multiphase fluid flow in the subsurface is much more challenging because of the large density and/or viscosity ratios found in important applications (water/air in the vadose zone, water/oil, water/gas, gas/oil and water/oil/gas in oil reservoirs, water/air/non-aqueous phase liquids (NAPL) in contaminated vadose zone systems and gas/molten rock in volcanic systems, for example). In addition, the complex behavior of fluid-fluid-solid contact lines, and its impact on dynamic contact angles, must also be taken into account, and coupled with the fluid flow. Pore network models and simple statistical physics based models such as the invasion percolation and diffusion-limited aggregation models have been used quite extensively. However, these models for multiphase fluid flow are based on simplified models for pore space geometries and simplified physics. Other methods such a lattice Boltzmann and lattice gas models, molecular dynamics, Monte Carlo methods, and particle methods such as dissipative particle dynamics and smoothed particle hydrodynamics are based more firmly on first principles, and they do not require simplified pore and/or fracture geometries. However, they are less (in some cases very much less) computationally efficient that pore network and statistical physics models. Recently a combination of continuum computation fluid dynamics, fluid-fluid interface tracking or capturing and simple models for the dependence of contact angles on fluid velocity

  1. Towards a rigorous mesoscale modeling of reactive flow and transport in an evolving porous medium and its applications to soil science

    Science.gov (United States)

    Ray, Nadja; Rupp, Andreas; Knabner, Peter

    2016-04-01

    Soil is arguably the most prominent example of a natural porous medium that is composed of a porous matrix and a pore space. Within this framework and in terms of soil's heterogeneity, we first consider transport and fluid flow at the pore scale. From there, we develop a mechanistic model and upscale it mathematically to transfer our model from the small scale to that of the mesoscale (laboratory scale). The mathematical framework of (periodic) homogenization (in principal) rigorously facilitates such processes by exactly computing the effective coefficients/parameters by means of the pore geometry and processes. In our model, various small-scale soil processes may be taken into account: molecular diffusion, convection, drift emerging from electric forces, and homogeneous reactions of chemical species in a solvent. Additionally, our model may consider heterogeneous reactions at the porous matrix, thus altering both the porosity and the matrix. Moreover, our model may additionally address biophysical processes, such as the growth of biofilms and how this affects the shape of the pore space. Both of the latter processes result in an intrinsically variable soil structure in space and time. Upscaling such models under the assumption of a locally periodic setting must be performed meticulously to preserve information regarding the complex coupling of processes in the evolving heterogeneous medium. Generally, a micro-macro model emerges that is then comprised of several levels of couplings: Macroscopic equations that describe the transport and fluid flow at the scale of the porous medium (mesoscale) include averaged time- and space-dependent coefficient functions. These functions may be explicitly computed by means of auxiliary cell problems (microscale). Finally, the pore space in which the cell problems are defined is time- and space dependent and its geometry inherits information from the transport equation's solutions. Numerical computations using mixed finite

  2. Multiphasic fluid models and multicomponents reactive transport in porous media; Modelos de flujo multifasico no isotermo y de transporte reactivo multicomponente en medios porosos

    Energy Technology Data Exchange (ETDEWEB)

    Juncosa, R. [Universidad Politecnica de Madrid (Spain)

    2001-07-01

    The design and construction of repositories for toxic waste, such as radioactive waste of medium and high activity, require tools, that will enable us to predict how the system will behave. The rational behind this Dissertation is based precisely on developing numerical models to study and predict coupled thermal, mechanical, hydrodynamic and geochemical behavior of clays intended to be used as engineered barriers in radioactive waste repository. In order to meet the requirements of the FEBEX Project (Full Scale Engineered Barriers Experiment) it was necessary to develop thermo-hydro-geochemical conceptual and numerical models (THG). For this purpose a THG code was developed to simulate and predict the THG behavior of the clay barrier. The code was created after considering two options. (a) The development of a completely new code, or (b) the coupling of existing codes. In this Dissertation we chose the second option, and developed a new program (FADES-CORE), which was obtained by using the FADES thermo-hydro-mechanical code (Navarro, 1997) and the CORE-LE code (Samper et al., 1998). This process entailed the modification of FADES, the addition of new subroutines for the calculation of solute transport, the modification of CORE-LE and the introduction of additional geochemical and transport processes. (Author)

  3. Transport of subsurface bacteria in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Bales, R.C.; Arnold, R.G.; Gerba, C.P.

    1995-02-01

    The primary objective of this study was to develop tools with which to measure the advective transport of microorganisms through porous media. These tools were then applied to investigate the sorptive properties of representative microorganisms that were selected at random from the DOE`s deep subsurface collection of bacterial, maintained at Florida State University. The transport screening procedure that arose from this study was also used to investigate biological factors that affect the transport/sorption of biocolloids during their movement through porous media with the bulk advective flow.

  4. Porous media fluid transport and pore structure

    CERN Document Server

    Dullien, F A L

    1992-01-01

    This book examines the relationship between transport properties and pore structure of porous material. Models of pore structure are presented with a discussion of how such models can be used to predict the transport properties of porous media. Portions of the book are devoted to interpretations of experimental results in this area and directions for future research. Practical applications are given where applicable, and are expected to be useful for a large number of different fields, including reservoir engineering, geology, hydrogeology, soil science, chemical process engineering, biomedica

  5. Solute transport through porous media using asymptotic dispersivity

    Indian Academy of Sciences (India)

    P K Sharma; Teodrose Atnafu Abgaze

    2015-08-01

    In this paper, multiprocess non-equilibrium transport equation has been used, which accounts for both physical and chemical non-equilibrium for reactive transport through porous media. An asymptotic distance dependent dispersivity is used to embrace the concept of scale-dependent dispersion for solute transport in heterogeneous porous media. Semi-analytical solution has been derived of the governing equations with an asymptotic distance dependent dispersivity by using Laplace transform technique and the power series method. For application of analytical model, we simulated observed experimental breakthrough curves from 1500 cm long soil column experiments conducted in the laboratory. The simulation results of break-through curves were found to deviate from the observed breakthrough curves for both mobile–immobile and multiprocess non-equilibrium transport with constant dispersion models. However, multiprocess non-equilibrium with an asymptotic dispersion model gives better fit of experimental breakthrough curves through long soil column and hence it is more useful for describing anomalous solute transport through hetero-geneous porous media. The present model is simpler than the stochastic numerical method.

  6. Framework for reactive mass transport

    DEFF Research Database (Denmark)

    Jensen, Mads Mønster; Johannesson, Björn; Geiker, Mette Rica

    2014-01-01

    description is coupled to the system. The mass transport is solved by using the finite element method where the chemical equilibrium is solved explicitly by an operator splitting method. The IPHREEQC library is used as chemical equilibrium solver. The equation system, solved by IPHREEQC, is explained...... simulation, showing multi-species ingress with formation of new solid phases in the domain is described and calculated. It is shown that the numerical solution method is capable of solving the reactive mass transport system for the examples considered. (C) 2014 Elsevier B.V. All rights reserved....

  7. Reactive Melt Infiltration Of Silicon Into Porous Carbon

    Science.gov (United States)

    Behrendt, Donald R.; Singh, Mrityunjay

    1994-01-01

    Report describes study of synthesis of silicon carbide and related ceramics by reactive melt infiltration of silicon and silicon/molybdenum alloys into porous carbon preforms. Reactive melt infiltration has potential for making components in nearly net shape, performed in less time and at lower temperature. Object of study to determine effect of initial pore volume fraction, pore size, and infiltration material on quality of resultant product.

  8. Dilution and reactive mixing in three-dimensional helical flows in porous media

    Science.gov (United States)

    Chiogna, Gabriele; Ye, Yu; Grathwohl, Peter; Cirpka, Olaf A.; Rolle, Massimo

    2016-04-01

    Dilution under steady-state flow and transport conditions in porous media occurs primarily by lateral mass exchange at the fringe of solute plumes. This process controls the fate and transport of scalars in groundwater and in chemical reactors and it is fundamental for the understanding of many reactive processes. Three-dimensional flow fields can be characterized by a complex topological structure, which may greatly influence dilution and dilution enhancement of dissolved plumes, which is quantified by the exponential of the Shannon entropy [1]. In previous works, we identified the necessary conditions to obtain helical flow fields in non-stationary anisotropic heterogeneous porous media [2, 3]. To prove our theoretical findings, we perform steady-state bench-scale experiments with a conservative tracer and we provide a model-based investigation of the results [4]. The relevance of transverse mixing enhancement for the case of reactive solute transport is computed numerically using, as metrics of mixing, the length of a reactive plume undergoing an instantaneous complete bimolecular reaction and its critical dilution index. [1] Cirpka O.A., Chiogna G., Rolle M. and A. Bellin (2015). Transverse mixing in three-dimensional non-stationary anisotropic heterogeneous porous media. Water Resources Research, 51, DOI: 10.1002/2014WR015331. [2] Chiogna G., Cirpka O.A., Rolle M. and A. Bellin (2015). Helical flow streamlines in three-dimensional nonstationary anisotropic heterogeneous porous media. Water Resources Research, 51, DOI:10.1002/2014WR015330. [3] Chiogna G., Rolle M., Bellin A. and O.A. Cirpka (2014). Helicity and flow topology in three dimensional porous media. Advances in Water Resources, 73, 134-143, DOI: 10.1016/j.advwatres.2014.06.017. [4] Ye Y., Chiogna G., Cirpka O.A., Grathwohl P., and M. Rolle (2015). Experimental evidence of helical flow in porous media. Phys. Rev. Lett., 115, 194502, DOI: 10.1103/PhysRevLett.115.194502

  9. Modeling reactive flow and transport in natural systems

    Energy Technology Data Exchange (ETDEWEB)

    Lichtner, P.C. [Center for Nuclear Waste Regulatory Analyses, S.Antonio, TX (United States)

    1998-12-31

    A general formulation of reactive transport equations in a porous medium has been presented including homogeneous reactions of aqueous species, heterogenous reactions of minerals, and microbiological processes. The canonical form of chemical reactions was introduced and the transformation between primary or basis species derived. The use of parallel linearly-dependent reactions was discussed for incorporating different reaction rate mechanisms. It was demonstrated how the electron may be used in reactive transport equations with redox reactions formulated in terms of half-cell reactions. A single component system was investigated for both a one-dimensional porous medium and a two-dimensional geometry incorporating fracture-matrix interaction. Finally two multicomponent examples were considered using the computer code MULTIFLO of in situ leaching of copper ore and acid mine drainage.

  10. Multimodel framework for characterization of transport in porous media

    Science.gov (United States)

    Ciriello, Valentina; Edery, Yaniv; Guadagnini, Alberto; Berkowitz, Brian

    2015-05-01

    We consider modeling approaches to characterize solute transport in porous media, integrating them into a unique theoretical and experimental framework for model evaluation and data interpretation. To date, development of (conservative and reactive chemical) transport models and formulation of model calibration methods grounded on sensitivity-based collection of measurements have been pursued in parallel. Key questions that remain include: For a given set of measurements, which conceptual picture of the transport processes, as embodied in a mathematical model or models, is most appropriate? What are the most valuable space-time locations for solute concentration measurements, depending on the model selected? How is model parameter uncertainty propagated to model output, and how does this propagation affect model calibration? We address these questions by merging parallel streams of research—model formulation, reduction, calibration, sensitivity analysis, and discrimination—offering our view on an emerging framework that guides (i) selection of an appropriate number and location of time-dependent concentration measurements given a transport model and (ii) assessment (through discrimination criteria) of the relative benefit of applying any particular model from a set of several models. Our strategy is to employ metrics to quantify the relative contribution of each uncertain model parameter to the variability of the model output. We evaluate these metrics through construction of a surrogate (or "meta") transport model that has the additional benefit of enabling sensitivity analysis and model calibration at a highly reduced computational cost. We demonstrate the applicability of this framework, focusing on transport of reactive chemicals in laboratory-scale porous media.

  11. Upscaling retardation factor in hierarchical porous media with multimodal reactive mineral facies.

    Science.gov (United States)

    Deng, Hailin; Dai, Zhenxue; Wolfsberg, Andrew V; Ye, Ming; Stauffer, Philip H; Lu, Zhiming; Kwicklis, Edward

    2013-04-01

    Aquifer heterogeneity controls spatial and temporal variability of reactive transport parameters and has significant impacts on subsurface modeling of flow, transport, and remediation. Upscaling (or homogenization) is a process to replace a heterogeneous domain with a homogeneous one such that both reproduce the same response. To make reliable and accurate predictions of reactive transport for contaminant in chemically and physically heterogeneous porous media, subsurface reactive transport modeling needs upscaled parameters such as effective retardation factor to perform field-scale simulations. This paper develops a conceptual model of multimodal reactive mineral facies for upscaling reactive transport parameters of hierarchical heterogeneous porous media. Based on the conceptual model, covariance of hydraulic conductivity, sorption coefficient, flow velocity, retardation factor, and cross-covariance between flow velocity and retardation factor are derived from geostatistical characterizations of a three-dimensional unbounded aquifer system. Subsequently, using a Lagrangian approach the scale-dependent analytical expressions are derived to describe the scaling effect of effective retardation factors in temporal and spatial domains. When time and space scales become sufficiently large, the effective retardation factors approximate their composite arithmetic mean. Correlation between the hydraulic conductivity and the sorption coefficient can significantly affect the values of the effective retardation factor in temporal and spatial domains. When the temporal and spatial scales are relatively small, scaling effect of the effective retardation factors is relatively large. This study provides a practical methodology to develop effective transport parameters for field-scale modeling at which remediation and risk assessment is actually conducted. It does not only bridge the gap between bench-scale measurements to field-scale modeling, but also provide new insights into

  12. Influence of biofilms on transport properties in porous media

    Science.gov (United States)

    Davit, Y.

    2015-12-01

    Microbial activity and biofilm growth in porous media can drastically modify transport properties such as permeability, longitudinal and transverse dispersion or effective reaction rates. Understanding these effects has proven to be a considerable challenge. Advances in this field have been hindered by the difficulty of modeling and visualizing these multi-phase non-linear effects across a broad range of spatial and temporal scales. To address these issues, we are developing a strategy that combines imaging techniques based on x-ray micro-tomography with homogenization of pore-scale transport equations. Here, we review recent progress in x-ray imaging of biofilms in porous media, with a particular focus on the contrast agents that are used to differentiate between the fluid and biofilm phases. We further show how the 3D distribution of the different phases can be used to extract specific information about the biofilm and how effective properties can be calculated via the resolution of closure problems. These closure problems are obtained using the method of volume averaging and must be adapted to the problem of interest. In hydrological systems, we show that a generic formulation for reactive solute transport is based on a domain decomposition approach at the micro-scale yielding macro-scale models reminiscent of multi-rate mass transfer approaches.

  13. Supercritical nitrogen processing for the purification of reactive porous materials.

    Science.gov (United States)

    Stadie, Nicholas P; Callini, Elsa; Mauron, Philippe; Borgschulte, Andreas; Züttel, Andreas

    2015-05-15

    Supercritical fluid extraction and drying methods are well established in numerous applications for the synthesis and processing of porous materials. Herein, nitrogen is presented as a novel supercritical drying fluid for specialized applications such as in the processing of reactive porous materials, where carbon dioxide and other fluids are not appropriate due to their higher chemical reactivity. Nitrogen exhibits similar physical properties in the near-critical region of its phase diagram as compared to carbon dioxide: a widely tunable density up to ~1 g ml(-1), modest critical pressure (3.4 MPa), and small molecular diameter of ~3.6 Å. The key to achieving a high solvation power of nitrogen is to apply a processing temperature in the range of 80-150 K, where the density of nitrogen is an order of magnitude higher than at similar pressures near ambient temperature. The detailed solvation properties of nitrogen, and especially its selectivity, across a wide range of common target species of extraction still require further investigation. Herein we describe a protocol for the supercritical nitrogen processing of porous magnesium borohydride.

  14. Porous carbon nanotubes: Molecular absorption, transport, and separation

    Science.gov (United States)

    Yzeiri, Irena; Patra, Niladri; Král, Petr

    2014-03-01

    We use classical molecular dynamics simulations to study nanofluidic properties of porous carbon nanotubes. We show that saturated water vapor condenses on the porous nanotubes, can be absorbed by them and transported in their interior. When these nanotubes are charged and placed in ionic solutions, they can selectively absorb ions in their interior and transport them. Porous carbon nanotubes can also be used as selective molecular sieves, as illustrated on a room temperature separation of benzene and ethanol.

  15. Foam Transport in Porous Media - A Review

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.; Freedman, Vicky L.; Zhong, Lirong

    2009-11-11

    Amendment solutions with or without surfactants have been used to remove contaminants from soil. However, it has drawbacks such that the amendment solution often mobilizes the plume, and its movement is controlled by gravity and preferential flow paths. Foam is an emulsion-like, two-phase system in which gas cells are dispersed in a liquid and separated by thin liquid films called lamellae. Potential advantages of using foams in sub-surface remediation include providing better control on the volume of fluids injected, uniformity of contact, and the ability to contain the migration of contaminant laden liquids. It is expected that foam can serve as a carrier of amendments for vadose zone remediation, e.g., at the Hanford Site. As part of the U.S. Department of Energy’s EM-20 program, a numerical simulation capability will be added to the Subsurface Transport Over Multiple Phases (STOMP) flow simulator. The primary purpose of this document is to review the modeling approaches of foam transport in porous media. However, as an aid to understanding the simulation approaches, some experiments under unsaturated conditions and the processes of foam transport are also reviewed. Foam may be formed when the surfactant concentration is above the critical micelle concentration. There are two main types of foams – the ball foam (microfoam) and the polyhedral foam. The characteristics of bulk foam are described by the properties such as foam quality, texture, stability, density, surface tension, disjoining pressure, etc. Foam has been used to flush contaminants such as metals, organics, and nonaqueous phase liquids from unsaturated soil. Ball foam, or colloidal gas aphrons, reportedly have been used for soil flushing in contaminated site remediation and was found to be more efficient than surfactant solutions on the basis of weight of contaminant removed per gram of surfactant. Experiments also indicate that the polyhedral foam can be used to enhance soil remediation. The

  16. Transport of Graphene Oxide through Porous Media

    Science.gov (United States)

    Duster, T. A.; Na, C.; Bolster, D.; Fein, J. B.

    2012-12-01

    Graphene oxide (GO) is comprised of anisotropic nanosheets decorated with covalently-bonded epoxide, ketone, and hydroxyl functional groups on the basal planes, and carboxylic and phenolic functional groups at the edges. Individual GO nanosheets are generally two to three micrometers in width, with thicknesses depending on the degree of exfoliation and typically ranging from one to approximately 100 nanometers. As a result of this extraordinarily large surface area-to-mass ratio and the presence of numerous proton-active functional groups, GO nanosheets exhibit a tremendous capacity to adsorb metals and other contaminants from aqueous solutions and are thus often suggested for use in in situ remediation efforts. The potential importance of GO nanosheets as an adsorbent in soil and groundwater necessitates a detailed understanding of their mobility in environmental systems, but this topic remains largely unexplored. Hence, the objective of this study was to investigate the transport behavior of GO nanosheets through well-characterized saturated porous media. In this study, we used replicate glass columns packed with two different sand grain sizes, and within each treatment we varied pH (5.5 to 8.5), ionic strength (electrolyte composition (Na+ and Ca2+ salts), and GO nanosheet exfoliation extent (few-layered and many-layered) to determine the relative influence of both physical and electrochemical properties on GO nanosheet transport in these systems. The break-through of GO nanosheets from each treatment was continuously monitored using a flow-through quartz cuvette and UV-Vis absorbance at 230 nm. GO nanosheet transport through these systems was then modeled using distinct advection-dispersion equations to establish the relative influence of attachment, deposition, and detachment in the overall transport behavior, and a corresponding retardation coefficient was calculated for each treatment. Break-through curves displayed anomalous transport behavior, which was

  17. Pore scale modeling of reactive transport involved in geologic CO2 sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Qinjin [Los Alamos National Laboratory; Lichtner, Peter C [Los Alamos National Laboratory; Viswanathan, Hari S [Los Alamos National Laboratory; Abdel-fattah, Amr I [Los Alamos National Laboratory

    2009-01-01

    We apply a multi-component reactive transport lattice Boltzmann model developed in previolls studies to modeling the injection of a C02 saturated brine into various porous media structures at temperature T=25 and 80 C. The porous media are originally consisted of calcite. A chemical system consisting of Na+, Ca2+, Mg2+, H+, CO2(aq), and CI-is considered. The fluid flow, advection and diHusion of aqueous species, homogeneous reactions occurring in the bulk fluid, as weB as the dissolution of calcite and precipitation of dolomite are simulated at the pore scale. The effects of porous media structure on reactive transport are investigated. The results are compared with continuum scale modeling and the agreement and discrepancy are discussed. This work may shed some light on the fundamental physics occurring at the pore scale for reactive transport involved in geologic C02 sequestration.

  18. Reactive transport codes for subsurface environmental simulation

    NARCIS (Netherlands)

    Steefel, C.I.; Appelo, C.A.J.; Arora, B.; Kalbacher, D.; Kolditz, O.; Lagneau, V.; Lichtner, P.C.; Mayer, K.U.; Meeussen, J.C.L.; Molins, S.; Moulton, D.; Shao, D.; Simunek, J.; Spycher, N.; Yabusaki, S.B.; Yeh, G.T.

    2015-01-01

    A general description of the mathematical and numerical formulations used in modern numerical reactive transport codes relevant for subsurface environmental simulations is presented. The formulations are followed by short descriptions of commonly used and available subsurface simulators that conside

  19. Dual Transport Process for Targeted Delivery in Porous Media

    Science.gov (United States)

    Deng, W.; Fan, J.

    2015-12-01

    The targeted delivery in porous media is a promising technology to encapsulate the solute (i.e., the cargo) in colloid-like microcapsules (i.e., the carriers), transport the microcapsules in the targeted location in porous media, and then release the solute. While extensive literatures and applications about the drug delivery in human and animal bodies exist, the targeted delivery using similar delivery carriers in subsurface porous media is not well understood. The dual transport process study is an explorative study for the targeted delivery in porous media. While the colloid transport is dominated by the advection process and the solute transport is dominated by the advection-dispersion, the dual transport process is the process with the first step of carrier transport, which is dominated by advection, and then after the release of cargo, the transport of cargo is dominated by advection-dispersion. By applying the random walk particle tracking (RWPT) approach, we investigate how the carriers transport in porous media and how the cargo release mechanisms affect the cargo distribution for the targeted delivery in various patterns of porous media. The RWPT numerical model will be verified against the experimental results of dual transport process in packed-disk 2D micromodels. The understanding of the mechanism of dual transport process is crucial to achieve the potential applications of targeted delivery in improved oil and gas recovery, CO2 sequestration, environmental remediation, and soil biomediation.

  20. Reactive dispersive contaminant transport in coastal aquifers: numerical simulation of a reactive Henry problem.

    Science.gov (United States)

    Nick, H M; Raoof, A; Centler, F; Thullner, M; Regnier, P

    2013-02-01

    The reactive mixing between seawater and terrestrial water in coastal aquifers influences the water quality of submarine groundwater discharge. While these waters come into contact at the seawater groundwater interface by density driven flow, their chemical components dilute and react through dispersion. A larger interface and wider mixing zone may provide favorable conditions for the natural attenuation of contaminant plumes. It has been claimed that the extent of this mixing is controlled by both, porous media properties and flow conditions. In this study, the interplay between dispersion and reactive processes in coastal aquifers is investigated by means of numerical experiments. Particularly, the impact of dispersion coefficients, the velocity field induced by density driven flow and chemical component reactivities on reactive transport in such aquifers is studied. To do this, a hybrid finite-element finite-volume method and a reactive simulator are coupled, and model accuracy and applicability are assessed. A simple redox reaction is considered to describe the degradation of a contaminant which requires mixing of the contaminated groundwater and the seawater containing the terminal electron acceptor. The resulting degradation is observed for different scenarios considering different magnitudes of dispersion and chemical reactivity. Three reactive transport regimes are found: reaction controlled, reaction-dispersion controlled and dispersion controlled. Computational results suggest that the chemical components' reactivity as well as dispersion coefficients play a significant role on controlling reactive mixing zones and extent of contaminant removal in coastal aquifers. Further, our results confirm that the dilution index is a better alternative to the second central spatial moment of a plume to describe the mixing of reactive solutes in coastal aquifers.

  1. Reactive dispersive contaminant transport in coastal aquifers: Numerical simulation of a reactive Henry problem

    KAUST Repository

    Nick, H.M.

    2013-02-01

    The reactive mixing between seawater and terrestrial water in coastal aquifers influences the water quality of submarine groundwater discharge. While these waters come into contact at the seawater groundwater interface by density driven flow, their chemical components dilute and react through dispersion. A larger interface and wider mixing zone may provide favorable conditions for the natural attenuation of contaminant plumes. It has been claimed that the extent of this mixing is controlled by both, porous media properties and flow conditions. In this study, the interplay between dispersion and reactive processes in coastal aquifers is investigated by means of numerical experiments. Particularly, the impact of dispersion coefficients, the velocity field induced by density driven flow and chemical component reactivities on reactive transport in such aquifers is studied. To do this, a hybrid finite-element finite-volume method and a reactive simulator are coupled, and model accuracy and applicability are assessed. A simple redox reaction is considered to describe the degradation of a contaminant which requires mixing of the contaminated groundwater and the seawater containing the terminal electron acceptor. The resulting degradation is observed for different scenarios considering different magnitudes of dispersion and chemical reactivity. Three reactive transport regimes are found: reaction controlled, reaction-dispersion controlled and dispersion controlled. Computational results suggest that the chemical components\\' reactivity as well as dispersion coefficients play a significant role on controlling reactive mixing zones and extent of contaminant removal in coastal aquifers. Further, our results confirm that the dilution index is a better alternative to the second central spatial moment of a plume to describe the mixing of reactive solutes in coastal aquifers. © 2012 Elsevier B.V.

  2. Transport of human adenoviruses in porous media

    Science.gov (United States)

    Kokkinos, Petros; Syngouna, Vasiliki I.; Tselepi, Maria A.; Bellou, Maria; Chrysikopoulos, Constantinos V.; Vantarakis, Apostolos

    2015-04-01

    Groundwater may be contaminated with infective human enteric viruses from various wastewater discharges, sanitary landfills, septic tanks, agricultural practices, and artificial groundwater recharge. Coliphages have been widely used as surrogates of enteric viruses, because they share many fundamental properties and features. Although a large number of studies focusing on various factors (i.e. pore water solution chemistry, fluid velocity, moisture content, temperature, and grain size) that affect biocolloid (bacteria, viruses) transport have been published over the past two decades, little attention has been given toward human adenoviruses (hAdVs). The main objective of this study was to evaluate the effect of pore water velocity on hAdV transport in water saturated laboratory-scale columns packed with glass beads. The effects of pore water velocity on virus transport and retention in porous media was examined at three pore water velocities (0.39, 0.75, and 1.22 cm/min). The results indicated that all estimated average mass recovery values for hAdV were lower than those of coliphages, which were previously reported in the literature by others for experiments conducted under similar experimental conditions. However, no obvious relationship between hAdV mass recovery and water velocity could be established from the experimental results. The collision efficiencies were quantified using the classical colloid filtration theory. Average collision efficiency, α, values decreased with decreasing flow rate, Q, and pore water velocity, U, but no significant effect of U on α was observed. Furthermore, the surface properties of viruses and glass beads were used to construct classical DLVO potential energy profiles. The results revealed that the experimental conditions of this study were unfavorable to deposition and that no aggregation between virus particles is expected to occur. A thorough understanding of the key processes governing virus transport is pivotal for public

  3. Application of reactive transport modelling to growth and transport of microorganisms in the capillary fringe

    CERN Document Server

    Hron, Pavel; Bastian, Peter; Gallert, Claudia; Winter, Josef; Ippisch, Olaf

    2014-01-01

    A multicomponent multiphase reactive transport simulator has been developed to facilitate the investigation of a large variety of phenomena in porous media including component transport, diffusion, microbiological growth and decay, cell attachment and detachment and phase exchange. The coupled problem is solved using operator splitting. This approach allows a flexible adaptation of the solution strategy to the concrete problem. Moreover, the individual submodels were optimised to be able to describe behaviour of Escherichia coli (HB101 K12 pGLO) in the capillary fringe in the presence or absence of dissolved organic carbon and oxygen under steady-state and flow conditions. Steady-state and flow through experiments in a Hele-Shaw cell, filled with quartz sand, were conducted to study eutrophic bacterial growth and transport in both saturated and unsaturated porous media. As E. coli cells can form the green fluorescent protein (GFP), the cell densities, calculated by evaluation of measured fluorescence intensit...

  4. Mass transport in a microchannel bioreactor with a porous wall.

    Science.gov (United States)

    Chen, Xiao Bing; Sui, Yi; Lee, Heow Pueh; Bai, Hui Xing; Yu, Peng; Winoto, S H; Low, Hong Tong

    2010-06-01

    A two-dimensional flow model has been developed to simulate mass transport in a microchannel bioreactor with a porous wall. A two-domain approach, based on the finite volume method, was implemented. For the fluid part, the governing equation used was the Navier-Stokes equation; for the porous medium region, the generalized Darcy-Brinkman-Forchheimer extended model was used. For the porous-fluid interface, a stress jump condition was enforced with a continuity of normal stress, and the mass interfacial conditions were continuities of mass and mass flux. Two parameters were defined to characterize the mass transports in the fluid and porous regions. The porous Damkohler number is the ratio of consumption to diffusion of the substrates in the porous medium. The fluid Damkohler number is the ratio of the substrate consumption in the porous medium to the substrate convection in the fluid region. The concentration results were found to be well correlated by the use of a reaction-convection distance parameter, which incorporated the effects of axial distance, substrate consumption, and convection. The reactor efficiency reduced with reaction-convection distance parameter because of reduced reaction (or flux), and smaller local effectiveness factor due to the lower concentration in Michaelis-Menten type reactions. The reactor was more effective, and hence, more efficient with the smaller porous Damkohler number. The generalized results could find applications for the design of bioreactors with a porous wall.

  5. Coupled electric and transport phenomena in porous media

    NARCIS (Netherlands)

    Li, Shuai

    2014-01-01

    The coupled electrical and transport properties of clay-containing porous media are the topics of interest in this study. Both experimental and numerical (pore network modeling) techniques are employed to gain insight into the macro-scale interaction between electrical and solute transport phenomena

  6. Transport of multiple Escherichia coli strains in saturated porous media

    NARCIS (Netherlands)

    Lutterodt, G.

    2012-01-01

    The deviation of bacteria transport and deposition patterns on grains in porous media from theory has resulted in the inability to accurately predict transport distances in aquifers, with consequences of polluting drinking water sources (springs, boreholes and wells). Due to the importance of

  7. Coupled electric and transport phenomena in porous media

    NARCIS (Netherlands)

    Li, Shuai

    2014-01-01

    The coupled electrical and transport properties of clay-containing porous media are the topics of interest in this study. Both experimental and numerical (pore network modeling) techniques are employed to gain insight into the macro-scale interaction between electrical and solute transport phenomena

  8. Transport of multiple Escherichia coli strains in saturated porous media

    NARCIS (Netherlands)

    Lutterodt, G.

    2012-01-01

    The deviation of bacteria transport and deposition patterns on grains in porous media from theory has resulted in the inability to accurately predict transport distances in aquifers, with consequences of polluting drinking water sources (springs, boreholes and wells). Due to the importance of Escher

  9. Fluid-rock interaction: A reactive transport approach

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, C.; Maher, K.

    2009-04-01

    irreversible. Helgeson's pioneering approach was given a more formal kinetic basis (including the introduction of real time rather than reaction progress as the independent variable) in subsequent studies (Lasaga 1981; Aagaard and Helgeson 1982; Lasaga 1984). The reaction path approach can be used to describe chemical processes in a batch or closed system (e.g., a laboratory beaker), but such systems are of limited interest in the Earth sciences where the driving force for most reactions is transport. Lichtner (1988) clarified the application of the reaction path models to water-rock interaction involving transport by demonstrating that they could be used to describe pure advective transport through porous media. By adopting a reference frame which followed the fluid packet as it moved through the medium, the reaction progress variable could be thought of as travel time instead. Multi-component reactive transport models that could treat any combination of transport and biogeochemical processes date back to the early 1980s. Berner and his students applied continuum reactive transport models to describe processes taking place during the early diagenesis of marine sediments (Berner 1980). Lichtner (1985) outlined much of the basic theory for a continuum model for multicomponent reactive transport. Yeh and Tripathi (1989) also presented the theoretical and numerical basis for the treatment of reactive contaminant transport. Steefel and Lasaga (1994) presented a reactive flow and transport model for nonisothermal, kinetically-controlled water-rock interaction and fracture sealing in hydrothermal systems based on simultaneous numerical solution of both reaction and transport This chapter begins with a review of the important transport processes that affect or even control fluid-rock interaction. This is followed by a general introduction to the governing equations for reactive transport, which are broadly applicable to both qualitative and quantitative interpretations of fluid

  10. Stochastic dynamics modeling solute transport in porous media modeling solute transport in porous media

    CERN Document Server

    Kulasiri, Don

    2002-01-01

    Most of the natural and biological phenomena such as solute transport in porous media exhibit variability which can not be modeled by using deterministic approaches. There is evidence in natural phenomena to suggest that some of the observations can not be explained by using the models which give deterministic solutions. Stochastic processes have a rich repository of objects which can be used to express the randomness inherent in the system and the evolution of the system over time. The attractiveness of the stochastic differential equations (SDE) and stochastic partial differential equations (SPDE) come from the fact that we can integrate the variability of the system along with the scientific knowledge pertaining to the system. One of the aims of this book is to explaim some useufl concepts in stochastic dynamics so that the scientists and engineers with a background in undergraduate differential calculus could appreciate the applicability and appropriateness of these developments in mathematics. The ideas ...

  11. Combinatorial model of solute transport in porous media

    Institute of Scientific and Technical Information of China (English)

    张妙仙; 张丽萍

    2004-01-01

    Modeling of solute transport is a key issue in the area of soil physics and hydrogeology. The most common approach (the convection-dispersion equation) considers an average convection flow rate and Fickian-like dispersion. Here,we propose a solute transport model in porous media of continuously expanding scale, according to the combinatorics principle. The model supposed actual porous media as a combinative body of many basic segments. First, we studied the solute transport process in each basic segment body, and then deduced the distribution of pore velocity in each basic segment body by difference approximation, finally assembled the solute transport process of each basic segment body into one of the combinative body. The simulation result coincided with the solute transport process observed in test. The model provides useful insight into the solute transport process of the non-Fickian dispersion in continuously expanding scale.

  12. Bacteria transport through porous material: Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Yen, T.F.

    1989-02-13

    The injection and penetration of bacteria into a reservoir is the most problematic and crucial of the steps in microbial enhanced recovery (MEOR). In the last phase of our work valuable information on bacterial transport in porous media was obtained. A great deal of progress was made to determine chemical bonding characteristics between adsorbed bacteria and the rock surfaces. In order to further enhance our knowledge of the effects of surface tensions on bacteria transport through porous media, a new approach was taken to illustrate the effect of liquid surface tension on bacterial transport through a sandpack column. Work in surface charge characterization of reservoir rock as a composite oxide system was also accomplished. In the last section of this report a mathematical model to simulate the simultaneous diffusion and growth of bacteria cells in a nutrient-enriched porous media is proposed.

  13. Core-flood experiment for transport of reactive fluids in rocks.

    Science.gov (United States)

    Ott, H; de Kloe, K; van Bakel, M; Vos, F; van Pelt, A; Legerstee, P; Bauer, A; Eide, K; van der Linden, A; Berg, S; Makurat, A

    2012-08-01

    Investigation of the transport of reactive fluids in porous rocks is an intriguing but challenging task and relevant in several areas of science and engineering such as geology, hydrogeology, and petroleum engineering. We designed and constructed an experimental setup to investigate physical and chemical processes caused by the flow of reactive and volatile fluids such as supercritical CO(2) and/or H(2)S in geological formations. Potential applications are geological sequestration of CO(2) in the frame of carbon capture and storage and acid-gas injection for sulfur disposal and/or enhanced oil recovery. The present paper outlines the design criteria and the realization of reactive transport experiments on the laboratory scale. We focus on the spatial and time evolution of rock and fluid composition as a result of chemical rock fluid interaction and the coupling of chemistry and fluid flow in porous rocks.

  14. Modelling of radon transport in porous media

    NARCIS (Netherlands)

    van der Graaf, E.R.; de Meijer, R.J.; Katase, A; Shimo, M

    1998-01-01

    This paper aims to describe the state of the art of modelling radon transport in soil on basis of multiphase radon transport equations. Emphasis is given to methods to obtain a consistent set of input parameters needed For such models. Model-measurement comparisons with the KVI radon transport Facil

  15. Modelling of radon transport in porous media

    NARCIS (Netherlands)

    van der Graaf, E.R.; de Meijer, R.J.; Katase, A; Shimo, M

    1998-01-01

    This paper aims to describe the state of the art of modelling radon transport in soil on basis of multiphase radon transport equations. Emphasis is given to methods to obtain a consistent set of input parameters needed For such models. Model-measurement comparisons with the KVI radon transport Facil

  16. Internal Domains of Natural Porous Media Revealed: Critical Locations for Transport, Storage, and Chemical Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zachara, John M.; Brantley, Susan L.; Chorover, Jon D.; Ewing, Robert P.; Kerisit, Sebastien N.; Liu, Chongxuan; Perfect, E.; Rother, Gernot; Stack, Andrew G.

    2016-03-16

    Internal pore domains exist within rocks, lithic fragments, subsurface sediments and soil aggregates. These domains, which we term internal domains in porous media (IDPM), contain a significant fraction of their porosity as nanopores, dominate the reactive surface area of diverse porous media types, and are important locations for chemical reactivity and hydrocarbon storage. Traditionally difficult to interrogate, advances in instrumentation and imaging methods are providing new insights on the physical structures and chemical attributes of IDPM. In this review we: discuss analytical methods to characterize IDPM, evaluate what has been learned about their size distributions, connectivity, and extended structures; determine whether they exhibit unique chemical reactivity; and assess potential for their inclusion in reactive transport models. Three key findings are noteworthy. 1) A combination of methods now allows complete characterization of the porosity spectrum of natural materials and its connectivity; while imaging microscopies are providing three dimensional representations of the interconnected pore network. 2) Chemical reactivity in pores <10 nm is expected to be different from micro and macropores, yet research performed to date is inconclusive on the nature, direction, and magnitude of effect. 3) Existing continuum reactive transport models treat IDPM as a sub-grid feature with average, empirical, scale-dependent parameters; and are not formulated to include detailed information on pore networks. Overall we find that IDPM are key features controlling hydrocarbon release from shales in hydrofracking systems, organic matter stabilization and recalcitrance in soil, weathering and soil formation, and long term inorganic and organic contaminant behavior in the vadose zone and groundwater. We conclude with an assessment of impactful research opportunities to advance understanding of IDPM, and to incorporate their important effects in reactive transport models

  17. Transport of Polycyclic Aromatic Hydrocarbons in Unsaturated Porous Media

    Science.gov (United States)

    Chahal, Maninder; Flury, Markus

    2016-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are complex organic molecules containing 2 or more fused benzene rings. Being hydrophobic and non-polar, PAHs tend to partition to the organic matter in the soil from bulk aqueous phase. Though transport of these contaminants has been well studied in saturated environment, interactive mechanisms of these fluorescent compounds in unsaturated (identified by presence of air-water interface) porous media is still not well understood. We studied is the transport of fluoranthene in unsaturated porous media as facilitated by moving air-water interfaces. Confocal microscopy was used to visualize the interactions of fluoranthene particles in a glass channel packed with quartz glass beads. The packed glass channel was used to mimic a porous media and effects of an advancing and receding capillary fringe on the detachment of fluoranthene.

  18. OS3D/GIMRT software for modeling multicomponent-multidimensional reactive transport

    Energy Technology Data Exchange (ETDEWEB)

    CI Steefel; SB Yabusaki

    2000-05-17

    OS3D/GIMRT is a numerical software package for simulating multicomponent reactive transport in porous media. The package consists of two principal components: (1) the code OS3D (Operator Splitting 3-Dimensional Reactive Transport) which simulates reactive transport by either splitting the reaction and transport steps in time, i.e., the classic time or operator splitting approach, or by iterating sequentially between reactions and transport, and (2) the code GIMRT (Global Implicit Multicomponent Reactive Transport) which treats up to two dimensional reactive transport with a one step or global implicit approach. Although the two codes do not yet have totally identical capabilities, they can be run from the same input file, allowing comparisons to be made between the two approaches in many cases. The advantages and disadvantages of the two approaches are discussed more fully below, but in general OS3D is designed for simulation of transient concentration fronts, particularly under high Peclet number transport conditions, because of its use of a total variation diminishing or TVD transport algorithm. GIMRT is suited for simulating water-rock alteration over long periods of time where the aqueous concentration field is at or close to a quasi-stationary state and the numerical transport errors are less important. Where water-rock interaction occurs over geological periods of time, GIMRT may be preferable to OS3D because of its ability to take larger time steps.

  19. Brine transport in porous media self-similar solutions

    NARCIS (Netherlands)

    C.J. van Duijn (Hans); L.A. Peletier (Bert); R.J. Schotting

    1996-01-01

    textabstractIn this paper we analyze a model for brine transport in porous media, which includes a mass balance for the fluid, a mass balance for salt, Darcy's law and an equation of state, which relates the fluid density to the salt mass fraction. This model incorporates the effect of local volume

  20. Fluid-rock interaction: A reactive transport approach

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, C.; Maher, K.

    2009-04-01

    irreversible. Helgeson's pioneering approach was given a more formal kinetic basis (including the introduction of real time rather than reaction progress as the independent variable) in subsequent studies (Lasaga 1981; Aagaard and Helgeson 1982; Lasaga 1984). The reaction path approach can be used to describe chemical processes in a batch or closed system (e.g., a laboratory beaker), but such systems are of limited interest in the Earth sciences where the driving force for most reactions is transport. Lichtner (1988) clarified the application of the reaction path models to water-rock interaction involving transport by demonstrating that they could be used to describe pure advective transport through porous media. By adopting a reference frame which followed the fluid packet as it moved through the medium, the reaction progress variable could be thought of as travel time instead. Multi-component reactive transport models that could treat any combination of transport and biogeochemical processes date back to the early 1980s. Berner and his students applied continuum reactive transport models to describe processes taking place during the early diagenesis of marine sediments (Berner 1980). Lichtner (1985) outlined much of the basic theory for a continuum model for multicomponent reactive transport. Yeh and Tripathi (1989) also presented the theoretical and numerical basis for the treatment of reactive contaminant transport. Steefel and Lasaga (1994) presented a reactive flow and transport model for nonisothermal, kinetically-controlled water-rock interaction and fracture sealing in hydrothermal systems based on simultaneous numerical solution of both reaction and transport This chapter begins with a review of the important transport processes that affect or even control fluid-rock interaction. This is followed by a general introduction to the governing equations for reactive transport, which are broadly applicable to both qualitative and quantitative interpretations of fluid

  1. CMT for transport in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, L. [Schlumberger-Doll Research, Ridgefield, CT (United States)

    1997-02-01

    This session is comprised of an outline of uses for x-ray microtomography in the field of petroleum geology. Calculations, diagrams, and color photomicrographs depict the many applications of synchrotron x-ray microtomograpy in determining transport properties and fluid flow characteristics of reservoir rocks, micro-porosity in carbonates, and aspects of multi-phase transport.

  2. RECENT ADVANCES OF UPSCALING METHODS FOR THE SIMULATION OF FLOW TRANSPORT THROUGH HETEROGENEOUS POROUS MEDIA

    Institute of Scientific and Technical Information of China (English)

    Zhiming Chen

    2006-01-01

    We review some of our recent efforts in developing upscaling methods for simulating the flow transport through heterogeneous porous media. In particular, the steady flow transport through highly heterogeneous porous media driven by extraction wells and the flow transport through unsaturated porous media will be considered.

  3. Numerical Tools for Multicomponent, Multiphase, Reactive Processes: Flow of CO{sub 2} in Porous Medium

    Energy Technology Data Exchange (ETDEWEB)

    Khattri, Sanjay Kumar

    2006-07-01

    The thesis is concerned with numerically simulating multicomponent, multiphase, reactive transport in heterogeneous porous medium. Such processes are ubiquitous, for example, deposition of green house gases, flow of hydrocarbons and groundwater remediation. Understanding such processes is important from social and economic point of view. For the success of geological sequestration, an accurate estimation of migration patterns of green-house gases is essential. Due to an ever increasing computer power, computational mathematics has become an important tool for predicting dynamics of porous media fluids. Numerical and mathematical modelling of processes in a domain requires grid generation in the domain, discretization of the continuum equations on the generated grid, solution of the formed linear or nonlinear system of discrete equations and finally visualization of the results. The thesis is composed of three chapters and eight papers. Chapter 2 presents two techniques for generating structured quadrilateral and hexahedral meshes. These techniques are called algebraic and elliptic methods. Algebraic techniques are by far the most simple and computationally efficient method for grid generation. Transfinite interpolation operators are a kind of algebraic grid generation technique. In this chapter, many transfinite interpolation operators for grid generation are derived from 1D projection operators. In this chapter, some important properties of hexahedral elements are also mentioned. These properties are useful in discretization of partial differential equations on hexahedral mesh, improving quality of the hexahedral mesh, mesh generation and visualization. Chapter 3 is about CO{sub 2} flow in porous media. In this chapter, we present the mathematical models and their discretization for capturing major physical processes associated with CO{sub 2} deposition in geological formations. Some important simulations of practical applications in 2D and 3D are presented

  4. Numerical Tools for Multicomponent, Multiphase, Reactive Processes: Flow of CO{sub 2} in Porous Medium

    Energy Technology Data Exchange (ETDEWEB)

    Khattri, Sanjay Kumar

    2006-07-01

    The thesis is concerned with numerically simulating multicomponent, multiphase, reactive transport in heterogeneous porous medium. Such processes are ubiquitous, for example, deposition of green house gases, flow of hydrocarbons and groundwater remediation. Understanding such processes is important from social and economic point of view. For the success of geological sequestration, an accurate estimation of migration patterns of green-house gases is essential. Due to an ever increasing computer power, computational mathematics has become an important tool for predicting dynamics of porous media fluids. Numerical and mathematical modelling of processes in a domain requires grid generation in the domain, discretization of the continuum equations on the generated grid, solution of the formed linear or nonlinear system of discrete equations and finally visualization of the results. The thesis is composed of three chapters and eight papers. Chapter 2 presents two techniques for generating structured quadrilateral and hexahedral meshes. These techniques are called algebraic and elliptic methods. Algebraic techniques are by far the most simple and computationally efficient method for grid generation. Transfinite interpolation operators are a kind of algebraic grid generation technique. In this chapter, many transfinite interpolation operators for grid generation are derived from 1D projection operators. In this chapter, some important properties of hexahedral elements are also mentioned. These properties are useful in discretization of partial differential equations on hexahedral mesh, improving quality of the hexahedral mesh, mesh generation and visualization. Chapter 3 is about CO{sub 2} flow in porous media. In this chapter, we present the mathematical models and their discretization for capturing major physical processes associated with CO{sub 2} deposition in geological formations. Some important simulations of practical applications in 2D and 3D are presented

  5. Modeling reactive transport with particle tracking and kernel estimators

    Science.gov (United States)

    Rahbaralam, Maryam; Fernandez-Garcia, Daniel; Sanchez-Vila, Xavier

    2015-04-01

    Groundwater reactive transport models are useful to assess and quantify the fate and transport of contaminants in subsurface media and are an essential tool for the analysis of coupled physical, chemical, and biological processes in Earth Systems. Particle Tracking Method (PTM) provides a computationally efficient and adaptable approach to solve the solute transport partial differential equation. On a molecular level, chemical reactions are the result of collisions, combinations, and/or decay of different species. For a well-mixed system, the chem- ical reactions are controlled by the classical thermodynamic rate coefficient. Each of these actions occurs with some probability that is a function of solute concentrations. PTM is based on considering that each particle actually represents a group of molecules. To properly simulate this system, an infinite number of particles is required, which is computationally unfeasible. On the other hand, a finite number of particles lead to a poor-mixed system which is limited by diffusion. Recent works have used this effect to actually model incomplete mix- ing in naturally occurring porous media. In this work, we demonstrate that this effect in most cases should be attributed to a defficient estimation of the concentrations and not to the occurrence of true incomplete mixing processes in porous media. To illustrate this, we show that a Kernel Density Estimation (KDE) of the concentrations can approach the well-mixed solution with a limited number of particles. KDEs provide weighting functions of each particle mass that expands its region of influence, hence providing a wider region for chemical reactions with time. Simulation results show that KDEs are powerful tools to improve state-of-the-art simulations of chemical reactions and indicates that incomplete mixing in diluted systems should be modeled based on alternative conceptual models and not on a limited number of particles.

  6. Gas transport in tight porous media Gas kinetic approach

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Wesselingh, Johannes

    2008-01-01

    We describe the flow of gas in a porous medium in the kinetic regime, where the viscous flow structure is not formed in separate pores. Special attention is paid to the dense kinetic regime, where the interactions within the gas are as important as the interaction with the porous medium....... The transport law for this regime is derived by means of the gas kinetic theory, in the framework of the model of "heavy gas in light one". The computations of the gas kinetic theory are confirmed by the dimension analysis and a simplified derivation revealing the considerations behind the kinetic derivation...

  7. A travel time-based approach to model kinetic sorption in highly heterogeneous porous media via reactive hydrofacies

    Science.gov (United States)

    Finkel, Michael; Grathwohl, Peter; Cirpka, Olaf A.

    2016-12-01

    We present a semianalytical model for the transport of solutes being subject to sorption in porous aquifers. We couple a travel time-based model of advective transport with a spherical diffusion model of kinetic sorption in nonuniform material mixtures. The model is formulated in the Laplace domain and transformed to the time domain by numerical inversion. By this, three-dimensional transport of solutes undergoing mass transfer between aqueous and solid phases can be simulated very efficiently. The model addresses both hydraulic and reactive heterogeneity of porous aquifers by means of hydrofacies, which function as homogeneous but nonuniform subunits. The total exposure time to each of these subunits controls the magnitude of sorption effects, whereas the particular sequence of facies through which the solute passes is irrelevant. We apply the model to simulate the transport of phenanthrene in a fluvio-glacial aquifer, for which the hydrofacies distribution is known at high resolution, the lithological composition of each facies has been analyzed, and sorption properties of the lithological components are available. Taking the fully resolved hydrofacies model as reference, we evaluate different approximations referring to lower information levels, reflecting shortcomings in typical modeling projects. The most important feature for a good description of both the main breakthrough and tailing of phenanthrene is the nonuniformity of the porous medium. While spatial heterogeneity of chemical properties might be neglected without introducing a large error, an approximation of the facies' composition in terms of a uniform substitute material considerably compromises the quality of the modeling result.

  8. Topological characteristics underpin intermittency and anomalous transport behavior in soil-like porous media

    Science.gov (United States)

    Holzner, M.; Morales, V.; Willmann, M.; Jerjen, I.; Kaufmann, R.; Dentz, M.

    2016-12-01

    Continuum models of porous media are based on the validity of the Darcy equation for fluid and Fick's law for scalar fluxes on a representative elementary volume. Fluctuations of pore-scale flow and scalar transport are averaged out and represented in terms of effective parameters such as hydrodynamic dispersion. However, the intermittent behavior of pore-scale flow impacts on the nature of particle and scalar transport, and it determines the way dissolved substances mix and react. The understanding of the origin of these processes is of both fundamental and practical importance in applications ranging from reactive transport in groundwater flow to diffusion in fuel cells or biological systems. A central issue in porous medium flow is therefore to relate intermittent behavior of Lagrangian velocity at pore scale imposed by the complex pore network geometry to transport properties at larger scales. Lagrangian measurements in porous systems are nonetheless scarce and most experimental techniques do not provide access to all three velocity components. In this contribution we report 3D measurements of Lagrangian velocity in soil-like porous media. We complement these measurements with detailed X-ray scans of the pore network. We find sharp velocity transitions close to pore throats, and low flow variability in the pore bodies, which gives rise to stretched exponential Lagrangian velocity and acceleration distributions characterized by a sharp peak at low velocity and a superlinear evolution of particle dispersion. We demonstrate that porosity and pore size distribution alone cannot explain the observed features of the flow. Rather, anomalous transport is better interpreted in terms of how pores of various geometries are interconnected. We reproduce the main observations using a continuous-time random walk (CTRW) model revealing the main features that control the system and showing the potential of this simple model to capture transport in complex geometries.

  9. Dissipative particle dynamics model for colloid transport in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Pan, W.; Tartakovsky, A. M.

    2013-08-01

    We present that the transport of colloidal particles in porous media can be effectively modeled with a new formulation of dissipative particle dynamics, which augments standard DPD with non-central dissipative shear forces between particles while preserving angular momentum. Our previous studies have demonstrated that the new formulation is able to capture accurately the drag forces as well as the drag torques on colloidal particles that result from the hydrodynamic retardation effect. In the present work, we use the new formulation to study the contact efficiency in colloid filtration in saturated porous media. Note that the present model include all transport mechanisms simultaneously, including gravitational sedimentation, interception and Brownian diffusion. Our results of contact efficiency show a good agreement with the predictions of the correlation equation proposed by Tufenkji and EliMelech, which also incorporate all transport mechanisms simultaneously without the additivity assumption.

  10. Improved Insight into Transport Phenomena in Porous Materials at Submicrometer Resolution

    DEFF Research Database (Denmark)

    Gooya, Reza

    Traditionally it has been challenging to investigate ƒflow properties of porous media becauseof their complex and oft‰en heterogeneous pore geometry. However, these materialsare important for oil and gas, catalysts, fuel cells, groundwater quality, CO2 storageand in medical applications. In this ......Traditionally it has been challenging to investigate ƒflow properties of porous media becauseof their complex and oft‰en heterogeneous pore geometry. However, these materialsare important for oil and gas, catalysts, fuel cells, groundwater quality, CO2 storageand in medical applications....... In this thesis, transport phenomena- including single phaseƒow, two phase ƒow and reactive transport, were investigated at the pore scale. Œe motivationwas to €nd cheaper, easier and faster alternatives to macroscale investigations.In the fi€rst part, single phase ƒuid flƒow models were tested on experimentally...... materials at the pore scale. ThŒe coupled program wastested for two cases of chloride transport in a 2D channel and for a 2D ion exchanger.In this thesis, pore scale modeling was presented for several transport phenomenain porous media. ThŒeir agreement with the macroscale properties and the ability...

  11. Upscaling flow and transport properties in synthetic porous media

    Science.gov (United States)

    Jasinski, Lukasz; Dabrowski, Marcin

    2015-04-01

    Flow and transport through the porous media has instances in nature and industry: contaminant migration in geological formations, gas/oil extraction from proppant filled hydraulic fractures and surrounding porous matrix, underground carbon dioxide sequestration and many others. We would like to understand the behavior of propagating solute front in such medium, mainly flow preferential pathways and the solute dispersion due to the porous medium geometry. The motivation of our investigation is to find connection between the effective flow and transport properties and porous media geometry in 2D and 3D for large system sizes. The challenge is to discover a good way of upscaling flow and transport processes to obtain results comparable to these calculated on pore-scale in much faster way. We study synthetic porous media made of densely packed poly-disperse disk-or spherical-shaped grains in 2D and 3D, respectively. We use various protocols such as the random sequential addition (RSA) algorithm to generate densely packed grains. Imposed macroscopic pressure gradient invokes fluid flow through the pore space of generated porous medium samples. As the flow is considered in the low Reynolds number regime, a stationary velocity field is obtained by solving the Stokes equations by means of finite element method. Void space between the grains is accurately discretized by using body-fitting triangular or tetrahedral mesh. Finally, pure advection of a front carried by the velocity field is studied. Periodicity in all directions is applied to microstructure, flow and transport processes. Effective permeability of the media can be calculated by integrating the velocity field on cross sections, whereas effective dispersion coefficient is deduced by application of centered moment methods on the concentration field of transported solute in time. The effective parameters are investigated as a function of geometrical parameters of the media, such as porosity, specific surface area

  12. Multi-scale modeling of multi-component reactive transport in geothermal aquifers

    Science.gov (United States)

    Nick, Hamidreza M.; Raoof, Amir; Wolf, Karl-Heinz; Bruhn, David

    2014-05-01

    In deep geothermal systems heat and chemical stresses can cause physical alterations, which may have a significant effect on flow and reaction rates. As a consequence it will lead to changes in permeability and porosity of the formations due to mineral precipitation and dissolution. Large-scale modeling of reactive transport in such systems is still challenging. A large area of uncertainty is the way in which the pore-scale information controlling the flow and reaction will behave at a larger scale. A possible choice is to use constitutive relationships relating, for example the permeability and porosity evolutions to the change in the pore geometry. While determining such relationships through laboratory experiments may be limited, pore-network modeling provides an alternative solution. In this work, we introduce a new workflow in which a hybrid Finite-Element Finite-Volume method [1,2] and a pore network modeling approach [3] are employed. Using the pore-scale model, relevant constitutive relations are developed. These relations are then embedded in the continuum-scale model. This approach enables us to study non-isothermal reactive transport in porous media while accounting for micro-scale features under realistic conditions. The performance and applicability of the proposed model is explored for different flow and reaction regimes. References: 1. Matthäi, S.K., et al.: Simulation of solute transport through fractured rock: a higher-order accurate finite-element finite-volume method permitting large time steps. Transport in porous media 83.2 (2010): 289-318. 2. Nick, H.M., et al.: Reactive dispersive contaminant transport in coastal aquifers: Numerical simulation of a reactive Henry problem. Journal of contaminant hydrology 145 (2012), 90-104. 3. Raoof A., et al.: PoreFlow: A Complex pore-network model for simulation of reactive transport in variably saturated porous media, Computers & Geosciences, 61, (2013), 160-174.

  13. Reactive Chemical Transport Under Multiphase System

    Science.gov (United States)

    Fang, Y.; Yeh, G.

    2001-12-01

    A numerical model, HYDROBIOGEOCHEM, is developed for modeling reactive chemical transport under multiphase flow systems. The chemistry part of this model is derived from BIOGEOCHEM, which is a general computer code that simulates biogeochemial processes from a reaction-based mechanistic point of view. To reduce primary dependent variables (PDVs), Gauss-Jordan decomposition is applied to the governing matrix equations for transport, resulting in mobile components and mobile kinetic variables as PDVs. Options of sequential iteration approach (SIA), predictor corrector and operator splitting method are incorporated in the code to make it versatile. The model is a practical tool for assessing migration of subsurface contamination and proper designing of remediation technologies. Examples are presented to demonstrate the capability of the new model.

  14. ESCRIPT-RT: Reactive transport simulation in PYTHON using ESCRIPT

    Science.gov (United States)

    Poulet, T.; Gross, L.; Georgiev, D.; Cleverley, J.

    2012-08-01

    We present ESCRIPT-RT, a new reactive transport simulation code for fully saturated porous media which is based on a finite element method (FEM) combined with three other components: (i) a Gibbs minimisation solver for equilibrium modelling of fluid-rock interactions, (ii) an equation of state for pure water to calculate fluid properties and (iii) a thermodynamically consistent material database to determine rocks' material properties. Using decoupling of most of the standard governing equations, this code solves sequentially for temperature, pressure, mass transport and chemical equilibrium. In contrast, pressure and Darcy flow velocities are solved as a coupled system. The reactive transport itself is performed using the masses of chemical elements instead of chemical species. In such way it requires less computing memory and time than the majority of other packages. The code is based on ESCRIPT, a parallelised platform which supports efficient stepwise simulation of realistic geodynamic scenarios at multiple scales. It is particularly suitable to analyse hydrothermal systems involving geometrically complex geological structures with strong permeability contrasts and subject to complex fluid-rock chemical interactions. The modular architecture of the code and its high level Python interface also provide flexibility for modellers who can easily modify or add new feedbacks between the different physical processes. In addition, the implemented abstract user interface allows geologists to run the code without knowledge of the underlying numerical implementation. As an example we show the simulation of hydrothermal gold precipitation in a granite-greenstone geological sequence, which illustrates the important coupling between thermal response and mass transfer to the localisation of gold.

  15. Modelling reactive transport in a phosphogypsum dump, Venezia, Italia

    Science.gov (United States)

    Calcara, Massimo; Borgia, Andrea; Cattaneo, Laura; Bartolo, Sergio; Clemente, Gianni; Glauco Amoroso, Carlo; Lo Re, Fabio; Tozzato, Elena

    2013-04-01

    We develop a reactive-transport porous media flow model for a phosphogypsum dump located on the intertidal deposits of the Venetian Lagoon: 1. we construct a complex conceptual and geologic model from field data using the GMS™ graphical user interface; 2. the geological model is mapped onto a rectangular MODFLOW grid; 3. using the TMT2 FORTRAN90 code we translate this grid into the MESH, INCON and GENER input files for the TOUGH2 series of codes; 4. we run TOUGH-REACT to model flow and reactive transport in the dump and the sediments below it. The model includes 3 different dump materials (phosphogypsum, bituminous and hazardous wastes) with the pores saturated by specific fluids. The sediments below the dump are formed by an intertidal sequence of calcareous sands and silts, in addition to clays and organic deposits, all of which are initially saturated with lagoon salty waters. The recharge rain-water dilutes the dump fluids. In turn, the percolates from the dump react with the underlying sediments and the sea water that saturates them. Simulation results have been compared with chemical sampled analyses. In fact, in spite of the simplicity of our model we are able to show how the pH becomes neutral at a short distance below the dump, a fact observed during aquifer monitoring. The spatial and temporal evolution of dissolution and precipitation reactions occur in our model much alike reality. Mobility of some elements, such as divalent iron, are reduced by specific and concurrent conditions of pH from near-neutrality to moderately high values and positive redox potential; opposite conditions favour mobility of potentially toxic metals such as Cr, As Cd and Pb. Vertical movement are predominant. Trend should be therefore heavily influenced by pH and Eh values. If conditions are favourable to mobility, concentration of these substances in the bottom strata could be high. However, simulation suggest that the sediments tend to reduce the transport potential of

  16. Transport of dissolved gases through unsaturated porous media

    Science.gov (United States)

    Maryshev, B. S.

    2017-06-01

    The natural porous media (e.g. soil, sand, peat etc.) usually are partially saturated by groundwater. The saturation of soil depends on hydrostatic pressure which is linearly increased with depth. Often some gases (e.g. nitrogen, oxygen, carbon dioxide, methane etc.) are dissolved into the groundwater. The solubility of gases is very small because of that two assumptions is applied: I. The concentration of gas is equal to solubility, II. Solubility depends only on pressure (for isothermal systems). In this way some part of dissolved gas transfers from the solution to the bubble phase. The gas bubbles are immovably trapped in a porous matrix by surface-tension forces and the dominant mechanism of transport of gas mass becomes the diffusion of gas molecules through the liquid. If the value of water content is small then the transport of gas becomes slow and gas accumulates into bubble phase. The presence of bubble phase additionally decreases the water content and slows down the transport. As result the significant mass of gas should be accumulated into the massif of porous media. We derive the transport equations and find the solution which is demonstrated the accumulation of gases. The influence of saturation, porosity and filtration velocity to accumulation process is investigated and discussed.

  17. Benchmarking reactive transport models at a hillslope scale

    Science.gov (United States)

    Kalbacher, T.; He, W.; Nixdorf, E.; Jang, E.; Fleckenstein, J. H.; Kolditz, O.

    2015-12-01

    The hillslope scale is an important transition between the field scale and the catchment scale. The water flow in the unsaturated zone of a hillslope can be highly dynamic, which can lead to dynamic changes of groundwater flow or stream outflow. Additionally, interactions among host rock formation, soil properties and recharge water from precipitation or anthropogenic activities (mining, agriculture etc.) can influence the water quality of groundwater and stream in the long term. To simulate reactive transport processes at such a scale is a challenging task. On the one hand, simulation of water flow in a coupled soil-aquifer system often involves solving of highly non-linear PDEs such as Richards equation; on the other hand, one has to consider complicated biogeochemical reactions (e.g. water-rock interactions, biological degradation, redox reactions). Both aspects are computationally expensive and have high requirements on the numerical precision and stabilities of the employed code. The primary goals of this study are as follows: i) Identify the bottlenecks and quantitatively analyse their influence on simulation of biogeochemical reactions at a hillslope scale; ii) find or suggest practical strategies to deal with these bottlenecks, thus to provide detailed hints for future improvements of reactive transport simulators. To achieve these goals, the parallelized reactive transport simulator OGS#IPhreeqc has been applied to simulate two benchmark examples. The first example is about uranium leaching based on Šimůnek et al. (2012), which considers the leaching of uranium from a mill tailing and accompanied mineral dissolution/precipitation. The geochemical system is then extended to include redox reactions in the second example. Based on these examples, the numerical stability and parallel performance of the tool is analysed. ReferenceŠimůnek, J., Jacques, D., Šejna, M., van Genuchten, M. T.: The HP2 program for HYDRUS (2D/3D), A coupled code for simulating two

  18. Uranium Oxide Aerosol Transport in Porous Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, Jeremy; Gerlach, David C.; Scheele, Randall D.; Stewart, Mark L.; Reid, Bruce D.; Gauglitz, Phillip A.; Bagaasen, Larry M.; Brown, Charles C.; Iovin, Cristian; Delegard, Calvin H.; Zelenyuk, Alla; Buck, Edgar C.; Riley, Brian J.; Burns, Carolyn A.

    2012-01-23

    The objective of this paper is to investigate the transport of uranium oxide particles that may be present in carbon dioxide (CO2) gas coolant, into the graphite blocks of gas-cooled, graphite moderated reactors. The transport of uranium oxide in the coolant system, and subsequent deposition of this material in the graphite, of such reactors is of interest because it has the potential to influence the application of the Graphite Isotope Ratio Method (GIRM). The GIRM is a technology that has been developed to validate the declared operation of graphite moderated reactors. GIRM exploits isotopic ratio changes that occur in the impurity elements present in the graphite to infer cumulative exposure and hence the reactor’s lifetime cumulative plutonium production. Reference Gesh, et. al., for a more complete discussion on the GIRM technology.

  19. Transient transport processes in deformable porous media

    Institute of Scientific and Technical Information of China (English)

    Cs. Mészáros; (A). Bálint

    2011-01-01

    The basic partial differential equations relevant for convection-diffusion and convection-diffusion-wave phenomena are presented and solved analytically by using the MAPLE symbolic computer algebra system.The possible general nonlinear character of the constitutive equation of the convection-discussion process is replaced by a direct posteriori stochastic refinement of its solution represented for Dirichlet-type boundary conditions.A thermodynamic analysis is performed for connecting the relaxation time constants and Jacobi-determinants of deformations at transient transport processes.Finally,a new procedure for general description of coupled transport processes on the basis of the formalism originally developed for convection-free phenomena is presented by matrix analysis methods in the Fourier space.

  20. Transport properties of porous media from the microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Torquato, S. [Princeton Univ., NJ (United States)

    1995-12-31

    The determination of the effective transport properties of a random porous medium remains a challenging area of research because the properties depend on the microstructure in a highly complex fashion. This paper reviews recent theoretical and experimental progress that we have made on various aspects of this problem. A unified approach is taken to characterize the microstructure and the seemingly disparate properties of the medium.

  1. Symmetry properties of macroscopic transport coefficients in porous media

    Science.gov (United States)

    Lasseux, D.; Valdés-Parada, F. J.

    2017-04-01

    We report on symmetry properties of tensorial effective transport coefficients characteristic of many transport phenomena in porous systems at the macroscopic scale. The effective coefficients in the macroscopic models (derived by upscaling (volume averaging) the governing equations at the underlying scale) are obtained from the solution of closure problems that allow passing the information from the lower to the upper scale. The symmetry properties of the macroscopic coefficients are identified from a formal analysis of the closure problems and this is illustrated for several different physical mechanisms, namely, one-phase flow in homogeneous porous media involving inertial effects, slip flow in the creeping regime, momentum transport in a fracture relying on the Reynolds model including slip effects, single-phase flow in heterogeneous porous media embedding a porous matrix and a clear fluid region, two-phase momentum transport in homogeneous porous media, as well as dispersive heat and mass transport. The results from the analysis of these study cases are summarized as follows. For inertial single-phase flow, the apparent permeability tensor is irreducibly decomposed into its symmetric (viscous) and skew-symmetric (inertial) parts; for creeping slip-flow, the apparent permeability tensor is not symmetric; for one-phase slightly compressible gas flow in the slip regime within a fracture, the effective transmissivity tensor is symmetric, a result that remains valid in the absence of slip; for creeping one-phase flow in heterogeneous media, the permeability tensor is symmetric; for two-phase flow, we found the dominant permeability tensors to be symmetric, whereas the coupling tensors do not exhibit any special symmetry property; finally for dispersive heat transfer, the thermal conductivity tensors include a symmetric and a skew-symmetric part, the latter being a consequence of convective transport only. A similar result is achieved for mass dispersion. Beyond the

  2. Fate and Transport of Nanoparticles in Porous Media: A Numerical Study

    Science.gov (United States)

    Taghavy, Amir

    Understanding the transport characteristics of NPs in natural soil systems is essential to revealing their potential impact on the food chain and groundwater. In addition, many nanotechnology-based remedial measures require effective transport of NPs through soil, which necessitates accurate understanding of their transport and retention behavior. Based upon the conceptual knowledge of environmental behavior of NPs, mathematical models can be developed to represent the coupling of processes that govern the fate of NPs in subsurface, serving as effective tools for risk assessment and/or design of remedial strategies. This work presents an innovative hybrid Eulerian-Lagrangian modeling technique for simulating the simultaneous reactive transport of nanoparticles (NPs) and dissolved constituents in porous media. Governing mechanisms considered in the conceptual model include particle-soil grain, particle-particle, particle-dissolved constituents, and particle- oil/water interface interactions. The main advantage of this technique, compared to conventional Eulerian models, lies in its ability to address non-uniformity in physicochemical particle characteristics. The developed numerical simulator was applied to investigate the fate and transport of NPs in a number of practical problems relevant to the subsurface environment. These problems included: (1) reductive dechlorination of chlorinated solvents by zero-valent iron nanoparticles (nZVI) in dense non-aqueous phase liquid (DNAPL) source zones; (2) reactive transport of dissolving silver nanoparticles (nAg) and the dissolved silver ions; (3) particle-particle interactions and their effects on the particle-soil grain interactions; and (4) influence of particle-oil/water interface interactions on NP transport in porous media.

  3. A Uranium Bioremediation Reactive Transport Benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Yabusaki, Steven B.; Sengor, Sevinc; Fang, Yilin

    2015-06-01

    A reactive transport benchmark problem set has been developed based on in situ uranium bio-immobilization experiments that have been performed at a former uranium mill tailings site in Rifle, Colorado, USA. Acetate-amended groundwater stimulates indigenous microorganisms to catalyze the reduction of U(VI) to a sparingly soluble U(IV) mineral. The interplay between the flow, acetate loading periods and rates, microbially-mediated and geochemical reactions leads to dynamic behavior in metal- and sulfate-reducing bacteria, pH, alkalinity, and reactive mineral surfaces. The benchmark is based on an 8.5 m long one-dimensional model domain with constant saturated flow and uniform porosity. The 159-day simulation introduces acetate and bromide through the upgradient boundary in 14-day and 85-day pulses separated by a 10 day interruption. Acetate loading is tripled during the second pulse, which is followed by a 50 day recovery period. Terminal electron accepting processes for goethite, phyllosilicate Fe(III), U(VI), and sulfate are modeled using Monod-type rate laws. Major ion geochemistry modeled includes mineral reactions, as well as aqueous and surface complexation reactions for UO2++, Fe++, and H+. In addition to the dynamics imparted by the transport of the acetate pulses, U(VI) behavior involves the interplay between bioreduction, which is dependent on acetate availability, and speciation-controlled surface complexation, which is dependent on pH, alkalinity and available surface complexation sites. The general difficulty of this benchmark is the large number of reactions (74), multiple rate law formulations, a multisite uranium surface complexation model, and the strong interdependency and sensitivity of the reaction processes. Results are presented for three simulators: HYDROGEOCHEM, PHT3D, and PHREEQC.

  4. Reactive transport benchmarks for subsurface environmental simulation

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, Carl I.; Yabusaki, Steven B.; Mayer, K. U.

    2015-06-01

    Over the last 20 years, we have seen firsthand the evolution of multicomponent reactive transport modeling and the expanding range and increasing complexity of subsurface applications it is being used to address. There is a growing reliance on reactive transport modeling (RTM) to address some of the most compelling issues facing our planet: climate change, nuclear waste management, contaminant remediation, and pollution prevention. While these issues are motivating the development of new and improved capabilities for subsurface environmental modeling using RTM (e.g., biogeochemistry from cell-scale physiology to continental-scale terrestrial ecosystems, nonisothermal multiphase conditions, coupled geomechanics), there remain longstanding challenges in characterizing the natural variability of hydrological, biological, and geochemical properties in subsurface environments and limited success in transferring models between sites and across scales. An equally important trend over the last 20 years is the evolution of modeling from a service sought out after data has been collected to a multifaceted research approach that provides (1) an organizing principle for characterization and monitoring activities; (2) a systematic framework for identifying knowledge gaps, developing and integrating new knowledge; and (3) a mechanistic understanding that represents the collective wisdom of the participating scientists and engineers. There are now large multidisciplinary projects where the research approach is model-driven, and the principal product is a holistic predictive simulation capability that can be used as a test bed for alternative conceptualizations of processes, properties, and conditions. Much of the future growth and expanded role for RTM will depend on its continued ability to exploit technological advancements in the earth and environmental sciences. Advances in measurement technology, particularly in molecular biology (genomics), isotope fractionation, and high

  5. A COMSOL-GEMS interface for modeling coupled reactive-transport geochemical processes

    Science.gov (United States)

    Azad, Vahid Jafari; Li, Chang; Verba, Circe; Ideker, Jason H.; Isgor, O. Burkan

    2016-07-01

    An interface was developed between COMSOL MultiphysicsTM finite element analysis software and (geo)chemical modeling platform, GEMS, for the reactive-transport modeling of (geo)chemical processes in variably saturated porous media. The two standalone software packages are managed from the interface that uses a non-iterative operator splitting technique to couple the transport (COMSOL) and reaction (GEMS) processes. The interface allows modeling media with complex chemistry (e.g. cement) using GEMS thermodynamic database formats. Benchmark comparisons show that the developed interface can be used to predict a variety of reactive-transport processes accurately. The full functionality of the interface was demonstrated to model transport processes, governed by extended Nernst-Plank equation, in Class H Portland cement samples in high pressure and temperature autoclaves simulating systems that are used to store captured carbon dioxide (CO2) in geological reservoirs.

  6. Evaluation of liquid aerosol transport through porous media

    Science.gov (United States)

    Hall, R.; Murdoch, L.; Falta, R.; Looney, B.; Riha, B.

    2016-07-01

    Application of remediation methods in contaminated vadose zones has been hindered by an inability to effectively distribute liquid- or solid-phase amendments. Injection as aerosols in a carrier gas could be a viable method for achieving useful distributions of amendments in unsaturated materials. The objectives of this work were to characterize radial transport of aerosols in unsaturated porous media, and to develop capabilities for predicting results of aerosol injection scenarios at the field-scale. Transport processes were investigated by conducting lab-scale injection experiments with radial flow geometry, and predictive capabilities were obtained by developing and validating a numerical model for simulating coupled aerosol transport, deposition, and multi-phase flow in porous media. Soybean oil was transported more than 2 m through sand by injecting it as micron-scale aerosol droplets. Oil saturation in the sand increased with time to a maximum of 0.25, and decreased with radial distance in the experiments. The numerical analysis predicted the distribution of oil saturation with only minor calibration. The results indicated that evolution of oil saturation was controlled by aerosol deposition and subsequent flow of the liquid oil, and simulation requires including these two coupled processes. The calibrated model was used to evaluate field applications. The results suggest that amendments can be delivered to the vadose zone as aerosols, and that gas injection rate and aerosol particle size will be important controls on the process.

  7. On effective transport coefficients in PEM fuel cell electrodes: Anisotropy of the porous transport layers

    Science.gov (United States)

    Pharoah, J. G.; Karan, K.; Sun, W.

    This paper reviews the approach taken in the literature to model the effective transport coefficients - mass diffusivity, electrical conductivity, thermal conductivity and hydraulic permeability - of carbon-fibre based porous electrode of polymer electrolyte membrane fuel cells (PEMFCs). It is concluded that current PEMFC model do not account for the inherent anisotropic microstructure of the fibrous electrodes. Simulations using a 2-D PEMFC cathode model show that neglecting the anisotropic nature and associated transport coefficients of the porous electrodes significantly influences both the nature and the magnitude of the model predictions. This emphasizes the need to appropriately characterize the relevant anisotropic properties of the fibrous electrode.

  8. In-situ treatment of mine drainage water using porous reactive walls

    Energy Technology Data Exchange (ETDEWEB)

    Blowes, D.W.; Ptacek, C.J.; Waybrant, K.R.; Bain, J.G. [University of Waterloo, Waterloo, ON (Canada). Waterloo Centre for Groundwater Research

    1995-01-01

    The purpose is to describe research on porous reactive walls, which are installed in the path of plumes of ground water from tailings, to determine their suitability for prevention and remediation of acid mine drainage and dissolved metals release. The method involves removal of a portion of the aquifer in the ground water plume path and its replacement by a permeable reactive mixture. Experiments under way and preliminary results are described for laboratory batch and column experiments and for a small scale field experiment using reactive walls containing organic carbon and sulphate-reducing bacteria. The results suggest that the method is effective and economically viable. 8 refs., 3 figs.

  9. Centrifuge Techniques and Apparatus for Transport Experiments in Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Earl D. Mattson; Carl D. Paler; Robert W. Smith; Markus Flury

    2010-06-01

    This paper describes experimental approaches and apparatus that we have developed to study solute and colloid transport in porous media using Idaho National Laboratory's 2-m radius centrifuge. The ex-perimental techniques include water flux scaling with applied acceleration at the top of the column and sub-atmospheric pressure control at the column base, automation of data collection, and remote experimental con-trol over the internet. These apparatus include a constant displacement piston pump, a custom designed liquid fraction collector based on switching valve technology, and modified moisture monitoring equipment. Suc-cessful development of these experimental techniques and equipment is illustrated through application to transport of a conservative tracer through unsaturated sand column, with centrifugal acceleration up to 40 gs. Development of such experimental equipment that can withstand high accelerations enhances the centrifuge technique to conduct highly controlled unsaturated solute/colloid transport experiments and allows in-flight liquid sample collection of the effluent.

  10. Structural controls on anomalous transport in fractured porous rock

    Science.gov (United States)

    Edery, Yaniv; Geiger, Sebastian; Berkowitz, Brian

    2016-07-01

    Anomalous transport is ubiquitous in a wide range of disordered systems, notably in fractured porous formations. We quantitatively identify the structural controls on anomalous tracer transport in a model of a real fractured geological formation that was mapped in an outcrop. The transport, determined by a continuum scale mathematical model, is characterized by breakthrough curves (BTCs) that document anomalous (or "non-Fickian") transport, which is accounted for by a power law distribution of local transition times ψ>(t>) within the framework of a continuous time random walk (CTRW). We show that the determination of ψ>(t>) is related to fractures aligned approximately with the macroscopic direction of flow. We establish the dominant role of fracture alignment and assess the statistics of these fractures by determining a concentration-visitation weighted residence time histogram. We then convert the histogram to a probability density function (pdf) that coincides with the CTRW ψ>(t>) and hence anomalous transport. We show that the permeability of the geological formation hosting the fracture network has a limited effect on the anomalous nature of the transport; rather, it is the fractures transverse to the flow direction that play the major role in forming the long BTC tail associated with anomalous transport. This is a remarkable result, given the complexity of the flow field statistics as captured by concentration transitions.

  11. Model for high rate gas flows in deformable and reactive porous beds

    Energy Technology Data Exchange (ETDEWEB)

    Weston, A M

    1985-01-08

    This report presents the development of a one dimensional planar Lagrange hydrodynamic computer model which describes the processes preceding detonation. The model treats gas flow, deflagration, and compaction in a porous bed of reactive material. The early part of deflagration to detonation experiment with porous HMX is simulated. Sensitivity of the simulation calculation to ignition and burn rate parameters is illustrated and discussed. The effects of changing the mean particle size of the porous material are investigated. There is widespread interest in runaway reaction hazards that may be associated with porosity in propellant and explosive materials. Experimentally, such reactions are initiated and observed in long, thick walled hollow tubes, filled with a granular porous bed of reactive material. We will present comparisons with an experiment on porous HMX to illustrate details of the model and to point out what we believe are important features of the observed phenomenon. A geometric finite element cell is devised that allows gas to flow through a compacting matrix. The experimental simulation considers the DDT process from initial squib burn through the onset of general matrix deflagration (convective burning), to the development of a fully dense compaction wave. While this simulation did not calculate turnover to detonation, it did illustrate that the transition occurred as soon as the compaction wave became fully dense. It is shown that deflagration and gas permeation lags compaction at the time of transition. This suggests that the actual transition involves an additional compaction dependent process. 18 references, 20 figures, 3 tables.

  12. Numerical investigation of nanoparticles transport in anisotropic porous media.

    Science.gov (United States)

    Salama, Amgad; Negara, Ardiansyah; El Amin, Mohamed; Sun, Shuyu

    2015-10-01

    In this work the problem related to the transport of nanoparticles in anisotropic porous media is investigated numerically using the multipoint flux approximation. Anisotropy of porous media properties is an essential feature that exists almost everywhere in subsurface formations. In anisotropic media, the flux and the pressure gradient vectors are no longer collinear and therefore interesting patterns emerge. The transport of nanoparticles in subsurface formations is affected by several complex processes including surface charges, heterogeneity of nanoparticles and soil grain collectors, interfacial dynamics of double-layer and many others. We use the framework of the theory of filtration in this investigation. Processes like particles deposition, entrapment, as well as detachment are accounted for. From the numerical methods point of view, traditional two-point flux finite difference approximation cannot handle anisotropy of media properties. Therefore, in this work we use the multipoint flux approximation (MPFA). In this technique, the flux components are affected by more neighboring points as opposed to the mere two points that are usually used in traditional finite volume methods. We also use the experimenting pressure field approach which automatically constructs the global system of equations by solving multitude of local problems. This approach facilitates to a large extent the construction of the global system. A set of numerical examples is considered involving two-dimensional rectangular domain. A source of nanoparticles is inserted in the middle of the anisotropic layer. We investigate the effects of both anisotropy angle and anisotropy ratio on the transport of nanoparticles in saturated porous media. It is found that the concentration plume and porosity contours follow closely the principal direction of anisotropy of permeability of the central domain.

  13. Numerical investigation of nanoparticles transport in anisotropic porous media

    KAUST Repository

    Salama, Amgad

    2015-07-13

    In this work the problem related to the transport of nanoparticles in anisotropic porous media is investigated numerically using the multipoint flux approximation. Anisotropy of porous media properties are an essential feature that exist almost everywhere in subsurface formations. In anisotropic media, the flux and the pressure gradient vectors are no longer collinear and therefore interesting patterns emerge. The transport of nanoparticles in subsurface formations is affected by several complex processes including surface charges, heterogeneity of nanoparticles and soil grain collectors, interfacial dynamics of double-layer and many others. We use the framework of the theory of filtration in this investigation. Processes like particles deposition, entrapment, as well as detachment are accounted for. From the numerical methods point of view, traditional two-point flux finite difference approximation cannot handle anisotropy of media properties. Therefore, in this work we use the multipoint flux approximation (MPFA). In this technique, the flux components are affected by more neighboring points as opposed to the mere two points that are usually used in traditional finite volume methods. We also use the experimenting pressure field approach which automatically constructs the global system of equations by solving multitude of local problems. This approach facilitates to a large extent the construction of the global system. A set of numerical examples is considered involving two-dimensional rectangular domain. A source of nanoparticles is inserted in the middle of the anisotropic layer. We investigate the effects of both anisotropy angle and anisotropy ratio on the transport of nanoparticles in saturated porous media. It is found that the concentration plume and porosity contours follow closely the principal direction of anisotropy of permeability of the central domain.

  14. Pore-Scale Heterogeneity in the Mineral Distribution and Reactive Surface Area of Porous Rocks

    Science.gov (United States)

    Lai, P. E. P.; Krevor, S. C.

    2015-12-01

    The reactive surface area is an important control on interfacial processes between minerals and aqueous fluids in porous rocks. Spatial heterogeneity in the surface area can lead to complications in modelling reactive transport processes, but quantitative characterisation of this property has been limited. In this paper 3D images obtained using x-ray micro-tomography were used to characterise heterogeneity in surface area in one sandstone and five carbonate rocks. Measurements of average surface area from x-ray imagery were 1-2 orders of magnitude lower than measurements from nitrogen BET. A roughness factor, defined as the ratio of BET surface area to x-ray based surface area, was correlated to the presence of clay or microporosity. Coregistered images of Berea sandstone from x-ray and energy dispersive spectroscopy imagery were used to guide the identification of quartz, K-feldspar, dolomite, calcite and clays in x-ray images. In Berea sandstone, clay and K-feldspar had higher average surface area fractions than their volumetric fractions in the rock. In the Edwards carbonate, however, modal mineral composition correlated with surface area. By sub-sampling digital images, statistical distributions of the surface area were generated at various length scales of subsampling. Comparing these to distributions used in published modelling studies showed that the common practice of leaving surface area and pore volume uncorrelated in a pore leads to unrealistic combinations of surface area and pore volume in the models. We suggest these models adopt a moderate correlation based on observations. In Berea sandstone, constraining ratios of surface area to pore volume to a range of values between that of quartz-lined and five times that of clay-lined spheres appeared sufficient.

  15. Bacteria transport through porous media. Annual report, December 31, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Yen, T.F.

    1986-09-01

    The following five chapters in this report have been processed separately for inclusion in the Energy Data Base: (1) theoretical model of convective diffusion of motile and non-motile bacteria toward solid surfaces; (2) interfacial electrochemistry of oxide surfaces in oil-bearing sands and sandstones; (3) effects of sodium pyrophosphate additive on the ''huff and puff''/nutrient flooding MEOR process; (4) interaction of Escherichia coli B, B/4, and bacteriophage T4D with Berea sandstone rock in relation to enhanced oil recovery; and (5) transport of bacteria in porous media and its significance in microbial enhanced oil recovery.

  16. Diffusion, Coulombic interactions and multicomponent ionic transport of charged species in saturated porous media

    DEFF Research Database (Denmark)

    Rolle, Massimo; Muniruzzaman, Muhammad

    Diffusion and compound-specific mixing significantly affect conservative and reactive transport in groundwater at different scales, not only under diffusion-dominated regimes but also under advection-dominated flow through conditions [1]. When dissolved species are charged, besides the magnitude...... of their aqueous diffusion coefficients also the electrostatic interactions significantly affect solute displacement. We investigated electrostatic interactions between ionic species under flow-through conditions resulting in multicomponent ionic dispersion: the dispersive fluxes of the different ions in the pore...... water are cross-coupled due to the effects of Coulombic interactions. Such effects are illustrated in flow-through experiments in saturated porous media. Simple strong electrolytes (i.e., salts and strong acid solutions) were selected as tracers and their transport was studied under different advection...

  17. Semianalytical Solutions of Radioactive or Reactive Tracer Transport in Layered Fractured Media

    Energy Technology Data Exchange (ETDEWEB)

    G.J. Moridis; G. S. Bodvarsson

    2001-10-01

    In this paper, semianalytical solutions are developed for the problem of transport of radioactive or reactive tracers (solutes or colloids) through a layered system of heterogeneous fractured media with misaligned fractures. The tracer transport equations in the matrix account for (a) diffusion, (b) surface diffusion (for solutes only), (c) mass transfer between the mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical, or combined solute sorption or colloid filtration, and (e) radioactive decay or first order chemical reactions. Any number of radioactive decay daughter products (or products of a linear, first-order reaction chain) can be tracked. The tracer-transport equations in the fractures account for the same processes, in addition to advection and hydrodynamic dispersion. Additionally, the colloid transport equations account for straining and velocity adjustments related to the colloidal size. The solutions, which are analytical in the Laplace space, are numerically inverted to provide the solution in time and can accommodate any number of fractured and/or porous layers. The solutions are verified using analytical solutions for limiting cases of solute and colloid transport through fractured and porous media. The effect of important parameters on the transport of {sup 3}H, {sup 237}Np and {sup 239}Pu (and its daughters) is investigated in several test problems involving layered geological systems of varying complexity. {sup 239}Pu colloid transport problems in multilayered systems indicate significant colloid accumulations at straining interfaces but much faster transport of the colloid than the corresponding strongly sorbing solute species.

  18. Semianalytical solutions of radioactive or reactive tracer transport in layered fractured media

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, G.J.; Bodvarsson, G.S.

    2001-10-10

    In this paper, semianalytical solutions are developed for the problem of transport of radioactive or reactive tracers (solutes or colloids) through a layered system of heterogeneous fractured media with misaligned fractures. The tracer transport equations in the matrix account for (a) diffusion, (b) surface diffusion (for solutes only), (c) mass transfer between the mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical, or combined solute sorption or colloid filtration, and (e) radioactive decay or first order chemical reactions. Any number of radioactive decay daughter products (or products of a linear, first-order reaction chain) can be tracked. The tracer-transport equations in the fractures account for the same processes, in addition to advection and hydrodynamic dispersion. Additionally, the colloid transport equations account for straining and velocity adjustments related to the colloidal size. The solutions, which are analytical in the Laplace space, are numerically inverted to provide the solution in time and can accommodate any number of fractured and/or porous layers. The solutions are verified using analytical solutions for limiting cases of solute and colloid transport through fractured and porous media. The effect of important parameters on the transport of {sup 3}H, {sup 237}Np and {sup 239}Pu (and its daughters) is investigated in several test problems involving layered geological systems of varying complexity. {sup 239}Pu colloid transport problems in multilayered systems indicate significant colloid accumulations at straining interfaces but much faster transport of the colloid than the corresponding strongly sorbing solute species.

  19. On the transport of emulsions in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Cortis, Andrea; Ghezzehei, Teamrat A.

    2007-06-27

    Emulsions appear in many subsurface applications includingbioremediation, surfactant-enhanced remediation, and enhancedoil-recovery. Modeling emulsion transport in porous media is particularlychallenging because the rheological and physical properties of emulsionsare different from averages of the components. Current modelingapproaches are based on filtration theories, which are not suited toadequately address the pore-scale permeability fluctuations and reductionof absolute permeability that are often encountered during emulsiontransport. In this communication, we introduce a continuous time randomwalk based alternative approach that captures these unique features ofemulsion transport. Calculations based on the proposed approach resultedin excellent match with experimental observations of emulsionbreakthrough from the literature. Specifically, the new approach explainsthe slow late-time tailing behavior that could not be fitted using thestandard approach. The theory presented in this paper also provides animportant stepping stone toward a generalizedself-consistent modeling ofmultiphase flow.

  20. On the transport of emulsions in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Cortis, Andrea; Ghezzehei, Teamrat A.

    2007-06-27

    Emulsions appear in many subsurface applications includingbioremediation, surfactant-enhanced remediation, and enhancedoil-recovery. Modeling emulsion transport in porous media is particularlychallenging because the rheological and physical properties of emulsionsare different from averages of the components. Current modelingapproaches are based on filtration theories, which are not suited toadequately address the pore-scale permeability fluctuations and reductionof absolute permeability that are often encountered during emulsiontransport. In this communication, we introduce a continuous time randomwalk based alternative approach that captures these unique features ofemulsion transport. Calculations based on the proposed approach resultedin excellent match with experimental observations of emulsionbreakthrough from the literature. Specifically, the new approach explainsthe slow late-time tailing behavior that could not be fitted using thestandard approach. The theory presented in this paper also provides animportant stepping stone toward a generalizedself-consistent modeling ofmultiphase flow.

  1. Physics-based hybrid method for multiscale transport in porous media

    Science.gov (United States)

    Yousefzadeh, Mehrdad; Battiato, Ilenia

    2017-09-01

    Despite advancements in the development of multiscale models for flow and reactive transport in porous media, the accurate, efficient and physics-based coupling of multiple scales in hybrid models remains a major theoretical and computational challenge. Improving the predictivity of macroscale predictions by means of multiscale algorithms relative to classical at-scale models is the primary motivation for the development of multiscale simulators. Yet, very few are the quantitative studies that explicitly address the predictive capability of multiscale coupling algorithms as it is still generally not possible to have a priori estimates of the errors that are present when complex flow processes are modeled. We develop a nonintrusive pore-/continuum-scale hybrid model whose coupling error is bounded by the upscaling error, i.e. we build a predictive tightly coupled multiscale scheme. This is accomplished by slightly enlarging the subdomain where continuum-scale equations are locally invalid and analytically defining physics-based coupling conditions at the interfaces separating the two computational sub-domains, while enforcing state variable and flux continuity. The proposed multiscale coupling approach retains the advantages of domain decomposition approaches, including the use of existing solvers for each subdomain, while it gains flexibility in the choice of the numerical discretization method and maintains the coupling errors bounded by the upscaling error. We implement the coupling in finite volumes and test the proposed method by modeling flow and transport through a reactive channel and past an array of heterogeneously reactive cylinders.

  2. Dual-tracer transport experiments in a physically and chemically heterogeneous porous aquifer: effective transport parameters and spatial variability

    Science.gov (United States)

    Ptak, T.; Schmid, G.

    1996-08-01

    In order to investigate the effects of reactive transport processes within a heterogeneous porous aquifer, two small-scale forced gradient tracer tests were conducted at the 'Horkheimer Insel' field site. During the experiments, two fluorescent tracers were injected simultaneously in the same fully penetrating groundwater monitoring well, located approximately 10 m from the pumping well. Fluoresceine and Rhodamine WT were used to represent the classes of practically non-sorbing and sorbing solutes, respectively. Multilevel breakthrough curves with a temporal resolution of 1 min were measured for both tracers at different depths within the pumping well using fibre-optic fluorimeters. This paper presents the tracer test design, the fibre-optic fluorimetry instrumentation, the experimental results and the interpretation of the measured multilevel breakthrough curves in terms of temporal moments and effective transport parameters. Significant sorption of Rhodamine WT is apparent from the effective retardation factors. Furthermore, an enhanced tailing of Rhodamine WT breakthrough curves is observed, which is possibly caused by a variability of aquifer sorption properties. The determined effective parameters are spatially variable, suggesting that a complex numerical flow and transport modelling approach within a stochastic framework will be needed to adequately describe the transport behaviour observed in the two experiments. Therefore, the tracer test results will serve in future work for the validation of numerical stochastic transport simulations taking into account the spatial variability of hydraulic conductivity and sorption-related aquifer properties.

  3. Filtered density function approach for reactive transport in groundwater

    Science.gov (United States)

    Suciu, Nicolae; Schüler, Lennart; Attinger, Sabine; Knabner, Peter

    2016-04-01

    Spatial filtering may be used in coarse-grained simulations (CGS) of reactive transport in groundwater, similar to the large eddy simulations (LES) in turbulence. The filtered density function (FDF), stochastically equivalent to a probability density function (PDF), provides a statistical description of the sub-grid, unresolved, variability of the concentration field. Besides closing the chemical source terms in the transport equation for the mean concentration, like in LES-FDF methods, the CGS-FDF approach aims at quantifying the uncertainty over the whole hierarchy of heterogeneity scales exhibited by natural porous media. Practically, that means estimating concentration PDFs on coarse grids, at affordable computational costs. To cope with the high dimensionality of the problem in case of multi-component reactive transport and to reduce the numerical diffusion, FDF equations are solved by particle methods. But, while trajectories of computational particles are modeled as stochastic processes indexed by time, the concentration's heterogeneity is modeled as a random field, with multi-dimensional, spatio-temporal sets of indices. To overcome this conceptual inconsistency, we consider FDFs/PDFs of random species concentrations weighted by conserved scalars and we show that their evolution equations can be formulated as Fokker-Planck equations describing stochastically equivalent processes in concentration-position spaces. Numerical solutions can then be approximated by the density in the concentration-position space of an ensemble of computational particles governed by the associated Itô equations. Instead of sequential particle methods we use a global random walk (GRW) algorithm, which is stable, free of numerical diffusion, and practically insensitive to the increase of the number of particles. We illustrate the general FDF approach and the GRW numerical solution for a reduced complexity problem consisting of the transport of a single scalar in groundwater

  4. Effects of starvation on bacterial transport through porous media

    Science.gov (United States)

    Cunningham, Alfred B.; Sharp, Robert R.; Caccavo, Frank; Gerlach, Robin

    2007-06-01

    A major problem preventing widespread implementation of microbial injection strategies for bioremediation and/or microbially enhanced oil recovery is the tendency of bacteria to strongly adhere to surfaces in the immediate vicinity of the injection point. Long term (weeks to months) nutrient starvation of bacteria prior to injection can decrease attachment and enhance transport through porous media. This paper summarizes results of starvation-enhanced transport experiments in sand columns of 30 cm, 3 m, and 16 m in length. The 16 m column experiments compared transport, breakthrough and distribution of adhered cells for starved and vegetative cultures of Klebsiella oxytoca, a copious biofilm producer. Results from these experiments were subsequently used to design and construct a field-scale biofilm barrier using starved Pseudomonas fluorescens. The 30 cm and 3 m sand columns experiments investigated starvation-enhanced transport of Shewanella algae BrY, a dissimilatory metal-reducing bacterium. In both cases the vegetative cells adsorbed onto the sand in higher numbers than the starved cells, especially near the entrance of the column. These results, taken together with studies cited in the literature, indicate that starved cells penetrate farther (i.e. higher breakthrough concentration) and adsorb more uniformly along the flow path than vegetative cells.

  5. Quantification of conservative and reactive transport using a single groundwater tracer test in a fractured media

    Science.gov (United States)

    Chatton, Eliot; Labasque, Thierry; Guillou, Aurélie; Béthencourt, Lorine; de La Bernardie, Jérôme; Boisson, Alexandre; Koch, Florian; Aquilina, Luc

    2017-04-01

    Identification of biogeochemical reactions in aquifers and determining kinetics is important for the prediction of contaminant transport in aquifers and groundwater management. Therefore, experiments accounting for both conservative and reactive transport are essential to understand the biogeochemical reactivity at field scale. This study presents the results of a groundwater tracer test using the combined injection of dissolved conservative and reactive tracers (He, Xe, Ar, Br-, O2 and NO3-) in order to evaluate the transport properties of a fractured media in Brittany, France. Dissolved gas concentrations were continuously monitored in situ with a CF-MIMS (Chatton et al, 2016) allowing a high frequency (1 gas every 2 seconds) multi-tracer analysis (N2, O2, CO2, CH4, N2O, H2, He, Ne, Ar, Kr, Xe) over a large resolution (6 orders of magnitude). Along with dissolved gases, groundwater biogeochemistry was monitored through the sampling of major anions and cations, trace elements and microbiological diversity. The results show breakthrough curves allowing the combined quantification of conservative and reactive transport properties. This ongoing work is an original approach investigating the link between heterogeneity of porous media and biogeochemical reactions at field scale. Eliot Chatton, Thierry Labasque, Jérôme de La Bernardie, Nicolas Guihéneuf, Olivier Bour and Luc Aquilina; Field Continuous Measurement of Dissolved Gases with a CF-MIMS: Applications to the Physics and Biogeochemistry of Groundwater Flow; Environmental Science & Technology, in press, 2016.

  6. A global method for coupling transport with chemistry in heterogeneous porous media

    CERN Document Server

    Laila, Amir; 10.1007/s10596-009-9162-x

    2009-01-01

    Modeling reactive transport in porous media, using a local chemical equilibrium assumption, leads to a system of advection-diffusion PDE's coupled with algebraic equations. When solving this coupled system, the algebraic equations have to be solved at each grid point for each chemical species and at each time step. This leads to a coupled non-linear system. In this paper a global solution approach that enables to keep the software codes for transport and chemistry distinct is proposed. The method applies the Newton-Krylov framework to the formulation for reactive transport used in operator splitting. The method is formulated in terms of total mobile and total fixed concentrations and uses the chemical solver as a black box, as it only requires that on be able to solve chemical equilibrium problems (and compute derivatives), without having to know the solution method. An additional advantage of the Newton-Krylov method is that the Jacobian is only needed as an operator in a Jacobian matrix times vector product...

  7. Microbial growth and transport in saturated and unsaturated porous media

    Science.gov (United States)

    Hron, Pavel; Jost, Daniel; Bastian, Peter; Ippisch, Olaf

    2014-05-01

    There is a considerable ongoing effort aimed at understanding the behavior of microorganisms in porous media. Microbial activity is of significant interest in various environmental applications such as in situ bioremediation, protection of drinking water supplies and for subsurface geochemistry in general. The main limiting factors for bacterial growth are the availability of electron acceptors, nutrients and bio-available water. The capillary fringe, defined - in a wider sense than usual - as the region of the subsurface above the groundwater table, but still dominated by capillary rise, is a region where all these factors are abundantly available. It is thus a region where high microbial activity is to be expected. In a research unit 'Dynamic Capillary Fringes - A Multidisciplinary Approach (DyCap)' founded by the German Research Foundation (DFG), the growth of microorganisms in the capillary fringe was studied experimentally and with numerical simulations. Processes like component transport and diffusion, exchange between the liquid phase and the gas phase, microbial growth and cell attachment and detachment were incorporated into a numerical simulator. The growth of the facultative anaerobic Escherichia coli as a function of nutrient availability and oxygen concentration in the liquid phase is modeled with modified Monod-type models and modifications for the switch between aerobic and anaerobic growth. Laboratory batch experiments with aqueous solutions of bacteria have been carried out under various combinations of oxygen concentrations in the gas phase and added amounts of dissolved organic carbon to determine the growth model parameters by solution of a parameter estimation problem. For the transport of bacteria the adhesion to phase boundaries is also very important. As microorganisms are transported through porous media, they are removed from the pore fluid by physicochemical filtration (attachment to sediment grain surfaces) or are adhering to gas

  8. Modeling of surfactant transport and adsorption in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Chung, F.T.H.

    1991-04-01

    When surfactant solution is flowing in a reservoir formation, surfactants will be diluted by flow dispersion, retained in dead-end pores, adsorbed on rock surfaces, or precipitated due to ion exchange. The loss of surfactant will be detrimental to the performance of gas foam. Information of surfactant concentration profiles in reservoir formations is essential for gas foaming technique development. The major objective of this research is to investigate with mathematical models the transport and dynamic adsorption of surfactants in porous media. The mathematical models have taken into account the convection, dispersion, capacitance, and adsorption effects on concentrations of surfactants. Numerical methods and computer programs have been developed which can be used to match experimental results and to determine the characterization parameters in the models. The models can be included in foam simulation programs to calculate surfactant concentration profiles in porous media. A flow experimental method was developed to measure the effluent surfactant concentration, which will be used to determine the model parameters. Commercial foaming agent Alipal CD-128 was used in this study. Equilibrium adsorption and surfactant precipitation have been tested. Tracer solutions with a nonadsorbing solute such as dextrose and sucrose were used to determine the dispersion parameters for the experimental sandpack; thus, the adsorption of the surfactant in the test sand can be identified with an adequate model. 49 refs., 21 figs.

  9. Modeling Polymer Stabilized Nano-scale Zero Valent Iron Transport Experiments in Porous Media to Understand the Transport Behavior

    Science.gov (United States)

    Mondal, P.; Krol, M.; Sleep, B. E.

    2015-12-01

    A wide variety of groundwater contaminants can be treated with nano-scale zero valent iron (nZVI). However, delivery of nZVI in the subsurface to the treatment zones is challenging as the bare nZVI particles have a higher tendency to agglomerate. The subsurface mobility of nZVI can be enhanced by stabilizing nZVI with polymer, such as carboxymethyl cellulose (CMC). In this study, numerical simulations were conducted to evaluate CMC stabilized nZVI transport behavior in porous media. The numerical simulations were based on a set of laboratory-scale transport experiments that were conducted in a two-dimensional water-saturated glass-walled sandbox (length - 55 cm; height - 45 cm; width - 1.4 cm), uniformly packed with silica sand. In the transport experiments: CMC stabilized nZVI and a non-reactive dye tracer Lissamine Green B (LGB) were used; water specific discharge and CMC concentration were varied; movements of LGB, and CMC-nZVI in the sandbox were tracked using a camera, a light source and a dark box. The concentrations of LGB, CMC, and CMC-nZVI at the sandbox outlet were analyzed. A 2D multiphase flow and transport model was applied to simulate experimental results. The images from LGB dye transport experiments were used to determine the pore water velocities and media permeabilities in various layers in the sand box. These permeability values were used in the subsequent simulations of CMC-nZVI transport. The 2D compositional simulator, modified to include colloid filtration theory (CFT), treated CMC as a solute and nZVI as a colloid. The simulator included composition dependent viscosity to account for CMC injection and mixing, and attachment efficiency as a fitting parameter for nZVI transport modeling. In the experiments, LGB and CMC recoveries were greater than 95%; however, CMC residence time was significantly higher than the LGB residence time and the higher CMC concentration caused higher pressure drops in the sandbox. The nZVI recovery was lower than 40

  10. Freezing in porous media: Phase behavior, dynamics and transport phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Wettlaufer, John S. [Yale Univ., New Haven, CT (United States)

    2012-12-21

    This research was focused on developing the underlying framework for the mechanisms that control the nature of the solidification of a broad range of porous media. To encompass the scope of porous media under consideration we considered material ranging from a dilute colloidal suspension to a highly packed saturated host matrix with a known geometry. The basic physical processes that occur when the interstitial liquid phase solidifies revealed a host of surprises with a broad range of implications from geophysics to materials science and engineering. We now understand that ostensibly microscopic films of unfrozen liquid control both the equilibrium and transport properties of a highly packed saturated host matrix as well as a rather dilute colloidal suspension. However, our description of the effective medium behavior in these settings is rather different and this sets the stage for the future research based on our past results. Once the liquid phase of a saturated relatively densely packed material is frozen, there is a rich dynamical behavior of particles for example due to the directed motion driven by thermomolecular pressure gradients or the confined Brownian motion of the particles. In quite striking contrast, when one freezes a dilute suspension the behavior can be rather more like that of a binary alloy with the particles playing the role of a ``solute''. We probed such systems quantitatively by (i) using X ray photon correlation spectroscopy (XPCS) and Small Angle X-ray Scattering (SAXS) at the Advanced Photon Source at Argonne (ii) studying the Argonne cell in the laboratory using optical microscopy and imagery (because it is not directly visible while in the vacuum can). (3) analyzed the general transport phenomena within the framework of both irreversible thermodynamics and alloy solidification and (4) applied the results to the study of the redistribution of solid particles in a frozen interstitial material. This research has gone a long way

  11. Freezing in porous media: Phase behavior, dynamics and transport phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Wettlaufer, John S. [Yale Univ., New Haven, CT (United States)

    2012-12-21

    This research was focused on developing the underlying framework for the mechanisms that control the nature of the solidification of a broad range of porous media. To encompass the scope of porous media under consideration we considered material ranging from a dilute colloidal suspension to a highly packed saturated host matrix with a known geometry. The basic physical processes that occur when the interstitial liquid phase solidifies revealed a host of surprises with a broad range of implications from geophysics to materials science and engineering. We now understand that ostensibly microscopic films of unfrozen liquid control both the equilibrium and transport properties of a highly packed saturated host matrix as well as a rather dilute colloidal suspension. However, our description of the effective medium behavior in these settings is rather different and this sets the stage for the future research based on our past results. Once the liquid phase of a saturated relatively densely packed material is frozen, there is a rich dynamical behavior of particles for example due to the directed motion driven by thermomolecular pressure gradients or the confined Brownian motion of the particles. In quite striking contrast, when one freezes a dilute suspension the behavior can be rather more like that of a binary alloy with the particles playing the role of a ``solute''. We probed such systems quantitatively by (i) using X ray photon correlation spectroscopy (XPCS) and Small Angle X-ray Scattering (SAXS) at the Advanced Photon Source at Argonne (ii) studying the Argonne cell in the laboratory using optical microscopy and imagery (because it is not directly visible while in the vacuum can). (3) analyzed the general transport phenomena within the framework of both irreversible thermodynamics and alloy solidification and (4) applied the results to the study of the redistribution of solid particles in a frozen interstitial material. This research has gone a long way

  12. Colloid suspension stability and transport through unsaturated porous media

    Energy Technology Data Exchange (ETDEWEB)

    McGraw, M.A.; Kaplan, D.I.

    1997-04-01

    Contaminant transport is traditionally modeled in a two-phase system: a mobile aqueous phase and an immobile solid phase. Over the last 15 years, there has been an increasing awareness of a third, mobile solid phase. This mobile solid phase, or mobile colloids, are organic or inorganic submicron-sized particles that move with groundwater flow. When colloids are present, the net effect on radionuclide transport is that radionuclides can move faster through the system. It is not known whether mobile colloids exist in the subsurface environment of the Hanford Site. Furthermore, it is not known if mobile colloids would likely exist in a plume emanating from a Low Level Waste (LLW) disposal site. No attempt was made in this study to ascertain whether colloids would form. Instead, experiments and calculations were conducted to evaluate the likelihood that colloids, if formed, would remain in suspension and move through saturated and unsaturated sediments. The objectives of this study were to evaluate three aspects of colloid-facilitated transport of radionuclides as they specifically relate to the LLW Performance Assessment. These objectives were: (1) determine if the chemical conditions likely to exist in the near and far field of the proposed disposal site are prone to induce flocculation (settling of colloids from suspension) or dispersion of naturally occurring Hanford colloids, (2) identify the important mechanisms likely involved in the removal of colloids from a Hanford sediment, and (3) determine if colloids can move through unsaturated porous media.

  13. A Microfluidic Pore Network Approach to Investigate Water Transport in Fuel Cell Porous Transport Layers

    CERN Document Server

    Bazylak, A; Markicevic, B; Sinton, D; Djilali, N

    2008-01-01

    Pore network modelling has traditionally been used to study displacement processes in idealized porous media related to geological flows, with applications ranging from groundwater hydrology to enhanced oil recovery. Very recently, pore network modelling has been applied to model the gas diffusion layer (GDL) of a polymer electrolyte membrane (PEM) fuel cell. Discrete pore network models have the potential to elucidate transport phenomena in the GDL with high computational efficiency, in contrast to continuum or molecular dynamics modelling that require extensive computational resources. However, the challenge in studying the GDL with pore network modelling lies in defining the network parameters that accurately describe the porous media as well as the conditions of fluid invasion that represent realistic transport processes. In this work, we discuss the first stage of developing and validating a GDL-representative pore network model. We begin with a two-dimensional pore network model with a single mobile pha...

  14. Characterization of transport phenomena in porous transport layers using X-ray microtomography

    Science.gov (United States)

    Hasanpour, S.; Hoorfar, M.; Phillion, A. B.

    2017-06-01

    Among different methods available for estimating the transport properties of porous transport layers (PTLs) of polymer electrolyte membrane fuel cells, X-ray micro computed tomography (X-μCT) imaging in combination with image-based numerical simulation has been recognized as a viable tool. In this study, four commercially-available single-layer and dual-layer PTLs are analyzed using this method in order to compare and contrast transport properties between different PTLs, as well as the variability within a single sheet. Complete transport property datasets are created for each PTL. The simulation predictions indicate that PTLs with high porosity show considerable variability in permeability and effective diffusivity, while PTLs with low porosity do not. Furthermore, it is seen that the Tomadakis-Sotirchos (TS) analytical expressions for porous media match the image-based simulations when porosity is relatively low but predict higher permeability and effective diffusivity for porosity values greater than 80%. Finally, the simulations show that cracks within MPL of dual-layer PTLs have a significant effect on the overall permeability and effective diffusivity of the PTLs. This must be considered when estimating the transport properties of dual-layer PTLs. These findings can be used to improve macro-scale models of product and reactant transport within fuel cells, and ultimately, fuel cell efficiency.

  15. Preparation and Microstructure of Porous ZrB2 Ceramics Using Reactive Spark Plasma Sintering Method

    Institute of Scientific and Technical Information of China (English)

    YUAN Huiping; LI Junguo; SHEN Qiang; ZHANG Lianmeng

    2015-01-01

    Zirconium oxide (ZrO2) and boron carbide (B4C) were added to ZrB2 raw powders to prepare ZrB2 porous ceramics by reactive spark plasma sintering (RSPS). The reactions between ZrO2 and B4C which produce ZrB2 and gas (such as CO and B2O3) result in pore formation. X-Ray Diffraction results indicated that the products phase was ZrB2 and the reaction was completed after the RSPS process. The porosity could be controlled by changing the ratio of synthesized ZrB2 to raw ZrB2 powders. The porosity of porous ceramics with 20 wt% and 40 wt% synthsized ZrB2 are 0.185 and 0.222, respectivly. And dense ZrB2-SiC ceramic with a porosity of 0.057 was prepared under the same conditions for comparison. The pores were homogeneously distributed within the microstructure of the porous ceramics. The results indicate a promising method for preparing porous ZrB2-based ceramics.

  16. Modeling variably saturated multispecies reactive groundwater solute transport with MODFLOW-UZF and RT3D

    Science.gov (United States)

    Bailey, Ryan T.; Morway, Eric D.; Niswonger, Richard G.; Gates, Timothy K.

    2013-01-01

    A numerical model was developed that is capable of simulating multispecies reactive solute transport in variably saturated porous media. This model consists of a modified version of the reactive transport model RT3D (Reactive Transport in 3 Dimensions) that is linked to the Unsaturated-Zone Flow (UZF1) package and MODFLOW. Referred to as UZF-RT3D, the model is tested against published analytical benchmarks as well as other published contaminant transport models, including HYDRUS-1D, VS2DT, and SUTRA, and the coupled flow and transport modeling system of CATHY and TRAN3D. Comparisons in one-dimensional, two-dimensional, and three-dimensional variably saturated systems are explored. While several test cases are included to verify the correct implementation of variably saturated transport in UZF-RT3D, other cases are included to demonstrate the usefulness of the code in terms of model run-time and handling the reaction kinetics of multiple interacting species in variably saturated subsurface systems. As UZF1 relies on a kinematic-wave approximation for unsaturated flow that neglects the diffusive terms in Richards equation, UZF-RT3D can be used for large-scale aquifer systems for which the UZF1 formulation is reasonable, that is, capillary-pressure gradients can be neglected and soil parameters can be treated as homogeneous. Decreased model run-time and the ability to include site-specific chemical species and chemical reactions make UZF-RT3D an attractive model for efficient simulation of multispecies reactive transport in variably saturated large-scale subsurface systems.

  17. The reactive transport of trichloroethene is influenced by residence time and microbial numbers

    Science.gov (United States)

    Haest, P. J.; Philips, J.; Springael, D.; Smolders, E.

    2011-01-01

    The dechlorination rate in a flow-through porous matrix can be described by the species specific dechlorination rate observed in a liquid batch unless mass transport limitations prevail. This hypothesis was examined by comparing dechlorination rates in liquid batch with that in column experiments at various flow rates (3-9-12 cm day - 1 ). Columns were loaded with an inoculated sand and eluted with a medium containing 1 mM trichloroethene (TCE) for 247 days. Dechlorination in the column treatments increased with decreasing flow rate, illustrating the effect of the longer residence time. Zeroth order TCE or cis-DCE degradation rates were 4-7 folds larger in columns than in corresponding batch systems which could be explained by the higher measured Geobacter and Dehalococcoides numbers per unit pore volume in the columns. The microbial numbers also explained the variability in dechlorination rate among flow rate treatments marked by a large elution of the dechlorinating species' yield as flow increased. Stop flow events did not reveal mass transport limitations for dechlorination. We conclude that flow rate effects on reactive transport of TCE in this coarse sand are explained by residence time and by microbial transport and that mass transport limitations in this porous matrix are limited.

  18. Semianalytical Solutions of Radioactive or Reactive Transport in Variably-Fractured Layered Media: 1. Solutes

    Energy Technology Data Exchange (ETDEWEB)

    George J. Moridis

    2001-10-01

    In this paper, semianalytical solutions are developed for the problem of transport of radioactive or reactive solute tracers through a layered system of heterogeneous fractured media with misaligned fractures. The tracer transport equations in the non-flowing matrix account for (a) diffusion, (b) surface diffusion, (c) mass transfer between the mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical, or combined solute sorption or colloid filtration, and (e) radioactive decay or first-order chemical reactions. The tracer-transport equations in the fractures account for the same processes, in addition to advection and hydrodynamic dispersion. Any number of radioactive decay daughter products (or products of a linear, first-order reaction chain) can be tracked. The solutions, which are analytical in the Laplace space, are numerically inverted to provide the solution in time and can accommodate any number of fractured and/or porous layers. The solutions are verified using analytical solutions for limiting cases of solute and colloid transport through fractured and porous media. The effect of important parameters on the transport of {sup 3}H, {sup 237}Np and {sup 239}Pu (and its daughters) is investigated in several test problems involving layered geological systems of varying complexity.

  19. Semianalytical solutions of radioactive or reactive transport invariably-fractured layered media: 1. Solutes

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, George J.

    2001-10-10

    In this paper, semianalytical solutions are developed for the problem of transport of radioactive or reactive solute tracers through a layered system of heterogeneous fractured media with misaligned fractures. The tracer transport equations in the non-flowing matrix account for (a) diffusion, (b) surface diffusion, (c) mass transfer between the mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical, or combined solute sorption or colloid filtration, and (e) radioactive decay or first-order chemical reactions. The tracer-transport equations in the fractures account for the same processes, in addition to advection and hydrodynamic dispersion. Any number of radioactive decay daughter products (or products of a linear, first-order reaction chain) can be tracked. The solutions, which are analytical in the Laplace space, are numerically inverted to provide the solution in time and can accommodate any number of fractured and/or porous layers. The solutions are verified using analytical solutions for limiting cases of solute and colloid transport through fractured and porous media. The effect of important parameters on the transport of {sup 3}H, {sup 237}Np and {sup 239}Pu (and its daughters) is investigated in several test problems involving layered geological systems of varying complexity.

  20. Humic acid transport in saturated porous media:Influence of flow velocity and influent concentration

    Institute of Scientific and Technical Information of China (English)

    Xiaorong Wei; Mingan Shao; Lina Du; Robert Horton

    2014-01-01

    Understanding the transport of humic acids (HAs) in porous media can provide important and practical evidence needed for accurate prediction of organic/inorganic contaminant transport in different environmental media and interfaces.A series of column transport experiments was conducted to evaluate the transport of HA in different porous media at different flow velocities and influent HA concentrations.Low flow velocity and influent concentration were found to favor the adsorption and deposition of HA onto sand grains packed into columns and to give higher equilibrium distribution coefficients and deposition rate coefficients,which resulted in an increased fraction of HA being retained in columns.Consequently,retardation factors were increased and the transport of HA through the columns was delayed.These results suggest that the transport of HA in porous media is primarily controlled by the attachment of HA to the solid matrix.Accordingly,this attachment should be considered in studies of HA behavior in porous media.

  1. Humic acid transport in saturated porous media: influence of flow velocity and influent concentration.

    Science.gov (United States)

    Wei, Xiaorong; Shao, Mingan; Du, Lina; Horton, Robert

    2014-12-01

    Understanding the transport of humic acids (HAs) in porous media can provide important and practical evidence needed for accurate prediction of organic/inorganic contaminant transport in different environmental media and interfaces. A series of column transport experiments was conducted to evaluate the transport of HA in different porous media at different flow velocities and influent HA concentrations. Low flow velocity and influent concentration were found to favor the adsorption and deposition of HA onto sand grains packed into columns and to give higher equilibrium distribution coefficients and deposition rate coefficients, which resulted in an increased fraction of HA being retained in columns. Consequently, retardation factors were increased and the transport of HA through the columns was delayed. These results suggest that the transport of HA in porous media is primarily controlled by the attachment of HA to the solid matrix. Accordingly, this attachment should be considered in studies of HA behavior in porous media.

  2. Uranium transport in a crushed granodiorite: experiments and reactive transport modeling.

    Science.gov (United States)

    Dittrich, T M; Reimus, P W

    2015-01-01

    The primary objective of this study was to develop and demonstrate an experimental method to refine and better parameterize process models for reactive contaminant transport in aqueous subsurface environments and to reduce conservatism in such models without attempting to fully describe the geochemical system. Uranium was used as an example of a moderately adsorbing contaminant because of its relevance in geologic disposal of spent nuclear fuel. A fractured granodiorite from the Grimsel Test Site (GTS) in Switzerland was selected because this system has been studied extensively and field experiments have been conducted with radionuclides including uranium. We evaluated the role of pH, porous media size fraction, and flow interruptions on uranium transport. Rock cores drilled from the GTS were shipped to Los Alamos National Laboratory, characterized by x-ray diffraction and optical microscopy, and used in uranium batch sorption and column breakthrough experiments. A synthetic water was prepared that represented the porewater that would be present after groundwater interacts with bentonite backfill material near a nuclear waste package. Uranium was conservatively transported at pH8.8. Significant adsorption and subsequent desorption was observed at pH ~7, with long desorption tails resulting after switching the column injection solution to uranium-free groundwater. Our experiments were designed to better interrogate this slow desorption behavior. A three-site model predicted sorption rate constants for a pH7.2 solution with a 75-150 μm granodiorite fraction to be 3.5, 0.012, and 0.012 mL/g-h for the forward reactions and 0.49, 0.0025, and 0.001 h(-1) for the reverse reactions. Surface site densities were 1.3, 0.042, and 0.042 μmol/g for the first, second, and third sites, respectively. 10-year simulations show that including a slow binding site increases the arrival time of a uranium pulse by ~70%.

  3. On the multiplicity of solutions of the nonlinear reactive transport model

    Directory of Open Access Journals (Sweden)

    Elyas Shivanian

    2014-06-01

    Full Text Available The generalization of the nonlinear reaction–diffusion model in porous catalysts the so called one dimensional steady state reactive transport model is revisited. This model, which originates also in fluid and solute transport in soft tissues and microvessels, has been recently given analytical solution in terms of Taylor’s series for different families of reaction terms. This article considers the mentioned model without advective transport in the case of including Michaelis–Menten reaction term and shows that it is exactly solvable and furthermore, gives analytical exact solution in the implicit form for further physical interpretation. It is also revealed that the problem may admit unique or dual or even more triple solutions in some domains for the parameters of the model.

  4. Transport of carbon-based nanoparticles in saturated porous media

    Science.gov (United States)

    Fagerlund, Fritjof; Hedayati, Maryeh; Sharma, Prabhakar; Katyal, Deeksha

    2015-04-01

    Carbon-based nanoparticles (NPs) are commonly occurring, both with origin from natural sources such as fires, and in the form of man-made, engineered nanoparticles, manufactured and widely used in many applications due to their unique properties. Toxicity of carbonbased NPs has been observed, and their release and distribution into the environment is therefore a matter of concern. In this research, transport and retention of three types of carbon-based NPs in saturated porous media were investigated. This included two types of engineered NPs; multi-walled carbon nanotubes (MWCNTs) and C60 with cylindrical and spherical shapes, respectively, and natural carbon NPs in the extinguishing water collected at a site of a building fire. Several laboratory experiments were conducted to study the transport and mobility of NPs in a sand-packed column. The effect of ionic strength on transport of the NPs with different shapes was investigated. Results were interpreted using Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. It was observed that the mobility of the two types of engineered NPs was reduced with an increase in ionic strength from 1.3 mM to 60 mM. However, at ionic strength up to 10.9 mM, C60 was relatively more mobile than MWCNTs but the mobility of MWCNTs became significantly higher than C60 at 60 mM. In comparison with natural particles originating from a fire, both engineered NPs were much less mobile at the selected experimental condition. Inverse modelling was also used to calculate parameters such as attachment efficiency, the longitudinal dispersivity, and capacity of the solid phase for the removal of particles. The simulated results were in good agreement with the observed data.

  5. Reactive transport and the genesis of kimberlites

    DEFF Research Database (Denmark)

    Pilbeam, Llewellyn; Nielsen, Troels; Waight, Tod Earle

    When studying the bulk rock analysis of kimberlites a significant correction for visible xenocrysts must be made [1,2]. Such studies concluded that olivine in kimberlite has a xenocrystic core and cognate margin. Previously, material entrained by the melt and dissolved during transport has only...... transects. Diffusion between homogeneous olivine grains and melt was also eliminated. The data was replicated using a combination of growth and minor later diffusion. Growth was modeled using AFC equations [4]. Later diffusive equilibration between core and margin was minor. Since kimberlite transport time...

  6. Porous Silica Sol-Gel Glasses Containing Reactive V2O5 Groups

    Science.gov (United States)

    Stiegman, Albert E.

    1995-01-01

    Porous silica sol-gel glasses into which reactive vanadium oxide functional groups incorporated exhibit number of unique characteristics. Because they bind molecules of some species both reversibly and selectively, useful as chemical sensors or indicators or as scrubbers to remove toxic or hazardous contaminants. Materials also oxidize methane gas photochemically: suggests they're useful as catalysts for conversion of methane to alcohol and for oxidation of hydrocarbons in general. By incorporating various amounts of other metals into silica sol-gel glasses, possible to synthesize new materials with broad range of new characteristics.

  7. Pore-network modeling of solute transport and biofilm growth in porous media

    NARCIS (Netherlands)

    Qin, Chao Zhong; Hassanizadeh, S. Majid

    2015-01-01

    In this work, a pore-network (PN) model for solute transport and biofilm growth in porous media was developed. Compared to previous studies of biofilm growth, it has two new features. First, the constructed pore network gives a better representation of a porous medium. Second, instead of using a con

  8. Pore-network modeling of solute transport and biofilm growth in porous media

    NARCIS (Netherlands)

    Qin, Chao Zhong; Hassanizadeh, S. Majid

    2015-01-01

    In this work, a pore-network (PN) model for solute transport and biofilm growth in porous media was developed. Compared to previous studies of biofilm growth, it has two new features. First, the constructed pore network gives a better representation of a porous medium. Second, instead of using a

  9. Interdisciplinary Research to Elucidate Mechanisms Governing Silver Nanoparticle Fate and Transport in Porous Media

    Science.gov (United States)

    Pennell, K. D.; Mittleman, A.; Taghavy, A.; Fortner, J.; Lantagne, D.; Abriola, L. M.

    2015-12-01

    Interdisciplinary Research to Elucidate Mechanisms Governing Silver Nanoparticle Fate and Transport in Porous Media Anjuliee M. Mittelman, Amir Taghavy, Yonggang Wang, John D. Fortner, Daniele S. Lantagne, Linda M. Abriola and Kurt D. Pennell* Detailed knowledge of the processes governing nanoparticle transport and reactivity in porous media is essential for accurate predictions of environmental fate, water and wastewater treatment system performance, and assessment of potential risks to ecosystems and water supplies. To address these issues, an interdisciplinary research team combined experimental and mathematical modeling studies to investigate the mobility, dissolution, and aging of silver nanoparticles (nAg) in representative aquifer materials and ceramic filters. Results of one-dimensional column studies, conducted with water-saturated sands maintained at pH 4 or 7 and three levels of dissolved oxygen (DO), revealed that fraction of silver mass eluted as Ag+ increased with increasing DO level, and that the dissolution of attached nAg decreased over time as a result of surface oxidation. A hybrid Eulerain-Lagragian nanoparticle transport model, which incorporates DO-dependent dissolution kinetics and particle aging, was able to accurately simulate nAg mobility and Ag+ release measured in the column experiments. Model sensitivity analysis indicated that as the flow velocity and particle size decrease, nAg dissolution and Ag+ transport processes increasingly govern silver mobility. Consistent results were obtained in studies of ceramic water filters treated with nAg, where silver elution was shown to be governed by nAg dissolution to form Ag+ and subsequent cation exchange reactions. Recent studies explored the effects of surface coating aging on nAg aggregation, mobility and dissolution. Following ultraviolet light, nAg retention in water saturated sand increased by 25-50%, while up to 50% of the applied mass eluted as Ag+ compared to less than 1% for un-aged n

  10. Surrogate model approach for improving the performance of reactive transport simulations

    Science.gov (United States)

    Jatnieks, Janis; De Lucia, Marco; Sips, Mike; Dransch, Doris

    2016-04-01

    (MARS) method provides the best trade-off between speed and accuracy. This proof-of-concept forms an essential step towards building an interactive visual analytics system to enable user-driven systematic creation of geochemical surrogate models. Such a system shall enable reactive transport simulations with unprecedented spatial and temporal detail to become possible. References: Kolditz, O., Görke, U.J., Shao, H. and Wang, W., 2012. Thermo-hydro-mechanical-chemical processes in porous media: benchmarks and examples (Vol. 86). Springer Science & Business Media.

  11. P type porous silicon resistivity and carrier transport

    Energy Technology Data Exchange (ETDEWEB)

    Ménard, S., E-mail: samuel.menard@st.com [STMicroelectronics, 10, rue Thalès de Milet, 37071 Tours Cedex 2 (France); Fèvre, A. [STMicroelectronics, 10, rue Thalès de Milet, 37071 Tours Cedex 2 (France); Université François Rabelais de Tours, CNRS, CEA, INSA CVL, GREMAN UMR 7347, Tours (France); Billoué, J.; Gautier, G. [Université François Rabelais de Tours, CNRS, CEA, INSA CVL, GREMAN UMR 7347, Tours (France)

    2015-09-14

    The resistivity of p type porous silicon (PS) is reported on a wide range of PS physical properties. Al/PS/Si/Al structures were used and a rigorous experimental protocol was followed. The PS porosity (P{sub %}) was found to be the major contributor to the PS resistivity (ρ{sub PS}). ρ{sub PS} increases exponentially with P{sub %}. Values of ρ{sub PS} as high as 1 × 10{sup 9} Ω cm at room temperature were obtained once P{sub %} exceeds 60%. ρ{sub PS} was found to be thermally activated, in particular, when the temperature increases from 30 to 200 °C, a decrease of three decades is observed on ρ{sub PS}. Based on these results, it was also possible to deduce the carrier transport mechanisms in PS. For P{sub %} lower than 45%, the conduction occurs through band tails and deep levels in the tissue surrounding the crystallites. When P{sub %} overpasses 45%, electrons at energy levels close to the Fermi level allow a hopping conduction from crystallite to crystallite to appear. This study confirms the potential of PS as an insulating material for applications such as power electronic devices.

  12. Transport in Porous Fins From Laminar to Turbulent Regime

    Science.gov (United States)

    Coletti, Filippo; Muramatsu, Kenshiro; Furciniti, Brian; Elkins, Chris; Eaton, John

    2012-11-01

    Lotus type porous metal has elongated pores of random size and spatial distribution but a common orientation. Sets of so-called lotus fins are obtained by slicing the metal into thin layers and stacking them in the flow path, forcing the fluid to pass through the pores. Lotus fins represent a promising alternative to metal foam heat exchangers, because they offer higher thermal conductivity and lower pressure drop. We have experimentally analyzed the fluid flow and heat transfer in lotus fins to determine their transport properties in a range of flow regimes. The investigated Reynolds numbers based on the pore diameter and inner velocity ranged from 100 to 4000. Three-dimensional mean velocity fields were obtained by magnetic resonance velocimetry performed on magnified replicas of the fins, allowing determination of the mechanical dispersion imposed by the random structure of the fins. Thermal measurements on non-conductive fins provided the global diffusivity coefficient, which accounts for molecular, mechanical and (at high Reynolds number) turbulent diffusion. The latter contribution was isolated and its relevance assessed as a function of the flow regime.

  13. FEFLOW finite element modeling of flow, mass and heat transport in porous and fractured media

    CERN Document Server

    Diersch, Hans-Jörg G

    2013-01-01

    Placing advanced theoretical and numerical methods in the hands of modeling practitioners and scientists, this book explores the FEFLOW system for solving flow, mass and heat transport processes in porous and fractured media. Offers applications and exercises.

  14. Modeling of flow and reactive transport in IPARS

    KAUST Repository

    Wheeler, Mary Fanett

    2012-03-11

    In this work, we describe a number of efficient and locally conservative methods for subsurface flow and reactive transport that have been or are currently being implemented in the IPARS (Integrated Parallel and Accurate Reservoir Simulator). For flow problems, we consider discontinuous Galerkin (DG) methods and mortar mixed finite element methods. For transport problems, we employ discontinuous Galerkin methods and Godunov-mixed methods. For efficient treatment of reactive transport simulations, we present a number of state-of-the-art dynamic mesh adaptation strategies and implementations. Operator splitting approaches and iterative coupling techniques are also discussed. Finally, numerical examples are provided to illustrate the capability of IPARS to treat general biogeochemistry as well as the effectivity of mesh adaptations with DG for transport. © 2012 Bentham Science Publishers. All rights reserved.

  15. Gas transport in tight porous media Gas kinetic approach

    NARCIS (Netherlands)

    Shapiro, A. A.; Wesselingh, Johannes

    2008-01-01

    We describe the flow of gas in a porous medium in the kinetic regime, where the viscous flow structure is not formed in separate pores. Special attention is paid to the dense kinetic regime, where the interactions within the gas are as important as the interaction with the porous medium. The

  16. A parallelization scheme to simulate reactive transport in the subsurface environment with OGS#IPhreeqc

    Science.gov (United States)

    He, W.; Beyer, C.; Fleckenstein, J. H.; Jang, E.; Kolditz, O.; Naumov, D.; Kalbacher, T.

    2015-03-01

    This technical paper presents an efficient and performance-oriented method to model reactive mass transport processes in environmental and geotechnical subsurface systems. The open source scientific software packages OpenGeoSys and IPhreeqc have been coupled, to combine their individual strengths and features to simulate thermo-hydro-mechanical-chemical coupled processes in porous and fractured media with simultaneous consideration of aqueous geochemical reactions. Furthermore, a flexible parallelization scheme using MPI (Message Passing Interface) grouping techniques has been implemented, which allows an optimized allocation of computer resources for the node-wise calculation of chemical reactions on the one hand, and the underlying processes such as for groundwater flow or solute transport on the other hand. The coupling interface and parallelization scheme have been tested and verified in terms of precision and performance.

  17. A parallelization scheme to simulate reactive transport in the subsurface environment with OGS#IPhreeqc

    Directory of Open Access Journals (Sweden)

    W. He

    2015-03-01

    Full Text Available This technical paper presents an efficient and performance-oriented method to model reactive mass transport processes in environmental and geotechnical subsurface systems. The open source scientific software packages OpenGeoSys and IPhreeqc have been coupled, to combine their individual strengths and features to simulate thermo-hydro-mechanical-chemical coupled processes in porous and fractured media with simultaneous consideration of aqueous geochemical reactions. Furthermore, a flexible parallelization scheme using MPI (Message Passing Interface grouping techniques has been implemented, which allows an optimized allocation of computer resources for the node-wise calculation of chemical reactions on the one hand, and the underlying processes such as for groundwater flow or solute transport on the other hand. The coupling interface and parallelization scheme have been tested and verified in terms of precision and performance.

  18. Direct Numerical Simulation of Liquid Transport Through Fibrous Porous Media

    Science.gov (United States)

    Palakurthi, Nikhil Kumar

    Fluid flow through fibrous media occurs in many industrial processes, including, but not limited, to fuel cell technology, drug delivery patches, sanitary products, textile reinforcement, filtration, heat exchangers, and performance fabrics. Understanding the physical processes involved in fluid flow through fibrous media is essential for their characterization as well as for the optimization and development of new products. Macroscopic porous-media equations require constitutive relations, which account for the physical processes occurring at the micro-scale, to predict liquid transport at the macro-scale. In this study, micro-scale simulations were conducted using conventional computational fluid dynamics (CFD) technique (finite-volume method) to determine the macroscopic constitutive relations. The first part of this thesis deals with the single-phase flow in fibrous media, following which multi-phase flow through fibrous media was studied. Darcy permeability is an important parameter that characterizes creeping flow through a fibrous porous medium. It has a complex dependence on the medium's properties such as fibers' in-plane and through-plane orientation, diameter, aspect ratio, curvature, and porosity. A suite of 3D virtual fibrous structures with a wide range of geometric properties were constructed, and the permeability values of the structures were calculated by solving the 3D incompressible Navier-Stokes equations. The through-plane permeability was found to be a function of only the fiber diameter, the fibers' through-plane orientation, and the porosity of the medium. The numerical results were used to extend a permeability-porosity relation, developed in literature for 3D isotropic fibrous media, to a wide range of fibers' through-plane orientations. In applications where rate of capillary penetration is important, characterization of porous media usually involves determination of either the effective pore radius from capillary penetration experiments

  19. Assessment of parametric uncertainty for groundwater reactive transport modeling,

    Science.gov (United States)

    Shi, Xiaoqing; Ye, Ming; Curtis, Gary P.; Miller, Geoffery L.; Meyer, Philip D.; Kohler, Matthias; Yabusaki, Steve; Wu, Jichun

    2014-01-01

    The validity of using Gaussian assumptions for model residuals in uncertainty quantification of a groundwater reactive transport model was evaluated in this study. Least squares regression methods explicitly assume Gaussian residuals, and the assumption leads to Gaussian likelihood functions, model parameters, and model predictions. While the Bayesian methods do not explicitly require the Gaussian assumption, Gaussian residuals are widely used. This paper shows that the residuals of the reactive transport model are non-Gaussian, heteroscedastic, and correlated in time; characterizing them requires using a generalized likelihood function such as the formal generalized likelihood function developed by Schoups and Vrugt (2010). For the surface complexation model considered in this study for simulating uranium reactive transport in groundwater, parametric uncertainty is quantified using the least squares regression methods and Bayesian methods with both Gaussian and formal generalized likelihood functions. While the least squares methods and Bayesian methods with Gaussian likelihood function produce similar Gaussian parameter distributions, the parameter distributions of Bayesian uncertainty quantification using the formal generalized likelihood function are non-Gaussian. In addition, predictive performance of formal generalized likelihood function is superior to that of least squares regression and Bayesian methods with Gaussian likelihood function. The Bayesian uncertainty quantification is conducted using the differential evolution adaptive metropolis (DREAM(zs)) algorithm; as a Markov chain Monte Carlo (MCMC) method, it is a robust tool for quantifying uncertainty in groundwater reactive transport models. For the surface complexation model, the regression-based local sensitivity analysis and Morris- and DREAM(ZS)-based global sensitivity analysis yield almost identical ranking of parameter importance. The uncertainty analysis may help select appropriate likelihood

  20. Characterization of Nano-scale Aluminum Oxide Transport Through Porous Media

    Science.gov (United States)

    Norwood, Sasha Norien

    Land application of biosolids has become common practice in the United States as an alternative to industrial fertilizers. Although nutrient rich, biosolids have been found to contain high concentrations of unregulated and/or unrecognized emerging contaminants (e.g., pharmaceuticals, personal care products) while containing a significant fraction of inorganic nano-scale colloidal materials such as oxides of iron, titanium, and aluminum. Given their reactivity and small size, there are many questions concerning the potential migration of these nano-sized colloidal materials through the soil column and into our surface and groundwater bodies. Transport of emerging pollutants of concern through the soil column, at minimum, is impacted by colloidal properties (e.g., chemical composition, shape, aggregation kinetics), solution chemistry (e.g., pH, ionic strength, natural organic matter), and water flow velocity. The purpose of this current research was to characterize the long-term transport behavior of aluminum oxide nanoparticles (Al 2O3) through a natural porous media with changes in pH, aqueous-phase concentration, pore-water velocity and electrolyte valence. Additionally, deposition rates during the initial stages of deposition were compared to several models developed based on colloid filtration theory and DLVO stability theory. Benchtop column laboratory experiments showed that, under environmentally relevant groundwater conditions, Al2O3 nanoparticles are mobile through saturated porous media. Mobility increased under conditions in which the nanoparticles and porous media were of like charge (pH 9). Changes in linear pore water velocity, under these same high pH conditions, showed similar transport behavior with little mass retained in the system. Deposition is believed to be kinetically controlled at pH 9, as evidenced by the slightly earlier breakthrough as flow rate increased and was further supported by observed concentration effects on the arrival wave

  1. Impact of pore size variability and network coupling on electrokinetic transport in porous media

    Science.gov (United States)

    Alizadeh, Shima; Bazant, Martin Z.; Mani, Ali

    2016-11-01

    We have developed and validated an efficient and robust computational model to study the coupled fluid and ion transport through electrokinetic porous media, which are exposed to external gradients of pressure, electric potential, and concentration. In our approach a porous media is modeled as a network of many pores through which the transport is described by the coupled Poisson-Nernst-Planck-Stokes equations. When the pore sizes are random, the interactions between various modes of transport may provoke complexities such as concentration polarization shocks and internal flow circulations. These phenomena impact mixing and transport in various systems including deionization and filtration systems, supercapacitors, and lab-on-a-chip devices. In this work, we present simulations of massive networks of pores and we demonstrate the impact of pore size variation, and pore-pore coupling on the overall electrokinetic transport in porous media.

  2. DNA Transport in Nanoparticle Porous-Wall Nanochannels

    Science.gov (United States)

    2015-08-04

    field. Electrode Fluid drop Electrode Nanochannels V V Electrode Electrode Filter Fluorescent light Excitation laser beam CCD the drops in the wells...cross channels and porous layer as separation media . Two layer chips which gave possibility not only to filter but also to collect separated...AGENCY NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 nanochannels, porous media , DNA

  3. Systematic characterization of porosity and mass transport and mechanical properties of porous polyurethane scaffolds.

    Science.gov (United States)

    Wang, Yu-Fu; Barrera, Carlos M; Dauer, Edward A; Gu, Weiyong; Andreopoulos, Fotios; Huang, C-Y Charles

    2017-01-01

    One of the key challenges in porous scaffold design is to create a porous structure with desired mechanical function and mass transport properties which support delivery of biofactors and development of function tissue substitute. In recent years, polyurethane (PU) has become one of the most popular biomaterials in various tissue engineering fields. However, there are no studies fully investigating the relations between porosity and both mass transport and mechanical properties of PU porous scaffolds. In this paper, we fabricated PU scaffolds by combining phase inversion and salt (sodium chloride) leaching methods. The tensile and compressive moduli were examined on PU scaffolds fabricated with different PU concentrations (25%, 20% and 15% w/v) and salt/PU weight ratios (9/1, 6/1, 3/1 and 0/1). The mass transport properties of PU scaffolds including hydraulic permeability and glucose diffusivity were also measured. Furthermore, the relationships between the porosity and mass transport and mechanical properties of porous PU scaffold were systemically investigated. The results demonstrated that porosity is a key parameter which governs both mass transport and mechanical properties of porous PU scaffolds. With similar pore sizes, the mass transport and mechanical properties of porous PU scaffold can be described as single functions of porosity regardless of initial PU concentration. The relationships between scaffold porosity and properties can be utilized to facilitate porous PU scaffold fabrication with specific mass transport and mechanical properties. The systematic approach established in this study can be applied to characterization of other biomaterials for scaffold design and fabrication.

  4. Measurements and models of reactive transport in geological media

    Science.gov (United States)

    Berkowitz, Brian; Dror, Ishai; Hansen, Scott K.; Scher, Harvey

    2016-12-01

    Reactive chemical transport plays a key role in geological media across scales, from pore scale to aquifer scale. Systems can be altered by changes in solution chemistry and a wide variety of chemical transformations, including precipitation/dissolution reactions that cause feedbacks that directly affect the flow and transport regime. The combination of these processes with advective-dispersive-diffusive transport in heterogeneous media leads to a rich spectrum of complex dynamics. The principal challenge in modeling reactive transport is to account for the subtle effects of fluctuations in the flow field and species concentrations; spatial or temporal averaging generally suppresses these effects. Moreover, it is critical to ground model conceptualizations and test model outputs against laboratory experiments and field measurements. This review emphasizes the integration of these aspects, considering carefully designed and controlled experiments at both laboratory and field scales, in the context of development and solution of reactive transport models based on continuum-scale and particle tracking approaches. We first discuss laboratory experiments and field measurements that define the scope of the phenomena and provide data for model comparison. We continue by surveying models involving advection-dispersion-reaction equation and continuous time random walk formulations. The integration of measurements and models is then examined, considering a series of case studies in different frameworks. We delineate the underlying assumptions, and strengths and weaknesses, of these analyses, and the role of probabilistic effects. We also show the key importance of quantifying the spreading and mixing of reactive species, recognizing the role of small-scale physical and chemical fluctuations that control the initiation of reactions.

  5. Catalytic Activity of Porous Phosphate Heterostructures-Fe towards Reactive Black 5 Degradation

    Directory of Open Access Journals (Sweden)

    Marco S. Lucas

    2013-01-01

    Full Text Available Fenton’s reaction is often used to decompose stable substances in wastewater. In this study, experiments based on the effect of porous phosphate heterostructures as catalyst sorbent of Fe2+ synthesised by different procedures were planned. The examined PPH-Fe/H2O2 as oxidant in a heterogeneous process under mild conditions at pH 5 was found to be very efficient for discoloration of a simulated wastewater containing 50 mg L−1 of a commercial azo dye (Reactive Black 5 reaching 95% of decolourization. Under the described conditions total visual decolourization was achieved after 360 min. This study can provide a simple, effective, and economic system ideal for the treatment of toxic and nonbiodegradable azo dyes.

  6. Peristaltic flow of a reactive viscous fluid through a porous saturated channel and convective cooling conditions

    Science.gov (United States)

    Asghar, S.; Hussain, Q.; Hayat, T.; Alsaedi, A.

    2015-07-01

    This article addresses the heat transfer in a peristaltic flow of a reactive combustible viscous fluid through a porous saturated medium. The flow here is induced because of travelling waves along the channel walls. It is assumed that exothermic chemical reactions take place within the channel under the Arrhenius kinetics and the convective heat exchange with the ambient medium at the surfaces of the channel walls follows Newton's law of cooling. The analysis is carried out in the presence of viscous dissipation and without consumption of the material. The governing equations are formulated by employing the long-wavelength approximation. Closed-form solutions for the stream function, axial velocity, and axial pressure gradient are obtained. It is found that the temperature decreases at high Biot numbers, and the Nusselt number increases with increasing reaction parameter. The Biot number and reaction parameter produce the opposite effects on the Nusselt number.

  7. A note on upscaling retardation factor in hierarchical porous media with multimodal reactive mineral facies

    CERN Document Server

    Soltanian, Mohamad Reza; Huang, Chaocheng; Dai, Zhenxue; Deng, Hailin

    2014-01-01

    We present a model for upscaling the time-dependent effective retardation factor in hierarchical porous media with multimodal reactive mineral facies. The model extends the approach by Deng et al. (2013) in which they expanded a Lagrangian-based stochastic theory presented by Rajaram (1997) in order to describe the scaling effect of retardation factor. They used a first-order linear approximation in deriving their model to make the derivation tractable. Importantly, the linear approximation is known to be valid only to variances of 0.2. In this article we show that the model can be derived with a higher-order approximation, which allows for representing variances from 0.2 to 1.0. We present the derivation, and use the resulting model to recalculate the time-dependent effective retardation for the scenario examined by Deng et al. (2013).

  8. Pore Formation Process of Porous Ti3SiC2 Fabricated by Reactive Sintering

    Directory of Open Access Journals (Sweden)

    Huibin Zhang

    2017-02-01

    Full Text Available Porous Ti3SiC2 was fabricated with high purity, 99.4 vol %, through reactive sintering of titanium hydride (TiH2, silicon (Si and graphite (C elemental powders. The reaction procedures and the pore structure evolution during the sintering process were systematically studied by X-ray diffraction (XRD and scanning electron microscope (SEM. Our results show that the formation of Ti3SiC2 from TiH2/Si/C powders experienced the following steps: firstly, TiH2 decomposed into Ti; secondly, TiC and Ti5Si3 intermediate phases were generated; finally, Ti3SiC2 was produced through the reaction of TiC, Ti5Si3 and Si. The pores formed in the synthesis procedure of porous Ti3SiC2 ceramics are derived from the following aspects: interstitial pores left during the pressing procedure; pores formed because of the TiH2 decomposition; pores formed through the reactions between Ti and Si and Ti and C powders; and the pores produced accompanying the final phase synthesized during the high temperature sintering process.

  9. A theoretical framework for modeling dilution enhancement of non-reactive solutes in heterogeneous porous media.

    Science.gov (United States)

    de Barros, F P J; Fiori, A; Boso, F; Bellin, A

    2015-01-01

    Spatial heterogeneity of the hydraulic properties of geological porous formations leads to erratically shaped solute clouds, thus increasing the edge area of the solute body and augmenting the dilution rate. In this study, we provide a theoretical framework to quantify dilution of a non-reactive solute within a steady state flow as affected by the spatial variability of the hydraulic conductivity. Embracing the Lagrangian concentration framework, we obtain explicit semi-analytical expressions for the dilution index as a function of the structural parameters of the random hydraulic conductivity field, under the assumptions of uniform-in-the-average flow, small injection source and weak-to-mild heterogeneity. Results show how the dilution enhancement of the solute cloud is strongly dependent on both the statistical anisotropy ratio and the heterogeneity level of the porous medium. The explicit semi-analytical solution also captures the temporal evolution of the dilution rate; for the early- and late-time limits, the proposed solution recovers previous results from the literature, while at intermediate times it reflects the increasing interplay between large-scale advection and local-scale dispersion. The performance of the theoretical framework is verified with high resolution numerical results and successfully tested against the Cape Cod field data.

  10. Carbon monoxide as a tracer of gas transport in snow and other natural porous media

    NARCIS (Netherlands)

    Huwald, H.; Selker, J.S.; Tyler, S.W.; Calaf, M.; Van de Giesen, N.C.; Parlange, M.B.

    2012-01-01

    The movement of air in natural porous media is complex and challenging to measure. Yet gas transport has important implications, for instance, for the evolution of the seasonal snow cover and for water vapor transport in soil. A novel in situmulti-sensor measurement system providing high-resolution

  11. Theoretical analysis of moisture transport in wood as an open porous hygroscopic material

    DEFF Research Database (Denmark)

    Hozjan, Tomaz; Svensson, Staffan

    2010-01-01

    Moisture transport in an open porous hygroscopic material such as wood is a complex system of coupled processes. For seasoned wood in natural climate three fully coupled processes active in the moisture transport are readily identified: (1) diffusion of vapor in pores; (2) phase change from one...

  12. Macromolecule Mediated Transport and Retention of Escherichia coli O157:H7 in Saturated Porous Media

    Science.gov (United States)

    The role of extracellular macromolecules on Escherichia coli O157:H7 transport and retention was investigated in saturated porous media. To compare the relative transport and retention of E. coli cells that are macromolecule rich and deficient, macromolecules were partially cleaved using a proteolyt...

  13. Elliptic random-walk equation for suspension and tracer transport in porous media

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Bedrikovetsky, P. G.

    2008-01-01

    We propose a new approach to transport of the suspensions and tracers in porous media. The approach is based on a modified version of the continuous time random walk (CTRW) theory. In the framework of this theory we derive an elliptic transport equation. The new equation contains the time...

  14. Characterization of thermal, optical and carrier transport properties of porous silicon using the photoacoustic technique

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Chan Kok [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Mahmood Mat Yunus, W. [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)], E-mail: mahmood@science.upm.edu.my; Yunus, Wan Md. Zin Wan [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang (Malaysia); Abidin Talib, Zainal [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Kassim, Anuar [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang (Malaysia)

    2008-08-01

    In this work, the porous silicon layer was prepared by the electrochemical anodization etching process on n-type and p-type silicon wafers. The formation of the porous layer has been identified by photoluminescence and SEM measurements. The optical absorption, energy gap, carrier transport and thermal properties of n-type and p-type porous silicon layers were investigated by analyzing the experimental data from photoacoustic measurements. The values of thermal diffusivity, energy gap and carrier transport properties have been found to be porosity-dependent. The energy band gap of n-type and p-type porous silicon layers was higher than the energy band gap obtained for silicon substrate (1.11 eV). In the range of porosity (50-76%) of the studies, our results found that the optical band-gap energy of p-type porous silicon (1.80-2.00 eV) was higher than that of the n-type porous silicon layer (1.70-1.86 eV). The thermal diffusivity value of the n-type porous layer was found to be higher than that of the p-type and both were observed to increase linearly with increasing layer porosity.

  15. Effects of Heterogeneity on Transport of Graphene Oxide in Saturated and Unsaturated Porous Media

    Science.gov (United States)

    Dong, S.; Sun, Y.; Shi, X.; Wu, J.; Gao, B.

    2015-12-01

    Graphene oxide (GO) has received increasing attention in many fields with its wide applications and rapid growth in production. Therefore, it is expected that GO nanoparticles will inevitably be released into the subsurface and cause the environmental risk subsequently. In view of this, knowledge of the fate for GO in the vadose zone and groundwater systems is indispensable. So far most research has focused on the deposition and transport of GO nanoparticles in one-dimensional homogenous porous media; nonetheless, the complex heterogeneous system is extensively distributed in natural subsurface environment and may not be well represented by the homogeneous packed columns. However, little investigations have been directed toward understanding the transport of GO in heterogeneous porous media. The overarching objective of this study is to advance current understanding of GO transport in structured heterogeneous porous media. The saturated and unsaturated columns packed with different sand combinations and solution ionic strength, were used to examine the breakthrough behavior of GO in heterogeneous porous media. A two-domain model considering GO exchange between zones was developed to describe GO transport in structured, heterogeneous porous media. The experimental data indicate that volumetric moisture content and water flow are the critical factors that control GO transport in heterogeneous porous media. And higher ionic strength decrease the mobility of GO particles in both saturated and unsaturated heterogeneous pore media. Simulations of this two-domain nanoparticle transport model matched experimental breakthrough data well for all the experimental conditions. Experimental and model results show that under saturated conditions, both fast-flow and slow-flow domains affect colloid transport in heterogeneous media. Under unsaturated conditions, however, our results indicate that flows in the fast flow domain dominate the colloid transport and retention processes.

  16. Modeling tracer transport in randomly heterogeneous porous media by nonlocal moment equations: Anomalous transport

    Science.gov (United States)

    Morales-Casique, E.; Lezama-Campos, J. L.; Guadagnini, A.; Neuman, S. P.

    2013-05-01

    Modeling tracer transport in geologic porous media suffers from the corrupt characterization of the spatial distribution of hydrogeologic properties of the system and the incomplete knowledge of processes governing transport at multiple scales. Representations of transport dynamics based on a Fickian model of the kind considered in the advection-dispersion equation (ADE) fail to capture (a) the temporal variation associated with the rate of spreading of a tracer, and (b) the distribution of early and late arrival times which are often observed in field and/or laboratory scenarios and are considered as the signature of anomalous transport. Elsewhere we have presented exact stochastic moment equations to model tracer transport in randomly heterogeneous aquifers. We have also developed a closure scheme which enables one to provide numerical solutions of such moment equations at different orders of approximations. The resulting (ensemble) average and variance of concentration fields were found to display a good agreement against Monte Carlo - based simulation results for mildly heterogeneous (or well-conditioned strongly heterogeneous) media. Here we explore the ability of the moment equations approach to describe the distribution of early arrival times and late time tailing effects which can be observed in Monte-Carlo based breakthrough curves (BTCs) of the (ensemble) mean concentration. We show that BTCs of mean resident concentration calculated at a fixed space location through higher-order approximations of moment equations display long tailing features of the kind which is typically associated with anomalous transport behavior and are not represented by an ADE model with constant dispersive parameter, such as the zero-order approximation.

  17. An Introduction to Flow and Transport in Fractal Models of Porous Media: Part I

    Science.gov (United States)

    Cai, Jianchao; San José Martínez, Fernando; Martín, Miguel Angel; Perfect, Edmund

    2014-09-01

    This special issue gathers together a number of recent papers on fractal geometry and its applications to the modeling of flow and transport in porous media. The aim is to provide a systematic approach for analyzing the statics and dynamics of fluids in fractal porous media by means of theory, modeling and experimentation. The topics covered include lacunarity analyses of multifractal and natural grayscale patterns, random packing's of self-similar pore/particle size distributions, Darcian and non-Darcian hydraulic flows, diffusion within fractals, models for the permeability and thermal conductivity of fractal porous media and hydrophobicity and surface erosion properties of fractal structures.

  18. Slip effects associated with Knudsen transport phenomena in porous media

    Science.gov (United States)

    Frederking, T. H. K.; Hepler, W. A.; Khandhar, P. K.

    1988-01-01

    Porous media used in phase separators and thermomechanical pumps have been the subject of characterization efforts based on the Darcy permeability of laminar continuum flow. The latter is not always observed at low speed, in particular at permeabilities below 10 to the -9th/squared cm. The present experimental and theoretical studies address questions of slip effects associated with long mean free paths of gas flow at room temperature. Data obtained are in good agreement, within data uncertainty, with a simplified asymptotic Knudsen equation proposed for porous plugs on the basis of Knudsen's classical flow equation for long mean free paths.

  19. Coupled modeling of non-isothermal multiphase flow, solutetransport and reactive chemistry in porous and fractured media: 1. ModelDevelopment and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tianfu; Pruess, Karsten

    1998-09-01

    Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of acid mine drainage remediation, mineral deposition, waste disposal sites, hydrothermal convection, contaminant transport, and groundwater quality. Here they present a numerical simulation model, TOUGHREACT, which considers non-isothermal multi-component chemical transport in both liquid and gas phases. A wide range of subsurface thermo-physical-chemical processes is considered. The model can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The model can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions is considered, such as aqueous complexation, gas dissolution/exsolution, cation exchange, and surface complexation. Mineral dissolution/precipitation can proceed either subject to local equilibrium or kinetic conditions. The coupled model employs a sequential iteration approach with reasonable computing efficiency. The development of the governing equations and numerical approach is presented along with the discussion of the model implementation and capabilities. The model is verified for a wide range of subsurface physical and chemical processes. The model is well suited for flow and reactive transport in variably saturated porous and fractured media. In the second of this two-part paper, three applications covering a variety of problems are presented to illustrate the capabilities of the model.

  20. On the importance of aqueous diffusion and electrostatic interactions in advection-dominated transport in saturated porous media

    DEFF Research Database (Denmark)

    Rolle, Massimo

    2015-01-01

    Diffusion and compound-specific mixing significantly affect conservative and reactive transport in groundwater. The variability of diffusion coefficients for different solutes has a relevant impact on their displacement at different scales, not only under diffusion-dominated regimes but also under...... advection-dominated flow through conditions. When the solutes are charged species, besides the magnitude of their aqueous diffusion coefficients also their electrostatic interactions play a significant role in the displacement of the different species. Under flow-through conditions this leads...... to multicomponent ionic dispersion: the dispersive fluxes of the different ions are cross-coupled due to the effects of Coulombic interactions. Such effects are illustrated in flow-through experiments in saturated porous media. Simple strong electrolytes were selected as tracers and their transport was studied...

  1. Contaminant flow and transport simulation in cracked porous media using locally conservative schemes

    KAUST Repository

    Song, Pu

    2012-10-25

    The purpose of this paper is to analyze some features of contaminant flow passing through cracked porous medium, such as the influence of fracture network on the advection and diffusion of contaminant species, the impact of adsorption on the overall transport of contaminant wastes. In order to precisely describe the whole process, we firstly build the mathematical model to simulate this problem numerically. Taking into consideration of the characteristics of contaminant flow, we employ two partial differential equations to formulate the whole problem. One is flow equation; the other is reactive transport equation. The first equation is used to describe the total flow of contaminant wastes, which is based on Darcy law. The second one will characterize the adsorption, diffusion and convection behavior of contaminant species, which describes most features of contaminant flow we are interested in. After the construction of numerical model, we apply locally conservative and compatible algorithms to solve this mathematical model. Specifically, we apply Mixed Finite Element (MFE) method to the flow equation and Discontinuous Galerkin (DG) method for the transport equation. MFE has a good convergence rate and numerical accuracy for Darcy velocity. DG is more flexible and can be used to deal with irregular meshes, as well as little numerical diffusion. With these two numerical means, we investigate the sensitivity analysis of different features of contaminant flow in our model, such as diffusion, permeability and fracture density. In particular, we study K d values which represent the distribution of contaminant wastes between the solid and liquid phases. We also make omparisons of two different schemes and discuss the advantages of both methods. © 2012 Global Science Press.

  2. Data preprocessing for parameter estimation. An application to a reactive bimolecular transport model

    CERN Document Server

    Cuch, Daniel A; Hasi, Claudio D El

    2015-01-01

    In this work we are concerned with the inverse problem of the estimation of modeling parameters for a reactive bimolecular transport based on experimental data that is non-uniformly distributed along the interval where the process takes place. We proposed a methodology that can help to determine the intervals where most of the data should be taken in order to obtain a good estimation of the parameters. For the purpose of reducing the cost of laboratory experiments, we propose to simulate data where is needed and it is not available, a PreProcesing Data Fitting (PPDF).We applied this strategy on the estimation of parameters for an advection-diffusion-reaction problem in a porous media. Each step is explained in detail and simulation results are shown and compared with previous ones.

  3. Modeling Reactive Transport in Coupled Groundwater-Conduit Systems

    Science.gov (United States)

    Spiessl, S. M.; Sauter, M.; Zheng, C.; Viswanathan, H. S.

    2002-05-01

    Modeling reactive transport in coupled groundwater-conduit systems requires consideration of two transport time scales in the flow and transport models. Consider for example a subsurface mine consisting of a network of highly conductive shafts, drifts or ventilation raises (i.e., conduits) within the considerably less permeable ore material (i.e., matrix). In the conduits, potential contaminants can travel much more rapidly than in the background aquifer (matrix). Since conduits cannot necessarily be regarded as a continuum, double continuum models are only of limited use for simulation of contaminant transport in such coupled groundwater-conduit systems. This study utilizes a "hybrid" flow and transport model in which contaminants can in essence be transported at a slower time scale in the matrix and at a faster time scale in the conduits. The hybrid flow model uses an approach developed by Clemens et al. (1996), which is based on the modelling of flow in a discrete pipe network, coupled to a continuum representing the low-permeability inter-conduit matrix blocks. Laminar or turbulent flow can be simulated in the different pipes depending on the flow conditions in the model domain. The three-dimensional finite-difference groundwater flow model MODFLOW (Harbaugh and McDonald, 1996) is used to simulate flow in the continuum. Contaminant transport within the matrix is simulated with a continuum approach using the three-dimensional multi-species solute transport model MT3DMS (Zheng and Wang, 1999), while that in the conduit system is simulated with a one-dimensional advective transport model. As a first step for reactive transport modeling in such systems, only equilibrium reactions among multiple species are considered by coupling the hybrid transport model to a geochemical speciation package. An idealized mine network developed by Viswanathan and Sauter (2001) is used as a test problem in this study. The numerical experiment is based on reference date collected from

  4. REACTIVE TRANSPORT MODELING USING A PARALLEL FULLY-COUPLED SIMULATOR BASED ON PRECONDITIONED JACOBIAN-FREE NEWTON-KRYLOV

    Energy Technology Data Exchange (ETDEWEB)

    Luanjing Guo; Chuan Lu; Hai Huang; Derek R. Gaston

    2012-06-01

    Systems of multicomponent reactive transport in porous media that are large, highly nonlinear, and tightly coupled due to complex nonlinear reactions and strong solution-media interactions are often described by a system of coupled nonlinear partial differential algebraic equations (PDAEs). A preconditioned Jacobian-Free Newton-Krylov (JFNK) solution approach is applied to solve the PDAEs in a fully coupled, fully implicit manner. The advantage of the JFNK method is that it avoids explicitly computing and storing the Jacobian matrix during Newton nonlinear iterations for computational efficiency considerations. This solution approach is also enhanced by physics-based blocking preconditioning and multigrid algorithm for efficient inversion of preconditioners. Based on the solution approach, we have developed a reactive transport simulator named RAT. Numerical results are presented to demonstrate the efficiency and massive scalability of the simulator for reactive transport problems involving strong solution-mineral interactions and fast kinetics. It has been applied to study the highly nonlinearly coupled reactive transport system of a promising in situ environmental remediation that involves urea hydrolysis and calcium carbonate precipitation.

  5. Unifying diffusion and seepage for nonlinear gas transport in multiscale porous media

    Science.gov (United States)

    Song, Hongqing; Wang, Yuhe; Wang, Jiulong; Li, Zhengyi

    2016-09-01

    We unify the diffusion and seepage process for nonlinear gas transport in multiscale porous media via a proposed new general transport equation. A coherent theoretical derivation indicates the wall-molecule and molecule-molecule collisions drive the Knudsen and collective diffusive fluxes, and constitute the system pressure across the porous media. A new terminology, nominal diffusion coefficient can summarize Knudsen and collective diffusion coefficients. Physical and numerical experiments show the support of the new formulation and provide approaches to obtain the diffusion coefficient and permeability simultaneously. This work has important implication for natural gas extraction and greenhouse gases sequestration in geological formations.

  6. Porous media grain size distribution and hydrodynamic forces effects on transport and deposition of suspended particles.

    Science.gov (United States)

    Ahfir, Nasre-Dine; Hammadi, Ahmed; Alem, Abdellah; Wang, HuaQing; Le Bras, Gilbert; Ouahbi, Tariq

    2017-03-01

    The effects of porous media grain size distribution on the transport and deposition of polydisperse suspended particles under different flow velocities were investigated. Selected Kaolinite particles (2-30μm) and Fluorescein (dissolved tracer) were injected in the porous media by step input injection technique. Three sands filled columns were used: Fine sand, Coarse sand, and a third sand (Mixture) obtained by mixing the two last sands in equal weight proportion. The porous media performance on the particle removal was evaluated by analysing particles breakthrough curves, hydro-dispersive parameters determined using the analytical solution of convection-dispersion equation with a first order deposition kinetics, particles deposition profiles, and particle-size distribution of the recovered and the deposited particles. The deposition kinetics and the longitudinal hydrodynamic dispersion coefficients are controlled by the porous media grain size distribution. Mixture sand is more dispersive than Fine and Coarse sands. More the uniformity coefficient of the porous medium is large, higher is the filtration efficiency. At low velocities, porous media capture all sizes of suspended particles injected with larger ones mainly captured at the entrance. A high flow velocity carries the particles deeper into the porous media, producing more gradual changes in the deposition profile. The median diameter of the deposited particles at different depth increases with flow velocity. The large grain size distribution leads to build narrow pores enhancing the deposition of the particles by straining. Copyright © 2016. Published by Elsevier B.V.

  7. Gas transport in unsaturated porous media: the adequacy of Fick's law

    Science.gov (United States)

    Thorstenson, D.C.; Pollock, D.W.

    1989-01-01

    The increasing use of natural unsaturated zones as repositories for landfills and disposal sites for hazardous wastes (chemical and radioactive) requires a greater understanding of transport processes in the unsaturated zone. For volatile constituents an important potential transport mechanism is gaseous diffusion. Diffusion, however, cannot be treated as an independent isolated transport mechanism. A complete understanding of multicomponent gas transport in porous media (unsaturated zones) requires a knowledge of Knudsen transport, the molecular and nonequimolar components of diffusive flux, and viscous (pressure driven) flux. This review presents a brief discussion of the underlying principles and interrelationships among each of the above flux mechanisms. -from Authors

  8. A new mobile-immobile model for reactive solute transport with scale-dependent dispersion

    Science.gov (United States)

    Gao, Guangyao; Zhan, Hongbin; Feng, Shaoyuan; Fu, Bojie; Ma, Ying; Huang, Guanhua

    2010-08-01

    This study proposed a new mobile-immobile model (MIM) to describe reactive solute transport with scale-dependent dispersion in heterogeneous porous media. The model was derived from the conventional MIM but assumed the dispersivity to be a linear or exponential function of travel distance. The linear adsorption and the first-order degradation of solute were also considered in the model. The Laplace transform technique and the de Hoog numerical Laplace inversion method were applied to solve the developed model. Solute breakthrough curves (BTCs) obtained from MIM with scale-dependent and constant dispersions were compared, and a constant effective dispersivity was provided to reflect the lumped scale-dependent dispersion effect. The effective dispersivity was calculated by arithmetically averaging the distance-dependent dispersivity. With this effective dispersivity, MIM could produce similar BTC as that from MIM with scale-dependent dispersion in porous media with moderate heterogeneity. The applicability of the proposed new model was tested with concentration data from a 1,250-cm long and highly heterogeneous soil column. The simulation results indicated that MIM with constant and linear distance-dependent dispersivities were unable to adequately describe the measured BTCs in the column, while MIM with exponential distance-dependent dispersivity satisfactorily captured the evolution of BTCs.

  9. Poly(acrylic acid) coating induced 2-line ferrihydrite nanoparticle transport in saturated porous media

    Science.gov (United States)

    Xiang, Aishuang; Yan, Weile; Koel, Bruce E.; Jaffé, Peter R.

    2013-07-01

    Iron oxide and iron nanoparticles (NPs) have been used effectively for environmental remediation, but are limited in their applications by strong retention in groundwater-saturated porous media. For example, delivery of NPs to large groundwater reservoirs would require large numbers of injection wells. To address this problem, we have explored polymer coatings as a surface engineering strategy to enhance transport of oxide nanoparticles in porous media. We report here on our studies of 2-line ferrihydrite NPs and the influence of poly (acrylic acid) (PAA) polymer coatings on the colloidal stability and transport in natural sand-packed column tests simulating flow in groundwater-saturated porous media. Measurements were also made of zeta potential, hydrodynamic diameter, and polymer adsorption and desorption properties. The coated NPs have a diameter range of 30-500 nm. We found that NP transport was improved by PAA coating and that the transport properties could be tuned by adjusting the polymer concentration. Our results demonstrate that a high stability of oxide particles and improved transport can be achieved in groundwater-saturated porous media by introducing negatively charged polyelectrolytes and optimizing polymer concentrations.

  10. Poly(acrylic acid) coating induced 2-line ferrihydrite nanoparticle transport in saturated porous media

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Aishuang [Princeton University, Chemical and Biological Engineering Department (United States); Yan, Weile [Texas Tech University, Civil and Environmental Engineering (United States); Koel, Bruce E., E-mail: bkoel@princeton.edu [Princeton University, Chemical and Biological Engineering Department (United States); Jaffe, Peter R., E-mail: jaffe@princeton.edu [Princeton University, Civil and Environmental Engineering Department (United States)

    2013-07-15

    Iron oxide and iron nanoparticles (NPs) have been used effectively for environmental remediation, but are limited in their applications by strong retention in groundwater-saturated porous media. For example, delivery of NPs to large groundwater reservoirs would require large numbers of injection wells. To address this problem, we have explored polymer coatings as a surface engineering strategy to enhance transport of oxide nanoparticles in porous media. We report here on our studies of 2-line ferrihydrite NPs and the influence of poly (acrylic acid) (PAA) polymer coatings on the colloidal stability and transport in natural sand-packed column tests simulating flow in groundwater-saturated porous media. Measurements were also made of zeta potential, hydrodynamic diameter, and polymer adsorption and desorption properties. The coated NPs have a diameter range of 30-500 nm. We found that NP transport was improved by PAA coating and that the transport properties could be tuned by adjusting the polymer concentration. Our results demonstrate that a high stability of oxide particles and improved transport can be achieved in groundwater-saturated porous media by introducing negatively charged polyelectrolytes and optimizing polymer concentrations.

  11. A Coupled Model of Multiphase Flow, Reactive Biogeochemical Transport, Thermal Transport and Geo-Mechanics.

    Science.gov (United States)

    Tsai, C. H.; Yeh, G. T.

    2015-12-01

    In this investigation, a coupled model of multiphase flow, reactive biogeochemical transport, thermal transport and geo-mechanics in subsurface media is presented. It iteratively solves the mass conservation equation for fluid flow, thermal transport equation for temperature, reactive biogeochemical transport equations for concentration distributions, and solid momentum equation for displacement with successive linearization algorithm. With species-based equations of state, density of a phase in the system is obtained by summing up concentrations of all species. This circumvents the problem of having to use empirical functions. Moreover, reaction rates of all species are incorporated in mass conservation equation for fluid flow. Formation enthalpy of all species is included in the law of energy conservation as a source-sink term. Finite element methods are used to discretize the governing equations. Numerical experiments are presented to examine the accuracy and robustness of the proposed model. The results demonstrate the feasibility and capability of present model in subsurface media.

  12. Simulation of Tracer Transport in Porous Media: Application to Bentonites; Simulacion del Transporte de Trazadores en Medios Porosos: Aplicacion al Caso de Arcillas

    Energy Technology Data Exchange (ETDEWEB)

    Bru, A.; Casero, D. [CIEMAT, Madrid (Spain)

    2001-07-01

    We present a formal framework to describe tracer transport in heterogeneous media, such as porous media like bentonites. In these media, mean field approximation is not valid because there exist some geometrical constraints and the transport is anomalous. (Author)

  13. Numerical modeling of ground water flow and contaminant transport in a saturated porous medium

    Science.gov (United States)

    Valipour, Mohammad S.; Sadeghi, Masoomeh; Mahmoudi, Amir H.; Shahi, Mina; Gandaghi, Hadi

    2012-05-01

    In this paper, numerical modeling and experimental testing of the distribution of pollutants along the water flow in a porous medium is discussed. Governing equations including overall continuity, momentum and species continuity equations are derived for porous medium. The governing equations have been solved numerical using the Finite Volume Method based on collocated grids. The SIMPLE algorithm has been adopted for the pressure _ velocity linked equations. In order to validate the numerical results, experimental data from laboratory apparatus are applied and there is a good agreement among numerical results and experimental test. Finally, the main affecting parameters on the distribution and transport of pollutants porous medium were investigated. Results indicate that, the domain of pollution rises with increasing dispersion coefficient and the dispersion phenomenon overcomes on pollutant transfer. Reduction of porosity has decreased the pollutant transfer and increased velocity has result in the increasing pollutant transport phenomenon but has reduced the domain of the pollution.

  14. Representing Microbial Processes in Environmental Reactive Transport Models

    Science.gov (United States)

    van Cappellen, P.

    2009-04-01

    Microorganisms play a key role in the biogeochemical functioning of the earth's surface and shallow subsurface. In the context of reactive transport modeling, a major challenge is to derive, parameterize, calibrate and verify mathematical expressions for microbially-mediated reactions in the environmental. This is best achieved by combining field observations, laboratory experiments, theoretical principles and modeling. Here, I will illustrate such an integrated approach for the case of microbial respiration processes in aquatic sediments. Important issues that will be covered include experimental design, model consistency and performance, as well as the bioenergetics and transient behavior of geomicrobial reaction systems.

  15. Capillary-driven, spatially-directed liquid transport on and through thin porous substrates

    Science.gov (United States)

    Chatterjee, Souvick; Sinha Mahapatra, Pallab; Ibrahim, Ali; Ganguly, Ranjan; Megaridis, Constantine; Yu, Lisha; Dodge, Richard

    2016-11-01

    Thin porous substrates exhibit good wicking properties for liquid distribution. The low cost of such common substrates often makes them useful for point of care biomedical diagnostics. Isotropic and anisotropic liquid transport through porous media has been studied extensively in literature. Moreover, previous research has demonstrated spatially-directed liquid transport on textured surfaces featuring surface-tension confined track. Combining both these features, here we demonstrate and analyze capillary-driven, directional liquid transport both on the surface of, and through, a wettability-patterned, horizontal porous substrate. The vertical (through) penetration is governed by Darcy's law. The horizontal (on surface) transport is driven by the Laplace pressure gradient caused by the geometry of the meniscus on the wettability-confined track. The transport rate on the substrate is found to far exceed the liquid permeation rate through it. Consequently, the penetration resistance can be estimated using a quasi-static approach. Using a semi-analytical model, we analyze the effect of the liquid curvature on the penetration rate of a sessile drop placed on the substrate. The model accounts for the back pressure caused by the liquid on the opposing side. The transport model is validated against the experiments, and the geometry, wettability and substrate porosity parameters causing fastest transport are identified.

  16. Transport of secondary electrons and reactive species in ion tracks

    CERN Document Server

    Surdutovich, Eugene

    2015-01-01

    The transport of reactive species brought about by ions traversing tissue-like medium is analysed analytically. Secondary electrons ejected by ions are capable of ionizing other molecules; the transport of these generations of electrons is studied using the random walk approximation until these electrons remain ballistic. Then, the distribution of solvated electrons produced as a result of interaction of low-energy electrons with water molecules is obtained. The radial distribution of energy loss by ions and secondary electrons to the medium yields the initial radial dose distribution, which can be used as initial conditions for the predicted shock waves. The formation, diffusion, and chemical evolution of hydroxyl radicals in liquid water are studied as well.

  17. Transport and Retention of Colloids in Porous Media: Does Shape Really Matter?

    Science.gov (United States)

    The effect of particle shape on its transport and retention in porous media was evaluated by stretching carboxylate-modified fluorescent polystyrene spheres into rod shapes with aspect ratios of 2:1 and 4:1. Quartz crystal microbalance with dissipation experiments (QCM-D) were c...

  18. Analysis of physical mechanisms underlying density-dependent transport in porous media

    NARCIS (Netherlands)

    Landman, A.J.

    2005-01-01

    In this thesis, the interaction between (large) density gradients and flow and transport in porous media is studied. Large gradients in the density of groundwater exist for example near deep salt rock formations, which are considered as possible long-term storage sites for radioactive waste. Further

  19. Coupled confinement effect on the photoluminescence and electrical transport in porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Ciurea, M.L. E-mail: ciurea@alpha1.infim.ro; Draghici, M.; Iancu, V.; Reshotko, M.; Balberg, I

    2003-05-01

    In this paper we report correlations between the structure, the photoluminescence and the transport properties of luminescent porous silicon. These correlations combined with the observed temperature dependence of tunneling characteristics yield quite a wholesome (pea-pod-like) model for this system.

  20. Constitutive Relations for Reactive Transport Modeling: Effects of Chemical Reactions on Multi-Phase Flow Properties

    Science.gov (United States)

    Zhang, S.; Liu, H. H.; van Dijke, M. I.; Geiger, S.; Agar, S. M.

    2016-12-01

    The relationship between flow properties and chemical reactions is key to modeling subsurface reactive transport. This study develops closed-form equations to describe the effects of mineral precipitation and dissolution on multiphase flow properties (capillary pressure and relative permeabilities) of porous media. The model accounts for the fact that precipitation/dissolution only takes place in the water-filled part of pore space. The capillary tube concept was used to connect pore-scale changes to macroscopic hydraulic properties. Precipitation/dissolution induces changes in the pore radii of water-filled pores and consequently in the pore-size distribution. The updated pore-size distribution is converted back to a new capillary pressure-water saturation relation from which the new relative permeabilities are calculated. Pore network modeling is conducted on a Berea sandstone to validate the new continuum-scale relations. The pore network modeling results are satisfactorily predicted by the new closed-form equations. Currently the effects of chemical reactions on flow properties are represented as a relation between permeability and porosity in reactive transport modeling. Porosity is updated after chemical calculations from the change of mineral volumes, then permeability change is calculated from the porosity change using an empirical permeability-porosity relation, most commonly the Carman-Kozeny relation, or the Verma-Pruess relation. To the best of our knowledge, there are no closed-form relations available yet for the effects of chemical reactions on multi-phase flow properties, and thus currently these effects cannot be accounted for in reactive transport modeling. This work presents new constitutive relations to represent how chemical reactions affect multi-phase flow properties on the continuum scale based on the conceptual model of parallel capillary tubes. The parameters in our new relations are either pre-existing input in a multi-phase flow

  1. Influence of Dispersion on Transport of Tracer through Unsaturated Porous Media

    Directory of Open Access Journals (Sweden)

    T Bunsri

    2008-01-01

    Full Text Available The dispersion phenomenon has resulted from the various water flow magnitude and direction in porous media. The dissolved tracer tends to spread due to dispersion and then travel time of tracer through the porous media increases. In unsaturated porous media, dispersion coefficient varies with non-linear Darcy’s velocity and the water content. These effects observed in both of the laboratory scale sand and soil columns (20 cm. The unsaturated infiltration column and tracer tests have been used to interpret the relationships between Darcy’s velocity and the water content together with the dispersion coefficient. However, the dispersivity coefficient cannot be measured directly, it has to determine from advection-dispersion equation (ADE, which can be used to model the tracer transport in unsaturated porous media. The model was used to describe the non-linear functions of water contents and dispersivities for both porous media. The simulations have been verified that the dispersion of tracer through soil is higher than sand column and also travel time of tracer through soil is longer than sand column. Even though, soil has very low degree of pore velocity, the high dispersivity is observed in the simulations. The water content and tracer concentration profiles reveal that the increase of dispersivity induces the increase of flow path distance and the decrease of pore velocity. The maximum dispersivity was observed when the water content of porous media is relatively low; this leads the maximum of spreading of tracer.

  2. Analysis of physical mechanisms underlying density-dependent transport in porous media

    OpenAIRE

    Landman, A.J.

    2005-01-01

    In this thesis, the interaction between (large) density gradients and flow and transport in porous media is studied. Large gradients in the density of groundwater exist for example near deep salt rock formations, which are considered as possible long-term storage sites for radioactive waste. Furthermore, density effects play a role in many other groundwater applications, such as salt water intrusion. Density gradients mainly affect the flow field and mass transport in two ways: by fluid volum...

  3. Fate and Transport of Graphene Oxide in Granular Porous Media: Experimental Results and Modeling

    Science.gov (United States)

    Gao, Bin

    2014-05-01

    Although graphene oxide (GO) has been used in many applications to improve human life quality, its environmental fate and behavior are still largely unknown. In this work, a range of laboratory experiments were conducted to explore the aggregation, deposition, and transport mechanisms of GO nano-sheets in porous media under various conditions. Stability experimental data showed that both cation valence and pH showed significant effect on the aggregation of GO sheets. The measured critical coagulation concentrations were in good agreement with the predictions of the extended Schulze-Hardy rule. Sand column experimental results indicated that deposition and transport of GO in porous media were strongly dependent on solution ionic strength. Particularly, GO showed high mobility under low ionic strength conditions in both saturated and unsaturated columns. Increasing ionic strength dramatically increased the retention of GO in porous media, mainly through secondary-minimum deposition. Recovery rates of GO in unsaturated sand columns were lower than that in saturated columns under the same ionic strength conditions, suggesting moisture content also played an important role in the retention of GO in porous media. Findings from the bubble column experiments showed that the GO did not attach to the air-water interface, which is consistent with the XDLVO predictions. Additional retention mechanisms, such as film straining, thus could be responsible to the reduced mobility of GO in unsaturated porous media. The breakthrough curves of GO in saturated and unsaturated columns could be accurately simulated by an advection-dispersion-reaction model.

  4. Experimental investigation on rainfall infiltration and solute transport in layered porous and fractured media

    Institute of Scientific and Technical Information of China (English)

    WANG Hui-fang; WANG Ming-yu

    2012-01-01

    Layered structures with upper porous and lower fractured media are widely distributed in the world.An experimental investigation on rainfall infiltration and solute transport in such layered structures can provide the necessary foundation for effectively preventing and forecasting water bursting in mines,controlling contamination of mine water,and accomplishing ecological restoration of mining areas.A typical physical model of the layered structures with porous and fractured media was created in this study.Then rainfall infiltration experiments were conducted after salt solution was sprayed on the surface of the layered structure.The volumetric water content and concentration of chlorine ions at different specified positions along the profile of the experiment system were measured in real-time.The experimental results showed that the lower fractured media,with a considerably higher permeability than that of the upper porous media,had significant effects on preventing water infiltration.Moreover,although the porous media were homogeneous statistically in the whole domain,spatial variations in the features of effluent concentrations with regards to time,or so called breakthrough curves,at various sampling points located at the horizontal plane in the porous media near the porous-fractured interface were observed,indicating the diversity of solute transport at small scales.Furthermore,the breakthrough curves of the outflow at the bottom,located beneath the underlying fractured rock,were able to capture and integrate features of the breakthrough curves of both the upper porous and fractured media,which exhibited multiple peaks,while the peak values were reduced one by one with time.

  5. Conservative and reactive solute transport in constructed wetlands

    Science.gov (United States)

    Keefe, S.H.; Barber, L.B.; Runkel, R.L.; Ryan, J.N.; McKnight, Diane M.; Wass, R.D.

    2004-01-01

    The transport of bromide, a conservative tracer, and rhodamine WT (RWT), a photodegrading tracer, was evaluated in three wastewater-dependent wetlands near Phoenix, Arizona, using a solute transport model with transient storage. Coupled sodium bromide and RWT tracer tests were performed to establish conservative transport and reactive parameters in constructed wetlands with water losses ranging from (1) relatively impermeable (15%), (2) moderately leaky (45%), and (3) significantly leaky (76%). RWT first-order photolysis rates and sorption coefficients were determined from independent field and laboratory experiments. Individual wetland hydraulic profiles influenced the extent of transient storage interaction in stagnant water areas and consequently RWT removal. Solute mixing and transient storage interaction occurred in the impermeable wetland, resulting in 21% RWT mass loss from main channel and storage zone photolysis (10%) and sorption (11%) reactions. Advection and dispersion governed solute transport in the leaky wetland, limiting RWT photolysis removal (1.2%) and favoring main channel sorption (3.6%). The moderately leaky wetland contained islands parallel to flow, producing channel flow and minimizing RWT losses (1.6%).

  6. Adaptive Mesh Refinement in Reactive Transport Modeling of Subsurface Environments

    Science.gov (United States)

    Molins, S.; Day, M.; Trebotich, D.; Graves, D. T.

    2015-12-01

    Adaptive mesh refinement (AMR) is a numerical technique for locally adjusting the resolution of computational grids. AMR makes it possible to superimpose levels of finer grids on the global computational grid in an adaptive manner allowing for more accurate calculations locally. AMR codes rely on the fundamental concept that the solution can be computed in different regions of the domain with different spatial resolutions. AMR codes have been applied to a wide range of problem including (but not limited to): fully compressible hydrodynamics, astrophysical flows, cosmological applications, combustion, blood flow, heat transfer in nuclear reactors, and land ice and atmospheric models for climate. In subsurface applications, in particular, reactive transport modeling, AMR may be particularly useful in accurately capturing concentration gradients (hence, reaction rates) that develop in localized areas of the simulation domain. Accurate evaluation of reaction rates is critical in many subsurface applications. In this contribution, we will discuss recent applications that bring to bear AMR capabilities on reactive transport problems from the pore scale to the flood plain scale.

  7. Airborne Observations of Reactive Bromine Transport in the Arctic

    Science.gov (United States)

    Peterson, P.; Sihler, H.; Pöhler, D.; Zielcke, J.; General, S.; Friess, U.; Platt, U.; Simpson, W. R.; Nghiem, S. V.; Shepson, P. B.; Stirm, B. H.; Wagner, T.; Caulton, D.; Fuentes, J. D.; Pratt, K.

    2016-12-01

    The return of sunlight in the polar spring leads to production of reactive halogen species from surface snowpacks, altering the chemical composition of the Arctic atmospheric boundary layer. In particular, bromine chemistry is implicated in boundary layer ozone depletion events (ODEs) and altered oxidation of atmospheric pollutants. Currently, many uncertainties exist regarding the vertical extent of this chemistry, as well as the transport and sustained recycling of these halogens aloft. Here, we present airborne BrO and aerosol particle measurements obtained during the 2012 Bromine Ozone Mercury EXperiment on 13 March near Barrow, AK. Airborne differential optical absorption spectroscopy (DOAS) observations showed a bromine monoxide (BrO) plume, disconnected from the surface, moving with the wind. The amount of BrO observed in the lofted plume remained constant over the course of the three hour flight, indicating heterogeneous recycling of reactive bromine was taking place. Concurrent in-situ measurements of size-resolved aerosol number concentrations, together with DOAS retrievals of aerosol particle extinction profiles, indicated this lofted bromine plume was transported and maintained at elevated levels through reactions on supermicron aerosol particles, independently of surface snowpack bromine chemistry.

  8. End-Member Formulation of Solid Solutions and Reactive Transport

    Energy Technology Data Exchange (ETDEWEB)

    Lichtner, Peter C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    A model for incorporating solid solutions into reactive transport equations is presented based on an end-member representation. Reactive transport equations are solved directly for the composition and bulk concentration of the solid solution. Reactions of a solid solution with an aqueous solution are formulated in terms of an overall stoichiometric reaction corresponding to a time-varying composition and exchange reactions, equivalent to reaction end-members. Reaction rates are treated kinetically using a transition state rate law for the overall reaction and a pseudo-kinetic rate law for exchange reactions. The composition of the solid solution at the onset of precipitation is assumed to correspond to the least soluble composition, equivalent to the composition at equilibrium. The stoichiometric saturation determines if the solid solution is super-saturated with respect to the aqueous solution. The method is implemented for a simple prototype batch reactor using Mathematica for a binary solid solution. Finally, the sensitivity of the results on the kinetic rate constant for a binary solid solution is investigated for reaction of an initially stoichiometric solid phase with an undersaturated aqueous solution.

  9. Transport of molecular fluids through three-dimensional porous media

    Science.gov (United States)

    Adler, Pierre; Pazdniakou, Aliaksei

    2014-05-01

    The main purpose of this study is to extend the analysis which has been made for the double layer theory (summarized by [1]) to situations where the distance between the solid walls is of the order of several molecular diameters. This is of a large interest from a scientific viewpoint and for various engineering applications. The intermolecular forces and their influence on fluid structure and dynamics can be taken into account by using the mesoscopic scale models based on the Boltzmann equation [2]. The numerical methods derived from these models are less demanding in computational resources than conventional molecular dynamics methods and therefore long time evolution of large samples can be considered. Three types of fluid particles are considered, namely the anions, the cations and the solvent. They possess a finite diameter which should be at least a few lattice units. The collision frequency between particles is increased by the pair correlation function for hard spheres. The lattice Boltzmann model is built in three dimensions with 19 velocities; it involves two relaxation times. The particle distribution functions are discretized over a basis of Hermite polynomial tensors. Electric forces are included and a Poisson equation is simultaneously solved by a successive over-relaxation method. The numerical algorithm is detailed; it is devised in order to be able to address any three-dimensional porous media. It involves the determination of the densities of each particle species, of the overall density and of the equilibrium distribution function. Then, the electric forces are determined. Collision operators are applied as well as the boundary conditions. Finally, the propagation step is performed and the algorithm starts a new loop. The influence of parameters can be illustrated by systematic calculations in a plane Poiseuille configuration. The drastic influence of the ratio between the channel width and the particle sizes on the local densities and the

  10. Modeling reactive geochemical transport of concentrated aqueous solutions in variably saturated media

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guoxiang; Zheng, Zuoping; Wan, Jiamin

    2004-01-28

    Concentrated aqueous solutions (CAS) have unique thermodynamic and physical properties. Chemical components in CAS are incompletely dissociated, especially those containing divalent or polyvalent ions. The problem is further complicated by the interaction between CAS flow processes and the naturally heterogeneous sediments. As the CAS migrates through the porous media, the composition may be altered subject to fluid-rock interactions. To effectively model reactive transport of CAS, we must take into account ion-interaction. A combination of the Pitzer ion-interaction and the ion-association model would be an appropriate way to deal with multiple-component systems if the Pitzer' parameters and thermodynamic data of dissolved components and the related minerals are available. To quantify the complicated coupling of CAS flow and transport, as well as the involved chemical reactions in natural and engineered systems, we have substantially extended an existing reactive biogeochemical transport code, BIO-CORE{sup 2D}{copyright}, by incorporating a comprehensive Pitzer ion-interaction model. In the present paper, the model, and two test cases against measured data were briefly introduced. Finally we present an application to simulate a laboratory column experiment studying the leakage of the high alkaline waste fluid stored in Hanford (a site of the U.S. Department of Energy, located in Washington State, USA). With the Pitzer ion-interaction ionic activity model, our simulation captures measured pH evolution. The simulation indicates that all the reactions controlling the pH evolution, including cation exchanges, mineral precipitation and dissolution, are coupled.

  11. Transport properties of anodic porous alumina for ReRAM

    Energy Technology Data Exchange (ETDEWEB)

    Kato, S; Nigo, S; Lee, J W; Mihalik, M; Kitazawa, H; Kido, G [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047 (Japan)], E-mail: KATO.Seiichi@nims.go.jp

    2008-03-15

    A voltage-induced bistable switching effect has been studied for M/AlO{sub x}/Al devices made of the anodic porous alumina with a top electrode of aluminium (or silver) to develop a next generation memory (AlO{sub x}-ReRAM). The resistance state of memory is switched between OFF-state (high resistance) and ON-state (low resistance), where the resistance ratio is higher than 10{sup 4}. In the thermally stimulated current (TSC) measurement, a narrow band was observed around 290 K, indicating the conduction mechanism comes from a kind of impurity band in the energy gap. An anomaly was also observed around 290 K in the temperature dependence of resistance at the ON-state.

  12. RADIONUCLIDE DISPERSION RATES BY AEOLIAN, FLUVIAL, AND POROUS MEDIA TRANSPORT

    Energy Technology Data Exchange (ETDEWEB)

    J. Walton; P. Goodell; C. Brashears; D. French; A. Kelts

    2005-07-11

    Radionuclide transport was measured from high grade uranium ore boulders near the Nopal I Site, Chihuahua, Mexico. High grade uranium ore boulders were left behind after removal of a uranium ore stockpile at the Prior High Grade Stockpile (PHGS). During the 25 years when the boulder was present, radionuclides were released and transported by sheetflow during precipitation events, wind blown resuspension, and infiltration into the unsaturated zone. In this study, one of the boulders was removed, followed by grid sampling of the surrounding area. Measured gamma radiation levels in three dimensions were used to derive separate dispersion rates by the three transport mechanisms.

  13. Coulombic interactions and multicomponent ionic dispersion during transport of charged species in heterogeneous porous media

    DEFF Research Database (Denmark)

    Muniruzzaman, Muhammad; Rolle, Massimo

    Electrochemical cross-coupling plays a significant role for transport of charged species in porous media [1, 2]. In this study we performed flow-through experiments in a quasi two-dimensional setup using dilute solutions of strong electrolytes to study the influence of charge interactions on mass...... transfer of ionic species in saturated porous media. The experiments were carried out under advection-dominated conditions (seepage velocity: 1 and 1.5 m/day) in two well-defined heterogeneous domains where flow diverging around a low-permeability inclusion and flow focusing in high-permeability zones...

  14. Magnetic Resonance Microscopy of Scale Dependent Transport Phenomena and Bioactivity in Porous Media

    Science.gov (United States)

    Seymour, J. D.; Codd, S. L.; Romanenko, K. V.; Hornemann, J. A.; Brosten, T. R.

    2008-05-01

    Magnetic resonance microscopy (MRM) provides the ability to obtain data on the pore scale via imaging and the sample scale by bulk measurement, allowing for connection between microscale dynamics and macroscale transport phenomena. This has led to MRM techniques becoming a preeminent method for characterization of dynamics in porous media. A significant question in modeling transport in porous media is definition of the porous media structure as homogeneous (ordered) or heterogeneous (disordered)[1]. One means of defining the 'complexity' of a porous media is based on the dynamics of the system[2]. The ability of MRM to measure the time dependent statistics of the dynamics [3,4,5] provides quantification of the pre-asymptotic dynamics. The transition from preasymptotic to Gaussian transport consistent with models of homogeneous porous media is clearly visualized. Biological activity in porous media, such as microbial growth, typically manifests itself as biofilms or colonies of microbes that adhere to surfaces and are surrounded by a hydrogel of extracellular polymeric substance (EPS). The biofilm growth introduces complexity into the system structure in generation of physical pore blocking, trapping within the EPS gel, elastic interfaces due to the EPS and generation of channels in which faster flow occur. The hierarchy of length and time scales and multiple physical processes which are introduced by the biofilm growth impacts the porous media transport as reflected in the change in dynamics [6]. The transition can be modeled using statistical mechanical approaches based on continuous time random walk (CTRW) processes that generate fractional differential equations[7]. The bioactivity alters the structure of the porous media from homogeneous to heterogeneous resulting in the transition from a Gaussian to a non Gaussian subdiffusive dispersion process. References 1. M. Quintard and S. Whitaker, Transport in ordered and disordered porous media: Volume averaged

  15. Impact of multicomponent ionic transport on pH fronts propagation in saturated porous media

    DEFF Research Database (Denmark)

    Muniruzzaman, Muhammad; Rolle, Massimo

    2016-01-01

    Multicomponent ionic interactions have been increasingly recognized as important factors for the displacement of charged species in porous media under both diffusion- [1,2] and advection-dominated flow regimes [3,4]. In this study we investigate the propagation of pH fronts during multicomponent...... ionic transport in saturated porous media under flow-through conditions. By performing laboratory bench-scale experiments combined with numerical modeling we show the important influence of Coulombic effects on proton transport in the presence of ionic admixtures. The experiments were performed...... in a quasi two-dimensional flow-through setup under steady-state flow and transport conditions. Dilute solutions of hydrochloric acid with MgCl2 (1:2 strong electrolyte) were used as tracer solutions to experimentally test the effect of electrochemical cross-coupling on the migration of diffusive...

  16. Predicting release and transport of pesticides from a granular formulation during unsaturated diffusion in porous media

    DEFF Research Database (Denmark)

    Paradelo Pérez, Marcos; Soto-Gómez, Diego; Pérez-Rodrígez, Paula

    2014-01-01

    The release and transport of active ingredients (AIs) from controlled-release formulations (CRFs) have potential to reduce groundwater pesticide pollution. These formulations have a major effect on the release rate and subsequent transport to groundwater. Therefore the influence of CRFs should...... be included in modeling non-point source pollution by pesticides. We propose a simplified approach that uses a phase transition equation coupled to the diffusion equation that describes the release rate of AIs from commercial CRFs in porous media; the parameters are as follows: a release coefficient......, the solubility of the AI, and diffusion transport with decay. The model gives acceptable predictions of the pesticides release from commercial CRFs in diffusion cells filled with quartz sand. This approach can be used to study the dynamics of the CRF-porous media interaction. It also could be implemented in fate...

  17. The Role of Biofilms and Curli in Salmonella Transport Through Porous Media

    Science.gov (United States)

    Salvucci, A. E.; Zhang, W.; Morales, V. L.; Cakmak, M. E.; Hay, A. G.; Steenhuis, T. S.

    2008-12-01

    Microbial pathogens, such as Salmonella and E. coli, are continually deposited in the environment and have been shown to contaminate the groundwater by leaching through the vadose zone. Therefore, understanding the mechanisms controlling the transport of these microbial pathogens through porous media is critical to protecting drinking water supplies. As previous research has shown, retention of microbial pathogens in porous media can be influenced by numerous biological factors. Consequently, this experiment specifically investigated the role of biofilm formation and curli production on the transport of environmental Salmonella through porous media. Environmental Salmonella strains used in the experiment were isolated from tile drains on dairy farms. In addition, two well-characterized E. coli strains with known high and low biofilm and curli producing capabilities were tested as controls alongside the Salmonella isolates throughout the experiment. The isolates were first assayed for their ability to form biofilms and produce curli, and then a subset of these isolates, representing range of high and low biofilm and curli formation capabilities, were simultaneously examined for transport characteristics through packed sand columns. Transport characteristics were tested for correlation with biofilm and curli-forming capabilities. Unlike the E. coli strains in which column retention correlated with biofilm formation and curli production, no obvious correlation between Salmonella phenotypes was observed. The results indicate that while transport of well-characterized laboratory E. coli strains can often be hindered by the presence of curli and biofilms, such assumptions are not fully representative of the behavior exhibited by environmental isolates of Salmonella.

  18. Stochastic Analysis of Advection-diffusion-Reactive Systems with Applications to Reactive Transport in Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Tartakovsky, Daniel

    2013-08-30

    We developed new CDF and PDF methods for solving non-linear stochastic hyperbolic equations that does not rely on linearization approximations and allows for rigorous formulation of the boundary conditions.

  19. Kinetic theory of transport processes in partially ionized reactive plasma, II: Electron transport properties

    Science.gov (United States)

    Zhdanov, V. M.; Stepanenko, A. A.

    2016-11-01

    The previously obtained in (Zhdanov and Stepanenko, 2016) general transport equations for partially ionized reactive plasma are employed for analysis of electron transport properties in molecular and atomic plasmas. We account for both elastic and inelastic interaction channels of electrons with atoms and molecules of plasma and also the processes of electron impact ionization of neutral particles and three-body ion-electron recombination. The system of scalar transport equations for electrons is discussed and the expressions for non-equilibrium corrections to electron ionization and recombination rates and the diagonal part of the electron pressure tensor are derived. Special attention is paid to analysis of electron energy relaxation during collisions with plasma particles having internal degrees of freedom and the expression for the electron coefficient of inelastic energy losses is deduced. We also derive the expressions for electron vector and tensorial transport fluxes and the corresponding transport coefficients for partially ionized reactive plasma, which represent a generalization of the well-known results obtained by Devoto (1967). The results of numerical evaluation of contribution from electron inelastic collisions with neutral particles to electron transport properties are presented for a series of molecular and atomic gases.

  20. Transport Phenomena in Porous Media Aspects of MicroMacro Behaviour

    CERN Document Server

    Ichikawa, Yasuaki

    2012-01-01

    This monograph presents an integrated perspective of the wide range of phenomena and processes applicable to the study of transport of species in porous materials. In order to formulate the entire range of porous media and their uses, this book gives the basics of continuum mechanics, thermodynamics, seepage and consolidation and diffusion, including multiscale homogenization methods. The particular structure of the book has been chosen because it is essential to be aware of the true properties of porous materials particularly in terms of nano, micro and macro mechanisms.  This book is of pedagogical and practical importance to the fields covered by civil, environmental, nuclear and petroleum engineering and also in chemical physics and geophysics as it relates to radioactive waste disposal, geotechnical engineering, mining and petroleum engineering and chemical engineering.

  1. Lattice Boltzmann Method for Diffusion-Reaction-Transport Processes in Heterogeneous Porous Media

    Institute of Scientific and Technical Information of China (English)

    XU You-Sheng; ZHONG Yi-Jun; HUANG Guo-Xiang

    2004-01-01

    Based on the lattice Boltzmann method and general theory of fluids flowing in porous media, a numerical model is presented for the diffusion-reaction-transport (DRT) processes in porous media. As a test, we simulate a DRT process in a two-dimensional horizontal heterogeneous porous medium. The influence of gravitation in this case can be neglected, and the DRT process can be described by a strongly heterogeneous diagnostic test strip or a thin confined piece of soil with stochastically distributing property in horizontal directions. The results obtained for the relations between reduced fluid saturation S, concentration c1, and concentration c2 are shown by using the visualization computing technique. The computational efficiency and stability of the model are satisfactory.

  2. Heat transport and parametric simulation of a porous ceramic combustor in a gas turbine environment

    Science.gov (United States)

    Lu, Wei David

    2002-09-01

    This study is to generate basic knowledge of heat transport inside a porous ceramic combustor in a gas turbine combustion environment. This work predicts the peak temperature inside the porous ceramic combustor, which directly affects the combustor life cycle and flame stability characteristics within the ceramic media. The results will help to generate an operating window for the stable operation of the porous ceramic combustor under the operating conditions of a gas turbine. A theoretical model is developed to study the operational characteristics of the combustor. The model used here accounts for both radiative and convective thermal transport between the solid and gas phases. The solid is assumed to absorb, emit, and scatter radiative energy. A one-step global reaction mechanism is used to model the released energy due to combustion. The effects of the properties of the porous material on gas and solid phase temperature distribution, radiative flux distribution, and flame location (as indicated by local temperature) were investigated. The results confirm that radiative heat transfer is a key mechanism in the stable operation of the combustor. For proper functioning of the combustor, the temperature of the porous material (the solid temperature) must be lowered in order to maintain material and structural integrity. Yet, the gas phase temperature has to be high enough so that a stable combustion process can be maintained. A lower value for the porous material temperature of the combustor can be obtained by enhancing the radiative output from the combustor to the downstream sections. This can be achieved by choosing optimized values of porosity and other properties of the porous ceramic matrix. Higher solid phase thermal conductivity enhances the radiative output from the combustor and helps to reduce the porous material's temperature. It is also desirable that the porous layer has an optimized optical thickness so that the radiative output of the combustor is

  3. AN IN-SITU PERMEABLE REACTIVE BARRIER FOR THE TREATMENT OF HEXAVALENT CHROMIUM AND TRICHLOROETHYLENE IN GROUNDWATER: VOLUME 3 MULTICOMPONENT REACTIVE TRANSPORT MODELING

    Science.gov (United States)

    Reactive transport modeling has been conducted to describe the performance of the permeable reactive barrier at the Coast Guard Support Center near Elizabeth City, NC. The reactive barrier was installed to treat groundwater contaminated by hexavalent chromium and chlorinated org...

  4. Development of a numerical reactive transport modelling framework - Concept & Case Studies

    Science.gov (United States)

    Kalbacher, T.; Jang, E.; He, W.; Shao, H.; Zolfaghari, R.; Kolditz, O.

    2014-12-01

    Civilization and in particular agriculture worldwide depends on the availability of clean freshwater resources stored in the underlying soil and aquifer systems. Unfortunately, water quality is often deteriorating, which is e.g. due to the extensive use of fertilizers or pesticides in agriculture or infiltrating waste water from cities and industries. All groundwater bodies commonly discharge into the nearby surface-water bodies like streams, lakes, or springs, and soil water is a direct water source for the biosphere. Therefore, bio-hydro-geochemical reaction systems along flow paths of the unsaturated as well as the saturated zone can have a strong impact on aquatic and terrestrial ecosystems. The simulation of such reactive transport problems in different hydrological compartments can help to understanding the comprehensive processes chain. One way to evaluate the water quality in space and time is to model the mass transport in soil and/or groundwater together with the contemporaneous chemical reactions numerically. Such physical and bio- hydro- geochemical driven forward simulations are usually solved by standard finite differences, finite element or finite volume methods, but simulating these scenarios at catchment scales is a challenging task due to the extreme computational load, numerical stability issues and different scale-dependencies. The main focus of the present study is the numerical simulation of reactive transport processes in heterogeneous porous media at large scales, i.e. from field scale, over hill slopes towards catchment scale. The objective of the study is, to develop a robust modelling framework which allows to identify appropriate levels of heterogeneity as well as the possibly dominating structural features (e.g. S-shaped clay lenses) with respect to specific reaction systems. The presented modelling framework will describe the functional interaction of different numerical methods and high performing computing (HPC) techniques by the use

  5. Dynamics of Coupled Contaminant and Microbial Transport in Heterogeneous Porous Media: Purdue Component

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, J.H.; Madilyn Fletcher

    2000-06-01

    Dynamic microbial attachment/detachment occurs in subsurface systems in response to changing environmental conditions caused by contaminant movement and degradation. Understanding the environmental conditions and mechanisms by which anaerobic bacteria partition between aqueous and solid phases is a critical requirement for designing and evaluating in situ bioremediation efforts. This interdisciplinary research project, of which we report only the Purdue contribution, provides fundamental information on the attachment/detachment dynamics of bacteria in heterogeneous porous media. Fundamental results from the Purdue collaboration are: (a) development of a matched-index method for obtaining 3-D Lagrangian trajectories of microbial sized particles transporting within porous media or microflow cells, (b) application of advanced numerical methods to optimally design a microflow cell for studying anaerobic bacterial attachment/detachment phenomena, (c) development of two types of models for simulating bacterial movement and attachment/detachment in microflow cells and natural porous media, (d) application of stochastic analysis to upscale pore scale microbial attachment/detachment models to natural heterogeneous porous media, and (e) evaluation of the role nonlocality plays in microbial dynamics in heterogeneous porous media

  6. Dynamics of Coupled Contaminant and Microbial Transport in Heterogeneous Porous Media: Purdue Component

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, J.H.

    2000-06-01

    Dynamic microbial attachment/detachment occurs in subsurface systems in response to changing environmental conditions caused by contaminant movement and degradation. Understanding the environmental conditions and mechanisms by which anaerobic bacteria partition between aqueous and solid phases is a critical requirement for designing and evaluating in situ bioremediation efforts. This interdisciplinary research project, of which we report only the Purdue contribution, provides fundamental information on the attachment/detachment dynamics of bacteria in heterogeneous porous media. Fundamental results from the Purdue collaboration are: (a) development of a matched-index method for obtaining 3-D Lagrangian trajectories of microbial sized particles transporting within porous media or microflow cells, (b) application of advanced numerical methods to optimally design a microflow cell for studying anaerobic bacterial attachment/detachment phenomena, (c) development of two types of models for simulating bacterial movement and attachment/detachment in microflow cells and natural porous media, (d) application of stochastic analysis to upscale pore scale microbial attachment/detachment models to natural heterogeneous porous media, and (e) evaluation of the role nonlocality plays in microbial dynamics in heterogeneous porous media.

  7. Impact of mineralogical heterogeneity on reactive transport modelling

    Science.gov (United States)

    Liu, Min; Shabaninejad, Mehdi; Mostaghimi, Peyman

    2017-07-01

    Impact of mineralogical heterogeneity of rocks in reactive modelling is investigated by applying a pore scale model based on the Lattice Boltzmann and Finite Volume Methods. Mass transport, chemical reaction and solid structure modification are included in the model. A two-dimensional mineral map of a sandstone rock is acquired using the imaging technique of QEMSCAN SEM with Energy-Dispersive X-ray Spectroscopy (EDS). The mineralogical heterogeneity is explored by conducting multi-mineral reaction simulations on images containing various minerals. The results are then compared with the prediction of single mineral dissolution modelling. Dissolution patterns and permeability variations of multi-mineral and single mineral reactions are presented. The errors of single mineral reaction modelling are also estimated. Numerical results show that mineralogical heterogeneity can cause significant errors in permeability prediction, if a uniform mineral distribution is assumed. The errors are smaller in high Péclet regimes than in low Péclet regimes in this sample.

  8. Selection of Raw Materials for the Reactive Sinterling of Zircon Porous Ceramics

    Institute of Scientific and Technical Information of China (English)

    SHENYi; ZHANGWenli; 等

    1999-01-01

    The effect of three kinds of zircon raw materials on the sinterability and properties of porous zircon ceramics have been investigated.The results have shown that all the tested fired compacts are of high porosity,However,the sintering process are different for different raw materials.The preferable selected raw materials for porous zircon ceramics were commercials zircon and quartz.

  9. Reactive Transport Models with Geomechanics to Mitigate Risks of CO2 Utilization and Storage

    Energy Technology Data Exchange (ETDEWEB)

    Deo, Milind [Univ. of Utah, Salt Lake City, UT (United States); Huang, Hai [Univ. of Utah, Salt Lake City, UT (United States); Kweon, Hyukmin [Univ. of Utah, Salt Lake City, UT (United States); Guo, Luanjing [Univ. of Utah, Salt Lake City, UT (United States)

    2016-03-28

    Reactivity of carbon dioxide (CO2), rocks and brine is important in a number of practical situations in carbon dioxide sequestration. Injectivity of CO2 will be affected by near wellbore dissolution or precipitation. Natural fractures or faults containing specific minerals may reactivate leading to induced seismicity. In this project, we first examined if the reactions between CO2, brine and rocks affect the nature of the porous medium and properties including petrophysical properties in the timeframe of the injection operations. This was done by carrying out experiments at sequestration conditions (2000 psi for corefloods and 2400 psi for batch experiments, and 600°C) with three different types of rocks – sandstone, limestone and dolomite. Experiments were performed in batch mode and corefloods were conducted over a two-week period. Batch experiments were performed with samples of differing surface area to understand the impact of surface area on overall reaction rates. Toughreact, a reactive transport model was used to interpret and understand the experimental results. The role of iron in dissolution and precipitation reactions was observed to be significant. Iron containing minerals – siderite and ankerite dissolved resulting in changes in porosity and permeability. Corefloods and batch experiments revealed similar patterns. With the right cationic balance, there is a possibility of precipitation of iron bearing carbonates. The results indicate that during injection operations mineralogical changes may lead to injectivity enhancements near the wellbore and petrophysical changes elsewhere in the system. Limestone and dolomite cores showed consistent dissolution at the entrance of the core. The dissolution led to formation of wormholes and interconnected dissolution zones. Results indicate that near wellbore dissolution in these rock-types may lead to rock failure. Micro-CT images of the cores before and after the experiments

  10. Modeling Biodegradation and Reactive Transport: Analytical and Numerical Models

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y; Glascoe, L

    2005-06-09

    The computational modeling of the biodegradation of contaminated groundwater systems accounting for biochemical reactions coupled to contaminant transport is a valuable tool for both the field engineer/planner with limited computational resources and the expert computational researcher less constrained by time and computer power. There exists several analytical and numerical computer models that have been and are being developed to cover the practical needs put forth by users to fulfill this spectrum of computational demands. Generally, analytical models provide rapid and convenient screening tools running on very limited computational power, while numerical models can provide more detailed information with consequent requirements of greater computational time and effort. While these analytical and numerical computer models can provide accurate and adequate information to produce defensible remediation strategies, decisions based on inadequate modeling output or on over-analysis can have costly and risky consequences. In this chapter we consider both analytical and numerical modeling approaches to biodegradation and reactive transport. Both approaches are discussed and analyzed in terms of achieving bioremediation goals, recognizing that there is always a tradeoff between computational cost and the resolution of simulated systems.

  11. Compositional multiphase flow and transport in heterogeneous porous media

    Energy Technology Data Exchange (ETDEWEB)

    Huber, R.U.

    2000-07-01

    This work first treats the conceptual models for the description of multiphase flow processes in porous media. The thermodynamic laws are explained and the description and quantification of multi-fluid equilibria are discussed in order to account for fluid composition. The fully and weakly coupled approaches for the mathematical description of such flow processes with respect to systems consisting of two and three fluid phases as well as with respect to compositional single and multiphase systems are assessed. For the discretization of the two-phase flow equations node- and cell-centered finite volume methods and mixed and mixed-hybrid finite element approaches are applied. Based upon these methods five solution algorithms are developed. Four of these algorithms are based on the simultaneous solution of the discretized equations in combination with the Newton-Raphson technique. Methods 1 and 2 treat two- three-phase flow processes, Method 3 applies to the solution of partially miscible three-component systems while Method 4 is created for three-phase three-component systems. The latter method uses a variable substitution dependent on the local presence of the fluid phases. Method 5 is based on the IMPES/IMPESC concept. The time-implicit pressure equation is discretized with the mixed-hybrid finite element method. The saturation and concentration equations, respectively, are solved with a cell-centered finite volume scheme. The developed algorithms are applied to the two- and three-phase Buckley-Leverett problems. A partitioning interwell tracer test is simulated. The propagation behavior of nonaqueous phase liquids (NAPLs) in the saturated and unsaturated ground zone under the influence of heterogeneities are examined. In addition, a larger-scale experiment is simulated, which involves an injection of trichloroethylene into the subsurface and the subsequent distribution. Here, the development of a dissolved contaminant plume as well as the behavior of organic

  12. Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation

    Directory of Open Access Journals (Sweden)

    Sophia Haussener

    2012-01-01

    Full Text Available High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium.

  13. Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation.

    Science.gov (United States)

    Haussener, Sophia; Steinfeld, Aldo

    2012-01-19

    High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium.

  14. A Twophase Multirate-Mass Transfer Model for Flow and Transport in Porous Media

    Science.gov (United States)

    Dentz, M.; Tecklenburg, J.; Neuweiler, I.; Carrera, J.

    2015-12-01

    We present an upscaled non-local model for two-phase flow and transport in highly heterogeneous porous media. The media under consideration are characterized by sharp contrasts in the hydraulic properties typical for fractured porous media, for example. A two-scale expansion gives an upscaled flow and transport formulation that models multiratemass transfer between mobile (fracture) and immobile (matrix) medium portions. The evolution of saturation due to viscous dominated flow in the mobile domain and mass exchange with the immobile zones through capillary countercurrent flow. The medium heterogeneity is mapped onto the mass transfer parameters, which are encoded in a memory functionthat describes the non-local flux between mobile and immobile zones. The upscaled model is parameterized by the medium heterogeneity and the distribution of hydraulic parameters. Breakthrough of the displaced fluidshows characteristic heavy tails due to fluid retention in immobile zones.

  15. Stochastic-convective transport with nonlinear reaction and mixing: application to intermediate-scale experiments in aerobic biodegradation in saturated porous media

    Science.gov (United States)

    Ginn, T. R.; Murphy, E. M.; Chilakapati, A.; Seeboonruang, U.

    2001-03-01

    Aerobic biodegradation of benzoate by Pseudomonas cepacia sp. in a saturated heterogeneous porous medium was simulated using the stochastic-convective reaction (SCR) approach. A laboratory flow cell was randomly packed with low permeability silt-size inclusions in a high permeability sand matrix. In the SCR upscaling approach, the characteristics of the flow field are determined by the breakthrough of a conservative tracer. Spatial information on the actual location of the heterogeneities is not used. The mass balance equations governing the nonlinear and multicomponent reactive transport are recast in terms of reactive transports in each of a finite number of discrete streamtubes. The streamtube ensemble members represent transport via a steady constant average velocity per streamtube and a conventional Fickian dispersion term, and their contributions to the observed breakthroughs are determined by flux-averaging the streamtube solute concentrations. The resulting simulations were compared to those from a high-resolution deterministic simulation of the reactive transport, and to alternative ensemble representations involving (i) effective Fickian travel time distribution function, (ii) purely convective streamtube transport, and (iii) streamtube ensemble subset simulations. The results of the SCR simulation compare favorably to that of a sophisticated high-resolution deterministic approach.

  16. PFLOTRAN: Recent Developments Facilitating Massively-Parallel Reactive Biogeochemical Transport

    Science.gov (United States)

    Hammond, G. E.

    2015-12-01

    With the recent shift towards modeling carbon and nitrogen cycling in support of climate-related initiatives, emphasis has been placed on incorporating increasingly mechanistic biogeochemistry within Earth system models to more accurately predict the response of terrestrial processes to natural and anthropogenic climate cycles. PFLOTRAN is an open-source subsurface code that is specialized for simulating multiphase flow and multicomponent biogeochemical transport on supercomputers. The object-oriented code was designed with modularity in mind and has been coupled with several third-party simulators (e.g. CLM to simulate land surface processes and E4D for coupled hydrogeophysical inversion). Central to PFLOTRAN's capabilities is its ability to simulate tightly-coupled reactive transport processes. This presentation focuses on recent enhancements to the code that enable the solution of large parameterized biogeochemical reaction networks with numerous chemical species. PFLOTRAN's "reaction sandbox" is described, which facilitates the implementation of user-defined reaction networks without the need for a comprehensive understanding of PFLOTRAN software infrastructure. The reaction sandbox is written in modern Fortran (2003-2008) and leverages encapsulation, inheritance, and polymorphism to provide the researcher with a flexible workspace for prototyping reactions within a massively parallel flow and transport simulation framework. As these prototypical reactions mature into well-accepted implementations, they can be incorporated into PFLOTRAN as native biogeochemistry capability. Users of the reaction sandbox are encouraged to upload their source code to PFLOTRAN's main source code repository, including the addition of simple regression tests to better ensure the long-term code compatibility and validity of simulation results.

  17. Averaging of Stochastic Equations for Flow and Transport in PorousMedia

    Energy Technology Data Exchange (ETDEWEB)

    Shvidler, Mark; Karasaki, Kenzi

    2005-01-07

    It is well known that at present exact averaging of theequations of flow and transport in random porous media have been realizedfor only a small number of special fields. Moreover, the approximateaveraging methods are not yet fully understood. For example, theconvergence behavior and the accuracy of truncated perturbation seriesare not well known; and in addition, the calculation of the high-orderperturbations is very complicated. These problems for a long time havestimulated attempts to find the answer for the question: Are there inexistence some exact general and sufficiently universal forms of averagedequations? If the answer is positive, there arises the problem of theconstruction of these equations and analyzing them. There are manypublications on different applications of this problem to various fields,including: Hydrodynamics, flow and transport in porous media, theory ofelasticity, acoustic and electromagnetic waves in random fields, etc.Here, we present a method of finding some general form of exactlyaveraged equations for flow and transport in random fields by using (1)some general properties of the Green s functions for appropriatestochastic problems, and (2) some basic information about the randomfields of the conductivity, porosity and flow velocity. We presentgeneral forms of exactly averaged non-local equations for the followingcases: (1) steady-state flow with sources in porous media with randomconductivity, (2) transient flow with sources in compressible media withrandom conductivity and porosity; and (3) Nonreactive solute transport inrandom porous media. We discuss the problem of uniqueness and theproperties of the non-local averaged equations for cases with some typeof symmetry (isotropic, transversal isotropic and orthotropic), and weanalyze the structure of the nonlocal equations in the general case ofstochastically homogeneous fields.

  18. Pore-scale Direct Numerical Simulation of Flow and Transport in Porous Media

    OpenAIRE

    Pulloor Kuttanikkad, Sreejith

    2009-01-01

    This dissertation presents research on the pore-scale simulation of flow and transport in porous media and describes the application of a new numerical approach based on the discontinuous Galerkin (DG) finite elements to pore-scale modelling. In this approach, the partial differential equations governing the flow at the pore-scale are solved directly where the main advantage is that it does not require a body fitted grid and works on a structured partition of the domain. Furthermore this appr...

  19. Modeling and simulation of nanoparticles transport in a two-phase flow in porous media

    KAUST Repository

    El-Amin, Mohamed

    2012-01-01

    In the current paper, a mathematical model to describe the nanoparticles transport carried by a two-phase flow in a porous medium is presented. Both capillary forces as well as Brownian diffusion are considered in the model. A numerical example of countercurrent water-oil imbibition is considered. We monitor the changing of the fluid and solid properties due to the addition of the nanoparticles using numerical experiments. Variation of water saturation, nanoparticles concentration and porosity ratio are investigated.

  20. A comparison of results obtained with two subsurface non-isothermal multiphase reactive transport simulators, FADES-CORE and TOUGHREACT

    Energy Technology Data Exchange (ETDEWEB)

    Juncosa Rivera, Ricardo; Xu, Tianfu; Pruess, Karsten

    2001-01-01

    FADES-CORE and TOUGHREACT are codes used to model the non-isothermal multiphase flow with multicomponent reactive transport in porous media. Different flow and reactive transport problems were used to compare the FADES-CORE and TOUGHREACT codes. These problems take into account the different cases of multiphase flow with and without heat transport, conservative transport, and reactive transport. Consistent results were obtained from both codes, which use different numerical methods to solve the differential equations resulting from the various physicochemical processes. Here we present the results obtained from both codes for various cases. Some results are slightly different with minor discrepancies, which have been remedied, so that both codes would be able to reproduce the same processes using the same parameters. One of the discrepancies found is related to the different calculation for thermal conductivity in heat transport, which affects the calculation of the temperatures, as well as the pH of the reaction of calcite dissolution problem modeled. Therefore it is possible to affirm that the pH is highly sensitive to temperature. Generally speaking, the comparison was concluded to be highly satisfactory, leading to the complete verification of the FADES-CORE code. However, we must keep in mind that, as there are no analytical solutions available with which to verify the codes, the TOUGHREACT code has been thoroughly corroborated, given that the only possible way to prove that the code simulation is correct, is by comparing the results obtained with both codes for the identical problems, or to validate the simulation results with actual measured data.

  1. The effect of surface transport on water desalination by porous electrodes undergoing capacitive charging

    CERN Document Server

    Shocron, Amit N

    2016-01-01

    Capacitive deionization (CDI) is a technology in which water is desalinated by ion electrosorption into the electric double layers (EDLs) of charging porous electrodes. In recent years significant advances have been made in modeling the charge and salt dynamics in a CDI cell, but the possible effect of surface transport within diffuse EDLs on these dynamics has not been investigated. We here present theory which includes surface transport in describing the dynamics of a charging CDI cell. Through our numerical solution to the presented models, the possible effect of surface transport on the CDI process is elucidated. While at some model conditions surface transport enhances the rate of CDI cell charging, counter-intuitively this additional transport pathway is found to slow down cell charging at other model conditions.

  2. Simulation of reactive processes related to biodegradation in aquifers. 1. Structure of the three-dimensional reactive transport model

    Science.gov (United States)

    Schäfer, Dirk; Schäfer, Wolfgang; Kinzelbach, Wolfgang

    1998-05-01

    The reactive transport model TBC (transport, biochemistry, and chemistry) numerically solves the equations for reactive transport in three-dimensional saturated groundwater flow. A finite element approximation and a standard Galerkin method are used. Solute transport is coupled to microbially mediated organic carbon degradation. Microbial growth is assumed to follow Monod-type kinetics. Substrate consumption and release of metabolic products is coupled to microbial growth via yield coefficients and stoichiometric relations. Additionally, the effects of microbial activity on selected inorganic chemical species in the aquifer can be considered. TBC allows the user to specify a wide range of possible biochemical and chemical reactions in the input file. This makes TBC a powerful and flexible simulation tool. It was developed to simulate reactive processes related to in situ bioremediation, but further fields of application are laboratory column studies on redox processes coupled to organic carbon degradation, field cases of intrinsic biodegradation, and early diagenetic processes in sediments.

  3. Some aspects of cellulose ethers influence on water transport and porous structure of cement-based materials

    OpenAIRE

    Pourchez, Jérémie; Ruot, Bertrand; Debayle, Johan; Rouèche-Pourchez, Emilie; Grosseau, Philippe

    2010-01-01

    International audience; This paper evaluates and compares the impact of cellulose ethers (CE) on water transport and porous structure of cement-based materials in both fresh and hardened state. Investigations of the porous network (mercury intrusion porosimetry, apparent density, 2D and 3D observations) emphasize an air-entrained stabilisation depending on CE chemistry. We also highlight that CE chemistry leads to a gradual effect on characteristics of the water transport. The global tendenci...

  4. Hall effects on unsteady MHD reactive flow of second grade fluid through porous medium in a rotating parallel plate channel

    Science.gov (United States)

    Krishna, M. Veera; Swarnalathamma, B. V.

    2017-07-01

    We considered the transient MHD flow of a reactive second grade fluid through porous medium between two infinitely long horizontal parallel plates when one of the plate is set into uniform accelerated motion in the presence of a uniform transverse magnetic field under Arrhenius reaction rate. The governing equations are solved by Laplace transform technique. The effects of the pertinent parameters on the velocity, temperature are discussed in detail. The shear stress and Nusselt number at the plates are also obtained analytically and computationally discussed with reference to governing parameters.

  5. Impact of multicomponent ionic transport on pH fronts propagation in saturated porous media

    DEFF Research Database (Denmark)

    Muniruzzaman, Muhammad; Rolle, Massimo

    2015-01-01

    We investigate the propagation of pH fronts during multicomponent ionic transport in saturated porous media under flow-through conditions. By performing laboratory bench-scale experiments combined with numerical modeling, we show the important influence of Coulombic effects on proton transport...... of electrochemical cross coupling on the migration of diffusive/dispersive pH fronts. We focus on two experimental scenarios, with different composition of tracer solutions, causing remarkably different effects on the propagation of the acidic fronts with relative differences in the penetration depth of pH fronts...

  6. Evaluation of Front Morphological Development of Reactive Solute Transport Using Behavior Diagrams

    Directory of Open Access Journals (Sweden)

    Jui-Sheng Chen

    2009-01-01

    Full Text Available While flowing through porous medium, ground water flow dissolves minerals thereby in creasing medium porosity and ultimately permeability. Reactive fluid flows preferentially into highly permeable zones, which are therefore dissolved most rapidly, producing a further preferential permeability enhancement. Accordingly, slight non-uniformities present in porous medium can be amplified and lead to fingering reaction fronts. The objective of this study is to investigate dissolution-induced porosity changes on reaction front morphology in homogeneous porous medium with two non-uniformities. Four controlling parameters, including up stream pressure gradient, reaction rate constant, non-uniformities spacing and non-uniformity strength ratio are comprehensively considered. By using a modified version of the numerical code, NSPCRT, to conduct a series of numerical simulations, front behavior diagrams are constructed to illustrate the morphologies of reaction fronts under various combinations of these four factors. Simulation results indicate that the two non-uniformities are inhibited into a planar front under low up stream pressure gradient, merge into a single-fingering front under inter mediate up stream pressure gradient, or grow into a double-fingers front under high up stream pressure gradient. More over, the two non-uniformities tend to develop intoadouble-fingering front as the non-uniformity strength ratio in creases from 0.2 to 1.0, and merge into a single-fingering front while the non-uniformity strength ratio in creases from 1.0 to 1.8. When the reaction rate constant is small, the two non-uniformities merge into a single front. Reaction rate constant significantly affects front advancing velocity. The front advancing velocity decreases with the reaction rate constant. Based on these results, front behavior diagrams which de fine the morphologies of the reaction fronts for these four parameters are constructed. Moreover, non

  7. Pore scale mechanisms for enhanced vapor transport through partially saturated porous media

    Science.gov (United States)

    Shahraeeni, Ebrahim; Or, Dani

    2012-05-01

    Recent theoretical and experimental studies of vapor transport through porous media question the existence and significance of vapor transport enhancement mechanisms postulated by Philip and de Vries. Several enhancement mechanisms were proposed to rectify shortcomings of continuum models and to reconcile discrepancies between predicted and observed vapor fluxes. The absence of direct experimental and theoretical confirmation of these commonly invoked pore scale mechanisms prompted alternate explanations considering the (often neglected) role of transport via capillary connected pathways. The objective of this work was to quantify the specific roles of liquid bridges and of local thermal and capillary gradients on vapor transport at the pore scale. We considered a mechanistic pore scale model of evaporation and condensation dynamics as a building block for quantifying vapor diffusion through partially saturated porous media. Simulations of vapor diffusion in the presence of isolated liquid phase bridges reveal that the so-called enhanced vapor diffusion under isothermal conditions reflects a reduced gaseous diffusion path length. The presence of a thermal gradient may augment or hinder this effect depending on the direction of thermal relative to capillary gradients. As liquid phase saturation increases, capillary transport becomes significant and pore scale vapor enhancement is limited to low water contents as postulated by Philip and deVries. Calculations show that with assistance of a mild thermal gradient water vapor flux could be doubled relative to diffusion of an inert gas through the same system.

  8. Global sensitivity analysis and Bayesian parameter inference for solute transport in porous media colonized by biofilms

    Science.gov (United States)

    Younes, A.; Delay, F.; Fajraoui, N.; Fahs, M.; Mara, T. A.

    2016-08-01

    The concept of dual flowing continuum is a promising approach for modeling solute transport in porous media that includes biofilm phases. The highly dispersed transit time distributions often generated by these media are taken into consideration by simply stipulating that advection-dispersion transport occurs through both the porous and the biofilm phases. Both phases are coupled but assigned with contrasting hydrodynamic properties. However, the dual flowing continuum suffers from intrinsic equifinality in the sense that the outlet solute concentration can be the result of several parameter sets of the two flowing phases. To assess the applicability of the dual flowing continuum, we investigate how the model behaves with respect to its parameters. For the purpose of this study, a Global Sensitivity Analysis (GSA) and a Statistical Calibration (SC) of model parameters are performed for two transport scenarios that differ by the strength of interaction between the flowing phases. The GSA is shown to be a valuable tool to understand how the complex system behaves. The results indicate that the rate of mass transfer between the two phases is a key parameter of the model behavior and influences the identifiability of the other parameters. For weak mass exchanges, the output concentration is mainly controlled by the velocity in the porous medium and by the porosity of both flowing phases. In the case of large mass exchanges, the kinetics of this exchange also controls the output concentration. The SC results show that transport with large mass exchange between the flowing phases is more likely affected by equifinality than transport with weak exchange. The SC also indicates that weakly sensitive parameters, such as the dispersion in each phase, can be accurately identified. Removing them from calibration procedures is not recommended because it might result in biased estimations of the highly sensitive parameters.

  9. Transport phenomena within the porous cathode for a proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juanfang; Oshima, Nobuyuki; Kurihara, Eru; Saha, Litan Kumar [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)

    2010-10-01

    A two-phase, one-dimensional steady model is developed to analyze the coupled phenomena of cathode flooding and mass-transport limiting for the porous cathode electrode of a proton exchange membrane fuel cell. In the model, the catalyst layer is treated not as an interface between the membrane and gas diffusion layer, but as a separate computational domain with finite thickness and pseudo-homogenous structure. Furthermore, the liquid water transport across the porous electrode is driven by the capillary force based on Darcy's law. And the gas transport is driven by the concentration gradient based on Fick's law. Additionally, through Tafel kinetics, the transport processes of gas and liquid water are coupled. From the numerical results, it is found that although the catalyst layer is thin, it is very crucial to better understand and more correctly predict the concurrent phenomena inside the electrode, particularly, the flooding phenomena. More importantly, the saturation jump at the interface of the gas diffusion layer and catalyst layers is captured, when the continuity of the capillary pressure is imposed on the interface. Elsewise, the results show further that the flooding phenomenon in the CL is much more serious than that in the GDL, which has a significant influence on the mass transport of the reactants. Moreover, the saturation level inside the cathode is determined, to a great extent, by the surface overpotential, the absolute permeability of the porous electrode, and the boundary value of saturation at the gas diffusion layer-gas channel interface. In order to prevent effectively flooding, it should remove firstly the liquid water accumulating inside the CL and keep the boundary value of liquid saturation as low as possible. (author)

  10. Modeling the co-transport of viruses and colloids in unsaturated porous media.

    Science.gov (United States)

    Seetha, N; Mohan Kumar, M S; Majid Hassanizadeh, S

    2015-10-01

    A mathematical model is developed to simulate the co-transport of viruses and colloids in unsaturated porous media under steady-state flow conditions. The virus attachment to the mobile and immobile colloids is described using a linear reversible kinetic model. Colloid transport is assumed to be decoupled from virus transport; that is, we assume that colloids are not affected by the presence of attached viruses on their surface. The governing equations are solved numerically using an alternating three-step operator splitting approach. The model is verified by fitting three sets of experimental data published in the literature: (1) Syngouna and Chrysikopoulos (2013) and (2) Walshe et al. (2010), both on the co-transport of viruses and clay colloids under saturated conditions, and (3) Syngouna and Chrysikopoulos (2015) for the co-transport of viruses and clay colloids under unsaturated conditions. We found a good agreement between observed and fitted breakthrough curves (BTCs) under both saturated and unsaturated conditions. Then, the developed model was used to simulate the co-transport of viruses and colloids in porous media under unsaturated conditions, with the aim of understanding the relative importance of various processes on the co-transport of viruses and colloids in unsaturated porous media. The virus retention in porous media in the presence of colloids is greater during unsaturated conditions as compared to the saturated conditions due to: (1) virus attachment to the air-water interface (AWI), and (2) co-deposition of colloids with attached viruses on its surface to the AWI. A sensitivity analysis of the model to various parameters showed that the virus attachment to AWI is the most sensitive parameter affecting the BTCs of both free viruses and total mobile viruses and has a significant effect on all parts of the BTC. The free and the total mobile viruses BTCs are mainly influenced by parameters describing virus attachment to the AWI, virus interaction

  11. Information entropy to measure the spatial and temporal complexity of solute transport in heterogeneous porous media

    Science.gov (United States)

    Li, Weiyao; Huang, Guanhua; Xiong, Yunwu

    2016-04-01

    The complexity of the spatial structure of porous media, randomness of groundwater recharge and discharge (rainfall, runoff, etc.) has led to groundwater movement complexity, physical and chemical interaction between groundwater and porous media cause solute transport in the medium more complicated. An appropriate method to describe the complexity of features is essential when study on solute transport and conversion in porous media. Information entropy could measure uncertainty and disorder, therefore we attempted to investigate complexity, explore the contact between the information entropy and complexity of solute transport in heterogeneous porous media using information entropy theory. Based on Markov theory, two-dimensional stochastic field of hydraulic conductivity (K) was generated by transition probability. Flow and solute transport model were established under four conditions (instantaneous point source, continuous point source, instantaneous line source and continuous line source). The spatial and temporal complexity of solute transport process was characterized and evaluated using spatial moment and information entropy. Results indicated that the entropy increased as the increase of complexity of solute transport process. For the point source, the one-dimensional entropy of solute concentration increased at first and then decreased along X and Y directions. As time increased, entropy peak value basically unchanged, peak position migrated along the flow direction (X direction) and approximately coincided with the centroid position. With the increase of time, spatial variability and complexity of solute concentration increase, which result in the increases of the second-order spatial moment and the two-dimensional entropy. Information entropy of line source was higher than point source. Solute entropy obtained from continuous input was higher than instantaneous input. Due to the increase of average length of lithoface, media continuity increased, flow and

  12. Heat and Moisture Transport in Unsaturated Porous Media -- A Coupled Model in Terms of Chemical Potential

    CERN Document Server

    Sullivan, Eric

    2013-01-01

    Transport phenomena in porous media are commonplace in our daily lives. Examples and applications include heat and moisture transport in soils, baking and drying of food stuffs, curing of cement, and evaporation of fuels in wild fires. Of particular interest to this study are heat and moisture transport in unsaturated soils. Historically, mathematical models for these processes are derived by coupling classical Darcy's, Fourier's, and Fick's laws with volume averaged conservation of mass and energy and empirically based source and sink terms. Recent experimental and mathematical research has proposed modifications and suggested limitations in these classical equations. The primary goal of this thesis is to derive a thermodynamically consistent system of equations for heat and moisture transport in terms of the chemical potential that addresses some of these limitations. The physical processes of interest are primarily diffusive in nature and, for that reason, we focus on using the macroscale chemical potentia...

  13. Microbially Mediated Kinetic Sulfur Isotope Fractionation: Reactive Transport Modeling Benchmark

    Science.gov (United States)

    Wanner, C.; Druhan, J. L.; Cheng, Y.; Amos, R. T.; Steefel, C. I.; Ajo Franklin, J. B.

    2014-12-01

    Microbially mediated sulfate reduction is a ubiquitous process in many subsurface systems. Isotopic fractionation is characteristic of this anaerobic process, since sulfate reducing bacteria (SRB) favor the reduction of the lighter sulfate isotopologue (S32O42-) over the heavier isotopologue (S34O42-). Detection of isotopic shifts have been utilized as a proxy for the onset of sulfate reduction in subsurface systems such as oil reservoirs and aquifers undergoing uranium bioremediation. Reactive transport modeling (RTM) of kinetic sulfur isotope fractionation has been applied to field and laboratory studies. These RTM approaches employ different mathematical formulations in the representation of kinetic sulfur isotope fractionation. In order to test the various formulations, we propose a benchmark problem set for the simulation of kinetic sulfur isotope fractionation during microbially mediated sulfate reduction. The benchmark problem set is comprised of four problem levels and is based on a recent laboratory column experimental study of sulfur isotope fractionation. Pertinent processes impacting sulfur isotopic composition such as microbial sulfate reduction and dispersion are included in the problem set. To date, participating RTM codes are: CRUNCHTOPE, TOUGHREACT, MIN3P and THE GEOCHEMIST'S WORKBENCH. Preliminary results from various codes show reasonable agreement for the problem levels simulating sulfur isotope fractionation in 1D.

  14. Modeling of titration experiments by a reactive transport model

    Institute of Scientific and Technical Information of China (English)

    Ma Hongyun; Samper Javier; Xin Xin

    2011-01-01

    Acid mine drainage (AMD) is commonly treated by neutralization with alkaline substances. This treatment is supported by titration experiments that illustrate the buffering mechanisms and estimate the base neutralization capacity (BNC) of the AMD. Detailed explanation of titration curves requires modeling with a hydro-chemical model. In this study the titration curves of water samples from the drainage of the As Pontes mine and the corresponding dumps have been investigated and six buffers are selected by analyzing those curves. Titration curves have been simulated by a reactive transport model to discover the detailed buffering mechanisms. These simulations show seven regions involving different buffering mechanism. The BNC is primarily from buffers of dissolved Fe, Al and hydrogen sulfate. The BNC can be approximated by: BNC = 3(CFe + CAl) + 0.05Csulfate, where the units are mol/L. The BNC of the sample from the mine is 9.25 × 10-3 mol/L and that of the dumps sample is 1.28 × 10-2 mol/L.

  15. A continuous time random walk model for Darcy-scale anomalous transport in heterogeneous porous media.

    Science.gov (United States)

    Comolli, Alessandro; Hakoun, Vivien; Dentz, Marco

    2017-04-01

    Achieving the understanding of the process of solute transport in heterogeneous porous media is of crucial importance for several environmental and social purposes, ranging from aquifers contamination and remediation, to risk assessment in nuclear waste repositories. The complexity of this aim is mainly ascribable to the heterogeneity of natural media, which can be observed at all the scales of interest, from pore scale to catchment scale. In fact, the intrinsic heterogeneity of porous media is responsible for the arising of the well-known non-Fickian footprints of transport, including heavy-tailed breakthrough curves, non-Gaussian spatial density profiles and the non-linear growth of the mean squared displacement. Several studies investigated the processes through which heterogeneity impacts the transport properties, which include local modifications to the advective-dispersive motion of solutes, mass exchanges between some mobile and immobile phases (e.g. sorption/desorption reactions or diffusion into solid matrix) and spatial correlation of the flow field. In the last decades, the continuous time random walk (CTRW) model has often been used to describe solute transport in heterogenous conditions and to quantify the impact of point heterogeneity, spatial correlation and mass transfer on the average transport properties [1]. Open issues regarding this approach are the possibility to relate measurable properties of the medium to the parameters of the model, as well as its capability to provide predictive information. In a recent work [2] the authors have shed new light on understanding the relationship between Lagrangian and Eulerian dynamics as well as on their evolution from arbitrary initial conditions. On the basis of these results, we derive a CTRW model for the description of Darcy-scale transport in d-dimensional media characterized by spatially random permeability fields. The CTRW approach models particle velocities as a spatial Markov process, which is

  16. Effect of low-concentration rhamnolipid biosurfactant on Pseudomonas aeruginosa transport in natural porous media

    Science.gov (United States)

    Liu, Guansheng; Zhong, Hua; Jiang, Yongbing; Brusseau, Mark L.; Huang, Jiesheng; Shi, Liangsheng; Liu, Zhifeng; Liu, Yang; Zeng, Guangming

    2017-01-01

    Enhanced transport of microbes in subsurface is a focus in bioaugmentation applications for remediation of groundwater. In this study, the effect of low-concentration monorhamnolipid biosurfactant on transport of Pseudomonas aeruginosa ATCC 9027 in natural porous media (silica sand and a sandy soil) with or without hexadecane as the nonaqueous phase liquids (NAPLs) was studied with miscible-displacement experiments using artificial groundwater as the background solution. Transport of two types of cells was investigated, glucose-grown and hexadecane-grown cells with lower and higher cell surface hydrophobicity (CSH), respectively. A clean-bed colloid deposition model was used to calculate deposition rate coefficients (k) for quantitative assessment on the effect of the rhamnolipid on the transport. In the absence of NAPLs, significant cell retention was observed in the sand (81% and 82% for glucose-grown and hexadecane-grown cells, respectively). Addition of low-concentration rhamnolipid enhanced cell transport, with 40 mg/L of rhamnolipid reducing retention to 50% and 60% for glucose-grown and hexadecane-grown cells, respectively. The k values for both glucose-grown and hexadecane-grown cells correlated linearly with rhamnolipid-dependent CSH quantitatively measured using a bacterial-adhesion-to-hydrocarbon method. Retention of cells by the soil was nearly complete (>99%). Forty milligrams per liter of rhamnolipid reduced the retention to 95%. The presence of NAPLs in the sand enhanced the retention of hexadecane-grown cells with higher CSH. Transport of cells in the presence of NAPLs was enhanced by rhamnolipid at all concentrations tested, and the relative enhancement was greater than in the absence of NAPLs. This study shows the importance of hydrophobic interaction on bacterial transport in natural porous media and the potential of using low-concentration rhamnolipid for facilitating cell transport in subsurface for bioaugmentation efforts.

  17. Numerical simulation of pollutant transport in fractured vuggy porous karstic aquifers

    KAUST Repository

    Sun, S.

    2011-01-01

    This paper begins with presenting a mathematical model for contaminant transport in the fractured vuggy porous media of a species of contaminant (PCP). Two phases are numerically simulated for a process of contaminant and clean water infiltrated in the fractured vuggy porous media by coupling mixed finite element (MFE) method and finite volume method (FVM), both of which are locally conservative, to approximate the model. A hybrid mixed finite element (HMFE) method is applied to approximate the velocity field for the model. The convection and diffusion terms are approached by FVM and the standard MFE, respectively. The pressure distribution and temporary evolution of the concentration profiles are obtained for two phases. The average effluent concentration on the outflow boundary is obtained at different time and shows some different features from the matrix porous media. The temporal multiscale phenomena of the effluent concentration on the outlet are observed. The results show how the different distribution of the vugs and the fractures impacts on the contaminant transport and the effluent concentration on the outlet. This paper sheds light on certain features of karstic groundwater are obtained.

  18. Numerical Simulation of Pollutant Transport in Fractured Vuggy Porous Karstic Aquifers

    Directory of Open Access Journals (Sweden)

    Xiaolin Fan

    2011-01-01

    Full Text Available This paper begins with presenting a mathematical model for contaminant transport in the fractured vuggy porous media of a species of contaminant (PCP. Two phases are numerically simulated for a process of contaminant and clean water infiltrated in the fractured vuggy porous media by coupling mixed finite element (MFE method and finite volume method (FVM, both of which are locally conservative, to approximate the model. A hybrid mixed finite element (HMFE method is applied to approximate the velocity field for the model. The convection and diffusion terms are approached by FVM and the standard MFE, respectively. The pressure distribution and temporary evolution of the concentration profiles are obtained for two phases. The average effluent concentration on the outflow boundary is obtained at different time and shows some different features from the matrix porous media. The temporal multiscale phenomena of the effluent concentration on the outlet are observed. The results show how the different distribution of the vugs and the fractures impacts on the contaminant transport and the effluent concentration on the outlet. This paper sheds light on certain features of karstic groundwater are obtained.

  19. Nanoscale study of reactive transport in catalyst layer of proton exchange membrane fuel cells with precious and non-precious catalysts using lattice Boltzmann method

    CERN Document Server

    Chen, Li; Kang, Qinjun; Holby, Edward F; Tao, Wen-Quan

    2014-01-01

    High-resolution porous structures of catalyst layer (CL) with multicomponent in proton exchange membrane fuel cells are reconstructed using a reconstruction method called quartet structure generation set. Characterization analyses of nanoscale structures are implemented including pore size distribution, specific area and phase connectivity. Pore-scale simulation methods based on the lattice Boltzmann method are developed and used to predict the macroscopic transport properties including effective diffusivity and proton conductivity. Nonuniform distributions of ionomer in CL generates more tortuous pathway for reactant transport and greatly reduces the effective diffusivity. Tortuosity of CL is much higher than conventional Bruggeman equation adopted. Knudsen diffusion plays a significant role in oxygen diffusion and significantly reduces the effective diffusivity. Reactive transport inside the CL is also investigated. Although the reactive surface area of non-precious metal catalyst (NPMC) CL is much higher t...

  20. Experimental investigation of suspended particles transport through porous media: particle and grain size effect.

    Science.gov (United States)

    Liu, Quansheng; Cui, Xianze; Zhang, Chengyuan; Huang, Shibing

    2016-01-01

    Particle and grain size may influence the transportation and deposition characteristics of particles within pollutant transport and within granular filters that are typically used in wastewater treatment. We conducted two-dimensional sandbox experiments using quartz powder as the particles and quartz sand as the porous medium to study the response of transportation and deposition formation to changes in particle diameter (ds, with median diameter 18, 41, and 82 μm) and grain diameter (dp, with median diameter 0.36, 1.25, and 2.82 mm) considering a wide range of diameter ratios (ds/dp) from 0.0064 to 0.228. Particles were suspended in deionized water, and quartz sand was used as the porous medium, which was meticulously cleaned to minimize any physicochemical and impurities effects that could result in indeterminate results. After the experiments, the particle concentration of the effluent and particle mass per gram of dry sands were measured to explore changes in transportation and deposition characteristics under different conditions. In addition, a micro-analysis was conducted to better analyse the results on a mesoscopic scale. The experimental observation analyses indicate that different diameter ratios (ds/dp) may lead to different deposit formations. As ds/dp increased, the deposit formation changed from 'Random Deposition Type' to 'Gradient Deposition Type', and eventually became 'Inlet Deposition Type'.

  1. Reactive transport modeling in the subsurface environment with OGS-IPhreeqc

    Science.gov (United States)

    He, Wenkui; Beyer, Christof; Fleckenstein, Jan; Jang, Eunseon; Kalbacher, Thomas; Naumov, Dimitri; Shao, Haibing; Wang, Wenqing; Kolditz, Olaf

    2015-04-01

    Worldwide, sustainable water resource management becomes an increasingly challenging task due to the growth of population and extensive applications of fertilizer in agriculture. Moreover, climate change causes further stresses to both water quantity and quality. Reactive transport modeling in the coupled soil-aquifer system is a viable approach to assess the impacts of different land use and groundwater exploitation scenarios on the water resources. However, the application of this approach is usually limited in spatial scale and to simplified geochemical systems due to the huge computational expense involved. Such computational expense is not only caused by solving the high non-linearity of the initial boundary value problems of water flow in the unsaturated zone numerically with rather fine spatial and temporal discretization for the correct mass balance and numerical stability, but also by the intensive computational task of quantifying geochemical reactions. In the present study, a flexible and efficient tool for large scale reactive transport modeling in variably saturated porous media and its applications are presented. The open source scientific software OpenGeoSys (OGS) is coupled with the IPhreeqc module of the geochemical solver PHREEQC. The new coupling approach makes full use of advantages from both codes: OGS provides a flexible choice of different numerical approaches for simulation of water flow in the vadose zone such as the pressure-based or mixed forms of Richards equation; whereas the IPhreeqc module leads to a simplification of data storage and its communication with OGS, which greatly facilitates the coupling and code updating. Moreover, a parallelization scheme with MPI (Message Passing Interface) is applied, in which the computational task of water flow and mass transport is partitioned through domain decomposition, whereas the efficient parallelization of geochemical reactions is achieved by smart allocation of computational workload over

  2. Statistical model for suspension transport in porous media; Modelo estatistico para o transporte de suspensoes em meios porosos

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Adriano dos; Barros, Paulo [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    An analytical model for transport of particulate suspensions in porous medium is discussed. The model takes microscopic rock characteristics into account and considers that size exclusion is the dominant particle retention mechanism. Analytical solutions for suspended and retained particle concentrations are obtained and the inverse problem is solved, allowing the filtration coefficients determination from experiments. The filtration coefficients for the proposed and the classical deep bed filtration models are calculated from experimental data available in the literature and the results are compared. Finally, it is shown that the proposed model tends to the classical deep bed filtration model when the particle retention probability tends to zero. (author)

  3. Impact of multicomponent ionic transport on pH fronts propagation in saturated porous media

    Science.gov (United States)

    Muniruzzaman, Muhammad; Rolle, Massimo

    2016-04-01

    Multicomponent ionic interactions have been increasingly recognized as important factors for the displacement of charged species in porous media under both diffusion- [1,2] and advection-dominated flow regimes [3,4]. In this study we investigate the propagation of pH fronts during multicomponent ionic transport in saturated porous media under flow-through conditions. By performing laboratory bench-scale experiments combined with numerical modeling we show the important influence of Coulombic effects on proton transport in the presence of ionic admixtures. The experiments were performed in a quasi two-dimensional flow-through setup under steady-state flow and transport conditions. Dilute solutions of hydrochloric acid with MgCl2 (1:2 strong electrolyte) were used as tracer solutions to experimentally test the effect of electrochemical cross-coupling on the migration of diffusive/dispersive pH fronts. We focus on two experimental scenarios, with different composition of tracer solutions, causing remarkably different effects on the propagation of the acidic fronts with relative differences in the penetration depth of pH fronts of 36% between the two scenarios and of 25% and 15% for each scenario with respect to the transport of ions at liberated state (i.e., without considering the charge effects). Also significant differences in the dilution of the distinct ionic plumes, quantified using the flux-related dilution index at the laboratory bench scale [5], were measured at the outflow of the flow-through system. The dilution of the pH plumes also changed considerably (26% relative difference) in the two flow-through experiments only due to the different composition of the pore water solution and to the electrostatic coupling of the ions in the flow-through setups. Numerical transport simulations were performed to interpret the laboratory experiments. The simulations were based on a multicomponent ionic formulation accurately capturing the Coulombic interactions between

  4. Computational study of pressure-driven methane transport in hierarchical nanostructured porous carbons

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Kisung; Huang, Liping, E-mail: huangL5@rpi.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2016-01-28

    Using the reflecting particle method together with a perturbation-relaxation loop developed in our previous work, we studied pressure-driven methane transport in hierarchical nanostructured porous carbons (HNPCs) containing both mesopores and micropores in non-equilibrium molecular dynamics simulations. The surface morphology of the mesopore wall was systematically varied by tuning interaction strength between carbon atoms and the template in a mimetic nanocasting process. Effects of temperature and mesopore size on methane transport in HNPCs were also studied. Our study shows that increased mesopore wall surface roughness changes the character of the gas-wall interaction from specular to diffuse, while the gas-gas interaction is diminished due to the decrease of adsorption density. Effects of the mesopore wall surface morphology are the most significant at low temperatures and in small channels. Our systematic study provides a better understanding of the transport mechanisms of light gases through carbon nanotube composite membranes in experiments.

  5. Modeling and Diagnostics of Fuel Cell Porous Media for Improving Water Transport

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Jeff; M' edici, Ezequiel

    2011-07-01

    When a fuel cell is operating at high current density, water accumulation is a significant cause of performance and component degradation. Investigating the water transport inside the fuel cell is a challenging task due to opacity of the components, the randomness of the porous materials, and the difficulty in gain access to the interior for measurement due to the small dimensions of components. Numerical simulation can provide a good insight of the evolution of the water transport under different working condition. However, the validation of those simulations is remains an issue due the same experimental obstacles associated with in-situ measurements. The discussion herein will focus on pore-network modeling of the water transport on the PTL and the insights gained from simulations as well as in the validation technique. The implications of a recently published criterion to characterize PTL, based on percolation theory, and validate numerical simulation are discussed.

  6. SPECT Imaging as a Tool for Testing and Challenging Assumptions About Transport in Porous Media

    Science.gov (United States)

    Moysey, S. M.; DeVol, T. A.; Tornai, M. P.

    2014-12-01

    Medical imaging has shown promise for unraveling the influence of physical, chemical and biological processes on contaminant transport. Micro-CT scans, for instance, are increasingly utilized to image the pore-scale structure of rocks and soils, which can subsequently be used within modeling studies. A disadvantage of micro-CT, however, is that this imaging modality does not directly detect contaminants. In contrast, Single Photon Emission Computed Tomography (SPECT) can provide the three-dimensional distribution of gamma emitting materials and is thus ideal for imaging the transport of radionuclides. SPECT is of particular interest as a tool for both directly imaging the behavior of long-lived radionuclides of interest, e.g., 99Tc and 137Cs, as well as monitoring shorter-lived isotopes as in-situ tracers of flow and biogeochemical processes. We demonstrate the potential of combining CT and SPECT imaging to improve the mechanistic understanding of flow and transport processes within a heterogeneous porous medium. In the experiment, a column was packed with 0.2mm glass beads with a cylindrical zone of 2mm glass beads embedded near the outlet; this region could be readily identified within the CT images. The column was injected with a pulse of NaCl solution spiked with 99mTcO4- and monitored using SPECT while aliquots of the effluent were used to analyze the breakthrough of both solutes. The breakthrough curves could be approximately replicated by a one-dimensional transport model, but the SPECT data revealed that the tracers migrated around the inclusion of larger beads. Although the zone of large-diameter beads was expected to act as a preferential pathway, the observed behavior could only be replicated in numerical transport simulations if this region was treated as a low-permeability zone relative to the rest of the column. This simple experiment demonstrates the potential of SPECT for investigating flow and transport phenomena within a porous medium.

  7. Development of numerical methods for reactive transport; Developpement de methodes numeriques pour le transport reactif

    Energy Technology Data Exchange (ETDEWEB)

    Bouillard, N

    2006-12-15

    When a radioactive waste is stored in deep geological disposals, it is expected that the waste package will be damaged under water action (concrete leaching, iron corrosion). Then, to understand these damaging processes, chemical reactions and solutes transport are modelled. Numerical simulations of reactive transport can be done sequentially by the coupling of several codes. This is the case of the software platform ALLIANCES which is developed jointly with CEA, ANDRA and EDF. Stiff reactions like precipitation-dissolution are crucial for the radioactive waste storage applications, but standard sequential iterative approaches like Picard's fail in solving rapidly reactive transport simulations with such stiff reactions. In the first part of this work, we focus on a simplified precipitation and dissolution process: a system made up with one solid species and two aqueous species moving by diffusion is studied mathematically. It is assumed that a precipitation dissolution reaction occurs in between them, and it is modelled by a discontinuous kinetics law of unknown sign. By using monotonicity properties, the convergence of a finite volume scheme on admissible mesh is proved. Existence of a weak solution is obtained as a by-product of the convergence of the scheme. The second part is dedicated to coupling algorithms which improve Picard's method and can be easily used in an existing coupling code. By extending previous works, we propose a general and adaptable framework to solve nonlinear systems. Indeed by selecting special options, we can either recover well known methods, like nonlinear conjugate gradient methods, or design specific method. This algorithm has two main steps, a preconditioning one and an acceleration one. This algorithm is tested on several examples, some of them being rather academical and others being more realistic. We test it on the 'three species model'' example. Other reactive transport simulations use an external

  8. Mass transport in a porous microchannel for non-Newtonian fluid with electrokinetic effects.

    Science.gov (United States)

    Mondal, Sourav; De, Sirshendu

    2013-03-01

    Quantification of mass transfer in porous microchannel is of paramount importance in several applications. Transport of neutral solute in presence of convective-diffusive EOF having non-Newtonian rheology, in a porous microchannel was presented in this article. The governing mass transfer equation coupled with velocity field was solved along with associated boundary conditions using a similarity solution method. An analytical solution of mass transfer coefficient and hence, Sherwood number were derived from first principles. The corresponding effects of assisting and opposing pressure-driven flow and EOF were also analyzed. The influence of wall permeation, double-layer thickness, rheology, etc. on the mass transfer was also investigated. Permeation at the wall enhanced the mass transfer coefficient more than five times compared to impervious conduit in case of pressure-driven flow assisting the EOF at higher values of κh. Shear thinning fluid exhibited more enhancement of Sherwood number in presence of permeation compared to shear thickening one. The phenomenon of stagnation was observed at a particular κh (∼2.5) in case of EOF opposing the pressure-driven flow. This study provided a direct quantification of transport of a neutral solute in case of transdermal drug delivery, transport of drugs from blood to target region, etc.

  9. Transport, retention, and size perturbation of graphene oxide in saturated porous media: Effects of input concentration and grain size

    Science.gov (United States)

    Accurately predicting the fate and transport of graphene oxide (GO) in porous media is critical to assess its environmental impact. In this work, sand column experiments were conducted to determine the effect of input concentration and grain size on transport, retention, and size perturbation of GO ...

  10. The use of the dusty-gas model for the description of mass transport with chemical reaction in porous media

    NARCIS (Netherlands)

    Veldsink, J.W.; Damme, R.M.J. van; Versteeg, G.F.; Swaaij, W.P.M. van

    1995-01-01

    In the present study, mass transport accompanied by chemical reactions in porous media is studied according to the Fick model and the dusty-gas model. For mass transport accompanied by a chemical reaction in catalyst structures showing a plane, line, or point of symmetry, the approximate analytical

  11. Transport of reactive colloids and contaminants in groundwater: effect of nonlinear kinetic interactions.

    NARCIS (Netherlands)

    Weerd, van de H.; Leijnse, A.; Riemsdijk, van W.H.

    1998-01-01

    Transport of reactive colloids in groundwater may enhance the transport of contaminants in groundwater. Often, the interpretation of results of transport experiments is not a simple task as both reactions of colloids with the solid matrix and reactions of contaminants with the solid matrix and

  12. Lattice Boltzmann based multicomponent reactive transport model coupled with geochemical solver for scale simulations

    NARCIS (Netherlands)

    Patel, R.A.; Perko, J.; Jaques, D.; De Schutter, G.; Ye, G.; Van Breugel, K.

    2013-01-01

    A Lattice Boltzmann (LB) based reactive transport model intended to capture reactions and solid phase changes occurring at the pore scale is presented. The proposed approach uses LB method to compute multi component mass transport. The LB multi-component transport model is then coupled with the well

  13. Dynamics of coupled contaminant and microbial transport in heterogeneous porous media. 1997 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Ginn, T.R.; Boone, D.R.; Fletcher, M.M.; Friedrich, D.M.; Murphy, E.M.

    1997-06-01

    'Dynamic microbial attachment/detachment occurs in subsurface systems in response to changing environmental conditions caused by contaminant movement and degradation. Understanding the environmental conditions and mechanisms by which anaerobic bacteria partition between aqueous and solid phases is a critical requirement for designing and evaluating in situ bioremediation efforts. This interdisciplinary research project will provide fundamental information on the attachment/detachment dynamics of anaerobic bacteria in heterogeneous porous media under growth and growth-limiting conditions. Experiments will provide information on passive and active attachment/detachment mechanisms used by growing anaerobes capable of reductive dechlorination. Theoretical representations of these attachment/detachment mechanisms will be incorporated into existing groundwater flow and contaminant transport models that incorporate heterogeneity effects and can be used to predict behavior at field scales. These mechanistic-based models will be tested against experimental data provided through controlled laboratory experiments in heterogeneous porous media in large (meter-scale) 2-D flow cells. In addition to a mechanistic-based predictive model, this research will lead to new theories for the transient spatial distribution of microbial populations and contaminant plumes in heterogeneous porous media, improving the capability for designing staged remediation strategies for dealing with mixed contaminants.'

  14. Reactive Transport Modeling and Changes in Porosity at Reactive Interfaces in a HLW repository in Clay

    Science.gov (United States)

    Samper, J.; Mon, A.; Montenegro, L.; Naves, A.; Fernández, J.

    2016-12-01

    High-level radioactive waste disposal in a deep geological repository is based on a multibarrier concept which combines natural barriers such as the geological formation and artificial barriers such as metallic containers, bentonite and concrete buffers and sealing materials. The stability and performance of the bentonite barrier could be affected by the corrosion products at the canister-bentonite interface and the hyperalkaline conditions caused by the degradation of concrete at the bentonite-concrete interface. Additionally, the host clay formation could also be affected by the hyperalkaline plume at the concrete-clay interface. Here we present a nonisothermal reactive transport model of the long-term interactions of the compacted bentonite with the corrosion products of a carbon-steel canister and the concrete liner of the engineered barrier of a high-level radioactive waste repository in clay. This problem involves large pH changes with a hyperalkaline high-pH plume, complex mineral dissolution/precipitation patterns, cation exchange reactions and proton surface complexation. These reactions lead to large changes in porosity which can even lead to pore clogging. Model results show that magnetite, the main corrosion product, precipitates and reduces significantly the porosity of the bentonite near the canister. The degradation of the concrete liner leads to the precipitation of secondary minerals and the reduction of the porosity of the bentonite and the clay formation at their interfaces with the concrete liner. The zones affected by pore clogging at the canister-bentonite, bentonite-concrete and concrete-clay interfaces at 1 Ma are equal to 10, 25 and 25 mm thick, respectively. The results of our simulations share many of the features of the models reported by others for engineered barrier systems at similar chemical conditions, including: 1) Narrow alteration zones; and 2) Pore clogging at the canister-bentonite, bentonite-concrete and concrete

  15. Transport of Lactate-modified Nanoscale Iron Particles in Porous Media

    Science.gov (United States)

    Reddy, K. R.

    2012-12-01

    Nanoscale iron particles (NIP) have recently shown to be effective for dehalogenation of recalcitrant organic contaminants such as pentachlorphenol (PCP) and dinitrotoluene (DNT) in the environment. However, effective transport of NIP into the contaminated subsurface zones is crucial for the success of in-situ remediation. Previous studies showed that the transport of NIP in soils is very limited and surface-modification of NIP is required to achieve adequate transport. This paper investigates the transport of NIP and lactate-modified NIP (LMNIP) through four different porous media (sands with different particle size and distribution). A series of laboratory column experiments was conducted to quantify the transport of NIP and LMNIP at two different slurry concentrations of 1 g/L and 4 g/L under two different flow velcoities. NIP used in this study possessed magentic properties, thus a magnetic susceptibility sensor system was used to monitor the changes in magnetic susceptibility (MS) along the length of the column at different times during the experiments. At the end of testing, the distribution of total Fe in the sand column was measured. Results showed a linear correlation between the Fe concentration and MS and it was used to assess the transient transport of NIP and LMNIP in the sand columns. Results showed that LMNIP transported better than bare NIP and higher concentration of 4 g/L LMNIP exhibited unform and greater transport compared to other tested conditions. Transport of NIP increased in the order from fine Ottawa sand > medium field sand > coarse field sand > coarse Ottawa sand. Filtration theory and advective-dispersion equation with reaction were applied to capture the transport response of NIP and LMNIP in the sand columns.

  16. The reactive transport benchmark proposed by GdR MoMaS: presentation and first results

    Energy Technology Data Exchange (ETDEWEB)

    Carrayrou, J. [Institut de Mecanique des Fluides et des Solides, UMR ULP-CNRS 7507, 67 - Strasbourg (France); Lagneau, V. [Ecole des Mines de Paris, Centre de Geosciences, 77 - Fontainebleau (France)

    2007-07-01

    We present here the actual context of reactive transport modelling and the major numerical challenges. GdR MoMaS proposes a benchmark on reactive transport. We present this benchmark and some results obtained on it by two reactive transport codes HYTEC and SPECY. (authors)

  17. Smoothed Particle Hydrodynamics Model for Reactive Transport and Mineral Precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Tartakovsky, Alexandre M.; Scheibe, Timothy D.; Redden, George; Meakin, Paul; Fang, Yilin

    2006-06-30

    A new Lagrangian particle model based on smoothed particle hydrodynamics was used to simulate pore scale precipitation reactions. The side-by-side injection of reacting solutions into two halves of a two-dimensional granular porous medium was simulated. Precipitation on grain surfaces occurred along a narrow zone in the middle of the domain, where the reacting solutes mixed to generate a supersaturated reaction product. The numerical simulations qualitatively reproduced the behavior observed in related laboratory experiments.

  18. Impact of biofilm-induced heterogeneities on solute transport in porous media

    Science.gov (United States)

    Kone, T.; Golfier, F.; Orgogozo, L.; Oltéan, C.; Lefèvre, E.; Block, J. C.; Buès, M. A.

    2014-11-01

    In subsurface systems, biofilm may degrade organic or organometallic pollutants contributing to natural attenuation and soil bioremediation techniques. This increase of microbial activity leads to change the hydrodynamic properties of aquifers. The purpose of this work was to investigate the influence of biofilm-induced heterogeneities on solute transport in porous media and more specifically on dispersivity. We pursued this goal by (i) monitoring both spatial concentration fields and solute breakthrough curves from conservative tracer experiments in a biofilm-supporting porous medium, (ii) characterizing in situ the changes in biovolume and visualizing the dynamics of the biological material at the mesoscale. A series of experiments was carried out in a flow cell system (60 cm3) with a silica sand (Φ = 50-70 mesh) as solid carrier and Shewanella oneidensis MR-1 as bacterial strain. Biofilm growth was monitored by image acquisition with a digital camera. The biofilm volume fraction was estimated through tracer experiments with the Blue Dextran macromolecule as in size-exclusion chromatography, leading to a fair picture of the biocolonization within the flow cell. Biofilm growth was achieved in the whole flow cell in 29 days and up to 50% of void space volume was plugged. The influence of biofilm maturation on porous medium transport properties was evaluated from tracer experiments using Brilliant Blue FCF. An experimental correlation was found between effective (i.e., nonbiocolonized) porosity and biofilm-affected dispersivity. Comparison with values given by the theoretical model of Taylor and Jaffé (1990b) yields a fair agreement.

  19. Physical factors affecting the transport and fate of colloids in saturated porous media

    Science.gov (United States)

    Bradford, Scott A.; Yates, Scott R.; Bettahar, Mehdi; Simunek, Jirka

    2002-12-01

    Saturated soil column experiments were conducted to explore the influence of colloid size and soil grain size distribution characteristics on the transport and fate of colloid particles in saturated porous media. Stable monodispersed colloids and porous media that are negatively charged were employed in these studies. Effluent colloid concentration curves and the final spatial distribution of retained colloids by the porous media were found to be highly dependent on the colloid size and soil grain size distribution. Relative peak effluent concentrations decreased and surface mass removal by the soil increased when the colloid size increased and the soil median grain size decreased. These observations were attributed to increased straining of the colloids; i.e., blocked pores act as dead ends for the colloids. When the colloid size is small relative to the soil pore sizes, straining becomes a less significant mechanism of colloid removal and attachment becomes more important. Mathematical modeling of the colloid transport experiments using traditional colloid attachment theory was conducted to highlight differences in colloid attachment and straining behavior and to identify parameter ranges that are applicable for attachment models. Simulated colloid effluent curves using fitted first-order attachment and detachment parameters were able to describe much of the effluent concentration data. The model was, however, less adequate at describing systems which exhibited a gradual approach to the peak effluent concentration and the spatial distribution of colloids when significant mass was retained in the soil. Current colloid filtration theory did not adequately predict the fitted first-order attachment coefficients, presumably due to straining in these systems.

  20. A new numerical benchmark for variably saturated variable-density flow and transport in porous media

    Science.gov (United States)

    Guevara, Carlos; Graf, Thomas

    2016-04-01

    In subsurface hydrological systems, spatial and temporal variations in solute concentration and/or temperature may affect fluid density and viscosity. These variations could lead to potentially unstable situations, in which a dense fluid overlies a less dense fluid. These situations could produce instabilities that appear as dense plume fingers migrating downwards counteracted by vertical upwards flow of freshwater (Simmons et al., Transp. Porous Medium, 2002). As a result of unstable variable-density flow, solute transport rates are increased over large distances and times as compared to constant-density flow. The numerical simulation of variable-density flow in saturated and unsaturated media requires corresponding benchmark problems against which a computer model is validated (Diersch and Kolditz, Adv. Water Resour, 2002). Recorded data from a laboratory-scale experiment of variable-density flow and solute transport in saturated and unsaturated porous media (Simmons et al., Transp. Porous Medium, 2002) is used to define a new numerical benchmark. The HydroGeoSphere code (Therrien et al., 2004) coupled with PEST (www.pesthomepage.org) are used to obtain an optimized parameter set capable of adequately representing the data set by Simmons et al., (2002). Fingering in the numerical model is triggered using random hydraulic conductivity fields. Due to the inherent randomness, a large number of simulations were conducted in this study. The optimized benchmark model adequately predicts the plume behavior and the fate of solutes. This benchmark is useful for model verification of variable-density flow problems in saturated and/or unsaturated media.

  1. Fires in Operating or Abandoned Coal Mines or Heaps of Reactive Materials and the Governing Transport and Reaction Processes

    Science.gov (United States)

    Wuttke, M. W.; Kessels, W.; Wessling, S.; Han, J.

    2007-05-01

    Spontaneous combustion is a world wide problem for technical operations in mining, waste disposal and power plant facilities. The principle driving the combustion is every where the same independent of the different reactive materials: Fresh air with the common oxygen content is getting in contact with the reactive material by human operations. The following reaction process produces heat at a usually low but constant rate. The reactive material in operating or abandoned coal mines, heaps of coal, waste or reactive minerals is most times strongly broken or fractured, such that the atmospheric oxygen can deeply penetrate into the porous or fractured media. Because the strongly broken or fractured medium with air filled pores and fractures is often combined with a low thermal conductivity of the bulk material the produced heat accumulates and the temperature increases with time. If the reactivity strongly increases with temperature, the temperature rise accelerates up to the "combustion temperature". Once the temperature is high enough the combustion process is determined by the oxygen transport to the combustion center rather than the chemical reactivity. Spontaneous combustion is thus a self- amplifying process where an initial small variation in the parameters and the starting conditions can create exploding combustion hot spots in an apparently homogenous material. The phenomenon will be discussed by various examples in the context of the German - Sino coal fire project. A temperature monitoring in hot fracture systems documents the strong influence of the weather conditions on the combustion process. Numerical calculations show the sensitivity of the combustion to the model geometries, the boundary conditions and mainly the permeability. The most used fire fighting operations like covering and water injection are discussed. A new method of using saltwater for fire fighting is presented and discussed. References: Kessels, W., Wessling, S., Li, X., and Wuttke, M

  2. Effect of Temperature Wave on the Gas Transport in Liquid-Saturated Porous Media

    CERN Document Server

    Goldobin, Denis S

    2013-01-01

    We study the effect of surface temperature oscillations on gas mass transport through liquid-saturated porous media. Temperature wave induced by these oscillations and decaying deep in the massif creates the gas solubility wave along with the corresponding solute diffusion flux wave. When bubbles are immobilized by the surface tension force the only remaining mechanisms of gas mass transport are related to solute flux through liquid in pores. We evaluate analytically the generated time-average mass flux for the case of medium everywhere littered with gas bubbles and reveal the significant effect of the temperature wave on the gas release from the massif and bubble mass redistribution within the massif. Analytical theory is validated with numerical calculations.

  3. An Iterative Implicit Scheme for Nanoparticles Transport with Two-Phase Flow in Porous Media

    KAUST Repository

    El-Amin, Mohamed

    2016-06-01

    In this paper, we introduce a mathematical model to describe the nanoparticles transport carried by a two-phase flow in a porous medium including gravity, capillary forces and Brownian diffusion. Nonlinear iterative IMPES scheme is used to solve the flow equation, and saturation and pressure are calculated at the current iteration step and then the transport equation is solved implicitly. Therefore, once the nanoparticles concentration is computed, the two equations of volume of the nanoparticles available on the pore surfaces and the volume of the nanoparticles entrapped in pore throats are solved implicitly. The porosity and the permeability variations are updated at each time step after each iteration loop. Numerical example for regular heterogenous permeability is considered. We monitor the changing of the fluid and solid properties due to adding the nanoparticles. Variation of water saturation, water pressure, nanoparticles concentration and porosity are presented graphically.

  4. A Multiscale Time-Splitting Discrete Fracture Model of Nanoparticles Transport in Fractured Porous Media

    KAUST Repository

    El-Amin, Mohamed F.

    2017-06-06

    Recently, applications of nanoparticles have been considered in many branches of petroleum engineering, especially, enhanced oil recovery. The current paper is devoted to investigate the problem of nanoparticles transport in fractured porous media, numerically. We employed the discrete-fracture model (DFM) to represent the flow and transport in the fractured formations. The system of the governing equations consists of the mass conservation law, Darcy\\'s law, nanoparticles concentration in water, deposited nanoparticles concentration on the pore-wall, and entrapped nanoparticles concentration in the pore-throat. The variation of porosity and permeability due to the nanoparticles deposition/entrapment on/in the pores is also considered. We employ the multiscale time-splitting strategy to control different time-step sizes for different physics, such as pressure and concentration. The cell-centered finite difference (CCFD) method is used for the spatial discretization. Numerical examples are provided to demonstrate the efficiency of the proposed multiscale time splitting approach.

  5. Retention and transport of silica nanoparticles in saturated porous media: effect of concentration and particle size.

    Science.gov (United States)

    Wang, Chao; Bobba, Aparna Devi; Attinti, Ramesh; Shen, Chongyang; Lazouskaya, Volha; Wang, Lian-Ping; Jin, Yan

    2012-07-03

    Investigations on factors that affect the fate and transport of nanoparticles (NPs) remain incomplete to date. In the present study, we conducted column experiments using 8 and 52 nm silica NPs to examine the effects of NPs' concentration and size on their retention and transport in saturated porous media. Results showed that higher particle number concentration led to lower relative retention and greater surface coverage. Smaller NPs resulted in higher relative retention and lower surface coverage. Meanwhile, evaluation of size effect based on mass concentration (mg/L) vs particle number concentration (particles/mL) led to different conclusions. A set of equations for surface coverage calculation was developed and applied to explain the different results related to the size effects when a given mass concentration (mg/L) and a given particle number concentration were used. In addition, we found that the retained 8 nm NPs were released upon lowered solution ionic strength, contrary to the prediction by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The study herein highlights the importance of NPs' concentration and size on their behavior in porous media. To the best of our knowledge, it is the first report of an improved equation for surface coverage calculation using column breakthrough data.

  6. Control and optimization of solute transport in a thin porous tube

    KAUST Repository

    Griffiths, I. M.

    2013-03-01

    Predicting the distribution of solutes or particles in flows within porous-walled tubes is essential to inform the design of devices that rely on cross-flow filtration, such as those used in water purification, irrigation devices, field-flow fractionation, and hollow-fibre bioreactors for tissue-engineering applications. Motivated by these applications, a radially averaged model for fluid and solute transport in a tube with thin porous walls is derived by developing the classical ideas of Taylor dispersion. The model includes solute diffusion and advection via both radial and axial flow components, and the advection, diffusion, and uptake coefficients in the averaged equation are explicitly derived. The effect of wall permeability, slip, and pressure differentials upon the dispersive solute behaviour are investigated. The model is used to explore the control of solute transport across the membrane walls via the membrane permeability, and a parametric expression for the permeability required to generate a given solute distribution is derived. The theory is applied to the specific example of a hollow-fibre membrane bioreactor, where a uniform delivery of nutrient across the membrane walls to the extra-capillary space is required to promote spatially uniform cell growth. © 2013 American Institute of Physics.

  7. Transport study in unsaturated porous media by tracer experiment in a dichromatic X-ray experimental device

    Directory of Open Access Journals (Sweden)

    Néel M.C.

    2013-05-01

    Full Text Available Estimating contaminant migration in the context of waste disposal and/or environmental remediation of polluted soils requires a complete understanding of the underlying transport processes. In unsaturated porous media, water content is one of the most determining parameters to describe solute migration because it impacts directly on solute pore velocity. However, numerous studies are satisfied with only a global or a partial spatial distribution of water content within the studied porous media. Therefore, distribution of water content in porous media must be precisely achieved to optimize transport processes modeling. Tracer experiments with downward flow were performed on the BEETI experimental device equipped with a sand column. Water content and concentration profiles of tracer (KI were measured along the column during experiment. The relative dispersion of water content, calculated along the column, gives an idea of influence of this parameter on transport properties. A relationship between pore velocity, Darcy flow velocity and water content is proposed.

  8. Transport study in unsaturated porous media by tracer experiment in a dichromatic X-ray experimental device

    Science.gov (United States)

    Latrille, C.; Néel, M. C.

    2013-05-01

    Estimating contaminant migration in the context of waste disposal and/or environmental remediation of polluted soils requires a complete understanding of the underlying transport processes. In unsaturated porous media, water content is one of the most determining parameters to describe solute migration because it impacts directly on solute pore velocity. However, numerous studies are satisfied with only a global or a partial spatial distribution of water content within the studied porous media. Therefore, distribution of water content in porous media must be precisely achieved to optimize transport processes modeling. Tracer experiments with downward flow were performed on the BEETI experimental device equipped with a sand column. Water content and concentration profiles of tracer (KI) were measured along the column during experiment. The relative dispersion of water content, calculated along the column, gives an idea of influence of this parameter on transport properties. A relationship between pore velocity, Darcy flow velocity and water content is proposed.

  9. Window on a microworld: simple microfluidic systems for studying microbial transport in porous media.

    Science.gov (United States)

    Markov, Dmitry A; Samson, Philip C; Schaffer, David K; Dhummakupt, Adit; Wikswo, John P; Shor, Leslie M

    2010-05-03

    Microbial growth and transport in porous media have important implications for the quality of groundwater and surface water, the recycling of nutrients in the environment, as well as directly for the transmission of pathogens to drinking water supplies. Natural porous media is composed of an intricate physical topology, varied surface chemistries, dynamic gradients of nutrients and electron acceptors, and a patchy distribution of microbes. These features vary substantially over a length scale of microns, making the results of macro-scale investigations of microbial transport difficult to interpret, and the validation of mechanistic models challenging. Here we demonstrate how simple microfluidic devices can be used to visualize microbial interactions with micro-structured habitats, to identify key processes influencing the observed phenomena, and to systematically validate predictive models. Simple, easy-to-use flow cells were constructed out of the transparent, biocompatible and oxygen-permeable material poly(dimethyl siloxane). Standard methods of photolithography were used to make micro-structured masters, and replica molding was used to cast micro-structured flow cells from the masters. The physical design of the flow cell chamber is adaptable to the experimental requirements: microchannels can vary from simple linear connections to complex topologies with feature sizes as small as 2 microm. Our modular EcoChip flow cell array features dozens of identical chambers and flow control by a gravity-driven flow module. We demonstrate that through use of EcoChip devices, physical structures and pressure heads can be held constant or varied systematically while the influence of surface chemistry, fluid properties, or the characteristics of the microbial population is investigated. Through transport experiments using a non-pathogenic, green fluorescent protein-expressing Vibrio bacterial strain, we illustrate the importance of habitat structure, flow conditions, and

  10. Effects of solution chemistry on the transport of graphene oxide in saturated porous media.

    Science.gov (United States)

    Lanphere, Jacob D; Luth, Corey J; Walker, Sharon L

    2013-05-07

    A transport study was performed in saturated porous media through a packed bed column to simulate fate of graphene oxide nanoparticles (GONPs) in the subsurface environment. Transport experiments, along with mass balances and column dissections, were conducted as a function of ionic strength (IS, 10(-3)-10(-1) M). Additionally, an extensive evaluation of the electrokinetic properties and hydrodynamic diameters of GONPs were determined as a function of IS and pH. The measured hydrodynamic diameter and the electrophoretic mobility (EPM) of GONPs indicated an insensitivity to pH, although IS did play a role. Results from a stability study indicated that the hydrodynamic diameter of GONPs was stable and unchanging at the lower range of IS (10(-3) and 10(-2) M) then became unstable when IS ≥ 10(-1.5) M KCl was achieved. Specifically, for IS ≥ 10(-1.5) M KCl, the hydrodynamic diameter became greater and showed a larger size range of particles than at the lower IS range (10(-3) and 10(-2) M). In addition, the EPM of GONPs became less negative over the IS range of 10(-3) and 10(-2) M KCl. Furthermore, GONPs were found to be increasingly mobile for IS ≤ 10(-2) M KCl. When GONPs were passed through the packed bed column at 10(-2) and 10(-1) M KCl, 5% and 100% of the GONPs were retained in the column, respectively. Finally, mass balances and column dissections revealed that in the first cm of the column 7% and 95% of the GONPs were deposited at 10(-2) and 10(-1) M KCl, respectively, confirming that the transport of GONPs is a function of IS. The fraction of GONPs eluted during the transport experiments provides insight into the contribution of aggregation and reversibly bound fraction of GONPs in saturated porous media.

  11. Influence of graphene oxide on the transport and deposition behaviors of colloids in saturated porous media.

    Science.gov (United States)

    Peng, Shengnan; Wu, Dan; Ge, Zhi; Tong, Meiping; Kim, Hyunjung

    2017-03-30

    The effects of graphene oxide (GO) on the transport and deposition behaviors of colloids with different sizes in packed quartz sand were investigated in both NaCl (10 and 50 mM) and CaCl2 solutions (1 and 5 mM) at pH 6. Fluorescent carboxylate-modified polystyrene latex microspheres (CMLs) with size ranging from 0.2 to 2 μm were utilized as model colloids. Both breakthrough curves and retained profiles of colloids in the presence and absence of GO in suspensions under all examined solution conditions were analyzed. The breakthrough curves of all three different-sized CMLs with GO were higher yet the retained profiles were lower than those without GO at both examined ionic strengths in NaCl solutions. The observation showed that GO increased the transport and decreased the deposition of all three different-sized CMLs in NaCl solutions. However, in CaCl2 solutions, opposite observation was achieved at two different ionic strength conditions. Specifically, the presence of GO increased the transport and decreased the deposition of all three different-sized CMLs in 1 mM CaCl2 solutions, whereas, it decreased the transport and increased the deposition of all three different-sized CMLs in 5 mM CaCl2 solutions. Comparison the breakthrough curves and retained profiles of CMLs versus those of GO yielded that the overall transport and deposition behaviors of all three different-sized CMLs with GO copresent in suspensions agreed well with the transport and deposition behaviors of GO under all examined conditions. The transport and deposition behaviors of CMLs in packed porous media clearly were controlled by those of GO under the conditions investigated in present study due to the adsorption of CMLs onto GO surfaces. Our study showed that once released into natural environment, GO would adsorb (interact with) different types of colloids and thus have significant influence on the fate and transport of colloids in porous media.

  12. Comparing discrete fracture and continuum models to predict contaminant transport in fractured porous media.

    Science.gov (United States)

    Blessent, Daniela; Jørgensen, Peter R; Therrien, René

    2014-01-01

    We used the FRAC3Dvs numerical model (Therrien and Sudicky 1996) to compare the dual-porosity (DP), equivalent porous medium (EPM), and discrete fracture matrix diffusion (DFMD) conceptual models to predict field-scale contaminant transport in a fractured clayey till aquitard. The simulations show that the DP, EPM, and DFMD models could be equally well calibrated to reproduce contaminant breakthrough in the till aquitard for a base case. In contrast, when groundwater velocity and degradation rates are modified with respect to the base case, the DP method simulated contaminant concentrations up to three orders of magnitude different from those calculated by the DFMD model. In previous simulations of well-characterized column experiments, the DFMD method reproduced observed changes in solute transport for a range of flow and transport conditions comparable to those of the field-scale simulations, while the DP and EPM models required extensive recalibration to avoid high magnitude errors in predicted mass transport. The lack of robustness with respect to variable flow and transport conditions suggests that DP models and effective porosity EPM models have limitations for predicting cause-effect relationships in environmental planning. The study underlines the importance of obtaining well-characterized experimental data for further studies and evaluation of model key process descriptions and model suitability. © 2013, National Groundwater Association.

  13. Modeling of the Transport and Retention of Fullerene C60 Aggregates in Porous Media

    Science.gov (United States)

    Li, Y.; Wang, Y.; Pennell, K.; Abriola, L.

    2008-12-01

    Buckminster fullerene (C60) has recently gained wide application in many commercial products. Given its widespread use, release of C60 into the environment during manufacture, transportation, and/or application is likely. Although C60 has negligible solubility in water, it is capable of acquiring charge and form highly stable nano-scale aggregates (nC60) in aqueous systems. In recent years, several laboratory research efforts have been devoted to studying the potential fate and transport of nC60 in porous media representative of the natural subsurface environment. Traditional clean-bed filtration theory is typically applied to analyze the experimental results. Far less attention has focused on the applicability of filtration theory to nC60 transport under different soil and solution conditions. In this work, we simulate column transport of nC60 under progressively more complex conditions and compare with laboratory observations. For nC60 transport in columns packed with Ottawa sand and simple electrolyte solutions, i.e. 1mM CaCl2 and 1mM NaCl, simulation results reveal that traditional clean-bed filtration theory is not sufficient to model the asymmetric breakthrough curves and relatively flat retention profiles observed in these systems. Modification of the filtration model, incorporating a maximum retention capacity term, can provide remarkably improved modeling results. The second application is for transport of nC60 in Ottawa sand coated with surfactant. The observed retention profiles in these experiments exhibit a hyper-exponential feature. Modeling results demonstrate that coupled simulation of both surfactant and nC60 transport is required to correctly capture the hyper-exponential retention profile in these systems. Finally, efforts to model the transport of nC60 in real soils, including Appling and Webster soils, are presented, suggesting that modification of filtration theory is also necessary in this case, to capture the shape of the observed retention

  14. Solute transport predicts scaling of surface reaction rates in porous media: Applications to silicate weathering

    CERN Document Server

    Hunt, Allen G; Ghanbarian, Behzad

    2013-01-01

    We apply our theory of conservative solute transport, based on concepts from percolation theory, directly and without modification to reactive solute transport. This theory has previously been shown to predict the observed range of dispersivity values for conservative solute transport over ten orders of magnitude of length scale. We now show that the temporal dependence derived for the solute velocity accurately predicts the time-dependence for the weathering of silicate minerals over nine orders of magnitude of time scale, while its predicted length dependence agrees with data obtained for reaction rates over five orders of magnitude of length scale. In both cases, it is possible to unify lab and field results. Thus, net reaction rates appear to be limited by solute transport velocities. We suggest the possible relevance of our results to landscape evolution of the earth's terrestrial surface.

  15. The effects of surface aging on nanoparticle fate and transport in natural and engineered porous media

    Science.gov (United States)

    Mittelman, Anjuliee M.

    Nanomaterials will be subjected to various surface transformations in the environment and within water and wastewater treatment systems. A comprehensive understanding of the fate and transport behavior of "aged" nanomaterials in both natural and engineered porous media is required in order to accurately quantify ecological and human health risks. This research sought to (1) evaluate the impact of ultraviolet (UV) light aging on nanoparticle transport in water-saturated porous media; and (2) assess the effects of influent water quality on silver nanoparticle retention and dissolution in ceramic water filters. Additionally, the value of quartz crystal microbalance (QCM-D) data in nanoparticle fate and transport studies was evaluated by comparing deposition behavior in complementary QCM-D and sand columns experiments. Silver (nAg) and iron oxide nanoparticles exposed to UV light were up to 50% more strongly retained in porous media compared with freshly prepared suspensions due to less negative surface charge and larger aggregate sizes. UV-aged nAg were more prone to dissolution in sand columns, resulting in effluent Ag+ concentrations as high as 1.2 mg/L. In ceramic water filters, dissolution and cation exchange processes controlled silver release into treated water. The use of acidic, high salinity, or high hardness water accelerated oxidative dissolution of the silver coating and resulted in effluent silver concentrations 5-10 times above international drinking water guidelines. Results support the recommendation for a regular filter replacement or silver re-application schedule to ensure ongoing efficacy. Taken in concert, these research findings suggest that oxidative aging of nanomaterial surfaces (either through exposure to UV light or aggressive water chemistries) will alter the fate of nanomaterials in the environment and may decrease the effective lifetime of devices which utilize nanotechnology. Corresponding QCM-D and column experiments revealed that

  16. Experimental and theoretical investigations of shock-induced flow of reactive porous media

    Energy Technology Data Exchange (ETDEWEB)

    Baer, M.R.; Graham, R.A.; Anderson, M.U. [Sandia National Labs., Albuquerque, NM (United States); Sheffield, S.A.; Gustavsen, R.L. [Los Alamos National Lab., NM (United States)

    1996-11-01

    In this work, the microscale processes of consolidation, deformation and reaction features of shocked porous materials are studied. Time- resolve particle velocities and stress fields associated with dispersive compaction waves are measured in gas-gun experiments. In these tests, a thin porous layer of HMX is shock-loaded at varied levels. At high impact, significant reaction is triggered by the rapid material distortion during compaction. In parallel modeling studies, continuum mixture theory is applied to describe the behavior of averaged wave-fields in heterogeneous media. One-dimensional simulations of gas-gun experiments demonstrate that the wave features and interactions with viscoelastic materials in the gauge package are well described by mixture theory, including reflected wave behavior and conditions where significant reaction is initiated. Numerical simulations of impact on a collection of discrete HMX `crystals` are also presented using shock physics analysis. Three-dimensional simulations indicate that rapid distortion occurs at material contact points; the nature of the dispersive fields includes large amplitude fluctuations of stress with wavelengths of several particle diameters. Localization of energy causes `hot-spots` due to shock focusing and plastic work as material flows into interstitial regions. These numerical experiments demonstrate that `hot-spots` are strongly influenced by multiple crystal interactions. This mesoscale study provides new insights into micromechanical behavior of heterogeneous energetic materials.

  17. Fast simulation of transport and adaptive permeability estimation in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Berre, Inga

    2005-07-01

    The focus of the thesis is twofold: Both fast simulation of transport in porous media and adaptive estimation of permeability are considered. A short introduction that motivates the work on these topics is given in Chapter 1. In Chapter 2, the governing equations for one- and two-phase flow in porous media are presented. Overall numerical solution strategies for the two-phase flow model are also discussed briefly. The concepts of streamlines and time-of-flight are introduced in Chapter 3. Methods for computing streamlines and time-of-flight are also presented in this chapter. Subsequently, in Chapters 4 and 5, the focus is on simulation of transport in a time-of-flight perspective. In Chapter 4, transport of fluids along streamlines is considered. Chapter 5 introduces a different viewpoint based on the evolution of isocontours of the fluid saturation. While the first chapters focus on the forward problem, which consists in solving a mathematical model given the reservoir parameters, Chapters 6, 7 and 8 are devoted to the inverse problem of permeability estimation. An introduction to the problem of identifying spatial variability in reservoir permeability by inversion of dynamic production data is given in Chapter 6. In Chapter 7, adaptive multiscale strategies for permeability estimation are discussed. Subsequently, Chapter 8 presents a level-set approach for improving piecewise constant permeability representations. Finally, Chapter 9 summarizes the results obtained in the thesis; in addition, the chapter gives some recommendations and suggests directions for future work. Part II In Part II, the following papers are included in the order they were completed: Paper A: A Streamline Front Tracking Method for Two- and Three-Phase Flow Including Capillary Forces. I. Berre, H. K. Dahle, K. H. Karlsen, and H. F. Nordhaug. In Fluid flow and transport in porous media: mathematical and numerical treatment (South Hadley, MA, 2001), volume 295 of Contemp. Math., pages 49

  18. Development of RWHet to Simulate Contaminant Transport in Fractured Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong; LaBolle, Eric; Reeves, Donald M; Russell, Charles

    2012-07-01

    Accurate simulation of matrix diffusion in regional-scale dual-porosity and dual-permeability media is a critical issue for the DOE Underground Test Area (UGTA) program, given the prevalence of fractured geologic media on the Nevada National Security Site (NNSS). Contaminant transport through regional-scale fractured media is typically quantified by particle-tracking based Lagrangian solvers through the inclusion of dual-domain mass transfer algorithms that probabilistically determine particle transfer between fractures and unfractured matrix blocks. UGTA applications include a wide variety of fracture aperture and spacing, effective diffusion coefficients ranging four orders of magnitude, and extreme end member retardation values. This report incorporates the current dual-domain mass transfer algorithms into the well-known particle tracking code RWHet [LaBolle, 2006], and then tests and evaluates the updated code. We also develop and test a direct numerical simulation (DNS) approach to replace the classical transfer probability method in characterizing particle dynamics across the fracture/matrix interface. The final goal of this work is to implement the algorithm identified as most efficient and effective into RWHet, so that an accurate and computationally efficient software suite can be built for dual-porosity/dual-permeability applications. RWHet is a mature Lagrangian transport simulator with a substantial user-base that has undergone significant development and model validation. In this report, we also substantially tested the capability of RWHet in simulating passive and reactive tracer transport through regional-scale, heterogeneous media. Four dual-domain mass transfer methodologies were considered in this work. We first developed the empirical transfer probability approach proposed by Liu et al. [2000], and coded it into RWHet. The particle transfer probability from one continuum to the other is proportional to the ratio of the mass entering the other

  19. Upscaling of solute transport in disordered porous media by wavelet transformations

    Science.gov (United States)

    Moslehi, Mahsa; de Barros, Felipe P. J.; Ebrahimi, Fatemeh; Sahimi, Muhammad

    2016-10-01

    Modeling flow and solute transport in large-scale (e.g.) on the order of 103 m heterogeneous porous media involves substantial computational burden. A common approach to alleviate the problem is to utilize an upscaling method that generates models that require less intensive computations. The method must also preserve the important properties of the spatial distribution of the hydraulic conductivity (K) field. We use an upscaling method based on the wavelet transformations (WTs) that coarsens the computational grid based on the spatial distribution of K. The technique is applied to a porous formation with broadly distributed and correlated K values, and the governing equation for solute transport in the formation is solved numerically. The WT upscaling preserves the resolution of the initial highly-resolved computational grid in the high K zones, as well as that of the zones with sharp contrasts between the neighboring K, whereas the low-K zones are averaged out. To demonstrate the accuracy of the method, we simulate fluid flow and nonreactive solute transport in both the high-resolution and upscaled grids, and compare the concentration profiles and the breakthrough times. The results indicate that the WT upscaling of a K field generates non-uniform upscaled grids with a number of grid blocks that on average is about two percent of the number of the blocks in the original high-resolution computational grids, while the concentration profiles, the breakthrough times and the second moment of the concentration distribution, computed for both models, are virtually identical. A systematic parametric study is also carried out in order to investigate the sensitivity of the method to the broadness of the K field, the nature of the correlations in the field (positive versus negative), and the size of the computational grid. As the broadness of the K field and the size of the computational domain increase, better agreement between the results for the high-resolution and

  20. Transport of barrel and spherical shaped colloids in unsaturated porous media.

    Science.gov (United States)

    Knappenberger, Thorsten; Aramrak, Surachet; Flury, Markus

    2015-09-01

    Model colloids are usually spherical, but natural colloids have irregular geometries. Transport experiments of spherical colloids may not reflect the transport characteristics of natural colloids in porous media. We investigated saturated and unsaturated transport of colloids with spherical and angular shapes under steady-state, flow conditions. A pulse of negatively-charged colloids was introduced into a silica sand column at three different effective water saturations (Se = 0.31, 0.45, and 1.0). Colloids were introduced under high ionic strength of [106]mM to cause attachment to the secondary energy minimum and later released by changing the pore water to low ionic strength. After the experiment, sand was sampled from different depths (0, -4, and -11 cm) for scanning electron microscopy (SEM) analysis and colloid extraction. Water saturation affected colloid transport with more retention under low than under high saturation. Colloids were retained and released from a secondary energy minimum with more angular-shaped colloids being retained and released. Colloids extracted from the sand revealed highest colloid deposition in the top layer and decreasing deposition with depth. Pore straining and grain-grain wedging dominated colloid retention. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Recirculation zones induce non-Fickian transport in three-dimensional periodic porous media

    Science.gov (United States)

    Crevacore, Eleonora; Tosco, Tiziana; Sethi, Rajandrea; Boccardo, Gianluca; Marchisio, Daniele L.

    2016-11-01

    In this work, the influence of pore space geometry on solute transport in porous media is investigated performing computational fluid dynamics pore-scale simulations of fluid flow and solute transport. The three-dimensional periodic domains are obtained from three different pore structure configurations, namely, face-centered-cubic (fcc), body-centered-cubic (bcc), and sphere-in-cube (sic) arrangements of spherical grains. Although transport simulations are performed with media having the same grain size and the same porosity (in fcc and bcc configurations), the resulting breakthrough curves present noteworthy differences, such as enhanced tailing. The cause of such differences is ascribed to the presence of recirculation zones, even at low Reynolds numbers. Various methods to readily identify recirculation zones and quantify their magnitude using pore-scale data are proposed. The information gained from this analysis is then used to define macroscale models able to provide an appropriate description of the observed anomalous transport. A mass transfer model is applied to estimate relevant macroscale parameters (hydrodynamic dispersion above all) and their spatial variation in the medium; a functional relation describing the spatial variation of such macroscale parameters is then proposed.

  2. Sepia ink as a surrogate for colloid transport tests in porous media

    Science.gov (United States)

    Soto-Gómez, Diego; Pérez-Rodríguez, Paula; López-Periago, J. Eugenio; Paradelo, Marcos

    2016-08-01

    We examined the suitability of the ink of Sepia officinalis as a surrogate for transport studies of microorganisms and microparticles in porous media. Sepia ink is an organic pigment consisted on a suspension of eumelanin, and that has several advantages for its use as a promising material for introducing the frugal-innovation in the fields of public health and environmental research: very low cost, non-toxic, spherical shape, moderate polydispersivity, size near large viruses, non-anomalous electrokinetic behavior, low retention in the soil, and high stability. Electrokinetic determinations and transport experiments in quartz sand columns and soil columns were done with purified suspensions of sepia ink. Influence of ionic strength on the electrophoretic mobility of ink particles showed the typical behavior of polystyrene latex spheres. Breakthrough curve (BTC) and retention profile (RP) in quartz sand columns showed a depth dependent and blocking adsorption model with an increase in adsorption rates with the ionic strength. Partially saturated transport through undisturbed soil showed less retention than in quartz sand, and matrix exclusion was also observed. Quantification of ink in leachate fractions by light absorbance is direct, but quantification in the soil profile with moderate to high organic matter content was rather cumbersome. We concluded that sepia ink is a suitable cheap surrogate for exploring transport of pathogenic viruses, bacteria and particulate contaminants in groundwater, and could be used for developing frugal-innovation related with the assessment of soil and aquifer filtration function, and monitoring of water filtration systems in low-income regions.

  3. Analytic solutions for colloid transport with time- and depth-dependent retention in porous media

    Science.gov (United States)

    Leij, Feike J.; Bradford, Scott A.; Sciortino, Antonella

    2016-12-01

    Elucidating and quantifying the transport of industrial nanoparticles (e.g. silver, carbon nanotubes, and graphene oxide) and other colloid-size particles such as viruses and bacteria is important to safeguard and manage the quality of the subsurface environment. Analytic solutions were derived for aqueous and solid phase colloid concentrations in a porous medium where colloids were subject to advective transport and reversible time and/or depth-dependent retention. Time-dependent blocking and ripening retention were described using a Langmuir-type equation with a rate coefficient that respectively decreased and increased linearly with the retained concentration. Depth-dependent retention was described using a rate coefficient that is a power-law function of distance. The stream tube modeling concept was employed to extend these analytic solutions to transport scenarios with two different partitioning processes (i.e., two types of retention sites). The sensitivity of concentrations was illustrated for the various time- and/or depth-dependent retention model parameters. The developed analytical models were subsequently used to describe breakthrough curves and, in some cases, retention profiles from several published column studies that employed nanoparticle or pathogenic microorganisms. Simulations results provided valuable insights on causes for many observed complexities associated with colloid transport and retention, including: increasing or decreasing effluent concentrations with continued colloid application, delayed breakthrough, low concentration tailing, and retention profiles that are hyper-exponential, exponential, linear, or non-monotonic with distance.

  4. Coulombic interactions during advection-dominated transport of ions in porous media

    Science.gov (United States)

    Muniruzzaman, Muhammad; Stolze, Lucien; Rolle, Massimo

    2017-04-01

    Solute transport of charged species in porous media is significantly affected by the electrochemical migration term resulting from the charge-induced interactions among dissolved ions and with solid surfaces. Therefore, the characterization of such Coulombic interactions and their effect on multicomponent ionic transport is of critical importance for assessing the fate of charged solutes in porous media. In this work we present a detailed investigation of the electrochemical effects during conservative multicomponent ionic transport in homogeneous and heterogeneous domains by means of laboratory bench-scale experiments and numerical simulations. The investigation aims at quantifying the key role of small-scale electrostatic interactions in flow-through systems, especially when advection is the dominant mass-transfer process. Considering dilute solutions of strong electrolytes (e.g., MgCl2 and NaBr) we report results showing the important role of Coulombic interactions in the lateral displacement of the different ionic species for steady-state transport scenarios in which the solutions are continuously injected through different portions of the flow-through chamber [1, 2]. Successively, we focus our attention on transient transport and pulse injection of the electrolytes. In these experiments high-resolution spatial and temporal monitoring of the ions' concentrations (600 samples; 1800 concentration measurements), at closely spaced outlet ports (5 mm), allowed us resolving the effects of charge interactions on the temporal breakthrough and spatial profiles of the cations and anions [3]. The interpretation of the experimental results requires a multicomponent modeling approach with an accurate description of local hydrodynamic dispersion, as well as the explicit quantification of the dispersive fluxes' cross-coupling due to the Coulombic interactions between the charged species. A new 2-D simulator [4], coupling the solution of the multicomponent ionic transport

  5. Notes on HP1 a software package for simulating variably-saturated water flow, heat transport, solute transport, and biogeochemistry in porous media. HP1 Version 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, D.; Simunek, J.

    2010-01-15

    HP1 is a comprehensive modeling tool in terms of processes and reactions for simulating reactive transport and biogeochemical processes in variably-saturated porous media. HP1 results from coupling the water and solute transport model HYDRUS-1D (Simunek et al., 2009a) and PHREEQC-2 (Parkhurst and Appelo, 1999). This note provides an overview of how to set up and execute a HP1 project using version 2.2.002 of HP1 and version 4.13 of the graphical user interface (GUI) of HYDRUS-1D. A large part of this note are step-by-step instructions for selected examples involving mineral dissolution and precipitation, cation exchange, surface complexation and kinetic degradation networks. The implementation of variably-saturated flow conditions, changing boundary conditions, a layered soil profile or immobile water is also illustrated.

  6. Transport of zero-valent iron nanoparticles in carbonate-rich porous aquifers

    Science.gov (United States)

    Laumann, S.; Micic, V.; Hofmann, T.

    2012-04-01

    Use of nanoscale zero-valent iron (nZVI) for in situ dechlorination of chlorinated solvents in groundwater is a promising remediation technology, due to a high dechlorination efficiency of nZVI and possible applications in e.g., great depth or under above-ground infrastructure. The success of the in situ nZVI dechlorination strongly depends on the particle delivery to the contaminants. Previous studies reported a limited transport of nZVI through porous media (cm- to dm-range) and this has been recognized as one of the major obstacles in a widespread utilization of this technology (TRATNYEK & JOHNSON, 2006). Factors that limit the transport are particle aggregation and deposition onto the aquifer solids. Both depend on particle properties (e.g., size, shape, iron content, surface coating, surface charge), on concentrations of suspensions, and on site-specific parameters, such as the groundwater chemistry and the properties and inhomogeneity of the aquifer material. Adsorbed anionic polyelectrolyte coatings provide electrostatic double layer repulsions between negatively charged nZVI particles (SALEH ET AL., 2007), hindering their aggregation and also deposition on the negatively charged quartz surfaces (usually prevailing in aquifers). However, it is shown that the presence of surface charge heterogeneities in the aquifer effects the particle transport (JOHNSON ET AL., 1996). Carbonates, iron oxides, and the edges of clay minerals, for instance, carry a positive surface charge at neutral pH (often encountered in groundwater). This leads to a favorable deposition of negatively charged nZVI particles onto carbonates, metal oxide impurities or clay edges, and finally to a decreased particle transport. Considering the high proportion of carbonates commonly encountered in Alpine porous aquifers, in this study we aimed to evaluate the transport of commercially available polyelectrolyte coated nZVI (polyacrylic acid coated-nZVI, NANOIRON s.r.o., CZ) in both quartz and

  7. Attenuation of pyrite oxidation with a fly ash pre-barrier: Reactive transport modelling of column experiments

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Lopez, R.; Cama, J.; Nieto, J.M.; Ayora, C.; Saaltink, M.W. [University of Huelva, Huelva (Spain). Dept. of Geology

    2009-09-15

    Conventional permeable reactive barriers (PRBs) for passive treatment of groundwater contaminated by acid mine drainage (AMD) use limestone as reactive material that neutralizes water acidity. However, the limestone-alkalinity potential ceases as inevitable precipitation of secondary metal-phases on grain surfaces occurs, limiting its efficiency. In the present study, fly ash derived from coal combustion is investigated as an alternative alkalinity generating material for the passive treatment of AMD using solution-saturated column experiments. Unlike conventional systems, the utilization of fly ash in a pre-barrier to intercept the non-polluted recharge water before this water reacts with pyrite-rich wastes is proposed. Chemical variation in the columns was interpreted with the reactive transport code RETRASO. In parallel, kinetics of fly ash dissolution at alkaline pH were studied using flow-through experiments and incorporated into the model. In a saturated column filled solely with pyritic sludge-quartz sand (1: 10), oxidation took place at acidic conditions (pH 3.7). According to SO{sub 4}{sup 2-} release and pH, pyrite dissolution occurred favourably in the solution-saturated porous medium until dissolved O{sub 2} was totally consumed. In a second saturated column, pyrite oxidation took place at alkaline conditions (pH 10.45) as acidity was neutralized by fly ash dissolution in a previous level. At this pH Fe release from pyrite dissolution was immediately depleted as Fe-oxy(hydroxide) phases that precipitated on the pyrite grains, forming Fe-coatings (microencapsulation). With time, pyrite microencapsulation inhibited oxidation in practically 97% of the pyritic sludge. Rapid pyrite-surface passivation decreased its reactivity, preventing AMD production in the relatively short term.

  8. Individual and Co Transport Study of Titanium Dioxide NPs and Zinc Oxide NPs in Porous Media.

    Directory of Open Access Journals (Sweden)

    Jyoti Kumari

    Full Text Available The impact of pH and ionic strength on the mobility (individual and co-transport and deposition kinetics of TiO2 and ZnO NPs in porous media was systematically investigated in this study. Packed column experiments were performed over a series of environmentally relevant ionic strengths with both NaCl (0.1-10 mM and CaCl2 (0.01-0.1mM solutions and at pH 5, 7, and 9. The transport of TiO2 NPs at pH 5 was not significantly affected by ZnO NPs in solution. At pH 7, a decrease in TiO2 NP transport was noted with co-existence of ZnO NPs, while at pH 9 an increase in the transport was observed. At pH 5 and 7, the transport of ZnO NPs was decreased when TiO2 NPs was present in the solution, and at pH 9, an increase was noted. The breakthrough curves (BTC were noted to be sensitive to the solution chemistries; the decrease in the breakthrough plateau with increasing ionic strength was observed under all examined pH (5, 7, and 9. The retention profiles were the inverse of the plateaus of BTCs, as expected from mass balance considerations. Overall, the results from this study suggest that solution chemistries (ionic strength and pH are likely the key factors that govern the individual and co-transport behavior of TiO2 and ZnO NPs in sand.

  9. MS-2 and poliovirus transport in porous media: Hydrophobic effects and chemical perturbations

    Science.gov (United States)

    Bales, Roger C.; Li, Shimin; Maguire, Kimberly M.; Yahya, Moyasar T.; Gerba, Charles P.

    1993-04-01

    In a series of pH 7 continuous-flow column experiments, removal of the bacteriophage MS-2 by attachment to silica beads had a strong, systematic dependence on the amount of hydrophobic surface present on the beads. With no hydrophobic surface, removal of phage at pH 5 was much greater than at pH 7. Release of attached phage at both pH values did occur, but was slow; breakthrough curves exhibited tailing. Poliovirus attached to silica beads at pH 5.5 much more than at pH 7.0, and attachment was also slowly reversible. Time scales for phage and poliovinis attachment were of the order of hours. The sticking efficiency factor (α), reflecting microscaie physicochemical influences on virus attachment, was in the range of 0.0007-0.02. Phage release was small but measurable under steady state conditions. Release was enhanced by lowering ionic strength and by introducing beef extract, a high-ionic-strength protein solution. Results show that viruses experience reversible attachment/detachment (sometimes termed sorption), that large chemical perturbations are needed to induce rapid virus detachment, and that viruses should be quite mobile in sandy porous media. Even small amounts of hydrophobic organic material in the porous media (≥0.001%) can retard virus transport.

  10. Seeking New Model Geometry to Predict the Fate and Transport of Colloids in Porous Media

    Science.gov (United States)

    Ma, H.; Johnson, W. P.

    2008-12-01

    Classic colloidal filtration theory (CFT) employed particle tracking approaches in Happel sphere-in-cell model to predict transport and deposition rates of colloids in clean bed porous media. It works well when an energy barrier to deposition is absent, but fails when repulsion exists between the colloid and the collecting surface. Past efforts in modifying CFT, e.g. including a sticking coefficient to account for effect of colloid-collector repulsion on deposition, have not yielded consistently successful predictions. Recent advances in understanding colloidal retention in porous media in the presence of an energy barrier demonstrated two important deposition mechanisms: 1) wedging/straining at grain-to-grain contacts; and 2) retention at secondary energy minima with sufficiently low flow (e.g. flow stagnation zones). These mechanisms are not considered in CFT, partly because the sphere-in-cell model on which CFT is based lacks the necessary pore geometry feature (e.g. grain-to-grain contacts). Here we explore new model geometries that utilize the fluid envelope feature from CFT, but also incorporate grain-to-grain contacts. This presentation describes the testing of these new model geometries in predicting colloidal deposition in the absence of an energy barrier, and then extends to conditions when repulsive energy barriers to deposition are present.

  11. A model for ion transport during drying of a porous medium

    Science.gov (United States)

    Guglielmini, Laura; Gontcharov, Alexandre; Aldykiewicz, Antonio; Stone, Howard

    2007-11-01

    Salt crystallization at the surface or in the body of a porous medium has been recognized as a major mechanism in the deterioration of construction materials and historical monuments. Crystal formations on the surface of bricks, concrete, stones, called efflorescences, lead to fast obsolescence of building and monuments finishing, while crystal growth inside the material, called subflorescences, causes crack formation, which may lead to major structural damages. A number of studies have been devoted to the analysis of crystal growth in an elementary pore and aim at explaining the stress generated by crystallization. From a fluid mechanical point of view the physics of water transport and salt distribution in the porous medium turns out to be quite complex, since it is a function of the pore structure and wettability characteristics, of granule size and of the thermal properties of the material. It also depends on the transient environmental conditions the surface is exposed to and on the effective diffusivity of salt at different saturation conditions. We present here a simple theoretical model of the first phase of the drying process, during which water is uniformly distributed throughout the medium and often efflorescences occurs, which aims at characterizing the physics involved in the process.

  12. Investigating the influence of subsurface heterogeneity on chemical weathering in the critical zone using high resolution reactive transport models

    Science.gov (United States)

    Pandey, S.; Rajaram, H.

    2014-12-01

    The critical zone (CZ) represents a major life-sustaining realm of the terrestrial surface. The processes controlling the development and transformation of the CZ are important to continued health of the planet as human influence continues to grow. The CZ encompasses the shallow subsurface, a region of reaction, unsaturated flow, and transport. Chemical weathering in the subsurface is one of the important processes involved in the formation and functioning of the CZ. We present two case studies of reactive transport modeling to investigate the influence of subsurface heterogeneity and unsaturated flow on chemical weathering processes in the CZ. The model is implemented using the reactive transport code PFLOTRAN. Heterogeneity in subsurface flow is represented using multiple realizations of conductive fracture networks in a hillslope cross-section. The first case study is motivated by observations at the Boulder Creek Critical Zone Observatory (BCCZO) including extensive hydrologic and geochemical datasets. The simulations show that fractures greatly enhance weathering as compared to a homogeneous porous medium. Simulations of north-facing slope hydrology with prolonged snowmelt pulses also increases weathering rates, showing the importance of slope aspect on weathering intensity. Recent work elucidates deteriorating water quality caused by climate change in the CZ of watersheds where acid rock drainage (ARD) occurs. The more complex reactions of ARD require a customized kinetic reaction module with PFLOTRAN. The second case study explores the mechanisms by which changes in hydrologic forcing, air and ground temperatures, and water table elevations influence ARD. For instance, unreacted pyrite exposed by a water table drop was shown to produce a 125% increase in annual pyrite oxidization rate, which provides one explanation for increased ARD.

  13. Reactive Flow Experiments to Characterize Porosity and Permeability Evolution during CO2 Transport in Weyburn-Midale Carbonate Rocks

    Science.gov (United States)

    Smith, M. M.; Sholokhova, Y.; Hao, Y.; Carroll, S.

    2011-12-01

    We investigated the relative effects of CO2-induced disequilibrium and pre-existing mineralogy and void space heterogeneity on permeability development in carbonate core samples from the Weyburn-Midale hydrocarbon reservoir (Canada). The aim of our work was to use detailed pre- and post-experimental x-ray computed tomography (XCMT) imaging, as well as geochemical data, to constrain reactive transport models that predict the evolution of pore space and permeability for geologic storage of CO2 in enhanced oil recovery (EOR) fields. A total of nine core-flooding experiments were completed, using three distinct rock types (tight limestone, porous dolostone, and evaporite caprock) to represent the range of natural reservoir physical and chemical heterogeneity. Experiments were conducted under 25 MPa confining pressure, 60C temperature, and elevated salinity conditions, with pCO2 levels from 0.5-3 MPa. The coupling of intensive characterization with pressure/permeability and solution chemistry measurements provided powerful tools for interpreting and correlating mineral reactions and stability with pre-existing features and heterogeneities. We observed increased carbonate mass transfer rates, stable dissolution fronts, and greater volumes of dissolved minerals for cores with relatively homogeneous pore networks. Samples with more heterogeneous pore size distributions responded with variable mass transfer rates and development of fast transport pathways in regions with preexisting fractures. We infer that the breakthrough of these preferential fluid pathways leads to reductions in available reactive surface area, allowing undersaturated fluids to be transported through the cores despite relatively fast carbonate dissolution kinetics.

  14. TOURGHREACT: A Simulation Program for Non-isothermal MultiphaseReactive Geochemical Transport in Variably Saturated GeologicMedia

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2004-12-07

    TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media. The program was written in Fortran 77 and developed by introducing reactive geochemistry into the multiphase fluid and heat flow simulator TOUGH2. A variety of subsurface thermo-physical-chemical processes are considered under a wide range of conditions of pressure, temperature, water saturation, ionic strength, and pH and Eh. Interactions between mineral assemblages and fluids can occur under local equilibrium or kinetic rates. The gas phase can be chemically active. Precipitation and dissolution reactions can change formation porosity and permeability. The program can be applied to many geologic systems and environmental problems, including geothermal systems, diagenetic and weathering processes, subsurface waste disposal, acid mine drainage remediation, contaminant transport, and groundwater quality. Here we present two examples to illustrate applicability of the program: (1) injectivity effects of mineral scaling in a fractured geothermal reservoir and (2) CO2 disposal in a deep saline aquifer.

  15. Transport and Deposition of Variably Charged Soil Colloids in Saturated Porous Media

    DEFF Research Database (Denmark)

    Sharma, Anu; Kawamoto, Ken; Møldrup, Per

    2011-01-01

    A series of column experiments was conducted to investigate the transport and deposition of variably charged colloids in saturated porous media. Soil colloids with diameters colloids) and a red-yellow soil from...... Okinawa (RYS colloids) in Japan. The VAS colloids exhibited a negative surface charge with a high pH dependency, whereas the RYS colloids exhibited a negative surface charge with less pH dependency. The soil colloids were applied as colloidal suspensions to 10-cm-long saturated sand columns packed....... Breakthrough curves and deposition profiles for soil colloids were strong functions of the hydrodynamics, solution pH, and surface charge of the colloids and sand grains. Greater deposition was typical for lower flow rates and lower pH. The deposition of VAS colloids in both sands under low-pH conditions...

  16. Assessment model validity document. NAMMU: A program for calculating groundwater flow and transport through porous media

    Energy Technology Data Exchange (ETDEWEB)

    Cliffe, K.A.; Morris, S.T.; Porter, J.D. [AEA Technology, Harwell (United Kingdom)

    1998-05-01

    NAMMU is a computer program for modelling groundwater flow and transport through porous media. This document provides an overview of the use of the program for geosphere modelling in performance assessment calculations and gives a detailed description of the program itself. The aim of the document is to give an indication of the grounds for having confidence in NAMMU as a performance assessment tool. In order to achieve this the following topics are discussed. The basic premises of the assessment approach and the purpose of and nature of the calculations that can be undertaken using NAMMU are outlined. The concepts of the validation of models and the considerations that can lead to increased confidence in models are described. The physical processes that can be modelled using NAMMU and the mathematical models and numerical techniques that are used to represent them are discussed in some detail. Finally, the grounds that would lead one to have confidence that NAMMU is fit for purpose are summarised.

  17. Simulation of contaminant transport in fractured porous media on triangular meshes

    KAUST Repository

    Dong, Chen

    2010-12-01

    A mathematical model for contaminant species passing through fractured porous media is presented. In the numerical model, we combine two locally conservative methods, i.e. mixed finite element (MFE) and the finite volume (FV) methods. Adaptive triangle mesh is used for effective treatment of the fractures. A hybrid MFE method is employed to provide an accurate approximation of velocities field for both the fractures and matrix which are crucial to the convection part of the transport equation. The FV method and the standard MFE method are used to approximate the convection and dispersion terms respectively. Numerical examples in a medium containing fracture network illustrate the robustness and efficiency of the proposed numerical model. © 2010 IEEE.

  18. Band edge discontinuities and carrier transport in c-Si/porous silicon heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Md Nazrul [QAED-SRG, Space Applications Centre (ISRO), Ahmedabad - 380015 (India); Ram, Sanjay K [Department of Physics, Indian Institute of Technology, Kanpur - 208016 (India); Kumar, Satyendra [Department of Physics, Indian Institute of Technology, Kanpur - 208016 (India)

    2007-10-07

    We have prepared light emitting nanocrystallline porous silicon (PS) layers by electrochemical anodization of crystalline silicon (c-Si) wafer and characterized the c-Si/PS heterojunctions using temperature dependence of dark current-voltage (I-V) characteristics. The reverse bias I-V characteristics of c-Si/PS heterojunctions are found to behave like the Schottky junctions where carrier transport is mainly governed by the carrier generation-recombination in the depletion region formed on the PS side. Fermi level of c-Si gets pinned to the defect levels at the interface resulting in ln(I) {approx} V{sup 1/2}. The barrier height in the reverse bias condition is shown to be equal to the band offset at the conduction band edges. An energy band diagram for the c-Si/PS heterojunction is proposed.

  19. Homogenization of the Poisson-Nernst-Planck Equations for Ion Transport in Charged Porous Media

    CERN Document Server

    Schmuck, Markus

    2012-01-01

    Effective Poisson-Nernst-Planck (PNP) equations are derived for macroscopic ion transport in charged porous media. Homogenization analysis is performed for a two-component pe- riodic composite consisting of a dilute electrolyte continuum (described by standard PNP equations) and a continuous dielectric matrix, which is impermeable to the ions and carries a given surface charge. Three new features arise in the upscaled equations: (i) the effective ionic diffusivities and mobilities become tensors, related to the microstructure; (ii) the effective permittivity is also a tensor, depending on the electrolyte/matrix permittivity ratio and the ratio of the Debye screening length to mean pore size; and (iii) the surface charge per volume appears as a continuous "background charge density". The coeffcient tensors in the macroscopic PNP equations can be calculated from periodic reference cell problem, and several examples are considered. For an insulating solid matrix, all gradients are corrected by a single tortuosit...

  20. Modelling Simultaneous transport of Bioreative Solutes and Microorganisms in Porous Media

    Institute of Scientific and Technical Information of China (English)

    Y.TAN; LIZHENGAO

    1998-01-01

    Recent years have the development of a number of mathematical models for the descrption of the simultaneous transport of microorganisms and bioreactive solutes in porous media.Most models are based on the advection-dispersion equation,with terms added to account for interactions with the surfaces of the soild matrix ,transformations and microbial activties.Those models based on the advection-dispersion equation have all been shown to represent laboratory experimental data adequately altough various assumption have been made concerning the pore-scale distribution of bacteria.This paper provides an overview o the recent work on modelling the trasport and fate of microorganisms and bioreactive solutes in prous media and examines the different assumptions regarding the pore scale distrbution of microorganisms.

  1. Transport and Fate of Bacteria in Porous Media: Coupled Effects of Chemical Conditions and Pore Space Geometry

    Science.gov (United States)

    Experimental and theoretical studies were undertaken to explore the coupling effects of chemical conditions and pore space geometry on bacteria transport in porous media. The retention of Escherichia coli D21g was investigated in a series of batch and column experiments with solutions of different i...

  2. Saturated Particle Transport in Porous Media: An Investigation into the Influence of Flow Direction and Particle Size Distribution

    Science.gov (United States)

    2015-06-28

    PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: Adnan Altay Altinors 0.00 Peter Knappett 0.00 Andrew Ferguson 0.50...Washington, D.C. Šimůnek, J., C. He, L. Pang , and S.A. Bradford (2006a), Colloid-Facilitated Solute Transport in Variably Saturated Porous Media

  3. Multiscale modelling of dual-porosity porous media : a computational pore-scale study for flow and solute transport

    NARCIS (Netherlands)

    de Vries, Enno T.; Raoof, Amir; van Genuchten, Marinus Th.

    2017-01-01

    Many environmental and agricultural applications involve the transport of water and dissolved constituents through aggregated soil profiles, or porous media that are structured, fractured or macroporous in other ways. During the past several decades, various process-based macroscopic models have bee

  4. Improved performance of porous bio-anodes in microbial electrolysis cells by enhancing mass and charge transport

    NARCIS (Netherlands)

    Sleutels, T.H.J.A.; Lodder, R.; Hamelers, H.V.M.; Buisman, C.J.N.

    2009-01-01

    To create an efficient MEC high current densities and high coulombic efficiencies are required. The aim of this study was to increase cur-rent densities and coulombic efficiencies by influencing mass and charge transport in porous electrodes by: (i) introduction of a forced flow through the anode to

  5. Reactive transport modeling for Cs retention: from batch to field experiments

    Science.gov (United States)

    De Pourcq, K.; Ayora, C.; Carrera, J.; García-Gutiérrez, M.; Missana, T.; Mingarro, M.

    2012-04-01

    A Permeable Reactive Barrier has been designed to treat 137Cs polluted groundwater. In order to check both reactivity and permeability, laboratory batch and column tests combined with reactive transport modeling have been performed. The trapping mechanism is based on the sorption of cesium mainly on illite-containing clays. Batch experiments were conducted to obtain the partition coefficients (Kd) of different clay samples in solutions with different potassium concentration. A clear correlation of Kd values with potassium content was observed. The results were modeled with a cation-exchange model. The permeability of the reactive material is provided by the dispersion of the clay on a matrix of wooden shavings. Constant head tests allowed obtaining permeability values. Several column experiments with different flow rates were conducted to confirm the 137Cs retention under different conditions. A blind 1D reactive transport model based on the cation-exchange model was able to predict reasonably well the results of column experiments. The reactive transport model, validated with the column experiments, was used to investigate the performance and duration of 1m thick barrier under different scenarios (flow, clay proportion, 137Cs and K concentration). As expected, the sensitivity tests proved that the retention capacity of dissolved 137Cs in groundwater depends linearly on the amount of clay used in the filling material. As well, the operation time increases linearly when decreasing the flow rate. Finally, the concentration of potassium in inflow water has a remarkable and non-linear influence in the retention of 137Cs. Very high concentrations of potassium are the greatest threat and can lead to the unfeasibility of a permeable reactive barrier. Due to the Cs-K competition, the barrier is comparatively more efficient to treat high concentrations of 137Cs. Up to now, preliminary results from a field scale experiment have confirmed the reactivity and permeability

  6. Chemical factors influencing colloid-facilitated transport of contaminants in porous media

    Science.gov (United States)

    Roy, Sujoy B.; Dzombak, David A.

    1997-01-01

    The effects of colloids on the transport of two strongly sorbing solutesa hydrophobic organic compound, phenanthrene, and a metal ion, Ni2+were studied in sand-packed laboratory columns under different pH and ionic strength conditions. Two types of column experiments were performed as follows:  (i) sorption/mobilization experiments where the contaminant was first sorbed in the column under conditions where no colloids were released and mobilized under conditions where colloids were released as a result of ionic strength reduction in the influent; and (ii) transport experiments where the contaminant, dissolved or sorbed on colloids, was injected into columns packed with a strongly sorbing porous medium. In the first type of experiment, contaminant mobilization was significant only when all releasable colloids were flushed from the column. In all other cases, although high colloid particle concentrations were encountered, there was no marked effect on total contaminant concentrations. In the second type of experiment, colloid deposition efficiencies were shown to control the enhancement of transport. The deposition efficiency was a function of the pH (for a high organic content sand) and of the contaminant concentration (for a charged species such as Ni2+).

  7. Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum

    Energy Technology Data Exchange (ETDEWEB)

    Tiraferri, Alberto; Sethi, Rajandrea, E-mail: rajandrea.sethi@polito.i [Politecnico di Torino, DITAG - Dipartimento di Ingegneria del Territorio, dell' Ambiente e delle Geotecnologie (Italy)

    2009-04-15

    In order to ensure adequate mobility of zerovalent iron nanoparticles in natural aquifers, the use of a stabilizing agent is necessary. Polymers adsorbed on the nanoparticle surface will give rise to electrosteric stabilization and will decrease attachment to the surface soil grains. Water saturated sand-packed columns were used in this study to investigate the transport of iron nanoparticle suspensions, bare or modified with the green polymer guar gum. The suspensions were prepared at 154 mg/L particle concentration and 0.5 g/L polymer concentration. Transport experiments were conducted by varying the ionic strength, ionic composition, and approach velocity of the fluid. Nanoparticle deposition rates, attachment efficiencies, and travel distances were subsequently calculated based on the classical particle filtration theory. It was found that bare iron nanoparticles are basically immobile in sandy porous media. In contrast, guar gum is able to ensure significant nanoparticle transport at the tested conditions, regardless of the chemistry of the solution. Attachment efficiency values for guar gum-coated nanoparticles under the various conditions tested were smaller than 0.066. Although the calculated travel distances may not prove satisfactory for field application, the investigation attested the promising role of guar gum to ensure mobility of iron nanoparticles in the subsurface environment.

  8. Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum

    Science.gov (United States)

    Tiraferri, Alberto; Sethi, Rajandrea

    2009-04-01

    In order to ensure adequate mobility of zerovalent iron nanoparticles in natural aquifers, the use of a stabilizing agent is necessary. Polymers adsorbed on the nanoparticle surface will give rise to electrosteric stabilization and will decrease attachment to the surface soil grains. Water saturated sand-packed columns were used in this study to investigate the transport of iron nanoparticle suspensions, bare or modified with the green polymer guar gum. The suspensions were prepared at 154 mg/L particle concentration and 0.5 g/L polymer concentration. Transport experiments were conducted by varying the ionic strength, ionic composition, and approach velocity of the fluid. Nanoparticle deposition rates, attachment efficiencies, and travel distances were subsequently calculated based on the classical particle filtration theory. It was found that bare iron nanoparticles are basically immobile in sandy porous media. In contrast, guar gum is able to ensure significant nanoparticle transport at the tested conditions, regardless of the chemistry of the solution. Attachment efficiency values for guar gum-coated nanoparticles under the various conditions tested were smaller than 0.066. Although the calculated travel distances may not prove satisfactory for field application, the investigation attested the promising role of guar gum to ensure mobility of iron nanoparticles in the subsurface environment.

  9. Modeling and Simulation of Nanoparticle Transport in Multiphase Flows in Porous Media: CO2 Sequestration

    KAUST Repository

    El-Amin, Mohamed

    2012-09-03

    Geological storage of anthropogenic CO2 emissions in deep saline aquifers has recently received tremendous attention in the scientific literature. Injected CO2 plume buoyantly accumulates at the top part of the deep aquifer under a sealing cap rock, and some concern that the high-pressure CO2 could breach the seal rock. However, CO2 will diffuse into the brine underneath and generate a slightly denser fluid that may induce instability and convective mixing. Onset times of instability and convective mixing performance depend on the physical properties of the rock and fluids, such as permeability and density contrast. The novel idea is to adding nanoparticles to the injected CO2 to increase density contrast between the CO2-rich brine and the underlying resident brine and, consequently, decrease onset time of instability and increase convective mixing. As far as it goes, only few works address the issues related to mathematical and numerical modeling aspects of the nanoparticles transport phenomena in CO2 storages. In the current work, we will present mathematical models to describe the nanoparticles transport carried by injected CO2 in porous media. Buoyancy and capillary forces as well as Brownian diffusion are important to be considered in the model. IMplicit Pressure Explicit Saturation-Concentration (IMPESC) scheme is used and a numerical simulator is developed to simulate the nanoparticles transport in CO2 storages.

  10. Numerical research on the anisotropic transport of thermal neutron in heterogeneous porous media with micron X-ray computed tomography

    OpenAIRE

    Yong Wang; Wenzheng Yue; Mo Zhang

    2016-01-01

    The anisotropic transport of thermal neutron in heterogeneous porous media is of great research interests in many fields. In this paper, it is the first time that a new model based on micron X-ray computed tomography (CT) has been proposed to simultaneously consider both the separation of matrix and pore and the distribution of mineral components. We apply the Monte Carlo method to simulate thermal neutrons transporting through the model along different directions, and meanwhile detect those ...

  11. On the validity of effective formulations for transport through heterogeneous porous media

    Science.gov (United States)

    de Dreuzy, Jean-Raynald; Carrera, Jesus

    2016-04-01

    Geological heterogeneity enhances spreading of solutes and causes transport to be anomalous (i.e., non-Fickian), with much less mixing than suggested by dispersion. This implies that modeling transport requires adopting either stochastic approaches that model heterogeneity explicitly or effective transport formulations that acknowledge the effects of heterogeneity. A number of such formulations have been developed and tested as upscaled representations of enhanced spreading. However, their ability to represent mixing has not been formally tested, which is required for proper reproduction of chemical reactions and which motivates our work. We propose that, for an effective transport formulation to be considered a valid representation of transport through heterogeneous porous media (HPM), it should honor mean advection, mixing and spreading. It should also be flexible enough to be applicable to real problems. We test the capacity of the multi-rate mass transfer (MRMT) model to reproduce mixing observed in HPM, as represented by the classical multi-Gaussian log-permeability field with a Gaussian correlation pattern. Non-dispersive mixing comes from heterogeneity structures in the concentration fields that are not captured by macrodispersion. These fine structures limit mixing initially, but eventually enhance it. Numerical results show that, relative to HPM, MRMT models display a much stronger memory of initial conditions on mixing than on dispersion because of the sensitivity of the mixing state to the actual values of concentration. Because MRMT does not restitute the local concentration structures, it induces smaller non-dispersive mixing than HPM. However long-lived trapping in the immobile zones may sustain the deviation from dispersive mixing over much longer times. While spreading can be well captured by MRMT models, in general non-dispersive mixing cannot.

  12. A new methodology for determination of macroscopic transport parameters in drying porous media

    Science.gov (United States)

    Attari Moghaddam, A.; Kharaghani, A.; Tsotsas, E.; Prat, M.

    2015-12-01

    Two main approaches have been used to model the drying process: The first approach considers the partially saturated porous medium as a continuum and partial differential equations are used to describe the mass, momentum and energy balances of the fluid phases. The continuum-scale models (CM) obtained by this approach involve constitutive laws which require effective material properties, such as the diffusivity, permeability, and thermal conductivity which are often determined by experiments. The second approach considers the material at the pore scale, where the void space is represented by a network of pores (PN). Micro- or nanofluidics models used in each pore give rise to a large system of ordinary differential equations with degrees of freedom at each node of the pore network. In this work, the moisture transport coefficient (D), the pseudo desorption isotherm inside the network and at the evaporative surface are estimated from the post-processing of the three-dimensional pore network drying simulations for fifteen realizations of the pore space geometry from a given probability distribution. A slice sampling method is used in order to extract these parameters from PN simulations. The moisture transport coefficient obtained in this way is shown in Fig. 1a. The minimum of average D values demonstrates the transition between liquid dominated moisture transport region and vapor dominated moisture transport region; a similar behavior has been observed in previous experimental findings. A function is fitted to the average D values and then is fed into the non-linear moisture diffusion equation. The saturation profiles obtained from PN and CM simulations are shown in Fig. 1b. Figure 1: (a) extracted moisture transport coefficient during drying for fifteen realizations of the pore network, (b) average moisture profiles during drying obtained from PN and CM simulations.

  13. Transient transport of reactive and non-reactive solutes in groundwater

    Science.gov (United States)

    Fares, Y. R.; Giacobbe, D.

    2004-06-01

    A numerical model capable of predicting the transient changes in concentration levels of a solute along a homogeneous aquifer system is presented. The advection-dispersion equation (ADE) is utilised in predicting the concentration levels for cases of continuous and instantaneous release modes. The Crank-Nicholson equation is employed in the presented finite difference model. The numerical calculations are carried out using the implicit Gauss-Seidel method with over- and under-relaxation coefficients depending on the state of convergence. The correction terms resulting from the removal of zero- and first-order truncation errors in the ADE with a reaction term have significantly improved the performance of the numerical scheme. Comparisons between the numerically predicted concentrations with analytical and measured values were carried out for cases of non-reactive (tracer) and reactive (organic) solutes with continuous injection in homogeneous isotropic soils. The overshooting problems experienced in the numerical calculations are minimised by refining the finite grid size. The analysis of results has shown that the model can produce reliable simulations for cases of non-reactive solutes. While for the case of solutes undergoing adsorption, accurate concentrations can be predicted by adjusting the influent pore water velocity through the use of a retardation factor, which is suitable for aquifers with low organic carbon content and undergoing hydrophobic partitioning.

  14. Convective transport in a porous medium layer saturated with a Maxwell nanofluid

    Directory of Open Access Journals (Sweden)

    J.C. Umavathi

    2016-01-01

    Full Text Available A linear and weakly non-linear stability analys is has been carried out to study the onset of convection in a horizontal layer of a porous medium saturated with a Maxwell nanofluid. To simulate the momentum equation in porous media, a modified Darcy–Maxwell nanofluid model incorporating the effects of Brownian motion and thermophoresis has been used. A Galerkin method has been employed to investigate the stationary and oscillatory convections; the stability boundaries for these cases are approximated by simple and useful analytical expressions. The stability of the system is investigated by varying various parameters viz., nanoparticle concentration Rayleigh number, Lewis number, modified diffusivity ratio, porosity, thermal capacity ratio, viscosity ratio, conductivity ratio, Vadász number and relaxation parameter. A representation of Fourier series method has been used to study the heat and mass transport on the non-linear stability analysis. The effect of transient heat and mass transport on various parameters is also studied. It is found that for stationary convection Lewis number, viscosity ratio and conductivity ratio have a stabilizing effect while nanoparticle concentration Rayleigh number Rn destabilizes the system. For oscillatory convection we observe that the conductivity ratio stabilizes the system whereas nanoparticle concentration Rayleigh number, Lewis number, Vadász number and relaxation parameter destabilize the system. The viscosity ratio increases the thermal Rayleigh number for oscillatory convection initially thus delaying the onset of convection and later decreases thus advancing the onset of convection hence showing a dual effect. For steady finite amplitude motions, the heat and mass transport decreases with an increase in the values of nanoparticle concentration Rayleigh number, Lewis number, viscosity ratio and conductivity ratio. The mass transport increases with an increase in Vadász number and relaxation

  15. Reactive Transport at the Pore Scale with Applications to the Dissolution of Carbonate Rocks for CO2 Sequestration Operations

    Science.gov (United States)

    Boek, E.; Gray, F.; Welch, N.; Shah, S.; Crawshaw, J.

    2014-12-01

    In CO2 sequestration operations, CO2 injected into a brine aquifer dissolves in the liquid to create an acidic solution. This may result in dissolution of the mineral grains in the porous medium. Experimentally, it is hard to investigate this process at the pore scale. Therefore we develop a new hybrid particle simulation algorithm to study the dissolution of solid objects in a laminar flow field, as encountered in porous media flow situations. First, we calculate the flow field using a multi-relaxation-time lattice Boltzmann (LB) algorithm implemented on GPUs, which demonstrates a very efficient use of the GPU device and a considerable performance increase over CPU calculations. Second, using a stochastic particle approach, we solve the advection-diffusion equation for a single reactive species and dissolve solid voxels according to our reaction model. To validate our simulation, we first calculate the dissolution of a solid sphere as a function of time under quiescent conditions. We compare with the analytical solution for this problem [1] and find good agreement. Then we consider the dissolution of a solid sphere in a laminar flow field and observe a significant change in the sphericity with time due to the coupled dissolution - flow process. Second, we calculate the dissolution of a cylinder in channel flow in direct comparison with corresponding dissolution experiments. We discuss the evolution of the shape and dissolution rate. Finally, we calculate the dissolution of carbonate rock samples at the pore scale in direct comparison with micro-CT experiments. This work builds on our recent research on calculation of multi-phase flow [2], [3] and hydrodynamic dispersion and molecular propagator distributions for solute transport in homogeneous and heterogeneous porous media using LB simulations [4]. It turns out that the hybrid simulation model is a suitable tool to study reactive flow processes at the pore scale. This is of great importance for CO2 storage and

  16. Gas transport through porous media; Sur le transport des gaz a travers les milieux poreux

    Energy Technology Data Exchange (ETDEWEB)

    Breton, J.P. [Commissariat a l' Energie Atomique Saclay (France). Centre d' Etudes Nucleaires

    1968-06-01

    In the first part of this work we derive a rigorous transport theory for a mixture of gases passing through a bed of spheres, when the temperature is uniform. We solve the Boltzmann equation, putting boundary conditions in the solution. Two different methods are used, according to the nature of the flow. The second part deals with the experimental work: measurements of permeability, of separation and of interdiffusion. In the last part, with the help of the new theory presented here, we are for the first time able to explain all the experimental data. (author) [French] Dans la premiere partie de ce travail nous developpons une theorie rigoureuse du transport d'un melange de gaz a travers un lit de spheres, quand la temperature est uniforme. Nous integrons l'equation de Boltzmann en introduisant des conditions aux limites dans la solution. Nous utilisons deux methodes differentes selon le regime d'ecoulement. La seconde partie est consacree a l'etude experimentale: mesures de permeametrie, de separation et d'interdiffusion. Dans la derniere partie, a l'aide de la nouvelle theorie developpee ici, nous expliquons tous les resultats experimentaux, ce qui n'avait pas ete fait jusque la. (auteur)

  17. Benchmarking a Visual-Basic based multi-component one-dimensional reactive transport modeling tool

    Science.gov (United States)

    Torlapati, Jagadish; Prabhakar Clement, T.

    2013-01-01

    We present the details of a comprehensive numerical modeling tool, RT1D, which can be used for simulating biochemical and geochemical reactive transport problems. The code can be run within the standard Microsoft EXCEL Visual Basic platform, and it does not require any additional software tools. The code can be easily adapted by others for simulating different types of laboratory-scale reactive transport experiments. We illustrate the capabilities of the tool by solving five benchmark problems with varying levels of reaction complexity. These literature-derived benchmarks are used to highlight the versatility of the code for solving a variety of practical reactive transport problems. The benchmarks are described in detail to provide a comprehensive database, which can be used by model developers to test other numerical codes. The VBA code presented in the study is a practical tool that can be used by laboratory researchers for analyzing both batch and column datasets within an EXCEL platform.

  18. Selection of bacteria with favorable transport properties through porous rock for the application of microbial-enhanced oil recovery.

    Science.gov (United States)

    Jang, L K; Chang, P W; Findley, J E; Yen, T F

    1983-11-01

    This paper presents a bench-scale study on the transport in highly permeable porous rock of three bacterial species-Bacillus subtilis, Pseudomonas putida, and Clostridium acetobutylicum-potentially applicable in microbial-enhanced oil recovery processes. The transport of cells during the injection of bacterial suspension and nutrient medium was simulated by a deep bed filtration model. Deep bed filtration coefficients and the maximum capacity of cells in porous rock were measured. Low to intermediate ( approximately 10/ml) injection concentrations of cellular suspensions are recommended because plugging of inlet surface is less likely to occur. In addition to their resistance to adverse environments, spores of clostridia are strongly recommended for use in microbial-enhanced oil recovery processes since they are easiest among the species tested to push through porous rock. After injection, further transport of bacteria during incubation can occur by growth and mobility through the stagnant nutrient medium which fills the porous rock. We have developed an apparatus to study the migration of bacteria through a Berea sandstone core containing nutrient medium.

  19. Transport in Porous Media of Poly(Acrylic Acid) Coated Ferrihydrite Nanoparticles

    Science.gov (United States)

    Jaffe, P. R.; Xiang, A.; Koel, B. E.

    2012-12-01

    Augmentation of soils with iron to enhance biological processes such as uranium reduction via iron reducing bacteria, e.g., Geobacter sp., might be achieved via the injection of iron nanoparticles into the subsurface. The challenge is to make these nanoparticles transportable in the subsurface while not affecting the iron bioavailability. Poorly crystallized 2-line ferrihydrite iron oxide nanoparticles were synthesized and coated with different amounts of poly(acrylic acid) polymers (Na-PAA6K or Na-PAA140K). Analyses were then performed on these particles, including sorption/desorption of the polymer onto the iron nanoparticles, particle size, zeta potential, transport in sand and soil columns, and bioavailabity of the Fe(III) in the absence and presence of the coating to iron reducing organisms. Results showed that at pH values of environmental relevance, the zeta potential of the particles varied from about 3 mV (pH=8.2) for the non-coated particles to about -30 mV for the particles coated with the polymers to their highest sorption capacity. The coated particle diameter was shown to be in the range of 200 nm. Column transport experiments showed that for the highest polymer coating the nanoparticle breakthrough was virtually identical to that of bromide, while significant filtration was observed for particles with an intermediate coating, and complete particle removal via filtration was observed for the non-coated particles. These results held for sand as well as for soil, which had been previously characterized, from a field site at Rifle, CO. Bioavailability experiments showed no difference in the iron reduction rate between the untreated and treated nanoparticles. These results show that it is possible to manufacture iron nanoparticles to enhance biological iron reduction, and that the transport properties of these treated particles is tunable so that a desired retention in the porous medium can be achieved.

  20. Capillary-Driven Solute Transport and Precipitation in Porous Media during Dry-Out

    Science.gov (United States)

    Ott, Holger; Andrew, Matthew; Blunt, Martin; Snippe, Jeroen

    2014-05-01

    The injection of dry or under-saturated gases or supercritical (SC) fluids into water bearing formations might lead to a formation dry-out in the vicinity of the injection well. The dry-out is caused by the evaporation/dissolution of formation water into the injected fluid and the subsequent transport of dissolved water in the injected fluid away from the injection well. Dry-out results in precipitation from solutes of the formation brine and consequently leads to a reduction of the rock's pore space (porosity) and eventually to a reduction of permeability near the injection well, or even to the loss of injectivity. Recently evidence has been found that the complexity of the pore space and the respective capillary driven solute transport plays a key role. While no effective-permeability (Keff) reduction was observed in a single-porosity sandstone, multi porosity carbonate rocks responded to precipitation with a strong reduction of Keff. The reason for the different response of Keff to salt precipitation is suspected to be in the exact location of the precipitate (solid salt) in the pore space. In this study, we investigate dry-out and salt precipitation due to supercritical CO2 injection in single and multi-porosity systems under near well-bore conditions. We image fluid saturation changes by means of μCT scanning during desaturation. We are able to observe capillary driven transport of the brine phase and the respective transport of solutes on the rock's pore scale. Finally we have access to the precipitated solid-salt phase and their distribution. The results can proof the thought models behind permeability porosity relationships K(φ) for injectivity modeling. The topic and the mechanisms we show are of general interest for drying processes in porous material such as soils and paper.

  1. Microbially Induced Calcite Precipitation (MICP) - A Technology for Managing Flow and Transport in Porous and Fractured Media

    Science.gov (United States)

    Phillips, A. J.; Hiebert, R.; Kirksey, J.; Lauchnor, E. G.; Rothman, A.; Spangler, L.; Esposito, R.; Gerlach, R.; Cunningham, A. B.

    2014-12-01

    Certain microorganisms e.g., Sporosarcina pasteurii contribute enzymes that catalyze reactions which in the presence of calcium, can create saturation conditions favorable for calcium carbonate precipitation (microbially-induced calcium carbonate precipitation (MICP)). MICP can be used for a number of engineering applications including securing geologic storage of CO2 or other fluids by sealing fractures, improving wellbore integrity, and stabilizing fractured and unstable porous media. MICP treatment has the advantage of the use of small microorganisms, ~2μm, suggesting applicability to treatment of small aperture fractures not accessible to traditional treatments, for example the use of fine cement. The promotion of MICP in the subsurface is a complex reactive transport problem coupling microbial, abiotic (geochemical), geomechanical and hydrodynamic processes. In the laboratory, MICP has been demonstrated to cement together heavily fractured shale and reduce the permeability of fractures in shale and sandstone cores up to five orders of magnitude under both ambient and subsurface relevant pressure conditions (Figure 1). Most recently, a MICP fracture treatment field study was performed at a well at the Southern Company Gorgas Steam Generation Plant (Alabama) (Figure 1). The Fayetteville Sandstone at approximately 1120' below ground surface was hydraulically fractured prior to MICP treatment. After 4 days of injection of 24 calcium pulses and 6 microbial inoculations, injectivity of brine into the formation was significantly reduced. The experiment also resulted in a reduction in pressure decay which is a measure of improved wellbore integrity. These promising results suggest the potential for MICP treatment to seal fractured pathways at the field scale to improve the long-term security of geologically-stored carbon dioxide or prevent leakage of shale gas or hydraulic fracturing fluids into functional overlying aquifers, reducing environmental impacts.

  2. Slippery Liquid-Infused Porous Surfaces and Droplet Transportation by Surface Acoustic Waves

    Science.gov (United States)

    Luo, J. T.; Geraldi, N. R.; Guan, J. H.; McHale, G.; Wells, G. G.; Fu, Y. Q.

    2017-01-01

    On a solid surface, a droplet of liquid will stick due to the capillary adhesion, and this causes low droplet mobility. To reduce contact line pinning, surface chemistry can be coupled to micro- and/or nanostructures to create superhydrophobic surfaces on which a droplet balls up into an almost spherical shape, thus, minimizing the contact area. Recent progress in soft matter has now led to alternative lubricant-impregnated surfaces capable of almost zero contact line pinning and high droplet mobility without causing droplets to ball up and minimize the contact area. Here we report an approach to surface-acoustic-wave- (SAW) actuated droplet transportation enabled using such a surface. These surfaces maintain the contact area required for efficient energy and momentum transfer of the wave energy into the droplet while achieving high droplet mobility and a large footprint, therefore, reducing the threshold power required to induce droplet motion. In our approach, we use a slippery layer of lubricating oil infused into a self-assembled porous hydrophobic layer, which is significantly thinner than the SAW wavelength, and avoid damping of the wave. We find a significant reduction (up to 85%) in the threshold power for droplet transportation compared to that using a conventional surface-treatment method. Moreover, unlike droplets on superhydrophobic surfaces, where interaction with the SAW induces a transition from a Cassie-Baxter state to a Wenzel state, the droplets on our liquid-impregnated surfaces remain in a mobile state after interaction with the SAW.

  3. Discrete-continuum multiscale model for transport, biomass development and solid restructuring in porous media

    Science.gov (United States)

    Ray, Nadja; Rupp, Andreas; Prechtel, Alexander

    2017-09-01

    Upscaling transport in porous media including both biomass development and simultaneous structural changes in the solid matrix is extremely challenging. This is because both affect the medium's porosity as well as mass transport parameters and flow paths. We address this challenge by means of a multiscale model. At the pore scale, the local discontinuous Galerkin (LDG) method is used to solve differential equations describing particularly the bacteria's and the nutrient's development. Likewise, a sticky agent tightening together solid or bio cells is considered. This is combined with a cellular automaton method (CAM) capturing structural changes of the underlying computational domain stemming from biomass development and solid restructuring. Findings from standard homogenization theory are applied to determine the medium's characteristic time- and space-dependent properties. Investigating these results enhances our understanding of the strong interplay between a medium's functional properties and its geometric structure. Finally, integrating such properties as model parameters into models defined on a larger scale enables reflecting the impact of pore scale processes on the larger scale.

  4. Design and optimization of porous ceramic supports for asymmetric ceria-based oxygen transport membranes

    DEFF Research Database (Denmark)

    Kaiser, Andreas; Foghmoes, Søren Preben Vagn; Pećanac, G.

    2016-01-01

    content from 11 vol% to 16 vol%, the gas permeabilities increased by a factor of 5 when support tapes were sintered to comparable densities. The improved permeabilities were due to a more favourable microstructure with larger interconnected pores at a porosity of 45% and a fracture strength of 47±2 MPa (m......The microstructure, mechanical properties and gas permeability of porous supports of Ce0.9Gd0.1O1.95−δ (CGO) were investigated as a function of sintering temperature and volume fraction of pore former for use in planar asymmetric oxygen transport membranes (OTMs). With increasing the pore former......=7). The achieved gas permeability of 2.25×10−15 m2 for a 0.4 mm thick support will not limit the gas transport for oxygen production but in partial oxidation of methane to syngas at higher oxygen fluxes. For integration of the CGO support layer into a flat, asymmetric CGO membrane, the sintering...

  5. Nanoparticle transport in heterogeneous porous media with particle tracking numerical methods

    Science.gov (United States)

    Pham, Ngoc H.; Papavassiliou, Dimitrios V.

    2017-01-01

    In this article, transport and retention of nanoparticles that flow in suspension through packed beds with unconsolidated spheres and through consolidated Berea sandstone are numerically explored. The surfaces exhibit electrical charge heterogeneity where particles can deposit blocking the surrounding surface deposition sites. The lattice Boltzmann method with Lagrangian particle tracking are the techniques employed. Four ideal patterns of surface charge heterogeneity are adopted for the packed sphere beds, while a real distribution of charge heterogeneity is determined for the Berea core through micro-CT image segmentation. It is found that particle breakthrough curves do not reach a plateau, unless the pore surfaces are completely saturated. Surface saturation also enhances particle propagation because of the surface blocking mechanism, reducing the effective particle deposition rate. In addition, surface saturation mitigates the effect of the pattern of heterogeneity on particle retention, which might be pronounced when blocking is not taken into account. It is also observed from the case of Berea core that the heterogeneity of the mineralogical surfaces disturbs particle transport depending on the physicochemical properties of the surfaces. Likewise, similarity of the mineralogical surface properties is a prerequisite for the commonly used patch-wise model with Langmuirian blocking to reproduce nanoparticle breakthrough in such porous media.

  6. Modeling the effects of water content on TiO2 nanoparticles transport in porous media

    Science.gov (United States)

    Toloni, Ivan; Lehmann, François; Ackerer, Philippe

    2016-08-01

    The transport of manufactured titanium dioxide (TiO2, rutile) nanoparticles (NP) in porous media was investigated by metric scale column experiments under different water saturation and ionic strength (IS) conditions. The NP breakthrough curves showed that TiO2 NP retention on the interface between air and water (AWI) and the interface between the solid and the fluid (SWI) is insignificant for an IS equal to or smaller than 3 mM KCl. For larger IS, the retention is depending on the water content and the fluid velocity. The experiments, conducted with an IS of 5 mM KCl, showed a significantly higher retention of NP than that observed under saturated conditions and very similar experimental conditions. Water flow was simulated using the standard Richards equation. The hydrodynamic model parameters for unsaturated flow were estimated through independent drainage experiments. A new mathematical model was developed to describe TiO2 NP transport and retention on SWI and AWI. The model accounts for the variation of water content and water velocity as a function of depth and takes into account the presence of the AWI and its role as a NP collector. Comparisons with experimental data showed that the suggested modeled processes can be used to quantify the NPs retentions at the AWI and SWI. The suggested model can be used for both saturated and unsaturated conditions and for a rather large range of velocities.

  7. Modeling of ion transport through a porous separator in vanadium redox flow batteries

    Science.gov (United States)

    Zhou, X. L.; Zhao, T. S.; An, L.; Zeng, Y. K.; Wei, L.

    2016-09-01

    In this work, we develop a two-dimensional, transient model to investigate the mechanisms of ion-transport through a porous separator in VRFBs and their effects on battery performance. Commercial-available separators with pore sizes of around 45 nm are particularly investigated and effects of key separator design parameters and operation modes are explored. We reveal that: i) the transport mechanism of vanadium-ion crossover through available separators is predominated by convection; ii) reducing the pore size below 15 nm effectively minimizes the convection-driven vanadium-ion crossover, while further reduction in migration- and diffusion-driven vanadium-ion crossover can be achieved only when the pore size is reduced to the level close to the sizes of vanadium ions; and iii) operation modes that can affect the pressure at the separator/electrode interface, such as the electrolyte flow rate, exert a significant influence on the vanadium-ion crossover rate through the available separators, indicating that it is critically important to equalize the pressure on each half-cell of a power pack in practical applications.

  8. Localization of the porous partition responsible for pressurized gas transport in Alnus glutinosa (L.) Gaertn.

    Science.gov (United States)

    Buchel, H B; Grosse, W

    1990-09-01

    The pressurized gas transport which improves the oxygen supply of the roots of the wetland tree black alder (Alnus glutinosa (L.) Gaertn.), is based on the existence of a thermo-osmotically active porous tissue partition in the lower part of the trunk with pore diameters in the range of, or smaller than, the mean free path length of the gas molecules (e.g., 70 nm for O(2) at 20 degrees C and 100 kPa). Anatomical studies have shown that only the cambial layer or the phellogen of the lenticels have intercellular spaces small enough to be responsible for thermo-osmotic activity. The final localization of the thermo-osmotically active partition and the determination of the pore sizes were done by diffusion and effusion experiments with basal trunk pieces of 3- to 4-year-old trees. The mean pore sizes of the intercellular system were not smaller than 100 nm in diameter in the cambial layer separating the bark from the wood, but 14 +/- 7 nm in diameter in the phellogen underlying the lenticels. Because of these small pores, the phellogen of the lenticels is the significant thermo-osmotically active partition for the transport of air to the root system in black alder.

  9. Transport of Cryptosporidium oocysts in porous media: Role of straining and physicochemical filtration

    Science.gov (United States)

    Tufenkji, N.; Miller, G.F.; Ryan, J.N.; Harvey, R.W.; Elimelech, M.

    2004-01-01

    The transport and filtration behavior of Cryptosporidium parvum oocysts in columns packed with quartz sand was systematically examined under repulsive electrostatic conditions. An increase in solution ionic strength resulted in greater oocyst deposition rates despite theoretical predictions of a significant electrostatic energy barrier to deposition. Relatively high deposition rates obtained with both oocysts and polystyrene latex particles of comparable size at low ionic strength (1 mM) suggest that a physical mechanism may play a key role in oocyst removal. Supporting experiments conducted with latex particles of varying sizes, under very low ionic strength conditions where physicochemical filtration is negligible, clearly indicated that physical straining is an important capture mechanism. The results of this study indicate that irregularity of sand grain shape (verified by SEM imaging) contributes considerably to the straining potential of the porous medium. Hence, both straining and physicochemical filtration are expected to control the removal of C. parvum oocysts in settings typical of riverbank filtration, soil infiltration, and slow sand filtration. Because classic colloid filtration theory does not account for removal by straining, these observations have important implications with respect to predictions of oocyst transport.

  10. Nanoparticle transport in heterogeneous porous media with particle tracking numerical methods

    Science.gov (United States)

    Pham, Ngoc H.; Papavassiliou, Dimitrios V.

    2016-08-01

    In this article, transport and retention of nanoparticles that flow in suspension through packed beds with unconsolidated spheres and through consolidated Berea sandstone are numerically explored. The surfaces exhibit electrical charge heterogeneity where particles can deposit blocking the surrounding surface deposition sites. The lattice Boltzmann method with Lagrangian particle tracking are the techniques employed. Four ideal patterns of surface charge heterogeneity are adopted for the packed sphere beds, while a real distribution of charge heterogeneity is determined for the Berea core through micro-CT image segmentation. It is found that particle breakthrough curves do not reach a plateau, unless the pore surfaces are completely saturated. Surface saturation also enhances particle propagation because of the surface blocking mechanism, reducing the effective particle deposition rate. In addition, surface saturation mitigates the effect of the pattern of heterogeneity on particle retention, which might be pronounced when blocking is not taken into account. It is also observed from the case of Berea core that the heterogeneity of the mineralogical surfaces disturbs particle transport depending on the physicochemical properties of the surfaces. Likewise, similarity of the mineralogical surface properties is a prerequisite for the commonly used patch-wise model with Langmuirian blocking to reproduce nanoparticle breakthrough in such porous media.

  11. Porous medium convection at large Rayleigh number: Studies of coherent structure, transport, and reduced dynamics

    Science.gov (United States)

    Wen, Baole

    Buoyancy-driven convection in fluid-saturated porous media is a key environmental and technological process, with applications ranging from carbon dioxide storage in terrestrial aquifers to the design of compact heat exchangers. Porous medium convection is also a paradigm for forced-dissipative infinite-dimensional dynamical systems, exhibiting spatiotemporally chaotic dynamics if not "true" turbulence. The objective of this dissertation research is to quantitatively characterize the dynamics and heat transport in two-dimensional horizontal and inclined porous medium convection between isothermal plane parallel boundaries at asymptotically large values of the Rayleigh number Ra by investigating the emergent, quasi-coherent flow. This investigation employs a complement of direct numerical simulations (DNS), secondary stability and dynamical systems theory, and variational analysis. The DNS confirm the remarkable tendency for the interior flow to self-organize into closely-spaced columnar plumes at sufficiently large Ra (up to Ra ≃ 105), with more complex spatiotemporal features being confined to boundary layers near the heated and cooled walls. The relatively simple form of the interior flow motivates investigation of unstable steady and time-periodic convective states at large Ra as a function of the domain aspect ratio L. To gain insight into the development of spatiotemporally chaotic convection, the (secondary) stability of these fully nonlinear states to small-amplitude disturbances is investigated using a spatial Floquet analysis. The results indicate that there exist two distinct modes of instability at large Ra: a bulk instability mode and a wall instability mode. The former usually is excited by long-wavelength disturbances and is generally much weaker than the latter. DNS, strategically initialized to investigate the fully nonlinear evolution of the most dangerous secondary instability modes, suggest that the (long time) mean inter-plume spacing in

  12. Column Testing and 1D Reactive Transport Modeling to Evaluate Uranium Plume Persistence Processes

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Raymond H. [Navarro Research and Engineering, Inc.; Morrison, Stan [Navarro Research and Engineering, Inc.; Morris, Sarah [Navarro Research and Engineering, Inc.; Tigar, Aaron [Navarro Research and Engineering, Inc.; Dam, William [U.S. Department of Energy, Office of Legacy Management; Dayvault, Jalena [U.S. Department of Energy, Office of Legacy Management

    2016-04-26

    Motivation for Study: Natural flushing of contaminants at various U.S. Department of Energy Office of Legacy Management sites is not proceeding as quickly as predicted (plume persistence) Objectives: Help determine natural flushing rates using column tests. Use 1D reactive transport modeling to better understand the major processes that are creating plume persistence Approach: Core samples from under a former mill tailings area Tailings have been removed. Column leaching using lab-prepared water similar to nearby Gunnison River water. 1D reactive transport modeling to evaluate processes

  13. An Equation-Type Approach for the Numerical Solution of the Partial Differential Equations Governing Transport Phenomena in Porous Media

    KAUST Repository

    Sun, Shuyu

    2012-06-02

    A new technique for the numerical solution of the partial differential equations governing transport phenomena in porous media is introduced. In this technique, the governing equations as depicted from the physics of the problem are used without extra manipulations. In other words, there is no need to reduce the number of governing equations by some sort of mathematical manipulations. This technique enables the separation of the physics part of the problem and the solver part, which makes coding more robust and could be used in several other applications with little or no modifications (e.g., multi-phase flow in porous media). In this method, one abandons the need to construct the coefficient matrix for the pressure equation. Alternatively, the coefficients are automatically generated within the solver routine. We show examples of using this technique to solving several flow problems in porous media.

  14. Evaporation-driven transport and precipitation of salt in porous-media: A multi-domain approach

    Science.gov (United States)

    Jambhekar, Vishal Arun; Schmid, Karen Sophie; Helmig, Rainer

    2014-05-01

    Introduction: Evaporative salinization a major concern worldwide is observed across many environmental, agricultural and engineering applications. In the context of agriculture, salinization caused due to excess irrigation and use of artificial fertilizers in last few decades deteriorated productive land to a large extent. Many scientists have conducted experimental and numerical studies related to evaporative salinization [1, 2]. However, to our knowledge most of the performed numerical studies neglect the influence of atmospheric processes and free-flow pours-media interaction, which could play a significant role for salinization in a natural system. With our model concept we attempt to study and analyze the influence of atmospheric processes on dissolved salt transport, evaporation dynamics and salt-precipitation. Evaporation is mainly driven by diffusion, related to the vapor pressure gradient across liquid-air interface and advection, related to the tangential wind velocity at the soil surface. Moreover, it is also affected by the complex interactions between the flow and transport processes in the atmosphere and the porous-medium. On the atmosphere side, it is influenced by wind velocity, air temperature, humidity, radiation etc. On the porous-medium side, it is strongly related to the advective and diffusive fluxes, heterogeneity in salinity distribution (causes osmosis) and salt precipitation (causes pore clogging). As discussed in [1] evaporation of saline solutions can be explained into three different stages. Model: Our model is capable to handle coupled single-phase-compositional free and three-phase-compositional porous-media flow and transport. It is based on a two-domain approach, where non-isothermal sub-models are used for free-flow and porous-media sub-domains [3]. The sub-models are coupled using interface conditions ensuring continuity of mass, momentum and energy. This facilitates to describe evaporation independent of any boundary condition at

  15. Reactive Transport in a Pipe in Soluble Rock: a Theoretical and Experimental Study

    Science.gov (United States)

    Li, W.; Opolot, M.; Sousa, R.; Einstein, H. H.

    2015-12-01

    Reactive transport processes within the dominant underground flow pathways such as fractures can lead to the widening or narrowing of rock fractures, potentially altering the flow and transport processes in the fractures. A flow-through experiment was designed to study the reactive transport process in a pipe in soluble rock to serve as a simplified representation of a fracture in soluble rock. Assumptions were made to formulate the problem as three coupled, one-dimensional partial differential equations: one for the flow, one for the transport and one for the radius change due to dissolution. Analytical and numerical solutions were developed to predict the effluent concentration and the change in pipe radius. The positive feedback of the radius increase is captured by the experiment and the numerical model. A comparison between the experiment and the simulation results demonstrates the validity of the analytical and numerical models.

  16. Averaged Description of Flow (Steady and Transient) and Nonreactive Solute Transport in Random Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Schvidler, M.; Karasaki, K.

    2011-06-15

    In previous papers (Shvidler and Karasaki, 1999, 2001, 2005, and 2008) we presented and analyzed an approach for finding the general forms of exactly averaged equations of flow and transport in porous media. We studied systems of basic equations for steady flow with sources in unbounded domains with stochastically homogeneous conductivity fields. A brief analysis of exactly averaged equations of nonsteady flow and nonreactive solute transport was also presented. At the core of this approach is the existence of appropriate random Green's functions. For example, we showed that in the case of a 3-dimensional unbounded domain the existence of appropriate random Green's functions is sufficient for finding the exact nonlocal averaged equations for flow velocity using the operator with a unique kernel-vector. Examination of random fields with global symmetry (isotropy, transversal isotropy and orthotropy) makes it possible to describe significantly different types of averaged equations with nonlocal unique operators. It is evident that the existence of random Green's functions for physical linear processes is equivalent to assuming the existence of some linear random operators for appropriate stochastic equations. If we restricted ourselves to this assumption only, as we have done in this paper, we can study the processes in any dimensional bounded or unbounded fields and in addition, cases in which the random fields of conductivity and porosity are stochastically nonhomogeneous, nonglobally symmetrical, etc.. It is clear that examining more general cases involves significant difficulty and constricts the analysis of structural types for the processes being studied. Nevertheless, we show that we obtain the essential information regarding averaged equations for steady and transient flow, as well as for solute transport.

  17. Simulation of Solute Flow and Transport in a Geostatistically Generated Fractured Porous System

    Science.gov (United States)

    Assteerawatt, A.; Helmig, R.; Haegland, H.; Bárdossy, A.

    2007-12-01

    Fractured aquifer systems have provided important natural resources such as petroleum, gas, water and geothermal energy and have also been recently under investigation for their suitability as storage sites for high-level nuclear waste. The resource exploitation and potential utilization have led to extensive studies aiming of understanding, characterizing and finally predicting the behavior of fractured aquifer systems. By applying a discrete model approach to study flow and transport processes, fractures are determined discretely and the effect of individual fractures can be explicitly investigated. The critical step for the discrete model is the generation of a representative fracture network since the development of flow paths within a fractured system strongly depends on its structure. The geostatistical fracture generation (GFG) developed in this study aims to create a representative fracture network, which combines the spatial structures and connectivity of a fracture network, and the statistical distribution of fracture geometries. The spatial characteristics are characterized from indicator fields, which are evaluated from fracture trace maps. A global optimization, Simulated annealing, is utilized as a generation technique and the spatial characteristics are formulated to its objective function. We apply the GFG to a case study at a Pliezhausen field block, which is a sandstone of a high fracture density. The generated fracture network from the GFG are compared with the statistically generated fracture network in term of structure and hydraulic behavior. As the GFG is based on a stochastic concept, several realizations of the same descriptions can be generated, hence, an overall behavior of the fracture-matrix system have to be investigated from various realizations which leads to a problem of computational demand. In order to overcome this problem, a streamline method for a solute transport in a fracture porous system is presented. The results obtained

  18. Advances in colloid and biocolloid transport in porous media: particle size-dependent dispersivity and gravity effects

    Science.gov (United States)

    Chrysikopoulos, Constantinos V.; Manariotis, Ioannis D.; Syngouna, Vasiliki I.

    2014-05-01

    Accurate prediction of colloid and biocolloid transport in porous media relies heavily on usage of suitable dispersion coefficients. The widespread procedure for dispersion coefficient determination consists of conducting conservative tracer experiments and subsequently fitting the collected breakthrough data with a selected advection-dispersion transport model. The fitted dispersion coefficient is assumed to characterize the porous medium and is often used thereafter to analyze experimental results obtained from the same porous medium with other solutes, colloids, and biocolloids. The classical advection-dispersion equation implies that Fick's first law of diffusion adequately describes the dispersion process, or that the dispersive flux is proportional to the concentration gradient. Therefore, the above-described procedure inherently assumes that the dispersive flux of all solutes, colloids and biocolloids under the same flow field conditions is exactly the same. Furthermore, the available mathematical models for colloid and biocoloid transport in porous media do not adequately account for gravity effects. Here an extensive laboratory study was undertaken in order to assess whether the dispersivity, which traditionally has been considered to be a property of the porous medium, is dependent on colloid particle size, interstitial velocity and length scale. The breakthrough curves were successfully simulated with a mathematical model describing colloid and biocolloid transport in homogeneous, water saturated porous media. The results demonstrated that the dispersivity increases very slowly with increasing interstitial velocity, and increases with column length. Furthermore, contrary to earlier results, which were based either on just a few experimental observations or experimental conditions leading to low mass recoveries, dispersivity was positively correlated with colloid particle size. Also, transport experiments were performed with biocolloids (bacteriophages:

  19. SeSBench - An initiative to benchmark reactive transport models for environmental subsurface processes

    Science.gov (United States)

    Jacques, Diederik

    2017-04-01

    As soil functions are governed by a multitude of interacting hydrological, geochemical and biological processes, simulation tools coupling mathematical models for interacting processes are needed. Coupled reactive transport models are a typical example of such coupled tools mainly focusing on hydrological and geochemical coupling (see e.g. Steefel et al., 2015). Mathematical and numerical complexity for both the tool itself or of the specific conceptual model can increase rapidly. Therefore, numerical verification of such type of models is a prerequisite for guaranteeing reliability and confidence and qualifying simulation tools and approaches for any further model application. In 2011, a first SeSBench -Subsurface Environmental Simulation Benchmarking- workshop was held in Berkeley (USA) followed by four other ones. The objective is to benchmark subsurface environmental simulation models and methods with a current focus on reactive transport processes. The final outcome was a special issue in Computational Geosciences (2015, issue 3 - Reactive transport benchmarks for subsurface environmental simulation) with a collection of 11 benchmarks. Benchmarks, proposed by the participants of the workshops, should be relevant for environmental or geo-engineering applications; the latter were mostly related to radioactive waste disposal issues - excluding benchmarks defined for pure mathematical reasons. Another important feature is the tiered approach within a benchmark with the definition of a single principle problem and different sub problems. The latter typically benchmarked individual or simplified processes (e.g. inert solute transport, simplified geochemical conceptual model) or geometries (e.g. batch or one-dimensional, homogeneous). Finally, three codes should be involved into a benchmark. The SeSBench initiative contributes to confidence building for applying reactive transport codes. Furthermore, it illustrates the use of those type of models for different

  20. Charge transport in dye-sensibilized porous zinc oxide films; Ladungstransport in farbstoffsensibilisierten poroesen Zinkoxidfilmen

    Energy Technology Data Exchange (ETDEWEB)

    Reemts, J.

    2006-05-18

    During the last decades, zinc oxide has attracted a lot of attention as an important material in various electrical, chemical, and optical applications. In the present work results are discussed gained from investigations of highly porous electrochemically deposited zinc oxide, which is a promising electrode material both in the area of solar energy conversion and sensor technology. The films were prepared by adding detergents during the electrodeposition process. The detergents have a structure-directing influence during the film deposition and, therefore, on the morphology of the films. The obtained electrodes can easily be sensitized for light or different chemicals by a simple adsorption of different molecules. In the present work I discuss the fundamental charge transport properties of electrochemically deposited zinc oxide films. Temperature-dependent measurements of the current-voltage characteristics are carried out and the spectral response of the photoconductivity is investigated. In order to understand the charge transport properties of this highly porous material, it is necessary to get a deeper insight in the electrode morphology. Therefore, different optical and scanning probe microscopy methods are used to characterize the inner structure of the electrodes. The electrical conductivity of the zinc oxide films can be seen as a thermally activated process, which can be explained by electronic transitions from the valence band of the zinc oxide to two shallow impurity levels. The current-voltage characteristic unveils a nonlinear behavior which can be explained by a space-charge-limited current model with traps distributed in energy. Upon excitation with different wavelengths, the conductivity of the zinc oxide increases already under sub-band gap illumination due to widely distributed trap states within the band gap. The transients of the photoconductivity follow a stretched exponential law with time scales in the range of several hours, either if the

  1. Reactive transport in the complex heterogeneous alluvial aquifer of Fortymile Wash, Nevada.

    Science.gov (United States)

    Soltanian, Mohamad Reza; Sun, Alexander; Dai, Zhenxue

    2017-07-01

    Yucca Mountain, Nevada, had been extensively investigated as a potential deep geologic repository for storing high-level nuclear wastes. Previous field investigations of stratified alluvial aquifer downstream of the site revealed that there is a hierarchy of sedimentary facies types. There is a corresponding log conductivity and reactive surface area subpopulations within each facies at each scale of sedimentary architecture. Here we use a Lagrangian-based transport model in order to analyze radionuclide dispersion in the saturated alluvium of Fortymile Wash, Nevada. First, we validate the Lagrangian model using high-resolution flow and reactive transport simulations. Then, we used the validated model to investigate how each scale of sedimentary architecture may affect long-term radionuclide transport at Yucca Mountain. Results show that the reactive solute dispersion developed by the Lagrangian model matches the ensemble average of numerical simulations well. The link between the alluvium spatial variability and reactive solute dispersion at different spatiotemporal scales is demonstrated using the Lagrangian model. The longitudinal dispersivity of the reactive plume can be on the order of hundreds to thousands of meters, and it may not reach its asymptotic value even after 10,000 years of travel time and 2-3 km of travel distance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Laboratory experiments on solute transport in bimodal porous media under cyclic precipitation-evaporation boundary conditions

    Science.gov (United States)

    Cremer, Clemens; Neuweiler, Insa

    2016-04-01

    Flow and solute transport in the shallow subsurface is strongly governed by atmospheric boundary conditions. Erratically varying infiltration and evaporation cycles lead to alternating upward and downward flow, as well as spatially and temporally varying water contents and associated hydraulic conductivity of the prevailing materials. Thus presenting a highly complicated, dynamic system. Knowledge of subsurface solute transport processes is vital to assess e.g. the entry of, potentially hazardous, solutes to the groundwater and nutrient uptake by plant roots and can be gained in many ways. Besides field measurements and numerical simulations, physical laboratory experiments represent a way to establish process understanding and furthermore validate numerical schemes. With the aim to gain a better understanding and to quantify solute transport in the unsaturated shallow subsurface under natural precipitation conditions in heterogeneous media, we conduct physical laboratory experiments in a 22 cm x 8 cm x 1 cm flow cell that is filled with two types of sand and apply cyclic infiltration-evaporation phases at the soil surface. Pressure at the bottom of the domain is kept constant. Following recent studies (Lehmann and Or, 2009; Bechtold et al., 2011a), heterogeneity is introduced by a sharp vertical interface between coarse and fine sand. Fluorescent tracers are used to i) qualitatively visualize transport paths within the domain and ii) quantify solute leaching at the bottom of the domain. Temporal and spatial variations in water content during the experiment are derived from x-ray radiographic images. Monitored water contents between infiltration and evaporation considerably changed in the coarse sand while the fine sand remained saturated throughout the experiments. Lateral solute transport through the interface in both directions at different depths of the investigated soil columns were observed. This depended on the flow rate applied at the soil surface and

  3. Probability density function of non-reactive solute concentration in heterogeneous porous formations.

    Science.gov (United States)

    Bellin, Alberto; Tonina, Daniele

    2007-10-30

    Available models of solute transport in heterogeneous formations lack in providing complete characterization of the predicted concentration. This is a serious drawback especially in risk analysis where confidence intervals and probability of exceeding threshold values are required. Our contribution to fill this gap of knowledge is a probability distribution model for the local concentration of conservative tracers migrating in heterogeneous aquifers. Our model accounts for dilution, mechanical mixing within the sampling volume and spreading due to formation heterogeneity. It is developed by modeling local concentration dynamics with an Ito Stochastic Differential Equation (SDE) that under the hypothesis of statistical stationarity leads to the Beta probability distribution function (pdf) for the solute concentration. This model shows large flexibility in capturing the smoothing effect of the sampling volume and the associated reduction of the probability of exceeding large concentrations. Furthermore, it is fully characterized by the first two moments of the solute concentration, and these are the same pieces of information required for standard geostatistical techniques employing Normal or Log-Normal distributions. Additionally, we show that in the absence of pore-scale dispersion and for point concentrations the pdf model converges to the binary distribution of [Dagan, G., 1982. Stochastic modeling of groundwater flow by unconditional and conditional probabilities, 2, The solute transport. Water Resour. Res. 18 (4), 835-848.], while it approaches the Normal distribution for sampling volumes much larger than the characteristic scale of the aquifer heterogeneity. Furthermore, we demonstrate that the same model with the spatial moments replacing the statistical moments can be applied to estimate the proportion of the plume volume where solute concentrations are above or below critical thresholds. Application of this model to point and vertically averaged bromide

  4. Model-data integration for predictive assessment of groundwater reactive transport systems

    NARCIS (Netherlands)

    Carniato, L.

    2014-01-01

    Predicting the evolution of groundwater contamination is a major concern for society, in particular when investments are made to remediate the contamination. Groundwater reactive transport models are valuable tools to integrate the available measurements in a consistent framework, improving our unde

  5. Coupled hydrogeological and reactive transport modelling of the Simpevarp area (Sweden)

    Energy Technology Data Exchange (ETDEWEB)

    Molinero, Jorge [Amphos XXI Consulting, S.L. Pg. de Rubi, 29-31, 08197 Valldoreix, Barcelona (Spain)], E-mail: jorge.molinero@amphos21.com; Raposo, Juan R.; Galindez, Juan M. [Escola Politecnica Superior, Universidade de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo (Spain); Arcos, David; Guimera, Jordi [Amphos XXI Consulting, S.L. Pg. de Rubi, 29-31, 08197 Valldoreix, Barcelona (Spain)

    2008-07-15

    The Simpevarp area is one of the alternative sites being considered for the deep geological disposal of high level radioactive waste in Sweden. In this paper, a coupled regional groundwater flow and reactive solute transport model of the Simpevarp area is presented that integrates current hydrogeological and hydrochemical data of the area. The model simulates the current hydrochemical pattern of the groundwater system in the area. To that aim, a conceptual hydrochemical model was developed in order to represent the dominant chemical processes. Groundwater flow conditions were reproduced by taking into account fluid-density-dependent groundwater flow and regional hydrogeologic boundary conditions. Reactive solute transport calculations were performed on the basis of the velocity field so obtained. The model was calibrated and sensitivity analyses were carried out in order to investigate the effects of heterogeneities of hydraulic conductivity in the subsurface medium. Results provided by the reactive transport model are in good agreement with much of the measured hydrochemical data. This paper emphasizes the appropriateness of the use of reactive solute transport models when water-rock interaction reactions are involved, and demonstrates what powerful tools they are for the interpretation of hydrogeological and hydrochemical data from site geological repository characterization programs, by providing a qualitative framework for data analysis and testing of conceptual assumptions in a process-oriented approach.

  6. A reactive transport investigation of a seawater intrusion experiment in a shallow aquifer, Skansehage Denmark

    DEFF Research Database (Denmark)

    Christensen, Flemming Damgaard; Engesgaard, Peter Knudegaard; Kipp, K.L.

    2001-01-01

    Previous investigations on seawater intrusion have mainly focused on either the physical density flow system with transport of a single non-reactive species or focused on the geochemical aspects neglecting density effects. This study focuses on both the geochemical and physical aspects of seawater...... intrusion and their interaction during an intrusion experiment in a shallow, small-scale coastal aquifer in Denmark....

  7. Deep removal of 4,6-dimethyldibenzothiophene from model transportation diesel fuels over reactive adsorbent

    Directory of Open Access Journals (Sweden)

    Shengqiang Wang

    2012-06-01

    Full Text Available This paper presents a new reactive adsorbent used to effectively remove 4,6-dimethyldibenzothiophene (4,6-DMDBT from model transportation diesel fuels. This reactive adsorbent was composed of formaldehyde, phosphotungstic acid and mesoporous silica gel. The experiment was based on an assumed condensation reaction of 4,6-DMDBT with formaldehyde using phosphotungstic acid as catalyst in pore spaces. The effect of temperature and the amount of formaldehyde and phosphotungstic acid loaded on the substrate were investigated in a batch system. In the breakthrough experiment, three different model diesel fuels containing 1000 mg/kg 4,6-DMDBT were pumped through a fixed-bed reactor packed with reactive adsorbent at constant temperature and atmospheric pressure, respectively. The experimental results showed that sulfur-free model fuel was obtained at 80ºC despite the presence of aromatics. The sulfur capacity of regenerated reactive adsorbent was almost totally recovered.

  8. Maximum likelihood Bayesian model averaging and its predictive analysis for groundwater reactive transport models

    Science.gov (United States)

    Curtis, Gary P.; Lu, Dan; Ye, Ming

    2015-01-01

    While Bayesian model averaging (BMA) has been widely used in groundwater modeling, it is infrequently applied to groundwater reactive transport modeling because of multiple sources of uncertainty in the coupled hydrogeochemical processes and because of the long execution time of each model run. To resolve these problems, this study analyzed different levels of uncertainty in a hierarchical way, and used the maximum likelihood version of BMA, i.e., MLBMA, to improve the computational efficiency. This study demonstrates the applicability of MLBMA to groundwater reactive transport modeling in a synthetic case in which twenty-seven reactive transport models were designed to predict the reactive transport of hexavalent uranium (U(VI)) based on observations at a former uranium mill site near Naturita, CO. These reactive transport models contain three uncertain model components, i.e., parameterization of hydraulic conductivity, configuration of model boundary, and surface complexation reactions that simulate U(VI) adsorption. These uncertain model components were aggregated into the alternative models by integrating a hierarchical structure into MLBMA. The modeling results of the individual models and MLBMA were analyzed to investigate their predictive performance. The predictive logscore results show that MLBMA generally outperforms the best model, suggesting that using MLBMA is a sound strategy to achieve more robust model predictions relative to a single model. MLBMA works best when the alternative models are structurally distinct and have diverse model predictions. When correlation in model structure exists, two strategies were used to improve predictive performance by retaining structurally distinct models or assigning smaller prior model probabilities to correlated models. Since the synthetic models were designed using data from the Naturita site, the results of this study are expected to provide guidance for real-world modeling. Limitations of applying MLBMA to the

  9. Use of the generalized integral transform method for solving equations of solute transport in porous media

    Science.gov (United States)

    Liu, Chongxuan; Szecsody, Jim E.; Zachara, John M.; Ball, William P.

    The generalized integral transform technique (GITT) is applied to solve the one-dimensional advection-dispersion equation (ADE) in heterogeneous porous media coupled with either linear or nonlinear sorption and decay. When both sorption and decay are linear, analytical solutions are obtained using the GITT for one-dimensional ADEs with spatially and temporally variable flow and dispersion coefficient and arbitrary initial and boundary conditions. When either sorption or decay is nonlinear the solutions to ADEs with the GITT are hybrid analytical-numerical. In both linear and nonlinear cases, the forward and inverse integral transforms for the problems described in the paper are apparent and straightforward. Some illustrative examples with linear sorption and decay are presented to demonstrate the application and check the accuracy of the derived analytical solutions. The derived hybrid analytical-numerical solutions are checked against a numerical approach and demonstratively applied to a nonlinear transport example, which simulates a simplified system of iron oxide bioreduction with nonlinear sorption and nonlinear reaction kinetics.

  10. Computing and Comparing Effective Properties for Flow and Transport in Computer-Generated Porous Media

    KAUST Repository

    Allen, Rebecca

    2017-02-13

    We compute effective properties (i.e., permeability, hydraulic tortuosity, and diffusive tortuosity) of three different digital porous media samples, including in-line array of uniform shapes, staggered-array of squares, and randomly distributed squares. The permeability and hydraulic tortuosity are computed by solving a set of rescaled Stokes equations obtained by homogenization, and the diffusive tortuosity is computed by solving a homogenization problem given for the effective diffusion coefficient that is inversely related to diffusive tortuosity. We find that hydraulic and diffusive tortuosity can be quantitatively different by up to a factor of ten in the same pore geometry, which indicates that these tortuosity terms cannot be used interchangeably. We also find that when a pore geometry is characterized by an anisotropic permeability, the diffusive tortuosity (and correspondingly the effective diffusion coefficient) can also be anisotropic. This finding has important implications for reservoir-scale modeling of flow and transport, as it is more realistic to account for the anisotropy of both the permeability and the effective diffusion coefficient.

  11. Nanoscale multilayered and porous carbide interphases prepared by pressure-pulsed reactive chemical vapor deposition for ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, S., E-mail: jacques@lcts.u-bordeaux1.fr [LCTS, University of Bordeaux 1, CNRS, Herakles-Safran, CEA, 3 allee de la Boetie, F-33600 Pessac (France); Jouanny, I.; Ledain, O.; Maillé, L.; Weisbecker, P. [LCTS, University of Bordeaux 1, CNRS, Herakles-Safran, CEA, 3 allee de la Boetie, F-33600 Pessac (France)

    2013-06-15

    In Ceramic Matrix Composites (CMCs) reinforced by continuous fibers, a good toughness is achieved by adding a thin film called “interphase” between the fiber and the brittle matrix, which acts as a mechanical fuse by deflecting the matrix cracks. Pyrocarbon (PyC), with or without carbide sub-layers, is typically the material of choice to fulfill this role. The aim of this work was to study PyC-free nanoscale multilayered carbide coatings as interphases for CMCs. Nanoscale multilayered (SiC–TiC){sub n} interphases were deposited by pressure-Pulsed Chemical Vapor Deposition (P-CVD) on single filament Hi-Nicalon fibers and embedded in a SiC matrix sheath. The thicknesses of the carbide interphase sub-layers could be made as low as a few nanometers as evidenced by scanning and transmission electron microscopy. By using the P-ReactiveCVD method (P-RCVD), in which the TiC growth involves consumption of SiC, it was not only possible to obtain multilayered (SiC–TiC){sub n} films but also TiC films with a porous multilayered microstructure as a result of the Kirkendall effect. The porosity in the TiC sequences was found to be enhanced when some PyC was added to SiC prior to total RCVD consumption. Because the porosity volume fraction was still not high enough, the role of mechanical fuse of the interphases could not be evidenced from the tensile curves, which remained fully linear even when chemical attack of the fiber surface was avoided.

  12. Influence of pH on the Transport of Silver Nanoparticles in Saturated Porous Media: Laboratory Experiments and Modeling

    Science.gov (United States)

    2012-03-01

    this research as prescribed by the selected journal. Chapter III provides a summary of the primary findings discussed in the article, as well as...hydrophobic and hydrophilic collector surfaces (Song et al. 2011). The transport of uncoated AgNPs in porous media (glass beads and hematite ...coated glass beads) at acidic and basic pH was studied in column experiments. At pH levels lower than the point of zero charge of hematite , the affinity

  13. Equivalent Porous Media (EPM) Simulation of Groundwater Hydraulics and Contaminant Transport in Karst Aquifers.

    Science.gov (United States)

    Ghasemizadeh, Reza; Yu, Xue; Butscher, Christoph; Hellweger, Ferdi; Padilla, Ingrid; Alshawabkeh, Akram

    2015-01-01

    Karst aquifers have a high degree of heterogeneity and anisotropy in their geologic and hydrogeologic properties which makes predicting their behavior difficult. This paper evaluates the application of the Equivalent Porous Media (EPM) approach to simulate groundwater hydraulics and contaminant transport in karst aquifers using an example from the North Coast limestone aquifer system in Puerto Rico. The goal is to evaluate if the EPM approach, which approximates the karst features with a conceptualized, equivalent continuous medium, is feasible for an actual project, based on available data and the study scale and purpose. Existing National Oceanic Atmospheric Administration (NOAA) data and previous hydrogeological U. S. Geological Survey (USGS) studies were used to define the model input parameters. Hydraulic conductivity and specific yield were estimated using measured groundwater heads over the study area and further calibrated against continuous water level data of three USGS observation wells. The water-table fluctuation results indicate that the model can practically reflect the steady-state groundwater hydraulics (normalized RMSE of 12.4%) and long-term variability (normalized RMSE of 3.0%) at regional and intermediate scales and can be applied to predict future water table behavior under different hydrogeological conditions. The application of the EPM approach to simulate transport is limited because it does not directly consider possible irregular conduit flow pathways. However, the results from the present study suggest that the EPM approach is capable to reproduce the spreading of a TCE plume at intermediate scales with sufficient accuracy (normalized RMSE of 8.45%) for groundwater resources management and the planning of contamination mitigation strategies.

  14. Parameterization and prediction of nanoparticle transport in porous media: A reanalysis using artificial neural network

    Science.gov (United States)

    Babakhani, Peyman; Bridge, Jonathan; Doong, Ruey-an; Phenrat, Tanapon

    2017-06-01

    The continuing rapid expansion of industrial and consumer processes based on nanoparticles (NP) necessitates a robust model for delineating their fate and transport in groundwater. An ability to reliably specify the full parameter set for prediction of NP transport using continuum models is crucial. In this paper we report the reanalysis of a data set of 493 published column experiment outcomes together with their continuum modeling results. Experimental properties were parameterized into 20 factors which are commonly available. They were then used to predict five key continuum model parameters as well as the effluent concentration via artificial neural network (ANN)-based correlations. The Partial Derivatives (PaD) technique and Monte Carlo method were used for the analysis of sensitivities and model-produced uncertainties, respectively. The outcomes shed light on several controversial relationships between the parameters, e.g., it was revealed that the trend of Katt with average pore water velocity was positive. The resulting correlations, despite being developed based on a "black-box" technique (ANN), were able to explain the effects of theoretical parameters such as critical deposition concentration (CDC), even though these parameters were not explicitly considered in the model. Porous media heterogeneity was considered as a parameter for the first time and showed sensitivities higher than those of dispersivity. The model performance was validated well against subsets of the experimental data and was compared with current models. The robustness of the correlation matrices was not completely satisfactory, since they failed to predict the experimental breakthrough curves (BTCs) at extreme values of ionic strengths.

  15. Mass transfer model of nanoparticle-facilitated contaminant transport in saturated porous media.

    Science.gov (United States)

    Johari, Wan Lutfi Wan; Diamessis, Peter J; Lion, Leonard W

    2010-02-01

    A one-dimensional model has been evaluated for transport of hydrophobic contaminants, such as polycyclic aromatic hydrocarbon (PAH) compounds, facilitated by synthetic amphiphilic polyurethane (APU) nanoparticles in porous media. APU particles synthesized from poly(ethylene glycol)-modified urethane acrylate (PMUA) precursor chains have been shown to enhance the desorption rate and mobility of phenanthrene (PHEN) in soil. A reversible process governed by attachment and detachment rates was considered to describe the PMUA binding in soil in addition to PMUA transport through advection and dispersion. Ultimately, an irreversible second-order PMUA attachment rate in which the fractional soil saturation capacity with PMUA was a rate control was found to be adequate to describe the retention of PMUA particles. A gamma-distributed site model (GS) was used to describe the spectrum of physical/chemical constraints for PHEN transfer from solid to aqueous phases. Instantaneous equilibrium was assumed for PMUA-PHEN interactions. The coupled model for PMUA and PHEN behavior successfully described the enhanced elution profile of PHEN by PMUA. Sensitivity analysis was performed to analyze the significance of model parameters on model predictions. The adjustable parameter alpha in the gamma-distribution shapes the contaminant desorption distribution profile as well as elution and breakthrough curves. Model simulations show the use of PMUA can be also expected to improve the release rate of PHEN in soils with higher organic carbon content. The percentage removal of PHEN mass over time is shown to be influenced by the concentration of PMUA added and this information can be used to optimize cost and time require to accomplish a desired remediation goal.

  16. Particle sorting in Filter Porous Media and in Sediment Transport: A Numerical and Experimental Study

    Science.gov (United States)

    Glascoe, L. G.; Ezzedine, S. M.; Kanarska, Y.; Lomov, I. N.; Antoun, T.; Smith, J.; Hall, R.; Woodson, S.

    2014-12-01

    Understanding the flow of fines, particulate sorting in porous media and fractured media during sediment transport is significant for industrial, environmental, geotechnical and petroleum technologies to name a few. For example, the safety of dam structures requires the characterization of the granular filter ability to capture fine-soil particles and prevent erosion failure in the event of an interfacial dislocation. Granular filters are one of the most important protective design elements of large embankment dams. In case of cracking and erosion, if the filter is capable of retaining the eroded fine particles, then the crack will seal and the dam safety will be ensured. Here we develop and apply a numerical tool to thoroughly investigate the migration of fines in granular filters at the grain scale. The numerical code solves the incompressible Navier-Stokes equations and uses a Lagrange multiplier technique. The numerical code is validated to experiments conducted at the USACE and ERDC. These laboratory experiments on soil transport and trapping in granular media are performed in constant-head flow chamber filled with the filter media. Numerical solutions are compared to experimentally measured flow rates, pressure changes and base particle distributions in the filter layer and show good qualitative and quantitative agreement. To further the understanding of the soil transport in granular filters, we investigated the sensitivity of the particle clogging mechanism to various parameters such as particle size ratio, the magnitude of hydraulic gradient, particle concentration, and grain-to-grain contact properties. We found that for intermediate particle size ratios, the high flow rates and low friction lead to deeper intrusion (or erosion) depths. We also found that the damage tends to be shallower and less severe with decreasing flow rate, increasing friction and concentration of suspended particles. We have extended these results to more realistic heterogeneous

  17. Facilitated transport of titanium dioxide nanoparticles by humic substances in saturated porous media under acidic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ruichang [Chinese Academy of Sciences, Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science (China); Zhang, Haibo; Tu, Chen; Hu, Xuefeng; Li, Lianzhen [Chinese Academy of Sciences, Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (China); Luo, Yongming, E-mail: ymluo@yic.ac.cn; Christie, Peter [Chinese Academy of Sciences, Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science (China)

    2015-04-15

    The transport behavior of titanium dioxide nanoparticles (TiO{sub 2} NPs, 30 nm in diameter) was studied in well-defined porous media composed of clean quartz sand over a range of solution chemistry under acidic conditions. Transport of TiO{sub 2} NPs was dramatically enhanced by humic substances (HS) at acidic pH (4.0, 5.0 and 6.0), even at a low HS concentration of 0.5 mg L{sup −1}. Facilitated transport of TiO{sub 2} NPs was likely attributable to the increased stability of TiO{sub 2} NPs and repulsive interaction between TiO{sub 2} NPs and quartz sands due to the adsorbed HS. The mobility of TiO{sub 2} NPs was also increased with increasing pH from 4.0 to 6.0. Although transport of TiO{sub 2} NPs was insensitive to low ionic strength, it was significantly inhibited by high concentrations of NaCl and CaCl{sub 2}. In addition, calculated Derjaguin–Landau–Verwey–Overbeek (DLVO) interaction energy indicated that high energy barriers were responsible for the high mobility of TiO{sub 2} NPs, while the secondary energy minimum could play an important role in the retention of TiO{sub 2} NPs at 100 mmol L{sup −1} NaCl. Straining and gravitational settlement of larger TiO{sub 2} NPs aggregates at 1 mg L{sup −1} HS, pH 5.0, and 2 mmol L{sup −1} CaCl{sub 2} could be responsible for the significant retention even in the presence of high energy barriers. Moreover, more favorable interaction between approaching TiO{sub 2} NPs and TiO{sub 2} NPs that had been already deposited on the collector resulted in a ripening-shape breakthrough curve at 2 mmol L{sup −1} CaCl{sub 2}. Overall, a combination of mechanisms including DLVO-type force, straining, and physical filtration was involved in the retention of TiO{sub 2} NPs over the range of solution chemistry examined in this study.

  18. Water Transport in the Micro Porous Layer and Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell

    Science.gov (United States)

    Qin, C.; Hassanizadeh, S. M.

    2015-12-01

    In this work, a recently developed dynamic pore-network model is presented [1]. The model explicitly solves for both water pressure and capillary pressure. A semi-implicit scheme is used in updating water saturation in each pore body, which considerably increases the numerical stability at low capillary number values. Furthermore, a multiple-time-step algorithm is introduced to reduce the computational effort. A number of case studies of water transport in the micro porous layer (MPL) and gas diffusion layer (GDL) are conducted. We illustrate the role of MPL in reducing water flooding in the GDL. Also, the dynamic water transport through the MPL-GDL interface is explored in detail. This information is essential to the reduced continua model (RCM), which was developed for multiphase flow through thin porous layers [2, 3]. C.Z. Qin, Water transport in the gas diffusion layer of a polymer electrolyte fuel cell: dynamic pore-network modeling, J Electrochimical. Soci., 162, F1036-F1046, 2015. C.Z. Qin and S.M. Hassanizadeh, Multiphase flow through multilayers of thin porous media: general balance equations and constitutive relationships for a solid-gas-liquid three-phase system, Int. J. Heat Mass Transfer, 70, 693-708, 2014. C.Z. Qin and S.M. Hassanizadeh, A new approach to modeling water flooding in a polymer electrolyte fuel cell, Int. J. Hydrogen Energy, 40, 3348-3358, 2015.

  19. Moving from Batch to Field Using the RT3D Reactive Transport Modeling System

    Science.gov (United States)

    Clement, T. P.; Gautam, T. R.

    2002-12-01

    The public domain reactive transport code RT3D (Clement, 1997) is a general-purpose numerical code for solving coupled, multi-species reactive transport in saturated groundwater systems. The code uses MODFLOW to simulate flow and several modules of MT3DMS to simulate the advection and dispersion processes. RT3D employs the operator-split strategy which allows the code solve the coupled reactive transport problem in a modular fashion. The coupling between reaction and transport is defined through a separate module where the reaction equations are specified. The code supports a versatile user-defined reaction option that allows users to define their own reaction system through a Fortran-90 subroutine, known as the RT3D-reaction package. Further a utility code, known as BATCHRXN, allows the users to independently test and debug their reaction package. To analyze a new reaction system at a batch scale, users should first run BATCHRXN to test the ability of their reaction package to model the batch data. After testing, the reaction package can simply be ported to the RT3D environment to study the model response under 1-, 2-, or 3-dimensional transport conditions. This paper presents example problems that demonstrate the methods for moving from batch to field-scale simulations using BATCHRXN and RT3D codes. The first example describes a simple first-order reaction system for simulating the sequential degradation of Tetrachloroethene (PCE) and its daughter products. The second example uses a relatively complex reaction system for describing the multiple degradation pathways of Tetrachloroethane (PCA) and its daughter products. References 1) Clement, T.P, RT3D - A modular computer code for simulating reactive multi-species transport in 3-Dimensional groundwater aquifers, Battelle Pacific Northwest National Laboratory Research Report, PNNL-SA-28967, September, 1997. Available at: http://bioprocess.pnl.gov/rt3d.htm.

  20. Pore-scale simulation of multicomponent multiphase reactive transport with dissolution and precipitation

    CERN Document Server

    Chen, Li; Tang, Qing; Robinson, Bruce A; He, Ya-Ling; Tao, Wen-Quan

    2014-01-01

    Multicomponent multiphase reactive transport processes with dissolution-precipitation are widely encountered in energy and environment systems. A pore-scale two-phase multi-mixture model based on the lattice Boltzmann method (LBM) is developed for such complex transport processes, where each phase is considered as a mixture of miscible components in it. The liquid-gas fluid flow with large density ratio is simulated using the multicomponent multiphase pseudo-potential LB model; the transport of certain solute in the corresponding solvent is solved using the mass transport LB model; and the dynamic evolutions of the liquid-solid interface due to dissolution-precipitation are captured by an interface tracking scheme. The model developed can predict coupled multiple physicochemical processes including multiphase flow, multicomponent mass transport, homogeneous reactions in the bulk fluid and heterogeneous dissolution-precipitation reactions at the fluid-solid interface, and dynamic evolution of the solid matrix ...

  1. Application of a data assimilation method via an ensemble Kalman filter to reactive urea hydrolysis transport modeling

    Energy Technology Data Exchange (ETDEWEB)

    Juxiu Tong; Bill X. Hu; Hai Huang; Luanjin Guo; Jinzhong Yang

    2014-03-01

    With growing importance of water resources in the world, remediations of anthropogenic contaminations due to reactive solute transport become even more important. A good understanding of reactive rate parameters such as kinetic parameters is the key to accurately predicting reactive solute transport processes and designing corresponding remediation schemes. For modeling reactive solute transport, it is very difficult to estimate chemical reaction rate parameters due to complex processes of chemical reactions and limited available data. To find a method to get the reactive rate parameters for the reactive urea hydrolysis transport modeling and obtain more accurate prediction for the chemical concentrations, we developed a data assimilation method based on an ensemble Kalman filter (EnKF) method to calibrate reactive rate parameters for modeling urea hydrolysis transport in a synthetic one-dimensional column at laboratory scale and to update modeling prediction. We applied a constrained EnKF method to pose constraints to the updated reactive rate parameters and the predicted solute concentrations based on their physical meanings after the data assimilation calibration. From the study results we concluded that we could efficiently improve the chemical reactive rate parameters with the data assimilation method via the EnKF, and at the same time we could improve solute concentration prediction. The more data we assimilated, the more accurate the reactive rate parameters and concentration prediction. The filter divergence problem was also solved in this study.

  2. A Simple Expression for the Tortuosity of Gas Transport Paths in Solid Oxide Fuel Cells’ Porous Electrodes

    Directory of Open Access Journals (Sweden)

    Wei Kong

    2015-12-01

    Full Text Available Based on the three-dimensional (3D cube packing model, a simple expression for the tortuosity of gas transport paths in solid oxide fuel cells’ (SOFC porous electrodes is developed. The proposed tortuosity expression reveals the dependence of the tortuosity on porosity, which is capable of providing results that are very consistent with the experimental data in the practical porosity range of SOFC. Furthermore, for the high porosity (>0.6, the proposed tortuosity expression is also accurate. This might be helpful for understanding the physical mechanism for the tortuosity of gas transport paths in electrodes and the optimization electrode microstructure for reducing the concentration polarization.

  3. Reactive Transport Modeling of Microbe-mediated Fe (II) Oxidation for Enhanced Oil Recovery

    Science.gov (United States)

    Surasani, V.; Li, L.

    2011-12-01

    Microbially Enhanced Oil Recovery (MEOR) aims to improve the recovery of entrapped heavy oil in depleted reservoirs using microbe-based technology. Reservoir ecosystems often contain diverse microbial communities those can interact with subsurface fluids and minerals through a network of nutrients and energy fluxes. Microbe-mediated reactions products include gases, biosurfactants, biopolymers those can alter the properties of oil and interfacial interactions between oil, brine, and rocks. In addition, the produced biomass and mineral precipitates can change the reservoir permeability profile and increase sweeping efficiency. Under subsurface conditions, the injection of nitrate and Fe (II) as the electron acceptor and donor allows bacteria to grow. The reaction products include minerals such as Fe(OH)3 and nitrogen containing gases. These reaction products can have large impact on oil and reservoir properties and can enhance the recovery of trapped oil. This work aims to understand the Fe(II) oxidation by nitrate under conditions relevant to MEOR. Reactive transport modeling is used to simulate the fluid flow, transport, and reactions involved in this process. Here we developed a complex reactive network for microbial mediated nitrate-dependent Fe (II) oxidation that involves both thermodynamic controlled aqueous reactions and kinetic controlled Fe (II) mineral reaction. Reactive transport modeling is used to understand and quantify the coupling between flow, transport, and reaction processes. Our results identify key parameter controls those are important for the alteration of permeability profile under field conditions.

  4. ParFlow.RT: Development and Verification of a New Reactive Transport Model

    Science.gov (United States)

    Beisman, J. J., III

    2015-12-01

    In natural subsurface systems, total elemental fluxes are often heavily influenced by areas of disproportionately high reaction rates. These pockets of high reaction rates tend to occur at interfaces, such as the hyporheic zone, where a hydrologic flowpath converges with either a chemically distinct hydrologic flowpath or a reactive substrate. Understanding the affects that these highly reactive zones have on the behavior of shallow subsurface systems is integral to the accurate quantification of nutrient fluxes and biogeochemical cycling. Numerical simulations of these systems may be able to offer some insight. To that end, we have developed a new reactive transport model, ParFlow.RT, by coupling the parallel flow and transport code ParFlow with the geochemical engines of both PFLOTRAN and CrunchFlow. The coupling was accomplished via the Alquimia biogeochemistry API, which provides a unified interface to several geochemical codes and allows a relatively simple implementation of advanced geochemical functionality in flow and transport codes. This model uses an operator-splitting approach, where the transport and reaction steps are solved separately. Here, we present the details of this new model, and the results of verification simulations and biogeochemical cycling simulations of the DOE's East River field site outside of Gothic, CO.

  5. Contaminant transport at a waste residue deposit: 1. Inverse flow and non-reactive transport modelling

    DEFF Research Database (Denmark)

    Sonnenborg, Torben Obel; Engesgaard, Peter Knudegaard; Rosbjerg, Dan

    1996-01-01

    and transport simulation model is combined with nonlinear least squares multiple regression. The U.S. Geological Survey method of characteristics model is used to simulate flow and transport, and the optimization part is solved using a Levenberg-Marquardt algorithm. The sensitivity of the optimization approach...

  6. Common inconsistencies in modeling gas transport in porous electrodes: The dusty-gas model and the Fick law

    Science.gov (United States)

    Bertei, A.; Nicolella, C.

    2015-04-01

    The paper shows as two assumptions typically made in modeling gas transport in solid oxide fuel cell electrodes, i.e., a) uniform pressure in the dusty-gas model, and b) validity of the Bosanquet formula in the Fick model, may lead to serious inconsistencies (such as molar fractions that do not sum up to one or fluxes that do not obey reaction stoichiometry), thus nullifying the efforts of the mechanistic modeling of transport phenomena. The nature of the inconsistent use of the models is explained with clear examples, then the correct implementation of the gas transport models is discussed. The study aims to promote a coherent physically-based modeling of gas transport phenomena in porous electrodes in order to assist their rational design.

  7. Accelerating flow propagator measurements for the investigation of reactive transport in porous media

    Science.gov (United States)

    Colbourne, A. A.; Sederman, A. J.; Mantle, M. D.; Gladden, L. F.

    2016-11-01

    NMR propagator measurements are widely used for identifying the distribution of molecular displacements over a given observation time, characterising a flowing system. However, where high q-space resolution is required, the experiments are time consuming and therefore unsuited to the study of dynamic systems. Here, it is shown that with an appropriately sampled subset of the q-space points in a high-resolution flow propagator measurement, one can quickly and robustly reconstruct the fully sampled propagator through interpolation of the acquired raw data. It was found that exponentially sampling ∼4% of the original data-points allowed a reconstruction with the deviation from the fully sampled propagator below the noise level, in this case reducing the required experimental time from ∼2.8 h to 2D imaging data. Such insights are of importance in understanding well acidisation and CO2 sequestration processes.

  8. A generic transport-reactive model for simulating microbially influenced mineral precipitation in porous medium

    NARCIS (Netherlands)

    Zhou, J.; Van Turnhout, A.G.; Heimovaara, T.J.; Afanasyev, M.

    2015-01-01

    The spatial and temporal distribution of precipitated minerals is one of the key factors governing various processes in the sub-surface environment, including microbially influenced corrosion (MIC) (Huang, 2002), bio-cementation (van Paassen et al., 2010) and sediment diagenesis (Paraska et al., 201

  9. A generic transport-reactive model for simulating microbially influenced mineral precipitation in porous medium

    NARCIS (Netherlands)

    Zhou, J.; Van Turnhout, A.G.; Heimovaara, T.J.; Afanasyev, M.

    2015-01-01

    The spatial and temporal distribution of precipitated minerals is one of the key factors governing various processes in the sub-surface environment, including microbially influenced corrosion (MIC) (Huang, 2002), bio-cementation (van Paassen et al., 2010) and sediment diagenesis (Paraska et al.,

  10. Multi-region Transport and Competitive Ion Exchange in Partially Saturated Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Yabusaki, Steven B.(BATTELLE (PACIFIC NW LAB)); Gamerdinger, Amy P.(WASHINGTON STATE UNIV TC); S.M. Hassanizadeh, R.J. Schotting, et al.

    2002-01-01

    In most natural subsurface settings cesium sorbs very strongly to sediments, effectively limiting its transport. At the Hanford Site in Washington State (USA), vadose zone migration of 137Cs from subsurface high-level radioactive waste tanks has been detected over 40 meters below the ground surface. Batch and saturated laboratory column studies provided the basis for a quantitative multisite, multicomponent ion exchange model of Cs+ competition with Na+, K+, Ca++, and Mg++ in a composite Hanford soil. The validity of this model under unsaturated conditions was examined in a series of reactive transport column experiments performed in an ultracentrifuge at different liquid saturations. For each experiment, a constant, uniform saturation was maintained using a steady influx of a 5 M sodium nitrate solution with 5.4E-5 M cesium iodide. Of interest was the potential for enhanced cesium transport due to the presence of immobile liquid and/or bypassed regions. Mobile and immobile fluid fractions, dispersion, and the rate of mass transfer between mobile and immobile regions were determined from the tracer breakthrough. At higher saturations ({approx} 65%), the tracer and cesium behavior could be predicted to a large degree using a single mobile region with the previously developed multicomponent ion exchange model. At lower saturations ({approx} 23%), however, the tracer breakthrough indicated a relatively large immobile fluid fraction, which could be described with a multi-region approach. In this experiment, cesium broke through earlier and at higher concentrations than predicted by multi-region theory combined with the existing cesium ion exchange model. This behavior is consistent with a higher density of exchange sites in the immobile fluid region.

  11. Role of chemotaxis in the transport of bacteria through saturated porous media

    Science.gov (United States)

    Ford, R.M.; Harvey, R.W.

    2007-01-01

    Populations of chemotactic bacteria are able to sense and respond to chemical gradients in their surroundings and direct their migration toward increasing concentrations of chemicals that they perceive to be beneficial to their survival. It has been suggested that this phenomenon may facilitate bioremediation processes by bringing bacteria into closer proximity to the chemical contaminants that they degrade. To determine the significance of chemotaxis in these processes it is necessary to quantify the magnitude of the response and compare it to other groundwater processes that affect the fate and transport of bacteria. We present a systematic approach toward quantifying the chemotactic response of bacteria in laboratory scale experiments by starting with simple, well-defined systems and gradually increasing their complexity. Swimming properties of individual cells were assessed from trajectories recorded by a tracking microscope. These properties were used to calculate motility and chemotaxis coefficients of bacterial populations in bulk aqueous media which were compared to experimental results of diffusion studies. Then effective values of motility and chemotaxis coefficients in single pores, pore networks and packed columns were analyzed. These were used to estimate the magnitude of the chemotactic response in porous media and to compare with dispersion coefficients reported in the field. This represents a compilation of many studies over a number of years. While there are certainly limitations with this approach for ultimately quantifying motility and chemotaxis in granular aquifer media, it does provide insight into what order of magnitude responses are possible and which characteristics of the bacteria and media are expected to be important. ?? 2006 Elsevier Ltd. All rights reserved.

  12. The use of laboratory experiments for the study of conservative solute transport in heterogeneous porous media

    Science.gov (United States)

    Silliman, S. E.; Zheng, L.; Conwell, P.

    Laboratory experiments on heterogeneous porous media (otherwise known as intermediate scale experiments, or ISEs) have been increasingly relied upon by hydrogeologists for the study of saturated and unsaturated groundwater systems. Among the many ongoing applications of ISEs is the study of fluid flow and the transport of conservative solutes in correlated permeability fields. Recent advances in ISE design have provided the capability of creating correlated permeability fields in the laboratory. This capability is important in the application of ISEs for the assessment of recent stochastic theories. In addition, pressure-transducer technology and visualization methods have provided the potential for ISEs to be used in characterizing the spatial distributions of both hydraulic head and local water velocity within correlated permeability fields. Finally, various methods are available for characterizing temporal variations in the spatial distribution (and, thereby, the spatial moments) of solute concentrations within ISEs. It is concluded, therefore, that recent developments in experimental techniques have provided an opportunity to use ISEs as important tools in the continuing study of fluid flow and the transport of conservative solutes in heterogeneous, saturated porous media. Résumé Les hydrogéologues se sont progressivement appuyés sur des expériences de laboratoire sur des milieux poreux hétérogènes (connus aussi par l'expression "Expériences àéchelle intermédiaire", ISE) pour étudier les zones saturées et non saturées des aquifères. Parmi les nombreuses applications en cours des ISE, il faut noter l'étude de l'écoulement de fluide et le transport de solutés conservatifs dans des champs aux perméabilités corrélées. Les récents progrès du protocole des ISE ont donné la possibilité de créer des champs de perméabilités corrélées au laboratoire. Cette possibilité est importante dans l'application des ISE pour l'évaluation des th

  13. Ion conductivity and transport by porous coordination polymers and metal-organic frameworks.

    Science.gov (United States)

    Horike, Satoshi; Umeyama, Daiki; Kitagawa, Susumu

    2013-11-19

    Ion conduction and transport in solids are both interesting and useful and are found in widely distinct materials, from those in battery-related technologies to those in biological systems. Scientists have approached the synthesis of ion-conductive compounds in a variety of ways, in the areas of organic and inorganic chemistry. Recently, based on their ion-conducting behavior, porous coordination polymers (PCPs) and metal-organic frameworks (MOFs) have been recognized for their easy design and the dynamic behavior of the ionic components in the structures. These PCP/MOFs consist of metal ions (or clusters) and organic ligands structured via coordination bonds. They could have highly concentrated mobile ions with dynamic behavior, and their characteristics have inspired the design of a new class of ion conductors and transporters. In this Account, we describe the state-of-the-art of studies of ion conductivity by PCP/MOFs and nonporous coordination polymers (CPs) and offer future perspectives. PCP/MOF structures tend to have high hydrophilicity and guest-accessible voids, and scientists have reported many water-mediated proton (H(+)) conductivities. Chemical modification of organic ligands can change the hydrated H(+) conductivity over a wide range. On the other hand, the designable structures also permit water-free (anhydrous) H(+) conductivity. The incorporation of protic guests such as imidazole and 1,2,4-triazole into the microchannels of PCP/MOFs promotes the dynamic motion of guest molecules, resulting in high H(+) conduction without water. Not only the host-guest systems, but the embedding of protic organic groups on CPs also results in inherent H(+) conductivity. We have observed high H(+) conductivities under anhydrous conditions and in the intermediate temperature region of organic and inorganic conductors. The keys to successful construction are highly mobile ionic species and appropriate intervals of ion-hopping sites in the structures. Lithium (Li

  14. Pore-Scale Investigation of Micron-Size Polyacrylamide Elastic Microspheres (MPEMs) Transport and Retention in Saturated Porous Media

    KAUST Repository

    Yao, Chuanjin

    2014-05-06

    Knowledge of micrometer-size polyacrylamide elastic microsphere (MPEM) transport and retention mechanisms in porous media is essential for the application of MPEMs as a smart sweep improvement and profile modification agent in improving oil recovery. A transparent micromodel packed with translucent quartz sand was constructed and used to investigate the pore-scale transport, surface deposition-release, and plugging deposition-remigration mechanisms of MPEMs in porous media. The results indicate that the combination of colloidal and hydrodynamic forces controls the deposition and release of MPEMs on pore-surfaces; the reduction of fluid salinity and the increase of Darcy velocity are beneficial to the MPEM release from pore-surfaces; the hydrodynamic forces also influence the remigration of MPEMs in pore-throats. MPEMs can plug pore-throats through the mechanisms of capture-plugging, superposition-plugging, and bridge-plugging, which produces resistance to water flow; the interception with MPEM particulate filters occurring in the interior of porous media can enhance the plugging effect of MPEMs; while the interception with MPEM particulate filters occurring at the surface of low-permeability layer can prevent the low-permeability layer from being damaged by MPEMs. MPEMs can remigrate in pore-throats depending on their elasticity through four steps of capture-plugging, elastic deformation, steady migration, and deformation recovery. © 2014 American Chemical Society.

  15. Implication of surface modified NZVI particle retention in the porous media: Assessment with the help of 1-D transport model

    Indian Academy of Sciences (India)

    Trishikhi Raychoudhury; Vikranth Kumar Surasani

    2017-06-01

    Retention of surface-modified nanoscale zero-valent iron (NZVI) particles in the porous media near the point of injection has been reported in the recent studies. Retention of excess particles in porous media can alter the media properties. The main objectives of this study are, therefore, to evaluate the effect of particle retention on the porous media properties and its implication on further NZVI particle transport under different flow conditions. To achieve the objectives, a one-dimensional transport model is developed by considering particle deposition, detachment, and straining mechanisms along with the effect of changes in porosity resulting from retention of NZVI particles. Two different flow conditions are considered for simulations. The first is a constant Darcy’s flow rate condition, which assumes a change in porosity, causes a change in pore water velocity and the second, is a constant head condition, which assumes the change in porosity, influence the permeability and hydraulic conductivity (thus Darcy’s flow rate). Overall a rapid decrease in porosity was observed as a result of high particle retention near the injection points resulting in a spatial distribution of deposition rate coefficient. In the case of constant head condition, the spatial distribution of Darcy’s velocities is predicted due to variation in porosity and hydraulic conductivity. The simulation results are compared with the data reported from the field studies; which suggests straining is likely to happen in the real field condition.

  16. Abiotic/biotic coupling in the rhizosphere: a reactive transport modeling analysis

    Science.gov (United States)

    Lawrence, Corey R.; Steefel, Carl; Maher, Kate

    2014-01-01

    A new generation of models is needed to adequately simulate patterns of soil biogeochemical cycling in response changing global environmental drivers. For example, predicting the influence of climate change on soil organic matter storage and stability requires models capable of addressing complex biotic/abiotic interactions of rhizosphere and weathering processes. Reactive transport modeling provides a powerful framework simulating these interactions and the resulting influence on soil physical and chemical characteristics. Incorporation of organic reactions in an existing reactive transport model framework has yielded novel insights into soil weathering and development but much more work is required to adequately capture root and microbial dynamics in the rhizosphere. This endeavor provides many advantages over traditional soil biogeochemical models but also many challenges.

  17. Reactive transport modeling at uranium in situ recovery sites: uncertainties in uranium sorption on iron hydroxides

    Science.gov (United States)

    Johnson, Raymond H.; Tutu, Hlanganani; Brown, Adrian; Figueroa, Linda; Wolkersdorfer, Christian

    2013-01-01

    Geochemical changes that can occur down gradient from uranium in situ recovery (ISR) sites are important for various stakeholders to understand when evaluating potential effects on surrounding groundwater quality. If down gradient solid-phase material consists of sandstone with iron hydroxide coatings (no pyrite or organic carbon), sorption of uranium on iron hydroxides can control uranium mobility. Using one-dimensional reactive transport models with PHREEQC, two different geochemical databases, and various geochemical parameters, the uncertainties in uranium sorption on iron hydroxides are evaluated, because these oxidized zones create a greater risk for future uranium transport than fully reduced zones where uranium generally precipitates.

  18. Modeling non-isothermal multiphase multi-species reactive chemical transport in geologic media

    Energy Technology Data Exchange (ETDEWEB)

    Tianfu Xu; Gerard, F.; Pruess, K.; Brimhall, G.

    1997-07-01

    The assessment of mineral deposits, the analysis of hydrothermal convection systems, the performance of radioactive, urban and industrial waste disposal, the study of groundwater pollution, and the understanding of natural groundwater quality patterns all require modeling tools that can consider both the transport of dissolved species as well as their interactions with solid (or other) phases in geologic media and engineered barriers. Here, a general multi-species reactive transport formulation has been developed, which is applicable to homogeneous and/or heterogeneous reactions that can proceed either subject to local equilibrium conditions or kinetic rates under non-isothermal multiphase flow conditions. Two numerical solution methods, the direct substitution approach (DSA) and sequential iteration approach (SIA) for solving the coupled complex subsurface thermo-physical-chemical processes, are described. An efficient sequential iteration approach, which solves transport of solutes and chemical reactions sequentially and iteratively, is proposed for the current reactive chemical transport computer code development. The coupled flow (water, vapor, air and heat) and solute transport equations are also solved sequentially. The existing multiphase flow code TOUGH2 and geochemical code EQ3/6 are used to implement this SIA. The flow chart of the coupled code TOUGH2-EQ3/6, required modifications of the existing codes and additional subroutines needed are presented.

  19. The effect of a concentration-dependent viscosity on particle transport in a channel flow with porous walls

    KAUST Repository

    Herterich, James G.

    2014-02-02

    The transport of a dilute suspension of particles through a channel with porous walls, accounting for the concentration dependence of the viscosity, is analyzed. In particular, we study two cases of fluid permeation through the porous channel walls: (1) at a constant flux and (2) dependent on the pressure drop across the wall. We also consider the effect of mixing the suspension first compared with point injection by considering inlet concentration distributions of different widths. We find that a pessimal inlet distribution width exists that maximizes the required hydrodynamic pressure for a constant fluid influx. The effect of an external hydrodynamic pressure, to compensate for the reduced transmembrane pressure difference due to osmotic pressure, is investigated. © 2014 American Institute of Chemical Engineers.

  20. Graphite and PMMA as pore formers for thermoplastic extrusion of porous 3Y-TZP oxygen transport membrane supports

    DEFF Research Database (Denmark)

    Bjørnetun Haugen, Astri; Gurauskis, Jonas; Kaiser, Andreas

    2016-01-01

    with gas permeability exceeding the target of 10−14m2 are obtained. In the temperature range 1250–1400°C the support gas permeability is insensitive to the sintering temperature, and the feedstocks shrink more than 15% during sintering, making them ideal for co-sintering with functional OTM layers......A gas permeable porous support is a crucial part of an asymmetric oxygen transport membrane (OTM). Here, we develop feedstocks for thermoplastic extrusion of tubular, porous 3Y-TZP (partially stabilized zirconia polycrystals, (Y2O3)0.03(ZrO2)0.97)) ceramics, using graphite and/or polymethyl...... methacrylate (PMMA) as pore formers. The influence of pore former content and type, 3Y-TZP particle size and support sintering temperature on the microstructure, porosity and gas permeability were studied. Using at least 40 vol% pore former, consisting of graphite and PMMA in the volume ratio 2:1, tubes...

  1. Multiscale Adapted Time-Splitting Technique for Nonisothermal Two-Phase Flow and Nanoparticles Transport in Heterogenous Porous Media

    KAUST Repository

    El-Amin, Mohamed F.

    2017-05-05

    This paper is devoted to study the problem of nonisothermal two-phase flow with nanoparticles transport in heterogenous porous media, numerically. For this purpose, we introduce a multiscale adapted time-splitting technique to simulate the problem under consideration. The mathematical model consists of equations of pressure, saturation, heat, nanoparticles concentration in the water–phase, deposited nanoparticles concentration on the pore–walls, and entrapped nanoparticles concentration in the pore–throats. We propose a multiscale time splitting IMplicit Pressure Explicit Saturation–IMplicit Temperature Concentration (IMPES-IMTC) scheme to solve the system of governing equations. The time step-size adaptation is achieved by satisfying the stability Courant–Friedrichs–Lewy (CFL<1) condition. Moreover, numerical test of a highly heterogeneous porous medium is provided and the water saturation, the temperature, the nanoparticles concentration, the deposited nanoparticles concentration, and the permeability are presented in graphs.

  2. One-Dimensional Transport with Equilibrium Chemistry (OTEQ) - A Reactive Transport Model for Streams and Rivers

    Science.gov (United States)

    Runkel, Robert L.

    2010-01-01

    OTEQ is a mathematical simulation model used to characterize the fate and transport of waterborne solutes in streams and rivers. The model is formed by coupling a solute transport model with a chemical equilibrium submodel. The solute transport model is based on OTIS, a model that considers the physical processes of advection, dispersion, lateral inflow, and transient storage. The equilibrium submodel is based on MINTEQ, a model that considers the speciation and complexation of aqueous species, acid-base reactions, precipitation/dissolution, and sorption. Within OTEQ, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (waterborne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach. The model's ability to simulate pH, precipitation/dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between instream chemistry and hydrologic transport at the field scale. This report details the development and application of OTEQ. Sections of the report describe model theory, input/output specifications, model applications, and installation instructions. OTEQ may be obtained over the Internet at http://water.usgs.gov/software/OTEQ.

  3. The Importance of Parameter Variances, Correlations Lengths, and Cross-Correlations in Reactive Transport Models: Key Considerations for Assessing the Need for Microscale Information (Invited)

    Science.gov (United States)

    Reimus, P. W.

    2010-12-01

    A process-oriented modeling approach is implemented to examine the importance of parameter variances, correlation lengths, and especially cross-correlations in contaminant transport predictions over large scales. It is shown that the most important consideration is the correlation between flow rates and retardation processes (e.g., sorption, matrix diffusion) in the system. If flow rates are negatively correlated with retardation factors in systems containing multiple flow pathways, then characterizing these negative correlation(s) may have more impact on reactive transport modeling than microscale information. Such negative correlations are expected in porous-media systems where permeability is negatively correlated with clay content and rock alteration (which are usually associated with increased sorption). Likewise, negative correlations are expected in fractured rocks where permeability is positively correlated with fracture apertures, which in turn are negatively correlated with sorption and matrix diffusion. Parameter variances and correlation lengths are also shown to have important effects on reactive transport predictions, but they are less important than parameter cross-correlations. Microscale information pertaining to contaminant transport has become more readily available as characterization methods and spectroscopic instrumentation have achieved lower detection limits, greater resolution, and better precision. Obtaining detailed mechanistic insights into contaminant-rock-water interactions is becoming a routine practice in characterizing reactive transport processes in groundwater systems (almost necessary for high-profile publications). Unfortunately, a quantitative link between microscale information and flow and transport parameter distributions or cross-correlations has not yet been established. One reason for this is that quantitative microscale information is difficult to obtain in complex, heterogeneous systems, so simple systems that lack the

  4. Effect of Suction/Injection on Unsteady Hydromagnetic Convective Flow of Reactive Viscous Fluid between Vertical Porous Plates with Thermal Diffusion

    Science.gov (United States)

    Uwanta, I. J.; Hamza, M. M.

    2014-01-01

    An investigation is performed to study the effect of suction/injection on unsteady hydromagnetic natural convection flow of viscous reactive fluid between two vertical porous plates in the presence of thermal diffusion. The partial differential equations governing the flow have been solved numerically using semi-implicit finite-difference scheme. For steady case, analytical solutions have been derived using perturbation series method. Suction/injection is used to control the fluid flow in the channel, and an exothermic chemical reaction of Arrhenius kinetic is considered. Numerical results are presented graphically and discussed quantitatively with respect to various parameters embedded in the problem. PMID:27382632

  5. Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties.

    Science.gov (United States)

    Bobbert, F S L; Lietaert, K; Eftekhari, A A; Pouran, B; Ahmadi, S M; Weinans, H; Zadpoor, A A

    2017-04-15

    Porous biomaterials that simultaneously mimic the topological, mechanical, and mass transport properties of bone are in great demand but are rarely found in the literature. In this study, we rationally designed and additively manufactured (AM) porous metallic biomaterials based on four different types of triply periodic minimal surfaces (TPMS) that mimic the properties of bone to an unprecedented level of multi-physics detail. Sixteen different types of porous biomaterials were rationally designed and fabricated using selective laser melting (SLM) from a titanium alloy (Ti-6Al-4V). The topology, quasi-static mechanical properties, fatigue resistance, and permeability of the developed biomaterials were then characterized. In terms of topology, the biomaterials resembled the morphological properties of trabecular bone including mean surface curvatures close to zero. The biomaterials showed a favorable but rare combination of relatively low elastic properties in the range of those observed for trabecular bone and high yield strengths exceeding those reported for cortical bone. This combination allows for simultaneously avoiding stress shielding, while providing ample mechanical support for bone tissue regeneration and osseointegration. Furthermore, as opposed to other AM porous biomaterials developed to date for which the fatigue endurance limit has been found to be ≈20% of their yield (or plateau) stress, some of the biomaterials developed in the current study show extremely high fatigue resistance with endurance limits up to 60% of their yield stress. It was also found that the permeability values measured for the developed biomaterials were in the range of values reported for trabecular bone. In summary, the developed porous metallic biomaterials based on TPMS mimic the topological, mechanical, and physical properties of trabecular bone to a great degree. These properties make them potential candidates to be applied as parts of orthopedic implants and/or as bone

  6. RAFT: A simulator for ReActive Flow and Transport of groundwater contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Chilakapati, A

    1995-07-01

    This report documents the use of the simulator RAFT for the ReActive flow and Transport of groundwater contaminants. RAFT can be used as a predictive tool in the design and analysis of laboratory and field experiments or it can be used for the estimation of model/process parameters from experiments. RAFT simulates the reactive transport of groundwater contaminants in one, two-, or three-dimensions and it can model user specified source/link configurations and arbitrary injection strategies. A suite of solvers for transport, reactions and regression are employed so that a combination of numerical methods best suited for a problem can be chosen. User specified coupled equilibrium and kinetic reaction systems can be incorporated into RAFT. RAFT is integrated with a symbolic computational language MAPLE, to automate code generation for arbitrary reaction systems. RAFT is expected to be used as a simulator for engineering design for field experiments in groundwater remediation including bioremediation, reactive barriers and redox manipulation. As an integrated tool with both the predictive ability and the ability to analyze experimental data, RAFT can help in the development of remediation technologies, from laboratory to field.

  7. Integrating a compressible multicomponent two-phase flow into an existing reactive transport simulator

    Science.gov (United States)

    Sin, Irina; Lagneau, Vincent; Corvisier, Jérôme

    2017-02-01

    This work aims to incorporate compressible multiphase flow into the conventional reactive transport framework using an operator splitting approach. This new approach would allow us to retain the general paradigm of the flow module independent of the geochemical processes and to model complex multiphase chemical systems, conserving the versatile structure of conventional reactive transport. The phase flow formulation is employed to minimize the number of mass conservation nonlinear equations arising from the flow module. Applying appropriate equations of state facilitated precise descriptions of the compressible multicomponent phases, their thermodynamic properties and relevant fluxes. The proposed flow coupling method was implemented in the reactive transport software HYTEC. The entire framework preserves its flexibility for further numerical developments. The verification of the coupling was achieved by modeling a problem with a self-similar solution. The simulation of a 2D CO2-injection problem demonstrates the pertinent physical results and computational efficiency of this method. The coupling method was employed for modeling injection of acid gas mixture in carbonated reservoir.

  8. Toward Optimized Bioclogging and Biocementation Through Combining Advanced Geophysical Monitoring and Reactive Transport Modeling Approaches

    Science.gov (United States)

    Hubbard, C. G.; Hubbard, S. S.; Wu, Y.; Surasani, V.; Ajo Franklin, J. B.; Commer, M.; Dou, S.; Kwon, T.; Li, L.; Fouke, B. W.; Coates, J. D.

    2012-12-01

    Bioclogging and biocementation offer exciting opportunities for solutions to diverse problems ranging from soil stabilization to microbially enhanced hydrocarbon recovery. The effectiveness of bioclogging and biocementation strategies is governed by processes and properties ranging from microbial metabolism at the submicron scale, to changes in pore geometry at the pore scale, to geological heterogeneities at the field scale. Optimization of these strategies requires advances in mechanistic reactive transport modeling and geophysical monitoring methodologies. Our research focuses on (i) performing laboratory experiments to refine understanding of reaction networks and to quantify changes in hydrological properties (e.g. permeability), the evolution of biominerals and geophysical responses (focusing on seismic and electrical techniques); (ii) developing and using a reactive transport simulator capable of predicting the induced metabolic processes to numerically explore how to optimize the desired effect; and (iii) using loosely coupled reactive transport and geophysical simulators to explore detectability and resolvability of induced bioclogging and biocementation processes at the field scale using time-lapse geophysical methods. Here we present examples of our research focused on three different microbially-mediated methods to enhance hydrocarbon recovery through selective clogging of reservior thief zones, including: (a) biopolymer clogging through dextran production; (b) biomineral clogging through iron oxide precipitation; and (c) biomineral clogging through carbonate precipitation. We will compare the utility of these approaches for enhancing hydrocarbon recovery and will describe the utility of geophysical methods to remotely monitor associated field treatments.

  9. Stable isotope fractionations during reactive transport of phosphate in packed-bed sediment columns.

    Science.gov (United States)

    Jaisi, Deb P

    2013-11-01

    Characterizing reactivity and fate of contaminants in subsurface environments that are isolated from direct visualization is a major challenge. Stable isotopes coupled with concentration could be used as a potential tool to quantitatively analyze the chemical variability of the contaminant during reactive transport processes in the subsurface environment. This study was aimed at determining whether abiotic reactions of phosphate during its transport involve fractionation of oxygen isotopes in phosphate (δ(18)Op). It included the effects of solution chemistry and hydrodynamics on δ(18)Op values during phosphate transport through a packed-bed column prepared by using natural sediment collected from the Cape Cod aquifer in Massachusetts. Results show that the isotopic fractionation between effluent and influent phosphate at early stage of transport could be ~1.3‰ at higher flow rates with isotopically-light phosphate (P(16)O4) preferentially retained in the sediment column. This fractionation, however, decreased and became insignificant as more phosphate passed through the column. Mobilization of phosphate initially sorbed onto sediments caused a large kinetic isotopic fractionation with isotopically-light phosphate preferentially remobilized from the sediment column, but over longer time periods, this fractionation decreased and became insignificant as well. These results collectively suggest that abiotic reactive transport processes exert minimal influence on the δ(18)Op composition of subsurface systems. Alternatively, fluctuation in flow rate and subsequent remobilization of phosphate could be detectable through transient changes in δ(18)Op values. These findings extend the burgeoning application of δ(18)Op to identify the different sources and geochemical processes of phosphate in the subsurface environments.

  10. Stable isotope fractionations during reactive transport of phosphate in packed-bed sediment columns

    Science.gov (United States)

    Jaisi, Deb P.

    2013-11-01

    Characterizing reactivity and fate of contaminants in subsurface environments that are isolated from direct visualization is a major challenge. Stable isotopes coupled with concentration could be used as a potential tool to quantitatively analyze the chemical variability of the contaminant during reactive transport processes in the subsurface environment. This study was aimed at determining whether abiotic reactions of phosphate during its transport involve fractionation of oxygen isotopes in phosphate (δ18Op). It included the effects of solution chemistry and hydrodynamics on δ18Op values during phosphate transport through a packed-bed column prepared by using natural sediment collected from the Cape Cod aquifer in Massachusetts. Results show that the isotopic fractionation between effluent and influent phosphate at early stage of transport could be ~ 1.3‰ at higher flow rates with isotopically-light phosphate (P16O4) preferentially retained in the sediment column. This fractionation, however, decreased and became insignificant as more phosphate passed through the column. Mobilization of phosphate initially sorbed onto sediments caused a large kinetic isotopic fractionation with isotopically-light phosphate preferentially remobilized from the sediment column, but over longer time periods, this fractionation decreased and became insignificant as well. These results collectively suggest that abiotic reactive transport processes exert minimal influence on the δ18Op composition of subsurface systems. Alternatively, fluctuation in flow rate and subsequent remobilization of phosphate could be detectable through transient changes in δ18Op values. These findings extend the burgeoning application of δ18Op to identify the different sources and geochemical processes of phosphate in the subsurface environments.

  11. Modeling of Flow, Transport and Controlled Sedimentation Phenomena during Mixing of Salt Solutions in Complex Porous Formations

    Science.gov (United States)

    Skouras, Eugene D.; Jaho, Sofia; Pavlakou, Efstathia I.; Sygouni, Varvara; Petsi, Anastasia; Paraskeva, Christakis A.

    2015-04-01

    The deposition of salts in porous media is a major engineering phenomenon encountered in a plethora of industrial and environmental applications where in some cases is desirable and in other not (oil production, geothermal systems, soil stabilization etc). Systematic approach of these problems requires knowledge of the key mechanisms of precipitating salts within the porous structures, in order to develop new methods to control the process. In this work, the development and the solution of spatiotemporally variable mass balances during salt solution mixing along specific pores were performed. Both analytical models and finite differences CFD models were applied for the study of flow and transport with simultaneous homogeneous and heterogeneous nucleation (by crystal growth on the surface of the pores) in simple geometries, while unstructured finite elements and meshless methods were developed and implemented for spatial discretization, reconstruction, and solution of transport equations and homogeneous / heterogeneous reactions in more complex geometries. At initial stages of this work, critical problem parameters were identified, such as the characteristics of the porosity, the number of dissolved components, etc. The parameters were then used for solving problems which correspond to available experimental data. For each combination of ions and materials, specific data and process characteristics were included: (a) crystal kinetics (nucleation, growth rates or reaction surface rates of crystals, critical suspension concentrations), (b) physico-chemical properties (bulk density, dimensions of generated crystals, ion diffusion coefficients in the solution), (c) operating parameters (macroscopic velocity, flow, or pressure gradient of the solution, ion concentration) (d) microfluidic data (geometry, flow area), (e) porosity data in Darcy description (initial porosity, specific surface area, tortuosity). During the modeling of flow and transport in three

  12. Modeling Bimolecular Reactions and Transport in Porous Media Via Particle Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Dong Ding; David Benson; Amir Paster; Diogo Bolster

    2012-01-01

    We use a particle-tracking method to simulate several one-dimensional bimolecular reactive transport experiments. In this numerical method, the reactants are represented by particles: advection and dispersion dominate the flow, and molecular diffusion dictates, in large part, the reactions. The particle/particle reactions are determined by a combination of two probabilities dictated by the physics of transport and energetics of reaction. The first is that reactant particles occupy the same volume over a short time interval. The second is the conditional probability that two collocated particles favorably transform into a reaction. The first probability is a direct physical representation of the degree of mixing in an advancing displacement front, and as such lacks empirical parameters except for the user-defined number of particles. This number can be determined analytically from concentration autocovariance, if this type of data is available. The simulations compare favorably to two physical experiments. In one, the concentration of product, 1,2-naphthoquinoe-4-aminobenzene (NQAB) from reaction between 1,2-naphthoquinone-4-sulfonic acid (NQS) and aniline (AN), was measured at the outflow of a column filled with glass beads at different times. In the other, the concentration distribution of reactants (CuSO_4 and EDTA^{4-}) and products (CuEDTA^{4-}) were quantified by snapshots of transmitted light through a column packed with cryloite sand. The thermodynamic rate coefficient in the latter experiment was 10^7 times greater than the former experiment, making it essentially instantaneous. When compared to the solution of the advection-dispersion-reaction equation (ADRE) with the well-mixed reaction coefficient, the experiments and the particle-tracking simulations showed on the order of 20% to 40% less overall product, which is attributed to poor mixing. The poor mixing also leads to higher product concentrations on the edges of the mixing zones, which the particle

  13. A Weakly Non Linear Stability Analysis of Heat Transport in Anisotropic Porous Cavity Under Time PeriodicTemperature Modulation

    Directory of Open Access Journals (Sweden)

    Amit kumar Mishra

    2015-01-01

    Full Text Available In this paper, we have analyzed the effect of time periodic temperature modulation on convective stability in anisotropic porous cavity. The cavity is heated from below and cooled from above. A weakly non-linear stability analysis is done to find Nusselt number governing the heat transport. The infinitely small disturbances are expanded in terms of power series of amplitude of modulation. Analytically the nonautonomous Ginzburg- landau amplitude equation is obtained for the stationary mode of convection. The effects of various parameters like Vadasz number, mechanical and thermal anisotropic parameters, amplitude of oscillations, frequency of modulation and aspect ratio of the cavity on heat transport is studied and plotted graphically. It is observed that the heat transport can also be controlled by suitably adjusting the external and internal parameters of the system.

  14. Effects of pH and ionic strength on sulfamethoxazole and ciprofloxacin transport in saturated porous media

    Science.gov (United States)

    Chen, Hao; Gao, Bin; Li, Hui; Ma, Lena Q.

    2011-09-01

    Many antibiotics regarded as emerging contaminants have been frequently detected in soils and groundwater; however, their transport behaviors in soils remain largely unknown. This study examined the transport of two antibiotics, sulfamethoxazole (SMZ) and ciprofloxacin (CIP), in saturated porous media. Laboratory columns packed with quartz sand was used to test the effects of solution pH and ionic strength (IS) on their retention and transport. The results showed that these two antibiotics behaved differently in the saturated sand columns. In general, SMZ manifested a much higher mobility than CIP for all experimental conditions tested. Almost all SMZ transported through the columns within one pore volume in deionized water (i.e., pH = 5.6, IS = 0), but no CIP was detected in the effluents under the same condition after extended column flushing. Perturbations in solution pH (5.6 and 9.5) and IS (0 and 0.1 M) showed no effect on SMZ transport in the saturated columns. When pH increased to 9.5, however, ~ 93% of CIP was eluted from the sand columns. Increase of IS from 0 to 0.1 M also slightly changed the distribution of adsorbed CIP within the sand column at pH 5.6, but still no CIP was detected in the effluents. A mathematical model based on advection-dispersion equation coupled with equilibrium and kinetic reactions successfully simulated the transport of the antibiotics in water-saturated porous media with R2 = 0.99.

  15. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan [ORNL; Yeh, Gour-Tsyh [University of Central Florida, Orlando; Parker, Jack C [ORNL; Brooks, Scott C [ORNL; Pace, Molly [ORNL; Kim, Young Jin [ORNL; Jardine, Philip M [ORNL; Watson, David B [ORNL

    2007-01-01

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing NE equilibrium reactions and a set of reactive transport equations of M-NE kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.

  16. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions

    Science.gov (United States)

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C.; Brooks, Scott C.; Pace, Molly N.; Kim, Young-Jin; Jardine, Philip M.; Watson, David B.

    2007-06-01

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing NE equilibrium reactions and a set of reactive transport equations of M- NE kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.

  17. Anthropogenic contamination of a phreatic drinking water winning: 3-dimensional reactive transport modelling

    Science.gov (United States)

    Griffioen, J.; van der Grift, B.; Maas, D.; van den Brink, C.; Zaadnoordijk, J. W.

    2003-04-01

    Groundwater is contaminated at the regional scale by agricultural activities and atmospheric deposition. A 3-D transport model was set-up for a phreatic drinking water winning, where the groundwater composition was monitored accurately. The winning is situated at an area with unconsolidated Pleistocene deposits. The land use is nature and agriculture. Annual mass-balances were determined using a wide range of historic data. The modelling approach for the unsaturated zone was either simple box models (Cl, NO_3 and SO_4) or 1-D transport modelling using HYDRUS (Cd). The modelling approach for the saturated zone used a multiple solute version of MT3D, where denitrification associated with pyrite oxidation and sorption of Cd were included. The solute transport calculations were performed for the period 1950--2030. The results obtained for the year 2000 were used as input concentration for the period 2000--2030. A comparison between the calculated and the measured concentrations of groundwater abstracted for Cl, NO_3 and SO_4 yields the following. First, the input at the surface is rather well estimated. Second, the redox reactivity of the first two aquifers is negligible around the winning, which is confirmed by respiration experiments using anaerobically sampled aquifer sediments. The reactivity of the third aquifer, which is a marine deposit and lies at least 30 meters below surface, is considerable. The discrepancies between modelled and measured output are explained by lack of knowledge about the subsurface reactivity and/or wrong estimates of surface loading and leaching from the unsaturated zone. The patterns for other hydrogeochemical variables such as Ca, HCO_3 may further constrain this lack of knowledge. The results for Cd indicate that Cd becomes strongly retarded, despite the low reactivity of the sandy sediments. The winning is rather insensitive to Cd contamination (but the surface water drainage network is not). Two major uncertainties for input of Cd

  18. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects

    Science.gov (United States)

    Lu, X.; Naidis, G. V.; Laroussi, M.; Reuter, S.; Graves, D. B.; Ostrikov, K.

    2016-05-01

    Non-equilibrium atmospheric-pressure plasmas have recently become a topical area of research owing to their diverse applications in health care and medicine, environmental remediation and pollution control, materials processing, electrochemistry, nanotechnology and other fields. This review focuses on the reactive electrons and ionic, atomic, molecular, and radical species that are produced in these plasmas and then transported from the point of generation to the point of interaction with the material, medium, living cells or tissues being processed. The most important mechanisms of generation and transport of the key species in the plasmas of atmospheric-pressure plasma jets and other non-equilibrium atmospheric-pressure plasmas are introduced and examined from the viewpoint of their applications in plasma hygiene and medicine and other relevant fields. Sophisticated high-precision, time-resolved plasma diagnostics approaches and techniques are presented and their applications to monitor the reactive species and plasma dynamics in the plasma jets and other discharges, both in the gas phase and during the plasma interaction with liquid media, are critically reviewed. The large amount of experimental data is supported by the theoretical models of reactive species generation and transport in the plasmas, surrounding gaseous environments, and plasma interaction with liquid media. These models are presented and their limitations are discussed. Special attention is paid to biological effects of the plasma-generated reactive oxygen and nitrogen (and some other) species in basic biological processes such as cell metabolism, proliferation, survival, etc. as well as plasma applications in bacterial inactivation, wound healing, cancer treatment and some others. Challenges and opportunities for theoretical and experimental research are discussed and the authors' vision for the emerging convergence trends across several disciplines and application domains is presented to

  19. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects

    Energy Technology Data Exchange (ETDEWEB)

    Lu, X., E-mail: luxinpei@hotmail.com [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Naidis, G.V. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Laroussi, M. [Plasma Engineering & Medicine Institute, Old Dominion University, Norfolk, VA 23529 (United States); Reuter, S. [Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Strasse 2, 17489 Greifswald (Germany); Graves, D.B. [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 (United States); Ostrikov, K. [Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000 (Australia); School of Physics, Chemistry, and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000 (Australia); Commonwealth Scientific and Industrial Research Organization, P.O.Box 218, Lindfield, NSW 2070 (Australia); School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia)

    2016-05-04

    Non-equilibrium atmospheric-pressure plasmas have recently become a topical area of research owing to their diverse applications in health care and medicine, environmental remediation and pollution control, materials processing, electrochemistry, nanotechnology and other fields. This review focuses on the reactive electrons and ionic, atomic, molecular, and radical species that are produced in these plasmas and then transported from the point of generation to the point of interaction with the material, medium, living cells or tissues being processed. The most important mechanisms of generation and transport of the key species in the plasmas of atmospheric-pressure plasma jets and other non-equilibrium atmospheric-pressure plasmas are introduced and examined from the viewpoint of their applications in plasma hygiene and medicine and other relevant fields. Sophisticated high-precision, time-resolved plasma diagnostics approaches and techniques are presented and their applications to monitor the reactive species and plasma dynamics in the plasma jets and other discharges, both in the gas phase and during the plasma interaction with liquid media, are critically reviewed. The large amount of experimental data is supported by the theoretical models of reactive species generation and transport in the plasmas, surrounding gaseous environments, and plasma interaction with liquid media. These models are presented and their limitations are discussed. Special attention is paid to biological effects of the plasma-generated reactive oxygen and nitrogen (and some other) species in basic biological processes such as cell metabolism, proliferation, survival, etc. as well as plasma applications in bacterial inactivation, wound healing, cancer treatment and some others. Challenges and opportunities for theoretical and experimental research are discussed and the authors’ vision for the emerging convergence trends across several disciplines and application domains is presented to

  20. Experimental Study and Numerical Solution of Poly Acrylic Acid Supported Magnetite Nanoparticles Transport in a One-Dimensional Porous Media

    Directory of Open Access Journals (Sweden)

    M. Golzar

    2014-01-01

    Full Text Available Recently, iron nanoparticles have attracted more attention for groundwater remediation due to its potential to reduce subsurface contaminants such as PCBs, chlorinated solvents, and heavy metals. The magnetic properties of iron nanoparticles cause to attach to each other and form bigger colloid particles of iron nanoparticles with more rapid sedimentation rate in aqueous environment. Using the surfactants such as poly acrylic acid (PAA prevents iron nanoparticles from forming large flocs that may cause sedimentation and so increases transport distance of the nanoparticles. In this study, the transport of iron oxide nanoparticles (Fe3O4 stabilized with PAA in a one-dimensional porous media (column was investigated. The slurries with concentrations of 20,100 and 500 (mg/L were injected into the bottom of the column under hydraulic gradients of 0.125, 0.375, and 0.625. The results obtained from experiments were compared with the results obtained from numerical solution of advection-dispersion equation based on the classical colloid filtration theory (CFT. The experimental and simulated breakthrough curves showed that CFT is able to predict the transport and fate of iron oxide nanoparticles stabilized with PAA (up to concentration 500 ppm in a porous media.

  1. Finite element computation of multi-physical micropolar transport phenomena from an inclined moving plate in porous media

    Science.gov (United States)

    Shamshuddin, MD.; Anwar Bég, O.; Sunder Ram, M.; Kadir, A.

    2017-08-01

    Non-Newtonian flows arise in numerous industrial transport processes including materials fabrication systems. Micropolar theory offers an excellent mechanism for exploring the fluid dynamics of new non-Newtonian materials which possess internal microstructure. Magnetic fields may also be used for controlling electrically-conducting polymeric flows. To explore numerical simulation of transport in rheological materials processing, in the current paper, a finite element computational solution is presented for magnetohydrodynamic, incompressible, dissipative, radiative and chemically-reacting micropolar fluid flow, heat and mass transfer adjacent to an inclined porous plate embedded in a saturated homogenous porous medium. Heat generation/absorption effects are included. Rosseland's diffusion approximation is used to describe the radiative heat flux in the energy equation. A Darcy model is employed to simulate drag effects in the porous medium. The governing transport equations are rendered into non-dimensional form under the assumption of low Reynolds number and also low magnetic Reynolds number. Using a Galerkin formulation with a weighted residual scheme, finite element solutions are presented to the boundary value problem. The influence of plate inclination, Eringen coupling number, radiation-conduction number, heat absorption/generation parameter, chemical reaction parameter, plate moving velocity parameter, magnetic parameter, thermal Grashof number, species (solutal) Grashof number, permeability parameter, Eckert number on linear velocity, micro-rotation, temperature and concentration profiles. Furthermore, the influence of selected thermo-physical parameters on friction factor, surface heat transfer and mass transfer rate is also tabulated. The finite element solutions are verified with solutions from several limiting cases in the literature. Interesting features in the flow are identified and interpreted.

  2. A Modular Computer Code for Simulating Reactive Multi-Species Transport in 3-Dimensional Groundwater Systems

    Energy Technology Data Exchange (ETDEWEB)

    TP Clement

    1999-06-24

    RT3DV1 (Reactive Transport in 3-Dimensions) is computer code that solves the coupled partial differential equations that describe reactive-flow and transport of multiple mobile and/or immobile species in three-dimensional saturated groundwater systems. RT3D is a generalized multi-species version of the US Environmental Protection Agency (EPA) transport code, MT3D (Zheng, 1990). The current version of RT3D uses the advection and dispersion solvers from the DOD-1.5 (1997) version of MT3D. As with MT3D, RT3D also requires the groundwater flow code MODFLOW for computing spatial and temporal variations in groundwater head distribution. The RT3D code was originally developed to support the contaminant transport modeling efforts at natural attenuation demonstration sites. As a research tool, RT3D has also been used to model several laboratory and pilot-scale active bioremediation experiments. The performance of RT3D has been validated by comparing the code results against various numerical and analytical solutions. The code is currently being used to model field-scale natural attenuation at multiple sites. The RT3D code is unique in that it includes an implicit reaction solver that makes the code sufficiently flexible for simulating various types of chemical and microbial reaction kinetics. RT3D V1.0 supports seven pre-programmed reaction modules that can be used to simulate different types of reactive contaminants including benzene-toluene-xylene mixtures (BTEX), and chlorinated solvents such as tetrachloroethene (PCE) and trichloroethene (TCE). In addition, RT3D has a user-defined reaction option that can be used to simulate any other types of user-specified reactive transport systems. This report describes the mathematical details of the RT3D computer code and its input/output data structure. It is assumed that the user is familiar with the basics of groundwater flow and contaminant transport mechanics. In addition, RT3D users are expected to have some experience in

  3. A realistic transport model with pressure dependent parameters for gas flow in tight porous media with application to determining shale rock properties

    CERN Document Server

    Ali, Iftikhar

    2016-01-01

    Shale gas recovery has seen a major boom in recent years due to the increasing global energy demands; but the extraction technologies are very expensive. It is therefore important to develop realistic transport modelling and simulation methods, for porous rocks and porous media, that can compliment the field work. Here, a new nonlinear transport model for single phase gas flow in tight porous media is derived, incorporating many important physical processes that occur in such porous systems: continuous flow, transition flow, slip flow, Knudsen diffusion, adsorption and desorption in to and out of the rock material, and a correction for high flow rates (turbulence). This produces a nonlinear advection-diffusion type of partial differential equation (PDE) with pressure dependent model parameters and associated compressibility coefficients, and highly nonlinear apparent convective flux (velocity) and apparent diffusivity. An important application is to the determination of shale rock properties, such as porosity...

  4. Transport and Retention Modelling of Iron Oxide Nanoparticles in Core Scale Porous Media for Electromagnetic Heating Well-Stimulation Optimization

    Science.gov (United States)

    Santoso, R. K.; Rachmat, S.; Putra, W. D. K.; Resha, A. H.; Hartowo, H.

    2017-07-01

    Understanding the transport and retention of iron oxide nanoparticles is critical in optimizing electromagnetic heating well stimulation. If the injected concentration or injection rate is too big, nanoparticles can build-up inside the pore throat, which can reduce the permeability of the reservoir. A numerical model has been created to describe the behavior of iron oxide nanoparticles in porous media. The model is coupling material balance equation and fluid flow in porous media equations. There are six parameters to be estimated through matching with experimental data: irreversible attachment rate, reversible attachment rate, irreversible attachment capacity, reversible attachment capacity, reversible detachment rate and permeability. All parameters were obtained directly through coreflooding result in previous study. We add Langmuir static isotherm test to limit the maximum adsorption capacity to provide a better estimation of concentration distribution. We use 1% NaCl solution as the base fluid and 45-50 mesh sand as the porous media. From the Langmuir static isotherm test, the maximum adsorption concentration is determined. Then, coreflooding is conducted using 10 ppm nanofluid and 12 cc/min injection rate. The proposed model is matched with the experimental data and its parameters are consistent with the maximum adsorption capacity provided from the test.

  5. Post Audit of a Field Scale Reactive Transport Model of Uranium at a Former Mill Site

    Science.gov (United States)

    Curtis, G. P.

    2015-12-01

    Reactive transport of hexavalent uranium (U(VI)) in a shallow alluvial aquifer at a former uranium mill tailings site near Naturita CO has been monitored for nearly 30 years by the US Department of Energy and the US Geological Survey. Groundwater at the site has high concentrations of chloride, alkalinity and U(VI) as a owing to ore processing at the site from 1941 to 1974. We previously calibrated a multicomponent reactive transport model to data collected at the site from 1986 to 2001. A two dimensional nonreactive transport model used a uniform hydraulic conductivity which was estimated from observed chloride concentrations and tritium helium age dates. A reactive transport model for the 2km long site was developed by including an equilibrium U(VI) surface complexation model calibrated to laboratory data and calcite equilibrium. The calibrated model reproduced both nonreactive tracers as well as the observed U(VI), pH and alkalinity. Forward simulations for the period 2002-2015 conducted with the calibrated model predict significantly faster natural attenuation of U(VI) concentrations than has been observed by the persistent high U(VI) concentrations at the site. Alternative modeling approaches are being evaluating evaluated using recent data to determine if the persistence can be explained by multirate mass transfer models developed from experimental observations at the column scale(~0.2m), the laboratory tank scale (~2m), the field tracer test scale (~1-4m) or geophysical observation scale (~1-5m). Results of this comparison should provide insight into the persistence of U(VI) plumes and improved management options.

  6. Modelling the biogeochemical cycle of silicon in soils using the reactive transport code MIN3P

    Science.gov (United States)

    Gerard, F.; Mayer, K. U.; Hodson, M. J.; Meunier, J.

    2006-12-01

    We investigated the biogeochemical cycling of Si in an acidic brown soil covered by a coniferous forest (Douglas fir) based on a comprehensive data set and reactive transport modelling. Both published and original data enable us to make up a conceptual model on which the development of a numerical model is based. We modified the reactive transport code MIN3P, which solves thermodynamic and kinetic reactions coupled with vadose zone flow and solute transport. Simulations were performed for a one-dimensional heterogeneous soil profile and were constrained by observed data including daily soil temperature, plant transpiration, throughfall, and dissolved Si in solutions collected beneath the organic layer. Reactive transport modelling was first used to test the validity of the hypothesis that a dynamic balance between Si uptake by plants and release by weathering controls aqueous Si-concentrations. We were able to calibrate the model quite accurately by stepwise adjustment of the relevant parameters. The capability of the model to predict Si-concentrations was good. Mass balance calculations indicate that only 40% of the biogeochemical cycle of Si is controlled by weathering and that about 60% of Si-cycling is related to biological processes (i.e. Si uptake by plants and dissolution of biogenic Si). Such a large contribution of biological processes was not anticipated considering the temperate climate regime, but may be explained by the high biomass productivity of the planted coniferous species. The large contribution of passive Si-uptake by vegetation permits the conservation of seasonal concentration variations caused by temperature-induced weathering, although the modelling suggests that the latter process was of lesser importance relative to biological Si-cycling.

  7. A parametric transfer function methodology for analyzing reactive transport in nonuniform flow.

    Science.gov (United States)

    Luo, Jian; Cirpka, Olaf A; Fienen, Michael N; Wu, Wei-min; Mehlhorn, Tonia L; Carley, Jack; Jardine, Philip M; Criddle, Craig S; Kitanidis, Peter K

    2006-02-01

    We analyze reactive transport during in-situ bioremediation in a nonuniform flow field, involving multiple extraction and injection wells, by the method of transfer functions. Gamma distributions are used as parametric models of the transfer functions. Apparent parameters of classical transport models may be estimated from those of the gamma distributions by matching temporal moments. We demonstrate the method by application to measured data taken at a field experiment on bioremediation conducted in a multiple-well system in Oak Ridge, TN. Breakthrough curves (BTCs) of a conservative tracer (bromide) and a reactive compound (ethanol) are measured at multi-level sampling (MLS) wells and in extraction wells. The BTCs of both compounds are jointly analyzed to estimate the first-order degradation rate of ethanol. To quantify the tracer loss, we compare the approaches of using a scaling factor and a first-order decay term. Results show that by including a scaling factor both gamma distributions and inverse-Gaussian distributions (transfer functions according to the advection-dispersion equation) are suitable to approximate the transfer functions and estimate the reactive rate coefficients for both MLS and extraction wells. However, using a first-order decay term for tracer loss fails to describe the BTCs at the extraction well, which is affected by the nonuniform distribution of travel paths.

  8. Computational methods for multiphase equilibrium and kinetics calculations for geochemical and reactive transport applications

    Science.gov (United States)

    Leal, Allan; Saar, Martin

    2016-04-01

    Computational methods for geochemical and reactive transport modeling are essential for the understanding of many natural and industrial processes. Most of these processes involve several phases and components, and quite often requires chemical equilibrium and kinetics calculations. We present an overview of novel methods for multiphase equilibrium calculations, based on both the Gibbs energy minimization (GEM) approach and on the solution of the law of mass-action (LMA) equations. We also employ kinetics calculations, assuming partial equilibrium (e.g., fluid species in equilibrium while minerals are in disequilibrium) using automatic time stepping to improve simulation efficiency and robustness. These methods are developed specifically for applications that are computationally expensive, such as reactive transport simulations. We show how efficient the new methods are, compared to other algorithms, and how easy it is to use them for geochemical modeling via a simple script language. All methods are available in Reaktoro, a unified open-source framework for modeling chemically reactive systems, which we also briefly describe.

  9. In Situ Biostimulation at a Former Uranium Mill Tailings Site: Multicomponent Biogeochemical Reactive Transport Modeling

    Science.gov (United States)

    Yabusaki, S.; Fang, Y.; Long, P.

    2005-12-01

    In situ biostimulation at a Former Uranium Mill Tailings Site: Multicomponent Biogeochemical Reactive Transport Modeling Field experiments conducted at a former uranium mill tailings site in western Colorado are being used to investigate microbially mediated immobilization of uranium as a potential future remediation option for such sites. While the general principle of biostimulating microbial communities to reduce aqueous hexavalent uranium to immobile uraninite has been demonstrated in the laboratory and field, the ability to predictably engineer long lasting immobilization will require a more complete understanding of field-scale processes and properties. For this study, numerical simulation of the flow field, geochemical conditions, and micriobial communities is used to interpret field-scale biogeochemical reactive transport observed during experiments performed in 2002 to 2004. One key issue is identifying bioavailable Fe(III) oxide, which is the principal electron acceptor utilized by the acetate- oxidizing Geobacter sp. These organisms are responsible for uranium bioreduction that results in the removal of sufficient U(VI) to lower uranium groundwater concentrations to at or near applicable standards. The depletion of bioavailable Fe(III) leads to succession by sulfate reducers that are considerably less effective at uranium bioreduction. An important modeling consideration are the abiotic reactions (e.g., mineral precipitation and dissolution, aqueous and surface complexation) involving the Fe(II) and sulfide produced during biostimulation. These components, strongly associated with the solid phases, may play an important role in the evolving reactivity of the mineral surfaces that are likely to impact long-term uranium immobilization.

  10. Resolving the Impact of Biological Processes on DNAPL Transport in Unsaturated Porous Media Through Nuclear Magnetic Resonance Relaxation Time Measurements

    Science.gov (United States)

    Hertzog, R. C.; Geesey, G.; White, T.; Oram, L.; Seymour, J.; Codd, S.; Straley, C.; Bryar, T.

    2003-12-01

    This research leads to a better understanding of how physical and biological properties of porous media influence water and dense non-aqueous phase liquid (DNAPL) distributions under saturated and unsaturated conditions. Knowing how environmental properties affect DNAPL solvent flow in the subsurface is essential for developing models of flow and transport needed for designing remediation and long-term stewardship strategies. We investigate the capability and limitations of low-field nuclear magnetic resonance (NMR) relaxation decay-rate measurements for determining environmental properties affecting DNAPL solvent flow in the subsurface. For in-situ subsurface environmental applications, low-field proton NMR measurements are preferred to conventional high-field techniques commonly used to obtain chemical shift data, because low field measurements are much less degraded by magnetic susceptibility variations between rock grains and pore fluids that significantly interfere with high-field NMR measurements. The research scope includes discriminating DNAPLs in water-wet or solvent-wet environments and the impact of biological processes on their transport mechanisms in porous media. Knowledge of the in situ flow properties and pore distributions of organic contaminants are critical to understanding where and when these fluids will enter subsurface aquifers. Experiments determined that commonly found subsurface DNAPLs containing hydrogen, such as trichloroethylene and dichloroethylene, are detectable and distinguished from water in soils. Related experiments concern the effects of bacterial accumulation in saturated and unsaturated porous media on water and DNAPL pore-size distributions. These include synthetic bio-film matrix as a surrogate bio-film and sand, biological agents to grow biofilms, and multiple pore sizes to determine if bio-films prefer certain pore-size ranges. NMR microscopy focused on imaging a single biofilm in a 1 mm capillary reactor. This system

  11. Transportation of MHD nanofluid free convection in a porous semi annulus using numerical approach

    Science.gov (United States)

    Sheikholeslami, M.; Ganji, D. D.

    2017-02-01

    Nanofluid free convection in presence of Lorentz forces in a permeable semi annulus is simulated using Control Volume based Finite Element Method. Impact of porous media on governing equations is considered by means of Darcy law. Brownian motion impact on properties of nanofluid is taken into account using Koo-Kleinstreuer-Li (KKL) model. Important parameters are inclination angle (ξ) , CuO-water volume fraction (ϕ) , Hartmann (Ha) and Rayleigh (Ra) numbers for porous medium. A formula for Nuave is provided. Results indicated that temperature gradient detracts with enhance of Ha but it enhances with rise of ξ, Ra . Heat transfer augmentation enhances with rise of Lorentz forces.

  12. Reactive transport simulations of the evolution of a cementitious repository in clay-rich host rocks

    Science.gov (United States)

    Kosakowski, Georg; Berner, Urs; Kulik, Dmitrii A.

    2010-05-01

    In Switzerland, the deep geological disposal in clay-rich rocks is foreseen not only for high-level radioactive waste, but also for intermediate-level (ILW) and low-level (LLW) radioactive waste. Typically, ILW and LLW repositories contain huge amounts of cementitious materials used for waste conditioning, confinement, and as backfill for the emplacement caverns. We are investigating the interactions of such a repository with the surrounding clay rocks and with other clay-rich materials such as sand/bentonite mixtures that are foreseen for backfilling the access tunnels. With the help of a numerical reactive transport model, we are comparing the evolution of cement/clay interfaces for different geochemical and transport conditions. In this work, the reactive transport of chemical components is simulated with the multi-component reactive transport code OpenGeoSys-GEM. It employs the sequential non-iterative approach to couple the mass transport code OpenGeoSys (http://www.ufz.de/index.php?en=18345) with the GEMIPM2K (http://gems.web.psi.ch/) code for thermodynamic modeling of aquatic geochemical systems which is using the Gibbs Energy Minimization (GEM) method. Details regarding code development and verification can be found in Shao et al. (2009). The mineral composition and the pore solution of a CEM I 52.5 N HTS hydrated cement as described by Lothenbach & Wieland (2006) are used as an initial state of the cement compartment. The setup is based on the most recent CEMDATA07 thermodynamic database which includes several ideal solid solutions for hydrated cement minerals and is consistent with the Nagra/PSI thermodynamic database 01/01. The smectite/montmorillonite model includes cation exchange processes and amphotheric≡SOH sites and was calibrated on the basis of data by Bradbury & Baeyens (2002). In other reactive transport codes based on the Law of Mass Action (LMA) for solving geochemical equilibria, cation exchange processes are usually calculated assuming

  13. Modelling of the reactive transport of organic pollutants in ground water; Modellierung des reaktiven Transports organischer Schadstoffe im Grundwasser

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, W. [Heidelberg Univ. (Germany). Inst. fuer Umweltphysik

    1999-07-01

    The book describes reactive transport of organic pollutants in ground water and its quantitative monitoring by means of numerical reaction transport models. A brief introduction dealing with the importance of and hazards to ground water and opportunities for making use of ground water models is followed by a more detailed chapter on organic pollutants in ground water. Here the focus is on organochlorine compounds and mineral oil products. Described are propagation mechanisms for these substances in the ground and, especially, their degradability in ground water. A separate chapter is dedicated to possibilities for cleaning up polluted ground water aquifers. The most important decontamination techniques are presented, with special emphasis on in-situ processes with hydraulic components. Moreover, this chapter discusses the self-cleaning capability of aquifers and the benefits of the application of models to ground water cleanup. In the fourth chapter the individual components of reaction transport models are indicated. Here it is, inter alia, differences in the formulation of reaction models as to their complexity, and coupling between suspended matter transport and reaction processes that are dealt with. This chapter ends with a comprehensive survey of literature regarding the application of suspended matter transport models to real ground water accidents. Chapter 5 consists of a description of the capability and principle of function of the reaction transport model TBC (transport biochemism/chemism). This model is used in the two described applications to the reactive transport of organic pollutants in ground water. (orig.) [German] Inhalt des vorliegenden Buches ist die Darstellung des reaktiven Transports organischer Schadstoffe im Grundwasser und dessen quantitative Erfassung mithilfe numerischer Reaktions-Transportmodelle. Auf eine kurze Einleitung zur Bedeutung und Gefaehrdung von Grundwasser und zu den Einsatzmoeglichkeiten von Grundwassermodellen folgt ein

  14. Quantifying the loss of methane through secondary gas mass transport (or 'slip') from a micro-porous membrane contactor applied to biogas upgrading.

    Science.gov (United States)

    McLeod, Andrew; Jefferson, Bruce; McAdam, Ewan J

    2013-07-01

    Secondary gas transport during the separation of a binary gas with a micro-porous hollow fibre membrane contactor (HMFC) has been studied for biogas upgrading. In this application, the loss or 'slip' of the secondary gas (methane) during separation is a known concern, specifically since methane possesses the intrinsic calorific value. Deionised (DI) water was initially used as the physical solvent. Under these conditions, carbon dioxide (CO2) and methane (CH4) absorption were dependent upon liquid velocity (V(L)). Whilst the highest CO2 flux was recorded at high V(L), selectivity towards CO2 declined due to low residence times and a diminished gas-side partial pressure, and resulted in slip of approximately 5.2% of the inlet methane. Sodium hydroxide was subsequently used as a comparative chemical absorption solvent. Under these conditions, CO2 mass transfer increased by increasing gas velocity (VG) which is attributed to the excess of reactive hydroxide ions present in the solvent, and the fast conversion of dissolved CO2 to carbonate species reinitiating the concentration gradient at the gas-liquid interface. At high gas velocities, CH4 slip was reduced to 0.1% under chemical conditions. Methane slip is therefore dependent upon whether the process is gas phase or liquid phase controlled, since methane mass transport can be adequately described by Henry's law within both physical and chemical solvents. The addition of an electrolyte was found to further retard CH4 absorption via the salting out effect. However, their applicability to physical solvents is limited since electrolytic concentration similarly impinges upon the solvents' capacity for CO2. This study illustrates the significance of secondary gas mass transport, and furthermore demonstrates that gas-phase controlled systems are recommended where greater selectivity is required.

  15. Modelling of reactive transport in a sedimentary basin affected by a glaciation/deglaciation event

    Energy Technology Data Exchange (ETDEWEB)

    Bea, S.A.; Mayer, U. [Univ. of British Columbia, Dept. of Earth and Ocean Sciences, Vancouver, BC (Canada); MacQuarrie, K.T.B. [Univ. of New Brunswick, Dept. of Civil Engineering, Fredericton, NB (Canada)

    2011-07-01

    Canada's plan for the long-term care of used nuclear fuel is containment and isolation in a Deep Geologic Repository (DGR) constructed in a suitable sedimentary or crystalline rock formation. In sedimentary basins fluid migration and geochemical conditions may be impacted by multiple interacting processes including density-dependent groundwater flow, solute transport, heat transfer, mechanical loading, and rock-water interactions. Understanding the interactions among these processes is important when assessing the long-term hydrodynamic and geochemical stability of sedimentary basins during glaciation/deglaciation events. To improve the capability to investigate these processes, an enhanced version of the reactive transport code MIN3P (i.e. MIN3P-NWMO) was developed and tested. The processes incorporated in the new model were evaluated by simulating reactive transport in a hypothetical sedimentary basin affected by a simplified glaciation scenario consisting of a single cycle of ice sheet advance and retreat. The simulations are used to provide an illustrative assessment of the hydrogeological and geochemical stability of this sedimentary basin over a time period of 32,500 years. The results suggest a high degree of geochemical stability. (author)

  16. Comparison of numerical simulations of reactive transport and chemostat-like models

    Directory of Open Access Journals (Sweden)

    I. Haidar

    2011-12-01

    Full Text Available The objective of the paper is to evaluate the ability of reactive transport models and their numerical implementations (such as MIN3P to simulate simple microbial transformations in conditions of chemostat or gradostat models, that are popular in microbial ecology and waste treatment ecosystems. To make this comparison, we first consider an abstract ecosystem composed of a single limiting resource and a single microbial species that are carried by advection. In a second stage, we consider another microbial species in competition for the same limiting resource. Comparing the numerical solutions of the two models, we found that the numerical accuracy of simulations of advective transport models performed with MIN3P depends on the evolution of the concentrations of the microbial species: when the state of the system is close to a non-hyperbolic equilibrium, we observe a numerical inaccuracy that may be due to the discretization method used in numerical approximations of reactive transport equations. Therefore, one has to be cautious about the predictions given by the models.

  17. Low cost porous MgO substrates for oxygen transport membranes

    DEFF Research Database (Denmark)

    Kothanda Ramachandran, Dhavanesan; Søgaard, Martin; Clemens, F.

    2016-01-01

    This paper delineates the fabrication of porous magnesium oxide (MgO) ceramics with high porosity and gas permeability by warm pressing using pre-calcined MgO powder and fugitive pore former (combination of graphite and polymethyl methacrylate). Effect of pore former on the microstructure develop...

  18. Measurement of water vapour transport through a porous non-hygroscopic material in a temperature gradient

    DEFF Research Database (Denmark)

    Hansen, Thor; Padfield, Tim; Hansen, Kurt Kielsgaard

    2014-01-01

    This was an experiment to identify the driving potential for water vapour diffusion through porous materials in a temperature gradient. The specimen of mineral fibre insulation was placed between a space with controlled temperature and relative humidity and a space with a controlled, higher...

  19. Interactions between bacteria and solid surfaces in relation to bacterial transport in porous media

    NARCIS (Netherlands)

    Rijnaarts, H.H.M.

    1994-01-01

    Interactions between bacteria and solid surfaces strongly influence the behaviour of bacteria in natural and engineered ecosystems. Many biofilm reactors and terrestrial environments are porous media. The purpose of the research presented in this thesis is to gain a better insight into the

  20. Interactions between bacteria and solid surfaces in relation to bacterial transport in porous media.

    NARCIS (Netherlands)

    Rijnaarts, H.H.M.

    1994-01-01

    Interactions between bacteria and solid surfaces strongly influence the behaviour of bacteria in natural and engineered ecosystems. Many biofilm reactors and terrestrial environments are porous media. The purpose of the research presented in this thesis is to gain a better insight into the basic mec

  1. Geometry-coupled reactive fluid transport at the fracture scale -Application to CO 2 geologic storage

    KAUST Repository

    Kim, Seunghee

    2015-08-19

    Water acidification follows CO2 injection and leads to reactive fluid transport through pores and rock fractures, with potential implications to reservoirs and wells in CO2 geologic storage and enhanced oil recovery. Kinetic rate laws for dissolution reactions in calcite and anorthite are combined with Navier-Stokes law and advection-diffusion transport to perform geometry-coupled numerical simulations in order to study the evolution of chemical reactions, species concentration and fracture morphology. Results are summarized as a function of two dimensionless parameters: the Damköhler number Da which is the ratio between advection and reaction times, and the transverse Peclet number Pe defined as the ratio between the time for diffusion across the fracture and the time for advection along the fracture. Reactant species are readily consumed near the inlet in a carbonate reservoir when the flow velocity is low (low transverse Peclet number and Da>10-1). At high flow velocities, diffusion fails to homogenize the concentration field across the fracture (high transverse Peclet number Pe>10-1). When the reaction rate is low as in anorthite reservoirs (Da<10-1) reactant species are more readily transported towards the outlet. At a given Peclet number, a lower Damköhler number causes the flow channel to experience a more uniform aperture enlargement along the length of the fracture. When the length-to-aperture ratio is sufficiently large, say l/d>30, the system response resembles the solution for 1-D reactive fluid transport. A decreased length-to-aperture ratio slows the diffusive transport of reactant species to the mineral fracture surface, and analyses of fracture networks must take into consideration both the length and slenderness of individual fractures in addition to Pe and Da numbers.

  2. A sequential partly iterative approach for multicomponent reactive transport with CORE2D

    Energy Technology Data Exchange (ETDEWEB)

    Samper, J.; Xu, T.; Yang, C.

    2008-11-01

    CORE{sup 2D} V4 is a finite element code for modeling partly or fully saturated water flow, heat transport and multicomponent reactive solute transport under both local chemical equilibrium and kinetic conditions. It can handle coupled microbial processes and geochemical reactions such as acid-base, aqueous complexation, redox, mineral dissolution/precipitation, gas dissolution/exsolution, ion exchange, sorption via linear and nonlinear isotherms, sorption via surface complexation. Hydraulic parameters may change due to mineral precipitation/dissolution reactions. Coupled transport and chemical equations are solved by using sequential iterative approaches. A sequential partly-iterative approach (SPIA) is presented which improves the accuracy of the traditional sequential noniterative approach (SNIA) and is more efficient than the general sequential iterative approach (SIA). While SNIA leads to a substantial saving of computing time, it introduces numerical errors which are especially large for cation exchange reactions. SPIA improves the efficiency of SIA because the iteration between transport and chemical equations is only performed in nodes with a large mass transfer between solid and liquid phases. The efficiency and accuracy of SPIA are compared to those of SIA and SNIA using synthetic examples and a case study of reactive transport through the Llobregat Delta aquitard in Spain. SPIA is found to be as accurate as SIA while requiring significantly less CPU time. In addition, SPIA is much more accurate than SNIA with only a minor increase in computing time. A further enhancement of the efficiency of SPIA is achieved by improving the efficiency of the Newton-Raphson method used for solving chemical equations. Such an improvement is obtained by working with increments of log-concentrations and ignoring the terms of the Jacobian matrix containing derivatives of activity coefficients. A proof is given for the symmetry and non-singularity of the Jacobian matrix

  3. Numerical Modeling of Nanoparticles Transport with Two-Phase Flow in Porous Media Using Iterative Implicit Method

    CERN Document Server

    El-Amin, M F; Sun, Shuyu; Salama, Amgad

    2013-01-01

    In this paper, we introduce a mathematical model to describe the nanoparticles transport carried by a two-phase flow in a porous medium including gravity, capillary forces and Brownian diffusion. Nonlinear iterative IMPES scheme is used to solve the flow equation, and saturation and pressure are calculated at the current iteration step and then the transport equation is soved implicitly. Therefore, once the nanoparticles concentration is computed, the two equations of volume of the nanoparticles available on the pore surfaces and the volume of the nanoparticles entrapped in pore throats are solved implicitly. The porosity and the permeability variations are updated at each time step after each iteration loop. Two numerical examples, namely, regular heterogeneous permeability and random permeability are considered. We monitor the changing of the fluid and solid properties due to adding the nanoparticles. Variation of water saturation, water pressure, nanoparticles concentration and porosity are presented graph...

  4. Fate and transport of elemental copper (Cu0) nanoparticles through saturated porous media in the presence of organic materials.

    Science.gov (United States)

    Jones, Edward H; Su, Chunming

    2012-05-01

    Column experiments were performed to assess the fate and transport of nanoscale elemental copper (Cu(0)) particles in saturated quartz sands. Both effluent concentrations and retention profiles were measured over a broad range of physicochemical conditions, which included pH, ionic strength, the presence of natural organic matter (humic and fulvic acids) and an organic buffer (Trizma). At neutral pHs, Cu(0) nanoparticles were positively charged and essentially immobile in porous media. The presence of natural organic matter, trizma buffer, and high pH decreased the attachment efficiency facilitating elemental copper transport through sand columns. Experimental results suggested the presence of both favourable and unfavourable nanoparticle interactions causes significant deviation from classical colloid filtration theory.

  5. Software package r{sup 3}t. Model for transport and retention in porous media. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fein, E. (ed.)

    2004-07-01

    In long-termsafety analyses for final repositories for hazardous wastes in deep geological formations the impact to the biosphere due to potential release of hazardous materials is assessed for relevant scenarios. The model for migration of wastes from repositories to men is divided into three almost independent parts: the near field, the geosphere, and the biosphere. With the development of r{sup 3}t the feasibility to model the pollutant transport through the geosphere for porous or equivalent porous media in large, three-dimensional, and complex regions is established. Furthermore one has at present the ability to consider all relevant retention and interaction effects which are important for long-term safety analyses. These are equilibrium sorption, kinetically controlled sorption, diffusion into immobile pore waters, and precipitation. The processes of complexing, colloidal transport and matrix diffusion may be considered at least approximately by skilful choice of parameters. Speciation is not part of the very recently developed computer code r{sup 3}t. With r{sup 3}t it is possible to assess the potential dilution and the barrier impact of the overburden close to reality.

  6. Three-dimensional micro-scale flow simulation and colloid transport modeling in saturated soil porous media

    Science.gov (United States)

    Qiu, Charmaine; Gao, Hui; Fan, Dimin; Jin, Yan; Wang, Lian-Ping

    2008-11-01

    Adequate understanding of the mechanism of colloid retention by soil porous media is essential to the prediction and monitoring of the transport of contaminants by groundwater in the subsurface environment. Preliminary studies reveal that pore-scale processes are governed by colloid-grain and colloid-colloid interactions. In this talk, we focus on the assessment of their effects using a computational approach. First, micro-scale viscous flow in a model porous medium, i.e., a square channel filled with spherical grains, is simulated by simultaneously applying a mesoscopic lattice Boltzmann equation and a Navier-Stokes based hybrid approach, for rigorous cross-validation of the simulated flow. Lagrangian tacking of individual colloids is then conducted by solving colloids equation of motion including local hydrodynamic effects and physicochemical forces. Analysis of colloid transport will encompass effects of flow straining, depth-dependent spatial distribution, and retention of colloids under different solution ionic strengths, flow speeds, and packing configurations. Comparison with parallel experimental results using confocal microscopy will be briefly discussed.

  7. Matrix-oriented implementation for the numerical solution of the partial differential equations governing flows and transport in porous media

    KAUST Repository

    Sun, Shuyu

    2012-09-01

    In this paper we introduce a new technique for the numerical solution of the various partial differential equations governing flow and transport phenomena in porous media. This method is proposed to be used in high level programming languages like MATLAB, Python, etc., which show to be more efficient for certain mathematical operations than for others. The proposed technique utilizes those operations in which these programming languages are efficient the most and keeps away as much as possible from those inefficient, time-consuming operations. In particular, this technique is based on the minimization of using multiple indices looping operations by reshaping the unknown variables into one-dimensional column vectors and performing the numerical operations using shifting matrices. The cell-centered information as well as the face-centered information are shifted to the adjacent face-center and cell-center, respectively. This enables the difference equations to be done for all the cells at once using matrix operations rather than within loops. Furthermore, for results post-processing, the face-center information can further be mapped to the physical grid nodes for contour plotting and stream lines constructions. In this work we apply this technique to flow and transport phenomena in porous media. © 2012 Elsevier Ltd.

  8. Advective and diffusive contributions to reactive gas transport during pyrite oxidation in the unsaturated zone

    DEFF Research Database (Denmark)

    Binning, Philip John; Postma, Diederik Jan; Russel, T.F.;

    2007-01-01

    at depth in the unsaturated zone, a pressure gradient is created between the reactive zone and the ground surface, causing a substantial advective air flow into the subsurface. To determine the balance between advective and diffusive transport, a one-dimensional multicomponent unsaturated zone gas...... flows at steady state. However, greater pressure gradients are found in low-permeability soils. In transient cases, advective fluxes depend on the initial conditions and can be far greater than diffusive fluxes. In contrast to steady state conditions the transient case is sensitive to other model...

  9. A UNIFIED A POSTERIORI ERROR ANALYSIS FOR DISCONTINUOUS GALERKIN APPROXIMATIONS OF REACTIVE TRANSPORT EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Ji-ming Yang; Yan-ping Chen

    2006-01-01

    Four primal discontinuous Galerkin methods are applied to solve reactive transport problems, namely, Oden-Babu(s)ka-Baumann DG (OBB-DG), non-symmetric interior penalty Galerkin (NIPG), symmetric interior penalty Galerkin (SIPG), and incomplete interior penalty Galerkin (ⅡPG). A unified a posteriori residual-type error estimation is derived explicitly for these methods. From the computed solution and given data, explicit est-mators can be computed efficiently and directly, which can be used as error indicators foradaptation. Unlike in the reference [10], we obtain the error estimators in L2(L2) norm by using duality techniques instead of in L2(H1) norm.

  10. Development of RWHet to Simulate Contaminant Transport in Fractured Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong; LaBolle, Eric; Reeves, Donald M; Russell, Charles

    2012-07-01

    Accurate simulation of matrix diffusion in regional-scale dual-porosity and dual-permeability media is a critical issue for the DOE Underground Test Area (UGTA) program, given the prevalence of fractured geologic media on the Nevada National Security Site (NNSS). Contaminant transport through regional-scale fractured media is typically quantified by particle-tracking based Lagrangian solvers through the inclusion of dual-domain mass transfer algorithms that probabilistically determine particle transfer between fractures and unfractured matrix blocks. UGTA applications include a wide variety of fracture aperture and spacing, effective diffusion coefficients ranging four orders of magnitude, and extreme end member retardation values. This report incorporates the current dual-domain mass transfer algorithms into the well-known particle tracking code RWHet [LaBolle, 2006], and then tests and evaluates the updated code. We also develop and test a direct numerical simulation (DNS) approach to replace the classical transfer probability method in characterizing particle dynamics across the fracture/matrix interface. The final goal of this work is to implement the algorithm identified as most efficient and effective into RWHet, so that an accurate and computationally efficient software suite can be built for dual-porosity/dual-permeability applications. RWHet is a mature Lagrangian transport simulator with a substantial user-base that has undergone significant development and model validation. In this report, we also substantially tested the capability of RWHet in simulating passive and reactive tracer transport through regional-scale, heterogeneous media. Four dual-domain mass transfer methodologies were considered in this work. We first developed the empirical transfer probability approach proposed by Liu et al. [2000], and coded it into RWHet. The particle transfer probability from one continuum to the other is proportional to the ratio of the mass entering the other

  11. Transport and Retention of Metal Oxide Nanoparticles in Saturated Porous Media

    Science.gov (United States)

    Ben Moshe, T.; Dror, I.; Berkowitz, B.

    2009-12-01

    We investigate the behavior of four types of untreated metal oxide nanoparticles in saturated porous media. The transport and retention of Fe3O4, TiO2, CuO, and ZnO were measured in a series of column experiments. Vertical columns, 20 cm in height, were packed with uniform, spherical glass beads. Initial experiments demonstrated that when nanoparticles were introduced to the column as a dry powder, placed on the inlet surface with an hydraulic head being built up above them, the nanoparticles remained virtually immobile, with complete retention at the top 5 mm near the column inlet. All subsequent experiments were carried out with an inlet flow condition that introduced nanoparticles as a pulse suspended in aqueous solutions. Breakthrough curves of nanoparticles were measured using UV-vis spectrometry; the experiments proved to be highly reproducible in repeated tests. Following completion of some experiments, the mass of nanoparticles retained in each column was measured to ensure consistency. Different factors affecting the mobility of the nanoparticles such as ionic strength, addition of organic matter (humic acid), flow rate and pH were investigated. The experiments showed that mobility varies strongly among the nanoparticles, with TiO2 demonstrating the highest mobility. For example, at solution concentrations of 0.01 M NaCl, TiO2 had the highest mobility, with 62% of the nanoparticles exiting the column; 52%, 16% and only 1.4% of the CuO, Fe3O4, and ZnO nanoparticles reached the column outlet. But nanoparticle mobility is also strongly affected by the experimental conditions. Increasing the ionic strength to 0.1 M NaCl, only 13%, 8.3%, 6.2% and 1.2% of the TiO2, CuO, Fe3O4 and ZnO nanoparticles, respectively, emerged from the columns. This behavior can be attributed to the suppression of the electrical double layer by the added ions. Under conditions of higher ionic strength, attractive van der Waals forces are dominant over repulsive electrostatic

  12. Tailored Porous Materials

    Energy Technology Data Exchange (ETDEWEB)

    BARTON,THOMAS J.; BULL,LUCY M.; KLEMPERER,WALTER G.; LOY,DOUGLAS A.; MCENANEY,BRIAN; MISONO,MAKOTO; MONSON,PETER A.; PEZ,GUIDO; SCHERER,GEORGE W.; VARTULI,JAMES C.; YAGHI,OMAR M.

    1999-11-09

    Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

  13. Using pore-scale imaging and modeling to provide new insights in multi-phase flow, transport and reaction phenomena in porous media (Invited)

    Science.gov (United States)

    Bijeljic, B.; Andrew, M. G.; Menke, H. P.; Blunt, M. J.

    2013-12-01

    Advances in X ray imaging techniques made it possible not only to accurately describe solid and fluid(s) distributions in the pore space but also to study dynamics of multi-phase flow and reactive transport in-situ. This has opened up a range of new opportunities to better understand fundamental physics at the pore scale by experiment, and test and validate theoretical models in order to develop predictive tools at the pore scale and use it for upscaling. Firstly, we illustrate this concept by describing a new methodology for predicting non-Fickian transport in millimeter-sized three-dimensional micro-CT images of a beadpack, a sandstone, and a carbonate, representing porous media with an increasing degree of pore-scale complexity. The key strategy is to retain the full information on flow and transport signature of a porous medium by using probability distribution functions (PDFs) of voxel velocities for flow, and both PDFs of particle displacements and PDFs of particle transit times between voxels for transport. For this purpose, direct-simulation flow and transport model is used to analyse the relationship between pore structure, velocity, and the dynamics of the evolving plume. The model predictions for PDFs of particle displacements obtained by the model are in excellent agreement with those measured on similar cores in nuclear magnetic resonance experiments. A key determinant for non-Fickian transport is the spread in velocity distribution in the pore space. Further, we present micro-CT imaging of capillary trapping of scCO2 at reservoir conditions in a range of carbonates and sandstones having different pore structure and demonstrate that substantial quantities of scCO2 can be trapped in the pore space. Higher residual scCO2 saturations are found in sandstones compared to carbonates. The trapped ganglia exhibit different distribution of size, related to the inherent structure of pore space. Pore structures with large, open pores that are well connected lead

  14. Large scale reactive transport of nitrate across the surface water divide

    Science.gov (United States)

    Kortunov, E.; Lu, C.; Amos, R.; Grathwohl, P.

    2016-12-01

    Groundwater pollution caused by agricultural and atmospheric inputs is a pressing issue in environmental management worldwide. Various researchers have studied different aspects of nitrate contamination since the substantial increase of the agriculture pollution in the second half of the 20th century. This study addresses large scale reactive solute transport in a typical Germany hilly landscapes in a transect crossing 2 valleys: River Neckar and Ammer. The numerical model was constructed compromising a 2-D cross-section accounting for typical fractured mudstones and unconsolidated sediments. Flow modelling showed that the groundwater divide significantly deviates from the surface water divide providing conditions for inter-valley flow and transport. Reactive transport modelling of redox-sensitive solutes (e.g. agriculture nitrate and natural sulfate, DOC, ammonium) with MIN3P was used to elucidate source of nitrate in aquifers and rivers. Since both floodplains, in the Ammer and Neckar valley contain Holocene sediments relatively high in organic carbon, agricultural nitrate is reduced therein and does not reach the groundwater. However, nitrate applied in the hillslopes underlain by fractured oxidized mudrock is transported to the high yield sand and gravel aquifer in the Neckar valley. Therefore, the model predicts that nitrate in the Neckar valley comes, to a large extent, from the neighboring Ammer valley. Moreover, nitrate observed in the rivers and drains in the Ammer valley is very likely geogenic since frequent peat layers there release ammonium which is oxidized as it enters the surface water. Such findings are relevant for land and water quality management.

  15. Impact of Redox Reactions on Colloid Transport in Saturated Porous Media: An Example of Ferrihydrite Colloids Transport in the Presence of Sulfide.

    Science.gov (United States)

    Liao, Peng; Yuan, Songhu; Wang, Dengjun

    2016-10-18

    Transport of colloids in the subsurface is an important environmental process with most research interests centered on the transport in chemically stable conditions. While colloids can be formed under dynamic redox conditions, the impact of redox reactions on their transport is largely overlooked. Taking the redox reactions between ferrihydrite colloids and sulfide as an example, we investigated how and to what extent the redox reactions modulated the transport of ferrihydrite colloids in anoxic sand columns over a range of environmentally relevant conditions. Our results reveal that the presence of sulfide (7.8-46.9 μM) significantly decreased the breakthrough of ferrihydrite colloids in the sand column. The estimated travel distance of ferrihydrite colloids in the absence of sulfide was nearly 7-fold larger than that in the presence of 46.9 μM sulfide. The reduced breakthrough was primarily attributed to the reductive dissolution of ferrihydrite colloids by sulfide in parallel with formation of elemental sulfur (S(0)) particles from sulfide oxidation. Reductive dissolution decreased the total mass of ferrihydrite colloids, while the negatively charged S(0) decreased the overall zeta potential of ferrihydrite colloids by attaching onto their surfaces and thus enhanced their retention in the sand. Our findings provide novel insights into the critical role of redox reactions on the transport of redox-sensitive colloids in saturated porous media.

  16. Preparation of explosive nanoparticles in a porous chromium(III) oxide matrix: a first attempt to control the reactivity of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Comet, M; Siegert, B; Pichot, V; Gibot, P; Spitzer, D [Laboratoire ISL/CNRS ' Nanomateriaux pour les Systemes Sous Sollicitations Extremes' (NS3E), FRE 3026, French-German Research Institute of Saint-Louis (ISL), 5 rue du General Cassagnou, 68301 Saint-Louis (France)], E-mail: comet@isl.tm.fr

    2008-07-16

    This paper reports the first attempt to control the combustion and the detonation properties of a high explosive through its structure. A porous chromium(III) oxide matrix produced by the combustion of ammonium dichromate was infiltrated by hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). The structure of the Cr{sub 2}O{sub 3} matrix was studied by both scanning and transmission electron microscopy (SEM, TEM); the Cr{sub 2}O{sub 3}/RDX nanocomposites were characterized by nitrogen adsorption. A mathematical model based on these techniques was used to demonstrate that the Cr{sub 2}O{sub 3} matrix encloses and stabilizes RDX particles at the nanoscale. The decomposition process of the nanocomposites was investigated by atomic force microscopy (AFM). The reactivity and sensitivity of the nanocomposites were studied by impact and friction tests, differential scanning calorimetry (DSC), time-resolved cinematography and detonation experiments, and were correlated with their structure. The size of RDX nanoparticles and their distribution in the Cr{sub 2}O{sub 3} matrix have an important influence on their reactivity. The reactive properties of nanostructured RDX differ significantly from those of classical micron-sized RDX. For instance, the melting point disappears and the decomposition temperature is significantly lowered. The quantization of the explosive particles in the Cr{sub 2}O{sub 3} matrix decreases the sensitivity to mechanical stress and allows controlling the decomposition mode-i.e. combustion versus detonation.

  17. Preparation of explosive nanoparticles in a porous chromium(III) oxide matrix: a first attempt to control the reactivity of explosives

    Science.gov (United States)

    Comet, M.; Siegert, B.; Pichot, V.; Gibot, P.; Spitzer, D.

    2008-07-01

    This paper reports the first attempt to control the combustion and the detonation properties of a high explosive through its structure. A porous chromium(III) oxide matrix produced by the combustion of ammonium dichromate was infiltrated by hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). The structure of the Cr2O3 matrix was studied by both scanning and transmission electron microscopy (SEM, TEM); the Cr2O3/RDX nanocomposites were characterized by nitrogen adsorption. A mathematical model based on these techniques was used to demonstrate that the Cr2O3 matrix encloses and stabilizes RDX particles at the nanoscale. The decomposition process of the nanocomposites was investigated by atomic force microscopy (AFM). The reactivity and sensitivity of the nanocomposites were studied by impact and friction tests, differential scanning calorimetry (DSC), time-resolved cinematography and detonation experiments, and were correlated with their structure. The size of RDX nanoparticles and their distribution in the Cr2O3 matrix have an important influence on their reactivity. The reactive properties of nanostructured RDX differ significantly from those of classical micron-sized RDX. For instance, the melting point disappears and the decomposition temperature is significantly lowered. The quantization of the explosive particles in the Cr2O3 matrix decreases the sensitivity to mechanical stress and allows controlling the decomposition mode—i.e. combustion versus detonation.

  18. Transport and reactivity of nanoparticles in the soil-water environment

    Science.gov (United States)

    Ben Moshe, Tal

    The nanotechnology market is developing rapidly with new applications for nanoparticles emerging constantly. As a result of the increased exposure to nanoparticles through consumer use and release to the environment it is becoming necessary to investigate their environmental effects. Little is known about the behavior of such particles in the environment, in general, and in water resources, in particular. The aim of this study was to investigate the behavior of metal oxide nanoparticles in saturated porous media. The study focused on several aspects of this behavior: (1) Transport, mobility and capture of untreated nanoparticles in porous media: The mobility was found to be highly variable among the different particles and highly dependent on the experimental conditions. The mobility was quite low in most cases but could be enhanced by presence of humic acid. (2) Use of copper oxide nanoparticles for the remediation of water polluted by persistent organic compounds: The nanoparticles were shown to be highly efficient catalysts for the complete degradation of the pollutants without formation of hazardous byproducts and without the need for radiation for activation. The nanoparticles were immobilized on sand to enable easy recovery at the end of the experiment; they were shown to retain their catalytic behavior. This was demonstrated by monitoring organic dye degradation in a flow-through system. (3) Interactions between nanoparticles and soil, and changes in soil properties. The nanoparticles affect the micro properties of the soil, as demonstrated by FTIR and fluorescence spectroscopy, as well as the microbial activity. They had little effect on the macro properties of the soil.

  19. Modelling of the reactive transport for rock salt-brine in geological repository systems based on improved thermodynamic database (Invited)

    Science.gov (United States)

    Müller, W.; Alkan, H.; Xie, M.; Moog, H.; Sonnenthal, E. L.

    2009-12-01

    The release and migration of toxic contaminants from the disposed wastes is one of the main issues in long-term safety assessment of geological repositories. In the engineered and geological barriers around the nuclear waste emplacements chemical interactions between the components of the system may affect the isolation properties considerably. As the chemical issues change the transport properties in the near and far field of a nuclear repository, modelling of the transport should also take the chemistry into account. The reactive transport modelling consists of two main components: a code that combines the possible chemical reactions with thermo-hydrogeological processes interactively and a thermodynamic databank supporting the required parameters for the calculation of the chemical reactions. In the last decade many thermo-hydrogeological codes were upgraded to include the modelling of the chemical processes. TOUGHREACT is one of these codes. This is an extension of the well known simulator TOUGH2 for modelling geoprocesses. The code is developed by LBNL (Lawrence Berkeley National Laboratory, Univ. of California) for the simulation of the multi-phase transport of gas and liquid in porous media including heat transfer. After the release of its first version in 1998, this code has been applied and improved many times in conjunction with considerations for nuclear waste emplacement. A recent version has been extended to calculate ion activities in concentrated salt solutions applying the Pitzer model. In TOUGHREACT, the incorporated equation of state module ECO2N is applied as the EOS module for non-isothermal multiphase flow in a fluid system of H2O-NaCl-CO2. The partitioning of H2O and CO2 between liquid and gas phases is modelled as a function of temperature, pressure, and salinity. This module is applicable for waste repositories being expected to generate or having originally CO2 in the fluid system. The enhanced TOUGHREACT uses an EQ3/6-formatted database

  20. Micro-Scale Simulation of Water Transport in Porous Media Coupled with Phase Change

    Science.gov (United States)

    Etemad, Sahand; Behrang, Arash; Mohammadmoradi, Peyman; Hejazi, Hossein; Kantzas, Apostolos

    2015-11-01

    Sub-pore scale modeling of flow in porous media is gaining momentum. The concept of Digital Core Analysis deals with measurements of virtual core and the purpose of such modeling is to replace conventional and special core analysis when the latter are not feasible. Single phase flow phenomena are nowadays fairly easy to model given a good representation of the porous medium by its digital counterpart. Two phase flow modeling has proven more difficult to represent due to the complexities introduced by the insert of interfaces. These problems were at least partially overcome by the implementation of the ``Volume of Fluid'' method. OpenFOAM is the CFD package of choice in this work. The aforementioned approach is currently being extended in the modeling of phase change within a porous medium. Surface roughness is introduced by the incorporation of wedges of variable density and amplitude on the pore surface. A further introduced complication is that the individual grains are of different mineralogy and thus of different wettability. The problem of steam condensation in such media is addressed. It is observed that steam condenses first in the smallest of