WorldWideScience

Sample records for reactive functionality synthesis

  1. Synthesis of functional nanocrystallites through reactive thermal plasma processing

    Directory of Open Access Journals (Sweden)

    Takamasa Ishigaki and Ji-Guang Li

    2007-01-01

    Full Text Available A method of synthesizing functional nanostructured powders through reactive thermal plasma processing has been developed. The synthesis of nanosized titanium oxide powders was performed by the oxidation of solid and liquid precursors. Quench gases, either injected from the shoulder of the reactor or injected counter to the plasma plume from the bottom of the reactor, were used to vary the quench rate, and therefore the particle size, of the resultant powders. The experimental results are well supported by numerical analysis on the effects of the quench gas on the flow pattern and temperature field of the thermal plasma as well as on the trajectory and temperature history of the particles. The plasma-synthesized TiO2 nanoparticles showed phase preferences different from those synthesized by conventional wet-chemical processes. Nanosized particles of high crystallinity and nonequilibrium chemical composition were formed in one step via reactive thermal plasma processing.

  2. Monadic Functional Reactive Programming

    NARCIS (Netherlands)

    A.J. van der Ploeg (Atze); C Shan

    2013-01-01

    htmlabstractFunctional Reactive Programming (FRP) is a way to program reactive systems in functional style, eliminating many of the problems that arise from imperative techniques. In this paper, we present an alternative FRP formulation that is based on the notion of a reactive computation: a

  3. Synthesis, characterization, and reactivity of furan- and thiophene-functionalized bis(n-heterocyclic carbene) complexes of iron(II)

    KAUST Repository

    Rieb, Julia; Raba, Andreas; Haslinger, Stefan; Kaspar, Manuel; Pö thig, Alexander; Cokoja, Mirza; Basset, Jean-Marie; Kü hn, Fritz

    2014-01-01

    The synthesis of iron(II) complexes bearing new heteroatom-functionalized methylene-bridged bis(N-heterocyclic carbene) ligands is reported. All complexes are characterized by single-crystal X-ray diffraction (SC-XRD), nuclear magnetic resonance

  4. Synthesis, characterization, and reactivity of furan- and thiophene-functionalized bis(n-heterocyclic carbene) complexes of iron(II)

    KAUST Repository

    Rieb, Julia

    2014-09-15

    The synthesis of iron(II) complexes bearing new heteroatom-functionalized methylene-bridged bis(N-heterocyclic carbene) ligands is reported. All complexes are characterized by single-crystal X-ray diffraction (SC-XRD), nuclear magnetic resonance (NMR) spectroscopy, and elemental analysis. Tetrakis(acetonitrile)-cis-[bis(o-imidazol-2-ylidenefuran)methane]iron(II) hexafluorophosphate (2a) and tetrakis(acetonitrile)-cis-[bis(o-imidazol-2-ylidenethiophene)methane]iron(II) hexafluorophosphate (2b) were obtained by aminolysis of [Fe{N(SiMe3)2}2(THF)] with furan- and thiophene-functionalized bis(imidazolium) salts 1a and 1b in acetonitrile. The SC-XRD structures of 2a and 2b show coordination of the bis(carbene) ligand in a bidentate fashion instead of a possible tetradentate coordination. The four other coordination sites of these distorted octahedral complexes are occupied by acetonitrile ligands. Crystallization of 2a in an acetone solution by the slow diffusion of Et2O led to the formation of cisdiacetonitriledi[ bis(o-imidazol-2-ylidenefuran)methane]iron(II) hexafluorophosphate (3a) with two bis(carbene) ligands coordinated in a bidentate manner and two cis-positioned acetonitrile molecules. Compounds 2a and 2b are the first reported iron(II) carbene complexes with four coordination sites occupied by solvent molecules, and it was demonstrated that those solvent ligands can undergo ligand-exchange reactions.

  5. Synthesis of functional polypyrrole/prussian blue and polypyrrole/Ag composite microtubes by using a reactive template

    Energy Technology Data Exchange (ETDEWEB)

    Feng Xiaomiao; Sun Zhengzong; Hou Wenhua; Zhu Junjie [Key Laboratory of Mesoscopic Chemistry, Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

    2007-05-16

    Polypyrrole (PPy)/PB and PPy/Ag composite microtubes were synthesized in one pot by using methyl orange (MO) as a reactive self-degraded template. In contrast to reported conventional template approaches, the MO template did not need to be removed after polymerization. The formation mechanism, structural characteristics, conductivity, and electrochemical properties of the obtained PPy/PB and PPy/Ag microtubes are reported.

  6. Synthesis of functional polypyrrole/prussian blue and polypyrrole/Ag composite microtubes by using a reactive template

    International Nuclear Information System (INIS)

    Feng Xiaomiao; Sun Zhengzong; Hou Wenhua; Zhu Junjie

    2007-01-01

    Polypyrrole (PPy)/PB and PPy/Ag composite microtubes were synthesized in one pot by using methyl orange (MO) as a reactive self-degraded template. In contrast to reported conventional template approaches, the MO template did not need to be removed after polymerization. The formation mechanism, structural characteristics, conductivity, and electrochemical properties of the obtained PPy/PB and PPy/Ag microtubes are reported

  7. Reactivity of organic compounds in catalytic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Minachev, Kh M; Bragin, O V

    1978-01-01

    A comprehensive review of 1976 Soviet research on catalysis delivered to the 1977 annual session of the USSR Academy of Science Council on Catalysis (Baku 6/16-20/77) covers hydrocarbon reactions, including hydrogenation and hydrogenolysis, dehydrogenation, olefin dimerization and disproportionation, and cyclization and dehydrocyclization (e.g., piperylene cyclization and ethylene cyclotrimerization); catalytic and physicochemical properties of zeolites, including cracking, dehydrogenation, and hydroisomerization catalytic syntheses and conversion of heterocyclic and functional hydrocarbon derivatives, including partial and total oxidation (e.g., of o-xylene to phthalic anhydride); syntheses of thiophenes from alkanes and hydrogen sulfide over certain dehydrogenation catalysts; catalytic syntheses involving carbon oxides ( e.g., the development of a new heterogeneous catalyst for hydroformylation of olefins), and of Co-MgO zeolitic catalysts for synthesis of aliphatic hydrocarbons from carbon dioxide and hydrogen, and fabrication of high-viscosity lubricating oils over bifunctional aluminosilicate catalysts.

  8. Synthesis, characterization and reactivity of some lanthanide organometallics

    International Nuclear Information System (INIS)

    Marchal, N.

    1991-12-01

    Organo lanthanides with reactive metal-carbon bonds are obtained by direct synthesis of the metal (powder) and a hydrocarbon in ether medium, like with alkali metals. Two types of synthesis are envisaged: formation of covalent bonds by opening cycles, only biphenylene is reactive enough in regard to ytterbium and samarium, these organometallic compounds can also be prepared by the classical way, i.e. reaction of 2.2'-dilithio biphenyl on rare earth halogenides and coupling of 6.6-dimethylfulvene leading to dicyclopentadienyl compounds with Sm and Yb. The reactivity of these complexes is studied by catalysis of ethylene polymerization

  9. Two Step Synthesis of a Non-symmetric Acetylcholinesterase Reactivator

    Directory of Open Access Journals (Sweden)

    Vit Koleckar

    2007-08-01

    Full Text Available The newly developed and very promising acetylcholinesterase reactivator (E-1- (2-hydroxyiminomethylpyridinium-4-(4-hydroxyiminomethylpyridinium-but-2-ene dibromide was prepared using two different pathways via a two-step synthesis involving the appropriate (E-1-(4-bromobut-2-enyl-2- or 4-hydroxyiminomethyl-pyridinium bromides. Afterwards, purities and yields of the desired product prepared by both routes were compared. Finally, its potency to reactivate several nerve agent-inhibited acetylcholinesterases was tested.

  10. Design and synthesis of reactive separation systems

    Energy Technology Data Exchange (ETDEWEB)

    Doherty, M.F.

    1992-01-01

    During the last decade there has been a rapid upturn in interest in reactive distillation. The chemical process industry recognizes the favorable economics of carrying out reaction simultaneously with distillation for certain classes of reacting systems, and many new processes have been built based on this technology. Interest is also increasing by academics and software vendors. Systematic design methods for reactive distillation systems have only recently begun to emerge. In this report we survey the available design techniques and point out the contributions made by our group at the University of Massachusetts.

  11. Silsesquioxane nanoparticles with reactive internal functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Brozek, Eric M . [University of Utah, Department of Chemistry (United States); Washton, Nancy M.; Mueller, Karl T. [Environmental Molecular Sciences Laboratory (United States); Zharov, Ilya, E-mail: i.zharov@utah.edu [University of Utah, Department of Chemistry (United States)

    2017-02-15

    A series of silsesquioxane nanoparticles containing reactive internal organic functionalities throughout the entire particle body have been synthesized using a surfactant-free method with organosilanes as the sole precursors and a base catalyst. The organic functional groups incorporated are vinyl, allyl, mercapto, cyanoethyl, and cyanopropyl groups. The sizes and morphologies of the particles were characterized using SEM and nitrogen adsorption, while the compositions were confirmed using TGA, FT-IR, solid state NMR, and elemental analysis. The accessibility and reactivity of the functional groups inside the particles were demonstrated by performing bromination and reduction reactions in the interior of the particles.

  12. SYNTHESIS, REACTIVITY AND BIOLOGICAL ACTIVITY OF QUINOXALIN-2-ONE DERIVATIVES

    OpenAIRE

    El Mokhtar Essassi; R. Bouhfid; Y. Kandri Rodi; S. Ferfra; H. Benzeid; Y. Ramli

    2010-01-01

    Quinoxalines have a great interest in various fields and particularly in chemistry, biology and pharmacology. It enabled the researchers to develop many methods for their preparations and to seek new fields of application. In this review, we’ll expose different methods of synthesis of the quinoxalin-2-one, its reactivity and finally we’ll discuss the various biological activities of its derivatives.

  13. Synthesis and characterization of reactive dye-cassava mesocarp ...

    African Journals Online (AJOL)

    The synthesis of triazine based reactive dyes was carried out. The resultant dyes were characterized by thin layers chromatography, molecular weight, infrared and ultra- violet spectroscopy, and used in dyeing cassava mesocarp to produce dye modified cellulosic substrates. The dyed substrates were tested for dye fixation, ...

  14. Reactivation of herpes simplex virus in a cell line inducible for simian virus 40 synthesis

    International Nuclear Information System (INIS)

    Zamansky, G.B.; Kleinman, L.F.; Black, P.H.; Kaplan, J.C.

    1980-01-01

    The reactivation of UV-irradiated herpes simplex virus (HSV) was investigated in irradiated and unirradiated transformed hamster cells in which infectious simian virus 40(SV40) can be induced. Reactivation was enhanced when the cells were treated with UV light or mitomycin C prior to infection with HSV. The UV dose-response curve of this enhanced reactivation was strikingly similar to that found for induction of SV40 virus synthesis in cells treated under identical conditions. This is the first time that two SOS functions described in bacteria have been demonstrated in a single mammalian cell line. (orig.)

  15. Entrainer-based reactive distillation versus conventional reactive distillation for the synthesis of fatty acid esters

    NARCIS (Netherlands)

    Jong, de M.C.; Dimian, A.C.; Haan, de A.B.

    2008-01-01

    In this paper different reactive distillation configurations for the synthesis of isopropyl myristate were compared with the use of process models made in Aspen Plus. It can be concluded that the configurations in which an entrainer is added are more capable to reach the required conversion of

  16. Synthesis and reactivity of triscyclopentadienyl uranium (III) and (IV) complexes

    International Nuclear Information System (INIS)

    Berthet, J.C.

    1992-01-01

    The reactions of (RC 5 H 4 ) 3 U with R=trimethylsilylcyclopentadienyl or tertiobutylcyclopentadienyl are studied for the synthesis of new uranium organometallic compounds. Reactions with sodium hydride are first described uranium (III) anionic hydrides obtained are oxidized for synthesis of stable uranium (IV) organometallic hydrides. Stability of these compounds is discussed. Reactivity of these uranium (III) and (IV) hydrides are studied. Formation of new binuclear compounds with strong U-O and U-N bonds is examined and crystal structure are presented. Monocyclooctatetraenylic uranium complexes are also investigated

  17. Covalent functionalization of graphene with reactive intermediates.

    Science.gov (United States)

    Park, Jaehyeung; Yan, Mingdi

    2013-01-15

    Graphene, a material made exclusively of sp(2) carbon atoms with its π electrons delocalized over the entire 2D network, is somewhat chemically inert. Covalent functionalization can enhance graphene's properties including opening its band gap, tuning conductivity, and improving solubility and stability. Covalent functionalization of pristine graphene typically requires reactive species that can form covalent adducts with the sp(2) carbon structures in graphene. In this Account, we describe graphene functionalization reactions using reactive intermediates of radicals, nitrenes, carbenes, and arynes. These reactive species covalently modify graphene through free radical addition, CH insertion, or cycloaddition reactions. Free radical additions are among the most common reaction, and these radicals can be generated from diazonium salts and benzoyl peroxide. Electron transfer from graphene to aryl diazonium ion or photoactivation of benzoyl peroxide yields aryl radicals that subsequently add to graphene to form covalent adducts. Nitrenes, electron-deficient species generated by thermal or photochemical activation of organic azides, can functionalize graphene very efficiently. Because perfluorophenyl nitrenes show enhanced bimolecular reactions compared with alkyl or phenyl nitrenes, perfluorophenyl azides are especially effective. Carbenes are used less frequently than nitrenes, but they undergo CH insertion and C═C cycloaddition reactions with graphene. In addition, arynes can serve as a dienophile in a Diels-Alder type reaction with graphene. Further study is needed to understand and exploit the chemistry of graphene. The generation of highly reactive intermediates in these reactions leads to side products that complicate the product composition and analysis. Fundamental questions remain about the reactivity and regioselectivity of graphene. The differences in the basal plane and the undercoordinated edges of graphene and the zigzag versus arm-chair configurations

  18. SYNTHESIS, CHARACTERIZATION AND DENSITY FUNCTIONAL ...

    African Journals Online (AJOL)

    Preferred Customer

    We synthesized a number of aniline derivatives containing acyl groups to compare their barriers of rotation around ... KEY WORDS: Monoacyl aniline, Synthesis, Density functional theory, Rotation barrier. INTRODUCTION. Developments in ...

  19. SYNTHESIS, REACTIVITY AND BIOLOGICAL ACTIVITY OF QUINOXALIN-2-ONE DERIVATIVES

    Directory of Open Access Journals (Sweden)

    El Mokhtar Essassi

    2010-04-01

    Full Text Available Quinoxalines have a great interest in various fields and particularly in chemistry, biology and pharmacology. It enabled the researchers to develop many methods for their preparations and to seek new fields of application. In this review, we’ll expose different methods of synthesis of the quinoxalin-2-one, its reactivity and finally we’ll discuss the various biological activities of its derivatives.

  20. Synthesis, properties and reactivity of intramolecular hypercoordinate silicon complexes

    International Nuclear Information System (INIS)

    Nikolin, A A; Negrebetsky, V V

    2014-01-01

    The state of the art of the chemistry of hypercoordinate silicon compounds is analyzed. Published data on the current top-priority approaches to the preparative synthesis of these compounds and on their properties, structures and reactivity are summarized and generalized. Relying on the results obtained by modern physicochemical methods, the possible mechanisms of stereodynamic processes occurring in the coordination units of hypercoordinate silicon complexes are discussed. The bibliography includes 157 references

  1. A multi-paradigm language for reactive synthesis

    Directory of Open Access Journals (Sweden)

    Ioannis Filippidis

    2016-02-01

    Full Text Available This paper proposes a language for describing reactive synthesis problems that integrates imperative and declarative elements. The semantics is defined in terms of two-player turn-based infinite games with full information. Currently, synthesis tools accept linear temporal logic (LTL as input, but this description is less structured and does not facilitate the expression of sequential constraints. This motivates the use of a structured programming language to specify synthesis problems. Transition systems and guarded commands serve as imperative constructs, expressed in a syntax based on that of the modeling language Promela. The syntax allows defining which player controls data and control flow, and separating a program into assumptions and guarantees. These notions are necessary for input to game solvers. The integration of imperative and declarative paradigms allows using the paradigm that is most appropriate for expressing each requirement. The declarative part is expressed in the LTL fragment of generalized reactivity(1, which admits efficient synthesis algorithms, extended with past LTL. The implementation translates Promela to input for the Slugs synthesizer and is written in Python. The AMBA AHB bus case study is revisited and synthesized efficiently, identifying the need to reorder binary decision diagrams during strategy construction, in order to prevent the exponential blowup observed in previous work.

  2. Synthesis of Reactive Polymers for Acrolein Capture Using AGET ATRP.

    Science.gov (United States)

    Beringer, Laura T; Li, Shaohua; Gilmore, Gary; Lister, John; Averick, Saadyah

    2015-10-05

    Acrolein is a toxic metabolite of the anticancer agent cyclophosphamide (CP). Current strategies to mitigate acrolein toxicity are insufficient, and in this brief article, we report the synthesis of well-defined low molecular weight block copolymers using activators generated by electron transfer atom transfer radical polymerization (AGET ATRP) capable of reacting with the cytotoxic small molecule acrolein. Acrolein reactivity was introduced into the block copolymers via incorporation of either (a) aminooxy or (b) sulfhydryl groups. The cytoprotective effect of the polymers was compared to sodium 2-sulfanylethanesulfonate (mesna) the current gold standard for protection from CP urotoxicity, and we found that the polymers bearing sulfhydryl moieties demonstrated superior cytoprotective activity.

  3. Process Improvement of Reactive Dye Synthesis Using Six Sigma Concept

    Science.gov (United States)

    Suwanich, Thanapat; Chutima, Parames

    2017-06-01

    This research focuses on the problem occurred in the reactive dye synthesis process of a global manufacturer in Thailand which producing various chemicals for reactive dye products to supply global industries such as chemicals, textiles and garments. The product named “Reactive Blue Base” is selected in this study because it has highest demand and the current chemical yield shows a high variation, i.e. yield variation of 90.4% - 99.1% (S.D. = 2.405 and Cpk = -0.08) and average yield is 94.5% (lower than the 95% standard set by the company). The Six Sigma concept is applied aiming at increasing yield and reducing variation of this process. This approach is suitable since it provides a systematic guideline with five improvement phases (DMAIC) to effectively tackle the problem and find the appropriate parameter settings of the process. Under the new parameter settings, the process yield variation is reduced to range between 96.5% - 98.5% (S.D. = 0.525 and Cpk = 1.83) and the average yield is increased to 97.5% (higher than the 95% standard set by the company).

  4. Carbasugars: Synthesis and Functions

    Science.gov (United States)

    Kobayashi, Yoshiyuki

    It is well recognized that glycosidase inhibitors are not only tools to elucidate the mechanism of a living system manipulated by glycoconjugates but also potential clinical drugs and insecticides by inducing the failure of glycoconjugates to perform their function. In this chapter, the syntheses and functions of natural glycosidase inhibitors (cyclophelitol , allosamidine , and trehazoilin ), which possess highly oxygenated and functionalized cyclohexanes or cyclopentanes in their structures and are defined as carbasugars , and the structure and activity relationships (SAR) of their derivatives are described. Also, recently much attention has been focused on neuraminidase inhibitors as anti-influenza drugs since relenza , which was derived from sialic acid, and also, tamiflu , which is the artificial carbasugar designed as a transition state analogue in the hydrolysis pathway of substrates by neuraminidase, were launched in the market. Herein, the medicinal chemistry efforts to discover tamiflu and some efficient syntheses applicable to process chemistry are described. Finally, useful synthetic methodologies for carbasugar formation from sugars are also introduced in this chapter.

  5. Photoluminescent silicon nanocrystals with chlorosilane surfaces - synthesis and reactivity

    Science.gov (United States)

    Höhlein, Ignaz M. D.; Kehrle, Julian; Purkait, Tapas K.; Veinot, Jonathan G. C.; Rieger, Bernhard

    2014-12-01

    We present a new efficient two-step method to covalently functionalize hydride terminated silicon nanocrystals with nucleophiles. First a reactive chlorosilane layer was formed via diazonium salt initiated hydrosilylation of chlorodimethyl(vinyl)silane which was then reacted with alcohols, silanols and organolithium reagents. With organolithium compounds a side reaction is observed in which a direct functionalization of the silicon surface takes place.We present a new efficient two-step method to covalently functionalize hydride terminated silicon nanocrystals with nucleophiles. First a reactive chlorosilane layer was formed via diazonium salt initiated hydrosilylation of chlorodimethyl(vinyl)silane which was then reacted with alcohols, silanols and organolithium reagents. With organolithium compounds a side reaction is observed in which a direct functionalization of the silicon surface takes place. Electronic supplementary information (ESI) available: Detailed experimental procedures and additional NMR, PL, EDX, DLS and TEM data. See DOI: 10.1039/C4NR05888G

  6. Reactive synthesis of NbAl3 matrix composites

    International Nuclear Information System (INIS)

    Lu, L.; Kim, Y.S.; Gokhale, A.B.; Abbaschian, R.

    1990-01-01

    NbAl 3 matrix composites were synthesized in-situ via reactive hot compaction (RHC) of elemental powders. It was found that the simultaneous application of pressure during synthesis was effective in attaining a near-theoretical density matrix at relatively low temperatures and pressures. Using this technique, two types of composites were produced: matrices containing a uniform dispersion of second phase particles (either Nb 3 Al or Nb 2 Al with an Nb core or Nb 2 Al) and matrices reinforced with coated or uncoated ductile Nb filaments. It was found that a limited amount of toughening is obtained using the first approach, while composites containing coated Nb filaments exhibited a significant increase in the ambient temperature fracture toughness. In this paper, various aspects of RHC processing of NbAl 3 matrix composites, the effect of initial stoichiometry and powder size on the microstructure, as well as the mechanical behavior of the composites are discussed

  7. ‘Umpolung’ Reactivity in Semiaqueous Amide and Peptide Synthesis

    Science.gov (United States)

    Shen, Bo; Makley, Dawn M.; Johnston, Jeffrey N.

    2010-01-01

    The amide functional group is one of Nature’s key functional and structural elements, most notably within peptides. Amides are also key intermediates in the preparation of a diverse range of therapeutic small molecules. Its construction using available methods focuses principally upon dehydrative approaches, although oxidative and radical-based methods are representative alternatives. During the carbon-nitrogen bond forming step in most every example, the carbon and nitrogen bear electrophilic and nucleophilic character, respectively. Here we show that activation of amines and nitroalkanes with an electrophilic iodine source in wet THF can lead directly to amide products. Preliminary observations support a mechanistic construct in which reactant polarity is reversed (umpolung) during C-N bond formation relative to traditional approaches. The use of nitroalkanes as acyl anion equivalents provides a conceptually innovative approach to amide and peptide synthesis, and one that might ultimately provide for efficient peptide synthesis that is fully reliant on enantioselective methods. PMID:20577205

  8. Synthesis, Reactivity and Stability of Aryl Halide Protecting Groups towards Di-Substituted Pyridines

    Directory of Open Access Journals (Sweden)

    Ptoton Mnangat Brian

    2016-03-01

    Full Text Available This paper reports the synthesis and reactivity of different Benzyl derivative protecting groups. The synthesis and stability of Benzyl halides, 4-methoxybenzyl halides, 3,5-dimethoxybenzyl halides, 3,4-dimethoxybenzyl halides, 3,4,5-trimethoxybenzyl halide protecting groups and their reactivity towards nitrogen atom of a di-substituted pyridine ring in formation of pyridinium salts is also reported.

  9. Development of a model for the synthesis of unsaturated polyester by reactive distillation

    NARCIS (Netherlands)

    Shah, M.R.; Zondervan, E.; Oudshoorn, M.L.; Haan, de A.B.; Haan, de A.B.; Kooijman, H.; Górak, A.

    2010-01-01

    Traditionally polyester production is done in a batch reactor equipped with a separation column for batch distillation. A promising alternative for the intensification of this process is reactive distillation. In this paper, a reactive distillation model is developed for the synthesis of an

  10. Reactive distillation: an attractive alternative for the synthesis of unsaturated polyester

    NARCIS (Netherlands)

    Shah, M.R.; Zondervan, E.; Oudshoorn, M.L.; Haan, de A.B.

    2011-01-01

    Unsaturated polyester is traditionally produced in a batch wise operating reaction vessel connected to a distillation unit. An attractive alternative for the synthesis of unsaturated polyester is a reactive distillation. To value such alternative synthesis route reliable process models need to be

  11. Measuring Memory Reactivation With Functional MRI: Implications for Psychological Theory.

    Science.gov (United States)

    Levy, Benjamin J; Wagner, Anthony D

    2013-01-01

    Environmental cues often remind us of earlier experiences by triggering the reactivation of memories of events past. Recent evidence suggests that memory reactivation can be observed using functional MRI and that distributed pattern analyses can even provide evidence of reactivation on individual trials. The ability to measure memory reactivation offers unique and powerful leverage on theoretical issues of long-standing interest in cognitive psychology, providing a means to address questions that have proven difficult to answer with behavioral data alone. In this article, we consider three instances. First, reactivation measures can indicate whether memory-based inferences (i.e., generalization) arise through the encoding of integrated cross-event representations or through the flexible expression of separable event memories. Second, online measures of memory reactivation may inform theories of forgetting by providing information about when competing memories are reactivated during competitive retrieval situations. Finally, neural reactivation may provide a window onto the role of replay in memory consolidation. The ability to track memory reactivation, including at the individual trial level, provides unique leverage that is not afforded by behavioral measures and thus promises to shed light on such varied topics as generalization, integration, forgetting, and consolidation. © The Author(s) 2013.

  12. SYNTHESIS AND CHARACTERIZATION OF FUNCTIONALIZED ...

    African Journals Online (AJOL)

    In addition, these compounds have emerged as potential calcium ... As a consequence, the synthesis of dihydropyrimidinone derivatives has ..... Ramazani, A.; Shaghaghi,Z.; Aghahosseini, H.; Asiabi, P.A.; Joo, S.W. Silica nanoparticles.

  13. Relations among several nuclear and electronic density functional reactivity indexes

    Science.gov (United States)

    Torrent-Sucarrat, Miquel; Luis, Josep M.; Duran, Miquel; Toro-Labbé, Alejandro; Solà, Miquel

    2003-11-01

    An expansion of the energy functional in terms of the total number of electrons and the normal coordinates within the canonical ensemble is presented. A comparison of this expansion with the expansion of the energy in terms of the total number of electrons and the external potential leads to new relations among common density functional reactivity descriptors. The formulas obtained provide explicit links between important quantities related to the chemical reactivity of a system. In particular, the relation between the nuclear and the electronic Fukui functions is recovered. The connection between the derivatives of the electronic energy and the nuclear repulsion energy with respect to the external potential offers a proof for the "Quantum Chemical le Chatelier Principle." Finally, the nuclear linear response function is defined and the relation of this function with the electronic linear response function is given.

  14. Lanthanide alkyl and silyl compounds: Synthesis, reactivity and catalysts for green

    Energy Technology Data Exchange (ETDEWEB)

    Pindwal, Aradhana [Iowa State Univ., Ames, IA (United States)

    2016-01-01

    The last few decades have witnessed enormous research in the field of organometallic lanthanide chemistry. Our research group has developed a few rare earth alkyl compounds containing tris(dimethylsilyl)methyl ligand and explored their reactivity. This thesis focusses on extending the study of lanthanide alkyl and silyl compounds to develop strategies for their synthesis and explore their reactivity and role as catalysts in processes such as hydrosilylation and cross-dehydrocoupling.

  15. Preparation of high temperature superconductor ceramics using cuban reactives. Optimization of the synthesis method

    International Nuclear Information System (INIS)

    Leyva Fabelo, A.; Cruz, C.; Aragon, B.; Suarez, J.C.; Mora, M.

    1991-01-01

    Results of the crystallographic characterization of a group of Cuban Products, which are evaluated to be employed in HTSC fabrication are presented in this paper. The first results on the synthesis of HTSC (RBa 2 Cu 3 0 7δ , R= Y, La, Nd) using Cuban reactives, are presented. The so called 'solid state reaction method of synthesis' was optimized, obtaining a critical temperature of more than 93 k

  16. Design and synthesis of reactive separation systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Doherty, M.F.

    1992-12-31

    During the last decade there has been a rapid upturn in interest in reactive distillation. The chemical process industry recognizes the favorable economics of carrying out reaction simultaneously with distillation for certain classes of reacting systems, and many new processes have been built based on this technology. Interest is also increasing by academics and software vendors. Systematic design methods for reactive distillation systems have only recently begun to emerge. In this report we survey the available design techniques and point out the contributions made by our group at the University of Massachusetts.

  17. Functionalization of whey proteins by reactive supercritical fluid extrusion

    Directory of Open Access Journals (Sweden)

    Khanitta Ruttarattanamongkol

    2012-09-01

    Full Text Available Whey protein, a by-product from cheese-making, is often used in a variety of food formulations due to its unsurpassednutritional quality and inherent functional properties. However, the possibilities for the improvement and upgrading of wheyprotein utilization still need to be explored. Reactive supercritical fluid extrusion (SCFX is a novel technique that has beenrecently reported to successfully functionalize commercially available whey proteins into a product with enhanced functionalproperties. The specific goal of this review is to provide fundamental understanding of the reinforcement mechanism andprocessing of protein functionalization by reactive SCFX process. The superimposed extrusion variables and their interactionmechanism affect the physico-chemical properties of whey proteins. By understanding the structure, functional properties andprocessing relationships of such materials, the rational design criteria for novel functionalized proteins could be developedand effectively utilized in food systems.

  18. Synthesis and processing of composites by reactive metal penetration

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E.; Ewsuk, K.G. [Sandia National Laboratories, Albuquerque, NM (United States); Tomsia, A.P. [Pask Research and Engineering, Berkeley, CA (United States)] [and others

    1995-05-01

    Ceramic-metal composites are being developed because their high stiffness-to weight ratios, good fracture toughness, and variable electrical and thermal properties give them advantages over more conventional materials. However, because ceramic-metal composite components presently are more expensive than monolithic materials, improvements in processing are required to reduce manufacturing costs. Reactive metal penetration is a promising new method for making ceramic- and metal-matrix composites that has the advantage of being inherently a net-shape process. This technique, once fully developed, will provide another capability for manufacturing the advanced ceramic composites that are needed for many light-weight structural and wear applications. The lower densities of these composites lead directly to energy savings in use. Near-net-shape fabrication of composite parts should lead to additional savings because costly and energy intensive grinding and machining operations are significantly reduced, and the waste generated from such finishing operations is minimized. The goals of this research program are: (1) to identify feasible compositional systems for making composites by reactive metal penetration; (2) to understand the mechanism(s) of composite formation by reactive metal penetration; and (3) to learn how to control and optimize reactive metal penetration for economical production of composites and composite coatings.

  19. Reactive Attachment Disorder: Implications for School Readiness and School Functioning

    Science.gov (United States)

    Schwartz, Eric; Davis, Andrew S.

    2006-01-01

    School readiness and functioning in children diagnosed with Reactive Attachment Disorder (RAD) are important issues due to the dramatic impact RAD has on multiple areas of development. The negative impact of impaired or disrupted early relationships, characterized by extreme neglect, abuse, parental mental illness, domestic violence, and repeated…

  20. Lyapunov Function Synthesis - Algorithm and Software

    DEFF Research Database (Denmark)

    Leth, Tobias; Sloth, Christoffer; Wisniewski, Rafal

    2016-01-01

    In this paper we introduce an algorithm for the synthesis of polynomial Lyapunov functions for polynomial vector fields. The Lyapunov function is a continuous piecewisepolynomial defined on simplices, which compose a collection of simplices. The algorithm is elaborated and crucial features are ex...

  1. Synthesis and Properties of Reactive Interfacial Agents for Polycaprolactone-Starch Blends

    NARCIS (Netherlands)

    Sugih, Asaf K.; Drijfhout, Jan. P.; Picchioni, Francesco; Janssen, Leon P. B. M.; Heeres, Hero J.

    2009-01-01

    The synthesis of two reactive interfacial agents for starch-polycaprolactone (PCL) blends, PCL-g-glycidyl methacrylate (PCL-g-GMA) and PCL-g-diethyl maleate (PCL-g-DEM) is described. The compounds were prepared by reacting a low molecular weight PCL. (M(w) 3000) with GMA or DEM in the presence of

  2. Oxetanes: Recent Advances in Synthesis, Reactivity, and Medicinal Chemistry.

    Science.gov (United States)

    Bull, James A; Croft, Rosemary A; Davis, Owen A; Doran, Robert; Morgan, Kate F

    2016-10-12

    The four-membered oxetane ring has been increasingly exploited for its contrasting behaviors: its influence on physicochemical properties as a stable motif in medicinal chemistry and its propensity to undergo ring-opening reactions as a synthetic intermediate. These applications have driven numerous studies into the synthesis of new oxetane derivatives. This review takes an overview of the literature for the synthesis of oxetane derivatives, concentrating on advances in the last five years up to the end of 2015. These methods are clustered by strategies for preparation of the ring and further derivatization of preformed oxetane-containing building blocks. Examples of the use of oxetanes in medicinal chemistry are reported, including a collation of oxetane derivatives appearing in recent patents for medicinal chemistry applications. Finally, examples of oxetane derivatives in ring-opening and ring-expansion reactions are described.

  3. Effects of age on reactive capacity and nigrostriatal dopamine function

    International Nuclear Information System (INIS)

    Gilliam, P.E.

    1984-01-01

    This investigation examined the effects of aging on reactive capacity (reaction time), and striatal dopamine function in the same animals. Twenty, 3 month old, and twenty, 24 month old, male Sprague-Dawley rats were trained in a reactive capacity test to quickly release a lever, in response to an auditory and visual stimulus, in order to avoid footshocks. The young animals were tested at 3, 6, and 9 months of age, while the Old animals were tested at 18, 21, and 24 months of age. Twenty-four hours after the last testing session the animals were sacrificed and their striata dissected for biochemical assays. A [ 3 H]-spiperone receptor binding assay was performed to determine the density and affinity of striatial D-2 receptors. It was hypothesized that the improvement in reactive capacity performance of the Old animals over days was due to their ability to compensate for their decrease in receptor density by an increase in the production and utilization of dopamine. Significant positive correlations were also found between reactive capacity performance and receptor density as well as between reactive capacity and the ratio of DOPAC + HVA/DA

  4. Self-healing anticorrosive organic coating based on an encapsulated water reactive silyl ester: synthesis and proof of concept

    NARCIS (Netherlands)

    García, S.J.; Fischer, H.R.; White, P.A.; Mardel, J.; González-García, Y.; Mol, J.M.C.; Hughes, A.E.

    2011-01-01

    In this paper a self-healing anticorrosive organic coating based on an encapsulated water reactive organic agent is presented. A reactive silyl ester is proposed as a new organic reactive healing agent and its synthesis, performance, incorporation into an organic coating and evaluation of

  5. Synthesis and processing of composites by reactive metal penetration

    Energy Technology Data Exchange (ETDEWEB)

    Loehman, R.E.; Ewsuk, K.G. [Sandia National Labs., Albuquerque, NM (United States); Tomsia, A.P. [Pask Research and Engineering, Berkeley, CA (United States)] [and others

    1997-04-01

    Achieving better performance in commercial products and processes often is dependent on availability of new and improved materials. Ceramic-metal composites have advantages over more conventional materials because of their high stiffness-to-weight ratios, good fracture toughness, and because their electrical and thermal properties can be varied through control of their compositions and microstructures. However, ceramic composites will be more widely used only when their costs are competitive with other materials and when designers have more confidence in their reliability. Over the past four years reactive metal penetration has been shown to be a promising technique for making ceramic and metal-matrix composites to near-net-shape with control of both composition and microstructure. It appears that, with sufficient development, reactive metal penetration could be an economical process for manufacturing many of the advanced ceramic composites that are needed for light-weight structural and wear applications for transportation and energy conversion devices. Near-net-shape fabrication of parts is a significant advantage because costly and energy intensive grinding and machining operations are substantially reduced, and the waste generated from such finishing operations is minimized. The most promising compositions to date consist of Al and Al{sub 2}O{sub 3}; thus, these composites should be of particular interest to the aluminum industry. The goals of this ceramic-metal composite research and development program are: (1) to identify compositions favorable for making composites by reactive metal penetration; (2) to understand the mechanism(s) by which these composites are formed; (3) to control and optimize the process so that composites and composite coatings can be made economically; and (4) to apply R&D results to problems of interest to the aluminum industry.

  6. Synthesis, characterization and photophysical properties of ESIPT reactive triazine derivatives

    International Nuclear Information System (INIS)

    Kuplich, Marcelo D.; Grasel, Fabio S.; Campo, Leandra F.; Rodembusch, Fabiano S.; Stefani, Valter

    2012-01-01

    Four new reactive fluorescent triazine derivatives were obtained from nucleophilic aromatic substitution of cyanuric chloride. The compounds were characterized by infrared spectroscopy (IR), nuclear magnetic resonance ( 13 C and 1 H NMR) and high resolution mass spectrometry (HRMS MALDI). UV-Vis and steady-state fluorescence (in solution and in solid state) spectroscopies were also applied to characterize the photophysical behavior. The dyes are fluorescent by an intramolecular proton transfer mechanism (ESIPT) in the blue-orange region, with a large Stokes shift between 6365-10290 cm-1. The fluorescent cyanuric derivatives could successfully react with cellulose fibers to give new fluorescent cellulosic materials. (author)

  7. Synthesis and Characterization of Organotin Containing Copolymers: Reactivity Ratio Studies

    Directory of Open Access Journals (Sweden)

    Mohamed H. El-Newehy

    2010-03-01

    Full Text Available Organotin monomers containing dibutyltin groups – dibutyltin citraconate (DBTC as a new monomer and dibutyltin maleate (DBTM – were synthesized. Free radical copolymerizations of the organotin monomers with styrene (ST and butyl acrylate (BA were performed. The overall conversion was kept low (≤15% wt/wt for all studied samples and the copolymers composition was determined from tin analysis using the Gillman and Rosenberg method. The reactivity ratios were calculated from the copolymer composition using the Fineman-Ross (FR method. The synthesized monomers were characterized by elemental analysis, 1H-, 13C-NMR and FTIR spectroscopy.

  8. Synthesis and reactivity of uranium (III) cyclopentadienyl complexes

    International Nuclear Information System (INIS)

    Foyentin, M.

    1987-01-01

    New uranium organometallic complexes are synthetized from the addition compound Cp U (THF). Reactions with lithium compounds, chlorides, alkynes and borohydrides. Oxidizing addition reactions are evidenced with alkyl halogenides. With a strong reducing agent, the complex Cp-UCH-Li allows the fixation and the reduction of nitrogen into ammonia. Lability of ligands bound to U (III) is evidenced, giving very reactive species and hence catalytic properties for these compounds. Catalytic hydrogenation of olefins is studied. Substitution reactions of alkyl groups of these complexes with olefins in presence or not of hydrogen or with alkyllithium are original [fr

  9. Synthesis of Aluminum Triacrylate as Reactive Filler in EPDM Reinforcement

    Directory of Open Access Journals (Sweden)

    Akram Shokrzadeh

    2013-01-01

    Full Text Available The organo-metal salt of aluminum triacrylate (ALTA with a general formula of (CH2=CHCOO3Al was  synthesized  as  a  reactive  fller  for  elastomers through a two-step synthetic procedure. Fourier transform-infrared spectroscopy (FTIR, DSC and DTA were employed for ALTA analysis and to study its cure characteristics. In this research, two composites based on ethylene propylene diene monomer rubber (EPDM with two types of reactive fllers of  modifed organoclay and ALTA were prepared by a laboratory two-roll mill. The types and different ratios of organoclay and ALTA on curing characteristics, mechanical properties such as tensile properties, hardness, and abrasion resistance were studied. The increase in fller content of both composites  led  to  the  incremental  increase  in  tensile strength, modulus, hardness, elongation-at-break and also the incremental increase in abrasion resistance of both composites. The improvement in reinforcing properties of ALTA in comparison with nanoclay is attributed to homopolymerization and graft copolymerization of ALTA at the same time during curing of the EPDM composites by peroxide. Making such additives may be taken as an effective action to achieve more durable and cheaper way to reinforce elastomers.

  10. Functional Reactive Programming on the Web - A Practical Evaluation

    OpenAIRE

    Young, Christian Strand

    2015-01-01

    The web as an application platform is rising rapidly. With more complex solutions written in JavaScript that run client-side, as well as server-side, challenges related to JavaScript's asynchronous nature arise. This thesis explores and applies the Functional Reactive Programming paradigm (FRP) on the web as an alternative to traditional imperative programming. The potential of FRP in a context of the web is shown through case implementations of general practical real world problems that web ...

  11. Insitu synthesis of self-assembled gold nanoparticles on glass or silicon substrates through reactive inkjet printing

    KAUST Repository

    Abulikemu, Mutalifu

    2013-12-18

    A facile and low cost method for the synthesis of self-assembled nanoparticles (NPs) with minimal size variation and chemical waste by using reactive inkjet printing was developed. Gold NPs with diameters as small as (8±2)nm can be made at low temperature (120 °C). The size of the resulting NPs can be readily controlled through the concentration of the gold precursor and oleylamine ink. The pure gold composition of the synthesized NPs was confirmed by energy-dispersive X-ray spectroscopy (EDXS) analysis. High-resolution SEM (HRSEM) and TEM (HRTEM), and X-ray diffraction revealed their size and face-centered cubic (fcc) crystal structure, respectively. Owing to the high density of the NP film, UV/Vis spectroscopy showed a red shift in the intrinsic plasmonic resonance peak. We envision the extension of this approach to the synthesis of other nanomaterials and the production of tailored functional nanomaterials and devices. Midas touch: The use of low-cost manufacturing approaches in the synthesis of nanoparticles is critical for many applications. Reactive inkjet printing, along with a judicious choice of precursor/solvent system, was used to synthesize a relatively uniform assembly of crystalline gold nanoparticles, with diameters as small as (8±2)nm, over a given substrate surface. © 2014 WILEY-VCH Verlag GmbH.

  12. Synthesis and Reactivity of Tripodal Complexes Containing Pendant Bases

    Energy Technology Data Exchange (ETDEWEB)

    Blacquiere, Johanna M.; Pegis, Michael L.; Raugei, Simone; Kaminsky, Werner; Forget, Amelie; Cook, Sarah; Taguchi, Taketo; Borovik, Andrew S.; Mayer, James M.

    2014-09-02

    The synthesis of a new tripodal ligand family is reported, with tertiary-amine groups in the second-coordination sphere. The ligands are tris(amido)amine derivatives, with the pendant amines attached via a peptide coupling strategy. They were designed to be used in new catalysts for the oxygen reduction reaction (ORR), in which the pendant acid/base group could improve catalyst performance. Two members of the new ligand family were each metallated with Co(II) and Zn(II) to afford trigonal monopyramidal complexes. Reaction of the cobalt complexes, [Co(L)]-, with dioxygen reversibly generates a small amount of a Co(III)-superoxo species, which was characterized by EPR. Protonation of the zinc complex Zn[N{CH2CH2NC(O)CH2N(CH2Ph)2}3)-– ([Zn(TNBn)]-) with one equivalent of acid occurs with displacement and dissociation of an amide ligand. Addition of excess acid to the any of the complexes [M(L)]- results in complete proteolysis and formation of the ligands H3L. This decomposition limits the use of these complexes as catalysts for the ORR. An alternative ligand with two pyridyl arms was also prepared but could not be metallated. These studies highlight the importance of stability of the primary-coordination sphere of ORR electrocatalysts to both oxidative and acidic conditions. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  13. Block of glucocorticoid synthesis during re-activation inhibits extinction of an established fear memory.

    Science.gov (United States)

    Blundell, Jacqueline; Blaiss, Cory A; Lagace, Diane C; Eisch, Amelia J; Powell, Craig M

    2011-05-01

    The pharmacology of traumatic memory extinction has not been fully characterized despite its potential as a therapeutic target for established, acquired anxiety disorders, including post-traumatic stress disorder (PTSD). Here we examine the role of endogenous glucocorticoids in traumatic memory extinction. Male C57BL/6J mice were injected with corticosterone (10 mg/kg, i.p.) or metyrapone (50 mg/kg, s.c.) during re-activation of a contextual fear memory, and compared to vehicle groups (N=10-12 per group). To ensure that metyrapone was blocking corticosterone synthesis, we measured corticosterone levels following re-activation of a fear memory in metyrapone- and vehicle-treated animals. Corticosterone administration following extinction trials caused a long-lasting inhibition of the original fear memory trace. In contrast, blockade of corticosteroid synthesis with metyrapone prior to extinction trials enhanced retrieval and prevented extinction of context-dependent fear responses in mice. Further behavioral analysis suggested that the metyrapone enhancement of retrieval and prevention of extinction were not due to non-specific alterations in locomotor or anxiety-like behavior. In addition, the inhibition of extinction by metyrapone was rescued by exogenous administration of corticosterone following extinction trials. Finally, we confirmed that the rise in corticosterone during re-activation of a contextual fear memory was blocked by metyrapone. We demonstrate that extinction of a classical contextual fear memory is dependent on endogenous glucocorticoid synthesis during re-activation of a fear memory. Our data suggest that decreased glucocorticoids during fear memory re-activation may contribute to the inability to extinguish a fear memory, thus contributing to one of the core symptoms of PTSD. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Low-reactive circulating fluidized bed combustion (CFBC) fly ashes as source material for geopolymer synthesis

    International Nuclear Information System (INIS)

    Xu Hui; Li Qin; Shen Lifeng; Zhang Mengqun; Zhai Jianping

    2010-01-01

    In this contribution, low-reactive circulating fluidized bed combustion (CFBC) fly ashes (CFAs) have firstly been utilized as a source material for geopolymer synthesis. An alkali fusion process was employed to promote the dissolution of Si and Al species from the CFAs, and thus to enhance the reactivity of the ashes. A high-reactive metakaolin (MK) was also used to consume the excess alkali needed for the fusion. Reactivities of the CFAs and MK were examined by a series of dissolution tests in sodium hydroxide solutions. Geopolymer samples were prepared by alkali activation of the source materials using a sodium silicate solution as the activator. The synthesized products were characterized by mechanical testing, scanning electron microscopy (SEM), X-ray diffractography (XRD), as well as Fourier transform infrared spectroscopy (FTIR). The results of this study indicate that, via enhancing the reactivity by alkali fusion and balancing the Na/Al ratio by additional aluminosilicate source, low-reactive CFAs could also be recycled as an alternative source material for geopolymer production.

  15. Functionalized molecules studied by STM: motion, switching and reactivity

    International Nuclear Information System (INIS)

    Grill, Leonhard

    2008-01-01

    Functionalized molecules represent the central issue of molecular nanotechnology. Scanning tunnelling microscopy (STM) is a powerful method to investigate such molecules, because it allows us to image them with sub-molecular resolution when adsorbed on a surface and can be used at the same time as a tool to manipulate single molecules in a controlled way. Such studies permit deep insight into the conformational, mechanical and electronic structure and thus functionalities of the molecules. In this review, recent experiments on specially designed molecules, acting as model systems for molecular nanotechnology, are reviewed. The presented studies focus on key functionalities: lateral rolling and hopping motion on a supporting surface, the switching behaviour of azobenzene derivatives by using the STM tip and the controlled reactivity of molecular side groups, which enable the formation of covalently bound molecular nanoarchitectures. (topical review)

  16. The Functional Role of Reactive Stroma in Benign Prostatic Hyperplasia

    Science.gov (United States)

    Schauer, Isaiah G.; Rowley, David R.

    2011-01-01

    The human prostate gland is one of the only internal organs that continue to enlarge throughout adulthood. The specific mechanisms that regulate this growth, as well as the pathological changes leading to the phenotype observed in the disease benign prostatic hyperplasia (BPH), are essentially unknown. Recent studies and their associated findings have made clear that many complex alterations occur, involving persistent and chronic inflammation, circulating hormonal level deregulation, and aberrant wound repair processes. BPH has been etiologically characterized as a progressive, albeit discontinuous, hyperplasia of both the glandular epithelial and stromal cell compartments coordinately yielding an expansion of the prostate gland and clinical symptoms. Interestingly, the inflammatory and repair responses observed in BPH are also key components of general wound repair in post-natal tissues. These responses include altered expression of chemokines, cytokines, matrix remodeling factors, chronic inflammatory processes, altered immune surveillance and recognition, as well as the formation of a prototypical ‘reactive’ stroma which is similar to that observed across various fibroplasias and malignancies of a variety of tissue sites. Stromal tissue, both embryonic mesenchyme, and adult reactive stroma myofibroblasts, has been shown to exert potent and functional regulatory control over epithelial proliferation and differentiation as well as immunoresponsive modulation. Thus, the functional biology of a reactive stroma, within the context of an adult disease typified by epithelial and stromal aberrant hyperplasia, is critical to understand within the context of prostate disease and beyond. The mechanisms that regulate reactive stroma biology in BPH represent targets of opportunity for new therapeutic approaches that may extend to other tissue contexts. Accordingly, this review seeks to address the dissection of important factors, signaling pathways, genes, and other

  17. Acrolein stimulates the synthesis of IL-6 and C-reactive protein (CRP) in thrombosis model mice and cultured cells.

    Science.gov (United States)

    Saiki, Ryotaro; Hayashi, Daisuke; Ikuo, Yukiko; Nishimura, Kazuhiro; Ishii, Itsuko; Kobayashi, Kaoru; Chiba, Kan; Toida, Toshihiko; Kashiwagi, Keiko; Igarashi, Kazuei

    2013-12-01

    Measurements of protein-conjugated acrolein (PC-Acro), IL-6, and C-reactive protein (CRP) in plasma were useful for identifying silent brain infarction with high sensitivity and specificity. The aim of this study was to determine whether acrolein causes increased production of IL-6 and CRP in thrombosis model mice and cultured cells. In mice with photochemically induced thrombosis, acrolein produced at the locus of infarction increased the level of IL-6 and then CRP in plasma. This was confirmed in cell culture systems - acrolein stimulated the production of IL-6 in mouse neuroblastoma Neuro-2a cells, mouse macrophage-like J774.1 cells, and human umbilical vein endothelial cells (HUVEC), and IL-6 in turn stimulated the production of CRP in human hepatocarcinoma cells. The level of IL-6 mRNA was increased by acrolein through an increase in phosphorylation of the transcription factors, c-Jun, and NF-κB p65. Furthermore, CRP stimulated IL-6 production in mouse macrophage-like J774.1 cells and HUVEC. IL-6 functioned as a protective factor against acrolein toxicity in Neuro-2a cells and HUVEC. These results show that acrolein stimulates the synthesis of IL-6 and CRP, which function as protecting factors against acrolein toxicity, and that the combined measurement of PC-Acro, IL-6, and CRP is effective for identification of silent brain infarction. The combined measurements of protein-conjugated acrolein (PC-Acro), IL-6, and C-reactive protein (CRP) in plasma were useful for identifying silent brain infarction. The aim of this study was to determine whether acrolein causes increased production of IL-6 and CRP, and indeed acrolein increased IL-6 synthesis and IL-6 in turn increased CRP synthesis. Furthermore, IL-6 decreased acrolein toxicity in several cell lines. © 2013 International Society for Neurochemistry.

  18. Pyro-synthesis of functional nanocrystals.

    Science.gov (United States)

    Gim, Jihyeon; Mathew, Vinod; Lim, Jinsub; Song, Jinju; Baek, Sora; Kang, Jungwon; Ahn, Docheon; Song, Sun-Ju; Yoon, Hyeonseok; Kim, Jaekook

    2012-01-01

    Despite nanomaterials with unique properties playing a vital role in scientific and technological advancements of various fields including chemical and electrochemical applications, the scope for exploration of nano-scale applications is still wide open. The intimate correlation between material properties and synthesis in combination with the urgency to enhance the empirical understanding of nanomaterials demand the evolution of new strategies to promising materials. Herein we introduce a rapid pyro-synthesis that produces highly crystalline functional nanomaterials under reaction times of a few seconds in open-air conditions. The versatile technique may facilitate the development of a variety of nanomaterials and, in particular, carbon-coated metal phosphates with appreciable physico-chemical properties benefiting energy storage applications. The present strategy may present opportunities to develop "design rules" not only to produce nanomaterials for various applications but also to realize cost-effective and simple nanomaterial production beyond lab-scale limitations.

  19. Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity.

    Science.gov (United States)

    Domingo, Luis R; Ríos-Gutiérrez, Mar; Pérez, Patricia

    2016-06-09

    Theoretical reactivity indices based on the conceptual Density Functional Theory (DFT) have become a powerful tool for the semiquantitative study of organic reactivity. A large number of reactivity indices have been proposed in the literature. Herein, global quantities like the electronic chemical potential μ, the electrophilicity ω and the nucleophilicity N indices, and local condensed indices like the electrophilic P k + and nucleophilic P k - Parr functions, as the most relevant indices for the study of organic reactivity, are discussed.

  20. Reactive melt infiltration of copper in Al–Cr preforms produced through combustion synthesis

    International Nuclear Information System (INIS)

    Naplocha, Krzysztof; Granat, Kazimierz; Kaczmar, Jacek

    2014-01-01

    Highlights: • Determination of microstructure and phase transformation during combustion synthesis and reactive infiltration. • Squeeze casting of Cu inducing reactive infiltration of Al–Cr intermetallic porous preform. • Fabrication of unique composite material resisted to high temperature oxidation. - Abstract: Combustion synthesis of Al–Cr preforms used for infiltration and reinforcing of composite materials was developed. Compacts of powdered Al and Cr with stoichiometric ratio Al/Cr equal to 2/1 were synthesized in a microwave reactor furnished with a pyrometer for controlling phase transformations. Due to low enthalpy of the reaction, green compacts were preheated and ignition occurred together with partial melting of Al at the interface with Cr particles. The synthesis proceeded by peritectic transformations L + Al 7 Cr → L + Al 11 Cr 2 → L + Al 4 Cr, reaching maximum temperature of ca. 1000 °C. Porous structures including residual unprocessed Cr particles were soaked to homogenize them and to transform the phases into the stable intermetallic compound Al 9 Cr 4 . Reactive infiltration of the preforms with molten Cu proceeds along with interfacial diffusion of Al that, released from a preform, infiltrates into the matrix changing its composition to Cu 9 Al 4 (Cr). At the same time, the preform is decomposed and converted into a mixture of globular precipitates of Cr 52 Al 35 Cu 13 embedded in the Cu 47 Al 41 Cr 12 phase. The produced composite materials exhibit significant hardness and oxidation resistance at elevated temperatures. The protective layer is composed of oxides Al 2 O 3 and (AlCu) 2 O 3 created at parabolic constant oxidation rate (k p ) equal to 1.9 × 10 −6 g 2 m −4 s −1

  1. Synthesis of gallium nitride and related oxides via ammonobasic reactive sublimation (ARS)

    Energy Technology Data Exchange (ETDEWEB)

    Hernández-Hernández, Luis Alberto; Aguilar-Hernández, Jorge R.; Mejía-García, Concepción; Cruz-Gandarilla, Francisco; Contreras-Puente, Gerardo [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ciudad de México (Mexico); Moure-Flores, Francisco de [Facultad de Química, Materiales-Energía, Universidad Autónoma de Querétaro (Mexico); Melo-Pereira, Osvaldo de, E-mail: schwarzerengelxv@hotmail.com [Facultad de Física, Universidad de La Habana, La Habana (Cuba)

    2017-11-15

    Ammonobasic reactive sublimation (ARS) is proposed as a novel method to synthesize GaN and related oxides. Results indicate that GaN growth occurs by a nitriding process of Ga and related oxides, establishing a direct dependence on NH{sub 4} OH amount added as a primary chemical reactive. The samples were grown on p-type Si (111) substrates inside a tube furnace, employing GaN powder and NH{sub 4} OH. The characterizations of the samples were carried out by XRD, SEM, EDS and PL techniques, revealing the influence of NH{sub 4} OH on the improvement of GaN synthesis and the enhancement of its optical and structural properties. (author)

  2. Synthesis and Properties of Sulfhydryl-Reactive Near-Infrared Cyanine Fluorochromes for Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Yuhui Lin

    2003-04-01

    Full Text Available Near-infrared fluorochromes (NIRF are useful compounds for diverse biotechnology applications and for in vivo biomedical imaging. Such NIRF must have high quantum yield, be biocompatible, and be conjugatable to a wide variety of proteins, peptides, and other affinity ligands. Here, we describe the synthesis of four new nonsymmetrical sulfhydryl-reactive cyanine NIRF with excellent optical and chemical properties. Each fluorochrome was designed to contain an iodoacetamido group that reacts specifically with sulfhydryl-containing molecules. The synthesized fluorochromes were used to label model peptides and sulfhydryl-containing biomolecules.

  3. Synthesis of organolanthanides by metal addition on insaturated substrates in ether and reactivity

    International Nuclear Information System (INIS)

    Olivier, H.

    1988-01-01

    The aim of the study is the extension to rare earths of the synthesis, well known for alkaline or alkaline earth metals, by direct metal addition to insaturated substrates in ether and where the metal is directly bound to carbon. A definition of formation conditions and affinity rules is attempled, both with substrates (essentially aromatic hydrocarbons and ketones) and with metals: Yb, Sm, Ce, Nd and others. The nature of obtained products by reaction of electrophiles on synthetised organometallics, allows investigations specific reactivity and structure. Potential catalytic transformation of olefins is precised [fr

  4. Hybrid nanostructures: synthesis, morphology and functional properties

    International Nuclear Information System (INIS)

    Povolotskaya, A V; Povolotskiy, A V; Manshina, A A

    2015-01-01

    Hybrid nanostructures representing combinations of different materials and possessing properties that are absent in separate components forming the hybrid are discussed. Particular attention is given to hybrid structures containing plasmonic and magnetic nanoparticles, methods of their synthesis and the relationship between the composition, structure and properties. The functional features of the hybrid nanomaterials of various morphology (with core–shell structures, with encapsulated metal nanoparticles and with metal nanoparticles on the surface) are considered. The unique properties of these hybrid materials are demonstrated, which are of interest for solving problems of catalysis and photocatalysis, detecting impurities in various media, in vivo visualization, bioanalysis, as well as for the design of optical labels and multifunctional diagnostic nanoplatforms. The bibliography includes 182 references

  5. Synthesis of functional materials in combustion reactions

    Science.gov (United States)

    Zhuravlev, V. D.; Bamburov, V. G.; Ermakova, L. V.; Lobachevskaya, N. I.

    2015-12-01

    The conditions for obtaining oxide compounds in combustion reactions of nitrates of metals with organic chelating-reducing agents such as amino acids, urea, and polyvinyl alcohol are reviewed. Changing the nature of internal fuels and the reducing agent-to-oxidizing agent ratio makes possible to modify the thermal regime of the process, fractal dimensionality, morphology, and dispersion of synthesized functional materials. This method can be used to synthesize simple and complex oxides, composites, and metal powders, as well as ceramics and coatings. The possibilities of synthesis in combustion reactions are illustrated by examples of αand γ-Al2O3, YSZ composites, uranium oxides, nickel powder, NiO and NiO: YSZ composite, TiO2, and manganites, cobaltites, and aluminates of rare earth elements.

  6. Synthesis, radiometric determination of functional groups, complexation

    International Nuclear Information System (INIS)

    Pompe, S.; Bubner, M.; Schmeide, K.; Heise, K.H.; Bernhard, G.; Nitsche, H.

    2000-01-01

    The interaction behavior of humic acids with uranium(VI) and the influence of humic substances on the migration behavior of uranium was investigated. A main focus of this work was the synthesis of four different humic acid model substances and their characterization and comparison to the natural humic acid from Aldrich. A radiometric method for the determination of humic acid functional groups was applied in addition to conventional methods for the determination of the functionality of humic acids. The humic acid model substances show functional and structural properties comparable to natural humic acids. Modified humic acids with blocked phenolic OH were synthesized to determine the influence of phenolic OH groups on the complexation behavior of humic acids. A synthesis method for 14 C-labeled humic acids with high specific activity was developed. The complexation behavior of synthetic and natural humic acids with uranium(VI) was investigated by X-ray absorption spectroscopy, laser-induced fluorescence spectroscopy and FTIR spectroscopy. The synthetic model substances show an interaction behavior with uranium(VI) that is comparable to natural humic acids. This points to the fact that the synthetic humic acids simulate the functionality of their natural analogues very well. For the first time the influence of phenolic OH groups on the complexation behavior of humic acids was investigated by applying a modified humic acid with blocked phenolic OH groups. The formation of a uranyl hydroxy humate complex was identified by laserspectroscopic investigations of the complexation of Aldrich humic acid with uranium(VI) at pH 7. The migration behavior of uranium in a sandy aquifer system rich is humic substances was investigated in column experiments. A part of uranium migrates non-retarded through the sediment, bound to humic colloids. The uranium migration behavior is strongly influenced by the kinetically controlled interaction processes of uranium with the humic colloids

  7. Synthesis and reactivity of compounds containing ruthenium-carbon, -nitrogen, and -oxygen bonds

    International Nuclear Information System (INIS)

    Hartwig, J.F.

    1990-12-01

    The products and mechanisms of the thermal reactions of several complexes of the general structure (PMe 3 ) 4 Ru(X)(Y) and (DMPM) 2 Ru(X)(Y) where X and Y are hydride, aryl, and benzyl groups, have been investigated. The mechanism of decomposition depends critically on the structure of the complex and the medium in which the thermolysis is carried out. The alkyl hydride complexes are do not react with alkane solvent, but undergo C-H activation processes with aromatic solvents by several different mechanisms. Thermolysis of (PMe 3 ) 4 Ru(Ph)(Me) or (PMe 3 ) 4 Ru(Ph) 2 leads to the ruthenium benzyne complex (PMe 3 ) 4 Ru(η 2 -C 6 H 4 ) (1) by a mechanism which involves reversible dissociation of phosphine. In many ways its chemistry is analogous to that of early rather than late organo transition metal complexes. The synthesis, structure, variable temperature NMR spectroscopy and reactivity of ruthenium complexes containing aryloxide or arylamide ligands are reported. These complexes undergo cleavage of a P-C bond in coordinated trimethylphosphine, insertion of CO and CO 2 and hydrogenolysis. Mechanistic studies on these reactions are described. The generation of a series of reactive ruthenium complexes of the general formula (PMe 3 ) 4 Ru(R)(enolate) is reported. Most of these enolates have been shown to bind to the ruthenium center through the oxygen atom. Two of the enolate complexes 8 and 9 exist in equilibrium between the O- and C-bound forms. The reactions of these compounds are reported, including reactions to form oxygen-containing metallacycles. The structure and reactivity of these ruthenium metallacycles is reported, including their thermal chemistry and reactivity toward protic acids, electrophiles, carbon monoxide, hydrogen and trimethylsilane. 243 refs., 10 tabs

  8. Synthesis and reactivity of compounds containing ruthenium-carbon, -nitrogen, and -oxygen bonds

    Energy Technology Data Exchange (ETDEWEB)

    Hartwig, J.F.

    1990-12-01

    The products and mechanisms of the thermal reactions of several complexes of the general structure (PMe{sub 3}){sub 4}Ru(X)(Y) and (DMPM){sub 2}Ru(X)(Y) where X and Y are hydride, aryl, and benzyl groups, have been investigated. The mechanism of decomposition depends critically on the structure of the complex and the medium in which the thermolysis is carried out. The alkyl hydride complexes are do not react with alkane solvent, but undergo C-H activation processes with aromatic solvents by several different mechanisms. Thermolysis of (PMe{sub 3}){sub 4}Ru(Ph)(Me) or (PMe{sub 3}){sub 4}Ru(Ph){sub 2} leads to the ruthenium benzyne complex (PMe{sub 3}){sub 4}Ru({eta}{sup 2}-C{sub 6}H{sub 4}) (1) by a mechanism which involves reversible dissociation of phosphine. In many ways its chemistry is analogous to that of early rather than late organo transition metal complexes. The synthesis, structure, variable temperature NMR spectroscopy and reactivity of ruthenium complexes containing aryloxide or arylamide ligands are reported. These complexes undergo cleavage of a P-C bond in coordinated trimethylphosphine, insertion of CO and CO{sub 2} and hydrogenolysis. Mechanistic studies on these reactions are described. The generation of a series of reactive ruthenium complexes of the general formula (PMe{sub 3}){sub 4}Ru(R)(enolate) is reported. Most of these enolates have been shown to bind to the ruthenium center through the oxygen atom. Two of the enolate complexes 8 and 9 exist in equilibrium between the O- and C-bound forms. The reactions of these compounds are reported, including reactions to form oxygen-containing metallacycles. The structure and reactivity of these ruthenium metallacycles is reported, including their thermal chemistry and reactivity toward protic acids, electrophiles, carbon monoxide, hydrogen and trimethylsilane. 243 refs., 10 tabs.

  9. Reflective functioning, physiological reactivity, and overcontrol in mothers: Links with school-aged children's reflective functioning.

    Science.gov (United States)

    Borelli, Jessica L; Hong, Kajung; Rasmussen, Hannah F; Smiley, Patricia A

    2017-09-01

    Theorists argue that parental reflective functioning (PRF) is activated in response to emotions, potentially supporting parenting sensitivity even when arousal is high. That is, when parents become emotionally reactive when interacting with their children, those who can use PRF to understand their children's mental states should be able to parent sensitively, which, in turn, should promote children's ability to understand their own mental states. We test this theory by examining whether, in the face of physiological reactivity, mothers' PRF inhibits one form of parenting insensitivity, overcontrol (OC), and whether this process in turn predicts children's RF. A diverse sample of school-age children (N = 106, Mage = 10.27 years) completed a standardized failure paradigm while their mothers were asked to passively observe. Following the stressor, mothers and children independently completed interviews regarding the task, which were later coded for RF with respect to children's mental states. Mothers provided saliva samples before and after the stressor, and after the interview, which were later assayed for cortisol reactivity; maternal behavior during the stressor task was coded for OC. Among mothers with low levels of RF, greater increases in cortisol were associated with more displays of OC, whereas among mothers with high PRF, greater cortisol reactivity was associated with fewer OC behaviors. For low PRF mothers, higher reactivity and OC predicted lower children's PRF for their own experiences. The findings provide initial evidence for a protective function of PRF, and may point toward the importance of promoting PRF in intervention programs to reduce parental OC. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. c-reactive protein — biological functions, cardiovascular disease ...

    African Journals Online (AJOL)

    disease and physical exercise. S J Semple (Dtech) ... measured within exercise studies to provide evidence that ... sociated with cellular injury and the release of pro-inflamma- .... reactive oxygen species.17 In addition, psychological stress,.

  11. Insitu synthesis of self-assembled gold nanoparticles on glass or silicon substrates through reactive inkjet printing

    KAUST Repository

    Abulikemu, Mutalifu; Da'As, Eman Husni; Haverinen, Hanna M.; Cha, Dong Kyu; Malik, Mohammad A.; Jabbour, Ghassan Elie

    2013-01-01

    A facile and low cost method for the synthesis of self-assembled nanoparticles (NPs) with minimal size variation and chemical waste by using reactive inkjet printing was developed. Gold NPs with diameters as small as (8±2)nm can be made at low

  12. Synthesis and characterization of functional magnetic nanocomposites

    Science.gov (United States)

    Gass, J.; Sanders, J.; Srinath, S.; Srikanth, H.

    2006-03-01

    Magnetic nanoparticles and carbon nanotubes have been excellent functional materials that could be dispersed in polymer matrices for various applications. However, uniform dispersion of particles in polymers without agglomeration is quite challenging. We have fabricated PMMA/polypyrrole bilayer structures embedded with Fe3O4 magnetite nanoparticles synthesized using wet chemical synthesis. Agglomeration-free dispersion of nanoparticles was achieved by coating the particles with surfactants and by dissolving both the particles and PMMA in chlorobenzene. Structural characterization was done using XRD and TEM. Magnetic properties of the bilayer structures indicated superparamagnetic behavior that is desirable for RF applications as the magnetic losses are reduced. Our polymer nanocomposite bilayer films with conducting polymer coatings are potential candidates for tunable RF applications with integrated EMI suppression. We will also report on our studies of pumped ferrofluids flowing past carbon nanotubes that are arranged in microchannel arrays. Magnetization under various flow conditions is investigated and correlated with the hydrodynamic properties. This scheme provides a novel method of energy conversion and storage using nanocomposite materials.

  13. Synthesis of l-cysteine derivatives containing stable sulfur isotopes and application of this synthesis to reactive sulfur metabolome.

    Science.gov (United States)

    Ono, Katsuhiko; Jung, Minkyung; Zhang, Tianli; Tsutsuki, Hiroyasu; Sezaki, Hiroshi; Ihara, Hideshi; Wei, Fan-Yan; Tomizawa, Kazuhito; Akaike, Takaaki; Sawa, Tomohiro

    2017-05-01

    Cysteine persulfide is an L-cysteine derivative having one additional sulfur atom bound to a cysteinyl thiol group, and it serves as a reactive sulfur species that regulates redox homeostasis in cells. Here, we describe a rapid and efficient method of synthesis of L-cysteine derivatives containing isotopic sulfur atoms and application of this method to a reactive sulfur metabolome. We used bacterial cysteine syntheses to incorporate isotopic sulfur atoms into the sulfhydryl moiety of L-cysteine. We cloned three cysteine synthases-CysE, CysK, and CysM-from the Gram-negative bacterium Salmonella enterica serovar Typhimurium LT2, and we generated their recombinant enzymes. We synthesized 34 S-labeled L-cysteine from O-acetyl-L-serine and 34 S-labeled sodium sulfide as substrates for the CysK or CysM reactions. Isotopic labeling of L-cysteine at both sulfur ( 34 S) and nitrogen ( 15 N) atoms was also achieved by performing enzyme reactions with 15 N-labeled L-serine, acetyl-CoA, and 34 S-labeled sodium sulfide in the presence of CysE and CysK. The present enzyme systems can be applied to syntheses of a series of L-cysteine derivatives including L-cystine, L-cystine persulfide, S-sulfo-L-cysteine, L-cysteine sulfonate, and L-selenocystine. We also prepared 34 S-labeled N-acetyl-L-cysteine (NAC) by incubating 34 S-labeled L-cysteine with acetyl coenzyme A in test tubes. Tandem mass spectrometric identification of low-molecular-weight thiols after monobromobimane derivatization revealed the endogenous occurrence of NAC in the cultured mammalian cells such as HeLa cells and J774.1 cells. Furthermore, we successfully demonstrated, by using 34 S-labeled NAC, metabolic conversion of NAC to glutathione and its persulfide, via intermediate formation of L-cysteine, in the cells. The approach using isotopic sulfur labeling combined with mass spectrometry may thus contribute to greater understanding of reactive sulfur metabolome and redox biology. Copyright © 2017 Elsevier Inc

  14. Polyamines Function in Stress Tolerance: From Synthesis to Regulation

    Directory of Open Access Journals (Sweden)

    Ji-Hong eLiu

    2015-10-01

    Full Text Available Plants are challenged by a variety of biotic or abiotic stresses, which can affect their growth and development, productivity and geographic distribution. In order to survive adverse environmental conditions, plants have evolved various adaptive strategies, among which is the accumulation of metabolites that play protective roles. A well-established example of the metabolites that are involved in stress responses, or stress tolerance, is the low-molecular-weight aliphatic polyamines, including putrescine,spermidine and spermine. The critical role of polyamines in stress tolerance is suggested by several lines of evidence: firstly, the transcript levels of polyamine biosynthetic genes, as well as the activities of the corresponding enzymes, are induced by stresses; secondly, elevation of endogenous polyamine levels by exogenous supply of polyamines, or overexpression of polyamine biosynthetic genes, results in enhanced stress tolerance; and thirdly, a reduction of endogenous polyamines is accompanied by compromised stress tolerance. A number of studies have demonstrated that polyamines function in stress tolerance largely by modulating the homeostasis of reactive oxygen species (ROS due to their direct, or indirect, roles in regulating antioxidant systems or suppressing ROS production. The transcriptional regulation of polyamine synthesis by transcription factors is also reviewed here. Meanwhile, future perspectives on polyamine research are also suggested.

  15. Long Alkyl Chain Organophosphorus Coupling Agents for in Situ Surface Functionalization by Reactive Milling

    Directory of Open Access Journals (Sweden)

    Annika Betke

    2014-08-01

    Full Text Available Innovative synthetic approaches should be simple and environmentally friendly. Here, we present the surface modification of inorganic submicrometer particles with long alkyl chain organophosphorus coupling agents without the need of a solvent, which makes the technique environmentally friendly. In addition, it is of great benefit to realize two goals in one step: size reduction and, simultaneously, surface functionalization. A top-down approach for the synthesis of metal oxide particles with in situ surface functionalization is used to modify titania with long alkyl chain organophosphorus coupling agents. A high energy planetary ball mill was used to perform reactive milling using titania as inorganic pigment and long alkyl chain organophosphorus coupling agents like dodecyl and octadecyl phosphonic acid. The final products were characterized by IR, NMR and X-ray fluorescence spectroscopy, thermal and elemental analysis as well as by X-ray powder diffraction and scanning electron microscopy. The process entailed a tribochemical phase transformation from the starting material anatase to a high-pressure modification of titania and the thermodynamically more stable rutile depending on the process parameters. Furthermore, the particles show sizes between 100 nm and 300 nm and a degree of surface coverage up to 0.8 mmol phosphonate per gram.

  16. Local and linear chemical reactivity response functions at finite temperature in density functional theory

    International Nuclear Information System (INIS)

    Franco-Pérez, Marco; Ayers, Paul W.; Gázquez, José L.; Vela, Alberto

    2015-01-01

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model

  17. Structure, aromaticity and reactivity of corannulene and its analogues: a conceptual density functional theory and density functional reactivity theory study

    Science.gov (United States)

    Deng, Youer; Yu, Donghai; Cao, Xiaofang; Liu, Lianghong; Rong, Chunying; Lu, Tian; Liu, Shubin

    2018-04-01

    Corannulene is an interesting yet special molecule, which has witnessed widespread applications. It is aromatic, but not planar and the total number of 20 π electrons is in conflict with Hückel's 4n + 2 rule. In this work, we design a series of analogous model systems based on this molecule with the central ring size extended from five members to three to eight members. A number of theoretical and analytical tools available in the literature are employed to systematically examine their structure, aromaticity and reactivity properties. We found that structurally speaking, they change from bowl-like to planar and then to saddle shapes as the central ring size increases from three to eight. From the reactivity perspective, species with five and six-membered-rings in the centre are chemically more stable and less reactive, which are confirmed by the numerical results from aromaticity indexes and quantities from the information-theoretic approach. Overall, our results show that only corannulene and its six-membered-ring, coronene, analogue are aromatic. Even though these two systems are aromatic in nature, they are markedly different in a number of ways in structure, reactivity and other properties. These results should provide with us insights and understanding about the phenomenon of three-dimensional and non-planarity aromaticity.

  18. Theoretical study for pyridinium-based ionic liquid 1-ethylpyridinium trifluoroacetate: synthesis mechanism, electronic structure, and catalytic reactivity.

    Science.gov (United States)

    Zhu, Xueying; Cui, Peng; Zhang, Dongju; Liu, Chengbu

    2011-07-28

    By performing density functional theory calculations, we have studied the synthesis mechanism, electronic structure, and catalytic reactivity of a pyridinium-based ionic liquid, 1-ethylpyridinium trifluoroacetate ([epy](+)[CF(3)COO](-)). It is found that the synthesis of the pyridinium salt follows a S(N)2 mechanism. The electronic structural analyses show that multiple H bonds are generally involved in the pyridinium-based ionic liquid, which may play a decisive role for stabilizing the ionic liquid. The cation-anion interaction mainly involves electron transfer between the lone pair of the oxygen atom in the anion and the antibonding orbital of the C*-H bond (C* denotes the carbon atom at the ortho-position of nitrogen atom in the cation). This present work has also given clearly the catalytic mechanism of [epy](+)[CF(3)COO](-) toward to the Diels-Alder (D-A) reaction of acrylonitrile with 2-methyl-1,3-butadiene. Both the cation and anion are shown to play important roles in promoting the D-A reaction. The cation [epy](+), as a Lewis acid, associates the C≡N group by C≡N···H H bond to increase the polarity of the C═C double bond in acrylonitrile, while the anion CF(3)COO(-) links with the methyl group in 2-methyl-1,3-butadiene by C-H···O H bond, which weakens the electron-donating capability of methyl and thereby lowers the energy barrier of the D-A reaction. The present results are expected to provide valuable information for the design and application of pyridinium-based ionic liquids. © 2011 American Chemical Society

  19. Synthesis of click-reactive HPMA copolymers using RAFT polymerization for drug delivery applications

    DEFF Research Database (Denmark)

    Ebbesen, Morten F; Schaffert, D.H.; Crowley, Michael L

    2013-01-01

    This study describes a versatile strategy combining reversible addition fragmentation transfer (RAFT) polymerization and click chemistry to synthesize well-defined, reactive copolymers of N-(2-hydroxypropyl)methacrylamide (HPMA) for drug delivery applications. A novel azide containing monomer N-(3......-azidopropyl)methacrylamide (AzMA) was synthesized and copolymerized with HPMA using RAFT polymerization to provide p(HPMA-co-AzMA) copolymers with high control of molecular weight (∼10–54 kDa) and polydispersity (≤1.06). The utility of the side-chain azide functionality by Cu(I)-catalyzed azide...

  20. Evaluation of the chemical reactivity in lignin precursors using the Fukui function.

    Science.gov (United States)

    Martinez, Carmen; Rivera, José L; Herrera, Rafael; Rico, José L; Flores, Nelly; Rutiaga, José G; López, Pablo

    2008-02-01

    The hydroxycinnamyl alcohols: p-coumarol, coniferol and sinapol are considered the basic units and precursors of lignins models. In this work, the specific reactivity of these molecules was studied. We investigate their intrinsic chemical reactivity in terms of the Fukui function, applying the principle of hard and soft acids and bases (HSAB) in the framework of the density functional theory (DFT). Comparisons of their nucleophilic, electrophilic and free radical reactivity show their most probably sites to form linkages among them. It is found that the most reactive sites, for reactions involving free radicals, are the carbons at the beta-position in the p-coumarol and sinapol molecules, whilst the regions around the carbon-oxygen bond of the phenoxyl group are the most reactive in coniferol.

  1. Towards the new heterocycle based molecule: Synthesis, characterization and reactivity study

    Science.gov (United States)

    Murthy, P. Krishna; Sheena Mary, Y.; Suneetha, V.; Panicker, C. Yohannan; Armaković, Stevan; Armaković, Sanja J.; Giri, L.; Suchetan, P. A.; Van Alsenoy, C.

    2017-06-01

    4-Chloro-2-(3-fluorophenyl)-2,3-dihydro-1H-pyrrolo[3,4-c]pyridin-1-one (CFPDPPO) have been synthesized by hydride transfer from Et3SiH to carbenium ions(reduction reaction), which is formed by reaction between 4-chloro-2-(3-fluorophenyl)-3-hydroxy-2,3-dihydro-1H-pyrrolo[3,4-c]pyridin-1-one with TFA, the single crystals were grown in acetonitrile by slow evaporation technique at room temperature and characterized by single crystal X-ray diffraction, FT-IR, FT-Raman, 1H NMR, 13C NMR and ESI-MS. The experimental vibrational spectra were compared with the calculated spectra and each vibrational wavenumber was assigned on the basis of potential energy distribution (PED). Gauge-including atomic orbital 1H NMR and 13C NMR chemical shifts calculations were carried out and compared with experimental data. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. The stability of the molecule arising from hyper-conjugative interactions and charge delocalization has been analysed using NBO analysis. First hyperpolarizability is calculated in order to find its role in non-linear optics. Besides molecular electrostatic potential (MEP), global reactivity descriptors, thermodynamic properties, and Mullikan charge analysis of the title compound were computed with the same method in gas phase, theoretically. Further, employing combination of DFT calculations and molecular dynamics (MD) simulations, we have investigated in detail reactive properties of the title molecule. Investigation of local reactive properties encompassed calculations of average local ionization energies (ALIE) and Fukui functions. Stability in water has been investigated by calculations of radial distribution functions (RDF), while sensitivity towards the mechanism of autoxidation has been investigated by calculations of bond dissociation energies (BDE). The docked ligand forms a stable complex with human alpha9 nicotinic acetylcholine receptor antagonist and can be a lead

  2. Polar red-emitting rhodamine dyes with reactive groups: synthesis, photophysical properties, and two-color STED nanoscopy applications.

    Science.gov (United States)

    Kolmakov, Kirill; Wurm, Christian A; Meineke, Dirk N H; Göttfert, Fabian; Boyarskiy, Vadim P; Belov, Vladimir N; Hell, Stefan W

    2014-01-03

    The synthesis, reactivity, and photophysical properties of new rhodamines with intense red fluorescence, two polar residues (hydroxyls, primary phosphates, or sulfonic acid groups), and improved hydrolytic stability of the amino-reactive sites (NHS esters or mixed N-succinimidyl carbonates) are reported. All fluorophores contain an N-alkyl-1,2-dihydro-2,2,4-trimethylquinoline fragment, and most of them bear a fully substituted tetrafluoro phenyl ring with a secondary carboxamide group. The absorption and emission maxima in water are in the range of 635-639 and 655-659 nm, respectively. A vastly simplified approach to red-emitting rhodamines with two phosphate groups that are compatible with diverse functional linkers was developed. As an example, a phosphorylated dye with an azide residue was prepared and was used in a click reaction with a strained alkyne bearing an N-hydroxysuccinimid (NHS) ester group. This method bypasses the undesired activation of phosphate groups, and gives an amphiphilic amino-reactive dye, the solubility and distribution of which between aqueous and organic phases can be controlled by varying the pH. The presence of two hydroxyl groups and a phenyl ring with two carboxyl residues in the dyes with another substitution pattern is sufficient for providing the hydrophilic properties. Selective formation of a mono-N-hydroxysuccinimidyl ester from 5-carboxy isomer of this rhodamine is reported. The fluorescence quantum yields varied from 58 to 92% for free fluorophores, and amounted to 18-64% for antibody conjugates in aqueous buffers. The brightness and photostability of these fluorophores facilitated two-color stimulated emission depletion (STED) fluorescence nanoscopy of biological samples with high contrast and minimal background. Selecting a pair of fluorophores with absorption/emission bands at 579/609 and 635/655 nm enabled two-color channels with low cross-talk and negligible background at approximately 40 nm resolution. Copyright

  3. Reactivity of the functional groups in functional polymers. Use of T-for-H exchange reaction

    International Nuclear Information System (INIS)

    Imaizumi, Hiroshi; Hasegawa, Shinobu.

    1997-01-01

    In order to reveal the reactivity of several functional polymers, the following two experiments were carried out: observing the hydrogen-isotope exchange reaction (T-for-H exchange reaction) between one of T-labeled functional polymers and 0.500 mol·l -1 aniline dissolved in p-xylene, observing the degree of the T dispersed from the surface area of the polymer under the several conditions. Consequently, the following six matters have been quantitatively obtained. The T-for-H exchange reaction occurred between each T-labeled polymer and aniline, and is more predominant than other chemical reactions within the range of 50-90degC. The reactivity of the polymers are strongly affected by their matrix structures. The degree of the T dispersed from the surface area of each T-labeled polymer is hardly affected by humidity. The higher the temperature is, the larger is the degree of the T dispersed from the surface area. At the same temperature, the degree of the T dispersed from the surface area of each polymer is strongly affected by the physical form of the polymer even if the polymer has the same functional group as the others, and the T existing in the surface area of a T-labeled glassy polymer is less dispersed than that of a porous one. The degree of the T dispersed from the surface area of a T-labeled polymer is small when the degree of the polymerization of the polymer is high. (author)

  4. Exploring the surface reactivity of 3d metal endofullerenes: a density-functional theory study.

    Science.gov (United States)

    Estrada-Salas, Rubén E; Valladares, Ariel A

    2009-09-24

    Changes in the preferential sites of electrophilic, nucleophilic, and radical attacks on the pristine C60 surface with endohedral doping using 3d transition metal atoms were studied via two useful reactivity indices, namely the Fukui functions and the molecular electrostatic potential. Both of these were calculated at the density functional BPW91 level of theory with the DNP basis set. Our results clearly show changes in the preferential reactivity sites on the fullerene surface when it is doped with Mn, Fe, Co, or Ni atoms, whereas there are no significant changes in the preferential reactivity sites on the C60 surface upon endohedral doping with Cu and Zn atoms. Electron affinities (EA), ionization potentials (IP), and HOMO-LUMO gaps (Eg) were also calculated to complete the study of the endofullerene's surface reactivity. These findings provide insight into endofullerene functionalization, an important issue in their application.

  5. Pyro-Synthesis of Functional Nanocrystals

    OpenAIRE

    Gim, Jihyeon; Mathew, Vinod; Lim, Jinsub; Song, Jinju; Baek, Sora; Kang, Jungwon; Ahn, Docheon; Song, Sun-Ju; Yoon, Hyeonseok; Kim, Jaekook

    2012-01-01

    Despite nanomaterials with unique properties playing a vital role in scientific and technological advancements of various fields including chemical and electrochemical applications, the scope for exploration of nano-scale applications is still wide open. The intimate correlation between material properties and synthesis in combination with the urgency to enhance the empirical understanding of nanomaterials demand the evolution of new strategies to promising materials. Herein we introduce a ra...

  6. Hardness and softness reactivity kernels within the spin-polarized density-functional theory

    International Nuclear Information System (INIS)

    Chamorro, Eduardo; De Proft, Frank; Geerlings, Paul

    2005-01-01

    Generalized hardness and softness reactivity kernels are defined within a spin-polarized density-functional theory (SP-DFT) conceptual framework. These quantities constitute the basis for the global, local (i.e., r-position dependent), and nonlocal (i.e., r and r ' -position dependents) indices devoted to the treatment of both charge-transfer and spin-polarization processes in such a reactivity framework. The exact relationships between these descriptors within a SP-DFT framework are derived and the implications for chemical reactivity in such context are outlined

  7. Structure, reactivity and synthesis of piramidines and their derivates (dihidroperimidines and perimidinones); Estructura, reactividad y sintesis de perimidinas y de sus derivados (dihidroperimidinas y perimifinonas)

    Energy Technology Data Exchange (ETDEWEB)

    Claramunt, R.M.; Dotor, J.; Elguero, J. [Departamento de Quimica Organica, Facultad de Ciencias, UNED, Madrid (Spain)

    1995-12-01

    This review reports 346 references dealing with structure, reactivity and synthesis of pyrimidines and their derivatives (mainly 2,3-dihidroperimidines, 2-perimidinones and perimidinium salts). Special emphasis has been made on spectroscopy and structural properties as well as on reactivity. 346 refs.

  8. Synthesis of Single-walled Carbon Nanotubes Coated with Thiol-reactive Gel via Emulsion Polymerization.

    Science.gov (United States)

    Nagai, Yukiko; Tsutsumi, Yusuke; Nakashima, Naotoshi; Fujigaya, Tsuyohiko

    2018-06-15

    Single-walled carbon nanotubes (SWNTs) have unique near-infrared absorption and photoemission properties that are attractive for in vivo biological applications such as photothermal cancer treatment and bioimaging. Therefore, a smart functionalization strategy for SWNTs to create biocompatible surfaces and introduce various ligands to target active cancer cells without losing the unique optical properties of the SWNTs is strongly desired. This paper reports the de-sign and synthesis of a SWNT/gel hybrid containing maleimide groups, which react with various thiol compounds through Michael addition reactions. In this hybrid, the method called carbon nanotube micelle polymerization was used to non-covalently modify the surface of SWNTs with a cross-linked polymer gel layer. This method can form an extremely stable gel layer on SWNTs; such stability is essential for in vivo biological applications. The monomer used to form the gel layer contained a maleimide group, which was protected with furan in endo-form. The resulting hybrid was treated in water to induce deprotection via retro Diels-Alder reaction and then functionalized with thiol com-pounds through Michael addition. The functionalization of the hybrid was explored using a thiol-containing fluores-cent dye as a model thiol and the formation of the SWNT-dye conjugate was confirmed by energy transfer from the dye to SWNTs. Our strategy offers a promising SWNT-based platform for biological functionalization for cancer targeting, imaging, and treatment.

  9. Computational Study of Chemical Reactivity Using Information-Theoretic Quantities from Density Functional Reactivity Theory for Electrophilic Aromatic Substitution Reactions.

    Science.gov (United States)

    Wu, Wenjie; Wu, Zemin; Rong, Chunying; Lu, Tian; Huang, Ying; Liu, Shubin

    2015-07-23

    The electrophilic aromatic substitution for nitration, halogenation, sulfonation, and acylation is a vastly important category of chemical transformation. Its reactivity and regioselectivity is predominantly determined by nucleophilicity of carbon atoms on the aromatic ring, which in return is immensely influenced by the group that is attached to the aromatic ring a priori. In this work, taking advantage of recent developments in quantifying nucleophilicity (electrophilicity) with descriptors from the information-theoretic approach in density functional reactivity theory, we examine the reactivity properties of this reaction system from three perspectives. These include scaling patterns of information-theoretic quantities such as Shannon entropy, Fisher information, Ghosh-Berkowitz-Parr entropy and information gain at both molecular and atomic levels, quantitative predictions of the barrier height with both Hirshfeld charge and information gain, and energetic decomposition analyses of the barrier height for the reactions. To that end, we focused in this work on the identity reaction of the monosubstituted-benzene molecule reacting with hydrogen fluoride using boron trifluoride as the catalyst in the gas phase. We also considered 19 substituting groups, 9 of which are ortho/para directing and the other 9 meta directing, besides the case of R = -H. Similar scaling patterns for these information-theoretic quantities found for stable species elsewhere were disclosed for these reactions systems. We also unveiled novel scaling patterns for information gain at the atomic level. The barrier height of the reactions can reliably be predicted by using both the Hirshfeld charge and information gain at the regioselective carbon atom. The energy decomposition analysis ensued yields an unambiguous picture about the origin of the barrier height, where we showed that it is the electrostatic interaction that plays the dominant role, while the roles played by exchange-correlation and

  10. Biobased functional polyesters for coating applications: Synthesis, characterization and application

    NARCIS (Netherlands)

    Noordover, B.A.J.; Duchateau, R.; Koning, C.E.; Benthem, van R.A.T.M.; Ming, W.; Haveren, van J.; Es, van D.S.

    2007-01-01

    Thermosetting coating systems contain polyesters as binders. A crucial property of these polymers is their functionality. During coating application, the polyesters are cross-linked in situ, which means that each polymer chain needs a sufficient no. of reactive end-groups. Renewable monomers are

  11. Nitric oxide and reactive oxygen species in limb vascular function

    DEFF Research Database (Denmark)

    Gliemann, Lasse; Nyberg, Michael Permin; Hellsten, Ylva

    2014-01-01

    and xanthine oxidase and the degree of ROS removal through the antioxidant defense system. The development of cardiovascular disease has been proposed to be closely related to a reduced bioavailability of NO in parallel with an increased presence of ROS. Excessive levels of ROS not only lower...... the bioavailability of NO but may also cause cellular damage in the cardiovascular system. Physical activity has been shown to greatly improve cardiovascular function, in part through improved bioavailability of NO, enhanced endogenous antioxidant defense and a lowering of the expression of ROS forming enzymes...

  12. Effective and efficient FPGA synthesis through general functional decomposition

    NARCIS (Netherlands)

    Jozwiak, L.; Slusarczyk, A.S.; Chojnacki, A.

    2003-01-01

    In this paper, a new information-driven circuit synthesis method is discussed that targets LUT-based FPGAs and FPGA-based reconfigurable system-on-a-chip platforms. The method is based on the bottom–up general functional decomposition and theory of information relationship measures that we

  13. Synthesis, Crystal Structure, Density Function Theory, Molecular ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research February 2016; 15 (2): 385-392 ... tested for its antimicrobial activities and computational studies including density function test (DFT) and docking ... agonists [4], selective dopamine D3 and D4 ...

  14. Proliferative reactive gliosis is compatible with glial metabolic support and neuronal function

    Directory of Open Access Journals (Sweden)

    Fero Matthew

    2011-10-01

    Full Text Available Abstract Background The response of mammalian glial cells to chronic degeneration and trauma is hypothesized to be incompatible with support of neuronal function in the central nervous system (CNS and retina. To test this hypothesis, we developed an inducible model of proliferative reactive gliosis in the absence of degenerative stimuli by genetically inactivating the cyclin-dependent kinase inhibitor p27Kip1 (p27 or Cdkn1b in the adult mouse and determined the outcome on retinal structure and function. Results p27-deficient Müller glia reentered the cell cycle, underwent aberrant migration, and enhanced their expression of intermediate filament proteins, all of which are characteristics of Müller glia in a reactive state. Surprisingly, neuroglial interactions, retinal electrophysiology, and visual acuity were normal. Conclusion The benign outcome of proliferative reactive Müller gliosis suggests that reactive glia display context-dependent, graded and dynamic phenotypes and that reactivity in itself is not necessarily detrimental to neuronal function.

  15. Bioinspired thymine functionalized polymeric systems: from synthesis to nano applications

    OpenAIRE

    Kaur, Gagan Deep

    2017-01-01

    Nature is an abundant source of elegant examples of synthesis of materials, and as in many other areas of science, polymer chemists have been drawing on bioinspiration to create sophisticated functional materials. Thymine, one of the nucleic bases in DNA, is well known for its ability to form relatively strong hydrogen bonds as well as its propensity to undergo reversible photo-dimerization upon UV exposure. The focus of this thesis is to develop a bioinspired thymine functionalized polymeric...

  16. Synthesis and reactivity ratios of regioisomeric vinyl-1,2,3-triazoles with styrene

    NARCIS (Netherlands)

    Lartey, M; Gillissen, M.A.J.; Adzima, B.J.; Takizawa, K.; Luebke, D.R.; Nulwala, H.B.

    2013-01-01

    The free radical reactivity ratios between styrene and different vinyl-1,2,3-triazole regioisomeric monomers in 1,4-dioxane at 65 degrees C have been established using nonlinear least square method. The results obtained for the reactivity ratio between regioisomers show exceptionally different

  17. Episodic Memory Retrieval Functionally Relies on Very Rapid Reactivation of Sensory Information.

    Science.gov (United States)

    Waldhauser, Gerd T; Braun, Verena; Hanslmayr, Simon

    2016-01-06

    Episodic memory retrieval is assumed to rely on the rapid reactivation of sensory information that was present during encoding, a process termed "ecphory." We investigated the functional relevance of this scarcely understood process in two experiments in human participants. We presented stimuli to the left or right of fixation at encoding, followed by an episodic memory test with centrally presented retrieval cues. This allowed us to track the reactivation of lateralized sensory memory traces during retrieval. Successful episodic retrieval led to a very early (∼100-200 ms) reactivation of lateralized alpha/beta (10-25 Hz) electroencephalographic (EEG) power decreases in the visual cortex contralateral to the visual field at encoding. Applying rhythmic transcranial magnetic stimulation to interfere with early retrieval processing in the visual cortex led to decreased episodic memory performance specifically for items encoded in the visual field contralateral to the site of stimulation. These results demonstrate, for the first time, that episodic memory functionally relies on very rapid reactivation of sensory information. Remembering personal experiences requires a "mental time travel" to revisit sensory information perceived in the past. This process is typically described as a controlled, relatively slow process. However, by using electroencephalography to measure neural activity with a high time resolution, we show that such episodic retrieval entails a very rapid reactivation of sensory brain areas. Using transcranial magnetic stimulation to alter brain function during retrieval revealed that this early sensory reactivation is causally relevant for conscious remembering. These results give first neural evidence for a functional, preconscious component of episodic remembering. This provides new insight into the nature of human memory and may help in the understanding of psychiatric conditions that involve the automatic intrusion of unwanted memories. Copyright

  18. Phosphorylcholine functionalized dendrimers for the formation of highly stable and reactive gold nanoparticles and their glucose conjugation for biosensing

    International Nuclear Information System (INIS)

    Jia Lan; Lv Liping; Xu Jianping; Ji Jian

    2011-01-01

    Phosphorylcholine (PC)-functionalized poly(amido amine) (PAMAM) dendrimers were prepared and used as both reducing and stabilizing agents for synthesis of highly stable and reactive gold nanoparticles (Au NPs). Biomimetic PC-functionalized PAMAM dendrimers-stabilized gold nanoparticles (Au DSNPs) were formed by simply mixing the PC modified amine-terminated fifth-generation PAMAM dendrimers (G5-PC) with AuCl 4 − ions by controlling the pH, no additional reducing agents or other stabilizers were needed. The obtained Au DSNPs were shown to be spherical, with particle diameters ranging from 5 to 12 nm, the sizes and growth kinetics of Au DSNPs could be tuned by changing the pH and the initial molar ratio of dendrimers to gold as indicated by transmission electron microscopy (TEM) and UV–Vis data. The prepared Au DSNPs showed excellent stability including: (1) stable at wide pH (7–13) values; (2) stable at high salt concentrations up to 2 M NaCl; (3) non-specific protein adsorption resistance. More importantly, surface functionalization could be performed by introducing desired functional groups onto the remained reactive amine groups. This was exemplified by the glucose conjugation. The glucose conjugated Au DSNPs showed bio-specific interaction with Concanavalin A (Con A), which induced aggregation of the Au NPs. Colorimetric detection of Con A based on the plasmon resonance of the glucose conjugated Au DSNPs was realized. A limit of detection (LOD) for Con A was 0.6 μM, based on a signal-to-noise ratio (S/N) of 3. These findings demonstrated that the PC modified Au DSNPs could potentially serve as a versatile nano-platform for the biomedical applications.

  19. Emotional Reactivity and Regulation in Infancy Interact to Predict Executive Functioning in Early Childhood

    Science.gov (United States)

    Ursache, Alexandra; Blair, Clancy; Stifter, Cynthia; Voegtline, Kristin

    2013-01-01

    The relation of observed emotional reactivity and regulation in infancy to executive function in early childhood was examined in a prospective longitudinal sample of 1,292 children from predominantly low-income and rural communities. Children participated in a fear eliciting task at ages 7, 15, and 24 months and completed an executive function…

  20. Impaired microvascular reactivity and endothelial function in patients with Cushing's syndrome: Influence of arterial hypertension

    Czech Academy of Sciences Publication Activity Database

    Prázný, M.; Ježková, J.; Horová, E.; Lazárová, V.; Hána, V.; Kvasnička, J.; Pecen, Ladislav; Marek, J.; Škrha, J.; Kršek, M.

    2008-01-01

    Roč. 57, č. 1 (2008), s. 13-22 ISSN 0862-8408 Institutional research plan: CEZ:AV0Z10300504 Keywords : Cushing’s syndrome * vascular reactivity * endothelial function * oxidative stress * laser Doppler flowmetry Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 1.653, year: 2008

  1. Reflective Functioning, Physiological Reactivity, and Overcontrol in Mothers: Links with School-Aged Children's Reflective Functioning

    Science.gov (United States)

    Borelli, Jessica L.; Hong, Kajung; Rasmussen, Hannah F.; Smiley, Patricia A.

    2017-01-01

    Theorists argue that parental reflective functioning (PRF) is activated in response to emotions, potentially supporting parenting sensitivity even when arousal is high. That is, when parents become emotionally reactive when interacting with their children, those who can use PRF to understand their children's mental states should be able to parent…

  2. Reactivating Neural Circuits with Clinically Accessible Stimulation to Restore Hand Function in Persons with Tetraplegia

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-16-1-0395 TITLE: Reactivating Neural Circuits with Clinically Accessible Stimulation to Restore Hand Function in...estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data...Clinically Accessible Stimulation to Restore Hand Function in Persons with Tetraplegia 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  3. High-sensitive C-reactive protein is associated with reduced lung function in young adults

    DEFF Research Database (Denmark)

    Rasmussen, Finn; Mikkelsen, Dennis; Hancox, Robert

    2009-01-01

    levels of CRP at age 20 yrs were associated with a greater reduction in both FEV(1) and forced vital capacity between ages 20 and 29 yrs. The findings show that higher levels of C-reactive protein in young adults are associated with subsequent decline in lung function, suggesting that low-grade systemic...... inflammation in young adulthood may lead to impaired lung function independently of the effects of smoking, obesity, cardiorespiratory fitness, asthma and eosinophilic inflammation....

  4. Synthesis of functional materials by radiation

    International Nuclear Information System (INIS)

    Nho, Young Chang; Kim, Ki Yup; Kang, Phil Hyun and others

    2000-04-01

    The radiation can induce chemical reaction to modify polymer under even the solid condition or in the low temperature. Therefore, the radiation processing is used as the means to develop the high functional polymer and new material which is impossible by chemical process. The radiation grafting process has the advantage to endow the adsorption function to the existing materials such as polymer membrane, fabric, non-fabric, non-woven fabric and film. Radiation crosslinking is effected with no pressure and is performed at low temperatures. Thus, temperature sensitive additives can be used in radiation crosslinking. The radiation crosslinking and grafting can be easily adjusted and is easily reproducible by controlling the radiation dose. The finished product contains no residuals of substances required to initiate the chemical crosslinking and grafting which can restrict the application possibilities, or can increase the failure rate. In these studies, radiation grafting and crosslinking were used to develop the toxic gas adsorbent, blood compatible polymer, acetabular cup of artificial joint, urokinase adsorbent, hydrogel, hollow fiber membrane adsorbing the heavy metals, and battery separator membrane. Because cable in nuclear power plant is directly related to safe operation, the life assessment of the cable system is an important issue. To assess the degradation and life time of cable is complicated owing to the various types and the different formulation of cable. In order to make an estimate the long term degradation occurring in a material, it is necessary to carry out the accelerated aging studies and to establish the appropriate test method to characterize the degradation. These studies are aimed at the evaluation technique on radiation degradation of polymer material and applying these results to nuclear equipment qualification

  5. Synthesis of functional materials by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nho, Young Chang; Kim, Ki Yup; Kang, Phil Hyun and others

    2000-04-01

    The radiation can induce chemical reaction to modify polymer under even the solid condition or in the low temperature. Therefore, the radiation processing is used as the means to develop the high functional polymer and new material which is impossible by chemical process. The radiation grafting process has the advantage to endow the adsorption function to the existing materials such as polymer membrane, fabric, non-fabric, non-woven fabric and film. Radiation crosslinking is effected with no pressure and is performed at low temperatures. Thus, temperature sensitive additives can be used in radiation crosslinking. The radiation crosslinking and grafting can be easily adjusted and is easily reproducible by controlling the radiation dose. The finished product contains no residuals of substances required to initiate the chemical crosslinking and grafting which can restrict the application possibilities, or can increase the failure rate. In these studies, radiation grafting and crosslinking were used to develop the toxic gas adsorbent, blood compatible polymer, acetabular cup of artificial joint, urokinase adsorbent, hydrogel, hollow fiber membrane adsorbing the heavy metals, and battery separator membrane. Because cable in nuclear power plant is directly related to safe operation, the life assessment of the cable system is an important issue. To assess the degradation and life time of cable is complicated owing to the various types and the different formulation of cable. In order to make an estimate the long term degradation occurring in a material, it is necessary to carry out the accelerated aging studies and to establish the appropriate test method to characterize the degradation. These studies are aimed at the evaluation technique on radiation degradation of polymer material and applying these results to nuclear equipment qualification.

  6. Functional neuroimaging studies in addiction: multisensory drug stimuli and neural cue reactivity.

    Science.gov (United States)

    Yalachkov, Yavor; Kaiser, Jochen; Naumer, Marcus J

    2012-02-01

    Neuroimaging studies on cue reactivity have substantially contributed to the understanding of addiction. In the majority of studies drug cues were presented in the visual modality. However, exposure to conditioned cues in real life occurs often simultaneously in more than one sensory modality. Therefore, multisensory cues should elicit cue reactivity more consistently than unisensory stimuli and increase the ecological validity and the reliability of brain activation measurements. This review includes the data from 44 whole-brain functional neuroimaging studies with a total of 1168 subjects (812 patients and 356 controls). Correlations between neural cue reactivity and clinical covariates such as craving have been reported significantly more often for multisensory than unisensory cues in the motor cortex, insula and posterior cingulate cortex. Thus, multisensory drug cues are particularly effective in revealing brain-behavior relationships in neurocircuits of addiction responsible for motivation, craving awareness and self-related processing. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Synthesis and characterization of hydrogen-bond acidic functionalized graphene

    Science.gov (United States)

    Yang, Liu; Han, Qiang; Pan, Yong; Cao, Shuya; Ding, Mingyu

    2014-05-01

    Hexafluoroisopropanol phenyl group functionalized materials have great potential in the application of gas-sensitive materials for nerve agent detection, due to the formation of strong hydrogen-bonding interactions between the group and the analytes. In this paper, take full advantage of ultra-large specific surface area and plenty of carbon-carbon double bonds and hexafluoroisopropanol phenyl functionalized graphene was synthesized through in situ diazonium reaction between -C=C- and p-hexafluoroisopropanol aniline. The identity of the as-synthesis material was confirmed by transmission electron microscopy, Raman spectroscopy, ultraviolet visible spectroscopy, X-ray photoelectron spectroscopy and thermo gravimetric analysis. The synthesis method is simply which retained the excellent physical properties of original graphene. In addition, the novel material can be assigned as an potential candidate for gas sensitive materials towards organophosphorus nerve agent detection.

  8. Synthesis of Functionalized Arylaziridines as Potential Antimicrobial Agents

    Directory of Open Access Journals (Sweden)

    Arianna Giovine

    2014-08-01

    Full Text Available By using the Suzuki-Miyaura protocol, a simple straightforward synthesis of functionalized 2-arylaziridines has been developed. By means of this synthetic strategy from readily available ortho-, meta- and para-bromophenylaziridines and aryl- or heteroarylboronic acids, new aziridines could be obtained. The cross-coupling reactions occurred without ring opening of the three membered ring. Preliminary results on the antimicrobial activity of the heterosubstituted biaryl compounds have been also included.

  9. Theoretical comparison of performance using transfer functions for reactivity meters based on inverse kinetic method and simple feedback method

    International Nuclear Information System (INIS)

    Shimazu, Yoichiro; Tashiro, Shoichi; Tojo, Masayuki

    2017-01-01

    The performance of two digital reactivity meters, one based on the conventional inverse kinetic method and the other one based on simple feedback theory, are compared analytically using their respective transfer functions. The latter one is proposed by one of the authors. It has been shown that the performance of the two reactivity meters become almost identical when proper system parameters are selected for each reactivity meter. A new correlation between the system parameters of the two reactivity meters is found. With this correlation, filter designers can easily determine the system parameters for the respective reactivity meters to obtain identical performance. (author)

  10. Chemical reactivity of precursor materials during synthesis of glasses used for conditioning high-level radioactive waste: Experiments and models

    International Nuclear Information System (INIS)

    Monteiro, A.

    2012-01-01

    The glass used to store high-level radioactive waste is produced by reaction of a solid waste residue and a glassy precursor (glass frit). The waste residue is first dried and calcined (to lose water and nitrogen respectively), then mixed with the glass frit to enable vitrification at high temperature. In order to obtain a good quality glass of constant composition upon cooling, the chemical reactions between the solid precursors must be complete while in the liquid state, to enable incorporation of the radioactive elements into the glassy matrix. The physical and chemical conditions during glass synthesis (e.g. temperature, relative proportions of frit and calcine, amount of radioactive charge) are typically empirically adjusted to obtain a satisfactory final product. The aim of this work is to provide new insights into the chemical and physical interactions that take place during vitrification and to provide data for a mathematical model that has been developed to simulate the chemical reactions. The consequences of the different chemical reactions that involve solid, liquid and gaseous phases are described (thermal effects, changes in crystal morphology and composition, variations in melt properties and structure). In a first series of experiments, a simplified analogue of the calcine (NaNO 3 -Al 2 O 3 ± MoO 3 /Nd 2 O 3 ) has been studied. In a second series of experiments, the simplified calcines have been reacted with a simplified glass frit (SiO 2 -Na 2 O-B 2 O 3 -Al 2 O 3 ) at high temperature. The results show that crystallization of the calcine may take place before interaction with the glass frit, but that the reactivity with the glass at high temperature is a function of the nature and stoichiometry of the crystalline phases which form at low temperature. The results also highlight how the mixing of the starting materials, the physical properties of the frit (viscosity, glass transition temperature) and the Na 2 O/Al 2 O 3 of the calcine but also its

  11. Synthesis of Novel Reactive Disperse Silicon-Containing Dyes and Their Coloring Properties on Silicone Rubbers

    Directory of Open Access Journals (Sweden)

    Ning Yu

    2018-01-01

    Full Text Available Novel red and purple reactive disperse silicon-containing dyes were designed and synthesized using p-nitroaniline and 6-bromo-2,4-dinitro-aniline as diazonium components, the first condensation product of cyanuric chloride and 3-(N,N-diethylamino-aniline as coupling component, and 3-aminopropylmethoxydimethylsilane, 3-aminopropylmethyldimethoxysilane, and 3-aminopropyltrimethoxysilane as silicone reactive agents. These dyes were characterized by UV-Vis, 1H-NMR, FT-IR, and MS. The obtained reactive disperse silicon-containing dyes were used to color silicone rubbers and the color fastness of the dyes were evaluated. The dry/wet rubbing and washing fastnesses of these dyes all reached 4–5 grade and the sublimation fastness was also above 4 grade, indicating outstanding performance in terms of color fastness. Such colored silicone rubbers showed bright and rich colors without affecting its static mechanical properties.

  12. Assessment of macrovascular endothelial function using pulse wave analysis and its association with microvascular reactivity in healthy subjects.

    Science.gov (United States)

    Ibrahim, N N I N; Rasool, A H G

    2017-08-01

    Pulse wave analysis (PWA) and laser Doppler fluximetry (LDF) are non-invasive methods of assessing macrovascular endothelial function and microvascular reactivity respectively. The aim of this study was to assess the correlation between macrovascular endothelial function assessed by PWA and microvascular reactivity assessed by LDF. 297 healthy and non-smoking subjects (159 females, mean age (±SD) 23.56 ± 4.54 years) underwent microvascular reactivity assessment using LDF followed by macrovascular endothelial function assessments using PWA. Pearson's correlation showed no correlation between macrovascular endothelial function and microvascular reactivity (r = -0.10, P = 0.12). There was no significant correlation between macrovascular endothelial function assessed by PWA and microvascular reactivity assessed by LDF in healthy subjects. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. A comparison of serum amyloid A (SAA) synthesis with that of the pentraxins: Serum amyloid P (SAP) and C-reactive protein (CRP)

    International Nuclear Information System (INIS)

    Tatsuta, E.; Shirahama, T.; Sipe, J.D.; Skinner, M.

    1986-01-01

    Serum amyloid A (SAA) and serum amyloid P (SAP) were detected in cultures of hepatocytes which had been isolated from normal CBA/J mice by the collagenase perfusion technique. SAP production in 24 h cultures was more resistant than SAA and total protein synthesis to inhibition by actinomycin D, but was more sensitive to inhibition by 48 h. However, the production of SAP was more sensitive to cycloheximide than SAA and total protein throughout the 48 hr incubation period. SAP and SAA levels in the culture media were suppressed by treatment of liver cells with 10 -6 M of colchicine for 48 h. Inhibition of SAP production by colchicine was the same regardless of culture condition, but the effect of colchicine on SAA synthesis varied according to the presence of serum of monokine. These observations also support the concept that the two amyloid proteins are produced under different regulatory mechanisms. When C-reactive protein (CRP) was not detected in the sera of patients with severe chronic liver diseases, the SAA levels were very low. When CRP was detected, SAA values were within the normal range. Thus, in order to produce SAA, liver cells in these patients not only were viable but also maintained their specialized function

  14. A parametric transfer function methodology for analyzing reactive transport in nonuniform flow.

    Science.gov (United States)

    Luo, Jian; Cirpka, Olaf A; Fienen, Michael N; Wu, Wei-min; Mehlhorn, Tonia L; Carley, Jack; Jardine, Philip M; Criddle, Craig S; Kitanidis, Peter K

    2006-02-01

    We analyze reactive transport during in-situ bioremediation in a nonuniform flow field, involving multiple extraction and injection wells, by the method of transfer functions. Gamma distributions are used as parametric models of the transfer functions. Apparent parameters of classical transport models may be estimated from those of the gamma distributions by matching temporal moments. We demonstrate the method by application to measured data taken at a field experiment on bioremediation conducted in a multiple-well system in Oak Ridge, TN. Breakthrough curves (BTCs) of a conservative tracer (bromide) and a reactive compound (ethanol) are measured at multi-level sampling (MLS) wells and in extraction wells. The BTCs of both compounds are jointly analyzed to estimate the first-order degradation rate of ethanol. To quantify the tracer loss, we compare the approaches of using a scaling factor and a first-order decay term. Results show that by including a scaling factor both gamma distributions and inverse-Gaussian distributions (transfer functions according to the advection-dispersion equation) are suitable to approximate the transfer functions and estimate the reactive rate coefficients for both MLS and extraction wells. However, using a first-order decay term for tracer loss fails to describe the BTCs at the extraction well, which is affected by the nonuniform distribution of travel paths.

  15. Identification of Flood Reactivity Regions via the Functional Clustering of Hydrographs

    Science.gov (United States)

    Brunner, Manuela I.; Viviroli, Daniel; Furrer, Reinhard; Seibert, Jan; Favre, Anne-Catherine

    2018-03-01

    Flood hydrograph shapes contain valuable information on the flood-generation mechanisms of a catchment. To make good use of this information, we express flood hydrograph shapes as continuous functions using a functional data approach. We propose a clustering approach based on functional data for flood hydrograph shapes to identify a set of representative hydrograph shapes on a catchment scale and use these catchment-specific sets of representative hydrographs to establish regions of catchments with similar flood reactivity on a regional scale. We applied this approach to flood samples of 163 medium-size Swiss catchments. The results indicate that three representative hydrograph shapes sufficiently describe the hydrograph shape variability within a catchment and therefore can be used as a proxy for the flood behavior of a catchment. These catchment-specific sets of three hydrographs were used to group the catchments into three reactivity regions of similar flood behavior. These regions were not only characterized by similar hydrograph shapes and reactivity but also by event magnitudes and triggering event conditions. We envision these regions to be useful in regionalization studies, regional flood frequency analyses, and to allow for the construction of synthetic design hydrographs in ungauged catchments. The clustering approach based on functional data which establish these regions is very flexible and has the potential to be extended to other geographical regions or toward the use in climate impact studies.

  16. Self-organised synthesis of Rh nanostructures with tunable chemical reactivity

    Directory of Open Access Journals (Sweden)

    Lizzit S

    2007-01-01

    Full Text Available AbstractNonequilibrium periodic nanostructures such as nanoscale ripples, mounds and rhomboidal pyramids formed on Rh(110 are particularly interesting as candidate model systems with enhanced catalytic reactivity, since they are endowed with steep facets running along nonequilibrium low-symmetry directions, exposing a high density of undercoordinated atoms. In this review we report on the formation of these novel nanostructured surfaces, a kinetic process which can be controlled by changing parameters such as temperature, sputtering ion flux and energy. The role of surface morphology with respect to chemical reactivity is investigated by analysing the carbon monoxide dissociation probability on the different nanostructured surfaces.

  17. Nuclear reactivity indices in the context of spin polarized density functional theory

    International Nuclear Information System (INIS)

    Cardenas, Carlos; Lamsabhi, Al Mokhtar; Fuentealba, Patricio

    2006-01-01

    In this work, the nuclear reactivity indices of density functional theory have been generalized to the spin polarized case and their relationship to electron spin polarized indices has been established. In particular, the spin polarized version of the nuclear Fukui function has been proposed and a finite difference approximation has been used to evaluate it. Applications to a series of triatomic molecules demonstrate the ability of the new functions to predict the geometrical changes due to a change in the spin multiplicity. The main equations in the different ensembles have also been presented

  18. Synthesis of benzamides by microwave assisted ring opening of less reactive dimethylaminobenzylidene oxazolone

    Directory of Open Access Journals (Sweden)

    Saurabh C. Khadse

    2017-02-01

    Full Text Available This paper presents the synthesis of some benzamide compounds (B1–B10 by microwave-assisted ring opening of 4-(4-dimethylaminobenzylidene-2-phenyl-5-oxazolone (AZ4. By conventional synthesis involving heating, it was found difficult to obtain ring-opened products, probably due to poor tendency of the carbonyl carbon (C5 of AZ4 to undergo nucleophilic attack by mono/or disubstituted anilines. Microwave assisted reactions were easy to perform, have reduced the reaction time and produced good yields.

  19. Nanocrystalline functional materials and nanocomposites synthesis through aerosol routes

    Directory of Open Access Journals (Sweden)

    Milošević Olivera B.

    2003-01-01

    Full Text Available This paper represents the results of the design of functional nanocrystalline powders and nanocomposites using chemical reactions in aerosols. The process involves ultrasonic aerosol formation (mist generators with the resonant frequencies of 800 kHz, 1.7 and 2.5 MHz from precursor salt solutions and control over the aerosol decomposition in a high-temperature tubular flow reactor. During decomposition, the aerosol droplets undergo evaporation/drying, precipitation and thermolysis in a single-step process. Consequently, spherical, solid, agglomerate-free submicronic particles are obtained. The particle morphology, revealed as a composite structure consisting of primary crystallites smaller than 20 nm was analysed by several methods (XRD, DSC/DTA, SEM, TEM and discussed in terms of precursor chemistry and process parameters. Following the initial attempts, a more detailed aspect of nanocrystalline particle synthesis was demonstrated for the case of nanocomposites based on ZnO-MeO (MeO=Bi Cr+, suitable for electronic applications, as well as an yttrium-aluminum base complex system, suitable for phosphorus applications. The results imply that parts of the material structure responsible for different functional behaviour appear through in situ aerosol synthesis by processes of intraparticle agglomeration, reaction and sintering in the last synthesis stage.

  20. Synthesis of oxidized guar gum by dry method and its application in reactive dye printing.

    Science.gov (United States)

    Gong, Honghong; Liu, Mingzhu; Zhang, Bing; Cui, Dapeng; Gao, Chunmei; Ni, Boli; Chen, Jiucun

    2011-12-01

    The aim of this study was to prepare oxidized guar gum with a simple dry method, basing on guar gum, hydrogen peroxide and a small amount of solvent. To obtain a product with suitable viscosity for reactive dye printing, the effects of various factors such as the amount of oxidant and solvent, reaction temperature and time were studied with respect to the viscosity of reaction products. The product was characterized by Fourier transform infrared spectroscopy, size exclusion chromatography, scanning electron microscopy and differential scanning calorimetry. The hydrated rate of guar gum and oxidized guar gum was estimated through measuring the required time when their solutions (1%, w/v) reached the maximum viscosity. The effects of the salt concentration and pH on viscosity of the resultant product were studied. The mixed paste containing oxidized guar gum and carboxymethyl starch was prepared and its viscosity was determined by the viscometer. The rheological property of the mixed paste was appraised by the printing viscosity index. In addition, the applied effect of mixed paste in reactive dye printing was examined by assessing the fabric stiffness, color yield and sharp edge to the printed image in comparison with sodium alginate. And the results indicated that the mixed paste could partially replace sodium alginate as thickener in reactive dye printing. The study also showed that the method was low cost and eco-friendly and the product would have an extensive application in reactive dye printing. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Entrainer selection for the synthesis of fatty acid esters by entrainer-based reactive distillation

    NARCIS (Netherlands)

    Jong, de M.C.; Zondervan, E.; Dimian, A.C.; Haan, de A.B.

    2010-01-01

    In this research it is demonstrated that, due to the similarities between Entrainer-based Reactive Distillation and azeotropic distillation, the same selection rules can be applied to select a suitable entrainer. From a list of suitable entrainers for the azeotropic distillation of isopropanol and

  2. Stress reactivity in childhood functional abdominal pain or irritable bowel syndrome.

    Science.gov (United States)

    Gulewitsch, M D; Weimer, K; Enck, P; Schwille-Kiuntke, J; Hautzinger, M; Schlarb, A A

    2017-01-01

    Frequent abdominal pain (AP) in childhood has been shown to be associated with elevated experience of stress and with deficits in stress coping, but psychophysiological stress reactivity has been studied rarely. We examined whether children with frequent AP show altered reactions of the parasympathetic nervous system and the hypothalamic-pituitary-adrenal (HPA) axis during and following an afternoon laboratory social stress task in comparison to healthy children and children with anxiety disorders. Twenty-four children with frequent AP (18 with functional AP and six with irritable bowel syndrome; M = 9.9 years), and 24 healthy controls underwent stressful free speech and arithmetic tasks. Twelve children with anxiety disorders served as second comparison sample. Groups were compared regarding parasympathetic reaction and saliva cortisol concentration. We found no differences in parasympathetic withdrawal between the groups. Concerning the HPA axis, we detected an attenuated cortisol reactivity in children with AP compared to both other groups. This study provides preliminary evidence that childhood AP is not associated with altered parasympathetic withdrawal during stress. It seems to be related to a down-regulated reactivity of the HPA axis. This pattern was ascertained in comparison to healthy children and also in comparison to children with anxiety disorders. Childhood abdominal pain could be related to down-regulated HPA axis reactivity to stress but not to altered parasympathetic reaction. Children with abdominal pain and children with anxiety disorders exhibit a divergent stress-related HPA axis reaction. © 2016 European Pain Federation - EFIC®.

  3. Dissecting molecular descriptors into atomic contributions in density functional reactivity theory

    Energy Technology Data Exchange (ETDEWEB)

    Rong, Chunying [Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) and Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081 (China); Lu, Tian [School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing (China); Liu, Shubin, E-mail: shubin@email.unc.edu [Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) and Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081 (China); Research Computing Center, University of North Carolina, Chapel Hill, North Carolina 27599-3420 (United States)

    2014-01-14

    Density functional reactivity theory (DFRT) employs the electron density of a molecule and its related quantities such as gradient and Laplacian to describe its structure and reactivity properties. Proper descriptions at both molecular (global) and atomic (local) levels are equally important and illuminating. In this work, we make use of Bader's zero-flux partition scheme and consider atomic contributions for a few global reactivity descriptors in DFRT, including the density-based quantification of steric effect and related indices. Earlier, we proved that these quantities are intrinsically correlated for atomic and molecular systems [S. B. Liu, J. Chem. Phys. 126, 191107 (2007); ibid. 126, 244103 (2007)]. In this work, a new basin-based integration algorithm has been implemented, whose reliability and effectiveness have been extensively examined. We also investigated a list of simple hydrocarbon systems and different scenarios of bonding processes, including stretching, bending, and rotating. Interesting changing patterns for the atomic and molecular values of these quantities have been revealed for different systems. This work not only confirms the strong correlation between these global reactivity descriptors for molecular systems, as theoretically proven earlier by us, it also provides new and unexpected changing patterns for their atomic values, which can be employed to understand the origin and nature of chemical phenomena.

  4. Dissecting molecular descriptors into atomic contributions in density functional reactivity theory

    International Nuclear Information System (INIS)

    Rong, Chunying; Lu, Tian; Liu, Shubin

    2014-01-01

    Density functional reactivity theory (DFRT) employs the electron density of a molecule and its related quantities such as gradient and Laplacian to describe its structure and reactivity properties. Proper descriptions at both molecular (global) and atomic (local) levels are equally important and illuminating. In this work, we make use of Bader's zero-flux partition scheme and consider atomic contributions for a few global reactivity descriptors in DFRT, including the density-based quantification of steric effect and related indices. Earlier, we proved that these quantities are intrinsically correlated for atomic and molecular systems [S. B. Liu, J. Chem. Phys. 126, 191107 (2007); ibid. 126, 244103 (2007)]. In this work, a new basin-based integration algorithm has been implemented, whose reliability and effectiveness have been extensively examined. We also investigated a list of simple hydrocarbon systems and different scenarios of bonding processes, including stretching, bending, and rotating. Interesting changing patterns for the atomic and molecular values of these quantities have been revealed for different systems. This work not only confirms the strong correlation between these global reactivity descriptors for molecular systems, as theoretically proven earlier by us, it also provides new and unexpected changing patterns for their atomic values, which can be employed to understand the origin and nature of chemical phenomena

  5. Synthesis, characterization, and in vitro biological evaluation of highly stable diversely functionalized superparamagnetic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Bhattacharya, Dipsikha; Sahu, Sumanta K.; Banerjee, Indranil; Das, Manasmita; Mishra, Debashish; Maiti, Tapas K.; Pramanik, Panchanan

    2011-01-01

    In this article, we report the design and synthesis of a series of well-dispersed superparamagnetic iron oxide nanoparticles (SPIONs) using chitosan as a surface modifying agent to develop a potential T 2 contrast probe for magnetic resonance imaging (MRI). The amine, carboxyl, hydroxyl, and thiol functionalities were introduced on chitosan-coated magnetic probe via simple reactions with small reactive organic molecules to afford a series of biofunctionalized nanoparticles. Physico-chemical characterizations of these functionalized nanoparticles were performed by TEM, XRD, DLS, FTIR, and VSM. The colloidal stability of these functionalized iron oxide nanoparticles was investigated in presence of phosphate buffer saline, high salt concentrations and different cell media for 1 week. MRI analysis of human cervical carcinoma (HeLa) cell lines treated with nanoparticles elucidated that the amine-functionalized nanoparticles exhibited higher amount of signal darkening and lower T 2 relaxation in comparison to the others. The cellular internalization efficacy of these functionalized SPIONs was also investigated with HeLa cancer cell line by magnetically activated cell sorting (MACS) and fluorescence microscopy and results established selectively higher internalization efficacy of amine-functionalized nanoparticles to cancer cells. These positive attributes demonstrated that these nanoconjugates can be used as a promising platform for further in vitro and in vivo biological evaluations.

  6. Reactive Coevaporation Synthesis and Characterization of SrTiO3 Thin Films

    Science.gov (United States)

    Yamaguchi, Hiromu; Matsubara, Shogo; Miyasaka, Yoichi

    1991-09-01

    SrTiO3 thin films were prepared by the reactive coevaporation method, where the Ti and Sr metals were evaporated in oxygen ambient with an E-gun and K-cell, respectively. A uniform depth profile in composition was achieved by altering the Ti evaporation rate according to the Sr evaporation rate change. A typical dielectric constant of 170 was measured on films of 75 nm in thickness. The in-situ annealing in oxygen plasma reduced the leakage current.

  7. Studies on the Synthesis,Characterization and Properties of the Reactive Thermotropic Liquid Crystalline Polymer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Introduction Four species of reactive thermotropic liquid crystalline polymer (LCMC) with different relative molecular weight were synthesized in this work (see scheme 1, n=2, 6, 10, ∞.n means number of repeat structure unit). Their structure, morphology and properties were investigated systemically by differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), Wide-angle X-ray diffraction (WAXD), polarizing opticalmicroscopy (POM) and ubb...

  8. Synthesis and characterization of carboxymethyl potato starch and its application in reactive dye printing.

    Science.gov (United States)

    Zhang, Bing; Gong, Honghong; Lü, Shaoyu; Ni, Boli; Liu, Mingzhu; Gao, Chunmei; Huang, Yinjuan; Han, Fei

    2012-11-01

    Carboxymethyl potato starch (CMPS) was synthesized with a simple dry and multi-step method as a product of the reaction of native potato starch and monochloroacetic acid in the presence of sodium hydroxide. The influence of the molar ratio of sodium hydroxide to anhydroglucose unit, the volume of 95% (v/v) ethanol, the rotation rate of motor driven stirrer and the reaction time for degree of substitution (DS) were evaluated. The product was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray diffractometry (XRD). FTIR spectrometry showed new bonds at 1618 and 1424 cm⁻¹ when native starch underwent carboxymethylation. SEM pictures showed that the smooth surface of native starch particles was mostly ruptured. XRD revealed that starch crystallinity was reduced after carboxymethylation. The viscosity of the mixture paste of carboxymethyl starch and sodium alginate (SA) was measured using a rotational viscometer. In addition, the applied effect of mixed paste in reactive dye printing was examined by assessing the fabric stiffness, color yield and sharp edge to the printed image in comparison with SA. And the results indicated that the mixed paste could partially replace SA as thickener in reactive dye printing. The study also showed that the method was low cost and eco-friendly and the product would have an extensive application in reactive dye printing. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Versatile and biomass synthesis of iron-based nanoparticles supported on carbon matrix with high iron content and tunable reactivity

    International Nuclear Information System (INIS)

    Zhang Dongmao; Shi, Sheldon Q.; Pittman, Charles U.; Jiang Dongping; Che Wen; Gai Zheng; Howe, Jane Y.; More, Karren L.; Antonyraj, Arockiasamy

    2012-01-01

    Iron-based nanoparticles supported on carbon (FeNPs-C) have enormous potential for environmental applications. Reported is a biomass-based method for FeNP-C synthesis that involves pyrolysis of bleached wood fiber pre-mixed with Fe 3 O 4 nanoparticles. This method allows synthesis of iron-based nanoparticles with tunable chemical reactivity by changing the pyrolysis temperature. The FeNP-C synthesized at a pyrolysis temperature of 500 °C (FeNP-C-500) reacts violently (pyrophoric) when exposed to air, while FeNP-C prepared at 800 °C (FeNP-C-800) remains stable in ambient condition for at least 3 months. The FeNPs in FeNP-C-800 are mostly below 50 nm in diameter and are surrounded by carbon. The immediate carbon layer (within 5–15 nm radius) on the FeNPs is graphitized. Proof-of-concept environmental applications of FeNPs-C-800 were demonstrated by Rhodamine 6G and arsenate (V) removal from water. This biomass-based method provides an effective way for iron-based nanoparticle fabrication and biomass utilization.

  10. Synthesis and reactivity of single-phase Be{sub 17}Ti{sub 2} intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Hwan, E-mail: kim.jaehwan@jaea.go.jp [Breeding Functional Materials Development Group, Sector of Fusion Research and Development, Japan Atomic Energy Agency (Japan); Iwakiri, Hirotomo; Furugen, Tatsuaki [Faculty of Education Elementary and Secondary School Teacher Training Program, University of the Ryukyus, Okinawa (Japan); Nakamichi, Masaru [Breeding Functional Materials Development Group, Sector of Fusion Research and Development, Japan Atomic Energy Agency (Japan)

    2016-01-15

    Highlights: • Preliminary synthesis of single-phase Be{sub 17}Ti{sub 2} was succeeded. • Reactivity difference between beryllium and beryllides may be caused by a lattice strain. • Oxidation of Be{sub 17}Ti{sub 2} at high temperatures results in the formation of TiO{sub 2}. • Simulation results reveal that a stable site for hydrogen at the center of tetrahedron exists. - Abstract: To investigate feasibility for application of Be{sub 17}Ti{sub 2} as a neutron multiplier as well as a refractory material, single-phase Be{sub 17}Ti{sub 2} intermetallic compounds were synthesized using an annealing heat treatment of the starting powder and a plasma sintering method. Scanning electron microscopic observations and X-ray diffraction measurements reveal that the single-phase Be{sub 17}Ti{sub 2} compounds were successfully synthesized. We examined the reactivity of Be{sub 17}Ti{sub 2} with 1% H{sub 2}O and discovered that a larger stoichiometric amount of Ti resulted in the formation of TiO{sub 2} on the surface at high temperatures. This oxidation may also contribute to an increase in both weight gain and generation of H{sub 2}. This suggests that the formation of the Ti-depleted Be{sub 17}Ti{sub 2−x} layer as a result of oxidation facilitates an increased reactivity with H{sub 2}O. To evaluate the safety aspects of Be{sub 17}Ti{sub 2}, we also investigated the hydrogen positions and solution energies based on the first principle. The calculations reveal that there are 10 theoretical sites, where 9 of these sites have hydrogen solution energies with a positive value (endothermic) and 1 site located at the center of a tetrahedron comprising two Be and two Ti atoms gives a negative value (exothermic).

  11. Boron-based nanostructures: Synthesis, functionalization, and characterization

    Science.gov (United States)

    Bedasso, Eyrusalam Kifyalew

    Boron-based nanostructures have not been explored in detail; however, these structures have the potential to revolutionize many fields including electronics and biomedicine. The research discussed in this dissertation focuses on synthesis, functionalization, and characterization of boron-based zero-dimensional nanostructures (core/shell and nanoparticles) and one-dimensional nanostructures (nanorods). The first project investigates the synthesis and functionalization of boron-based core/shell nanoparticles. Two boron-containing core/shell nanoparticles, namely boron/iron oxide and boron/silica, were synthesized. Initially, boron nanoparticles with a diameter between 10-100 nm were prepared by decomposition of nido-decaborane (B10H14) followed by formation of a core/shell structure. The core/shell structures were prepared using the appropriate precursor, iron source and silica source, for the shell in the presence of boron nanoparticles. The formation of core/shell nanostructures was confirmed using high resolution TEM. Then, the core/shell nanoparticles underwent a surface modification. Boron/iron oxide core/shell nanoparticles were functionalized with oleic acid, citric acid, amine-terminated polyethylene glycol, folic acid, and dopamine, and boron/silica core/shell nanoparticles were modified with 3-(amino propyl) triethoxy silane, 3-(2-aminoethyleamino)propyltrimethoxysilane), citric acid, folic acid, amine-terminated polyethylene glycol, and O-(2-Carboxyethyl)polyethylene glycol. A UV-Vis and ATR-FTIR analysis established the success of surface modification. The cytotoxicity of water-soluble core/shell nanoparticles was studied in triple negative breast cancer cell line MDA-MB-231 and the result showed the compounds are not toxic. The second project highlights optimization of reaction conditions for the synthesis of boron nanorods. This synthesis, done via reduction of boron oxide with molten lithium, was studied to produce boron nanorods without any

  12. Density functional theory study on the formation of reactive benzoquinone imines by hydrogen abstraction

    DEFF Research Database (Denmark)

    Leth, Rasmus; Rydberg, Patrik; Jørgensen, Flemming Steen

    2015-01-01

    Many drug compounds are oxidized by cytochrome P450 (CYP) enzymes to form reactive metabolites. This study presents density functional theory calculations of the CYP-mediated metabolism of acetaminophen and a series of related compounds that can form reactive metabolites by hydrogen abstraction....... The substitution pattern affects the activation barrier for hydrogen abstraction by up to 30 kJ/mol. A correlation (R(2) = 0.72) between the transition-state energies and the corresponding substrate radical energies has been established. Using this correlation is significantly less time-demanding than using...... the porphyrin model to determine the activation energies. We have used this correlation on monosubstituted phenols to rationalize the effect of the various substituents in the drug compounds. In addition to facilitating a chemical interpretation, the approach is sufficiently fast and reliable to be used...

  13. Power and power-to-flow reactivity transfer functions in EBR-II [Experimental Breeder Reactor II] fuel

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1989-01-01

    Reactivity transfer functions are important in determining the reactivity history during a power transient. Overall nodal transfer functions have been calculated for different subassembly types in the Experimental Breeder Reactor II (EBR-II). Steady-state calculations for temperature changes and, hence, reactivities for power changes have been separated into power and power-to-flow-dependent terms. Axial nodal transfer functions separated into power and power-to-flow-dependent components are reported in this paper for a typical EBR-II fuel pin. This provides an improved understanding of the time dependence of these components in transient situations

  14. Synthesis of Highly Reactive Subnano-sized Zero-valent Iron using Smectite Clay Templates

    Science.gov (United States)

    Gu, Cheng; Jia, Hanzhang; Li, Hui; Teppen, Brian J.; Boyd, Stephen A.

    2010-01-01

    A novel method was developed for synthesizing subnano-sized zero-valent iron (ZVI) using smectite clay layers as templates. Exchangeable Fe(III) cations compensating the structural negative charges of smectites were reduced with NaBH4, resulting in the formation of ZVI. The unique structure of smectite clay, in which isolated exchangeable Fe(III) cations reside near the sites of structural negative charges, inhibited the agglomeration of ZVI resulting in the formation of discrete regions of subnanoscale ZVI particles in the smectite interlayer regions. X-ray diffraction revealed an interlayer spacing of ~ 5 Å. The non-structural iron content of this clay yields a calculated ratio of two atoms of ZVI per three cation exchange sites, in full agreement with the XRD results since the diameter of elemental Fe is 2.5 Å. The clay-templated ZVI showed superior reactivity and efficiency compared to other previously reported forms of ZVI as indicated by the reduction of nitrobenzene; structural Fe within the aluminosilicate layers was nonreactive. At a 1:3 molar ratio of nitrobenzene:non-structural Fe, a reaction efficiency of 83% was achieved, and over 80% of the nitrobenzene was reduced within one minute. These results confirm that non-structural Fe from Fe(III)-smectite was reduced predominantly to ZVI which was responsible for the reduction of nitrobenzene to aniline. This new form of subnano-scale ZVI may find utility in the development of remediation technologies for persistent environmental contaminants, e.g. as components of constructed reactive domains such as reactive caps for contaminated sediments. PMID:20446730

  15. Synthesis of highly reactive subnano-sized zero-valent iron using smectite clay templates.

    Science.gov (United States)

    Gu, Cheng; Jia, Hanzhong; Li, Hui; Teppen, Brian J; Boyd, Stephen A

    2010-06-01

    A novel method was developed for synthesizing subnano-sized zero-valent iron (ZVI) using smectite clay layers as templates. Exchangeable Fe(III) cations compensating the structural negative charges of smectites were reduced with NaBH(4), resulting in the formation of ZVI. The unique structure of smectite clay, in which isolated exchangeable Fe(III) cations reside near the sites of structural negative charges, inhibited the agglomeration of ZVI resulting in the formation of subnanoscale ZVI particles in the smectite interlayer regions. X-ray diffraction revealed an interlayer spacing of approximately 5 A. The non-structural iron content of this clay yields a calculated ratio of two atoms of ZVI per three cation exchange sites, in full agreement with the X-ray diffraction (XRD) results since the diameter of elemental Fe is 2.5 A. The clay-templated ZVI showed superior reactivity and efficiency compared to other previously reported forms of ZVI as indicated by the reduction of nitrobenzene; structural Fe within the aluminosilicate layers was nonreactive. At a 1:3 molar ratio of nitrobenzene/non-structural Fe, a reaction efficiency of 83% was achieved, and over 80% of the nitrobenzene was reduced within one minute. These results confirm that non-structural Fe from Fe(III)-smectite was reduced predominantly to ZVI which was responsible for the reduction of nitrobenzene to aniline. This new form of subnanoscale ZVI may find utility in the development of remediation technologies for persistent environmental contaminants, for example, as components of constructed reactive domains such as reactive caps for contaminated sediments.

  16. Design and Synthesis of Bifunctional Oxime Reactivators of OP- inhibited Cholinesterase

    Science.gov (United States)

    2013-08-01

    N O O OH N O O O O N OH O O N N O O N N N O N N N N N O N+ N N N OH MeOH/APS THP NaBH4 MsCl HN N p-Toluenesulfonic Acid Swern Oxidation H2N O S O O O...pendant general acid groups. Compound 8 has been delivered to ICD for testing (synthesis and characterization below). This strategy is in place to...as a THP ether and the trifluoromethylketone installed by coupling the organolithium with trifluoroacetylpiperidine. We again used our direct

  17. Synthesis and Characterization of Core-Shell Acrylate Based Latex and Study of Its Reactive Blends

    Directory of Open Access Journals (Sweden)

    Ying Nie

    2008-03-01

    Full Text Available Techniques in resin blending are simple and efficient method for improving the properties of polymers, and have been used widely in polymer modification field. However, polymer latex blends such as the combination of latexes, especially the latexes with water-soluble polymers, were rarely reported. Here, we report a core-shell composite latex synthesized using methyl methacrylate (MMA, butyl acrylate (BA, 2-ethylhexyl acrylate (EHA and glycidyl methacrylate (GMA as monomers and ammonium persulfate and sodium bisulfite redox system as the initiator. Two stages seeded semi-continuous emulsion polymerization were employed for constructing a core-shell structure with P(MMA-co-BA component as the core and P(EHA-co-GMA component as the shell. Results of Transmission Electron Microscopy (TEM and Dynamics Light Scattering (DLS tests confirmed that the particles obtained are indeed possessing a desired core-shell structural character. Stable reactive latex blends were prepared by adding the latex with waterborne melamine-formaldehyde resin (MF or urea-formaldehyde resin (UF. It was found that the glass transition temperature, the mechanical strength and the hygroscopic property of films cast from the latex blends present marked enhancements under higher thermal treatment temperature. It was revealed that the physical properties of chemically reactive latexes with core-shell structure could be altered via the change of crosslinking density both from the addition of crosslinkers and the thermal treatment.

  18. Executive functioning performance predicts subjective and physiological acute stress reactivity: preliminary results.

    Science.gov (United States)

    Hendrawan, Donny; Yamakawa, Kaori; Kimura, Motohiro; Murakami, Hiroki; Ohira, Hideki

    2012-06-01

    Individual differences in baseline executive functioning (EF) capacities have been shown to predict state anxiety during acute stressor exposure. However, no previous studies have clearly demonstrated the relationship between EF and physiological measures of stress. The present study investigated the efficacy of several well-known EF tests (letter fluency, Stroop test, and Wisconsin Card Sorting Test) in predicting both subjective and physiological stress reactivity during acute psychosocial stress exposure. Our results show that letter fluency served as the best predictor for both types of reactivity. Specifically, the higher the letter fluency score, the lower the acute stress reactivity after controlling for the baseline stress response, as indicated by lower levels of state anxiety, negative mood, salivary cortisol, and skin conductance. Moreover, the predictive power of the letter fluency test remained significant for state anxiety and cortisol indices even after further adjustments for covariates by adding the body mass index (BMI) as a covariate. Thus, good EF performance, as reflected by high letter fluency scores, may dampen acute stress responses, which suggests that EF processes are directly associated with aspects of stress regulation. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Maternal executive function, heart rate, and EEG alpha reactivity interact in the prediction of harsh parenting.

    Science.gov (United States)

    Deater-Deckard, Kirby; Bell, Martha Ann

    2017-02-01

    Do physiological and behavioral performance indicators of effortful cognitive self-regulation converge additively or interactively in their statistical prediction of individual differences in harsh parenting? To answer this question, we examined heart rate (HR) and electroencephalography alpha (α) reactivity during executive function (EF) tasks, along with observed and self-reported indicators of harsh parenting. A socioeconomically diverse sample of 115 mothers with 3- to 7-year-old children completed questionnaires and a laboratory visit. Three quarters of the mothers showed typical patterns of task reactivity that were interpretable (i.e., increases in HR and decreases in α). Among them, we found no evidence to suggest that variance in harsh parenting was associated with magnitude of HR or α reactivity independently. Instead, the physiological variables interacted to enhance the EF statistical effect. EF explained one third of the variance in harsh parenting among mothers showing the largest α decreases when accompanied by modest to moderate (rather than substantial) HR increases. Physiological indicators can clarify the role and estimation of the strength of the effect of direct behavioral measures of cognitive regulation in the etiology of harsh parenting behaviors. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. Parasympathetic Nervous System Reactivity Moderates Associations Between Children's Executive Functioning and Social and Academic Competence.

    Science.gov (United States)

    McQuade, Julia D; Penzel, Taylor E; Silk, Jennifer S; Lee, Kyung Hwa

    2017-10-01

    This study examined whether children with poor executive functioning (EF) evidenced less social and academic impairments, compared to other children, if they demonstrated adaptive parasympathetic nervous system (PNS) regulation during experiences of failure. Participants with and without clinical elevations in ADHD symptoms (N = 61; 9-13 years; 48% male; 85% Caucasian) were administered a battery of EF tests and completed manipulated social and cognitive failure tasks. While participants completed failure tasks, respiratory sinus arrhythmia reactivity (RSA-R) was measured as an indicator of PNS reactivity. Children's social and academic impairment in daily life was assessed based on parent and teacher report on multiple measures. RSA-R during social failure moderated the association between poor EF and adult-rated social impairment and RSA-R during cognitive failure moderated the association between poor EF and adult-rated academic impairment. Simple effects indicated that poor EF was significantly associated with impairment when children demonstrated RSA activation (increased PNS activity) but not when children demonstrated RSA withdrawal (decreases in PNS activity). Domain-crossed models (e.g., reactivity to social failure predicting academic impairment) were not significant, suggesting that the moderating effect of RSA-R was domain-specific. Results suggest that not all children with poor EF evidence social and academic impairment; RSA withdrawal during experiences of failure may be protective specifically for children with impaired EF skills.

  1. Bioconjugated iron oxide nanocubes: synthesis, functionalization, and vectorization.

    Science.gov (United States)

    Wortmann, Laura; Ilyas, Shaista; Niznansky, Daniel; Valldor, Martin; Arroub, Karim; Berger, Nadja; Rahme, Kamil; Holmes, Justin; Mathur, Sanjay

    2014-10-08

    A facile bottom-up approach for the synthesis of inorganic/organic bioconjugated nanoprobes based on iron oxide nanocubes as the core with a nanometric silica shell is demonstrated. Surface coating and functionalization protocols developed in this work offered good control over the shell thickness (8-40 nm) and enabled biovectorization of SiO2@Fe3O4 core-shell structures by covalent attachment of folic acid (FA) as a targeting unit for cellular uptake. The successful immobilization of folic acid was investigated both quantitatively (TGA, EA, XPS) and qualitatively (AT-IR, UV-vis, ζ-potential). Additionally, the magnetic behavior of the nanocomposites was monitored after each functionalization step. Cell viability studies confirmed low cytotoxicity of FA@SiO2@Fe3O4 conjugates, which makes them promising nanoprobes for targeted internalization by cells and their imaging.

  2. Synthesis, characterization, and reactivity of ruthenium hydride complexes of N-centered triphosphine ligands.

    Science.gov (United States)

    Phanopoulos, Andreas; Brown, Neil J; White, Andrew J P; Long, Nicholas J; Miller, Philip W

    2014-04-07

    The reactivity of the novel tridentate phosphine ligand N(CH2PCyp2)3 (N-triphos(Cyp), 2; Cyp = cyclopentyl) with various ruthenium complexes was investigated and compared that of to the less sterically bulky and less electron donating phenyl derivative N(CH2PPh2)3 (N-triphos(Ph), 1). One of these complexes was subsequently investigated for reactivity toward levulinic acid, a potentially important biorenewable feedstock. Reaction of ligands 1 and 2 with the precursors [Ru(COD)(methylallyl)2] (COD = 1,5-cycloocatadiene) and [RuH2(PPh3)4] gave the tridentate coordination complexes [Ru(tmm){N(CH2PR2)3-κ(3)P}] (R = Ph (3), Cyp (4); tmm = trimethylenemethane) and [RuH2(PPh3){N(CH2PR2)3-κ(3)P}] (R = Ph (5), Cyp (6)), respectively. Ligands 1 and 2 displayed different reactivities with [Ru3(CO)12]. Ligand 1 gave the tridentate dicarbonyl complex [Ru(CO)2{N(CH2PPh2)3-κ(3)P}] (7), while 2 gave the bidentate, tricarbonyl [Ru(CO)3{N(CH2PCyp2)3-κ(2)P}] (8). This was attributed to the greater electron-donating characteristics of 2, requiring further stabilization on coordination to the electron-rich Ru(0) center by more CO ligands. Complex 7 was activated via oxidation using AgOTf and O2, giving the Ru(II) complexes [Ru(CO)2(OTf){N(CH2PPh2)3-κ(3)P}](OTf) (9) and [Ru(CO3)(CO){N(CH2PPh2)3-κ(3)P}] (11), respectively. Hydrogenation of these complexes under hydrogen pressures of 3-15 bar gave the monohydride and dihydride complexes [RuH(CO)2{N(CH2PPh2)3-κ(3)P}] (10) and [RuH2(CO){N(CH2PPh2)3-κ(3)P}] (12), respectively. Complex 12 was found to be unreactive toward levulinic acid (LA) unless activated by reaction with NH4PF6 in acetonitrile, forming [RuH(CO)(MeCN){N(CH2PPh2)3-κ(3)P}](PF6) (13), which reacted cleanly with LA to form [Ru(CO){N(CH2PPh2)3-κ(3)P}{CH3CO(CH2)2CO2H-κ(2)O}](PF6) (14). Complexes 3, 5, 7, 8, 11, and 12 were characterized by single-crystal X-ray crystallography.

  3. Synthesis and structures of a pincer-type rhodium(iii) complex: reactivity toward biomolecules.

    Science.gov (United States)

    Milutinović, Milan M; Bogojeski, Jovana V; Klisurić, Olivera; Scheurer, Andreas; Elmroth, Sofi K C; Bugarčić, Živadin D

    2016-10-04

    A novel rhodium(iii) complex [Rh III (H 2 L tBu )Cl 3 ] (1) (H 2 L tBu = 2,6-bis(5-tert-butyl-1H-pyrazol-3-yl)pyridine) containing a pincer type, tridentate nitrogen-donor chelate system was synthesized. Single crystal X-ray structure analysis revealed that 1 crystallizes in the orthorhombic space group Pbcn with a = 20.7982(6), b = 10.8952(4), c = 10.9832(4) Å, V = 2488.80(15) Å 3 , and eight molecules in the unit cell. The rhodium center in the complex [Rh III (H 2 L tBu )Cl 3 ] (1) is coordinated in a slightly distorted octahedral geometry by the tridentate N,N,N-donor and three chloro ligands, adopting a mer arrangement with an essentially planar ligand skeleton. Due to the tridentate coordination of the N,N,N-donor, the central nitrogen atom N1 is located closer to the Rh III center. The reactivity of the synthesized complex toward small biomolecules (l-methionine (l-Met), guanosine-5'-monophosphate (5'-GMP), l-histidine (l-His) and glutathione (GSH)) and to a series of duplex DNAs and RNA was investigated. The order of reactivity of the studied small biomolecules is: 5'-GMP > GSH > l-Met > l-His. Duplex RNA reacts faster with the [Rh III (H 2 L tBu )Cl 3 ] complex than duplex DNA, while shorter duplex DNA (15mer GG) reacts faster compared with 22mer GG duplex DNA. In addition, a higher reactivity is achieved with a DNA duplex with a centrally located GG-sequence than with a 22GTG duplex DNA, in which the GG-sequence is separated by a T base. Furthermore, the interaction of this metal complex 1 with calf thymus DNA (CT-DNA) and bovine serum albumin (BSA) was examined by absorption (UV-Vis) and emission spectral studies (EthBr displacement studies). Overall, the studied complex exhibited good DNA and BSA interaction ability.

  4. Categorical Semantics for Functional Reactive Programming with Temporal Recursion and Corecursion

    Directory of Open Access Journals (Sweden)

    Wolfgang Jeltsch

    2014-06-01

    Full Text Available Functional reactive programming (FRP makes it possible to express temporal aspects of computations in a declarative way. Recently we developed two kinds of categorical models of FRP: abstract process categories (APCs and concrete process categories (CPCs. Furthermore we showed that APCs generalize CPCs. In this paper, we extend APCs with additional structure. This structure models recursion and corecursion operators that are related to time. We show that the resulting categorical models generalize those CPCs that impose an additional constraint on time scales. This constraint boils down to ruling out ω-supertasks, which are closely related to Zeno's paradox of Achilles and the tortoise.

  5. A miniaturized technique for assessing protein thermodynamics and function using fast determination of quantitative cysteine reactivity.

    Science.gov (United States)

    Isom, Daniel G; Marguet, Philippe R; Oas, Terrence G; Hellinga, Homme W

    2011-04-01

    Protein thermodynamic stability is a fundamental physical characteristic that determines biological function. Furthermore, alteration of thermodynamic stability by macromolecular interactions or biochemical modifications is a powerful tool for assessing the relationship between protein structure, stability, and biological function. High-throughput approaches for quantifying protein stability are beginning to emerge that enable thermodynamic measurements on small amounts of material, in short periods of time, and using readily accessible instrumentation. Here we present such a method, fast quantitative cysteine reactivity, which exploits the linkage between protein stability, sidechain protection by protein structure, and structural dynamics to characterize the thermodynamic and kinetic properties of proteins. In this approach, the reaction of a protected cysteine and thiol-reactive fluorogenic indicator is monitored over a gradient of temperatures after a short incubation time. These labeling data can be used to determine the midpoint of thermal unfolding, measure the temperature dependence of protein stability, quantify ligand-binding affinity, and, under certain conditions, estimate folding rate constants. Here, we demonstrate the fQCR method by characterizing these thermodynamic and kinetic properties for variants of Staphylococcal nuclease and E. coli ribose-binding protein engineered to contain single, protected cysteines. These straightforward, information-rich experiments are likely to find applications in protein engineering and functional genomics. Copyright © 2010 Wiley-Liss, Inc.

  6. Radiation induced functionalism of polyethylene and ground tire rubber for their reactive compatibility in thermoplastic elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Fainleib, A.; Grigoryeva, O. [Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, Kiev 02160 (Ukraine); Martinez B, G. [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados, Facultad de Quimica, Universidad Autonoma del Estado de Mexico, Km. 12 Carretera Toluca-Atlacomulco, San Cayetano 50200, Estado de Mexico (Mexico)], e-mail: fainleib@i.kiev.ua

    2009-07-01

    Reactive compatibility of recycled low-or high-density polyethylenes (LDPE and HDPE, respectively) and ground tire rubber (GTR) via chemical interactions of pre-functionalized components in their blend interface has been carried out. Polyethylene component was functionalized with maleic anhydride (MAH) as well as the rubber component was modified via functionalism with MAH or acrylamide using chemically or irradiation ({gamma} rays) induced grafting techniques. Additional coupling agents such as-p-phenylene diamine (PDA) and polyamide fiber (PAF, from fiber wastes) were used for some thermoplastic elastomer (TPE) producing. The grafting degree and molecular mass distribution of the chromatography analyses, respectively. TPE materials based on synthesized reactive polyethylenes and GTR as well as ethylene-propylene-diene monomer rubber were prepared by dynamic vulcanization of the rubber phase inside thermoplastic (polyethylene) matrix and their phase structure, and main properties have been studied using DSC, TGA, DMTA and mechanical testing. As a final result, the high performance TPE with improved mechanical properties has been developed. (Author)

  7. Executive Functioning, Cortisol Reactivity, and Symptoms of Psychopathology in Girls with Premature Adrenarche

    Science.gov (United States)

    Sontag-Padilla, Lisa M.; Dorn, Lorah D.; Tissot, Abbigail; Susman, Elizabeth J.; Beers, Sue R.; Rose, Susan R.

    2012-01-01

    The study examined the interaction between early maturational timing [as measured by premature adrenarche (PA)] and executive functioning and cortisol reactivity on symptoms of psychopathology. The study included 76 girls aged 6 through 8 years (mean = 7.50; SD = .85) with PA (n = 40) and on-time adrenarche (n = 36). Girls completed a battery of psychological and neuropsychological tests and blood sampling for cortisol. Parents completed the Child Behavior Checklist. Results demonstrated that girls with PA with lower levels of executive functioning had higher externalizing and anxious symptoms compared to other girls. Additionally, girls with PA who demonstrated increases in serum cortisol had higher externalizing symptoms than those with stable patterns. Finally, girls with PA who demonstrated decreases in cortisol reported higher depressive symptoms. Findings from this study provide important information concerning the impact of cognitive functioning and stress reactivity on adjustment to early maturation in girls with PA. Results of this research may inform screening and intervention efforts for girls who may be at greatest risk for emotional and behavioral problems as a result of early maturation. PMID:22293005

  8. Blood oxygen-level dependent functional assessment of cerebrovascular reactivity: Feasibility for intraoperative 3 Tesla MRI.

    Science.gov (United States)

    Fierstra, Jorn; Burkhardt, Jan-Karl; van Niftrik, Christiaan Hendrik Bas; Piccirelli, Marco; Pangalu, Athina; Kocian, Roman; Neidert, Marian Christoph; Valavanis, Antonios; Regli, Luca; Bozinov, Oliver

    2017-02-01

    To assess the feasibility of functional blood oxygen-level dependent (BOLD) MRI to evaluate intraoperative cerebrovascular reactivity (CVR) at 3 Tesla field strength. Ten consecutive neurosurgical subjects scheduled for a clinical intraoperative MRI examination were enrolled in this study. In addition to the clinical protocol a BOLD sequence was implemented with three cycles of 44 s apnea to calculate CVR values on a voxel-by-voxel basis throughout the brain. The CVR range was then color-coded and superimposed on an anatomical volume to create high spatial resolution CVR maps. Ten subjects (mean age 34.8 ± 13.4; 2 females) uneventfully underwent the intraoperative BOLD protocol, with no complications occurring. Whole-brain CVR for all subjects was (mean ± SD) 0.69 ± 0.42, whereas CVR was markedly higher for tumor subjects as compared to vascular subjects, 0.81 ± 0.44 versus 0.33 ± 0.10, respectively. Furthermore, color-coded functional maps could be robustly interpreted for a whole-brain assessment of CVR. We demonstrate that intraoperative BOLD MRI is feasible in creating functional maps to assess cerebrovascular reactivity throughout the brain in subjects undergoing a neurosurgical procedure. Magn Reson Med 77:806-813, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  9. Ammonia synthesis over a Ru(0001) surface studied by density functional calculations

    DEFF Research Database (Denmark)

    Logadottir, Ashildur; Nørskov, Jens Kehlet

    2003-01-01

    In this paper we present DFT studies of all the elementary steps in the synthesis of ammonia from gaseous hydrogen and nitrogen over a ruthenium crystal. The stability and configurations of intermediates in the ammonia synthesis over a Ru(0001) surface have been investigated, both over a flat...... surface and over a stepped surface. The calculations show that the step sites on the surface are much more reactive than the terrace sites. The DFT results are then used to study the mechanism of promotion by alkalies over the Ru(0001) and to determine the rate-determining step in the synthesis of ammonia...

  10. Synthesis, crystal structure and reactivity studies of iron complexes with pybox ligands

    KAUST Repository

    Chen, Tao; Yang, Limin; Gong, Dirong; Huang, Kuo-Wei

    2014-01-01

    Iron(II) complexes, [Fe(2,6-bis(4,4-dimethyl-1,3-oxazolin-2-yl)pyridine)Cl2] ((Fe(Me2-pybox)Cl2), 3) and [Fe(2,6-bis(4,4-diphenyl-1,3-oxazolin-2-yl)pyridine)Cl2] ((Fe(Ph2-pybox)Cl2), 4), have been synthesized and characterized by X-ray crystallographic analysis. Upon treatment of complex 3 with silver triflate and 4 with acetonitrile, [Fe(Me2-pybox)(CH3CN)OTf2] (5) and [Fe(Ph2-pybox)(CH3CN)2Cl][FeCl3] (6) were obtained, respectively. The bulkier phenyl substitutes were found not only to cause the elongation of the N-Fe bonds but also influence the reactivity of the Fe center.

  11. Synthesis, crystal structure and reactivity studies of iron complexes with pybox ligands

    KAUST Repository

    Chen, Tao

    2014-11-01

    Iron(II) complexes, [Fe(2,6-bis(4,4-dimethyl-1,3-oxazolin-2-yl)pyridine)Cl2] ((Fe(Me2-pybox)Cl2), 3) and [Fe(2,6-bis(4,4-diphenyl-1,3-oxazolin-2-yl)pyridine)Cl2] ((Fe(Ph2-pybox)Cl2), 4), have been synthesized and characterized by X-ray crystallographic analysis. Upon treatment of complex 3 with silver triflate and 4 with acetonitrile, [Fe(Me2-pybox)(CH3CN)OTf2] (5) and [Fe(Ph2-pybox)(CH3CN)2Cl][FeCl3] (6) were obtained, respectively. The bulkier phenyl substitutes were found not only to cause the elongation of the N-Fe bonds but also influence the reactivity of the Fe center.

  12. Density functional theory and surface reactivity study of bimetallic AgnYm (n+m = 10) clusters

    Science.gov (United States)

    Hussain, Riaz; Hussain, Abdullah Ijaz; Chatha, Shahzad Ali Shahid; Hussain, Riaz; Hanif, Usman; Ayub, Khurshid

    2018-06-01

    Density functional theory calculations have been performed on pure silver (Agn), yttrium (Ym) and bimetallic silver yttrium clusters AgnYm (n + m = 2-10) for reactivity descriptors in order to realize sites for nucleophilic and electrophilic attack. The reactivity descriptors of the clusters, studied as a function of cluster size and shape, reveal the presence of different type of reactive sites in a cluster. The size and shape of the pure silver, yttrium and bimetallic silver yttrium cluster (n = 2-10) strongly influences the number and position of active sites for an electrophilic and/or nucleophilic attack. The trends of reactivities through reactivity descriptors are confirmed through comparison with experimental data for CO binding with silver clusters. Moreover, the adsorption of CO on bimetallic silver yttrium clusters is also evaluated. The trends of binding energies support the reactivity descriptors values. Doping of pure cluster with the other element also influence the hardness, softness and chemical reactivity of the clusters. The softness increases as we increase the number of silver atoms in the cluster, whereas the hardness decreases. The chemical reactivity increases with silver doping whereas it decreases by increasing yttrium concentration. Silver atoms are nucleophilic in small clusters but changed to electrophilic in large clusters.

  13. Synthesis and characterization of carboxylic acid functionalized silicon nanoparticles

    Science.gov (United States)

    Shaner, Ted V.

    Silicon nanoparticles are of great interest in a great number of fields. Silicon nanoparticles show great promise particularly in the field of bioimaging. Carboxylic acid functionalized silicon nanoparticles have the ability to covalently bond to biomolecules through the conjugation of the carboxylic acid to an amine functionalized biomolecule. This thesis explores the synthesis of silicon nanoparticles functionalized by both carboxylic acids and alkenes and their carboxylic acid functionality. Also discussed is the characterization of the silicon nanoparticles by the use of x-ray spectroscopy. Finally, the nature of the Si-H bond that is observed on the surface of the silicon nanoparticles will be investigated using photoassisted exciton mediated hydrosilation reactions. The silicon nanoparticles are synthesized from both carboxylic acids and alkenes. However, the lack of solubility of diacids is a significant barrier to carboxylic acid functionalization by a mixture of monoacids and diacids. A synthesis route to overcome this obstacle is to synthesize silicon nanoparticles with terminal vinyl group. This terminal vinyl group is distal to the surface of the silicon nanoparticle. The conversion of the vinyl group to a carboxylic acid is accomplished by oxidative cleavage using ozonolysis. The carboxylic acid functionalized silicon nanoparticles were then successfully conjugated to amine functionalized DNA strand through an n-hydroxy succinimide ester activation step, which promotes the formation of the amide bond. Conjugation was characterized by TEM and polyacrylamide gel electrophoresis (PAGE). The PAGE results show that the silicon nanoparticle conjugates move slower through the polyacrylamide gel, resulting in a significant separation from the nonconjugated DNA. The silicon nanoparticles were then characterized by the use of x-ray absorption near edge spectroscopy (Xanes) and x-ray photoelectron spectroscopy (XPS) to investigate the bonding and chemical

  14. Synthesis and phase behavior of end-functionalized associating polymers

    Science.gov (United States)

    Wrue, Michelle H.

    We have explored polymer blend phase behavior in the presence of multiple hydrogen bonding end-groups. This work details the synthesis of functionalized polymers and their subsequent use in miscibility studies. The synthesis of end-functionalized hydrogen bonding polymers and the investigation of their physical properties and miscibility is presented. Mono-functional and telechelic ureidopyrimidinone (UPy) functionalized polymers were prepared by two main routes: post-polymerization functionalization (of commercially available or synthesized polymers); and polymerization of monomers using a functionalized initiator. UPy-functionalized polymers were prepared with a variety of polymer backbones including poly(ethylene oxide)s; poly(butadiene)s, poly(dimethyl siloxanxe)s; poly(styrene)s and poly(methyl methacrylate)s. The most successful route to polymers with UPy end-groups was atom transfer radical polymerization (ATRP) using a UPy-functionalized initiator, followed by atom transfer radical coupling (ATRC). The incorporation of ureidopyrimidinone end-groups was shown to affect the physical properties of the polymer backbone. Parent polymers that were liquids became viscous liquids or waxy solids upon UPy-functionalization of chain end. UPy-functionalization of a hydroxyl-terminated polybutadiene (HO-PB-OH) resulted in a waxy solid while the HO-PB-OH precursor was a viscous liquid. The thermal properties of functionalized polymers also differed from those of the unfunctionalized parent polymers. Hot-stage optical microscopy revealed that UPy-functionalized PEO displayed a depressed melting point relative to the analogous unfunctionalized precursor. Differential scanning calorimetry was also used to investigate the synthesized UPy-polymers. UPy-functionalized polystyrenes and poly(methyl methacrylate)s showed an increased T g compared to the equivalent homopolymer standards. This increased Tg was determined to be dependent upon the fraction of UPy groups present and

  15. Enzymatic synthesis of lignin-siloxane hybrid functional polymers.

    Science.gov (United States)

    Prasetyo, Endry Nugroho; Kudanga, Tukayi; Fischer, Roman; Eichinger, Reinhard; Nyanhongo, Gibson S; Guebitz, Georg M

    2012-02-01

    This study combines the properties of siloxanes and lignin polymers to produce hybrid functional polymers that can be used as adhesives, coating materials, and/or multifunctionalized thin-coating films. Lignin-silica hybrid copolymers were synthesized by using a sol-gel process. Laccases from Trametes hirsuta were used to oxidize lignosulphonates to enhance their reactivity towards siloxanes and then were incorporated into siloxane precursors undergoing a sol-gel process. In vitro copolymerization studies using pure lignin monomers with aminosilanes or ethoxytrimethylsilane and analysis by ²⁹Si NMR spectroscopy revealed hybrid products. Except for kraft lignin, an increase in lignin concentration positively affected the tensile strength in all samples. Similarly, the viscosity generally increased in all samples with increasing lignin concentration and also affected the curing time. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Amine Functionalization via Oxidative Photoredox Catalysis: Methodology Development and Complex Molecule Synthesis

    Science.gov (United States)

    2016-01-01

    Conspectus While the use of visible light to drive chemical reactivity is of high importance to the development of environmentally benign chemical transformations, the concomitant use of a stoichiometric electron donor or acceptor is often required to steer the desired redox behavior of these systems. The low-cost and ubiquity of tertiary amine bases has led to their widespread use as reductive additives in photoredox catalysis. Early use of trialkylamines in this context was focused on their role as reductive excited state quenchers of the photocatalyst, which in turn provides a more highly reducing catalytic intermediate. In this Account, we discuss some of the observations and thought processes that have led from our use of amines as reductive additives to their use as complex substrates and intermediates for natural product synthesis. Early attempts by our group to construct key carbon–carbon bonds via free-radical intermediates led to the observation that some trialkylamines readily behave as efficient hydrogen atom donors under redox-active photochemical conditions. In the wake of in-depth mechanistic studies published in the 1970s, 1980s and 1990s, this understanding has in turn allowed for a systematic approach to the design of a number of photochemical methodologies through rational tuning of the amine component. Minimization of the C–H donicity of the amine additive was found to promote desired C–C bond formation in a number of contexts, and subsequent elucidation of the amine’s redox fate has sparked a reevaluation of the amine’s role from that of reagent to that of substrate. The reactivity of tertiary amines in these photochemical systems is complex, and allows for a number of mechanistic possibilities that are not necessarily mutually exclusive. A variety of combinations of single-electron oxidation, C–H abstraction, deprotonation, and β-scission result in the formation of reactive intermediates such as α-amino radicals and iminium ions

  17. Platelet activation, function, and reactivity in atherosclerotic carotid artery stenosis: a systematic review of the literature.

    LENUS (Irish Health Repository)

    Kinsella, J A

    2012-09-27

    An important proportion of transient ischemic attack or ischemic stroke is attributable to moderate or severe (50-99%) atherosclerotic carotid stenosis or occlusion. Platelet biomarkers have the potential to improve our understanding of the pathogenesis of vascular events in this patient population. A detailed systematic review was performed to collate all available data on ex vivo platelet activation and platelet function\\/reactivity in patients with carotid stenosis. Two hundred thirteen potentially relevant articles were initially identified; 26 manuscripts met criteria for inclusion in this systematic review. There was no consistent evidence of clinically informative data from urinary or soluble blood markers of platelet activation in patients with symptomatic moderate or severe carotid stenosis who might be considered suitable for carotid intervention. Data from flow cytometry studies revealed evidence of excessive platelet activation in patients in the early, sub-acute, or late phases after transient ischemic attack or stroke in association with moderate or severe carotid stenosis and in asymptomatic moderate or severe carotid stenosis compared with controls. Furthermore, pilot data suggest that platelet activation may be increased in recently symptomatic than in asymptomatic severe carotid stenosis. Excessive platelet activation and platelet hyperreactivity may play a role in the pathogenesis of first or subsequent transient ischemic attack or stroke in patients with moderate or severe carotid stenosis. Larger longitudinal studies assessing platelet activation status with flow cytometry and platelet function\\/reactivity in symptomatic vs. asymptomatic carotid stenosis are warranted to improve our understanding of the mechanisms responsible for transient ischemic attack or stroke.

  18. Synthesis of self-assembled Ge nano crystals employing reactive RF sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez H, A. [Universidad Autonoma del Estado de Hidalgo, Escuela Superior de Apan, Calle Ejido de Chimalpa Tlalayote s/n, Col. Chimalpa, Apan, Hidalgo (Mexico); Hernandez H, L. A. [IPN, Escuela Superior de Fisica y Matematicas, San Pedro Zacatenco, 07730 Ciudad de Mexico (Mexico); Monroy, B. M.; Santana R, G. [UNAM, Instituto de Investigaciones en Materiales, Apdo. Postal 70-360, 04510 Ciudad de Mexico (Mexico); Santoyo S, J.; Gallardo H, S. [IPN, Centro de Investigacion y de Estudios Avanzados, Departamento de Fisica, Apdo. Postal 14740, 07300 Ciudad de Mexico (Mexico); Marquez H, A. [Universidad de Guanajuato, Campus Irapuato-Salamanca, Departamento de Ingenieria Agricola, Km. 9 Carretera Irapuato-Silao, 36500 Irapuato, Guanajuato (Mexico); Mani G, P. G.; Melendez L, M. [Universidad Autonoma de Ciudad Juarez, Instituto de Ingenieria y Tecnologia, Departamento de Fisica y Matematicas, 32310 Ciudad Juarez, Chihuahua (Mexico)

    2016-11-01

    This work presents the results of a simple methodology able to control crystal size, dispersion and spatial distribution of germanium nano crystals (Ge-NCs). It takes advantage of a self-assembled process taken place during the deposit of the system SiO{sub 2}/Ge/SiO{sub 2} by reactive RF sputtering. Nanoparticles formation is controlled mainly by the roughness of the first SiO{sub 2} layer buy the ulterior interaction of the interlayer with the top layer also play a role. Structural quality of germanium nano crystals increases with roughness and the interlayer thickness. The tetragonal phase of germanium is produced and its crystallographic quality improves with interlayer thickness and oxygen partial pressure. Room temperature photoluminescence emission without a post growth thermal annealing process indicates that our methodology produces a low density of non-radiative traps. The surface topography of SiO{sub 2} reference samples was carried out by atomic force microscopy. The crystallographic properties of the samples were studied by grazing incidence X-ray diffraction at 1.5 degrees carried out in a Siemens D-5000 system employing the Cu Kα wavelength. (Author)

  19. One-pot synthesis and electrochemical reactivity of carbon coated LiFePO4 spindles

    International Nuclear Information System (INIS)

    Yu Juanjuan; Hu Juncheng; Li Jinlin

    2012-01-01

    Highlights: ► Carbon coated LiFePO 4 spindles have been successfully synthesized via a novel supercritical method. ► The concentrations of lithium have an effect on the morphology of carbon coated LiFePO 4 . ► Amorphous carbon layer formed on the surface of LiFePO 4 by adding glucose. ► The carbon coating is responsible for the enhanced electrochemical performance. - Abstract: Spindle-like carbon coated LiFePO 4 (LiFePO 4 /C) composites have been successfully synthesized via a novel one-pot supercritical methanol method. The products were characterized by X-ray power diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). The particle size, morphology and electrochemical reactivity changed with the concentration of lithium and carbon source. A possible morphology evolution process was also proposed. The glucose not only facilitates the formation of single crystalline LiFePO 4 , but also gives an amorphous carbon layer on the surface LiFePO 4 spindles.

  20. Copolymerization of 4-Acetylphenyl Methacrylate with Ethyl Methacrylate: Synthesis, Characterization, Monomer Reactivity Ratios, and Thermal Properties

    Directory of Open Access Journals (Sweden)

    Gamze Barim

    2014-01-01

    Full Text Available Methacrylates have high glass transition temperature (Tg values and high thermal stability. A new methacrylate copolymer, poly(4-acetylphenyl methacrylate-co-ethyl methacrylate (APMA-co-EMA, was synthesized. The thermal behaviors of copolymers were investigated by differential scanning calorimetry and thermogravimetric analysis. They behaved as new single polymers with single Tg’s and the thermal stability of the copolymers increased with increasing 4-acetylphenyl methacrylate (APMA fraction, leading to the manufacture of copolymers with desired Tg values. Structure and composition of copolymers for a wide range of monomer feed ratios were determined by Fourier transform infrared (FT-IR and 1H-nuclear magnetic resonance (1H-NMR spectroscopic techniques. Copolymerization reactions were continued up to 40% conversions. The monomer reactivity ratios for copolymer system were determined by the Kelen-Tüdös (ra(APMA=0.81; rb(EMA=0.61 and extended Kelen-Tüdös (ra=0.77; rb=0.54 methods and a nonlinear least squares (ra=0.74; rb=0.49 method.

  1. Synthesis and characterization of functionalized methacrylates for coatings and biomedical applications

    Science.gov (United States)

    Shemper, Bianca Sadicoff

    The research presented in this dissertation involves the design of polymers for biomaterials and for coatings applications. The development of non-wettable, hard UV-curing, or reactive coatings is discussed. The biomaterials section involves the syntheses of linear and star-like polymers of the functionalized monomer poly(propylene glycol) monomethacrylate (PPGM) via atom transfer radical polymerization (ATRP) (Chapter II). Its copolymerization with a perfluoroalkyl ethyl methacrylate monomer (1H,1H,2H,2H-heptadecafluorodecyl methacrylate) and the syntheses of linear and star-like amphiphilic copolymers containing the fluorinated monomer and poly(ethyleneglycol) methyl ether methacrylate (MPEGMA) are discussed in Chapter III. The four-arm amphiphilic block copolymer obtained showed unique associative properties leading to micellization in selective solvents. Chapter IV includes research involving the design of films with low surface energy by incorporating fluorine into the polymer. The synthesis, characterization and polymerization of a perfluoroalkylether-substituted methacrylic acid (C8F7) are discussed, and the properties of coatings obtained after its photopolymerization on different substrates are evaluated to confirm formation of low-surface energy polymeric coatings. Subsequently, hard coatings based on methyl (alpha-hydroxymethyl)acrylate (MHMA) were prepared via photopolymerization using UV-light. Firstly, mechanistic investigations into the photopolymerization behavior of (alpha-hydroxymethyl)acrylates (RHMA's) are reported (Chapter V). RHMA derivatives were photopolymerized with various multifunctional acrylates and methacrylates and the effect of crosslinker type and degree of functionality on photopolymerization rates and conversions was investigated. Then, in Chapter VI the synthesis of a series of new crosslinkers is described and their photopolymerization kinetics was investigated in bulk. The effect of these novel crosslinkers on the

  2. Organic grape juice intake improves functional capillary density and postocclusive reactive hyperemia in triathletes

    Directory of Open Access Journals (Sweden)

    Mariana Correa Gonçalves

    2011-01-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the effect of organic grape juice intake on biochemical variables and microcirculatory parameters in triathlon athletes. INTRODUCTION: The physiological stress that is imposed by a strenuous sport, such as a triathlon, together with an insufficient amount of antioxidants in the diet may cause oxidative imbalance and endothelial dysfunction. METHODS: Ten adult male triathletes participated in this study. A venous blood sample was drawn before (baseline and after 20 days of organic grape juice intake (300 ml/day. Serum insulin, plasma glucose and uric acid levels, the total content of polyphenols, and the erythrocyte superoxide dismutase activity were determined. The functional microcirculatory parameters (the functional capillary density, red blood cell velocity at baseline and peak levels, and time required to reach the peak red blood cell velocity during postocclusive reactive hyperemia after a one-min arterial occlusion were evaluated using nailfold videocapillaroscopy. RESULTS: Compared with baseline levels, the peak levels of serum insulin ( p = 0.02, plasma uric acid ( p = 0.04, the functional capillary density ( p = 0.003, and the red blood cell velocity (p < 0.001 increased, whereas the plasma glucose level (p,0.001, erythrocyte superoxide dismutase activity ( p = 0.04, and time required to reach red blood cell velocity during postocclusive reactive hyperemia ( p = 0.04 decreased after organic grape juice intake. CONCLUSION: Our data showed that organic grape juice intake improved glucose homeostasis, antioxidant capacity, and microvascular function, which may be due to its high concentration of polyphenols. These results indicate that organic grape juice has a positive effect in endurance athletes.

  3. Plasma synthesis of titanium nitride, carbide and carbonitride nanoparticles by means of reactive anodic arc evaporation from solid titanium

    International Nuclear Information System (INIS)

    Kiesler, D.; Bastuck, T.; Theissmann, R.; Kruis, F. E.

    2015-01-01

    Plasma methods using the direct evaporation of a transition metal are well suited for the cost-efficient production of ceramic nanoparticles. In this paper, we report on the development of a simple setup for the production of titanium-ceramics by reactive anodic arc evaporation and the characterization of the aerosol as well as the nanopowder. It is the first report on TiC X N 1 − X synthesis in a simple anodic arc plasma. By means of extensive variations of the gas composition, it is shown that the composition of the particles can be tuned from titanium nitride over a titanium carbonitride phase (TiC X N 1 − X ) to titanium carbide as proven by XRD data. The composition of the plasma gas especially a very low concentration of hydrocarbons around 0.2 % of the total plasma gas is crucial to tune the composition and to avoid the formation of free carbon. Examination of the particles by HR-TEM shows that the material consists mostly of cubic single crystalline particles with mean sizes between 8 and 27 nm

  4. Manganese Silylene Hydride Complexes: Synthesis and Reactivity with Ethylene to Afford Silene Hydride Complexes.

    Science.gov (United States)

    Price, Jeffrey S; Emslie, David J H; Britten, James F

    2017-05-22

    Reaction of the ethylene hydride complex trans-[(dmpe) 2 MnH(C 2 H 4 )] (1) with Et 2 SiH 2 at 20 °C afforded the silylene hydride [(dmpe) 2 MnH(=SiEt 2 )] (2 a) as the trans-isomer. By contrast, reaction of 1 with Ph 2 SiH 2 at 60 °C afforded [(dmpe) 2 MnH(=SiPh 2 )] (2 b) as a mixture of the cis (major) and trans (minor) isomers, featuring a Mn-H-Si interaction in the former. The reaction to form 2 b also yielded [(dmpe) 2 MnH 2 (SiHPh 2 )] (3 b); [(dmpe) 2 MnH 2 (SiHR 2 )] (R=Et (3 a) and Ph (3 b)) were accessed cleanly by reaction of 2 a and 2 b with H 2 , and the analogous reactions with D 2 afforded [(dmpe) 2 MnD 2 (SiHR 2 )] exclusively. Both 2 a and 2 b engaged in unique reactivity with ethylene, generating the silene hydride complexes cis-[(dmpe) 2 MnH(R 2 Si=CHMe)] (R=Et (4 a), Ph (4 b)). Compounds trans-2 a, cis-2 b, 3 b, and 4 b were crystallographically characterized, and bonding in 2 a, 2 b, 4 a, and 4 b was probed computationally. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Synthesis of tantalum carbide and nitride nanoparticles using a reactive mesoporous template for electrochemical hydrogen evolution

    KAUST Repository

    Alhajri, Nawal Saad; Yoshida, Hiroshi; Anjum, Dalaver H.; Garcia Esparza, Angel T.; Kubota, Jun; Domen, Kazunari; Takanabe, Kazuhiro

    2013-01-01

    Tantalum carbide and nitride nanocrystals were prepared through the reaction of a tantalum precursor with mesoporous graphitic (mpg)-C 3N4. The effects of the reaction temperature, the ratio of the Ta precursor to the reactive template (mpg-C3N4), and the selection of the carrier gas (Ar, N2 and NH3) on the resultant crystal phases and structures were investigated. The produced samples were characterized using powder X-ray diffraction (XRD), CHN elemental analyses, thermogravimetric analyses (TGA), nitrogen sorption, a temperature-programmed reaction with mass spectroscopy (MS), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The results indicate that the different tantalum phases with cubic structure, TaN, Ta2CN, and TaC, can be formed under a flow of nitrogen when formed at different temperatures. The Ta3N5 phase with a Ta5+ oxidation state was solely obtained at 1023 K under a flow of ammonia, which gasified the C 3N4 template and was confirmed by detecting the decomposed gaseous products via MS. Significantly, the formation of TaC, Ta2CN, and TaN can be controlled by altering the weight ratio of the C 3N4 template relative to the Ta precursor at 1573 K under a flow of nitrogen. The high C3N4/Ta precursor ratio generally resulted in high carbide content rather than a nitride one, consistent with the role of mpg-C3N4 as a carbon source. Electrochemical measurements revealed that the synthesized nanomaterials were consistently able to produce hydrogen under acidic conditions (pH 1). The obtained Tafel slope indicates that the rate-determining step is the Volmer discharge step, which is consistent with adsorbed hydrogen being weakly bound to the surface during electrocatalysis. © 2013 The Royal Society of Chemistry.

  6. Reactivity of a Carbon-Supported Single-Site Molybdenum Dioxo Catalyst for Biodiesel Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Mouat, Aidan R.; Lohr, Tracy L.; Wegener, Evan C.; Miller, Jeffrey T.; Delferro, Massimiliano; Stair, Peter C.; Marks, Tobin J.

    2016-08-23

    A single-site molybdenum dioxo catalyst, (Oc)2Mo(=O)2@C, was prepared via direct grafting of MoO2Cl2(dme) (dme = 1,2-dimethoxyethane) on high-surface- area activated carbon. The physicochemical and chemical properties of this catalyst were fully characterized by N2 physisorption, ICP-AES/OES, PXRD, STEM, XPS, XAS, temperature-programmed reduction with H2 (TPR-H2), and temperature-programmed NH3 desorption (TPD-NH3). The single-site nature of the Mo species is corroborated by XPS and TPR-H2 data, and it exhibits the lowest reported MoOx Tmax of reduction reported to date, suggesting a highly reactive MoVI center. (Oc)2Mo(=O)2@C catalyzes the transesterification of a variety of esters and triglycerides with ethanol, exhibiting high activity at moderate temperatures (60-90 °C) and with negligible deactivation. (Oc)2Mo(=O)2@C is resistant to water and can be recycled at least three times with no loss of activity. The transesterification reaction is determined experimentally to be first order in [ethanol] and first order in [Mo] with ΔH = 10.5(8) kcal mol-1 and ΔS = -32(2) eu. The low energy of activation is consistent with the moderate conditions needed to achieve rapid turnover. This highly active carbon-supported single-site molybdenum dioxo species is thus an efficient, robust, and lowcost catalyst with significant potential for transesterification processes.

  7. Cardiovascular Reactivity During Marital Conflict in Laboratory and Naturalistic Settings: Differential Associations with Relationship and Individual Functioning Across Contexts.

    Science.gov (United States)

    Baucom, Brian R W; Baucom, Katherine J W; Hogan, Jasara N; Crenshaw, Alexander O; Bourne, Stacia V; Crowell, Sheila E; Georgiou, Panayiotis; Goodwin, Matthew S

    2018-03-25

    Cardiovascular reactivity during spousal conflict is considered to be one of the main pathways for relationship distress to impact physical, mental, and relationship health. However, the magnitude of association between cardiovascular reactivity during laboratory marital conflict and relationship functioning is small and inconsistent given the scope of its importance in theoretical models of intimate relationships. This study tests the possibility that cardiovascular data collected in laboratory settings downwardly bias the magnitude of these associations when compared to measures obtained in naturalistic settings. Ambulatory cardiovascular reactivity data were collected from 20 couples during two relationship conflicts in a research laboratory, two planned relationship conflicts at couples' homes, and two spontaneous relationship conflicts during couples' daily lives. Associations between self-report measures of relationship functioning, individual functioning, and cardiovascular reactivity across settings are tested using multilevel models. Cardiovascular reactivity was significantly larger during planned and spontaneous relationship conflicts in naturalistic settings than during planned relationship conflicts in the laboratory. Similarly, associations with relationship and individual functioning variables were statistically significantly larger for cardiovascular data collected in naturalistic settings than the same data collected in the laboratory. Our findings suggest that cardiovascular reactivity during spousal conflict in naturalistic settings is statistically significantly different from that elicited in laboratory settings both in magnitude and in the pattern of associations with a wide range of inter- and intrapersonal variables. These differences in findings across laboratory and naturalistic physiological responses highlight the value of testing physiological phenomena across interaction contexts in romantic relationships. © 2018 Family Process

  8. The Synthesis, Characterization and Reactivity of a Series of Ruthenium N-triphos Ph Complexes.

    Science.gov (United States)

    Phanopoulos, Andreas; Long, Nicholas; Miller, Philip

    2015-04-10

    Herein we report the synthesis of a tridentate phosphine ligand N(CH2PPh2)3 (N-triphos(Ph)) (1) via a phosphorus based Mannich reaction of the hydroxylmethylene phosphine precursor with ammonia in methanol under a nitrogen atmosphere. The N-triphos(Ph) ligand precipitates from the solution after approximately 1 hr of reflux and can be isolated analytically pure via simple cannula filtration procedure under nitrogen. Reaction of the N-triphos(Ph) ligand with [Ru3(CO)12] under reflux affords a deep red solution that show evolution of CO gas on ligand complexation. Orange crystals of the complex [Ru(CO)2{N(CH2PPh2)3}-κ(3)P] (2) were isolated on cooling to RT. The (31)P{(1)H} NMR spectrum showed a characteristic single peak at lower frequency compared to the free ligand. Reaction of a toluene solution of complex 2 with oxygen resulted in the instantaneous precipitation of the carbonate complex [Ru(CO3)(CO){N(CH2PPh2)3}-κ(3)P] (3) as an air stable orange solid. Subsequent hydrogenation of 3 under 15 bar of hydrogen in a high-pressure reactor gave the dihydride complex [RuH2(CO){N(CH2PPh2)3}-κ(3)P] (4), which was fully characterized by X-ray crystallography and NMR spectroscopy. Complexes 3 and 4 are potentially useful catalyst precursors for a range of hydrogenation reactions, including biomass-derived products such as levulinic acid (LA). Complex 4 was found to cleanly react with LA in the presence of the proton source additive NH4PF6 to give [Ru(CO){N(CH2PPh2)3}-κ(3)P{CH3CO(CH2)2CO2H}-κ(2)O](PF6) (6).

  9. Cardiorespiratory fitness, pulmonary function and C-reactive protein levels in nonsmoking individuals with diabetes

    International Nuclear Information System (INIS)

    Francisco, C.O.; Catai, A.M.; Moura-Tonello, S.C.G.; Lopes, S.L.B.; Benze, B.G.; Del Vale, A.M.; Leal, A.M.O.

    2014-01-01

    The objective of this study was to evaluate cardiorespiratory fitness and pulmonary function and the relationship with metabolic variables and C-reactive protein (CRP) plasma levels in individuals with diabetes mellitus (DM). Nineteen men with diabetes and 19 age- and gender-matched control subjects were studied. All individuals were given incremental cardiopulmonary exercise and pulmonary function tests. In the exercise test, maximal workload (158.3±22.3 vs 135.1±25.2, P=0.005), peak heart rate (HR peak : 149±12 vs 139±10, P=0.009), peak oxygen uptake (VO 2peak : 24.2±3.2 vs 18.9±2.8, P<0.001), and anaerobic threshold (VO 2VT : 14.1±3.4 vs 12.2±2.2, P=0.04) were significantly lower in individuals with diabetes than in control subjects. Pulmonary function test parameters, blood pressure, lipid profile (triglycerides, HDL, LDL, and total cholesterol), and CRP plasma levels were not different in control subjects and individuals with DM. No correlations were observed between hemoglobin A1C (HbA1c), CRP and pulmonary function test and cardiopulmonary exercise test performance. In conclusion, the results demonstrate that nonsmoking individuals with DM have decreased cardiorespiratory fitness that is not correlated with resting pulmonary function parameters, HbA1c, and CRP plasma levels

  10. Cardiorespiratory fitness, pulmonary function and C-reactive protein levels in nonsmoking individuals with diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Francisco, C.O.; Catai, A.M.; Moura-Tonello, S.C.G. [Universidade Federal de São Carlos, Departamento de Fisioterapia, São Carlos, SP, Brasil, Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, SP (Brazil); Lopes, S.L.B. [Universidade Federal de São Carlos, Departamento de Medicina, São Carlos, SP, Brasil, Departamento de Medicina, Universidade Federal de São Carlos, São Carlos, SP (Brazil); Benze, B.G. [Universidade Federal de São Carlos, Departamento de Estatística, São Carlos, SP, Brasil, Departamento de Estatística, Universidade Federal de São Carlos, São Carlos, SP (Brazil); Del Vale, A.M.; Leal, A.M.O. [Universidade Federal de São Carlos, Departamento de Medicina, São Carlos, SP, Brasil, Departamento de Medicina, Universidade Federal de São Carlos, São Carlos, SP (Brazil)

    2014-04-15

    The objective of this study was to evaluate cardiorespiratory fitness and pulmonary function and the relationship with metabolic variables and C-reactive protein (CRP) plasma levels in individuals with diabetes mellitus (DM). Nineteen men with diabetes and 19 age- and gender-matched control subjects were studied. All individuals were given incremental cardiopulmonary exercise and pulmonary function tests. In the exercise test, maximal workload (158.3±22.3 vs 135.1±25.2, P=0.005), peak heart rate (HR{sub peak}: 149±12 vs 139±10, P=0.009), peak oxygen uptake (VO{sub 2peak}: 24.2±3.2 vs 18.9±2.8, P<0.001), and anaerobic threshold (VO{sub 2VT}: 14.1±3.4 vs 12.2±2.2, P=0.04) were significantly lower in individuals with diabetes than in control subjects. Pulmonary function test parameters, blood pressure, lipid profile (triglycerides, HDL, LDL, and total cholesterol), and CRP plasma levels were not different in control subjects and individuals with DM. No correlations were observed between hemoglobin A1C (HbA1c), CRP and pulmonary function test and cardiopulmonary exercise test performance. In conclusion, the results demonstrate that nonsmoking individuals with DM have decreased cardiorespiratory fitness that is not correlated with resting pulmonary function parameters, HbA1c, and CRP plasma levels.

  11. Revisiting the chemical reactivity indices as the state function derivatives. The role of classical chemical hardness

    Energy Technology Data Exchange (ETDEWEB)

    Malek, Ali; Balawender, Robert, E-mail: rbalawender@ichf.edu.pl [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, PL-01-224 Warsaw (Poland)

    2015-02-07

    The chemical reactivity indices as the equilibrium state-function derivatives are revisited. They are obtained in terms of the central moments (fluctuation formulas). To analyze the role of the chemical hardness introduced by Pearson [J. Am. Chem. Soc. 105, 7512 (1983)], the relations between the derivatives up to the third-order and the central moments are obtained. As shown, the chemical hardness and the chemical potential are really the principal indices of the chemical reactivity theory. It is clear from the results presented here that the chemical hardness is not the derivative of the Mulliken chemical potential (this means also not the second derivative of the energy at zero-temperature limit). The conventional quadratic dependence of energy, observed at finite temperature, reduces to linear dependence on the electron number at zero-temperature limit. The chemical hardness plays a double role in the admixture of ionic states to the reference neutral state energy: it determines the amplitude of the admixture and regulates the damping of its thermal factor.

  12. Revisiting the chemical reactivity indices as the state function derivatives. The role of classical chemical hardness

    International Nuclear Information System (INIS)

    Malek, Ali; Balawender, Robert

    2015-01-01

    The chemical reactivity indices as the equilibrium state-function derivatives are revisited. They are obtained in terms of the central moments (fluctuation formulas). To analyze the role of the chemical hardness introduced by Pearson [J. Am. Chem. Soc. 105, 7512 (1983)], the relations between the derivatives up to the third-order and the central moments are obtained. As shown, the chemical hardness and the chemical potential are really the principal indices of the chemical reactivity theory. It is clear from the results presented here that the chemical hardness is not the derivative of the Mulliken chemical potential (this means also not the second derivative of the energy at zero-temperature limit). The conventional quadratic dependence of energy, observed at finite temperature, reduces to linear dependence on the electron number at zero-temperature limit. The chemical hardness plays a double role in the admixture of ionic states to the reference neutral state energy: it determines the amplitude of the admixture and regulates the damping of its thermal factor

  13. Superhydrophobic Thin Films Fabricated by Reactive Layer-by-Layer Assembly of Azlactone-Functionalized Polymers.

    Science.gov (United States)

    Buck, Maren E; Schwartz, Sarina C; Lynn, David M

    2010-09-11

    We report an approach to the fabrication of superhydrophobic thin films that is based on the 'reactive' layer-by-layer assembly of azlactone-containing polymer multilayers. We demonstrate that films fabricated from alternating layers of the azlactone functionalized polymer poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) and poly(ethyleneimine) (PEI) exhibit micro- and nanoscale surface features that result in water contact angles in excess of 150º. Our results reveal that the formation of these surface features is (i) dependent upon film thickness (i.e., the number of layers of PEI and PVDMA deposited) and (ii) that it is influenced strongly by the presence (or absence) of cyclic azlactone-functionalized oligomers that can form upon storage of the 2-vinyl-4,4-dimethylazlactone (VDMA) used to synthesize PVDMA. For example, films fabricated using polymers synthesized in the presence of these oligomers exhibited rough, textured surfaces and superhydrophobic behavior (i.e., advancing contact angles in excess of 150º). In contrast, films fabricated from PVDMA polymerized in the absence of this oligomer (e.g., using freshly distilled monomer) were smooth and only moderately hydrophobic (i.e., advancing contact angles of ~75º). The addition of authentic, independently synthesized oligomer to samples of distilled VDMA at specified and controlled concentrations permitted reproducible fabrication of superhydrophobic thin films on the surfaces of a variety of different substrates. The surfaces of these films were demonstrated to be superhydrophobic immediately after fabrication, but they became hydrophilic after exposure to water for six days. Additional experiments demonstrated that it was possible to stabilize and prolong the superhydrophobic properties of these films (e.g., advancing contact angles in excess of 150° even after complete submersion in water for at least six weeks) by exploiting the reactivity of residual azlactones to functionalize the surfaces of the films

  14. Template-mediated synthesis and bio-functionalization of flexible lignin-based nanotubes and nanowires

    Science.gov (United States)

    Caicedo, Hector M.; Dempere, Luisa A.; Vermerris, Wilfred

    2012-03-01

    Limitations of cylindrical carbon nanotubes based on the buckminsterfullerene structure as delivery vehicles for therapeutic agents include their chemical inertness, sharp edges and toxicological concerns. As an alternative, we have developed lignin-based nanotubes synthesized in a sacrificial template of commercially available alumina membranes. Lignin is a complex phenolic plant cell wall polymer that is generated as a waste product from paper mills and biorefineries that process lignocellulosic biomass into fuels and chemicals. We covalently linked isolated lignin to the inner walls of activated alumina membranes and then added layers of dehydrogenation polymer onto this base layer via a peroxidase-catalyzed reaction. By using phenolic monomers displaying different reactivities, we were able to change the thickness of the polymer layer deposited within the pores, resulting in the synthesis of nanotubes with a wall thickness of approximately 15 nm or nanowires with a nominal diameter of 200 nm. These novel nanotubes are flexible and can be bio-functionalized easily and specifically, as shown by in vitro assays with biotin and Concanavalin A. Together with their intrinsic optical properties, which can also be varied as a function of their chemical composition, these lignin-based nanotubes are expected to enable a variety of new applications including as delivery systems that can be easily localized and imaged after uptake by living cells.

  15. Template-mediated synthesis and bio-functionalization of flexible lignin-based nanotubes and nanowires

    International Nuclear Information System (INIS)

    Caicedo, Hector M; Vermerris, Wilfred; Dempere, Luisa A

    2012-01-01

    Limitations of cylindrical carbon nanotubes based on the buckminsterfullerene structure as delivery vehicles for therapeutic agents include their chemical inertness, sharp edges and toxicological concerns. As an alternative, we have developed lignin-based nanotubes synthesized in a sacrificial template of commercially available alumina membranes. Lignin is a complex phenolic plant cell wall polymer that is generated as a waste product from paper mills and biorefineries that process lignocellulosic biomass into fuels and chemicals. We covalently linked isolated lignin to the inner walls of activated alumina membranes and then added layers of dehydrogenation polymer onto this base layer via a peroxidase-catalyzed reaction. By using phenolic monomers displaying different reactivities, we were able to change the thickness of the polymer layer deposited within the pores, resulting in the synthesis of nanotubes with a wall thickness of approximately 15 nm or nanowires with a nominal diameter of 200 nm. These novel nanotubes are flexible and can be bio-functionalized easily and specifically, as shown by in vitro assays with biotin and Concanavalin A. Together with their intrinsic optical properties, which can also be varied as a function of their chemical composition, these lignin-based nanotubes are expected to enable a variety of new applications including as delivery systems that can be easily localized and imaged after uptake by living cells. (paper)

  16. Path integrals for electronic densities, reactivity indices, and localization functions in quantum systems.

    Science.gov (United States)

    Putz, Mihai V

    2009-11-10

    The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr's quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions - all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems.

  17. Path Integrals for Electronic Densities, Reactivity Indices, and Localization Functions in Quantum Systems

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2009-11-01

    Full Text Available The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr’s quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions – all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving many-electronic systems.

  18. Functional cloning of a gp100-reactive T-cell receptor from vitiligo patient skin

    NARCIS (Netherlands)

    Klarquist, Jared; Eby, Jonathan M.; Henning, Steven W.; Li, Mingli; Wainwright, Derek A.; Westerhof, Wiete; Luiten, Rosalie M.; Nishimura, Michael I.; Le Poole, I. Caroline

    2016-01-01

    We isolated gp100-reactive T cells from perilesional skin of a patient with progressive vitiligo with superior reactivity toward melanoma cells compared with tumor-infiltrating lymphocytes 1520, a melanoma-derived T-cell line reactive with the same cognate peptide. After dimer enrichment and limited

  19. Steric modulation of coordination number and reactivity in the synthesis of lanthanoid(III) formamidinates.

    Science.gov (United States)

    Cole, Marcus L; Deacon, Glen B; Forsyth, Craig M; Junk, Peter C; Konstas, Kristina; Wang, Jun

    2007-01-01

    Reactions of a range of the readily prepared and sterically tunable N,N'-bis(aryl)formamidines with lanthanoid metals and bis(pentafluorophenyl)mercury (Hg(C6F5)2) in THF have given an extensive series of tris(formamidinato)lanthanoid(III) complexes, [Ln(Form)3(thf)n], namely [La(o-TolForm)3(thf)2], [Er(o-TolForm)3(thf)], [La(XylForm)3(thf)], [Sm(XylForm)3], [Ln(MesForm)3] (Ln=La, Nd, Sm and Yb), [Ln(EtForm)3] (Ln=La, Nd, Sm, Ho and Yb), and [Ln(o-PhPhForm)3] (Ln=La, Nd, Sm and Er). [For an explanation of the N,N'-bis(aryl)formamidinate abbreviations used see Scheme 1.] Analogous attempts to prepare [Yb(o-TolForm)3] by this method invariably yielded [{Yb(o-TolForm)2(mu-OH)(thf)}2], but [Yb(o-TolForm)3] was isolated from a metathesis synthesis. X-ray crystal structures show exclusively N,N'-chelation of the Form ligands and a gradation in coordination number with Ln3+ size and with Form ligand bulk. The largest ligands, MesForm, EtForm and o-PhPhForm give solely homoleptic complexes, the first two being six-coordinate, the last having an eta1-pi-Ar--Ln interaction. Reaction of lanthanoid elements and Hg(C6F5)2 with the still bulkier DippFormH in THF resulted in C--F activation and formation of [Ln(DippForm)2F(thf)] (Ln=La, Ce, Nd, Sm and Tm) complexes, and o-HC6F4O(CH2)4DippForm in which the formamidine is functionalised by a ring-opened THF that has trapped tetrafluorobenzyne. Analogous reactions between Ln metals, Hg(o-HC6F4)2 and DippFormH yielded [Ln(DippForm)2F(thf)] (Ln=La, Sm and Nd) and 3,4,5-F3C6H2O(CH2)4DippForm. X-ray crystal structures of the heteroleptic fluorides show six-coordinate monomers with two chelating DippForm ligands and cisoid fluoride and THF ligands in a trigonal prismatic array. The organometallic species [Ln(DippForm)2(C[triple chemical bond]CPh)(thf)] (Ln=Nd or Sm) are obtained from reaction of Nd metal, bis(phenylethynyl)mercury (Hg(C[triple chemical bond]CPh)2) and DippFormH, and the oxidation of [Sm(DippForm)2(thf)2] with Hg

  20. Reactive bay functionalized perylene monoimide-polyhedral oligomeric silsesquioxane organic electronic dye

    Directory of Open Access Journals (Sweden)

    Wangatia Lodrick Makokha

    2015-03-01

    Full Text Available Aggregation-induced quenching is particularly detrimental in perylene diimides, which are characterized by a near-unity fluorescence quantum yield in solution but are far less emissive in the solid state. Previously, perylene diimide has been improved by linking it to the inorganic cage of polyhedral oligomeric silsesquioxanes. As a further study on perylene diimidepolyhedral oligomeric silsesquioxanes, we report on a double functionalized molecular structure, which can be used for substitution at the bay area and as a side group in other materials. Typical solution absorption and emission features of the perylene diimide fragment have been observed in this new reactive perylene diimide-polyhedral oligomeric silsesquioxane. Moreover, reduced stacking during aggregation and spherical particles exhibiting solid fluorescence have been obtained. Organic semiconducting material with enhanced solid state photophysical properties, like solid fluorescence is a subject of great interest owing to its possible high-tech applications in optoelectronic devices.

  1. α-Oxo-Ketenimines from Isocyanides and α-Haloketones: Synthesis and Divergent Reactivity.

    Science.gov (United States)

    Mamboury, Mathias; Wang, Qian; Zhu, Jieping

    2017-09-18

    The palladium-catalyzed reaction of α-haloketones with isocyanides afforded α-oxo-ketenimines through β-hydride elimination of the β-oxo-imidoyl palladium intermediates. Reaction of these relatively stable α-oxo-ketenimines with nucleophiles such as hydrazines, hydrazoic acid, amines, and Grignard reagent afforded pyrazoles, tetrazole, β-keto amidines, and enaminone, respectively, with high chemoselectivity. Whereas amines attack exclusively on the ketenimine functions, the formal [3+2] cycloaddition between N-monosubstituted hydrazines and α-oxo-ketenimines was initiated by nucleophilic addition to the carbonyl group. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Synthesis, Structure, and Reactivity ofbis(1,2,4-tri-t-butylcyclopentadienyl) Complexes of Cerium

    Energy Technology Data Exchange (ETDEWEB)

    Werkema, Evan L. [Univ. of California, Berkeley, CA (United States)

    2005-05-19

    fluorobenzenes, permittingthe synthesis of specific Cp'2CeC6HxF5-x complexes. The crystal structureof Cp'2CeC6F5 is presented. The hydride and the metallacycle react withfluoromethanes, CH4-xFx, x = 1-3, through postulated Cp'2CeCH3-xFx intermediates to generate Cp'2CeF and other products. The other products,CH4, tri-t-butylbenzenes, tri-t-butylfluorobenzenes, and a presumedmetallocene cerium fluoride with one Cp' and one (Me2EtC)(Me3C)2C5H2 ligand, suggest a decomposition pathway for Cp'2CeCH3-xFx , x = 1-3, thatinvolves carbenes or carbenoids, which are trapped. The hydridepolymerizes ethylene, but hydrogenates other olefins. The metallacycleactivates C-H bonds in olefins and aromatics to generate new complexeswith Ce-C bonds. The hydride reacts with one equivalent of CO in pentaneto generate (Cp'2Ce)2CH2O, whose crystal structure shows the presence ofa bridging dianionic formaldehyde ligand. (Cp'2Ce)2CH2O reacts H2 to givethe hydride and Cp'2CeOMe, or with a mixture of H2 and CO to generate Cp'2CeOMe exclusively. (Cp'2Ce)2CH2O or the hydride can react with anadditional equivalent of CO to generate dimeric enediolate,(Cp'2CeCHO)2.

  3. Objective Provision Trees of Reactivity Control Safety Function for Sodium-Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Kang, Bongsuk; Yang, Huichang; Suh, Namduk

    2014-01-01

    The purpose of this OPT is first to assure the DiD design during the licensing of Sf, but it will also contribute in evaluating the completeness of regulatory requirements under development by Korea Institute of Nuclear Safety (KINS). Based on the definition of Defense-in-Depth (DiD) levels and safety functions for KALIMER Sodium-Cooled Fast Reactor (SFR), suggested in the reference and, Objective Provision Trees (OPTs) of reactivity control function for level 1, 2, 3 and 4 DiD were developed and suggested in this paper. The challenges and mechanisms and provisions were briefly explained in this paper. Comparing the mechanisms and provisions with the requirements will contribute in identifying the missing requirements. Since the design of Prototype Gen-IV Sf (PGSFR) is not mature yet, the OPT is developed for KALIMER design. Developed level 1 to 4 OPTs in this study can be used for the identification of potential design vulnerabilities. When detailed identification of provisions in terms of design features were achieved through the next step of this study, it can contribute to the establishment of defense-in-depth evaluation frame for the regulatory reviews for the licensing process. In the next stage of this study, other safety function will be researched and findings can be suggested as recommendations for the safety improvement

  4. Reactive Oxygen Species Regulate the Inflammatory Function of NKT Cells through Promyelocytic Leukemia Zinc Finger.

    Science.gov (United States)

    Kim, Yeung-Hyen; Kumar, Ajay; Chang, Cheong-Hee; Pyaram, Kalyani

    2017-11-15

    Reactive oxygen species (ROS) are byproducts of aerobic metabolism and contribute to both physiological and pathological conditions as second messengers. ROS are essential for activation of T cells, but how ROS influence NKT cells is unknown. In the present study, we investigated the role of ROS in NKT cell function. We found that NKT cells, but not CD4 or CD8 T cells, have dramatically high ROS in the spleen and liver of mice but not in the thymus or adipose tissues. Accordingly, ROS-high NKT cells exhibited increased susceptibility and apoptotic cell death with oxidative stress. High ROS in the peripheral NKT cells were primarily produced by NADPH oxidases and not mitochondria. We observed that sorted ROS-high NKT cells were enriched in NKT1 and NKT17 cells, whereas NKT2 cells were dominant in ROS-low cells. Furthermore, treatment of NKT cells with antioxidants led to reduced frequencies of IFN-γ- and IL-17-expressing cells, indicating that ROS play a role in regulating the inflammatory function of NKT cells. The transcription factor promyelocytic leukemia zinc finger (PLZF) seemed to control the ROS levels. NKT cells from adipose tissues that do not express PLZF and those from PLZF haplodeficient mice have low ROS. Conversely, ROS were highly elevated in CD4 T cells from mice ectopically expressing PLZF. Thus, our findings demonstrate that PLZF controls ROS levels, which in turn governs the inflammatory function of NKT cells. Copyright © 2017 by The American Association of Immunologists, Inc.

  5. Objective Provision Trees of Reactivity Control Safety Function for Sodium-Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Bongsuk; Yang, Huichang [TUEV Rheinland Korea Ltd., Seoul (Korea, Republic of); Suh, Namduk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-05-15

    The purpose of this OPT is first to assure the DiD design during the licensing of Sf, but it will also contribute in evaluating the completeness of regulatory requirements under development by Korea Institute of Nuclear Safety (KINS). Based on the definition of Defense-in-Depth (DiD) levels and safety functions for KALIMER Sodium-Cooled Fast Reactor (SFR), suggested in the reference and, Objective Provision Trees (OPTs) of reactivity control function for level 1, 2, 3 and 4 DiD were developed and suggested in this paper. The challenges and mechanisms and provisions were briefly explained in this paper. Comparing the mechanisms and provisions with the requirements will contribute in identifying the missing requirements. Since the design of Prototype Gen-IV Sf (PGSFR) is not mature yet, the OPT is developed for KALIMER design. Developed level 1 to 4 OPTs in this study can be used for the identification of potential design vulnerabilities. When detailed identification of provisions in terms of design features were achieved through the next step of this study, it can contribute to the establishment of defense-in-depth evaluation frame for the regulatory reviews for the licensing process. In the next stage of this study, other safety function will be researched and findings can be suggested as recommendations for the safety improvement.

  6. Differential surface phenotype and context-dependent reactivity of functionally diverse NKT cells.

    Science.gov (United States)

    Cameron, Garth; Godfrey, Dale I

    2018-03-05

    Natural Killer T (NKT) cells are a functionally diverse population that recognizes lipid-based antigens in association with the antigen-presenting molecule CD1d. Here, we define a technique to separate the functionally distinct thymic NKT1, NKT2 and NKT17 cell subsets by their surface expression of CD278 (ICOS) and the activation-associated glycoform of CD43, enabling the investigation of subset-specific effector-functions. We report that all three subsets express the transcription factor GATA-3 and the potential to produce IL-4 and IL-10 following activation. This questions the notion that NKT2 cells are the predominant source of IL-4 within the NKT cell pool, and suggests that IL-10-production may be more indicative of NKT cell plasticity than the existence of a distinct regulatory lineage or subset. We also show that many NKT17 cells are CD4 + and are biased toward Vβ8.3 TCR gene usage. Lastly, we demonstrate that the toll-like receptor (TLR) ligand lipopolysaccharide (LPS) can induce a NKT17 cell-biased response, even in the absence of exogenous antigen, and that combining LPS with α-GalCer resulted in enhanced IL-17A-production, and reduced levels of the immunosuppressive cytokine IL-10. This study provides a novel means to examine the context-dependent reactivity of the functionally heterogeneous NKT cell population and provides important new insight into the functional biology of these subsets. © 2018 Australasian Society for Immunology Inc.

  7. Synthesis of internally functionalized silica nanoparticles for theranostic applications

    Science.gov (United States)

    Walton, Nathan Isaac

    This thesis addresses the synthesis and characterization of novel inorganic silica nanoparticle hybrids. It focuses in large part on their potential applications in the medical field. Silica acts as a useful carrier for a variety of compounds and this thesis silica will demonstrate its use as a carrier for boron or gadolinium. Boron-10 and gadolinium-157 have been suggested for the radiological treatment of tumor cells through the process called neutron capture therapy (NCT). Gadolinium is also commonly used as a Magnetic Resonance Imaging (MRI) contrast agent. Particles that carry it have potential theranostic applications of both imaging and treating tumors. Chapter 1 presents a background on synthetic strategies and usages of silica nanoparticles, and NCT theory. Chapter 2 describes a procedure to create mesoporous metal chelating silica nanoparticles, mDTTA. This is achieved via a co-condensation of tetraethoxysilane (TEOS) and 3-trimethoxysilyl-propyl diethylenetriamine (SiDETA) followed by a post-synthesis modification step with bromoacetic acid (BrAA). These particles have a large surface area and well-defined pores of ~2 nm. The mDTTA nanoparticles were used to chelate the copper(II), cobalt(II) and gadolinium(III). The chelating of gadolinium is the most interesting since it can be used as a MRI contrast agent and a neutron capture therapeutic. The synthetic procedure developed also allows for the attachment of a fluorophore that gives the gadolinium chelating mDTTA nanoparticles a dual imaging modality. Chapter 3 presents the synthetic method used to produce two classes of large surface area organically modified silica (ORMOSIL) nanoparticles. Condensating the organosilane vinyltrimethoxysilane in a micellar solution results in nanoparticles that are either surface rough (raspberry-like) or mesoporous nanoparticles, which prior to this thesis has not been demonstrated in ORMOSIL chemistry. Furthermore, the vinyl functionalities are modified, using

  8. Tryptophan 2,3-dioxygenase (TDO)-reactive T cells differ in their functional characteristics in health and cancer

    DEFF Research Database (Denmark)

    Hjortsø, Mads Duus; Larsen, Stine Kiaer; Kongsted, Per

    2015-01-01

    of different origin. Interestingly, the processed and presented TDO-derived epitopes varied between different cancer cells. With respect to CD4(+) TDO-reactive T cells, in vitro expanded T-cell cultures comprised a Th1 and/or a Treg phenotype. In summary, our data demonstrate that the immune modulating enzyme....... In the present study, we detected the presence of both CD8(+) and CD4(+) T-cell reactivity toward TDO in peripheral blood of patients with malignant melanoma (MM) or breast cancer (BC) as well as healthy subjects. However, TDO-reactive CD4(+) T cells constituted distinct functional phenotypes in health...... TDO is a target for CD8(+) and CD4(+) T cell responses both in healthy subjects as well as patients with cancer; notably, however, the functional phenotype of these T-cell responses differ depending on the respective conditions of the host....

  9. Reactive-inspired ball-milling synthesis of an ODS steel: study of the influence of ball-milling and annealing

    International Nuclear Information System (INIS)

    Brocq, M.

    2010-10-01

    In the context of the development of new ODS (Oxide Dispersion Strengthened) steels as core materials in future nuclear reactors, we investigated a new process inspired by reactive ball-milling which consists in using YFe 3 andFe 2 O 3 as starting reactants instead of Y 2 O 3 to produce a dispersion of nano-oxides in a steel matrix and the influence of synthesis conditions on the nano-oxide characteristics were studied. For that aim, ODS steels were prepared by ball-milling and then annealed. Multi-scale characterizations were performed after each synthesis step, using notably atom probe tomography and small angle neutron scattering. The process inspired by reactive ball-milling was shown to be efficient for ODS steel synthesis, but it does not modify the nano-oxide characteristics as compared to those of oxides directly incorporated in the matrix by ball-milling. Broadly speaking, the nature of the starting oxygen bearing reactants has no influence on nano-oxide formation. Moreover, we showed that the nucleation of nano-oxides nucleation can start during milling and continues during annealing with a very fast kinetic. The final characteristics of nano-oxides formed in this way can be monitored through ball-milling parameters (intensity, temperature and atmosphere) and annealing parameters (duration and temperature). (author)

  10. Intermatrix Synthesis as a rapid, inexpensive and reproducible methodology for the in situ functionalization of nanostructured surfaces with quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Bastos-Arrieta, Julio, E-mail: julio.bastos@upc.edu [Department of Chemical Engineering, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Muñoz, Jose, E-mail: josemaria.munoz@uab.cat [Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Stenbock-Fermor, Anja, E-mail: stenbock@dwi.rwth-aachen.de [DWI – Leibniz-Institut für Interaktive Materialien, Aachen 52056 (Germany); Muñoz, Maria, E-mail: Maria.Munoz@uab.cat [Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Muraviev, Dmitri N., E-mail: Dimitri.Muraviev@uab.es [Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Céspedes, Francisco, E-mail: francisco.cespedes@uab.cat [Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Tsarkova, Larisa A., E-mail: tsarkova@dwi.rwth-aachen.de [DWI – Leibniz-Institut für Interaktive Materialien, Aachen 52056 (Germany); Baeza, Mireia, E-mail: MariaDelMar.Baeza@uab.cat [Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain)

    2016-04-15

    Graphical abstract: - Highlights: • Nanodiamond functionalization with CdS quantum dots. • Approach for carbon nanotube detection in water samples. • Simple functionalization of thin polymeric nanolayers with quantum dots. - Abstract: Intermatrix Synthesis (IMS) technique has proven to be a valid methodology for the in situ incorporation of quantum dots (QDs) in a wide range of nanostructured surfaces for the preparation of advanced hybrid-nanomaterials. In this sense, this communication reports the recent advances in the application of IMS for the synthesis of CdS-QDs with favourable distribution on sulfonated polyetherether ketone (SPEEK) membrane thin films (TFs), multiwall carbon nanotubes (MWCNTs) and nanodiamonds (NDs). The synthetic route takes advantage of the ion exchange functionality of the reactive surfaces for the loading of the QDs precursor and consequent QDs appearance by precipitation. The benefits of such modified nanomaterials were studied using CdS-QDs@MWCNTs hybrid-nanomaterials. CdS-QDs@MWCNTs has been used as conducting filler for the preparation of electrochemical nanocomposite sensors, which present electrocatalytic properties. Finally, the optical properties of the QDs contained on MWCNTs could allow a new procedure for the analytical detection of nanostructured carbon allotropes in water.

  11. Intermatrix Synthesis as a rapid, inexpensive and reproducible methodology for the in situ functionalization of nanostructured surfaces with quantum dots

    International Nuclear Information System (INIS)

    Bastos-Arrieta, Julio; Muñoz, Jose; Stenbock-Fermor, Anja; Muñoz, Maria; Muraviev, Dmitri N.; Céspedes, Francisco; Tsarkova, Larisa A.; Baeza, Mireia

    2016-01-01

    Graphical abstract: - Highlights: • Nanodiamond functionalization with CdS quantum dots. • Approach for carbon nanotube detection in water samples. • Simple functionalization of thin polymeric nanolayers with quantum dots. - Abstract: Intermatrix Synthesis (IMS) technique has proven to be a valid methodology for the in situ incorporation of quantum dots (QDs) in a wide range of nanostructured surfaces for the preparation of advanced hybrid-nanomaterials. In this sense, this communication reports the recent advances in the application of IMS for the synthesis of CdS-QDs with favourable distribution on sulfonated polyetherether ketone (SPEEK) membrane thin films (TFs), multiwall carbon nanotubes (MWCNTs) and nanodiamonds (NDs). The synthetic route takes advantage of the ion exchange functionality of the reactive surfaces for the loading of the QDs precursor and consequent QDs appearance by precipitation. The benefits of such modified nanomaterials were studied using CdS-QDs@MWCNTs hybrid-nanomaterials. CdS-QDs@MWCNTs has been used as conducting filler for the preparation of electrochemical nanocomposite sensors, which present electrocatalytic properties. Finally, the optical properties of the QDs contained on MWCNTs could allow a new procedure for the analytical detection of nanostructured carbon allotropes in water.

  12. Surface reactivity of Ge[111] for organic functionalization by means of a radical-initiated reaction: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Rubio-Pereda, Pamela, E-mail: rubio.pereda@gmail.com [Centro de Investigación Científica y de Educación Superior de Ensenada 3918, Código Postal 22860, Ensenada, Baja California (Mexico); Takeuchi, Noboru, E-mail: takeuchi@cnyn.unam.mx [Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Apartado Postal 14, Código Postal 22800, Ensenada, Baja California (Mexico)

    2016-08-30

    Highlights: • The surface reactivity of the Ge [111] surface is studied with DFT for the attachment of organic molecules by means of a radical-initiated reaction. • A hydrogen vacancy in the hydrogen terminated Ge [111] surface exhibits an accumulation of charge and electron pairing. • These characteristics make the hydrogen vacancy less reactive for the attachment of unsaturated organic molecules. • The adsorption of acetylene is probable to occur while the adsorption of ethylene and styrene is substantially less probable to occur. • The hydrogen terminated Ge [111] surface is found to be less reactive than its two-dimensional analogue, the hydrogen-terminated germanene. - Abstract: The study of interfacial chemistry at semiconductor surfaces has become an important area of research. Functionalities such as molecular recognition, biocompatibility of surfaces, and molecular computing, could be achieved by the combinations of organic chemistry with the semiconductor technology. One way to accomplish this goal is by means of organic functionalization of semiconductor surfaces such as the bulk-terminated germanium surfaces, more specifically the Ge[111]. In this work, we theoretically study, by applying density functional theory, the surface reactivity of the bulk-terminated Ge[111] surface for organic functionalization by means of a radical-initiated reaction of unsaturated molecules such as acetylene, ethylene and styrene with a hydrogen vacancy on a previously hydrogen-terminated Ge[111] surface. Results derived from this work are compared with those obtained in our previous calculations on the germanene surface, following the same chemical route. Our calculations show an accumulation of electronic charge at the H-vacancy having as a result electron pairing due to strong lattice-electron coupling and therefore a diminished surface reactivity. Calculation of the transition states for acetylene and ethylene indicates that the surface reactivity of the

  13. Hypercapnic evaluation of vascular reactivity in healthy aging and acute stroke via functional MRI.

    Science.gov (United States)

    Raut, Ryan V; Nair, Veena A; Sattin, Justin A; Prabhakaran, Vivek

    2016-01-01

    Functional MRI (fMRI) is well-established for the study of brain function in healthy populations, although its clinical application has proven more challenging. Specifically, cerebrovascular reactivity (CVR), which allows the assessment of the vascular response that serves as the basis for fMRI, has been shown to be reduced in healthy aging as well as in a range of diseases, including chronic stroke. However, the timing of when this occurs relative to the stroke event is unclear. We used a breath-hold fMRI task to evaluate CVR across gray matter in a group of acute stroke patients (< 10 days from stroke; N = 22) to address this question. These estimates were compared with those from both age-matched (N = 22) and younger (N = 22) healthy controls. As expected, young controls had the greatest mean CVR, as indicated by magnitude and extent of fMRI activation; however, stroke patients did not differ from age-matched controls. Moreover, the ipsilesional and contralesional hemispheres of stroke patients did not differ with respect to any of these measures. These findings suggest that fMRI remains a valid tool within the first few days of a stroke, particularly for group fMRI studies in which findings are compared with healthy subjects of similar age. However, given the relatively high variability in CVR observed in our stroke sample, caution is warranted when interpreting fMRI data from individual patients or a small cohort. We conclude that a breath-hold task can be a useful addition to functional imaging protocols for stroke patients.

  14. Hypercapnic evaluation of vascular reactivity in healthy aging and acute stroke via functional MRI

    Directory of Open Access Journals (Sweden)

    Ryan V. Raut

    2016-01-01

    Full Text Available Functional MRI (fMRI is well-established for the study of brain function in healthy populations, although its clinical application has proven more challenging. Specifically, cerebrovascular reactivity (CVR, which allows the assessment of the vascular response that serves as the basis for fMRI, has been shown to be reduced in healthy aging as well as in a range of diseases, including chronic stroke. However, the timing of when this occurs relative to the stroke event is unclear. We used a breath-hold fMRI task to evaluate CVR across gray matter in a group of acute stroke patients (<10 days from stroke; N = 22 to address this question. These estimates were compared with those from both age-matched (N = 22 and younger (N = 22 healthy controls. As expected, young controls had the greatest mean CVR, as indicated by magnitude and extent of fMRI activation; however, stroke patients did not differ from age-matched controls. Moreover, the ipsilesional and contralesional hemispheres of stroke patients did not differ with respect to any of these measures. These findings suggest that fMRI remains a valid tool within the first few days of a stroke, particularly for group fMRI studies in which findings are compared with healthy subjects of similar age. However, given the relatively high variability in CVR observed in our stroke sample, caution is warranted when interpreting fMRI data from individual patients or a small cohort. We conclude that a breath-hold task can be a useful addition to functional imaging protocols for stroke patients.

  15. Understanding the HIV-1 protease reactivity with DFT: what do we gain from recent functionals?

    Science.gov (United States)

    Garrec, J; Sautet, P; Fleurat-Lessard, P

    2011-07-07

    The modeling of HIV-1 plays a crucial role in the understanding of its reactivity and its interactions with specific drugs. In this work, we propose a medium sized model to test the ability of a variety of quantum chemistry approaches to provide reasonable geometric parameters and energetics for this system. Although our model is large enough to include the main polarizing groups of the active site, it is small enough to be used within full quantum studies up to the second order Møller-Plesset (MP2) level with extrapolations to coupled cluster CCSD(T) level. These high level calculations are used as reference to assess the ability of electronic structure methods (semiempirical and DFT) to provide accurate geometries and energies for the HIV-1 protease reaction. All semiempirical methods fail to describe the geometry of the protease active site. Within DFT, pure generalized gradient approximation (GGA) functionals have difficulty in reproducing the reaction energy and underestimate the barrier. Hybrid and/or meta GGA approaches do not yield a consistent improvement. The best results are obtained with hybrid GGA B3LYP or X3LYP and with hybrid meta GGA functionals with a fraction of exact exchange around 30-40%, such as M06, B1B95, or BMK functionals. On the basis of these results, we propose an accurate and computationally efficient strategy, employing quantum chemistry methods. This is applied here to study the protonation state of the reaction intermediate and could be easily used in further QM/MM studies.

  16. Hypothalamic Pituitary Adrenal Axis Functioning in Reactive and Proactive Aggression in Children

    Science.gov (United States)

    Lopez-Duran, Nestor L.; Olson, Sheryl L.; Hajal, Nastassia J.; Felt, Barbara T.; Vazquez, Delia M.

    2009-01-01

    The purpose of this study was to examine the association between hypothalamic-pituitary-adrenal axis (HPA-axis) reactivity and proactive and reactive aggression in pre-pubertal children. After a 30-min controlled base line period, 73 7-year-old children (40 males and 33 females) were randomly assigned to one of two experimental tasks designed to…

  17. Children's Patterns of Emotional Reactivity to Conflict as Explanatory Mechanisms in Links between Interpartner Aggression and Child Physiological Functioning

    Science.gov (United States)

    Davies, Patrick T.; Sturge-Apple, Melissa L.; Cicchetti, Dante; Manning, Liviah G.; Zale, Emily

    2009-01-01

    Background: This paper examined children's fearful, sad, and angry reactivity to interparental conflict as mediators of associations between their exposure to interparental aggression and physiological functioning. Methods: Participants included 200 toddlers and their mothers. Assessments of interparental aggression and children's emotional…

  18. Rabies virus cross-reactive murine T cell clones: analysis of helper and delayed-type hypersensitivity function.

    NARCIS (Netherlands)

    H. Bunschoten; B. Dietzschold; I.J.Th.M. Claassen (Ivo); R. Klapmuts; F. UytdeHaag; A.D.M.E. Osterhaus (Albert)

    1990-01-01

    textabstractThree T cell clones derived from rabies virus-immunized BALB/c mice were analysed for specificity and function. The clones proved to be broadly cross-reactive by responding to different rabies virus isolates (PM, ERA, CVS, HEP) and other representatives of the genus Lyssavirus, like the

  19. Continuous flow photocyclization of stilbenes – scalable synthesis of functionalized phenanthrenes and helicenes

    Directory of Open Access Journals (Sweden)

    Quentin Lefebvre

    2013-09-01

    Full Text Available A continuous flow oxidative photocyclization of stilbene derivatives has been developed which allows the scalable synthesis of backbone functionalized phenanthrenes and helicenes of various sizes in good yields.

  20. Convergent functional genomic studies of ω-3 fatty acids in stress reactivity, bipolar disorder and alcoholism.

    Science.gov (United States)

    Le-Niculescu, H; Case, N J; Hulvershorn, L; Patel, S D; Bowker, D; Gupta, J; Bell, R; Edenberg, H J; Tsuang, M T; Kuczenski, R; Geyer, M A; Rodd, Z A; Niculescu, A B

    2011-04-26

    Omega-3 fatty acids have been proposed as an adjuvant treatment option in psychiatric disorders. Given their other health benefits and their relative lack of toxicity, teratogenicity and side effects, they may be particularly useful in children and in females of child-bearing age, especially during pregnancy and postpartum. A comprehensive mechanistic understanding of their effects is needed. Here we report translational studies demonstrating the phenotypic normalization and gene expression effects of dietary omega-3 fatty acids, specifically docosahexaenoic acid (DHA), in a stress-reactive knockout mouse model of bipolar disorder and co-morbid alcoholism, using a bioinformatic convergent functional genomics approach integrating animal model and human data to prioritize disease-relevant genes. Additionally, to validate at a behavioral level the novel observed effects on decreasing alcohol consumption, we also tested the effects of DHA in an independent animal model, alcohol-preferring (P) rats, a well-established animal model of alcoholism. Our studies uncover sex differences, brain region-specific effects and blood biomarkers that may underpin the effects of DHA. Of note, DHA modulates some of the same genes targeted by current psychotropic medications, as well as increases myelin-related gene expression. Myelin-related gene expression decrease is a common, if nonspecific, denominator of neuropsychiatric disorders. In conclusion, our work supports the potential utility of omega-3 fatty acids, specifically DHA, for a spectrum of psychiatric disorders such as stress disorders, bipolar disorder, alcoholism and beyond.

  1. Molecular acidity: An accurate description with information-theoretic approach in density functional reactivity theory.

    Science.gov (United States)

    Cao, Xiaofang; Rong, Chunying; Zhong, Aiguo; Lu, Tian; Liu, Shubin

    2018-01-15

    Molecular acidity is one of the important physiochemical properties of a molecular system, yet its accurate calculation and prediction are still an unresolved problem in the literature. In this work, we propose to make use of the quantities from the information-theoretic (IT) approach in density functional reactivity theory and provide an accurate description of molecular acidity from a completely new perspective. To illustrate our point, five different categories of acidic series, singly and doubly substituted benzoic acids, singly substituted benzenesulfinic acids, benzeneseleninic acids, phenols, and alkyl carboxylic acids, have been thoroughly examined. We show that using IT quantities such as Shannon entropy, Fisher information, Ghosh-Berkowitz-Parr entropy, information gain, Onicescu information energy, and relative Rényi entropy, one is able to simultaneously predict experimental pKa values of these different categories of compounds. Because of the universality of the quantities employed in this work, which are all density dependent, our approach should be general and be applicable to other systems as well. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Screening of active metals for reactive adsorption desulfurization adsorbent using density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei; Zhao, Liang, E-mail: liangzhao@cup.edu.cn; Xu, Chunming; Wang, Yuxian; Gao, Jinsen

    2017-03-31

    Highlights: • Electronic characteristics determined adsorption characteristics of transition metals. • Cobalt has the similar adsorption ability of thiophene as nickel. • Adsorption capacity of Cr and Mo was extremely fierce, while Cu has the potential ability for adsorbing thiophene. • The preference adsorption site for thiophene was hollow site on all the seven surface. - Abstract: To explore characteristics of active metals for reactive adsorption desulfurization (RADS) technology, the adsorption of thiophene on M (100) (M = Cr, Mo, Co, Ni, Cu, Au, and Ag) surfaces was systematically studied by density functional theory with vdW correction (DFT + D3). We found that, in all case, the most stable molecular adsorption site was the hollow site and adsorptive capabilities of thiophene followed the order: Cr > Mo > Co ≈ Ni > Cu > Au ≈ Ag. By analyzing the nature of binding between thiophene and corresponding metals and the electronic structure of metals, the excessive activities of Cr and Mo were found to have a negative regeneration, the passive activities of Au and Ag were found to have an inactive adsorption for RADS adsorbent alone, while Ni and Co have appropriate characteristics as the active metals for RADS, followed by Cu.

  3. Palladium-Catalyzed Direct C-H Arylations of Dioxythiophenes Bearing Reactive Functional Groups: A Step-Economical Approach for Functional π-Conjugated Oligoarenes

    KAUST Repository

    Liu, Ching-Yuan

    2015-06-25

    A Pd-catalyzed and single-step C-H arylation of dioxythiophene derivates bearing unprotected reactive functional groups (-OH, -COOH, -N3) in a phosphine-free manner has been developed. Various dioxythiopene-based oligoarenes with extended π-conjugation are obtained with good yields (up to 90%). These oligoarenes display suitable optical properties (absorption and emission maxima, quantum yields) and contain reactive functional groups suitable for further conjugations with bioactive molecules. This new methodology is step economical (fewer synthetic steps), environmental friendly (no toxic metal-containing side-poducts) and the oligoarenes synthesized are potentially applicable for bio-labeling, bioimaging, and biosensing.

  4. Palladium-Catalyzed Direct C-H Arylations of Dioxythiophenes Bearing Reactive Functional Groups: A Step-Economical Approach for Functional π-Conjugated Oligoarenes

    KAUST Repository

    Liu, Ching-Yuan; Chong, Hui; Lin, Hsing-An; Yamashita, Yoshiro; Zheng, Bin; Huang, Kuo-Wei; Hashizume, Daisuke; Yu, Hsiao-hua

    2015-01-01

    A Pd-catalyzed and single-step C-H arylation of dioxythiophene derivates bearing unprotected reactive functional groups (-OH, -COOH, -N3) in a phosphine-free manner has been developed. Various dioxythiopene-based oligoarenes with extended π-conjugation are obtained with good yields (up to 90%). These oligoarenes display suitable optical properties (absorption and emission maxima, quantum yields) and contain reactive functional groups suitable for further conjugations with bioactive molecules. This new methodology is step economical (fewer synthetic steps), environmental friendly (no toxic metal-containing side-poducts) and the oligoarenes synthesized are potentially applicable for bio-labeling, bioimaging, and biosensing.

  5. Chemically functionalized gold nanoparticles: Synthesis, characterization, and applications

    Science.gov (United States)

    Daniel, Weston Lewis

    This thesis focuses on the development and application of gold nanoparticle based detection systems and biomimetic structures. Each class of modified nanoparticle has properties that are defined by its chemical moieties that interface with solution and the gold nanoparticle core. In Chapter 2, a comparison of the biomolecular composition and binding properties of various preparations of antibody oligonucleotide gold nanoparticle conjugates is presented. These constructs differed significantly in terms of their structure and binding properties. Chapter 3 reports the use of electroless gold deposition as a light scattering signal enhancer in a multiplexed, microarray-based scanometric immunoassay using the gold nanoparticle probes evaluated in Chapter 2. The use of gold development results in greater signal enhancement than the typical silver development, and multiple rounds of metal development were found to increase the resulting signal compared to one development. Chapter 4 describes an amplified scanometric detection method for human telomerase activity. Gold nanoparticles functionalized with specific oligonucleotide sequences can efficiently capture telomerase enzymes and subsequently be elongated. Both the elongated and unmodified oligonucleotide sequences are simultaneously measured. At low telomerase concentrations, elongated strands cannot be detected, but the unmodified sequences, which come from the same probe particles, can be detected because their concentration is higher, providing a novel form of amplification. Chapter 5 reports the development of a novel colorimetric nitrite and nitrate ion assay based upon gold nanoparticle probes functionalized with Griess reaction reagents. This assay takes advantage of the distance-dependent plasmonic properties of the gold nanoparticles and the ability of nitrite ion to facilitate the cross coupling of novel nanoparticle probes. The assay works on the concept of a kinetic end point and can be triggered at the EPA

  6. Manifestations of special functional capacity of trained athletes in rowing with a different type of physiological reactivity

    Directory of Open Access Journals (Sweden)

    Diachenko A.U.

    2010-10-01

    Full Text Available Features of manifestation of special functional potential sportsmen a high class are presented. 15 sportsmen participated in research - members of a combined team of Ukraine. The test was used high-intensity 2 mines. Discrepancies of an individual reactivity of sportsmen are defned. They are expressed by parameters of reactions of an organism and serviceability of sportsmen in conditions of building up fatigue. It is exhibited, that typological discrepancies of a reactivity repute discrepancies of the contents and conditions of an intensifcation of training process during a macrocycle of sports preparation.

  7. Chronic hindlimb ischemia impairs functional vasodilation and vascular reactivity in mouse feed arteries

    Directory of Open Access Journals (Sweden)

    Trevor R Cardinal

    2011-12-01

    Full Text Available Vasodilation of lower leg arterioles is impaired in animal models of chronic peripheral ischemia. In addition to arterioles, feed arteries are a critical component of the vascular resistance network, accounting for as much as 50% of the pressure drop across the arterial circulation. Despite the critical importance of feed arteries in blood flow control, the impact of ischemia on feed artery vascular reactivity is unknown. At 14 days following unilateral resection of the femoral-saphenous artery-vein pair, functional vasodilation of the profunda femoris artery was severely impaired, 11 ± 9% versus 152 ± 22%. Although endothelial and smooth muscle-dependent vasodilation were both impaired in ischemic arteries compared to control arteries (Ach: 40 ± 14% vs 81 ± 11%, SNP: 43 ± 12% vs and 85 ± 11%, the responses to acetylcholine and sodium nitroprusside were similar, implicating impaired smooth muscle-dependent vasodilation. Conversely, vasoconstriction responses to norepinephrine were not different between ischemic and control arteries, -68 ± 3% versus -66 ± 3%, indicating that smooth muscle cells were functional following the ischemic insult. Finally, maximal dilation responses to acetylcholine, in vitro, were significantly impaired in the ischemic artery compared to control, 71 ± 9% versus 97 ± 2%, despite a similar generation of myogenic tone to the same intravascular pressure (80 mmHg. These data indicate that ischemia impairs feed artery vasodilation by impairing the vascular wall’s responsiveness to vasodilating stimuli. Future studies to examine the mechanistic basis for these observations or treatment strategies to improve feed artery vasodilation following ischemia could provide the foundation for an alternative therapeutic paradigm for peripheral arterial occlusive disease.

  8. Testosterone improves erectile function through inhibition of reactive oxygen species generation in castrated rats

    Directory of Open Access Journals (Sweden)

    Rui Li

    2016-05-01

    Full Text Available Testosterone is overwhelmingly important in regulating erectile physiology. However, the associated molecular mechanisms are poorly understood. The purpose of this study was to explore the effects and mechanisms of testosterone in erectile dysfunction (ED in castrated rats. Forty male Sprague-Dawley rats were randomized to four groups (control, sham-operated, castration and castration-with-testosterone-replacement. Reactive oxygen species (ROS production was measured by dihydroethidium (DHE staining. Erectile function was assessed by the recording of intracavernous pressure (ICP and mean arterial blood pressure (MAP. Protein expression levels were examined by western blotting. We found that castration reduced erectile function and that testosterone restored it. Nitric oxide synthase (NOS activity was decrease in the castrated rats, and testosterone administration attenuated this decrease (each p < 0.05. The testosterone, dihydrotestosterone, cyclic guanosine monophosphate (cGMP and cyclic adenosine monophosphate (cAMP concentrations were lower in the castrated rats, and testosterone restored these levels (each p < 0.05. Furthermore, the cyclooxygenase-2 (COX-2 and prostacyclin synthase (PTGIS expression levels and phospho-endothelial nitric oxide synthase (p-eNOS, Ser1177/endothelial nitric oxide synthase (eNOS ratio were reduced in the castrated rats compared with the controls (each p < 0.05. In addition, the p40phox and p67phox expression levels were increased in the castrated rats, and testosterone reversed these changes (each p < 0.05. Overall, our results demonstrate that testosterone ameliorates ED after castration by reducing ROS production and increasing the activity of the eNOS/cGMP and COX-2/PTGIS/cAMP signaling pathways.

  9. Synthesis, solubilization, and surface functionalization of highly fluorescent quantum dots for cellular targeting through a small molecule

    Science.gov (United States)

    Galloway, Justin F.

    To achieve long-term fluorescence imaging with quantum dots (QDs), a CdSe core/shell must first be synthesized. The synthesis of bright CdSe QDs is not trivial and as a consequence, the role of surfactant in nucleation and growth was investigated. It was found that the type of surfactant used, either phosphonic or fatty acid, played a pivotal role in the size of the CdSe core. The study of surfactant on CdSe synthesis, ultimately led to an electrical passivation method that utilized a short-chained phosphonic acid and highly reactive organometallic precursors to achieve high quantum yield (QY) as has been previously described. The synthesis of QDs using organometallic precursors and a phosphonic acid for passivation resulted in 4 out of 9 batches of QDs achieving QYs greater than 50% and 8 out of 9 batches with QYs greater than 35%. The synthesis of CdSe QDs was done in organic solutions rendering the surface of the particle hydrophobic. To perform cell-targeting experiments, QDs must be transferred to water. The transfer of QDs to water was successfully accomplished by using single acyl chain lipids. A systematic study of different lipid combinations and coatings demonstrated that 20-40 mol% single acyl chained lipids were able to transfer QDs to water resulting in monodispersed, stable QDs without adversely affecting the QY. The advantage to water solubilization using single acyl chain lipids is that the QD have a hydrodynamic radius less than 15 nm, QYs that can exceed 50% and additional surface functionalization can be down using the reactive sites incorporated into the lipid bilayer. QDs that are bright and stable in water were studied for the purpose of targeting G protein-coupled Receptors (GPCR). GPCRs are transmembrane receptors that internalize extracellular cues, and thus mediate signal transduction. The cyclic Adenosine Monophosphate Receptor 1 of the model organism Dictyostelium disodium was the receptor of interest. The Halo protein, a genetically

  10. SYNTHESIS METHODS OF ALGEBRAIC NORMAL FORM OF MANY-VALUED LOGIC FUNCTIONS

    Directory of Open Access Journals (Sweden)

    A. V. Sokolov

    2016-01-01

    Full Text Available The rapid development of methods of error-correcting coding, cryptography, and signal synthesis theory based on the principles of many-valued logic determines the need for a more detailed study of the forms of representation of functions of many-valued logic. In particular the algebraic normal form of Boolean functions, also known as Zhegalkin polynomial, that well describe many of the cryptographic properties of Boolean functions is widely used. In this article, we formalized the notion of algebraic normal form for many-valued logic functions. We developed a fast method of synthesis of algebraic normal form of 3-functions and 5-functions that work similarly to the Reed-Muller transform for Boolean functions: on the basis of recurrently synthesized transform matrices. We propose the hypothesis, which determines the rules of the synthesis of these matrices for the transformation from the truth table to the coefficients of the algebraic normal form and the inverse transform for any given number of variables of 3-functions or 5-functions. The article also introduces the definition of algebraic degree of nonlinearity of the functions of many-valued logic and the S-box, based on the principles of many-valued logic. Thus, the methods of synthesis of algebraic normal form of 3-functions applied to the known construction of recurrent synthesis of S-boxes of length N = 3k, whereby their algebraic degrees of nonlinearity are computed. The results could be the basis for further theoretical research and practical applications such as: the development of new cryptographic primitives, error-correcting codes, algorithms of data compression, signal structures, and algorithms of block and stream encryption, all based on the perspective principles of many-valued logic. In addition, the fast method of synthesis of algebraic normal form of many-valued logic functions is the basis for their software and hardware implementation.

  11. Facile one-pot synthesis of functionalized organophosphonate ...

    Indian Academy of Sciences (India)

    WINTEC

    The reaction of phosphorus trichloride with 2,6-diisopropyl phenol in the presence of LiCl under reflux ... on a Perkin Elmer Spectrum One FT–IR spectrometer. Microanalyses were performed on a Thermo Finni- gan (FLASH EA .... 3.1 Synthesis and characterization .... and no other signals corresponding to the formation.

  12. Data synthesis and display programs for wave distribution function analysis

    Science.gov (United States)

    Storey, L. R. O.; Yeh, K. J.

    1992-01-01

    At the National Space Science Data Center (NSSDC) software was written to synthesize and display artificial data for use in developing the methodology of wave distribution analysis. The software comprises two separate interactive programs, one for data synthesis and the other for data display.

  13. Reactive Oxygen Species and Mitochondrial Homeostasis as Regulators of Stem Cell Fate and Function.

    Science.gov (United States)

    Tan, Darren Q; Suda, Toshio

    2018-07-10

    The precise role and impact of reactive oxygen species (ROS) in stem cells, which are essential for lifelong tissue homeostasis and regeneration, remain of significant interest to the field. The long-term regenerative potential of a stem cell compartment is determined by the delicate balance between quiescence, self-renewal, and differentiation, all of which can be influenced by ROS levels. Recent Advances: The past decade has seen a growing appreciation for the importance of ROS and redox homeostasis in various stem cell compartments, particularly those of hematopoietic, neural, and muscle tissues. In recent years, the importance of proteostasis and mitochondria in relation to stem cell biology and redox homeostasis has garnered considerable interest. Here, we explore the reciprocal relationship between ROS and stem cells, with significant emphasis on mitochondria as a core component of redox homeostasis. We discuss how redox signaling, involving cell-fate determining protein kinases and transcription factors, can control stem cell function and fate. We also address the impact of oxidative stress on stem cells, especially oxidative damage of lipids, proteins, and nucleic acids. We further discuss ROS management in stem cells, and present recent evidence supporting the importance of mitochondrial activity and its modulation (via mitochondrial clearance, biogenesis, dynamics, and distribution [i.e., segregation and transfer]) in stem cell redox homeostasis. Therefore, elucidating the intricate links between mitochondria, cellular metabolism, and redox homeostasis is envisioned to be critical for our understanding of ROS in stem cell biology and its therapeutic relevance in regenerative medicine. Antioxid. Redox Signal. 00, 000-000.

  14. Microstructure and wear resistance of Al2O3-M7C3/Fe composite coatings produced by laser controlled reactive synthesis

    Science.gov (United States)

    Tan, Hui; Luo, Zhen; Li, Yang; Yan, Fuyu; Duan, Rui

    2015-05-01

    Based on the principle of thermite reaction of Al and Fe2O3 powders, the Al2O3 ceramic reinforced Fe-based composite coatings were fabricated on a steel substrate by laser controlled reactive synthesis and cladding. The effects of different additions of thermite reactants on the phase transition, microstructure evolution, microhardness and wear resistance of the composite coatings were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Vickers microhardness and block-on-ring wear test, respectively. The results show that Al2O3 ceramic and M7C3 carbide are in situ synthesized via the laser controlled reactive synthesis. The Al2O3 ceramic and M7C3 carbides prefer to distribute along the γ-Fe phase boundary continuously, which separates the γ-Fe matrix and is beneficial to the grain refinement. With the increase of thermite reactants, the amount of Al2O3 ceramic and M7C3 carbide in the composite coatings increases gradually. Moreover the cladding layer changes from dendritic structure to columnar structure and martensite structure in the heat affected zone becomes coarse. The increased thermite reactants improve the microhardness and wear resistance of the in situ composite coatings obviously and enhance the hardness of the heat affected zone, which should be ascribed to the grain refinement, ceramic and carbide precipitation and solid solution strengthening.

  15. Children’s Patterns of Emotional Reactivity to Conflict as Explanatory Mechanisms in Links Between Interpartner Aggression and Child Physiological Functioning

    Science.gov (United States)

    Davies, Patrick T.; Sturge-Apple, Melissa L.; Cicchetti, Dante; Manning, Liviah G.; Zale, Emily

    2009-01-01

    Background This paper examined children’s fearful, sad, and angry reactivity to interparental conflict as mediators of associations between their exposure to interparental aggression and physiological functioning. Methods Participants included 200 toddlers and their mothers. Assessments of interparental aggression and children’s emotional reactivity were derived from maternal surveys and a semi-structured interview. Cortisol levels and cardiac indices of sympathetic nervous system (SNS) and parasympathetic nervous system (PNS) activity were used to assess toddler physiological functioning. Results Results indicated that toddler exposure to interparental aggression was associated with greater cortisol levels and PNS activity and diminished SNS activity. Toddler angry emotional reactivity mediated associations between interparental aggression and cortisol and PNS functioning. Fearful emotional reactivity was a mediator of the link between interparental aggression and SNS functioning. Conclusions The results are interpreted within conceptualizations of how exposure and reactivity to family risk organizing individual differences in physiological functioning. PMID:19744183

  16. Function of SREBP1 in the Milk Fat Synthesis of Dairy Cow Mammary Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Nan Li

    2014-09-01

    Full Text Available Sterol regulatory element-binding proteins (SREBPs belong to a family of nuclear transcription factors. The question of which is the most important positive regulator in milk fat synthesis in dairy cow mammary epithelial cells (DCMECs between SREBPs or other nuclear transcription factors, such as peroxisome proliferator-activated receptor γ (PPARγ, remains a controversial one. Recent studies have found that mTORC1 (the mammalian target of rapamycin C1 regulates SREBP1 to promote fat synthesis. Thus far, however, the interaction between the SREBP1 and mTOR (the mammalian target of rapamycin pathways in the regulation of milk fat synthesis remains poorly understood. This study aimed to identify the function of SREBP1 in milk fat synthesis and to characterize the relationship between SREBP1 and mTOR in DCMECs. The effects of SREBP1 overexpression and gene silencing on milk fat synthesis and the effects of stearic acid and serum on SREBP1 expression in the upregulation of milk fat synthesis were investigated in DCMECs using immunostaining, Western blotting, real-time quantitative PCR, lipid droplet staining, and detection kits for triglyceride content. SREBP1 was found to be a positive regulator of milk fat synthesis and was shown to be regulated by stearic acid and serum. These findings indicate that SREBP1 is the key positive regulator in milk fat synthesis.

  17. Role of fatty-acid synthesis in dendritic cell generation and function.

    Science.gov (United States)

    Rehman, Adeel; Hemmert, Keith C; Ochi, Atsuo; Jamal, Mohsin; Henning, Justin R; Barilla, Rocky; Quesada, Juan P; Zambirinis, Constantinos P; Tang, Kerry; Ego-Osuala, Melvin; Rao, Raghavendra S; Greco, Stephanie; Deutsch, Michael; Narayan, Suchithra; Pachter, H Leon; Graffeo, Christopher S; Acehan, Devrim; Miller, George

    2013-05-01

    Dendritic cells (DC) are professional APCs that regulate innate and adaptive immunity. The role of fatty-acid synthesis in DC development and function is uncertain. We found that blockade of fatty-acid synthesis markedly decreases dendropoiesis in the liver and in primary and secondary lymphoid organs in mice. Human DC development from PBMC precursors was also diminished by blockade of fatty-acid synthesis. This was associated with higher rates of apoptosis in precursor cells and increased expression of cleaved caspase-3 and BCL-xL and downregulation of cyclin B1. Further, blockade of fatty-acid synthesis decreased DC expression of MHC class II, ICAM-1, B7-1, and B7-2 but increased their production of selected proinflammatory cytokines including IL-12 and MCP-1. Accordingly, inhibition of fatty-acid synthesis enhanced DC capacity to activate allogeneic as well as Ag-restricted CD4(+) and CD8(+) T cells and induce CTL responses. Further, blockade of fatty-acid synthesis increased DC expression of Notch ligands and enhanced their ability to activate NK cell immune phenotype and IFN-γ production. Because endoplasmic reticulum (ER) stress can augment the immunogenic function of APC, we postulated that this may account for the higher DC immunogenicity. We found that inhibition of fatty-acid synthesis resulted in elevated expression of numerous markers of ER stress in humans and mice and was associated with increased MAPK and Akt signaling. Further, lowering ER stress by 4-phenylbutyrate mitigated the enhanced immune stimulation associated with fatty-acid synthesis blockade. Our findings elucidate the role of fatty-acid synthesis in DC development and function and have implications to the design of DC vaccines for immunotherapy.

  18. Development of new methods in modern selective organic synthesis: preparation of functionalized molecules with atomic precision

    International Nuclear Information System (INIS)

    Ananikov, V P; Khemchyan, L L; Ivanova, Yu V; Dilman, A D; Levin, V V; Bukhtiyarov, V I; Sorokin, A M; Prosvirin, I P; Romanenko, A V; Simonov, P A; Vatsadze, S Z; Medved'ko, A V; Nuriev, V N; Nenajdenko, V G; Shmatova, O I; Muzalevskiy, V M; Koptyug, I V; Kovtunov, K V; Zhivonitko, V V; Likholobov, V A

    2014-01-01

    The challenges of the modern society and the growing demand of high-technology sectors of industrial production bring about a new phase in the development of organic synthesis. A cutting edge of modern synthetic methods is introduction of functional groups and more complex structural units into organic molecules with unprecedented control over the course of chemical transformation. Analysis of the state-of-the-art achievements in selective organic synthesis indicates the appearance of a new trend — the synthesis of organic molecules, biologically active compounds, pharmaceutical substances and smart materials with absolute selectivity. Most advanced approaches to organic synthesis anticipated in the near future can be defined as 'atomic precision' in chemical reactions. The present review considers selective methods of organic synthesis suitable for transformation of complex functionalized molecules under mild conditions. Selected key trends in the modern organic synthesis are considered including the preparation of organofluorine compounds, catalytic cross-coupling and oxidative cross-coupling reactions, atom-economic addition reactions, methathesis processes, oxidation and reduction reactions, synthesis of heterocyclic compounds, design of new homogeneous and heterogeneous catalytic systems, application of photocatalysis, scaling up synthetic procedures to industrial level and development of new approaches to investigation of mechanisms of catalytic reactions. The bibliography includes 840 references

  19. Synthesis of highly reactive polyisobutylene catalyzed by EtAlCl 2/Bis(2-chloroethyl) ether soluble complex in hexanes

    KAUST Repository

    Kumar, Rajeev Ananda; Zheng, Bin; Huang, Kuo-Wei; Emert, Jack I.; Faust, Rudolf

    2014-01-01

    The polymerization of isobutylene (IB) to yield highly reactive polyisobutylene (HR PIB) with high exo-olefin content using GaCl3 or FeCl3·diisopropyl ether complexes has been previously reported.1 In an effort to further improve polymerization rates and exo-olefin content, we have studied ethylaluminum dichloride (EADC) complexes with diisopropyl ether, 2-chloroethyl ethyl ether (CEEE), and bis(2-chloroethyl) ether (CEE) as catalysts in conjunction with tert-butyl chloride as initiator in hexanes at different temperatures. All three complexes were readily soluble in hexanes. Polymerization, however, was only observed with CEE. At 0 °C polymerization was complete in 5 min at [t-BuCl] = [EADC·CEE] = 10 mM and resulted in PIB with ∼70% exo-olefin content. Studies on complexation using ATR FTIR and 1H NMR spectroscopy revealed that at 1:1 stoichiometry a small amount of EADC remains uncomplexed. By employing an excess of CEE, exo-olefin contents increased up to 90%, while polymerization rates decreased only slightly. With decreasing temperature, polymerization rates decreased while molecular weights as well as exo-olefin contents increased, suggesting that isomerization has a higher activation energy than β-proton abstraction. Density functional theory (DFT) studies on the Lewis acid·ether binding energies indicated a trend consistent with the polymerization results. The polymerization mechanism proposed previously for Lewis acid·ether complexes1 adequately explains all the findings. © 2014 American Chemical Society.

  20. Synthesis of highly reactive polyisobutylene catalyzed by EtAlCl 2/Bis(2-chloroethyl) ether soluble complex in hexanes

    KAUST Repository

    Kumar, Rajeev Ananda

    2014-03-25

    The polymerization of isobutylene (IB) to yield highly reactive polyisobutylene (HR PIB) with high exo-olefin content using GaCl3 or FeCl3·diisopropyl ether complexes has been previously reported.1 In an effort to further improve polymerization rates and exo-olefin content, we have studied ethylaluminum dichloride (EADC) complexes with diisopropyl ether, 2-chloroethyl ethyl ether (CEEE), and bis(2-chloroethyl) ether (CEE) as catalysts in conjunction with tert-butyl chloride as initiator in hexanes at different temperatures. All three complexes were readily soluble in hexanes. Polymerization, however, was only observed with CEE. At 0 °C polymerization was complete in 5 min at [t-BuCl] = [EADC·CEE] = 10 mM and resulted in PIB with ∼70% exo-olefin content. Studies on complexation using ATR FTIR and 1H NMR spectroscopy revealed that at 1:1 stoichiometry a small amount of EADC remains uncomplexed. By employing an excess of CEE, exo-olefin contents increased up to 90%, while polymerization rates decreased only slightly. With decreasing temperature, polymerization rates decreased while molecular weights as well as exo-olefin contents increased, suggesting that isomerization has a higher activation energy than β-proton abstraction. Density functional theory (DFT) studies on the Lewis acid·ether binding energies indicated a trend consistent with the polymerization results. The polymerization mechanism proposed previously for Lewis acid·ether complexes1 adequately explains all the findings. © 2014 American Chemical Society.

  1. Experimental investigation of aminoacetonitrile formation through the Strecker synthesis in astrophysical-like conditions: reactivity of methanimine (CH2NH), ammonia (NH3), and hydrogen cyanide (HCN)

    Science.gov (United States)

    Danger, G.; Borget, F.; Chomat, M.; Duvernay, F.; Theulé, P.; Guillemin, J.-C.; Le Sergeant D'Hendecourt, L.; Chiavassa, T.

    2011-11-01

    Context. Studing chemical reactivity in astrophysical environments is an important means for improving our understanding of the origin of the organic matter in molecular clouds, in protoplanetary disks, and possibly, as a final destination, in our solar system. Laboratory simulations of the reactivity of ice analogs provide important insight into the reactivity in these environments. Here, we use these experimental simulations to investigate the Strecker synthesis leading to the formation of aminoacetonitrile in astrophysical-like conditions. The aminoacetonitrile is an interesting compound because it was detected in SgrB2, hence could be a precursor of the smallest amino acid molecule, glycine, in astrophysical environments. Aims: We present the first experimental investigation of the formation of aminoacetonitrile NH2CH2CN from the thermal processing of ices including methanimine (CH2NH), ammonia (NH3), and hydrogen cyanide (HCN) in interstellar-like conditions without VUV photons or particules. Methods: We use Fourier Transform InfraRed (FTIR) spectroscopy to monitor the ice evolution during its warming. Infrared spectroscopy and mass spectroscopy are then used to identify the aminoacetonitrile formation. Results: We demonstrate that methanimine can react with -CN during the warming of ice analogs containing at 20 K methanimine, ammonia, and [NH4+ -CN] salt. During the ice warming, this reaction leads to the formation of poly(methylene-imine) polymers. The polymer length depend on the initial ratio of mass contained in methanimine to that in the [NH4+ -CN] salt. In a methanimine excess, long polymers are formed. As the methanimine is progressively diluted in the [NH4+ -CN] salt, the polymer length decreases until the aminoacetonitrile formation at 135 K. Therefore, these results demonstrate that aminoacetonitrile can be formed through the second step of the Strecker synthesis in astrophysical-like conditions.

  2. Synthesis and Characterization of Block Copolymers with Unique Chemical Functionalities and Entropically-Hindering Moieties

    Science.gov (United States)

    2017-08-14

    methanol as a function of chemistry , morphology and hydration levels. Accomplishments: This section is included in the "upload" section. Training...Copolymer Blend Membranes.” In Press, Polymer Engineering and Science, DOI: 10.1002 /pen.24508, 2017. 5. M. Pérez-Pérez and D. Suleiman. “Synthesis and...Synthesis and Characterization of Sulfonated Amine Block Copolymers for Energy Efficient Applications". Chemical Engineering Symposium, University of

  3. Rheology at the Interface and the Role of the Interphase in Reactive Functionalized Multilayer Polymers in Coextrusion Process

    Science.gov (United States)

    Lamnawar, Khalid; Maazouz, Abderrahim

    2008-07-01

    Coextrusion technologies are commonly used to produce multilayered composite sheets or films for a large range of applications from food packaging to optics. The contrast of rheological properties between layers can lead to interfacial instabilities during flow. Important theoretical and experimental advances regarding the stability of compatible and incompatible polymers have, during the last decades, been made using a mechanical approach. However, few research efforts have been dedicated to the physicochemical affinity between the neighboring layers. The present study deals with the influence of this affinity on interfacial instabilities for functionalized incompatible polymers. Polyamide (PA6)/polyethylene grafted with glycidyl methacrylate (PE-GMA) was used as a reactive system and PE/PA6 as a non reactive one. Two grades of polyamide (PA6) were used in order to change the viscosity and elasticity ratios between PE (or PE-GMA) and PA6. It was experimentally confirmed, in this case, that weak disturbance can be predicted by considering an interphase of non-zero thickness (corresponding to an interdiffusion/reaction zone) instead of a purely geometrical interface between the two reactive layers. According to the rheological investigations from previous work which the interphase effect can be probed, an experimental strategy was here formulated to optimize the process by listing the parameters that controlled the stability of the reactive multilayer flows. Hence, based on this analysis, guidelines for a stable coextrusion of reactive functionalized polymers can be provided coupling the classical parameters (viscosity, elasticity and layer ratios) and the physicochemical affinity at the polymer/polymer interface.

  4. Intermatrix Synthesis as a rapid, inexpensive and reproducible methodology for the in situ functionalization of nanostructured surfaces with quantum dots

    Science.gov (United States)

    Bastos-Arrieta, Julio; Muñoz, Jose; Stenbock-Fermor, Anja; Muñoz, Maria; Muraviev, Dmitri N.; Céspedes, Francisco; Tsarkova, Larisa A.; Baeza, Mireia

    2016-04-01

    Intermatrix Synthesis (IMS) technique has proven to be a valid methodology for the in situ incorporation of quantum dots (QDs) in a wide range of nanostructured surfaces for the preparation of advanced hybrid-nanomaterials. In this sense, this communication reports the recent advances in the application of IMS for the synthesis of CdS-QDs with favourable distribution on sulfonated polyetherether ketone (SPEEK) membrane thin films (TFs), multiwall carbon nanotubes (MWCNTs) and nanodiamonds (NDs). The synthetic route takes advantage of the ion exchange functionality of the reactive surfaces for the loading of the QDs precursor and consequent QDs appearance by precipitation. The benefits of such modified nanomaterials were studied using CdS-QDs@MWCNTs hybrid-nanomaterials. CdS-QDs@MWCNTs has been used as conducting filler for the preparation of electrochemical nanocomposite sensors, which present electrocatalytic properties. Finally, the optical properties of the QDs contained on MWCNTs could allow a new procedure for the analytical detection of nanostructured carbon allotropes in water.

  5. Surface decoration through electrostatic interaction leading to enhanced reactivity: Low temperature synthesis of nanostructured chromium borides (CrB and CrB2)

    International Nuclear Information System (INIS)

    Menaka,; Kumar, Bharat; Kumar, Sandeep; Ganguli, A.K.

    2013-01-01

    The present study describes a novel low temperature route at ambient pressure for the synthesis of nanocrystalline chromium borides (CrB and CrB 2 ) without using any flux or additives. The favorable and intimate mixing of nanoparticles of chromium acetate (Cr source) and boron forms an active chromium–boron precursor which decomposes at much lower temperature (400 °C) to form CrB (which is ∼1000 °C less than the known ambient pressure synthesis). The chromium acetate nanoparticles (∼5 nm) decorate the larger boron particles (150–200 nm) due to electrostatic interactions resulting from opposing surface charges of boron (zeta potential:+48.101 mV) and chromium acetate (zeta potential:−4.021 mV) in ethanolic medium and is evident in the TEM micrographs. The above method leads to the formation of pure CrB film like structure at 400 °C and nanospheres (40–60 nm) at 600 °C. Also, chromium diboride (CrB 2 ) nanoparticles (25 nm) could be obtained at 1000 °C. - Graphical abstract: Variation of surface charge of reactants, precursor and the products, chromium borides (CrB and CrB 2 ). Highlights: ► Novel borothermal reduction process for synthesis of chromium boride. ► Significant lowering of reaction temperature to obtain nanocrystalline chromium boride. ► Enhanced reactivity due to appropriate surface interactions

  6. C-Reactive Protein Impairs Dendritic Cell Development, Maturation, and Function: Implications for Peripheral Tolerance

    Directory of Open Access Journals (Sweden)

    Rachel V. Jimenez

    2018-03-01

    Full Text Available C-reactive protein (CRP is the prototypical acute phase reactant, increasing in blood concentration rapidly and several-fold in response to inflammation. Recent evidence indicates that CRP has an important physiological role even at low, baseline levels, or in the absence of overt inflammation. For example, we have shown that human CRP inhibits the progression of experimental autoimmune encephalomyelitis (EAE in CRP transgenic mice by shifting CD4+ T cells away from the TH1 and toward the TH2 subset. Notably, this action required the inhibitory Fcγ receptor IIB (FcγRIIB, but did not require high levels of human CRP. Herein, we sought to determine if CRP’s influence in EAE might be explained by CRP acting on dendritic cells (DC; antigen presenting cells known to express FcγRIIB. We found that CRP (50 µg/ml reduced the yield of CD11c+ bone marrow-derived DCs (BMDCs and CRP (≥5 μg/ml prevented their full expression of major histocompatibility complex class II and the co-stimulatory molecules CD86 and CD40. CRP also decreased the ability of BMDCs to stimulate antigen-driven proliferation of T cells in vitro. Importantly, if the BMDCs were genetically deficient in mouse FcγRIIB then (i the ability of CRP to alter BMDC surface phenotype and impair T cell proliferation was ablated and (ii CD11c-driven expression of a human FCGR2B transgene rescued the CRP effect. Lastly, the protective influence of CRP in EAE was fully restored in mice with CD11c-driven human FcγRIIB expression. These findings add to the growing evidence that CRP has important biological effects even in the absence of an acute phase response, i.e., CRP acts as a tonic suppressor of the adaptive immune system. The ability of CRP to suppress development, maturation, and function of DCs implicates CRP in the maintenance of peripheral T cell tolerance.

  7. Mathematical modelling of enzyme synthesis during fermentations: the Q-functions

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, H K; Martiny, S C

    1981-01-01

    In modeling enzyme synthesis, the Q-function has been generalized to describe ordinary induction and repression as well as mixed induction-repression. The practical use of the Q-function as found in the literature was considered, especially the implications of applying fractional exponents.

  8. Synthesis, Biological Evaluation, and Docking Studies of Novel Bisquaternary Aldoxime Reactivators on Acetylcholinesterase and Butyrylcholinesterase Inhibited by Paraoxon

    Directory of Open Access Journals (Sweden)

    Kamil Kuca

    2018-05-01

    Full Text Available Nerve agents and oxon forms of organophosphorus pesticides act as strong irreversible inhibitors of two cholinesterases in the human body: acetylcholinesterase (AChE; EC 3.1.1.7 and butyrylcholinesterase (BChE; EC 3.1.1.8, and are therefore highly toxic compounds. For the recovery of inhibited AChE, antidotes from the group of pyridinium or bispyridinium aldoxime reactivators (pralidoxime, obidoxime, HI-6 are used in combination with anticholinergics and anticonvulsives. Therapeutic efficacy of reactivators (called “oximes” depends on their chemical structure and also the type of organophosphorus inhibitor. Three novel oximes (K131, K142, K153 with an oxime group in position four of the pyridinium ring were designed and then tested for their potency to reactivate human (Homo sapiens sapiens AChE (HssACHE and BChE (HssBChE inhibited by the pesticide paraoxon (diethyl 4-nitrophenyl phosphate. According to the obtained results, none of the prepared oximes were able to satisfactorily reactivate paraoxon-inhibited cholinesterases. On the contrary, extraordinary activity of obidoxime in the case of paraoxon-inhibited HssAChE reactivation was confirmed. Additional docking studies pointed to possible explanations for these results.

  9. Reactive inkjet printing and functional inks : a versatile route to new programmed materials

    NARCIS (Netherlands)

    Delaney, J.T.

    2010-01-01

    Starting as an ink dispensing tool for documents and images, inkjet printing has emerged as an important instrument for delivering reactive fluids, into a means for creating new, programmed materials. Inkjet is a processing technology with some very unique capabilities, which allows the handling of

  10. The Role of Emotional Responses and Physiological Reactivity in the Marital Conflict-Child Functioning Link

    Science.gov (United States)

    El-Sheikh, Mona

    2005-01-01

    Background: Children's emotional responses and physiological reactivity to conflict were examined as mediators and moderators in the associations between exposure to parental marital conflict and child adjustment and cognitive problems. Method: One hundred and eighty elementary school children participated. In response to a simulated argument,…

  11. Characterization of coal and char reactivity as a function of burn-off

    Energy Technology Data Exchange (ETDEWEB)

    Biede, O.; Swane Lund, J. [DTU, Dept. of Energy Engineering (Denmark); Holst Soerensen, L. [Risoe National Lab. (Denmark); Peck, R.E. [Arizona State University (United States)

    1996-12-01

    Four coal types have been tested under varying burning conditions in three high-temperature experimental facilities: A 1.3 MW test furnace, an entrained flow reactor and a down-fired tube furnace with a flat flame burner have been used to produce char samples. More than one hundred partly burned samples with burn-off from 30% to 99% have been collected from the experimental facilities, and analyzed in a thermogravimetric analyser (TGA) giving, besides the proximate data, a char burning profile of each individual sample, using a linear TGA-temperature ramp of 3 deg. C/minute. The burning profile derived by this procedure agrees well with reactivity profiles derived at a constant temperature. It is shown that small particle burn faster than large particles, and that small particles in general are more reactive than large particles. Particles burn faster when the oxygen partial pressure is increased, and apparently the oxygen partial pressure influences the combustion rate differently for different coal types. Except for one coal type, that apparently behaves differently in different burning environments, the ranking with respect to reactivity among the coals remains consistent at both high and at low temperatures. It is further shown how samples from one coal type varies more in behavior than samples from the other coal types, indicating a larger inhomogeneity of this coal. In general the reactivity of collected samples decrease with high-temperature burn-off. (au) 20 refs.

  12. Selective inhibition of influenza virus protein synthesis by inhibitors of DNA function

    International Nuclear Information System (INIS)

    Minor, P.D.; Dimmock, N.J.

    1977-01-01

    Various known inhibitors of cellular DNA function were shown to inhibit cellular RNA synthesis and influenza (fowl plague) virus multiplication. The drugs were investigated for their effect upon the synthesis of influenza virus proteins. According to this effect they could be classified with previously studied compounds as follows: Group I (ethidium bromide, proflavine, and N-nitroquinoline-N-oxide) inhibited both viral and cellular protein synthesis; Group II (nogalomycin, daunomycin and α-amanitin) inhibited viral but not cellular protein synthesis, and all viral proteins were inhibited coordinately; Group III (mithramycin, echinomycin, and actinomycin D) inhibited all viral but not cellular protein synthesis at high concentrations, but at a lower critical concentration inhibited the synthesis of viral haemagglutinin, neuraminidase, and M protein preferentially; Group IV(uv irradiation and camptothecin) inhibited the synthesis of viral haemagglutinin, neuraminidase, and M protein, but not other viral proteins, even at high doses. The mode of action of these inhibitors is discussed in relation to the mechanism of the nuclear events upon which influenza virus multiplication is dependent

  13. Differential reactivity of maleimide and bromoacetyl functions with thiols: application to the preparation of liposomal diepitope constructs.

    Science.gov (United States)

    Schelté, P; Boeckler, C; Frisch, B; Schuber, F

    2000-01-01

    The comparative reactivity of maleimide and bromoacetyl groups with thiols (2-mercaptoethanol, free cysteine, and cysteine residues present at the N-terminus of peptides) was investigated in aqueous media. These studies were performed (i) with water-soluble functionalized model molecules, i.e., polyoxyethylene-based spacer arms that could also be coupled to lipophilic anchors destined to be incorporated into liposomes, and (ii) with small unilamellar liposomes carrying at their surface these thiol-reactive functions. Our results indicate that an important kinetic discrimination (2-3 orders of magnitude in terms of rate constants) can be achieved between the maleimide and bromoacetyl functions when the reactions with thiols are performed at pH 6.5. The bromoacetyl function which reacts at higher pH values (e.g., pH 9.0) retained a high chemoselectivity; i.e., under conditions where it reacted appreciably with the thiols of, e.g., HS-peptides, it did react with other nucleophilic functions such as alpha- and epsilon-amino groups or imidazole, which could also be present in peptides. This differential reactivity was applied to design chemically defined and highly immunogenic liposomal diepitope constructs as synthetic vaccines, i.e., vesicles carrying at their surface two different peptides conjugated each to a specific amphiphilic anchor. This was realized by coupling sequentially at pH 6.5 and 9.0 two HS-peptides to preformed vesicles containing lipophilic anchors functionalized with maleimide and bromoacetyl groups [Boeckler, C., et al. (1999) Eur. J. Immunol. 29, 2297-2308].

  14. Proximally functionalized cavitands and synthesis of a flexible hemicarcerand

    NARCIS (Netherlands)

    Timmerman, P.; Boerrigter, H.; Verboom, Willem; van Hummel, G.J.; Harkema, Sybolt; Reinhoudt, David

    1995-01-01

    A general study on the synthesis of partly bridged octols3a-d and4c-d is described. Tri-bridged diol3c can be prepared in 54% yield in DMSO at 70°C with excess CH2BrCl or in 52% yield in DMF at 70°C with only 4 equiv. of CH2BrCl. 1,3-Di-bridged tetrol4a, one of the two possible di-bridged isomers

  15. The in situ generation and reactive quench of diazonium compounds in the synthesis of azo compounds in microreactors.

    Science.gov (United States)

    Akwi, Faith M; Watts, Paul

    2016-01-01

    In this paper, a micro-fluidic optimized process for the continuous flow synthesis of azo compounds is presented. The continuous flow synthesis of Sudan II azo dye was used as a model reaction for the study. At found optimal azo coupling reaction temperature and pH an investigation of the optimum flow rates of the reactants for the diazotization and azo coupling reactions in Little Things Factory-MS microreactors was performed. A conversion of 98% was achieved in approximately 2.4 minutes and a small library of azo compounds was thus generated under these reaction conditions from couplers with aminated or hydroxylated aromatic systems. The scaled up synthesis of these compounds in PTFE tubing (i.d. 1.5 mm) was also investigated, where good reaction conversions ranging between 66-91% were attained.

  16. The in situ generation and reactive quench of diazonium compounds in the synthesis of azo compounds in microreactors

    Directory of Open Access Journals (Sweden)

    Faith M. Akwi

    2016-09-01

    Full Text Available In this paper, a micro-fluidic optimized process for the continuous flow synthesis of azo compounds is presented. The continuous flow synthesis of Sudan II azo dye was used as a model reaction for the study. At found optimal azo coupling reaction temperature and pH an investigation of the optimum flow rates of the reactants for the diazotization and azo coupling reactions in Little Things Factory-MS microreactors was performed. A conversion of 98% was achieved in approximately 2.4 minutes and a small library of azo compounds was thus generated under these reaction conditions from couplers with aminated or hydroxylated aromatic systems. The scaled up synthesis of these compounds in PTFE tubing (i.d. 1.5 mm was also investigated, where good reaction conversions ranging between 66–91% were attained.

  17. The in situ generation and reactive quench of diazonium compounds in the synthesis of azo compounds in microreactors

    OpenAIRE

    Faith M. Akwi; Paul Watts

    2016-01-01

    Summary In this paper, a micro-fluidic optimized process for the continuous flow synthesis of azo compounds is presented. The continuous flow synthesis of Sudan II azo dye was used as a model reaction for the study. At found optimal azo coupling reaction temperature and pH an investigation of the optimum flow rates of the reactants for the diazotization and azo coupling reactions in Little Things Factory-MS microreactors was performed. A conversion of 98% was achieved in approximately 2.4 min...

  18. Synthesis and functionalization of magnetite nanoparticles with different amino-functional alkoxysilanes

    International Nuclear Information System (INIS)

    Bini, Rafael A.; Marques, Rodrigo Fernando C.; Santos, Francisco J.; Chaker, Juliano A.; Jafelicci, Miguel

    2012-01-01

    Superparamagnetic iron oxide (SPIO) nanoparticles show great promise for many biotechnological applications. This paper addresses the synthesis and characterization of SPIO nanoparticles grafted with three different alkoxysilanes: 3-aminopropyl-triethoxysilane (APTES), 3-aminopropyl-ethyl-diethoxysilane (APDES) and 3-aminopropyl-diethy-ethoxysilane (APES). SPIO nanoparticles with an average particle diameter of 10 nm were prepared by chemical sonoprecipitation. As confirmed by Fourier transform infrared (FTIR) spectroscopy, silylation of these nanoparticles occurs through a two-step process. Decreasing the number of alkoxide groups reduced the concentration of free amino groups on the SPIO surface ([SPIO-NH 2 ]-APTES>APDES>APES). This phenomenon results from steric contributions and the formation of H-bonded amines provided by the ethyl groups present in the APDES and APES molecules. A simulation of SPIO nanoparticles in a saline physiologic solution shows that the ethyl groups impart larger steric stability onto the ferrofluids, which reduces aggregation. The magnetization (M) versus magnetic field (H) curves show that the synthesized iron oxide nanoparticles display superparamagnetic behavior. The zero-field cooling (ZFC) and field cooling (FC) curves show that the changes in the blocking temperature depend on the alkoxysilane-functionalized particle surface. - Highlights: → Superparamagnetic iron oxide nanoparticles were grafted with different alkoxysilanes. → The decrease of alkoxide group number reduced the concentration of free amino group. → We correlate the influence of the amino and ethyl groups with their colloidal property. → Inter-particles aggregation analyzed by magnetic measurement.

  19. Can reactivity to stress and family environment explain memory and executive function performance in early and middle childhood?

    Science.gov (United States)

    Piccolo, Luciane da Rosa; Salles, Jerusa Fumagalli de; Falceto, Olga Garcia; Fernandes, Carmen Luiza; Grassi-Oliveira, Rodrigo

    2016-01-01

    According to the literature, children's overall reactivity to stress is associated with their socioeconomic status and family environment. In turn, it has been shown that reactivity to stress is associated with cognitive performance. However, few studies have systematically tested these three constructs together. To investigate the relationship between family environment, salivary cortisol measurements and children's memory and executive function performance. Salivary cortisol levels of 70 children aged 9 or 10 years were measured before and after performing tasks designed to assess memory and executive functions. Questionnaires on socioeconomic issues, family environment and maternal psychopathologies were administered to participants' families during the children's early childhood and again when they reached school age. Data were analyzed by calculating correlations between variables and conducting hierarchical regression. High cortisol levels were associated with poorer working memory and worse performance in tasks involving executive functions, and were also associated with high scores for maternal psychopathology (during early childhood and school age) and family dysfunction. Family environment variables and changes in cortisol levels explain around 20% of the variance in performance of cognitive tasks. Family functioning and maternal psychopathology in early and middle childhood and children's stress levels were associated with children's working memory and executive functioning.

  20. Listening to music and physiological and psychological functioning: the mediating role of emotion regulation and stress reactivity.

    Science.gov (United States)

    Thoma, M V; Scholz, U; Ehlert, U; Nater, U M

    2012-01-01

    Music listening has been suggested to have short-term beneficial effects. The aim of this study was to investigate the association and potential mediating mechanisms between various aspects of habitual music-listening behaviour and physiological and psychological functioning. An internet-based survey was conducted in university students, measuring habitual music-listening behaviour, emotion regulation, stress reactivity, as well as physiological and psychological functioning. A total of 1230 individuals (mean = 24.89 ± 5.34 years, 55.3% women) completed the questionnaire. Quantitative aspects of habitual music-listening behaviour, i.e. average duration of music listening and subjective relevance of music, were not associated with physiological and psychological functioning. In contrast, qualitative aspects, i.e. reasons for listening (especially 'reducing loneliness and aggression', and 'arousing or intensifying specific emotions') were significantly related to physiological and psychological functioning (all p = 0.001). These direct effects were mediated by distress-augmenting emotion regulation and individual stress reactivity. The habitual music-listening behaviour appears to be a multifaceted behaviour that is further influenced by dispositions that are usually not related to music listening. Consequently, habitual music-listening behaviour is not obviously linked to physiological and psychological functioning.

  1. Ethyl Acetate Synthesis by Coupling of Fixed-bed Reactor and Reactive Distillation Column—Process Integration Aspects

    Czech Academy of Sciences Publication Activity Database

    Smejkal, Q.; Kolena, J.; Hanika, Jiří

    2009-01-01

    Roč. 154, 1-3 (2009), s. 236-240 ISSN 1385-8947. [International Conference on Chemical Reactors - CHEMREACTOR -18 /18./. Malta, 23.09.2008-03.10.2008] Institutional research plan: CEZ:AV0Z40720504 Keywords : ethyl acetate * esterification * reactive distillation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.816, year: 2009

  2. Generalized treatment of point reactor kinetics driven by random reactivity fluctuations via the Wiener-Hermite functional method

    International Nuclear Information System (INIS)

    Behringer, K.

    1991-02-01

    In a recent paper by Behringer et al. (1990), the Wiener-Hermite Functional (WHF) method has been applied to point reactor kinetics excited by Gaussian random reactivity noise under stationary conditions, in order to calculate the neutron steady-state value and the neutron power spectral density (PSD) in a second-order (WHF-2) approximation. For simplicity, delayed neutrons and any feedback effects have been disregarded. The present study is a straightforward continuation of the previous one, treating the problem more generally by including any number of delayed neutron groups. For the case of white reactivity noise, the accuracy of the approach is determined by comparison with the exact solution available from the Fokker-Planck method. In the numerical comparisons, the first-oder (WHF-1) approximation of the PSD is also considered. (author) 4 figs., 10 refs

  3. Synthesis of dye/fluorescent functionalized dendrons based on cyclotriphosphazene

    Directory of Open Access Journals (Sweden)

    Aurélien Hameau

    2011-11-01

    Full Text Available Functionalized phenols based on tyramine were synthesized in order to be selectively grafted on to hexachlorocyclotriphosphazene, affording a variety of functionalized dendrons of type AB5. The B functions comprised fluorescent groups (dansyl or dyes (dabsyl, whereas the A function was provided by either an aldehyde or an amine. The characterization of these dendrons is reported. An unexpected behaviour of a fluorescent and water-soluble dendron based on dansyl groups in mixtures of dioxane/water was observed.

  4. The Escherichia coli BtuE protein functions as a resistance determinant against reactive oxygen species.

    Directory of Open Access Journals (Sweden)

    Felipe A Arenas

    2011-01-01

    Full Text Available This work shows that the recently described Escherichia coli BtuE peroxidase protects the bacterium against oxidative stress that is generated by tellurite and by other reactive oxygen species elicitors (ROS. Cells lacking btuE (ΔbtuE displayed higher sensitivity to K(2TeO(3 and other oxidative stress-generating agents than did the isogenic, parental, wild-type strain. They also exhibited increased levels of cytoplasmic reactive oxygen species, oxidized proteins, thiobarbituric acid reactive substances, and lipoperoxides. E. coli ΔbtuE that was exposed to tellurite or H(2O(2 did not show growth changes relative to wild type cells either in aerobic or anaerobic conditions. Nevertheless, the elimination of btuE from cells deficient in catalases/peroxidases (Hpx(- resulted in impaired growth and resistance to these toxicants only in aerobic conditions, suggesting that BtuE is involved in the defense against oxidative damage. Genetic complementation of E. coli ΔbtuE restored toxicant resistance to levels exhibited by the wild type strain. As expected, btuE overexpression resulted in decreased amounts of oxidative damage products as well as in lower transcriptional levels of the oxidative stress-induced genes ibpA, soxS and katG.

  5. Non-natural and photo-reactive amino acids as biochemical probes of immune function.

    Directory of Open Access Journals (Sweden)

    Marta Gómez-Nuñez

    Full Text Available Wilms tumor protein (WT1 is a transcription factor selectively overexpressed in leukemias and cancers; clinical trials are underway that use altered WT1 peptide sequences as vaccines. Here we report a strategy to study peptide-MHC interactions by incorporating non-natural and photo-reactive amino acids into the sequence of WT1 peptides. Thirteen WT1 peptides sequences were synthesized with chemically modified amino acids (via fluorination and photo-reactive group additions at MHC and T cell receptor binding positions. Certain new non-natural peptide analogs could stabilize MHC class I molecules better than the native sequences and were also able to elicit specific T-cell responses and sometimes cytotoxicity to leukemia cells. Two photo-reactive peptides, also modified with a biotin handle for pull-down studies, formed covalent interactions with MHC molecules on live cells and provided kinetic data showing the rapid clearance of the peptide-MHC complex. Despite "infinite affinity" provided by the covalent peptide bonding to the MHC, immunogenicity was not enhanced by these peptides because the peptide presentation on the surface was dominated by catabolism of the complex and only a small percentage of peptide molecules covalently bound to the MHC molecules. This study shows that non-natural amino acids can be successfully incorporated into T cell epitopes to provide novel immunological, biochemical and kinetic information.

  6. Bridging ligands in organometallic chemistry. II. Synthesis and reactivity of the green dimer of molybdenocene containing a bridging fulvalene ligand

    Energy Technology Data Exchange (ETDEWEB)

    Smart, J.C.; Curtis, C.J.

    1978-11-01

    Synthesis, precipitation, and isolation of dicyclopentadienyl(fulvalene)dihydridomolybdenum are described. The compound was used in reaction studies involving the addition of carbon monoxide and deprotonation with n-butyllithium. Data for elemental analysis, ir spectral and NMR(in toluene-d) spectral analysis are reported for the title compound and its reaction products.

  7. Synthesis and characterization of acrylate copolymer containing fluorescein functional group

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Guodong; Huang, Weiyun; Song, Yunzhao; Chen, Deben; Zhong, Anyong [Sichuan University, Chengdu (China)

    2013-08-15

    We report a novel method to fabricate fluorescent polymer (F-CPA) based on the esterification between acrylate copolymer (CPA) and fluorescein using N, N-dicyclohexylcarbodiimide (DCC)/4-dimethylaminopyridine (DMAP) as catalyst. The resulting copolymer was characterized by Fourier transform-infrared spectroscopy (FT-IR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), ultraviolet-visible spectroscopy (UV-Vis) and fluorescence spectroscopy. In addition, the influences of concentration, solvents, pH and metal cations (Cu{sup 2+}, Fe{sup 3+} and Zn{sup 2+}) on the fluorescent behaviors of F-CPA are discussed in detail. All those observations suggest that the synthesized F-CPA is an excellent luminescent macromolecular material with simple synthesis method and excellent solubility. Moreover, its sensitive fluorescence response behaviors to solvents, pH and metal cations make it to become a polymer-based probe.

  8. Synthesis and characterization of acrylate copolymer containing fluorescein functional group

    International Nuclear Information System (INIS)

    Hui, Guodong; Huang, Weiyun; Song, Yunzhao; Chen, Deben; Zhong, Anyong

    2013-01-01

    We report a novel method to fabricate fluorescent polymer (F-CPA) based on the esterification between acrylate copolymer (CPA) and fluorescein using N, N-dicyclohexylcarbodiimide (DCC)/4-dimethylaminopyridine (DMAP) as catalyst. The resulting copolymer was characterized by Fourier transform-infrared spectroscopy (FT-IR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), ultraviolet-visible spectroscopy (UV-Vis) and fluorescence spectroscopy. In addition, the influences of concentration, solvents, pH and metal cations (Cu"2"+, Fe"3"+ and Zn"2"+) on the fluorescent behaviors of F-CPA are discussed in detail. All those observations suggest that the synthesized F-CPA is an excellent luminescent macromolecular material with simple synthesis method and excellent solubility. Moreover, its sensitive fluorescence response behaviors to solvents, pH and metal cations make it to become a polymer-based probe

  9. Nitrosylated hemoglobin levels in human venous erythrocytes correlate with vascular endothelial function measured by digital reactive hyperemia.

    Directory of Open Access Journals (Sweden)

    Irina I Lobysheva

    Full Text Available Impaired nitric oxide (NO-dependent endothelial function is associated with the development of cardiovascular diseases. We hypothesized that erythrocyte levels of nitrosylated hemoglobin (HbNO-heme may reflect vascular endothelial function in vivo. We developed a modified subtraction method using Electron Paramagnetic Resonance (EPR spectroscopy to identify the 5-coordinate α-HbNO (HbNO concentration in human erythrocytes and examined its correlation with endothelial function assessed by peripheral arterial tonometry (PAT. Changes in digital pulse amplitude were measured by PAT during reactive hyperemia following brachial arterial occlusion in a group of healthy volunteers (50 subjects. Erythrocyte HbNO levels were measured at baseline and at the peak of hyperemia. We digitally subtracted an individual model EPR signal of erythrocyte free radicals from the whole EPR spectrum to unmask and quantitate the HbNO EPR signals.Mean erythrocyte HbNO concentration at baseline was 219+/-12 nmol/L (n = 50. HbNO levels and reactive hyperemia (RH indexes were higher in female (free of contraceptive pills than male subjects. We observed a dynamic increase of HbNO levels in erythrocytes isolated at 1-2 min of post-occlusion hyperemia (120+/-8% of basal levels; post-occlusion HbNO levels were correlated with basal levels. Both basal and post-occlusion HbNO levels were significantly correlated with reactive hyperemia (RH indexes (r = 0.58; P<0.0001 for basal HbNO.The study demonstrates quantitative measurements of 5-coordinate α-HbNO in human venous erythrocytes, its dynamic physiologic regulation and correlation with endothelial function measured by tonometry during hyperemia. This opens the way to further understanding of in vivo determinants of NO bioavailability in human circulation.

  10. Chemoselective synthesis of functional homocysteine residues in polypeptides and peptides

    OpenAIRE

    Gharakhanian, EG; Deming, TJ

    2016-01-01

    A methodology was developed for efficient, chemoselective transformation of methionine residues into stable, functional homocysteine derivatives. Methionine residues can undergo highly chemoselective alkylation reactions at low pH to yield stable sulfonium ions, which could then be selectively demethylated to give stable alkyl homocysteine residues. This mild, two-step process is chemoselective, efficient, tolerates many functional groups, and provides a means for creation of new functional b...

  11. Directional resolution of head-related transfer functions required in binaural synthesis

    DEFF Research Database (Denmark)

    Minnaar, Pauli; Plogsties, Jan; Christensen, Flemming

    2005-01-01

    In binaural synthesis a virtual sound source is implemented by convolving an anechoic signal with a pair of head-related transfer functions (HRTFs). In order to represent all possible directions of the sound source with respect to the listener a discrete number of HRTFs are measured and interpola......In binaural synthesis a virtual sound source is implemented by convolving an anechoic signal with a pair of head-related transfer functions (HRTFs). In order to represent all possible directions of the sound source with respect to the listener a discrete number of HRTFs are measured...... and moving sound sources. A criterion was found that predicts the experimental results. This criterion was used to estimate the directional resolution required in binaural synthesis for all directions on the sphere around the head....

  12. Synthesis and characterization of in situ TiC–TiB2 composite coatings by reactive plasma spraying on a magnesium alloy

    International Nuclear Information System (INIS)

    Zou Binglin; Tao Shunyan; Huang Wenzhi; Khan, Zuhair S.; Fan Xizhi; Gu Lijian; Wang Ying; Xu Jiaying; Cai Xiaolong; Ma Hongmei; Cao Xueqiang

    2013-01-01

    Highlights: ► TiC–TiB 2 composites coatings were produced on Mg alloy by reactive plasma spraying. ► Phase composition, microstructure and wear resistance of the coatings were studied. ► The resultant product in the coatings was composed of TiC and TiB 2 . ► The produced coatings displayed porous and dense microstructures. ► The synthesized coatings exhibited good wear resistance for Mg alloy substrate. - Abstract: TiC–TiB 2 composite coatings were successfully synthesized using the technique of reactive plasma spraying (RPS) on a magnesium alloy. Phase composition, microstructure and wear resistance of the coatings were characterized by using X-ray diffraction, scanning electron microscopy and pin-on-disk wear test, respectively. The results showed that the resultant product in the RPS coatings was composed of TiC and TiB 2 . Depending on the ignition of self-propagating high-temperature synthesis reaction in the agglomerate particles, the RPS coatings displayed porous and dense microstructures. The porosity of the RPS coatings, to some extent, decreased when the feed powders were plasma sprayed with Ni powders. The RPS coatings provided good wear resistance for the substrate under various loads. For high loads (e.g., ≥15 N), the wear resistance could be significantly improved by the proper addition of Ni into the RPS coatings.

  13. Monoamines and sexual function in rats bred for increased catatonic reactivity.

    Science.gov (United States)

    Klochkov, D V; Alekhina, T A; Kuznetsova, E G; Barykina, N N

    2009-07-01

    Body weight, ovary and uterus weight, the nature of estral cycles, and hypothalamus dopamine and noradrenaline levels and plasma testosterone levels were studied in female GC rats, bred for increased catatonic reactivity, at different stages of the estral cycle (estrus, proestrus). The outbred Wistar strain served as controls. On the background of decreased body weight, GC females showed impairments to the morphological cyclical changes in the ovaries and uterus, with a reduction in ovary weight in diestrus (p rats showed higher levels of these monoamines in estrus and lower levels in diestrus. Plasma testosterone levels in female GC rats were higher in diestrus than in estrus and in Wistar rats.

  14. Reactivity of Heteropolytungstate and Heteropolymolybdate Metal Transition Salts in the Synthesis of Dimethyl Carbonate from Methanol and CO2

    Directory of Open Access Journals (Sweden)

    Amro Al-Amro

    2010-07-01

    Full Text Available A series of Keggin-type heteropoly compounds (HPC having different countercations (Co, Fe and different addenda atoms (W, Mo were synthesized and characterized by means of Fourier-Transform Infrared Spectrometer (FT-IR and X-ray powder diffraction (XRD. The catalytic properties of the prepared catalysts for the dimethyl carbonate (DMC synthesis from CO2 and CH3OH were investigated. The experimental results showed that the catalytic activity is significantly influenced by the type of the countercation and addenda atoms transition metal. Among the catalysts examined, Co1.5PW12O40 is the most active for the DMC synthesis, owing to the synergetic effect between Co and W. Investigating the effect of the support showed that the least acidic one (Al2O3 enhanced the conversion but decreased the DMC selectivity in favor of that of methyl formate (MF, while that of dimethoxy methane remained stable.

  15. Extracellular Redox Regulation of Intracellular Reactive Oxygen Generation, Mitochondrial Function and Lipid Turnover in Cultured Human Adipocytes.

    Directory of Open Access Journals (Sweden)

    Albert R Jones

    Full Text Available Many tissues play an important role in metabolic homeostasis and the development of diabetes and obesity. We hypothesized that the circulating redox metabolome is a master metabolic regulatory system that impacts all organs and modulates reactive oxygen species (ROS production, lipid peroxidation, energy production and changes in lipid turnover in many cells including adipocytes.Differentiated human preadipocytes were exposed to the redox couples, lactate (L and pyruvate (P, β-hydroxybutyrate (βOHB and acetoacetate (Acoc, and the thiol-disulfides cysteine/ cystine (Cys/CySS and GSH/GSSG for 1.5-4 hours. ROS measurements were done with CM-H2DCFDA. Lipid peroxidation (LPO was assessed by a modification of the thiobarbituric acid method. Lipolysis was measured as glycerol release. Lipid synthesis was measured as 14C-glucose incorporated into lipid. Respiration was assessed using the SeaHorse XF24 analyzer and the proton leak was determined from the difference in respiration with oligomycin and antimycin A.Metabolites with increasing oxidation potentials (GSSG, CySS, Acoc increased adipocyte ROS. In contrast, P caused a decrease in ROS compared with L. Acoc also induced a significant increase in both LPO and lipid synthesis. L and Acoc increased lipolysis. βOHB increased respiration, mainly due to an increased proton leak. GSSG, when present throughout 14 days of differentiation significantly increased fat accumulation, but not when added later.We demonstrated that in human adipocytes changes in the external redox state impacted ROS production, LPO, energy efficiency, lipid handling, and differentiation. A more oxidized state generally led to increased ROS, LPO and lipid turnover and more reduction led to increased respiration and a proton leak. However, not all of the redox couples were the same suggesting compartmentalization. These data are consistent with the concept of the circulating redox metabolome as a master metabolic regulatory system.

  16. Mitochondrial Reactive Oxygen Species Mediate Cardiac Structural, Functional, and Mitochondrial Consequences of Diet-Induced Metabolic Heart Disease.

    Science.gov (United States)

    Sverdlov, Aaron L; Elezaby, Aly; Qin, Fuzhong; Behring, Jessica B; Luptak, Ivan; Calamaras, Timothy D; Siwik, Deborah A; Miller, Edward J; Liesa, Marc; Shirihai, Orian S; Pimentel, David R; Cohen, Richard A; Bachschmid, Markus M; Colucci, Wilson S

    2016-01-11

    Mitochondrial reactive oxygen species (ROS) are associated with metabolic heart disease (MHD). However, the mechanism by which ROS cause MHD is unknown. We tested the hypothesis that mitochondrial ROS are a key mediator of MHD. Mice fed a high-fat high-sucrose (HFHS) diet develop MHD with cardiac diastolic and mitochondrial dysfunction that is associated with oxidative posttranslational modifications of cardiac mitochondrial proteins. Transgenic mice that express catalase in mitochondria and wild-type mice were fed an HFHS or control diet for 4 months. Cardiac mitochondria from HFHS-fed wild-type mice had a 3-fold greater rate of H2O2 production (P=0.001 versus control diet fed), a 30% decrease in complex II substrate-driven oxygen consumption (P=0.006), 21% to 23% decreases in complex I and II substrate-driven ATP synthesis (P=0.01), and a 62% decrease in complex II activity (P=0.002). In transgenic mice that express catalase in mitochondria, all HFHS diet-induced mitochondrial abnormalities were ameliorated, as were left ventricular hypertrophy and diastolic dysfunction. In HFHS-fed wild-type mice complex II substrate-driven ATP synthesis and activity were restored ex vivo by dithiothreitol (5 mmol/L), suggesting a role for reversible cysteine oxidative posttranslational modifications. In vitro site-directed mutation of complex II subunit B Cys100 or Cys103 to redox-insensitive serines prevented complex II dysfunction induced by ROS or high glucose/high palmitate in the medium. Mitochondrial ROS are pathogenic in MHD and contribute to mitochondrial dysfunction, at least in part, by causing oxidative posttranslational modifications of complex I and II proteins including reversible oxidative posttranslational modifications of complex II subunit B Cys100 and Cys103. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  17. From synthesis to function via iterative assembly of N-methyliminodiacetic acid boronate building blocks.

    Science.gov (United States)

    Li, Junqi; Grillo, Anthony S; Burke, Martin D

    2015-08-18

    The study and optimization of small molecule function is often impeded by the time-intensive and specialist-dependent process that is typically used to make such compounds. In contrast, general and automated platforms have been developed for making peptides, oligonucleotides, and increasingly oligosaccharides, where synthesis is simplified to iterative applications of the same reactions. Inspired by the way natural products are biosynthesized via the iterative assembly of a defined set of building blocks, we developed a platform for small molecule synthesis involving the iterative coupling of haloboronic acids protected as the corresponding N-methyliminodiacetic acid (MIDA) boronates. Here we summarize our efforts thus far to develop this platform into a generalized and automated approach for small molecule synthesis. We and others have employed this approach to access many polyene-based compounds, including the polyene motifs found in >75% of all polyene natural products. This platform further allowed us to derivatize amphotericin B, the powerful and resistance-evasive but also highly toxic last line of defense in treating systemic fungal infections, and thereby understand its mechanism of action. This synthesis-enabled mechanistic understanding has led us to develop less toxic derivatives currently under evaluation as improved antifungal agents. To access more Csp(3)-containing small molecules, we gained a stereocontrolled entry into chiral, non-racemic α-boryl aldehydes through the discovery of a chiral derivative of MIDA. These α-boryl aldehydes are versatile intermediates for the synthesis of many Csp(3) boronate building blocks that are otherwise difficult to access. In addition, we demonstrated the utility of these types of building blocks in accessing pharmaceutically relevant targets via an iterative Csp(3) cross-coupling cycle. We have further expanded the scope of the platform to include stereochemically complex macrocyclic and polycyclic molecules

  18. Simulation, design and proof-of-concept of a two-stage continuous hydrothermal flow synthesis reactor for synthesis of functionalized nano-sized inorganic composite materials

    DEFF Research Database (Denmark)

    Zielke, Philipp; Xu, Yu; Simonsen, Søren Bredmose

    2016-01-01

    Computational fluid dynamics simulations were employed to evaluate several mixer geometries for a novel two-stage continuous hydrothermal flow synthesis reactor. The addition of a second stage holds the promise of allowing the synthesis of functionalized nano-materials as for example core-shell...... or decorated particles. Based on the simulation results, a reactor system employing a confined jet mixer in the first and a counter-flow mixer in the second stage was designed and built. The two-stage functionality and synthesis capacity is shown on the example of single- and two-stage syntheses of pure...... and mixed-phase NiO and YSZ particles....

  19. Support Functionalization To Retard Ostwald Ripening in Copper Methanol Synthesis Catalysts

    NARCIS (Netherlands)

    van den Berg, Roy; Parmentier, Tanja E.; Elkjaer, Christian F.; Gommes, Cedric J.; Sehested, Jens; Helveg, Stig; de Jongh, Petra E.; de Jong, Krijn P.

    A main reason for catalyst deactivation in supported catalysts for methanol synthesis is copper particle growth. We have functionalized the support surface in order to suppress the formation and/or transport of mobile copper species and thereby catalyst deactivation. A Stober silica support was

  20. Facile and green synthesis of highly stable L-cysteine functionalized copper nanoparticles

    International Nuclear Information System (INIS)

    Kumar, Nikhil; Upadhyay, Lata Sheo Bachan

    2016-01-01

    Highlights: • A facile and eco-friendly method for the synthesis of L-cysteine functionalized copper nanoparticles is reported. • Synthesis of Highly stable L-cysteine functionalized copper nanoparticles (∼40 nm) was done in an aqueous medium. • FTIR analysis shows that L-cysteine bound to the nanoparticle surface via thiol group. - Abstract: A simple eco-friendly method for L-cysteine capped copper nanoparticles (CCNPs) synthesis in aqueous solution has been developed. Glucose and L-cysteine were used as reducing agent and capping/functionalizing agent, respectively. Different parameters such as capping agent concentration, pH, reaction temperature, and reducing agent concentration were optimized during the synthesis. The L-cysteine capped copper nanoparticle were characterized by ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, Particle size and zeta potential analyser, and high resolution transmission electron microscopy. Spherical shaped cysteine functionalized/capped copper nanoparticles with an average size of 40 nm were found to be highly stable at room temperature (RT) for a period of 1 month

  1. Facile and green synthesis of highly stable L-cysteine functionalized copper nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Nikhil, E-mail: nkumar.phd2011.bt@nitrr.ac.in; Upadhyay, Lata Sheo Bachan, E-mail: contactlataupadhyay@gmail.com

    2016-11-01

    Highlights: • A facile and eco-friendly method for the synthesis of L-cysteine functionalized copper nanoparticles is reported. • Synthesis of Highly stable L-cysteine functionalized copper nanoparticles (∼40 nm) was done in an aqueous medium. • FTIR analysis shows that L-cysteine bound to the nanoparticle surface via thiol group. - Abstract: A simple eco-friendly method for L-cysteine capped copper nanoparticles (CCNPs) synthesis in aqueous solution has been developed. Glucose and L-cysteine were used as reducing agent and capping/functionalizing agent, respectively. Different parameters such as capping agent concentration, pH, reaction temperature, and reducing agent concentration were optimized during the synthesis. The L-cysteine capped copper nanoparticle were characterized by ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, Particle size and zeta potential analyser, and high resolution transmission electron microscopy. Spherical shaped cysteine functionalized/capped copper nanoparticles with an average size of 40 nm were found to be highly stable at room temperature (RT) for a period of 1 month.

  2. C–H-Functionalization logic guides the synthesis of a carbacyclopamine analog

    Directory of Open Access Journals (Sweden)

    Sebastian Rabe

    2014-07-01

    Full Text Available The chemical synthesis of carbacyclopamine analog 2, a cyclopamine analog with an all-carbon E-ring, is reported. The use of C–H-functionalization logic and further metal-catalyzed transformations allows for a concise entry to this new class of acid-stable cyclopamine analogs.

  3. Synthesis and Selective Functionalization of [1,2,4]Triazolo[4,3-a]pyrazines

    DEFF Research Database (Denmark)

    Demmer, Charles Sylvain; Jorgensen, Morten; Kehler, Jan

    2015-01-01

    A new tactic for the synthesis and selective functionalization of [1,2,4]triazolo[4,3-a]pyrazines has been developed using an oxidative cyclization as key step. Furthermore, novel strategies for introducing diverse substituents in all positions of the heterocycle were identified....

  4. Early sepsis does not stimulate reactive oxygen species production and does not reduce cardiac function despite an increased inflammation status.

    Science.gov (United States)

    Léger, Thibault; Charrier, Alice; Moreau, Clarisse; Hininger-Favier, Isabelle; Mourmoura, Evangelia; Rigaudière, Jean-Paul; Pitois, Elodie; Bouvier, Damien; Sapin, Vincent; Pereira, Bruno; Azarnoush, Kasra; Demaison, Luc

    2017-07-01

    If it is sustained for several days, sepsis can trigger severe abnormalities of cardiac function which leads to death in 50% of cases. This probably occurs through activation of toll-like receptor-9 by bacterial lipopolysaccharides and overproduction of proinflammatory cytokines such as TNF- α and IL-1 β In contrast, early sepsis is characterized by the development of tachycardia. This study aimed at determining the early changes in the cardiac function during sepsis and at finding the mechanism responsible for the observed changes. Sixty male Wistar rats were randomly assigned to two groups, the first one being made septic by cecal ligation and puncture (sepsis group) and the second one being subjected to the same surgery without cecal ligation and puncture (sham-operated group). The cardiac function was assessed in vivo and ex vivo in standard conditions. Several parameters involved in the oxidative stress and inflammation were determined in the plasma and heart. As evidenced by the plasma level of TNF- α and gene expression of IL-1 β and TNF- α in the heart, inflammation was developed in the sepsis group. The cardiac function was also slightly stimulated by sepsis in the in vivo and ex vivo situations. This was associated with unchanged levels of oxidative stress, but several parameters indicated a lower cardiac production of reactive oxygen species in the septic group. In conclusion, despite the development of inflammation, early sepsis did not increase reactive oxygen species production and did not reduce myocardial function. The depressant effect of TNF- α and IL-1 β on the cardiac function is known to occur at very high concentrations. The influence of low- to moderate-grade inflammation on the myocardial mechanical behavior must thus be revisited. © 2017 French National Institute of Agronomical Research (INRA). Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  5. Reactive hypoglycemia in lean young women with PCOS and correlations with insulin sensitivity and with beta cell function.

    Science.gov (United States)

    Altuntas, Yuksel; Bilir, Muammer; Ucak, Sema; Gundogdu, Sadi

    2005-04-01

    Reactive hypoglycemia (RH), which is a postprandial hypoglycemic state, occurs within 2-5 h after food intake. It is classified as idiopathic, alimentary, or diabetic reactive hypoglycemia. We studied the incidence of reactive hypoglycemia and looked for any correlations between it and the presence of insulin sensitivity and/or beta cell function in young lean polycystic ovary syndrome (PCOS) patients. This study was designed as a cross-sectional study in 64 lean young women with PCOS (BMI lean young women with PCOS. DHEA-S and PRL levels were found to be lower in subjects with RH (P 0.05, respectively). Beta cell function indices such as the insulinogenic index (at 120 min), CIR (at 120 min) and HOMA beta cell index were found to be insignificantly higher in the RH group than the nonreactive hypoglycemia (NRH) group. The 4 h glucose level, but not the 3 h glucose level, was significantly correlated with insulin resistance indices, such as fasting insulin level, HOMA-IR, Quicky index, and FIRI in the RH group. Significantly decreased DHEA-S levels were an interesting finding. In conclusion, there is an urgent need to investigate RH in lean young women with PCOS. Our results indicate that more definite insulin resistance occurs in subjects with RH in the fourth hour of the OGTT than those with RH in the third hour. In addition, RH in the fourth hour together with a low DHEA-S level may be predictive of future diabetes in young women with PCOS even when they are not obese.

  6. The synthesis, structure and reactivity of iron-bismuth complexes : Potential Molecular Precursors for Multiferroic BiFeO3

    OpenAIRE

    Wójcik, Katarzyna

    2009-01-01

    The thesis presented here is focused on the synthesis of iron-bismuth alkoxides and siloxides as precursors for multiferroic BiFeO3 systems. Spectrum of novel cyclopentadienyl substituted iron-bismuth complexes of the general type [{Cpy(CO)2Fe}BiX2], as potential precursors for cyclopentadienyl iron-bismuth alkoxides or siloxides [{Cpy(CO)2Fe}Bi(OR)2] (R-OtBu, OSiMe2tBu), were obtained and characterised. The use of wide range of cyclopentadienyl rings in the iron carbonyl compounds allowed fo...

  7. Diastereoselective multicomponent synthesis of dihydropyridones with an isocyanide functionality

    NARCIS (Netherlands)

    Paravidino, M.; Bon, R.S.; Scheffelaar, R.; Vugts, D.J.; Znabet, A.; Schmitz, R.F.; de Kanter, F.J.J.; Lutz, M.; Spek, A.L; Groen, M.B.; Orru, R.V.A.

    2006-01-01

    In a search for new multicomponent strategies leading to valuable small heterocycles, a new highly diastereoselective four-component reaction (4CR) was found in which a phosphonate, nitriles, aldehydes, and isocyanoacetates combine to afford functionalized 3-isocyano-3,4-dihydro-2-pyridones. In this

  8. The South African functional metropolis – A synthesis | Geyer | Town ...

    African Journals Online (AJOL)

    Confusing usage of terms such as metropolis and metropolitan region in planning policy in South Africa has led to the need for a fundamental investigation into the morphological and functional properties of the country's three largest cities. Using Gauteng, Cape Town and Durban as examples, the article distinguishes ...

  9. Gas-Phase Synthesis of Bimetallic Oxide Nanoparticles with Designed Elemental Compositions for Controlling the Explosive Reactivity of Nanoenergetic Materials

    Directory of Open Access Journals (Sweden)

    Ji Young Ahn

    2011-01-01

    Full Text Available We demonstrate a simple and viable method for controlling the energy release rate and pressurization rate of nanoenergetic materials by controlling the relative elemental compositions of oxidizers. First, bimetallic oxide nanoparticles (NPs with a homogeneous distribution of two different oxidizer components (CuO and Fe2O3 were generated by a conventional spray pyrolysis method. Next, the Al NPs employed as a fuel were mixed with CuO-Fe2O3 bimetallic oxide NPs by an ultrasonication process in ethanol solution. Finally, after the removal of ethanol by a drying process, the NPs were converted into energetic materials (EMs. The effects of the mass fraction of CuO in the CuO-Fe2O3 bimetallic oxide NPs on the explosive reactivity of the resulting EMs were examined by using a differential scanning calorimeter and pressure cell tester (PCT systems. The results clearly indicate that the energy release rate and pressurization rate of EMs increased linearly as the mass fraction of CuO in the CuO-Fe2O3 bimetallic oxide NPs increased. This suggests that the precise control of the stoichiometric proportions of the strong oxidizer (CuO and mild oxidizer (Fe2O3 components in the bimetallic oxide NPs is a key factor in tuning the explosive reactivity of EMs.

  10. Synthesis of an oxo trialkyl tungsten fluoride complex and its dual reactivity with silica dehydroxylated at high temperature

    KAUST Repository

    Merle, Nicolas

    2018-05-22

    The novel complex W (=O)Np3F has been prepared by fluorination of the corresponding chloride counterpart with AgBF4. The reactivity of this complex with silica dehydroxylated at 700 °C afforded a well-defined silica supported monopodal tungsten oxo trialkyl surface species (≡SiO)W (=O)Np3. The reaction proceeds both through silanolysis of the W-F bond and opening of a siloxane bridge, with formation of a Si-F fragment, thanks to the affinity of silicon for fluoride. The resulting surface species was characterized by elemental analysis, DRIFT, solid state NMR and EXAFS spectroscopy. This material presenting fluorine on its surface shows an enhanced catalytic activity in propylene self-metathesis compared to its monopodal counterpart (≡SiO)W (=O)Np3 (prepared from W (=O)Np3Cl) suggesting that the Si-F in a close vicinity to the W decreases the electron density of the W and thus increases its reactivity towards the olefinic substrate.

  11. Copolymers of N-cyclohexylacrylamide and n-butyl acrylate: synthesis, characterization, monomer reactivity ratios and mean sequence length

    Directory of Open Access Journals (Sweden)

    2007-06-01

    Full Text Available Copolymerization of N-cyclohexylacrylamide (NCHA and n-butyl acrylate (BA was carried out in dimethylformamide at 55±1°C using azobisisobutyronitrile as a free radical initiator. The copolymers were characterized by 1H-NMR spectroscopy and the copolymer compositions were determined by 1H-NMR analysis. The reactivity ratios of the monomers were determined by both linear and non-linear methods. The reactivity ratios of monomers determined using linear methods like Fineman-Ross (r1 = 0.37 and r2 = 1.77 , Kelen-Tudos (r1 = 0.38 and r2 = 1.77, ext. Kelen-Tudos (r1 = 0.37 and r2 = 1.75 Yezrieler-Brokhina-Roskin (r1 = 0.37 and r2 = 1.77 and non-linear methods like Tidwell-Mortimer (r1 = 0.37 and r2 = 1.76, ProCop (r1 = 0.36 and r2 = 1.82. The Q and e values for NCHA are 0.67 and 0.68 respectively. Mean sequence lengths of copolymers are estimated from r1 and r2 values. It shows that the BA units increases in a linear fashion in the polymer chain as the concentration of BA increases in the monomer feed.

  12. Synthesis of an oxo trialkyl tungsten fluoride complex and its dual reactivity with silica dehydroxylated at high temperature

    KAUST Repository

    Merle, Nicolas; Mazoyer, Etienne; Szeto, Kai C.; Rouge, Pascal; de Mallmann, Aimery; Berrier, Elise; Delevoye, Laurent; Gauvin, Ré gis M.; Nicholas, Christopher P.; Basset, Jean-Marie; Taoufik, Mostafa

    2018-01-01

    The novel complex W (=O)Np3F has been prepared by fluorination of the corresponding chloride counterpart with AgBF4. The reactivity of this complex with silica dehydroxylated at 700 °C afforded a well-defined silica supported monopodal tungsten oxo trialkyl surface species (≡SiO)W (=O)Np3. The reaction proceeds both through silanolysis of the W-F bond and opening of a siloxane bridge, with formation of a Si-F fragment, thanks to the affinity of silicon for fluoride. The resulting surface species was characterized by elemental analysis, DRIFT, solid state NMR and EXAFS spectroscopy. This material presenting fluorine on its surface shows an enhanced catalytic activity in propylene self-metathesis compared to its monopodal counterpart (≡SiO)W (=O)Np3 (prepared from W (=O)Np3Cl) suggesting that the Si-F in a close vicinity to the W decreases the electron density of the W and thus increases its reactivity towards the olefinic substrate.

  13. Acetylcholine synthesis and possible functions during sea urchin development

    Directory of Open Access Journals (Sweden)

    C Angelini

    2009-06-01

    Full Text Available Cholinergic neurotransmitter system molecules were found to play a role during fertilisation and early cell cycles of a large number of invertebrate and vertebrate organisms. In this study, we investigated the presence and possible function of choline acetyltransferase (ChAT, the biosynthetic enzyme of acetylcholine in gametes of the sea urchin, Paracentrotus lividus, through localisation and functional studies. ChAT-like molecules were detected in oocytes, mature eggs and zygotes with indirect immunofluorescence methods. Positive immunoreactivity was found in the ovarian egg cytoplasm and surface as well as at the zygote surface. This suggests the eggs' capacity to autonomously synthesise acetylcholine (ACh, the signal molecule of the cholinergic system. Acetylcholinesterase (AChE, the lytic enzyme of acetylcholine was also found in ovarian eggs, with a similar distribution; however, it disappeared after fertilisation. Ultrastructural ChAT localisation in sperms, which was carried out with the immuno-gold method, showed immunoreactivity in the acrosome of unreacted sperms and at the head surface of reacted sperms. In order to verify a functional role of ACh during fertilization and sea urchin development, in vivo experiments were performed. Exposure of the eggs before fertilisation to 1 mM ACh + 1 ?M eserine caused an incomplete membrane depolarisation and consequently enhanced polyspermy, while lower concentrations of ACh caused developmental anomalies. The exposure of zygotes to 0,045 AChE Units/mL of sea water caused developmental anomalies as well, in 50% of the embryos. Altogether, these findings and other previously obtained results, suggest that the cholinergic system may subserve two different tasks during development, according to which particular type of ACh receptor is active during each temporal window. The first function, taking place in the course of fertilisation is a result of autonomously synthesised ACh in sperms, while the

  14. Mineralization of hetero bi-functional reactive dye in aqueous solution by Fenton and photo-Fenton reactions.

    Science.gov (United States)

    Torrades, Francesc; García-Hortal, José Antonio; García-Montaño, Julia

    2015-01-01

    This study focused on the advanced oxidation of the hetero bi-functional reactive dye Sumifix Supra Yellow 3RF (CI Reactive Yellow 145) using dark Fenton and photo-Fenton conditions in a lab-scale experiment. A 2(3) factorial design was used to evaluate the effects of the three key factors: temperature, Fe(II) and H2O2 concentrations, for a dye concentration of 250 mg L(-1) with chemical oxygen demand (COD) of 172 mg L(-1) O2 at pH=3. The response function was the COD reduction. This methodology lets us find the effects and interactions of the studied variables and their roles in the efficiency of the treatment process. In the optimization, the correlation coefficients for the model (R2) were 0.948 and 0.965 for Fenton and photo-Fenton treatments, respectively. Under optimized reaction conditions: pH=3, temperature=298 K, [H2O2]=11.765 mM and [Fe(II)]=1.075 mM; 60 min of treatment resulted in a 79% and 92.2% decrease in COD, for the dye taken as the model organic compound, after Fenton and photo-Fenton treatments, respectively.

  15. Sexual Satisfaction and Sexual Reactivity in Infertile Women: The Contribution of The Dyadic Functioning and Clinical Variables

    Directory of Open Access Journals (Sweden)

    Anna Czyżkowska

    2016-12-01

    Full Text Available Background: Infertility is a factor which has been linked to higher prevalence of sexual dysfunctions in women; however, ambiguous results have been reported about the impact of infertility on women’s sexual satisfaction. The purpose of this study was to compare sexual and dyadic functioning in infertile and fertile women. Furthermore, the associations between sexual variables and clinical variables (depressive symptoms, period trying to conceive, and treatment period were assessed in infertile women sample. Materials and Methods: The cross-sectional study involved 50 women with the history of infertility and 50 fertile women recruited from the general population. The Sexual Satisfaction Scale (SSS, Mell-Krat Scale (women’s version, Family Assessment Measure (FAM-III, and Beck Depression Inventory (BDI were administered to all participants. Results: Infertile women reported lower sexual satisfaction and more maladaptive patterns of dyadic functioning in comparison to the control group. As many as 45 (90% of infertile women, compared to 13 (26% of the control group, reported the scores on the Mell-Krat Scale indicative of the presence of dysfunctions in sexual reactivity (P≤0.001. Infertile women reported significantly higher levels of depressive symptoms than the women from the control group (P≤0.001. Negative correlations were observed between sexual satisfaction and dyadic functioning in both groups (P≤0.05; however, the patterns of these associations were different in infertile and fertile women. For example, negative correlations were found between satisfaction with control and task accomplishment, role performance, affective involvement, and values and norms in infertile women. However, these relationships were not observed in the control group. No correlations were revealed between sexual reactivity and dyadic functioning in infertile women and the control group. Negative correlations were observed between satisfaction with

  16. Sexual Satisfaction and Sexual Reactivity in Infertile Women: The Contribution of The Dyadic Functioning and Clinical Variables.

    Science.gov (United States)

    Czyżkowska, Anna; Awruk, Katarzyna; Janowski, Konrad

    2016-01-01

    Infertility is a factor which has been linked to higher prevalence of sexual dysfunctions in women; however, ambiguous results have been reported about the impact of infertility on women's sexual satisfaction. The purpose of this study was to compare sexual and dyadic functioning in infertile and fertile women. Furthermore, the associations between sexual variables and clinical variables (depressive symptoms, period trying to conceive, and treatment period) were assessed in infertile women sample. The cross-sectional study involved 50 women with the history of infertility and 50 fertile women recruited from the general population. The Sexual Satisfaction Scale (SSS), Mell-Krat Scale (women's version), Family Assessment Measure (FAM-III), and Beck Depression Inventory (BDI) were administered to all participants. Infertile women reported lower sexual satisfaction and more maladaptive patterns of dyadic functioning in comparison to the control group. As many as 45 (90%) of infertile women, compared to 13 (26%) of the control group, reported the scores on the Mell-Krat Scale indicative of the presence of dysfunctions in sexual reactivity (P≤0.001). Infertile women reported significantly higher levels of depressive symptoms than the women from the control group (P≤0.001). Negative correlations were observed between sexual satisfaction and dyadic functioning in both groups (P≤0.05); however, the patterns of these associations were different in infertile and fertile women. For example, negative correlations were found between satisfaction with control and task accomplishment, role performance, affective involvement, and values and norms in infertile women. However, these relationships were not observed in the control group. No correlations were revealed between sexual reactivity and dyadic functioning in infertile women and the control group. Negative correlations were observed between satisfaction with control and relationship duration and treatment period as well

  17. Reactivating the extracellular matrix synthesis of sulfated glycosaminoglycans and proteoglycans to improve the human skin aspect and its mechanical properties

    Directory of Open Access Journals (Sweden)

    Chajra H

    2016-12-01

    Full Text Available Hanane Chajra,1 Daniel Auriol,1 Francine Joly,2 Aurélie Pagnon,3 Magda Rodrigues,4 Sophie Allart,4 Gérard Redziniak,5 Fabrice Lefevre1 1Libragen, Induchem (Givaudan Active Beauty, Toulouse, 2Sephra Pharma, Puteaux, 3Novotec, Bron, 4Centre de Physiopathologie de Toulouse-Purpan, Toulouse, 5Cosmetic Inventions, Antony, France Background: The aim of this study was to demonstrate that a defined cosmetic composition is able to induce an increase in the production of sulfated glycosaminoglycans (sGAGs and/or proteoglycans and finally to demonstrate that the composition, through its combined action of enzyme production and synthesis of macromolecules, modulates organization and skin surface aspect with a benefit in antiaging applications. Materials and methods: Gene expression was studied by quantitative reverse transcription polymerase chain reaction using normal human dermal fibroblasts isolated from a 45-year-old donor skin dermis. De novo synthesis of sGAGs and proteoglycans was determined using Blyscan™ assay and/or immunohistochemical techniques. These studies were performed on normal human dermal fibroblasts (41- and 62-year-old donors and on human skin explants. Dermis organization was studied either ex vivo on skin explants using bi-photon microscopy and transmission electron microscopy or directly in vivo on human volunteers by ultrasound technique. Skin surface modification was investigated in vivo using silicone replicas coupled with macrophotography, and the mechanical properties of the skin were studied using Cutometer. Results: It was first shown that mRNA expression of several genes involved in the synthesis pathway of sGAG was stimulated. An increase in the de novo synthesis of sGAGs was shown at the cellular level despite the age of cells, and this phenomenon was clearly related to the previously observed stimulation of mRNA expression of genes. An increase in the expression of the corresponding core protein of decorin, perlecan

  18. Synthesis, characterization and photoinduced curing of polysulfones with (methacrylate functionalities

    Directory of Open Access Journals (Sweden)

    Cemil Dizman

    2010-06-01

    Full Text Available The UV-curable telechelic polysulfones with (methacrylate functionalities were synthesized by condensation polymerization and subsequent esterification. The final polymers and intermediates at various stages were characterized by 1H NMR, FT-ATR, and GPC. The oligomeric films prepared from the appropriate solutions containing these telechelics and 2,2-dimethoxy-2-phenylacetophenone (DMPA as the photoinitiator undergo rapid polymerization upon irradiation forming insoluble networks. The photo-curing behavior was investigated by photo-DSC and the effects of the molecular weight of the polysulfone precursor and type of functionality on the rate of polymerization and conversion were evaluated. Thermal properties of the photochemically cured films were studied by differential scanning calorimeter (DSC and thermal gravimetric analysis (TGA.

  19. Minimalism in radiation synthesis of biomedical functional nanogels.

    Science.gov (United States)

    Dispenza, Clelia; Sabatino, Maria Antonietta; Grimaldi, Natascia; Bulone, Donatella; Bondì, Maria Luisa; Casaletto, Maria Pia; Rigogliuso, Salvatrice; Adamo, Giorgia; Ghersi, Giulio

    2012-06-11

    A scalable, single-step, synthetic approach for the manufacture of biocompatible, functionalized micro- and nanogels is presented. In particular, poly(N-vinyl pyrrolidone)-grafted-(aminopropyl)methacrylamide microgels and nanogels were generated through e-beam irradiation of PVP aqueous solutions in the presence of a primary amino-group-carrying monomer. Particles with different hydrodynamic diameters and surface charge densities were obtained at the variance of the irradiation conditions. Chemical structure was investigated by different spectroscopic techniques. Fluorescent variants were generated through fluorescein isothiocyanate attachment to the primary amino groups grafted to PVP, to both quantify the available functional groups for bioconjugation and follow nanogels localization in cell cultures. Finally, a model protein, bovine serum albumin, was conjugated to the nanogels to demonstrate the attachment of biologically relevant molecules for targeting purposes in drug delivery. The described approach provides a novel strategy to fabricate biohybrid nanogels with a very promising potential in nanomedicine.

  20. Study on the synthesis of ceruloplasmin as a functional radioprotector

    International Nuclear Information System (INIS)

    Kim, In Gyu; Kim, Kug Chan; Shim, Hae Won; Lee, Chang Woo; Park, Hyo Kook; Park, Seon Young

    1998-12-01

    Ceruloplasmin is a normal, copper-containing plasma protein that has extracellular antioxidant properties in human and mammals. The in vivo physiological function has not yet been clarified, however, it has been proposed that ceruloplasmin may have a role in oxidation of Fe 2+ to Fe 3+ (ferroxidase) and promotion of lipoprotein oxidation under some circumstances. In this investigation, in addition to the many already known functions of ceruloplasmin, we would like to propose that ceruloplasmin has a thio-linked peroxidase function. The results are followings. 1) Human ceruloplasmin exhibited different antioxidant effects according to the electron donors in a metal-catalyzed oxidation system. 2) Purified ceruloplasmin did not plat a significant role in the protection of DNA stand breaks in the ascorbate/Fe 3+ /O 2 system. However, when ascorbate were replaced with a thiol-reducing equivalent such as dithiothreitol, DNA strand breaks were significantly prevented by the same amount of ceruloplasmin. 3) Human ceruloplasmin showed a potent peroxidase ability to destroy H 2 O 2 in the presence reduced glutathione. 4) Structural integrity may be needed for the glutathione-linked peroxidase activity of human ceruloplasmin. Intact human ceruloplasmin has a potent peroxidase properties to decompose H 2 O 2 in the presence of reduced glutathione

  1. Study on the synthesis of ceruloplasmin as a functional radioprotector

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Gyu; Kim, Kug Chan; Shim, Hae Won; Lee, Chang Woo; Park, Hyo Kook; Park, Seon Young

    1998-12-01

    Ceruloplasmin is a normal, copper-containing plasma protein that has extracellular antioxidant properties in human and mammals. The in vivo physiological function has not yet been clarified, however, it has been proposed that ceruloplasmin may have a role in oxidation of Fe{sup 2+} to Fe{sup 3+} (ferroxidase) and promotion of lipoprotein oxidation under some circumstances. In this investigation, in addition to the many already known functions of ceruloplasmin, we would like to propose that ceruloplasmin has a thio-linked peroxidase function. The results are followings. 1) Human ceruloplasmin exhibited different antioxidant effects according to the electron donors in a metal-catalyzed oxidation system. 2) Purified ceruloplasmin did not plat a significant role in the protection of DNA stand breaks in the ascorbate/Fe{sup 3+}/O{sub 2} system. However, when ascorbate were replaced with a thiol-reducing equivalent such as dithiothreitol, DNA strand breaks were significantly prevented by the same amount of ceruloplasmin. 3) Human ceruloplasmin showed a potent peroxidase ability to destroy H{sub 2}O{sub 2} in the presence reduced glutathione. 4) Structural integrity may be needed for the glutathione-linked peroxidase activity of human ceruloplasmin. Intact human ceruloplasmin has a potent peroxidase properties to decompose H{sub 2}O{sub 2} in the presence of reduced glutathione.

  2. Straightforward and robust synthesis of monodisperse surface-functionalized gold nanoclusters

    Directory of Open Access Journals (Sweden)

    Silvia Varela-Aramburu

    2016-09-01

    Full Text Available Gold nanoclusters are small (1–3 nm nanoparticles with a high surface area that are useful for biomedical studies and drug delivery. The synthesis of small, surface-functionalized gold nanoclusters is greatly dependent on the reaction conditions. Here, we describe a straightforward, efficient and robust room temperature one-pot synthesis of 2 nm gold nanoclusters using thioglucose as a reducing and stabilizing agent, which was discovered by serendipity. The resultant monodisperse gold nanoclusters are more stable than those generated using some other common methods. The carboxylic acid contained in the stabilizing agent on the cluster surface serves as anchor for nanocluster functionalization. Alternatively, the addition of thiols serves to functionalize the nanoclusters. The resulting non-cytotoxic nanoclusters are taken up by cells and constitute a tuneable platform for biomedical applications including drug delivery.

  3. Reactive spark plasma synthesis of CaZrTi2O7 zirconolite ceramics for plutonium disposition

    Science.gov (United States)

    Sun, Shi-Kuan; Stennett, Martin C.; Corkhill, Claire L.; Hyatt, Neil C.

    2018-03-01

    Near single phase zirconolite ceramics, prototypically CaZrTi2O7, were fabricated by reactive spark plasma sintering (RSPS), from commercially available CaTiO3, ZrO2 and TiO2 reagents, after processing at 1200 °C for only 1 h. Ceramics were of theoretical density and formed with a controlled mean grain size of 1.9 ± 0.6 μm. The reducing conditions of RSPS afforded the presence of paramagnetic Ti3+, as demonstrated by EPR spectroscopy. Overall, this study demonstrates the potential for RSPS to be a disruptive technology for disposition of surplus separated plutonium stockpiles in ceramic wasteforms, given its inherent advantage of near net shape products and rapid throughput.

  4. Retinoic acid synthesis and functions in early embryonic development

    Directory of Open Access Journals (Sweden)

    Kam Richard Kin Ting

    2012-03-01

    Full Text Available Abstract Retinoic acid (RA is a morphogen derived from retinol (vitamin A that plays important roles in cell growth, differentiation, and organogenesis. The production of RA from retinol requires two consecutive enzymatic reactions catalyzed by different sets of dehydrogenases. The retinol is first oxidized into retinal, which is then oxidized into RA. The RA interacts with retinoic acid receptor (RAR and retinoic acid X receptor (RXR which then regulate the target gene expression. In this review, we have discussed the metabolism of RA and the important components of RA signaling pathway, and highlighted current understanding of the functions of RA during early embryonic development.

  5. Studies toward the synthesis of Amaryllidaceae alkaloids from Morita-Baylis-Hillman adducts: a straightforward synthesis of functionalized dihydroisoquinoline-5(6H)-one core

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Elizandra C.S.; Coelho, Fernando [Universidade Estadual de Campinas, SP (Brazil). Inst. de Quimica]. E-mail: coelho@iqm.unicamp.br

    2007-07-01

    We disclose herein our results concerning a study aiming at the synthesis of the highly substituted carbon skeleton of alkaloids isolated from plants of the Amaryllidaceae family. The total synthesis of the functionalized dihydroisoquinoline-5(6H)-one core, which is the bottom part of the structure of alkaloids isolated from this botanic family, is described, using Morita-Baylis-Hillman adducts as substrate. This compound should be a useful and valuable intermediate for the total synthesis of alkaloids isolated from Amaryllidaceae. (author)

  6. Studies toward the synthesis of Amaryllidaceae alkaloids from Morita-Baylis-Hillman adducts: a straightforward synthesis of functionalized dihydroisoquinoline-5(6H)-one core

    International Nuclear Information System (INIS)

    Lopes, Elizandra C.S.; Coelho, Fernando

    2007-01-01

    We disclose herein our results concerning a study aiming at the synthesis of the highly substituted carbon skeleton of alkaloids isolated from plants of the Amaryllidaceae family. The total synthesis of the functionalized dihydroisoquinoline-5(6H)-one core, which is the bottom part of the structure of alkaloids isolated from this botanic family, is described, using Morita-Baylis-Hillman adducts as substrate. This compound should be a useful and valuable intermediate for the total synthesis of alkaloids isolated from Amaryllidaceae. (author)

  7. Comparison of the reactivity of the materials having two different kinds of functional groups by applying hydrogen-isotope exchange reaction

    International Nuclear Information System (INIS)

    Imaizumi, H.; Yumoto, Y.

    1995-01-01

    The hydrogen-isotope exchange reaction between m- (or p-) aminobenzoic acid and HTO vapor has been observed in order to estimate the scale of the reactivity of the material. Each rate constant has been obtained by the A''-McKay plot method. Comparing the rate constants, the following three items have been confirmed: (1) the reactivity of both COOH and NH 2 groups increases with temperature; (2) the degree of the effect of the COOH (or NH 2 ) group on the reactivity in m-aminobenzoic acid is larger than that in p-aminobenzoic acid; (3) the A''-McKay plot method is useful in studying the reactivity of the materials not only with one (or the same kinds of) functional group(s), but also with two different kinds of functional groups. (orig.)

  8. Synthesis and characterization of functional acrylic copolymers via RAFT mini-emulsion polymerization

    Science.gov (United States)

    Yılmaz, Onur; Özkan, ćiǧdem Kılıçarislan; Yılmaz, Catalina N.; Yorgancıoǧlu, Ali; Özgünay, Hasan; Karavana, Hüseyin Ata

    2017-12-01

    Copolymers bearing reactive functional groups with controlled molecular weights are of importance since they can be used in many fields such as composites, coatings, membranes, catalysis, biology, optoelectronics, pharmaceuticals, etc. In the present study low molecular weight copolymers based on butyl acrylate (BA) and methyl methacrylate (MMA) in combination with reactive functional monomers of vinyl trietoxysilane (VTES), 3-trimetoxysilylpropyl methacrylate (TMSPMA) and glycidyl methacrylate (GMA) were synthesized via RAFT mini-emulsion technique using 2-cyano 2-propyldodecyldithiocarbonate as CTA agent. The results showed that the average molecular weights of copolymers were close to the theoretical values. On the other hand, PDI values were found to be higher than conventional RAFT polymers. The particle sizes of the latexes were small with very homogenous distributions and good stability. FTIR, H-NMR and TGA results verified the success of copolymer syntheses.

  9. Spectral synthesis in certain spaces of entire functions of exponential type and its applications

    International Nuclear Information System (INIS)

    Odinokov, O V

    2000-01-01

    We consider certain spaces P Ω of entire functions of exponential type in C n associated with a domain Ω element of R n that are in fact Laplace transforms of distributions in Ω. It is shown that any shift-invariant subspace of these functions admits spectral synthesis, that is, coincides with the closure of the linear span of the exponential polynomials contained in it. As an application of this result, we describe the solution space in P Ω of a system of homogeneous equations of infinite order for differential operators with characteristic functions infinitely differentiable in Ω

  10. Sol-gel chemistry applied to the synthesis of polymetallic oxides including actinides reactivity and structure from solution to solid state

    International Nuclear Information System (INIS)

    Lemonnier, St.

    2006-02-01

    Minor actinides transmutation is studied at present in order to reduce the radiotoxicity of nuclear waste and the assessment of its technical feasibility requires specific designed materials. When considering americium, yttria stabilized zirconia (Am III YII Zriv)Or x is among the ceramic phases that one which presents the required physico-chemical properties. An innovative synthesis of this mixed oxide by sol-gel process is reported in this manuscript. The main aim of this work is to adjust the reactivity of the different metallic cations in aqueous media using complexing agent, in order to initiate a favourable interaction for a homogeneous elements repartition in the forming solid phase. The originality of the settled synthesis lies on an in-situ formation of a stable and monodisperse nano-particles dispersion in the presence of acetylacetone. The main reaction mechanisms have been identified: the sol stabilisation results from an original interaction between the three compounds (Zrly, trivalent cations and acetylacetone). The sol corresponds to a structured system at the nanometer scale for which zirconium and trivalent cations are homogeneously dispersed, preliminary to the sol-gel transition. Furthermore, preliminary studies were carried out with a view to developing materials. They have demonstrated that numerous innovative and potential applications can be developed by taking advantage of the direct and controlled formation of the sol and by adapting the sol-gel transition. The most illustrating result is the preparation of a sintered pellet with the composition Am0,13Zro,73Yo,0901,89 using this approach. (author)

  11. Integrating cell-free biosyntheses of heme prosthetic group and apoenzyme for the synthesis of functional P450 monooxygenase.

    Science.gov (United States)

    Kwon, Yong-Chan; Oh, In-Seok; Lee, Nahum; Lee, Kyung-Ho; Yoon, Yeo Joon; Lee, Eun Yeol; Kim, Byung-Gee; Kim, Dong-Myung

    2013-04-01

    Harnessing the isolated protein synthesis machinery, cell-free protein synthesis reproduces the cellular process of decoding genetic information in artificially controlled environments. More often than not, however, generation of functional proteins requires more than simple translation of genetic sequences. For instance, many of the industrially important enzymes require non-protein prosthetic groups for biological activity. Herein, we report the complete cell-free biogenesis of a heme prosthetic group and its integration with concurrent apoenzyme synthesis for the production of functional P450 monooxygenase. Step reactions required for the syntheses of apoenzyme and the prosthetic group have been designed so that these two separate pathways take place in the same reaction mixture, being insulated from each other. Combined pathways for the synthesis of functional P450 monooxygenase were then further integrated with in situ assay reactions to enable real-time measurement of enzymatic activity during its synthesis. Copyright © 2012 Wiley Periodicals, Inc.

  12. Functional Group Interconversion: Decarbonylative Borylation of Esters for the Synthesis of Organoboronates

    KAUST Repository

    Guo, Lin; Rueping, Magnus

    2016-01-01

    A new and efficient nickel-catalyzed decarbonylative borylation reaction of carboxylic acid esters with bis(pinacolato)-diboron has been developed. This transformation allows access to structurally diverse aryl as well as alkenyl and alkyl boronate esters with high reactivity, broad substrate scope, and excellent functional-group tolerance. Further experiments show that this protocol can be carried out on a gram scale and applied to orthogonal synthetic strategies.

  13. Functional Group Interconversion: Decarbonylative Borylation of Esters for the Synthesis of Organoboronates

    KAUST Repository

    Guo, Lin

    2016-09-26

    A new and efficient nickel-catalyzed decarbonylative borylation reaction of carboxylic acid esters with bis(pinacolato)-diboron has been developed. This transformation allows access to structurally diverse aryl as well as alkenyl and alkyl boronate esters with high reactivity, broad substrate scope, and excellent functional-group tolerance. Further experiments show that this protocol can be carried out on a gram scale and applied to orthogonal synthetic strategies.

  14. Quantitative reactive modeling and verification.

    Science.gov (United States)

    Henzinger, Thomas A

    Formal verification aims to improve the quality of software by detecting errors before they do harm. At the basis of formal verification is the logical notion of correctness , which purports to capture whether or not a program behaves as desired. We suggest that the boolean partition of software into correct and incorrect programs falls short of the practical need to assess the behavior of software in a more nuanced fashion against multiple criteria. We therefore propose to introduce quantitative fitness measures for programs, specifically for measuring the function, performance, and robustness of reactive programs such as concurrent processes. This article describes the goals of the ERC Advanced Investigator Project QUAREM. The project aims to build and evaluate a theory of quantitative fitness measures for reactive models. Such a theory must strive to obtain quantitative generalizations of the paradigms that have been success stories in qualitative reactive modeling, such as compositionality, property-preserving abstraction and abstraction refinement, model checking, and synthesis. The theory will be evaluated not only in the context of software and hardware engineering, but also in the context of systems biology. In particular, we will use the quantitative reactive models and fitness measures developed in this project for testing hypotheses about the mechanisms behind data from biological experiments.

  15. Production and characterization of thermoplastic cassava starch, functionalized poly(lactic acid), and their reactive compatibilized blends

    Science.gov (United States)

    Detyothin, Sukeewan

    Cassava starch was blended with glycerol using a co-rotating twin-screw extruder (TSE). Thermoplastic cassava starch (TPCS) at a ratio of 70/30 by weight of cassava/glycerol was selected and further blended with other polymers. TPCS sheets made from compression molding had low tensile strength (0.45 +/- 0.05 MPa) and Young's modulus (1.24 +/- 0.58 MPa), but moderate elongation at break (83.0 +/- 0.18.6%), medium level of oxygen permeability, and high water vapor permeability with a very high rate of water absorption. TPCS was blended with poly(lactic acid) (PLA) at various ratios by using a TSE. The blend resins exhibited good properties such as increased thermal stability (Tmax) and crystallinity of PLA, and improved water sensitivity and processability of TPCS. PLA and TPCS exhibited a high interfacial tension between the two phases of 7.9 mJ·m -2, indicating the formation of an incompatible, immiscible blend. SEM micrographs showed a non-homogeneous distribution of TPCS droplets in the PLA continuous phase. TEM micrographs of the blend films made by cast-film extrusion showed coalescence of the TPCS droplets in the PLA continuous phase of the blend, indicating that the compatibility between the polymer pair needs to be improved. A response surface methodology (RSM) design was used to analyze the effects of maleic anhydride (MA) and 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane (Luperox or L101) contents, and TSE screw speed on the degree of grafted MA and number average molecular weight (Mn) of functionalized PLA (PLA-g-MA), a reactive compatibilizer. PLA-g- MA made by reactive extrusion had an array of colors depending on the content of L101 and MA used. New FTIR peaks suggested that MA was grafted onto the PLA backbone and oligomeric MA may occur. Increasing L101 increased the degree of grafting and decreased Mn, but the Mn of the PLA-g-MA's produced with a high amount of L101 was stable during storage. MA exhibited an optimum concentration for maximizing the

  16. Covalent attachment of antagonists to the a7 nicotinic acetylcholine receptor: synthesis and reactivity of substituted maleimides

    DEFF Research Database (Denmark)

    Ambrus, Joseph I; Halliday, Jill I; Kanizaj, Nicholas

    2012-01-01

    The 3-methylmaleimide congeners of the natural product methyllycaconitine (MLA) and an analogue covalently attach to functional cysteine mutants of the a7 nicotinic acetylcholine receptor (nAChR).......The 3-methylmaleimide congeners of the natural product methyllycaconitine (MLA) and an analogue covalently attach to functional cysteine mutants of the a7 nicotinic acetylcholine receptor (nAChR)....

  17. Beyond triglyceride synthesis: the dynamic functional roles of MGAT and DGAT enzymes in energy metabolism.

    Science.gov (United States)

    Shi, Yuguang; Cheng, Dong

    2009-07-01

    Monoacyglycerol acyltransferases (MGATs) and diacylglycerol acyltransferases (DGATs) catalyze two consecutive steps of enzyme reactions in the synthesis of triacylglycerols (TAGs). The metabolic complexity of TAG synthesis is reflected by the presence of multiple isoforms of MGAT and DGAT enzymes that differ in catalytic properties, subcellular localization, tissue distribution, and physiological functions. MGAT and DGAT enzymes play fundamental roles in the metabolism of monoacylglycerol (MAG), diacylglycerol (DAG), and triacylglycerol (TAG) that are involved in many aspects of physiological functions, such as intestinal fat absorption, lipoprotein assembly, adipose tissue formation, signal transduction, satiety, and lactation. The recent progress in the phenotypic characterization of mice deficient in MGAT and DGAT enzymes and the development of chemical inhibitors have revealed important roles of these enzymes in the regulation of energy homeostasis and insulin sensitivity. Consequently, selective inhibition of MGAT or DGAT enzymes by synthetic compounds may provide novel treatment for obesity and its related metabolic complications.

  18. Facile and green synthesis of highly stable L-cysteine functionalized copper nanoparticles

    Science.gov (United States)

    Kumar, Nikhil; Upadhyay, Lata Sheo Bachan

    2016-11-01

    A simple eco-friendly method for L-cysteine capped copper nanoparticles (CCNPs) synthesis in aqueous solution has been developed. Glucose and L-cysteine were used as reducing agent and capping/functionalizing agent, respectively. Different parameters such as capping agent concentration, pH, reaction temperature, and reducing agent concentration were optimized during the synthesis. The L-cysteine capped copper nanoparticle were characterized by ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, Particle size and zeta potential analyser, and high resolution transmission electron microscopy. Spherical shaped cysteine functionalized/capped copper nanoparticles with an average size of 40 nm were found to be highly stable at room temperature (RT) for a period of 1 month

  19. Copper-catalyzed aerobic oxidative C-H functionalization of substituted pyridines: synthesis of imidazopyridine derivatives.

    Science.gov (United States)

    Yu, Jipan; Jin, Yunhe; Zhang, Hao; Yang, Xiaobo; Fu, Hua

    2013-12-02

    A novel, efficient, and practical method for the synthesis of imidazopyridine derivatives has been developed through the copper-catalyzed aerobic oxidative C-H functionalization of substituted pyridines with N-(alkylidene)-4H-1,2,4-triazol-4-amines. The procedure occurs by cleavage of the N-N bond in the N-(alkylidene)-4H-1,2,4-triazol-4-amines and activation of an aryl C-H bond in the substituted pyridines. This is the first example of the preparation of imidazopyridine derivatives by using pyridines as the substrates by transition-metal-catalyzed C-H functionalization. This method should provide a novel and efficient strategy for the synthesis of other nitrogen heterocycles. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Synthesis and properties of nanostructured dense LaB6 cathodes by arc plasma and reactive spark plasma sintering

    International Nuclear Information System (INIS)

    Zhou Shenlin; Zhang Jiuxing; Liu Danmin; Lin Zulun; Huang Qingzhen; Bao Lihong; Ma Ruguang; Wei Yongfeng

    2010-01-01

    Nanostructured polycrystalline LaB 6 ceramics were prepared by the reactive spark plasma sintering method, using boron nanopowders and LaH 2 powders with a particle size of about 30 nm synthesized by hydrogen dc arc plasma. The reaction mechanism of sintering, crystal structure, microstructure, grain orientations and properties of the materials were investigated using differential scanning calorimetry, X-ray diffraction, Neutron powder diffraction, Raman spectroscopy, transmission electron microscopy and electron backscattered diffraction. It is shown that nanostructured dense LaB 6 with a fibrous texture can be fabricated by SPS at a pressure of 80 MPa and temperature of 1300 deg. C for 5 min. Compared with the coarse polycrystalline LaB 6 prepared by traditional methods, the nanostructured LaB 6 bulk possesses both higher mechanical and higher thermionic emission properties. The Vickers hardness was 22.3 GPa, the flexural strength was 271.2 MPa and the maximum emission current density was 56.81 A cm -2 at a cathode temperature of 1600 deg. C.

  1. Synthesis and characterization of porous crystalline SiC thin films prepared by radio frequency reactive magnetron sputtering technique

    Energy Technology Data Exchange (ETDEWEB)

    Qamar, Afzaal, E-mail: afzaalqamar@gmail.com [Department of Physics and Applied Mathematics, PIEAS, Nilore, Islamabad, Punjab 42600 (Pakistan); Mahmood, Arshad [National Institute of Laser and Optronics, Nilore, Islamabad (Pakistan); Sarwar, Tuba; Ahmed, Nadeem [Department of Physics and Applied Mathematics, PIEAS, Nilore, Islamabad, Punjab 42600 (Pakistan)

    2011-05-15

    Hexagonal SiC thin films have been deposited using radio frequency reactive magnetron sputtering technique by varying the substrate temperature and other deposition conditions. Prior to deposition surface modification of the substrate Si(1 0 0) played an important role in deposition of the hexagonal SiC structure. The effect of substrate temperature during deposition on structure, composition and surface morphology of the SiC films has been analyzed using atomic force microscopy, Fourier transform infrared spectroscopy and spectroscopic ellipsometry. X-ray diffraction in conventional {theta}-2{theta} mode and omega scan mode revealed that the deposited films were crystalline having 8H-SiC structure and crystallinity improved with increase of deposition temperature. The bonding order and Si-C composition within the films showed improvement with the increase of deposition temperature. The surface of thin films grew in the shape of globes and columns depending upon deposition temperature. The optical properties also showed improvement with increase of deposition temperature and the results obtained by ellipsometry reinforced the results of other techniques.

  2. Instrumental and Reactive Functions and Overt and Relational Forms of Aggression: Developmental Trajectories and Prospective Associations during Middle School

    Science.gov (United States)

    Ojanen, Tiina; Kiefer, Sarah

    2013-01-01

    This study examined the development of adolescent self-reported instrumental-overt, instrumental-relational, reactive-overt, and reactive-relational aggression during middle school ("N" = 384; 12-14 years; 53% boys). Growth modeling indicated average increases in instrumental-relational aggression, and decreases in reactive-overt and…

  3. Synthesis of oxindole from acetanilide via Ir(iii)-catalyzed C-H carbenoid functionalization.

    Science.gov (United States)

    Patel, Pitambar; Borah, Gongutri

    2016-12-22

    Herein we disclose the first report on the synthesis of oxindole derivatives from acetanilide via Ir(iii)-catalyzed intermolecular C-H functionalization with diazotized Meldrum's acid. A broad range of substituted anilides were found to react smoothly under the Ir(iii)-catalytic system to afford the corresponding N-protected oxindoles. The N-protecting groups, such as Ac, Bz or Piv, can be easily removed to furnish the oxindole. Various synthetic applications of the synthesized oxindole were also demonstrated.

  4. Application of reactive siloxane prepolymers for the synthesis of thermoplastic poly(ester–siloxanes and poly(ester–ether–siloxanes

    Directory of Open Access Journals (Sweden)

    VESNA V. ANTIC

    2007-02-01

    Full Text Available Thermoplastic poly(ester–siloxanes (TPES and poly(ester–ether–siloxane s, (TPEES, based on poly(butylene terephthalate (PBT as the hard segment and different siloxane-prepolymers as the soft segments, were prepared. The TPES and TPEES were synthesized by catalyzed two-step transesterification from dimethyl terephthalate, (DMT, 1,4-butanediol, (BD and a siloxane-prepolymer. Incorporation of dicarboxypropyl- or disilanol-terminated poly(dimethylsiloxanes (PDMS into the polar poly(butylene terephthalate chains resulted in rather inhomogeneous TPES copolymers, which was a consequence of a prononuced phase separation of the polar and non-polar reactants during synthesis. Two concepts were employed to avoid or reduce phase separation: 1 the use of siloxane-containing triblock prepolymers with hydrophilic terminal blocks, such as ethylene oxide (EO, poly(propylene oxide (PPO or poly(caprolactone (PLC when the terminal blocks serve as a compatibilizer between the extremely non-polar PDMS and the polar DMT and BD, and 2 the use of a high-boiling solvent (1,2,4-trichlorobenzene during the first phase of the reaction. Homogeneity was significantly improved in the case of copolymers based on PCL–PDMS–PCL.

  5. Electronic structures and reactivities of iodinating agents in the gas phase and in solutions: a density functional study

    International Nuclear Information System (INIS)

    Filimonov, V.D.; Krasnokutskaya, E.L.; Lesina, Yu.A.; Chajkovskij, V.K.; Poleshchuk, O.X.

    2006-01-01

    The electronic and spatial structures of a broad spectrum of neutral compounds with X-Hal (X = N, O, Cl; Hal = Cl, Br, I) bonds and their protonated forms and of different electronic states of triiodide cation, I 3 + , were determined from density functional B3LYP/6-311G* quantum-chemical calculations. The effects of the structure of these compounds on the parameters of electrophilic reactivity were revealed and the thermochemical characteristics of homolytic and heterolytic X-Hal bond dissociation and of iodine transfer in hydroxyl-containing solvents were calculated. Due to low homolytic bond dissociation energies of X-I, the formation of molecular iodine and triiodide cation I 3 + becomes thermodynamically favorable and the cation should act as iodinating agent alternative to acylhypoiodites and N-iodoimides. The solvation effects of MeOH and CH 2 Cl 2 on the X-Hal bond homolysis and heterolysis were determined using the PCM model [ru

  6. Application of the Wiener-Hermite functional method to point reactor kinetics driven by random reactivity fluctuations

    International Nuclear Information System (INIS)

    Behringer, K.; Pineyro, J.; Mennig, J.

    1990-06-01

    The Wiener-Hermite functional (WHF) method has been applied to the point reactor kinetic equation excited by Gaussian random reactivity noise under stationary conditions. Delayed neutrons and any feedback effects are disregarded. The neutron steady-state value and the power spectral density (PSD) of the neutron flux have been calculated in a second order (WHF-2) approximation. Two cases are considered: in the first case, the noise source is low-pass white noise. In both cases the WHF-2 approximation of the neutron PSDs leads to relatively simple analytical expressions. The accuracy of the approach is determined by comparison with exact solutions of the problem. The investigations show that the WHF method is a powerful approximative tool for studying the nonlinear effects in the stochastic differential equation. (author) 5 figs., 29 refs

  7. PGC-1α and Reactive Oxygen Species Regulate Human Embryonic Stem Cell-Derived Cardiomyocyte Function

    NARCIS (Netherlands)

    Birket, Matthew J.; Casini, Simona; Kosmidis, Georgios; Elliott, David A.; Gerencser, Akos A.; Baartscheer, Antonius; Schumacher, Cees; Mastroberardino, Pier G.; Elefanty, Andrew G.; Stanley, Ed G.; Mummery, Christine L.

    2013-01-01

    Diminished mitochondrial function is causally related to some heart diseases. Here, we developed a human disease model based on cardiomyocytes from human embryonic stem cells (hESCs), in which an important pathway of mitochondrial gene expression was inactivated. Repression of PGC-1α, which is

  8. Microglia - insights into immune system structure, function, and reactivity in the central nervous system

    DEFF Research Database (Denmark)

    Wirenfeldt, Martin; Babcock, Alicia A; Vinters, Harry V

    2011-01-01

    Microglia are essential cellular components of a well-functioning central nervous system (CNS). The development and establishment of the microglial population differs from the other major cell populations in the CNS i.e. neurons and macroglia (astrocytes and oligodendrocytes). This different onto...

  9. Patterns of Sensitivity to Emotion in Children with Williams Syndrome and Autism: Relations between Autonomic Nervous System Reactivity and Social Functioning

    Science.gov (United States)

    Järvinen, Anna; Ng, Rowena; Crivelli, Davide; Neumann, Dirk; Grichanik, Mark; Arnold, Andrew J.; Lai, Philip; Trauner, Doris; Bellugi, Ursula

    2015-01-01

    Williams syndrome (WS) and autism spectrum disorder (ASD) are associated with atypical social-emotional functioning. Affective visual stimuli were used to assess autonomic reactivity and emotion identification, and the social responsiveness scale was used to determine the level social functioning in children with WS and ASD contrasted with typical…

  10. Influence of nitric acid synthesis on the function of (Na, K)-ATPase in the heart

    International Nuclear Information System (INIS)

    Vrbjar, N.; Bernathova, I.; Pechanova, O.

    1998-01-01

    Function of the sodium pump was characterized by kinetic parameters of the (Na,K)-ATPase at normal and lower synthesis of nitric oxide (NO) in the rat heart. Our findings indicate that there is no change in energy utilization by the cardiac sodium pump during lowered NO-synthesis. The transport properties of the enzyme are deteriorated, due to its decreased sensitivity to Na + . Inhibition of NO-synthesis in acute experiment by high doses of L-arginine analogue decreased the activity of (Na,K)-ATPase [Biol. Neonate, 68, 419 (1995)], an enzyme involved in the active translocation of Na + and K + ions across cell membranes. The present study was designed to investigate the influence of chronic inhibition of NO-synthesis on function of Na,K)-ATPase. One group (n=8) of adult male Wistar rats served as controls and the second group (n=16+ was treated with L-arginine analogue, the N G -nitro-L-arginine methyl ester (L-NAME) in a dose 40 mg/kg/day in drinking water for 4 weeks. NO-synthase activity was determined in crude homogenates of cardiac tissue by measuring the production of [ 3 H]-L-citrulline from from [ 3 H]-L-arginine. Chronic administration of L-NAME induced a significant inhibition (to 30%) of the NO-synthase activity. In control group the activity of NO-synthase amounted 11.44 ± 1.03 and in the L-NAME group it was 3.19 ± pmol L-Cit/min/mg protein. At the activation with ATP the shortage in NO-synthesis induced by L-NAME did not provoke significant changes in both, the V max and the K m value. This indicates that during the lower synthesis of NO there is no change in energy consumption for the transport of Na + and K + ions by the (Na,K)-ATPase. The stable value of K m indicates that shortage in NO does not induce changes in the vicinity of the ATP-binding site. On the other hand our results indicate that at lowered NO-synthesis the (Na,K)-ATPase in myocardium changes its Na + -binding and probably also the Na + -transport properties as it revealed from the

  11. Polymer/organosilica nanocomposites based on polyimide with benzimidazole linkages and reactive organoclay containing isoleucine amino acid: Synthesis, characterization and morphology properties

    International Nuclear Information System (INIS)

    Mallakpour, Shadpour; Dinari, Mohammad

    2012-01-01

    Highlights: ► A reactive organoclay was formed using L-isoleucine amino acid as a swelling agent. ► Polyimide was synthesized from benzimidazole diamine and pyromellitic dianhydride. ► Imide and benzimidazole groups assured the thermal stability of the nanocomposites. ► Nanocomposite films were prepared by an in situ polymerization reaction. ► The TEM micrographs of nanocomposites revealed well-exfoliated structures. -- Abstract: Polyimide–silica nanocomposites are attractive hybrid architectures that possess excellent mechanical, thermal and chemical properties. But, the dispersion of inorganic domains in the polymer matrix and the compatibility between the organic and inorganic phases are critical factors in these hybrid systems. In this investigation, a reactive organoclay was prepared via ion exchange reaction between protonated form of difunctional L-isoleucine amino acid as a swelling agent and Cloisite Na + montmorillonite. Amine functional groups of this swelling agent formed an ionic bond with the negatively charged silicates, whereas the remaining acid functional groups were available for further interaction with polymer chains. Then organo-soluble polyimide (PI) have been successfully synthesized from the reaction of 2-(3,5-diaminophenyl)-benzimidazole and pyromellitic dianhydride in N,N-dimethylacetamide. Finally, PI/organoclay nanocomposite films enclosing 1%, 3%, 5%, 7% and 10% of synthesized organoclay were successfully prepared by an in situ polymerization reaction through thermal imidization. The synthesized hybrid materials were subsequently characterized by Fourier transform infrared spectroscopy, X-ray diffraction, electron microscopy, and thermogravimetric analysis techniques. The PI/organoclay nanocomposite films have good optical transparencies and the mechanical properties were substantially improved by the incorporation of the reactive organoclay.

  12. Correlation functions for fully or partially state-resolved reactive scattering calculations

    International Nuclear Information System (INIS)

    Manthe, Uwe; Welsch, Ralph

    2014-01-01

    Flux correlation functions and the quantum transition state concept are important tools for the accurate description of polyatomic reaction processes. Combined with the multi-configurational time-dependent Hartree approach, they facilitate rigorous full-dimensional calculations of cumulative and initial-state selected reaction probabilities for six atom reactions. In recent work [R. Welsch, F. Huarte-Larrañaga, and U. Manthe, J. Chem. Phys. 136, 064117 (2012)], an approach which allows one to calculate also state-to-state reaction probabilities within the quantum transition state concept has been introduced. This article presents further developments. Alternative generalized flux correlation functions are introduced and discussed. Equations for the calculation of fully state-resolved differential cross section using arbitrary definitions of the body fixed frame are derived. An approach for the efficient calculation of partially state-resolved observables as a function of the collision energy is introduced. Finally, numerical test studying the D + H 2 reaction illustrate important aspects of the formalism

  13. Immediate and long-term effects of meditation on acute stress reactivity, cognitive functions, and intelligence.

    Science.gov (United States)

    Singh, Yogesh; Sharma, Ratna; Talwar, Anjana

    2012-01-01

    With the current globalization of the world's economy and demands for enhanced performance, stress is present universally. Life's stressful events and daily stresses cause both deleterious and cumulative effects on the human body. The practice of meditation might offer a way to relieve that stress. The research team intended to study the effects of meditation on stress-induced changes in physiological parameters, cognitive functions, intelligence, and emotional quotients. The research team conducted the study in two phases, with a month between them. Each participant served as his own control, and the first phase served as the control for the second phase. In phase 1, the research team studied the effects of a stressor (10 minutes playing a computer game) on participants' stress levels. In phase 2, the research team examined the effects of meditation on stress levels. The research team conducted the study in a lab setting at the All India Institute of Medical Sciences (AIIMS), New Delhi, India. The participants were 34 healthy, male volunteers who were students. To study the effects of long-term meditation on stress levels, intelligence, emotional quotients, and cognitive functions participants meditated daily for 1 month, between phases 1 and 2. To study the immediate effects of meditation on stress levels, participants meditated for 15 minutes after playing a computer game to induce stress. The research team measured galvanic skin response (GSR), heart rate (HR), and salivary cortisol and administered tests for the intelligence and emotional quotients (IQ and EQ), acute and perceived stress (AS and PS), and cognitive functions (ie, the Sternberg memory test [short-term memory] and the Stroop test [cognitive flexibility]). Using a pre-post study design, the team performed this testing (1) prior to the start of the study (baseline); (2) in phase 1, after induced stress; (3) in part 1 of phase 2, after 1 month of daily meditation, and (4) in part 2 of phase 2, after

  14. Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes.

    Science.gov (United States)

    Xu, Lin; Jiang, Zhe; Qing, Quan; Mai, Liqiang; Zhang, Qingjie; Lieber, Charles M

    2013-02-13

    Functional kinked nanowires (KNWs) represent a new class of nanowire building blocks, in which functional devices, for example, nanoscale field-effect transistors (nanoFETs), are encoded in geometrically controlled nanowire superstructures during synthesis. The bottom-up control of both structure and function of KNWs enables construction of spatially isolated point-like nanoelectronic probes that are especially useful for monitoring biological systems where finely tuned feature size and structure are highly desired. Here we present three new types of functional KNWs including (1) the zero-degree KNW structures with two parallel heavily doped arms of U-shaped structures with a nanoFET at the tip of the "U", (2) series multiplexed functional KNW integrating multi-nanoFETs along the arm and at the tips of V-shaped structures, and (3) parallel multiplexed KNWs integrating nanoFETs at the two tips of W-shaped structures. First, U-shaped KNWs were synthesized with separations as small as 650 nm between the parallel arms and used to fabricate three-dimensional nanoFET probes at least 3 times smaller than previous V-shaped designs. In addition, multiple nanoFETs were encoded during synthesis in one of the arms/tip of V-shaped and distinct arms/tips of W-shaped KNWs. These new multiplexed KNW structures were structurally verified by optical and electron microscopy of dopant-selective etched samples and electrically characterized using scanning gate microscopy and transport measurements. The facile design and bottom-up synthesis of these diverse functional KNWs provides a growing toolbox of building blocks for fabricating highly compact and multiplexed three-dimensional nanoprobes for applications in life sciences, including intracellular and deep tissue/cell recordings.

  15. Post-synthesis amine borane functionalization of metal-organic framework and its unusual chemical hydrogen release phenomenon

    KAUST Repository

    Berke, Heinz; Barman, Smair; Remhof, Arndt; Koitz, Ralph; Iannuzzi, Marcella; Blacque, Olivier; Yan, Yigang; Fox, Thomas; Hutter, Jü rg; Zü ttel, Andreas

    2017-01-01

    We report a novel strategy for post-synthesis amine borane functionalization of MOFs under gas-solid phase transformation utilizing gaseous diborane. The covalently confined amine borane derivative decorated on the framework backbone is stable when

  16. Three-Week Bright-Light Intervention Has Dose-Related Effects on Threat-Related Corticolimbic Reactivity and Functional Coupling

    DEFF Research Database (Denmark)

    Fisher, Patrick M; Madsen, Martin K; Mc Mahon, Brenda

    2014-01-01

    environmental stimuli (e.g., threat) and may underlie these effects. Serotonin signaling modulates this circuit and is implicated in the pathophysiology of seasonal and other affective disorders. METHODS: We evaluated the effects of a bright-light intervention protocol on threat-related corticolimbic reactivity......-related amygdala and prefrontal reactivity in a dose-dependent manner. Conversely, amygdala-prefrontal and intraprefrontal functional coupling increased significantly in a dose-dependent manner. Genotype status significantly moderated bright-light intervention effects on intraprefrontal functional coupling....... CONCLUSIONS: This is the first study to evaluate the effects of clinically relevant bright-light intervention on threat-related brain function. We show that amygdala-prefrontal reactivity and communication are significantly affected by bright-light intervention, an effect partly moderated by genotype...

  17. Synthesis and non-covalent functionalization of carbon nanotubes rings: new nanomaterials with lectin affinity

    International Nuclear Information System (INIS)

    Assali, Mohyeddin; Leal, Manuel Pernía; Khiar, Noureddine; Fernández, Inmaculada

    2013-01-01

    We present a mild and practical carbon nanotubes rings (CNRs) synthesis from non-covalent functionalized and water-soluble linear single-wall carbon nanotubes. The hemi-micellar–supramolecular self-organization of lactose-based glycolipid 1 on the ring surface, followed by photo-polymerization of the diacetylenic function triggered by UV light afforded the first water-soluble and biocompatible CNRs. The obtained donut-like nanoconstructs expose a high density of lactose moieties on their surface, and are able to engage specific interactions with Arachis hypogea lectin similar to glycoconjugates on the cell membrane. (paper)

  18. Local delivery of FTY720 in PCL membrane improves SCI functional recovery by reducing reactive astrogliosis.

    Science.gov (United States)

    Wang, Junjuan; Wang, Jiaqiu; Lu, Ping; Cai, Youzhi; Wang, Yafei; Hong, Lan; Ren, Hao; Heng, Boon Chin; Liu, Hua; Zhou, Jing; Ouyang, Hongwei

    2015-09-01

    FTY720 has recently been approved as an oral drug for treating relapsing forms of multiple sclerosis, and exerts its therapeutic effect by acting as an immunological inhibitor targeting the sphingosine-1-phosphate (S1P) receptor subtype (S1P1) of T cells. Recently studies demonstrated positive efficacy of this drug on spinal cord injury (SCI) in animal models after systemic administration, albeit with significant adverse side effects. We hereby hypothesize that localized delivery of FTY720 can promote SCI recovery by reducing pathological astrogliosis. The mechanistic functions of FTY720 were investigated in vitro and in vivo utilizing immunofluorescence, histology, MRI and behavioral analysis. The in vitro study showed that FTY720 can reduce astrocyte migration and proliferation activated by S1P. FTY720 can prolong internalization of S1P1 and exert antagonistic effects on S1P1. In vivo study of SCI animal models demonstrated that local delivery of FTY720 with polycaprolactone (PCL) membrane significantly decreased S1P1 expression and glial scarring compared with the control group. Furthermore, FTY720-treated groups exhibited less cavitation volume and neuron loss, which significantly improved recovery of motor function. These findings demonstrated that localized delivery of FTY720 can promote SCI recovery by targeting the S1P1 receptor of astrocytes, provide a new therapeutic strategy for SCI treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Childhood poverty and stress reactivity are associated with aberrant functional connectivity in default mode network.

    Science.gov (United States)

    Sripada, Rebecca K; Swain, James E; Evans, Gary W; Welsh, Robert C; Liberzon, Israel

    2014-08-01

    Convergent research suggests that childhood poverty is associated with perturbation in the stress response system. This might extend to aberrations in the connectivity of large-scale brain networks, which subserve key cognitive and emotional functions. Resting-state brain activity was measured in adults with a documented history of childhood poverty (n=26) and matched controls from middle-income families (n=26). Participants also underwent a standard laboratory social stress test and provided saliva samples for cortisol assay. Childhood poverty was associated with reduced default mode network (DMN) connectivity. This, in turn, was associated with higher cortisol levels in anticipation of social stress. These results suggest a possible brain basis for exaggerated stress sensitivity in low-income individuals. Alterations in DMN may be associated with less efficient cognitive processing or greater risk for development of stress-related psychopathology among individuals who experienced the adversity of chronic childhood poverty.

  20. Topological analysis (BCP) of vibrational spectroscopic studies, docking, RDG, DSSC, Fukui functions and chemical reactivity of 2-methylphenylacetic acid

    Science.gov (United States)

    Kavimani, M.; Balachandran, V.; Narayana, B.; Vanasundari, K.; Revathi, B.

    2018-02-01

    Experimental FT-IR and FT-Raman spectra of 2-methylphenylacetic acid (MPA) were recorded and theoretical values are also analyzed. The non-linear optical (NLO) properties were evaluated by determination of first (5.5053 × 10- 30 e.s.u.) and second hyper-polarizabilities (7.6833 × 10- 36 e.s.u.) of the title compound. The Multiwfn package is used to find the weak non-covalent interaction (Van der Wall interaction) and strong repulsion (steric effect) of the molecule and examined by reduced density gradient. The molecular electrostatic potential (MEP) analysis used to find the most reactive sites for the electrophilic and nucleophilic attack. The chemical activity (electronegativity, hardness, chemical softness and chemical potential) of the title compound was predicted with the help of HOMO-LUMO energy values. The natural bond orbital (NBO) has been analyzed the stability of the molecule arising from the hyper-conjugative interaction. DSSCs were discussed in structural modifications that improve the electron injection efficiency of the title compound (MPA). The Fukui functions are calculated in order to get information associated with the local reactivity properties of the title compound. The binding sites of the two receptors were reported by molecular docking field and active site bond distance is same 1.9 Å. The inhibitor of the title compound forms a stable complex with 1QYV and 2H1K proteins at the binding energies are - 5.38 and - 5.85 (Δ G in kcal/mol).

  1. A Green's function method for two-dimensional reactive solute transport in a parallel fracture-matrix system

    Science.gov (United States)

    Chen, Kewei; Zhan, Hongbin

    2018-06-01

    The reactive solute transport in a single fracture bounded by upper and lower matrixes is a classical problem that captures the dominant factors affecting transport behavior beyond pore scale. A parallel fracture-matrix system which considers the interaction among multiple paralleled fractures is an extension to a single fracture-matrix system. The existing analytical or semi-analytical solution for solute transport in a parallel fracture-matrix simplifies the problem to various degrees, such as neglecting the transverse dispersion in the fracture and/or the longitudinal diffusion in the matrix. The difficulty of solving the full two-dimensional (2-D) problem lies in the calculation of the mass exchange between the fracture and matrix. In this study, we propose an innovative Green's function approach to address the 2-D reactive solute transport in a parallel fracture-matrix system. The flux at the interface is calculated numerically. It is found that the transverse dispersion in the fracture can be safely neglected due to the small scale of fracture aperture. However, neglecting the longitudinal matrix diffusion would overestimate the concentration profile near the solute entrance face and underestimate the concentration profile at the far side. The error caused by neglecting the longitudinal matrix diffusion decreases with increasing Peclet number. The longitudinal matrix diffusion does not have obvious influence on the concentration profile in long-term. The developed model is applied to a non-aqueous-phase-liquid (DNAPL) contamination field case in New Haven Arkose of Connecticut in USA to estimate the Trichloroethylene (TCE) behavior over 40 years. The ratio of TCE mass stored in the matrix and the injected TCE mass increases above 90% in less than 10 years.

  2. Functionalization of LDPE and mLLDPE via grafting trans-ethylene-1,2-dicarboxylic acid by reactive extrusion

    Directory of Open Access Journals (Sweden)

    2010-03-01

    Full Text Available An investigation was made of grafting trans-ethylene-1,2-dicarboxylic acid (TEDA onto metallocene-linear low-density polyethylene (mLLDPE and low-density polyethylene (LDPE in the course of reactive extrusion. The initiator was 1,3-bis-(tert-butyl-peroxyisopropylbenzene. The graft efficiency of TEDA has been shown to increase with increasing initiator concentration, irrespective of polyethylene type. The graft values for LDPE were higher than for mLLDPE over the initiator concentration range (0.05 to 0.4 wt%. The rheological properties of mLLDPE were found to undergo more tangible changes during functionalization than those of LDPE. These changes were caused by side reactions, mainly macromolecular crosslinking. It has been established that some carboxyl groups get transformed to anhydride groups in the grafted product. The concentration of end double bonds reduces, but intramolecular unsaturation in both polyethylenes increases. Data are presented on thermal and stress-strain (mechanical properties of virgin and functionalized polymers, as well as rheological and viscoelastic properties of their melts.

  3. Synthesis, functionalization, and applications of metal-organic frameworks in biomedicine.

    Science.gov (United States)

    Chen, Wei; Wu, Chunsheng

    2018-02-13

    Metal-organic frameworks (MOFs), also known as coordination polymers, have attracted extensive research interest in the past few decades due to their unique physical structures and potentially vast applications. In this review, we outline the recent progress in the synthesis, functionalization and applications of MOFs in biomedicine, mainly focusing on two promising, yet challenging areas, i.e., drug delivery and biosensing applications. A major challenge is the proper functionalization of MOFs with demanding properties suitable for biomedical applications. Extensive studies on MOFs in biomedicine have led to substantial progress in the control of key properties of MOFs such as toxicity, size and shape, and biological stability. Due to their flexible composition, pore size and easy functionalization properties, MOFs can be utilized as key components for the development of various functional systems, and their applications in drug delivery and biosensing are reviewed. Future trends and perspectives in these research areas are also outlined.

  4. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications

    Science.gov (United States)

    Wu, Wei; Wu, Zhaohui; Yu, Taekyung; Jiang, Changzhong; Kim, Woo-Sik

    2015-01-01

    This review focuses on the recent development and various strategies in the preparation, microstructure, and magnetic properties of bare and surface functionalized iron oxide nanoparticles (IONPs); their corresponding biological application was also discussed. In order to implement the practical in vivo or in vitro applications, the IONPs must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of IONPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The new functionalized strategies, problems and major challenges, along with the current directions for the synthesis, surface functionalization and bioapplication of IONPs, are considered. Finally, some future trends and the prospects in these research areas are also discussed. PMID:27877761

  5. Synthesis and reactivity study of gadolinia doped ceria-nickel: A potential anode material for solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Pradyot [Max-Planck-Institut fuer Metallforschung and Institut fuer Nichtmetallische and Anorganische Materialien, Universitaet Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstrasse 3, Stuttgart 70569 (Germany)], E-mail: pdatta@rediffmail.com; Majewski, Peter [University of South Australia, Ian Wark Research Institute, Mawson Lakes, SA 5095 (Australia); Aldinger, Fritz [Max-Planck-Institut fuer Metallforschung and Institut fuer Nichtmetallische and Anorganische Materialien, Universitaet Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstrasse 3, Stuttgart 70569 (Germany)

    2008-05-08

    A series of Ce{sub 0.9}Gd{sub 0.1}O{sub 2-{delta}}-Ni cermets with different Ni contents were prepared by conventional sintering process. The chemical compatibility between Ce{sub 0.9}Gd{sub 0.1}O{sub 2-{delta}} (CGO) and Ni was investigated by X-ray diffraction, scanning electron microscopy, differential scanning calorimetry and X-ray photoelectron spectroscopy. Sintering and reduction temperatures of CGO-Ni cermets were also identified. Thermal expansion coefficients of the cermets were measured as a function of Ni content. No reaction or solid solubility between CGO and Ni was found.

  6. Synthesis and reactivity study of gadolinia doped ceria-nickel: A potential anode material for solid oxide fuel cell

    International Nuclear Information System (INIS)

    Datta, Pradyot; Majewski, Peter; Aldinger, Fritz

    2008-01-01

    A series of Ce 0.9 Gd 0.1 O 2-δ -Ni cermets with different Ni contents were prepared by conventional sintering process. The chemical compatibility between Ce 0.9 Gd 0.1 O 2-δ (CGO) and Ni was investigated by X-ray diffraction, scanning electron microscopy, differential scanning calorimetry and X-ray photoelectron spectroscopy. Sintering and reduction temperatures of CGO-Ni cermets were also identified. Thermal expansion coefficients of the cermets were measured as a function of Ni content. No reaction or solid solubility between CGO and Ni was found

  7. Synthesis and properties of bis(pentamethylcyclopentadienyl) actinide hydrocarbyls and hydrides. A new class of highly reactive f-element organometallic compounds

    International Nuclear Information System (INIS)

    Fagan, P.J.; Manriquez, J.M.; Maatta, E.A.; Seyam, A.M.; Marks, T.J.

    1981-01-01

    The synthesis and chemical and physcochemical properties of Th and U bis(pentamethylcyclopentadienyl) chlorides, hydrocarbyls, chlorohydrocarbyls, and hydrides are reported. The reaction of the precursor compounds M[eta 5 -(CH 3 ) 5 C 5 ] 2 Cl 2 with 2 equiv of lithium reagent RLi produces M[eta 5 -(CH 3 ) 5 ] 2 R 2 compounds where R = CH 3 , CH 2 Si(CH 3 ) 3 , CH 2 C(CH 3 ) 3 , CH 2 C 6 H 5 , and C 6 H 5 (M = Th) and R = CH 3 , CH 2 Si(CH 3 ) 3 , CH 2 C 6 H 5 , and C 6 H 5 (M = U) in good yield. With 1 equiv of lithium reagent, M[eta 5 -(CH 3 ) 5 C 5 ] 2 (R)Cl compounds where R = CH 2 C(CH 3 ) 3 , CH 2 Si(CH 3 ) 3 , CH 2 C 6 H 5 , and C 6 H 5 (M = Th) and R = CH 2 C(CH 3 ) 3 CH 2 Si(C 3 ) 3 , CH 2 C 6 H 5 , and C 6 H 5 , and C 6 H 5 (M = U) are formed in high yield. The M[eta 5 -(CH 3 ) 5 C 52 (C 3 )Cl compounds can be synthesized by redistribution between the corresponding dimethyl and dichloro complexes. The new organoactinides were thoroughly characterized by elemental analysis, 1 H NMR and vibrational spectroscopy, and in many cases cryoscopic molecular weight measurements. The hydrocarbyls and chlorohydrocarbyls generally exhibit high thermal stability. However, the diphenyl compounds react readily with C 6 D 6 to yield, via a benzyne complex, the corresponding M(C 6 D 5 ) 2 compounds. The Th bis(neopentyl) complex reacts with benzene to produce the corresponding diphenyl complex. Competition experiments at -78 0 C indicate that the Th complexes are more reactive than those of U. The M[eta 5 -(CH 3 ) 5

  8. Synthesis and Exploratory Catalysis of 3d Metals: Group-Transfer Reactions, and the Activation and Functionalization of Small Molecules Including Greenhouse Gases

    Energy Technology Data Exchange (ETDEWEB)

    Mindiola, Daniel J.

    2014-05-07

    Our work over the past three years has resulted in the development of electron rich and low-coordinate vanadium fragments, molecular nitrides of vanadium and parent imide systems of titanium, and the synthesis of phosphorus containing molecules of the 3d transition metal series. Likewise, with financial support from BES Division in DOE (DE-FG02-07ER15893), we now completed the full characterization of the first single molecular magnet (SMM) of Fe(III). We demonstrated that this monomeric form of Fe(III) has an unusual slow relaxation of the magnetization under zero applied field. To make matters more interesting, this system also undergoes a rare example of an intermediate to high-spin transition (an S = 3/2 to S = 5/2 transition). In 2010 we reported the synthesis of the first neutral and low-coordinate vanadium complexes having the terminal nitride functionality. We have now completed a full study to understand formation of the nitride ligand from the metastable azide precursor, and have also explored the reactivity of the nitride ligand in the context of incomplete and complete N-atom transfer. During the 2010-2013 period we also discovered a facile approach to assemble low-coordinate and low-valent vanadium(II) complexes and exploit their multielectron chemistry ranging from 1-3 electrons. Consequently, we can now access 3d ligand frameworks such as cyclo-P3 (and its corresponding radical anion), nitride radical anions and cations, low-coordinate vanadium oxo’s, and the first example of a vanadium thionitrosyl complex. A cis-divacant iron(IV) imido having some ligand centered radical has been also discovered, and we are in the process of elucidating its electronic structure (in particular the sign of zero field splitting and the origin of its magnitude), bonding and reactivity. We have also revisited some paramagnetic and classic metallocene compounds with S >1/2 ground states in order to understand their reactivity patterns and electronic structure. Lastly

  9. Computation, measurement and analysis of the reactivity-to-power-transfer-function for the sodium cooled nuclear power plant KNK I

    International Nuclear Information System (INIS)

    Hoppe, P.; Mitzel, F.

    1977-02-01

    The Reactivity-to-Power-Transfer-Function for the sodium cooled nuclear power plant KNK I (Kompakte Natriumgekuehlte Kernenergieanlage) has been measured and compared with theoretical results. The measurements have been performed with the help of pseudostochastic reactivity perturbations. The transfer function has been determined by computing the auto- and cross-power-spectral-densities for the reactivity- and neutron flux signals. The agreement between the experimental and theoretical transfer function could be improved by adjusting the reactivity coefficients. The applications of these measurements with respect to reactor diagnosis and malfunction detection are discussed. For this purpose the accuracy of the measured transfer function is of great importance. Therefore an extensive error analysis has been performed. It turned out, that the inherent instability of the reactor without control system and the feedback by the primary coolant system were the reasons for comparatively big systematical errors. The conditions have been derived under which these types of errors can be considerably reduced. The conclusions can also be applied to analogical measurements at fast sodium cooled reactors. Because of their inherent stability the systematical errors will be reduced. (orig.) [de

  10. Functional copolymer/organo-MMT nanoarchitectures. VI. Synthesis and characterization of novel nanocomposites by interlamellar controlled/living radical copolymerization via preintercalated RAFT-agent/organoclay complexes.

    Science.gov (United States)

    Rzayev, Zakir M O; Söylemez, A Ernur

    2011-04-01

    We have developed a new approach for the synthesis of polymer nanocomposites using a bifunctional reversible addition-fragmentation chain transfer (RAFT) agent, two types of organo-montmorillonites, such as a non-reactive dimethyldodecyl ammonium (DMDA)-MMT and a reactive octadecylamine (ODA)-MMT organoclays, and a radical initiator. The method includes the following stages: (1) synthesis of RAFT intercalated O-MMTs by a physical or chemical interaction of the RAFT agent having two pendant carboxylic groups [S,S-bis(alpha,alpha'-dimethyl-alpha"-acetic acid)trithiocarbonate] with surface alkyl amines of O-MMT containing tertiary ammonium cation or primary amine groups through strong H-bonding and complexing/amidization reactions, respectively, and (2) utilization of these well-dispersed and intercalated RAFT ... O-MMT complexes and their amide derivatives as new modified RAFT agents in radical-initiated interlamellar controlled/living copolymerization of itaconic acid (IA)-n-butylmethacrylate (BMA) monomer pair. The structure and compositions of the synthesized RAFT ... O-MMT complexes and functional copolymer/O-MMT hybrids were confirmed by FTIR, XRD, thermal (DSC-TGA), SEM and TEM morphology analyses. It was demonstrated that the degree of interaction/exfoliation, morphology and thermal behavior of nanocomposites significantly depended on the type of organoclay and in situ interaction, as well as on the content of flexible butyl-ester linkages as a internal plasticizer. The results of the comparative analysis of the nanocomposites structure-composition-property relations show that the functional copolymer-organoclay hybrids prepared with reactive RAFT ... ODA-MMT complex and containing a combination of partially intercalated and predominantly exfoliated nano-structures exhibit relatively higher thermal stability and fine dispersed morphology. These effects were explained by in situ interfacial chemical reactions through amidization of RAFT with surface alkyl amine

  11. Synthesis, photophysical and photochemical properties of zinc phthalocyanines bearing fluoro-functionalized substituents

    Energy Technology Data Exchange (ETDEWEB)

    Aktaş, Ayşe [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Pişkin, Mehmet [Marmara University, Faculty of Art and Science, Department of Chemistry, 34722 Kadikoy-Istanbul (Turkey); Durmuş, Mahmut [Gebze Institute of Technology, Department of Chemistry, PO Box 141, Gebze 41400, Kocaeli (Turkey); Bıyıklıoğlu, Zekeriya, E-mail: zekeriya_61@yahoo.com [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2014-01-15

    In this study, the synthesis of phthalonitrile derivatives bearing fluoro-functionalized groups and their peripherally-tetra substituted zinc phthalocyanine complexes were reported. The phthalonitrile derivatives 2a–5a were prepared by nucleophilic substitution of 4-nitrophthalonitrile with 2-[3-(trifluoromethyl)phenoxy]ethanol, 2-{2-[3-(trifluoromethyl) phenoxy]ethoxy}ethanol, 2-(2,3,5,6-tetrafluorophenoxy)ethanol, 2-[2-(2,3,5,6-tetrafluorophenoxy)ethoxy]ethanol, respectively. Zinc phthalocyanines bearing fluoro-functionalized groups (2b–5b) were obtained from the corresponding phthalonitrile derivatives. The newly synthesized phthalocyanines displayed good solubility in organic solvents such as chloroform (CHCl{sub 3}), dichloromethane (DCM), tetrahydrofuran (THF), toluene, dimethylformamide (DMF) and dimethylsulfoxide (DMSO). On the other hand, the singlet oxygen, photodegradation, fluorescence quantum yields and fluorescence lifetime of these complexes were determined in DMSO. The effects of the substitution with fluoro-functionalized groups on these parameters were also compared. -- Highlights: • Synthesis of peripherally substituted zinc phthalocyanines. • Photophysical and photochemical properties in DMSO for phthalocyanines. • Photodynamic therapy studies.

  12. Synthesis, photophysical and photochemical properties of zinc phthalocyanines bearing fluoro-functionalized substituents

    International Nuclear Information System (INIS)

    Aktaş, Ayşe; Pişkin, Mehmet; Durmuş, Mahmut; Bıyıklıoğlu, Zekeriya

    2014-01-01

    In this study, the synthesis of phthalonitrile derivatives bearing fluoro-functionalized groups and their peripherally-tetra substituted zinc phthalocyanine complexes were reported. The phthalonitrile derivatives 2a–5a were prepared by nucleophilic substitution of 4-nitrophthalonitrile with 2-[3-(trifluoromethyl)phenoxy]ethanol, 2-{2-[3-(trifluoromethyl) phenoxy]ethoxy}ethanol, 2-(2,3,5,6-tetrafluorophenoxy)ethanol, 2-[2-(2,3,5,6-tetrafluorophenoxy)ethoxy]ethanol, respectively. Zinc phthalocyanines bearing fluoro-functionalized groups (2b–5b) were obtained from the corresponding phthalonitrile derivatives. The newly synthesized phthalocyanines displayed good solubility in organic solvents such as chloroform (CHCl 3 ), dichloromethane (DCM), tetrahydrofuran (THF), toluene, dimethylformamide (DMF) and dimethylsulfoxide (DMSO). On the other hand, the singlet oxygen, photodegradation, fluorescence quantum yields and fluorescence lifetime of these complexes were determined in DMSO. The effects of the substitution with fluoro-functionalized groups on these parameters were also compared. -- Highlights: • Synthesis of peripherally substituted zinc phthalocyanines. • Photophysical and photochemical properties in DMSO for phthalocyanines. • Photodynamic therapy studies

  13. Synthesis, characterization and antibacterial study on the chitosan-functionalized Ag nanoparticles.

    Science.gov (United States)

    Biao, Linhai; Tan, Shengnan; Wang, Yuanlin; Guo, Ximin; Fu, Yujie; Xu, Fengjie; Zu, Yuangang; Liu, Zhiguo

    2017-07-01

    This study provided a facile, one-step hydrothermal method to synthesize stable Ag colloid in aqueous solution by utilizing chitosan as both reductant and stabilizer. The formation of chitosan-functionalized Ag nanoparticles was verified by UV-Vis, FTIR, TEM, AFM and XRD measurements. FTIR results revealed that the primary amine groups and amide groups of chitosan have specific interactions with the surface of Ag nanoparticles. The average diameter of the Ag nanoparticles is 10.0±5.4nm as determined by TEM. Ag nanoparticles are highly crystalline as revealed by HR-TEM and XRD measurements. The size and shape of Ag nanoparticles are also found to depend on the pH condition in the synthesis. Ag nanoparticles were the main products at pH5.0 whereas large Ag nanotriangle and truncated triangular nanoplate were dominant at pH4.0 in the synthesis. Due to its monodispersity and good stability, the chitosan-functionalized Ag colloid synthesized at pH5.0 was further tested for its antibacterial activities against gram-positive bacteria, gram-negative bacteria and fungus. The results of zone of inhibition, inhibition ratio and SEM characterization revealed that chitosan-functionalized Ag nanoparticles have great bactericidal efficiency against both bacteria and fungus. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Molecular Design of Bioinspired Nanostructures for Biomedical Applications: Synthesis, Self-Assembly and Functional Properties

    Science.gov (United States)

    Xu, Hesheng Victor; Zheng, Xin Ting; Mok, Beverly Yin Leng; Ibrahim, Salwa Ali; Yu, Yong; Tan, Yen Nee

    2016-08-01

    Biomolecules are the nanoscale building blocks of cells, which play multifaceted roles in the critical biological processes such as biomineralization in a living organism. In these processes, the biological molecules such as protein and nucleic acids use their exclusive biorecognition properties enabled from their unique chemical composition, shape and function to initiate a cascade of cellular events. The exceptional features of these biomolecules, coupled with the recent advancement in nanotechnology, have led to the emergence of a new research field that focuses on the molecular design of bioinspired nanostructures that inherit the extraordinary function of natural biomaterials. These “bioinspired” nanostructures could be formulated by biomimetic approaches through either self-assembling of biomolecules or acting as a biomolecular template/precursor to direct the synthesis of nanocomposite. In either situation, the resulting nanomaterials exhibit phenomenal biocompatibility, superb aqueous solubility and excellent colloidal stability, branding them exceptionally desirable for both in vitro and in vivo biomedical applications. In this review, we will present the recent developments in the preparation of “bioinspired” nanostructures through biomimetic self-assembly and biotemplating synthesis, as well as highlight their functional properties and potential applications in biomedical diagnostics and therapeutic delivery. Lastly, we will conclude this topic with some personal perspective on the challenges and future outlooks of the “bioinspired” nanostructures for nanomedicine.

  15. New synthesis of photocurable silanes and polysiloxanes bearing heterocyclic or olefinic functions

    International Nuclear Information System (INIS)

    Youssef, B.; Lecamp, L.; Garin, S.; Bunel, C.

    1999-01-01

    In this work, we described the synthesis of silanes and polysiloxanes bearing cationic photopolymerizable groups. Two new methods were used. The first one is the reaction between 3-mercapto-propyl-1-triethoxysilane (1) and chloromethylated olefins by a phase transfer catalysis. The second one is the radical addition of (1) or poly(dimethylsiloxane-co-methylmercaptopropylsiloxane) (9) to allyl or vinyl substituted heterocyclic monomers. These methods led to the expected adducts with an excellent yield. The polysiloxanes bearing heterocyclic functional groups linked through thioether bonds were photocurable by cationic route. Under UV light intensity of 17.5 mW/cm 2 , these polymers harden after 15 or 20 s

  16. Density functional theory fragment descriptors to quantify the reactivity of a molecular family: application to amino acids.

    Science.gov (United States)

    Senet, P; Aparicio, F

    2007-04-14

    By using the exact density functional theory, one demonstrates that the value of the local electronic softness of a molecular fragment is directly related to the polarization charge (Coulomb hole) induced by a test electron removed (or added) from (at) the fragment. Our finding generalizes to a chemical group a formal relation between these molecular descriptors recently obtained for an atom in a molecule using an approximate atomistic model [P. Senet and M. Yang, J. Chem. Sci. 117, 411 (2005)]. In addition, a practical ab initio computational scheme of the Coulomb hole and related local descriptors of reactivity of a molecular family having in common a similar fragment is presented. As a blind test, the method is applied to the lateral chains of the 20 isolated amino acids. One demonstrates that the local softness of the lateral chain is a quantitative measure of the similarity of the amino acids. It predicts the separation of amino acids in different biochemical groups (aliphatic, basic, acidic, sulfur contained, and aromatic). The present approach may find applications in quantitative structure activity relationship methodology.

  17. Halogen bonding from a hard and soft acids and bases perspective: investigation by using density functional theory reactivity indices.

    Science.gov (United States)

    Pinter, Balazs; Nagels, Nick; Herrebout, Wouter A; De Proft, Frank

    2013-01-07

    Halogen bonds between the trifluoromethyl halides CF(3)Cl, CF(3)Br and CF(3)I, and dimethyl ether, dimethyl sulfide, trimethylamine and trimethyl phosphine were investigated using Pearson's hard and soft acids and bases (HSAB) concept with conceptual DFT reactivity indices, the Ziegler-Rauk-type energy-decomposition analysis, the natural orbital for chemical valence (NOCV) framework and the non-covalent interaction (NCI) index. It is found that the relative importance of electrostatic and orbital (charge transfer) interactions varies as a function of both the donor and acceptor molecules. Hard and soft interactions were distinguished and characterised by atomic charges, electrophilicity and local softness indices. Dual-descriptor plots indicate an orbital σ hole on the halogen similar to the electrostatic σ hole manifested in the molecular electrostatic potential. The predicted high halogen-bond-acceptor affinity of N-heterocyclic carbenes was evidenced in the highest complexation energy for the hitherto unknown CF(3) I·NHC complex. The dominant NOCV orbital represents an electron-density deformation according to a n→σ*-type interaction. The characteristic signal found in the reduced density gradient versus electron-density diagram corresponds to the non-covalent interaction between contact atoms in the NCI plots, which is the manifestation of halogen bonding within the NCI theory. The unexpected C-X bond strengthening observed in several cases was rationalised within the molecular orbital framework. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Synthesis of densely functionalized enantiopure indolizidines by ring-closing metathesis (RCM of hydroxylamines from carbohydrate-derived nitrones

    Directory of Open Access Journals (Sweden)

    Goti Andrea

    2007-12-01

    Full Text Available Abstract Background Indolizidine alkaloids widely occur in nature and display interesting biological activity. This is the reason for which their total synthesis as well as the synthesis of non-natural analogues still attracts the attention of many research groups. To establish new straightforward accesses to these molecules is therefore highly desirable. Results The ring closing metathesis (RCM of enantiopure hydroxylamines bearing suitable unsaturated groups cleanly afforded piperidine derivatives in good yields. Further cyclization and deprotection of the hydroxy groups gave novel highly functionalized indolizidines. The synthesis of a pyrroloazepine analogue is also described. Conclusion We have developed a new straightforward methodology for the synthesis of densely functionalized indolizidines and pyrroloazepine analogues in 6 steps and 30–60% overall yields from enantiopure hydroxylamines obtained straightforwardly from carbohydrate-derived nitrones.

  19. Synthesis of Functional Block Copolymers Carrying One Poly( p -phenylenevinylene) and One Nonconjugated Block in a Facile One-Pot Procedure

    KAUST Repository

    Menk, Florian

    2016-02-29

    Block copolymers composed of a MEH-PPV block and a nonconjugated functional block (molecular weights between 5 and 90 kg/mol) were synthesized in a facile one-pot procedure via ROMP. This one-pot procedure permits the synthesis of numerous block copolymers with little effort. Amphiphilic block copolymers were obtained via incorporation of oxanorbornene carrying a PEG side chain as well as via postpolymerization modification of a reactive ester carrying norbornene derivative with methoxypoly(ethylene glycol)amine. These amphiphilic block copolymers can be self-assembled into micelles exhibiting different sizes (60-95 nm), morphologies (micelles or fused, caterpillar-like micelles), and optical properties depending on the polymer composition and the micellization procedure. Furthermore, the reactive ester carrying block copolymers enabled the introduction of anchor groups which facilitated the preparation of nanocomposites with CdSe/CdZnS core-shell QDs. The obtained composites were studied using time-resolved photoluminescence measurements. The results revealed an increased interaction based on an accelerated decay of the QD emission for composites as compared to the mixture of the QDs with unfunctionalized polymers. © 2016 American Chemical Society.

  20. Synthesis of Functional Block Copolymers Carrying One Poly( p -phenylenevinylene) and One Nonconjugated Block in a Facile One-Pot Procedure

    KAUST Repository

    Menk, Florian; Shin, Suyong; Kim, Kyung-Oh; Scherer, Martin; Gehrig, Dominik; Laquai, Fré dé ric; Choi, Tae-Lim; Zentel, Rudolf

    2016-01-01

    Block copolymers composed of a MEH-PPV block and a nonconjugated functional block (molecular weights between 5 and 90 kg/mol) were synthesized in a facile one-pot procedure via ROMP. This one-pot procedure permits the synthesis of numerous block copolymers with little effort. Amphiphilic block copolymers were obtained via incorporation of oxanorbornene carrying a PEG side chain as well as via postpolymerization modification of a reactive ester carrying norbornene derivative with methoxypoly(ethylene glycol)amine. These amphiphilic block copolymers can be self-assembled into micelles exhibiting different sizes (60-95 nm), morphologies (micelles or fused, caterpillar-like micelles), and optical properties depending on the polymer composition and the micellization procedure. Furthermore, the reactive ester carrying block copolymers enabled the introduction of anchor groups which facilitated the preparation of nanocomposites with CdSe/CdZnS core-shell QDs. The obtained composites were studied using time-resolved photoluminescence measurements. The results revealed an increased interaction based on an accelerated decay of the QD emission for composites as compared to the mixture of the QDs with unfunctionalized polymers. © 2016 American Chemical Society.

  1. Synthesis of homo- and heteromultivalent carbohydrate-functionalized oligo(amidoamines using novel glyco-building blocks

    Directory of Open Access Journals (Sweden)

    Felix Wojcik

    2013-11-01

    Full Text Available We present the solid phase synthesis of carbohydrate-functionalized oligo(amidoamines with different functionalization patterns utilizing a novel alphabet of six differently glycosylated building blocks. Highly efficient in flow conjugation of thioglycosides to a double-bond presenting diethylentriamine precursor is the key step to prepare these building blocks suitable for fully automated solid-phase synthesis. Introduction of the sugar ligands via functionalized building blocks rather than postfunctionalization of the oligomeric backbone allows for the straightforward synthesis of multivalent glycoligands with full control over monomer sequence and functionalization pattern. We demonstrate the potential of this building-block approach by synthesizing oligomers with different numbers and spacing of carbohydrates and also show the feasibility of heteromultivalent glycosylation patterns by combining building blocks presenting different mono- and disaccharides.

  2. Reactivity determination of the Al2O3-B4C burnable poison as a function of its concentration in the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    Giada, Marino Reis

    2005-01-01

    Burnable poison rods made of Al 2 O 3 -B 4 C pellets with different concentrations of 10 B have been manufactured for a set of experiments in the IPEN/MB-01 zero-power reactor. The experiments evaluated the reactivity of the burnable poison rods as a function of the 10 B concentration, and the shadowing effect on the control rod reactivity worth as a function of the distance between the burnable position rods and the control rod. The results showed that the burnable poison rods have a non-linear behavior as function of the 10 B concentration, starting to reach an asymptotic value for concentrations higher than 7 g/cm 3 of 10 B. The shadowing effect on the control rods was substantial. When the burnable poison rods were beside the control rod, its reactivity worth decreased as much as 30 %, and when they were 10,5 cm distant, the control rod worth decreased by 7 %. The MCNP results for the burnable poison reactivity effects agreed within experimental errors with the measured values. (author)

  3. Adiponectin inhibits insulin function in primary trophoblasts by PPARα-mediated ceramide synthesis.

    Science.gov (United States)

    Aye, Irving L M H; Gao, Xiaoli; Weintraub, Susan T; Jansson, Thomas; Powell, Theresa L

    2014-04-01

    Maternal adiponectin (ADN) levels are inversely correlated with birth weight, and ADN infusion in pregnant mice down-regulates placental nutrient transporters and decreases fetal growth. In contrast to the insulin-sensitizing effects in adipose tissue and muscle, ADN inhibits insulin signaling in the placenta. However, the molecular mechanisms involved are unknown. We hypothesized that ADN inhibits insulin signaling and insulin-stimulated amino acid transport in primary human trophoblasts by peroxisome proliferator-activated receptor-α (PPARα)-mediated ceramide synthesis. Primary human term trophoblast cells were treated with ADN and/or insulin. ADN increased the phosphorylation of p38 MAPK and PPARα. ADN inhibited insulin signaling and insulin-stimulated amino acid transport. This effect was dependent on PPARα, because activation of PPARα with an agonist (GW7647) inhibited insulin signaling and function, whereas PPARα-small interfering RNA reversed the effects of ADN on the insulin response. ADN increased ceramide synthase expression and stimulated ceramide production. C2-ceramide inhibited insulin signaling and function, whereas inhibition of ceramide synthase (with Fumonisin B1) reversed the effects of ADN on insulin signaling and amino acid transport. These findings are consistent with the model that maternal ADN limits fetal growth mediated by activation of placental PPARα and ceramide synthesis, which inhibits placental insulin signaling and amino acid transport, resulting in reduced fetal nutrient availability.

  4. Room-temperature solution synthesis of Ag nanoparticle functionalized molybdenum oxide nanowires and their catalytic applications

    International Nuclear Information System (INIS)

    Dong Wenjun; Huang Huandi; Zhu Yanjun; Li Xiaoyun; Wang Xuebin; Li Chaorong; Chen Benyong; Wang Ge; Shi Zhan

    2012-01-01

    A simple chemical solution route for the synthesis of large-scale high-quality Ag nanoparticle functionalized molybdenum oxide nanowire at room temperature has been developed. In the synthesis, the protonated amine was intercalated into the molybdenum bronze layers to reduce the electrostatic force of the lamellar structures, and then the Ag nanoparticle functionalized long nanowires could be easily induced by a redox reaction between a molybdenum oxide–amine intermediate and Ag + at room temperature. The intercalation lamellar structures improved the nucleation and growth of the Ag nanoparticles, with the result that uniform Ag nanoparticles occurred on the surface of the MoO 3 nanowire. In this way Ag nanoparticles with average sizes of around 6 nm, and high-purity nanowires with mean diameter of around 50 nm and with typical lengths of several tens to hundreds of micrometers were produced. The heteronanostructured nanowires were intricately and inseparably connected to each other with hydrogen bonds and/or bridge oxygen atoms and packed together, forming a paper-like porous network film. The Ag–MoO 3 nanowire film performs a promoted catalytic property for the epoxidation of cis-cyclooctene, and the heteronanostructured nanowire film sensor shows excellent sensing performance to hydrogen and oxygen at room temperature. (paper)

  5. Room-temperature solution synthesis of Ag nanoparticle functionalized molybdenum oxide nanowires and their catalytic applications.

    Science.gov (United States)

    Dong, Wenjun; Huang, Huandi; Zhu, Yanjun; Li, Xiaoyun; Wang, Xuebin; Li, Chaorong; Chen, Benyong; Wang, Ge; Shi, Zhan

    2012-10-26

    A simple chemical solution route for the synthesis of large-scale high-quality Ag nanoparticle functionalized molybdenum oxide nanowire at room temperature has been developed. In the synthesis, the protonated amine was intercalated into the molybdenum bronze layers to reduce the electrostatic force of the lamellar structures, and then the Ag nanoparticle functionalized long nanowires could be easily induced by a redox reaction between a molybdenum oxide-amine intermediate and Ag(+) at room temperature. The intercalation lamellar structures improved the nucleation and growth of the Ag nanoparticles, with the result that uniform Ag nanoparticles occurred on the surface of the MoO(3) nanowire. In this way Ag nanoparticles with average sizes of around 6 nm, and high-purity nanowires with mean diameter of around 50 nm and with typical lengths of several tens to hundreds of micrometers were produced. The heteronanostructured nanowires were intricately and inseparably connected to each other with hydrogen bonds and/or bridge oxygen atoms and packed together, forming a paper-like porous network film. The Ag-MoO(3) nanowire film performs a promoted catalytic property for the epoxidation of cis-cyclooctene, and the heteronanostructured nanowire film sensor shows excellent sensing performance to hydrogen and oxygen at room temperature.

  6. Identification and Functional Characterization of the Glycogen Synthesis Related Gene Glycogenin in Pacific Oysters (Crassostrea gigas).

    Science.gov (United States)

    Li, Busu; Meng, Jie; Li, Li; Liu, Sheng; Wang, Ting; Zhang, Guofan

    2017-09-06

    High glycogen levels in the Pacific oyster (Crassostrea gigas) contribute to its flavor, quality, and hardiness. Glycogenin (CgGN) is the priming glucosyltransferase that initiates glycogen biosynthesis. We characterized the full sequence and function of C. gigas CgGN. Three CgGN isoforms (CgGN-α, β, and γ) containing alternative exon regions were isolated. CgGN expression varied seasonally in the adductor muscle and gonadal area and was the highest in the adductor muscle. Autoglycosylation of CgGN can interact with glycogen synthase (CgGS) to complete glycogen synthesis. Subcellular localization analysis showed that CgGN isoforms and CgGS were located in the cytoplasm. Additionally, a site-directed mutagenesis experiment revealed that the Tyr200Phe and Tyr202Phe mutations could affect CgGN autoglycosylation. This is the first study of glycogenin function in marine bivalves. These findings will improve our understanding of glycogen synthesis and accumulation mechanisms in mollusks. The data are potentially useful for breeding high-glycogen oysters.

  7. Comparison of bacterial cells and amine-functionalized abiotic surfaces as support for Pd nanoparticle synthesis

    DEFF Research Database (Denmark)

    De Corte, Simon; Bechstein, Stefanie; Lokanathan, Arcot R.

    2013-01-01

    An increasing demand for catalytic Pd nanoparticles has motivated the search for sustainable production methods. An innovative approach uses bacterial cells as support material for synthesizing Pd nanoparticles by reduction of Pd(II) with e.g. hydrogen or formate. Nevertheless, drawbacks...... nanoparticles, and that abiotic surfaces could support the Pd particle synthesis as efficiently as bacteria. In this study, we explore the possibility of replacing bacteria with amine-functionalized materials, and we compare different functionalization strategies. Pd nanoparticles formed on the support...... on these surfaces was higher than for Pd particles formed on Shewanella oneidensis cells. Smaller Pd nanoparticles generally have better catalytic properties, and previous studies have shown that the particle size can be lowered by increasing the amount of support material used during Pd particle formation. However...

  8. The Closure of the Cycle: Enzymatic Synthesis and Functionalization of Bio-Based Polyesters.

    Science.gov (United States)

    Pellis, Alessandro; Herrero Acero, Enrique; Ferrario, Valerio; Ribitsch, Doris; Guebitz, Georg M; Gardossi, Lucia

    2016-04-01

    The polymer industry is under pressure to mitigate the environmental cost of petrol-based plastics. Biotechnologies contribute to the gradual replacement of petrol-based chemistry and the development of new renewable products, leading to the closure of carbon circle. An array of bio-based building blocks is already available on an industrial scale and is boosting the development of new generations of sustainable and functionally competitive polymers, such as polylactic acid (PLA). Biocatalysts add higher value to bio-based polymers by catalyzing not only their selective modification, but also their synthesis under mild and controlled conditions. The ultimate aim is the introduction of chemical functionalities on the surface of the polymer while retaining its bulk properties, thus enlarging the spectrum of advanced applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Controllable synthesis of functional nanocomposites: Covalently functionalize graphene sheets with biocompatible L-lysine

    International Nuclear Information System (INIS)

    Mo, Zunli; Gou, Hao; He, Jingxian; Yang, Peipei; Feng, Chao; Guo, Ruibin

    2012-01-01

    Highlights: ► The biocompatible L-lysine functionalized graphene sheets (Gs/Lys) were synthesized controllably using a novel method. ► The Gs/Lys nanocomposites are water-soluble, biocompatible and chiral. ► A chiral graphene derivative was proposed. - Abstract: In this paper a novel method to synthesize functionalize graphene sheets (Gs) by biocompatible L-lysine (Gs/Lys) is reported. The method was composed of two steps: (1) we controllably synthesized self-assembly Gs/Lys-Cu-Lys through the terminal amino of copper L-lysine (Lys-Cu-Lys) attaching to graphite oxide (GO) and then reducing. (2) Obtained the Gs/Lys by eliminating the copper ion. This method could also be used to functionalize other nanomaterials by L-lysine. The Gs/Lys nanocomposites are water-soluble, biocompatible, and above all, it is a chiral material of graphene, which is proposed by us. This novel material will be promising for more applications of graphene. The formation of Gs/Lys nanocomposites were confirmed by scanning electron microscopy (SEM), Fourier-transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and thermal gravimetric (TG) analysis.

  10. Reactive-site hydrolyzed Cucurbita maxima trypsin inhibitor-V: function, thermodynamic stability, and NMR solution structure.

    Science.gov (United States)

    Cai, M; Gong, Y; Prakash, O; Krishnamoorthi, R

    1995-09-26

    Reactive-site (Lys44-Asp45 peptide bond) hydrolyzed Cucurbita maxima trypsin inhibitor-V (CMTI-V*) was prepared and characterized: In comparison to the intact form, CMTI-V* exhibited markedly reduced inhibitory properties and binding affinities toward trypsin and human blood coagulation factor XIIa. The equilibrium constant of trypsin-catalyzed hydrolysis, Khyd, defined as [CMTI-V*]/[CMTI-V], was measured to be approximately 9.4 at 25 degrees C (delta G degrees = -1.3 kcal.mol-1). From the temperature dependence of delta G degrees, the following thermodynamic parameters were estimated: delta H degrees = 1.6 kcal.mol-1 and delta S degrees = 9.8 eu. In order to understand the functional and thermodynamic differences between the two forms, the three-dimensional solution structure of CMTI-V* was determined by a combined approach of NMR, distance geometry, and simulated annealing methods. Thus, following sequence-specific and stereospecific resonance assignments, including those of beta-, gamma-, delta-, and epsilon-hydrogens and valine methyl hydrogens, 809 interhydrogen distances and 123 dihedral angle constraints were determined, resulting in the computation and energy-minimization of 20 structures for CMTI-V*. The average root mean squared deviation in position for equivalent atoms between the 20 individual structures and the mean structure obtained by averaging their coordinates is 0.67 +/- 0.15 A for the main chain atoms and 1.19 +/- 0.23 A for all the non-hydrogen atoms of residues 5-40 and residues 48-67.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. ATM Protein Physically and Functionally Interacts with Proliferating Cell Nuclear Antigen to Regulate DNA Synthesis*

    Science.gov (United States)

    Gamper, Armin M.; Choi, Serah; Matsumoto, Yoshihiro; Banerjee, Dibyendu; Tomkinson, Alan E.; Bakkenist, Christopher J.

    2012-01-01

    Ataxia telangiectasia (A-T) is a pleiotropic disease, with a characteristic hypersensitivity to ionizing radiation that is caused by biallelic mutations in A-T mutated (ATM), a gene encoding a protein kinase critical for the induction of cellular responses to DNA damage, particularly to DNA double strand breaks. A long known characteristic of A-T cells is their ability to synthesize DNA even in the presence of ionizing radiation-induced DNA damage, a phenomenon termed radioresistant DNA synthesis. We previously reported that ATM kinase inhibition, but not ATM protein disruption, blocks sister chromatid exchange following DNA damage. We now show that ATM kinase inhibition, but not ATM protein disruption, also inhibits DNA synthesis. Investigating a potential physical interaction of ATM with the DNA replication machinery, we found that ATM co-precipitates with proliferating cell nuclear antigen (PCNA) from cellular extracts. Using bacterially purified ATM truncation mutants and in vitro translated PCNA, we showed that the interaction is direct and mediated by the C terminus of ATM. Indeed, a 20-amino acid region close to the kinase domain is sufficient for strong binding to PCNA. This binding is specific to ATM, because the homologous regions of other PIKK members, including the closely related kinase A-T and Rad3-related (ATR), did not bind PCNA. ATM was found to bind two regions in PCNA. To examine the functional significance of the interaction between ATM and PCNA, we tested the ability of ATM to stimulate DNA synthesis by DNA polymerase δ, which is implicated in both DNA replication and DNA repair processes. ATM was observed to stimulate DNA polymerase activity in a PCNA-dependent manner. PMID:22362778

  12. Precision Synthesis of Functional Polysaccharide Materials by Phosphorylase-Catalyzed Enzymatic Reactions

    Directory of Open Access Journals (Sweden)

    Jun-ichi Kadokawa

    2016-04-01

    Full Text Available In this review article, the precise synthesis of functional polysaccharide materials using phosphorylase-catalyzed enzymatic reactions is presented. This particular enzymatic approach has been identified as a powerful tool in preparing well-defined polysaccharide materials. Phosphorylase is an enzyme that has been employed in the synthesis of pure amylose with a precisely controlled structure. Similarly, using a phosphorylase-catalyzed enzymatic polymerization, the chemoenzymatic synthesis of amylose-grafted heteropolysaccharides containing different main-chain polysaccharide structures (e.g., chitin/chitosan, cellulose, alginate, xanthan gum, and carboxymethyl cellulose was achieved. Amylose-based block, star, and branched polymeric materials have also been prepared using this enzymatic polymerization. Since phosphorylase shows a loose specificity for the recognition of substrates, different sugar residues have been introduced to the non-reducing ends of maltooligosaccharides by phosphorylase-catalyzed glycosylations using analog substrates such as α-d-glucuronic acid and α-d-glucosamine 1-phosphates. By means of such reactions, an amphoteric glycogen and its corresponding hydrogel were successfully prepared. Thermostable phosphorylase was able to tolerate a greater variance in the substrate structures with respect to recognition than potato phosphorylase, and as a result, the enzymatic polymerization of α-d-glucosamine 1-phosphate to produce a chitosan stereoisomer was carried out using this enzyme catalyst, which was then subsequently converted to the chitin stereoisomer by N-acetylation. Amylose supramolecular inclusion complexes with polymeric guests were obtained when the phosphorylase-catalyzed enzymatic polymerization was conducted in the presence of the guest polymers. Since the structure of this polymeric system is similar to the way that a plant vine twines around a rod, this polymerization system has been named

  13. Use of Modern Chemical Protein Synthesis and Advanced Fluorescent Assay Techniques to Experimentally Validate the Functional Annotation of Microbial Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Kent, Stephen [University of Chicago

    2012-07-20

    The objective of this research program was to prototype methods for the chemical synthesis of predicted protein molecules in annotated microbial genomes. High throughput chemical methods were to be used to make large numbers of predicted proteins and protein domains, based on microbial genome sequences. Microscale chemical synthesis methods for the parallel preparation of peptide-thioester building blocks were developed; these peptide segments are used for the parallel chemical synthesis of proteins and protein domains. Ultimately, it is envisaged that these synthetic molecules would be ‘printed’ in spatially addressable arrays. The unique ability of total synthesis to precision label protein molecules with dyes and with chemical or biochemical ‘tags’ can be used to facilitate novel assay technologies adapted from state-of-the art single molecule fluorescence detection techniques. In the future, in conjunction with modern laboratory automation this integrated set of techniques will enable high throughput experimental validation of the functional annotation of microbial genomes.

  14. The Nucleotide Synthesis Enzyme CAD Inhibits NOD2 Antibacterial Function in Human Intestinal Epithelial Cells

    Science.gov (United States)

    Richmond, Amy L.; Kabi, Amrita; Homer, Craig R.; García, Noemí Marina; Nickerson, Kourtney P.; NesvizhskiI, Alexey I.; Sreekumar, Arun; Chinnaiyan, Arul M.; Nuñez, Gabriel; McDonald, Christine

    2013-01-01

    BACKGROUND & AIMS Polymorphisms that reduce the function of nucleotide-binding oligomerization domain (NOD)2, a bacterial sensor, have been associated with Crohn’s disease (CD). No proteins that regulate NOD2 activity have been identified as selective pharmacologic targets. We sought to discover regulators of NOD2 that might be pharmacologic targets for CD therapies. METHODS Carbamoyl phosphate synthetase/ aspartate transcarbamylase/dihydroorotase (CAD) is an enzyme required for de novo pyrimidine nucleotide synthesis; it was identified as a NOD2-interacting protein by immunoprecipitation-coupled mass spectrometry. CAD expression was assessed in colon tissues from individuals with and without inflammatory bowel disease by immunohistochemistry. The interaction between CAD and NOD2 was assessed in human HCT116 intestinal epithelial cells by immunoprecipitation, immunoblot, reporter gene, and gentamicin protection assays. We also analyzed human cell lines that express variants of NOD2 and the effects of RNA interference, overexpression and CAD inhibitors. RESULTS CAD was identified as a NOD2-interacting protein expressed at increased levels in the intestinal epithelium of patients with CD compared with controls. Overexpression of CAD inhibited NOD2-dependent activation of nuclear factor κB and p38 mitogen-activated protein kinase, as well as intracellular killing of Salmonella. Reduction of CAD expression or administration of CAD inhibitors increased NOD2-dependent signaling and antibacterial functions of NOD2 variants that are and are not associated with CD. CONCLUSIONS The nucleotide synthesis enzyme CAD is a negative regulator of NOD2. The antibacterial function of NOD2 variants that have been associated with CD increased in response to pharmacologic inhibition of CAD. CAD is a potential therapeutic target for CD. PMID:22387394

  15. Influence of cytochrome 2C19 allelic variants on on-treatment platelet reactivity evaluated by five different platelet function tests.

    Science.gov (United States)

    Gremmel, Thomas; Kopp, Christoph W; Moertl, Deddo; Seidinger, Daniela; Koppensteiner, Renate; Panzer, Simon; Mannhalter, Christine; Steiner, Sabine

    2012-05-01

    The antiplatelet effect of clopidogrel has been linked to cytochrome P450 2C19 (CYP2C19) carrier status. The presence of loss of function and gain of function variants were found to have a gene-dose effect on clopidogrel metabolism. However, genotyping is only one aspect of predicting response to clopidogrel and several platelet function tests are available to measure platelet response. Patients and methods We studied the influence of CYP2C19 allelic variants on on-treatment platelet reactivity as assessed by light transmission aggregometry (LTA), the VerifyNow P2Y12 assay, the VASP assay, multiple electrode aggregometry (MEA), and the Impact-R in 288 patients after stenting for cardiovascular disease. Allelic variants of CYP2C19 were determined with the Infiniti® CYP450 2C19+ assay and categorized into four metabolizer states (ultrarapid, extensive, intermediate, poor). Platelet reactivity increased linearly from ultrarapid to poor metabolizers using the VerifyNow P2Y12 assay (P = 0.04), the VASP assay (P = 0.02) and the Impact-R (P = 0.04). The proportion of patients with high on-treatment residual platelet reactivity (HRPR) identified by LTA, the VerifyNow P2Y12 assay and the VASP assay increased when the metabolizer status decreased, while no such relationship could be identified for results of MEA and Impact-R. The presence of loss of function variants (*2/*2, *2-8*/wt, *2/*17) was an independent predictor of HRPR in LTA and the VASP assay while it did not reach statistical significance in the VerifyNow P2Y12 assay, MEA, and the Impact-R. Depending on the type of platelet function test differences in the association of on-treatment platelet reactivity with CYP2C19 carrier status are observed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Synthesis of amino-functionalized silica nanoparticles for preparation of new laboratory standards

    Science.gov (United States)

    Alvarez-Toral, Aitor; Fernández, Beatriz; Malherbe, Julien; Claverie, Fanny; Pecheyran, Christophe; Pereiro, Rosario

    2017-12-01

    Platinum group elements (PGEs) are particularly interesting analytes in different fields, including environmental samples as well as high cost materials that contain them, such as for example automotive catalysts. This type of solid samples could be analysed by laser ablation (LA) coupled to ICP-MS, which allow to significantly reducing the analysis time since the time-consuming processes for sample preparation are not required. There is a considerable demand of standards with high PGEs concentration for quantification purposes, which cannot be carried out easily using LA-ICP-MS because the available standards (i.e. NIST SRM 61 × series) do not have such analytes in the same concentration range. In this paper, a new strategy is proposed for the synthesis of homogeneous laboratory standards with Pt, Pd and Rh concentrations that range from 77 μg/g of Pd up to 2035 μg/g of Rh. The proposed strategy is based on the synthesis of monodisperse amino-functionalized amorphous silica nanoparticles, which can retain metal ions. In addition to Pt, Pd and Rh, three lanthanides were also added to the nanoparticles (La, Ce, Nd). Sturdy pressed pellets can be made from the resulting nanopowder without the use of any binder. Elemental composition of standards made of nanoparticles was analysed by conventional nebulization ICP-MS and their homogeneity was successfully evaluated by LA-ICP-MS.

  17. A retrospective: Use of Escherichia coli as a vehicle to study phospholipid synthesis and function

    Science.gov (United States)

    Dowhan, William

    2012-01-01

    Although the study of individual phospholipids and their synthesis began in the 1920’s first in plants and then mammals, it was not until the early 1960’s that Eugene Kennedy using Escherichia coli initiated studies of bacterial phospholipid metabolism. With the base of information already available from studies of mammalian tissue, the basic blueprint of phospholipid biosynthesis in E. coli was worked out by the late 1960’s. In 1970’s and 1980’s most of the enzymes responsible for phospholipid biosynthesis were purified and many of the genes encoding these enzymes were identified. By the late 1990’s conditional and null mutants were available along with clones of the genes for every step of phospholipid biosynthesis. Most of these genes had been sequenced before the complete E. coli genome sequence was available. Strains of E. coli were developed in which phospholipid composition could be changed in a systematic manner while maintaining cell viability. Null mutants, strains in which phospholipid metabolism was artificially regulated, and strains synthesizing foreign lipids not found in E. coli have been used to this day to define specific roles for individual phospholipid. This review will trace the findings that have led to the development of E. coli as an excellent model system to study mechanisms underlying the synthesis and function of phospholipids that are widely applicable to other prokaryotic and eukaryotic systems. PMID:22925633

  18. Synthesis, characterization, and nonlinear optical properties of graphene oxide functionalized with tetra-amino porphyrin

    Science.gov (United States)

    Yamuna, R.; Ramakrishnan, S.; Dhara, Keerthy; Devi, R.; Kothurkar, Nikhil K.; Kirubha, E.; Palanisamy, P. K.

    2013-01-01

    The synthesis of a porphyrin-graphene oxide hybrid (GO-TAP) was carried out by covalently functionalizing graphene oxide (GO) with 5,10,15,20 mesotetra (4-aminophenyl) porphyrin (TAP) through an amide linkage. The GO-TAP hybrid has been characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and UV-visible spectroscopy. The peak intensity of the Soret band of the material was suppressed compared to neat TAP. This indicates a strong interaction between the electronic energy level of TAP and GO in the GO-TAP hybrid. The functionalization of GO with TAP significantly improved its solubility and dispersion stability in organic solvents. Scanning electron micrographs reveal that the hybrid was found to be similar to the unmodified GO but slightly more wrinkled. Transmission electron micrographs also demonstrate that GO sheet in the hybrid is more wrinkled with some dark spot due to functionalization. Atomic force microscopy results also reveal that the TAP functionalization increases the thickness of GO sheet to 2.0-3.0 nm from 1.2 to 1.8 nm. We observed improved nonlinear optical and optical limiting properties for the hybrid compared to both graphene oxide and porphyrin. GO-TAP shows fluorescence quenching compared with porphyrin, indicating excellent electron and/or energy transfer to GO from TAP. Thermogravimetric analysis confirms that the GO-TAP hybrid has outstanding thermal stability.

  19. Synthesis of hydrazone functionalized epoxy polymers for non-linear optical device applications

    Science.gov (United States)

    Singh, Rajendra K.

    A series of twelve, thermally crosslinkable, epoxy polymers bearing covalently attached NLO-active hydrazone chromophores were synthesized. The primary focus was on the synthesis of two series of NLO-active hydroxy functionalized hydrazone chromophores. The first series, called the monohydroxy series (Hydrazones I--VI) comprised of six monohydroxy functionalized hydrazones and the second series consisted of six dihydroxy functionalized hydrazones (Hydrazones VII--XII). These hydrazone chromophores were then grafted, via the hydroxy functionality, on to a commercial epoxy polymer to obtain twelve NLO-active soluble prepolymers. The grafting reaction yields multiple secondary hydroxyl sites due to opening of the epoxide rings and these hydroxyl groups were used for further crosslinking by formulating the prepolymers with a blocked polyisocyanate commercial crosslinker. This formulation was spin coated on glass slides to form 2--2.5 m m thick uniform, defect free, transparent films. The films were corona poled, above their Tg, to align the chromophores in a noncentrosymmetric fashion and simultaneously complete the thermal cure that results in a highly crosslinked network. Finally the thermal characteristics of the second order nonlinearity of the twelve polymers are compared to illustrate the key structure-property relationships underlying the performance of the films.

  20. Synthesis, characterization, and nonlinear optical properties of graphene oxide functionalized with tetra-amino porphyrin

    International Nuclear Information System (INIS)

    Yamuna, R.; Ramakrishnan, S.; Dhara, Keerthy; Devi, R.; Kothurkar, Nikhil K.; Kirubha, E.; Palanisamy, P. K.

    2013-01-01

    The synthesis of a porphyrin–graphene oxide hybrid (GO–TAP) was carried out by covalently functionalizing graphene oxide (GO) with 5,10,15,20 mesotetra (4-aminophenyl) porphyrin (TAP) through an amide linkage. The GO–TAP hybrid has been characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and UV–visible spectroscopy. The peak intensity of the Soret band of the material was suppressed compared to neat TAP. This indicates a strong interaction between the electronic energy level of TAP and GO in the GO–TAP hybrid. The functionalization of GO with TAP significantly improved its solubility and dispersion stability in organic solvents. Scanning electron micrographs reveal that the hybrid was found to be similar to the unmodified GO but slightly more wrinkled. Transmission electron micrographs also demonstrate that GO sheet in the hybrid is more wrinkled with some dark spot due to functionalization. Atomic force microscopy results also reveal that the TAP functionalization increases the thickness of GO sheet to 2.0–3.0 nm from 1.2 to 1.8 nm. We observed improved nonlinear optical and optical limiting properties for the hybrid compared to both graphene oxide and porphyrin. GO–TAP shows fluorescence quenching compared with porphyrin, indicating excellent electron and/or energy transfer to GO from TAP. Thermogravimetric analysis confirms that the GO–TAP hybrid has outstanding thermal stability.

  1. Synthesis and characterization of sulfur-functionalized silica nanocapsules as mercury adsorbents

    Science.gov (United States)

    Palaniappan, Thenappan; Saman, Norasikin; Mat, Hanapi; Johari, Khairiraihanna

    2017-12-01

    Sulfur functionalized silica nanocapsules (S-SiNC) was successfully synthesized and characterized as a potential adsorbent for industrial applications. The synthesis of S-SiNC was carried out using the mircoemulsion templating method using cetyltrimethylammonium bromide (CTAB) as cationic surfactant, toluene as co-solvent, ammonia solution as catalyst, and tetraethylorthosilicate (TEOS) as the silica base. The S-SiNC adsorbent was characterized using Transmission Electron Microscope, Fourier Transformed Infra Red spectroscopy and nitrogen adsorption/desorption analysis. The physical and chemical properties of the SiNC changed as a result of the functionalization, hence affecting the extent of Hg(II) adsorption. The S-SiNCs were also tested in mercury ion [Hg(II)] adsorption via batch adsorption process with variation in initial Hg (II) concentration. It was found that there is a significant improvement in Hg(II) adsorption performance after being functionalized with elemental sulfur. The highest Hg(II) adsorption capacity was obtained for S-SiNC (107.875 mg/g), which significantly outperformed the blank SiNC. The experimental data obtained was found to be fitting well to the Langmuir isotherm model (R2= 0.979) compared to Freundlich isotherm model. Thus, the results demonstrated the potential application of sulfur functionalized silica nanocapsules as adsorbent in industrial applications.

  2. Structure, Reactivity and Dynamics

    Indian Academy of Sciences (India)

    Understanding structure, reactivity and dynamics is the core issue in chemical ... functional theory (DFT) calculations, molecular dynamics (MD) simulations, light- ... between water and protein oxygen atoms, the superionic conductors which ...

  3. Novel functions for glycosyltransferases Jhp0562 and GalT in Lewis antigen synthesis and variation in Helicobacter pylori.

    Science.gov (United States)

    Pohl, Mary Ann; Kienesberger, Sabine; Blaser, Martin J

    2012-04-01

    Lewis (Le) antigens are fucosylated oligosaccharides present in the Helicobacter pylori lipopolysaccharide. Expression of these antigens is believed to be important for H. pylori colonization, since Le antigens also are expressed on the gastric epithelia in humans. A galactosyltransferase encoded by β-(1,3)galT is essential for production of type 1 (Le(a) and Le(b)) antigens. The upstream gene jhp0562, which is present in many but not all H. pylori strains, is homologous to β-(1,3)galT but is of unknown function. Because H. pylori demonstrates extensive intragenomic recombination, we hypothesized that these two genes could undergo DNA rearrangement. A PCR screen and subsequent sequence analyses revealed that the two genes can recombine at both the 5' and 3' ends. Chimeric β-(1,3)galT-like alleles can restore function in a β-(1,3)galT null mutant, but neither native nor recombinant jhp0562 can. Mutagenesis of jhp0562 revealed that it is essential for synthesis of both type 1 and type 2 Le antigens. Transcriptional analyses of both loci showed β-(1,3)galT expression in all wild-type (WT) and mutant strains tested, whereas jhp0562 was not expressed in jhp0562 null mutants, as expected. Since jhp0562 unexpectedly displayed functions in both type 1 and type 2 Le synthesis, we asked whether galT, part of the type 2 synthesis pathway, had analogous functions in type 1 synthesis. Mutagenesis and complementation analysis confirmed that galT is essential for Le(b) production. In total, these results demonstrate that galT and jhp0562 have functions that cross the expected Le synthesis pathways and that jhp0562 provides a substrate for intragenomic recombination to generate diverse Le synthesis enzymes.

  4. Synthesis of IV-VI Transition Metal Carbide and Nitride Nanoparticles Using a Reactive Mesoporous Template for Electrochemical Hydrogen Evolution Reaction

    KAUST Repository

    Alhajri, Nawal Saad

    2016-01-01

    content rather than nitride. In addition, the reactivity of the transition metals of group IV-VI with the reactive template was investigated under a flow of N2 at different temperatures in the range of 1023 to 1573 K while keeping the weight ratio constant at 1:1. The results show that Ti, V, Nb, Ta, and Cr reacted with mpg-C3N4 at 1023 K to form nitride phase with face centered cubic structure. The nitride phase destabilized at higher temperature ≥1223 K through the reaction with the remaining carbon residue originated from the decomposition of the template to form carbonitride and carbide phases. Whereas, Mo and W produce a hexagonal structure of carbide irrespective of the applying reaction temperature. The tendency to form transition metal nitrides and carbides at 1023 K was strongly driven by the free energy of formation. The observed trend indicates that the free energy of formation of nitride is relatively lower for group IV and V transition metals, whereas the carbide phase is thermodynamically more favorable for group VI, in particular for Mo and W. The thermal stability of nitride decreases at high temperature due to the evolution of nitrogen gas. The electrocatalytic activities of the produced nanoparticles were tested for hydrogen evolution reaction in acid media and the results demonstrated that molybdenum carbide nanoparticles exhibited the highest HER current with over potential of 100 mV vs. RHE, among the samples prepared in this study. This result is attributed to the sufficiently small particle size (8 nm on average) and accordingly high surface area (308 m2 g-1). Also, the graphitized carbon layer with a thickness of 1 nm on its surface formed by this synthesis provides excellent electron pathway to the catalyst which will improve the rate of electron transfer reaction.

  5. Effect of water pipe tobacco smoking on plasma high sensitivity C reactive protein level and endothelial function compared to cigarette smoking

    OpenAIRE

    Osama Ali Diab; Elzahraa Mohamed Abdelrahim; Mohamed Esmail

    2015-01-01

    Background: Cigarette smoking is a well known risk factor for cardiovascular disease, however, little is known regarding water pipe (WP) smoking. High sensitivity C-reactive protein (hs-CRP) and flow mediated dilatation (FMD) are well recognized methods to assess cardiovascular risks. Objectives: To study the effect of WP smoking on hs-CRP level and endothelial function compared to cigarette smoking. Methods: The study included 77 male subjects (30 WP smokers, 30 cigarette smokers, and ...

  6. Synthesis of Fe Nanoparticles Functionalized with Oleic Acid Synthesized by Inert Gas Condensation

    Directory of Open Access Journals (Sweden)

    L. G. Silva

    2014-01-01

    Full Text Available In this work, we study the synthesis of monodispersed Fe nanoparticles (Fe-NPs in situ functionalized with oleic acid. The nanoparticles were self-assembled by inert gas condensation (IGC technique by using magnetron-sputtering process. Structural characterization of Fe-NPs was performed by transmission electron microscopy (TEM. Particle size control was carried out through the following parameters: (i condensation zone length, (ii magnetron power, and (iii gas flow (Ar and He. Typically the nanoparticles generated by IGC showed diameters which ranged from ~0.7 to 20 nm. Mass spectroscopy of Fe-NPs in the deposition system allowed the study of in situ nanoparticle formation, through a quadrupole mass filter (QMF that one can use together with a mass filter. When the deposition system works without quadrupole mass filter, the particle diameter distribution is around +/−20%. When the quadrupole is in line, then the distribution can be reduced to around +/−2%.

  7. Synthesis of phenanthridines via palladium-catalyzed picolinamide-directed sequential C–H functionalization

    Directory of Open Access Journals (Sweden)

    Ryan Pearson

    2013-05-01

    Full Text Available We report a new synthesis of phenanthridines based on palladium-catalyzed picolinamide-directed sequential C–H functionalization reactions starting from readily available benzylamine and aryl iodide precursors. Under the catalysis of Pd(OAc2, the ortho-C–H bond of benzylpicolinamides is first arylated with an aryl iodide. The resulting biaryl compound is then subjected to palladium-catalyzed picolinamide-directed intramolecular dehydrogenative C–H amination with PhI(OAc2 oxidant to form the corresponding cyclized dihydrophenanthridines. The benzylic position of these dihydrophenanthridines could be further oxidized with Cu(OAc2, removing the picolinamide group and providing phenathridine products. The cyclization and oxidation could be carried out in a single step and afford phenathridines in moderate to good yields.

  8. Synthesis and electrochemical properties of peripheral carbazole functional Ter(9,9-spirobifluorene)s.

    Science.gov (United States)

    Tang, Shi; Liu, Meirong; Gu, Cheng; Zhao, Yang; Lu, Ping; Lu, Dan; Liu, Linlin; Shen, Fangzhong; Yang, Bing; Ma, Yuguang

    2008-06-06

    A facile approach for synthesis of spirobifluorene trimers with peripheral carbazole functional groups by utilizing Suzuki coupling as the key reaction has been developed. These novel compounds exhibit blue emission with high quantum yields in solution and thin films, and excellent spectral stability upon photoirradiation and annealing in air. By the introduction of carbazole groups, the oxidation potentials of spirobifluorene trimers S TCPC-6 and STCPC-4 were significantly lower than that of model compound STHPH without peripheral carbazole groups, which reflect that the title compounds process higher HOMO energy level and better hole-injection ability. Highly luminescent films were obtained by electrochemical coupling between carbazole units. Pure blue-emission single-layer LEDs based on electrochemical deposition films as light emitting layers were achieved.

  9. Continuous Hydrothermal Flow Synthesis of Functional Oxide Nanomaterials Used in Energy Conversion Devices

    DEFF Research Database (Denmark)

    Xu, Yu

    Continuous hydrothermal flow synthesis (CHFS) was used to prepare functional oxide nanoparticles. Materials synthesized include NiO, Y-doped ZrO2, Gd-doped CeO2, LaCrO3 and Ni-substituted CoFe2O4. These types of oxides can be applied in several energy conversion devices, e.g. as active materials...... as materials are continuously produced, and the technology can be scaled-up to an industrial-relevant production capacity. The thesis starts with investigating the most appropriate mixer design for a novel two-stage reactor by computational fluid dynamics modelling. On basis of the modelling results, a two......, dense continuous layers (

  10. Amine functionalized TiO2-carbon nanotube composite: synthesis, characterization and application to glucose biosensing

    Science.gov (United States)

    Tasviri, Mahboubeh; Rafiee-Pour, Hossain-Ali; Ghourchian, Hedayatollah; Gholami, Mohammad Reza

    2011-12-01

    The synthesis of amine functionalized TiO2-coated multiwalled carbon nanotubes (NH2-TiO2-CNTs) using sol-gel method was investigated. The synthesized nanocomposite was characterized with XRD, FTIR spectroscopy, BET test and SEM imaging. The results demonstrated a unique nanostructure with no destruction of the CNTs' shape. In addition, the presence of amine groups on the composite surface was confirmed by FTIR. This nanocomposite was used for one-step immobilization of glucose oxidase (GOx) to sense glucose. The result of cyclic voltammetry showed a pair of well-defined and quasi-reversible peaks for direct electron transfer of GOx in the absence of glucose. Also, the result of electrochemical impedance spectroscopy indicated that GOx was successfully immobilized on the surface of NH2-TiO2-CNTs. Furthermore, good amperometric response showed that immobilized GOx on the NH2-TiO2-CNTs exhibits exceptional bioelectrocatalytic activity toward glucose oxidation.

  11. Synthesis and functionalization of persistent luminescence nanoparticles with small molecules and evaluation of their targeting ability.

    Science.gov (United States)

    Maldiney, Thomas; Byk, Gerardo; Wattier, Nicolas; Seguin, Johanne; Khandadash, Raz; Bessodes, Michel; Richard, Cyrille; Scherman, Daniel

    2012-02-14

    We have recently reported the design and use of inorganic nanoparticles with persistent luminescence properties. Such nanoparticles can be excited with a UV lamp for 2min and emit light in the near-infrared area for dozen of minutes without any further excitation. This property is of particular interest for small animal optical imaging, since it avoids the autofluorescence of endogenous fluorophores which is one major problem encountered when using fluorescent probes. We report herein the synthesis of persistent luminescence nanoparticles (PLNPs) and their functionalization with two small targeting molecules: biotin and Rak-2. We provide characterization of each PLNP as well as preliminary evidence of the ability of PLNP-PEG-Biotin to target streptavidin and PLNP-PEG-Rak-2 to bind prostate cancer cells in vitro. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Functional Dynamics within the Human Ribosome Regulate the Rate of Active Protein Synthesis.

    Science.gov (United States)

    Ferguson, Angelica; Wang, Leyi; Altman, Roger B; Terry, Daniel S; Juette, Manuel F; Burnett, Benjamin J; Alejo, Jose L; Dass, Randall A; Parks, Matthew M; Vincent, C Theresa; Blanchard, Scott C

    2015-11-05

    The regulation of protein synthesis contributes to gene expression in both normal physiology and disease, yet kinetic investigations of the human translation mechanism are currently lacking. Using single-molecule fluorescence imaging methods, we have quantified the nature and timing of structural processes in human ribosomes during single-turnover and processive translation reactions. These measurements reveal that functional complexes exhibit dynamic behaviors and thermodynamic stabilities distinct from those observed for bacterial systems. Structurally defined sub-states of pre- and post-translocation complexes were sensitive to specific inhibitors of the eukaryotic ribosome, demonstrating the utility of this platform to probe drug mechanism. The application of three-color single-molecule fluorescence resonance energy transfer (smFRET) methods further revealed a long-distance allosteric coupling between distal tRNA binding sites within ribosomes bearing three tRNAs, which contributed to the rate of processive translation. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Transfer function synthesis for reactor spatial dynamics using the modal approach

    Energy Technology Data Exchange (ETDEWEB)

    Guppy, C B [Control and Instrumentation Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1962-08-15

    Techniques are developed below which will enable the construction of transfer functions relating changes in variables such as power or neutron flux with reactivity perturbations when there is a need for taking into account spatial effects within a reactor. Initially each of the transfer functions derived comprises the sum of a series of harmonics each of which has a laplace transform with associated spatial eigenfunction. Series of this kind can then be reduced to pure polynomial form (numerators on denominators) the coefficients of which have implicit allowance for spatial effects. The existence of large reactors having several independent controllers make necessary knowledge of transfer functions of this form. The technique will allow the characteristics of each controlled sector to be obtained as well as the characteristics of the complete control system with its couplings through the reactor core. In addition, the developing use of frequency response testing of reactors makes necessary a knowledge of the spatial behaviour to be expected of a reactor under test. (author)

  14. Tuning of tantalum alkylidene reactivity with a terdentate arylamine ligand : synthesis, structure and reactivity of [TaCl2{C6H3(CH2NMe2)2-2,6}(CHBu-tert)

    NARCIS (Netherlands)

    Abbenhuis, H.C.L.; Grove, D.M.; Koten, van G.; Sluijs, van der P.; Spek, A.L.

    1990-01-01

    The terdentate aryldiamine ligand in the aryltantalum(V) alkylidene complex [TaCl2{C6H3(CH2NMe2)2-2,6}(CHBut)] (1) controls alkylidene reactivity in a range of metal-mediated Wittig reactions. An X-ray diffraction study of (1) shows that the hexacoordinate tantalum centre has a very irregular ligand

  15. A semi-experimental nodal synthesis method for the on-line reconstruction of three-dimensional neutron flux-shapes and reactivity

    International Nuclear Information System (INIS)

    Jacqmin, R.P.

    1991-01-01

    The safety and optimal performance of large, commercial, light-water reactors require the knowledge at all time of the neutron-flux distribution in the core. In principle, this information can be obtained by solving the time-dependent neutron diffusion equations. However, this approach is complicated and very expensive. Sufficiently accurate, real-time calculations (time scale of approximately one second) are not yet possible on desktop computers, even with fast-running, nodal kinetics codes. A semi-experimental, nodal synthesis method which avoids the solution of the time-dependent, neutron diffusion equations is described. The essential idea of this method is to approximate instantaneous nodal group-fluxes by a linear combination of K, precomputed, three-dimensional, static expansion-functions. The time-dependent coefficients of the combination are found from the requirement that the reconstructed flux-distribution agree in a least-squares sense with the readings of J (≥K) fixed, prompt-responding neutron-detectors. Possible numerical difficulties with the least-squares solution of the ill-conditioned, J-by-K system of equations are brought under complete control by the use of a singular-value-decomposition technique. This procedure amounts to the rearrangement of the original, linear combination of K expansion functions into an equivalent more convenient, linear combination of R (≤K) orthogonalized ''modes'' of decreasing magnitude. Exceedingly small modes are zeroed to eliminate any risk of roundoff-error amplification, and to assure consistency with the limited accuracy of the data. Additional modes are zeroed when it is desirable to limit the sensitivity of the results to measurement noise

  16. A semi-experimental nodal synthesis method for the on-line reconstruction of three-dimensional neutron flux-shapes and reactivity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jacqmin, Robert P. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1991-12-10

    The safety and optimal performance of large, commercial, light-water reactors require the knowledge at all time of the neutron-flux distribution in the core. In principle, this information can be obtained by solving the time-dependent neutron diffusion equations. However, this approach is complicated and very expensive. Sufficiently accurate, real-time calculations (time scale of approximately one second) are not yet possible on desktop computers, even with fast-running, nodal kinetics codes. A semi-experimental, nodal synthesis method which avoids the solution of the time-dependent, neutron diffusion equations is described. The essential idea of this method is to approximate instantaneous nodal group-fluxes by a linear combination of K, precomputed, three-dimensional, static expansion-functions. The time-dependent coefficients of the combination are found from the requirement that the reconstructed flux-distribution agree in a least-squares sense with the readings of J (≥K) fixed, prompt-responding neutron-detectors. Possible numerical difficulties with the least-squares solution of the ill-conditioned, J-by-K system of equations are brought under complete control by the use of a singular-value-decomposition technique. This procedure amounts to the rearrangement of the original, linear combination of K expansion functions into an equivalent more convenient, linear combination of R (≤K) orthogonalized ``modes`` of decreasing magnitude. Exceedingly small modes are zeroed to eliminate any risk of roundoff-error amplification, and to assure consistency with the limited accuracy of the data. Additional modes are zeroed when it is desirable to limit the sensitivity of the results to measurement noise.

  17. A semi-experimental nodal synthesis method for the on-line reconstruction of three-dimensional neutron flux-shapes and reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Jacqmin, R.P.

    1991-12-10

    The safety and optimal performance of large, commercial, light-water reactors require the knowledge at all time of the neutron-flux distribution in the core. In principle, this information can be obtained by solving the time-dependent neutron diffusion equations. However, this approach is complicated and very expensive. Sufficiently accurate, real-time calculations (time scale of approximately one second) are not yet possible on desktop computers, even with fast-running, nodal kinetics codes. A semi-experimental, nodal synthesis method which avoids the solution of the time-dependent, neutron diffusion equations is described. The essential idea of this method is to approximate instantaneous nodal group-fluxes by a linear combination of K, precomputed, three-dimensional, static expansion-functions. The time-dependent coefficients of the combination are found from the requirement that the reconstructed flux-distribution agree in a least-squares sense with the readings of J ({ge}K) fixed, prompt-responding neutron-detectors. Possible numerical difficulties with the least-squares solution of the ill-conditioned, J-by-K system of equations are brought under complete control by the use of a singular-value-decomposition technique. This procedure amounts to the rearrangement of the original, linear combination of K expansion functions into an equivalent more convenient, linear combination of R ({le}K) orthogonalized modes'' of decreasing magnitude. Exceedingly small modes are zeroed to eliminate any risk of roundoff-error amplification, and to assure consistency with the limited accuracy of the data. Additional modes are zeroed when it is desirable to limit the sensitivity of the results to measurement noise.

  18. Reactive Imprint Lithography: Combined Topographical Patterning and Chemical Surface Functionalization of Polystyrene-block-poly(tert-butyl acrylate) Films

    NARCIS (Netherlands)

    Duvigneau, Joost; Cornelissen, Stijn; Bardajı´Valls, Nuria; Schönherr, Holger; Vancso, Gyula J.

    2009-01-01

    Here, reactive imprint lithography (RIL) is introduced as a new, one-step lithographic tool for the fabrication of large-area topographically patterned, chemically activated polymer platforms. Films of polystyrene-block-poly(tert-butyl acrylate) (PS-b-PtBA) are imprinted with PDMS master stamps at

  19. Green Synthesis, Characterization and Application of Proanthocyanidins-Functionalized Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Linhai Biao

    2018-01-01

    Full Text Available Green synthesis of gold nanoparticles using plant extracts is one of the more promising approaches for obtaining environmentally friendly nanomaterials for biological applications and environmental remediation. In this study, proanthocyanidins-functionalized gold nanoparticles were synthesized via a hydrothermal method. The obtained gold nanoparticles were characterized by ultraviolet and visible spectrophotometry (UV-Vis, Fourier transform infrared spectroscopy (FTIR, transmission electron microscopy (TEM and X-ray diffraction (XRD measurements. UV-Vis and FTIR results indicated that the obtained products were mainly spherical in shape, and that the phenolic hydroxyl of proanthocyanidins had strong interactions with the gold surface. TEM and XRD determination revealed that the synthesized gold nanoparticles had a highly crystalline structure and good monodispersity. The application of proanthocyanidins-functionalized gold nanoparticles for the removal of dyes and heavy metal ions Ni2+, Cu2+, Cd2+ and Pb2+ in an aqueous solution was investigated. The primary results indicate that proanthocyanidins-functionalized gold nanoparticles had high removal rates for the heavy metal ions and dye, which implies that they have potential applications as a new kind of adsorbent for the removal of contaminants in aqueous solution.

  20. Affinity composite cryogel discs functionalized with Reactive Red 120 and Green HE 4BD dye ligands: Application on the separation of human immunoglobulin G subclasses

    Energy Technology Data Exchange (ETDEWEB)

    Huseynli, Sabina; Baydemir, Gözde; Sarı, Esma [Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara (Turkey); Elkak, Assem [Laboraory of “Valorisation des Ressources Naturelles et Produits de Santé (VRNPS)”, Doctoral School of Sciences and Technology, Lebanese University, Rafic Hariri University Campus, Hadath (Lebanon); Denizli, Adil, E-mail: denizli@hacettepe.edu.tr [Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara (Turkey)

    2015-01-01

    Naturally produced by the human immune system, immunoglobulin nowadays is widely used for in vivo and in vitro purposes. The increased needs for pure immunoglobulin have prompted researchers to find new immunoglobulin chromatographic separation processes. Cryogels as chromatographic adsorbents, congregate several mechanical features including good compatibility, large pore structure, flexibility, short diffusion pathway and stability. These different characteristics make them a good alternative to conventional chromatographic methods and allowing their potential use in separation technology. In the present study, two sets of poly(2-hydroxyethyl methacrylate) (PHEMA) based beads were prepared and functionalized with Reactive Red 120 (RR) and Reactive Green HE 4BD (RG) dyes, and then embedded into supermacroporous cryogels. The morphology, physical and chemical features of the prepared bead embedded composite cryogel discs (CCDs) were performed by scanning electron microscopy (SEM), swelling test, elemental analysis and Fourier transform infrared spectroscopy (FTIR). The results showed that the embedded composite cryogel discs have a specific surface area of 192.0 m{sup 2}/g with maximum adsorption capacity of HIgG 239.8 mg/g for the RR functionalized CCD and 170 mg/g for RG functionalized CCD columns, both at pH 6.2. - Highlights: • Dye attached composite cryogel discs were prepared to separate HIgG subclasses. • Composite cryogels characterized by swelling, FTIR, SEM and elemental analysis. • Reactive Green HE 4B and Reactive Red 120 dyes were used as the affinity ligand. • HIgG and subclasses were separate from both aqueous solution and human plasma.

  1. Affinity composite cryogel discs functionalized with Reactive Red 120 and Green HE 4BD dye ligands: Application on the separation of human immunoglobulin G subclasses

    International Nuclear Information System (INIS)

    Huseynli, Sabina; Baydemir, Gözde; Sarı, Esma; Elkak, Assem; Denizli, Adil

    2015-01-01

    Naturally produced by the human immune system, immunoglobulin nowadays is widely used for in vivo and in vitro purposes. The increased needs for pure immunoglobulin have prompted researchers to find new immunoglobulin chromatographic separation processes. Cryogels as chromatographic adsorbents, congregate several mechanical features including good compatibility, large pore structure, flexibility, short diffusion pathway and stability. These different characteristics make them a good alternative to conventional chromatographic methods and allowing their potential use in separation technology. In the present study, two sets of poly(2-hydroxyethyl methacrylate) (PHEMA) based beads were prepared and functionalized with Reactive Red 120 (RR) and Reactive Green HE 4BD (RG) dyes, and then embedded into supermacroporous cryogels. The morphology, physical and chemical features of the prepared bead embedded composite cryogel discs (CCDs) were performed by scanning electron microscopy (SEM), swelling test, elemental analysis and Fourier transform infrared spectroscopy (FTIR). The results showed that the embedded composite cryogel discs have a specific surface area of 192.0 m 2 /g with maximum adsorption capacity of HIgG 239.8 mg/g for the RR functionalized CCD and 170 mg/g for RG functionalized CCD columns, both at pH 6.2. - Highlights: • Dye attached composite cryogel discs were prepared to separate HIgG subclasses. • Composite cryogels characterized by swelling, FTIR, SEM and elemental analysis. • Reactive Green HE 4B and Reactive Red 120 dyes were used as the affinity ligand. • HIgG and subclasses were separate from both aqueous solution and human plasma

  2. Comparison of in vivo postexercise phosphocreatine recovery and resting ATP synthesis flux for the assessment of skeletal muscle mitochondrial function

    NARCIS (Netherlands)

    Broek, van den N.M.A.; Ciapaite, J.; Nicolay, K.; Prompers, J.J.

    2010-01-01

    31P magnetic resonance spectroscopy (MRS) has been used to assess skeletal muscle mitochondrial function in vivo by measuring 1) phosphocreatine (PCr) recovery after exercise or 2) resting ATP synthesis flux with saturation transfer (ST). In this study, we compared both parameters in a rat model of

  3. Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ben H.; Mohr, Claudia; Lopez-Hilfiker, Felipe D.; Lutz, Anna; Hallquist, Mattias; Lee, Lance; Romer, Paul; Cohen, Ronald C.; Iyer, Siddharth; Kurtén, Theo; Hu, Weiwei; Day, Douglas A.; Campuzano-Jost, Pedro; Jimenez, Jose L.; Xu, Lu; Ng, Nga Lee; Guo, Hongyu; Weber, Rodney J.; Wild, Robert J.; Brown, Steven S.; Koss, Abigail; de Gouw, Joost; Olson, Kevin; Goldstein, Allen H.; Seco, Roger; Kim, Saewung; McAvey, Kevin; Shepson, Paul B.; Starn, Tim; Baumann, Karsten; Edgerton, Eric S.; Liu, Jiumeng; Shilling, John E.; Miller, David O.; Brune, William; Schobesberger, Siegfried; D' Ambro, Emma L.; Thornton, Joel A.

    2016-01-25

    Organic nitrates (ON = RONO2 + RO2NO2) are an important reservoir, if not sink, of atmospheric nitrogen oxides (NOx=NO+NO2). ON formed from isoprene oxidation alone are responsible for the export of 8 to 30% of anthropogenic NOx out of the U.S. continental boundary layer [Horowitz et al., 1998; Liang et al., 1998]. Regional NOx budgets and tropospheric ozone (O3) production, are therefore particularly sensitive to uncertainties in the yields and fates of ON [Beaver et al., 2012; Browne et al., 2013]. The yields implemented in modeling studies are determined from laboratory experiments in which only a few of the first generation gaseous ON or the total gas and particle-phase ON have been quantified [Perring et al., 2013 and references therein], while production of highly functionalized ON capable of strongly partitioning to the particle-phase have been inferred [Farmer et al., 2010; Ng et al., 2007; Nguyen et al., 2011; Perraud et al., 2012; Rollins et al., 2012], or directly measured [Ehn et al., 2014]. Addition of a nitrate (–ONO2) functional group to a hydrocarbon is estimated to lower the equilibrium saturation vapor pressure by 2.5 to 3 orders of magnitude [e.g. Capouet and Muller, 2006]. Thus, organic nitrate formation can potentially enhance particle-phase partitioning of hydrocarbons in regions with elevated levels of nitrogen oxides, contributing to secondary organic aerosol (SOA) formation [Ng et al., 2007]. There has, however, been no high time-resolved measurements of speciated ON in the particle-phase. We utilize a newly developed high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) using Iodide-adduct ionization [B H Lee et al., 2014a] with a filter inlet for gases and aerosols (FIGAERO) [Lopez-Hilfiker et al., 2014] that allows alternating in situ measurement of the molecular composition of gas and particle phases. We present observations of speciated ON in the particle-phase obtained during the 2013 Southern Oxidant

  4. Synthesis

    International Nuclear Information System (INIS)

    Voinis, Sylvie; Lalieux, Philippe; Thury, Marc; Horseman, Steve

    2001-01-01

    To prevent radioactive contamination and undue exposure to the public, it is required that long-lived and/or high-level radioactive wastes be isolated from the human environment for a very long period of time. For the purpose of isolating such wastes, the basic concept of deep disposal is to place packaged waste in a geological formation such as clay. One of main functions of the geological formation is to isolate waste from moving groundwater, thus minimising lixiviation of waste and advective radionuclide transport and, hence the amount of radionuclides that could reach the human environment. Improving our understanding of processes that might affect the containment properties of the geological barrier can reduce uncertainties about the performance of the repository. In particular, during the stepwise development of the research programme, it is important to clarify if fractures that might be induced by the excavation of the underground facilities might have a significant impact on the radiological safety of a repository in a host formation such as clay. In this framework, the self- healing properties of argillaceous media - often quoted as one of the advantages of such host formations - play a major role, notably in reducing the long-term impacts of such induced fracturing. Twenty-six participants representing several national waste management organisations, regulatory authorities, government agencies and the academic community from the OECD member countries and the EC took part in the Topical Session. The session was mainly aimed at exchanging information on: The general point of view on self-healing from geomechanical and geochemical experts; The approaches that are or will be followed by the various organisations in order to deal with the self-healing. The geological settings covered in the presentations related to the whole range of argillaceous media relevant to the disposal of radioactive wastes, including poorly indurated clays and indurated mud

  5. Synthesis of backbone P-functionalized imidazol-2-ylidene complexes: en route to novel functional ionic liquids.

    Science.gov (United States)

    Majhi, Paresh Kumar; Sauerbrey, Susanne; Schnakenburg, Gregor; Arduengo, Anthony J; Streubel, Rainer

    2012-10-01

    1-Alkyl-3-methyl-4-diphenylphosphoryl-imidazolium hydrogensulfate (4a,b) (a: R(1) = R(2) = Me; b: R(1) = (i)Pr, R(2) = Me) and 1-alkyl-3-methyl-4,5-bis(diphenylphosphoryl)imidazolium hydrogensulfate (6a,c) (c: R(1) = (n)Bu, R(2) = Me) were obtained selectively and in good yields by oxidative desulfurization of 1-alkyl-3-methyl-4-diphenylphosphino-imidazole-2-thiones (2a,b) and 1-n-butyl-3-methyl-4,5-bis(diphenylphosphoryl)imidazole-2-thione (3c) or 1,3-dimethyl-4-diphenylthiophosphoryl-5-diphenylphosphino-imidazole-2-thione (5a), respectively, with hydrogen peroxide. Synthesis of phosphoryl functionalized imidazol-2-ylidene complexes of group VI metal pentacarbonyls (7a-9a) and (10b-12b) and bis(phosphoryl) functionalized imidazol-2-ylidene complexes of group VI metal pentacarbonyls (13c-15c) and (16a) with low steric demand (methyl, isopropyl, n-butyl) at both N-centers was achieved through deprotonation of imidazolium salts (4a,b) and (6a,c), respectively,-having HSO(4)(-) as a counterion-with potassium tert-butoxide followed by rapid addition of metal pentacarbonyl acetonitrile complexes [M(CO)(5)(CH(3)CN)] (M = Cr, Mo, W). The products were unambiguously characterized by elemental analyses, spectroscopic and spectrometric methods, and in addition, by single-crystal X-ray structure studies in the cases of 4b, 8a, 15c, and 16a; the latter two reveal imidazole ring bond distance alternation in contrast to 8a.

  6. Synthesis, spectroscopic analyses (FT-IR and NMR), vibrational study, chemical reactivity and molecular docking study and anti-tubercular activity of condensed oxadiazole and pyrazine derivatives

    Science.gov (United States)

    El-Azab, Adel S.; Mary, Y. Sheena; Abdel-Aziz, Alaa A. M.; Miniyar, Pankaj B.; Armaković, Stevan; Armaković, Sanja J.

    2018-03-01

    The Fourier transform infrared spectra of the compounds 2-(5-phenyl-1,3,4-oxadiazol-2-yl)pyrazine (PHOXPY), 2-(5-styryl-1,3,4-oxadiazol-2-yl)pyrazine (STOXPY) and 2-(5-(furan-2-yl)-1,3,4-oxadiazol-2-yl)pyrazine (FUOXPY) have been recorded and the wavenumbers are computed at the density functional theory level. The assignments of all the fundamental bands of each molecule are made using potential energy distribution. The computed values of dipole moment, polarizability and hyperpolarizability values indicate that the title molecules exhibit NLO properties. The HOMO and LUMO energies demonstrate the chemical stability of the molecules and NBO analysis is made to study the stability of molecules arising from hyper conjugative interactions and charge delocalization. Detailed computational analysis and spectroscopic characterization has been performed for three newly synthesized oxadiazole derivatives. Obtained computational and experimental results have been mutually compared in order to understand the influence of structural parts specific for each derivative. From the MIC determination, MTb H37Rv was found to be sensitive to compounds, PHOXPY, STOXPY and FUOXPY. The results obtained from anti-TB activity are more promising as the compounds were found to be more potent than reference standards, streptomycin and pyrazinamide. Efforts were made in order to predict both global and local reactive properties of the title oxadiazole derivatives, including their sensitivity towards autoxidation mechanism and influence of water. The results obtained from anti-TB activity are more promising for the title compounds. Interaction with representative protein Pterindeaminase inhibitor asricin A was also investigated using the molecular docking procedure. The docked ligands form stable complexes with the receptor ricin A and the docking results suggest that these compounds can be developed as new anti-cancer drugs.

  7. Reactive template synthesis of nitrogen-doped graphene-like carbon nanosheets derived from hydroxypropyl methylcellulose and dicyandiamide as efficient oxygen reduction electrocatalysts

    Science.gov (United States)

    Hu, Chun; Zhou, Yao; Ma, Ruguang; Liu, Qian; Wang, Jiacheng

    2017-03-01

    Oxygen reduction reaction (ORR) plays a dominant role in proton exchange membrane fuel cells (PEMFCs). Thus, the design and preparation of efficient ORR electrocatalysts is of high importance. In this work, we successfully prepared a series of nitrogen-doped graphene-like carbon nanosheets (NCNSs) with large pore volumes of up to 1.244 cm3 g-1 and high level of N dopants (5.3-6.8 at%) via a one-step, in-situ reactive template strategy by co-pyrolysis of hydroxypropyl methylcellulose (HPMC) and dicyandiamide (DICY) as the precursors at 1000 °C. The DICY-derived graphitic carbon nitride (g-C3N4) nanosheets could act as the hard template for the confined growth of 2D carbon nanosheets, and the further increase in the pyrolysis temperature could directly remove off the g-C3N4 template by complete decomposition and simultaneously dope N atoms within the carbon nanosheets. The pyridinic and graphitic nitrogen groups are dominant among various N functional groups in the NCNSs. The NCNS_1:10 prepared with the HPMC/DICY mass ratio of 1/10 can be used as the metal-free ORR electrocatalysts with optimal activity (onset potential: -0.1 V vs. SCE; limiting current density: 4.8 mA cm-2) in O2-saturated 0.1 M KOH electrolyte among the NCNSs. Moreover, the NCNS_1:10 demonstrates a dominant four-electron reduction process, as well as excellent long-term operation stability and outstanding methanol crossover resistance. The excellent ORR activity of the NCNS_1:10 should be mainly owing to high contents of pyridinic and graphitic N dopants, large pore volume, hierarchical structures, and microstructural defects.

  8. Enzymatic Synthesis of Amino Acids Endcapped Polycaprolactone: A Green Route Towards Functional Polyesters.

    Science.gov (United States)

    Duchiron, Stéphane W; Pollet, Eric; Givry, Sébastien; Avérous, Luc

    2018-01-30

    ε-caprolactone (CL) has been enzymatically polymerized using α-amino acids based on sulfur (methionine and cysteine) as (co-)initiators and immobilized lipase B of Candida antarctica (CALB) as biocatalyst. In-depth characterizations allowed determining the corresponding involved mechanisms and the polymers thermal properties. Two synthetic strategies were tested, a first one with direct polymerization of CL with the native amino acids and a second one involving the use of an amino acid with protected functional groups. The first route showed that mainly polycaprolactone (PCL) homopolymer could be obtained and highlighted the lack of reactivity of the unmodified amino acids due to poor solubility and affinity with the lipase active site. The second strategy based on protected cysteine showed higher monomer conversion, with the amino acids acting as (co-)initiators, but their insertion along the PCL chains remained limited to chain endcapping. These results thus showed the possibility to synthesize enzymatically polycaprolactone-based chains bearing amino acids units. Such cysteine endcapped PCL materials could then find application in the biomedical field. Indeed, subsequent functionalization of these polyesters with drugs or bioactive molecules can be obtained, by derivatization of the amino acids, after removal of the protecting group.

  9. Enzymatic Synthesis of Amino Acids Endcapped Polycaprolactone: A Green Route Towards Functional Polyesters

    Directory of Open Access Journals (Sweden)

    Stéphane W. Duchiron

    2018-01-01

    Full Text Available ε-caprolactone (CL has been enzymatically polymerized using α-amino acids based on sulfur (methionine and cysteine as (co-initiators and immobilized lipase B of Candida antarctica (CALB as biocatalyst. In-depth characterizations allowed determining the corresponding involved mechanisms and the polymers thermal properties. Two synthetic strategies were tested, a first one with direct polymerization of CL with the native amino acids and a second one involving the use of an amino acid with protected functional groups. The first route showed that mainly polycaprolactone (PCL homopolymer could be obtained and highlighted the lack of reactivity of the unmodified amino acids due to poor solubility and affinity with the lipase active site. The second strategy based on protected cysteine showed higher monomer conversion, with the amino acids acting as (co-initiators, but their insertion along the PCL chains remained limited to chain endcapping. These results thus showed the possibility to synthesize enzymatically polycaprolactone-based chains bearing amino acids units. Such cysteine endcapped PCL materials could then find application in the biomedical field. Indeed, subsequent functionalization of these polyesters with drugs or bioactive molecules can be obtained, by derivatization of the amino acids, after removal of the protecting group.

  10. Electrophilic Cleavage and Functionalization of Polyisobutylenes Bearing Unsaturations in the Backbone and Synthesis of Polymers for this Process

    Science.gov (United States)

    Campbell, Christopher Garrett

    Polyisobutylene is a polymer of high commercial and academic interest due to its low cost of synthesis, high gas barrier properties, and high chemical and oxidative stability. Polyisobutylene (PIB) can only be synthesized by the cationic polymerization of isobutylene (IB). Commercial processes are currently only capable of producing monofunctional PIB or copolymers thereof. The living cationic polymerization of isobutylene is capable of producing difunctional telechelic PIB, but at the expense of difficultly or expensively synthesized initiators. Thus there exists a need for new synthetic routes for multifunctional PIBs, which can be adopted on a commercial scale. In the first project, we demonstrated a new reaction, which is a subset of the Friedel Crafts alkylation reaction, in which the alkylating carbocation undergoes a cleavage reaction prior to reaction with the aromatic substrate. This reaction was discovered by the observation that when a PIB containing a large amount of coupled fraction was subjected to a mixture of protic and Lewis acids (HCl/TiCl4) in the presence of an alkoxybenzene compound, the coupled fraction was quantitatively converted to its constituent monofunctional chains, which became functionalized by the alkoxybenzene. In the second project, a commercial polymer, poly(isobutylene- co-isoprene) (butyl rubber) was used as a substrate upon which the aforementioned electrophilic cleavage and functionalization reaction was performed. The goal of this project was to degrade a high molecular weight, main-chain olefin-containing copolymer of isobutylene into low molecular weight difunctional telechelic polyisobutylenes. This general process, though not necessarily proceeding by the aforementioned novel chemical reaction, has been described in the literature as "constructive degradation." Though we were unable to synthesize truly telechelic polyisobutylenes by this method, we were able to demonstrate this method as a viable route to low molecular

  11. Synthesis and microwave absorbing characteristics of functionally graded carbonyl iron/polyurethane composites

    Directory of Open Access Journals (Sweden)

    R. B. Yang

    2016-05-01

    Full Text Available Radar absorbing materials (RAMs also known as microwave absorbers, which can absorb and dissipate incident electromagnetic wave, are widely used in the fields of radar-cross section reduction, electromagnetic interference (EMI reduction and human health protection. In this study, the synthesis of functionally graded material (FGM (CI/Polyurethane composites, which is fabricated with semi-sequentially varied composition along the thickness, is implemented with a genetic algorithm (GA to optimize the microwave absorption efficiency and bandwidth of FGM. For impedance matching and broad-band design, the original 8-layered FGM was obtained by the GA method to calculate the thickness of each layer for a sequential stacking of FGM from 20, 30, 40, 50, 60, 65, 70 and 75 wt% of CI fillers. The reflection loss of the original 8-layered FGM below –10 dB can be obtained in the frequency range of 5.12∼18 GHz with a total thickness of 9.66 mm. Further optimization reduces the number of the layers and the stacking sequence of the optimized 4-layered FGM is 20, 30, 65, 75 wt% with thickness of 0.8, 1.6, 0.6 and 1.0 mm, respectively. The synthesis and measurement of the optimized 4-layered FGM with a thickness of 4 mm reveal a minimum reflection loss of –25.2 dB at 6.64 GHz and its bandwidth below – 10 dB is larger than 12.8 GHz.

  12. Only Acyl Carrier Protein 1 (AcpP1 Functions in Pseudomonas aeruginosa Fatty Acid Synthesis

    Directory of Open Access Journals (Sweden)

    Jin-Cheng Ma

    2017-11-01

    Full Text Available The genome of Pseudomonas aeruginosa contains three open reading frames, PA2966, PA1869, and PA3334, which encode putative acyl carrier proteins, AcpP1, AcpP2, and AcpP3, respectively. In this study, we found that, although these apo-ACPs were successfully phosphopantetheinylated by P. aeruginosa phosphopantetheinyl transferase (PcpS and all holo-forms of these proteins could be acylated by Vibrio harveyi acyl-ACP synthetase (AasS, only AcpP1 could be used as a substrate for the synthesis of fatty acids, catalyzed by P. aeruginosa cell free extracts in vitro, and only acpP1 gene could restore growth in the Escherichia coliacpP mutant strain CY1877. And P. aeruginosaacpP1 could not be deleted, while disruption of acpP2 or acpP3 in the P. aeruginosa genome allowed mutant strains to grow as well as the wild type strain. These findings confirmed that only P. aeruginosa AcpP1 functions in fatty acid biosynthesis, and that acpP2 and acpP3 do not play roles in the fatty acid synthetic pathway. Moreover, disruption of acpP2 and acpP3 did not affect the ability of P. aeruginosa to produce N-acylhomoserine lactones (AHL, but replacement of P. aeruginosaacpP1 with E. coliacpP caused P. aeruginosa to reduce the production of AHL molecules, which indicated that neither P. aeruginosa AcpP2 nor AcpP3 can act as a substrate for synthesis of AHL molecules in vivo. Furthermore, replacement of acpP1 with E. coliacpP reduced the ability of P. aeruginosa to produce some exo-products and abolished swarming motility in P. aeruginosa.

  13. Design, Synthesis and Characterization of Functional Metal-Organic Framework Materials

    KAUST Repository

    Alamer, Badriah

    2015-06-01

    Over the past few decades, vast majority of industrial and academic research throughout the world has witnessed the emergence of materials that can serve as ideal candidates for potential utility in desired applications, and these materials are known as Metal Organic Framework (MOFs). This exceptional new family of porous materials is fabricated by linkage of metal ions or clusters and organic linkers via strong bonds. MOFs have been awarded with remarkable interest and widely studied due to their inherent structural methodology (e.g. use of various metals, expanded library of organic building blocks with different geometry and functionality particularly frameworks designed from carboxylate organic linkers) and unquestionably unique structural and chemical features for many practical applications. (i.e. gas storage/separation, catalysis, drug delivery etc). Simply, metal organic frameworks epitomize the beauty of porous chemical structures. From a design perspective, the introduction of the Molecular Building Block (MBB) approach is actively being pursued pathway by researchers toward the construction of MOFs by employing inorganic building blocks and organic linkers and taking advantage of not only their multiple coordination modes and geometries but also the way in which they are reticulated to generate final framework. In this thesis, research studies will be directed toward (i) the investigation of the relationship between experimental parameters and synthesis of well-known fcu –MOF, (ii) rational design and synthesis of new rare earth (RE) based MOFs, (ii) isoreticular materials based on particular MBB ([M3O(RCO2)6]), M= p-and d-block metals, and (iv) zeolite- like metal organic framework assembled from single-metal ion based MBB ([MN2(CO2)4]) via 2-, 3-,and 4-connected organic linkers. Consequently, the porosity, chemical and thermal stability, and gas sorption properties will be evaluated and detailed.

  14. C-H functionalization directed by transformable nitrogen heterocycles: synthesis of ortho-oxygenated arylnaphthalenes from arylphthalazines.

    Science.gov (United States)

    Rastogi, Shiva K; Medellin, Derek C; Kornienko, Alexander

    2014-01-21

    Two protocols for oxygenation of aromatic C-H bonds ortho-positioned to the phthalazine ring were developed. The transannulation of the phthalazine ring to a naphthalene moiety by an Inverse Electron Demand Diels-Alder (IEDDA) reaction led to the synthesis of naphtho[2,1-c]chromenes, 1-(ortho-hydroxyaryl)naphthalenes and 6,7-dihydrobenzo[b]naphtho[1,2-d]oxepine. This new strategy based on the utilization of transformable nitrogen heterocycles in C-H functionalization chemistry can be potentially applicable to the synthesis of a broad range of biaryl compounds.

  15. Altered Homeostatic Functions in Reactive Astrocytes and Their Potential as a Therapeutic Target After Brain Ischemic Injury

    Czech Academy of Sciences Publication Activity Database

    Pivoňková, Helena; Anděrová, Miroslava

    2017-01-01

    Roč. 23, č. 33 (2017), s. 5056-5074 ISSN 1381-6128 R&D Projects: GA ČR(CZ) GA15-02760S; GA ČR(CZ) GA16-10214S Institutional support: RVO:68378041 Keywords : reactive astrocytes * potassium buffering * glutamate homeostasis * ion channels Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 2.611, year: 2016

  16. Functional and stability orientation synthesis of materials and structures in aprotic Li-O2 batteries.

    Science.gov (United States)

    Zhang, Peng; Zhao, Yong; Zhang, Xinbo

    2018-04-23

    The lithium-O2 battery is one of most promising energy storage and conversion devices due to its ultrahigh theoretical energy density and hence has broad application potential in electrical vehicles and stationary power systems. However, the present Li-O2 battery suffers from a series of challenges for its practical application, such as its low capacity and rate capability, poor round-trip efficiency and short cycle life. These challenges mainly arise from the sluggish and unsustainable discharge and charge reactions at lithium and oxygen electrodes, which determine the performance and durability of a battery. In this review, we first provide insights on the present understanding of the discharge/charge mechanism of such a battery and follow up with establishing a correlation between the specific materials/structures of the battery modules and their functionality/stability within the recent progress in electrodes, electrolytes and redox mediators. Considerable emphasis is paid to the importance of functional orientation design and the synthesis of materials/structures towards accelerating and sustaining the electrode reactions of Li-O2 batteries. Moreover, the future directions and perspectives of rationally constructed material and surface/interface structures, as well as their optimal combinations are proposed for enhancement of the electrode reaction rate and sustainability, and consequently for a better performance and durability of such batteries.

  17. Synthesis of Carbon Dots with Multiple Color Emission by Controlled Graphitization and Surface Functionalization.

    Science.gov (United States)

    Miao, Xiang; Qu, Dan; Yang, Dongxue; Nie, Bing; Zhao, Yikang; Fan, Hongyou; Sun, Zaicheng

    2018-01-01

    Multiple-color-emissive carbon dots (CDots) have potential applications in various fields such as bioimaging, light-emitting devices, and photocatalysis. The majority of the current CDots to date exhibit excitation-wavelength-dependent emissions with their maximum emission limited at the blue-light region. Here, a synthesis of multiple-color-emission CDots by controlled graphitization and surface function is reported. The CDots are synthesized through controlled thermal pyrolysis of citric acid and urea. By regulating the thermal-pyrolysis temperature and ratio of reactants, the maximum emission of the resulting CDots gradually shifts from blue to red light, covering the entire light spectrum. Specifically, the emission position of the CDots can be tuned from 430 to 630 nm through controlling the extent of graphitization and the amount of surface functional groups, COOH. The relative photoluminescence quantum yields of the CDots with blue, green, and red emission reach up to 52.6%, 35.1%, and 12.9%, respectively. Furthermore, it is demonstrated that the CDots can be uniformly dispersed into epoxy resins and be fabricated as transparent CDots/epoxy composites for multiple-color- and white-light-emitting devices. This research opens a door for developing low-cost CDots as alternative phosphors for light-emitting devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Functionalized polypyrrole film: synthesis, characterization, and potential applications in chemical and biological sensors.

    Science.gov (United States)

    Dong, Hua; Cao, Xiaodong; Li, Chang Ming

    2009-07-01

    In this paper, we report the synthesis of a carboxyl-functionalized polypyrrole derivative, a poly(pyrrole-N-propanoic acid) (PPPA) film, by electrochemical polymerization, and the investigation of its basic properties via traditional characterization techniques such as confocal-Raman, FTIR, SEM, AFM, UV-vis, fluorescence microscopy, and contact-angle measurements. The experimental data show that the as-prepared PPPA film exhibits a hydrophilic nanoporous structure, abundant -COOH functional groups in the polymer backbone, and high fluorescent emission under laser excitation. On the basis of these unique properties, further experiments were conducted to demonstrate three potential applications of the PPPA film in chemical and biological sensors: a permeable and permselective membrane, a membrane with specific recognition sites for biomolecule immobilization, and a fluorescent conjugated polymer for amplification of fluorescence quenching. Specifically, the permeability and permselectivity of ion species through the PPPA film are detected by means of rotating-disk-electrode voltammetry; the specific recognition sites on the film surface are confirmed with protein immobilization, and the amplification of fluorescence quenching is measured by the addition of a quenching agent with fluorescence microscopy. The results are in good agreement with our expectations.

  19. The study of the functional state of the endothelium via a complex of markers with reactive hyperemia

    Directory of Open Access Journals (Sweden)

    Berezhniy V.

    2016-03-01

    Full Text Available Diagnosis of endothelial dysfunction is a key point in the prevention and treatment of cardiovascular diseases. In scientific research the study of the state of the endothelium used test with reactive hyperemia of brachial artery wich present as the value of endothelium dependent and independent artery dilatation. However, the disadvantage of this marker is ignoring the size of arteries, well know that small arteries has a greater degree of dilation more than big arterias, this fact making difficult to compare results between different patients. The aim of our study was to examine the state of endothelium using a complex of markers, compare them informative in children with JRA who are at risk for the development of endothelial dysfunction. Materials and Methods. The study was included 40 children with juvenile rheumatoid arthritis who were treated at the department of children's cardiorheumatology Kyiv City Children's Hospital #1 and Kiev Regional Hospital m. Boyarka. Results. The study found a development of endothelial dysfunction changes in endothelium dependent vasodilation, reactive hyperemia and coefficient of vasodilation. Simultaneous marked change of endothelium vasodilation of the brachial artery and coefficient of vasodilatation. There were no pathological changes in endothelial shear stress in patients compared with healthy children. Conclusions. Evaluate the state of the endothelium is necessary with the help of a set of indicators (RH, EDVD, VC that will help to avoid diagnostic mistakes during the test with the reactive hyperemia.

  20. Relative ultraviolet radiation sensitivity of certain functions of polyoma virus. Stimulation of cell DNA synthesis

    International Nuclear Information System (INIS)

    Barra, Yves; Imbert, Jean; Planche, Jacqueline; Meyer, Georges.

    1977-01-01

    Peritoneal Mouse macrophages were used to study the stimulation of cell DNA synthesis by polyoma virus. Using ultraviolet-irradiated polyoma virus, it was possible to show a difference between the inactivation of infectivity and of induction of DNA synthesis. By statistical analysis of these two phenomena it was found that 39% of the viral genome is necessary for the induction of cell DNA synthesis [fr

  1. Synthesis and characterization of calcium hydroxy and fluoroapatite functionalized with methyl phosphonic dichloride

    Energy Technology Data Exchange (ETDEWEB)

    Agougui, Hassen; Aissa, Abdallah [Laboratoire de Physico-Chimie des Materiaux, Faculte des Sciences de Monastir, 5019 Monastir (Tunisia); Debbabi, Mongi, E-mail: m.debbabi@yahoo.fr [Laboratoire de Physico-Chimie des Materiaux, Faculte des Sciences de Monastir, 5019 Monastir (Tunisia)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Surface reactivity of apatites toward methyl phosphonic dichloride is tested. Black-Right-Pointing-Pointer Chemical analysis shows that hydroxyapatite is more reactive. Black-Right-Pointing-Pointer NMR spectra show the formation of Ca-O-P{sub org} and P{sub inorg}-O-P{sub org} bonds. Black-Right-Pointing-Pointer AFM indicated that the texture surface was changed by grafting. - Abstract: The nature of apatite-organic molecule interaction was the subject of many investigations. Grafting the organic molecule onto the inorganic support may precede through either formation of covalent bonds or ionic interaction between superficial hydroxyl on the apatite surface and organic functions. The hybrid materials obtained by functionalization of apatite surfaces with phosphonate moieties are of interest for their potential applications such in catalysis, chromatography and biomedical domain. In this scope, calcium hydroxyl and fluoroapatite (CaHAp and CaFAp) were prepared in the presence of the methyl phosphonic dichloride (MPO), by contact method in organic solvent at 25 Degree-Sign C for 2 days. The products are rigorously characterized by chemical analysis, infrared (IR), MAS-NMR spectroscopies, powder X-ray diffraction (XRD), atomic force microscopy (AFM) and specific surface area (SSA). The X-ray powder analysis showed that the crystallinity was sensibly affected by the presence of organic moieties. The IR spectroscopy showed new vibration modes appearing related to phosphonate groups essentially at 2930, 1315, 945, 764 and 514 cm{sup -1}. The {sup 31}P MAS NMR spectrum for hydroxy and fluoroapatite exhibits a single signal at 2.8 ppm. After reaction with (MPO) the spectra show the presence of new signals, assigned to the formation of organic-inorganic bond between the superficial hydroxyl groups of the apatite ({identical_to}CaOH) and ({identical_to}POH) and methyl phosphonic dichloride. The SSA decreases with increasing

  2. Functionalized derivatives of 1,4-dimethylnaphthalene as precursors for biomedical applications: synthesis, structures, spectroscopy and photochemical activation in the presence of dioxygen.

    Science.gov (United States)

    Posavec, Damir; Zabel, Manfred; Bogner, Udo; Bernhardt, Günther; Knör, Günther

    2012-09-21

    Decomposition of endoperoxide containing molecules is an attractive approach for the delayed release of singlet oxygen under mild reaction conditions. Here we describe a new method for the adaptation of the corresponding decay times by controlling the supramolecular functional structure of the surrounding matrix in the immediate vicinity of embedded singlet oxygen precursors. Thus, a significant prolongation of the lifetime of the endoperoxide species is possible by raising the energy barrier of the thermal (1)O(2)-releasing step via a restriction of the free volume of the applied carrier material. Enabling such a prolonged decomposition period is crucial for potential biomedical applications of endoperoxide containing molecules, since sufficient time for appropriate cell uptake and transport to the desired target region must be available under physiological conditions before the tissue damaging-power of the reactive oxygen species formed is completely exhausted. Two novel polyaromatic systems for the intermediate storage and transport of endoperoxides and the controlled release of singlet oxygen in the context of anticancer and antibiotic activity have been prepared and characterized. These compounds are based on functionalized derivatives of the 1,4-dimethylnaphthalene family which are readily forming metastable endoperoxide species in the presence of dioxygen, a photosensitizer molecule such as methylene blue and visible light. In contrast to previously known systems of similar photoreactivity, the endoperoxide carrying molecules have been designed with optimized molecular properties in terms of potential chemotherapeutic applications. These include modifications of polarity to improve their incorporation into various biocompatible carrier materials, the introduction of hydrogen bonding motifs to additionally influence the endoperoxide decay kinetics, and the synthesis of bifunctional derivatives to enable synergistic effects of multiple singlet oxygen binding

  3. Synthesis, secretion, function, metabolism and application of natriuretic peptides in heart failure.

    Science.gov (United States)

    Fu, Shihui; Ping, Ping; Wang, Fengqi; Luo, Leiming

    2018-01-01

    As a family of hormones with pleiotropic effects, natriuretic peptide (NP) system includes atrial NP (ANP), B-type NP (BNP), C-type NP (CNP), dendroaspis NP and urodilatin, with NP receptor-A (guanylate cyclase-A), NP receptor-B (guanylate cyclase-B) and NP receptor-C (clearance receptor). These peptides are genetically distinct, but structurally and functionally related for regulating circulatory homeostasis in vertebrates. In humans, ANP and BNP are encoded by NP precursor A (NPPA) and NPPB genes on chromosome 1, whereas CNP is encoded by NPPC on chromosome 2. NPs are synthesized and secreted through certain mechanisms by cardiomyocytes, fibroblasts, endotheliocytes, immune cells (neutrophils, T-cells and macrophages) and immature cells (embryonic stem cells, muscle satellite cells and cardiac precursor cells). They are mainly produced by cardiovascular, brain and renal tissues in response to wall stretch and other causes. NPs provide natriuresis, diuresis, vasodilation, antiproliferation, antihypertrophy, antifibrosis and other cardiometabolic protection. NPs represent body's own antihypertensive system, and provide compensatory protection to counterbalance vasoconstrictor-mitogenic-sodium retaining hormones, released by renin-angiotensin-aldosterone system (RAAS) and sympathetic nervous system (SNS). NPs play central roles in regulation of heart failure (HF), and are inactivated through not only NP receptor-C, but also neutral endopeptidase (NEP), dipeptidyl peptidase-4 and insulin degrading enzyme. Both BNP and N-terminal proBNP are useful biomarkers to not only make the diagnosis and assess the severity of HF, but also guide the therapy and predict the prognosis in patients with HF. Current NP-augmenting strategies include the synthesis of NPs or agonists to increase NP bioactivity and inhibition of NEP to reduce NP breakdown. Nesiritide has been established as an available therapy, and angiotensin receptor blocker NEP inhibitor (ARNI, LCZ696) has obtained

  4. Functionalized cyclopentadienyl rhodium(III) bipyridine complexes: synthesis, characterization, and catalytic application in hydrogenation of ketones.

    Science.gov (United States)

    Wang, Wan-Hui; Suna, Yuki; Himeda, Yuichiro; Muckerman, James T; Fujita, Etsuko

    2013-07-14

    A series of highly functionalized cyclopentadienyl rhodium(III) complexes, [Cp'Rh(bpy)Br](ClO4) (Cp' = substituted cyclopentadienyl), was synthesized from various multi-substituted cyclopentadienes (Cp'H). [Rh(cod)Cl]2 and Cp'H were firstly converted to [Cp'Rh(cod)] complexes, which were then treated with Br2 to give the rhodium(III) dibromides [Cp'RhBr2]2. The novel complexes [Cp'Rh(bpy)Br](ClO4) were obtained readily by the reaction of 2,2'-bipyridine with [Cp'RhBr2]2. These rhodium complexes [Cp'Rh(bpy)Br](ClO4) were fully characterized and utilized in the hydrogenation of cyclohexanone and acetophenone with generally high yields, but they did not exhibit the same reactivity trends for the two substrate ketones. The different activity of these complexes for the different substrates may be due to the influence of the substituents on the Cp' rings.

  5. Synthesis and characterization of new functionalized polymer-Fe3O4 nanocomposite particles

    Directory of Open Access Journals (Sweden)

    A. Bukowska

    2017-01-01

    Full Text Available In this study, Fe3O4 nanoparticles (NPs were functionalized with copolymer or terpolymer bearing glycidyl methacrylate (GMA moieties making them suitable for potential applications as drug delivery systems (DDS. For this purpose, the surface of magnetic nanoparticles was first coated with 3-(trimethoxysilyl propyl methacrylate (MPS by a silanization reaction to introduce reactive methacrylate groups onto the surface. Subsequently, monomers were grafted onto the surface of modified-MPS particles via two polymerization methods: seed emulsion (GMA, divinylbenzene, DVB, and styrene, S and distillation – precipitation (GMA and DVB. The obtained nanocomposite particles were characterized by FTIR (Fourier transform infrared spectroscopy, DR UV-Vis (diffuse reflectance ultraviolet – visible spectroscopy, TEM (transmission electron microscopy combined with EDS (energy dispersive X-ray spectroscopy analysis and DLS (dynamic light scattering. FTIR spectroscopy showed that indeed a polymer – Fe3O4@MPS composite was obtained. TEM and EDS analysis showed that the seed emulsion method resulted in nanosized, 100 nm Fe3O4@MPS core/polymer shell NPs, forming long chains. On the contrary, the distillation – precipitation method caused the formation of an inverted structure, i.e. polymer core coated by a Fe3O4@MPS shell, which exhibited a very coarse size distribution varying from several hundreds to over 2 µm.

  6. A scalable synthesis of 5,5'-dibromo-2,2'-bipyridine and its stepwise functionalization via Stille couplings.

    Science.gov (United States)

    D'Souza, Daniel M; Leigh, David A; Papmeyer, Marcus; Woltering, Steffen L

    2012-11-01

    The synthesis of 5,5'-dibromo-2,2'-bipyridine and 5-bromo-2,2'-bipyridine, useful intermediates for elaboration into more complex ligands through metal-catalyzed coupling reactions, can be efficiently conducted on a multigram scale from inexpensive starting materials. The described procedure is reliably scalable and suitable for the synthesis of tens of grams of 5,5'-dibromo-2,2'-bipyridine. 5-Bromo-2,2'-bipyridine is produced as a minor product. The 5,5'-disubstituted-2,2'-bipyridine motif has excellent coordination properties and is a versatile building block for the synthesis of functional materials (including biodiagnostics, photovoltaics and organic light-emitting diodes) and complex molecular topologies (including catenanes and trefoil and pentafoil knots). The selective stepwise functionalization of 5,5'-dibromo-2,2'-bipyridine by consecutive Stille couplings is therefore illustrated and documented in detail. The synthesis of 5,5'-dibromo-2,2'-bipyridine takes 4-5 d: 1 d to prepare the key intermediate 2,2'-bipyridine dihydrobromide, 3 d for its reaction with bromine in a steel bomb reaction vessel and 8 h to isolate and purify the final product.

  7. Functional role of zinc in poly(A) synthesis catalyzed by nuclear poly(A) polymerase

    International Nuclear Information System (INIS)

    Rose, K.M.; Allen, M.S.; Crawford, I.L.; Jacob, S.T.; Pennsylvania State Univ., Hershey; Texas Univ., Dallas; Texas Univ., Dallas

    1978-01-01

    The functional role of transition metals in poly(A) synthesis was elucidated by investigating the effect of the metal chelator o-phenanthroline on purified nuclear poly(A) polymerase. This chelator inhibited the enzyme activity in a manner competitive with respect to the polynucleotide primer concentration. o-phenanthroline was a non-competitive inhibitor with regard to ATP concentration and an 'uncompetitive' inhibitor with regard to dithiothreitor levels. The metal content of the purified enzyme preparations from rat liver and Morris hepatoma 3924A was determined using atomic absorption spectrometry. Of the transition metals measured, only zinc was present in detectable quantities, at levels less than 1 mol/mol of enzyme. Hepatoma enzyme contained 2-3 times as much zinc as the corresponding liver enzyme. Hepatoma poly(A) polymerase was also radioactively labelled in vivo by injection of tumor-bearing animals with 65 Zn. Dialysis experiments with highly purified radiolabelled poly(A) polymerase showed that the enzyme-zinc complex was labile and that a reduction in 65 Zn content correlated with a loss in enzyme activity. (orig./AJ) [de

  8. Synthesis and characterization of functionalized CNTs using soya and milk protein

    Science.gov (United States)

    saxena, Sanjay; ranu, Rachana; Hait, Chandan; Priya, Shruti

    2014-10-01

    Nanotechnology is the study of the phenomenon and manipulation of matter at atomic and molecular scale to enhance their older property and generate several new properties. Carbon nanotubes (CNTs) are one of the most commonly mentioned building blocks of nanotechnology. CNTs are very prevalent in today's world of medical research and are being highly researched in the fields of efficient drug delivery and bio sensing methods for disease treatment and health monitoring. There are number of methods for synthesizing CNTs. This is a biological method for synthesis of CNTs in which protein is used as carbon source and amino acids present in protein form complex with metal salt. The CNTs synthesized are then characterized and functionalized using techniques such as transmission electron microscopy, Fourier transform infra-red, nuclear magnetic resonance, ultra-violet visible spectroscopy, X-ray diffraction, etc. The properties of the synthesized CNTs are studied with the help of techniques such as thermo-gravimetric analysis, differential thermal analysis, and vibrating sample magnetometer, etc.

  9. Induction of DNA synthesis and apoptosis are separable functions of E2F-1

    DEFF Research Database (Denmark)

    Phillips, A C; Bates, S; Ryan, K M

    1997-01-01

    The family of E2F transcription factors have an essential role in mediating cell cycle progression, and recently, one of the E2F protein family, E2F-1, has been shown to participate in the induction of apoptosis. Cooperation between E2F and the p53 tumor suppressor protein in this apoptotic...... response had led to the suggestion that cell cycle progression induced by E2F-1 expression provides an apoptotic signal when placed in conflict with an arrest to cell cycle progression, such as provided by p53. We show here that although apoptosis is clearly enhanced by p53, E2F-1 can induce significant...... apoptosis in the absence of p53. Furthermore, this apoptotic function of E2F-1 is separable from the ability to accelerate entry into DNA synthesis. Analysis of E2F-1 mutants indicates that although DNA-binding is required, transcriptional transactivation is not necessary for the induction of apoptosis by E...

  10. Functional role of zinc in poly(A) synthesis catalyzed by nuclear poly(A) polymerase

    Energy Technology Data Exchange (ETDEWEB)

    Rose, K M; Allen, M S; Crawford, I L; Jacob, S T [Pennsylvania State Univ., Hershey (USA). Dept. of Pharmacology; Pennsylvania State Univ., Hershey (USA). Specialized Cancer Research Center; Texas Univ., Dallas (USA). Dept. of Neurology; Texas Univ., Dallas (USA). Dept. of Pharmacology)

    1978-07-01

    The functional role of transition metals in poly(A) synthesis was elucidated by investigating the effect of the metal chelator o-Phenanthroline on purified nuclear poly(A) polymerase. This chelator inhibited the enzyme activity in a manner competitive with respect to the polynucleotide primer concentration. o-phenanthroline was a non-competitive inhibitor with regard to ATP concentration and an 'uncompetitive' inhibitor with regard to dithiothreitor levels. The metal content of the purified enzyme preparations from rat liver and Morris hepatoma 3924A was determined using atomic absorption spectrometry. Of the transition metals measured, only zinc was present in detectable quantities at levels less than 1 mol/mol of enzyme. Hepatoma enzyme contained 2-3 times as much zinc as the corresponding liver enzyme. Hepatoma poly(A) polymerase was also radioactively labelled in vivo by injection of tumor-bearing animals with /sup 65/Zn. Dialysis experiments with highly purified radiolabelled poly(A) polymerase showed that the enzyme-zinc complex was labile and that a reduction in /sup 65/Zn content correlated with a loss in enzyme activity.

  11. Selective recognition of palladium based on functional mono phthalocyanines; synthesis, characterization and photophysical properties

    Energy Technology Data Exchange (ETDEWEB)

    Yaraşir, M. Nilüfer; Aytekin, Ahmet [Department of Chemistry, Sakarya University, TR54187 Serdivan, Sakarya (Turkey); Kandaz, Mehmet, E-mail: mkandaz@sakarya.edu.tr [Department of Chemistry, Sakarya University, TR54187 Serdivan, Sakarya (Turkey); Güney, Orhan [Istanbul Technical University, Department of Chemistry, 34469 Maslak, Istanbul (Turkey)

    2016-09-15

    We report the synthesis and photophysical properties of 4,5-bis(2-((Z)-(3-hydroxynaphthalen-2-yl) methyleneamino)phenylthio)phthalonitrile ligand (SB) and its star-type functional zincphthalocyanine (SB-ZnPc) compound obtained by the condensation of 2,3,9,10,16,17,23,24-octakis-(2-aminophenylthio)zincphthlocyanines (A-ZnPc) and 1-hydroxy-2-naphthaldehyde (HNA). Each compound was purified and characterized by elemental analysis, FTIR, {sup 1}H NMR, {sup 13}C NMR, UV/vis and MS (Maldi-TOF) spectral data. SB-ZnPc bearing fluorescent SB moieties on the periphery shows selective palladium ion sensing behavior by acting as hard core upon interaction. Electronic spectra of the SB-ZnPc displays pronounced changes in both absorption and fluorescence spectra upon interaction with Pd{sup 2+} ion. The fluorescence of the SB-ZnPc compound is effectively quenched by treatment with Pd{sup 2+} in THF solution. The solvent effect on the photophysical properties of the SB-ZnPc and interference effect of foreign metal ions were also investigated.

  12. Methionine-mediated synthesis of magnetic nanoparticles and functionalization with gold quantum dots for theranostic applications

    Directory of Open Access Journals (Sweden)

    Arūnas Jagminas

    2017-08-01

    Full Text Available Biocompatible superparamagnetic iron oxide nanoparticles (NPs through smart chemical functionalization of their surface with fluorescent species, therapeutic proteins, antibiotics, and aptamers offer remarkable potential for diagnosis and therapy of disease sites at their initial stage of growth. Such NPs can be obtained by the creation of proper linkers between magnetic NP and fluorescent or drug probes. One of these linkers is gold, because it is chemically stable, nontoxic and capable to link various biomolecules. In this study, we present a way for a simple and reliable decoration the surface of magnetic NPs with gold quantum dots (QDs containing more than 13.5% of Au+. Emphasis is put on the synthesis of magnetic NPs by co-precipitation using the amino acid methionine as NP growth-stabilizing agent capable to later reduce and attach gold species. The surface of these NPs can be further conjugated with targeting and chemotherapy agents, such as cancer stem cell-related antibodies and the anticancer drug doxorubicin, for early detection and improved treatment. In order to verify our findings, high-resolution transmission electron microscopy (HRTEM, atomic force microscopy (AFM, FTIR spectroscopy, inductively coupled plasma mass spectroscopy (ICP-MS, and X-ray photoelectron spectroscopy (XPS of as-formed CoFe2O4 NPs before and after decoration with gold QDs were applied.

  13. Non-transcriptional Function of FOXO1/DAF-16 Contributes to Translesion DNA Synthesis.

    Science.gov (United States)

    Daitoku, Hiroaki; Kaneko, Yuta; Yoshimochi, Kenji; Matsumoto, Kaori; Araoi, Sho; Sakamaki, Jun-Ichi; Takahashi, Yuta; Fukamizu, Akiyoshi

    2016-08-22

    Forkhead box O (FOXO; DAF-16 in nematode) transcription factors activate a program of genes that control stress resistance, metabolism, and lifespan. Given the adverse impact of the stochastic DNA damage on organismal development and ageing, we examined the role of FOXO/DAF-16 in UV-induced DNA-damage response. Knockdown of FOXO1, but not FOXO3a, increases sensitivity to UV irradiation when exposed during S phase, suggesting a contribution of FOXO1 to translesion DNA synthesis (TLS), a replicative bypass of UV-induced DNA lesions. Actually, FOXO1 depletion results in a sustained activation of the ATR-Chk1 signaling and a reduction of PCNA monoubiquitination following UV irradiation. FOXO1 does not alter the expression of TLS-related genes but binds to the protein replication protein A (RPA1) that coats single-stranded DNA and acts as a scaffold for TLS. In Caenorhabditis elegans, daf-16 null mutants show UV-induced retardation in larval development and are rescued by overexpressing DAF-16 mutant lacking transactivation domain, but not substitution mutant unable to interact with RPA-1. Thus, our findings demonstrate that FOXO1/DAF-16 is a functional component in TLS independently of its transactivation activity. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Green synthesis of carbon dots functionalized silver nanoparticles for the colorimetric detection of phoxim.

    Science.gov (United States)

    Zheng, Mingda; Wang, Chenge; Wang, Yingying; Wei, Wei; Ma, Shuang; Sun, Xiaohan; He, Jiang

    2018-08-01

    In this work, Lycii Fructus as raw materials for green synthesis of fluorescent carbon dots (CDs) reduce AgNO 3 . The CDs-AgNPs were synthesized by one-step method. CDs were applied to stabilize AgNPs due to abundant functional groups on the surface of CDs. In presence of phoxim, the dispersed CDs-AgNPs get aggregated and the absorption peak with red shift from 400 nm to 525 nm, resulting in the color changed from yellow to red. Under optimized conditions, the absorbance ratio at A 525 nm /A 400 nm was related linearly to the concentrations of phoxim in the range of 0.1-100 μM. The detection limit was calculated to 0.04 μM, which is lower than maximum residue limits of phoxim in samples in China. The colorimetric sensor was successfully utilized to monitoring phoxim in environmental and fruit samples with good recoveries ranges from 87% to 110.0%. These results showed the sensor had a promising application prospect in real samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Synthesis, characterisation and chemical reactivity of some new binuclear dioxouranium(VI) complexes derived from organic diazo compounds (Preprint No. CT-33)

    International Nuclear Information System (INIS)

    Pujar, M.A.; Pirgonde, B.R.

    1988-02-01

    A new series of binuclear dioxouranium(VI) complexes of polydentatate diazo compounds have been synthesised and characterised adequately by analysis, physio-chemical techniques and reactivity of these complexes. The location of bonding site of ligands, stability of complexes and status of U-O bond and probable structures of these complexes have been discussed. (author). 10 refs

  16. Synthesis of a Pilot Scale Library of 4-amino-2 (diethylaminomethyl) phenol (ADOC) Analogues for Testing of Organophosphate-Inhibited Acetylcholinesterase Reactivation Ability

    Science.gov (United States)

    2018-02-01

    Inhibited Acetylcholinesterase Reactivation Ability Zachary Canter Kevin Martin Michael Hepperle February 2018 Approved for public release; distribution...PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Canter, Z., Martin , K., Hepperle, M. 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING

  17. Screening of medicinal plant phytochemicals as natural antagonists of p53-MDM2 interaction to reactivate p53 functioning.

    Science.gov (United States)

    Riaz, Muhammad; Ashfaq, Usman A; Qasim, Muhammad; Yasmeen, Erum; Ul Qamar, Muhammad T; Anwar, Farooq

    2017-10-01

    In most types of cancer, overexpression of murine double minute 2 (MDM2) often leads to inactivation of p53. The crystal structure of MDM2, with a 109-residue amino-terminal domain, reveals that MDM2 has a core hydrophobic region to which p53 binds as an amphipathic α helix. The interface depends on the steric complementarity between MDM2 and the hydrophobic region of p53. Especially, on p53's triad, amino acids Phe19, Trp23 and Leu26 bind to the MDM2 core. Results from studies suggest that the structural motif of both p53 and MDM2 can be attributed to similarities in the amphipathic α helix. Thus, in the current investigation it is hypothesized that the similarity in the structural motif might be the cause of p53 inactivation by MDM2. Hence, molecular docking and phytochemical screening approaches are appraised to inhibit the hydrophobic cleft of MDM2 and to stop p53-MDM2 interaction, resulting in reactivation of p53 activity. For this purpose, a library of 2295 phytochemicals were screened against p53-MDM2 to find potential candidates. Of these, four phytochemicals including epigallocatechin gallate, alvaradoin M, alvaradoin E and nordihydroguaiaretic acid were found to be potential inhibitors of p53-MDM2 interaction. The screened phytochemicals, derived from natural extracts, may have negligible side effects and can be explored as potent antagonists of p53-MDM2 interactions, resulting in reactivation of the normal transcription of p53.

  18. Functional Brain Imaging Synthesis Based on Image Decomposition and Kernel Modeling: Application to Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Francisco J. Martinez-Murcia

    2017-11-01

    Full Text Available The rise of neuroimaging in research and clinical practice, together with the development of new machine learning techniques has strongly encouraged the Computer Aided Diagnosis (CAD of different diseases and disorders. However, these algorithms are often tested in proprietary datasets to which the access is limited and, therefore, a direct comparison between CAD procedures is not possible. Furthermore, the sample size is often small for developing accurate machine learning methods. Multi-center initiatives are currently a very useful, although limited, tool in the recruitment of large populations and standardization of CAD evaluation. Conversely, we propose a brain image synthesis procedure intended to generate a new image set that share characteristics with an original one. Our system focuses on nuclear imaging modalities such as PET or SPECT brain images. We analyze the dataset by applying PCA to the original dataset, and then model the distribution of samples in the projected eigenbrain space using a Probability Density Function (PDF estimator. Once the model has been built, we can generate new coordinates on the eigenbrain space belonging to the same class, which can be then projected back to the image space. The system has been evaluated on different functional neuroimaging datasets assessing the: resemblance of the synthetic images with the original ones, the differences between them, their generalization ability and the independence of the synthetic dataset with respect to the original. The synthetic images maintain the differences between groups found at the original dataset, with no significant differences when comparing them to real-world samples. Furthermore, they featured a similar performance and generalization capability to that of the original dataset. These results prove that these images are suitable for standardizing the evaluation of CAD pipelines, and providing data augmentation in machine learning systems -e.g. in deep

  19. The extracellular redox state modulates mitochondrial function, gluconeogenesis, and glycogen synthesis in murine hepatocytes.

    Science.gov (United States)

    Nocito, Laura; Kleckner, Amber S; Yoo, Elsia J; Jones Iv, Albert R; Liesa, Marc; Corkey, Barbara E

    2015-01-01

    Circulating redox state changes, determined by the ratio of reduced/oxidized pairs of different metabolites, have been associated with metabolic diseases. However, the pathogenic contribution of these changes and whether they modulate normal tissue function is unclear. As alterations in hepatic gluconeogenesis and glycogen metabolism are hallmarks that characterize insulin resistance and type 2 diabetes, we tested whether imposed changes in the extracellular redox state could modulate these processes. Thus, primary hepatocytes were treated with different ratios of the following physiological extracellular redox couples: β-hydroxybutyrate (βOHB)/acetoacetate (Acoc), reduced glutathione (GSH)/oxidized glutathione (GSSG), and cysteine/cystine. Exposure to a more oxidized ratio via extracellular βOHB/Acoc, GSH/GSSG, and cysteine/cystine in hepatocytes from fed mice increased intracellular hydrogen peroxide without causing oxidative damage. On the other hand, addition of more reduced ratios of extracellular βOHB/Acoc led to increased NAD(P)H and maximal mitochondrial respiratory capacity in hepatocytes. Greater βOHB/Acoc ratios were also associated with decreased β-oxidation, as expected with enhanced lipogenesis. In hepatocytes from fasted mice, a more extracellular reduced state of βOHB/Acoc led to increased alanine-stimulated gluconeogenesis and enhanced glycogen synthesis capacity from added glucose. Thus, we demonstrated for the first time that the extracellular redox state regulates the major metabolic functions of the liver and involves changes in intracellular NADH, hydrogen peroxide, and mitochondrial respiration. Because redox state in the blood can be communicated to all metabolically sensitive tissues, this work confirms the hypothesis that circulating redox state may be an important regulator of whole body metabolism and contribute to alterations associated with metabolic diseases.

  20. The extracellular redox state modulates mitochondrial function, gluconeogenesis, and glycogen synthesis in murine hepatocytes.

    Directory of Open Access Journals (Sweden)

    Laura Nocito

    Full Text Available Circulating redox state changes, determined by the ratio of reduced/oxidized pairs of different metabolites, have been associated with metabolic diseases. However, the pathogenic contribution of these changes and whether they modulate normal tissue function is unclear. As alterations in hepatic gluconeogenesis and glycogen metabolism are hallmarks that characterize insulin resistance and type 2 diabetes, we tested whether imposed changes in the extracellular redox state could modulate these processes. Thus, primary hepatocytes were treated with different ratios of the following physiological extracellular redox couples: β-hydroxybutyrate (βOHB/acetoacetate (Acoc, reduced glutathione (GSH/oxidized glutathione (GSSG, and cysteine/cystine. Exposure to a more oxidized ratio via extracellular βOHB/Acoc, GSH/GSSG, and cysteine/cystine in hepatocytes from fed mice increased intracellular hydrogen peroxide without causing oxidative damage. On the other hand, addition of more reduced ratios of extracellular βOHB/Acoc led to increased NAD(PH and maximal mitochondrial respiratory capacity in hepatocytes. Greater βOHB/Acoc ratios were also associated with decreased β-oxidation, as expected with enhanced lipogenesis. In hepatocytes from fasted mice, a more extracellular reduced state of βOHB/Acoc led to increased alanine-stimulated gluconeogenesis and enhanced glycogen synthesis capacity from added glucose. Thus, we demonstrated for the first time that the extracellular redox state regulates the major metabolic functions of the liver and involves changes in intracellular NADH, hydrogen peroxide, and mitochondrial respiration. Because redox state in the blood can be communicated to all metabolically sensitive tissues, this work confirms the hypothesis that circulating redox state may be an important regulator of whole body metabolism and contribute to alterations associated with metabolic diseases.

  1. Synthesis and reactivity of dimethyl gold complexes supported on MgO: characterization by infrared and X-ray absorption spectroscopies

    NARCIS (Netherlands)

    Guzman, J.; Anderson, B.G.; Vinod, C.P.; Ramesh, K.; Niemantsverdriet, J.W.; Gates, B.C.

    2005-01-01

    Di-Me gold complexes bonded to partially dehydroxylated MgO powder calcined at 673 K were synthesized by adsorption of Au(CH3)2(acac) (acac is C5H7O2) from n-pentane soln. The synthesis and subsequent decompn. of the complexes by treatment in He or H2 were characterized with diffuse reflectance

  2. Reactive Arthritis

    Directory of Open Access Journals (Sweden)

    Eren Erken

    2013-06-01

    Full Text Available Reactive arthritis is an acute, sterile, non-suppurative and inflammatory arthropaty which has occured as a result of an infectious processes, mostly after gastrointestinal and genitourinary tract infections. Reiter syndrome is a frequent type of reactive arthritis. Both reactive arthritis and Reiter syndrome belong to the group of seronegative spondyloarthropathies, associated with HLA-B27 positivity and characterized by ongoing inflammation after an infectious episode. The classical triad of Reiter syndrome is defined as arthritis, conjuctivitis and urethritis and is seen only in one third of patients with Reiter syndrome. Recently, seronegative asymmetric arthritis and typical extraarticular involvement are thought to be adequate for the diagnosis. However, there is no established criteria for the diagnosis of reactive arthritis and the number of randomized and controlled studies about the therapy is not enough. [Archives Medical Review Journal 2013; 22(3.000: 283-299

  3. Proteomic and functional analyses reveal MAPK1 regulates milk protein synthesis.

    Science.gov (United States)

    Lu, Li-Min; Li, Qing-Zhang; Huang, Jian-Guo; Gao, Xue-Jun

    2012-12-27

    L-Lysine (L-Lys) is an essential amino acid that plays fundamental roles in protein synthesis. Many nuclear phosphorylated proteins such as Stat5 and mTOR regulate milk protein synthesis. However, the details of milk protein synthesis control at the transcript and translational levels are not well known. In this current study, a two-dimensional gel electrophoresis (2-DE)/MS-based proteomic technology was used to identify phosphoproteins responsible for milk protein synthesis in dairy cow mammary epithelial cells (DCMECs). The effect of L-Lys on DCMECs was analyzed by CASY technology and reversed phase high performance liquid chromatography (RP-HPLC). The results showed that cell proliferation ability and β-casein expression were enhanced in DCMECs treated with L-Lys. By phosphoproteomics analysis, six proteins, including MAPK1, were identified up-expressed in DCMECs treated with 1.2 mM L-Lys for 24 h, and were verified by quantitative real-time PCR (qRT-PCR) and western blot. Overexpression and siRNA inhibition of MAPK1 experiments showed that MAPK1 upregulated milk protein synthesis through Stat5 and mTOR pathway. These findings that MAPK1 involves in regulation of milk synthesis shed new insights for understanding the mechanisms of milk protein synthesis.

  4. Effectiveness of the Picture Exchange Communication System as a Functional Communication Intervention for Individuals with Autism Spectrum Disorders: A Practice-Based Research Synthesis

    Science.gov (United States)

    Tien, Kai-Chien

    2008-01-01

    This research synthesis verifies the effectiveness of the Picture Exchange Communication System (PECS) for improving the functional communication skills of individuals with autism spectrum disorders (ASD). The research synthesis was focused on the degree to which variations in PECS training are associated with variations in functional…

  5. Graft-versus-host reaction and immune function. III. Functional pre-T cells in the bone marrow of graft-versus-host-reactive mice displaying T cell immunodeficiency

    International Nuclear Information System (INIS)

    Seddik, M.; Seemayer, T.A.; Lapp, W.S.

    1986-01-01

    Studies were performed to determine whether pre-T cells develop normally in the bone marrow of mice displaying thymic dysplasia and T cell immunodeficiency as a consequence of a graft-versus-host (GVH) reaction. GVH reactions were induced in CBAxAF1 mice by the injection of A strain lymphoid cells. To test for the presence of pre-T cells in GVH-reactive mice, bone marrow from GVH-reactive mice (GVHBM) was injected into irradiated syngeneic F1 mice and 30-40 days later thymic morphology and function were studied. Morphology studies showed nearly normal thymic architectural restoration; moreover, such glands contained normal numbers of Thy-1-positive cells. Functional pre-T cells were evaluated by transferring thymocytes from the irradiated GVHBM-reconstituted mice into T-cell-deprived mice. These thymocytes reconstituted allograft reactivity, T helper cell function and Con A and PHA mitogen responses of T-cell-deprived mice. These results suggest that the pre-T cell population in the bone marrow is not affected by the GVH reaction. Therefore, the T cell immunodeficiency associated with the GVH reaction is not due to a deficiency of pre-T cells in the bone marrow but is more likely associated with GVH-induced thymic dysplasia

  6. Synthesis of multi-wavelength temporal phase-shifting algorithms optimized for high signal-to-noise ratio and high detuning robustness using the frequency transfer function

    OpenAIRE

    Servin, Manuel; Padilla, Moises; Garnica, Guillermo

    2016-01-01

    Synthesis of single-wavelength temporal phase-shifting algorithms (PSA) for interferometry is well-known and firmly based on the frequency transfer function (FTF) paradigm. Here we extend the single-wavelength FTF-theory to dual and multi-wavelength PSA-synthesis when several simultaneous laser-colors are present. The FTF-based synthesis for dual-wavelength PSA (DW-PSA) is optimized for high signal-to-noise ratio and minimum number of temporal phase-shifted interferograms. The DW-PSA synthesi...

  7. Circulating and Tissue-Resident CD4+ T Cells With Reactivity to Intestinal Microbiota Are Abundant in Healthy Individuals and Function Is Altered During Inflammation.

    Science.gov (United States)

    Hegazy, Ahmed N; West, Nathaniel R; Stubbington, Michael J T; Wendt, Emily; Suijker, Kim I M; Datsi, Angeliki; This, Sebastien; Danne, Camille; Campion, Suzanne; Duncan, Sylvia H; Owens, Benjamin M J; Uhlig, Holm H; McMichael, Andrew; Bergthaler, Andreas; Teichmann, Sarah A; Keshav, Satish; Powrie, Fiona

    2017-11-01

    Interactions between commensal microbes and the immune system are tightly regulated and maintain intestinal homeostasis, but little is known about these interactions in humans. We investigated responses of human CD4 + T cells to the intestinal microbiota. We measured the abundance of T cells in circulation and intestinal tissues that respond to intestinal microbes and determined their clonal diversity. We also assessed their functional phenotypes and effects on intestinal resident cell populations, and studied alterations in microbe-reactive T cells in patients with chronic intestinal inflammation. We collected samples of peripheral blood mononuclear cells and intestinal tissues from healthy individuals (controls, n = 13-30) and patients with inflammatory bowel diseases (n = 119; 59 with ulcerative colitis and 60 with Crohn's disease). We used 2 independent assays (CD154 detection and carboxy-fluorescein succinimidyl ester dilution assays) and 9 intestinal bacterial species (Escherichia coli, Lactobacillus acidophilus, Bifidobacterium animalis subsp lactis, Faecalibacterium prausnitzii, Bacteroides vulgatus, Roseburia intestinalis, Ruminococcus obeum, Salmonella typhimurium, and Clostridium difficile) to quantify, expand, and characterize microbe-reactive CD4 + T cells. We sequenced T-cell receptor Vβ genes in expanded microbe-reactive T-cell lines to determine their clonal diversity. We examined the effects of microbe-reactive CD4 + T cells on intestinal stromal and epithelial cell lines. Cytokines, chemokines, and gene expression patterns were measured by flow cytometry and quantitative polymerase chain reaction. Circulating and gut-resident CD4 + T cells from controls responded to bacteria at frequencies of 40-4000 per million for each bacterial species tested. Microbiota-reactive CD4 + T cells were mainly of a memory phenotype, present in peripheral blood mononuclear cells and intestinal tissue, and had a diverse T-cell receptor Vβ repertoire. These

  8. Functional Analysis of the Trichoderma harzianum nox1 Gene, Encoding an NADPH Oxidase, Relates Production of Reactive Oxygen Species to Specific Biocontrol Activity against Pythium ultimum▿†

    Science.gov (United States)

    Montero-Barrientos, M.; Hermosa, R.; Cardoza, R. E.; Gutiérrez, S.; Monte, E.

    2011-01-01

    The synthesis of reactive oxygen species (ROS) is one of the first events following pathogenic interactions in eukaryotic cells, and NADPH oxidases are involved in the formation of such ROS. The nox1 gene of Trichoderma harzianum was cloned, and its role in antagonism against phytopathogens was analyzed in nox1-overexpressed transformants. The increased levels of nox1 expression in these transformants were accompanied by an increase in ROS production during their direct confrontation with Pythium ultimum. The transformants displayed an increased hydrolytic pattern, as determined by comparing protease, cellulase, and chitinase activities with those for the wild type. In confrontation assays against P. ultimum the nox1-overexpressed transformants were more effective than the wild type, but not in assays against Botrytis cinerea or Rhizoctonia solani. A transcriptomic analysis using a Trichoderma high-density oligonucleotide (HDO) microarray also showed that, compared to gene expression for the interaction of wild-type T. harzianum and P. ultimum, genes related to protease, cellulase, and chitinase activities were differentially upregulated in the interaction of a nox1-overexpressed transformant with this pathogen. Our results show that nox1 is involved in T. harzianum ROS production and antagonism against P. ultimum. PMID:21421791

  9. Identification and functional analysis of delta-9 desaturase, a key enzyme in PUFA Synthesis, isolated from the oleaginous diatom Fistulifera.

    Directory of Open Access Journals (Sweden)

    Masaki Muto

    Full Text Available Oleaginous microalgae are one of the promising resource of nonedible biodiesel fuel (BDF feed stock alternatives. Now a challenge task is the decrease of the long-chain polyunsaturated fatty acids (PUFAs content affecting on the BDF oxidative stability by using gene manipulation techniques. However, only the limited knowledge has been available concerning the fatty acid and PUFA synthesis pathways in microalgae. Especially, the function of Δ9 desaturase, which is a key enzyme in PUFA synthesis pathway, has not been determined in diatom. In this study, 4 Δ(9 desaturase genes (fD9desA, fD9desB, fD9desC and fD9desD from the oleaginous diatom Fistulifera were newly isolated and functionally characterized. The putative Δ(9 acyl-CoA desaturases in the endoplasmic reticulum (ER showed 3 histidine clusters that are well-conserved motifs in the typical Δ(9 desaturase. Furthermore, the function of these Δ(9 desaturases was confirmed in the Saccharomyces cerevisiae ole1 gene deletion mutant (Δole1. All the putative Δ(9 acyl-CoA desaturases showed Δ(9 desaturation activity for C16∶0 fatty acids; fD9desA and fD9desB also showed desaturation activity for C18∶0 fatty acids. This study represents the first functional analysis of Δ(9 desaturases from oleaginous microalgae and from diatoms as the first enzyme to introduce a double bond in saturated fatty acids during PUFA synthesis. The findings will provide beneficial insights into applying metabolic engineering processes to suppressing PUFA synthesis in this oleaginous microalgal strain.

  10. Identification and functional analysis of delta-9 desaturase, a key enzyme in PUFA Synthesis, isolated from the oleaginous diatom Fistulifera.

    Science.gov (United States)

    Muto, Masaki; Kubota, Chihiro; Tanaka, Masayoshi; Satoh, Akira; Matsumoto, Mitsufumi; Yoshino, Tomoko; Tanaka, Tsuyoshi

    2013-01-01

    Oleaginous microalgae are one of the promising resource of nonedible biodiesel fuel (BDF) feed stock alternatives. Now a challenge task is the decrease of the long-chain polyunsaturated fatty acids (PUFAs) content affecting on the BDF oxidative stability by using gene manipulation techniques. However, only the limited knowledge has been available concerning the fatty acid and PUFA synthesis pathways in microalgae. Especially, the function of Δ9 desaturase, which is a key enzyme in PUFA synthesis pathway, has not been determined in diatom. In this study, 4 Δ(9) desaturase genes (fD9desA, fD9desB, fD9desC and fD9desD) from the oleaginous diatom Fistulifera were newly isolated and functionally characterized. The putative Δ(9) acyl-CoA desaturases in the endoplasmic reticulum (ER) showed 3 histidine clusters that are well-conserved motifs in the typical Δ(9) desaturase. Furthermore, the function of these Δ(9) desaturases was confirmed in the Saccharomyces cerevisiae ole1 gene deletion mutant (Δole1). All the putative Δ(9) acyl-CoA desaturases showed Δ(9) desaturation activity for C16∶0 fatty acids; fD9desA and fD9desB also showed desaturation activity for C18∶0 fatty acids. This study represents the first functional analysis of Δ(9) desaturases from oleaginous microalgae and from diatoms as the first enzyme to introduce a double bond in saturated fatty acids during PUFA synthesis. The findings will provide beneficial insights into applying metabolic engineering processes to suppressing PUFA synthesis in this oleaginous microalgal strain.

  11. A three-component synthesis of functionalized ketenimines by the reaction of alkyl isocyanides and dialkyl acetylenedicarboxylates in the presence of 2-quinolinol

    OpenAIRE

    BITA MOHTAT; HOORIEH DJAHANIANI; ISSA YAVARI; KOBRA NADERI

    2011-01-01

    The 1:1 reactive intermediates generated by the addition of alkyl isocyanides to dialkyl acetylenedicarboxylates were trapped by 2-quinolinol to yield highly functionalized ketenimines and, in some cases, minor amounts of 1-azabuta-1,3-dienes.

  12. Typical Periods for Two-Stage Synthesis by Time-Series Aggregation with Bounded Error in Objective Function

    Energy Technology Data Exchange (ETDEWEB)

    Bahl, Björn; Söhler, Theo; Hennen, Maike; Bardow, André, E-mail: andre.bardow@ltt.rwth-aachen.de [Institute of Technical Thermodynamics, RWTH Aachen University, Aachen (Germany)

    2018-01-08

    Two-stage synthesis problems simultaneously consider here-and-now decisions (e.g., optimal investment) and wait-and-see decisions (e.g., optimal operation). The optimal synthesis of energy systems reveals such a two-stage character. The synthesis of energy systems involves multiple large time series such as energy demands and energy prices. Since problem size increases with the size of the time series, synthesis of energy systems leads to complex optimization problems. To reduce the problem size without loosing solution quality, we propose a method for time-series aggregation to identify typical periods. Typical periods retain the chronology of time steps, which enables modeling of energy systems, e.g., with storage units or start-up cost. The aim of the proposed method is to obtain few typical periods with few time steps per period, while accurately representing the objective function of the full time series, e.g., cost. Thus, we determine the error of time-series aggregation as the cost difference between operating the optimal design for the aggregated time series and for the full time series. Thereby, we rigorously bound the maximum performance loss of the optimal energy system design. In an initial step, the proposed method identifies the best length of typical periods by autocorrelation analysis. Subsequently, an adaptive procedure determines aggregated typical periods employing the clustering algorithm k-medoids, which groups similar periods into clusters and selects one representative period per cluster. Moreover, the number of time steps per period is aggregated by a novel clustering algorithm maintaining chronology of the time steps in the periods. The method is iteratively repeated until the error falls below a threshold value. A case study based on a real-world synthesis problem of an energy system shows that time-series aggregation from 8,760 time steps to 2 typical periods with each 2 time steps results in an error smaller than the optimality gap of

  13. Cre recombinase expression or topical tamoxifen treatment do not affect retinal structure and function, neuronal vulnerability or glial reactivity in the mouse eye.

    Science.gov (United States)

    Boneva, S K; Groß, T R; Schlecht, A; Schmitt, S I; Sippl, C; Jägle, H; Volz, C; Neueder, A; Tamm, E R; Braunger, B M

    2016-06-14

    Mice with a constitutive or tamoxifen-induced Cre recombinase (Cre) expression are frequently used research tools to allow the conditional deletion of target genes via the Cre-loxP system. Here we analyzed for the first time in a comprehensive and comparative way, whether retinal Cre expression or topical tamoxifen treatment itself would cause structural or functional changes, including changes in the expression profiles of molecular markers, glial reactivity and photoreceptor vulnerability. To this end, we characterized the transgenic α-Cre, Lmop-Cre and the tamoxifen-inducible CAGG-CreER™ mouse lines, all having robust Cre expression in the neuronal retina. In addition, we characterized the effects of topical tamoxifen treatment itself in wildtype mice. We performed morphometric analyses, immunohistochemical staining, in vivo ERG and angiography analyses and realtime RT-PCR analyses. Furthermore, the influence of Cre recombinase or topical tamoxifen exposure on neuronal vulnerability was studied by using light damage as a model for photoreceptor degeneration. Taken together, neither the expression of Cre, nor topical tamoxifen treatment caused detectable changes in retinal structure and function, the expression profiles of investigated molecular markers, glial reactivity and photoreceptor vulnerability. We conclude that the Cre-loxP system and its induction through tamoxifen is a safe and reliable method to delete desired target genes in the neural retina. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Synthesis by reactive grinding of molybdenum iron bimetallic nitride; Sintesis por molienda reactiva del nitruro bimetalico Mo-Fe: Mo{sub 3}Fe{sub 3}N

    Energy Technology Data Exchange (ETDEWEB)

    Roldan, M. A.; Ortega, A.; Palencia, I.; Real, C.

    2008-07-01

    The transition metal nitride ternary show similar properties to the binary nitride and some times this behaviour are improved. In the present work, the molybdenum-iron nitride has been prepared by reactive grinding form the two metals under nitrogen atmosphere at a pressure of 11 bar. The characterization of the compounds is presented and it is also shown a study of the stability of the nitride under several atmospheres. (Author) 42 refs.

  15. Radiation Synthesis of Functional Nanoparticles for Imaging, Sensing and Drug Delivery Applications

    International Nuclear Information System (INIS)

    Grasselli, M.; Soto Espinoza, S.; Risso, V.; Pawlak, E.; Smolko, E.E.

    2010-01-01

    In the present report we describe nanoparticle synthesis by ionizing radiation from globular proteins and methacrylate monomers. Dynamic light scattering and other spectroscopic methods were performed to characterize this new material

  16. Colloidal templating : a route towards controlled synthesis of functional polymeric nanoparticles

    NARCIS (Netherlands)

    Ali, S.I.

    2010-01-01

    Template-directed synthesis of polymeric nanoparticles offers better control over particle morphology, shape, structure, composition and properties compare to the conventional emulsion polymerization routes. For the production of anisotropic polymer-clay composite latex particles and polymeric

  17. Radiation Synthesis of Functional Nanoparticles for Imaging, Sensing and Drug Delivery Applications

    Energy Technology Data Exchange (ETDEWEB)

    Grasselli, M.; Soto Espinoza, S.; Risso, V.; Pawlak, E.; Smolko, E.E., E-mail: mgrasse@unq.edu.ar, E-mail: mariano.grasselli@gmail.com [Quesada 2422, piso 11, dpto. C, C1429 Buenos Aires (Argentina)

    2010-07-01

    In the present report we describe nanoparticle synthesis by ionizing radiation from globular proteins and methacrylate monomers. Dynamic light scattering and other spectroscopic methods were performed to characterize this new material.

  18. Post-Synthesis Functionalization of Porous Organic Polymers for CO2 Capture

    KAUST Repository

    Al Otaibi, Mona S.

    2014-07-01

    Solid porous materials are network materials that contain space void. Porous Organic Polymers (POPs) are porous materials, which are constructed from organic building blocks and exhibit large surface area with low densities. Due to these characteristics, POPs have attracted attentions because of their potential use in application such as gas storage and chemical separation. This thesis presents a study of the synthesis of novel POP being a network based on 2,5- dibromobenzaldehyde and 1,3,5-triethynylbenzene linked together via Sonogashira- Hagihara (SH) coupling. This network showed a relatively good surface area of 770 m2/g and total pore volume of 0.59 cc/g. In addition, it proved to be chemically and thermally stable, maintaining the thermal stability up to 350oC. In addition to synthesize novel aldehyde-POP network, it was also possible to post synthetically modify a network via one-step post synthetic functionalization by amine. Ethelynediamine (EDA), Diethylenetriamine (DETA), and Tris(2-aminoethyl)amine (Tris-amine) are three different amines used for aldehyde-POP functionalization. The produced networks were aminated via different amine species substitution the aldehyde group present within the network. Modification to these networks resulted in a decrease in surface area from 770 m2.g-1 to 333 m2.g-1, 162 m2.g-1, and 211 m2.g-1 in respective to EDA, DETA, and Tris-amine. Although the surface areas were decreased, the CO2 adsorption was enhanced as evidenced by the increase of Qst (i.e., from 25 to 45 kJ.mol-1 for DETA at low coverage). Our findings are expected to strengthen existing research areas of the influence of different type of amines (e.g aromatic amine) on CO2 adsorption. Although amine grafting has been studied in other systems (e.g., PAFs and MOFs), we are the first to reported amine functionalized POPs using a novel one-step amine grafting PSM procedure. Future research might extend to study the interaction between CO2 and amine species under

  19. Synthesis of Morpholine Containing Sulfonamides: Introduction of Morpholine Moiety on Amine Functional Group

    Directory of Open Access Journals (Sweden)

    D. Singh

    2004-01-01

    Full Text Available Sulfonamides have been the center of drug structures as this group is quite stable & well tolerated in human beings. The synthesis of these structures was started in search of new pharmacological active reagents. These compounds are being tested for the desired activity (ICAM-1/LFA-1 Interaction inhibitors as anti-adhesion therapeutic agents, the biological activity & structure activity relationship will be published elsewhere. Synthesis of morpholine moiety from amino group is done by using reagent 2-chloroethanol.

  20. Study of application properties of novel trisazo hetero bi-functional reactive dyes based on j-acid derivatives for cotton

    International Nuclear Information System (INIS)

    Mokhtari, Javad; Akbarzadeh, A; Phillips, D A S; Taylor, J A

    2009-01-01

    Three novel trisazo hetero bi-functional reactive dyes based on J-acid derivatives were prepared using the diazonium salt of [4-(4-sulphophenylazo-)-2,5-dimethylazobenzene-2-sulphonic acid] and a hetero bi-functional coupling component, derived from 1-hydroxy-6-aminonapthalene-3-sulphonic acid (J-acid), 1-hydroxy-6- methylaminonapthalene-3-sulphonic acid (methyl J-acid), and 1-hydroxy-6-aminonaphthalene-3,5-disulphonic acid (sulpho J-acid). On balance, the dye derived from sulpho J-acid displayed the most attractive set of technical properties, building up and fixing more efficiently than those derived from J-acid and methyl J-acid. In addition, the sulpho J-acid based dye offered better migration and, therefore, level dyeing and ease of wash off. (author)

  1. Rapid DNA Synthesis During Early Drosophila Embryogenesis Is Sensitive to Maternal Humpty Dumpty Protein Function.

    Science.gov (United States)

    Lesly, Shera; Bandura, Jennifer L; Calvi, Brian R

    2017-11-01

    Problems with DNA replication cause cancer and developmental malformations. It is not fully understood how DNA replication is coordinated with development and perturbed in disease. We had previously identified the Drosophila gene humpty dumpty ( hd ), and showed that null alleles cause incomplete DNA replication, tissue undergrowth, and lethality. Animals homozygous for the missense allele, hd 272-9 , were viable, but adult females had impaired amplification of eggshell protein genes in the ovary, resulting in the maternal effects of thin eggshells and embryonic lethality. Here, we show that expression of an hd transgene in somatic cells of the ovary rescues amplification and eggshell synthesis but not embryo viability. The germline of these mothers remain mutant for the hd 272-9 allele, resulting in reduced maternal Hd protein and embryonic arrest during mitosis of the first few S/M nuclear cleavage cycles with chromosome instability and chromosome bridges. Epistasis analysis of hd with the rereplication mutation plutonium indicates that the chromosome bridges of hd embryos are the result of a failed attempt to segregate incompletely replicated sister chromatids. This study reveals that maternally encoded Humpty dumpty protein is essential for DNA replication and genome integrity during the little-understood embryonic S/M cycles. Moreover, the two hd 272-9 maternal-effect phenotypes suggest that ovarian gene amplification and embryonic cleavage are two time periods in development that are particularly sensitive to mild deficits in DNA replication function. This last observation has broader relevance for interpreting why mild mutations in the human ortholog of humpty dumpty and other DNA replication genes cause tissue-specific malformations of microcephalic dwarfisms. Copyright © 2017 by the Genetics Society of America.

  2. Controllable Synthesis of Functional Hollow Carbon Nanostructures with Dopamine As Precursor for Supercapacitors.

    Science.gov (United States)

    Liu, Chao; Wang, Jing; Li, Jiansheng; Luo, Rui; Shen, Jinyou; Sun, Xiuyun; Han, Weiqing; Wang, Lianjun

    2015-08-26

    N-doped hollow carbon spheres (N-HCSs) are promising candidates as electrode material for supercapacitor application. In this work, we report a facile one-step synthesis of discrete and highly dispersible N-HCSs with dopamine (DA) as a carbon precursor and TEOS as a structure-assistant agent in a mixture containing water, ethanol, and ammonia. The architectures of resultant N-HCSs, including yolk-shell hollow carbon spheres (YS-HCSs), single-shell hollow carbon spheres (SS-HCSs), and double-shells hollow carbon spheres (DS-HCSs), can be efficiently controlled through the adjustment of the amount of ammonia. To explain the relation and formation mechanism of these hollow carbon structures, the samples during the different synthetic steps, including polymer/silica spheres, carbon/silica spheres and silica spheres by combustion in air, were characterized by TEM. Electrochemical measurements performed on YS-HCSs, SS-HCSs, and DS-HCSs showed high capacitance with 215, 280, and 381 F g(-1), respectively. Moreover, all the nitrogen-doped hollow carbon nanospheres showed a good cycling stability 97.0% capacitive retention after 3000 cycles. Notably, the highest capacitance of DS-HCSs up to 381 F g(-1) is higher than the capacitance reported so far for many carbon-based materials, which may be attributed to the high surface area, hollow structure, nitrogen functionalization, and double-shell architecture. These kinds of N-doped hollow-structured carbon spheres may show promising prospects as advanced energy storage materials and catalyst supports.

  3. Green and fast synthesis of amino-functionalized graphene quantum dots with deep blue photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, E., E-mail: eduardo.blanco@uca.es; Blanco, G.; Gonzalez-Leal, J. M.; Barrera, M. C.; Domínguez, M.; Ramirez-del-Solar, M. [University of Cádiz, Institute of Electron Microscopy and Materials (Spain)

    2015-05-15

    Graphene quantum dots (GQDs) were prepared using a top-down approach with a green microwave-assisted hydrothermal synthesis from ultrathin graphite, previously ultrasound delaminated. Results obtained by transmission electron microscopy and atomic force microscopy indicate that the so-fabricated GQDs are plates with 6 nm of average diameter, mostly single- or bi-layered. Photoluminescence characterization shows that the strongest emission occurs at 410–415 nm wavelength when the samples are excited at 310–320 nm wavelength. In addition to these down-conversion features, GQDs also exhibit up-conversion photoluminescence when excited in the range 560–800 nm wavelength, with broad emission peaks at 410–450 nm wavelength. Analysis of X-ray photoelectron spectroscopy measurements indicates a higher proportion of C–C sp{sup 2} than sp{sup 3} bonds, with the sp{sup 3} ones mainly located at the GQD surfaces. Also evidences of C–O and C–N bonds at the GQD surface have been observed. The combination of these results with Raman and ultraviolet–visible absorption experiments allows envisaging the GQDs to be composed of amino-functionalized sp{sup 2} islands with a high degree of surface oxidation. This would explain the photoluminescent properties observed in the samples under study. The combined up- and down-conversion photoluminescence processes would made these GQDs a powerful energy-transfer component in GQDs–TiO{sub 2} nanocomposite systems, which could be used in photocatalyst devices with superior performance compared to simple TiO{sub 2} systems.

  4. An ER protein functionally couples neutral lipid metabolism on lipid droplets to membrane lipid synthesis in the ER.

    Science.gov (United States)

    Markgraf, Daniel F; Klemm, Robin W; Junker, Mirco; Hannibal-Bach, Hans K; Ejsing, Christer S; Rapoport, Tom A

    2014-01-16

    Eukaryotic cells store neutral lipids such as triacylglycerol (TAG) in lipid droplets (LDs). Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER). We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG). During LD breakdown in early exponential phase, an ER membrane protein (Ice2p) facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic domain with affinity for LDs and is required for the efficient utilization of LD-derived DAG in the ER. Ice2p breaks a futile cycle on LDs between TAG degradation and synthesis, promoting the rapid relocalization of Dga1p to the ER. Our results show that Ice2p functionally links LDs with the ER and explain how cells switch neutral lipid metabolism from storage to consumption. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. An ER Protein Functionally Couples Neutral Lipid Metabolism on Lipid Droplets to Membrane Lipid Synthesis in the ER

    Directory of Open Access Journals (Sweden)

    Daniel F. Markgraf

    2014-01-01

    Full Text Available Eukaryotic cells store neutral lipids such as triacylglycerol (TAG in lipid droplets (LDs. Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER. We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG. During LD breakdown in early exponential phase, an ER membrane protein (Ice2p facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic domain with affinity for LDs and is required for the efficient utilization of LD-derived DAG in the ER. Ice2p breaks a futile cycle on LDs between TAG degradation and synthesis, promoting the rapid relocalization of Dga1p to the ER. Our results show that Ice2p functionally links LDs with the ER and explain how cells switch neutral lipid metabolism from storage to consumption.

  6. Nanoscale zero-valent iron (nZVI) synthesis in a Mg-aminoclay solution exhibits increased stability and reactivity for reductive decontamination

    DEFF Research Database (Denmark)

    Hwang, Yuhoon; Lee, Young-Chul; Mines, Paul D.

    2014-01-01

    Nanoscale zero-valent iron (nZVI) has often been explored as a reductant for detoxification of pollutants in environmental clean-ups. Despite the large surface area and superior reactivity of nZVI, its limited stability is a major obstacle in applying nZVI for in situ subsurface remediation, e......ZVI particles with higher crystallinity were produced. Stability of nZVI particles were evaluated using a sedimentation test and a dynamic light scattering technique. The characteristic time increased from 6.71 to 83.8 min, and particle (aggregate diameter) size decreased from 5132 to 186 nm with increasing...

  7. Synthesis, characterization and functionalization of silicon nanoparticle based hybrid nanomaterials for photovoltaic and biological applications

    Science.gov (United States)

    Xu, Zejing

    Silicon nanoparticles are attractive candidates for biological, photovoltaic and energy storage applications due to their size dependent optoelectronic properties. These include tunable light emission, high brightness, and stability against photo-bleaching relative to organic dyes (see Chapter 1). The preparation and characterization of silicon nanoparticle based hybrid nanomaterials and their relevance to photovoltaic and biological applications are described. The surface-passivated silicon nanoparticles were produced in one step from the reactive high-energy ball milling (RHEBM) of silicon wafers with various organic ligands. The surface structure and optical properties of the passivated silicon nanoparticles were systematically characterized. Fast approaches for purifying and at the same time size separating the silicon nanoparticles using a gravity GPC column were developed. The hydrodynamic diameter and size distribution of these size-separated silicon nanoparticles were determined using GPC and Diffusion Ordered NMR Spectroscopy (DOSY) as fast, reliable alternative approaches to TEM. Water soluble silicon nanoparticles were synthesized by grafting PEG polymers onto functionalized silicon nanoparticles with distal alkyne or azide moieties. The surface-functionalized silicon nanoparticles were produced from the reactive high-energy ball milling (RHEBM) of silicon wafers with a mixture of either 5-chloro-1-pentyne in 1-pentyne or 1,7 octadiyne in 1-hexyne to afford air and water stable chloroalkyl or alkynyl terminated nanoparticles, respectively. Nanoparticles with the ω-chloroalkyl substituents were easily converted to ω-azidoalkyl groups through the reaction of the silicon nanoparticles with sodium azide in DMF. The azido terminated nanoparticles were then grafted with monoalkynyl-PEG polymers using a copper catalyzed alkyne-azide cycloaddition (CuAAC) reaction to afford core-shell silicon nanoparticles with a covalently attached PEG shell. Covalently

  8. Reactive scattering with row-orthonormal hyperspherical coordinates. 4. Four-dimensional-space Wigner rotation function for pentaatomic systems.

    Science.gov (United States)

    Kuppermann, Aron

    2011-05-14

    The row-orthonormal hyperspherical coordinate (ROHC) approach to calculating state-to-state reaction cross sections and bound state levels of N-atom systems requires the use of angular momentum tensors and Wigner rotation functions in a space of dimension N - 1. The properties of those tensors and functions are discussed for arbitrary N and determined for N = 5 in terms of the 6 Euler angles involved in 4-dimensional space.

  9. Structure-function paradigm in human myoglobin: how a single-residue substitution affects NO reactivity at low pO2.

    Science.gov (United States)

    Scorciapino, Mariano Andrea; Spiga, Enrico; Vezzoli, Alessandra; Mrakic-Sposta, Simona; Russo, Rosaria; Fink, Bruno; Casu, Mariano; Gussoni, Maristella; Ceccarelli, Matteo

    2013-05-22

    This work is focused on the two more expressed human myoglobin isoforms. In the literature, their different overexpression in high-altitude natives was proposed to be related to alternative/complementary functions in hypoxia. Interestingly, they differ only at residue-54, lysine or glutamate, which is external and far from the main binding site. In order to ascertain whether these two almost identical myoglobins might exert different functions and to contribute to a deeper understanding about myoglobin's oxygen-level dependent functioning, they have been compared with respect to dynamics, heme electronic structure, and NO reactivity at different O2 levels. Electron paramagnetic resonance (EPR) spectroscopy was employed to investigate the electronic structure of the nitrosyl-form, obtaining fundamental clues about a different bond interaction between the heme-iron and the proximal histidine and highlighting striking differences in NO reactivity, especially at a very low pO2. The experimental results well matched with the information provided by molecular dynamics simulations, which showed a significantly different dynamics for the two proteins only in the absence of O2. The single mutation differentiating the two myoglobins resulted in strongly affecting the plasticity of the CD-region (C-helix-loop-D-helix), whose fluctuations, being coupled to the solvent, were found to be correlated with the dynamics of the distal binding site. In the absence of O2, on the one hand a significantly different probability for the histidine-gate opening has been shown by MD simulations, and on the other a different yield of myoglobin-NO formation was experimentally observed through EPR.

  10. Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silver nanoparticles from guava (Psidium guajava) leaf extract

    Energy Technology Data Exchange (ETDEWEB)

    Raghunandan, Deshpande [H.K.E.S' s College of Pharmacy (India); Mahesh, Bedre D. [Gulbarga University, Materials Chemistry Laboratory, Department of Material Science (India); Basavaraja, S. [Jawaharlal Nehru Centre for Advanced Scientific Research, Veeco-India Nanotechnology Laboratory (India); Balaji, S. D. [Gulbarga University, Materials Chemistry Laboratory, Department of Material Science (India); Manjunath, S. Y. [Sri Krupa, Institute of Pharmaceutical Science (India); Venkataraman, A., E-mail: raman_chem@rediffmail.com [Gulbarga University, Materials Chemistry Laboratory, Department of Material Science (India)

    2011-05-15

    Our research interest centers on microwave-assisted rapid extracellular synthesis of bio-functionalized silver nanoparticles of 26 {+-} 5 nm from guava (Psidium guajava) leaf extract with control over dimension and composition. The reaction occurs very rapidly as the formation of spherical nanoparticles almost completed within 90 s. The probable pathway of the biosynthesis is suggested. Appearance, crystalline nature, size and shape of nanoparticles are understood by UV-vis (UV-vis spectroscopy), FTIR (fourier transform infrared spectroscopy), XRD (X-ray diffraction), FESEM (field emission scanning electron microscopy) and TEM (transmission electron microscopy) techniques. Microwave-assisted route is selected for the synthesis of silver nanoparticles to carry out the reaction fast, suppress the enzymatic action and to keep the process environmentally clean and green.

  11. Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silver nanoparticles from guava (Psidium guajava) leaf extract

    International Nuclear Information System (INIS)

    Raghunandan, Deshpande; Mahesh, Bedre D.; Basavaraja, S.; Balaji, S. D.; Manjunath, S. Y.; Venkataraman, A.

    2011-01-01

    Our research interest centers on microwave-assisted rapid extracellular synthesis of bio-functionalized silver nanoparticles of 26 ± 5 nm from guava (Psidium guajava) leaf extract with control over dimension and composition. The reaction occurs very rapidly as the formation of spherical nanoparticles almost completed within 90 s. The probable pathway of the biosynthesis is suggested. Appearance, crystalline nature, size and shape of nanoparticles are understood by UV–vis (UV–vis spectroscopy), FTIR (fourier transform infrared spectroscopy), XRD (X-ray diffraction), FESEM (field emission scanning electron microscopy) and TEM (transmission electron microscopy) techniques. Microwave-assisted route is selected for the synthesis of silver nanoparticles to carry out the reaction fast, suppress the enzymatic action and to keep the process environmentally clean and green.

  12. An ER Protein Functionally Couples Neutral Lipid Metabolism on Lipid Droplets to Membrane Lipid Synthesis in the ER

    DEFF Research Database (Denmark)

    Markgraf, Daniel F; Klemm, Robin W; Junker, Mirco

    2014-01-01

    Eukaryotic cells store neutral lipids such as triacylglycerol (TAG) in lipid droplets (LDs). Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER). We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary...... phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG). During LD breakdown in early exponential phase, an ER membrane protein (Ice2p) facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic...... and explain how cells switch neutral lipid metabolism from storage to consumption....

  13. Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silver nanoparticles from guava ( Psidium guajava) leaf extract

    Science.gov (United States)

    Raghunandan, Deshpande; Mahesh, Bedre D.; Basavaraja, S.; Balaji, S. D.; Manjunath, S. Y.; Venkataraman, A.

    2011-05-01

    Our research interest centers on microwave-assisted rapid extracellular synthesis of bio-functionalized silver nanoparticles of 26 ± 5 nm from guava ( Psidium guajava) leaf extract with control over dimension and composition. The reaction occurs very rapidly as the formation of spherical nanoparticles almost completed within 90 s. The probable pathway of the biosynthesis is suggested. Appearance, crystalline nature, size and shape of nanoparticles are understood by UV-vis (UV-vis spectroscopy), FTIR (fourier transform infrared spectroscopy), XRD (X-ray diffraction), FESEM (field emission scanning electron microscopy) and TEM (transmission electron microscopy) techniques. Microwave-assisted route is selected for the synthesis of silver nanoparticles to carry out the reaction fast, suppress the enzymatic action and to keep the process environmentally clean and green.

  14. Gamma-ray induced inhibition of DNA synthesis in ataxia telangiectasia fibroblasts is a function of excision repair capacity

    International Nuclear Information System (INIS)

    Smith, P.J.; Paterson, M.C.

    1980-01-01

    The extent of the deficiency in γ-ray induced DNA repair synthesis in an ataxia telangiectasia (AT) human fibroblast strain was found to show no oxygen enhancement, consistent with a defect in the repair of base damage. Repair deficiency, but not repair proficiency, in AT cells was accompanied by a lack of inhibition of DNA synthesis by either γ-rays or the radiomimetic drug bleomycin. Experiments with 4-nitroquinoline 1-oxide indicated that lack of inhibition was specific for radiogenic-type damage. Thus excision repair, perhaps by DNA strand incision or chromatin modification, appears to halt replicon initiation in irradiated repair proficient cells whereas in repair defective AT strains this putatively important biological function is inoperative

  15. Role of cellulose functionality in bio-inspired synthesis of nano bioactive glass.

    Science.gov (United States)

    Gupta, Nidhi; Santhiya, Deenan

    2017-06-01

    In search of abundant cheaper natural polymer for bio-inspired bioactive glass nanoparticles synthesis, cellulose and its derivatives have been considered as a template. Different templates explored in the present studies are pure cellulose, methyl cellulose and amine grafted cellulose. To the best of our knowledge, for the first time of the considered templates, pure cellulose and amine grafted cellulose results in in situ nano particulate composite formation while interestingly methyl cellulose proves to be an excellent sacrificial template for the synthesis of uniform bioglass nanoparticles of diameter in the range of 55nm. Further, viscoelastic measurements were carried out using dynamic mechanical analyzer. Herein, an attempt has been made to establish structure-mechanical relationship based on the templates. Moreover, in vitro bioactivity is also observed to be affected by the nature of the template molecule used for the synthesis of bioactive glass. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Species difference in reactivity to lignin-like enzymatically polymerized polyphenols on interferon-γ synthesis and involvement of interleukin-2 production in mice.

    Science.gov (United States)

    Yamanaka, Daisuke; Ishibashi, Ken-Ichi; Adachi, Yoshiyuki; Ohno, Naohito

    2016-09-01

    Recent studies have revealed that lignin-like polymerized polyphenols can activate innate immune systems. In this study, we aimed to evaluate whether these polymerized polyphenols could activate leukocytes from different murine strains. Splenocytes from 12 mouse strains were investigated. Our results revealed species differences in reactivity to phenolic polymers on interferon-γ (IFN-γ) release. Mice that possessed the H2(a) or H2(k) haplotype antigens were the highly responsive strains. To clarify these different points in soluble factors, multiplex cytokine profiling analysis was carried out and we identified interleukin (IL)-2 as a key molecule for IFN-γ induction by polymerized polyphenols. Furthermore, inhibition of IL-2 and IL-2Rα by neutralizing antibodies significantly decreased cytokine production in the highly responsive mice strains. Our results indicate that species difference in reactivity to phenolic polymers is mediated by adequate release of IL-2 and its receptor, IL-2Rα. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Dynamics of cholinergic function

    International Nuclear Information System (INIS)

    Hanin, I.

    1986-01-01

    This book presents information on the following topics; cholinergic pathways - anatomy of the central nervous system; aging, DSAT and other clinical conditions; cholinergic pre- and post-synaptic receptors; acetylcholine release; cholinesterases, anticholinesterases and reactivators; acetylcholine synthesis, metabolism and precursors; second messenger messenger mechanisms; interaction of acetylcholine with other neurotransmitter systems; cholinergic mechanisms in physiological function, including cardiovascular events; and neurotoxic agents and false transmitters

  18. Synthesis and oxidation of CpIrIII compounds: functionalization of a Cp methyl group.

    Science.gov (United States)

    Park-Gehrke, Lisa S; Freudenthal, John; Kaminsky, Werner; Dipasquale, Antonio G; Mayer, James M

    2009-03-21

    [CpIrCl(2)](2) () and new CpIr(III)(L-L)X complexes (L-L = N-O or C-N chelating ligands; X = Cl, I, Me) have been prepared and their reactivity with two-electron chemical oxidants explored. Reaction of with PhI(OAc)(2) in wet solvents yields a new chloro-bridged dimer in which each of the Cp ligands has been singly acetoxylated to form [Cp(OAc)Ir(III)Cl(2)](2) () (Cp(OAc) = eta(5)-C(5)Me(4)CH(2)OAc). Complex and related carboxy- and alkoxy-functionalized Cp(OR) complexes can also be prepared from plus (PhIO)(n) and ROH. [Cp(OAc)Ir(III)Cl(2)](2) () and the methoxy analogue [Cp(OMe)Ir(III)Cl(2)](2) () have been structurally characterized. Treatment of [CpIrCl(2)](2) () with 2-phenylpyridine yields CpIr(III)(ppy)Cl () (ppy = cyclometallated 2-phenylpyridyl) which is readily converted to its iodide and methyl analogues CpIr(III)(ppy)I and CpIr(III)(ppy)Me (). CpIr(III) complexes were also prepared with N-O chelating ligands derived from anthranilic acid (2-aminobenzoic acid) and alpha-aminoisobutyric acid (H(2)NCMe(2)COOH), ligands chosen to be relatively oxidation resistant. These complexes and were reacted with potential two-electron oxidants including PhI(OAc)(2), hexachlorocyclohexadienone (C(6)Cl(6)O), N-fluoro-2,4,6-trimethylpyridinium (Me(3)pyF(+)), [Me(3)O]BF(4) and MeOTf (OTf = triflate, CF(3)SO(3)). Iridium(V) complexes were not observed or implicated in these reactions, despite the similarity of the potential products to known CpIr(V) species. The carbon electrophiles [Me(3)O]BF(4) and MeOTf appear to react preferentially at the N-O ligands, to give methyl esters in some cases. Overall, the results indicate that Cp is not inert under oxidizing conditions and is therefore not a good supporting ligand for oxidizing organometallic complexes.

  19. Importance sampling and histogrammic representations of reactivity functions and product distributions in Monte Carlo quasiclassical trajectory calculations

    International Nuclear Information System (INIS)

    Faist, M.B.; Muckerman, J.T.; Schubert, F.E.

    1978-01-01

    The application of importance sampling as a variance reduction technique in Monte Carlo quasiclassical trajectory calculations is discussed. Two measures are proposed which quantify the quality of the importance sampling used, and indicate whether further improvements may be obtained by some other choice of importance sampling function. A general procedure for constructing standardized histogrammic representations of differential functions which integrate to the appropriate integral value obtained from a trajectory calculation is presented. Two criteria for ''optimum'' binning of these histogrammic representations of differential functions are suggested. These are (1) that each bin makes an equal contribution to the integral value, and (2) each bin has the same relative error. Numerical examples illustrating these sampling and binning concepts are provided

  20. Reactivity and isotopic composition of spent PWR [pressurized-water-reactor] fuel as a function of initial enrichment, burnup, and cooling time

    International Nuclear Information System (INIS)

    Cerne, S.P.; Hermann, O.W.; Westfall, R.M.

    1987-10-01

    This study presents the reactivity loss of spent PWR fuel due to burnup in terms of the infinite lattice multiplications factor, k/sub ∞/. Calculations were performed using the SAS2 and CSAS1 control modules of the SCALE system. The k/sub ∞/ values calculated for all combinations of six enrichments, seven burnups, and five cooling times. The results are presented as a primary function of enrichment in both tabular and graphic form. An equation has been developed to estimate the tabulated values of k/sub ∞/'s by specifying enrichment, cooling time, and burnup. Atom densities for fresh fuel, and spent fuel at cooling times of 2, 10, and 20 years are included. 13 refs., 8 figs., 8 tabs

  1. Orifice microreactor for the production of an organic peroxide – non-reactive and reactive characterization

    NARCIS (Netherlands)

    Illg, T.; Hessel, V.; Löb, P.; Schouten, J.C.

    2012-01-01

    In this article, the transfer of a two-step, biphasic, and exothermic peroxide synthesis into a microreactor assisted process is discussed as well as the non-reactive and reactive characterization of the developed orifice microreactor. Residence time distribution measurements showed nearly ideal

  2. The limits of adaptation of functional protein synthesis to severe undernutrition

    International Nuclear Information System (INIS)

    Forrester, T.; Jahoor, F.; Reeds, P.

    1996-01-01

    This project was designed to investigate the limits of adaptation of protein metabolism in the stree of severe childhood malnutrition, representing as it does chronic dietary insufficiency of macronutrients and superimposed infection. The tasks included measurement of concentrations and rates of synthesis of nutrient transport proteins and hepatic acute phase proteins inseverely malnourished children during their acute illness and a recovery

  3. From mechanical loading to collagen synthesis, structural changes and function in human tendon

    DEFF Research Database (Denmark)

    Kjaer, M; Langberg, H; Heinemeier, K

    2009-01-01

    The adaptive response of connective tissue to loading requires increased synthesis and turnover of matrix proteins, with special emphasis on collagen. Collagen formation and degradation in the tendon increases with both acute and chronic loading, and data suggest that a gender difference exists...

  4. Synthesis, characterization, and application of surface-functionalized ordered mesoporous nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Po-Wen [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    The dissertation begins with Chapter 1, which is a general introduction of the fundamental synthesis of mesoporous silica materials, the selective functionlization of mesoporous silica materials, and the synthesis of nanostructured porous materials via nanocasting. In Chapter 2, the thermo-responsive polymer coated mesoporous silica nanoparticles (MSN) was synthesized via surface-initated polymerization and exhibited unique partition activities in a biphasic solution with the thermally induced change. In Chapter 3, the monodispersed spherical MSN with different mesoporous structure (MCM-48) was developed and employed as a template for the synthesis of mesoporous carbon nanoparticles (MCN) via nanocasting. MCN was demonstrated for the delivery of membrane impermeable chemical agents inside the cells. The cellular uptake efficiency and biocompabtibility of MCN with human cervical cancer cells were also investigated. In addition to the biocompabtibility of MCN, MCN was demonstrated to support Rh-Mn nanoparticles for catalytic reaction in Chapter 4. Owing to the unique mesoporosity, Rh-Mn nanoparticles can be well distributed inside the mesoporous structure and exhibited interesting catalytic performance on CO hydrogenation. In Chapter 5, the synthesis route of the aforementioned MCM-48 MSN was discussed and investigated in details and other metal oxide nanoparticles were also developed via nanocasting by using MCM-48 MSN as a template. At last, there is a general conclusion summarized in Chapter 6.

  5. An expeditious and green synthesis of new enaminones and study their chemical reactivity toward some different amines and binucleophiles under environmentally friendly conditions

    Directory of Open Access Journals (Sweden)

    Khadijah M. Al-Zaydi

    2017-05-01

    Full Text Available The condensation reaction of 3-heteroaromatic-3-oxopropanenitriles 3, 4 and 7 with dimethylformamide–dimethylacetal (DMF–DMA gave the corresponding enaminones 8, 9 and 10, respectively. Nucleophilic substitution of 8 and 9 with different amines resulted in a new derivatives of enaminones 11–18. The reactivity of enaminones 8 and 9 toward some nitrogen nucleophiles was investigated with a view to synthesize new heterocyclic systems. Thus, treatment of compounds 8 and 9 with phenylhydrazine afforded the pyrazole derivatives 19 and 20, respectively. On the other hand, reacting 8 and 9 with guanidine gave the pyrimidines 21 and 22, respectively. Treatment of compound 9 with hydroxylamine hydrochloride afforded the aminoisoxazoles 23. The foregoing reactions were carried out with conventional heating and under green conditions [ultrasound (US irradiations or ionic liquids (ILs] and a comparative study was employed. All the new structures are fully characterized.

  6. Reactive Systems

    DEFF Research Database (Denmark)

    Aceto, Luca; Ingolfsdottir, Anna; Larsen, Kim Guldstrand

    A reactive system comprises networks of computing components, achieving their goals through interaction among themselves and their environment. Thus even relatively small systems may exhibit unexpectedly complex behaviours. As moreover reactive systems are often used in safety critical systems......, the need for mathematically based formal methodology is increasingly important. There are many books that look at particular methodologies for such systems. This book offers a more balanced introduction for graduate students and describes the various approaches, their strengths and weaknesses, and when...... they are best used. Milner's CCS and its operational semantics are introduced, together with the notions of behavioural equivalences based on bisimulation techniques and with recursive extensions of Hennessy-Milner logic. In the second part of the book, the presented theories are extended to take timing issues...

  7. Facile synthesis of soluble functional graphene by reduction of graphene oxide via acetylacetone and its adsorption of heavy metal ions

    International Nuclear Information System (INIS)

    Xu, Minghan; Chai, Jing; Hu, Nantao; Huang, Da; Wang, Yuxi; Huang, Xiaolu; Wei, Hao; Yang, Zhi; Zhang, Yafei

    2014-01-01

    The synthesis of graphene (GR) from graphene oxide (GO) typically involves harmful chemical reducing agents that are undesirable for most practical applications. Here we report a green and facile synthesis method for the synthesis of GR that is soluble in water and organic solvents and that includes the additional benefit of adsorption of heavy metal ions. Acetylacetone, as both a reducing agent and a stabilizer, was used to prepare soluble GR from GO. Transmission electron microscopy and atomic force microscopy provide clear evidence for the formation of few-layer GR. The results from Fourier transform infrared spectroscopy and ultraviolet-visible spectroscopy show that reduction of GO to GR has occurred. Raman spectroscopy and X-ray photoelectron spectroscopy also indicate the removal of oxygen-containing functional groups from GO, resulting in the formation of GR. The results of dispersion experiments show that GR can be highly dispersed in water and N,N-Dimethylformamide. The reaction mechanism for acetylacetone reduction of exfoliated GO was also proposed. This method is a facile and environmentally friendly approach to the synthesis of GR and opens up new possibilities for preparing GR and GR-based nanomaterials for large-scale applications. Of even greater interest is that inductively coupled plasma atomic emission spectroscopy suggests that synthesized GR may be applied in the absorption of Cd 2+ and Co 2+ due to the strong coordination capacity of acetylacetone on the surfaces and edges of GR and the large surface area of GR in aqueous solutions. The maximum adsorptions are 49.28 mg g −1 for Cd 2+ , which is 4.5 times higher than that of carbon nanotubes, and 27.78 mg g −1 for Co 2+ , which is 3.6 times higher than that of titania beans. (paper)

  8. Fabrication of High Gas Barrier Epoxy Nanocomposites: An Approach Based on Layered Silicate Functionalized by a Compatible and Reactive Modifier of Epoxy-Diamine Adduct

    Directory of Open Access Journals (Sweden)

    Ran Wei

    2018-05-01

    Full Text Available To solve the drawbacks of poor dispersion and weak interface in gas barrier nanocomposites, a novel epoxy-diamine adduct (DDA was synthesized by reacting epoxy monomer DGEBA with curing agent D400 to functionalize montmorillonite (MMT, which could provide complete compatibility and reactivity with a DGEBA/D400 epoxy matrix. Thereafter, sodium type montmorillonite (Na-MMT and organic-MMTs functionalized by DDA and polyether amines were incorporated with epoxy to manufacture nanocomposites. The effects of MMT functionalization on the morphology and gas barrier property of nanocomposites were evaluated. The results showed that DDA was successfully synthesized, terminating with epoxy and amine groups. By simulating the small-angle neutron scattering data with a sandwich structure model, the optimal dispersion/exfoliation of MMT was observed in a DDA-MMT/DGEBA nanocomposite with a mean radius of 751 Å, a layer thickness of 30.8 Å, and only two layers in each tactoid. Moreover, the DDA-MMT/DGEBA nanocomposite exhibited the best N2 barrier properties, which were about five times those of neat epoxy. Based on a modified Nielsen model, it was clarified that this excellent gas barrier property was due to the homogeneously dispersed lamellas with almost exfoliated structures. The improved morphology and barrier property confirmed the superiority of the adduct, which provides a general method for developing gas barrier nanocomposites.

  9. SYNTHESIS AND REDUCED LOGIC GATE REALIZATION OF MULTI-VALUED LOGIC FUNCTIONS USING NEURAL NETWORK DEPLOYMENT ALGORITHM

    Directory of Open Access Journals (Sweden)

    A. K. CHOWDHURY

    2016-02-01

    Full Text Available In this paper an evolutionary technique for synthesizing Multi-Valued Logic (MVL functions using Neural Network Deployment Algorithm (NNDA is presented. The algorithm is combined with back-propagation learning capability and neural MVL operators. This research article is done to observe the anomalistic characteristics of MVL neural operators and their role in synthesis. The advantages of NNDA-MVL algorithm is demonstrated with realization of synthesized many valued functions with lesser MVL operators. The characteristic feature set consists of MVL gate count, network link count, network propagation delay and accuracy achieved in training. In brief, this paper depicts an effort of reduced network size for synthesized MVL functions. Trained MVL operators improve the basic architecture by reducing MIN gate and interlink connection by 52.94% and 23.38% respectively.

  10. Improvement of the Cubic Spline Function Sets for a Synthesis of the Axial Power Distribution of a Core Protection System

    International Nuclear Information System (INIS)

    Koo, Bon-Seung; Lee, Chung-Chan; Zee, Sung-Quun

    2006-01-01

    Online digital core protection system(SCOPS) for a system-integrated modular reactor is being developed as a part of a plant protection system at KAERI. SCOPS calculates the minimum CHFR and maximum LPD based on several online measured system parameters including 3-level ex-core detector signals. In conventional ABB-CE digital power plants, cubic spline synthesis technique has been used in online calculations of the core axial power distributions using ex-core detector signals once every 1 second in CPC. In CPC, pre-determined cubic spline function sets are used depending on the characteristics of the ex-core detector responses. But this method shows an unnegligible power distribution error for the extremely skewed axial shapes by using restrictive function sets. Therefore, this paper describes the cubic spline method for the synthesis of an axial power distribution and it generates several new cubic spline function sets for the application of the core protection system, especially for the severely distorted power shapes needed reactor type

  11. A convergent approach to the total synthesis of telmisartan via a Suzuki cross-coupling reaction between two functionalized benzimidazoles.

    Science.gov (United States)

    Martin, Alex D; Siamaki, Ali R; Belecki, Katherine; Gupton, B Frank

    2015-02-06

    A direct and efficient total synthesis has been developed for telmisartan, a widely prescribed treatment for hypertension. This approach brings together two functionalized benzimidazoles using a high-yielding Suzuki reaction that can be catalyzed by either a homogeneous palladium source or graphene-supported palladium nanoparticles. The ability to perform the cross-coupling reaction was facilitated by the regio-controlled preparation of the 2-bromo-1-methylbenzimidazole precursor. This convergent approach provides telmisartan in an overall yield of 72% while circumventing many issues associated with previously reported processes.

  12. A fast chemical route for the synthesis of TBHQ functionalized reduced graphene oxide and its electrochemical performances

    Energy Technology Data Exchange (ETDEWEB)

    Rana, Subhasis; Sen, Pintu, E-mail: psen@vecc.gov.in; Bandyopadhyay, S.K.

    2016-02-01

    A fast chemical route for the synthesis of tertiary butyl hydroquinone (TBHQ) functionalized reduced graphene oxide (FRGO) and their application as high performance electrode materials for supercapacitors have been reported. Reductions of chemically exfoliated graphene oxides (GO) in the presence of small amount of TBHQ (1–2 wt % with respect to GO) at various time periods were investigated through XRD, FTIR and Raman studies. Reappearance of broad diffraction peak close to graphite peak (002) reveals an efficient method of reduction of different oxygen containing functional groups present in GO/FGO resulting in a decrease of interlayer d-spacing (∼3.5 Å). Absence of the absorption peaks in FTIR for –C=O, t-O–H, epoxide and alkoxy groups supports the complete reduction of GO to FRGO by hydrazine hydrate within a short time period of 4 h reduction under reflux condition. A large red shift in UV spectrum of FRGO – 4 h (270 nm) reveals the complete reduction of graphene oxide. The average crystallite sp{sup 2} domains sizes have been estimated through Raman spectroscopy. Plausible mechanism of TBHQ assisted fast chemical reduction of FGO has been enumerated. 1.5 wt % TBHQ in FRGO shows the best electrochemical performance where TBHQ not only acts as a reducing agent during functionalization, but also plays as an active redox molecule for enhanced capacitance of 200 F/g. - Highlights: • A fast chemical route has been adopted for the synthesis of TBHQ functionalized RGO. • The kinetics of chemical reduction becomes faster in the presence of TBHQ. • The FTIR spectrum of functionalized RGO supports the complete reduction process. • TBHQ also plays a vital role for enhancing capacitance of functionalized RGO.

  13. Reactive scattering of H2 from Cu(100): comparison of dynamics calculations based on the specific reaction parameter approach to density functional theory with experiment.

    Science.gov (United States)

    Sementa, L; Wijzenbroek, M; van Kolck, B J; Somers, M F; Al-Halabi, A; Busnengo, H F; Olsen, R A; Kroes, G J; Rutkowski, M; Thewes, C; Kleimeier, N F; Zacharias, H

    2013-01-28

    We present new experimental and theoretical results for reactive scattering of dihydrogen from Cu(100). In the new experiments, the associative desorption of H(2) is studied in a velocity resolved and final rovibrational state selected manner, using time-of-flight techniques in combination with resonance-enhanced multi-photon ionization laser detection. Average desorption energies and rotational quadrupole alignment parameters were obtained in this way for a number of (v = 0, 1) rotational states, v being the vibrational quantum number. Results of quantum dynamics calculations based on a potential energy surface computed with a specific reaction parameter (SRP) density functional, which was derived earlier for dihydrogen interacting with Cu(111), are compared with the results of the new experiments and with the results of previous molecular beam experiments on sticking of H(2) and on rovibrationally elastic and inelastic scattering of H(2) and D(2) from Cu(100). The calculations use the Born-Oppenheimer and static surface approximations. With the functional derived semi-empirically for dihydrogen + Cu(111), a chemically accurate description is obtained of the molecular beam experiments on sticking of H(2) on Cu(100), and a highly accurate description is obtained of rovibrationally elastic and inelastic scattering of D(2) from Cu(100) and of the orientational dependence of the reaction of (v = 1, j = 2 - 4) H(2) on Cu(100). This suggests that a SRP density functional derived for H(2) interacting with a specific low index face of a metal will yield accurate results for H(2) reactively scattering from another low index face of the same metal, and that it may also yield accurate results for H(2) interacting with a defected (e.g., stepped) surface of that same metal, in a system of catalytic interest. However, the description that was obtained of the average desorption energies, of rovibrationally elastic and inelastic scattering of H(2) from Cu(100), and of the

  14. Sol-gel chemistry applied to the synthesis of polymetallic oxides including actinides reactivity and structure from solution to solid state; Synthese par voie douce d'oxydes polymetalliques incluant des actinides: reactivite et structure de la solution au solide

    Energy Technology Data Exchange (ETDEWEB)

    Lemonnier, St

    2006-02-15

    Minor actinides transmutation is studied at present in order to reduce the radiotoxicity of nuclear waste and the assessment of its technical feasibility requires specific designed materials. When considering americium, yttria stabilized zirconia (Am{sup III} YII Zriv)Or{sub x} is among the ceramic phases that one which presents the required physico-chemical properties. An innovative synthesis of this mixed oxide by sol-gel process is reported in this manuscript. The main aim of this work is to adjust the reactivity of the different metallic cations in aqueous media using complexing agent, in order to initiate a favourable interaction for a homogeneous elements repartition in the forming solid phase. The originality of the settled synthesis lies on an in-situ formation of a stable and monodisperse nano-particles dispersion in the presence of acetylacetone. The main reaction mechanisms have been identified: the sol stabilisation results from an original interaction between the three compounds (Zrly, trivalent cations and acetylacetone). The sol corresponds to a structured system at the nanometer scale for which zirconium and trivalent cations are homogeneously dispersed, preliminary to the sol-gel transition. Furthermore, preliminary studies were carried out with a view to developing materials. They have demonstrated that numerous innovative and potential applications can be developed by taking advantage of the direct and controlled formation of the sol and by adapting the sol-gel transition. The most illustrating result is the preparation of a sintered pellet with the composition Am0,13Zro,73Yo,0901,89 using this approach. (author)

  15. Facile and easily popularized synthesis of L-cysteine-functionalized magnetic nanoparticles based on one-step functionalization for highly efficient enrichment of glycopeptides.

    Science.gov (United States)

    Feng, Xiaoyan; Deng, Chunhui; Gao, Mingxia; Zhang, Xiangmin

    2018-01-01

    Protein glycosylation is one of the most important post-translational modifications. Also, efficient enrichment and separation of glycopeptides from complex samples are crucial for the thorough analysis of glycosylation. Developing novel hydrophilic materials with facile and easily popularized synthesis is an urgent need in large-scale glycoproteomics research. Herein, for the first time, a one-step functionalization strategy based on metal-organic coordination was proposed and Fe 3 O 4 nanoparticles were directly functionalized with zwitterionic hydrophilic L-cysteine (L-Cys), greatly simplifying the synthetic procedure. The easily synthesized Fe 3 O 4 /L-Cys possessed excellent hydrophilicity and brief composition, contributing to affinity for glycopeptides and reduction in nonspecific interaction. Thus, Fe 3 O 4 /L-Cys nanoparticles showed outstanding sensitivity (25 amol/μL), high selectivity (mixture of bovine serum albumin and horseradish peroxidase tryptic digests at a mass ratio of 100:1), good reusability (five repeated times), and stability (room temperature storage of 1 month). Encouragingly, in the glycosylation analysis of human serum, a total of 376 glycopeptides with 393 N-glycosylation sites corresponding to 118 glycoproteins were identified after enrichment with Fe 3 O 4 /L-Cys, which was superior to ever reported L-Cys modified magnetic materials. Furthermore, applying the one-step functionalization strategy, cysteamine and glutathione respectively direct-functionalized Fe 3 O 4 nanoparticles were successfully synthesized and also achieved efficient glycopeptide enrichment in human serum. The results indicated that we have presented an efficient and easily popularized strategy in glycoproteomics as well as in the synthesis of novel materials. Graphical abstract Fe 3 O 4 /L-Cys nanoparticles based on one-step functionalization for highly efficient enrichment of glycopeptides.

  16. Synthesis and phototoxicity of isomeric 7,9-diglutathione pyrrole adducts: Formation of reactive oxygen species and induction of lipid peroxidation

    Directory of Open Access Journals (Sweden)

    Liang Ma

    2015-09-01

    Full Text Available Pyrrolizidine alkaloids (PAs are hepatotoxic, genotoxic, and carcinogenic in experimental animals. Because of their widespread distribution in the world, PA-containing plants are probably the most common poisonous plants affecting livestock, wildlife, and humans. Upon metabolism, PAs generate reactive dehydro-PAs and other pyrrolic metabolites that lead to toxicity. Dehydro-PAs are known to react with glutathione (GSH to form 7-GSH-(+/−-6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (7-GS-DHP in vivo and in vitro and 7,9-diGS-DHP in vitro. To date, the phototoxicity of GS-DHP adducts has not been well studied. In this study, we synthesized 7-GS-DHP, a tentatively assigned 9-GS-DHP, and two enantiomeric 7,9-diGS-DHP adducts by reaction of dehydromonocrotaline with GSH. The two 7,9-diGS-DHPs were separated by high performance liquid chromatography (HPLC and their structures were characterized by 1H nuclear magnetic resonance (NMR and 1H–1H correlation spectroscopy (COSY NMR spectral analysis. Photoirradiation of 7-GS-DHP, 9-GS-DHP, and the two 7,9-diGS-DHPs as well as dehydromonocrotaline, dehydroheliotrine, and the 7-R enantiomer of DHP (DHR, by UVA light at 0 J/cm2, 14 J/cm2, and 35 J/cm2 in the presence of a lipid, methyl linoleate, all resulted in lipid peroxidation in a light dose-responsive manner. The levels of lipid peroxidation induced by the two isomeric 7,9-diGS-DHPs were significantly higher than that by 7-GS-DHP and 9-GS-DHP. When 7,9-diGS-DHP was irradiated in the presence of sodium azide (NaN3, the level of lipid peroxidation decreased; lipid peroxidation was enhanced when methanol was replaced by deuterated methanol. These results suggest that singlet oxygen is a product induced by the irradiation of 7,9-diGS-DHP. When irradiated in the presence of superoxide dismutase (SOD, the level of lipid peroxidation decreased, indicating that lipid peroxidation is also mediated by superoxide. These results indicate that lipid

  17. synthesis and characterization of some poly functionalized heterocyclic derivatives of expected biological activity

    International Nuclear Information System (INIS)

    El-sayed, M.S.

    2001-01-01

    The present work was aimed and designed to fulfil The following objectives : 1- Continuation of the effort done by our research group in the field of chemistry of pyridinethione derivatives and their biological activities. 2- Synthesis of several new heterocyclic derivatives containing N and/or S using the laboratory available reagents. 3- Establishment of the structures of the newly synthesized heterocyclic compounds by the data of IR, 1 H-NMR, mass spectra in addition to the elemental analysis. 4- Synthesis of some of these heterocyclic derivatives via alternative routs and this used as a tool to confirm the structures of the newly synthesized heterocyclic derivatives. 5- study of the most probable mechanisms leading to the formation of the new heterocyclic derivatives. 6- The antimicrobial activity of some of the newly synthesized heterocyclic derivatives was tested against several types of organisms

  18. Early aphasia rehabilitation is associated with functional reactivation of the left inferior frontal gyrus: a pilot study.

    Science.gov (United States)

    Mattioli, Flavia; Ambrosi, Claudia; Mascaro, Lorella; Scarpazza, Cristina; Pasquali, Patrizia; Frugoni, Marina; Magoni, Mauro; Biagi, Laura; Gasparotti, Roberto

    2014-02-01

    Early poststroke aphasia rehabilitation effects and their functional MRI (fMRI) correlates were investigated in a pilot, controlled longitudinal study. Twelve patients with mild/moderate aphasia (8 Broca, 3 anomic, and 1 Wernicke) were randomly assigned to daily language rehabilitation for 2 weeks (starting 2.2 [mean] days poststroke) or no rehabilitation. The Aachen Aphasia Test and fMRI recorded during an auditory comprehension task were performed at 3 time intervals: mean 2.2 (T1), 16.2 (T2), and 190 (T3) days poststroke. Groups did not differ in terms of age, education, aphasia severity, lesions volume, baseline fMRI activations, and in task performance during fMRI across examinations. Rehabilitated patients significantly improved in naming and written language tasks (Paphasia treatment is useful, has durable effects, and may lead to early enhanced recruitment of brain areas, particularly the left inferior frontal gyrus, which persists in the chronic phase.

  19. Investigation of Structure and Reactivity Relationship in M-N-C Type Catalysts using Density Functional Tight Binding

    Energy Technology Data Exchange (ETDEWEB)

    Negre, Christian Francisco Andres [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gonzales, Ivana [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-20

    Catalysts inhibition studies were performed to indisputably confirm the role of various metal, carbon, and nitrogen moieties in the individual steps of oxygen reduction reaction (ORR) on M-N-C catalysts. ORR activity was studied at University of New Mexico by rotating ring disk electrode method in the acidic electrolyte with the addition of Tris (tris(hydroxymethyl)-aminomethane) as inhibiting agent. To understand the interaction of Tris with different defects that exist in Fe-N-C materials and provide the support for the experimental data, we used density functional theory (DFT) and modeled the interaction of protonated Tris (TrisH) with Fe containingcenters (Fe-N4 and Fe-N2C2), pyridinic nitrogen, graphitic nitrogen, and pyrrolic nitrogen both as in plane and edge defects.

  20. A method for synthesis and functionalization of ultrasmall superparamagnetic covalent carriers based on maghemite and dextran

    International Nuclear Information System (INIS)

    Mornet, Stephane; Portier, Josik; Duguet, Etienne

    2005-01-01

    A new generation of susceptibility contrast agents for MRI and based on maghemite cores covalently bonded to dextran stabilizing macromolecules was investigated. The multistep preparation of these versatile ultrasmall superparamagnetic iron oxides (VUSPIO) consisted of colloidal maghemite synthesis, surface modification by aminopropylsilane groups, and coupling of partially oxidized dextran via Schiff's bases and secondary amine bonds. The dextran corona might be easily derivatized, e.g. by PEGylation

  1. Synthesis and surface modification of spindle-type magnetic nanoparticles: gold coating and PEG functionalization

    OpenAIRE

    Mendez-Garza , Juan; Wang , Biran; Madeira , Alexandra; Di-Giorgio , Christophe; Bossis , Georges

    2013-01-01

    International audience; In this paper, we describe the synthesis of gold coated spindle-type iron nanoparticles and its surface modification by a thiolated fluorescently-labelled polyethylene glycol (PEG) polymer. A forced hydrolysis of ferric salts in the presence of phosphate ions was used to produce α-Fe2O3 spindle-type particles. The oxide powders were first reduced to α-iron under high temperature and controlled dihydrogen atmosphere. Then, the resulting magnetic spindle-type particles w...

  2. Photochemical Properties and Reactivity of a Ru Compound Containing an NAD/NADH-Functionalized 1,10-Phenanthroline Ligand.

    Science.gov (United States)

    Kobayashi, Katsuaki; Ohtsu, Hideki; Nozaki, Koichi; Kitagawa, Susumu; Tanaka, Koji

    2016-03-07

    An NAD/NADH-functionalized ligand, benzo[b]pyrido[3,2-f][1,7]-phenanthroline (bpp), was newly synthesized. A Ru compound containing the bpp ligand, [Ru(bpp)(bpy)2](2+), underwent 2e(-) and 2H(+) reduction, generating the NADH form of the compound, [Ru(bppHH)(bpy)2](2+), in response to visible light irradiation in CH3CN/TEA/H2O (8/1/1). The UV-vis and fluorescent spectra of both [Ru(bpp)(bpy)2](2+) and [Ru(bppHH)(bpy)2](2+) resembled the spectra of [Ru(bpy)3](2+). Both complexes exhibited strong emission, with quantum yields of 0.086 and 0.031, respectively; values that are much higher than those obtained from the NAD/NADH-functionalized complexes [Ru(pbn)(bpy)2](2+) and [Ru(pbnHH)(bpy)2](2+) (pbn = (2-(2-pyridyl)benzo[b]-1.5-naphthyridine, pbnHH = hydrogenated form of pbn). The reduction potential of the bpp ligand in [Ru(bpp)(bpy)2](2+) (-1.28 V vs SCE) is much more negative than that of the pbn ligand in [Ru(pbn)(bpy)2](2+) (-0.74 V), although the oxidation potentials of bppHH and pbnHH are essentially equal (0.95 V). These results indicate that the electrochemical oxidation of the dihydropyridine moiety in the NADH-type ligand was independent of the π system, including the Ru polypyridyl framework. [Ru(bppHH)(bpy)2](2+) allowed the photoreduction of oxygen, generating H2O2 in 92% yield based on [Ru(bppHH)(bpy)2](2+). H2O2 production took place via singlet oxygen generated by the energy transfer from excited [Ru(bppHH)(bpy)2](2+) to triplet oxygen.

  3. Emotion reactivity and regulation in late-life generalized anxiety disorder: Functional connectivity at baseline and post-treatment

    Science.gov (United States)

    Andreescu, Carmen; Sheu, Lei K.; Tudorascu, Dana; Gross, James J.; Walker, Sarah; Banihashemi, Layla; Aizenstein, Howard

    2014-01-01

    Objectives Generalized Anxiety Disorder (GAD) is one of the most prevalent mental disorders in the elderly, but its functional neuroanatomy is not well understood. Given the role of emotion dysregulation in GAD, we sought to describe the neural bases of emotion regulation in late-life GAD by analyzing the functional connectivity (FC) in the Salience Network and the Executive Control Network during worry induction and worry reappraisal. Design, setting and participants Twenty-eight elderly GAD and thirty-one non-anxious comparison participants were included. Twelve elderly GAD completed a 12-week pharmacotherapy trial. We used an in-scanner worry script that alternates blocks of worry induction and reappraisal. We assessed network FC, employing the following seeds: anterior insula (AI), dorso-lateral prefrontal cortex (dlPFC), the bed nucleus of stria terminalis (BNST), the paraventricular nucleus (PVN). Results GAD participants exhibited greater FC during worry induction between the left AI and the right orbito-frontal cortex (OFC), and between the BNST and the subgenual cingulate. During worry reappraisal, the non-anxious participants had greater FC between the left dlPFC and the medial PFC, as well as between the left AI and the medial PFC, while elderly GAD had greater FC between the PVN and the amygdala. Following twelve weeks of pharmacotherapy, GAD participants had greater connectivity between the dlPFC and several prefrontal regions during worry reappraisal. Conclusion FC during worry induction and reappraisal points toward abnormalities in both worry generation and worry reappraisal. Following successful pharmacologic treatment, we observed greater connectivity in the prefrontal nodes of the Executive Control Network during reappraisal of worry. PMID:24996397

  4. Synthesis and characterization of thiol-ene functionalized siloxanes and evaluation of their polymerization kinetics, network properties, and dental applications

    Science.gov (United States)

    Cole, Megan A.

    We explored formation-structure-property relationships in thiol-ene functionalized oligosiloxanes to create crosslinked networks. Specifically, nine oligomers were synthesized, three with thiol-functional silane repeats and three with allyl-functional silane repeats. Structural variations in each oligomer were systematically induced through the incorporation of non-reactive repeats bearing either diphenyl or di-n-octyl moieties, and the oligomer molecular weight was limited by the presence of monofunctional silane condensation species. The molecular weights and chain compositions of all oligomers were ascertained and subsequently used in the evaluation of network properties formed upon photopolymerization of thiol- and ene-functional reactants. Polymerization kinetics of the thiol-ene functionalized siloxanes were also investigated using photoinitiation owing to the spatial and temporal control afforded by this technique. In particular, the effects of the viscosity of the ene-functionalized oligomer and the degree of thiol functionalization on the observed polymerization rate were determined. Results showed that the speed of polymerization varied with changes to the rate-limiting step, which was heavily influenced by neighboring non-reactive functionalities. Moreover, the thiol-ene reaction was found to exhibity unimolecular termination exclusively in siloxane-based systems. Proposed use of the thiol-ene functionalized siloxane system as a dental impression material necessitated the development of a redox initiation scheme. Evaluation of the benzoylperoxide/dimethyl-p-toluidine redox pair in traditional systems showed bulk thiol-ene polymerizations comparable to photoinitiation with the added advantage of uninhibited depth control, as also demonstrated in small molecule thiol-ene coupling reactions initiated by this same redox system. Application of the redox pair to the siloxane system allowed for the viscoelastic properties as well as the feature replication

  5. The limits of adaptation of functional protein synthesis to sever undernutrition

    International Nuclear Information System (INIS)

    Jahoor, F.; Bhattiprolu, S.; Reeds, P.; Forrester, T.; Boyne, M.

    1994-01-01

    Our goal is to determine how the stress of infections alters the adaptation to reduced food intake in children. We think that an important element is the need for hepatic synthesis of rapidly turning over acute-phase proteins, a critical factor in overall maintenance of host defenses. When the child's prior intake has been adequate, even though growth may temporarily cease, the presence of adequate amino acid stores in tissues allows the hepatic response to stress to be maintained at the same time as an adequate rate of synthesis of nutrient transport proteins. However, when the immune system is activated in a children whose nutrition is already suboptimal the ability of the liver to synthesize nutrient transport proteins is compromised thereby further impeding nutrient utilization. We will use stable isotope tracer methodology to determine the effects of severe protein energy malnutrition, with and without infection, on the rates of synthesis of nutrient transport proteins and acute-phase proteins in undernourished children at three time points during treatment; in the early resuscitative period, after appetite has returned, and at the end of the catch-up growth phase when normal growth has resumed. (author). 12 refs, 1 fig., 1 tab

  6. The limits of adaptation of functional protein synthesis to sever undernutrition

    Energy Technology Data Exchange (ETDEWEB)

    Jahoor, F; Bhattiprolu, S; Reeds, P [Baylor Coll. of Medicine, Houston, TX (United States). Children` s Nutrition Research Centre; Forrester, T; Boyne, M [West Indies Univ., Mona (Jamaica). Tropical Metabolism Research Unit

    1994-12-31

    Our goal is to determine how the stress of infections alters the adaptation to reduced food intake in children. We think that an important element is the need for hepatic synthesis of rapidly turning over acute-phase proteins, a critical factor in overall maintenance of host defenses. When the child`s prior intake has been adequate, even though growth may temporarily cease, the presence of adequate amino acid stores in tissues allows the hepatic response to stress to be maintained at the same time as an adequate rate of synthesis of nutrient transport proteins. However, when the immune system is activated in a children whose nutrition is already suboptimal the ability of the liver to synthesize nutrient transport proteins is compromised thereby further impeding nutrient utilization. We will use stable isotope tracer methodology to determine the effects of severe protein energy malnutrition, with and without infection, on the rates of synthesis of nutrient transport proteins and acute-phase proteins in undernourished children at three time points during treatment; in the early resuscitative period, after appetite has returned, and at the end of the catch-up growth phase when normal growth has resumed. (author). 12 refs, 1 fig., 1 tab.

  7. Facile synthesis of highly reactive and stable Fe-doped g-C3N4 composites for peroxymonosulfate activation: A novel nonradical oxidation process.

    Science.gov (United States)

    Feng, Yong; Liao, Changzhong; Kong, Lingjun; Wu, Deli; Liu, Yiming; Lee, Po-Heng; Shih, Kaimin

    2018-07-15

    Ferrous ions (Fe 2+ ) are environmentally friendly materials but show extremely inefficient persulfate activation. Polymeric graphitic carbon nitride (g-C 3 N 4 ) has recently shown potential to activate persulfates, but the process requires intense light irradiation. To overcome these drawbacks, we designed an innovative heterogeneous iron catalyst by doping Fe into g-C 3 N 4 (Fe-g-C 3 N 4 ) and used it to activate peroxymonosulfate (PMS) for degradation of pollutant phenol. The catalysts synthesized were fully characterized with various techniques, such as X-ray diffraction, Mössbauer spectroscopy, and X-ray photoelectron spectroscopy. Fe was found to be coordinated with the framework of g-C 3 N 4 . Approximately 100% degradation of phenol was achieved with Fe-g-C 3 N 4 after 20 min of reaction, whereas less than 5% degradation of phenol was achieved with Fe 2+ . Fe-g-C 3 N 4 -PMS had a wide effective pH range, and its reactivity was nearly independent of natural illumination. In contrast to the previously proposed radical mechanisms, quenching experiments revealed that nonradical oxidation contributed to the observed degradation. The OO bond in the activated PMS likely underwent heterolysis, producing high-valence iron species (Fe IV O) as the primary active species. These findings have important implications for the development of a selective heterogeneous nonradical-oxidation process. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. The synthesis and coupling of photoreactive collagen-based peptides to restore integrin reactivity to an inert substrate, chemically-crosslinked collagen

    Science.gov (United States)

    Malcor, Jean-Daniel; Bax, Daniel; Hamaia, Samir W.; Davidenko, Natalia; Best, Serena M.; Cameron, Ruth E.; Farndale, Richard W.; Bihan, Dominique

    2016-01-01

    Collagen is frequently advocated as a scaffold for use in regenerative medicine. Increasing the mechanical stability of a collagen scaffold is widely achieved by cross-linking using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS). However, this treatment consumes the carboxylate-containing amino acid sidechains that are crucial for recognition by the cell-surface integrins, abolishing cell adhesion. Here, we restore cell reactivity to a cross-linked type I collagen film by covalently linking synthetic triple-helical peptides (THPs), mimicking the structure of collagen. These THPs are ligands containing an active cell-recognition motif, GFOGER, a high-affinity binding site for the collagen-binding integrins. We end-stapled peptide strands containing GFOGER by coupling a short diglutamate-containing peptide to their N-terminus, improving the thermal stability of the resulting THP. A photoreactive Diazirine group was grafted onto the end-stapled THP to allow covalent linkage to the collagen film upon UV activation. Such GFOGER-derivatized collagen films showed restored affinity for the ligand-binding I domain of integrin α2β1, and increased integrin-dependent cell attachment and spreading of HT1080 and Rugli cell lines, expressing integrins α2β1 and α1β1, respectively. The method we describe has wide application, beyond collagen films or scaffolds, since the photoreactive diazirine will react with many organic carbon skeletons. PMID:26854392

  9. In search of a new class of stable nitroxide: synthesis and reactivity of a peri-substituted N,N-bissulfonylhydroxylamine.

    Science.gov (United States)

    Patel, Bhaven; Carlisle, Julie; Bottle, Steven E; Hanson, Graeme R; Kariuki, Benson M; Male, Louise; McMurtrie, John C; Spencer, Neil; Grainger, Richard S

    2011-04-07

    Acyclic bissulfonylnitroxides have never been isolated, and degrade through fragmentation. In an approach to stabilising a bissulfonylnitroxide radical, the cyclic, peri-substituted N,N-bissulfonylhydroxylamine, 2-hydroxynaphtho[1,8-de][1,3,2]dithiazine 1,1,3,3-tetraoxide (1), has been prepared by formal nitrogen insertion into the sulfur-sulfur bond of a sulfinylsulfone, naphtho[1,8-cd][1,2]dithiole 1,1,2-trioxide. The heterocyclic ring of 1 is shown to adopt a sofa conformation by X-ray crystallography, with a pseudo-axial hydroxyl group. N,N-Bissulfonylhydroxylamine 1 displays high thermal, photochemical and hydrolytic stability compared to acyclic systems. EPR analysis reveals formation of the corresponding bissulfonylnitroxide 2 upon oxidation of 1 with the Ce(IV) salts CAN and CTAN. Although 2 does not undergo fragmentation, it cannot be isolated, since hydrogen atom abstraction to reform 1 occurs in situ. The stability and reactivity of 1 and 2 are compared with the known cyclic benzo-fused N,N-bissulfonylhydroxylamine, N-hydroxy-O-benzenedisulfonimide (6), for which the X-ray data, and EPR of the corresponding nitroxide 10, are also reported for the first time.

  10. Synthesis of low-cost adsorbent from rice bran for the removal of reactive dye based on the response surface methodology

    Science.gov (United States)

    Hong, Gui-Bing; Wang, Yi-Kai

    2017-11-01

    Rice bran is a major by-product of the rice milling industry and is abundant in Taiwan. This study proposed a simple method for modifying rice bran to make it a low-cost adsorbent to remove reactive blue 4 (RB4) from aqueous solutions. The effects of independent variables such as dye concentration (100-500 ppm), adsorbent dosage (20-120 mg) and temperature (30-60 °C) on the dye adsorption capacity of the modified rice bran adsorbent were investigated by using the response surface methodology (RSM). The results showed that the dye maximum adsorption capacity of the modified rice bran adsorbent was 151.3 mg g-1 with respect to a dye concentration of 500 ppm, adsorbent dosage of 65.36 mg, and temperature of 60 °C. The adsorption kinetics data followed the pseudo-second-order kinetic model, and the isotherm data fit the Langmuir isotherm model well. The maximum monolayer adsorption capacity was 178.57-185.19 mg g-1, which was comparable to that of other agricultural waste adsorbents used to remove RB4 from aqueous solutions in the literature. The thermodynamics analysis results indicated that the adsorption of RB4 onto the modified rice bran adsorbent is an endothermic, spontaneous monolayer adsorption that occurs through a physical process.

  11. A chemical platform approach on cardanol oil: from the synthesis of building blocks to polymer synthesis

    Directory of Open Access Journals (Sweden)

    Jaillet Fanny

    2016-09-01

    Full Text Available This review proposes a platform approach for the synthesis of various building blocks from cardanol oil in one or two-steps synthesis. Cardanol is a natural phenol issued from Cashew nutshell liquid (CNSL. CNSL is a non-edible renewable resource, co-produced from cashew industry in large commercial volumes. Cardanol is non-toxic and particularly suitable as an aromatic renewable resource for polymers and materials. Various routes were used for the synthesis of di- and poly-functional building blocks used thereafter in polymer syntheses. Phenolation was used to dimerize/oligomerize cardanol to propose increase functionality of cardanol. Thio-ene was used to synthesize new reactive amines. Epoxidation and (methacrylation were also used to insert oxirane or (methacrylate groups in order to synthesize polymers and materials.

  12. Design and synthesis of structurally well-defined functional polypropylenes via transition metal-mediated olefin polymerization chemistry

    Institute of Scientific and Technical Information of China (English)

    Dong Jinyong

    2006-01-01

    Functionalization of polyolefins is an industrially important yet scientifically challenging research subject.This paper summarizes our recent effort to access structurally well-defined functional polypropylenes via transition metal-mediated olefin polymerization.In one approach,polypropylenes containing side chain functional groups of controlled concentrations were obtained by Ziegler-Natta-catalyzed copolymerization of propylene in combination with either living anionic or controlled radical polymerization of polar monomers.The copolymerization of propylene with 1,4-divinylbenzene using an isospecific MgC12-supported TIC14 catalyst yielded potypropylenes containing pendant styrene moieties.Both metalation reaction with n-butyllithium and hydrochlorination reaction with dry hydrogen chloride selectively and quantitatively occurred at the pendant reactive sites,generating polymeric benzyllithium and 1-chloroethylbenzene species.These species initiated living anionic polymerization of styrene(S)and atom transfer radical polymerization(in the presence of CuC1 and pentamethyldiethylenetriamine) of methyl methacrylate(MMA),respectively,resulting in functional polypropylene graft copolymers(PP-g-PS and PP-g-PMMA)with controllable graft lengths.In another approach,chain end-functionalized polypropylenes containing a terminal OH-group with controlled molecular weights were directly prepared by propylene polymerization with a metaUocene catalyst through a selective aluminum chain transfer reaction.Both approaches proved to be desirable polyolefin functionalization routes in terms of efficiency and polymer structure controllability.

  13. Glucagon-Like Peptide-1 Secreting Cell Function as well as Production of Inflammatory Reactive Oxygen Species Is Differently Regulated by Glycated Serum and High Levels of Glucose

    Directory of Open Access Journals (Sweden)

    Alessandra Puddu

    2014-01-01

    Full Text Available Glucagon-like peptide-1 (GLP-1, an intestinal hormone contributing to glucose homeostasis, is synthesized by proglucagon and secreted from intestinal neuroendocrine cells in response to nutrients. GLP-1 secretion is impaired in type 2 diabetes patients. Here, we aimed at investigating whether diabetic toxic products (glycated serum (GS or high levels of glucose (HG may affect viability, function, and insulin sensitivity of the GLP-1 secreting cell line GLUTag. Cells were cultured for 5 days in presence or absence of different dilutions of GS or HG. GS and HG (alone or in combination increased reactive oxygen species (ROS production and upregulated proglucagon mRNA expression as compared to control medium. Only HG increased total production and release of active GLP-1, while GS alone abrogated secretion of active GLP-1. HG-mediated effects were associated with the increased cell content of the prohormone convertase 1/3 (PC 1/3, while GS alone downregulated this enzyme. HG upregulated Glucokinase (GK and downregulated SYNTHAXIN-1. GS abrogated SYNTHAXIN-1 and SNAP-25. Finally, high doses of GS alone or in combination with HG reduced insulin-mediated IRS-1 phosphorylation. In conclusion, we showed that GS and HG might regulate different pathways of GLP-1 production in diabetes, directly altering the function of neuroendocrine cells secreting this hormone.

  14. Detection and identification of Cu2+ and Hg2+ based on the cross-reactive fluorescence responses of a dansyl-functionalized film in different solvents.

    Science.gov (United States)

    Cao, Yuan; Ding, Liping; Wang, Shihuai; Liu, Yuan; Fan, Junmei; Hu, Wenting; Liu, Ping; Fang, Yu

    2014-01-08

    A dansyl-functionalized fluorescent film sensor was specially designed and prepared by assembling dansyl on a glass plate surface via a long flexible spacer containing oligo(oxyethylene) and amine units. The chemical attachment of dansyl moieties on the surface was verified by contact angle, XPS, and fluorescence measurements. Solvent effect examination revealed that the polarity-sensitivity was retained for the surface-confined dansyl moieties. Fluorescence quenching studies in water declared that the dansyl-functionalized SAM possesses a higher sensitivity towards Hg(2+) and Cu(2+) than the other tested divalent metal ions including Zn(2+), Cd(2+), Co(2+), and Pb(2+). Further measurements of the fluorescence responses of the film towards Cu(2+) and Hg(2+) in three solvents including water, acetonitrile, and THF evidenced that the present film exhibits cross-reactive responses to these two metal ions. The combined signals from the three solvents provide a recognition pattern for both metal ions at a certain concentration and realize the identification between Hg(2+) and Cu(2+). Moreover, using principle component analysis, this method can be extended to identify metal ions that are hard to detect by the film sensor in water such as Co(2+) and Ni(2+).

  15. Imaging and controlling intracellular reactions: Lysosome transport as a function of diameter and the intracellular synthesis of conducting polymers

    Science.gov (United States)

    Payne, Christine

    2014-03-01

    Eukaryotic cells are the ultimate complex environment with intracellular chemical reactions regulated by the local cellular environment. For example, reactants are sequestered into specific organelles to control local concentration and pH, motor proteins transport reactants within the cell, and intracellular vesicles undergo fusion to bring reactants together. Current research in the Payne Lab in the School of Chemistry and Biochemistry at Georgia Tech is aimed at understanding and utilizing this complex environment to control intracellular chemical reactions. This will be illustrated using two examples, intracellular transport as a function of organelle diameter and the intracellular synthesis of conducting polymers. Using single particle tracking fluorescence microscopy, we measured the intracellular transport of lysosomes, membrane-bound organelles, as a function of diameter as they underwent transport in living cells. Both ATP-dependent active transport and diffusion were examined. As expected, diffusion scales with the diameter of the lysosome. However, active transport is unaffected suggesting that motor proteins are insensitive to cytosolic drag. In a second example, we utilize intracellular complexity, specifically the distinct micro-environments of different organelles, to carry out chemical reactions. We show that catalase, found in the peroxisomes of cells, can be used to catalyze the polymerization of the conducting polymer PEDOT:PSS. More importantly, we have found that a range of iron-containing biomolecules are suitable catalysts with different iron-containing biomolecules leading to different polymer properties. These experiments illustrate the advantage of intracellular complexity for the synthesis of novel materials.

  16. Bio-templated CdSe quantum dots green synthesis in the functional protein, lysozyme, and biological activity investigation

    International Nuclear Information System (INIS)

    Wang, Qisui; Li, Song; Liu, Peng; Min, Xinmin

    2012-01-01

    Bifunctional fluorescence (CdSe Quantum Dots) – protein (Lysozyme) nanocomposites were synthesized at room temperature by a protein-directed, solution-phase, green-synthetic method. Fluorescence (FL) and absorption spectra showed that CdSe QDs were prepared successfully with Lyz. The average particle size and crystalline structure of QDs were investigated by high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD), respectively. With attenuated total reflection-fourier transform infrared (ATR-FTIR) spectra and thermogravimetric (TG) analysis, it was confirmed that there is interaction between QDs and amide I, amide II groups in Lyz. FL polarization was measured and FL imaging was done to monitor whether QDs could be responsible for possible changes in the conformation and activity of Lyz. Interestingly, the results showed Lyz still retain the biological activity after formation of QDs, but the secondary structure of the Lyz was changed. And the advantage of this synthesis method is producing excellent fluorescent QDs with specifically biological function. -- Highlights: ► Lysozyme-directed green synthesis of CdSe quantum dots. ► Lysozyme still retain the biological activity after formation of CdSe. ► The method is the production of fluorescent QDs with highly specific and functions.

  17. Synthesis and characterization of triflic acid-functionalized mesoporous Zr-TMS catalysts: heterogenization of CF3SO3H over Zr-TMS and its catalytic activity

    NARCIS (Netherlands)

    Chidambaram, M.; Curulla Ferre, D.; Singh, A.P.; Anderson, B.G.

    2003-01-01

    Triflic acid-functionalized Zr-TMS (zirconium oxide with a mesostructured framework; TMS, transition metal oxide mesoporous molecular sieves) catalysts have been synthesized by functionalizing triflic acid onto the walls of Zr-TMS via post synthesis method. The synthesized materials were

  18. Functional impact of treatment with ranibizumab under a reactive strategy in patients with neovascular age-related macular degeneration.

    Science.gov (United States)

    Gallego-Pinazo, R; Dolz-Marco, R; Andreu-Fenoll, M; Farrés, J; Monclús, L

    2017-03-01

    To analyse the functional recovery using a pro re nata (PRN) dosing strategy with intravitreal injections of ranibizumab for patients with neovascular age-related macular degeneration (AMD). An observational, retrospective, single-centre study, was conducted on patients with neovascular AMD managed with a PRN strategy with ranibizumab, and were followed-up for a minimum of 18 months. Sociodemographic and clinical data were collected from medical records. The percentage of visual acuity (VA) recovered after losing 5 or more letters was calculated taking into account the previous visit, as well as considering the best VA recorded prior to the retreament. The analysis included 128 patients. The mean (SD) follow-up period was 18.9 (2.3) months. The mean (SD) elapsed days between onset of symptoms and diagnosis, and between prescription and administration of treatment was 50.2 (57.4) and 10.9 (16.0), respectively. Only 108 patients were prescribed ranibizumab after losing 5 or more letters of VA. The mean (SD) VA recovery compared to the previous VA was 70.3% (114.4). On the other hand, the mean (SD) VA recovery when considering the best VA registered before the retreatment was 43.5% (112.9), with 59.4% of re-treatments having a VA recovery below 75%, and with 11.7% not presenting any VA recovery. A PRN dosing strategy with intravitreal ranibizumab for neovascular AMD may not be efficient in preserving and/or recovering VA in the long-term, due to a cumulative irreversible VA loss. Copyright © 2016 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Synthesis of water-soluble scaffolds for peptide cyclization, labeling, and ligation

    NARCIS (Netherlands)

    Smeenk, L.E.J.; Dailly, N.; Hiemstra, H.; van Maarseveen, J.H.; Timmerman, P.

    2012-01-01

    The synthesis and applications of water-soluble scaffolds that conformationally constrain side chain unprotected linear peptides containing two cysteines are described. These scaffolds contain a functionality with orthogonal reactivity to be used for labeling and ligation. This is illustrated by the

  20. Synthesis and Reactivity of a Cerium(III Scorpionate Complex Containing a Redox Non-Innocent 2,2′-Bipyridine Ligand

    Directory of Open Access Journals (Sweden)

    Fabrizio Ortu

    2015-11-01

    Full Text Available The Ce(III hydrotris(3,5-dimethylpyrazolylborate complex [Ce(TpMe22(κ2-dmpz] (1 (TpMe2 = {HB(dmpz3}−; dmpz = 3,5-dimethylpyrazolide was isolated in fair yield from the reaction of [Ce(I3(THF4] with two equivalents of [K(TpMe2] via the facile decomposition of TpMe2. [Ce(TpMe22(bipy] (2 was synthesized in poor yield by the “one-pot” reaction of [Ce(I3(THF4], bipy (bipy = 2,2′-bipyridine, KC8 and two equivalents of [K(TpMe2] in tetrahydrofuran (THF. The reaction of 2 with N-methylmorpholine-N-oxide produced the known decomposition product [Ce(TpMe2(μ-BOpMe2]2 (3 (BOpMe2 = {HBO(dmpz2}2− in poor yield, presumably by N–O and B–N bond cleavage of a reactive intermediate. The reaction of 2 with trimethylsilylazide gave [Ce(TpMe22(N3] (4 in poor yield; the fate of bipy and the trimethylsilyl group is unknown. Complexes 1–4 were characterized by single crystal XRD, NMR and FTIR spectroscopy and elemental analysis. Complex 2 was additionally probed by UV/Vis/NIR and Electron Paramagnetic Resonance (EPR spectroscopies, Cyclic Voltammetry (CV and magnetometry, which together indicate a formal 4f1 Ce(III center coordinated by a bipy·− radical anion in this system.