Computer Simulation of Turbulent Reactive Gas Dynamics
Directory of Open Access Journals (Sweden)
Bjørn H. Hjertager
1984-10-01
Full Text Available A simulation procedure capable of handling transient compressible flows involving combustion is presented. The method uses the velocity components and pressure as primary flow variables. The differential equations governing the flow are discretized by integration over control volumes. The integration is performed by application of up-wind differencing in a staggered grid system. The solution procedure is an extension of the SIMPLE-algorithm accounting for compressibility effects.
Structure, Reactivity and Dynamics
Indian Academy of Sciences (India)
Understanding structure, reactivity and dynamics is the core issue in chemical ... functional theory (DFT) calculations, molecular dynamics (MD) simulations, light- ... between water and protein oxygen atoms, the superionic conductors which ...
Design of Simulink module for dynamic reactivity simulation of marine reactor automatic control rod
International Nuclear Information System (INIS)
Chen Zhiyun; Luo Lei; Chen Wenzhen; Gui Xuewen
2010-01-01
The power of marine reactor varies frequently and acutely, which induces the frequent and acute adjustment of the automatic control rod. According to the characteristics of marine reactor and the problem of improper control rod reactivity insertion in previous literatures, the Simulink module for dynamic reactivity simulation of automatic control rod was designed and adopted as a sub-module of Simulink program for the fast calculation of the physical and thermal parameters of marine reactor. A typical dynamic process of the marine reactor was used as the benchmark, which indicates that the designed Simulink module is capable of the dynamic simulation of automatic control rod position and reactivity, and is adequate to the fast calculation of physic and thermal parameters. The Simulink module is of significant meaning to the simulation of the dynamic process of marine reactor and the fast calculation of the operating parameters. (authors)
Shekhar, Adarsh
Nanotechnology is becoming increasingly important with the continuing advances in experimental techniques. As researchers around the world are trying to expand the current understanding of the behavior of materials at the atomistic scale, the limited resolution of equipment, both in terms of time and space, act as roadblocks to a comprehensive study. Numerical methods, in general and molecular dynamics, in particular act as able compliment to the experiments in our quest for understanding material behavior. In this research work, large scale molecular dynamics simulations to gain insight into the mechano-chemical behavior under extreme conditions of a variety of systems with many real world applications. The body of this work is divided into three parts, each covering a particular system: 1) Aggregates of aluminum nanoparticles are good solid fuel due to high flame propagation rates. Multi-million atom molecular dynamics simulations reveal the mechanism underlying higher reaction rate in a chain of aluminum nanoparticles as compared to an isolated nanoparticle. This is due to the penetration of hot atoms from reacting nanoparticles to an adjacent, unreacted nanoparticle, which brings in external heat and initiates exothermic oxidation reactions. 2) Cavitation bubbles readily occur in fluids subjected to rapid changes in pressure. We use billion-atom reactive molecular dynamics simulations on a 163,840-processor BlueGene/P supercomputer to investigate chemical and mechanical damages caused by shock-induced collapse of nanobubbles in water near amorphous silica. Collapse of an empty nanobubble generates high-speed nanojet, resulting in the formation of a pit on the surface. The pit contains a large number of silanol groups and its volume is found to be directly proportional to the volume of the nanobubble. The gas-filled bubbles undergo partial collapse and consequently the damage on the silica surface is mitigated. 3) The structure and dynamics of water confined in
Simulation and study on reactivity disturbs dynamic character of HTR-10 nuclear power system
International Nuclear Information System (INIS)
Huang Xiaojin; Feng Yuankun
2002-01-01
In order to not only know 10 MW High Temperature Gas Cooled Reactor (HTR-10) nuclear power system's dynamic character more deeply but also to satisfy requirements of control system's design and analysis, the dynamic model of HTR-10 nuclear power system is established on the basis of dynamic model of HTR-10 nuclear system, which supplies turbine and generate electricity system model. Using this model, system's main variables' dynamic processes are simulated when control rod takes step reactivity disturb. The concussive progresses which is caused by reactivity disturb are analyzed. The results indicate that fuel temperature changing more slowly than nuclear power makes reactivity negative feedback not to restrain power changing, and then power concussive progress comes to being
Directory of Open Access Journals (Sweden)
Juan P. Marcolongo
2018-03-01
Full Text Available In this work we present the current advances in the development and the applications of LIO, a lab-made code designed for density functional theory calculations in graphical processing units (GPU, that can be coupled with different classical molecular dynamics engines. This code has been thoroughly optimized to perform efficient molecular dynamics simulations at the QM/MM DFT level, allowing for an exhaustive sampling of the configurational space. Selected examples are presented for the description of chemical reactivity in terms of free energy profiles, and also for the computation of optical properties, such as vibrational and electronic spectra in solvent and protein environments.
Marcolongo, Juan P.; Zeida, Ari; Semelak, Jonathan A.; Foglia, Nicolás O.; Morzan, Uriel N.; Estrin, Dario A.; González Lebrero, Mariano C.; Scherlis, Damián A.
2018-03-01
In this work we present the current advances in the development and the applications of LIO, a lab-made code designed for density functional theory calculations in graphical processing units (GPU), that can be coupled with different classical molecular dynamics engines. This code has been thoroughly optimized to perform efficient molecular dynamics simulations at the QM/MM DFT level, allowing for an exhaustive sampling of the configurational space. Selected examples are presented for the description of chemical reactivity in terms of free energy profiles, and also for the computation of optical properties, such as vibrational and electronic spectra in solvent and protein environments.
Döntgen, Malte; Schmalz, Felix; Kopp, Wassja A; Kröger, Leif C; Leonhard, Kai
2018-06-13
An automated scheme for obtaining chemical kinetic models from scratch using reactive molecular dynamics and quantum chemistry simulations is presented. This methodology combines the phase space sampling of reactive molecular dynamics with the thermochemistry and kinetics prediction capabilities of quantum mechanics. This scheme provides the NASA polynomial and modified Arrhenius equation parameters for all species and reactions that are observed during the simulation and supplies them in the ChemKin format. The ab initio level of theory for predictions is easily exchangeable and the presently used G3MP2 level of theory is found to reliably reproduce hydrogen and methane oxidation thermochemistry and kinetics data. Chemical kinetic models obtained with this approach are ready-to-use for, e.g., ignition delay time simulations, as shown for hydrogen combustion. The presented extension of the ChemTraYzer approach can be used as a basis for methodologically advancing chemical kinetic modeling schemes and as a black-box approach to generate chemical kinetic models.
International Nuclear Information System (INIS)
Cao, Haining; Kim, Seungchul; Lee, Kwang-Ryeol; Srivastava, Pooja; Choi, Keunsu
2016-01-01
Initial stage of oxynitridation process of Si substrate is of crucial importance in fabricating the ultrathin gate dielectric layer of high quality in advanced MOSFET devices. The oxynitridation reaction on a relaxed Si(001) surface is investigated via reactive molecular dynamics (MD) simulation. A total of 1120 events of a single nitric oxide (NO) molecule reaction at temperatures ranging from 300 to 1000 K are statistically analyzed. The observed reaction kinetics are consistent with the previous experimental or calculation results, which show the viability of the reactive MD technique to study the NO dissociation reaction on Si. We suggest the reaction pathway for NO dissociation that is characterized by the inter-dimer bridge of a NO molecule as the intermediate state prior to NO dissociation. Although the energy of the inter-dimer bridge is higher than that of the intra-dimer one, our suggestion is supported by the ab initio nudged elastic band calculations showing that the energy barrier for the inter-dimer bridge formation is much lower. The growth mechanism of an ultrathin Si oxynitride layer is also investigated via consecutive NO reactions simulation. The simulation reveals the mechanism of self-limiting reaction at low temperature and the time evolution of the depth profile of N and O atoms depending on the process temperature, which would guide to optimize the oxynitridation process condition.
Esfandiarpoor, Somaye; Fazli, Mostafa; Ganji, Masoud Darvish
2017-11-29
The separation of gases molecules with similar diameter and shape is an important area of research. For example, the major challenge to set up sweeping carbon dioxide capture and storage (CCS) in power plants is the energy requisite to separate the CO 2 from flue gas. Porous graphene has been proposed as superior material for highly selective membranes for gas separation. Here we design some models of porous graphene with different sizes and shape as well as employ double layers porous graphene for efficient CO 2 /H 2 separation. The selectivity and permeability of gas molecules through various nanopores were investigated by using the reactive molecular dynamics simulation which considers the bond forming/breaking mechanism for all atoms. Furthermore, it uses a geometry-dependent charge calculation scheme that accounts appropriately for polarization effect which can play an important role in interacting systems. It was found that H-modified porous graphene membrane with pore diameter (short side) of about 3.75 Å has excellent selectivity for CO 2 /H 2 separation. The mechanism of gas penetration through the sub-nanometer pore was presented for the first time. The accuracy of MD simulation results validated by valuable DFT method. The present findings show that reactive MD simulation can propose an economical means of separating gases mixture.
Energy Technology Data Exchange (ETDEWEB)
Cao, Haining; Kim, Seungchul; Lee, Kwang-Ryeol, E-mail: krlee@kist.re.kr [Computational Science Research Center, Korea Institute of Science and Technology, 5, Hwarangno 14-gil, Seongbuk-gu, Seoul 02792 (Korea, Republic of); Department of Nanomaterial Science and Technology, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Srivastava, Pooja; Choi, Keunsu [Computational Science Research Center, Korea Institute of Science and Technology, 5, Hwarangno 14-gil, Seongbuk-gu, Seoul 02792 (Korea, Republic of)
2016-03-28
Initial stage of oxynitridation process of Si substrate is of crucial importance in fabricating the ultrathin gate dielectric layer of high quality in advanced MOSFET devices. The oxynitridation reaction on a relaxed Si(001) surface is investigated via reactive molecular dynamics (MD) simulation. A total of 1120 events of a single nitric oxide (NO) molecule reaction at temperatures ranging from 300 to 1000 K are statistically analyzed. The observed reaction kinetics are consistent with the previous experimental or calculation results, which show the viability of the reactive MD technique to study the NO dissociation reaction on Si. We suggest the reaction pathway for NO dissociation that is characterized by the inter-dimer bridge of a NO molecule as the intermediate state prior to NO dissociation. Although the energy of the inter-dimer bridge is higher than that of the intra-dimer one, our suggestion is supported by the ab initio nudged elastic band calculations showing that the energy barrier for the inter-dimer bridge formation is much lower. The growth mechanism of an ultrathin Si oxynitride layer is also investigated via consecutive NO reactions simulation. The simulation reveals the mechanism of self-limiting reaction at low temperature and the time evolution of the depth profile of N and O atoms depending on the process temperature, which would guide to optimize the oxynitridation process condition.
Hajilar, Shahin; Shafei, Behrouz; Cheng, Tao; Jaramillo-Botero, Andres
2017-06-22
Understanding the structural, thermal, and mechanical properties of thaumasite is of great interest to the cement industry, mainly because it is the phase responsible for the aging and deterioration of civil infrastructures made of cementitious materials attacked by external sources of sulfate. Despite the importance, effects of temperature and strain rate on the mechanical response of thaumasite had remained unexplored prior to the current study, in which the mechanical properties of thaumasite are fully characterized using the reactive molecular dynamics (RMD) method. With employing a first-principles based reactive force field, the RMD simulations enable the description of bond dissociation and formation under realistic conditions. From the stress-strain curves of thaumasite generated in the x, y, and z directions, the tensile strength, Young's modulus, and fracture strain are determined for the three orthogonal directions. During the course of each simulation, the chemical bonds undergoing tensile deformations are monitored to reveal the bonds responsible for the mechanical strength of thaumasite. The temperature increase is found to accelerate the bond breaking rate and consequently the degradation of mechanical properties of thaumasite, while the strain rate only leads to a slight enhancement of them for the ranges considered in this study.
PuReMD-GPU: A reactive molecular dynamics simulation package for GPUs
International Nuclear Information System (INIS)
Kylasa, S.B.; Aktulga, H.M.; Grama, A.Y.
2014-01-01
We present an efficient and highly accurate GP-GPU implementation of our community code, PuReMD, for reactive molecular dynamics simulations using the ReaxFF force field. PuReMD and its incorporation into LAMMPS (Reax/C) is used by a large number of research groups worldwide for simulating diverse systems ranging from biomembranes to explosives (RDX) at atomistic level of detail. The sub-femtosecond time-steps associated with ReaxFF strongly motivate significant improvements to per-timestep simulation time through effective use of GPUs. This paper presents, in detail, the design and implementation of PuReMD-GPU, which enables ReaxFF simulations on GPUs, as well as various performance optimization techniques we developed to obtain high performance on state-of-the-art hardware. Comprehensive experiments on model systems (bulk water and amorphous silica) are presented to quantify the performance improvements achieved by PuReMD-GPU and to verify its accuracy. In particular, our experiments show up to 16× improvement in runtime compared to our highly optimized CPU-only single-core ReaxFF implementation. PuReMD-GPU is a unique production code, and is currently available on request from the authors
PuReMD-GPU: A reactive molecular dynamics simulation package for GPUs
Energy Technology Data Exchange (ETDEWEB)
Kylasa, S.B., E-mail: skylasa@purdue.edu [Department of Elec. and Comp. Eng., Purdue University, West Lafayette, IN 47907 (United States); Aktulga, H.M., E-mail: hmaktulga@lbl.gov [Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, MS 50F-1650, Berkeley, CA 94720 (United States); Grama, A.Y., E-mail: ayg@cs.purdue.edu [Department of Computer Science, Purdue University, West Lafayette, IN 47907 (United States)
2014-09-01
We present an efficient and highly accurate GP-GPU implementation of our community code, PuReMD, for reactive molecular dynamics simulations using the ReaxFF force field. PuReMD and its incorporation into LAMMPS (Reax/C) is used by a large number of research groups worldwide for simulating diverse systems ranging from biomembranes to explosives (RDX) at atomistic level of detail. The sub-femtosecond time-steps associated with ReaxFF strongly motivate significant improvements to per-timestep simulation time through effective use of GPUs. This paper presents, in detail, the design and implementation of PuReMD-GPU, which enables ReaxFF simulations on GPUs, as well as various performance optimization techniques we developed to obtain high performance on state-of-the-art hardware. Comprehensive experiments on model systems (bulk water and amorphous silica) are presented to quantify the performance improvements achieved by PuReMD-GPU and to verify its accuracy. In particular, our experiments show up to 16× improvement in runtime compared to our highly optimized CPU-only single-core ReaxFF implementation. PuReMD-GPU is a unique production code, and is currently available on request from the authors.
Le, Minh-Quy
2018-05-01
Although various phosphorene allotropes have been theoretically predicted to be stable at 0 K, the mechanical properties and fracture mechanism at room temperature remain unclear for many of them. We investigate through reactive molecular dynamics simulations at room temperature the mechanical properties of phosphorene allotropes including: five sheets with hexagonal structures (β-, γ-, δ-, θ-, and α-phosphorene), one sheet with 4-8 membered rings (4-8-P), and two sheets with 5-7 membered rings. High, moderate and slight anisotropies in their mechanical properties are observed, depending on their crystal structures. Their Young’s moduli and tensile strength are approximately in the range from 7.3% through 25%, and from 8.6% through 22% of those of graphene, respectively. At the early stage of fracture, eye-shaped cracks are formed by local bond breaking and perpendicular to the tensile direction in hexagonal and 4-8-P sheets. Complete fractures take place with straight cracks in these hexagonal sheets under tension along the zigzag direction and under tension along the square edge direction in the 4-8-P sheet. Crack meandering and branching are observed during the tension of α-, β-, and γ-phosphorene along the armchair direction; and along the square diagonal direction in the 4-8-P sheet. Under uniaxial tension of two phosphorene sheets with 5-7 atom rings, 12 and 10 membered rings are formed by merging two neighbor heptagons, and a heptagon and its neighbor pentagon, respectively. These 12 and 10 membered rings coalesce subsequently, causing the failure of these two sheets. The results are of great importance in the design of these novel phosphorene allotropes.
Macedo-Filho, A.; Alves, G. A.; Costa Filho, R. N.; Alves, T. F. A.
2018-04-01
We investigated the susceptible-infected-susceptible model on a square lattice in the presence of a conjugated field based on recently proposed reactivating dynamics. Reactivating dynamics consists of reactivating the infection by adding one infected site, chosen randomly when the infection dies out, avoiding the dynamics being trapped in the absorbing state. We show that the reactivating dynamics can be interpreted as the usual dynamics performed in the presence of an effective conjugated field, named the reactivating field. The reactivating field scales as the inverse of the lattice number of vertices n, which vanishes at the thermodynamic limit and does not affect any scaling properties including ones related to the conjugated field.
Tejada, I. G.; Brochard, L.; Stoltz, G.; Legoll, F.; Lelièvre, T.; Cancès, E.
2015-01-01
Molecular dynamics is a simulation technique that can be used to study failure in solids, provided the inter-atomic potential energy is able to account for the complex mechanisms at failure. Reactive potentials fitted on ab initio results or on experimental values have the ability to adapt to any complex atomic arrangement and, therefore, are suited to simulate failure. But the complexity of these potentials, together with the size of the systems considered, make simulations computationally expensive. In order to improve the efficiency of numerical simulations, simpler harmonic potentials can be used instead of complex reactive potentials in the regions where the system is close to its ground state and a harmonic approximation reasonably fits the actual reactive potential. However the validity and precision of such an approach has not been investigated in detail yet. We present here a methodology for constructing a reduced potential and combining it with the reactive one. We also report some important features of crack propagation that may be affected by the coupling of reactive and reduced potentials. As an illustrative case, we model a crystalline two-dimensional material (graphene) with a reactive empirical bond-order potential (REBO) or with harmonic potentials made of bond and angle springs that are designed to reproduce the second order approximation of REBO in the ground state. We analyze the consistency of this approximation by comparing the mechanical behavior and the phonon spectra of systems modeled with these potentials. These tests reveal when the anharmonicity effects appear. As anharmonic effects originate from strain, stress or temperature, the latter quantities are the basis for establishing coupling criteria for on the fly substitution in large simulations.
International Nuclear Information System (INIS)
Bertolotto, D.
2011-11-01
The current doctoral research is focused on the development and validation of a coupled computational tool, to combine the advantages of computational fluid dynamics (CFD) in analyzing complex flow fields and of state-of-the-art system codes employed for nuclear power plant (NPP) simulations. Such a tool can considerably enhance the analysis of NPP transient behavior, e.g. in the case of pressurized water reactor (PWR) accident scenarios such as Main Steam Line Break (MSLB) and boron dilution, in which strong coolant flow asymmetries and multi-dimensional mixing effects strongly influence the reactivity of the reactor core, as described in Chap. 1. To start with, a literature review on code coupling is presented in Chap. 2, together with the corresponding ongoing projects in the international community. Special reference is made to the framework in which this research has been carried out, i.e. the Paul Scherrer Institute's (PSI) project STARS (Steady-state and Transient Analysis Research for the Swiss reactors). In particular, the codes chosen for the coupling, i.e. the CFD code ANSYS CFX V11.0 and the system code US-NRC TRACE V5.0, are part of the STARS codes system. Their main features are also described in Chap. 2. The development of the coupled tool, named CFX/TRACE from the names of the two constitutive codes, has proven to be a complex and broad-based task, and therefore constraints had to be put on the target requirements, while keeping in mind a certain modularity to allow future extensions to be made with minimal efforts. After careful consideration, the coupling was defined to be on-line, parallel and with non-overlapping domains connected by an interface, which was developed through the Parallel Virtual Machines (PVM) software, as described in Chap. 3. Moreover, two numerical coupling schemes were implemented and tested: a sequential explicit scheme and a sequential semi-implicit scheme. Finally, it was decided that the coupling would be single
Energy Technology Data Exchange (ETDEWEB)
Sen, Seema, E-mail: seema.sen@tu-ilmenau.de [Technical University of Ilmenau, Department of Materials for Electronics, Gustav-Kirchhoff-Str. 5, 98693 Ilmenau (Germany); Niederrhein University of Applied Science, Department of Mechanical and Process Engineering, Reinarzstraße 49, 47805 Krefeld (Germany); Lake, Markus; Kroppen, Norman; Farber, Peter; Wilden, Johannes [Niederrhein University of Applied Science, Department of Mechanical and Process Engineering, Reinarzstraße 49, 47805 Krefeld (Germany); Schaaf, Peter [Technical University of Ilmenau, Department of Materials for Electronics, Gustav-Kirchhoff-Str. 5, 98693 Ilmenau (Germany)
2017-02-28
Highlights: • Development of nanoscale Ti/Al multilayer films with 1:1, 1:2 and 1:3 molar ratios. • Characterization of exothermic reaction propagation by experiments and simulation. • The reaction velocity depends on the ignition potentials and molar ratios of the films. • Only 1Ti/3Al films exhibit the unsteady reaction propagation with ripple formation. • CFD simulation shows the time dependent atom mixing and temperature flow during exothermic reaction. - Abstract: This study describes the self-propagating exothermic reaction in Ti/Al reactive multilayer foils by using experiments and computational fluid dynamics simulation. The Ti/Al foils with different molar ratios of 1Ti/1Al, 1Ti/2Al and 1Ti/3Al were fabricated by magnetron sputtering method. Microstructural characteristics of the unreacted and reacted foils were analyzed by using electronic and atomic force microscopes. After an electrical ignition, the influence of ignition potentials on reaction propagation has been experimentally investigated. The reaction front propagates with a velocity of minimum 0.68 ± 0.4 m/s and maximum 2.57 ± 0.6 m/s depending on the input ignition potentials and the chemical compositions. Here, the 1Ti/3Al reactive foil exhibits both steady state and unsteady wavelike reaction propagation. Moreover, the numerical computational fluid dynamics (CFD) simulation shows the time dependent temperature flow and atomic mixing in a nanoscale reaction zone. The CFD simulation also indicates the potentiality for simulating exothermic reaction in the nanoscale Ti/Al foil.
Slip reactivation during the 2011 Tohoku earthquake: Dynamic rupture and ground motion simulations
Galvez, P.; Dalguer, L. A.
2013-12-01
The 2011 Mw9 Tohoku earthquake generated such as vast geophysical data that allows studying with an unprecedented resolution the spatial-temporal evolution of the rupture process of a mega thrust event. Joint source inversion of teleseismic, near-source strong motion and coseismic geodetic data , e.g [Lee et. al, 2011], reveal an evidence of slip reactivation process at areas of very large slip. The slip of snapshots of this source model shows that after about 40 seconds the big patch above to the hypocenter experienced an additional push of the slip (reactivation) towards the trench. These two possible repeating slip exhibited by source inversions can create two waveform envelops well distinguished in the ground motion pattern. In fact seismograms of the KiK-Net Japanese network contained this pattern. For instance a seismic station around Miyagi (MYGH10) has two main wavefronts separated between them by 40 seconds. A possible physical mechanism to explain the slip reactivation could be a thermal pressurization process occurring in the fault zone. In fact, Kanamori & Heaton, (2000) proposed that for large earthquakes frictional melting and fluid pressurization can play a key role of the rupture dynamics of giant earthquakes. If fluid exists in a fault zone, an increase of temperature can rise up the pore pressure enough to significantly reduce the frictional strength. Therefore, during a large earthquake the areas of big slip persuading strong thermal pressurization may result in a second drop of the frictional strength after reaching a certain value of slip. Following this principle, we adopt for slip weakening friction law and prescribe a certain maximum slip after which the friction coefficient linearly drops down again. The implementation of this friction law has been done in the latest unstructured spectral element code SPECFEM3D, Peter et. al. (2012). The non-planar subduction interface has been taken into account and place on it a big asperity patch inside
Energy Technology Data Exchange (ETDEWEB)
Kim, Junghan; Iype, Eldhose; Frijns, Arjan J.H.; Nedea, Silvia V.; Steenhoven, Anton A. van
2014-07-01
Molecular dynamics simulations of heat transfer in gases are computationally expensive when the wall molecules are explicitly modeled. To save computational time, an implicit boundary function is often used. Steele's potential has been used in studies of fluid–solid interface for a long time. In this work, the conceptual idea of Steele's potential was extended in order to simulate water–silicon and water–silica interfaces. A new wall potential model is developed by using the electronegativity-equalization method (EEM), a ReaxFF empirical force field and a non-reactive molecular dynamics package PumMa. Contact angle simulations were performed in order to validate the wall potential model. Contact angle simulations with the resulting tabulated wall potentials gave a silicon–water contact angle of 129°, a quartz–water contact angle of 0°, and a cristobalite–water contact angle of 40°, which are in reasonable agreement with experimental values.
Fractal dimensions of silica gels generated using reactive molecular dynamics simulations
International Nuclear Information System (INIS)
Bhattacharya, Sudin; Kieffer, John
2005-01-01
We have used molecular dynamics simulations based on a three-body potential with charge transfer to generate nanoporous silica aerogels. Care was taken to reproduce the sol-gel condensation reaction that forms the gel backbone as realistically as possible and to thereby produce credible gel structures. The self-similarity of aerogel structures was investigated by evaluating their fractal dimension from geometric correlations. For comparison, we have also generated porous silica glasses by rupturing dense silica and computed their fractal dimension. The fractal dimension of the porous silica structures was found to be process dependent. Finally, we have determined that the effect of supercritical drying on the fractal nature of condensed silica gels is not appreciable
Sureshkumar, B.; Sheena Mary, Y.; Panicker, C. Yohannan; Resmi, K. S.; Suma, S.; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, C.
2017-12-01
A detailed interpretation of the FT-IR and FT-Raman spectra has been performed on the basis of the observed and calculated infrared and Raman spectra as well as calculated potential energy distribution values. Comparison of Raman and SERS spectra suggests a tilted orientation of the rings on the metal surface. The dipole moment, polarizability and first and second order hyperpolarizability values of the molecule were calculated. Global reactivity parameters were predicted. The relative reactivities towards electrophilic and nucleophilic attack are predicted using molecular electrostatic potential map. Average local ionization energy (ALIE) and Fukui functions have been inspected in order to investigate local reactivity properties of title molecule. The importance of autoxidation and hydrolysis mechanisms for the title molecule has been assessed by DFT calculations of bond dissociation energies (BDE) and by calculations of radial distribution functions (RDFs) after molecular dynamics (MD) simulations. Molecular docking studies suggest that the title compound can be a lead compound for developing new anti-cancerous drug.
SELF-HEALING NANOMATERIALS: MULTIMILLION-ATOM REACTIVE MOLECULAR DYNAMICS SIMULATIONS
Energy Technology Data Exchange (ETDEWEB)
Hakamata, Tomoya [Kumamoto Univ., Kumamoto (Japan); Shimamura, Kohei [Kumamoto Univ., Kumamoto (Japan); Univ. of Southern California, Los Angeles, CA (United States); Kobe Univ., Kobe (Japan); Shimojo, Fuyuki [Kumamoto Univ., Kumamoto (Japan); Kalia, Rajiv K. [Univ. of Southern California, Los Angeles, CA (United States); Nakano, Aiichiro [Univ. of Southern California, Los Angeles, CA (United States); Vashishta, Priya [Univ. of Southern California, Los Angeles, CA (United States)
2017-10-20
Organometal halide perovskites are attracting great attention as promising material for solar cells because of their high power conversion efficiency. The high performance has been attributed to the existence of free charge carriers and their large diffusion lengths, but the nature of carrier transport at the atomistic level remains elusive. Here, nonadiabatic quantum molecular dynamics simulations elucidate the mechanisms underlying the excellent free-carrier transport in CH_{3}NH_{3}PbI_{3}. Pb and I sublattices act as disjunct pathways for rapid and balanced transport of photoexcited electrons and holes, respectively, while minimizing efficiency-degrading charge recombination. On the other hand, CH_{3}NH_{3} sublattice quickly screens out electrostatic electron-hole attraction to generate free carriers within 1 ps. Together this nano-architecture lets photoexcited electrons and holes dissociate instantaneously and travel far away to be harvested before dissipated as heat. As a result, this work provides much needed structure-property relationships and time-resolved information that potentially lead to rational design of efficient solar cells.
Thomas, Renjith; Hossain, Mossaraf; Mary, Y. Sheena; Resmi, K. S.; Armaković, Stevan; Armaković, Sanja J.; Nanda, Ashis Kumar; Ranjan, Vivek Kumar; Vijayakumar, G.; Van Alsenoy, C.
2018-04-01
Solvent-free synthesis pathway for obtaining two imidazole derivatives (2-chloro-1-(4-methoxyphenyl)-4,5-dimethyl-1H-imidazole (CLMPDI) and 1-(4-bromophenyl)-2-chloro-4,5-dimethyl-1H-imidazole (BPCLDI) has been reported in this work, followed by detailed experimental and computational spectroscopic characterization and reactivity study. Spectroscopic methods encompassed IR, FT-Raman and NMR techniques, with the mutual comparison of experimentally and computationally obtained results at DFT/B3LYP level of theory. Reactivity study based on DFT calculations encompassed molecular orbitals analysis, followed by calculations of molecular electrostatic potential (MEP) and average local ionization energy (ALIE) values, Fukui functions and bond dissociation energies (BDE). Additionally, the stability of title molecules in water has been investigated via molecular dynamics (MD) simulations, while interactivity with aspulvinonedimethylallyl transferase protein has been evaluated by molecular docking procedure. CLMPDI compound showed antimicrobial activity against all four bacterial strain in both gram positive and gram negative bacteria while, BPCLDI showed only in gram positive bacteria, Staphylococcus Aureus (MTCC1144). The first order hyperpolarizability of CLMPDI and BPCLDI are 20.15 and 6.10 times that of the standard NLO material urea.
Galvez, P.; Dalguer, L. A.; Rahnema, K.; Bader, M.
2014-12-01
The 2011 Mw9 Tohoku earthquake has been recorded with a vast GPS and seismic network given unprecedented chance to seismologists to unveil complex rupture processes in a mega-thrust event. In fact more than one thousand near field strong-motion stations across Japan (K-Net and Kik-Net) revealed complex ground motion patterns attributed to the source effects, allowing to capture detailed information of the rupture process. The seismic stations surrounding the Miyagi regions (MYGH013) show two clear distinct waveforms separated by 40 seconds. This observation is consistent with the kinematic source model obtained from the inversion of strong motion data performed by Lee's et al (2011). In this model two rupture fronts separated by 40 seconds emanate close to the hypocenter and propagate towards the trench. This feature is clearly observed by stacking the slip-rate snapshots on fault points aligned in the EW direction passing through the hypocenter (Gabriel et al, 2012), suggesting slip reactivation during the main event. A repeating slip on large earthquakes may occur due to frictional melting and thermal fluid pressurization effects. Kanamori & Heaton (2002) argued that during faulting of large earthquakes the temperature rises high enough creating melting and further reduction of friction coefficient. We created a 3D dynamic rupture model to reproduce this slip reactivation pattern using SPECFEM3D (Galvez et al, 2014) based on a slip-weakening friction with sudden two sequential stress drops . Our model starts like a M7-8 earthquake breaking dimly the trench, then after 40 seconds a second rupture emerges close to the trench producing additional slip capable to fully break the trench and transforming the earthquake into a megathrust event. The resulting sea floor displacements are in agreement with 1Hz GPS displacements (GEONET). The seismograms agree roughly with seismic records along the coast of Japan.The simulated sea floor displacement reaches 8-10 meters of
Mogo, César; Brandão, João
2014-06-30
READY (REActive DYnamics) is a program for studying reactive dynamic systems using a global potential energy surface (PES) built from previously existing PESs corresponding to each of the most important elementary reactions present in the system. We present an application to the combustion dynamics of a mixture of hydrogen and oxygen using accurate PESs for all the systems involving up to four oxygen and hydrogen atoms. Results at the temperature of 4000 K and pressure of 2 atm are presented and compared with model based on rate constants. Drawbacks and advantages of this approach are discussed and future directions of research are pointed out. Copyright © 2014 Wiley Periodicals, Inc.
Optimizing the Performance of Reactive Molecular Dynamics Simulations for Multi-core Architectures
Energy Technology Data Exchange (ETDEWEB)
Aktulga, Hasan Metin [Michigan State Univ., East Lansing, MI (United States); Coffman, Paul [Argonne National Lab. (ANL), Argonne, IL (United States); Shan, Tzu-Ray [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knight, Chris [Argonne National Lab. (ANL), Argonne, IL (United States); Jiang, Wei [Argonne National Lab. (ANL), Argonne, IL (United States)
2015-12-01
Hybrid parallelism allows high performance computing applications to better leverage the increasing on-node parallelism of modern supercomputers. In this paper, we present a hybrid parallel implementation of the widely used LAMMPS/ReaxC package, where the construction of bonded and nonbonded lists and evaluation of complex ReaxFF interactions are implemented efficiently using OpenMP parallelism. Additionally, the performance of the QEq charge equilibration scheme is examined and a dual-solver is implemented. We present the performance of the resulting ReaxC-OMP package on a state-of-the-art multi-core architecture Mira, an IBM BlueGene/Q supercomputer. For system sizes ranging from 32 thousand to 16.6 million particles, speedups in the range of 1.5-4.5x are observed using the new ReaxC-OMP software. Sustained performance improvements have been observed for up to 262,144 cores (1,048,576 processes) of Mira with a weak scaling efficiency of 91.5% in larger simulations containing 16.6 million particles.
Directory of Open Access Journals (Sweden)
Fredrik Ekström
2009-06-01
Full Text Available Organophosphonates such as isopropyl metylphosphonofluoridate (sarin are extremely toxic as they phosphonylate the catalytic serine residue of acetylcholinesterase (AChE, an enzyme essential to humans and other species. Design of effective AChE reactivators as antidotes to various organophosphonates requires information on how the reactivators interact with the phosphonylated AChEs. However, such information has not been available hitherto because of three main challenges. First, reactivators are generally flexible in order to change from the ground state to the transition state for reactivation; this flexibility discourages determination of crystal structures of AChE in complex with effective reactivators that are intrinsically disordered. Second, reactivation occurs upon binding of a reactivator to the phosphonylated AChE. Third, the phosphorous conjugate can develop resistance to reactivation. We have identified crystallographic conditions that led to the determination of a crystal structure of the sarin(nonaged-conjugated mouse AChE in complex with [(E-[1-[(4-carbamoylpyridin-1-ium-1-ylmethoxymethyl]pyridin-2-ylidene]methyl]-oxoazanium dichloride (HI-6 at a resolution of 2.2 A. In this structure, the carboxyamino-pyridinium ring of HI-6 is sandwiched by Tyr124 and Trp286, however, the oxime-pyridinium ring is disordered. By combining crystallography with microsecond molecular dynamics simulation, we determined the oxime-pyridinium ring structure, which shows that the oxime group of HI-6 can form a hydrogen-bond network to the sarin isopropyl ether oxygen, and a water molecule is able to form a hydrogen bond to the catalytic histidine residue and subsequently deprotonates the oxime for reactivation. These results offer insights into the reactivation mechanism of HI-6 and design of better reactivators.
Dongol, R.; Wang, L.; Cormack, A. N.; Sundaram, S. K.
2018-05-01
Reactive potentials are increasingly used to study the properties of glasses and glass water reactions in a reactive molecular dynamics (MD) framework. In this study, we have simulated a ternary sodium aluminosilicate glass and investigated the initial stages of the glass surface-water reactions at 300 K using reactive force field (ReaxFF). On comparison of the simulated glass structures generated using ReaxFF and classical Buckingham potentials, our results show that the atomic density profiles calculated for the surface glass structures indicate a bond-angle distribution dependency. The atomic density profiles also show higher concentrations of non-bridging oxygens (NBOs) and sodium ions at the glass surface. Additionally, we present our results of formation of silanol species and the diffusion of water molecules at the glass surface using ReaxFF.
Impact of reactive settler models on simulated WWTP performance
DEFF Research Database (Denmark)
Gernaey, Krist; Jeppsson, Ulf; Batstone, Damien J.
2006-01-01
for an ASM1 case study. Simulations with a whole plant model including the non-reactive Takacs settler model are used as a reference, and are compared to simulation results considering two reactive settler models. The first is a return sludge model block removing oxygen and a user-defined fraction of nitrate......, combined with a non-reactive Takacs settler. The second is a fully reactive ASM1 Takacs settler model. Simulations with the ASM1 reactive settler model predicted a 15.3% and 7.4% improvement of the simulated N removal performance, for constant (steady-state) and dynamic influent conditions respectively....... The oxygen/nitrate return sludge model block predicts a 10% improvement of N removal performance under dynamic conditions, and might be the better modelling option for ASM1 plants: it is computationally more efficient and it will not overrate the importance of decay processes in the settler....
Sureshkumar, B.; Mary, Y. Sheena; Resmi, K. S.; Panicker, C. Yohannan; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, C.; Narayana, B.; Suma, S.
2018-03-01
Two 8-hydroxyquinoline derivatives, 5,7-dichloro-8-hydroxyquinoline (57DC8HQ) and 5-chloro-7-iodo-8-hydroxy quinoline (5CL7I8HQ) have been investigated in details by means of spectroscopic characterization and computational molecular modelling techniques. FT-IR and FT-Raman experimental spectroscopic approaches have been utilized in order to obtain detailed spectroscopic signatures of title compounds, while DFT calculations have been used in order to visualize and assign vibrations. The computed values of dipole moment, polarizability and hyperpolarizability indicate that the title molecules exhibit NLO properties. The evaluated HOMO and LUMO energies demonstrate the chemical stability of the molecules. NBO analysis is made to study the stability of the molecules arising from hyperconjugative interactions and charge delocalization. DFT calculations have been also used jointly with MD simulations in order to investigate in details global and local reactivity properties of title compounds. Also, molecular docking has been also used in order to investigate affinity of title compounds against decarboxylase inhibitor and quinoline derivatives can be a lead compounds for developing new antiparkinsonian drug.
Wolthers, M.; Di Tommaso, D.; Du, Z.; de Leeuw, N.H.
2012-01-01
Calcite–water interactions are important not only in carbon sequestration and the global carbon cycle, but also in contaminant behaviour in calcite-bearing host rock and in many industrial applications. Here we quantify the effect of variations in surface structure on calcite surface reactivity.
Raju, Muralikrishna
The interaction of dense fluids (water, polar organic solvents, room temperature ionic liquids, etc.) with solid substrates controls many chemical processes encountered in nature and industry. The key features of fluid-solid interfaces (FSIs) are the high mobility and often reactivity of the fluid phase, and the structural control provided by the solid phase. In this dissertation we apply molecular modeling methods to study FSIs in the following systems: 1. Dissociation of water on titania surfaces. We studied the adsorption and dissociation of water at 300 K on the following TiO2 surfaces: anatase (101), (100), (112), (001) and rutile (110) at various water coverages, using a recently developed ReaxFF reactive force field. The molecular and dissociative adsorption configurations predicted by ReaxFF for various water coverages agree with previous theoretical studies and experiment. 2. Mechanisms of Oriented Attachment in TiO2 nanocrystals. Oriented attachment (OA) of nanocrystals is now widely recognized as a key process in the solution-phase growth of hierarchical nanostructures. However, the microscopic origins of OA remain unclear. Using the same ReaxFF Ti/O/H reactive force field employed in the previous study, we perform molecular dynamics simulations to study the aggregation of various titanium dioxide (anatase) nanocrystals in vacuum and humid environments. 3. Li interactions in carbon based materials. Graphitic carbon is still the most ubiquitously used anode material in Li-ion batteries. In spite of its ubiquity, there are few theoretical studies that fully capture the energetics and kinetics of Li in graphite and related nanostructures at experimentally relevant length/time-scales and Li-ion concentrations. In this study we describe development and application of a ReaxFF reactive force field to describe Li interactions in perfect and defective carbon based materials using atomistic simulations. We develop force-field parameters for Li-C systems using van
Energy Technology Data Exchange (ETDEWEB)
Valone, S.M.; Hanson, D.E.; Kress, J.D.
1998-05-08
Simulations of Cl plasma etch of Si surfaces with MD techniques agree reasonably well with the available experimental information on yields and surface morphologies. This information has been supplied to a Monte Carlo etch profile resulting in substantial agreement with comparable inputs provided through controlled experiments. To the extent that more recent measurements of etch rates are more reliable than older ones, preliminary MD simulations using bond-order corrections to the atomic interactions between neighboring Si atoms on the surface improves agreement with experiment through an increase in etch rate and improved agreement with XPS measurements of surface stoichiometry. Thermochemical and geometric analysis of small Si-Br molecules is consistent with the current notions of the effects of including brominated species in etchant gases.
molecular dynamics simulations and quantum chemical calculations
African Journals Online (AJOL)
ABSTRACT. The molecular dynamic (MD) simulation and quantum chemical calculations for the adsorption of [2-(2-Henicos-10- .... electronic properties of molecule clusters, surfaces and ... The local reactivity was analyzed by determining the.
Zhong, Jian; Cai, Xiao-Ming; Bloss, William James
2017-05-01
A large eddy simulation (LES) model coupled with O 3 -NO x -VOC chemistry is implemented to simulate the coupled effects of emissions, mixing and chemical pre-processing within an idealised deep (aspect ratio = 2) urban street canyon under a weak wind condition. Reactive pollutants exhibit significant spatial variations in the presence of two vertically aligned unsteady vortices formed in the canyon. Comparison of the LES results from two chemical schemes (simple NO x -O 3 chemistry and a more comprehensive Reduced Chemical Scheme (RCS) chemical mechanism) shows that the concentrations of NO 2 and O x inside the street canyon are enhanced by approximately 30-40% via OH/HO 2 chemistry. NO, NO x , O 3 , OH and HO 2 are chemically consumed, while NO 2 and O x (total oxidant) are chemically produced within the canyon environment. Within-canyon pre-processing increases oxidant fluxes from the canyon to the overlying boundary layer, and this effect is greater for deeper street canyons (as found in many traditional European urban centres) than shallower (lower aspect ratio) streets. There is clear evidence of distinct behaviours for emitted chemical species and entrained chemical species, and positive (or negative) values of intensities of segregations are found between pairs of species with similar (or opposite) behaviour. The simplified two-box model underestimated NO and O 3 levels, but overestimated NO 2 levels for both the lower and upper canyon compared with the more realistic LES-chemistry model. This suggests that the segregation effect due to incomplete mixing reduces the chemical conversion rate of NO to NO 2 . This study reveals the impacts of nonlinear O 3 -NO x -VOC photochemical processes in the incomplete mixing environment and provides a better understanding of the pre-processing of emissions within canyons, prior to their release to the urban boundary layer, through the coupling of street canyon dynamics and chemistry. Copyright © 2017 Elsevier Ltd
Modeling and simulation of reactive flows
Bortoli, De AL; Pereira, Felipe
2015-01-01
Modelling and Simulation of Reactive Flows presents information on modeling and how to numerically solve reactive flows. The book offers a distinctive approach that combines diffusion flames and geochemical flow problems, providing users with a comprehensive resource that bridges the gap for scientists, engineers, and the industry. Specifically, the book looks at the basic concepts related to reaction rates, chemical kinetics, and the development of reduced kinetic mechanisms. It considers the most common methods used in practical situations, along with equations for reactive flows, and va
Approximate photochemical dynamics of azobenzene with reactive force fields
Li, Yan; Hartke, Bernd
2013-12-01
We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based simulations of photochemical cis→trans- and trans→cis-isomerizations of azobenzene, with qualitatively acceptable quantum yields. This paves the way towards large-scale dynamics simulations of molecular machines, including bond breaking and formation (via the reactive force field) as well as photochemical engines (presented in this work).
Voltage equilibration for reactive atomistic simulations of electrochemical processes
International Nuclear Information System (INIS)
Onofrio, Nicolas; Strachan, Alejandro
2015-01-01
We introduce electrochemical dynamics with implicit degrees of freedom (EChemDID), a model to describe electrochemical driving force in reactive molecular dynamics simulations. The method describes the equilibration of external electrochemical potentials (voltage) within metallic structures and their effect on the self-consistent partial atomic charges used in reactive molecular dynamics. An additional variable assigned to each atom denotes the local potential in its vicinity and we use fictitious, but computationally convenient, dynamics to describe its equilibration within connected metallic structures on-the-fly during the molecular dynamics simulation. This local electrostatic potential is used to dynamically modify the atomic electronegativities used to compute partial atomic changes via charge equilibration. Validation tests show that the method provides an accurate description of the electric fields generated by the applied voltage and the driving force for electrochemical reactions. We demonstrate EChemDID via simulations of the operation of electrochemical metallization cells. The simulations predict the switching of the device between a high-resistance to a low-resistance state as a conductive metallic bridge is formed and resistive currents that can be compared with experimental measurements. In addition to applications in nanoelectronics, EChemDID could be useful to model electrochemical energy conversion devices
Reactive transport models and simulation with ALLIANCES
International Nuclear Information System (INIS)
Leterrier, N.; Deville, E.; Bary, B.; Trotignon, L.; Hedde, T.; Cochepin, B.; Stora, E.
2009-01-01
Many chemical processes influence the evolution of nuclear waste storage. As a result, simulations based only upon transport and hydraulic processes fail to describe adequately some industrial scenarios. We need to take into account complex chemical models (mass action laws, kinetics...) which are highly non-linear. In order to simulate the coupling of these chemical reactions with transport, we use a classical Sequential Iterative Approach (SIA), with a fixed point algorithm, within the mainframe of the ALLIANCES platform. This approach allows us to use the various transport and chemical modules available in ALLIANCES, via an operator-splitting method based upon the structure of the chemical system. We present five different applications of reactive transport simulations in the context of nuclear waste storage: 1. A 2D simulation of the lixiviation by rain water of an underground polluted zone high in uranium oxide; 2. The degradation of the steel envelope of a package in contact with clay. Corrosion of the steel creates corrosion products and the altered package becomes a porous medium. We follow the degradation front through kinetic reactions and the coupling with transport; 3. The degradation of a cement-based material by the injection of an aqueous solution of zinc and sulphate ions. In addition to the reactive transport coupling, we take into account in this case the hydraulic retroaction of the porosity variation on the Darcy velocity; 4. The decalcification of a concrete beam in an underground storage structure. In this case, in addition to the reactive transport simulation, we take into account the interaction between chemical degradation and the mechanical forces (cracks...), and the retroactive influence on the structure changes on transport; 5. The degradation of the steel envelope of a package in contact with a clay material under a temperature gradient. In this case the reactive transport simulation is entirely directed by the temperature changes and
Dynamic Performance of the ITER Reactive Power Compensation System
International Nuclear Information System (INIS)
Sheng Zhicai; Fu Peng; Xu Liuwei
2011-01-01
Dynamic performance of a reactive power compensation (RPC) system for the international thermonuclear experimental reactor (ITER) power supply is presented. Static var compensators (SVCs) are adopted to mitigate voltage fluctuation and reduce the reactive power down to a level acceptable for the French/European 400 kV grid. A voltage feedback and load power feedforward controller for SVC is proposed, with the feedforward loop intended to guarantee short response time and the feedback loop ensuring good dynamics and steady characteristics of SVC. A mean filter was chosen to measure the control signals to improve the dynamic response. The dynamic performance of the SVC is verified by simulations using PSCAD/EMTDC codes.
Sensitivity analysis of reactive ecological dynamics.
Verdy, Ariane; Caswell, Hal
2008-08-01
Ecological systems with asymptotically stable equilibria may exhibit significant transient dynamics following perturbations. In some cases, these transient dynamics include the possibility of excursions away from the equilibrium before the eventual return; systems that exhibit such amplification of perturbations are called reactive. Reactivity is a common property of ecological systems, and the amplification can be large and long-lasting. The transient response of a reactive ecosystem depends on the parameters of the underlying model. To investigate this dependence, we develop sensitivity analyses for indices of transient dynamics (reactivity, the amplification envelope, and the optimal perturbation) in both continuous- and discrete-time models written in matrix form. The sensitivity calculations require expressions, some of them new, for the derivatives of equilibria, eigenvalues, singular values, and singular vectors, obtained using matrix calculus. Sensitivity analysis provides a quantitative framework for investigating the mechanisms leading to transient growth. We apply the methodology to a predator-prey model and a size-structured food web model. The results suggest predator-driven and prey-driven mechanisms for transient amplification resulting from multispecies interactions.
International Nuclear Information System (INIS)
Yang, Judith C.; Nuzzo, Ralph G.; Johnson, Duane; Frenkel, Anatoly
2008-01-01
The distinguishing feature of our collaborative program of study is the focus it brings to emergent phenomena originating from the unique structural/electronic environments found in nanoscale materials. We exploit and develop frontier methods of atomic-scale materials characterization based on electron microscopy (Yang) and synchrotron X-ray absorption spectroscopy (Frenkel) that are in turn coupled innately with advanced first principles theory and methods of computational modeling (Johnson). In the past year we have made significant experimental advances that have led to important new understandings of the structural dynamics of what are unquestionably the most important classes of heterogeneous catalysts-the materials used to both produce and mitigate the consequences of the use of liquid hydrocarbon fuels.
Interactive Dynamic-System Simulation
Korn, Granino A
2010-01-01
Showing you how to use personal computers for modeling and simulation, Interactive Dynamic-System Simulation, Second Edition provides a practical tutorial on interactive dynamic-system modeling and simulation. It discusses how to effectively simulate dynamical systems, such as aerospace vehicles, power plants, chemical processes, control systems, and physiological systems. Written by a pioneer in simulation, the book introduces dynamic-system models and explains how software for solving differential equations works. After demonstrating real simulation programs with simple examples, the author
Reactive-brittle dynamics in peridotite alteration
Evans, O.; Spiegelman, M. W.; Kelemen, P. B.
2017-12-01
The interactions between reactive fluids and brittle solids are critical in Earth dynamics. Implications of such processes are wide-ranging: from earthquake physics to geologic carbon sequestration and the cycling of fluids and volatiles through subduction zones. Peridotite alteration is a common feature in many of these processes, which - despite its obvious importance - is relatively poorly understood from a geodynamical perspective. In particular, alteration reactions are thought to be self-limiting in nature, contradicting observations of rocks that have undergone 100% hydration/carbonation. One potential explanation of this observation is the mechanism of "reaction-driven cracking": that volume changes associated with these reactions are large enough to fracture the surrounding rock, leading to a positive feedback where new reactive surfaces are exposed and fluid pathways are created. The purpose of this study is to investigate the relative roles of reaction, elastic stresses and surface tension in alteration reactions. In this regard we derive a system of equations describing reactive fluid flow in an elastically deformable porous media, and explore them via a combination of analytic and numerical solutions. Using this model we show that the final stress state of a dry peridotite that has undergone reaction depends strongly on the rates of reaction versus fluid transport: significant fluid flow driven by pressure and/or surface tension gradients implies higher fractions of serpentinization, leaving behind a highly stressed residuum of partially reacted material. Using a model set-up that mimics a cylindrical triaxial apparatus we predict that the resulting stresses would lead to tensile failure and the generation of radially oriented cracks.
Energy Technology Data Exchange (ETDEWEB)
Tuvshinjargal, Doopalam; Lee, Deok Jin [Kunsan National University, Gunsan (Korea, Republic of)
2015-06-15
In this paper, an efficient dynamic reactive motion planning method for an autonomous vehicle in a dynamic environment is proposed. The purpose of the proposed method is to improve the robustness of autonomous robot motion planning capabilities within dynamic, uncertain environments by integrating a virtual plane-based reactive motion planning technique with a sensor fusion-based obstacle detection approach. The dynamic reactive motion planning method assumes a local observer in the virtual plane, which allows the effective transformation of complex dynamic planning problems into simple stationary ones proving the speed and orientation information between the robot and obstacles. In addition, the sensor fusion-based obstacle detection technique allows the pose estimation of moving obstacles using a Kinect sensor and sonar sensors, thus improving the accuracy and robustness of the reactive motion planning approach. The performance of the proposed method was demonstrated through not only simulation studies but also field experiments using multiple moving obstacles in hostile dynamic environments.
International Nuclear Information System (INIS)
Tuvshinjargal, Doopalam; Lee, Deok Jin
2015-01-01
In this paper, an efficient dynamic reactive motion planning method for an autonomous vehicle in a dynamic environment is proposed. The purpose of the proposed method is to improve the robustness of autonomous robot motion planning capabilities within dynamic, uncertain environments by integrating a virtual plane-based reactive motion planning technique with a sensor fusion-based obstacle detection approach. The dynamic reactive motion planning method assumes a local observer in the virtual plane, which allows the effective transformation of complex dynamic planning problems into simple stationary ones proving the speed and orientation information between the robot and obstacles. In addition, the sensor fusion-based obstacle detection technique allows the pose estimation of moving obstacles using a Kinect sensor and sonar sensors, thus improving the accuracy and robustness of the reactive motion planning approach. The performance of the proposed method was demonstrated through not only simulation studies but also field experiments using multiple moving obstacles in hostile dynamic environments
Estimation of dynamic reactivity using an H∞ optimal filter with a nonlinear term
International Nuclear Information System (INIS)
Suzuki, Katsuo; Watanabe, Koiti
1996-01-01
A method of nonlinear filtering is applied to the problem of estimating the dynamic reactivity of a nonlinear reactor system. The nonlinear filtering algorithm developed is a simple modification of a linear H ∞ optimal filter with a nonlinear feedback loop added. The linear filter is designed on the basis of a linearized dynamical system model that consists of linearized point reactor kinetic equations and a reactivity state equation driven by a fictitious signal. The latter is artificially introduced to deal with the reactivity as a state variable. The results of the computer simulation show that the nonlinear filtering algorithm can be applied to estimate the dynamic reactivity of the nonlinear reactor system, even under relatively large reactivity disturbances
Basic study on dynamic reactive-power control method with PV output prediction for solar inverter
Directory of Open Access Journals (Sweden)
Ryunosuke Miyoshi
2016-01-01
Full Text Available To effectively utilize a photovoltaic (PV system, reactive-power control methods for solar inverters have been considered. Among the various methods, the constant-voltage control outputs less reactive power compared with the other methods. We have developed a constant-voltage control to reduce the reactive-power output. However, the developed constant-voltage control still outputs unnecessary reactive power because the control parameter is constant in every waveform of the PV output. To reduce the reactive-power output, we propose a dynamic reactive-power control method with a PV output prediction. In the proposed method, the control parameter is varied according to the properties of the predicted PV waveform. In this study, we performed numerical simulations using a distribution system model, and we confirmed that the proposed method reduces the reactive-power output within the voltage constraint.
Molecular dynamics simulations
International Nuclear Information System (INIS)
Alder, B.J.
1985-07-01
The molecular dynamics computer simulation discovery of the slow decay of the velocity autocorrelation function in fluids is briefly reviewed in order to contrast that long time tail with those observed for the stress autocorrelation function in fluids and the velocity autocorrelation function in the Lorentz gas. For a non-localized particle in the Lorentz gas it is made plausible that even if it behaved quantum mechanically its long time tail would be the same as the classical one. The generalization of Fick's law for diffusion for the Lorentz gas, necessary to avoid divergences due to the slow decay of correlations, is presented. For fluids, that generalization has not yet been established, but the region of validity of generalized hydrodynamics is discussed. 20 refs., 5 figs
Biodiesel Production by Reactive Flash: A Numerical Simulation
Directory of Open Access Journals (Sweden)
Alejandro Regalado-Méndez
2016-01-01
Full Text Available Reactive flash (RF in biodiesel production has been studied in order to investigate steady-state multiplicities, singularities, and effect of biodiesel quality when the RF system approaches to bubble point. The RF was modeled by an index-2 system of differential algebraic equations, the vapor split (ϕ was computed by modified Rachford-Rice equation and modified Raoult’s law computed bubble point, and the continuation analysis was tracked on MATCONT. Results of this study show the existence of turning points, leading to a unique bubble point manifold, (xBiodiesel,T=(0.46,478.41 K, which is a globally stable flashing operation. Also, the results of the simulation in MATLAB® of the dynamic behavior of the RF show that conversion of triglycerides reaches 97% for a residence time of 5.8 minutes and a methanol to triglyceride molar flow ratio of 5 : 1.
Dynamics and reactivity of confined water
International Nuclear Information System (INIS)
Musat, R.
2008-01-01
In the context of new sustainable energy sources quest, the nuclear energy remains a key solution. However, with the development of nuclear technology, problems relating to nuclear waste disposal arise; thus, the radiolysis of water in confined media is extremely important with respect to matters related to long time storage of nuclear waste. Studies in model porous media would allow the projection of a confined water radiolysis simulator. A first step in this direction was made by studying the radiolysis of water confined in Vycor and CPG glasses; this study continues the trend set and investigates the effects of confinement in metal materials upon the water radiolysis allowing the understanding of metal - water radiation induced corrosion. A further/complete understanding of the radiolytic process under confinement requires knowledge of the effect of confinement upon the dynamics of confined molecules and on the evolution of the species produced upon ionizing radiation. In this respect, we have used the OH vibrator as a probe of the hydrogen bond network properties and thus investigated the dynamics of confined water using IR time resolved spectroscopy. The evolution of the hydrated electron under confinement was studied on a nano and picosecond time scale using UV pump - visible probe technique and single shot spectroscopy. (author) [fr
Dynamics of tuberculosis transmission with exogenous reinfections and endogenous reactivation
Khajanchi, Subhas; Das, Dhiraj Kumar; Kar, Tapan Kumar
2018-05-01
We propose and analyze a mathematical model for tuberculosis (TB) transmission to study the role of exogenous reinfection and endogenous reactivation. The model exhibits two equilibria: a disease free and an endemic equilibria. We observe that the TB model exhibits transcritical bifurcation when basic reproduction number R0 = 1. Our results demonstrate that the disease transmission rate β and exogenous reinfection rate α plays an important role to change the qualitative dynamics of TB. The disease transmission rate β give rises to the possibility of backward bifurcation for R0 < 1, and hence the existence of multiple endemic equilibria one of which is stable and another one is unstable. Our analysis suggests that R0 < 1 may not be sufficient to completely eliminate the disease. We also investigate that our TB transmission model undergoes Hopf-bifurcation with respect to the contact rate β and the exogenous reinfection rate α. We conducted some numerical simulations to support our analytical findings.
Ionic Liquids: Radiation Chemistry, Solvation Dynamics and Reactivity Patterns
International Nuclear Information System (INIS)
Wishart, J.F.
2008-01-01
the influence of ILs on charge transport processes. Picosecond pulse radiolysis studies at BNL's Laser-Electron Accelerator Facility (LEAF) are used to identify reactive species in ionic liquids and measure their solvation and reaction rates. We and our collaborators (R. Engel (Queens College, CUNY) and S. Lall-Ramnarine, (Queensborough CC, CUNY)) develop and characterize new ionic liquids specifically designed for our radiolysis and solvation dynamics studies. IL solvation and rotational dynamics are measured by TCSPC and fluorescence upconversion measurements in the laboratory of E. W. Castner at Rutgers Univ. Investigations of radical species in irradiated ILs are carried out at ANL by I. Shkrob and S. Chemerisov using EPR spectroscopy. Diffusion rates are obtained by PGSE NMR in S. Greenbaum's lab at Hunter College, CUNY and S. Chung's lab at William Patterson U. Professor Mark Kobrak of CUNY Brooklyn College performs molecular dynamics simulations of solvation processes. A collaboration with M. Dietz at U. Wisc. Milwaukee is centered around the properties and radiolytic behavior of ionic liquids for nuclear separations. Collaborations with C. Reed (UC Riverside), D. Gabel (U. Bremen) and J. Davis (U. South Alabama) are aimed at characterizing the radiolytic and other properties of borated ionic liquids, which could be used to make fissile material separations processes inherently safe from criticality accidents
IONIC LIQUIDS: RADIATION CHEMISTRY, SOLVATION DYNAMICS AND REACTIVITY PATTERNS
International Nuclear Information System (INIS)
WISHART, J.F.
2007-01-01
's Laser-Electron Accelerator Facility (LEAF) are used to identify reactive species in ionic liquids and measure their solvation and reaction rates. We and our collaborators (R. Engel (Queens College, CUNY) and S. Lall-Ramnarine, (Queensborough CC, CUNY)) develop and characterize new ionic liquids specifically designed for our radiolysis and solvation dynamics studies. IL solvation and rotational dynamics are measured by TCSPC and fluorescence upconversion measurements in the laboratory of E. W. Castner at Rutgers Univ. Investigations of radical species in irradiated ILs are carried out at ANL by I. Shkrob and S. Chemerisov using EPR spectroscopy. Diffusion rates are obtained by PGSE NMR in S. Greenbaum's lab at Hunter College, CUNY and S. Chung's lab at William Patterson U. Professor Mark Kobrak of CUNY Brooklyn College performs molecular dynamics simulations of solvation processes. A collaboration with M. Dietz and coworkers at ANL is centered around the properties and radiolytic behavior of ionic liquids for nuclear separations. Collaborations with C. Reed (UC Riverside), D. Gabel (U. Bremen) and J. Davis (U. South Alabama) are aimed at characterizing the radiolytic and other properties of borated ionic liquids, which could be used to make fissile material separations processes inherently safe from criticality accidents
Effects of loading reactivity at dynamic state on wave of neutrons in burst reactor
International Nuclear Information System (INIS)
Gao Hui; Liu Xiaobo; Fan Xiaoqiang
2013-01-01
Based on the point reactor model, the program for simulating the burst of reactors, including delay neutron, thermal feedback and reactivity of rod, was developed. The program proves to be suitable to burst reactor by experimental data. The program can describe the process of neutron-intensity change in burst reactors. With the program, the parameters of burst (wave of burst, power of peak and reactivity of reactor) under the condition of dynamic reactivity can be calculated. The calculated result demonstrates that the later the burst is initiated, the greater its power of peak and yield are and that the maximum yield coordinates with the yield under static state. (authors)
Generator dynamics in aeroelastic analysis and simulations
Energy Technology Data Exchange (ETDEWEB)
Larsen, T.J.; Hansen, M.H.; Iov, F.
2003-05-01
This report contains a description of a dynamic model for a doubly-fed induction generator implemented in the aeroelastic code HAWC. The model has physical input parameters (resistance, reactance etc.) and input variables (stator and rotor voltage and rotor speed). The model can be used to simulate the generator torque as well as the rotor and stator currents, active and reactive power. A perturbation method has been used to reduce the original generator model equations to a set of equations which can be solved with the same time steps as a typical aeroelastic code. The method is used to separate the fast transients of the model from the slow variations and deduce a reduced order expression for the slow part. Dynamic effects of the first order terms in the model as well as the influence on drive train eigenfrequencies and damping has been investigated. Load response during time simulation of wind turbine response have been compared to simulations with a linear static generator model originally implemented i HAWC. A 2 MW turbine has been modelled in the aeroelastic code HAWC. When using the new dynamic generator model there is an interesting coupling between the generator dynamics and a global turbine vibration mode at 4.5 Hz, which only occurs when a dynamic formulation of the generator equations is applied. This frequency can especially be seen in the electrical power of the generator and the rotational speed of the generator, but also as torque variations in the drive train. (au)
Nick, H.M.
2013-02-01
The reactive mixing between seawater and terrestrial water in coastal aquifers influences the water quality of submarine groundwater discharge. While these waters come into contact at the seawater groundwater interface by density driven flow, their chemical components dilute and react through dispersion. A larger interface and wider mixing zone may provide favorable conditions for the natural attenuation of contaminant plumes. It has been claimed that the extent of this mixing is controlled by both, porous media properties and flow conditions. In this study, the interplay between dispersion and reactive processes in coastal aquifers is investigated by means of numerical experiments. Particularly, the impact of dispersion coefficients, the velocity field induced by density driven flow and chemical component reactivities on reactive transport in such aquifers is studied. To do this, a hybrid finite-element finite-volume method and a reactive simulator are coupled, and model accuracy and applicability are assessed. A simple redox reaction is considered to describe the degradation of a contaminant which requires mixing of the contaminated groundwater and the seawater containing the terminal electron acceptor. The resulting degradation is observed for different scenarios considering different magnitudes of dispersion and chemical reactivity. Three reactive transport regimes are found: reaction controlled, reaction-dispersion controlled and dispersion controlled. Computational results suggest that the chemical components\\' reactivity as well as dispersion coefficients play a significant role on controlling reactive mixing zones and extent of contaminant removal in coastal aquifers. Further, our results confirm that the dilution index is a better alternative to the second central spatial moment of a plume to describe the mixing of reactive solutes in coastal aquifers. © 2012 Elsevier B.V.
Dynamic simulation of a reboiler
International Nuclear Information System (INIS)
Moeck, E.O.; McMorran, P.D.
1977-07-01
A hybrid-computer simulation of reboiler dynamics was prepared, comprising models of steam condensation in tubes, heat conduction, steam generation, a surge tank, steam transmission line and flow-control valve. Time and frequency responses were obtained to illustrate the dynamics of this multivariable process. (author)
Energy Technology Data Exchange (ETDEWEB)
Wen, Jialin; Ma, Tianbao [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Zhang, Weiwei; Psofogiannakis, George; Duin, Adri C.T. van [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Chen, Lei; Qian, Linmao [Tribology Research Institute, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031 (China); Hu, Yuanzhong [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Lu, Xinchun, E-mail: xclu@tsinghua.edu.cn [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)
2016-12-30
Highlights: • New ReaxFF reactive force field was applied to simulate the tribochemical wear process at Si/SiO{sub 2} interface. • Wear of silicon atoms is due to the breaking of Si–O–Si bonds and Si–Si–O–Si bond chains on the Si substrate. • Interfacial bridge bonds play an important role during the tribochemical wear process. • Higher pressures applied to the silica phase can cause more Si atoms to be removed by forming more interfacial bridge bonds. • Water plays an opposing role in the wear process because of its both chemical and mechanical effects. - Abstract: In this work, the atomic mechanism of tribochemical wear of silicon at the Si/SiO{sub 2} interface in aqueous environment was investigated using ReaxFF molecular dynamics (MD) simulations. Two types of Si atom removal pathways were detected in the wear process. The first is caused by the destruction of stretched Si–O–Si bonds on the Si substrate surface and is assisted by the attachment of H atoms on the bridging oxygen atoms of the bonds. The other is caused by the rupture of Si–Si bonds in the stretched Si–Si–O–Si bond chains at the interface. Both pathways effectively remove Si atoms from the silicon surface via interfacial Si–O–Si bridge bonds. Our simulations also demonstrate that higher pressures applied to the silica phase can cause more Si atoms to be removed due to the formation of increased numbers of interfacial Si–O–Si bridge bonds. Besides, water plays a dual role in the wear mechanism, by oxidizing the Si substrate surface as well as by preventing the close contact of the surfaces. This work shows that the removal of Si atoms from the substrate is a result of both chemical reaction and mechanical effects and contributes to the understanding of tribochemical wear behavior in the microelectromechanical systems (MEMS) and Si chemical mechanical polishing (CMP) process.
International Nuclear Information System (INIS)
Trucco, A.; Corallo, C.; Pini Prato, A.; Porro, S.
1999-01-01
Among the innovative cycle recently proposed in literature, the Humid Air Turbine Cycle - Hat better seems to fulfil the main energy market requirements of today: High efficiency in a large power ranger, low pollution, low specific capital cost. The previous results of an analysis at partial load and transient conditions are here presented, where the Hat plant has been simulated using the original model implemented in LEGO environment [it
Simulations of reactive transport and precipitation with smoothed particle hydrodynamics
Tartakovsky, Alexandre M.; Meakin, Paul; Scheibe, Timothy D.; Eichler West, Rogene M.
2007-03-01
A numerical model based on smoothed particle hydrodynamics (SPH) was developed for reactive transport and mineral precipitation in fractured and porous materials. Because of its Lagrangian particle nature, SPH has several advantages for modeling Navier-Stokes flow and reactive transport including: (1) in a Lagrangian framework there is no non-linear term in the momentum conservation equation, so that accurate solutions can be obtained for momentum dominated flows and; (2) complicated physical and chemical processes such as surface growth due to precipitation/dissolution and chemical reactions are easy to implement. In addition, SPH simulations explicitly conserve mass and linear momentum. The SPH solution of the diffusion equation with fixed and moving reactive solid-fluid boundaries was compared with analytical solutions, Lattice Boltzmann [Q. Kang, D. Zhang, P. Lichtner, I. Tsimpanogiannis, Lattice Boltzmann model for crystal growth from supersaturated solution, Geophysical Research Letters, 31 (2004) L21604] simulations and diffusion limited aggregation (DLA) [P. Meakin, Fractals, scaling and far from equilibrium. Cambridge University Press, Cambridge, UK, 1998] model simulations. To illustrate the capabilities of the model, coupled three-dimensional flow, reactive transport and precipitation in a fracture aperture with a complex geometry were simulated.
Dynamic modeling of the isoamyl acetate reactive distillation process
Directory of Open Access Journals (Sweden)
Ali Syed Sadiq
2017-03-01
Full Text Available The cost-effectiveness of reactive distillation (RD processes makes them highly attractive for industrial applications. However, their preliminary design and subsequent scale-up and operation are challenging. Specifically, the response of RD system during fluctuations in process parameters is of paramount importance to ensure the stability of the whole process. As a result of carrying out simulations using Aspen Plus, it is shown that the RD process for isoamyl acetate production was much more economical than conventional reactor distillation configuration under optimized process conditions due to lower utilities consumption, higher conversion and smaller sizes of condenser and reboiler. Rigorous dynamic modeling of RD system was performed to evaluate its sensitivity to disturbances in critical process parameters; the product flow was quite sensitive to disturbances. Even more sensitive was product composition when the disturbance in heat duties of condenser or reboiler led to a temperature decrease. However, positive disturbance in alcohol feed is of particular concern, which clearly made the system unstable.
Local Dynamic Reactive Power for Correction of System Voltage Problems
Energy Technology Data Exchange (ETDEWEB)
Kueck, John D [ORNL; Rizy, D Tom [ORNL; Li, Fangxing [ORNL; Xu, Yan [ORNL; Li, Huijuan [University of Tennessee, Knoxville (UTK); Adhikari, Sarina [ORNL; Irminger, Philip [ORNL
2008-12-01
Distribution systems are experiencing outages due to a phenomenon known as local voltage collapse. Local voltage collapse is occurring in part because modern air conditioner compressor motors are much more susceptible to stalling during a voltage dip than older motors. These motors can stall in less than 3 cycles (.05s) when a fault, such as on the sub-transmission system, causes voltage to sag to 70 to 60%. The reasons for this susceptibility are discussed in the report. During the local voltage collapse, voltages are depressed for a period of perhaps one or two minutes. There is a concern that these local events are interacting together over larger areas and may present a challenge to system reliability. An effective method of preventing local voltage collapse is the use of voltage regulation from Distributed Energy Resources (DER) that can supply or absorb reactive power. DER, when properly controlled, can provide a rapid correction to voltage dips and prevent motor stall. This report discusses the phenomenon and causes of local voltage collapse as well as the control methodology we have developed to counter voltage sag. The problem is growing because of the use of low inertia, high efficiency air conditioner (A/C) compressor motors and because the use of electric A/C is growing in use and becoming a larger percentage of system load. A method for local dynamic voltage regulation is discussed which uses reactive power injection or absorption from local DER. This method is independent, rapid, and will not interfere with conventional utility system voltage control. The results of simulations of this method are provided. The method has also been tested at the ORNL s Distributed Energy Communications and Control (DECC) Laboratory using our research inverter and synchronous condenser. These systems at the DECC Lab are interconnected to an actual distribution system, the ORNL distribution system, which is fed from TVA s 161kV sub-transmission backbone. The test results
Space dependence of reactivity parameters on reactor dynamic perturbation measurements
International Nuclear Information System (INIS)
Maletti, R.; Ziegenbein, D.
1985-01-01
Practical application of reactor-dynamic perturbation measurements for on-power determination of differential reactivity weight of control rods and power coefficients of reactivity has shown a significant dependence of parameters on the position of outcore detectors. The space dependence of neutron flux signal in the core of a VVER-440-type reactor was measured by means of 60 self-powered neutron detectors. The greatest neutron flux alterations are located close to moved control rods and in height of the perturbation position. By means of computations, detector positions can be found in the core in which the one-point model is almost valid. (author)
Reactive power and voltage control strategy based on dynamic and adaptive segment for DG inverter
Zhai, Jianwei; Lin, Xiaoming; Zhang, Yongjun
2018-03-01
The inverter of distributed generation (DG) can support reactive power to help solve the problem of out-of-limit voltage in active distribution network (ADN). Therefore, a reactive voltage control strategy based on dynamic and adaptive segment for DG inverter is put forward to actively control voltage in this paper. The proposed strategy adjusts the segmented voltage threshold of Q(U) droop curve dynamically and adaptively according to the voltage of grid-connected point and the power direction of adjacent downstream line. And then the reactive power reference of DG inverter can be got through modified Q(U) control strategy. The reactive power of inverter is controlled to trace the reference value. The proposed control strategy can not only control the local voltage of grid-connected point but also help to maintain voltage within qualified range considering the terminal voltage of distribution feeder and the reactive support for adjacent downstream DG. The scheme using the proposed strategy is compared with the scheme without the reactive support of DG inverter and the scheme using the Q(U) control strategy with constant segmented voltage threshold. The simulation results suggest that the proposed method has a significant improvement on solving the problem of out-of-limit voltage, restraining voltage variation and improving voltage quality.
Jablonski, Piotr; Poe, Gina; Zochowski, Michal
2007-03-01
The hippocampus has the capacity for reactivating recently acquired memories and it is hypothesized that one of the functions of sleep reactivation is the facilitation of consolidation of novel memory traces. The dynamic and network processes underlying such a reactivation remain, however, unknown. We show that such a reactivation characterized by local, self-sustained activity of a network region may be an inherent property of the recurrent excitatory-inhibitory network with a heterogeneous structure. The entry into the reactivation phase is mediated through a physiologically feasible regulation of global excitability and external input sources, while the reactivated component of the network is formed through induced network heterogeneities during learning. We show that structural changes needed for robust reactivation of a given network region are well within known physiological parameters.
Vehicle dynamics modeling and simulation
Schramm, Dieter; Bardini, Roberto
2014-01-01
The authors examine in detail the fundamentals and mathematical descriptions of the dynamics of automobiles. In this context different levels of complexity will be presented, starting with basic single-track models up to complex three-dimensional multi-body models. A particular focus is on the process of establishing mathematical models on the basis of real cars and the validation of simulation results. The methods presented are explained in detail by means of selected application scenarios.
Dynamics of Reactive Microbial Hotspots in Concentration Gradient.
Hubert, A.; Farasin, J.; Tabuteau, H.; Dufresne, A.; Meheust, Y.; Le Borgne, T.
2017-12-01
In subsurface environments, bacteria play a major role in controlling the kinetics of a broad range of biogeochemical reactions. In such environments, nutrients fluxes and solute concentrations needed for bacteria metabolism may be highly variable in space and intermittent in time. This can lead to the formation of reactive hotspots where and when conditions are favorable to particular microorganisms, hence inducing biogeochemical reaction kinetics that differ significantly from those measured in homogeneous model environments. To investigate the impact of chemical gradients on the spatial structure and temporal dynamics of subsurface microorganism populations, we develop microfluidic cells allowing for a precise control of flow and chemical gradient conditions, as well as quantitative monitoring of the bacteria's spatial distribution and biofilm development. Using the non-motile Escherichia coli JW1908-1 strain and Gallionella capsiferriformans ES-2 as model organisms, we investigate the behavior and development of bacteria over a range of single and double concentration gradients in the concentrations of nutrients, electron donors and electron acceptors. We measure bacterial activity and population growth locally in precisely known hydrodynamic and chemical environments. This approach allows time-resolved monitoring of the location and intensity of reactive hotspots in micromodels as a function of the flow and chemical gradient conditions. We compare reactive microbial hotspot dynamics in our micromodels to classic growth laws and well-known growth parameters for the laboratory model bacteria Escherichia coli.We also discuss consequences for the formation and temporal dynamics of biofilms in the subsurface.
Ionic Liquids: Radiation Chemistry, Solvation Dynamics and Reactivity Patterns
International Nuclear Information System (INIS)
Wishart, J.F.
2011-01-01
Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs generally have low volatilities and are combustion-resistant, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of primary radiation chemistry, charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of reactions and product distributions. We study these issues by characterization of primary radiolysis products and measurements of their yields and reactivity, quantification of electron solvation dynamics and scavenging of electrons in different states of solvation. From this knowledge we wish to learn how to predict radiolytic mechanisms and control them or mitigate their effects on the properties of materials used in nuclear fuel processing, for example, and to apply IL radiation chemistry to answer questions about general chemical reactivity in ionic liquids that will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that the slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increase the importance of pre-solvated electron reactivity and consequently alter product distributions and subsequent chemistry. This difference from conventional solvents has profound effects on predicting and controlling radiolytic yields
Reactors Dynamic analysis Due to Reactivity of The RSG-Gas at One Line Cooling Mode
International Nuclear Information System (INIS)
Hastuti, Endiah Puji
2003-01-01
In the frame of minimizing the operation-cost, operation mode using one line cooling system is being evaluated. Maximum reactor power has been determined and steady state and LOFA transient analysis have also been done. To complete those analyses, the reactivity analysis was done by means of a core dynamic and thermal hydraulic code, PARET-ANL. Accident simulation was done. by a ramp reactivity accident due to control rod withdrawal. Reactivity analysis was carried out at two power range i.e. low and high power level, by imposing one line mode reactor protection limits. The results show that technically, the RSG-Gas can be operated safely using one line mode
Supercomputer algorithms for reactivity, dynamics and kinetics of small molecules
International Nuclear Information System (INIS)
Lagana, A.
1989-01-01
Even for small systems, the accurate characterization of reactive processes is so demanding of computer resources as to suggest the use of supercomputers having vector and parallel facilities. The full advantages of vector and parallel architectures can sometimes be obtained by simply modifying existing programs, vectorizing the manipulation of vectors and matrices, and requiring the parallel execution of independent tasks. More often, however, a significant time saving can be obtained only when the computer code undergoes a deeper restructuring, requiring a change in the computational strategy or, more radically, the adoption of a different theoretical treatment. This book discusses supercomputer strategies based upon act and approximate methods aimed at calculating the electronic structure and the reactive properties of small systems. The book shows how, in recent years, intense design activity has led to the ability to calculate accurate electronic structures for reactive systems, exact and high-level approximations to three-dimensional reactive dynamics, and to efficient directive and declaratory software for the modelling of complex systems
A reactivity accidents simulation of the Fort Saint Vrain HTGR
International Nuclear Information System (INIS)
Fainer, Gerson
1980-01-01
A reactivity accidents analysis of the Fort Saint Vrain HTGR was made. The following accidents were analysed 1) A rod pair withdrawal accident during normal operation, 2) A rod pair ejection accident, 3) A rod pair withdrawal accident during startup operations at source levels and 4) Multiple rod pair withdrawal accident. All the simulations were performed by using the BLOOST-6 nuclear code The steady state reactor operation results obtained with the code were consistent with the design reactor data. The numerical analysis showed that all accidents - except the first one - cause particle failure. (author)
Dynamic simulation of LMFBR systems
International Nuclear Information System (INIS)
Agrawal, A.K.; Khatib-Rahbar, M.
1980-01-01
This review article focuses on the dynamic analysis of liquid-metal-cooled fast breeder reactor systems in the context of protected transients. Following a brief discussion on various design and simulation approaches, a critical review of various models for in-reactor components, intermediate heat exchangers, heat transport systems and the steam generating system is presented. A brief discussion on choice of fuels as well as core and blanket system designs is also included. Numerical considerations for obtaining system-wide steady-state and transient solutions are discussed, and examples of various system transients are presented. Another area of major interest is verification of phenomenological models. Various steps involved in the code and model verification are briefly outlined. The review concludes by posing some further areas of interest in fast reactor dynamics and safety. (author)
Human motion simulation predictive dynamics
Abdel-Malek, Karim
2013-01-01
Simulate realistic human motion in a virtual world with an optimization-based approach to motion prediction. With this approach, motion is governed by human performance measures, such as speed and energy, which act as objective functions to be optimized. Constraints on joint torques and angles are imposed quite easily. Predicting motion in this way allows one to use avatars to study how and why humans move the way they do, given specific scenarios. It also enables avatars to react to infinitely many scenarios with substantial autonomy. With this approach it is possible to predict dynamic motion without having to integrate equations of motion -- rather than solving equations of motion, this approach solves for a continuous time-dependent curve characterizing joint variables (also called joint profiles) for every degree of freedom. Introduces rigorous mathematical methods for digital human modelling and simulation Focuses on understanding and representing spatial relationships (3D) of biomechanics Develops an i...
Lattice Boltzmann simulation of CO2 reactive transport in network fractured media
Tian, Zhiwei; Wang, Junye
2017-08-01
Carbon dioxide (CO2) geological sequestration plays an important role in mitigating CO2 emissions for climate change. Understanding interactions of the injected CO2 with network fractures and hydrocarbons is key for optimizing and controlling CO2 geological sequestration and evaluating its risks to ground water. However, there is a well-known, difficult process in simulating the dynamic interaction of fracture-matrix, such as dynamic change of matrix porosity, unsaturated processes in rock matrix, and effect of rock mineral properties. In this paper, we develop an explicit model of the fracture-matrix interactions using multilayer bounce-back treatment as a first attempt to simulate CO2 reactive transport in network fractured media through coupling the Dardis's LBM porous model for a new interface treatment. Two kinds of typical fracture networks in porous media are simulated: straight cross network fractures and interleaving network fractures. The reaction rate and porosity distribution are illustrated and well-matched patterns are found. The species concentration distribution and evolution with time steps are also analyzed and compared with different transport properties. The results demonstrate the capability of this model to investigate the complex processes of CO2 geological injection and reactive transport in network fractured media, such as dynamic change of matrix porosity.
Dynamic benchmarking of simulation codes
International Nuclear Information System (INIS)
Henry, R.E.; Paik, C.Y.; Hauser, G.M.
1996-01-01
Computer simulation of nuclear power plant response can be a full-scope control room simulator, an engineering simulator to represent the general behavior of the plant under normal and abnormal conditions, or the modeling of the plant response to conditions that would eventually lead to core damage. In any of these, the underlying foundation for their use in analysing situations, training of vendor/utility personnel, etc. is how well they represent what has been known from industrial experience, large integral experiments and separate effects tests. Typically, simulation codes are benchmarked with some of these; the level of agreement necessary being dependent upon the ultimate use of the simulation tool. However, these analytical models are computer codes, and as a result, the capabilities are continually enhanced, errors are corrected, new situations are imposed on the code that are outside of the original design basis, etc. Consequently, there is a continual need to assure that the benchmarks with important transients are preserved as the computer code evolves. Retention of this benchmarking capability is essential to develop trust in the computer code. Given the evolving world of computer codes, how is this retention of benchmarking capabilities accomplished? For the MAAP4 codes this capability is accomplished through a 'dynamic benchmarking' feature embedded in the source code. In particular, a set of dynamic benchmarks are included in the source code and these are exercised every time the archive codes are upgraded and distributed to the MAAP users. Three different types of dynamic benchmarks are used: plant transients; large integral experiments; and separate effects tests. Each of these is performed in a different manner. The first is accomplished by developing a parameter file for the plant modeled and an input deck to describe the sequence; i.e. the entire MAAP4 code is exercised. The pertinent plant data is included in the source code and the computer
The simulation research for the dynamic performance of integrated PWR
International Nuclear Information System (INIS)
Yuan Jiandong; Xia Guoqing; Fu Mingyu
2005-01-01
The mathematical model of the reactor core of integrated PWR has been studied and simplified properly. With the lumped parameter method, authors have established the mathematical model of the reactor core, including the neutron dynamic equation, the feedback reactivities model and the thermo-hydraulic model of the reactor. Based on the above equations and models, the incremental transfer functions of the reactor core model have been built. By simulation experimentation, authors have compared the dynamic characteristics of the integrated PWR with the traditional dispersed PWR. The simulation results show that the mathematical models and equations are correct. (authors)
Catalytic Reactive Distillation for the Esterification Process: Experimental and Simulation
Directory of Open Access Journals (Sweden)
M. Mallaiah
2017-10-01
Full Text Available In the present study, methyl acetate has been synthesized using esterification of acetic acid with methanol in a continuous packed bed catalytic reactive distillation col- umn in the presence of novel Indion 180 ion exchange resin solid catalyst. The experiments were conducted at various operating conditions like reboiler temperature, reflux ratio, and different feed flow rates of the acetic acid and methanol. The non-ideal pseudo-homogeneous kinetic model has been developed for esterification of acetic acid with methanol in the presence of Indion 180 catalyst. The developed kinetic model was used for the simulation of the reactive distillation column for the synthesis of methyl acetate using equilibrium stage model in Aspen Plus version 7.3. The simulation results were compared with experimental results, and found that there is a good agreement between them. The sensitivity analyses were also carried out for the different parameters of bot- tom flow rate, feed temperatures of acetic acid and methanol, and feed flow rate of acetic acid and methanol.
Reactive simulation of the chemistry behind the condensed-phase ignition of RDX from hot spots.
Joshi, Kaushik L; Chaudhuri, Santanu
2015-07-28
Chemical events that lead to thermal initiation and spontaneous ignition of the high-pressure phase of RDX are presented using reactive molecular dynamics simulations. In order to initiate the chemistry behind thermal ignition, approximately 5% of RDX crystal is subjected to a constant temperature thermal pulse for various time durations to create a hot spot. After application of the thermal pulse, the ensuing chemical evolution of the system is monitored using reactive molecular dynamics under adiabatic conditions. Thermal pulses lasting longer than certain time durations lead to the spontaneous ignition of RDX after an incubation period. For cases where the ignition is observed, the incubation period is dominated by intermolecular and intramolecular hydrogen transfer reactions. Contrary to the widely accepted unimolecular models of initiation chemistry, N-N bond dissociations that produce NO2 species are suppressed in the condensed phase. The gradual temperature and pressure increase in the incubation period is accompanied by the accumulation of short-lived, heavier polyradicals. The polyradicals contain intact triazine rings from the RDX molecules. At certain temperatures and pressures, the polyradicals undergo ring-opening reactions, which fuel a series of rapid exothermic chemical reactions leading to a thermal runaway regime with stable gas-products such as N2, H2O and CO2. The evolution of the RDX crystal throughout the thermal initiation, incubation and thermal runaway phases observed in the reactive simulations contains a rich diversity of condensed-phase chemistry of nitramines under high-temperature/pressure conditions.
Simulation of Molten Salt Reactor dynamics
International Nuclear Information System (INIS)
Krepel, J.; Rohde, U.; Grundmann, U.
2005-01-01
Dynamics of the Molten Salt Reactor - one of the 'Generation IV' concepts - was studied in this paper. The graphite-moderated channel type MSR was selected for the numerical simulation of the reactor with liquid fuel. The MSR dynamics is very specific because of two physical peculiarities of the liquid fueled reactor: the delayed neutrons precursors are drifted by the fuel flow and the fission energy is immediately released directly into the coolant. Presently, there are not many accessible numerical codes appropriate for the MSR simulation, therefore the DYN3D-MSR code was developed based on the FZR in-house code DYN3D. It allows calculating of full 3D transient neutronics in combination with parallel channel type thermal-hydraulics. By means of DYN3D-MSR, several transients typical for the liquid fuel system were analyzed. Those transients were initiated by reactivity insertion, by overcooling of fuel at the core inlet, by the fuel pump start-up or coast-down, or by the blockage of selected fuel channels. In these considered transients, the response of the MSR is characterized by the immediate change of the fuel temperature with changing power and fast negative temperature feedback to the power. The response through the graphite temperature is slower. Furthermore, for big MSR cores fueled with U233 the graphite feedback coefficient can be positive. In this case the addition of erbium to the graphite can ensure the inherent safety features. The DYN3D-MSR code has been shown to be an effective tool for MSR dynamics studies. (author)
International Nuclear Information System (INIS)
Petenyi, V.; Strmensky, C.; Jagrik, J.; Minarcin, M.; Sarvaic, I.
2005-01-01
The dynamic control assemblies worth measurement technique is a quick method for validation of predicted control assemblies worth. The dynamic control assemblies worth measurement utilize space-time corrections for the measured out of core ionization chamber readings calculated by DYN 3D computer code. The space-time correction arising from the prompt neutron density redistribution in the measured ionization chamber reading can be directly applied in the advanced reactivity computer. The second correction concerning the difference of spatial distribution of delayed neutrons can be calculated by simulation the measurement procedure by dynamic version of the DYN 3D code. In the paper some results of dynamic control assemblies worth measurement applied for NPP Mochovce are presented (Authors)
Iterative analysis of cerebrovascular reactivity dynamic response by temporal decomposition.
van Niftrik, Christiaan Hendrik Bas; Piccirelli, Marco; Bozinov, Oliver; Pangalu, Athina; Fisher, Joseph A; Valavanis, Antonios; Luft, Andreas R; Weller, Michael; Regli, Luca; Fierstra, Jorn
2017-09-01
To improve quantitative cerebrovascular reactivity (CVR) measurements and CO 2 arrival times, we present an iterative analysis capable of decomposing different temporal components of the dynamic carbon dioxide- Blood Oxygen-Level Dependent (CO 2 -BOLD) relationship. Decomposition of the dynamic parameters included a redefinition of the voxel-wise CO 2 arrival time, and a separation from the vascular response to a stepwise increase in CO 2 (Delay to signal Plateau - DTP) and a decrease in CO 2 (Delay to signal Baseline -DTB). Twenty-five (normal) datasets, obtained from BOLD MRI combined with a standardized pseudo-square wave CO 2 change, were co-registered to generate reference atlases for the aforementioned dynamic processes to score the voxel-by-voxel deviation probability from normal range. This analysis is further illustrated in two subjects with unilateral carotid artery occlusion using these reference atlases. We have found that our redefined CO 2 arrival time resulted in the best data fit. Additionally, excluding both dynamic BOLD phases (DTP and DTB) resulted in a static CVR, that is maximal response, defined as CVR calculated only over a normocapnic and hypercapnic calibrated plateau. Decomposition and novel iterative modeling of different temporal components of the dynamic CO 2 -BOLD relationship improves quantitative CVR measurements.
A eural etwork Model for Dynamics Simulation
African Journals Online (AJOL)
Nafiisah
Results 5 - 18 ... situations, such as a dynamic environment (e.g., a molecular dynamics (MD) simulation whereby an atom constantly changes its local environment and number ..... of systems including both small clusters and bulk structures. 7.
Dynamic simulation of the 2 MWt slowpoke heating reactor
International Nuclear Information System (INIS)
Tseng, C.M.; Lepp, R.M.
1982-04-01
A 2 MWt SLOWPOKE reactor, intended for commercial space heating, is being developed at the Chalk River Nuclear Laboratories. A small-signal dynamic simulation of this reactor, without closed-loop control, was developed. Basic equations were used to describe the physical phenomena in each kf the eight reactor subsystems. These equations were then linearized about the normal operation conditions and rearranged in a dimensionless form for implementation. The overall simulation is non-linear. Slow transient responses (minutes to days) of the simulation to both reactivity and temperature perturbations were measured at full power. In all cases the system reached a new steady state in times varying from 12 h to 250 h. These results illustrate the benefits of the inherent negative reactivity feedback of this reactor concept. The addition of closed-loop control using core outlet temperature as the controlled variable to move a beryllium reflector is also examined
COMSOL-PHREEQC: a tool for high performance numerical simulation of reactive transport phenomena
International Nuclear Information System (INIS)
Nardi, Albert; Vries, Luis Manuel de; Trinchero, Paolo; Idiart, Andres; Molinero, Jorge
2012-01-01
Document available in extended abstract form only. Comsol Multiphysics (COMSOL, from now on) is a powerful Finite Element software environment for the modelling and simulation of a large number of physics-based systems. The user can apply variables, expressions or numbers directly to solid and fluid domains, boundaries, edges and points, independently of the computational mesh. COMSOL then internally compiles a set of equations representing the entire model. The availability of extremely powerful pre and post processors makes COMSOL a numerical platform well known and extensively used in many branches of sciences and engineering. On the other hand, PHREEQC is a freely available computer program for simulating chemical reactions and transport processes in aqueous systems. It is perhaps the most widely used geochemical code in the scientific community and is openly distributed. The program is based on equilibrium chemistry of aqueous solutions interacting with minerals, gases, solid solutions, exchangers, and sorption surfaces, but also includes the capability to model kinetic reactions with rate equations that are user-specified in a very flexible way by means of Basic statements directly written in the input file. Here we present COMSOL-PHREEQC, a software interface able to communicate and couple these two powerful simulators by means of a Java interface. The methodology is based on Sequential Non Iterative Approach (SNIA), where PHREEQC is compiled as a dynamic subroutine (iPhreeqc) that is called by the interface to solve the geochemical system at every element of the finite element mesh of COMSOL. The numerical tool has been extensively verified by comparison with computed results of 1D, 2D and 3D benchmark examples solved with other reactive transport simulators. COMSOL-PHREEQC is parallelized so that CPU time can be highly optimized in multi-core processors or clusters. Then, fully 3D detailed reactive transport problems can be readily simulated by means of
Predicting Reactive Transport Dynamics in Carbonates using Initial Pore Structure
Menke, H. P.; Nunes, J. P. P.; Blunt, M. J.
2017-12-01
Understanding rock-fluid interaction at the pore-scale is imperative for accurate predictive modelling of carbon storage permanence. However, coupled reactive transport models are computationally expensive, requiring either a sacrifice of resolution or high performance computing to solve relatively simple geometries. Many recent studies indicate that initial pore structure many be the dominant mechanism in determining the dissolution regime. Here we investigate how well the initial pore structure is predictive of distribution and amount of dissolution during reactive flow using particle tracking on the initial image. Two samples of carbonate rock with varying initial pore space heterogeneity were reacted with reservoir condition CO2-saturated brine and scanned dynamically during reactive flow at a 4-μm resolution between 4 and 40 times using 4D X-ray micro-tomography over the course of 1.5 hours using μ-CT. Flow was modelled on the initial binarized image using a Navier-Stokes solver. Particle tracking was then run on the velocity fields, the streamlines were traced, and the streamline density was calculated both on a voxel-by-voxel and a channel-by-channel basis. The density of streamlines was then compared to the amount of dissolution in subsequent time steps during reaction. It was found that for the flow and transport regimes studied, the streamline density distribution in the initial image accurately predicted the dominant pathways of dissolution and gave good indicators of the type of dissolution regime that would later develop. This work suggests that the eventual reaction-induced changes in pore structure are deterministic rather than stochastic and can be predicted with high resolution imaging of unreacted rock.
Core reactivity estimation in space reactors using recurrent dynamic networks
Parlos, Alexander G.; Tsai, Wei K.
1991-01-01
A recurrent multilayer perceptron network topology is used in the identification of nonlinear dynamic systems from only the input/output measurements. The identification is performed in the discrete time domain, with the learning algorithm being a modified form of the back propagation (BP) rule. The recurrent dynamic network (RDN) developed is applied for the total core reactivity prediction of a spacecraft reactor from only neutronic power level measurements. Results indicate that the RDN can reproduce the nonlinear response of the reactor while keeping the number of nodes roughly equal to the relative order of the system. As accuracy requirements are increased, the number of required nodes also increases, however, the order of the RDN necessary to obtain such results is still in the same order of magnitude as the order of the mathematical model of the system. It is believed that use of the recurrent MLP structure with a variety of different learning algorithms may prove useful in utilizing artificial neural networks for recognition, classification, and prediction of dynamic systems.
Ionic liquids: radiation chemistry, solvation dynamics and reactivity patterns
International Nuclear Information System (INIS)
Wishart, J.F.; Funston, A.M.; Szreder, T.
2006-01-01
Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of energy production, chemical industry and environmental applications. Pulse radiolysis of [R 4 N][NTf 2 ] [R 4 N][N(CN) 2 ], and [R 4 P][N(CN) 2 ] ionic liquids produces solvated electrons that absorb over a broad range in the near infrared and persisting for hundreds of nanoseconds. Systematic cation variation shows that solvated electron's spectroscopic properties depend strongly on the lattice structure of the ionic liquid. Very early in our radiolysis studies it became evident that
Effects of dynamical quarks in UKQCD simulations
International Nuclear Information System (INIS)
Allton, Chris
2002-01-01
Recent results from the UKQCD Collaboration's dynamical simulations are presented. The main feature of these ensembles is that they have a fixed lattice spacing and volume, but varying sea quark mass from infinite (corresponding to the quenched simulation) down to roughly that of the strange quark mass. The main aim of this work is to uncover dynamical quark effects from these 'matched' ensembles. We obtain some evidence of dynamical quark effects in the static quark potential with less effects in the hadronic spectrum
Metrics for comparing dynamic earthquake rupture simulations
Barall, Michael; Harris, Ruth A.
2014-01-01
Earthquakes are complex events that involve a myriad of interactions among multiple geologic features and processes. One of the tools that is available to assist with their study is computer simulation, particularly dynamic rupture simulation. A dynamic rupture simulation is a numerical model of the physical processes that occur during an earthquake. Starting with the fault geometry, friction constitutive law, initial stress conditions, and assumptions about the condition and response of the near‐fault rocks, a dynamic earthquake rupture simulation calculates the evolution of fault slip and stress over time as part of the elastodynamic numerical solution (Ⓔ see the simulation description in the electronic supplement to this article). The complexity of the computations in a dynamic rupture simulation make it challenging to verify that the computer code is operating as intended, because there are no exact analytic solutions against which these codes’ results can be directly compared. One approach for checking if dynamic rupture computer codes are working satisfactorily is to compare each code’s results with the results of other dynamic rupture codes running the same earthquake simulation benchmark. To perform such a comparison consistently, it is necessary to have quantitative metrics. In this paper, we present a new method for quantitatively comparing the results of dynamic earthquake rupture computer simulation codes.
Algorithms of GPU-enabled reactive force field (ReaxFF) molecular dynamics.
Zheng, Mo; Li, Xiaoxia; Guo, Li
2013-04-01
Reactive force field (ReaxFF), a recent and novel bond order potential, allows for reactive molecular dynamics (ReaxFF MD) simulations for modeling larger and more complex molecular systems involving chemical reactions when compared with computation intensive quantum mechanical methods. However, ReaxFF MD can be approximately 10-50 times slower than classical MD due to its explicit modeling of bond forming and breaking, the dynamic charge equilibration at each time-step, and its one order smaller time-step than the classical MD, all of which pose significant computational challenges in simulation capability to reach spatio-temporal scales of nanometers and nanoseconds. The very recent advances of graphics processing unit (GPU) provide not only highly favorable performance for GPU enabled MD programs compared with CPU implementations but also an opportunity to manage with the computing power and memory demanding nature imposed on computer hardware by ReaxFF MD. In this paper, we present the algorithms of GMD-Reax, the first GPU enabled ReaxFF MD program with significantly improved performance surpassing CPU implementations on desktop workstations. The performance of GMD-Reax has been benchmarked on a PC equipped with a NVIDIA C2050 GPU for coal pyrolysis simulation systems with atoms ranging from 1378 to 27,283. GMD-Reax achieved speedups as high as 12 times faster than Duin et al.'s FORTRAN codes in Lammps on 8 CPU cores and 6 times faster than the Lammps' C codes based on PuReMD in terms of the simulation time per time-step averaged over 100 steps. GMD-Reax could be used as a new and efficient computational tool for exploiting very complex molecular reactions via ReaxFF MD simulation on desktop workstations. Copyright © 2013 Elsevier Inc. All rights reserved.
Molecular dynamics simulation of a phospholipid membrane
Egberts, Egbert; Marrink, Siewert-Jan; Berendsen, Herman J.C.
We present the results of molecular dynamics (MD) simulations of a phospholipid membrane in water, including full atomic detail. The goal of the simulations was twofold: first we wanted to set up a simulation system which is able to reproduce experimental results and can serve as a model membrane in
International Nuclear Information System (INIS)
Tsuji, Masashi; Aoki, Yukinori; Shimazu, Yoichiro; Yamasaki, Masatoshi; Hanayama, Yasushi
2006-01-01
A method to evaluate the moderator coefficient (MTC) and the Doppler coefficient through experimental procedures performed during reactor physics tests of PWR power plants is proposed. This method combines isothermal temperature coefficient (ITC) measurement experiments and reactor power transient experiments at low power conditions for dynamic identification. In the dynamic identification, either one of temperature coefficients can be determined in such a way that frequency response characteristics of the reactivity change observed by a digital reactivity meter is reproduced from measured data of neutron count rate and the average coolant temperature. The other unknown coefficient can also be determined by subtracting the coefficient obtained from the dynamic identification from ITC. As the proposed method can directly estimate the Doppler coefficient, the applicability of the conventional core design codes to predict the Doppler coefficient can be verified for new types of fuels such as mixed oxide fuels. The digital simulation study was carried out to show the feasibility of the proposed method. The numerical analysis showed that the MTC and the Doppler coefficient can be estimated accurately and even if there are uncertainties in the parameters of the reactor kinetics model, the accuracies of the estimated values are not seriously impaired. (author)
Core dynamics analysis for reactivity insertion and loss of coolant flow tests using the HTTR
International Nuclear Information System (INIS)
Takamatsu, Kuniyoshi; Nakagawa, Shigeaki; Takeda, Tetsuaki
2007-01-01
The High Temperature engineering Test Reactor (HTTR) is a graphite-moderated and a gas-cooled reactor with a thermal power of 30 MW and a reactor outlet coolant temperature of 950degC (SAITO, 1994). Safety demonstration tests using the HTTR are in progress to verify its inherent safety features and improve the safety technology and design methodology for High-Temperature Gas-cooled Reactors (HTGRs) (TACHIBANA 2002) (NAKAGAWA 2004). The reactivity insertion test is one of the safety demonstration tests for the HTTR. This test simulates the rapid increase in the reactor power by withdrawing the control rod without operating the reactor power control system. In addition, the loss of coolant flow tests has been conducted to simulate the rapid decrease in the reactor power by tripping one, two or all out of three gas circulators. The experimental results have revealed the inherent safety features of HTGRs, such as the negative reactivity feedback effect. The numerical analysis code, which was named ACCORD (TAKAMATSU 2006), was developed to analyze the reactor dynamics including the flow behavior in the HTTR core. We used a conventional method, namely, a one-dimensional flow channel model and reactor kinetics model with a single temperature coefficient, taking into account the temperature changes in the core. However, a slight difference between the analytical and experimental results was observed. Therefore, we have modified this code to use a model with four parallel channels and twenty temperature coefficients in the core. Furthermore, we added another analytical model of the core for calculating the heat conduction between the fuel channels and the core in the case of the loss of coolant flow tests. This paper describes the validation results for the newly developed code using the experimental results of the reactivity insertion test as well as the loss of coolant flow tests by tripping one or two out of three gas circulators. Finally, the pre-analytical result of
Dynamic simulation of hydrogen isotope distillation unit
International Nuclear Information System (INIS)
Le Lann, J.M.; Latge, C.; Joulia, X.; Sere-Peyrigain, P.
1995-01-01
Dynamic simulation of hydrogen isotope distillation unit involved in the complex environment of a fusion power plant can be a powerful technique in view to analyze the tritium hazard potential. In this paper, issues related to the development of such a dynamic simulator with model formulation and the numerical treatment of the resulting Differential-Algebraic equation (DAE) system are properly adressed. The typical dynamic characteristics of such columns are quantitatively and qualitatively enlighted on case study with very large disturbances. The developed system has proven to be beneficial for understanding the dynamic behaviour and further for developing control schemes. (orig.)
Dynamic simulation of hydrogen isotope distillation unit
International Nuclear Information System (INIS)
Le Lann, J.M.; Joulia, X.; Sere-Peyrigain, P.
1994-01-01
Dynamic simulation of hydrogen isotope distillation unit involved in the complex environment of a fusion power plant can be a powerful technique in view to analyze the tritium hazard potential. Issues related to the development of such a dynamic simulator with model formulation and the numerical treatment of the resulting Differential-Algebraic equation (DAE) system are properly addressed. The typical dynamic characteristics of such columns are quantitatively and qualitatively enlightened on case study with very large disturbances. The developed system has proven to be beneficial for understanding the dynamic behaviour and further for developing control schemes. (author) 12 refs.; 4 figs
Nick, H.M.; Raoof, A.; Centler, F.; Thullner, M.; Regnier, P.
2013-01-01
The reactive mixing between seawater and terrestrial water in coastal aquifers influences the water quality of submarine groundwater discharge. While these waters come into contact at the seawater groundwater interface by density driven flow
Dynamic Reactive Power Control in Offshore HVDC Connected Wind Power Plants
DEFF Research Database (Denmark)
Sakamuri, Jayachandra N.; Cutululis, Nicolaos Antonio; Rather, Zakir Hussain
2016-01-01
This paper presents a coordinated reactive power control for a HVDC connected cluster of offshore wind power plants (WPPs). The reactive power reference for the WPP cluster is estimated by an optimization algorithm aiming at minimum active power losses in the offshore AC Grid. For each optimal......, such as wind turbine (WT) terminal, collector cable, and export cable, on the dynamic voltage profile of the offshore grid is investigated. Furthermore, the dynamic reactive power contribution from WTs from different WPPs of the cluster for such faults has also been studied....... reactive power set point, the OWPP cluster controller generates reactive power references for each WPP which further sends the AC voltage/ reactive power references to the associated WTs based on their available reactive power margin. The impact of faults at different locations in the offshore grid...
Induction generator models in dynamic simulation tools
DEFF Research Database (Denmark)
Knudsen, Hans; Akhmatov, Vladislav
1999-01-01
For AC network with large amount of induction generators (windmills) the paper demonstrates a significant discrepancy in the simulated voltage recovery after fault in weak networks when comparing dynamic and transient stability descriptions and the reasons of discrepancies are explained...
DEFF Research Database (Denmark)
Monti, Susanna; Corozzi, Alessandro; Fristrup, Peter
2013-01-01
In order to describe possible reaction mechanisms involving amino acids, and the evolution of the protonation state of amino acid side chains in solution, a reactive force field (ReaxFF-based description) for peptide and protein simulations has been developed as an expansion of the previously rep...
Visualizing Structure and Dynamics of Disaccharide Simulations
Energy Technology Data Exchange (ETDEWEB)
Matthews, J. F.; Beckham, G. T.; Himmel, M. E.; Crowley, M. F.
2012-01-01
We examine the effect of several solvent models on the conformational properties and dynamics of disaccharides such as cellobiose and lactose. Significant variation in timescale for large scale conformational transformations are observed. Molecular dynamics simulation provides enough detail to enable insight through visualization of multidimensional data sets. We present a new way to visualize conformational space for disaccharides with Ramachandran plots.
Molecular dynamics simulation of impact test
International Nuclear Information System (INIS)
Akahoshi, Y.; Schmauder, S.; Ludwig, M.
1998-01-01
This paper describes an impact test by molecular dynamics (MD) simulation to evaluate embrittlement of bcc Fe at different temperatures. A new impact test model is developed for MD simulation. The typical fracture behaviors show transition from brittle to ductile fracture, and a history of the impact loads also demonstrates its transition. We conclude that the impact test by MD could be feasible. (orig.)
Modular simulation of reefer container dynamics
DEFF Research Database (Denmark)
Sørensen, Kresten Kjær; Nielsen, Jens Frederik Dalsgaard; Stoustrup, Jakob
2014-01-01
for faults enabling preventive maintenance. In this paper the feasibility of using different simulation methods is assessed with the goal of identifying a fast but accurate method that works well in a multi-rate environment. A modular multi-rate simulation environment for a dynamical system consisting...
Molecular dynamics simulation of impact test
Energy Technology Data Exchange (ETDEWEB)
Akahoshi, Y. [Kyushu Inst. of Tech., Kitakyushu, Fukuoka (Japan); Schmauder, S.; Ludwig, M. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt
1998-11-01
This paper describes an impact test by molecular dynamics (MD) simulation to evaluate embrittlement of bcc Fe at different temperatures. A new impact test model is developed for MD simulation. The typical fracture behaviors show transition from brittle to ductile fracture, and a history of the impact loads also demonstrates its transition. We conclude that the impact test by MD could be feasible. (orig.)
Thompson, Aidan
2013-06-01
Initiation in energetic materials is fundamentally dependent on the interaction between a host of complex chemical and mechanical processes, occurring on scales ranging from intramolecular vibrations through molecular crystal plasticity up to hydrodynamic phenomena at the mesoscale. A variety of methods (e.g. quantum electronic structure methods (QM), non-reactive classical molecular dynamics (MD), mesoscopic continuum mechanics) exist to study processes occurring on each of these scales in isolation, but cannot describe how these processes interact with each other. In contrast, the ReaxFF reactive force field, implemented in the LAMMPS parallel MD code, allows us to routinely perform multimillion-atom reactive MD simulations of shock-induced initiation in a variety of energetic materials. This is done either by explicitly driving a shock-wave through the structure (NEMD) or by imposing thermodynamic constraints on the collective dynamics of the simulation cell e.g. using the Multiscale Shock Technique (MSST). These MD simulations allow us to directly observe how energy is transferred from the shockwave into other processes, including intramolecular vibrational modes, plastic deformation of the crystal, and hydrodynamic jetting at interfaces. These processes in turn cause thermal excitation of chemical bonds leading to initial chemical reactions, and ultimately to exothermic formation of product species. Results will be presented on the application of this approach to several important energetic materials, including pentaerythritol tetranitrate (PETN) and ammonium nitrate/fuel oil (ANFO). In both cases, we validate the ReaxFF parameterizations against QM and experimental data. For PETN, we observe initiation occurring via different chemical pathways, depending on the shock direction. For PETN containing spherical voids, we observe enhanced sensitivity due to jetting, void collapse, and hotspot formation, with sensitivity increasing with void size. For ANFO, we
Dynamic Simulation of AN Helium Refrigerator
Deschildre, C.; Barraud, A.; Bonnay, P.; Briend, P.; Girard, A.; Poncet, J. M.; Roussel, P.; Sequeira, S. E.
2008-03-01
A dynamic simulation of a large scale existing refrigerator has been performed using the software Aspen Hysys®. The model comprises the typical equipments of a cryogenic system: heat exchangers, expanders, helium phase separators and cold compressors. It represents the 400 W @ 1.8 K Test Facility located at CEA—Grenoble. This paper describes the model development and shows the possibilities and limitations of the dynamic module of Aspen Hysys®. Then, comparison between simulation results and experimental data are presented; the simulation of cooldown process was also performed.
Computational plasticity algorithm for particle dynamics simulations
Krabbenhoft, K.; Lyamin, A. V.; Vignes, C.
2018-01-01
The problem of particle dynamics simulation is interpreted in the framework of computational plasticity leading to an algorithm which is mathematically indistinguishable from the common implicit scheme widely used in the finite element analysis of elastoplastic boundary value problems. This algorithm provides somewhat of a unification of two particle methods, the discrete element method and the contact dynamics method, which usually are thought of as being quite disparate. In particular, it is shown that the former appears as the special case where the time stepping is explicit while the use of implicit time stepping leads to the kind of schemes usually labelled contact dynamics methods. The framing of particle dynamics simulation within computational plasticity paves the way for new approaches similar (or identical) to those frequently employed in nonlinear finite element analysis. These include mixed implicit-explicit time stepping, dynamic relaxation and domain decomposition schemes.
Lattice dynamics and molecular dynamics simulation of complex materials
International Nuclear Information System (INIS)
Chaplot, S.L.
1997-01-01
In this article we briefly review the lattice dynamics and molecular dynamics simulation techniques, as used for complex ionic and molecular solids, and demonstrate a number of applications through examples of our work. These computational studies, along with experiments, have provided microscopic insight into the structure and dynamics, phase transitions and thermodynamical properties of a variety of materials including fullerene, high temperature superconducting oxides and geological minerals as a function of pressure and temperature. The computational techniques also allow the study of the structures and dynamics associated with disorder, defects, surfaces, interfaces etc. (author)
Simulation of quantum dynamics with integrated photonics
Sansoni, Linda; Sciarrino, Fabio; Mataloni, Paolo; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto
2012-12-01
In recent years, quantum walks have been proposed as promising resources for the simulation of physical quantum systems. In fact it is widely adopted to simulate quantum dynamics. Up to now single particle quantum walks have been experimentally demonstrated by different approaches, while only few experiments involving many-particle quantum walks have been realized. Here we simulate the 2-particle dynamics on a discrete time quantum walk, built on an array of integrated waveguide beam splitters. The polarization independence of the quantum walk circuit allowed us to exploit the polarization entanglement to encode the symmetry of the two-photon wavefunction, thus the bunching-antibunching behavior of non interacting bosons and fermions has been simulated. We have also characterized the possible distinguishability and decoherence effects arising in such a structure. This study is necessary in view of the realization of a quantum simulator based on an integrated optical array built on a large number of beam splitters.
Two-dimensional simulation of reactive diffusion in binary systems
Czech Academy of Sciences Publication Activity Database
Svoboda, Jiří; Stopka, J.; Fischer, F. D.
2014-01-01
Roč. 95, DEC (2014), s. 309-315 ISSN 0927-0256 R&D Projects: GA ČR(CZ) GA14-24252S Institutional support: RVO:68081723 Keywords : Phase transformation * Diffusion-controlled interface migration * Reactive diffusion * Multiphase system * Intermetallic compounds Subject RIV: BJ - Thermodynamics Impact factor: 2.131, year: 2014
Dynamic large eddy simulation: Stability via realizability
Mokhtarpoor, Reza; Heinz, Stefan
2017-10-01
The concept of dynamic large eddy simulation (LES) is highly attractive: such methods can dynamically adjust to changing flow conditions, which is known to be highly beneficial. For example, this avoids the use of empirical, case dependent approximations (like damping functions). Ideally, dynamic LES should be local in physical space (without involving artificial clipping parameters), and it should be stable for a wide range of simulation time steps, Reynolds numbers, and numerical schemes. These properties are not trivial, but dynamic LES suffers from such problems over decades. We address these questions by performing dynamic LES of periodic hill flow including separation at a high Reynolds number Re = 37 000. For the case considered, the main result of our studies is that it is possible to design LES that has the desired properties. It requires physical consistency: a PDF-realizable and stress-realizable LES model, which requires the inclusion of the turbulent kinetic energy in the LES calculation. LES models that do not honor such physical consistency can become unstable. We do not find support for the previous assumption that long-term correlations of negative dynamic model parameters are responsible for instability. Instead, we concluded that instability is caused by the stable spatial organization of significant unphysical states, which are represented by wall-type gradient streaks of the standard deviation of the dynamic model parameter. The applicability of our realizability stabilization to other dynamic models (including the dynamic Smagorinsky model) is discussed.
Veld, M.A.J.; Fransson, L.; Palmans, A.R.A.; Meijer, E.W.; Hult, K.
2009-01-01
Size matters: Lactones have extensively been studied as monomers in enzymatic polymerization reactions. Large lactones showed an unexpectedly high reactivity in these reactions. A combination of docking and molecular dynamics studies have been used to explain this high reactivity in terms of
Photoisomerization and photodissociation dynamics of reactive free radicals
Energy Technology Data Exchange (ETDEWEB)
Bise, Ryan T. [Univ. of California, Berkeley, CA (United States)
2000-08-01
The photofragmentation pathways of chemically reactive free radicals have been examined using the technique of fast beam photofragment translational spectroscopy. Measurements of the photodissociation cross-sections, product branching ratios, product state energy distributions, and angular distributions provide insight into the excited state potential energy surfaces and nonadiabatic processes involved in the dissociation mechanisms. Photodissociation spectroscopy and dynamics of the predissociative $\\tilde{A}$^{2}A_{1} and $\\tilde{B}$^{2}A_{2} states of CH_{3}S have been investigated. At all photon energies, CH_{3} + S(^{3}P_{j}), was the main reaction channel. The translational energy distributions reveal resolved structure corresponding to vibrational excitation of the CH_{3} umbrella mode and the S(^{3}P_{j}) fine-structure distribution from which the nature of the coupled repulsive surfaces is inferred. Dissociation rates are deduced from the photofragment angular distributions, which depend intimately on the degree of vibrational excitation in the C-S stretch. Nitrogen combustion radicals, NCN, CNN and HNCN have also been studied. For all three radicals, the elimination of molecular nitrogen is the primary reaction channel. Excitation to linear excited triplet and singlet electronic states of the NCN radical generates resolved vibrational structure of the N_{2} photofragment. The relatively low fragment rotational excitation suggests dissociation via a symmetric C_{2V} transition state. Resolved vibrational structure of the N_{2} photofragment is also observed in the photodissociation of the HNCN radical. The fragment vibrational and rotational distributions broaden with increased excitation energy. Simple dissociation models suggest that the HNCN radical isomerizes to a cyclic intermediate (c-HCNN) which then dissociates via a tight cyclic
Dynamic Reactive Power Compensation of Large Scale Wind Integrated Power System
DEFF Research Database (Denmark)
Rather, Zakir Hussain; Chen, Zhe; Thøgersen, Paul
2015-01-01
wind turbines especially wind farms with additional grid support functionalities like dynamic support (e,g dynamic reactive power support etc.) and ii) refurbishment of existing conventional central power plants to synchronous condensers could be one of the efficient, reliable and cost effective option......Due to progressive displacement of conventional power plants by wind turbines, dynamic security of large scale wind integrated power systems gets significantly compromised. In this paper we first highlight the importance of dynamic reactive power support/voltage security in large scale wind...... integrated power systems with least presence of conventional power plants. Then we propose a mixed integer dynamic optimization based method for optimal dynamic reactive power allocation in large scale wind integrated power systems. One of the important aspects of the proposed methodology is that unlike...
Zhang, Luzheng; Zybin, Sergey V; van Duin, Adri C T; Dasgupta, Siddharth; Goddard, William A; Kober, Edward M
2009-10-08
We report molecular dynamics (MD) simulations using the first-principles-based ReaxFF reactive force field to study the thermal decomposition of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) at various densities and temperatures. TATB is known to produce a large amount (15-30%) of high-molecular-weight carbon clusters, whereas detonation of nitramines such as HMX and RDX (1,3,5-trinitroperhydro-1,3,5-triazine) generate predominantly low-molecular-weight products. In agreement with experimental observation, these simulations predict that TATB decomposition quickly (by 30 ps) initiates the formation of large carbonaceous clusters (more than 4000 amu, or approximately 15-30% of the total system mass), and HMX decomposition leads almost exclusively to small-molecule products. We find that HMX decomposes readily on this time scale at lower temperatures, for which the decomposition rate of TATB is about an order of magnitude slower. Analyzing the ReaxFF MD results leads to the detailed atomistic structure of this carbon-rich phase of TATB and allows characterization of the kinetics and chemistry related to this phase and their dependence on system density and temperature. The carbon-rich phase formed from TATB contains mainly polyaromatic rings with large oxygen content, leading to graphitic regions. We use these results to describe the initial reaction steps of thermal decomposition of HMX and TATB in terms of the rates for forming primary and secondary products, allowing comparison to experimentally derived models. These studies show that MD using the ReaxFF reactive force field provides detailed atomistic information that explains such macroscopic observations as the dramatic difference in carbon cluster formation between TATB and HMX. This shows that ReaxFF MD captures the fundamental differences in the mechanisms of such systems and illustrates how the ReaxFF may be applied to model complex chemical phenomena
Dynamics of Laboratory Simulated Microbursts
Alahyari, Abbas Alexander
1995-01-01
A downburst (or microburst) is an intense, localized downdraft of cold air which reaches the Earth and spreads radially outward after it impinges on the ground. Downdrafts are typically induced by rapid evaporation of moisture or melting of hail. The divergent outflow created by a microburst produces strong winds in opposite directions. The sudden changes in the speed and direction of both horizontal and vertical winds within a microburst can create hazardous conditions for aircraft within 1000 ft of the ground, particularly during takeoff and landing. The objective of this investigation was to obtain detailed measurements within a laboratory -simulated version of this flow. The flow was modeled experimentally by releasing a small volume of heavier fluid into a less dense ambient surrounding. The heavier fluid impinged on a horizontal plate which represented the ground. Indices of refraction of the light and heavy fluid were matched to yield clear photographic images. Particle image velocimetry (PIV) was used to obtain detailed maps of the instantaneous velocity fields within horizontal and vertical cross sections through the flow. Laser-induced fluorescence (LIF) was used to determine the local concentration of heavy fluid within the downburst flow at different times. PIV measurements showed that the leading edge of the falling fluid rolled up into a vortex ring which then impacted on the ground and expanded radially outward. After touchdown, the largest horizontal velocities occurred beneath the vortex ring but also extended over some distance upstream of the vortex core. PIV results showed small vertical velocity gradients in the region below the core of the vortex ring. The effects of parameters such as initial release height and release volume shape were investigated. Using appropriate length and time scales, the measured velocities were scaled to and compared with previously studied atmospheric microbursts. The experimental data generally agree well with
Simulation of reactive nanolaminates using reduced models: II. Normal propagation
Energy Technology Data Exchange (ETDEWEB)
Salloum, Maher; Knio, Omar M. [Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218-2686 (United States)
2010-03-15
Transient normal flame propagation in reactive Ni/Al multilayers is analyzed computationally. Two approaches are implemented, based on generalization of earlier methodology developed for axial propagation, and on extension of the model reduction formalism introduced in Part I. In both cases, the formulation accommodates non-uniform layering as well as the presence of inert layers. The equations of motion for the reactive system are integrated using a specially-tailored integration scheme, that combines extended-stability, Runge-Kutta-Chebychev (RKC) integration of diffusion terms with exact treatment of the chemical source term. The detailed and reduced models are first applied to the analysis of self-propagating fronts in uniformly-layered materials. Results indicate that both the front velocities and the ignition threshold are comparable for normal and axial propagation. Attention is then focused on analyzing the effect of a gap composed of inert material on reaction propagation. In particular, the impacts of gap width and thermal conductivity are briefly addressed. Finally, an example is considered illustrating reaction propagation in reactive composites combining regions corresponding to two bilayer widths. This setup is used to analyze the effect of the layering frequency on the velocity of the corresponding reaction fronts. In all cases considered, good agreement is observed between the predictions of the detailed model and the reduced model, which provides further support for adoption of the latter. (author)
Visualizing Energy on Target: Molecular Dynamics Simulations
2017-12-01
ARL-TR-8234 ● DEC 2017 US Army Research Laboratory Visualizing Energy on Target: Molecular Dynamics Simulations by DeCarlos E...return it to the originator. ARL-TR-8234● DEC 2017 US Army Research Laboratory Visualizing Energy on Target: Molecular Dynamics...REPORT TYPE Technical Report 3. DATES COVERED (From - To) 1 October 2015–30 September 2016 4. TITLE AND SUBTITLE Visualizing Energy on Target
Dynamic Fracture Simulations of Explosively Loaded Cylinders
Energy Technology Data Exchange (ETDEWEB)
Arthur, Carly W. [Univ. of California, Davis, CA (United States). Dept. of Civil and Environmental Engineering; Goto, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-11-30
This report documents the modeling results of high explosive experiments investigating dynamic fracture of steel (AerMet® 100 alloy) cylinders. The experiments were conducted at Lawrence Livermore National Laboratory (LLNL) during 2007 to 2008 [10]. A principal objective of this study was to gain an understanding of dynamic material failure through the analysis of hydrodynamic computer code simulations. Two-dimensional and three-dimensional computational cylinder models were analyzed using the ALE3D multi-physics computer code.
Cyclotron beam dynamic simulations in MATLAB
International Nuclear Information System (INIS)
Karamysheva, G.A.; Karamyshev, O.V.; Lepkina, O.E.
2008-01-01
MATLAB is useful for beam dynamic simulations in cyclotrons. Programming in an easy-to-use environment permits creation of models in a short space of time. Advanced graphical tools of MATLAB give good visualization features to created models. The beam dynamic modeling results with an example of two different cyclotron designs are presented. Programming with MATLAB opens wide possibilities of the development of the complex program, able to perform complete block of calculations for the design of the accelerators
Development of HTGR plant dynamics simulation code
International Nuclear Information System (INIS)
Ohashi, Kazutaka; Tazawa, Yujiro; Mitake, Susumu; Suzuki, Katsuo.
1987-01-01
Plant dynamics simulation analysis plays an important role in the design work of nuclear power plant especially in the plant safety analysis, control system analysis, and transient condition analysis. The authors have developed the plant dynamics simulation code named VESPER, which is applicable to the design work of High Temperature Engineering Test Reactor, and have been improving the code corresponding to the design changes made in the subsequent design works. This paper describes the outline of VESPER code and shows its sample calculation results selected from the recent design work. (author)
Dynamic Simulations of Advanced Fuel Cycles
International Nuclear Information System (INIS)
Piet, Steven J.; Dixon, Brent W.; Jacobson, Jacob J.; Matthern, Gretchen E.; Shropshire, David E.
2011-01-01
Years of performing dynamic simulations of advanced nuclear fuel cycle options provide insights into how they could work and how one might transition from the current once-through fuel cycle. This paper summarizes those insights from the context of the 2005 objectives and goals of the U.S. Advanced Fuel Cycle Initiative (AFCI). Our intent is not to compare options, assess options versus those objectives and goals, nor recommend changes to those objectives and goals. Rather, we organize what we have learned from dynamic simulations in the context of the AFCI objectives for waste management, proliferation resistance, uranium utilization, and economics. Thus, we do not merely describe 'lessons learned' from dynamic simulations but attempt to answer the 'so what' question by using this context. The analyses have been performed using the Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics (VISION). We observe that the 2005 objectives and goals do not address many of the inherently dynamic discriminators among advanced fuel cycle options and transitions thereof.
Towards four-flavour dynamical simulations
Energy Technology Data Exchange (ETDEWEB)
Herdoiza, Gregorio [DESY, Zeuthen (Germany). John von Neumann-Institut fuer Computing NIC; Univ. Autonoma de Madrid (Spain). Dept. de Fisica Teorica e Inst. de Fiscia Teorica
2011-03-15
The inclusion of physical effects from sea quarks has been one of the main advances in lattice QCD simulations over the last few years. We report on recent studies with four flavours of dynamical quarks and address some of the potential issues arising in this new setup. First results for physical observables in the light, strange and charm sectors are presented together with the status of dedicated simulations to perform the non-perturbative renormalisation in mass-independent schemes. (orig.)
Modeling the dynamics of Plasmodium vivax infection and hypnozoite reactivation in vivo.
Directory of Open Access Journals (Sweden)
Adeshina I Adekunle
2015-03-01
Full Text Available The dynamics of Plasmodium vivax infection is characterized by reactivation of hypnozoites at varying time intervals. The relative contribution of new P. vivax infection and reactivation of dormant liver stage hypnozoites to initiation of blood stage infection is unclear. In this study, we investigate the contribution of new inoculations of P. vivax sporozoites to primary infection versus reactivation of hypnozoites by modeling the dynamics of P. vivax infection in Thailand in patients receiving treatment for either blood stage infection alone (chloroquine, or the blood and liver stages of infection (chloroquine + primaquine. In addition, we also analysed rates of infection in a study in Papua New Guinea (PNG where patients were treated with either artesunate, or artesunate + primaquine. Our results show that up to 96% of the P. vivax infection is due to hypnozoite reactivation in individuals living in endemic areas in Thailand. Similar analysis revealed the around 70% of infections in the PNG cohort were due to hypnozoite reactivation. We show how the age of the cohort, primaquine drug failure, and seasonality may affect estimates of the ratio of primary P. vivax infection to hypnozoite reactivation. Modeling of P. vivax primary infection and hypnozoite reactivation provides important insights into infection dynamics, and suggests that 90-96% of blood stage infections arise from hypnozoite reactivation. Major differences in infection kinetics between Thailand and PNG suggest the likelihood of drug failure in PNG.
COMPARISON OF REACTIVITY OF SYNTHETIC AND BOVINE HYDROXYAPATITE IN VITRO UNDER DYNAMIC CONDITIONS
Directory of Open Access Journals (Sweden)
DIANA HORKAVCOVÁ
2014-03-01
Full Text Available Hydroxyapatite materials prepared by two methods: synthetic (HA–S and bovine (HA-B granules were exposed to a longterm in vitro test under dynamic conditions. Testing cells, filled up to one fourth (¼V of their volume with the tested material, were exposed to continuous flow of simulated body fluid (SBF for 56 days. The objective of the experiment was to determine whether reactivity of the biomaterials (hydroxyapatites, prepared by different methods but identical in terms of their chemical and phase composition, in SBF were comparable. Analyses of the solutions proved that both materials were highly reactive from the very beginning of interaction with SBF (significant decrease of Ca2+ and (PO43- concentrations in the leachate. SEM/EDS images have shown that the surface of bovine HA-B was covered with a new hydroxyapatite (HAp phase in the first two weeks of the test while synthetic HA–S was covered after two weeks of the immersion in SBF. At the end of the test, day 56, both materials were completely covered with well developed porous HAp phase in form of nano-plates. A calculation of the rate of HAp formation from the concentration of (PO43- ions in SBF leachates confirmed that all removed ions were consumed for the formation of the HAp phase throughout the entire testing time for bovine HA–B and only during the second half of the testing time for synthetic HA–S.
Fluid dynamics theory, computation, and numerical simulation
Pozrikidis, C
2001-01-01
Fluid Dynamics Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes Two distinguishing features of the discourse are solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty Matlab codes are presented and discussed for a broad...
Fluid Dynamics Theory, Computation, and Numerical Simulation
Pozrikidis, Constantine
2009-01-01
Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming. This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice. There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes. Two distinguishing features of the discourse are: solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty. Matlab codes are presented and discussed for ...
Monte carlo simulation for soot dynamics
Zhou, Kun
2012-01-01
A new Monte Carlo method termed Comb-like frame Monte Carlo is developed to simulate the soot dynamics. Detailed stochastic error analysis is provided. Comb-like frame Monte Carlo is coupled with the gas phase solver Chemkin II to simulate soot formation in a 1-D premixed burner stabilized flame. The simulated soot number density, volume fraction, and particle size distribution all agree well with the measurement available in literature. The origin of the bimodal distribution of particle size distribution is revealed with quantitative proof.
Reactively and Anticipatory Behaving Agents for Artificial Life Simulations
Kohout, Karel; Nahodil, Pavel
2010-11-01
Reactive behavior is still considered and the exact opposite for the anticipatory one. Despite the advances on the field of anticipation there are little thoughts on relation with the reactive behavior, the similarities and where the boundary is. In this article we will present our viewpoint and we will try to show that reactive and anticipatory behavior can be combined. This is the basic ground of our unified theory for anticipatory behavior architecture. We still miss such compact theory, which would integrate multiple aspects of anticipation. My multi-level anticipatory behavior approach is based on the current understanding of anticipation from both the artificial intelligence and biology point of view. As part of the explanation we will also elaborate on the topic of weak and strong artificial life. Anticipation is not matter of a single mechanism in a living organism. It was noted already that it happens on many different levels even in the very simple creatures. What we consider to be important for our work and what is our original though is that it happens even without voluntary control. We believe that this is novelty though for the anticipation theory. Naturally research of anticipation was in the beginning of this decade focused on the anticipatory principles bringing advances on the field itself. This allowed us to build on those, look at them from higher perspective, and use not one but multiple levels of anticipation in a creature design. This presents second original though and that is composition of the agent architecture that has anticipation built in almost every function. In this article we will focus only on first two levels within the 8-factor anticipation framework. We will introduce them as defined categories of anticipation and describe them from theory and implementation algorithm point of view. We will also present an experiment conducted, however this experiment serves more as explanatory example. These first two levels may seem trivial
Dynamic modeling and simulation of wind turbines
International Nuclear Information System (INIS)
Ghafari Seadat, M.H.; Kheradmand Keysami, M.; Lari, H.R.
2002-01-01
Using wind energy for generating electricity in wind turbines is a good way for using renewable energies. It can also help to protect the environment. The main objective of this paper is dynamic modeling by energy method and simulation of a wind turbine aided by computer. In this paper, the equations of motion are extracted for simulating the system of wind turbine and then the behavior of the system become obvious by solving the equations. The turbine is considered with three blade rotor in wind direction, induced generator that is connected to the network and constant revolution for simulation of wind turbine. Every part of the wind turbine should be simulated for simulation of wind turbine. The main parts are blades, gearbox, shafts and generator
Object Oriented Modelling and Dynamical Simulation
DEFF Research Database (Denmark)
Wagner, Falko Jens; Poulsen, Mikael Zebbelin
1998-01-01
This report with appendix describes the work done in master project at DTU.The goal of the project was to develop a concept for simulation of dynamical systems based on object oriented methods.The result was a library of C++-classes, for use when both building componentbased models and when...
Molecular dynamics simulations and quantum chemical calculations ...
African Journals Online (AJOL)
Molecular dynamic simulation results indicate that the imidazoline derivative molecules uses the imidazoline ring to effectively adsorb on the surface of iron, with the alkyl hydrophobic tail forming an n shape (canopy like covering) at geometry optimization and at 353 K. The n shape canopy like covering to a large extent may ...
Surrogate model approach for improving the performance of reactive transport simulations
Jatnieks, Janis; De Lucia, Marco; Sips, Mike; Dransch, Doris
2016-04-01
Reactive transport models can serve a large number of important geoscientific applications involving underground resources in industry and scientific research. It is common for simulation of reactive transport to consist of at least two coupled simulation models. First is a hydrodynamics simulator that is responsible for simulating the flow of groundwaters and transport of solutes. Hydrodynamics simulators are well established technology and can be very efficient. When hydrodynamics simulations are performed without coupled geochemistry, their spatial geometries can span millions of elements even when running on desktop workstations. Second is a geochemical simulation model that is coupled to the hydrodynamics simulator. Geochemical simulation models are much more computationally costly. This is a problem that makes reactive transport simulations spanning millions of spatial elements very difficult to achieve. To address this problem we propose to replace the coupled geochemical simulation model with a surrogate model. A surrogate is a statistical model created to include only the necessary subset of simulator complexity for a particular scenario. To demonstrate the viability of such an approach we tested it on a popular reactive transport benchmark problem that involves 1D Calcite transport. This is a published benchmark problem (Kolditz, 2012) for simulation models and for this reason we use it to test the surrogate model approach. To do this we tried a number of statistical models available through the caret and DiceEval packages for R, to be used as surrogate models. These were trained on randomly sampled subset of the input-output data from the geochemical simulation model used in the original reactive transport simulation. For validation we use the surrogate model to predict the simulator output using the part of sampled input data that was not used for training the statistical model. For this scenario we find that the multivariate adaptive regression splines
Dynamic aspects of dislocation motion: atomistic simulations
International Nuclear Information System (INIS)
Bitzek, Erik; Gumbsch, Peter
2005-01-01
Atomistic simulations of accelerating edge and screw dislocations were carried out to study the dynamics of dislocations in a face centered cubic metal. Using two different embedded atom potentials for nickel and a simple slab geometry, the Peierls stress, the effective mass, the line tension and the drag coefficient were determined. A dislocation intersecting an array of voids is used to study dynamic effects in dislocation-obstacle interactions. A pronounced effect caused by inertial overshooting is found. A dynamic line tension model is developed which reproduces the simulation results. The model can be used to easily estimate the magnitude of inertial effects in the interaction of dislocations with localized obstacles for different obstacle strengths, -spacings and temperatures
Kinetics from Replica Exchange Molecular Dynamics Simulations.
Stelzl, Lukas S; Hummer, Gerhard
2017-08-08
Transitions between metastable states govern many fundamental processes in physics, chemistry and biology, from nucleation events in phase transitions to the folding of proteins. The free energy surfaces underlying these processes can be obtained from simulations using enhanced sampling methods. However, their altered dynamics makes kinetic and mechanistic information difficult or impossible to extract. Here, we show that, with replica exchange molecular dynamics (REMD), one can not only sample equilibrium properties but also extract kinetic information. For systems that strictly obey first-order kinetics, the procedure to extract rates is rigorous. For actual molecular systems whose long-time dynamics are captured by kinetic rate models, accurate rate coefficients can be determined from the statistics of the transitions between the metastable states at each replica temperature. We demonstrate the practical applicability of the procedure by constructing master equation (Markov state) models of peptide and RNA folding from REMD simulations.
Probing Cellular Dynamics with Mesoscopic Simulations
DEFF Research Database (Denmark)
Shillcock, Julian C.
2010-01-01
Cellular processes span a huge range of length and time scales from the molecular to the near-macroscopic. Understanding how effects on one scale influence, and are themselves influenced by, those on lower and higher scales is a critical issue for the construction of models in Systems Biology....... Advances in computing hardware and software now allow explicit simulation of some aspects of cellular dynamics close to the molecular scale. Vesicle fusion is one example of such a process. Experiments, however, typically probe cellular behavior from the molecular scale up to microns. Standard particle...... soon be coupled to Mass Action models allowing the parameters in such models to be continuously tuned according to the finer resolution simulation. This will help realize the goal of a computational cellular simulation that is able to capture the dynamics of membrane-associated processes...
Determination of static and dynamic reactivity effects in KNK II
International Nuclear Information System (INIS)
Essig, C.
1987-11-01
In the frame of a pre-study of the KNK II test program two series of experiments related to inherent safety characteristics of sodium cooled breeder reactors have been elaborated, which are one basis for the performance of experiments of the Loss Of Flow (LOF) type and the Loss Of Heat Sink (LOHS) type. Tests of this type at KNK II would -different from the earlier tests at RAPSODIE and EBR-II- provide a demonstration of the inherently safe performance in case of a significantly non-zero Doppler effect. With a suitable execution, the foreseen series of experiments allow, as explained in this report, a substantial separation of the reactivity contributions and the determination of reactivity effects, i.e. the time constants of the recouplings. The performance and evaluation of these experiments with respect to the inherent safety potential will once more underline the distinguished role of KNK II for the development of fast breeders [de
GROSS- GAMMA RAY OBSERVATORY ATTITUDE DYNAMICS SIMULATOR
Garrick, J.
1994-01-01
The Gamma Ray Observatory (GRO) spacecraft will constitute a major advance in gamma ray astronomy by offering the first opportunity for comprehensive observations in the range of 0.1 to 30,000 megaelectronvolts (MeV). The Gamma Ray Observatory Attitude Dynamics Simulator, GROSS, is designed to simulate this mission. The GRO Dynamics Simulator consists of three separate programs: the Standalone Profile Program; the Simulator Program, which contains the Simulation Control Input/Output (SCIO) Subsystem, the Truth Model (TM) Subsystem, and the Onboard Computer (OBC) Subsystem; and the Postprocessor Program. The Standalone Profile Program models the environment of the spacecraft and generates a profile data set for use by the simulator. This data set contains items such as individual external torques; GRO spacecraft, Tracking and Data Relay Satellite (TDRS), and solar and lunar ephemerides; and star data. The Standalone Profile Program is run before a simulation. The SCIO subsystem is the executive driver for the simulator. It accepts user input, initializes parameters, controls simulation, and generates output data files and simulation status display. The TM subsystem models the spacecraft dynamics, sensors, and actuators. It accepts ephemerides, star data, and environmental torques from the Standalone Profile Program. With these and actuator commands from the OBC subsystem, the TM subsystem propagates the current state of the spacecraft and generates sensor data for use by the OBC and SCIO subsystems. The OBC subsystem uses sensor data from the TM subsystem, a Kalman filter (for attitude determination), and control laws to compute actuator commands to the TM subsystem. The OBC subsystem also provides output data to the SCIO subsystem for output to the analysts. The Postprocessor Program is run after simulation is completed. It generates printer and CRT plots and tabular reports of the simulated data at the direction of the user. GROSS is written in FORTRAN 77 and
Engineering dynamics from the Lagrangian to simulation
Gans, Roger F
2013-01-01
This engineering dynamics textbook is aimed at beginning graduate students in mechanical engineering and other related engineering disciplines who need training in dynamics as applied to engineering mechanisms. It introduces the formal mathematical development of Lagrangian mechanics (and its corollaries), while solving numerous engineering applications. The author’s goal is to instill an understanding of the basic physics required for engineering dynamics, while providing a recipe (algorithm) for the simulation of engineering mechanisms such as robots. The book is reasonably self-contained so that the practicing engineer interested in this area can also make use of it. This book is made accessible to the widest possible audience by numerous, solved examples and diagrams that apply the principles to real engineering applications. • Provides an applied textbook for intermediate/advanced engineering dynamics courses; • Discusses Lagrangian mechanics in the context of numerous engineering applications...
Dynamics and Thermodynamics of Transthyretin Association from Molecular Dynamics Simulations
Directory of Open Access Journals (Sweden)
Cedrix J. Dongmo Foumthuim
2018-01-01
Full Text Available Molecular dynamics simulations are used in this work to probe the structural stability and the dynamics of engineered mutants of transthyretin (TTR, i.e., the double mutant F87M/L110M (MT-TTR and the triple mutant F87M/L110M/S117E (3M-TTR, in relation to wild-type. Free energy analysis from end-point simulations and statistical effective energy functions are used to analyze trajectories, revealing that mutations do not have major impact on protein structure but rather on protein association, shifting the equilibria towards dissociated species. The result is confirmed by the analysis of 3M-TTR which shows dissociation within the first 10 ns of the simulation, indicating that contacts are lost at the dimer-dimer interface, whereas dimers (formed by monomers which pair to form two extended β-sheets appear fairly stable. Overall the simulations provide a detailed view of the dynamics and thermodynamics of wild-type and mutant transthyretins and a rationale of the observed effects.
Mohan, Balaji; Jaasim, Mohammed; Ahmed, Ahfaz; Hernandez Perez, Francisco; Sim, Jaeheon; Roberts, William L.; Sarathy, Mani; Im, Hong G.
2018-01-01
Gasoline compression ignition (GCI) engines are becoming more popular alternative for conventional spark engines to harvest the advantage of high volatility. Recent experimental study demonstrated that high reactivity gasoline fuel can be operated in a conventional mixing controlled combustion mode producing lower soot emissions than that of diesel fuel under similar efficiency and NOx level [1]. Therefore, there is much interest in using gasoline-like fuels in compression ignition engines. In order to improve the fidelity of simulation-based GCI combustion system development, it is mandatory to enhance the prediction of spray combustion of gasoline-like fuels. The purpose of this study is to model the spray characteristics of high reactivity gasoline fuels and validate the models with experimental results obtained through an optically accessible constant volume vessel under vaporizing [2] and reactive conditions [3]. For reacting cases, a comparison of PRF and KAUST multi-component surrogate (KMCS) mechanism was done to obtain good agreement with the experimental ignition delay. From this study, some recommendations were proposed for GCI combustion modelling framework using gasoline like fuels.
Mohan, Balaji
2018-04-03
Gasoline compression ignition (GCI) engines are becoming more popular alternative for conventional spark engines to harvest the advantage of high volatility. Recent experimental study demonstrated that high reactivity gasoline fuel can be operated in a conventional mixing controlled combustion mode producing lower soot emissions than that of diesel fuel under similar efficiency and NOx level [1]. Therefore, there is much interest in using gasoline-like fuels in compression ignition engines. In order to improve the fidelity of simulation-based GCI combustion system development, it is mandatory to enhance the prediction of spray combustion of gasoline-like fuels. The purpose of this study is to model the spray characteristics of high reactivity gasoline fuels and validate the models with experimental results obtained through an optically accessible constant volume vessel under vaporizing [2] and reactive conditions [3]. For reacting cases, a comparison of PRF and KAUST multi-component surrogate (KMCS) mechanism was done to obtain good agreement with the experimental ignition delay. From this study, some recommendations were proposed for GCI combustion modelling framework using gasoline like fuels.
Modeling Of A Reactive Distillation Column: Methyl Tertiary Butyl Ether (Mtbe Simulation Studies
Directory of Open Access Journals (Sweden)
Ismail Mohd Saaid Abdul Rahman Mohamed and Subhash Bhatia
2012-10-01
Full Text Available A process simulation stage-wise reactive distillation column model formulated from equilibrium stage theory was developed. The algorithm for solving mathematical model represented by sets of differential-algebraic equations was based on relaxation method. Numerical integration scheme based on backward differentiation formula was selected for solving the stiffness of differential-algebraic equations. Simulations were performed on a personal computer (PC Pentium processor through a developed computer program using FORTRAN90 programming language. The proposed model was validated by comparing the simulated results with the published simulation results and with the pilot plant data from the literature. The model was capable of predicting high isobutene conversion for heterogeneous system, as desirable in industrial MTBE production process. The comparisons on temperature profiles, liquid composition profile and operating conditions of reactive distillation column also showed promising results. Therefore the proposed model can be used as a tool for the development and simulation of reactive distillation column.Keywords: Modeling, simulation, reactive distillation, relaxation method, equilibrium stage, heterogeneous, MTBE
Dynamic Simulator for Nuclear Power Plants (DSNP)
International Nuclear Information System (INIS)
Saphier, D.
1976-01-01
A new simulation language DSNP (Dynamic Simulator for Nuclear Power Plants) is being developed. It is a simple block oriented simulation language with an extensive library of component and auxiliary modules. Each module is a self-contained unit of a part of a physical component to be found in nuclear power plants. Each module will be available in four levels of sophistication, the fourth being a user supplied model. A module can be included in the simulation by a single statement. The precompiler translates DSNP statements into FORTRAN statements, takes care of the module parameters and the intermodular communication blocks, prepares proper data files and I/0 statements and searches the various libraries for the appropriate component modules. The documentation is computerized and all the necessary information for a particular module can be retrieved by a special document generator. The DSNP will be a flexible tool which will allow dynamic simulations to be performed on a large variety of nuclear power plants or specific components of these plants
Dynamic bounds coupled with Monte Carlo simulations
Energy Technology Data Exchange (ETDEWEB)
Rajabalinejad, M., E-mail: M.Rajabalinejad@tudelft.n [Faculty of Civil Engineering, Delft University of Technology, Delft (Netherlands); Meester, L.E. [Delft Institute of Applied Mathematics, Delft University of Technology, Delft (Netherlands); Gelder, P.H.A.J.M. van; Vrijling, J.K. [Faculty of Civil Engineering, Delft University of Technology, Delft (Netherlands)
2011-02-15
For the reliability analysis of engineering structures a variety of methods is known, of which Monte Carlo (MC) simulation is widely considered to be among the most robust and most generally applicable. To reduce simulation cost of the MC method, variance reduction methods are applied. This paper describes a method to reduce the simulation cost even further, while retaining the accuracy of Monte Carlo, by taking into account widely present monotonicity. For models exhibiting monotonic (decreasing or increasing) behavior, dynamic bounds (DB) are defined, which in a coupled Monte Carlo simulation are updated dynamically, resulting in a failure probability estimate, as well as a strict (non-probabilistic) upper and lower bounds. Accurate results are obtained at a much lower cost than an equivalent ordinary Monte Carlo simulation. In a two-dimensional and a four-dimensional numerical example, the cost reduction factors are 130 and 9, respectively, where the relative error is smaller than 5%. At higher accuracy levels, this factor increases, though this effect is expected to be smaller with increasing dimension. To show the application of DB method to real world problems, it is applied to a complex finite element model of a flood wall in New Orleans.
Hybrid finite-volume/transported PDF method for the simulation of turbulent reactive flows
Raman, Venkatramanan
A novel computational scheme is formulated for simulating turbulent reactive flows in complex geometries with detailed chemical kinetics. A Probability Density Function (PDF) based method that handles the scalar transport equation is coupled with an existing Finite Volume (FV) Reynolds-Averaged Navier-Stokes (RANS) flow solver. The PDF formulation leads to closed chemical source terms and facilitates the use of detailed chemical mechanisms without approximations. The particle-based PDF scheme is modified to handle complex geometries and grid structures. Grid-independent particle evolution schemes that scale linearly with the problem size are implemented in the Monte-Carlo PDF solver. A novel algorithm, in situ adaptive tabulation (ISAT) is employed to ensure tractability of complex chemistry involving a multitude of species. Several non-reacting test cases are performed to ascertain the efficiency and accuracy of the method. Simulation results from a turbulent jet-diffusion flame case are compared against experimental data. The effect of micromixing model, turbulence model and reaction scheme on flame predictions are discussed extensively. Finally, the method is used to analyze the Dow Chlorination Reactor. Detailed kinetics involving 37 species and 158 reactions as well as a reduced form with 16 species and 21 reactions are used. The effect of inlet configuration on reactor behavior and product distribution is analyzed. Plant-scale reactors exhibit quenching phenomena that cannot be reproduced by conventional simulation methods. The FV-PDF method predicts quenching accurately and provides insight into the dynamics of the reactor near extinction. The accuracy of the fractional time-stepping technique in discussed in the context of apparent multiple-steady states observed in a non-premixed feed configuration of the chlorination reactor.
Parallelization of quantum molecular dynamics simulation code
International Nuclear Information System (INIS)
Kato, Kaori; Kunugi, Tomoaki; Shibahara, Masahiko; Kotake, Susumu
1998-02-01
A quantum molecular dynamics simulation code has been developed for the analysis of the thermalization of photon energies in the molecule or materials in Kansai Research Establishment. The simulation code is parallelized for both Scalar massively parallel computer (Intel Paragon XP/S75) and Vector parallel computer (Fujitsu VPP300/12). Scalable speed-up has been obtained with a distribution to processor units by division of particle group in both parallel computers. As a result of distribution to processor units not only by particle group but also by the particles calculation that is constructed with fine calculations, highly parallelization performance is achieved in Intel Paragon XP/S75. (author)
Lipid Configurations from Molecular Dynamics Simulations
DEFF Research Database (Denmark)
Pezeshkian, Weria; Khandelia, Himanshu; Marsh, Derek
2018-01-01
of dihedral angles in palmitoyl-oleoyl phosphatidylcholine from molecular dynamics simulations of hydrated fluid bilayer membranes. We compare results from the widely used lipid force field of Berger et al. with those from the most recent C36 release of the CHARMM force field for lipids. Only the CHARMM force......The extent to which current force fields faithfully reproduce conformational properties of lipids in bilayer membranes, and whether these reflect the structural principles established for phospholipids in bilayer crystals, are central to biomembrane simulations. We determine the distribution...
Description of the grout system dynamic simulation
International Nuclear Information System (INIS)
Zimmerman, B.D.
1993-07-01
The grout system dynamic computer simulation was created to allow investigation of the ability of the grouting system to meet established milestones, for various assumed system configurations and parameters. The simulation simulates the movement of tank waste through the system versus time, from initial storage tanks, through feed tanks and the grout plant, then finally to a grout vault. The simulation properly accounts for the following (1) time required to perform various actions or processes, (2) delays involved in gaining regulatory approval, (3) random system component failures, (4) limitations on equipment capacities, (5) available parallel components, and (6) different possible strategies for vault filling. The user is allowed to set a variety of system parameters for each simulation run. Currently, the output of a run primarily consists of a plot of projected grouting campaigns completed versus time, for comparison with milestones. Other outputs involving any model component can also be quickly created or deleted as desired. In particular, sensitivity runs where the effect of varying a model parameter (flow rates, delay times, number of feed tanks available, etc.) on the ability of the system to meet milestones can be made easily. The grout system simulation was implemented using the ITHINK* simulation language for Macintosh** computers
Study on the reactivity behavior partially loaded reactor cores using SIMULATE-3
International Nuclear Information System (INIS)
Holzer, Robert; Zeitz, Andreas; Grimminger, Werner; Lubczyk, Tobias
2009-01-01
The reactor core design for the NPP Gundremmingen unit B and C is performed since several years using the validated 3D reactor core calculation program SIMULATE-3. The authors describe a special application of the program to study the reactivity for different partial core loadings. Based on the comparison with results of the program CASMO-4 the program SIMULATE-3 was validated for the calculation of partially loaded reactor cores. For the planned reactor operation in NPP Gundremmingen using new MOX fuel elements the reactivity behavior was studied with respect to the KTA-Code requirements.
Hydration dynamics in water clusters via quantum molecular dynamics simulations
Energy Technology Data Exchange (ETDEWEB)
Turi, László, E-mail: turi@chem.elte.hu [Department of Physical Chemistry, Eötvös Loránd University, Budapest 112, P. O. Box 32, H-1518 (Hungary)
2014-05-28
We have investigated the hydration dynamics in size selected water clusters with n = 66, 104, 200, 500, and 1000 water molecules using molecular dynamics simulations. To study the most fundamental aspects of relaxation phenomena in clusters, we choose one of the simplest, still realistic, quantum mechanically treated test solute, an excess electron. The project focuses on the time evolution of the clusters following two processes, electron attachment to neutral equilibrated water clusters and electron detachment from an equilibrated water cluster anion. The relaxation dynamics is significantly different in the two processes, most notably restoring the equilibrium final state is less effective after electron attachment. Nevertheless, in both scenarios only minor cluster size dependence is observed. Significantly different relaxation patterns characterize electron detachment for interior and surface state clusters, interior state clusters relaxing significantly faster. This observation may indicate a potential way to distinguish surface state and interior state water cluster anion isomers experimentally. A comparison of equilibrium and non-equilibrium trajectories suggests that linear response theory breaks down for electron attachment at 200 K, but the results converge to reasonable agreement at higher temperatures. Relaxation following electron detachment clearly belongs to the linear regime. Cluster relaxation was also investigated using two different computational models, one preferring cavity type interior states for the excess electron in bulk water, while the other simulating non-cavity structure. While the cavity model predicts appearance of several different hydrated electron isomers in agreement with experiment, the non-cavity model locates only cluster anions with interior excess electron distribution. The present simulations show that surface isomers computed with the cavity predicting potential show similar dynamical behavior to the interior clusters of
Real-Time Reactive Power Distribution in Microgrids by Dynamic Programing
DEFF Research Database (Denmark)
Levron, Yoash; Beck, Yuval; Katzir, Liran
2017-01-01
In this paper a new real-time optimization method for reactive power distribution in microgrids is proposed. The method enables location of a globally optimal distribution of reactive power under normal operating conditions. The method exploits the typical compact structure of microgrids to obtain...... combination of reactive powers, by means of dynamic programming. Since every single step involves a one-dimensional problem, the complexity of the solution is only linear with the number of clusters, and as a result, a globally optimal solution may be obtained in real time. The paper includes the results...
Dislocation dynamics simulations in a cylinder
International Nuclear Information System (INIS)
Weinberger, Christopher R; Aubry, Sylvie; Cai, Wei; Lee, Seok-Woo
2009-01-01
In this work we describe how to perform dislocation dynamics simulations in a cylindrical geometry. An algorithm for computing the image stress is given in detail including methods for handling the singularity. Additional remesh rules address the problems of the cylindrical geometry and the required self consistency with mobility laws. Numerical studies benchmark the accuracy of the algorithms and the importance of handling the singularity correctly.
International Nuclear Information System (INIS)
Zhong, Jian; Cai, Xiao-Ming; Bloss, William James
2015-01-01
This study investigates the dispersion and transport of reactive pollutants in a deep urban street canyon with an aspect ratio of 2 under neutral meteorological conditions using large-eddy simulation. The spatial variation of pollutants is significant due to the existence of two unsteady vortices. The deviation of species abundance from chemical equilibrium for the upper vortex is greater than that for the lower vortex. The interplay of dynamics and chemistry is investigated using two metrics: the photostationary state defect, and the inferred ozone production rate. The latter is found to be negative at all locations within the canyon, pointing to a systematic negative offset to ozone production rates inferred by analogous approaches in environments with incomplete mixing of emissions. This study demonstrates an approach to quantify parameters for a simplified two-box model, which could support traffic management and urban planning strategies and personal exposure assessment. - Highlights: • Large-eddy simulation reproduces two unsteady vortices seen in a lab experiment. • Reactive pollutants in an urban street canyon exhibit significant spatial variation. • O 3 production rate inferred by the NO x -O 3 -steady-state-defect approach is discussed. • Ground level sourced pollutants are largely trapped within the lower vortex. • A method of quantifying parameters of a two-box model is developed. - Reactive pollutants in a deep street canyon exhibit significant spatial variation driven by two unsteady vortices. A method of quantifying parameters of a two-box model is developed
A molecular dynamics simulation code ISIS
International Nuclear Information System (INIS)
Kambayashi, Shaw
1992-06-01
Computer simulation based on the molecular dynamics (MD) method has become an important tool complementary to experiments and theoretical calculations in a wide range of scientific fields such as physics, chemistry, biology, and so on. In the MD method, the Newtonian equations-of-motion of classical particles are integrated numerically to reproduce a phase-space trajectory of the system. In the 1980's, several new techniques have been developed for simulation at constant-temperature and/or constant-pressure in convenient to compare result of computer simulation with experimental results. We first summarize the MD method for both microcanonical and canonical simulations. Then, we present and overview of a newly developed ISIS (Isokinetic Simulation of Soft-spheres) code and its performance on various computers including vector processors. The ISIS code has a capability to make a MD simulation under constant-temperature condition by using the isokinetic constraint method. The equations-of-motion is integrated by a very accurate fifth-order finite differential algorithm. The bookkeeping method is also utilized to reduce the computational time. Furthermore, the ISIS code is well adopted for vector processing: Speedup ratio ranged from 16 to 24 times is obtained on a VP2600/10 vector processor. (author)
Classical molecular dynamics simulation on the dynamical properties of H2 on silicene layer
Directory of Open Access Journals (Sweden)
Casuyac Miqueas
2016-01-01
Full Text Available This study investigates the diffusion of hydrogen molecule physisorbed on the surface of silicene nanoribbon (SiNRusing the classical molecular dynamic (MD simulation in LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator. The interactions between silicon atoms are modeled using the modified Tersoff potential, the Adaptive Intermolecular Reactive Empirical Bond Order (AIREBO potential for hydrogen – hydrogen interaction and the Lennard – Jones potential for the physisorbed H2 on SiNR. By varying the temperatures (60 K Δ 130 K, we observed that the Δxdisplacement of H2 on the surface SiNR shows a Brownian motion on a Lennard-Jones potential and a Gaussian probability distribution can be plotted describing the diffusion of H2. The calculated mean square displacement (MSD was approximately increasing in time and the activation energy barrier for diffusion has been found to be 43.23meV.
A molecular dynamics simulation study of chloroform
Tironi, Ilario G.; van Gunsteren, Wilfred F.
Three different chloroform models have been investigated using molecular dynamics computer simulation. The thermodynamic, structural and dynamic properties of the various models were investigated in detail. In particular, the potential energies, diffusion coefficients and rotational correlation times obtained for each model are compared with experiment. It is found that the theory of rotational Brownian motion fails in describing the rotational diffusion of chloroform. The force field of Dietz and Heinzinger was found to give good overall agreement with experiment. An extended investigation of this chloroform model has been performed. Values are reported for the isothermal compressibility, the thermal expansion coefficient and the constant volume heat capacity. The values agree well with experiment. The static and frequency dependent dielectric permittivity were computed from a 1·2 ns simulation conducted under reaction field boundary conditions. Considering the fact that the model is rigid with fixed partial charges, the static dielectric constant and Debye relaxation time compare well with experiment. From the same simulation the shear viscosity was computed using the off-diagonal elements of the pressure tensor, both via an Einstein type relation and via a Green-Kubo equation. The calculated viscosities show good agreement with experimental values. The excess Helmholtz energy is calculated using the thermodynamic integration technique and simulations of 50 and 80 ps. The value obtained for the excess Helmholtz energy matches the theoretical value within a few per cent.
Simulating coronal condensation dynamics in 3D
Moschou, S. P.; Keppens, R.; Xia, C.; Fang, X.
2015-12-01
We present numerical simulations in 3D settings where coronal rain phenomena take place in a magnetic configuration of a quadrupolar arcade system. Our simulation is a magnetohydrodynamic simulation including anisotropic thermal conduction, optically thin radiative losses, and parametrised heating as main thermodynamical features to construct a realistic arcade configuration from chromospheric to coronal heights. The plasma evaporation from chromospheric and transition region heights eventually causes localised runaway condensation events and we witness the formation of plasma blobs due to thermal instability, that evolve dynamically in the heated arcade part and move gradually downwards due to interchange type dynamics. Unlike earlier 2.5D simulations, in this case there is no large scale prominence formation observed, but a continuous coronal rain develops which shows clear indications of Rayleigh-Taylor or interchange instability, that causes the denser plasma located above the transition region to fall down, as the system moves towards a more stable state. Linear stability analysis is used in the non-linear regime for gaining insight and giving a prediction of the system's evolution. After the plasma blobs descend through interchange, they follow the magnetic field topology more closely in the lower coronal regions, where they are guided by the magnetic dips.
Dynamic simulator for PEFC propulsion plant
Energy Technology Data Exchange (ETDEWEB)
Hiraide, Masataka; Kaneda, Eiichi; Sato, Takao [Mitsui Engineering & Shipbuilding Co., Ltd., Tokyo (Japan)] [and others
1996-12-31
This report covers part of a joint study on a PEFC propulsion system for surface ships, summarized in a presentation to this Seminar, entitled {open_quote}Study on a Polymer Electrolyte Fuel Cell (PEFC) Propulsion System for Surface Ships{close_quotes}, and which envisages application to a 1,500 DWT cargo vessel. The work presented here focuses on a simulation study on PEFC propulsion plant performance, and particularly on the system response to changes in load. Using a dynamic simulator composed of system components including fuel cell, various simulations were executed, to examine the performance of the system as a whole and of the individual system components under quick and large load changes such as occasioned by maneuvering operations and by racing when the propeller emerges above water in heavy sea.
Molecular dynamics simulation of annealed ZnO surfaces
Energy Technology Data Exchange (ETDEWEB)
Min, Tjun Kit; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)
2015-04-24
The effect of thermally annealing a slab of wurtzite ZnO, terminated by two surfaces, (0001) (which is oxygen-terminated) and (0001{sup ¯}) (which is Zn-terminated), is investigated via molecular dynamics simulation by using reactive force field (ReaxFF). We found that upon heating beyond a threshold temperature of ∼700 K, surface oxygen atoms begin to sublimate from the (0001) surface. The ratio of oxygen leaving the surface at a given temperature increases as the heating temperature increases. A range of phenomena occurring at the atomic level on the (0001) surface has also been explored, such as formation of oxygen dimers on the surface and evolution of partial charge distribution in the slab during the annealing process. It was found that the partial charge distribution as a function of the depth from the surface undergoes a qualitative change when the annealing temperature is above the threshold temperature.
Molecular dynamics simulation of hydrogen isotope injection into graphene
International Nuclear Information System (INIS)
Nakamura, Hiroaki; Takayama, Arimichi; Ito, Atsushi
2007-07-01
We reveal the hydrogen isotope effect of three chemical reactions, i.e., the reflection, the absorption and the penetration ratios, by classical molecular dynamics simulation with a modified Brenner's reactive empirical bond order (REBO) potential. We find that the reflection by π-electron does not depend on the mass of the incident isotope, but the peak of the reflection by nuclear moves to higher side of incident energy. In addition to the reflection, we also find that the absorption ratio in the positive z side of the graphene becomes larger, as the mass of the incident isotope becomes larger. On the other hand, the absorption ratio in the negative z side of the graphene becomes smaller. Last, it is found that the penetration ratio does not depend on the mass of the incident isotope because the graphene potential is not affected by the mass. (author)
A simple dynamic model and transient simulation of the nuclear power reactor on microcomputers
Energy Technology Data Exchange (ETDEWEB)
Han, Yang Gee; Park, Cheol [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1997-12-31
A simple dynamic model is developed for the transient simulation of the nuclear power reactor. The dynamic model includes the normalized neutron kinetics model with reactivity feedback effects and the core thermal-hydraulics model. The main objective of this paper demonstrates the capability of the developed dynamic model to simulate various important variables of interest for a nuclear power reactor transient. Some representative results of transient simulations show the expected trends in all cases, even though no available data for comparison. In this work transient simulations are performed on a microcomputer using the DESIRE/N96T continuous system simulation language which is applicable to nuclear power reactor transient analysis. 3 refs., 9 figs. (Author)
A simple dynamic model and transient simulation of the nuclear power reactor on microcomputers
Energy Technology Data Exchange (ETDEWEB)
Han, Yang Gee; Park, Cheol [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1998-12-31
A simple dynamic model is developed for the transient simulation of the nuclear power reactor. The dynamic model includes the normalized neutron kinetics model with reactivity feedback effects and the core thermal-hydraulics model. The main objective of this paper demonstrates the capability of the developed dynamic model to simulate various important variables of interest for a nuclear power reactor transient. Some representative results of transient simulations show the expected trends in all cases, even though no available data for comparison. In this work transient simulations are performed on a microcomputer using the DESIRE/N96T continuous system simulation language which is applicable to nuclear power reactor transient analysis. 3 refs., 9 figs. (Author)
Dynamic simulation of an electrorheological fluid
International Nuclear Information System (INIS)
Bonnecaze, R.T.; Brady, J.F.
1992-01-01
A molecular-dynamics-like method is presented for the simulation of a suspension of dielectric particles in a nonconductive solvent forming an electrorheological fluid. The method accurately accounts for both hydrodynamic and electrostatic interparticle interactions from dilute volume fractions to closest packing for simultaneous shear and electric fields. The hydrodynamic interactions and rheology are determined with the Stokesian dynamics methodology, while the electrostatic interactions, in particular, the conservative electrostatic interparticle forces, are determined from the electrostatic energy of the suspension. The energy of the suspension is computed from the induced particle dipoles by a method previously developed [R. T. Bonnecaze and J. F. Brady, Proc. R. Soc. London, Ser. A 430, 285 (1990)]. Using the simulation, the dynamics can be directly correlated to the observed macroscopic rheology of the suspension for a range of the so-called Mason number, Ma, the ratio of viscous to electrostatic forces. The simulation is specifically applied to a monolayer of spherical particles of areal fraction 0.4 with a particle-to-fluid dielectric constant ratio of 4 for Ma=10 -4 to ∞. The effective viscosity of the suspension increases as Ma -1 or with the square of the electric field for small Ma and has a plateau value at large Ma, as is observed experimentally. This rheological behavior can be interpreted as Bingham plastic-like with a dynamic yield stress. The first normal stress difference is negative, and its magnitude increases as Ma -1 at small Ma with a large Ma plateau value of zero. In addition to the time averages of the rheology, the time traces of the viscosities are presented along with selected ''snapshots'' of the suspension microstructure
Agent-based Simulation of Reactive, Pro-active, and Social Animal Behaviour
Jonker, C.M.; Treur, J.; Mira, J.
1998-01-01
In this paper it is shown how animal behaviour can be simulated in an agent-based manner. Different models are shown for different types of behaviour, varying from purely reactive behaviour to pro-active and social behaviour. The compositional development method for multi-agent systems DESIRE and
Computer simulation of confined liquid crystal dynamics
International Nuclear Information System (INIS)
Webster, R.E.
2001-11-01
Results are presented from a series of simulations undertaken to determine whether dynamic processes observed in device-scale liquid crystal cells confined between aligning substrates can be simulated in a molecular system using parallel molecular dynamics of the Gay-Berne model. In a nematic cell, on removal of an aligning field, initial near-surface director relaxation can induce flow, termed 'backflow' in the liquid. This, in turn, can cause director rotation, termed 'orientational kickback', in the centre of the cell. Simulations are performed of the relaxation in nematic systems confined between substrates with a common alignment on removal of an aligning field. Results show /that relaxation timescales of medium sized systems are accessible. Following this, simulations are performed of relaxation in hybrid aligned nematic systems, where each surface induces a different alignment. Flow patterns associated with director reorientation are observed. The damped oscillatory nature of the relaxation process suggests that the behaviour of these systems is dominated by orientational elastic forces and that the observed director motion and flow do not correspond to the macroscopic processes of backflow and kickback. Chevron structures can occur in confined smectic cells which develop two domains of equal and opposite layer tilt on cooling. Layer lilting is thought to be caused by a need to reconcile a mismatch between bulk and surface smectic layer spacing. Here, simulations are performed of the formation of structures in confined smectic systems where layer tilt is induced by an imposed surface pretilt. Results show that bookshelf, chevron and tilled layer structures are observable in a confined Gay-Berne system. The formation and stability of the chevron structure are shown to be influenced by surface slip. (author)
Computer simulation of confined liquid crystal dynamics
Energy Technology Data Exchange (ETDEWEB)
Webster, R.E
2001-11-01
Results are presented from a series of simulations undertaken to determine whether dynamic processes observed in device-scale liquid crystal cells confined between aligning substrates can be simulated in a molecular system using parallel molecular dynamics of the Gay-Berne model. In a nematic cell, on removal of an aligning field, initial near-surface director relaxation can induce flow, termed 'backflow' in the liquid. This, in turn, can cause director rotation, termed 'orientational kickback', in the centre of the cell. Simulations are performed of the relaxation in nematic systems confined between substrates with a common alignment on removal of an aligning field. Results show /that relaxation timescales of medium sized systems are accessible. Following this, simulations are performed of relaxation in hybrid aligned nematic systems, where each surface induces a different alignment. Flow patterns associated with director reorientation are observed. The damped oscillatory nature of the relaxation process suggests that the behaviour of these systems is dominated by orientational elastic forces and that the observed director motion and flow do not correspond to the macroscopic processes of backflow and kickback. Chevron structures can occur in confined smectic cells which develop two domains of equal and opposite layer tilt on cooling. Layer lilting is thought to be caused by a need to reconcile a mismatch between bulk and surface smectic layer spacing. Here, simulations are performed of the formation of structures in confined smectic systems where layer tilt is induced by an imposed surface pretilt. Results show that bookshelf, chevron and tilled layer structures are observable in a confined Gay-Berne system. The formation and stability of the chevron structure are shown to be influenced by surface slip. (author)
HTTR plant dynamic simulation using a hybrid computer
International Nuclear Information System (INIS)
Shimazaki, Junya; Suzuki, Katsuo; Nabeshima, Kunihiko; Watanabe, Koichi; Shinohara, Yoshikuni; Nakagawa, Shigeaki.
1990-01-01
A plant dynamic simulation of High-Temperature Engineering Test Reactor has been made using a new-type hybrid computer. This report describes a dynamic simulation model of HTTR, a hybrid simulation method for SIMSTAR and some results obtained from dynamics analysis of HTTR simulation. It concludes that the hybrid plant simulation is useful for on-line simulation on account of its capability of computation at high speed, compared with that of all digital computer simulation. With sufficient accuracy, 40 times faster computation than real time was reached only by changing an analog time scale for HTTR simulation. (author)
The dynamics of Al/Pt reactive multilayer ignition via pulsed-laser irradiation
Energy Technology Data Exchange (ETDEWEB)
Murphy, Ryan D.; Reeves, Robert V.; Yarrington, Cole D.; Adams, David P. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States)
2015-12-07
Reactive multilayers consisting of alternating layers of Al and Pt were irradiated by single laser pulses ranging from 100 μs to 100 ms in duration, resulting in the initiation of rapid, self-propagating reactions. The threshold intensities for ignition vary with the focused laser beam diameter, bilayer thickness, and pulse length and are affected by solid state reactions and conduction of heat away from the irradiated regions. High-speed photography was used to observe ignition dynamics during irradiation and elucidate the effects of heat transfer into a multilayer foil. For an increasing laser pulse length, the ignition process transitioned from a more uniform to a less uniform temperature profile within the laser-heated zone. A more uniform temperature profile is attributed to rapid heating rates and heat localization for shorter laser pulses, and a less uniform temperature profile is due to slower heating of reactants and conduction during irradiation by longer laser pulses. Finite element simulations of laser heating using measured threshold intensities indicate that micron-scale ignition of Al/Pt occurs at low temperatures, below the melting point of both reactants.
Generator dynamics in aeroelastic analysis and simulations
DEFF Research Database (Denmark)
Larsen, Torben J.; Hansen, Morten Hartvig; Iov, F.
2003-01-01
This report contains a description of a dynamic model for a doubly-fed induction generator. The model has physical input parameters (voltage, resistance, reactance etc.) and can be used to calculate rotor and stator currents, hence active and reactivepower. A perturbation method has been used...... to reduce the original generator model equations to a set of equations which can be solved with the same time steps as a typical aeroelastic code. The method is used to separate the fast transients of the modelfrom the slow variations and deduce a reduced order expression for the slow part. Dynamic effects...... of the first order terms in the model as well as the influence on drive train eigenfrequencies and damping has been investigated. Load response during timesimulation of wind turbine response have been compared to simulations with a traditional static generator model based entirely on the slip angle. A 2 MW...
Traffic flow dynamics data, models and simulation
Treiber, Martin
2013-01-01
This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on ...
Wang, N; Komvopoulos, K
2014-01-01
The growth and structure of ultrathin amorphous carbon films was investigated by molecular dynamics simulations. The second-generation reactive-empirical-bond-order potential was used to model atomic interactions. Films with different structures
Parallel beam dynamics simulation of linear accelerators
International Nuclear Information System (INIS)
Qiang, Ji; Ryne, Robert D.
2002-01-01
In this paper we describe parallel particle-in-cell methods for the large scale simulation of beam dynamics in linear accelerators. These techniques have been implemented in the IMPACT (Integrated Map and Particle Accelerator Tracking) code. IMPACT is being used to study the behavior of intense charged particle beams and as a tool for the design of next-generation linear accelerators. As examples, we present applications of the code to the study of emittance exchange in high intensity beams and to the study of beam transport in a proposed accelerator for the development of accelerator-driven waste transmutation technologies
Viscosity calculations at molecular dynamics simulations
International Nuclear Information System (INIS)
Kirova, E M; Norman, G E
2015-01-01
Viscosity and diffusion are chosen as an example to demonstrate the universality of diagnostics methods in the molecular dynamics method. To emphasize the universality, three diverse systems are investigated, which differ from each other drastically: liquids with embedded atom method and pairwise interatomic interaction potentials and dusty plasma with a unique multiparametric interparticle interaction potential. Both the Einstein-Helfand and Green-Kubo relations are used. Such a particular process as glass transition is analysed at the simulation of the aluminium melt. The effect of the dust particle charge fluctuation is considered. The results are compared with the experimental data. (paper)
Study of IPR-R1 dynamics by reactivity random excitations
International Nuclear Information System (INIS)
Roedel, G.
1983-01-01
To demonstrate the viability of the utilization of analitical techniques of neutronic noise, a dynamic model for IPR-R1 reactor from CDTN was developed. This model allows reactivity feedback due to variations of temperature in fuel and coolant [pt
Parallel Monte Carlo simulation of aerosol dynamics
Zhou, K.
2014-01-01
A highly efficient Monte Carlo (MC) algorithm is developed for the numerical simulation of aerosol dynamics, that is, nucleation, surface growth, and coagulation. Nucleation and surface growth are handled with deterministic means, while coagulation is simulated with a stochastic method (Marcus-Lushnikov stochastic process). Operator splitting techniques are used to synthesize the deterministic and stochastic parts in the algorithm. The algorithm is parallelized using the Message Passing Interface (MPI). The parallel computing efficiency is investigated through numerical examples. Near 60% parallel efficiency is achieved for the maximum testing case with 3.7 million MC particles running on 93 parallel computing nodes. The algorithm is verified through simulating various testing cases and comparing the simulation results with available analytical and/or other numerical solutions. Generally, it is found that only small number (hundreds or thousands) of MC particles is necessary to accurately predict the aerosol particle number density, volume fraction, and so forth, that is, low order moments of the Particle Size Distribution (PSD) function. Accurately predicting the high order moments of the PSD needs to dramatically increase the number of MC particles. 2014 Kun Zhou et al.
Shi, Zongbo; Krom, Michael D; Bonneville, Steeve; Baker, Alex R; Jickells, Timothy D; Benning, Liane G
2009-09-01
The formation of iron (Fe) nanoperticles and increase in Fe reactivity in mineral dust during simulated cloud processing was investigated using high-resolution microscopy and chemical extraction methods. Cloud processing of dust was experimentally simulated via an alternation of acidic (pH 2) and circumneutral conditions (pH 5-6) over periods of 24 h each on presieved (formation of Fe-rich nanoparticle aggregates, which were not found initially. Similar Fe-rich nanoparticles were also observed in wet-deposited Saharen dusts from the western Mediterranean but not in dry-deposited dust from the eastern Mediterranean. Sequential Fe extraction of the soil samples indicated an increase in the proportion of chemically reactive Fe extractable by an ascorbate solution after simulated cloud processing. In addition, the sequential extractions on the Mediterranean dust samples revealed a higher content of reactive Fe in the wet-deposited dust compared to that of the dry-deposited dust These results suggestthat large variations of pH commonly reported in aerosol and cloud waters can trigger neo-formation of nanosize Fe particles and an increase in Fe reactivity in the dust
Guo, Dezhou; Zybin, Sergey V; An, Qi; Goddard, William A; Huang, Fenglei
2016-01-21
The combustion or detonation of reacting materials at high temperature and pressure can be characterized by the Chapman-Jouguet (CJ) state that describes the chemical equilibrium of the products at the end of the reaction zone of the detonation wave for sustained detonation. This provides the critical properties and product kinetics for input to macroscale continuum simulations of energetic materials. We propose the ReaxFF Reactive Dynamics to CJ point protocol (Rx2CJ) for predicting the CJ state parameters, providing the means to predict the performance of new materials prior to synthesis and characterization, allowing the simulation based design to be done in silico. Our Rx2CJ method is based on atomistic reactive molecular dynamics (RMD) using the QM-derived ReaxFF force field. We validate this method here by predicting the CJ point and detonation products for three typical energetic materials. We find good agreement between the predicted and experimental detonation velocities, indicating that this method can reliably predict the CJ state using modest levels of computation.
Modeling the sorption dynamics of NaH using a reactive force field
International Nuclear Information System (INIS)
Ojwang, J. G. O.; Santen, Rutger van; Kramer, Gert Jan; Duin, Adri C. T. van; Goddard, William A. III
2008-01-01
We have parametrized a reactive force field for NaH, ReaxFF NaH , against a training set of ab initio derived data. To ascertain that ReaxFF NaH is properly parametrized, a comparison between ab initio heats of formation of small representative NaH clusters with ReaxFF NaH was done. The results and trend of ReaxFF NaH are found to be consistent with ab initio values. Further validation includes comparing the equations of state of condensed phases of Na and NaH as calculated from ab initio and ReaxFF NaH . There is a good match between the two results, showing that ReaxFF NaH is correctly parametrized by the ab initio training set. ReaxFF NaH has been used to study the dynamics of hydrogen desorption in NaH particles. We find that ReaxFF NaH properly describes the surface molecular hydrogen charge transfer during the abstraction process. Results on heat of desorption versus cluster size shows that there is a strong dependence on the heat of desorption on the particle size, which implies that nanostructuring enhances desorption process. To gain more insight into the structural transformations of NaH during thermal decomposition, we performed a heating run in a molecular dynamics simulation. These runs exhibit a series of drops in potential energy, associated with cluster fragmentation and desorption of molecular hydrogen. This is consistent with experimental evidence that NaH dissociates at its melting point into smaller fragments
Dynamic characteristics of nanoindentation using atomistic simulation
International Nuclear Information System (INIS)
Fang, Te-Hua; Chang, Wen-Yang; Huang, Jian-Jin
2009-01-01
Atomistic simulations are used to investigate how the nanoindentation mechanism influences dislocation nucleation under molecular dynamic behavior on the aluminum (0 0 1) surface. The characteristics of molecular dynamics in terms of various nucleation criteria are explored, including various molecular models, a multi-step load/unload cycle, deformation mechanism of atoms, tilt angle of the indenter, and slip vectors. Simulation results show that both the plastic energy and the adhesive force increase with increasing nanoindentation depths. The maximum forces for all indentation depths decrease with increasing multi-step load/unload cycle time. Dislocation nucleation, gliding, and interaction occur along Shockley partials on (1 1 1) slip planes. The indentation force applied along the normal direction, a tilt angle of 0 o , is smaller than the force component that acts on the surface atoms. The corresponding slip vector of the atoms in the (1 1 1) plane has low-energy sessile stair-rod dislocations in the pyramid of intrinsic stacking faults.
Dynamic characteristics of nanoindentation using atomistic simulation
Energy Technology Data Exchange (ETDEWEB)
Fang, Te-Hua, E-mail: fang.tehua@msa.hinet.net [Institute of Mechanical and Electromechanical Engineering, National Formosa University, Yunlin 632, Taiwan (China); Chang, Wen-Yang [Microsystems Technology Center, Industrial Technology Research Institute, Tainan 709, Taiwan (China); Huang, Jian-Jin [Institute of Mechanical and Electromechanical Engineering, National Formosa University, Yunlin 632, Taiwan (China)
2009-06-15
Atomistic simulations are used to investigate how the nanoindentation mechanism influences dislocation nucleation under molecular dynamic behavior on the aluminum (0 0 1) surface. The characteristics of molecular dynamics in terms of various nucleation criteria are explored, including various molecular models, a multi-step load/unload cycle, deformation mechanism of atoms, tilt angle of the indenter, and slip vectors. Simulation results show that both the plastic energy and the adhesive force increase with increasing nanoindentation depths. The maximum forces for all indentation depths decrease with increasing multi-step load/unload cycle time. Dislocation nucleation, gliding, and interaction occur along Shockley partials on (1 1 1) slip planes. The indentation force applied along the normal direction, a tilt angle of 0{sup o}, is smaller than the force component that acts on the surface atoms. The corresponding slip vector of the atoms in the (1 1 1) plane has low-energy sessile stair-rod dislocations in the pyramid of intrinsic stacking faults.
Choosing the speed of dynamic mental simulations.
Makin, Alexis D J
2017-01-01
The brain continuously maintains a current representation of its immediate surroundings. Perceptual representations are often updated when the world changes, e.g., when we notice an object move. However, we can also update representations internally, without incoming signals from the senses. In other words, we can run internal simulations of dynamic events. This ability is evident during mental object rotation. These uncontroversial observations lead to an obvious question that nevertheless remains to be answered: How does the brain control the speed of dynamic mental simulations? Is there a central rate controller or pacemaker module in the brain that can be temporarily coupled to sensory maps? We can refer to this as the common rate control theory. Alternatively, the primitive intelligence within each map could tune into the speed of recent changes and use this information to keep going after stimuli disappear. We can call this the separate rate control theory. Preliminary evidence from prediction motion experiments supports common rate control, although local predictive mechanisms may cover short gaps of cognitive timing literature. Indirect neuroimaging evidence suggests rate control is a function of the core timing system in the dorsal striatum. © 2017 Elsevier B.V. All rights reserved.
Modeling initial contact dynamics during ambulation with dynamic simulation.
Meyer, Andrew R; Wang, Mei; Smith, Peter A; Harris, Gerald F
2007-04-01
Ankle-foot orthoses are frequently used interventions to correct pathological gait. Their effects on the kinematics and kinetics of the proximal joints are of great interest when prescribing ankle-foot orthoses to specific patient groups. Mathematical Dynamic Model (MADYMO) is developed to simulate motor vehicle crash situations and analyze tissue injuries of the occupants based multibody dynamic theories. Joint kinetics output from an inverse model were perturbed and input to the forward model to examine the effects of changes in the internal sagittal ankle moment on knee and hip kinematics following heel strike. Increasing the internal ankle moment (augmentation, equivalent to gastroc-soleus contraction) produced less pronounced changes in kinematic results at the hip, knee and ankle than decreasing the moment (attenuation, equivalent to gastroc-soleus relaxation). Altering the internal ankle moment produced two distinctly different kinematic curve morphologies at the hip. Decreased internal ankle moments increased hip flexion, peaking at roughly 8% of the gait cycle. Increasing internal ankle moments decreased hip flexion to a lesser degree, and approached normal at the same point in the gait cycle. Increasing the internal ankle moment produced relatively small, well-behaved extension-biased kinematic results at the knee. Decreasing the internal ankle moment produced more substantial changes in knee kinematics towards flexion that increased with perturbation magnitude. Curve morphologies were similar to those at the hip. Immediately following heel strike, kinematic results at the ankle showed movement in the direction of the internal moment perturbation. Increased internal moments resulted in kinematic patterns that rapidly approach normal after initial differences. When the internal ankle moment was decreased, differences from normal were much greater and did not rapidly decrease. This study shows that MADYMO can be successfully applied to accomplish forward
International Nuclear Information System (INIS)
Van der Paal, J; Verlackt, C C; Yusupov, M; Neyts, E C; Bogaerts, A
2015-01-01
While plasma treatment of skin diseases and wound healing has been proven highly effective, the underlying mechanisms, and more generally the effect of plasma radicals on skin tissue, are not yet completely understood. In this paper, we perform ReaxFF-based reactive molecular dynamics simulations to investigate the interaction of plasma generated OH radicals with a model system composed of free fatty acids, ceramides, and cholesterol molecules. This model system is an approximation of the upper layer of the skin (stratum corneum). All interaction mechanisms observed in our simulations are initiated by H-abstraction from one of the ceramides. This reaction, in turn, often starts a cascade of other reactions, which eventually lead to the formation of aldehydes, the dissociation of ceramides or the elimination of formaldehyde, and thus eventually to the degradation of the skin barrier function. (paper)
Large-Eddy Simulation of Chemically Reactive Pollutant Transport from a Point Source in Urban Area
Du, Tangzheng; Liu, Chun-Ho
2013-04-01
Most air pollutants are chemically reactive so using inert scalar as the tracer in pollutant dispersion modelling would often overlook their impact on urban inhabitants. In this study, large-eddy simulation (LES) is used to examine the plume dispersion of chemically reactive pollutants in a hypothetical atmospheric boundary layer (ABL) in neutral stratification. The irreversible chemistry mechanism of ozone (O3) titration is integrated into the LES model. Nitric oxide (NO) is emitted from an elevated point source in a rectangular spatial domain doped with O3. The LES results are compared well with the wind tunnel results available in literature. Afterwards, the LES model is applied to idealized two-dimensional (2D) street canyons of unity aspect ratio to study the behaviours of chemically reactive plume over idealized urban roughness. The relation among various time scales of reaction/turbulence and dimensionless number are analysed.
Venâncio, Mateus F.; Rocha, Willian R.
2015-10-01
Ab initio molecular dynamics simulations were used to investigate the early chemical events involved in the dynamics of nitric oxide (NOrad), nitrosonium cation (NO+) and nitroxide anion (NO-) in aqueous solution. The NO+ ion is very reactive in aqueous solution having a lifetime of ∼4 × 10-13 s, which is shorter than the value of 3 × 10-10 s predicted experimentally. The NO+ reacts generating the nitrous acid as an intermediate and the NO2- ion as the final product. The dynamics of NOrad revealed the reversibly formation of a transient anion radical species HONOrad -.
Photodynamics of oxybenzone sunscreen: Nonadiabatic dynamics simulations
Energy Technology Data Exchange (ETDEWEB)
Li, Chun-Xiang; Guo, Wei-Wei; Xie, Bin-Bin; Cui, Ganglong, E-mail: ganglong.cui@bnu.edu.cn [Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875 (China)
2016-08-21
Herein we have used combined static electronic structure calculations and “on-the-fly” global-switching trajectory surface-hopping dynamics simulations to explore the photochemical mechanism of oxybenzone sunscreen. We have first employed the multi-configurational CASSCF method to optimize minima, conical intersections, and minimum-energy reaction paths related to excited-state intramolecular proton transfer (ESIPT) and excited-state decays in the {sup 1}ππ{sup ∗}, {sup 1}nπ{sup ∗}, and S{sub 0} states (energies are refined at the higher MS-CASPT2 level). According to the mapped potential energy profiles, we have identified two ultrafast excited-state deactivation pathways for the initially populated {sup 1}ππ{sup ∗} system. The first is the diabatic ESIPT process along the {sup 1}ππ{sup ∗} potential energy profile. The generated {sup 1}ππ{sup ∗} keto species then decays to the S{sub 0} state via the keto {sup 1}ππ{sup ∗}/gs conical intersection. The second is internal conversion to the dark {sup 1}nπ{sup ∗} state near the {sup 1}ππ{sup ∗} /{sup 1}nπ{sup ∗} crossing point in the course of the diabatic {sup 1}ππ{sup ∗} ESIPT process. Our following dynamics simulations have shown that the ESIPT and {sup 1}ππ{sup ∗} → S{sub 0} internal conversion times are 104 and 286 fs, respectively. Finally, our present work demonstrates that in addition to the ESIPT process and the {sup 1}ππ{sup ∗} → S{sub 0} internal conversion in the keto region, the {sup 1}ππ{sup ∗} → {sup 1}nπ{sup ∗} internal conversion in the enol region plays as well an important role for the excited-state relaxation dynamics of oxybenzone.
Dynamics simulations for engineering macromolecular interactions
Robinson-Mosher, Avi; Shinar, Tamar; Silver, Pamela A.; Way, Jeffrey
2013-01-01
The predictable engineering of well-behaved transcriptional circuits is a central goal of synthetic biology. The artificial attachment of promoters to transcription factor genes usually results in noisy or chaotic behaviors, and such systems are unlikely to be useful in practical applications. Natural transcriptional regulation relies extensively on protein-protein interactions to insure tightly controlled behavior, but such tight control has been elusive in engineered systems. To help engineer protein-protein interactions, we have developed a molecular dynamics simulation framework that simplifies features of proteins moving by constrained Brownian motion, with the goal of performing long simulations. The behavior of a simulated protein system is determined by summation of forces that include a Brownian force, a drag force, excluded volume constraints, relative position constraints, and binding constraints that relate to experimentally determined on-rates and off-rates for chosen protein elements in a system. Proteins are abstracted as spheres. Binding surfaces are defined radially within a protein. Peptide linkers are abstracted as small protein-like spheres with rigid connections. To address whether our framework could generate useful predictions, we simulated the behavior of an engineered fusion protein consisting of two 20 000 Da proteins attached by flexible glycine/serine-type linkers. The two protein elements remained closely associated, as if constrained by a random walk in three dimensions of the peptide linker, as opposed to showing a distribution of distances expected if movement were dominated by Brownian motion of the protein domains only. We also simulated the behavior of fluorescent proteins tethered by a linker of varying length, compared the predicted Förster resonance energy transfer with previous experimental observations, and obtained a good correspondence. Finally, we simulated the binding behavior of a fusion of two ligands that could
Study of the IPR-R1 dynamics by means of reactivity pseudo-aleatory excitations
International Nuclear Information System (INIS)
Roedel, G.
1983-01-01
Aiming to demonstrate the feasibility of using the reactor noise neutronic analysis tecniques a dynamic model was developed for the IPR-R1 reactor at CDTN. This model allows reactivity feedback, due to the variations of fuel and coolant temperature. The system was excited by the variations of reactivity modulated by a pseudo aleatory binary sequence and its answer was measured by means of the fluctuactions dround the stationary power. The model developed and the technique used was tested, and the values of the system parameters obtained from the adjustment of the theoretical and experimental transfer function were compared to another, obtained from independent process. (E.G.) [pt
Improvement of the dynamic response of the ITER Reactive Power Compensation system
International Nuclear Information System (INIS)
Finotti, Claudio; Gaio, Elena; Song, Inho; Tao, Jun; Benfatto, Ivone
2015-01-01
Highlights: • The slow response reasons of the classic ITER Reactive Power Compensation (RPC) control are explained. • The dynamic behaviors of the ac/dc converter and of the RPC are characterized. • New control concept to speed up the RPC response is developed. • Good performance of the new RPC control is verified even during fast transient conditions. - Abstract: The ITER ac/dc conversion system can absorb a total active and reactive power up to 500 MW and 950 Mvar, respectively. The Reactive Power Compensation (RPC) system is rated for a nominal power of 750 Mvar necessary to comply with the allowable reactive power limit value from the grid of 200 Mvar. This system is currently under construction and is based on Static Var Compensation technology with Thyristor Controlled Reactor (TCR) and Tuned Filters. The RPC has to minimize the demand of reactive power from the grid; its control is based on a feed-forward method, where the corrective input is the measurement of the reactive power consumption of the ac/dc converters, derived from the 50 Hz component of the Fast Fourier Transform (FFT) of the three-phase voltages and currents. The delay introduced by the FFT calculation and the slow response of the TCR could make the response speed of the RPC not sufficient to face fast variations of the reactive power demand and therefore in this paper a new controller of the RPC able to overcome this shortcoming is proposed and evaluated. It is based on the calculation of the predicted consumption of the reactive power by using the voltage reference signals coming from the Plasma Control System and the measurements of the dc current of the ac/dc converters and of the 66 kV busbar voltage, and on the speed up of the RPC control by introducing a lead–lag transfer function.
Improvement of the dynamic response of the ITER Reactive Power Compensation system
Energy Technology Data Exchange (ETDEWEB)
Finotti, Claudio, E-mail: claudio.finotti@igi.cnr.it [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Gaio, Elena [Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Corso Stati Uniti 4, 35127 Padova (Italy); Song, Inho; Tao, Jun; Benfatto, Ivone [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)
2015-10-15
Highlights: • The slow response reasons of the classic ITER Reactive Power Compensation (RPC) control are explained. • The dynamic behaviors of the ac/dc converter and of the RPC are characterized. • New control concept to speed up the RPC response is developed. • Good performance of the new RPC control is verified even during fast transient conditions. - Abstract: The ITER ac/dc conversion system can absorb a total active and reactive power up to 500 MW and 950 Mvar, respectively. The Reactive Power Compensation (RPC) system is rated for a nominal power of 750 Mvar necessary to comply with the allowable reactive power limit value from the grid of 200 Mvar. This system is currently under construction and is based on Static Var Compensation technology with Thyristor Controlled Reactor (TCR) and Tuned Filters. The RPC has to minimize the demand of reactive power from the grid; its control is based on a feed-forward method, where the corrective input is the measurement of the reactive power consumption of the ac/dc converters, derived from the 50 Hz component of the Fast Fourier Transform (FFT) of the three-phase voltages and currents. The delay introduced by the FFT calculation and the slow response of the TCR could make the response speed of the RPC not sufficient to face fast variations of the reactive power demand and therefore in this paper a new controller of the RPC able to overcome this shortcoming is proposed and evaluated. It is based on the calculation of the predicted consumption of the reactive power by using the voltage reference signals coming from the Plasma Control System and the measurements of the dc current of the ac/dc converters and of the 66 kV busbar voltage, and on the speed up of the RPC control by introducing a lead–lag transfer function.
Hu, Xiao Liang; Ciaglia, Riccardo; Pietrucci, Fabio; Gallet, Grégoire A; Andreoni, Wanda
2014-06-19
We introduce a new ab initio derived reactive potential for the simulation of CdTe within density functional theory (DFT) and apply it to calculate both static and dynamical properties of a number of systems (bulk solid, defective structures, liquid, surfaces) at finite temperature. In particular, we also consider cases with low sulfur concentration (CdTe:S). The analysis of DFT and classical molecular dynamics (MD) simulations performed with the same protocol leads to stringent performance tests and to a detailed comparison of the two schemes. Metadynamics techniques are used to empower both Car-Parrinello and classical molecular dynamics for the simulation of activated processes. For the latter, we consider surface reconstruction and sulfur diffusion in the bulk. The same procedures are applied using previously proposed force fields for CdTe and CdTeS materials, thus allowing for a detailed comparison of the various schemes.
Energy Technology Data Exchange (ETDEWEB)
Windt, Laurent de [Ecole des Mines de Paris, CG-Hydrodynamics and Reaction Group, 35 R. St-Honore, 77300 Fontainebleau (France)]. E-mail: laurent.dewindt@ensmp.fr; Badreddine, Rabia [INERIS, Direction des Risques Chroniques, Unite Dechets et Sites Pollues, Parc Technologique Alata BP 2, 60550 Verneuil-en-Halatte (France); Lagneau, Vincent [Ecole des Mines de Paris, CG-Hydrodynamics and Reaction Group, 35 R. St-Honore, 77300 Fontainebleau (France)
2007-01-31
Environmental impact assessment of hazardous waste disposal relies, among others, on standardized leaching tests characterized by a strong coupling between diffusion and chemical processes. In that respect, this study shows that reactive transport modelling is a useful tool to extrapolate laboratory results to site conditions characterized by lower solution/solid (L/S) ratios, site specific geometry, infiltration, etc. A cement solidified/stabilized (S/S) waste containing lead is investigated as a typical example. The reactive transport model developed in a previous study to simulate the initial state of the waste as well as laboratory batch and dynamic tests is first summarized. Using the same numerical code (HYTEC), this model is then integrated to a simplified waste disposal scenario assuming a defective cover and rain water infiltration. The coupled evolution of the S/S waste chemistry and the pollutant plume migration are modelled assessing the importance of the cracking state of the monolithic waste. The studied configurations correspond to an undamaged and fully sealed system, a few main fractures between undamaged monoliths and, finally, a dense crack-network in the monoliths. The model considers the potential effects of cracking, first the increase of rain water and carbon dioxide infiltration and, secondly, the increase of L/S ratio and reactive surfaces, using either explicit fracture representation or dual porosity approaches.
Wang, Wu; Huang, Wei; Zhang, Yongjun
2018-03-01
The grid-integration of Photovoltaic-Storage System brings some undefined factors to the network. In order to make full use of the adjusting ability of Photovoltaic-Storage System (PSS), this paper puts forward a reactive power optimization model, which are used to construct the objective function based on power loss and the device adjusting cost, including energy storage adjusting cost. By using Cataclysmic Genetic Algorithm to solve this optimization problem, and comparing with other optimization method, the result proved that: the method of dynamic extended reactive power optimization this article puts forward, can enhance the effect of reactive power optimization, including reducing power loss and device adjusting cost, meanwhile, it gives consideration to the safety of voltage.
Molecular dynamic simulation study of molten cesium
Directory of Open Access Journals (Sweden)
Yeganegi Saeid
2017-01-01
Full Text Available Molecular dynamics simulations were performed to study thermodynamics and structural properties of expanded caesium fluid. Internal pressure, radial distribution functions (RDFs, coordination numbers and diffusion coefficients have been calculated at temperature range 700–1600 K and pressure range 100–800 bar. We used the internal pressure to predict the metal–non-metal transition occurrence region. RDFs were calculated at wide ranges of temperature and pressure. The coordination numbers decrease and positions of the first peak of RDFs slightly increase as the temperature increases and pressure decreases. The calculated self-diffusion coefficients at various temperatures and pressures show no distinct boundary between Cs metallic fluid and its expanded fluid where it continuously increases with temperature.
De Lucia, Marco; Kempka, Thomas; Jatnieks, Janis; Kühn, Michael
2017-04-01
Reactive transport simulations - where geochemical reactions are coupled with hydrodynamic transport of reactants - are extremely time consuming and suffer from significant numerical issues. Given the high uncertainties inherently associated with the geochemical models, which also constitute the major computational bottleneck, such requirements may seem inappropriate and probably constitute the main limitation for their wide application. A promising way to ease and speed-up such coupled simulations is achievable employing statistical surrogates instead of "full-physics" geochemical models [1]. Data-driven surrogates are reduced models obtained on a set of pre-calculated "full physics" simulations, capturing their principal features while being extremely fast to compute. Model reduction of course comes at price of a precision loss; however, this appears justified in presence of large uncertainties regarding the parametrization of geochemical processes. This contribution illustrates the integration of surrogates into the flexible simulation framework currently being developed by the authors' research group [2]. The high level language of choice for obtaining and dealing with surrogate models is R, which profits from state-of-the-art methods for statistical analysis of large simulations ensembles. A stand-alone advective mass transport module was furthermore developed in order to add such capability to any multiphase finite volume hydrodynamic simulator within the simulation framework. We present 2D and 3D case studies benchmarking the performance of surrogates and "full physics" chemistry in scenarios pertaining the assessment of geological subsurface utilization. [1] Jatnieks, J., De Lucia, M., Dransch, D., Sips, M.: "Data-driven surrogate model approach for improving the performance of reactive transport simulations.", Energy Procedia 97, 2016, p. 447-453. [2] Kempka, T., Nakaten, B., De Lucia, M., Nakaten, N., Otto, C., Pohl, M., Chabab [Tillner], E., Kühn, M
International Nuclear Information System (INIS)
Dum, C.T.
1990-01-01
The electron beam-plasma instability is analyzed in particle simulation experiments, starting with a beam of small velocity spread. The dispersion relation is solved for snapshots of the actual evolving electron distribution function, rather than for the usual models consisting of Maxwellians. As the beam broadens, the analysis shows a transition from reactive beam modes, with frequencies extending much below the plasma frequency ω e , to kinetic instability of Langmuir waves, ω∼ω e , which is in agreement with the frequencies and growth rates observed in the simulation. Beam evolution is also in agreement with quasi-linear theory, except at the end of the reactive phase when trapping of beam electrons is seen. Although the spectrum temporarily narrows at this stage, there are, in contrast to previous simulations, still many modes present. the system then can proceed to a kinetic phase in which quasi-linear theory is again applicable. This stage is identical with the evolution starting from a gentle broad beam, except that wave levels are several times higher. With higher wave levels, mode coupling effects are also more prominent, but are still unable to prevent plateau formation. In contrast to the Langmuir wave regime, the reactive broadband wave regime lasts only for a relatively short period. In the electron foreshock it could only persist if a narrow beam or a sharp cutoff feature were maintained by continued beam injection and the time-of-flight mechanism
Traffic flow dynamics. Data, models and simulation
Energy Technology Data Exchange (ETDEWEB)
Treiber, Martin [Technische Univ. Dresden (Germany). Inst. fuer Wirtschaft und Verkehr; Kesting, Arne [TomTom Development Germany GmbH, Berlin (Germany)
2013-07-01
First comprehensive textbook of this fascinating interdisciplinary topic which explains advances in a way that it is easily accessible to engineering, physics and math students. Presents practical applications of traffic theory such as driving behavior, stability analysis, stop-and-go waves, and travel time estimation. Presents the topic in a novel and systematic way by addressing both microscopic and macroscopic models with a focus on traffic instabilities. Revised and extended edition of the German textbook ''Verkehrsdynamik und -simulation''. This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on traffic instabilities and model calibration/validation present these topics in a novel and systematic way. Finally, the theoretical framework is shown at work in selected applications such as traffic-state and travel-time estimation, intelligent transportation systems, traffic operations management, and a detailed physics-based model for fuel consumption and emissions.
Dum, C. T.
1990-01-01
Particle simulation experiments were used to analyze the electron beam-plasma instability. It is shown that there is a transition from the reactive state of the electron beam-plasma instability to the kinetic instability of Langmuir waves. Quantitative tests, which include an evaluation of the dispersion relation for the evolving non-Maxwellian beam distribution, show that a quasi-linear theory describes the onset of this transition and applies again fully to the kinetic stage. This stage is practically identical to the late stage seen in simulations of plasma waves in the electron foreshock described by Dum (1990).
Classical molecular dynamics simulation of nuclear fuels
International Nuclear Information System (INIS)
Devanathan, R.; Krack, M.; Bertolus, M.
2015-01-01
Molecular dynamics simulation using forces calculated from empirical potentials, commonly called classical molecular dynamics, is well suited to study primary damage production by irradiation, defect interactions with fission gas atoms, gas bubble nucleation, grain boundary effects on defect and gas bubble evolution in nuclear fuel, and the resulting changes in thermomechanical properties. This enables one to obtain insights into fundamental mechanisms governing the behaviour of nuclear fuel, as well as parameters that can be used as inputs for mesoscale models. The interaction potentials used for the force calculations are generated by fitting properties of interest to experimental data and electronic structure calculations (see Chapter 12). We present here the different types of potentials currently available for UO 2 and illustrations of applications to the description of the behaviour of this material under irradiation. The results obtained from the present generation of potentials for UO 2 are qualitatively similar, but quantitatively different. There is a need to refine these existing potentials to provide a better representation of the performance of polycrystalline fuel under a variety of operating conditions, develop models that are equipped to handle deviations from stoichiometry, and validate the models and assumptions used. (authors)
VS2DRTI: Simulating Heat and Reactive Solute Transport in Variably Saturated Porous Media.
Healy, Richard W; Haile, Sosina S; Parkhurst, David L; Charlton, Scott R
2018-01-29
Variably saturated groundwater flow, heat transport, and solute transport are important processes in environmental phenomena, such as the natural evolution of water chemistry of aquifers and streams, the storage of radioactive waste in a geologic repository, the contamination of water resources from acid-rock drainage, and the geologic sequestration of carbon dioxide. Up to now, our ability to simulate these processes simultaneously with fully coupled reactive transport models has been limited to complex and often difficult-to-use models. To address the need for a simple and easy-to-use model, the VS2DRTI software package has been developed for simulating water flow, heat transport, and reactive solute transport through variably saturated porous media. The underlying numerical model, VS2DRT, was created by coupling the flow and transport capabilities of the VS2DT and VS2DH models with the equilibrium and kinetic reaction capabilities of PhreeqcRM. Flow capabilities include two-dimensional, constant-density, variably saturated flow; transport capabilities include both heat and multicomponent solute transport; and the reaction capabilities are a complete implementation of geochemical reactions of PHREEQC. The graphical user interface includes a preprocessor for building simulations and a postprocessor for visual display of simulation results. To demonstrate the simulation of multiple processes, the model is applied to a hypothetical example of injection of heated waste water to an aquifer with temperature-dependent cation exchange. VS2DRTI is freely available public domain software. © 2018, National Ground Water Association.
Brownian dynamics simulations of insulin microspheres formation
Li, Wei; Chakrabarti, Amit; Gunton, James
2010-03-01
Recent experiments have indicated a novel, aqueous process of microsphere insulin fabrication based on controlled phase separation of protein from water-soluble polymers. We investigate the insulin microsphere crystal formation from insulin-PEG-water systems via 3D Brownian Dynamics simulations. We use the two component Asakura-Oosawa model to simulate the kinetics of this colloid polymer mixture. We first perform a deep quench below the liquid-crystal boundary that leads to fractal formation. We next heat the system to obtain a break-up of the fractal clusters and subsequently cool the system to obtain a spherical aggregation of droplets with a relatively narrow size distribution. We analyze the structure factor S(q) to identify the cluster dimension. S(q) crosses over from a power law q dependence of 1.8 (in agreement with DLCA) to 4 as q increases, which shows the evolution from fractal to spherical clusters. By studying the bond-order parameters, we find the phase transition from liquid-like droplets to crystals which exhibit local HCP and FCC order. This work is supported by grants from the NSF and Mathers Foundation.
HELIOS/DRAGON/NESTLE codes' simulation of void reactivity in a CANDU core
International Nuclear Information System (INIS)
Sarsour, H.N.; Rahnema, F.; Mosher, S.; Turinsky, P.J.; Serghiuta, D.; Marleau, G.; Courau, T.
2002-01-01
This paper presents results of simulation of void reactivity in a CANDU core using the NESTLE core simulator, cross sections from the HELIOS lattice physics code in conjunction with incremental cross sections from the DRAGON lattice physics code. First, a sub-region of a CANDU6 core is modeled using the NESTLE core simulator and predictions are contrasted with predictions by the MCNP Monte Carlo simulation code utilizing a continuous energy model. In addition, whole core modeling results are presented using the NESTLE finite difference method (FDM), NESTLE nodal method (NM) without assembly discontinuity factors (ADF), and NESTLE NM with ADF. The work presented in this paper has been performed as part of a project sponsored by the Canadian Nuclear Safety Commission (CNSC). The purpose of the project was to gather information and assess the accuracy of best estimate methods using calculational methods and codes developed independently from the CANDU industry. (author)
Concept and numerical simulations of a reactive anti-fragment armour layer
Hušek, Martin; Kala, Jiří; Král, Petr; Hokeš, Filip
2017-07-01
The contribution describes the concept and numerical simulation of a ballistic protective layer which is able to actively resist projectiles or smaller colliding fragments flying at high speed. The principle of the layer was designed on the basis of the action/reaction system of reactive armour which is used for the protection of armoured vehicles. As the designed ballistic layer consists of steel plates simultaneously combined with explosive material - primary explosive and secondary explosive - the technique of coupling the Finite Element Method with Smoothed Particle Hydrodynamics was used for the simulations. Certain standard situations which the ballistic layer should resist were simulated. The contribution describes the principles for the successful execution of numerical simulations, their results, and an evaluation of the functionality of the ballistic layer.
Eckert, Dominik; Kürzinger, Petra; Bauer, Robert; Griebler, Christian; Cirpka, Olaf A.
2015-01-01
Biodegradation in contaminated aquifers has been shown to be most pronounced at the fringe of contaminant plumes, where mixing of contaminated water and ambient groundwater, containing dissolved electron acceptors, stimulates microbial activity. While physical mixing of contaminant and electron acceptor by transverse dispersion has been shown to be the major bottleneck for biodegradation in steady-state plumes, so far little is known on the effect of flow and transport dynamics (caused, e.g., by a seasonally fluctuating groundwater table) on biodegradation in these systems. Towards this end we performed experiments in quasi-two-dimensional flow-through microcosms on aerobic toluene degradation by Pseudomonas putida F1. Plume dynamics were simulated by vertical alteration of the toluene plume position and experimental results were analyzed by reactive-transport modeling. We found that, even after disappearance of the toluene plume for two weeks, the majority of microorganisms stayed attached to the sediment and regained their full biodegradation potential within two days after reappearance of the toluene plume. Our results underline that besides microbial growth, also maintenance and dormancy are important processes that affect biodegradation performance under transient environmental conditions and therefore deserve increased consideration in future reactive-transport modeling.
Eckert, Dominik; Kürzinger, Petra; Bauer, Robert; Griebler, Christian; Cirpka, Olaf A
2015-01-01
Biodegradation in contaminated aquifers has been shown to be most pronounced at the fringe of contaminant plumes, where mixing of contaminated water and ambient groundwater, containing dissolved electron acceptors, stimulates microbial activity. While physical mixing of contaminant and electron acceptor by transverse dispersion has been shown to be the major bottleneck for biodegradation in steady-state plumes, so far little is known on the effect of flow and transport dynamics (caused, e.g., by a seasonally fluctuating groundwater table) on biodegradation in these systems. Towards this end we performed experiments in quasi-two-dimensional flow-through microcosms on aerobic toluene degradation by Pseudomonas putida F1. Plume dynamics were simulated by vertical alteration of the toluene plume position and experimental results were analyzed by reactive-transport modeling. We found that, even after disappearance of the toluene plume for two weeks, the majority of microorganisms stayed attached to the sediment and regained their full biodegradation potential within two days after reappearance of the toluene plume. Our results underline that besides microbial growth, also maintenance and dormancy are important processes that affect biodegradation performance under transient environmental conditions and therefore deserve increased consideration in future reactive-transport modeling. Copyright © 2014 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Cawkwell, M. J., E-mail: cawkwell@lanl.gov; Niklasson, Anders M. N. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Dattelbaum, Dana M. [Weapons Experiments Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
2015-02-14
The initial chemical events that occur during the shock compression of liquid phenylacetylene have been investigated using self-consistent tight binding molecular dynamics simulations. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism enabled us to compute microcanonical trajectories with precise conservation of the total energy. Our simulations revealed that the first density-increasing step under shock compression arises from the polymerization of phenylacetylene molecules at the acetylene moiety. The application of electronic structure-based molecular dynamics with long-term conservation of the total energy enabled us to identify electronic signatures of reactivity via monitoring changes in the HOMO-LUMO gap, and to capture directly adiabatic shock heating, transient non-equilibrium states, and changes in temperature arising from exothermic chemistry in classical molecular dynamics trajectories.
Cawkwell, M J; Niklasson, Anders M N; Dattelbaum, Dana M
2015-02-14
The initial chemical events that occur during the shock compression of liquid phenylacetylene have been investigated using self-consistent tight binding molecular dynamics simulations. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism enabled us to compute microcanonical trajectories with precise conservation of the total energy. Our simulations revealed that the first density-increasing step under shock compression arises from the polymerization of phenylacetylene molecules at the acetylene moiety. The application of electronic structure-based molecular dynamics with long-term conservation of the total energy enabled us to identify electronic signatures of reactivity via monitoring changes in the HOMO-LUMO gap, and to capture directly adiabatic shock heating, transient non-equilibrium states, and changes in temperature arising from exothermic chemistry in classical molecular dynamics trajectories.
Dynamic Response and Simulations of Nanoparticle-Enhanced Composites
National Research Council Canada - National Science Library
Mantena, P. R; Al-Ostaz, Ahmed; Cheng, Alexander H
2007-01-01
...) molecular dynamics simulations of nanoparticle-enhanced composites and fly- ash based foams that are being considered for the future generation naval structures or retrofitting of existing ones...
Simulating CubeSat Structure Deployment Dynamics, Phase I
National Aeronautics and Space Administration — There is high value in simulating the nonlinear dynamics of stowing, deploying, and performance of deployable space structures, especially given the profound...
Zhong, Jian; Cai, Xiao-Ming; Bloss, William James
2015-05-01
This study investigates the dispersion and transport of reactive pollutants in a deep urban street canyon with an aspect ratio of 2 under neutral meteorological conditions using large-eddy simulation. The spatial variation of pollutants is significant due to the existence of two unsteady vortices. The deviation of species abundance from chemical equilibrium for the upper vortex is greater than that for the lower vortex. The interplay of dynamics and chemistry is investigated using two metrics: the photostationary state defect, and the inferred ozone production rate. The latter is found to be negative at all locations within the canyon, pointing to a systematic negative offset to ozone production rates inferred by analogous approaches in environments with incomplete mixing of emissions. This study demonstrates an approach to quantify parameters for a simplified two-box model, which could support traffic management and urban planning strategies and personal exposure assessment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Saar, Martin O.
2011-11-01
Understanding the fluid dynamics of supercritical carbon dioxide (CO2) in brine- filled porous media is important for predictions of CO2 flow and brine displacement during geologic CO2 sequestration and during geothermal energy capture using sequestered CO2 as the subsurface heat extraction fluid. We investigate multiphase fluid flow in porous media employing particle image velocimetry experiments and lattice-Boltzmann fluid flow simulations at the pore scale. In particular, we are interested in the motion of a drop (representing a CO2 bubble) through an orifice in a plate, representing a simplified porous medium. In addition, we study single-phase/multicomponent reactive transport experimentally by injecting water with dissolved CO2 into rocks/sediments typically considered for CO2 sequestration to investigate how resultant fluid-mineral reactions modify permeability fields. Finally, we investigate numerically subsurface CO2 and heat transport at the geologic formation scale.
Comparison of OH reactivity measurements in the atmospheric simulation chamber SAPHIR
Fuchs, Hendrik; Novelli, Anna; Rolletter, Michael; Hofzumahaus, Andreas; Pfannerstill, Eva Y.; Kessel, Stephan; Edtbauer, Achim; Williams, Jonathan; Michoud, Vincent; Dusanter, Sebastien; Locoge, Nadine; Zannoni, Nora; Gros, Valerie; Truong, Francois; Sarda-Esteve, Roland; Cryer, Danny R.; Brumby, Charlotte A.; Whalley, Lisa K.; Stone, Daniel; Seakins, Paul W.; Heard, Dwayne E.; Schoemaecker, Coralie; Blocquet, Marion; Coudert, Sebastien; Batut, Sebastien; Fittschen, Christa; Thames, Alexander B.; Brune, William H.; Ernest, Cheryl; Harder, Hartwig; Muller, Jennifer B. A.; Elste, Thomas; Kubistin, Dagmar; Andres, Stefanie; Bohn, Birger; Hohaus, Thorsten; Holland, Frank; Li, Xin; Rohrer, Franz; Kiendler-Scharr, Astrid; Tillmann, Ralf; Wegener, Robert; Yu, Zhujun; Zou, Qi; Wahner, Andreas
2017-10-01
Hydroxyl (OH) radical reactivity (kOH) has been measured for 18 years with different measurement techniques. In order to compare the performances of instruments deployed in the field, two campaigns were conducted performing experiments in the atmospheric simulation chamber SAPHIR at Forschungszentrum Jülich in October 2015 and April 2016. Chemical conditions were chosen either to be representative of the atmosphere or to test potential limitations of instruments. All types of instruments that are currently used for atmospheric measurements were used in one of the two campaigns. The results of these campaigns demonstrate that OH reactivity can be accurately measured for a wide range of atmospherically relevant chemical conditions (e.g. water vapour, nitrogen oxides, various organic compounds) by all instruments. The precision of the measurements (limit of detection CRM) has a higher limit of detection of 2 s-1 at a time resolution of 10 to 15 min. The performances of the instruments were systematically tested by stepwise increasing, for example, the concentrations of carbon monoxide (CO), water vapour or nitric oxide (NO). In further experiments, mixtures of organic reactants were injected into the chamber to simulate urban and forested environments. Overall, the results show that the instruments are capable of measuring OH reactivity in the presence of CO, alkanes, alkenes and aromatic compounds. The transmission efficiency in Teflon inlet lines could have introduced systematic errors in measurements for low-volatile organic compounds in some instruments. CRM instruments exhibited a larger scatter in the data compared to the other instruments. The largest differences to reference measurements or to calculated reactivity were observed by CRM instruments in the presence of terpenes and oxygenated organic compounds (mixing ratio of OH reactants were up to 10 ppbv). In some of these experiments, only a small fraction of the reactivity is detected. The accuracy of CRM
International Nuclear Information System (INIS)
Mladin, Mirea; Mladin, Daniela; Prodea, Ilie
2010-01-01
In 2008, IAEA started a Coordinated Research Project for benchmarking the thermalhydraulic and neutronic computer codes for research reactor analysis against the experimental data. In this framework, for the first year of research contract, the Institute for Nuclear Research engaged in steady-state analysis of SPERT-III reactor and also in the simulation of the reactivity insertion tests performed in this reactor during mid sixties. In the first part, the paper describes a Monte Carlo input model of the oxide core selected for investigation and the results of the steady-state neutronic calculations with respect to hot and cold core reactivity excess and control rods worth. Also, prompt neutron life and reactivity feed-back coefficients were examined. These results were compared with the data provided in the reactor specification document concerning neutronic design calculated data. The second part of the paper is dedicated to calculation of the reactivity insertion transients with RELAP5 and CATHARE2 thermalhydraulic codes, both including point reactor kinetics models, and to comparison with experimental data. (authors)
Wei, Xiaohui; Li, Weishan; Tian, Hailong; Li, Hongliang; Xu, Haixiao; Xu, Tianfu
2015-07-01
The numerical simulation of multiphase flow and reactive transport in the porous media on complex subsurface problem is a computationally intensive application. To meet the increasingly computational requirements, this paper presents a parallel computing method and architecture. Derived from TOUGHREACT that is a well-established code for simulating subsurface multi-phase flow and reactive transport problems, we developed a high performance computing THC-MP based on massive parallel computer, which extends greatly on the computational capability for the original code. The domain decomposition method was applied to the coupled numerical computing procedure in the THC-MP. We designed the distributed data structure, implemented the data initialization and exchange between the computing nodes and the core solving module using the hybrid parallel iterative and direct solver. Numerical accuracy of the THC-MP was verified through a CO2 injection-induced reactive transport problem by comparing the results obtained from the parallel computing and sequential computing (original code). Execution efficiency and code scalability were examined through field scale carbon sequestration applications on the multicore cluster. The results demonstrate successfully the enhanced performance using the THC-MP on parallel computing facilities.
Energy Technology Data Exchange (ETDEWEB)
Lee, Myung Ho; Kim, Jun Hwan; Choi, Byoung Kwon; Jeong, Young Hwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
2004-07-01
The ejection or drop of a control rod in a reactivity initiated accident (RIA) causes a sudden increase in reactor power and in turn deposits a large amount of energy into the fuel. In a RIA, cladding tubes bear thermal expansion due to sudden reactivity and may fail from the resulting mechanical damage. Thus, RIA can be one of the safety margin reducers because the oxide on the tubes makes their thickness to support the load less as well as hydrides from the corrosion reduce the ductility of the tubes. In a RIA, the peak of reactor power from reactivity change is about 0.1m second and the temperature of the cladding tubes increases up to 1000 .deg. C in several seconds. Although it is hard to fully simulate the situation, several attempts to measure the change of mechanical properties under a RIA situation has done using a reduction coil, ring tension tests with high speed. This research was done to see the effect of oxide on the change of circumferential strength and ductility of Zircaloy-4 tubes in a RIA. The ring stretch tensile tests were performed with the strain rate of 1/sec and 0.01/s to simulate a transient of the cladding tube under a RIA. Since the test results of the ring tensile test are very sensitive to the lubricant, the tests were also carried out to select a suitable lubricant before the test of oxided specimens.
Tian, Zhiwei; Wang, Junye
2018-02-01
Dissolution and precipitation of rock matrix are one of the most important processes of geological CO2 sequestration in reservoirs. They change connections of pore channels and properties of matrix, such as bulk density, microporosity and hydraulic conductivity. This study builds on a recently developed multi-layer model to account for dynamic changes of microporous matrix that can accurately predict variations in hydraulic properties and reaction rates due to dynamic changes in matrix porosity and pore connectivity. We apply the model to simulate the dissolution and precipitation processes of rock matrix in heterogeneous porous media to quantify (1) the effect of the reaction rate on dissolution and matrix porosity, (2) the effect of microporous matrix diffusion on the overall effective diffusion and (3) the effect of heterogeneity on hydraulic conductivity. The results show the CO2 storage influenced by factors including the matrix porosity change, reaction front movement, velocity and initial properties. We also simulated dissolution-induced permeability enhancement as well as effects of initial porosity heterogeneity. The matrix with very low permeability, which can be unresolved on X-ray CT, do contribute to flow patterns and dispersion. The concentration of reactant H+ increases along the main fracture paths where the flow velocity increases. The product Ca++ shows the inversed distribution pattern against the H+ concentration. This demonstrates the capability of this model to investigate the complex CO2 reactive transport in real 3D heterogeneous porous media.
Guerry, N.; Riley, W. J.; Maggi, F.; Torn, M. S.; Kleber, M.
2011-12-01
The nature of long term Soil Organic Matter (SOM) dynamics is uncertain and the mechanisms involved are crudely represented in site, regional, and global models. Recent work challenging the paradigm that SOM is stabilized because of its sequential transformations to more intrinsically recalcitrant compounds motivated us to develop a mechanistic modeling framework that can be used to test hypotheses of SOM dynamics. We developed our C cycling model in TOUGHREACT, an established 3-dimensional reactive transport solver that accounts for multiple phases (aqueous, gaseous, sorbed), multiple species, advection and diffusion, and multiple microbial populations. Energy and mass exchange through the soil boundaries are accounted for via ground heat flux, rainfall, C sources (e.g., exudation, woody, leaf, root litter) and C losses (e.g., CO2 emissions and DOC deep percolation). SOM is categorized according to the various types of compounds commonly found in the above mentioned C sources and microbial byproducts, including poly- and monosaccharides, lignin, amino compounds, organic acids, nucleic acids, lipids, and phenols. Each of these compounds is accounted for by one or more representative species in the model. A reaction network was developed to describe the microbially-mediated processes and chemical interactions of these species, including depolymerization, microbial assimilation, respiration and deposition of byproducts, and incorporation of dead biomass into SOM stocks. Enzymatic reactions are characterized by Michaelis-Menten kinetics, with maximum reaction rates determined by the species' O/C ratio. Microbial activity is further regulated by soil moisture content, O2 availability, pH, and temperature. For the initial set of simulations, literature values were used to constrain microbial Monod parameters, Michaelis-Menten parameters, sorption parameters, physical protection, partitioning of microbial byproducts, and partitioning of litter inputs, although there is
Simulation of burning plasma dynamics in ITER
International Nuclear Information System (INIS)
Wang, J.F.; Amano, T.; Ogawa, Y.; Inoue, N.
1996-02-01
Dynamics of burning plasma for various transient situations in ITER plasma has been simulated with a 1.5-dimensional up-down asymmetry Tokamak Transport Simulation Code (TTSC). We have mainly paid attention to intrinsic plasma transport processes such as the confinement improvement and the change of plasma profiles. It is shown that a large excursion of the fusion power takes place with a small improvement of the plasma confinement; e.g., an increase of the global energy confinement by a factor of 1.22 yields the fusion power excursion of ∼ 30% within a few seconds. Any feedback control of fueling D-T gas is difficult to respond to this short time scale of fusion power transient. The effect of the plasma profile on the fusion power excursion has been studied, by changing the particle transport denoted by the inward pinch parameter C V . It is found that the fusion power excursion is mild and slow, and the feedback control is quite effective in suppressing the fusion power excursion and in shortening the duration time of power transient in this case. The change in the pumping efficiency has also been studied and a large excursion of the fusion power has not been observed, because of the decrease in the fuel density itself in the case of the increase in the pumping efficiency, and the helium ash accumulation in the case of the decrease in the pumping efficiency. Finally it is shown that the MHD sawteeth activity leads to the fusion power fluctuation of ± 20%, although it is helpful for the helium ash exhaust. (author)
Tang, Xian-Zhu; McDevitt, C. J.; Guo, Zehua; Berk, H. L.
2014-03-01
Inertial confinement fusion requires an imploded target in which a central hot spot is surrounded by a cold and dense pusher. The hot spot/pusher interface can take complicated shape in three dimensions due to hydrodynamic mix. It is also a transition region where the Knudsen and inverse Knudsen layer effect can significantly modify the fusion reactivity in comparison with the commonly used value evaluated with background Maxwellians. Here, we describe a hybrid model that couples the kinetic correction of fusion reactivity to global hydrodynamic implosion simulations. The key ingredient is a non-perturbative treatment of the tail ions in the interface region where the Gamow ion Knudsen number approaches or surpasses order unity. The accuracy of the coupling scheme is controlled by the precise criteria for matching the non-perturbative kinetic model to perturbative solutions in both configuration space and velocity space.
Simulation of reactive geochemical transport in groundwater using a semi-analytical screening model
McNab, Walt W.
1997-10-01
A reactive geochemical transport model, based on a semi-analytical solution to the advective-dispersive transport equation in two dimensions, is developed as a screening tool for evaluating the impact of reactive contaminants on aquifer hydrogeochemistry. Because the model utilizes an analytical solution to the transport equation, it is less computationally intensive than models based on numerical transport schemes, is faster, and it is not subject to numerical dispersion effects. Although the assumptions used to construct the model preclude consideration of reactions between the aqueous and solid phases, thermodynamic mineral saturation indices are calculated to provide qualitative insight into such reactions. Test problems involving acid mine drainage and hydrocarbon biodegradation signatures illustrate the utility of the model in simulating essential hydrogeochemical phenomena.
Barajas-Solano, D. A.; Tartakovsky, A. M.
2017-12-01
We present a multiresolution method for the numerical simulation of flow and reactive transport in porous, heterogeneous media, based on the hybrid Multiscale Finite Volume (h-MsFV) algorithm. The h-MsFV algorithm allows us to couple high-resolution (fine scale) flow and transport models with lower resolution (coarse) models to locally refine both spatial resolution and transport models. The fine scale problem is decomposed into various "local'' problems solved independently in parallel and coordinated via a "global'' problem. This global problem is then coupled with the coarse model to strictly ensure domain-wide coarse-scale mass conservation. The proposed method provides an alternative to adaptive mesh refinement (AMR), due to its capacity to rapidly refine spatial resolution beyond what's possible with state-of-the-art AMR techniques, and the capability to locally swap transport models. We illustrate our method by applying it to groundwater flow and reactive transport of multiple species.
Out-of-pile test of zirconium cladding simulating reactivity initiated accident
Energy Technology Data Exchange (ETDEWEB)
Kim, J. H.; Lee, M. H.; Choi, B. K.; Bang, J. K.; Jung, Y. H. [KAERI, Taejon (Korea, Republic of)
2004-07-01
Mechanical properties of zirconium cladding such as Zircaloy-4 and advanced cladding were evaluated by ring tension test to simulate Reactivity-Initiated Accident (RIA) as an out-pile test. Cladding was hydrided by means of charging hydrogen up to 1000ppm to simulate high-burnup situation, finally fabricated to circumferential tensile specimen. Ring tension test was carried out from 0.01 to 1/sec to keep pace with actual RIA event. The results showed that mechanical strength of zirconium cladding increased at the value of 7.8% but ductility decreased at the 34% as applied strain rate and absorbed hydrogen increased. Further activities regarding out-of-pile testing plans for simulated high-burnup cladding were discussed in this paper.
Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten
2004-01-01
TOUGHREACT is a numerical simulation program for chemically reactive non-isothermal flows of multiphase fluids in porous and fractured media. The program was written in Fortran 77 and developed by introducing reactive geochemistry into the multiphase fluid and heat flow simulator TOUGH2. A variety of subsurface thermo-physical-chemical processes are considered under a wide range of conditions of pressure, temperature, water saturation, ionic strength, and pH and Eh. Interactions between ...
Comparison of OH Reactivity Instruments in the Atmosphere Simulation Chamber SAPHIR.
Fuchs, H.; Novelli, A.; Rolletter, M.; Hofzumahaus, A.; Pfannerstill, E.; Edtbauer, A.; Kessel, S.; Williams, J.; Michoud, V.; Dusanter, S.; Locoge, N.; Zannoni, N.; Gros, V.; Truong, F.; Sarda Esteve, R.; Cryer, D. R.; Brumby, C.; Whalley, L.; Stone, D. J.; Seakins, P. W.; Heard, D. E.; Schoemaecker, C.; Blocquet, M.; Fittschen, C. M.; Thames, A. B.; Coudert, S.; Brune, W. H.; Batut, S.; Tatum Ernest, C.; Harder, H.; Elste, T.; Bohn, B.; Hohaus, T.; Holland, F.; Muller, J. B. A.; Li, X.; Rohrer, F.; Kubistin, D.; Kiendler-Scharr, A.; Tillmann, R.; Andres, S.; Wegener, R.; Yu, Z.; Zou, Q.; Wahner, A.
2017-12-01
Two campaigns were conducted performing experiments in the atmospheric simulation chamber SAPHIR at Forschungszentrum Jülich in October 2015 and April 2016 to compare hydroxyl (OH) radical reactivity (kOH) measurements. Chemical conditions were chosen either to be representative of the atmosphere or to test potential limitations of instruments. The results of these campaigns demonstrate that OH reactivity can be accurately measured for a wide range of atmospherically relevant chemical conditions (e.g. water vapor, nitrogen oxides, various organic compounds) by all instruments. The precision of the measurements is higher for instruments directly detecting hydroxyl radicals (OH), whereas the indirect Comparative Reactivity Method (CRM) has a higher limit of detection of 2s-1 at a time resolution of 10 to 15 min. The performances of the instruments were systematically tested by stepwise increasing, for example, the concentrations of carbon monoxide (CO), water vapor or nitric oxide (NO). In further experiments, mixtures of organic reactants were injected in the chamber to simulate urban and forested environments. Overall, the results show that instruments are capable of measuring OH reactivity in the presence of CO, alkanes, alkenes and aromatic compounds. The transmission efficiency in Teflon inlet lines could have introduced systematic errors in measurements for low-volatile organic compounds in some instruments. CRM instruments exhibited a larger scatter in the data compared to the other instruments. The largest differences to the reference were observed by CRM instruments in the presence of terpenes and oxygenated organic compounds. In some of these experiments, only a small fraction of the reactivity is detected. The accuracy of CRM measurements is most likely limited by the corrections that need to be applied in order to account for known effects of, for example, deviations from pseudo-first order conditions, nitrogen oxides or water vapor on the measurement
Computer simulation of dynamic processes on accelerators
International Nuclear Information System (INIS)
Kol'ga, V.V.
1979-01-01
The problems of computer numerical investigation of motion of accelerated particles in accelerators and storages, an effect of different accelerator systems on the motion, determination of optimal characteristics of accelerated charged particle beams are considered. Various simulation representations are discussed which describe the accelerated particle dynamics, such as the enlarged particle method, the representation where a great number of discrete particle is substituted for a field of continuously distributed space charge, the method based on determination of averaged beam characteristics. The procedure is described of numerical studies involving the basic problems, viz. calculation of closed orbits, establishment of stability regions, investigation of resonance propagation determination of the phase stability region, evaluation of the space charge effect the problem of beam extraction. It is shown that most of such problems are reduced to solution of the Cauchy problem using a computer. The ballistic method which is applied to solution of the boundary value problem of beam extraction is considered. It is shown that introduction into the equation under study of additional members with the small positive regularization parameter is a general idea of the methods for regularization of noncorrect problems [ru
Annual Report 1999 Environmental Dynamics and Simulation
Energy Technology Data Exchange (ETDEWEB)
NS Foster-Mills
2000-06-28
This annual report describes selected 1999 research accomplishments for the Environmental Dynamics and Simulation (ED and S) directorate, one of six research organizations in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). These accomplishments are representative of the different lines of research underway in the ED and S directorate. EMSL is one of US Department of Energy's (DOE) national scientific user facilities and is the centerpiece of DOE's commitment to providing world-class experimental, theoretical, and computational capabilities for solving the nation's environmental problems. Capabilities in the EMSL include over 100 major instrument systems for use by the resident research staff, their collaborators, and users of the EMSL. These capabilities are used to address the fundamental science that will be the basis for finding solutions to national environmental issues such as cleaning up contamianted areas at DOE sites across the country and developing green technologies that will reduce or eliminate future pollution production. The capabilities are also used to further the understanding of global climate change and environmental issues relevant to energy production and use and health effects resulting from exposure to contaminated environments.
Energy Technology Data Exchange (ETDEWEB)
Raiteri, Paolo; Gale, Julian D [Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box 1987, Perth, WA 6845 (Australia); Bussi, Giovanni, E-mail: paolo@ivec.org, E-mail: julian@ivec.org [Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste (Italy)
2011-08-24
A new reactive force field to describe proton diffusion within the solid oxide fuel cell material BaZrO{sub 3} has been derived. Using a quantum mechanical potential energy surface, the parameters of an interatomic potential model to describe hydroxyl groups within both pure and yttrium-doped BaZrO{sub 3} have been determined. Reactivity is then incorporated through the use of the empirical valence bond model. Molecular dynamics simulations (EVB-MD) have been performed to explore the diffusion of hydrogen using a stochastic thermostat and barostat whose equations are extended to the isostress-isothermal ensemble. In the low concentration limit, the presence of yttrium is found not to significantly influence the diffusivity of hydrogen, despite the proton having a longer residence time at oxygen adjacent to the dopant. This lack of influence is due to the fact that trapping occurs infrequently, even when the proton diffuses through octahedra adjacent to the dopant. The activation energy for diffusion is found to be 0.42 eV, in good agreement with experimental values, though the prefactor is slightly underestimated.
Dynamic Simulation over Long Time Periods with 100% Solar Generation.
Energy Technology Data Exchange (ETDEWEB)
Concepcion, Ricky James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Elliott, Ryan Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-12-01
This project aimed to identify the path forward for dynamic simulation tools to accommodate these needs by characterizing the properties of power systems (with high PV penetration), analyzing how these properties affect dynamic simulation software, and offering solutions for potential problems.
System Design Description Salt Well Liquid Pumping Dynamic Simulation
International Nuclear Information System (INIS)
HARMSEN, R.W.
1999-01-01
The Salt Well Liquid (SWL) Pumping Dynamic Simulation used by the single-shell tank (SST) Interim Stabilization Project is described. A graphical dynamic simulation predicts SWL removal from 29 SSTs using an exponential function and unique time constant for each SST. Increasing quarterly efficiencies are applied to adjust the pumping rates during fiscal year 2000
Excipient-assisted vinpocetine nanoparticles: experiments and molecular dynamic simulations.
Li, Cai-Xia; Wang, Hao-Bo; Oppong, Daniel; Wang, Jie-Xin; Chen, Jian-Feng; Le, Yuan
2014-11-03
Hydrophilic excipients can be used to increase the solubility and bioavailability of poorly soluble drugs. In this work, the conventional water-soluble pharmaceutical excipients hydroxypropylmethylcellulose (HPMC), polyvinylpyrrolidone (PVP), and lactose (LAC) were used as solid supports to prevent drug nanoparticles from aggregation and enhance drug dissolution. Excipient-assisted vinpocetine (VIN) nanoparticles were prepared by reactive precipitation. The analysis results indicated that HPMC was a suitable excipient to prepare VIN nanoparticles. VIN/HPMC nanoparticles had a mean size of 130 nm within a narrow distribution. The dissolution rate of VIN nanoparticles was significantly faster than those of a physical mixture of VIN/HPMC and raw VIN. VIN/HPMC nanoparticles had a higher dissolution profile than VIN/PVP and VIN/LAC nanoparticles. Besides, molecular dynamics (MD) simulation was applied to investigate the molecular interactions between VIN and excipients. The calculated results revealed that VIN interacted with excipients by Coulomb and Lennard-Jones (LJ) interactions. Few hydrogen bonds were formed between VIN and excipients. The HPMC affording smaller particle size may be a result of the stronger interactions between VIN and HPMC (mainly LJ interaction) and the property of HPMC. These characteristics may greatly influence the adsorption behavior and may be the crucial parameter for the better performance of HPMC.
International Nuclear Information System (INIS)
Haroun, Y.
2008-11-01
This work is done within the framework of gas treatment and CO 2 capture process development. The main objective of the present work is to fill the gap between classical experiments and industrial conditions by the use of Computational Fluid Dynamics (CFD). The physical problem considered corresponds to the liquid film flow down a corrugate surface under gravity in present of a gas phase. The chemical species in the gas phase absorb in the liquid phase and react. Numerical calculations are carried out in order to determine the impact of physical and geometrical properties on reactive mass transfer in industrial operating conditions. (author)
The automatic visual simulation of words: A memory reactivated mask slows down conceptual access.
Rey, Amandine E; Riou, Benoit; Vallet, Guillaume T; Versace, Rémy
2017-03-01
How do we represent the meaning of words? The present study assesses whether access to conceptual knowledge requires the reenactment of the sensory components of a concept. The reenactment-that is, simulation-was tested in a word categorisation task using an innovative masking paradigm. We hypothesised that a meaningless reactivated visual mask should interfere with the simulation of the visual dimension of concrete words. This assumption was tested in a paradigm in which participants were not aware of the link between the visual mask and the words to be processed. In the first phase, participants created a tone-visual mask or tone-control stimulus association. In the test phase, they categorised words that were presented with 1 of the tones. Results showed that words were processed more slowly when they were presented with the reactivated mask. This interference effect was only correlated with and explained by the value of the visual perceptual strength of the words (i.e., our experience with the visual dimensions associated with concepts) and not with other characteristics. We interpret these findings in terms of word access, which may involve the simulation of sensory features associated with the concept, even if participants were not explicitly required to access visual properties. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Dynamics of confined reactive water in smectite clay-zeolite composites.
Pitman, Michael C; van Duin, Adri C T
2012-02-15
The dynamics of water confined to mesoporous regions in minerals such as swelling clays and zeolites is fundamental to a wide range of resource management issues impacting many processes on a global scale, including radioactive waste containment, desalination, and enhanced oil recovery. Large-scale atomic models of freely diffusing multilayer smectite particles at low hydration confined in a silicalite cage are used to investigate water dynamics in the composite environment with the ReaxFF reactive force field over a temperature range of 300-647 K. The reactive capability of the force field enabled a range of relevant surface chemistry to emerge, including acid/base equilibria in the interlayer calcium hydrates and silanol formation on the edges of the clay and inner surface of the zeolite housing. After annealing, the resulting clay models exhibit both mono- and bilayer hydration structures. Clay surface hydration redistributed markedly and yielded to silicalite water loading. We find that the absolute rates and temperature dependence of water dynamics compare well to neutron scattering data and pulse field gradient measures from relevant samples of Ca-montmorillonite and silicalite, respectively. Within an atomistic, reactive context, our results distinguish water dynamics in the interlayer Ca(OH)(2)·nH(2)O environment from water flowing over the clay surface, and from water diffusing within silicalite. We find that the diffusion of water when complexed to Ca hydrates is considerably slower than freely diffusing water over the clay surface, and the reduced mobility is well described by a difference in the Arrhenius pre-exponential factor rather than a change in activation energy.
International Nuclear Information System (INIS)
Yabusaki, Steven B.; Fang, Yilin; Waichler, Scott R.
2008-01-01
Subsurface simulation is being used to build, test, and couple conceptual process models to better understand controls on a 0.4 km by 1.0 km uranium plume that has persisted above the drinking water standard in the groundwater of the Hanford 300 Area over the last 15 years. At this site, uranium-contaminated sediments in the vadose zone and aquifer are subject to significant variations in water levels and velocities driven by the diurnal, weekly, seasonal, and episodic Columbia River stage dynamics. Groundwater flow reversals typically occur twice a day with significant exchange of river water and groundwater in the near-river aquifer. Mixing of the dilute solution chemistry of the river with the groundwater complicates the uranium sorption behavior as the mobility of U(VI) has been shown experimentally to be a function of pH, carbonate, calcium, and uranium. Furthermore, uranium mass transfer between solid and aqueous phases has been observed to be rate-limited in the context of the high groundwater velocities resulting from the river stage fluctuations and the highly transmissive sediments (hydraulic conductivities ∼1500 m/d). One- and two-dimensional vertical cross-sectional simulations of variably-saturated flow and reactive transport, based on laboratory-derived models of distributed rate mass transfer and equilibrium multicomponent surface complexation, are used to assess uranium transport at the dynamic vadose zone aquifer interface as well as changes to uranium mobility due to incursions of river water into the aquifer
Dual Quaternion Variational Integrator for Rigid Body Dynamic Simulation
Xu, Jiafeng; Halse, Karl Henning
2016-01-01
In rigid body dynamic simulations, often the algorithm is required to deal with general situations where both reference point and inertia matrix are arbitrarily de- fined. We introduce a novel Lie group variational integrator using dual quaternion for simulating rigid body dynamics in all six degrees of freedom. Dual quaternion is used to represent rigid body kinematics and one-step Lie group method is used to derive dynamic equations. The combination of these two becomes the first Lie group ...
A note on simulation and dynamical hierarchies
Energy Technology Data Exchange (ETDEWEB)
Rasmussen, S.; Barrett, C.L. [Los Alamos National Lab., NM (United States)]|[Santa Fe Institute, Sante Fe, NM (United States); Baas, N.A. [Trondheim Univ. (Norway). Dept. of Mathematical Sciences; Olesen, M.W. [Los Alamos National Lab., NM (United States)
1996-02-22
This paper summarizes some of the problems associated with the generation of higher order emergent structures in formal dynamical systems as well as some of the formal properties of dynamical systems capable of generating higher order structures.
Pump, Eva; Viger-Gravel, Jasmine; Abou-Hamad, Edy; Samantaray, Manoja; Hamzaoui, Bilel; Gurinov, Andrei; Anjum, Dalaver H.; Gajan, David; Lesage, Anne; Bendjeriou-Sedjerari, Anissa; Emsley, Lyndon; Basset, Jean-Marie
2016-01-01
Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy (DNP SENS) is an emerging technique that allows access to high-sensitivity NMR spectra from surfaces. However, DNP SENS usually requires the use of radicals as an exogenous source of polarization, which has so far limited applications for organometallic surface species to those that do not react with the radicals. Here we show that reactive surface species can be studied if they are immobilized inside porous materials with suitably small windows, and if bulky nitroxide bi-radicals (here TEKPol) are used as the polarization source and which cannot enter the pores. The method is demonstrated by obtaining significant DNP enhancements from highly reactive complelxes [(equivalent to Si-O-)W(Me)(5)] supported on MCM-41, and effects of pore size (6.0, 3.0 and 2.5 nm) on the performance are discussed.
Pump, Eva
2016-08-15
Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy (DNP SENS) is an emerging technique that allows access to high-sensitivity NMR spectra from surfaces. However, DNP SENS usually requires the use of radicals as an exogenous source of polarization, which has so far limited applications for organometallic surface species to those that do not react with the radicals. Here we show that reactive surface species can be studied if they are immobilized inside porous materials with suitably small windows, and if bulky nitroxide bi-radicals (here TEKPol) are used as the polarization source and which cannot enter the pores. The method is demonstrated by obtaining significant DNP enhancements from highly reactive complelxes [(equivalent to Si-O-)W(Me)(5)] supported on MCM-41, and effects of pore size (6.0, 3.0 and 2.5 nm) on the performance are discussed.
Real-time dynamic simulator for the Topaz II reactor power system
International Nuclear Information System (INIS)
Kwok, K.S.
1994-01-01
A dynamic simulator of the TOPAZ II reactor system has been developed for the Nuclear Electric Propulsion Space Test Program. The simulator is a self-contained IBM-PC compatible based system that executes at a speed faster than real-time. The simulator combines first-principle modeling and empirical correlations in its algorithm to attain the modeling accuracy and computational through-put that are required for real-time execution. The overall execution time of the simulator for each time step is 15 ms when no data is written to the disk, and 18 ms when nine double precision data points are written to the disk once in every time step. The simulation program has been tested and it is able to handle a step decrease of $8 worth of reactivity. It also provides simulation of fuel, emitter, collector, stainless steel, and ZrH moderator failures. Presented in this paper are the models used in the calculations, a sample simulation session, and a discussion of the performance and limitations of the simulator. The simulator has been found to provide realistic real-time dynamic response of the TOPAZ II reactor system under both normal and causality conditions
López-Grimau, V; Gutiérrez, M C
2006-01-01
This study is focused on the optimisation of the electrochemical decolourisation of textile effluents containing reactive dyes with the aim of making feasible-technically and economically-this method at industrial scale. Coloured waters were treated in continuous at low current density, to reduce the electrical consumption. Ti/PtO(x) electrodes were used to oxidize simulated dyebaths prepared with an azo/dichlorotriazine reactive dye (C.I. Reactive Orange 4). The decolourisation yield was dependent on the dyeing electrolyte (NaCl or Na(2)SO(4)). Dyeing effluents which contained from 0.5 to 20 gl(-1) of NaCl reached a high decolourisation yield, depending on the current density, immediately after the electrochemical process. These results were improved when the effluents were stored for several hours under solar light. After the electrochemical treatment the effluents were stored in a tank and exposed under different lighting conditions: UV light, solar light and darkness. The evolution of the decolourisation versus the time of storage was reported and kinetic constants were calculated. The time of storage was significantly reduced by the application of UV light. A dye mineralization study was also carried out on a concentrated dyebath. A TOC removal of 81% was obtained when high current density was applied for a prolonged treatment with recirculation. This treatment required a high electrical consumption.
Surface Dynamic Process Simulation with the Use of Cellular Automata
International Nuclear Information System (INIS)
Adamska-Szatko, M.; Bala, J.
2010-01-01
Cellular automata are known for many applications, especially for physical and biological simulations. Universal cellular automata can be used for modelling complex natural phenomena. The paper presents simulation of surface dynamic process. Simulation uses 2-dimensional cellular automata algorithm. Modelling and visualisation were created by in-house developed software with standard OpenGL graphic library. (authors)
High tech supply chain simulation based on dynamical systems model
Yuan, X.; Ashayeri, J.
2013-01-01
During the last 45 years, system dynamics as a continuous type of simulation has been used for simulating various problems, ranging from economic to engineering and managerial when limited (historical) information is available. Control theory is another alternative for continuous simulation that
Comparison of OH reactivity measurements in the atmospheric simulation chamber SAPHIR
Directory of Open Access Journals (Sweden)
H. Fuchs
2017-10-01
Full Text Available Hydroxyl (OH radical reactivity (kOH has been measured for 18 years with different measurement techniques. In order to compare the performances of instruments deployed in the field, two campaigns were conducted performing experiments in the atmospheric simulation chamber SAPHIR at Forschungszentrum Jülich in October 2015 and April 2016. Chemical conditions were chosen either to be representative of the atmosphere or to test potential limitations of instruments. All types of instruments that are currently used for atmospheric measurements were used in one of the two campaigns. The results of these campaigns demonstrate that OH reactivity can be accurately measured for a wide range of atmospherically relevant chemical conditions (e.g. water vapour, nitrogen oxides, various organic compounds by all instruments. The precision of the measurements (limit of detection < 1 s−1 at a time resolution of 30 s to a few minutes is higher for instruments directly detecting hydroxyl radicals, whereas the indirect comparative reactivity method (CRM has a higher limit of detection of 2 s−1 at a time resolution of 10 to 15 min. The performances of the instruments were systematically tested by stepwise increasing, for example, the concentrations of carbon monoxide (CO, water vapour or nitric oxide (NO. In further experiments, mixtures of organic reactants were injected into the chamber to simulate urban and forested environments. Overall, the results show that the instruments are capable of measuring OH reactivity in the presence of CO, alkanes, alkenes and aromatic compounds. The transmission efficiency in Teflon inlet lines could have introduced systematic errors in measurements for low-volatile organic compounds in some instruments. CRM instruments exhibited a larger scatter in the data compared to the other instruments. The largest differences to reference measurements or to calculated reactivity were observed by CRM instruments in
A mobile-mobile transport model for simulating reactive transport in connected heterogeneous fields
Lu, Chunhui; Wang, Zhiyuan; Zhao, Yue; Rathore, Saubhagya Singh; Huo, Jinge; Tang, Yuening; Liu, Ming; Gong, Rulan; Cirpka, Olaf A.; Luo, Jian
2018-05-01
Mobile-immobile transport models can be effective in reproducing heavily tailed breakthrough curves of concentration. However, such models may not adequately describe transport along multiple flow paths with intermediate velocity contrasts in connected fields. We propose using the mobile-mobile model for simulating subsurface flow and associated mixing-controlled reactive transport in connected fields. This model includes two local concentrations, one in the fast- and the other in the slow-flow domain, which predict both the concentration mean and variance. The normalized total concentration variance within the flux is found to be a non-monotonic function of the discharge ratio with a maximum concentration variance at intermediate values of the discharge ratio. We test the mobile-mobile model for mixing-controlled reactive transport with an instantaneous, irreversible bimolecular reaction in structured and connected random heterogeneous domains, and compare the performance of the mobile-mobile to the mobile-immobile model. The results indicate that the mobile-mobile model generally predicts the concentration breakthrough curves (BTCs) of the reactive compound better. Particularly, for cases of an elliptical inclusion with intermediate hydraulic-conductivity contrasts, where the travel-time distribution shows bimodal behavior, the prediction of both the BTCs and maximum product concentration is significantly improved. Our results exemplify that the conceptual model of two mobile domains with diffusive mass transfer in between is in general good for predicting mixing-controlled reactive transport, and particularly so in cases where the transfer in the low-conductivity zones is by slow advection rather than diffusion.
International Nuclear Information System (INIS)
Teutsch, G.; Tolksdorff, J.; Schad, H.
1997-01-01
The paper presents a coupled hydraulical-geochemical-economical simulation model for the design of in-situ reactive wall systems. More specific, the model is used for cost-optimization and sensitivity analysis of a funnel-and-gate system with an in-situ sorption reactor. The groundwater flow and advective transport are simulated under steady-state conditions using a finite-difference numerical model. This model is coupled to an analytical solution describing the sorption kinetics of hydrophobic organic compounds within the reactor (gate). The third part of the model system is an economical model which calculates (a) the investment costs for the funnel-and-gate construction and (b) the operation cost based on the number of reactor refills, which depends on the breakthrough time for a given contaminant and the anticipated total operation time. For practical applications a simplified approximation of the cost-function is derived and tested
Efficient Exploration of Reactive Potential Energy Surfaces Using Car-Parrinello Molecular Dynamics
Iannuzzi, Marcella; Laio, Alessandro; Parrinello, Michele
2003-01-01
The possibility of observing chemical reactions in ab initio molecular dynamics runs is severely hindered by the short simulation time accessible. We propose a new method for accelerating the reaction process, based on the ideas of the extended Lagrangian and coarse-grained non-Markovian metady- namics. We demonstrate that by this method it is possible to simulate reactions involving complex atomic rearrangements and very large energy barriers in runs of a few picoseconds.
Dynamic simulation of a sodium-cooled fast reactor power plant
Energy Technology Data Exchange (ETDEWEB)
Shinaishin, M.A.M.
1976-08-01
Simulation of the dynamic behavior of the Clinch River Breeder Reactor Plant (CRBRP) is the subject of this dissertation. The range of transients under consideration extends from a moderate transient, of the type referred to as Anticipated Transient Without Scram (ATWS), to a transient initiated by an unexpected accident followed by reactor scram. The moderate range of transients can be simulated by a digital simulator referred to as the CRBRP ATWS simulator. Two versions of this simulator were prepared; in one, the plant controllers were not included, whereas, in the other, the controllers were incorporated. A simulator referred to as the CRBRP-DCHT simulator was constructed for studying transients due to unexpected accidents followed by reactor scram. In this simulator emphasis was placed on simulating the auxiliary heat removal system, in order to determine its capability to remove the after-shut down fission and decay heat. The transients studied using the two versions of the ATWS simulator include step and ramp reactivity perturbations, and an electrical load perturbation in the controlled plant. An uncontrolled control rod withdrawal followed by reactor scram was studied using the DCHT simulator, although the duration of this transient was restricted to 20 sec. because of computer limitations. The results agree very well with the expected physical behavior of the plant.
Dynamic simulation of a sodium-cooled fast reactor power plant
International Nuclear Information System (INIS)
Shinaishin, M.A.M.
1976-08-01
Simulation of the dynamic behavior of the Clinch River Breeder Reactor Plant (CRBRP) is the subject of this dissertation. The range of transients under consideration extends from a moderate transient, of the type referred to as Anticipated Transient Without Scram (ATWS), to a transient initiated by an unexpected accident followed by reactor scram. The moderate range of transients can be simulated by a digital simulator referred to as the CRBRP ATWS simulator. Two versions of this simulator were prepared; in one, the plant controllers were not included, whereas, in the other, the controllers were incorporated. A simulator referred to as the CRBRP-DCHT simulator was constructed for studying transients due to unexpected accidents followed by reactor scram. In this simulator emphasis was placed on simulating the auxiliary heat removal system, in order to determine its capability to remove the after-shut down fission and decay heat. The transients studied using the two versions of the ATWS simulator include step and ramp reactivity perturbations, and an electrical load perturbation in the controlled plant. An uncontrolled control rod withdrawal followed by reactor scram was studied using the DCHT simulator, although the duration of this transient was restricted to 20 sec. because of computer limitations. The results agree very well with the expected physical behavior of the plant
Real time simulation method for fast breeder reactors dynamics
International Nuclear Information System (INIS)
Miki, Tetsushi; Mineo, Yoshiyuki; Ogino, Takamichi; Kishida, Koji; Furuichi, Kenji.
1985-01-01
The development of multi-purpose real time simulator models with suitable plant dynamics was made; these models can be used not only in training operators but also in designing control systems, operation sequences and many other items which must be studied for the development of new type reactors. The prototype fast breeder reactor ''Monju'' is taken as an example. Analysis is made on various factors affecting the accuracy and computer load of its dynamic simulation. A method is presented which determines the optimum number of nodes in distributed systems and time steps. The oscillations due to the numerical instability are observed in the dynamic simulation of evaporators with a small number of nodes, and a method to cancel these oscillations is proposed. It has been verified through the development of plant dynamics simulation codes that these methods can provide efficient real time dynamics models of fast breeder reactors. (author)
Monte Carlo simulation of nonlinear reactive contaminant transport in unsaturated porous media
International Nuclear Information System (INIS)
Giacobbo, F.; Patelli, E.
2007-01-01
In the current proposed solutions of radioactive waste repositories, the protective function against the radionuclide water-driven transport back to the biosphere is to be provided by an integrated system of engineered and natural geologic barriers. The occurrence of several nonlinear interactions during the radionuclide migration process may render burdensome the classical analytical-numerical approaches. Moreover, the heterogeneity of the barriers' media forces approximations to the classical analytical-numerical models, thus reducing their fidelity to reality. In an attempt to overcome these difficulties, in the present paper we adopt a Monte Carlo simulation approach, previously developed on the basis of the Kolmogorov-Dmitriev theory of branching stochastic processes. The approach is here extended for describing transport through unsaturated porous media under transient flow conditions and in presence of nonlinear interchange phenomena between the liquid and solid phases. This generalization entails the determination of the functional dependence of the parameters of the proposed transport model from the water content and from the contaminant concentration, which change in space and time during the water infiltration process. The corresponding Monte Carlo simulation approach is verified with respect to a case of nonreactive transport under transient unsaturated flow and to a case of nonlinear reactive transport under stationary saturated flow. Numerical applications regarding linear and nonlinear reactive transport under transient unsaturated flow are reported
Drop Dynamics and Speciation in Isolation of Metals from Liquid Wastes by Reactive Scavenging
Energy Technology Data Exchange (ETDEWEB)
Arne J. Pearlstein; Alexander Scheeline
2002-08-30
Computational and experimental studies of the motion and dynamics of liquid drops in gas flows were conducted with relevance to reactive scavenging of metals from atomized liquid waste. Navier-Stoke's computations of deformable drops revealed a range of conditions from which prolate drops are expected, and showed how frajectiones of deformable drops undergoing deceleration can be computed. Experimental work focused on development of emission fluorescence, and scattering diagnostics. The instrument developed was used to image drop shapes, soot, and nonaxisymmetric departures from steady flow in a 22kw combustor
Ensemble simulations with discrete classical dynamics
DEFF Research Database (Denmark)
Toxværd, Søren
2013-01-01
For discrete classical Molecular dynamics (MD) obtained by the "Verlet" algorithm (VA) with the time increment $h$ there exist a shadow Hamiltonian $\\tilde{H}$ with energy $\\tilde{E}(h)$, for which the discrete particle positions lie on the analytic trajectories for $\\tilde{H}$. $\\tilde......{E}(h)$ is employed to determine the relation with the corresponding energy, $E$ for the analytic dynamics with $h=0$ and the zero-order estimate $E_0(h)$ of the energy for discrete dynamics, appearing in the literature for MD with VA. We derive a corresponding time reversible VA algorithm for canonical dynamics...
International Nuclear Information System (INIS)
Chen Sen; Wu Yican; Jin Ming; Chen Zhibin; Bai Yunqing; Zhao Zhumin
2014-01-01
Accelerator Driven Sub-critical System (ADS) has particular neutronics behaviors compared with the critical system. Prompt jump approximation point reactor kinetics equations taken external source into account have been deduced using an approach of prompt jump approximation. And the relationship between injection reactivity and power ampliation has been achieved. In addition, based on the RELAP5 code the prolong development of point reactor kinetics code used into assessing sub-critical system have been promoted. Different sub-criticality (k eff = 0.90, 0.95, 0.97, 0.98 and 0.99) have been assessed in preliminary design of a type of natural circulation cooling sub-critical reactor under conditions of reactivity injection +1 β in one second. It shows that the external source prompt transient approximation method has an accurate solution after injecting reactivity around short time and has a capacity to solve the dynamic equation, and the sub-critical system has an inner stability while the deeper sub-criticality the less impact on the sub-critical system. (authors)
Xiang, Ling; Zhang, Baoqiang; Wang, Baoxi; Jiang, Jun; Zhang, Fenghua; Hu, Zhujing
2016-01-01
A prime-target interference task was used to investigate the effects of cognitive aging on reactive and proactive control after eliminating frequency confounds and feature repetitions from the cognitive control measures. We used distributional analyses to explore the dynamics of the two control functions by distinguishing the strength of incorrect response capture and the efficiency of suppression control. For reactive control, within-trial conflict control and between-trial conflict adaption were analyzed. The statistical analysis showed that there were no reliable between-trial conflict adaption effects for either young or older adults. For within-trial conflict control, the results revealed that older adults showed larger interference effects on mean RT and mean accuracy. Distributional analyses showed that the decline mainly stemmed from inefficient suppression rather than from stronger incorrect responses. For proactive control, older adults showed comparable proactive conflict resolution to young adults on mean RT and mean accuracy. Distributional analyses showed that older adults were as effective as younger adults in adjusting their responses based on congruency proportion information to minimize automatic response capture and actively suppress the direct response activation. The results suggest that older adults were less proficient at suppressing interference after conflict was detected but can anticipate and prevent inference in response to congruency proportion manipulation. These results challenge earlier views that older adults have selective deficits in proactive control but intact reactive control.
Directory of Open Access Journals (Sweden)
Ling Xiang
2016-11-01
Full Text Available A prime-target interference task was used to investigate the effects of cognitive aging on reactive and proactive control in which frequency confounds and feature repetitions were eliminated from the cognitive control measures. We used distributional analyses to explore the dynamics of the two control functions by distinguishing the strength of incorrect response capture and the efficiency of suppression control. For reactive control, within-trial conflict control and between-trial conflict adaption were analyzed. The statistical analysis showed that there were no reliable between-trial conflict adaption effects for both young and older adults. For within-trial conflict control, the results revealed that older adults showed larger interference effects on mean RT and mean accuracy. Distributional analyses showed that the decline mainly stemmed from inefficient suppression rather than from stronger incorrect responses. For proactive control, older adults showed comparable proactive conflict resolution than young adults on mean RT and mean accuracy. Distributional analyses showed older adults were as effective as younger adults in adjusting their responses to minimize automatic response capture and actively suppress the direct response activation based on congruency proportion information. The results suggest that older adults were less proficient at suppressing interference after conflict was detected but can anticipate and prevent inference in response to congruency proportion manipulation. The results challenge earlier views that older adults have selective deficits in proactive control but are spared in reactive control.
Kinematics and dynamics analysis of a novel serial-parallel dynamic simulator
Energy Technology Data Exchange (ETDEWEB)
Hu, Bo; Zhang, Lian Dong; Yu, Jingjing [Parallel Robot and Mechatronic System Laboratory of Hebei Province, Yanshan University, Qinhuangdao, Hebei (China)
2016-11-15
A serial-parallel dynamics simulator based on serial-parallel manipulator is proposed. According to the dynamics simulator motion requirement, the proposed serial-parallel dynamics simulator formed by 3-RRS (active revolute joint-revolute joint-spherical joint) and 3-SPR (Spherical joint-active prismatic joint-revolute joint) PMs adopts the outer and inner layout. By integrating the kinematics, constraint and coupling information of the 3-RRS and 3-SPR PMs into the serial-parallel manipulator, the inverse Jacobian matrix, velocity, and acceleration of the serial-parallel dynamics simulator are studied. Based on the principle of virtual work and the kinematics model, the inverse dynamic model is established. Finally, the workspace of the (3-RRS)+(3-SPR) dynamics simulator is constructed.
Kinematics and dynamics analysis of a novel serial-parallel dynamic simulator
International Nuclear Information System (INIS)
Hu, Bo; Zhang, Lian Dong; Yu, Jingjing
2016-01-01
A serial-parallel dynamics simulator based on serial-parallel manipulator is proposed. According to the dynamics simulator motion requirement, the proposed serial-parallel dynamics simulator formed by 3-RRS (active revolute joint-revolute joint-spherical joint) and 3-SPR (Spherical joint-active prismatic joint-revolute joint) PMs adopts the outer and inner layout. By integrating the kinematics, constraint and coupling information of the 3-RRS and 3-SPR PMs into the serial-parallel manipulator, the inverse Jacobian matrix, velocity, and acceleration of the serial-parallel dynamics simulator are studied. Based on the principle of virtual work and the kinematics model, the inverse dynamic model is established. Finally, the workspace of the (3-RRS)+(3-SPR) dynamics simulator is constructed
Energy Technology Data Exchange (ETDEWEB)
Heidaryan, E. [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Masjidosolayman Branch; Enayati, M.; Mokhtari, B. [Iranian Offshore Oil Co., Tehran (Iran, Islamic Republic of)
2008-07-01
Over long time periods, geological sequestration in some systems shows mineralization effects or mineral sequestration of carbon dioxide, converting the carbon dioxide to a less mobile form. However, a detailed investigation of these geological systems is needed before disposing of carbon dioxide into these formations. Depleted oil and gas reservoirs and underground aquifers are proposed candidates for carbon dioxide injection. This paper presented an experimental investigation into the reactive transport module for handling aquifer sequestration of carbon dioxide and modeling of simultaneous geochemical reactions. Two cases of laboratory carbon dioxide sequestration experiments, conducted for different rock systems were modeled using the fully coupled geochemical compositional simulator. The relevant permeability relationships were compared to determine the best fit with the experimental results. The paper discussed the theory of modeling; geochemical reactions and mineral trapping of carbon dioxide; and application simulator for modeling including the remodeling of flow experiments. It was concluded that simulated changes in porosity and permeability could mimic experimental results to some extent. The study satisfactorily simulated the results of experimental observations and permeability results could be improved if the Kozeny-Carman equation was replaced by the Civan power law. 6 refs., 2 tabs., 21 figs.
Phast4Windows: A 3D graphical user interface for the reactive-transport simulator PHAST
Charlton, Scott R.; Parkhurst, David L.
2013-01-01
Phast4Windows is a Windows® program for developing and running groundwater-flow and reactive-transport models with the PHAST simulator. This graphical user interface allows definition of grid-independent spatial distributions of model properties—the porous media properties, the initial head and chemistry conditions, boundary conditions, and locations of wells, rivers, drains, and accounting zones—and other parameters necessary for a simulation. Spatial data can be defined without reference to a grid by drawing, by point-by-point definitions, or by importing files, including ArcInfo® shape and raster files. All definitions can be inspected, edited, deleted, moved, copied, and switched from hidden to visible through the data tree of the interface. Model features are visualized in the main panel of the interface, so that it is possible to zoom, pan, and rotate features in three dimensions (3D). PHAST simulates single phase, constant density, saturated groundwater flow under confined or unconfined conditions. Reactions among multiple solutes include mineral equilibria, cation exchange, surface complexation, solid solutions, and general kinetic reactions. The interface can be used to develop and run simple or complex models, and is ideal for use in the classroom, for analysis of laboratory column experiments, and for development of field-scale simulations of geochemical processes and contaminant transport.
Phast4Windows: a 3D graphical user interface for the reactive-transport simulator PHAST.
Charlton, Scott R; Parkhurst, David L
2013-01-01
Phast4Windows is a Windows® program for developing and running groundwater-flow and reactive-transport models with the PHAST simulator. This graphical user interface allows definition of grid-independent spatial distributions of model properties-the porous media properties, the initial head and chemistry conditions, boundary conditions, and locations of wells, rivers, drains, and accounting zones-and other parameters necessary for a simulation. Spatial data can be defined without reference to a grid by drawing, by point-by-point definitions, or by importing files, including ArcInfo® shape and raster files. All definitions can be inspected, edited, deleted, moved, copied, and switched from hidden to visible through the data tree of the interface. Model features are visualized in the main panel of the interface, so that it is possible to zoom, pan, and rotate features in three dimensions (3D). PHAST simulates single phase, constant density, saturated groundwater flow under confined or unconfined conditions. Reactions among multiple solutes include mineral equilibria, cation exchange, surface complexation, solid solutions, and general kinetic reactions. The interface can be used to develop and run simple or complex models, and is ideal for use in the classroom, for analysis of laboratory column experiments, and for development of field-scale simulations of geochemical processes and contaminant transport. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.
Development Of Dynamic Probabilistic Safety Assessment: The Accident Dynamic Simulator (ADS) Tool
International Nuclear Information System (INIS)
Chang, Y.H.; Mosleh, A.; Dang, V.N.
2003-01-01
The development of a dynamic methodology for Probabilistic Safety Assessment (PSA) addresses the complex interactions between the behaviour of technical systems and personnel response in the evolution of accident scenarios. This paper introduces the discrete dynamic event tree, a framework for dynamic PSA, and its implementation in the Accident Dynamic Simulator (ADS) tool. Dynamic event tree tools generate and quantify accident scenarios through coupled simulation models of the plant physical processes, its automatic systems, the equipment reliability, and the human response. The current research on the framework, the ADS tool, and on Human Reliability Analysis issues within dynamic PSA, is discussed. (author)
Development Of Dynamic Probabilistic Safety Assessment: The Accident Dynamic Simulator (ADS) Tool
Energy Technology Data Exchange (ETDEWEB)
Chang, Y.H.; Mosleh, A.; Dang, V.N
2003-03-01
The development of a dynamic methodology for Probabilistic Safety Assessment (PSA) addresses the complex interactions between the behaviour of technical systems and personnel response in the evolution of accident scenarios. This paper introduces the discrete dynamic event tree, a framework for dynamic PSA, and its implementation in the Accident Dynamic Simulator (ADS) tool. Dynamic event tree tools generate and quantify accident scenarios through coupled simulation models of the plant physical processes, its automatic systems, the equipment reliability, and the human response. The current research on the framework, the ADS tool, and on Human Reliability Analysis issues within dynamic PSA, is discussed. (author)
Dynamic fault simulation of wind turbines using commercial simulation tools
DEFF Research Database (Denmark)
Lund, Torsten; Eek, Jarle; Uski, Sanna
2005-01-01
This paper compares the commercial simulation tools: PSCAD/EMTDC, PowerFactory, SIMPOW and PSS/E for analysing fault sequences defined in the Danish grid code requirements for wind turbines connected to a voltage level below 100 kV. Both symmetrical and unsymmetrical faults are analysed. The devi......This paper compares the commercial simulation tools: PSCAD/EMTDC, PowerFactory, SIMPOW and PSS/E for analysing fault sequences defined in the Danish grid code requirements for wind turbines connected to a voltage level below 100 kV. Both symmetrical and unsymmetrical faults are analysed....... The deviations and the reasons for the deviations between the tools are stated. The simulation models are imple-mented using the built-in library components of the simulation tools with exception of the mechanical drive-train model, which had to be user-modeled in PowerFactory and PSS/E....
Numerical simulation of two-phase multicomponent flow with reactive transport in porous media
International Nuclear Information System (INIS)
Vostrikov, Viatcheslav
2014-01-01
The subject of this thesis is the numerical simulation of water-gas flow in the subsurface together with chemical reactions. The subject has applications to various situations in environmental modeling, though we are mainly concerned with CO 2 storage in deep saline aquifers. In Carbon Capture and Storage studies, CO 2 is first captured from its sources of origin, transport in liquefied form and injected as gas under high pressure in deep saline aquifers. Numerical simulation is an essential tool to make sure that gaseous CO 2 will remain trapped for several hundreds or thousands of years. Several trapping mechanisms can be brought to bear to achieve this goal. Of particular interest in this thesis are solubility trapping (whereby gaseous CO 2 dissolves in the brine as it moves upward) and, on a longer term, mineral trapping (which causes CO 2 to react with the surrounding rock to form minerals such as calcite). Thus, understanding how CO 2 reacts chemically becomes an important issue for its long term fate. The thesis is composed of four chapters. The first chapter is an introduction to multicomponent two-phase flow in porous media, with or without chemical reactions. It presents a review of the existing literature, and gives an outline of the whole thesis. Chapter 2 presents a quantitative discussion of the physical and chemical phenomena involved, and of their mathematical modeling. The model we use is that of two-phase two-component flow in porous media, coupled to reactive transport. This model leads to a large set of partial differential equations, coupled to algebraic equations, describing the evolution of the concentration of each species at each grid point. A direct solution of this problem (a fully coupled solution) is possible, but presents many difficulties form the numerical point of view. Moreover, it makes it difficult to reuse codes already written, and validated, to simulate the simpler phenomena of (uncoupled) two-phase flow and reactive transport
Rare event simulation for dynamic fault trees
Ruijters, Enno Jozef Johannes; Reijsbergen, D.P.; de Boer, Pieter-Tjerk; Stoelinga, Mariëlle Ida Antoinette
2017-01-01
Fault trees (FT) are a popular industrial method for reliability engineering, for which Monte Carlo simulation is an important technique to estimate common dependability metrics, such as the system reliability and availability. A severe drawback of Monte Carlo simulation is that the number of
Rare Event Simulation for Dynamic Fault Trees
Ruijters, Enno Jozef Johannes; Reijsbergen, D.P.; de Boer, Pieter-Tjerk; Stoelinga, Mariëlle Ida Antoinette; Tonetta, Stefano; Schoitsch, Erwin; Bitsch, Friedemann
2017-01-01
Fault trees (FT) are a popular industrial method for reliability engineering, for which Monte Carlo simulation is an important technique to estimate common dependability metrics, such as the system reliability and availability. A severe drawback of Monte Carlo simulation is that the number of
Dynamic bounds coupled with Monte Carlo simulations
Rajabali Nejad, Mohammadreza; Meester, L.E.; van Gelder, P.H.A.J.M.; Vrijling, J.K.
2011-01-01
For the reliability analysis of engineering structures a variety of methods is known, of which Monte Carlo (MC) simulation is widely considered to be among the most robust and most generally applicable. To reduce simulation cost of the MC method, variance reduction methods are applied. This paper
Pearl, Thomas; Mantooth, Brent; Varady, Mark; Willis, Matthew
2014-03-01
Chemical warfare agent simulants are often used for environmental testing in place of highly toxic agents. This work sets the foundation for modeling decontamination of absorbing polymeric materials with the focus on determining relationships between agents and simulants. The correlations of agents to simulants must consider the three way interactions in the chemical-material-decontaminant system where transport and reaction occur in polymer materials. To this end, diffusion modeling of the subsurface transport of simulants and live chemical warfare agents was conducted for various polymer systems (e.g., paint coatings) with and without reaction pathways with applied decontamination. The models utilized 1D and 2D finite difference diffusion and reaction models to simulate absorption and reaction in the polymers, and subsequent flux of the chemicals out of the polymers. Experimental data including vapor flux measurements and dynamic contact angle measurements were used to determine model input parameters. Through modeling, an understanding of the relationship of simulant to live chemical warfare agent was established, focusing on vapor emission of agents and simulants from materials.
A Coupling Tool for Parallel Molecular Dynamics-Continuum Simulations
Neumann, Philipp; Tchipev, Nikola
2012-01-01
We present a tool for coupling Molecular Dynamics and continuum solvers. It is written in C++ and is meant to support the developers of hybrid molecular - continuum simulations in terms of both realisation of the respective coupling algorithm
Unified Nonlinear Flight Dynamics and Aeroelastic Simulator Tool, Phase I
National Aeronautics and Space Administration — ZONA Technology, Inc. (ZONA) proposes a R&D effort to develop a Unified Nonlinear Flight Dynamics and Aeroelastic Simulator (UNFDAS) Tool that will combine...
Takana, H.; Tanaka, Y.; Nishiyama, H.
2012-01-01
Computational simulations of a single streamer in DBD in lean methane-air mixture at pressure of 1 and 3 atm and temperature of 300 and 500 K were conducted for plasma-enhanced chemical reactions in a closed system. The effects of surrounding pressure and temperature are characterized for reactive species production by a DBD discharge. The results show that the production characteristics of reactive species are strongly influenced by the total gas number density and the higher concentration of reactive species are produced at higher pressure and lower gas temperature for a given initial reduced electric field.
Molecular dynamics simulation of ribosome jam
Matsumoto, Shigenori; Takagi, Fumiko; Shimada, Takashi; Ito, Nobuyasu
2011-01-01
We propose a coarse-grained molecular dynamics model of ribosome molecules to study the dependence of translation process on environmental parameters. We found the model exhibits traffic jam property, which is consistent with an ASEP model. We
International Nuclear Information System (INIS)
Sarkar, Sohini; Kosson, David S.; Brown, Kevin; Garrabrants, Andrew C.; Meeussen, Hans; Van der Sloot, Hans
2013-01-01
A numerical simulation framework is presented in this paper for estimating evolution of pH and release of major species from grout within high-level waste tanks after closure. This model was developed as part of the Cementitious Barriers Partnership. The reactive transport model consists of two parts - (1) transport of species, and (2) chemical reactions. The closure grout can be assumed to have varying extents of cracking and composition for performance assessment purposes. The partially or completely degraded grouted tank is idealized as a dual regime system comprising of a mobile region having solid materials with cracks and macro-pores, and an immobile/stagnant region having solid matrix with micropores. The transport profiles of the species are calculated by incorporating advection of species through the mobile region, diffusion of species through the immobile/stagnant region, and exchange of species between the mobile and immobile regions. A geochemical speciation code in conjunction with the pH dependent test data for a grout material is used to obtain a mineral set that best describes the trends in the test data of the major species. The dual regime reactive transport model predictions are compared with the release data from an up-flow column percolation test. The coupled model is then used to assess effects of crack state of the structure, rate and composition of the infiltrating water on the pH evolution at the grout-waste interface. The coupled reactive transport model developed in this work can be used as part of the performance assessment process for evaluating potential risks from leaching of a cracked tank containing elements of human health and environmental concern. (authors)
Energy Technology Data Exchange (ETDEWEB)
Sarkar, Sohini; Kosson, David S.; Brown, Kevin; Garrabrants, Andrew C. [Consortium for Risk Assessment with Stakeholder Participation - CRESP, Vanderbilt University, Nashville, TN (United States); Meeussen, Hans [Consortium for Risk Assessment with Stakeholder Participation - CRESP, Nuclear Research and Consultancy Group, Petten (Netherlands); Van der Sloot, Hans [Consortium for Risk Assessment with Stakeholder Participation - CRESP, Hans Van der Sloot Consultancy (Netherlands)
2013-07-01
A numerical simulation framework is presented in this paper for estimating evolution of pH and release of major species from grout within high-level waste tanks after closure. This model was developed as part of the Cementitious Barriers Partnership. The reactive transport model consists of two parts - (1) transport of species, and (2) chemical reactions. The closure grout can be assumed to have varying extents of cracking and composition for performance assessment purposes. The partially or completely degraded grouted tank is idealized as a dual regime system comprising of a mobile region having solid materials with cracks and macro-pores, and an immobile/stagnant region having solid matrix with micropores. The transport profiles of the species are calculated by incorporating advection of species through the mobile region, diffusion of species through the immobile/stagnant region, and exchange of species between the mobile and immobile regions. A geochemical speciation code in conjunction with the pH dependent test data for a grout material is used to obtain a mineral set that best describes the trends in the test data of the major species. The dual regime reactive transport model predictions are compared with the release data from an up-flow column percolation test. The coupled model is then used to assess effects of crack state of the structure, rate and composition of the infiltrating water on the pH evolution at the grout-waste interface. The coupled reactive transport model developed in this work can be used as part of the performance assessment process for evaluating potential risks from leaching of a cracked tank containing elements of human health and environmental concern. (authors)
Arslan-Alaton, Idil; Kabdaşli, Işik; Vardar, Burcu; Tünay, Olcay
2009-05-30
Reactive dyebath effluents are ideal candidates for electrocoagulation due to their intensive color, medium strength, recalcitrant COD and high electrolyte (NaCl) content. The present study focused on the treatability of simulated reactive dyebath effluent (COD(o)=300 mg/L; color in terms of absorbance values A(o,436)=0.532 cm(-1), A(o,525)=0.693 cm(-1) and A(o,620)=0.808 cm(-1)) employing electrocoagulation with aluminum and stainless steel electrodes. Optimization of critical operating parameters such as initial pH (pH(o) 3-11), applied current density (J(c)=22-87 mA/cm(2)) and electrolyte type (NaCl or Na(2)SO(4)) improved the overall treatment efficiencies resulting in effective decolorization (99% using stainless steel electrodes after 60 min, 95% using aluminum electrodes after 90 min electrocoagulation) and COD abatement (93% with stainless steel electrodes after 60 min, 86% with aluminum electrodes after 90 min of reaction time). Optimum electrocoagulation conditions were established as pH(o) 5 and J(c)=22 mA/cm(2) for both electrode materials. The COD and color removal efficiencies also depended on the electrolyte type. No in situ, surplus adsorbable organically bound halogens (AOX) formation associated with the use of NaCl as the electrolyte during electrocoagulation was detected. An economical evaluation was also carried out within the frame of the study. It was demonstrated that electrocoagulation of reactive dyebath effluent with aluminum and stainless steel electrodes was a considerably less electrical energy-intensive, alternative treatment method as compared with advanced chemical oxidation techniques.
On RELAP5-simulated High Flux Isotope Reactor reactivity transients: Code change and application
International Nuclear Information System (INIS)
Freels, J.D.
1993-01-01
This paper presents a new and innovative application for the RELAP5 code (hereafter referred to as ''the code''). The code has been used to simulate several transients associated with the (presently) draft version of the High-Flux Isotope Reactor (HFIR) updated safety analysis report (SAR). This paper investigates those thermal-hydraulic transients induced by nuclear reactivity changes. A major goal of the work was to use an existing RELAP5 HFIR model for consistency with other thermal-hydraulic transient analyses of the SAR. To achieve this goal, it was necessary to incorporate a new self-contained point kinetics solver into the code because of a deficiency in the point-kinetics reactivity model of the Mod 2.5 version of the code. The model was benchmarked against previously analyzed (known) transients. Given this new code, four event categories defined by the HFIR probabilistic risk assessment (PRA) were analyzed: (in ascending order of severity) a cold-loop pump start; run-away shim-regulating control cylinder and safety plate withdrawal; control cylinder ejection; and generation of an optimum void in the target region. All transients are discussed. Results of the bounding incredible event transient, the target region optimum void, are shown. Future plans for RELAP5 HFIR applications and recommendations for code improvements are also discussed
Parallel Monte Carlo simulation of aerosol dynamics
Zhou, K.; He, Z.; Xiao, M.; Zhang, Z.
2014-01-01
is simulated with a stochastic method (Marcus-Lushnikov stochastic process). Operator splitting techniques are used to synthesize the deterministic and stochastic parts in the algorithm. The algorithm is parallelized using the Message Passing Interface (MPI
International Nuclear Information System (INIS)
Bacon, Diana H.; White, Mark D.; McGrail, B PETER
2004-01-01
The U.S. Department of Energy must approve a performance assessment (PA) to support the design, construction, approval, and closure of disposal facilities for immobilized low-activity waste (ILAW) currently stored in underground tanks at Hanford, Washington. A critical component of the PA is to provide quantitative estimates of radionuclide release rates from the engineered portion of the disposal facilities. Computer simulations are essential for this purpose because impacts on groundwater resources must be projected to periods of 10,000 years and longer. The computer code selected for simulating the radionuclide release rates is the Subsurface Transport Over Reactive Multiphases (STORM) simulator. The STORM simulator solves coupled conservation equations for component mass and energy that describe subsurface flow over aqueous and gas phases through variably saturated geologic media. The resulting flow fields are used to sequentially solve conservation equations for reactive aqueous phase transport through variably saturated geologic media. These conservation equations for component mass, energy, and solute mass are partial differential equations that mathematically describe flow and transport through porous media. The STORM simulator solves the governing-conservation equations and constitutive functions using numerical techniques for nonlinear systems. The partial differential equations governing thermal and fluid flow processes are solved by the integral volume finite difference method. These governing equations are solved simultaneously using Newton-Raphson iteration. The partial differential equations governing reactive solute transport are solved using either an operator split technique where geochemical reactions and solute transport are solved separately, or a fully coupled technique where these equations are solved simultaneously. The STORM simulator is written in the FORTRAN 77 language, following American National Standards Institute (ANSI) standards
Selection of Activities in Dynamic Business Process Simulation
Directory of Open Access Journals (Sweden)
Toma Rusinaitė
2016-06-01
Full Text Available Maintaining dynamicity of business processes is one of the core issues of today's business as it enables businesses to adapt to constantly changing environment. Upon changing the processes, it is vital to assess possible impact, which is achieved by using simulation of dynamic processes. In order to implement dynamicity in business processes, it is necessary to have an ability to change components of the process (a set of activities, a content of activity, a set of activity sequences, a set of rules, performers and resources or dynamically select them during execution. This problem attracted attention of researches over the past few years; however, there is no proposed solution, which ensures the business process (BP dynamicity. This paper proposes and specifies dynamic business process (DBP simulation model, which satisfies all of the formulated DBP requirements.
Yi, Zheng; Lindner, Benjamin; Prinz, Jan-Hendrik; Noé, Frank; Smith, Jeremy C
2013-11-07
Neutron scattering experiments directly probe the dynamics of complex molecules on the sub pico- to microsecond time scales. However, the assignment of the relaxations seen experimentally to specific structural rearrangements is difficult, since many of the underlying dynamical processes may exist on similar timescales. In an accompanying article, we present a theoretical approach to the analysis of molecular dynamics simulations with a Markov State Model (MSM) that permits the direct identification of structural transitions leading to each contributing relaxation process. Here, we demonstrate the use of the method by applying it to the configurational dynamics of the well-characterized alanine dipeptide. A practical procedure for deriving the MSM from an MD is introduced. The result is a 9-state MSM in the space of the backbone dihedral angles and the side-chain methyl group. The agreement between the quasielastic spectrum calculated directly from the atomic trajectories and that derived from the Markov state model is excellent. The dependence on the wavevector of the individual Markov processes is described. The procedure means that it is now practicable to interpret quasielastic scattering spectra in terms of well-defined intramolecular transitions with minimal a priori assumptions as to the nature of the dynamics taking place.
Simulation of detonation cell kinematics using two-dimensional reactive blast waves
Thomas, G. O.; Edwards, D. H.
1983-10-01
A method of generating a cylindrical blast wave is developed which overcomes the disadvantages inherent in the converging-diverging nozzle technique used by Edwards et al., 1981. It is demonstrated than an exploding wire placed at the apex of a two-dimensional sector provides a satisfactory source of the generation of blast waves in reactive systems. The velocity profiles of the blast waves are found to simulate those in freely propagating detonations very well, and this method does not suffer from the disadvantage of having the mass flow at the throat as in the nozzle method. The density decay parameter is determined to have a constant value of 4 in the systems investigated, and it is suggested that this may be a universal value. It is proposed that suitable wedges could be used to create artificial Mach stems in the same manner as Strehlow and Barthel (1971) without the attendant disadvantages of the nozzle method.
CYLFUX, Fast Reactor Reactivity Transients Simulation in LWR by 2-D 2 Group Diffusion
International Nuclear Information System (INIS)
Schmidt, A.
1973-01-01
1 - Nature of physical problem solved: A 2-dimensional calculation of the 2-group, space-dependent neutron diffusion equations is performed in r-z geometry using an arbitrary number of groups of delayed neutron precursors. The program is designed to simulate fast reactivity excursions in light water reactors taking into account Doppler feedback via adiabatic heatup of fuel. Axial motions of control rods may be considered including scram action on option. 2 - Method of solution: The differential equations are solved at each time step by an explicit finite difference method using two time levels. The stationary distributions are obtained by using the same algorithm. 3 - Restrictions on the complexity of the problem: No restriction to the number of space points and delayed neutron energy groups besides the computer size
Simulation of capillary flow with a dynamic contact angle
van Mourik, S; Veldman, AEP; Dreyer, ME
2005-01-01
A number of theoretical and empirical dynamic contact angle (DCA) models have been tested in a numerical simulation of liquid reorientation in microgravity for which experimental validation data are available. It is observed that the DCA can have a large influence on liquid dynamics in microgravity.
Simulating market dynamics : Interactions between consumer psychology and social networks
Janssen, M.A; Jager, W.
2003-01-01
Markets can show different types of dynamics, from quiet markets dominated by one or a few products, to markets with continual penetration of new and reintroduced products. in a previous article we explored the dynamics of markets from a psychological perspective using a multi-agent simulation
Energy conservation in molecular dynamics simulations of classical systems
DEFF Research Database (Denmark)
Toxværd, Søren; Heilmann, Ole; Dyre, J. C.
2012-01-01
Classical Newtonian dynamics is analytic and the energy of an isolated system is conserved. The energy of such a system, obtained by the discrete “Verlet” algorithm commonly used in molecular dynamics simulations, fluctuates but is conserved in the mean. This is explained by the existence...
Zhao, T.; Shi, L.; Zhang, Y. T.; Zou, L.; Zhang, L.
2017-10-01
Atmospheric pressure non-equilibrium plasmas have attracted significant attention and have been widely used to inactivate pathogens, yet the mechanisms underlying the interactions between plasma-generated species and bio-organisms have not been elucidated clearly. In this paper, reactive molecular dynamics simulations are employed to investigate the mechanisms of interactions between reactive oxygen plasma species (O, OH, and O2) and β-1,6-glucan (a model for the C. albicans cell wall) from a microscopic point of view. Our simulations show that O and OH species can break structurally important C-C and C-O bonds, while O2 molecules exhibit only weak, non-bonded interactions with β-1,6-glucan. Hydrogen abstraction from hydroxyl or CH groups occurs first in all bond cleavage mechanisms. This is followed by a cascade of bond cleavage and double bond formation events. These lead to the destruction of the fungal cell wall. O and OH have similar effects related to their bond cleavage mechanisms. Our simulation results provide fundamental insights into the mechanisms underlying the interactions between reactive oxygen plasma species and the fungal cell wall of C. albicans at the atomic level.
A Process for Comparing Dynamics of Distributed Space Systems Simulations
Cures, Edwin Z.; Jackson, Albert A.; Morris, Jeffery C.
2009-01-01
The paper describes a process that was developed for comparing the primary orbital dynamics behavior between space systems distributed simulations. This process is used to characterize and understand the fundamental fidelities and compatibilities of the modeling of orbital dynamics between spacecraft simulations. This is required for high-latency distributed simulations such as NASA s Integrated Mission Simulation and must be understood when reporting results from simulation executions. This paper presents 10 principal comparison tests along with their rationale and examples of the results. The Integrated Mission Simulation (IMSim) (formerly know as the Distributed Space Exploration Simulation (DSES)) is a NASA research and development project focusing on the technologies and processes that are related to the collaborative simulation of complex space systems involved in the exploration of our solar system. Currently, the NASA centers that are actively participating in the IMSim project are the Ames Research Center, the Jet Propulsion Laboratory (JPL), the Johnson Space Center (JSC), the Kennedy Space Center, the Langley Research Center and the Marshall Space Flight Center. In concept, each center participating in IMSim has its own set of simulation models and environment(s). These simulation tools are used to build the various simulation products that are used for scientific investigation, engineering analysis, system design, training, planning, operations and more. Working individually, these production simulations provide important data to various NASA projects.
Simulating the evolution of industries using a dynamic behavioural model
Kunc, Martin
2004-01-01
Investment decisions determine that not only the evolution of industries is hard to forecast with certainty but also industries may have different dynamic behaviour and evolutionary paths. In this paper we present a behavioural framework to simulate the evolution of industries. Two factors determine the dynamic behaviour of an industry: managerial decision-making and the interconnected set of resources. Managerial decision-making significantly affects the dynamic behaviour of firms. Bounded r...
Computational fluid dynamics (CFD) simulation of hot air flow ...
African Journals Online (AJOL)
Computational Fluid Dynamics simulation of air flow distribution, air velocity and pressure field pattern as it will affect moisture transient in a cabinet tray dryer is performed using SolidWorks Flow Simulation (SWFS) 2014 SP 4.0 program. The model used for the drying process in this experiment was designed with Solid ...
Molecular dynamics simulations of ballistic He penetration into W fuzz
Klaver, T. P. C.; Nordlund, K.; Morgan, T. W.; Westerhof, E.; Thijsse, B. J.; van de Sanden, M. C. M.
2016-01-01
Results are presented of large-scale Molecular Dynamics simulations of low-energy He bombardment of W nanorods, or so-called ‘fuzz’ structures. The goal of these simulations is to see if ballistic He penetration through W fuzz offers a more realistic scenario for how He moves through fuzz layers
Experiences on dynamic simulation software in chemical engineering education
DEFF Research Database (Denmark)
Komulainen, Tiina M.; Enemark-rasmussen, Rasmus; Sin, Gürkan
2012-01-01
Commercial process simulators are increasing interest in the chemical engineer education. In this paper, the use of commercial dynamic simulation software, D-SPICE® and K-Spice®, for three different chemical engineering courses is described and discussed. The courses cover the following topics...
Dynamic wind turbine models in power system simulation tool
DEFF Research Database (Denmark)
Hansen, A.; Jauch, Clemens; Soerensen, P.
The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT. The developed models are a part of the results of a national research project, whose overall objective is to create a model database in different simulation tools. The report...
Innovative tools for real-time simulation of dynamic systems
Palli, Gianluca; Carloni, Raffaella; Melchiorri, Claudio
2008-01-01
In this paper, we present a software architecture, based on RTAI-Linux, for the real-time simulation of dynamic systems and for the rapid prototyping of digital controllers. Our aim is to simplify the testing phase of digital controllers by providing the real-time simulation of the plant with the
Molecular Dynamics Simulations of Kinetic Models for Chiral Dominance in Soft Condensed Matter
DEFF Research Database (Denmark)
Toxvaerd, Søren
2001-01-01
Molecular dynamics simulation, models for isomerization kinetics, origin of biomolecular chirality......Molecular dynamics simulation, models for isomerization kinetics, origin of biomolecular chirality...
Fluid dynamics theory, computation, and numerical simulation
Pozrikidis, C
2017-01-01
This book provides an accessible introduction to the basic theory of fluid mechanics and computational fluid dynamics (CFD) from a modern perspective that unifies theory and numerical computation. Methods of scientific computing are introduced alongside with theoretical analysis and MATLAB® codes are presented and discussed for a broad range of topics: from interfacial shapes in hydrostatics, to vortex dynamics, to viscous flow, to turbulent flow, to panel methods for flow past airfoils. The third edition includes new topics, additional examples, solved and unsolved problems, and revised images. It adds more computational algorithms and MATLAB programs. It also incorporates discussion of the latest version of the fluid dynamics software library FDLIB, which is freely available online. FDLIB offers an extensive range of computer codes that demonstrate the implementation of elementary and advanced algorithms and provide an invaluable resource for research, teaching, classroom instruction, and self-study. This ...
Reactive transport simulations of the evolution of a cementitious repository in clay-rich host rocks
Kosakowski, Georg; Berner, Urs; Kulik, Dmitrii A.
2010-05-01
In Switzerland, the deep geological disposal in clay-rich rocks is foreseen not only for high-level radioactive waste, but also for intermediate-level (ILW) and low-level (LLW) radioactive waste. Typically, ILW and LLW repositories contain huge amounts of cementitious materials used for waste conditioning, confinement, and as backfill for the emplacement caverns. We are investigating the interactions of such a repository with the surrounding clay rocks and with other clay-rich materials such as sand/bentonite mixtures that are foreseen for backfilling the access tunnels. With the help of a numerical reactive transport model, we are comparing the evolution of cement/clay interfaces for different geochemical and transport conditions. In this work, the reactive transport of chemical components is simulated with the multi-component reactive transport code OpenGeoSys-GEM. It employs the sequential non-iterative approach to couple the mass transport code OpenGeoSys (http://www.ufz.de/index.php?en=18345) with the GEMIPM2K (http://gems.web.psi.ch/) code for thermodynamic modeling of aquatic geochemical systems which is using the Gibbs Energy Minimization (GEM) method. Details regarding code development and verification can be found in Shao et al. (2009). The mineral composition and the pore solution of a CEM I 52.5 N HTS hydrated cement as described by Lothenbach & Wieland (2006) are used as an initial state of the cement compartment. The setup is based on the most recent CEMDATA07 thermodynamic database which includes several ideal solid solutions for hydrated cement minerals and is consistent with the Nagra/PSI thermodynamic database 01/01. The smectite/montmorillonite model includes cation exchange processes and amphotheric≡SOH sites and was calibrated on the basis of data by Bradbury & Baeyens (2002). In other reactive transport codes based on the Law of Mass Action (LMA) for solving geochemical equilibria, cation exchange processes are usually calculated assuming
Gamma ray observatory dynamics simulator in Ada (GRODY)
International Nuclear Information System (INIS)
1990-09-01
This experiment involved the parallel development of dynamics simulators for the Gamma Ray Observatory in both FORTRAN and Ada for the purpose of evaluating the applicability of Ada to the NASA/Goddard Space Flight Center's flight dynamics environment. The experiment successfully demonstrated that Ada is a viable, valuable technology for use in this environment. In addition to building a simulator, the Ada team evaluated training approaches, developed an Ada methodology appropriate to the flight dynamics environment, and established a baseline for evaluating future Ada projects
Topology in dynamical lattice QCD simulations
Energy Technology Data Exchange (ETDEWEB)
Gruber, Florian
2012-08-20
Lattice simulations of Quantum Chromodynamics (QCD), the quantum field theory which describes the interaction between quarks and gluons, have reached a point were contact to experimental data can be made. The underlying mechanisms, like chiral symmetry breaking or the confinement of quarks, are however still not understood. This thesis focuses on topological structures in the QCD vacuum. Those are not only mathematically interesting but also closely related to chiral symmetry and confinement. We consider methods to identify these objects in lattice QCD simulations. Based on this, we explore the structures resulting from different discretizations and investigate the effect of a very strong electromagnetic field on the QCD vacuum.
Topology in dynamical lattice QCD simulations
International Nuclear Information System (INIS)
Gruber, Florian
2012-01-01
Lattice simulations of Quantum Chromodynamics (QCD), the quantum field theory which describes the interaction between quarks and gluons, have reached a point were contact to experimental data can be made. The underlying mechanisms, like chiral symmetry breaking or the confinement of quarks, are however still not understood. This thesis focuses on topological structures in the QCD vacuum. Those are not only mathematically interesting but also closely related to chiral symmetry and confinement. We consider methods to identify these objects in lattice QCD simulations. Based on this, we explore the structures resulting from different discretizations and investigate the effect of a very strong electromagnetic field on the QCD vacuum.
Molecular dynamics simulations of RNA motifs
Czech Academy of Sciences Publication Activity Database
Csaszar, K.; Špačková, Naďa; Šponer, Jiří; Leontis, N. B.
2002-01-01
Roč. 223, - (2002), s. 154 ISSN 0065-7727. [Annual Meeting of the American Chemistry Society /223./. 07.04.2002-11.04.2002, Orlando ] Institutional research plan: CEZ:AV0Z5004920 Keywords : molecular dynamics * RNA * hydration Subject RIV: BO - Biophysics
Dynamic modeling and simulation of power transformer maintenance costs
Directory of Open Access Journals (Sweden)
Ristić Olga
2016-01-01
Full Text Available The paper presents the dynamic model of maintenance costs of the power transformer functional components. Reliability is modeled combining the exponential and Weibull's distribution. The simulation was performed with the aim of corrective maintenance and installation of the continuous monitoring system of the most critical components. Simulation Dynamic System (SDS method and VENSIM PLE software was used to simulate the cost. In this way, significant savings in maintenance costs will be achieved with a small initial investment. [Projekat Ministarstva nauke Republike Srbije, br. III 41025 i br. OI 171007
AceCloud: Molecular Dynamics Simulations in the Cloud.
Harvey, M J; De Fabritiis, G
2015-05-26
We present AceCloud, an on-demand service for molecular dynamics simulations. AceCloud is designed to facilitate the secure execution of large ensembles of simulations on an external cloud computing service (currently Amazon Web Services). The AceCloud client, integrated into the ACEMD molecular dynamics package, provides an easy-to-use interface that abstracts all aspects of interaction with the cloud services. This gives the user the experience that all simulations are running on their local machine, minimizing the learning curve typically associated with the transition to using high performance computing services.
A dynamic simulation of the Hanford site grout facility
International Nuclear Information System (INIS)
Zimmerman, B.D.; Klimper, S.C.; Williamson, G.F.
1992-01-01
Computer-based dynamic simulation can be a powerful, low-cost tool for investigating questions concerning timing, throughput capability, and ability of engineering facilities and systems to meet established milestones. The simulation project described herein was undertaken to develop a dynamic simulation model of the Hanford site grout facility and its associated systems at the US Department of Energy's (DOE's) Hanford site in Washington State. The model allows assessment of the effects of engineering design and operation trade-offs and of variable programmatic constraints, such as regulatory review, on the ability of the grout system to meet milestones established by DOE for low-level waste disposal
Dynamic Biological Functioning Important for Simulating and Stabilizing Ocean Biogeochemistry
Buchanan, P. J.; Matear, R. J.; Chase, Z.; Phipps, S. J.; Bindoff, N. L.
2018-04-01
The biogeochemistry of the ocean exerts a strong influence on the climate by modulating atmospheric greenhouse gases. In turn, ocean biogeochemistry depends on numerous physical and biological processes that change over space and time. Accurately simulating these processes is fundamental for accurately simulating the ocean's role within the climate. However, our simulation of these processes is often simplistic, despite a growing understanding of underlying biological dynamics. Here we explore how new parameterizations of biological processes affect simulated biogeochemical properties in a global ocean model. We combine 6 different physical realizations with 6 different biogeochemical parameterizations (36 unique ocean states). The biogeochemical parameterizations, all previously published, aim to more accurately represent the response of ocean biology to changing physical conditions. We make three major findings. First, oxygen, carbon, alkalinity, and phosphate fields are more sensitive to changes in the ocean's physical state. Only nitrate is more sensitive to changes in biological processes, and we suggest that assessment protocols for ocean biogeochemical models formally include the marine nitrogen cycle to assess their performance. Second, we show that dynamic variations in the production, remineralization, and stoichiometry of organic matter in response to changing environmental conditions benefit the simulation of ocean biogeochemistry. Third, dynamic biological functioning reduces the sensitivity of biogeochemical properties to physical change. Carbon and nitrogen inventories were 50% and 20% less sensitive to physical changes, respectively, in simulations that incorporated dynamic biological functioning. These results highlight the importance of a dynamic biology for ocean properties and climate.
Approximation of quantum observables by molecular dynamics simulations
Sandberg, Mattias
2016-01-01
In this talk I will discuss how to estimate the uncertainty in molecular dynamics simulations. Molecular dynamics is a computational method to study molecular systems in materials science, chemistry, and molecular biology. The wide popularity of molecular dynamics simulations relies on the fact that in many cases it agrees very well with experiments. If we however want the simulation to predict something that has no comparing experiment, we need a mathematical estimate of the accuracy of the computation. In the case of molecular systems with few particles, such studies are made by directly solving the Schrodinger equation. In this talk I will discuss theoretical results on the accuracy between quantum mechanics and molecular dynamics, to be used for systems that are too large to be handled computationally by the Schrodinger equation.
Approximation of quantum observables by molecular dynamics simulations
Sandberg, Mattias
2016-01-06
In this talk I will discuss how to estimate the uncertainty in molecular dynamics simulations. Molecular dynamics is a computational method to study molecular systems in materials science, chemistry, and molecular biology. The wide popularity of molecular dynamics simulations relies on the fact that in many cases it agrees very well with experiments. If we however want the simulation to predict something that has no comparing experiment, we need a mathematical estimate of the accuracy of the computation. In the case of molecular systems with few particles, such studies are made by directly solving the Schrodinger equation. In this talk I will discuss theoretical results on the accuracy between quantum mechanics and molecular dynamics, to be used for systems that are too large to be handled computationally by the Schrodinger equation.
Computer simulation of multiple dynamic photorefractive gratings
DEFF Research Database (Denmark)
Buchhave, Preben
1998-01-01
The benefits of a direct visualization of space-charge grating buildup are described. The visualization is carried out by a simple repetitive computer program, which simulates the basic processes in the band-transport model and displays the result graphically or in the form of numerical data. The...
Dynamic simulation of steam generator failures
Energy Technology Data Exchange (ETDEWEB)
Meister, G [Institut fuer Nukleare Sicherheitsforschung, Kernforschungsanlage Juelich GmbH, Juelich (Germany)
1988-07-01
A computer program will be described which is capable to simulate severe transients in a gas heated steam generator. Such transients may arise in the safety analysis of accidents resulting from failures in the heat removal system of an HTGR power plant. Important failure modes which have to be considered are ruptures of one or more steam generator tubes leading to water or steam ejection into the primary system or anomalous operating conditions which my cause damage due to excessive thermal stress. Examples are the complete dryout as a consequence of feedwater interrupt in connection with continuing gas heating and the reflooding of the secondary channel with cold feedwater after dryout. The steam generator program which is capable to simulate accidents of this type is written as a module which can be implemented into a program system fur the simulation of the total heat rejection system. It based on an advanced mathematical model for the two phase flow taking deviations from thermal equilibrium into account. Mass, energy and momentum balances for the primary and secondary fluid and the heat diffusion equations for the heat exchanging wall form a system of coupled differential equations which is solved numerically by an algorithm which is stiffly stable and suppresses effectively oscillations of numerical origin. Results of the simulation of transients of the type mentioned above will be presented and discussed. (author)
Dynamic simulation of steam generator failures
International Nuclear Information System (INIS)
Meister, G.
1988-01-01
A computer program will be described which is capable to simulate severe transients in a gas heated steam generator. Such transients may arise in the safety analysis of accidents resulting from failures in the heat removal system of an HTGR power plant. Important failure modes which have to be considered are ruptures of one or more steam generator tubes leading to water or steam ejection into the primary system or anomalous operating conditions which my cause damage due to excessive thermal stress. Examples are the complete dryout as a consequence of feedwater interrupt in connection with continuing gas heating and the reflooding of the secondary channel with cold feedwater after dryout. The steam generator program which is capable to simulate accidents of this type is written as a module which can be implemented into a program system fur the simulation of the total heat rejection system. It based on an advanced mathematical model for the two phase flow taking deviations from thermal equilibrium into account. Mass, energy and momentum balances for the primary and secondary fluid and the heat diffusion equations for the heat exchanging wall form a system of coupled differential equations which is solved numerically by an algorithm which is stiffly stable and suppresses effectively oscillations of numerical origin. Results of the simulation of transients of the type mentioned above will be presented and discussed. (author)
Analytical system dynamics modeling and simulation
Fabien, Brian C
2008-01-01
This book offering a modeling technique based on Lagrange's energy method includes 125 worked examples. Using this technique enables one to model and simulate systems as diverse as a six-link, closed-loop mechanism or a transistor power amplifier.
Dynamic Interactions for Network Visualization and Simulation
2009-03-01
projects.htm, Site accessed January 5, 2009. 12. John S. Weir, Major, USAF, Mediated User-Simulator Interactive Command with Visualization ( MUSIC -V). Master’s...Computing Sciences in Colleges, December 2005). 14. Enrique Campos -Nanez, “nscript user manual,” Department of System Engineer- ing University of
Distributed dynamic simulations of networked control and building performance applications.
Yahiaoui, Azzedine
2018-02-01
The use of computer-based automation and control systems for smart sustainable buildings, often so-called Automated Buildings (ABs), has become an effective way to automatically control, optimize, and supervise a wide range of building performance applications over a network while achieving the minimum energy consumption possible, and in doing so generally refers to Building Automation and Control Systems (BACS) architecture. Instead of costly and time-consuming experiments, this paper focuses on using distributed dynamic simulations to analyze the real-time performance of network-based building control systems in ABs and improve the functions of the BACS technology. The paper also presents the development and design of a distributed dynamic simulation environment with the capability of representing the BACS architecture in simulation by run-time coupling two or more different software tools over a network. The application and capability of this new dynamic simulation environment are demonstrated by an experimental design in this paper.
Growth dynamics of reactive-sputtering-deposited AlN films
International Nuclear Information System (INIS)
Auger, M.A.; Vazquez, L.; Sanchez, O.; Jergel, M.; Cuerno, R.; Castro, M.
2005-01-01
We have studied the surface kinetic roughening of AlN films grown on Si(100) substrates by dc reactive sputtering within the framework of the dynamic scaling theory. Films deposited under the same experimental conditions for different growth times were analyzed by atomic force microscopy and x-ray diffraction. The AlN films display a (002) preferred orientation. We have found two growth regimes with a crossover time of 36 min. In the first regime, the growth dynamics is unstable and the films present two types of textured domains, well textured and randomly oriented, respectively. In contrast, in the second regime the films are homogeneous and well textured, leading to a relative stabilization of the surface roughness characterized by a growth exponent β=0.37±0.03. In this regime a superrough scaling behavior is found with the following exponents: (i) Global exponents: roughness exponent α=1.2±0.2 and β=0.37±0.03 and coarsening exponent 1/z=0.32±0.05; (ii) local exponents: α loc =1, β loc =0.32±0.01. The differences between the growth modes are found to be related to the different main growth mechanisms dominating their growth dynamics: sticking anisotropy and shadowing, respectively
National Research Council Canada - National Science Library
Nusca, Michael J; Chen, Chiung-Chu; McQuaid, Michael J
2007-01-01
.... Computational fluid dynamics is employed to model the chemically reacting flow within a system's combustion chamber, and computational chemistry is employed to characterize propellant physical and reactive properties...
International Nuclear Information System (INIS)
Su, Mingze; Zhao, Haibo; Ma, Jinchen
2015-01-01
Highlights: • CFD simulation of a 5 kW_t_h CLC reactor of coal was conducted. • Gas leakage, flow pattern and combustion efficiency of the reactor was analyzed. • Optimal condition was achieved based on operation characteristics understanding. - Abstract: A dual circulation fluidized bed system is widely accepted for chemical looping combustion (CLC) for enriching CO_2 from the utilization of fossil fuels. Due to the limitations of the measurement, the details of multiphase reactive flows in the interconnected fluidized bed reactors are difficult to obtain. Computational Fluid Dynamics (CFD) simulation provides a promising method to understand the hydrodynamics, chemical reaction, and heat and mass transfers in CLC reactors, which are very important for the rational design, optimal operation, and scaling-up of the CLC system. In this work, a 5 kW_t_h coal-fired CLC dual circulation fluidized bed system, which was developed by our research group, was first simulated for understanding gas leakage, flow pattern and combustion efficiency. The simulation results achieved good agreement with the experimental measurements, which validates the simulation model. Subsequently, to improve the combustion efficiency, a new operation condition was simulated by increasing the reactor temperature and decreasing the coal feeding. An improvement in the combustion efficiency was attained, and the simulation results for the new operation condition were also validated by the experimental measurements in the same CLC combustor. All of the above processes demonstrated the validity and usefulness of the simulation results to improve the CLC reactor operation.
Chaban, Vitaly V; Prezhdo, Oleg V
2016-07-07
The Haber-Bosch process is the main industrial method for producing ammonia from diatomic nitrogen and hydrogen. We use a combination of ab initio thermochemical analysis and reactive molecular dynamics to demonstrate that a significant increase in the ammonia production yield can be achieved using hydroxylated graphene and related species. Exploiting the polarity difference between N2/H2 and NH3, as well as the universal proton acceptor behavior of NH3, we demonstrate a strong shift of the equilibrium of the Haber-Bosch process toward ammonia (ca. 50 kJ mol(-1) enthalpy gain and ca. 60-70 kJ mol(-1) free energy gain). The modified process is of significant importance to the chemical industry.
International Nuclear Information System (INIS)
Di Tullo, Pamela
2015-01-01
This work was performed in the frame of the safety assessment program prior to the possible construction of an underground repository for nuclear waste (HAVL). To consolidate risk assessment models associated to a potential 79 Se biosphere contamination, biogeochemistry of stable selenium was investigated, aiming firstly to highlight the dynamics of Se cycling in a forest ecosystem, in terms of inventories and annual fluxes. Consequently to these first results, which suggest a clay role of soil and its organic pool in the global Se cycle, two studies based on the use of isotopically enriched tracers were further carried out in order to clarify the processes involved in (i) Se retention and reactivity in soils and (ii) incorporation of inorganic Se within organic pool of vegetal biomass. (author) [fr
Stability of molecular dynamics simulations of classical systems
DEFF Research Database (Denmark)
Toxværd, Søren
2012-01-01
The existence of a shadow Hamiltonian for discrete classical dynamics, obtained by an asymptotic expansion for a discrete symplectic algorithm, is employed to determine the limit of stability for molecular dynamics (MD) simulations with respect to the time-increment h of the discrete dynamics....... The investigation is based on the stability of the shadow energy, obtained by including the first term in the asymptotic expansion, and on the exact solution of discrete dynamics for a single harmonic mode. The exact solution of discrete dynamics for a harmonic potential with frequency ω gives a criterion...... for the limit of stability h ⩽ 2/ω. Simulations of the Lennard-Jones system and the viscous Kob-Andersen system show that one can use the limit of stability of the shadow energy or the stability criterion for a harmonic mode on the spectrum of instantaneous frequencies to determine the limit of stability of MD...
Molecular dynamics simulation of a chemical reaction
International Nuclear Information System (INIS)
Gorecki, J.; Gryko, J.
1988-06-01
Molecular dynamics is used to study the chemical reaction A+A→B+B. It is shown that the reaction rate constant follows the Arrhenius law both for Lennard-Jones and hard sphere interaction potentials between substrate particles. A. For the denser systems the reaction rate is proportional to the value of the radial distribution function at the contact point of two hard spheres. 10 refs, 4 figs
Reilly, Jamie; Peelle, Jonathan E; Garcia, Amanda; Crutch, Sebastian J
2016-08-01
Biological plausibility is an essential constraint for any viable model of semantic memory. Yet, we have only the most rudimentary understanding of how the human brain conducts abstract symbolic transformations that underlie word and object meaning. Neuroscience has evolved a sophisticated arsenal of techniques for elucidating the architecture of conceptual representation. Nevertheless, theoretical convergence remains elusive. Here we describe several contrastive approaches to the organization of semantic knowledge, and in turn we offer our own perspective on two recurring questions in semantic memory research: (1) to what extent are conceptual representations mediated by sensorimotor knowledge (i.e., to what degree is semantic memory embodied)? (2) How might an embodied semantic system represent abstract concepts such as modularity, symbol, or proposition? To address these questions, we review the merits of sensorimotor (i.e., embodied) and amodal (i.e., disembodied) semantic theories and address the neurobiological constraints underlying each. We conclude that the shortcomings of both perspectives in their extreme forms necessitate a hybrid middle ground. We accordingly propose the Dynamic Multilevel Reactivation Framework-an integrative model predicated upon flexible interplay between sensorimotor and amodal symbolic representations mediated by multiple cortical hubs. We discuss applications of the dynamic multilevel reactivation framework to abstract and concrete concept representation and describe how a multidimensional conceptual topography based on emotion, sensation, and magnitude can successfully frame a semantic space containing meanings for both abstract and concrete words. The consideration of 'abstract conceptual features' does not diminish the role of logical and/or executive processing in activating, manipulating and using information stored in conceptual representations. Rather, it proposes that the materials upon which these processes operate
Chain networking revealed by molecular dynamics simulation
Zheng, Yexin; Tsige, Mesfin; Wang, Shi-Qing
Based on Kremer-Grest model for entangled polymer melts, we demonstrate how the response of a polymer glass depends critically on the chain length. After quenching two melts of very different chain lengths (350 beads per chain and 30 beads per chain) into deeply glassy states, we subject them to uniaxial extension. Our MD simulations show that the glass of long chains undergoes stable necking after yielding whereas the system of short chains is unable to neck and breaks up after strain localization. During ductile extension of the polymer glass made of long chain significant chain tension builds up in the load-bearing strands (LBSs). Further analysis is expected to reveal evidence of activation of the primary structure during post-yield extension. These results lend support to the recent molecular model 1 and are the simulations to demonstrate the role of chain networking. This work is supported, in part, by a NSF Grant (DMR-EAGER-1444859)
Electrical Dynamic Simulation Activities in Forsmark NPP
International Nuclear Information System (INIS)
Lamell, Per
2015-01-01
The original power system analysis was done in the seventies in former ASEA AB software. For approximate twenty years no major new studies was done because of limited numbers of renewal projects. In the end of the nineties the plant started to update the selectivity planning and study of the loading of the safety bus-bars. The simulation and start of the development of simulation models was done in a tool named Simpow. Simpow was also an ASEA/ABB AB software developed from the program used in the seventies. To continue to work with Simpow was a decision made after doing an extensive review of on the marked available commercially software. Also at that time we start to do our first attempt building electrical simulation models of unit 1 and 2 according to the original documentation. The development of models for the unit 1, 2 and 3 became more intensive some years after the millennium. Partly because of event July 25, 2006 and also because of the renewal of unit 1 and 2 and had subsequently been initiated for unit 3 also. Today we have initiated a conversion of our models to a new program called PowerFactory. That due to the withdrawal of support and development on SIMPOW a couple of years ago. To development relevance, accuracy and detail, models are an important issue for FKA (Forsmark Kraftgrupp AB). The model is initially created according to the plant documentation and also including requested information from the original supplier. Continued development and updates of the model is done according to the data received from the contractors via the demands according to requirements in our technical documents on different electrical components in renewal projects. The development of the model is driven by known weaknesses, depending of the type of studies and necessary data related to events. An important part that will be described is to have a verified simulation tool and validated models. An example is that the models have been validated by making start and
Nonlinear mirror mode dynamics: Simulations and modeling
Czech Academy of Sciences Publication Activity Database
Califano, F.; Hellinger, Petr; Kuznetsov, E.; Passot, T.; Sulem, P. L.; Trávníček, Pavel
2008-01-01
Roč. 113, - (2008), A08219/1-A08219/20 ISSN 0148-0227 R&D Projects: GA AV ČR IAA300420702; GA AV ČR IAA300420602 Grant - others:PECS(CZ) 98024 Institutional research plan: CEZ:AV0Z30420517 Keywords : mirror instability * nonlinear evolution * numerical simulations * magnetic holes * mirror structures * kinetic plasma instabilities Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.147, year: 2008
Molecular dynamics simulation of propagating cracks
Mullins, M.
1982-01-01
Steady state crack propagation is investigated numerically using a model consisting of 236 free atoms in two (010) planes of bcc alpha iron. The continuum region is modeled using the finite element method with 175 nodes and 288 elements. The model shows clear (010) plane fracture to the edge of the discrete region at moderate loads. Analysis of the results obtained indicates that models of this type can provide realistic simulation of steady state crack propagation.
Monte Carlo simulated dynamical magnetization of single-chain magnets
Energy Technology Data Exchange (ETDEWEB)
Li, Jun; Liu, Bang-Gui, E-mail: bgliu@iphy.ac.cn
2015-03-15
Here, a dynamical Monte-Carlo (DMC) method is used to study temperature-dependent dynamical magnetization of famous Mn{sub 2}Ni system as typical example of single-chain magnets with strong magnetic anisotropy. Simulated magnetization curves are in good agreement with experimental results under typical temperatures and sweeping rates, and simulated coercive fields as functions of temperature are also consistent with experimental curves. Further analysis indicates that the magnetization reversal is determined by both thermal-activated effects and quantum spin tunnelings. These can help explore basic properties and applications of such important magnetic systems. - Highlights: • Monte Carlo simulated magnetization curves are in good agreement with experimental results. • Simulated coercive fields as functions of temperature are consistent with experimental results. • The magnetization reversal is understood in terms of the Monte Carlo simulations.
Stereochemical errors and their implications for molecular dynamics simulations
Directory of Open Access Journals (Sweden)
Freddolino Peter L
2011-05-01
Full Text Available Abstract Background Biological molecules are often asymmetric with respect to stereochemistry, and correct stereochemistry is essential to their function. Molecular dynamics simulations of biomolecules have increasingly become an integral part of biophysical research. However, stereochemical errors in biomolecular structures can have a dramatic impact on the results of simulations. Results Here we illustrate the effects that chirality and peptide bond configuration flips may have on the secondary structure of proteins throughout a simulation. We also analyze the most common sources of stereochemical errors in biomolecular structures and present software tools to identify, correct, and prevent stereochemical errors in molecular dynamics simulations of biomolecules. Conclusions Use of the tools presented here should become a standard step in the preparation of biomolecular simulations and in the generation of predicted structural models for proteins and nucleic acids.
Autonomous dynamic decision making in a nuclear fuel cycle simulator
International Nuclear Information System (INIS)
Pelakauskas, Martynas; Auzans, Aris; Schneider, Erich A.; Tkaczyk, Alan H.
2013-01-01
Highlights: • Objective criteria based decision making in a nuclear fuel cycle simulator. • Simulation driven by an evolving performance metric. • Implementation of the model in a nuclear fuel cycle simulator. • Verification of dynamic decision making based on uranium price evolution. -- Abstract: Growing energy demand and the push to move toward carbon-free ways of electricity generation have renewed the world's interest in nuclear energy. Due to the high technical and economic uncertainties related to nuclear energy, simulation tools have become a necessity in order to plan and evaluate possible nuclear fuel cycles (NFCs). Most of the NFC simulators today work by running the simulation with a user-defined set of facility build orders and preferences. While this allows for a simple way to change the simulation conditions, it may not always lead to optimal results and strongly relies on the user defining the correct parameters. This study looks into the possibility of using the expected cost of electricity (CoE) as the driving build decision variable instead of relying on user-defined build orders. This is a first step toward a more general decision making strategy in dynamic fuel cycle simulation. For this purpose, additional modules were implemented in an NFC simulator, VEGAS, with the consumption dependent price of uranium as a time-varying NFC cost component that drives the cost competitiveness of available NFC options. The model was demonstrated to verify the correct operation of a CoE-driven NFC simulator
Distributed control of hybrid AC microgrids with dynamic active and reactive power capacity tuning
DEFF Research Database (Denmark)
Nutkani, Inam Ullah; Loh, Poh Chiang; Blaabjerg, Frede
2012-01-01
Microgrids comprise of emerging generation technologies such as fuel cell, solar PV, wind turbine generator, storage and loads. They can, in principle, operate at different voltages and frequencies. Tying them either to the mains grid or among themselves would certainly require some interlinking...... power converters, whose control should preferably be done autonomously without demanding communication links. This paper proposes distributed control for power management between two Microgrids interlinked through inverters. The control scheme aims to reduce the reactive power loading stress on DERs...... and also allows active power transfer from overloaded grid to under- loaded grid. The performance of proposed control has been verified in simulation and through a scaled-down experimental system....
Simulation of uranium oxides reduction kinetics by hydrogen. Reactivities of germination and growth
International Nuclear Information System (INIS)
Brun, C.
1997-01-01
The aim of this work is to simulate the reduction by hydrogen of the tri-uranium octo-oxide U 3 O 8 (obtained by uranium trioxide calcination) into uranium dioxide. The kinetics curves have been obtained by thermal gravimetric analysis, the hydrogen and steam pressures being defined. The geometrical modeling which has allowed to explain the trend of the kinetics curves and of the velocity curves is an anisotropic germination-growth modeling. The powder is supposed to be formed of spherical grains with the same radius. The germs of the new UO 2 phase appear at the surface of the U 3 O 8 grains with a specific germination frequency. The growth reactivity is anisotropic and is very large in the tangential direction to the grains surface. Then, the uranium dioxide growths inside the grain and the limiting step is the grain surface. The variations of the growth reactivity and of the germination specific frequency in terms of the gases partial pressures and of the temperature have been explained by two different mechanisms. The limiting step of the growth mechanism is the desorption of water in the uranium dioxide surface. Concerning the germination mechanism the limiting step is a water desorption too but in the tri-uranium octo-oxide surface. The same geometrical modeling and the same germination and growth mechanisms have been applied to the reduction of a tri-uranium octo-oxide obtained by calcination of hydrated uranium trioxide. The values of the germination specific frequency of this solid are nevertheless weaker than those of the solid obtained by direct calcination of the uranium trioxide. (O.M.)
Localized reactive flow in carbonate rocks: Core-flood experiments and network simulations
Wang, Haoyue; Bernabé, Yves; Mok, Ulrich; Evans, Brian
2016-11-01
We conducted four core-flood experiments on samples of a micritic, reef limestone from Abu Dhabi under conditions of constant flow rate. The pore fluid was water in equilibrium with CO2, which, because of its lowered pH, is chemically reactive with the limestone. Flow rates were between 0.03 and 0.1 mL/min. The difference between up and downstream pore pressures dropped to final values ≪1 MPa over periods of 3-18 h. Scanning electron microscope and microtomography imaging of the starting material showed that the limestone is mostly calcite and lacks connected macroporosity and that the prevailing pores are few microns large. During each experiment, a wormhole formed by localized dissolution, an observation consistent with the decreases in pressure head between the up and downstream reservoirs. Moreover, we numerically modeled the changes in permeability during the experiments. We devised a network approach that separated the pore space into competing subnetworks of pipes. Thus, the problem was framed as a competition of flow of the reactive fluid among the adversary subnetworks. The precondition for localization within certain time is that the leading subnetwork rapidly becomes more transmissible than its competitors. This novel model successfully simulated features of the shape of the wormhole as it grew from few to about 100 µm, matched the pressure history patterns, and yielded the correct order of magnitude of the breakthrough time. Finally, we systematically studied the impact of changing the statistical parameters of the subnetworks. Larger mean radius and spatial correlation of the leading subnetwork led to faster localization.
GRODY - GAMMA RAY OBSERVATORY DYNAMICS SIMULATOR IN ADA
Stark, M.
1994-01-01
Analysts use a dynamics simulator to test the attitude control system algorithms used by a satellite. The simulator must simulate the hardware, dynamics, and environment of the particular spacecraft and provide user services which enable the analyst to conduct experiments. Researchers at Goddard's Flight Dynamics Division developed GRODY alongside GROSS (GSC-13147), a FORTRAN simulator which performs the same functions, in a case study to assess the feasibility and effectiveness of the Ada programming language for flight dynamics software development. They used popular object-oriented design techniques to link the simulator's design with its function. GRODY is designed for analysts familiar with spacecraft attitude analysis. The program supports maneuver planning as well as analytical testing and evaluation of the attitude determination and control system used on board the Gamma Ray Observatory (GRO) satellite. GRODY simulates the GRO on-board computer and Control Processor Electronics. The analyst/user sets up and controls the simulation. GRODY allows the analyst to check and update parameter values and ground commands, obtain simulation status displays, interrupt the simulation, analyze previous runs, and obtain printed output of simulation runs. The video terminal screen display allows visibility of command sequences, full-screen display and modification of parameters using input fields, and verification of all input data. Data input available for modification includes alignment and performance parameters for all attitude hardware, simulation control parameters which determine simulation scheduling and simulator output, initial conditions, and on-board computer commands. GRODY generates eight types of output: simulation results data set, analysis report, parameter report, simulation report, status display, plots, diagnostic output (which helps the user trace any problems that have occurred during a simulation), and a permanent log of all runs and errors. The
Parametrizing linear generalized Langevin dynamics from explicit molecular dynamics simulations
Energy Technology Data Exchange (ETDEWEB)
Gottwald, Fabian; Karsten, Sven; Ivanov, Sergei D., E-mail: sergei.ivanov@uni-rostock.de; Kühn, Oliver [Institute of Physics, Rostock University, Universitätsplatz 3, 18055 Rostock (Germany)
2015-06-28
Fundamental understanding of complex dynamics in many-particle systems on the atomistic level is of utmost importance. Often the systems of interest are of macroscopic size but can be partitioned into a few important degrees of freedom which are treated most accurately and others which constitute a thermal bath. Particular attention in this respect attracts the linear generalized Langevin equation, which can be rigorously derived by means of a linear projection technique. Within this framework, a complicated interaction with the bath can be reduced to a single memory kernel. This memory kernel in turn is parametrized for a particular system studied, usually by means of time-domain methods based on explicit molecular dynamics data. Here, we discuss that this task is more naturally achieved in frequency domain and develop a Fourier-based parametrization method that outperforms its time-domain analogues. Very surprisingly, the widely used rigid bond method turns out to be inappropriate in general. Importantly, we show that the rigid bond approach leads to a systematic overestimation of relaxation times, unless the system under study consists of a harmonic bath bi-linearly coupled to the relevant degrees of freedom.
Parametrizing linear generalized Langevin dynamics from explicit molecular dynamics simulations
International Nuclear Information System (INIS)
Gottwald, Fabian; Karsten, Sven; Ivanov, Sergei D.; Kühn, Oliver
2015-01-01
Fundamental understanding of complex dynamics in many-particle systems on the atomistic level is of utmost importance. Often the systems of interest are of macroscopic size but can be partitioned into a few important degrees of freedom which are treated most accurately and others which constitute a thermal bath. Particular attention in this respect attracts the linear generalized Langevin equation, which can be rigorously derived by means of a linear projection technique. Within this framework, a complicated interaction with the bath can be reduced to a single memory kernel. This memory kernel in turn is parametrized for a particular system studied, usually by means of time-domain methods based on explicit molecular dynamics data. Here, we discuss that this task is more naturally achieved in frequency domain and develop a Fourier-based parametrization method that outperforms its time-domain analogues. Very surprisingly, the widely used rigid bond method turns out to be inappropriate in general. Importantly, we show that the rigid bond approach leads to a systematic overestimation of relaxation times, unless the system under study consists of a harmonic bath bi-linearly coupled to the relevant degrees of freedom
Molecular dynamics simulation of ribosome jam
Matsumoto, Shigenori
2011-09-01
We propose a coarse-grained molecular dynamics model of ribosome molecules to study the dependence of translation process on environmental parameters. We found the model exhibits traffic jam property, which is consistent with an ASEP model. We estimated the influence of the temperature and concentration of molecules on the hopping probability used in the ASEP model. Our model can also treat environmental effects on the translation process that cannot be explained by such cellular automaton models. © 2010 Elsevier B.V. All rights reserved.
Large-eddy simulations of the non-reactive flow in the Sydney swirl burner
DEFF Research Database (Denmark)
Yang, Yang; Kær, Søren Knudsen
2012-01-01
results. In medium swirling case, there are two reverse-flow regions with a collar-like structure between them. The existence of strong unsteady structure, precessing vortex core, was proven. Coherent structures are detached from the instantaneous field. Q-criterion was used to visualize vorticity field...... with distinct clear structure of vortice tubes. Dominating spatial–temporal structures contained in different cross sections were extracted using proper orthogonal decomposition. In high swirling case, there is only one long reverse-flow region. In this paper, we proved the capability of a commercial CFD...... package in predicting complex flow field and presented the potential of large eddy simulation in understanding dynamics....
Dynamic computer simulations of electrophoresis: three decades of active research.
Thormann, Wolfgang; Caslavska, Jitka; Breadmore, Michael C; Mosher, Richard A
2009-06-01
Dynamic models for electrophoresis are based upon model equations derived from the transport concepts in solution together with user-inputted conditions. They are able to predict theoretically the movement of ions and are as such the most versatile tool to explore the fundamentals of electrokinetic separations. Since its inception three decades ago, the state of dynamic computer simulation software and its use has progressed significantly and Electrophoresis played a pivotal role in that endeavor as a large proportion of the fundamental and application papers were published in this periodical. Software is available that simulates all basic electrophoretic systems, including moving boundary electrophoresis, zone electrophoresis, ITP, IEF and EKC, and their combinations under almost exactly the same conditions used in the laboratory. This has been employed to show the detailed mechanisms of many of the fundamental phenomena that occur in electrophoretic separations. Dynamic electrophoretic simulations are relevant for separations on any scale and instrumental format, including free-fluid preparative, gel, capillary and chip electrophoresis. This review includes a historical overview, a survey of current simulators, simulation examples and a discussion of the applications and achievements of dynamic simulation.
Ogino, Takamichi; Ueda, Takayuki; Ogami, Koichiro; Koike, Takashi; Sakurai, Kaoru
2017-01-01
We examined how chewing rate and the extent of reactive hyperemia affect the blood flow in denture-supporting mucosa during chewing. The left palatal mucosa was loaded under conditions of simulated chewing or simulated clenching for 30s, and the blood flow during loading was recorded. We compared the relative blood flow during loading under conditions that recreated different chewing rates by combining duration of chewing cycle (DCC) and occlusal time (OT): fast chewing group, typical chewing group, slow chewing group and clenching group. The relationship between relative blood flow during simulated chewing and the extent of reactive hyperemia was also analyzed. When comparing the different chewing rate, the relative blood flow was highest in fast chewing rate, followed by typical chewing rate and slow chewing rate. Accordingly, we suggest that fast chewing increases the blood flow more than typical chewing or slow chewing. There was a significant correlation between the amount of blood flow during simulated chewing and the extent of reactive hyperemia. Within the limitations of this study, we concluded that slow chewing induced less blood flow than typical or fast chewing in denture-supporting mucosa and that people with less reactive hyperemia had less blood flow in denture-supporting mucosa during chewing. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Computational fluid dynamics for sport simulation
2009-01-01
All over the world sport plays a prominent role in society: as a leisure activity for many, as an ingredient of culture, as a business and as a matter of national prestige in such major events as the World Cup in soccer or the Olympic Games. Hence, it is not surprising that science has entered the realm of sports, and, in particular, that computer simulation has become highly relevant in recent years. This is explored in this book by choosing five different sports as examples, demonstrating that computational science and engineering (CSE) can make essential contributions to research on sports topics on both the fundamental level and, eventually, by supporting athletes’ performance.
Modelling, simulation and applications of longitudinal train dynamics
Cole, Colin; Spiryagin, Maksym; Wu, Qing; Sun, Yan Quan
2017-10-01
Significant developments in longitudinal train simulation and an overview of the approaches to train models and modelling vehicle force inputs are firstly presented. The most important modelling task, that of the wagon connection, consisting of energy absorption devices such as draft gears and buffers, draw gear stiffness, coupler slack and structural stiffness is then presented. Detailed attention is given to the modelling approaches for friction wedge damped and polymer draft gears. A significant issue in longitudinal train dynamics is the modelling and calculation of the input forces - the co-dimensional problem. The need to push traction performances higher has led to research and improvement in the accuracy of traction modelling which is discussed. A co-simulation method that combines longitudinal train simulation, locomotive traction control and locomotive vehicle dynamics is presented. The modelling of other forces, braking propulsion resistance, curve drag and grade forces are also discussed. As extensions to conventional longitudinal train dynamics, lateral forces and coupler impacts are examined in regards to interaction with wagon lateral and vertical dynamics. Various applications of longitudinal train dynamics are then presented. As an alternative to the tradition single wagon mass approach to longitudinal train dynamics, an example incorporating fully detailed wagon dynamics is presented for a crash analysis problem. Further applications of starting traction, air braking, distributed power, energy analysis and tippler operation are also presented.
Partial multicanonical algorithm for molecular dynamics and Monte Carlo simulations.
Okumura, Hisashi
2008-09-28
Partial multicanonical algorithm is proposed for molecular dynamics and Monte Carlo simulations. The partial multicanonical simulation samples a wide range of a part of the potential-energy terms, which is necessary to sample the conformational space widely, whereas a wide range of total potential energy is sampled in the multicanonical algorithm. Thus, one can concentrate the effort to determine the weight factor only on the important energy terms in the partial multicanonical simulation. The partial multicanonical, multicanonical, and canonical molecular dynamics algorithms were applied to an alanine dipeptide in explicit water solvent. The canonical simulation sampled the states of P(II), C(5), alpha(R), and alpha(P). The multicanonical simulation covered the alpha(L) state as well as these states. The partial multicanonical simulation also sampled the C(7) (ax) state in addition to the states that were sampled by the multicanonical simulation. In the partial multicanonical simulation, furthermore, backbone dihedral angles phi and psi rotated more frequently than those in the multicanonical and canonical simulations. These results mean that the partial multicanonical algorithm has a higher sampling efficiency than the multicanonical and canonical algorithms.
DYNSIR; A dynamic simulator for the chemical process
International Nuclear Information System (INIS)
Park, Hyun Soo; Yoo, Jae Hyung; Byeon, Kee Hoh; Park, Jeong Hwa; Park, Seong Won
1990-03-01
A program code for dynamic simulation of arbitrary chemical process, called DYNSIR, is developed. The code can simulate rather arbitrary arrangements of individual chemical processing units whose models are described by ordinary differential equations. The code structure to handle input/output, memory and data management, numerical interactive or predetermined changes in parameter values during the simulation. Individual model is easy to maintain since the modular approach is used. The integration routine is highly effective because of the development of algorithm for modular integration method using the cubic spline. DYNSIR's data structures are not the index but the pointer structure. This pointer structure allows the dynamic memory allocation for the memory management. The dynamic memory allocation methods is to minimize the amount of memories and to overcome the limitation of the number of variables to be used. Finally, it includes various functions, such as the input preprocessor, the effective error processing, and plotting and reporting routines. (author)
Molecular dynamics simulation of laser shock phenomena
Energy Technology Data Exchange (ETDEWEB)
Fukumoto, Ichirou [Japan Atomic Energy Research Inst., Kansai Research Establishment, Advanced Photon Research Center, Neyagawa, Osaka (Japan).
2001-10-01
Recently, ultrashort-pulse lasers with high peak power have been developed, and their application to materials processing is expected as a tool of precision microfabrication. When a high power laser irradiates, a shock wave propagates into the material and dislocations are generated. In this paper, laser shock phenomena of the metal were analyzed using the modified molecular dynamics method, which has been developed by Ohmura and Fukumoto. The main results obtained are summarized as follows: (1) The shock wave induced by the Gaussian beam irradiation propagates radially from the surface to the interior. (2) A lot of dislocations are generated at the solid-liquid interface by the propagation of a shock wave. (3) Some dislocations are moved instantaneously with the velocity of the longitudinal wave when the shock wave passes, and their velocity is not larger than the transverse velocity after the shock wave has passed. (author)
The Development and Comparison of Molecular Dynamics Simulation and Monte Carlo Simulation
Chen, Jundong
2018-03-01
Molecular dynamics is an integrated technology that combines physics, mathematics and chemistry. Molecular dynamics method is a computer simulation experimental method, which is a powerful tool for studying condensed matter system. This technique not only can get the trajectory of the atom, but can also observe the microscopic details of the atomic motion. By studying the numerical integration algorithm in molecular dynamics simulation, we can not only analyze the microstructure, the motion of particles and the image of macroscopic relationship between them and the material, but can also study the relationship between the interaction and the macroscopic properties more conveniently. The Monte Carlo Simulation, similar to the molecular dynamics, is a tool for studying the micro-molecular and particle nature. In this paper, the theoretical background of computer numerical simulation is introduced, and the specific methods of numerical integration are summarized, including Verlet method, Leap-frog method and Velocity Verlet method. At the same time, the method and principle of Monte Carlo Simulation are introduced. Finally, similarities and differences of Monte Carlo Simulation and the molecular dynamics simulation are discussed.
Spiteri, Claudette; Slomp, Caroline P.; Charette, Matthew A.; Tuncay, Kagan; Meile, Christof
2008-07-01
A two-dimensional (2D) reactive transport model is used to investigate the controls on nutrient ( NO3-, NH4+, PO 4) dynamics in a coastal aquifer. The model couples density-dependent flow to a reaction network which includes oxic degradation of organic matter, denitrification, iron oxide reduction, nitrification, Fe 2+ oxidation and sorption of PO 4 onto iron oxides. Porewater measurements from a well transect at Waquoit Bay, MA, USA indicate the presence of a reducing plume with high Fe 2+, NH4+, DOC (dissolved organic carbon) and PO 4 concentrations overlying a more oxidizing NO3--rich plume. These two plumes travel nearly conservatively until they start to overlap in the intertidal coastal sediments prior to discharge into the bay. In this zone, the aeration of the surface beach sediments drives nitrification and allows the precipitation of iron oxide, which leads to the removal of PO 4 through sorption. Model simulations suggest that removal of NO3- through denitrification is inhibited by the limited overlap between the two freshwater plumes, as well as by the refractory nature of terrestrial DOC. Submarine groundwater discharge is a significant source of NO3- to the bay.
DEFF Research Database (Denmark)
Papaleo, Elena
2015-01-01
that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome...... with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties...... simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations....
Molecular Dynamic Simulations of Nanostructured Ceramic Materials on Parallel Computers
International Nuclear Information System (INIS)
Vashishta, Priya; Kalia, Rajiv
2005-01-01
Large-scale molecular-dynamics (MD) simulations have been performed to gain insight into: (1) sintering, structure, and mechanical behavior of nanophase SiC and SiO2; (2) effects of dynamic charge transfers on the sintering of nanophase TiO2; (3) high-pressure structural transformation in bulk SiC and GaAs nanocrystals; (4) nanoindentation in Si3N4; and (5) lattice mismatched InAs/GaAs nanomesas. In addition, we have designed a multiscale simulation approach that seamlessly embeds MD and quantum-mechanical (QM) simulations in a continuum simulation. The above research activities have involved strong interactions with researchers at various universities, government laboratories, and industries. 33 papers have been published and 22 talks have been given based on the work described in this report
Molecular Dynamics Simulations of displacement cascades in metallic systems
International Nuclear Information System (INIS)
Doan, N.V.; Tietze, H.
1995-01-01
We use Molecular Dynamics Computer Simulations to investigate defect production induced by energetic displacement cascades up to 10 keV in pure metals (Cu, Ni) and in ordered intermetallic alloys NiAl, Ni 3 Al. Various model potentials were employed to describe the many-body nature of the interactions: the RGL (Rosato-Guillope-Legrand) model was used in pure Cu and Ni simulations; the modified version of the Vitek, Ackland and Cserti potentials (due to Gao, Bacon and Ackland) in Ni 3 Al and the EAM potentials of Foiles and Daw modified by Rubini and Ballone in NiAl, Ni 3 Al were used in alloy simulations. Atomic mixing and disordering were studied into details owing to imaging techniques and determined at different phases of the cascades. Some mixing mechanisms were identified. Our results were compared with existing data and those obtained by similar Molecular Dynamics Simulations available in the literature. (orig.)
Stochastic Simulation of Cardiac Ventricular Myocyte Calcium Dynamics and Waves
Tuan, Hoang-Trong Minh; Williams, George S. B.; Chikando, Aristide C.; Sobie, Eric A.; Lederer, W. Jonathan; Jafri, M. Saleet
2011-01-01
A three dimensional model of calcium dynamics in the rat ventricular myocyte was developed to study the mechanism of calcium homeostasis and pathological calcium dynamics during calcium overload. The model contains 20,000 calcium release units (CRUs) each containing 49 ryanodine receptors. The model simulates calcium sparks with a realistic spontaneous calcium spark rate. It suggests that in addition to the calcium spark-based leak, there is an invisible calcium leak caused by the stochastic ...
Coalescence of silver unidimensional structures by molecular dynamics simulation
International Nuclear Information System (INIS)
Perez A, M.; Gutierrez W, C.E.; Mondragon, G.; Arenas, J.
2007-01-01
The study of nanoparticles coalescence and silver nano rods phenomena by means of molecular dynamics simulation under the thermodynamic laws is reported. In this work we focus ourselves to see the conditions under which the one can be given one dimension growth of silver nano rods for the coalescence phenomenon among two nano rods or one nano rod and one particle; what allows us to study those structural, dynamic and morphological properties of the silver nano rods to different thermodynamic conditions. The simulations are carried out using the Sutton-Chen potentials of interaction of many bodies that allow to obtain appropriate results with the real physical systems. (Author)
Beam dynamics simulation in the X-ray Compton source
Energy Technology Data Exchange (ETDEWEB)
Gladkikh, P.; Karnaukhov, I.; Telegin, Yu.; Shcherbakov, A. E-mail: shcherbakov@kipt.kharkov.ua; Zelinsky, A
2002-05-01
At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center.
Beam dynamics simulation in the X-ray Compton source
International Nuclear Information System (INIS)
Gladkikh, P.; Karnaukhov, I.; Telegin, Yu.; Shcherbakov, A.; Zelinsky, A.
2002-01-01
At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center
Beam dynamics simulation in the X-ray Compton source
Gladkikh, P; Telegin, Yu P; Shcherbakov, A; Zelinsky, A
2002-01-01
At the National Science Center 'Kharkov Institute of Physics and Technology' the X-ray source based on Compton scattering has been developed. The computer code for simulation of electron beam dynamics with taking into account the Compton scattering effect based on Monte Carlo method is described in this report. The first results of computer simulation of beam dynamics with electron-photon interaction, parameters of electron and photon beams are presented. Calculations were carried out with the lattice of synchrotron light source SRS-800 Ukrainian Synchrotron Center.
Dynamic modeling, simulation and control of energy generation
Vepa, Ranjan
2013-01-01
This book addresses the core issues involved in the dynamic modeling, simulation and control of a selection of energy systems such as gas turbines, wind turbines, fuel cells and batteries. The principles of modeling and control could be applied to other non-convention methods of energy generation such as solar energy and wave energy.A central feature of Dynamic Modeling, Simulation and Control of Energy Generation is that it brings together diverse topics in thermodynamics, fluid mechanics, heat transfer, electro-chemistry, electrical networks and electrical machines and focuses on their appli
Lessons Learned From Dynamic Simulations of Advanced Fuel Cycles
International Nuclear Information System (INIS)
Piet, Steven J.; Dixon, Brent W.; Jacobson, Jacob J.; Matthern, Gretchen E.; Shropshire, David E.
2009-01-01
Years of performing dynamic simulations of advanced nuclear fuel cycle options provide insights into how they could work and how one might transition from the current once-through fuel cycle. This paper summarizes those insights from the context of the 2005 objectives and goals of the Advanced Fuel Cycle Initiative (AFCI). Our intent is not to compare options, assess options versus those objectives and goals, nor recommend changes to those objectives and goals. Rather, we organize what we have learned from dynamic simulations in the context of the AFCI objectives for waste management, proliferation resistance, uranium utilization, and economics. Thus, we do not merely describe 'lessons learned' from dynamic simulations but attempt to answer the 'so what' question by using this context. The analyses have been performed using the Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics (VISION). We observe that the 2005 objectives and goals do not address many of the inherently dynamic discriminators among advanced fuel cycle options and transitions thereof
Dynamic simulation of the NET In-Vessel Handling Unit
International Nuclear Information System (INIS)
Reim, J.
1991-01-01
During the conceptual design phase of the Next European Torus (NET) a large remote maintenance transporter system, the In-Vessel Handling Unit (IVHU), is being developed. It consists of an articulated boom with four rotational joints, which is mounted on a carrier outside the vessel. This boom will be able to carry master-slave manipulators or special work units. The engineering design is supported by dynamic computations. Main topics of the dynamic simulation are the evaluation of IVHU performance, selection and optimisation of the actuator design and of the control algorithms. This simulation task requires full three-dimensional modelling regarding structural elasticity and non-linear actuator dynamics. The Multibody dynamics of the transporter system are modelled with a commerical analysis package. Elastic links and a precise dynamic actuator model are introduced by applied forces, spring elements and differential equations. The actuator model comprises electric motors, gears and linear control algorithms. Non-linear effects which have an influence on control stability and accuracy are taken into account. Most important effects are backlash and static friction. The simulations concentrate on test and optimisation of the control layout and performance studies for critical remote handling tasks. Simulations for control layout and critical remote maintenance tasks correspond to the design objectives of the transporter system. (orig.)
Spiteri, C.; Slomp, C.P.; Charette, M.A.; Tuncay, K.; Meile, C.
2008-01-01
A two-dimensional (2D) reactive transport model is used to investigate the controls on nutrient (NO3-, NH4+, PO4) dynamics in a coastal aquifer. The model couples density-dependent flow to a reaction network which includes oxic degradation of organic matter, denitrification, iron oxide reduction,
Dynamic Garment Simulation based on Hybrid Bounding Volume Hierarchy
Directory of Open Access Journals (Sweden)
Zhu Dongyong
2016-12-01
Full Text Available In order to solve the computing speed and efficiency problem of existing dynamic clothing simulation, this paper presents a dynamic garment simulation based on a hybrid bounding volume hierarchy. It firstly uses MCASG graph theory to do the primary segmentation for a given three-dimensional human body model. And then it applies K-means cluster to do the secondary segmentation to collect the human body’s upper arms, lower arms, upper legs, lower legs, trunk, hip and woman’s chest as the elementary units of dynamic clothing simulation. According to different shapes of these elementary units, it chooses the closest and most efficient hybrid bounding box to specify these units, such as cylinder bounding box and elliptic cylinder bounding box. During the process of constructing these bounding boxes, it uses the least squares method and slices of the human body to get the related parameters. This approach makes it possible to use the least amount of bounding boxes to create close collision detection regions for the appearance of the human body. A spring-mass model based on a triangular mesh of the clothing model is finally constructed for dynamic simulation. The simulation result shows the feasibility and superiority of the method described.
Bailey, R. T.; Gates, T. K.
2011-12-01
The fate and transport of nitrogen (N) species in irrigated agricultural groundwater systems is governed by irrigation patterns, cultivation practices, aquifer-surface water exchanges, and chemical reactions such as oxidation-reduction, volatilization, and sorption, as well as the presence of dissolved oxygen (O2). We present results of applying the newly-developed numerical model RT3D-AG to a 50,400-ha regional study site within the Lower Arkansas River Valley in southeastern Colorado, where elevated concentrations of NO3 have been observed in both groundwater and surface water during the recent decade. Furthermore, NO3 has a strong influence on the fate and transport of other contaminants in the aquifer system such as selenium (Se) through inhibition of reduction of dissolved Se as well as oxidation of precipitate Se from outcropped and bedrock shale. RT3D-AG, developed by appending the multi-species reactive transport finite-difference model RT3D with modular packages that account for variably-saturated transport, the cycling of carbon (C) and N, and the fate and transport of O2 within the soil and aquifer system, simulates organic C and organic N decomposition and mineralization, oxidation-reduction reactions, and sorption. System sources/sinks consist of applied fertilizer and manure; crop uptake of ammonium (NH4) and NO3 during the growing season; mass of O2, NO3, and NH4 associated with irrigation water and canal seepage; mass of O2, NO3, and NH4 transferred to canals and the Arkansas River from the aquifer; and dead root mass and after-harvest stover mass incorporated into the soil organic matter at the end of the growing season. Chemical reactions are simulated using first-order Monod kinetics, wherein the rate of reaction is dependent on the concentration of the reactants as well as temperature and water content of the soil. Fertilizer and manure application timing and loading, mass of seasonal crop uptake, and end-of-season root mass and stover mass are
New chemical-DSMC method in numerical simulation of axisymmetric rarefied reactive flow
Zakeri, Ramin; Kamali Moghadam, Ramin; Mani, Mahmoud
2017-04-01
The modified quantum kinetic (MQK) chemical reaction model introduced by Zakeri et al. is developed for applicable cases in axisymmetric reactive rarefied gas flows using the direct simulation Monte Carlo (DSMC) method. Although, the MQK chemical model uses some modifications in the quantum kinetic (QK) method, it also employs the general soft sphere collision model and Stockmayer potential function to properly select the collision pairs in the DSMC algorithm and capture both the attraction and repulsion intermolecular forces in rarefied gas flows. For assessment of the presented model in the simulation of more complex and applicable reacting flows, first, the air dissociation is studied in a single cell for equilibrium and non-equilibrium conditions. The MQK results agree well with the analytical and experimental data and they accurately predict the characteristics of the rarefied flowfield with chemical reaction. To investigate accuracy of the MQK chemical model in the simulation of the axisymmetric flow, air dissociation is also assessed in an axial hypersonic flow around two geometries, the sphere as a benchmark case and the blunt body (STS-2) as an applicable test case. The computed results including the transient, rotational and vibrational temperatures, species concentration in the stagnation line, and also the heat flux and pressure coefficient on the surface are compared with those of the other chemical methods like the QK and total collision energy (TCE) models and available analytical and experimental data. Generally, the MQK chemical model properly simulates the chemical reactions and predicts flowfield characteristics more accurate rather than the typical QK model. Although in some cases, results of the MQK approaches match with those of the TCE method, the main point is that the MQK does not need any experimental data or unrealistic assumption of specular boundary condition as used in the TCE method. Another advantage of the MQK model is the
Object Oriented Toolbox for Modelling and Simulation of Dynamical Systems
DEFF Research Database (Denmark)
Poulsen, Mikael Zebbelin; Wagner, Falko Jens; Thomsen, Per Grove
1998-01-01
This paper presents the results of an ongoing project, dealing with design and implementation of a simulation toolbox based on object oriented modelling techniques. The paper describes an experimental implementation of parts of such a toolbox in C++, and discusses the experiences drawn from that ...... that process. Essential to the work is the focus on simulation of complex dynamical systems, from modelling the single components/subsystems to building complete systemssuch a toolbox in C++, and discusses the experiences drawn from that process....
Numerical Simulation of Reactive Flows in Overexpanded Supersonic Nozzle with Film Cooling
Directory of Open Access Journals (Sweden)
Mohamed Sellam
2015-01-01
Full Text Available Reignition phenomena occurring in a supersonic nozzle flow may present a crucial safety issue for rocket propulsion systems. These phenomena concern mainly rocket engines which use H2 gas (GH2 in the film cooling device, particularly when the nozzle operates under over expanded flow conditions at sea level or at low altitudes. Consequently, the induced wall thermal loads can lead to the nozzle geometry alteration, which in turn, leads to the appearance of strong side loads that may be detrimental to the rocket engine structural integrity. It is therefore necessary to understand both aerodynamic and chemical mechanisms that are at the origin of these processes. This paper is a numerical contribution which reports results from CFD analysis carried out for supersonic reactive flows in a planar nozzle cooled with GH2 film. Like the experimental observations, CFD simulations showed their ability to highlight these phenomena for the same nozzle flow conditions. Induced thermal load are also analyzed in terms of cooling efficiency and the results already give an idea on their magnitude. It was also shown that slightly increasing the film injection pressure can avoid the reignition phenomena by moving the separation shock towards the nozzle exit section.
Dynamic Hybrid Simulation of the Lunar Wake During ARTEMIS Crossing
Wiehle, S.; Plaschke, F.; Angelopoulos, V.; Auster, H.; Glassmeier, K.; Kriegel, H.; Motschmann, U. M.; Mueller, J.
2010-12-01
The interaction of the highly dynamic solar wind with the Moon is simulated with the A.I.K.E.F. (Adaptive Ion Kinetic Electron Fluid) code for the ARTEMIS P1 flyby on February 13, 2010. The A.I.K.E.F. hybrid plasma simulation code is the improved version of the Braunschweig code. It is able to automatically increase simulation grid resolution in areas of interest during runtime, which greatly increases resolution as well as performance. As the Moon has no intrinsic magnetic field and no ionosphere, the solar wind particles are absorbed at its surface, resulting in the formation of the lunar wake at the nightside. The solar wind magnetic field is basically convected through the Moon and the wake is slowly filled up with solar wind particles. However, this interaction is strongly influenced by the highly dynamic solar wind during the flyby. This is considered by a dynamic variation of the upstream conditions in the simulation using OMNI solar wind measurement data. By this method, a very good agreement between simulation and observations is achieved. The simulations show that the stationary structure of the lunar wake constitutes a tableau vivant in space representing the well-known Friedrichs diagram for MHD waves.
Directory of Open Access Journals (Sweden)
Elena ePapaleo
2015-05-01
Full Text Available In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome their own limitations. Moreover, now that we have the means to study protein dynamics in great details, we need new tools to understand the information embedded in the protein ensembles and in their dynamic signature. With this aim in mind, we should enrich the current tools for analysis of biomolecular simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations.
Marshall, Deborah A.; Burgos-Liz, Lina; IJzerman, Maarten Joost; Crown, William; Padula, William V.; Wong, Peter K.; Pasupathy, Kalyan S.; Higashi, Mitchell K.; Osgood, Nathaniel D.
2015-01-01
In a previous report, the ISPOR Task Force on Dynamic Simulation Modeling Applications in Health Care Delivery Research Emerging Good Practices introduced the fundamentals of dynamic simulation modeling and identified the types of health care delivery problems for which dynamic simulation modeling
International Nuclear Information System (INIS)
Saito, Seiki; Nakamura, Hiroaki; Ito, Atsushi
2010-01-01
Incident angle dependence of reactions between graphene and hydrogen atoms are obtained qualitatively by classical molecular dynamics simulation under the NVE condition with modified Brenner reactive empirical bond order (REBO) potential. Chemical reaction depends on two parameters, i.e., polar angle θ and azimuthal angle φ of the incident hydrogen. From the simulation results, it is found that the reaction rates strongly depend on polar angle θ. Reflection rate becomes larger with increasing θ, and the θ dependence of adsorption rate is also found. The θ dependence is caused by three dimensional structure of the small potential barrier which covers adsorption sites. φ dependence of penetration rate is also found for large θ. (author)
Validating clustering of molecular dynamics simulations using polymer models
Directory of Open Access Journals (Sweden)
Phillips Joshua L
2011-11-01
Full Text Available Abstract Background Molecular dynamics (MD simulation is a powerful technique for sampling the meta-stable and transitional conformations of proteins and other biomolecules. Computational data clustering has emerged as a useful, automated technique for extracting conformational states from MD simulation data. Despite extensive application, relatively little work has been done to determine if the clustering algorithms are actually extracting useful information. A primary goal of this paper therefore is to provide such an understanding through a detailed analysis of data clustering applied to a series of increasingly complex biopolymer models. Results We develop a novel series of models using basic polymer theory that have intuitive, clearly-defined dynamics and exhibit the essential properties that we are seeking to identify in MD simulations of real biomolecules. We then apply spectral clustering, an algorithm particularly well-suited for clustering polymer structures, to our models and MD simulations of several intrinsically disordered proteins. Clustering results for the polymer models provide clear evidence that the meta-stable and transitional conformations are detected by the algorithm. The results for the polymer models also help guide the analysis of the disordered protein simulations by comparing and contrasting the statistical properties of the extracted clusters. Conclusions We have developed a framework for validating the performance and utility of clustering algorithms for studying molecular biopolymer simulations that utilizes several analytic and dynamic polymer models which exhibit well-behaved dynamics including: meta-stable states, transition states, helical structures, and stochastic dynamics. We show that spectral clustering is robust to anomalies introduced by structural alignment and that different structural classes of intrinsically disordered proteins can be reliably discriminated from the clustering results. To our
Developments of multibody system dynamics: computer simulations and experiments
International Nuclear Information System (INIS)
Yoo, Wan-Suk; Kim, Kee-Nam; Kim, Hyun-Woo; Sohn, Jeong-Hyun
2007-01-01
It is an exceptional success when multibody dynamics researchers Multibody System Dynamics journal one of the most highly ranked journals in the last 10 years. In the inaugural issue, Professor Schiehlen wrote an interesting article explaining the roots and perspectives of multibody system dynamics. Professor Shabana also wrote an interesting article to review developments in flexible multibody dynamics. The application possibilities of multibody system dynamics have grown wider and deeper, with many application examples being introduced with multibody techniques in the past 10 years. In this paper, the development of multibody dynamics is briefly reviewed and several applications of multibody dynamics are described according to the author's research results. Simulation examples are compared to physical experiments, which show reasonableness and accuracy of the multibody formulation applied to real problems. Computer simulations using the absolute nodal coordinate formulation (ANCF) were also compared to physical experiments; therefore, the validity of ANCF for large-displacement and large-deformation problems was shown. Physical experiments for large deformation problems include beam, plate, chain, and strip. Other research topics currently being carried out in the author's laboratory are also briefly explained
Molecular dynamics simulations of oscillatory flows in microfluidic channels
DEFF Research Database (Denmark)
Hansen, J.S.; Ottesen, Johnny T.
2006-01-01
In this paper we apply the direct non-equilibrium molecular dynamics technique to oscillatory flows of fluids in microscopic channels. Initially, we show that the microscopic simulations resemble the macroscopic predictions based on the Navier–Stokes equation very well for large channel width, high...... density and low temperature. Further simulations for high temperature and low density show that the non-slip boundary condition traditionally used in the macroscopic equation is greatly compromised when the fluid–wall interactions are the same as the fluid–fluid interactions. Simulations of a system...
A statistical-dynamical downscaling procedure for global climate simulations
International Nuclear Information System (INIS)
Frey-Buness, A.; Heimann, D.; Sausen, R.; Schumann, U.
1994-01-01
A statistical-dynamical downscaling procedure for global climate simulations is described. The procedure is based on the assumption that any regional climate is associated with a specific frequency distribution of classified large-scale weather situations. The frequency distributions are derived from multi-year episodes of low resolution global climate simulations. Highly resolved regional distributions of wind and temperature are calculated with a regional model for each class of large-scale weather situation. They are statistically evaluated by weighting them with the according climate-specific frequency. The procedure is exemplarily applied to the Alpine region for a global climate simulation of the present climate. (orig.)
Dynamic simulation of a steam generator by neural networks
International Nuclear Information System (INIS)
Masini, R.; Padovani, E.; Ricotti, M.E.; Zio, E.
1999-01-01
Numerical simulation by computers of the dynamic evolution of complex systems and components is a fundamental phase of any modern engineering design activity. This is of particular importance for risk-based design projects which require that the system behavior be analyzed under several and often extreme conditions. The traditional methods of simulation typically entail long, iterative, processes which lead to large simulation times, often exceeding the transients real time. Artificial neural networks (ANNs) may be exploited in this context, their advantages residing mainly in the speed of computation, in the capability of generalizing from few examples, in the robustness to noisy and partially incomplete data and in the capability of performing empirical input-output mapping without complete knowledge of the underlying physics. In this paper we present a novel approach to dynamic simulation by ANNs based on a superposition scheme in which a set of networks are individually trained, each one to respond to a different input forcing function. The dynamic simulation of a steam generator is considered as an example to show the potentialities of this tool and to point out the difficulties and crucial issues which typically arise when attempting to establish an efficient neural network simulator. The structure of the networks system is such to feedback, at each time step, a portion of the past evolution of the transient and this allows a good reproduction of also non-linear dynamic behaviors. A nice characteristic of the approach is that the modularization of the training reduces substantially its burden and gives this neural simulation tool a nice feature of transportability. (orig.)
Simulation Analysis of Helicopter Ground Resonance Nonlinear Dynamics
Zhu, Yan; Lu, Yu-hui; Ling, Ai-min
2017-07-01
In order to accurately predict the dynamic instability of helicopter ground resonance, a modeling and simulation method of helicopter ground resonance considering nonlinear dynamic characteristics of components (rotor lead-lag damper, landing gear wheel and absorber) is presented. The numerical integral method is used to calculate the transient responses of the body and rotor, simulating some disturbance. To obtain quantitative instabilities, Fast Fourier Transform (FFT) is conducted to estimate the modal frequencies, and the mobile rectangular window method is employed in the predictions of the modal damping in terms of the response time history. Simulation results show that ground resonance simulation test can exactly lead up the blade lead-lag regressing mode frequency, and the modal damping obtained according to attenuation curves are close to the test results. The simulation test results are in accordance with the actual accident situation, and prove the correctness of the simulation method. This analysis method used for ground resonance simulation test can give out the results according with real helicopter engineering tests.
Sibra, A.; Dupays, J.; Murrone, A.; Laurent, F.; Massot, M.
2017-06-01
In this paper, we tackle the issue of the accurate simulation of evaporating and reactive polydisperse sprays strongly coupled to unsteady gaseous flows. In solid propulsion, aluminum particles are included in the propellant to improve the global performances but the distributed combustion of these droplets in the chamber is suspected to be a driving mechanism of hydrodynamic and acoustic instabilities. The faithful prediction of two-phase interactions is a determining step for future solid rocket motor optimization. When looking at saving computational ressources as required for industrial applications, performing reliable simulations of two-phase flow instabilities appears as a challenge for both modeling and scientific computing. The size polydispersity, which conditions the droplet dynamics, is a key parameter that has to be accounted for. For moderately dense sprays, a kinetic approach based on a statistical point of view is particularly appropriate. The spray is described by a number density function and its evolution follows a Williams-Boltzmann transport equation. To solve it, we use Eulerian Multi-Fluid methods, based on a continuous discretization of the size phase space into sections, which offer an accurate treatment of the polydispersion. The objective of this paper is threefold: first to derive a new Two Size Moment Multi-Fluid model that is able to tackle evaporating polydisperse sprays at low cost while accurately describing the main driving mechanisms, second to develop a dedicated evaporation scheme to treat simultaneously mass, moment and energy exchanges with the gas and between the sections. Finally, to design a time splitting operator strategy respecting both reactive two-phase flow physics and cost/accuracy ratio required for industrial computations. Using a research code, we provide 0D validations of the new scheme before assessing the splitting technique's ability on a reference two-phase flow acoustic case. Implemented in the industrial
International Nuclear Information System (INIS)
Elzein, N.
2004-01-01
In this work with a use of molecular dynamic simulations we have reported the results of a quasiclassical simulation study of the interaction of H2/(D2) with Cu N (N=13-14) atoms in both rigid /(non rigid) clusters.The geometry of the cluster is obtained by an embedded-atom (EA) mode potential, and the interaction between the molecule and cIuster is described by a LEPS -London-Eyring -Polanyi-Sato) potential energy function.Both channels the reactive dissociative adsorption of the molecule on the cIuster) and non reactive (scattering of the molecule from the cluster) are considered. The dissociative chemisorption probability, cross section and rate constant are studied as functions of the initial quantal rovibrational state of the molecule, collision energy, impact parameter and the temperature (OK,296K,834K ,1014K,1554K) of the clusters
Computational Dehydration of Crystalline Hydrates Using Molecular Dynamics Simulations
DEFF Research Database (Denmark)
Larsen, Anders Støttrup; Rantanen, Jukka; Johansson, Kristoffer E
2017-01-01
Molecular dynamics (MD) simulations have evolved to an increasingly reliable and accessible technique and are today implemented in many areas of biomedical sciences. We present a generally applicable method to study dehydration of hydrates based on MD simulations and apply this approach...... to the dehydration of ampicillin trihydrate. The crystallographic unit cell of the trihydrate is used to construct the simulation cell containing 216 ampicillin and 648 water molecules. This system is dehydrated by removing water molecules during a 2200 ps simulation, and depending on the computational dehydration....... The structural changes could be followed in real time, and in addition, an intermediate amorphous phase was identified. The computationally identified dehydrated structure (anhydrate) was slightly different from the experimentally known anhydrate structure suggesting that the simulated computational structure...
Using simulation to assess the opportunities of dynamic waste collection
Mes, Martijn R.K.; Bangsow, S.
2012-01-01
In this chapter, we illustrate the use of discrete event simulation to evaluate how dynamic planning methodologies can be best applied for the collection of waste from underground containers. We present a case study that took place at the waste collection company Twente Milieu, located in The
Using Simulation to Assess the Opportunities of Dynamic Waste Collection
Mes, Martijn R.K.
In this paper, we illustrate the use of discrete event simulation to evaluate how dynamic planning methodologies can be best applied for the collection of waste from underground containers. We present a case study that took place at the waste collection company Twente Milieu, located in The
Computational Fluid Dynamics and Building Energy Performance Simulation
DEFF Research Database (Denmark)
Nielsen, Peter V.; Tryggvason, Tryggvi
An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...
Accurate simulation dynamics of microscopic filaments using "caterpillar" Oseen hydrodynamics
Bailey, A.G.; Lowe, C.P.; Pagonabarraga, I.; Cosentino Lagomarsino, M.
2009-01-01
Microscopic semiflexible filaments suspended in a viscous fluid are widely encountered in biophysical problems. The classic example is the flagella used by microorganisms to generate propulsion. Simulating the dynamics of these filaments numerically is complicated because of the coupling between the
Effects of transition on wind tunnel simulation of vehicel dynamics
Ericsson, L. E.
Among the many problems the test engineer faces when trying to simulate full-scale vehicle dynamics in a wind tunnel test is the fact that the test usually will be performed at Reynolds numbers far below those existing on the full-scale vehicle. It is found that a severe scaling problem may exist even in the case of attached flow. The strong coupling existing between boundary layer transition and vehicle motion can cause the wind tunnel results to be very misleading, in some cases dangerously so. For example, the subscale test could fail to show a dynamic stability problem existing in full-scale flight, or, conversely, show one that does not exist. When flow separation occurs together with boundary layer transition, the scaling problem becomes more complicated, and the potential for dangerously misleading subscale test results increases. The existing literature is reviewed to provide examples of the different types of dynamic simulation problems that the test engineer is likely to face. It should be emphasized that the difficulties presented by transition effects in the case of wind tunnel simulation of vehicle dynamics apply to the same extent to numeric simulation methods.
Ab initio molecular dynamics simulation of laser melting of silicon
Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.
1996-01-01
The method of ab initio molecular dynamics, based on finite temperature density functional theory, is used to simulate laser heating of crystal silicon. We have found that a high concentration of excited electrons dramatically weakens the covalent bond. As a result, the system undergoes a melting
Simulating Poverty and Inequality Dynamics in Developing Countries
Ansoms, An; Geenen, Sara
2012-01-01
This article considers how the simulation game of DEVELOPMENT MONOPOLY provides insight into poverty and inequality dynamics in a development context. It first discusses how the game is rooted in theoretical and conceptual frameworks on poverty and inequality. Subsequently, it reflects on selected playing experiences, with special focus on the…
Simulation of the substrate cavity dynamics of quercetinase
van den Bosch, M; Swart, M; van Gunsteren, WF; Canters, GW
2004-01-01
Molecular dynamics (MD) simulations have been performed on quercetin 2,3 dioxygenase (2,3QD) to study the mobility and flexibility of the substrate cavity. 2,3QD is the only firmly established Cu-containing dioxygenase known so far. It catalyses the breakage of the O-heterocycle of flavonols. The
Microsecond atomic-scale molecular dynamics simulations of polyimides
Lyulin, S.V.; Gurtovenko, A.A.; Larin, S.V.; Nazarychev, V.M.; Lyulin, A.V.
2013-01-01
We employ microsecond atomic-scale molecular dynamics simulations to get insight into the structural and thermal properties of heat-resistant bulk polyimides. As electrostatic interactions are essential for the polyimides considered, we propose a two-step equilibration protocol that includes long
Simulating an arbitrary number of flavors of dynamical overlap fermions
International Nuclear Information System (INIS)
DeGrand, T.; Schaefer, S.
2006-05-01
We present a set of related Hybrid Monte Carlo methods to simulate an arbitrary number of dynamical overlap fermions. Each fermion is represented by a chiral pseudo-fermion field. The new algorithm reduces critical slowing down in the chiral limit and for sectors of nontrivial topology. (Orig.)
Efficient dynamic simulation of flexible link manipulators with PID control
Aarts, Ronald G.K.M.; Jonker, Jan B.; Mook, D.T.; Balachandran, B.
2001-01-01
For accurate simulations of the dynamic behavior of flexible manipulators the combination of a perturbation method and modal analysis is proposed. First, the vibrational motion is modeled as a first-order perturbation of a nominal rigid link motion. The vibrational motion is then described by a set
Molecular dynamics simulations and free energy profile of ...
Indian Academy of Sciences (India)
aDepartment of Chemical Engineering, bDepartment of Chemistry, Amirkabir University of Technology,. 15875-4413 ... Lipid bilayers; Paracetamol; free energy; molecular dynamics simulation; membrane. 1. ..... bilayer is less favourable due to the hydrophobic nature .... Orsi M and Essex J W 2010 Soft Matter 6 3797. 54.
Molecular dynamics simulations of lipid vesicle fusion in atomic detail
Knecht, Volker; Marrink, Siewert-Jan
The fusion of a membrane-bounded vesicle with a target membrane is a key step in intracellular trafficking, exocytosis, and drug delivery. Molecular dynamics simulations have been used to study the fusion of small unilamellar vesicles composed of a dipalmitoyl-phosphatidylcholine (DPPC)/palmitic
Dynamical simulation of heavy ion collisions; VUU and QMD method
International Nuclear Information System (INIS)
Niita, Koji
1992-01-01
We review two simulation methods based on the Vlasov-Uehling-Uhlenbeck (VUU) equation and Quantum Molecular Dynamics (QMD), which are the most widely accepted theoretical framework for the description of intermediate-energy heavy-ion reactions. We show some results of the calculations and compare them with the experimental data. (author)
Molecular dynamics simulations on PGLa using NMR orientational constraints
Energy Technology Data Exchange (ETDEWEB)
Sternberg, Ulrich, E-mail: ulrich.sternberg@partner.kit.edu; Witter, Raiker [Tallinn University of Technology, Technomedicum (Estonia)
2015-11-15
NMR data obtained by solid state NMR from anisotropic samples are used as orientational constraints in molecular dynamics simulations for determining the structure and dynamics of the PGLa peptide within a membrane environment. For the simulation the recently developed molecular dynamics with orientational constraints technique (MDOC) is used. This method introduces orientation dependent pseudo-forces into the COSMOS-NMR force field. Acting during a molecular dynamics simulation these forces drive molecular rotations, re-orientations and folding in such a way that the motional time-averages of the tensorial NMR properties are consistent with the experimentally measured NMR parameters. This MDOC strategy does not depend on the initial choice of atomic coordinates, and is in principle suitable for any flexible and mobile kind of molecule; and it is of course possible to account for flexible parts of peptides or their side-chains. MDOC has been applied to the antimicrobial peptide PGLa and a related dimer model. With these simulations it was possible to reproduce most NMR parameters within the experimental error bounds. The alignment, conformation and order parameters of the membrane-bound molecule and its dimer were directly derived with MDOC from the NMR data. Furthermore, this new approach yielded for the first time the distribution of segmental orientations with respect to the membrane and the order parameter tensors of the dimer systems. It was demonstrated the deuterium splittings measured at the peptide to lipid ratio of 1/50 are consistent with a membrane spanning orientation of the peptide.
A new simulation algorithm for lattice QCD with dynamical quarks
Bunk, B.; Jegerlehner, B.; Luscher, M.; Simma, H.; Sommer, R.; Bunk, B; Jansen, K; Jegerlehner, B; Luscher, M; Simma, H
1994-01-01
A previously introduced multi-boson technique for the simulation of QCD with dynamical quarks is described and some results of first test runs on a 6^3\\times12 lattice with Wilson quarks and gauge group SU(2) are reported.
Vashishta, Priya; Kalia, Rajiv K; Nakano, Aiichiro
2006-03-02
We have developed a first-principles-based hierarchical simulation framework, which seamlessly integrates (1) a quantum mechanical description based on the density functional theory (DFT), (2) multilevel molecular dynamics (MD) simulations based on a reactive force field (ReaxFF) that describes chemical reactions and polarization, a nonreactive force field that employs dynamic atomic charges, and an effective force field (EFF), and (3) an atomistically informed continuum model to reach macroscopic length scales. For scalable hierarchical simulations, we have developed parallel linear-scaling algorithms for (1) DFT calculation based on a divide-and-conquer algorithm on adaptive multigrids, (2) chemically reactive MD based on a fast ReaxFF (F-ReaxFF) algorithm, and (3) EFF-MD based on a space-time multiresolution MD (MRMD) algorithm. On 1920 Intel Itanium2 processors, we have demonstrated 1.4 million atom (0.12 trillion grid points) DFT, 0.56 billion atom F-ReaxFF, and 18.9 billion atom MRMD calculations, with parallel efficiency as high as 0.953. Through the use of these algorithms, multimillion atom MD simulations have been performed to study the oxidation of an aluminum nanoparticle. Structural and dynamic correlations in the oxide region are calculated as well as the evolution of charges, surface oxide thickness, diffusivities of atoms, and local stresses. In the microcanonical ensemble, the oxidizing reaction becomes explosive in both molecular and atomic oxygen environments, due to the enormous energy release associated with Al-O bonding. In the canonical ensemble, an amorphous oxide layer of a thickness of approximately 40 angstroms is formed after 466 ps, in good agreement with experiments. Simulations have been performed to study nanoindentation on crystalline, amorphous, and nanocrystalline silicon nitride and silicon carbide. Simulation on nanocrystalline silicon carbide reveals unusual deformation mechanisms in brittle nanophase materials, due to
Dynamic simulation for effective workforce management in new product development
Directory of Open Access Journals (Sweden)
M. Mutingi
2012-10-01
Full Text Available Effective planning and management of workforce for new product development (NPD projects is a great challenge to many organisations, especially in the presence of engineering changes during the product development process. The management objective in effective workforce management is to recruit, develop and deploy the right people at the right place at the right time so as to fulfill organizational objectives. In this paper, we propose a dynamic simulation model to address the workforce management problem in a typical NPD project consisting of design, prototyping, and production phases. We assume that workforce demand is a function of project work remaining and the current available skill pool. System dynamics simulation concepts are used to capture the causality relationships and feedback loops in the workforce system from a systems thinking. The evaluation of system dynamics simulation reveals the dynamic behaviour in NPD workforce management systems and shows how adaptive dynamic recruitment and training decisions can effectively balance the workforce system during the NPD process.
Combining molecular dynamics with mesoscopic Green’s function reaction dynamics simulations
Energy Technology Data Exchange (ETDEWEB)
Vijaykumar, Adithya, E-mail: vijaykumar@amolf.nl [FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam (Netherlands); van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam (Netherlands); Bolhuis, Peter G. [van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam (Netherlands); Rein ten Wolde, Pieter, E-mail: p.t.wolde@amolf.nl [FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam (Netherlands)
2015-12-07
In many reaction-diffusion processes, ranging from biochemical networks, catalysis, to complex self-assembly, the spatial distribution of the reactants and the stochastic character of their interactions are crucial for the macroscopic behavior. The recently developed mesoscopic Green’s Function Reaction Dynamics (GFRD) method enables efficient simulation at the particle level provided the microscopic dynamics can be integrated out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively change the macroscopic behavior, calling for an atomistic, microscopic description. We propose a novel approach that combines GFRD for simulating the system at the mesoscopic scale where particles are far apart, with a microscopic technique such as Langevin dynamics or Molecular Dynamics (MD), for simulating the system at the microscopic scale where reactants are in close proximity. This scheme defines the regions where the particles are close together and simulated with high microscopic resolution and those where they are far apart and simulated with lower mesoscopic resolution, adaptively on the fly. The new multi-scale scheme, called MD-GFRD, is generic and can be used to efficiently simulate reaction-diffusion systems at the particle level.
Combining molecular dynamics with mesoscopic Green’s function reaction dynamics simulations
International Nuclear Information System (INIS)
Vijaykumar, Adithya; Bolhuis, Peter G.; Rein ten Wolde, Pieter
2015-01-01
In many reaction-diffusion processes, ranging from biochemical networks, catalysis, to complex self-assembly, the spatial distribution of the reactants and the stochastic character of their interactions are crucial for the macroscopic behavior. The recently developed mesoscopic Green’s Function Reaction Dynamics (GFRD) method enables efficient simulation at the particle level provided the microscopic dynamics can be integrated out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively change the macroscopic behavior, calling for an atomistic, microscopic description. We propose a novel approach that combines GFRD for simulating the system at the mesoscopic scale where particles are far apart, with a microscopic technique such as Langevin dynamics or Molecular Dynamics (MD), for simulating the system at the microscopic scale where reactants are in close proximity. This scheme defines the regions where the particles are close together and simulated with high microscopic resolution and those where they are far apart and simulated with lower mesoscopic resolution, adaptively on the fly. The new multi-scale scheme, called MD-GFRD, is generic and can be used to efficiently simulate reaction-diffusion systems at the particle level
Dynamic simulation of sustainable farm development scenarios using cognitive modeling
Directory of Open Access Journals (Sweden)
Tuzhyk Kateryna
2017-03-01
Full Text Available Dynamic simulation of sustainable farm development scenarios using cognitive modeling. The paper presents a dynamic simulation system of sustainable development scenarios on farms using cognitive modeling. The system incorporates relevant variables which affect the sustainable development of farms. Its user provides answers to strategic issues connected with the level of farm sustainability over a long-term perspective of dynamic development. The work contains a description of the model structure as well as the results of simulations carried out on 16 farms in northern Ukraine. The results show that the process of sustainability is based mainly on the potential for innovation in agricultural production and biodiversity. The user is able to simulate various scenarios for the sustainable development of a farm and visualize the influence of factors on the economic and social situation, as well as on environmental aspects. Upon carrying out a series of simulations, it was determined that the development of farms characterized by sustainable development is based on additional profit, which serves as the main motivation for transforming a conventional farm into a sustainable one. Nevertheless, additional profit is not the only driving force in the system of sustainable development. The standard of living, market condition, and legal regulations as well as government support also play a significant motivational role.
Recent CFD Simulations of turbulent reactive flows with supercomputing for hydrogen safety
International Nuclear Information System (INIS)
Rehm, W.
2001-01-01
This paper describes the R and D work performed within the scope of joint project activities concerning the numerical simulation of reacting flow in complex geometries. The aim is the refinement of numerical methods used in computational fluid dynamics (CFD) by introducing high-performance computations (HPC) to analyse explosion processes in technical systems in more detail. Application examples concern conventional and nuclear energy systems, especially the safety aspects of future hydrogen technology. The project work is mainly focused on the modelling of the accident-related behaviour of hydrogen in safety enclosures regarding the distribution and combustion of burnable gas mixtures, ranging from slow to fast or even rapid flames. For fire and explosion protection, special models and criteria are being developed for the assessment of adequate safety measures to control deflagration-to-detonation transition (DDT) processes. Therefore, the physical mixing concept with dilution and inertization media is studied and recommended. (orig.) [de
Liquid-vapor coexistence by molecular dynamics simulation
International Nuclear Information System (INIS)
Baranyai, Andras; Cummings, Peter T.
2000-01-01
We present a simple and consistent molecular dynamics algorithm for determining the equilibrium properties of a bulk liquid and its coexisting vapor phase. The simulation follows the dynamics of the two systems simultaneously while maintaining the volume and the number of particles of the composite system fixed. The thermostat can constrain either the total energy or the temperature at a desired value. Division of the extensive properties between the two phases is governed by the difference of the corresponding intensive state variables. Particle numbers are continuous variables and vary only in virtual sense, i.e., the real sizes of the two systems are the same and do not change during the course of the simulation. Calculation of the chemical potential is separate from the dynamics; thus, one can replace the particle exchange step with other method if it improves the efficiency of the code. (c) 2000 American Institute of Physics
On the characteristics of a numerical fluid dynamics simulator
International Nuclear Information System (INIS)
Winkler, K.H.A.; Norman, M.L.; Norton, J.L.
1986-01-01
John von Neumann envisioned scientists and mathematicians analyzing and controlling their numerical experiments on nonlinear dynamic systems interactively. The authors describe their concept of a real-time Numerical Fluid Dynamics Simulator NFDS. The authors envision the NFDS to be composed of simulation processors, data storage devices, and image processing devices of extremely high power and capacity, interconnected by very high throughput communication channels. They present individual component performance requirements for both real-time and playback operating modes of the NFDS, using problems of current interest in fluid dynamics as examples. Scaling relations are derived showing the dependence of system requirements on the dimensionality and complexity of the numerical model. The authors conclude by extending their analysis to the system requirements posed in modeling the more involved physics of radiation hydrodynamics
Beam dynamics simulation of W-band photo injector
International Nuclear Information System (INIS)
Zhu Xiongwei
2002-01-01
The authors present a beam dynamics simulation study on 1.6 cell, high gradient W-Band photocathode RF gun which is capable of generating and accelerating 300 pC electron bunch. The design system is made up of 91.392 GHz photocathode RF gun and 91.392 GHz travelling wave linac cells. Based on the numerical simulation using SUPERFISH and PARMELA and the conventional RF linac scaling law, the design will produce 300 pC at 1.74 MeV with bunch length 0.72 ps and normalized transverse emittance 0.55 mm mrad. The authors study the beam dynamics in high frequency and high gradient; due to the high gradient, the ponderomotive effect plays an important role in beam dynamics; the authors found the ponderomotive effect still exist with only the fundamental space harmonics (synchrotron mode) due to the coupling of the transverse and longitudinal motion
Bolhuis, Peter
Important reaction-diffusion processes, such as biochemical networks in living cells, or self-assembling soft matter, span many orders in length and time scales. In these systems, the reactants' spatial dynamics at mesoscopic length and time scales of microns and seconds is coupled to the reactions between the molecules at microscopic length and time scales of nanometers and milliseconds. This wide range of length and time scales makes these systems notoriously difficult to simulate. While mean-field rate equations cannot describe such processes, the mesoscopic Green's Function Reaction Dynamics (GFRD) method enables efficient simulation at the particle level provided the microscopic dynamics can be integrated out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively change the macroscopic behavior, calling for an atomistic, microscopic description. The recently developed multiscale Molecular Dynamics Green's Function Reaction Dynamics (MD-GFRD) approach combines GFRD for simulating the system at the mesocopic scale where particles are far apart, with microscopic Molecular (or Brownian) Dynamics, for simulating the system at the microscopic scale where reactants are in close proximity. The association and dissociation of particles are treated with rare event path sampling techniques. I will illustrate the efficiency of this method for patchy particle systems. Replacing the microscopic regime with a Markov State Model avoids the microscopic regime completely. The MSM is then pre-computed using advanced path-sampling techniques such as multistate transition interface sampling. I illustrate this approach on patchy particle systems that show multiple modes of binding. MD-GFRD is generic, and can be used to efficiently simulate reaction-diffusion systems at the particle level, including the orientational dynamics, opening up the possibility for large-scale simulations of e.g. protein signaling networks.
Understanding water: Molecular dynamics simulations of solubilized and crystallized myoglobin
Energy Technology Data Exchange (ETDEWEB)
Wei Gu; Garcia, A.E.; Schoenborn, B.P. [Los Alamos National Laboratory, NM (United States)
1994-12-31
Molecular dynamics simulations were performed on CO myoglobin to evaluate the stability of the bound water molecules as determined in a neutron diffraction analysis. The myoglobin structure derived from the neutron analysis provided the starting coordinate set used in the simulations. The simulations show that only a few water molecules are tightly bound to protein atoms, while most solvent molecules are labile, breaking and reforming hydrogen bonds. Comparison between myoglobin in solution and in a single crystal highlighted some of the packing effects on the solvent structure and shows that water solvent plays an indispensable role in protein dynamics and structural stability. The described observations explain some of the differences in the experimental results of protein hydration as observed in NMR, neutron and X-ray diffraction studies.
Molecular Dynamics Simulations of Water Droplets On Hydrophilic Silica Surfaces
DEFF Research Database (Denmark)
Zambrano, Harvey A; Walther, Jens Honore; Jaffe, Richard L.
2009-01-01
and DNA microarrays technologies.Although extensive experimental, theoretical and computational work has been devoted to study the nature of the interaction between silica and water, at the molecular level a complete understanding of silica-water systems has not been reached. Contact angle computations...... dynamics (MD) simulations of a hydrophilic air-water-silica system using the MD package FASTTUBE. We employ quantum chemistry calculation to obtain air-silica interaction parameters for the simulations. Our simulations are based in the following force fields: i) The silica-silica interaction is based...... of water droplets on silica surfaces offers a useful fundamental and quantitative measurement in order to study chemical and physical properties of water-silica systems. For hydrophobic systems the static and dynamic properties of the fluid-solid interface are influenced by the presence of air. Hence...
Simulation of the Dynamic Inefficiency of the CMS Pixel Detector
INSPIRE-00380273
2015-05-07
The Pixel Detector is the innermost part of the CMS Tracker. It therefore has to prevail in the harshest environment in terms of particle fluence and radiation. There are several mechanisms that may decrease the efficiency of the detector. These are mainly caused by data acquisition (DAQ) problems and/or Single Event Upsets (SEU). Any remaining efficiency loss is referred to as the dynamic inefficiency. It is caused by various mechanisms inside the Readout Chip (ROC) and depends strongly on the data occupancy. In the 2012 data, at high values of instantaneous luminosity the inefficiency reached 2\\% (in the region closest to the interaction point) which is not negligible. In the 2015 run higher instantaneous luminosity is expected, which will result in lower efficiencies; therefore this effect needs to be understood and simulated. A data-driven method has been developed to simulate dynamic inefficiency, which has been shown to successfully simulate the effects.
Understanding water: Molecular dynamics simulations of solubilized and crystallized myoglobin
International Nuclear Information System (INIS)
Wei Gu; Garcia, A.E.; Schoenborn, B.P.
1994-01-01
Molecular dynamics simulations were performed on CO myoglobin to evaluate the stability of the bound water molecules as determined in a neutron diffraction analysis. The myoglobin structure derived from the neutron analysis provided the starting coordinate set used in the simulations. The simulations show that only a few water molecules are tightly bound to protein atoms, while most solvent molecules are labile, breaking and reforming hydrogen bonds. Comparison between myoglobin in solution and in a single crystal highlighted some of the packing effects on the solvent structure and shows that water solvent plays an indispensable role in protein dynamics and structural stability. The described observations explain some of the differences in the experimental results of protein hydration as observed in NMR, neutron and X-ray diffraction studies
Haptization of molecular dynamics simulation with thermal display
International Nuclear Information System (INIS)
Tamura, Yuichi; Fujiwara, Susumu; Nakamura, Hiroaki
2010-01-01
Thermal display, which is a type of haptic display, is effective in providing intuitive information of temperature. However, in many studies, the user has assumed a sitting position during the use of these devices. In contrast, the user generally watches 3D objects while standing and walking around in large-scale virtual reality system, In addition, in scientific visualization, the response time is very important for observing physical phenomena, especially for dynamic numerical simulation. One solution is to provide two types of thermal information: information about the rate of thermal change and information about the actual temperature. We propose a thermal display with two Peltier elements which can show above two pairs of information and the result (for example energy and temperature, as thermal information) of numerical simulation. Finally, we represent an example of visualizing and haptizing the result of molecular dynamics simulation. (author)
Parallel alternating direction preconditioner for isogeometric simulations of explicit dynamics
Łoś, Marcin
2015-04-27
In this paper we present a parallel implementation of the alternating direction preconditioner for isogeometric simulations of explicit dynamics. The Alternating Direction Implicit (ADI) algorithm, belongs to the category of matrix-splitting iterative methods, was proposed almost six decades ago for solving parabolic and elliptic partial differential equations, see [1–4]. The new version of this algorithm has been recently developed for isogeometric simulations of two dimensional explicit dynamics [5] and steady-state diffusion equations with orthotropic heterogenous coefficients [6]. In this paper we present a parallel version of the alternating direction implicit algorithm for three dimensional simulations. The algorithm has been incorporated as a part of PETIGA an isogeometric framework [7] build on top of PETSc [8]. We show the scalability of the parallel algorithm on STAMPEDE linux cluster up to 10,000 processors, as well as the convergence rate of the PCG solver with ADI algorithm as preconditioner.
A Thermodynamic Library for Simulation and Optimization of Dynamic Processes
DEFF Research Database (Denmark)
Ritschel, Tobias Kasper Skovborg; Gaspar, Jozsef; Jørgensen, John Bagterp
2017-01-01
Process system tools, such as simulation and optimization of dynamic systems, are widely used in the process industries for development of operational strategies and control for process systems. These tools rely on thermodynamic models and many thermodynamic models have been developed for different...... compounds and mixtures. However, rigorous thermodynamic models are generally computationally intensive and not available as open-source libraries for process simulation and optimization. In this paper, we describe the application of a novel open-source rigorous thermodynamic library, ThermoLib, which...... is designed for dynamic simulation and optimization of vapor-liquid processes. ThermoLib is implemented in Matlab and C and uses cubic equations of state to compute vapor and liquid phase thermodynamic properties. The novelty of ThermoLib is that it provides analytical first and second order derivatives...
Molecular dynamics simulations of a lithium/sodium carbonate mixture.
Ottochian, Alistar; Ricca, Chiara; Labat, Frederic; Adamo, Carlo
2016-03-01
The diffusion and ionic conductivity of Li x Na1-x CO3 salt mixtures were studied by means of Molecular Dynamics (MD) simulations, using the Janssen and Tissen model (Janssen and Tissen, Mol Simul 5:83-98; 1990). These salts have received particular attention due to their central role in fuel cells technology, and reliable numerical methods that could perform as important interpretative tool of experimental data are thus required but still lacking. The chosen computational model nicely reproduces the main structural behaviour of the pure Li2CO3, Na2CO3 and K2CO3 carbonates, but also of their Li/K and Li/Na mixtures. However, it fails to accurately describe dynamic properties such as activation energies of diffusion and conduction processes, outlining the need to develop more accurate models for the simulation of molten salt carbonates.
Software life cycle dynamic simulation model: The organizational performance submodel
Tausworthe, Robert C.
1985-01-01
The submodel structure of a software life cycle dynamic simulation model is described. The software process is divided into seven phases, each with product, staff, and funding flows. The model is subdivided into an organizational response submodel, a management submodel, a management influence interface, and a model analyst interface. The concentration here is on the organizational response model, which simulates the performance characteristics of a software development subject to external and internal influences. These influences emanate from two sources: the model analyst interface, which configures the model to simulate the response of an implementing organization subject to its own internal influences, and the management submodel that exerts external dynamic control over the production process. A complete characterization is given of the organizational response submodel in the form of parameterized differential equations governing product, staffing, and funding levels. The parameter values and functions are allocated to the two interfaces.
Why we simulate negated information: a dynamic pragmatic account.
Tian, Ye; Breheny, Richard; Ferguson, Heather J
2010-12-01
A well-established finding in the simulation literature is that participants simulate the positive argument of negation soon after reading a negative sentence, prior to simulating a scene consistent with the negated sentence (Kaup, Ludtke, & Zwaan, 2006; Kaup, Yaxley, Madden, Zwaan, & Ludtke, 2007). One interpretation of this finding is that negation requires two steps to process: first represent what is being negated then "reject" that in favour of a representation of a negation-consistent state of affairs (Kaup et al., 2007). In this paper we argue that this finding with negative sentences could be a by-product of the dynamic way that language is interpreted relative to a common ground and not the way that negation is represented. We present a study based on Kaup et al. (2007) that tests the competing accounts. Our results suggest that some negative sentences are not processed in two steps, but provide support for the alternative, dynamic account.
Probing the limits of metal plasticity with molecular dynamics simulations
Zepeda-Ruiz, Luis A.; Stukowski, Alexander; Oppelstrup, Tomas; Bulatov, Vasily V.
2017-10-01
Ordinarily, the strength and plasticity properties of a metal are defined by dislocations--line defects in the crystal lattice whose motion results in material slippage along lattice planes. Dislocation dynamics models are usually used as mesoscale proxies for true atomistic dynamics, which are computationally expensive to perform routinely. However, atomistic simulations accurately capture every possible mechanism of material response, resolving every ``jiggle and wiggle'' of atomic motion, whereas dislocation dynamics models do not. Here we present fully dynamic atomistic simulations of bulk single-crystal plasticity in the body-centred-cubic metal tantalum. Our goal is to quantify the conditions under which the limits of dislocation-mediated plasticity are reached and to understand what happens to the metal beyond any such limit. In our simulations, the metal is compressed at ultrahigh strain rates along its [001] crystal axis under conditions of constant pressure, temperature and strain rate. To address the complexity of crystal plasticity processes on the length scales (85-340 nm) and timescales (1 ns-1μs) that we examine, we use recently developed methods of in situ computational microscopy to recast the enormous amount of transient trajectory data generated in our simulations into a form that can be analysed by a human. Our simulations predict that, on reaching certain limiting conditions of strain, dislocations alone can no longer relieve mechanical loads; instead, another mechanism, known as deformation twinning (the sudden re-orientation of the crystal lattice), takes over as the dominant mode of dynamic response. Below this limit, the metal assumes a strain-path-independent steady state of plastic flow in which the flow stress and the dislocation density remain constant as long as the conditions of straining thereafter remain unchanged. In this distinct state, tantalum flows like a viscous fluid while retaining its crystal lattice and remaining a strong
Dynamic behavior of reactive aluminum nanoparticle-fluorinated acrylic (AlFA) polymer composites
Crouse, Christopher A.; White, Brad; Spowart, Jonathan E.
2011-06-01
The dynamic behavior of aluminum nanoparticle-fluorinated acrylic (AlFA) composite materials has been explored under high strain rates. Cylindrical pellets of the AlFA composite materials were mounted onto copper sabots and impacted against a rigid anvil at velocities between 100 and 400 m/s utilizing a Taylor gas gun apparatus to achieve strain rates on the order of 104 /s. A framing camera was used to record the compaction and reaction events that occurred upon contact of the pellet with the anvil. Under both open air and vacuum environments the AlFA composites demonstrated high reactivity suggesting that the particles are primarily reacting with the fluorinated matrix. We hypothesize, based upon the compaction history of these materials, that reaction is initiated when the oxide shells on the aluminum nanoparticles are broken due an interparticle contact deformation process. We have investigated this hypothesis through altering the particle loading in the AlFA composites as well as impact velocities. This data and the corresponding trends will be presented in detail.
Molecular dynamics calculation of thermophysical properties for a highly reactive liquid.
Wang, H P; Luo, B C; Wei, B
2008-10-01
In order to further understand the physical characteristics of liquid silicon, the thermophysical properties are required over a broad temperature range. However, its high reactivity brings about great difficulties in the experimental measurement. Here we report the thermophysical properties by molecular dynamics calculation, including density, specific heat, diffusion coefficient, and surface tension. The calculation is performed with a system consisting of 64,000 atoms, and employing the Stillinger-Weber (SW) potential model and the modified embedded atom method (MEAM) potential model. The results show that the density increases as a quadratic function of undercooling, and the value calculated by SW potential model is only 2-4 % smaller than the reported experimental data. The specific heat is obtained to be 30.95 J mol;{-1}K;{-1} by SW potential model and 32.50 J mol;{-1}K;{-1} by MEAM potential model, both of which are constants in the corresponding ranges of temperature. The self-diffusion coefficient is exponentially dependent on the temperature and consistent with the Arrhenius equation. The surface tension increases linearly with the rise of undercooling and agrees well with the reported experimental results. This work provides reasonable data in much wider temperature range, especially for the undercooled metastable state.
Simulation language of DSNP: dynamic simulator for nuclear power-plants
International Nuclear Information System (INIS)
Saphier, D.
1978-09-01
The Dynamic Simulator for Nuclear Power-plants (DSNP) is a system of programs and data sets by which a nuclear power plant or part thereof can be simulated at different levels of sophistication. The acronym DSNP is used interchangeably for the DSNP language, for the DSNP precompiler, for the DSNP libraries, and for the DSNP document generator. The DSNP language is a set of simple block oriented statements, which together with the appropriate data, comprise a simulation of a nuclear power plant. The majority of the DSNP statements will result in the inclusion of a simulated physical module into the program. FORTRAN statements can be inserted with no restrictions among DSNP statements
Rarefield gas dynamics fundamentals, simulations and micro flows
Shen, Ching
2006-01-01
This book elucidates the methods of molecular gas dynamics or rarefied gas dynamics which treat the problems of gas flows when the discrete molecular effects of the gas prevail under the circumstances of low density, the emphasis being on the basis of the methods, the direct simulation Monte Carlo method applied to the simulation of non-equilibrium effects and the frontier subjects related to low speed microscale rarefied gas flows. It provides a solid basis for the study of molecular gas dynamics for senior students and graduates in the aerospace and mechanical engineering departments of universities and colleges. It gives a general acquaintance of modern developments of rarefied gas dynamics in various regimes and leads to the frontier topics of non-equilibrium rarefied gas dynamics and low speed microscale gas dynamics. It will be also of benefit to the scientific and technical researchers engaged in aerospace high altitude aerodynamic force and heating design and in the research on gas flow in MEMS.
Large-eddy simulations of the non-reactive flow in the Sydney swirl burner
International Nuclear Information System (INIS)
Yang Yang; Kær, Søren Knudsen
2012-01-01
Highlights: ► Rational mesh and grid system for LES are discussed. ► Validated results are provided and discrepancy of mean radial velocity component is discussed. ► Flow structures are identified using vorticity field. ► We performed POD on cross sections to assist in understanding of coherent structures. - Abstract: This paper presents a numerical investigation using large-eddy simulation. Two isothermal cases from the Sydney swirling flame database with different swirl numbers were tested. Rational grid system and mesh details were presented firstly. Validations showed overall good agreement in time averaged results. In medium swirling case, there are two reverse-flow regions with a collar-like structure between them. The existence of strong unsteady structure, precessing vortex core, was proven. Coherent structures are detached from the instantaneous field. Q-criterion was used to visualize vorticity field with distinct clear structure of vortice tubes. Dominating spatial–temporal structures contained in different cross sections were extracted using proper orthogonal decomposition. In high swirling case, there is only one long reverse-flow region. In this paper, we proved the capability of a commercial CFD package in predicting complex flow field and presented the potential of large eddy simulation in understanding dynamics.
Research on hyperspectral dynamic scene and image sequence simulation
Sun, Dandan; Liu, Fang; Gao, Jiaobo; Sun, Kefeng; Hu, Yu; Li, Yu; Xie, Junhu; Zhang, Lei
2016-10-01
This paper presents a simulation method of hyperspectral dynamic scene and image sequence for hyperspectral equipment evaluation and target detection algorithm. Because of high spectral resolution, strong band continuity, anti-interference and other advantages, in recent years, hyperspectral imaging technology has been rapidly developed and is widely used in many areas such as optoelectronic target detection, military defense and remote sensing systems. Digital imaging simulation, as a crucial part of hardware in loop simulation, can be applied to testing and evaluation hyperspectral imaging equipment with lower development cost and shorter development period. Meanwhile, visual simulation can produce a lot of original image data under various conditions for hyperspectral image feature extraction and classification algorithm. Based on radiation physic model and material characteristic parameters this paper proposes a generation method of digital scene. By building multiple sensor models under different bands and different bandwidths, hyperspectral scenes in visible, MWIR, LWIR band, with spectral resolution 0.01μm, 0.05μm and 0.1μm have been simulated in this paper. The final dynamic scenes have high real-time and realistic, with frequency up to 100 HZ. By means of saving all the scene gray data in the same viewpoint image sequence is obtained. The analysis results show whether in the infrared band or the visible band, the grayscale variations of simulated hyperspectral images are consistent with the theoretical analysis results.
The Fermi-Pasta-Ulam problem: Simulation and modern dynamics
International Nuclear Information System (INIS)
Weissert, T.P.
1992-01-01
In 1952, Enrico Fermi, John Pasta and Stanislaw Ulam (FPU) simulated the loaded string model, perturbed with small, nonlinear interaction terms. Because Poincare's theorem guarantees the non-existence of a complete set of integrals for three-body problem, they expected to see the diffusion of energy from its single-mode initial condition to all other modes of the string. But for every combination of initial conditions, the energy remained bounded within the lowest few modes. No theoretical explanation existed for this failure of the underlying hypothesis that erogidicity follows from the lack of a complete set of integrals of the motion in a Hamiltonian model. The author traces the history of this problem from the FPU simulation to the point that a consensus was reached concerning its solution twenty years later. During this period, the simulation of nonlinearly-perturbed integral models became the methodology for a new era in dynamics. Through the use of simulation, dynamicists discovered deterministic chaos, in which the exponential separation of pair orbits generate randomness in deterministic macroscopic systems, and a new kind of structure-related to the KAM theorem-that provides limited order in the absence of analytic integrals of the motions. The author maps the set of conceptually-related journal articles into a chronological inference topology that tracks the understanding of this problem of dynamics. Simulating non-integrable models on a digital computer requires the discretization of time and space. These approximations affect what the simulation can reveal about the model, and the model about reality. Simulations play the role of experiments on mathematical models. A discussion is presented of the issues that emerge with the use of simulation as a heuristic device and the groundwork is laid for an epistemology of simulation
Fast Simulation of Dynamic Ultrasound Images Using the GPU.
Storve, Sigurd; Torp, Hans
2017-10-01
Simulated ultrasound data is a valuable tool for development and validation of quantitative image analysis methods in echocardiography. Unfortunately, simulation time can become prohibitive for phantoms consisting of a large number of point scatterers. The COLE algorithm by Gao et al. is a fast convolution-based simulator that trades simulation accuracy for improved speed. We present highly efficient parallelized CPU and GPU implementations of the COLE algorithm with an emphasis on dynamic simulations involving moving point scatterers. We argue that it is crucial to minimize the amount of data transfers from the CPU to achieve good performance on the GPU. We achieve this by storing the complete trajectories of the dynamic point scatterers as spline curves in the GPU memory. This leads to good efficiency when simulating sequences consisting of a large number of frames, such as B-mode and tissue Doppler data for a full cardiac cycle. In addition, we propose a phase-based subsample delay technique that efficiently eliminates flickering artifacts seen in B-mode sequences when COLE is used without enough temporal oversampling. To assess the performance, we used a laptop computer and a desktop computer, each equipped with a multicore Intel CPU and an NVIDIA GPU. Running the simulator on a high-end TITAN X GPU, we observed two orders of magnitude speedup compared to the parallel CPU version, three orders of magnitude speedup compared to simulation times reported by Gao et al. in their paper on COLE, and a speedup of 27000 times compared to the multithreaded version of Field II, using numbers reported in a paper by Jensen. We hope that by releasing the simulator as an open-source project we will encourage its use and further development.
Synthesis of recurrent neural networks for dynamical system simulation.
Trischler, Adam P; D'Eleuterio, Gabriele M T
2016-08-01
We review several of the most widely used techniques for training recurrent neural networks to approximate dynamical systems, then describe a novel algorithm for this task. The algorithm is based on an earlier theoretical result that guarantees the quality of the network approximation. We show that a feedforward neural network can be trained on the vector-field representation of a given dynamical system using backpropagation, then recast it as a recurrent network that replicates the original system's dynamics. After detailing this algorithm and its relation to earlier approaches, we present numerical examples that demonstrate its capabilities. One of the distinguishing features of our approach is that both the original dynamical systems and the recurrent networks that simulate them operate in continuous time. Copyright © 2016 Elsevier Ltd. All rights reserved.
Simulation of noisy dynamical system by Deep Learning
Yeo, Kyongmin
2017-11-01
Deep learning has attracted huge attention due to its powerful representation capability. However, most of the studies on deep learning have been focused on visual analytics or language modeling and the capability of the deep learning in modeling dynamical systems is not well understood. In this study, we use a recurrent neural network to model noisy nonlinear dynamical systems. In particular, we use a long short-term memory (LSTM) network, which constructs internal nonlinear dynamics systems. We propose a cross-entropy loss with spatial ridge regularization to learn a non-stationary conditional probability distribution from a noisy nonlinear dynamical system. A Monte Carlo procedure to perform time-marching simulations by using the LSTM is presented. The behavior of the LSTM is studied by using noisy, forced Van der Pol oscillator and Ikeda equation.
Simulation and Experimental Investigation of Structural Dynamic Frequency Characteristics Control
Directory of Open Access Journals (Sweden)
Bing Li
2012-04-01
Full Text Available In general, mechanical equipment such as cars, airplanes, and machine tools all operate with constant frequency characteristics. These constant working characteristics should be controlled if the dynamic performance of the equipment demands improvement or the dynamic characteristics is intended to change with different working conditions. Active control is a stable and beneficial method for this, but current active control methods mainly focus on vibration control for reducing the vibration amplitudes in the time domain or frequency domain. In this paper, a new method of dynamic frequency characteristics active control (DFCAC is presented for a flat plate, which can not only accomplish vibration control but also arbitrarily change the dynamic characteristics of the equipment. The proposed DFCAC algorithm is based on a neural network including two parts of the identification implement and the controller. The effectiveness of the DFCAC method is verified by several simulation and experiments, which provide desirable results.
Efficient Neural Network Modeling for Flight and Space Dynamics Simulation
Directory of Open Access Journals (Sweden)
Ayman Hamdy Kassem
2011-01-01
Full Text Available This paper represents an efficient technique for neural network modeling of flight and space dynamics simulation. The technique will free the neural network designer from guessing the size and structure for the required neural network model and will help to minimize the number of neurons. For linear flight/space dynamics systems, the technique can find the network weights and biases directly by solving a system of linear equations without the need for training. Nonlinear flight dynamic systems can be easily modeled by training its linearized models keeping the same network structure. The training is fast, as it uses the linear system knowledge to speed up the training process. The technique is tested on different flight/space dynamic models and showed promising results.
Extracting Markov Models of Peptide Conformational Dynamics from Simulation Data.
Schultheis, Verena; Hirschberger, Thomas; Carstens, Heiko; Tavan, Paul
2005-07-01
A high-dimensional time series obtained by simulating a complex and stochastic dynamical system (like a peptide in solution) may code an underlying multiple-state Markov process. We present a computational approach to most plausibly identify and reconstruct this process from the simulated trajectory. Using a mixture of normal distributions we first construct a maximum likelihood estimate of the point density associated with this time series and thus obtain a density-oriented partition of the data space. This discretization allows us to estimate the transfer operator as a matrix of moderate dimension at sufficient statistics. A nonlinear dynamics involving that matrix and, alternatively, a deterministic coarse-graining procedure are employed to construct respective hierarchies of Markov models, from which the model most plausibly mapping the generating stochastic process is selected by consideration of certain observables. Within both procedures the data are classified in terms of prototypical points, the conformations, marking the various Markov states. As a typical example, the approach is applied to analyze the conformational dynamics of a tripeptide in solution. The corresponding high-dimensional time series has been obtained from an extended molecular dynamics simulation.
Dynamics and Chemistry in Jovian Atmospheres: 2D Hydrodynamical Simulations
Bordwell, B. R.; Brown, B. P.; Oishi, J.
2016-12-01
A key component of our understanding of the formation and evolution of planetary systems is chemical composition. Problematically, however, in the atmospheres of cooler gas giants, dynamics on the same timescale as chemical reactions pull molecular abundances out of thermochemical equilibrium. These disequilibrium abundances are treated using what is known as the "quench" approximation, based upon the mixing length theory of convection. The validity of this approximation is questionable, though, as the atmospheres of gas giants encompass two distinct dynamic regimes: convective and radiative. To resolve this issue, we conduct 2D hydrodynamical simulations using the state-of-the-art pseudospectral simulation framework Dedalus. In these simulations, we solve the fully compressible equations of fluid motion in a local slab geometry that mimics the structure of a planetary atmosphere (convective zone underlying a radiative zone). Through the inclusion of passive tracers, we explore the transport properties of both regimes, and assess the validity of the classical eddy diffusion parameterization. With the addition of active tracers, we examine the interactions between dynamical and chemical processes, and generate prescriptions for the observational community. By providing insight into mixing and feedback mechanisms in Jovian atmospheres, this research lays a solid foundation for future global simulations and the construction of physically-sound models for current and future observations.
Simulation of plume dynamics by the Lattice Boltzmann Method
Mora, Peter; Yuen, David A.
2017-09-01
The Lattice Boltzmann Method (LBM) is a semi-microscopic method to simulate fluid mechanics by modelling distributions of particles moving and colliding on a lattice. We present 2-D simulations using the LBM of a fluid in a rectangular box being heated from below, and cooled from above, with a Rayleigh of Ra = 108, similar to current estimates of the Earth's mantle, and a Prandtl number of 5000. At this Prandtl number, the flow is found to be in the non-inertial regime where the inertial terms denoted I ≪ 1. Hence, the simulations presented lie within the regime of relevance for geodynamical problems. We obtain narrow upwelling plumes with mushroom heads and chutes of downwelling fluid as expected of a flow in the non-inertial regime. The method developed demonstrates that the LBM has great potential for simulating thermal convection and plume dynamics relevant to geodynamics, albeit with some limitations.
Molecular dynamics simulations and applications in computational toxicology and nanotoxicology.
Selvaraj, Chandrabose; Sakkiah, Sugunadevi; Tong, Weida; Hong, Huixiao
2018-02-01
Nanotoxicology studies toxicity of nanomaterials and has been widely applied in biomedical researches to explore toxicity of various biological systems. Investigating biological systems through in vivo and in vitro methods is expensive and time taking. Therefore, computational toxicology, a multi-discipline field that utilizes computational power and algorithms to examine toxicology of biological systems, has gained attractions to scientists. Molecular dynamics (MD) simulations of biomolecules such as proteins and DNA are popular for understanding of interactions between biological systems and chemicals in computational toxicology. In this paper, we review MD simulation methods, protocol for running MD simulations and their applications in studies of toxicity and nanotechnology. We also briefly summarize some popular software tools for execution of MD simulations. Published by Elsevier Ltd.
Molecular dynamics simulation of amplitude modulation atomic force microscopy
International Nuclear Information System (INIS)
Hu, Xiaoli; Martini, Ashlie; Egberts, Philip; Dong, Yalin
2015-01-01
Molecular dynamics (MD) simulations were used to model amplitude modulation atomic force microscopy (AM-AFM). In this novel simulation, the model AFM tip responds to both tip–substrate interactions and to a sinusoidal excitation signal. The amplitude and phase shift of the tip oscillation observed in the simulation and their variation with tip–sample distance were found to be consistent with previously reported trends from experiments and theory. These simulation results were also fit to an expression enabling estimation of the energy dissipation, which was found to be smaller than that in a corresponding experiment. The difference was analyzed in terms of the effects of tip size and substrate thickness. Development of this model is the first step toward using MD to gain insight into the atomic-scale phenomena that occur during an AM-AFM measurement. (paper)
Simulation of Forest Cover Dynamics for Eastern Eurasian Boreal Forests
Shugart, H. H.; Yan, X.; Zhang, N.; Isaev, A. S.; Shuman, J. K.
2006-12-01
We are developing and testing a boreal zone forest dynamics model capable of simulating the forest cover dynamics of the Eurasian boreal forest, a major biospheric ecosystem with potentially large roles in the planetary carbon cycle and in the feedback between terrestrial surface and the atmosphere. In appreciating the role of this region in the coupling between atmosphere and terrestrial surface, on must understand the interactions between CO2 source/sink relationships (associated with growing or clearing forests) and the albedo effects (from changes in terrestrial surface cover). There is some evidence that in the Eurasian Boreal zone, the Carbon budget effects from forest change may oppose the albedo changes. This creates complex feedbacks between surface and atmosphere and motivates the need for a forest dynamics model that simultaneous represents forest vegetation and carbon storage and release. A forest dynamics model applied to Eastern Eurasia, FAREAST, has been tested using three types of information: 1. Direct species composition comparisons between simulated and observed mature forests at the same locations; 2. Forest type comparisons between simulated and observed forests along altitudinal gradients of several different mountains; 3. Comparison with forest stands in different succession stages of simulated forests. Model comparisons with independent data indicate the FAREAST model is capable of representing many of the broad features of the forests of Northeastern China. After model validation in the Northeast China region, model applications were developed for the forests of the Russian Far East. Continental-scale forest cover can be simulated to a relatively realistic degree using a forest gap model with standard representations of individual-plant processes. It appears that such a model, validated relatively locally in this case, in Northeastern China, can then be applied over a much larger region and under conditions of climatic change.
Simulating soil phosphorus dynamics for a phosphorus loss quantification tool.
Vadas, Peter A; Joern, Brad C; Moore, Philip A
2012-01-01
Pollution of fresh waters by agricultural phosphorus (P) is a water quality concern. Because soils can contribute significantly to P loss in runoff, it is important to assess how management affects soil P status over time, which is often done with models. Our objective was to describe and validate soil P dynamics in the Annual P Loss Estimator (APLE) model. APLE is a user-friendly spreadsheet model that simulates P loss in runoff and soil P dynamics over 10 yr for a given set of runoff, erosion, and management conditions. For soil P dynamics, APLE simulates two layers in the topsoil, each with three inorganic P pools and one organic P pool. It simulates P additions to soil from manure and fertilizer, distribution among pools, mixing between layers due to tillage and bioturbation, leaching between and out of layers, crop P removal, and loss by surface runoff and erosion. We used soil P data from 25 published studies to validate APLE's soil P processes. Our results show that APLE reliably simulated soil P dynamics for a wide range of soil properties, soil depths, P application sources and rates, durations, soil P contents, and management practices. We validated APLE specifically for situations where soil P was increasing from excessive P inputs, where soil P was decreasing due to greater outputs than inputs, and where soil P stratification occurred in no-till and pasture soils. Successful simulations demonstrate APLE's potential to be applied to major management scenarios related to soil P loss in runoff and erosion. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Statistical Measures to Quantify Similarity between Molecular Dynamics Simulation Trajectories
Directory of Open Access Journals (Sweden)
Jenny Farmer
2017-11-01
Full Text Available Molecular dynamics simulation is commonly employed to explore protein dynamics. Despite the disparate timescales between functional mechanisms and molecular dynamics (MD trajectories, functional differences are often inferred from differences in conformational ensembles between two proteins in structure-function studies that investigate the effect of mutations. A common measure to quantify differences in dynamics is the root mean square fluctuation (RMSF about the average position of residues defined by C α -atoms. Using six MD trajectories describing three native/mutant pairs of beta-lactamase, we make comparisons with additional measures that include Jensen-Shannon, modifications of Kullback-Leibler divergence, and local p-values from 1-sample Kolmogorov-Smirnov tests. These additional measures require knowing a probability density function, which we estimate by using a nonparametric maximum entropy method that quantifies rare events well. The same measures are applied to distance fluctuations between C α -atom pairs. Results from several implementations for quantitative comparison of a pair of MD trajectories are made based on fluctuations for on-residue and residue-residue local dynamics. We conclude that there is almost always a statistically significant difference between pairs of 100 ns all-atom simulations on moderate-sized proteins as evident from extraordinarily low p-values.
Computer simulations of liquid crystals: Defects, deformations and dynamics
Billeter, Jeffrey Lee
1999-11-01
Computer simulations play an increasingly important role in investigating fundamental issues in the physics of liquid crystals. Presented here are the results of three projects which utilize the unique power of simulations to probe questions which neither theory nor experiment can adequately answer. Throughout, we use the (generalized) Gay-Berne model, a widely-used phenomenological potential which captures the essential features of the anisotropic mesogen shapes and interactions. First, we used a Molecular Dynamics simulation with 65536 Gay-Berne particles to study the behaviors of topological defects in a quench from the isotropic to the nematic phase. Twist disclination loops were the dominant defects, and we saw evidence for dynamical scaling. We observed the loops separating, combining and collapsing, and we also observed numerous non-singular type-1 lines which appeared to be intimately involved with many of the loop processes. Second, we used a Molecular Dynamics simulation of a sphere embedded in a system of 2048 Gay-Berne particles to study the effects of radial anchoring of the molecules at the sphere's surface. A saturn ring defect configuration was observed, and the ring caused a driven sphere (modelling the falling ball experiment) to experience an increased resistance as it moved through the nematic. Deviations from a linear relationship between the driving force and the terminal speed are attributed to distortions of the saturn ring which we observed. The existence of the saturn ring confirms theoretical predictions for small spheres. Finally, we constructed a model for wedge-shaped molecules and used a linear response approach in a Monte Carlo simulation to investigate the flexoelectric behavior of a system of 256 such wedges. Novel potential models as well as novel analytical and visualization techniques were developed for these projects. Once again, the emphasis throughout was to investigate questions which simulations alone can adequately answer.
Clasen, Peter C.; Fisher, Aaron J.; Beevers, Christopher G.
2015-01-01
Cognitive theories of depression suggest that mood-reactive self-esteem, a pattern of cognitive reactivity where low self-esteem is temporally dependent on levels of sadness, represents vulnerability for depression. Few studies have directly tested this hypothesis, particularly using intensive data collection methods (i.e., experience sampling) required to capture the temporal dynamics of sadness and self-esteem as they unfold naturally, over time. In this study we used participants’ smartphones to collect multiple daily ratings of sadness and self-esteem over three weeks, in the real world. We then applied dynamic factor modeling to explore theoretically driven hypotheses about the temporal dependency of self-esteem on sadness (i.e., mood-reactive self-esteem) and its relationship to indices of depression vulnerability both contemporaneously (e.g., rumination, sad mood persistence) and prospectively (e.g., future symptomatology). In sum, individuals who demonstrated mood-reactive self-esteem reported higher levels of rumination at baseline, more persistent sad mood over three weeks, and increased depression symptoms at the end of three weeks above and beyond a trait-like index of self-esteem. The integration of smartphone assessment and person-specific analytics employed in this study offers an exiting new avenue to advance the study and treatment of depression. PMID:26131724
Clasen, Peter C; Fisher, Aaron J; Beevers, Christopher G
2015-01-01
Cognitive theories of depression suggest that mood-reactive self-esteem, a pattern of cognitive reactivity where low self-esteem is temporally dependent on levels of sadness, represents vulnerability for depression. Few studies have directly tested this hypothesis, particularly using intensive data collection methods (i.e., experience sampling) required to capture the temporal dynamics of sadness and self-esteem as they unfold naturally, over time. In this study we used participants' smartphones to collect multiple daily ratings of sadness and self-esteem over three weeks, in the real world. We then applied dynamic factor modeling to explore theoretically driven hypotheses about the temporal dependency of self-esteem on sadness (i.e., mood-reactive self-esteem) and its relationship to indices of depression vulnerability both contemporaneously (e.g., rumination, sad mood persistence) and prospectively (e.g., future symptomatology). In sum, individuals who demonstrated mood-reactive self-esteem reported higher levels of rumination at baseline, more persistent sad mood over three weeks, and increased depression symptoms at the end of three weeks above and beyond a trait-like index of self-esteem. The integration of smartphone assessment and person-specific analytics employed in this study offers an exiting new avenue to advance the study and treatment of depression.
Directory of Open Access Journals (Sweden)
Peter C Clasen
Full Text Available Cognitive theories of depression suggest that mood-reactive self-esteem, a pattern of cognitive reactivity where low self-esteem is temporally dependent on levels of sadness, represents vulnerability for depression. Few studies have directly tested this hypothesis, particularly using intensive data collection methods (i.e., experience sampling required to capture the temporal dynamics of sadness and self-esteem as they unfold naturally, over time. In this study we used participants' smartphones to collect multiple daily ratings of sadness and self-esteem over three weeks, in the real world. We then applied dynamic factor modeling to explore theoretically driven hypotheses about the temporal dependency of self-esteem on sadness (i.e., mood-reactive self-esteem and its relationship to indices of depression vulnerability both contemporaneously (e.g., rumination, sad mood persistence and prospectively (e.g., future symptomatology. In sum, individuals who demonstrated mood-reactive self-esteem reported higher levels of rumination at baseline, more persistent sad mood over three weeks, and increased depression symptoms at the end of three weeks above and beyond a trait-like index of self-esteem. The integration of smartphone assessment and person-specific analytics employed in this study offers an exiting new avenue to advance the study and treatment of depression.
Quantum dynamical simulations of local field enhancement in metal nanoparticles.
Negre, Christian F A; Perassi, Eduardo M; Coronado, Eduardo A; Sánchez, Cristián G
2013-03-27
Field enhancements (Γ) around small Ag nanoparticles (NPs) are calculated using a quantum dynamical simulation formalism and the results are compared with electrodynamic simulations using the discrete dipole approximation (DDA) in order to address the important issue of the intrinsic atomistic structure of NPs. Quite remarkably, in both quantum and classical approaches the highest values of Γ are located in the same regions around single NPs. However, by introducing a complete atomistic description of the metallic NPs in optical simulations, a different pattern of the Γ distribution is obtained. Knowing the correct pattern of the Γ distribution around NPs is crucial for understanding the spectroscopic features of molecules inside hot spots. The enhancement produced by surface plasmon coupling is studied by using both approaches in NP dimers for different inter-particle distances. The results show that the trend of the variation of Γ versus inter-particle distance is different for classical and quantum simulations. This difference is explained in terms of a charge transfer mechanism that cannot be obtained with classical electrodynamics. Finally, time dependent distribution of the enhancement factor is simulated by introducing a time dependent field perturbation into the Hamiltonian, allowing an assessment of the localized surface plasmon resonance quantum dynamics.
Using system dynamics simulation for assessment of hydropower system safety
King, L. M.; Simonovic, S. P.; Hartford, D. N. D.
2017-08-01
Hydropower infrastructure systems are complex, high consequence structures which must be operated safely to avoid catastrophic impacts to human life, the environment, and the economy. Dam safety practitioners must have an in-depth understanding of how these systems function under various operating conditions in order to ensure the appropriate measures are taken to reduce system vulnerability. Simulation of system operating conditions allows modelers to investigate system performance from the beginning of an undesirable event to full system recovery. System dynamics simulation facilitates the modeling of dynamic interactions among complex arrangements of system components, providing outputs of system performance that can be used to quantify safety. This paper presents the framework for a modeling approach that can be used to simulate a range of potential operating conditions for a hydropower infrastructure system. Details of the generic hydropower infrastructure system simulation model are provided. A case study is used to evaluate system outcomes in response to a particular earthquake scenario, with two system safety performance measures shown. Results indicate that the simulation model is able to estimate potential measures of system safety which relate to flow conveyance and flow retention. A comparison of operational and upgrade strategies is shown to demonstrate the utility of the model for comparing various operational response strategies, capital upgrade alternatives, and maintenance regimes. Results show that seismic upgrades to the spillway gates provide the largest improvement in system performance for the system and scenario of interest.
The molecular dynamics simulation of ion-induced ripple growth
International Nuclear Information System (INIS)
Suele, P.; Heinig, K.-H.
2009-01-01
The wavelength-dependence of ion-sputtering induced growth of repetitive nanostructures, such as ripples has been studied by molecular dynamics (MD) simulations in Si. The early stage of the ion erosion driven development of ripples has been simulated on prepatterned Si stripes with a wavy surface. The time evolution of the height function and amplitude of the sinusoidal surface profile has been followed by simulated ion-sputtering. According to Bradley-Harper (BH) theory, we expect correlation between the wavelength of ripples and the stability of them. However, we find that in the small ripple wavelength (λ) regime BH theory fails to reproduce the results obtained by molecular dynamics. We find that at short wavelengths (λ 35 nm is stabilized in accordance with the available experimental results. According to the simulations, few hundreds of ion impacts in λ long and few nanometers wide Si ripples are sufficient for reaching saturation in surface growth for for λ>35 nm ripples. In another words, ripples in the long wavelength limit seems to be stable against ion-sputtering. A qualitative comparison of our simulation results with recent experimental data on nanopatterning under irradiation is attempted.
The architecture of Newton, a general-purpose dynamics simulator
Cremer, James F.; Stewart, A. James
1989-01-01
The architecture for Newton, a general-purpose system for simulating the dynamics of complex physical objects, is described. The system automatically formulates and analyzes equations of motion, and performs automatic modification of this system equations when necessitated by changes in kinematic relationships between objects. Impact and temporary contact are handled, although only using simple models. User-directed influence of simulations is achieved using Newton's module, which can be used to experiment with the control of many-degree-of-freedom articulated objects.
Computational fluid dynamics simulations of light water reactor flows
International Nuclear Information System (INIS)
Tzanos, C.P.; Weber, D.P.
1999-01-01
Advances in computational fluid dynamics (CFD), turbulence simulation, and parallel computing have made feasible the development of three-dimensional (3-D) single-phase and two-phase flow CFD codes that can simulate fluid flow and heat transfer in realistic reactor geometries with significantly reduced reliance, especially in single phase, on empirical correlations. The objective of this work was to assess the predictive power and computational efficiency of a CFD code in the analysis of a challenging single-phase light water reactor problem, as well as to identify areas where further improvements are needed
Molecular Dynamics Simulation Studies of Caffeine Aggregation in Aqueous Solution
Tavagnacco, Letizia; Schnupf, Udo; Mason, Philip E.; Saboungi, Marie-Louise; Cesàro, Attilio; Brady, John W.
2011-01-01
Molecular dynamics simulations were carried out on a system of eight independent caffeine molecules in a periodic box of water at 300 K, representing a solution near the solubility limit for caffeine at room temperature, using a newly-developed CHARMM-type force field for caffeine in water. Simulations were also conducted for single caffeine molecules in water using two different water models (TIP3P and TIP4P). Water was found to structure in a complex fashion around the planar caffeine molec...
A Coupling Tool for Parallel Molecular Dynamics-Continuum Simulations
Neumann, Philipp
2012-06-01
We present a tool for coupling Molecular Dynamics and continuum solvers. It is written in C++ and is meant to support the developers of hybrid molecular - continuum simulations in terms of both realisation of the respective coupling algorithm as well as parallel execution of the hybrid simulation. We describe the implementational concept of the tool and its parallel extensions. We particularly focus on the parallel execution of particle insertions into dense molecular systems and propose a respective parallel algorithm. Our implementations are validated for serial and parallel setups in two and three dimensions. © 2012 IEEE.
Frank, Martin
2015-01-01
Complex carbohydrates usually have a large number of rotatable bonds and consequently a large number of theoretically possible conformations can be generated (combinatorial explosion). The application of systematic search methods for conformational analysis of carbohydrates is therefore limited to disaccharides and trisaccharides in a routine analysis. An alternative approach is to use Monte-Carlo methods or (high-temperature) molecular dynamics (MD) simulations to explore the conformational space of complex carbohydrates. This chapter describes how to use MD simulation data to perform a conformational analysis (conformational maps, hydrogen bonds) of oligosaccharides and how to build realistic 3D structures of large polysaccharides using Conformational Analysis Tools (CAT).
Rodriguez Lucatero, C.; Schaum, A.; Alarcon Ramos, L.; Bernal-Jaquez, R.
2014-07-01
In this study, the dynamics of decisions in complex networks subject to external fields are studied within a Markov process framework using nonlinear dynamical systems theory. A mathematical discrete-time model is derived using a set of basic assumptions regarding the convincement mechanisms associated with two competing opinions. The model is analyzed with respect to the multiplicity of critical points and the stability of extinction states. Sufficient conditions for extinction are derived in terms of the convincement probabilities and the maximum eigenvalues of the associated connectivity matrices. The influences of exogenous (e.g., mass media-based) effects on decision behavior are analyzed qualitatively. The current analysis predicts: (i) the presence of fixed-point multiplicity (with a maximum number of four different fixed points), multi-stability, and sensitivity with respect to the process parameters; and (ii) the bounded but significant impact of exogenous perturbations on the decision behavior. These predictions were verified using a set of numerical simulations based on a scale-free network topology.
Algorithm for simulation of quantum many-body dynamics using dynamical coarse-graining
International Nuclear Information System (INIS)
Khasin, M.; Kosloff, R.
2010-01-01
An algorithm for simulation of quantum many-body dynamics having su(2) spectrum-generating algebra is developed. The algorithm is based on the idea of dynamical coarse-graining. The original unitary dynamics of the target observables--the elements of the spectrum-generating algebra--is simulated by a surrogate open-system dynamics, which can be interpreted as weak measurement of the target observables, performed on the evolving system. The open-system state can be represented by a mixture of pure states, localized in the phase space. The localization reduces the scaling of the computational resources with the Hilbert-space dimension n by factor n 3/2 (ln n) -1 compared to conventional sparse-matrix methods. The guidelines for the choice of parameters for the simulation are presented and the scaling of the computational resources with the Hilbert-space dimension of the system is estimated. The algorithm is applied to the simulation of the dynamics of systems of 2x10 4 and 2x10 6 cold atoms in a double-well trap, described by the two-site Bose-Hubbard model.
Molecular dynamics simulation of radiation damage cascades in diamond
Energy Technology Data Exchange (ETDEWEB)
Buchan, J. T. [Department of Physics and Astronomy, Curtin University, Perth, Western Australia 6845 (Australia); Robinson, M. [Nanochemistry Research Institute, Curtin University, Perth, Western Australia 6845 (Australia); Christie, H. J.; Roach, D. L.; Ross, D. K. [Physics and Materials Research Centre, School of Computing, Science and Engineering, University of Salford, Salford, Greater Manchester M5 4WT (United Kingdom); Marks, N. A. [Department of Physics and Astronomy, Curtin University, Perth, Western Australia 6845 (Australia); Nanochemistry Research Institute, Curtin University, Perth, Western Australia 6845 (Australia)
2015-06-28
Radiation damage cascades in diamond are studied by molecular dynamics simulations employing the Environment Dependent Interaction Potential for carbon. Primary knock-on atom (PKA) energies up to 2.5 keV are considered and a uniformly distributed set of 25 initial PKA directions provide robust statistics. The simulations reveal the atomistic origins of radiation-resistance in diamond and provide a comprehensive computational analysis of cascade evolution and dynamics. As for the case of graphite, the atomic trajectories are found to have a fractal-like character, thermal spikes are absent and only isolated point defects are generated. Quantitative analysis shows that the instantaneous maximum kinetic energy decays exponentially with time, and that the timescale of the ballistic phase has a power-law dependence on PKA energy. Defect recombination is efficient and independent of PKA energy, with only 50% of displacements resulting in defects, superior to graphite where the same quantity is nearly 75%.
The use of system dynamics for EROI simulation
DEFF Research Database (Denmark)
Atlason, Reynir Smari
to construct a systems dynamics model to represent a geothermal power plant and calculate the EROI3,i. The benefits of such models are their simplicity, and simulation power. The system simulated is adapted from Atlason et al. (2013) where the EROI for the Nesjavellir geothermal power plant was calculated....... The systems dynamics model essentially provides other researchers with a clear demonstration of inputs, outputs and assumptions used in the calculations. I propose, that EROI studies are supplemented with such models for clarity....... along with publications where inputs and outputs from energy systems are shown, but that is seldom or ever the case. Doing so would allow other researchers to see if energy systems or studies are actually comparable and if inputs, outputs and assumptions are the same. In this study, I demonstrate how...
Atomistic Molecular Dynamics Simulations of Mitochondrial DNA Polymerase γ
DEFF Research Database (Denmark)
Euro, Liliya; Haapanen, Outi; Róg, Tomasz
2017-01-01
of replisomal interactions, and functional effects of patient mutations that do not affect direct catalysis have remained elusive. Here we report the first atomistic classical molecular dynamics simulations of the human Pol γ replicative complex. Our simulation data show that DNA binding triggers remarkable......DNA polymerase γ (Pol γ) is a key component of the mitochondrial DNA replisome and an important cause of neurological diseases. Despite the availability of its crystal structures, the molecular mechanism of DNA replication, the switch between polymerase and exonuclease activities, the site...... changes in the enzyme structure, including (1) completion of the DNA-binding channel via a dynamic subdomain, which in the apo form blocks the catalytic site, (2) stabilization of the structure through the distal accessory β-subunit, and (3) formation of a putative transient replisome-binding platform...
Dynamic modeling and simulation of a real world billiard
International Nuclear Information System (INIS)
Hartl, Alexandre E.; Miller, Bruce N.; Mazzoleni, Andre P.
2011-01-01
Gravitational billiards provide an experimentally accessible arena for testing formulations of nonlinear dynamics. We present a mathematical model that captures the essential dynamics required for describing the motion of a realistic billiard for arbitrary boundaries. Simulations of the model are applied to parabolic, wedge and hyperbolic billiards that are driven sinusoidally. Direct comparisons are made between the model's predictions and previously published experimental data. It is shown that the data can be successfully modeled with a simple set of parameters without an assumption of exotic energy dependence. -- Highlights: → We create a model of a gravitational billiard that includes rotation and dissipation. → Predictions of the model are compared with the experiments of Felt and Olafsen. → The simulations correctly predict the essential features of the experiments.
Dynamic simulation of flash drums using rigorous physical property calculations
Directory of Open Access Journals (Sweden)
F. M. Gonçalves
2007-06-01
Full Text Available The dynamics of flash drums is simulated using a formulation adequate for phase modeling with equations of state (EOS. The energy and mass balances are written as differential equations for the internal energy and the number of moles of each species. The algebraic equations of the model, solved at each time step, are those of a flash with specified internal energy, volume and mole numbers (UVN flash. A new aspect of our dynamic simulations is the use of direct iterations in phase volumes (instead of pressure for solving the algebraic equations. It was also found that an iterative procedure previously suggested in the literature for UVN flashes becomes unreliable close to phase boundaries and a new alternative is proposed. Another unusual aspect of this work is that the model expressions, including the physical properties and their analytical derivatives, were quickly implemented using computer algebra.
Molecular dynamics simulation of polyacrylamides in potassium montmorillonite clay hydrates
Energy Technology Data Exchange (ETDEWEB)
Zhang Junfang [CSIRO Petroleum Resources, Ian Wark Laboratory, Bayview Avenue, Clayton, Victoria 3168 (Australia); Rivero, Mayela [CSIRO Petroleum, PO Box 1130, Bentley, Western Australia, 6102 (Australia); Choi, S K [CSIRO Petroleum Resources, Ian Wark Laboratory, Bayview Avenue, Clayton, Victoria 3168 (Australia)
2007-02-14
We present molecular dynamics simulation results for polyacrylamide in potassium montmorillonite clay-aqueous systems. Interlayer molecular structure and dynamics properties are investigated. The number density profile, radial distribution function, root-mean-square deviation (RMSD), mean-square displacement (MSD) and diffusion coefficient are reported. The calculations are conducted in constant NVT ensembles, at T = 300 K and with layer spacing of 40 A. Our simulation results showed that polyacrylamides had little impact on the structure of interlayer water. Density profiles and radial distribution function indicated that hydration shells were formed. In the presence of polyacrylamides more potassium counterions move close to the clay surface while water molecules move away, indicating that potassium counterions are hydrated to a lesser extent than the system in which no polyacrylamides were added. The diffusion coefficients for potassium and water decreased when polyacrylamides were added.
Deformation mechanisms in nanotwinned copper by molecular dynamics simulation
Energy Technology Data Exchange (ETDEWEB)
Zhao, Xing [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083 (China); Lu, Cheng, E-mail: chenglu@uow.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Tieu, Anh Kiet; Pei, Linqing; Zhang, Liang; Su, Lihong [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Zhan, Lihua [State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083 (China)
2017-02-27
Nanotwinned materials exhibit simultaneous ultrahigh strength and high ductility which is attributed to the interactions between dislocations and twin boundaries but the specific deformation mechanisms are rarely seen in experiments at the atomic level. Here we use large scale molecular dynamics simulations to explore this intricate interplay during the plastic deformation of nanotwinned Cu. We demonstrate that the dominant deformation mechanism transits dynamically from slip transfer to twin boundary migration to slip-twin interactions as the twin boundary orientation changes from horizontal to slant, and then to a vertical direction. Building on the fundamental physics of dislocation processes from computer simulations and combining the available experimental investigations, we unravel the underlying deformation mechanisms for nanotwinned Cu, incorporating all three distinct dislocation processes. Our results give insights into systematically engineering the nanoscale twins to fabricate nanotwinned metals or alloys that have high strength and considerable ductility.
First Principles Modelling of Shape Memory Alloys Molecular Dynamics Simulations
Kastner, Oliver
2012-01-01
Materials sciences relate the macroscopic properties of materials to their microscopic structure and postulate the need for holistic multiscale research. The investigation of shape memory alloys is a prime example in this regard. This particular class of materials exhibits strong coupling of temperature, strain and stress, determined by solid state phase transformations of their metallic lattices. The present book presents a collection of simulation studies of this behaviour. Employing conceptually simple but comprehensive models, the fundamental material properties of shape memory alloys are qualitatively explained from first principles. Using contemporary methods of molecular dynamics simulation experiments, it is shown how microscale dynamics may produce characteristic macroscopic material properties. The work is rooted in the materials sciences of shape memory alloys and covers thermodynamical, micro-mechanical and crystallographical aspects. It addresses scientists in these research fields and thei...
Hydrodynamics in adaptive resolution particle simulations: Multiparticle collision dynamics
Energy Technology Data Exchange (ETDEWEB)
Alekseeva, Uliana, E-mail: Alekseeva@itc.rwth-aachen.de [Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation (IAS), Forschungszentrum Jülich, D-52425 Jülich (Germany); German Research School for Simulation Sciences (GRS), Forschungszentrum Jülich, D-52425 Jülich (Germany); Winkler, Roland G., E-mail: r.winkler@fz-juelich.de [Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation (IAS), Forschungszentrum Jülich, D-52425 Jülich (Germany); Sutmann, Godehard, E-mail: g.sutmann@fz-juelich.de [Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation (IAS), Forschungszentrum Jülich, D-52425 Jülich (Germany); ICAMS, Ruhr-University Bochum, D-44801 Bochum (Germany)
2016-06-01
A new adaptive resolution technique for particle-based multi-level simulations of fluids is presented. In the approach, the representation of fluid and solvent particles is changed on the fly between an atomistic and a coarse-grained description. The present approach is based on a hybrid coupling of the multiparticle collision dynamics (MPC) method and molecular dynamics (MD), thereby coupling stochastic and deterministic particle-based methods. Hydrodynamics is examined by calculating velocity and current correlation functions for various mixed and coupled systems. We demonstrate that hydrodynamic properties of the mixed fluid are conserved by a suitable coupling of the two particle methods, and that the simulation results agree well with theoretical expectations.
DYNSYL: a general-purpose dynamic simulator for chemical processes
International Nuclear Information System (INIS)
Patterson, G.K.; Rozsa, R.B.
1978-01-01
Lawrence Livermore Laboratory is conducting a safeguards program for the Nuclear Regulatory Commission. The goal of the Material Control Project of this program is to evaluate material control and accounting (MCA) methods in plants that handle special nuclear material (SNM). To this end we designed and implemented the dynamic chemical plant simulation program DYNSYL. This program can be used to generate process data or to provide estimates of process performance; it simulates both steady-state and dynamic behavior. The MCA methods that may have to be evaluated range from sophisticated on-line material trackers such as Kalman filter estimators, to relatively simple material balance procedures. This report describes the overall structure of DYNSYL and includes some example problems. The code is still in the experimental stage and revision is continuing
Parallel Multiscale Algorithms for Astrophysical Fluid Dynamics Simulations
Norman, Michael L.
1997-01-01
Our goal is to develop software libraries and applications for astrophysical fluid dynamics simulations in multidimensions that will enable us to resolve the large spatial and temporal variations that inevitably arise due to gravity, fronts and microphysical phenomena. The software must run efficiently on parallel computers and be general enough to allow the incorporation of a wide variety of physics. Cosmological structure formation with realistic gas physics is the primary application driver in this work. Accurate simulations of e.g. galaxy formation require a spatial dynamic range (i.e., ratio of system scale to smallest resolved feature) of 104 or more in three dimensions in arbitrary topologies. We take this as our technical requirement. We have achieved, and in fact, surpassed these goals.
Dynamic skin deformation simulation using musculoskeletal model and soft tissue dynamics
Institute of Scientific and Technical Information of China (English)
Akihiko Murai; Q. Youn Hong; Katsu Yamane; Jessica K. Hodgins
2017-01-01
Deformation of skin and muscle is essential for bringing an animated character to life. This deformation is difficult to animate in a realistic fashion using traditional techniques because of the subtlety of the skin deformations that must move appropriately for the character design. In this paper, we present an algorithm that generates natural, dynamic, and detailed skin deformation (movement and jiggle) from joint angle data sequences. The algorithm has two steps: identification of parameters for a quasi-static muscle deformation model, and simulation of skin deformation. In the identification step, we identify the model parameters using a musculoskeletal model and a short sequence of skin deformation data captured via a dense marker set. The simulation step first uses the quasi-static muscle deformation model to obtain the quasi-static muscle shape at each frame of the given motion sequence (slow jump). Dynamic skin deformation is then computed by simulating the passive muscle and soft tissue dynamics modeled as a mass–spring–damper system. Having obtained the model parameters, we can simulate dynamic skin deformations for subjects with similar body types from new motion data. We demonstrate our method by creating skin deformations for muscle co-contraction and external impacts from four different behaviors captured as skeletal motion capture data. Experimental results show that the simulated skin deformations are quantitatively and qualitatively similar to measured actual skin deformations.
Dynamic skin deformation simulation using musculoskeletal model and soft tissue dynamics
Institute of Scientific and Technical Information of China (English)
Akihiko Murai; Q.Youn Hong; Katsu Yamane; Jessica K.Hodgins
2017-01-01
Deformation of skin and muscle is essential for bringing an animated character to life. This deformation is difficult to animate in a realistic fashion using traditional techniques because of the subtlety of the skin deformations that must move appropriately for the character design. In this paper, we present an algorithm that generates natural, dynamic, and detailed skin deformation(movement and jiggle) from joint angle data sequences. The algorithm has two steps: identification of parameters for a quasi-static muscle deformation model, and simulation of skin deformation. In the identification step, we identify the model parameters using a musculoskeletal model and a short sequence of skin deformation data captured via a dense marker set. The simulation step first uses the quasi-static muscle deformation model to obtain the quasi-static muscle shape at each frame of the given motion sequence(slow jump). Dynamic skin deformation is then computed by simulating the passive muscle and soft tissue dynamics modeled as a mass–spring–damper system. Having obtained the model parameters, we can simulate dynamic skin deformations for subjects with similar body types from new motion data. We demonstrate our method by creating skin deformations for muscle co-contraction and external impacts from four different behaviors captured as skeletal motion capture data. Experimental results show that the simulated skin deformations are quantitatively and qualitatively similar to measured actual skin deformations.
Dynamic information architecture system (DIAS) : multiple model simulation management
International Nuclear Information System (INIS)
Simunich, K. L.; Sydelko, P.; Dolph, J.; Christiansen, J.
2002-01-01
Dynamic Information Architecture System (DIAS) is a flexible, extensible, object-based framework for developing and maintaining complex multidisciplinary simulations of a wide variety of application contexts. The modeling domain of a specific DIAS-based simulation is determined by (1) software Entity (domain-specific) objects that represent the real-world entities that comprise the problem space (atmosphere, watershed, human), and (2) simulation models and other data processing applications that express the dynamic behaviors of the domain entities. In DIAS, models communicate only with Entity objects, never with each other. Each Entity object has a number of Parameter and Aspect (of behavior) objects associated with it. The Parameter objects contain the state properties of the Entity object. The Aspect objects represent the behaviors of the Entity object and how it interacts with other objects. DIAS extends the ''Object'' paradigm by abstraction of the object's dynamic behaviors, separating the ''WHAT'' from the ''HOW.'' DIAS object class definitions contain an abstract description of the various aspects of the object's behavior (the WHAT), but no implementation details (the HOW). Separate DIAS models/applications carry the implementation of object behaviors (the HOW). Any model deemed appropriate, including existing legacy-type models written in other languages, can drive entity object behavior. The DIAS design promotes plug-and-play of alternative models, with minimal recoding of existing applications. The DIAS Context Builder object builds a constructs or scenario for the simulation, based on developer specification and user inputs. Because DIAS is a discrete event simulation system, there is a Simulation Manager object with which all events are processed. Any class that registers to receive events must implement an event handler (method) to process the event during execution. Event handlers can schedule other events; create or remove Entities from the
Dynamic information architecture system (DIAS) : multiple model simulation management.
Energy Technology Data Exchange (ETDEWEB)
Simunich, K. L.; Sydelko, P.; Dolph, J.; Christiansen, J.
2002-05-13
Dynamic Information Architecture System (DIAS) is a flexible, extensible, object-based framework for developing and maintaining complex multidisciplinary simulations of a wide variety of application contexts. The modeling domain of a specific DIAS-based simulation is determined by (1) software Entity (domain-specific) objects that represent the real-world entities that comprise the problem space (atmosphere, watershed, human), and (2) simulation models and other data processing applications that express the dynamic behaviors of the domain entities. In DIAS, models communicate only with Entity objects, never with each other. Each Entity object has a number of Parameter and Aspect (of behavior) objects associated with it. The Parameter objects contain the state properties of the Entity object. The Aspect objects represent the behaviors of the Entity object and how it interacts with other objects. DIAS extends the ''Object'' paradigm by abstraction of the object's dynamic behaviors, separating the ''WHAT'' from the ''HOW.'' DIAS object class definitions contain an abstract description of the various aspects of the object's behavior (the WHAT), but no implementation details (the HOW). Separate DIAS models/applications carry the implementation of object behaviors (the HOW). Any model deemed appropriate, including existing legacy-type models written in other languages, can drive entity object behavior. The DIAS design promotes plug-and-play of alternative models, with minimal recoding of existing applications. The DIAS Context Builder object builds a constructs or scenario for the simulation, based on developer specification and user inputs. Because DIAS is a discrete event simulation system, there is a Simulation Manager object with which all events are processed. Any class that registers to receive events must implement an event handler (method) to process the event during execution. Event handlers
Energy Technology Data Exchange (ETDEWEB)
Winke, Florian; Bargende, Michael [Stuttgart Univ. (Germany). Inst. fuer Verbrennungsmotoren und Kraftfahrwesen (IVK)
2013-09-15
As a result of the rising requirements on the development process of modern vehicles, simulation models for the prediction of fuel efficiency have become an irreplaceable tool in the automotive industry. Especially for the design of hybrid electric drivetrains, the increasingly short development cycles can only be met by the use of efficient simulation models. At the IVK of the University of Stuttgart, different approaches to simulating the longitudinal dynamics of hybrid electric vehicles were analysed and compared within the presented project. The focus of the investigations was on urban operation. The objective was to develop a hybrid vehicle concept that allows an equitable comparison with pure battery electric vehicles. (orig.)
Elastic constants of diamond from molecular dynamics simulations
International Nuclear Information System (INIS)
Gao Guangtu; Van Workum, Kevin; Schall, J David; Harrison, Judith A
2006-01-01
The elastic constants of diamond between 100 and 1100 K have been calculated for the first time using molecular dynamics and the second-generation, reactive empirical bond-order potential (REBO). This version of the REBO potential was used because it was redesigned to be able to model the elastic properties of diamond and graphite at 0 K while maintaining its original capabilities. The independent elastic constants of diamond, C 11 , C 12 , and C 44 , and the bulk modulus were all calculated as a function of temperature, and the results from the three different methods are in excellent agreement. By extrapolating the elastic constant data to 0 K, it is clear that the values obtained here agree with the previously calculated 0 K elastic constants. Because the second-generation REBO potential was fit to obtain better solid-state force constants for diamond and graphite, the agreement with the 0 K elastic constants is not surprising. In addition, the functional form of the second-generation REBO potential is able to qualitatively model the functional dependence of the elastic constants and bulk modulus of diamond at non-zero temperatures. In contrast, reactive potentials based on other functional forms do not reproduce the correct temperature dependence of the elastic constants. The second-generation REBO potential also correctly predicts that diamond has a negative Cauchy pressure in the temperature range examined
Cuetos, Alejandro; Patti, Alessandro
2015-08-01
We propose a simple but powerful theoretical framework to quantitatively compare Brownian dynamics (BD) and dynamic Monte Carlo (DMC) simulations of multicomponent colloidal suspensions. By extending our previous study focusing on monodisperse systems of rodlike colloids, here we generalize the formalism described there to multicomponent colloidal mixtures and validate it by investigating the dynamics in isotropic and liquid crystalline phases containing spherical and rodlike particles. In order to investigate the dynamics of multicomponent colloidal systems by DMC simulations, it is key to determine the elementary time step of each species and establish a unique timescale. This is crucial to consistently study the dynamics of colloidal particles with different geometry. By analyzing the mean-square displacement, the orientation autocorrelation functions, and the self part of the van Hove correlation functions, we show that DMC simulation is a very convenient and reliable technique to describe the stochastic dynamics of any multicomponent colloidal system. Our theoretical formalism can be easily extended to any colloidal system containing size and/or shape polydisperse particles.
Simulational nanoengineering: Molecular dynamics implementation of an atomistic Stirling engine.
Rapaport, D C
2009-04-01
A nanoscale-sized Stirling engine with an atomistic working fluid has been modeled using molecular dynamics simulation. The design includes heat exchangers based on thermostats, pistons attached to a flywheel under load, and a regenerator. Key aspects of the behavior, including the time-dependent flows, are described. The model is shown to be capable of stable operation while producing net work at a moderate level of efficiency.
Molecular dynamics simulation of nanocrystalline nickel: structure and mechanical properties
Energy Technology Data Exchange (ETDEWEB)
Swygenhoven, H. van [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Caro, A. [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche
1997-09-01
Molecular dynamics computer simulations of low temperature elastic and plastic deformation of Ni nanophase samples (3-7 nm) are performed. The samples are polycrystals nucleated from different seeds, with random locations and orientations. Bulk and Young`s modulus, onset of plastic deformation and mechanism responsible for the plastic behaviour are studied and compared with the behaviour of coarse grained samples. (author) 1 fig., 3 refs.
Molecular Dynamics Simulations of Tensile Behavior of Copper
Sainath, G.; Srinivasan, V. S.; Choudhary, B. K.; Mathew, M. D.; Jayakumar, T.
2014-01-01
Molecular dynamics simulations on tensile deformation of initially defect free single crystal copper nanowire oriented in {100} has been carried out at 10 K under adiabatic and isothermal loading conditions. The tensile behaviour was characterized by sharp rise in stress in elastic regime followed by sudden drop at the point of dislocation nucleation. The important finding is that the variation in dislocation density is correlated with the observed stress-strain response. Several interesting ...
Modeling and simulation of high-speed milling centers dynamics
Msaddek , El Bechir; Bouaziz , Zoubeir; Baili , Maher; Dessein , Gilles
2011-01-01
International audience; High-speed machining is a milling operation in industrial production of aeronautic parts, molds, and dies. The parts production is being reduced because of the slowing down of the machining resulting from the tool path discontinuity machining strategy. In this article, we propose a simulation tool of the machine dynamic behavior, in complex parts machining. For doing this, analytic models have been developed expressing the cutting tool feed rate. Afterwards, a simulati...
Quantum molecular dynamics simulations of thermophysical properties of fluid ethane
Zhang, Yujuan; Wang, Cong; Zheng, Fawei; Zhang, Ping
2012-01-01
We have performed first-principles molecular-dynamics simulations based on density-functional theory to study the thermophysical properties of ethane under extreme conditions. We present new results for the equation of state of fluid ethane in the warm dense region. The optical conductivity is calculated via the Kubo-Greenwood formula from which the dc conductivity and optical reflectivity are derived. The close correlation between the nonmetal-metal transition of ethane and its decomposition...
Dynamic simulation for effective workforce management in new product development
M. Mutingi
2012-01-01
Effective planning and management of workforce for new product development (NPD) projects is a great challenge to many organisations, especially in the presence of engineering changes during the product development process. The management objective in effective workforce management is to recruit, develop and deploy the right people at the right place at the right time so as to fulfill organizational objectives. In this paper, we propose a dynamic simulation model to address the workforce mana...
Simulation of dynamics of a permanent magnet linear actuator
DEFF Research Database (Denmark)
Yatchev, Ivan; Ritchie, Ewen
2010-01-01
Comparison of two approaches for the simulation of the dynamic behaviour of a permanent magnet linear actuator is presented. These are full coupled model, where the electromagnetic field, electric circuit and mechanical motion problems are solved simultaneously, and decoupled model, where first...... flexibility when the actuator response is required to be estimated for different external conditions, e.g. external circuit parameters or mechanical loads....
Molecular dynamics simulation of nanocrystalline nickel: structure and mechanical properties
International Nuclear Information System (INIS)
Swygenhoven, H. van; Caro, A.
1997-01-01
Molecular dynamics computer simulations of low temperature elastic and plastic deformation of Ni nanophase samples (3-7 nm) are performed. The samples are polycrystals nucleated from different seeds, with random locations and orientations. Bulk and Young's modulus, onset of plastic deformation and mechanism responsible for the plastic behaviour are studied and compared with the behaviour of coarse grained samples. (author) 1 fig., 3 refs
Molecular dynamics simulation of cascade damage in gold
International Nuclear Information System (INIS)
Alonso, E.; Caturla, M.J.; Tang, M.; Huang, H.; Diaz de la Rubia, T.
1997-01-01
High-energy cascades have been simulated in gold using molecular dynamics with a modified embedded atom method potential. The results show that both vacancy and interstitial clusters form with high probability as a result of intracascade processes. The formation of clusters has been interpreted in terms of the high pressures generated in the core of the cascade during the early stages. The authors provide evidence that correlation between interstitial and vacancy clustering exists
Simulation of dynamic systems with Matlab and Simulink
Klee, Harold
2011-01-01
Mathematical ModelingDerivation of a Mathematical ModelDifference EquationsFirst Look at Discrete-Time SystemsCase Study: Population Dynamics (Single Species)Continuous-Time SystemsFirst-Order SystemsSecond-Order SystemsSimulation DiagramsHigher-Order SystemsState VariablesNonlinear SystemsCase Study: Submarine Depth Control SystemElementary Numerical IntegrationDiscrete-Time System Approximation of a Continuous-
Simulating market dynamics: interactions between consumer psychology and social networks.
Janssen, Marco A; Jager, Wander
2003-01-01
Markets can show different types of dynamics, from quiet markets dominated by one or a few products, to markets with continual penetration of new and reintroduced products. In a previous article we explored the dynamics of markets from a psychological perspective using a multi-agent simulation model. The main results indicated that the behavioral rules dominating the artificial consumer's decision making determine the resulting market dynamics, such as fashions, lock-in, and unstable renewal. Results also show the importance of psychological variables like social networks, preferences, and the need for identity to explain the dynamics of markets. In this article we extend this work in two directions. First, we will focus on a more systematic investigation of the effects of different network structures. The previous article was based on Watts and Strogatz's approach, which describes the small-world and clustering characteristics in networks. More recent research demonstrated that many large networks display a scale-free power-law distribution for node connectivity. In terms of market dynamics this may imply that a small proportion of consumers may have an exceptional influence on the consumptive behavior of others (hubs, or early adapters). We show that market dynamics is a self-organized property depending on the interaction between the agents' decision-making process (heuristics), the product characteristics (degree of satisfaction of unit of consumption, visibility), and the structure of interactions between agents (size of network and hubs in a social network).
New modelling strategy for IRIS dynamic response simulation
International Nuclear Information System (INIS)
Cammi, A.; Ricotti, M. E.; Casella, F.; Schiavo, F.
2004-01-01
The pressurized light water cooled, medium power (1000 MWt) IRIS (International Reactor Innovative and Secure) has been under development for four years by an international consortium of over 21 organizations from ten countries. The plant conceptual design was completed in 2001 and the preliminary design is nearing completion. The pre-application licensing process with NRC started in October, 2002 and IRIS is one of the designs considered by US utilities as part of the ESP (Early Site Permit) process. In this paper the development of an adequate modeling and simulation tool for Dynamics and Control tasks is presented. The key features of the developed simulator are: a) Modularity: the system model is built by connecting the models of its components, which are written independently of their boundary conditions; b) Openness: the code of each component model is clearly readable and close to the original equations and easily customised by the experienced user; c) Efficiency: the simulation code is fast; d) Tool support: the simulation tool is based on reliable, tested and well-documented software. To achieve these objectives, the Modelica language was used as a basis for the development of the simulator. The Modelica language is the results of recent advances in the field of object-oriented, multi-physics, dynamic system modelling. The language definition is open-source and it has already been successfully adopted in several industrial fields. To provide the required capabilities for the analysis, specific models for nuclear reactor components have been developed, to be applied for the dynamic simulation of the IRIS integral reactor, albeit keeping general validity for PWR plants. The following Modelica models have been written to satisfy the IRIS modelling requirements and are presented in this paper: neutronics point kinetic, fuel heat transfer, control rods model, including the innovative internal drive mechanism type, and a once-through type steam generator, thus
Evaluation of uranium dioxide thermal conductivity using molecular dynamics simulations
International Nuclear Information System (INIS)
Kim, Woongkee; Kaviany, Massoud; Shim, J. H.
2014-01-01
It can be extended to larger space, time scale and even real reactor situation with fission product as multi-scale formalism. Uranium dioxide is a fluorite structure with Fm3m space group. Since it is insulator, dominant heat carrier is phonon, rather than electrons. So, using equilibrium molecular dynamics (MD) simulation, we present the appropriate calculation parameters in MD simulation by calculating thermal conductivity and application of it to the thermal conductivity of polycrystal. In this work, we investigate thermal conductivity of uranium dioxide and optimize the parameters related to its process. In this process, called Green Kubo formula, there are two parameters i.e correlation length and sampling interval, which effect on ensemble integration in order to obtain thermal conductivity. Through several comparisons, long correlation length and short sampling interval give better results. Using this strategy, thermal conductivity of poly crystal is obtained and comparison with that of pure crystal is made. Thermal conductivity of poly crystal show lower value that that of pure crystal. In further study, we broaden the study to transport coefficient of radiation damaged structures using molecular dynamics. Although molecular dynamics is tools for treating microscopic scale, most macroscopic issues related to nuclear materials such as voids in fuel materials and weakened mechanical properties by radiation are based on microscopic basis. Thus, research on microscopic scale would be expanded in this field and many hidden mechanism in atomic scales will be revealed via both atomic scale simulations and experiments
Application of subset simulation methods to dynamic fault tree analysis
International Nuclear Information System (INIS)
Liu Mengyun; Liu Jingquan; She Ding
2015-01-01
Although fault tree analysis has been implemented in the nuclear safety field over the past few decades, it was recently criticized for the inability to model the time-dependent behaviors. Several methods are proposed to overcome this disadvantage, and dynamic fault tree (DFT) has become one of the research highlights. By introducing additional dynamic gates, DFT is able to describe the dynamic behaviors like the replacement of spare components or the priority of failure events. Using Monte Carlo simulation (MCS) approach to solve DFT has obtained rising attention, because it can model the authentic behaviors of systems and avoid the limitations in the analytical method. In this paper, it provides an overview and MCS information for DFT analysis, including the sampling of basic events and the propagation rule for logic gates. When calculating rare-event probability, large amount of simulations in standard MCS are required. To improve the weakness, subset simulation (SS) approach is applied. Using the concept of conditional probability and Markov Chain Monte Carlo (MCMC) technique, the SS method is able to accelerate the efficiency of exploring the failure region. Two cases are tested to illustrate the performance of SS approach, and the numerical results suggest that it gives high efficiency when calculating complicated systems with small failure probabilities. (author)
Direct identification of predator-prey dynamics in gyrokinetic simulations
Energy Technology Data Exchange (ETDEWEB)
Kobayashi, Sumire, E-mail: sumire.kobayashi@lpp.polytechnique.fr; Gürcan, Özgür D [Laboratoire de Physique des Plasmas, CNRS, Paris-Sud, Ecole Polytechnique, UMR7648, F-91128 Palaiseau (France); Diamond, Patrick H. [University of California, San Diego, La Jolla, California 92093-0319 (United States)
2015-09-15
The interaction between spontaneously formed zonal flows and small-scale turbulence in nonlinear gyrokinetic simulations is explored in a shearless closed field line geometry. It is found that when clear limit cycle oscillations prevail, the observed turbulent dynamics can be quantitatively captured by a simple Lotka-Volterra type predator-prey model. Fitting the time traces of full gyrokinetic simulations by such a reduced model allows extraction of the model coefficients. Scanning physical plasma parameters, such as collisionality and density gradient, it was observed that the effective growth rates of turbulence (i.e., the prey) remain roughly constant, in spite of the higher and varying level of primary mode linear growth rates. The effective growth rate that was extracted corresponds roughly to the zonal-flow-modified primary mode growth rate. It was also observed that the effective damping of zonal flows (i.e., the predator) in the parameter range, where clear predator-prey dynamics is observed, (i.e., near marginal stability) agrees with the collisional damping expected in these simulations. This implies that the Kelvin-Helmholtz-like instability may be negligible in this range. The results imply that when the tertiary instability plays a role, the dynamics becomes more complex than a simple Lotka-Volterra predator prey.
Dynamic simulation of variable capacity refrigeration systems under abnormal conditions
International Nuclear Information System (INIS)
Liang Nan; Shao Shuangquan; Tian Changqing; Yan Yuying
2010-01-01
There are often abnormal working conditions at evaporator outlet of a refrigeration system, such as two-phase state in transient process, and it is essential to investigate such transient behaviours for system design and control strategy. In this paper, a dynamic lumped parameter model is developed to simulate the transient behaviours of refrigeration system with variable capacity in both normal and abnormal working conditions. The appropriate discriminant method is adopted to switch the normal and abnormal conditions smoothly and to eliminate the simulated data oscillation. In order to verify the dynamic model, we built a test system with variable frequency compressor, water-cooling condenser, evaporator and electronic expansion valve. Calculated values from the mathematical model show reasonable agreement with the experimental data. The simulation results show that the transient behaviours of the variable capacity refrigeration system in the abnormal working conditions can be calculated reliably with the dynamic model when the compressor rotary speed or the opening of electronic expansion valve changes abruptly.
Brownian dynamic simulations and experiments of MR fluids
International Nuclear Information System (INIS)
Segovia-Gutiérrez, J P; Vicente, J de; Hidalgo, R; Puertas, A M
2013-01-01
The use of computational techniques in magnetorheology is not new. I general, these approaches assume dipolar magnetic interactions, hard sphere repulsions, and no-slip conditions. In this contribution we focus on the dynamics of the equilibrium state in the presence of uniaxial DC fields. To achieve this goal we make use of Brownian Dynamic Simulations. We highlight the importance of the Brownian forces versus magnetic dipolar interaction in the range of low magnetic field strengths. We monitor the formation of columnar structures and their dynamics, in competition with the Brownian motion, until a hexatic crystal phase appears at high field strengths for monodisperse systems. The shear viscosity is computed from the Einstein relation and eventually compared with experimental data at very low-shear rates. A reasonably good agreement between both data sets is observed.
Molecular dynamics simulations of lysozyme in water/sugar solutions
Energy Technology Data Exchange (ETDEWEB)
Lerbret, A. [Department of Food Science, Cornell University, 101 Stocking Hall, Ithaca, NY 14853 (United States); Affouard, F. [Laboratoire de Dynamique et Structure des Materiaux Moleculaires, UMR CNRS 8024, Universite Lille I, 59655 Villeneuve d' Ascq Cedex (France)], E-mail: frederic.affouard@univ-lille1.fr; Bordat, P. [Laboratoire de Chimie Theorique et de Physico-Chimie Moleculaire, UMR 5624, Universite de Pau et des Pays de l' Adour, 64000 Pau (France); Hedoux, A.; Guinet, Y.; Descamps, M. [Laboratoire de Dynamique et Structure des Materiaux Moleculaires, UMR CNRS 8024, Universite Lille I, 59655 Villeneuve d' Ascq Cedex (France)
2008-04-18
Structural and dynamical properties of the solvent at the protein/solvent interface have been investigated by molecular dynamics simulations of lysozyme in trehalose, maltose and sucrose solutions. Results are discussed in the framework of the bioprotection phenomena. The analysis of the relative concentration of water oxygen atoms around lysozyme suggests that lysozyme is preferentially hydrated. When comparing the three sugars, trehalose is seen more excluded than maltose and sucrose. The preferential exclusion of sugars from the protein surface induces some differences in the behavior of trehalose and maltose, particularly at 50 and 60 wt% concentrations, that are not observed experimentally in binary sugar/mixtures. The dynamical slowing down of the solvent is suggested to mainly arise from the homogeneity of the water/sugar matrices controlled by the percolation of the sugar hydrogen bonds networks. Furthermore, lysozyme strongly increases relaxation times of solvent molecules at the protein/solvent interface.
Modelling of windmill induction generators in dynamic simulation programs
DEFF Research Database (Denmark)
Akhmatov, Vladislav; Knudsen, Hans
1999-01-01
with and without a model of the mechanical shaft. The reason for the discrepancies are explained, and it is shown that the phenomenon is due partly to the presence of DC offset currents in the induction machine stator, and partly to the mechanical shaft system of the wind turbine and the generator rotor......For AC networks with large amounts of induction generators-in case of e.g. windmills-the paper demonstrates a significant discrepancy in the simulated voltage recovery after faults in weak networks, when comparing result obtained with dynamic stability programs and transient programs, respectively....... It is shown that it is possible to include a transient model in dynamic stability programs and thus obtain correct results also in dynamic stability programs. A mechanical model of the shaft system has also been included in the generator model...
Langevin dynamics simulations of large frustrated Josephson junction arrays
International Nuclear Information System (INIS)
Groenbech-Jensen, N.; Bishop, A.R.; Lomdahl, P.S.
1991-01-01
Long-time Langevin dynamics simulations of large (N x N,N = 128) 2-dimensional arrays of Josephson junctions in a uniformly frustrating external magnetic field are reported. The results demonstrate: (1) Relaxation from an initially random flux configuration as a universal fit to a glassy stretched-exponential type of relaxation for the intermediate temperatures T(0.3 T c approx-lt T approx-lt 0.7 T c ), and an activated dynamic behavior for T ∼ T c ; (2) a glassy (multi-time, multi-length scale) voltage response to an applied current. Intrinsic dynamical symmetry breaking induced by boundaries as nucleation sites for flux lattice defects gives rise to transverse and noisy voltage response
Langevin dynamics simulations of large frustrated Josephson junction arrays
International Nuclear Information System (INIS)
Gronbech-Jensen, N.; Bishop, A.R.; Lomdahl, P.S.
1991-01-01
Long-time Langevin dynamics simulations of large (N x N, N = 128) 2-dimensional arrays of Josephson junctions in a uniformly frustrating external magnetic field are reported. The results demonstrate: Relaxation from an initially random flux configuration as a ''universal'' fit to a ''glassy'' stretched-exponential type of relaxation for the intermediate temperatures T (0.3 T c approx-lt T approx-lt 0.7 T c ), and an ''activated dynamic'' behavior for T ∼ T c A glassy (multi-time, multi-length scale) voltage response to an applied current. Intrinsic dynamical symmetry breaking induced by boundaries as nucleation sites for flux lattice defects gives rise to transverse and noisy voltage response
Parallel Stochastic discrete event simulation of calcium dynamics in neuron.
Ishlam Patoary, Mohammad Nazrul; Tropper, Carl; McDougal, Robert A; Zhongwei, Lin; Lytton, William W
2017-09-26
The intra-cellular calcium signaling pathways of a neuron depends on both biochemical reactions and diffusions. Some quasi-isolated compartments (e.g. spines) are so small and calcium concentrations are so low that one extra molecule diffusing in by chance can make a nontrivial difference in its concentration (percentage-wise). These rare events can affect dynamics discretely in such way that they cannot be evaluated by a deterministic simulation. Stochastic models of such a system provide a more detailed understanding of these systems than existing deterministic models because they capture their behavior at a molecular level. Our research focuses on the development of a high performance parallel discrete event simulation environment, Neuron Time Warp (NTW), which is intended for use in the parallel simulation of stochastic reaction-diffusion systems such as intra-calcium signaling. NTW is integrated with NEURON, a simulator which is widely used within the neuroscience community. We simulate two models, a calcium buffer and a calcium wave model. The calcium buffer model is employed in order to verify the correctness and performance of NTW by comparing it to a serial deterministic simulation in NEURON. We also derived a discrete event calcium wave model from a deterministic model using the stochastic IP3R structure.
Molecular dynamics simulation of thermophysical properties of undercooled liquid cobalt
International Nuclear Information System (INIS)
Han, X J; Wang, J Z; Chen, M; Guo, Z Y
2004-01-01
Molecular dynamics simulations with two different embedded-atom-method (EAM) potentials are applied to calculate the density, specific heat and self-diffusion coefficient of liquid cobalt at temperatures above and below the melting temperature. Simulation shows that Pasianot's EAM model of cobalt constructed on the basis of a hcp structure is more successful than Stoop's EAM model in the framework of a fcc structure in predicting the thermophysical properties of liquid cobalt. Simulations with Pasianot's EAM model indicate that the density fits into ρ = 7.49-9.17 x 10 -4 (T- T m ) g cm -3 , and the self-diffusion coefficient is given by D = 1.291 x 10 -7 exp(-48 795.71/RT) m 2 s -1 . Dissimilar to the linear dependence of the density and the Arrhenius dependence of the self-diffusion coefficient on temperature, the specific heat shows almost a constant value of 38.595 ± 0.084 J mol -1 K -1 within the temperature range of simulation. The simulated properties of liquid cobalt are compared with experimental data available. Comparisons show reasonable agreements between the simulated results from Pasianot's EAM model and experimental data
A Dynamical Training and Design Simulator for Active Catheters
Directory of Open Access Journals (Sweden)
Georges Dumont
2008-11-01
Full Text Available This work addresses the design of an active multi-link micro-catheter actuated by Shape Memory Alloy (SMA micro actuators. This may be a response to one medical major demand on such devices, which will be useful for surgical explorations and interventions. In this paper, we focus on a training and design simulator dedicated to such catheters. This simulator is based on an original simulation platform (OpenMASK. The catheter is a robotic system, which is evaluated by a dynamical simulation addressing a navigation task in its environment. The design of the prototype and its mechanical model are presented. We develop an interaction model for contact. This model uses a real medical database for which distance cartography is proposed. Then we focus on an autonomous control model based on a multi-agent approach and including the behaviour description of the SMA actuators. Results of mechanical simulations including interaction with the ducts are presented. Furthermore, the interest of such a simulator is presented by applying virtual prototyping techniques for the design optimization. This optimization process is achieved by using genetic algorithms at different stages with respect to the specified task.
Vision-Augmented Molecular Dynamics Simulation of Nanoindentation
Directory of Open Access Journals (Sweden)
Rajab Al-Sayegh
2015-01-01
Full Text Available We present a user-friendly vision-augmented technique to carry out atomic simulation using hand gestures. The system is novel in its concept as it enables the user to directly manipulate the atomic structures on the screen, in 3D space using hand gestures, allowing the exploration and visualisation of molecular interactions at different relative conformations. The hand gestures are used to pick and place atoms on the screen allowing thereby the ease of carrying out molecular dynamics simulation in a more efficient way. The end result is that users with limited expertise in developing molecular structures can now do so easily and intuitively by the use of body gestures to interact with the simulator to study the system in question. The proposed system was tested by simulating the crystal anisotropy of crystalline silicon during nanoindentation. A long-range (Screened bond order Tersoff potential energy function was used during the simulation which revealed the value of hardness and elastic modulus being similar to what has been found previously from the experiments. We anticipate that our proposed system will open up new horizons to the current methods on how an MD simulation is designed and executed.
A Dynamical Training and Design Simulator for Active Catheters
Directory of Open Access Journals (Sweden)
Georges Dumont
2004-12-01
Full Text Available This work addresses the design of an active multi-link micro-catheter actuated by Shape Memory Alloy (SMA micro actuators. This may be a response to one medical major demand on such devices, which will be useful for surgical explorations and interventions. In this paper, we focus on a training and design simulator dedicated to such catheters. This simulator is based on an original simulation platform (OpenMASK. The catheter is a robotic system, which is evaluated by a dynamical simulation addressing a navigation task in its environment. The design of the prototype and its mechanical model are presented. We develop an interaction model for contact. This model uses a real medical database for which distance cartography is proposed. Then we focus on an autonomous control model based on a multi-agent approach and including the behaviour description of the SMA actuators. Results of mechanical simulations including interaction with the ducts are presented. Furthermore, the interest of such a simulator is presented by applying virtual prototyping techniques for the design optimization. This optimization process is achieved by using genetic algorithms at different stages with respect to the specified task.
Atomistic simulation of hydrogen dynamics near dislocations in vanadium hydrides
International Nuclear Information System (INIS)
Ogawa, Hiroshi
2015-01-01
Highlights: • Hydrogen–dislocation interaction was simulated by molecular dynamics method. • Different distribution of H atoms were observed at edge and screw dislocation. • Planner distribution of hydrogen may be caused by partialized edge dislocation. • Hydrogen diffusivity was reduced in both edge and screw dislocation models. • Pipe diffusion was observed for edge dislocation but not for screw dislocation. - Abstract: Kinetics of interstitial hydrogen atoms near dislocation cores were analyzed by atomistic simulation. Classical molecular dynamics method was applied to model structures of edge and screw dislocations in α-phase vanadium hydride. Simulation showed that hydrogen atoms aggregate near dislocation cores. The spatial distribution of hydrogen has a planner shape at edge dislocation due to dislocation partialization, and a cylindrical shape at screw dislocation. Simulated self-diffusion coefficients of hydrogen atoms in dislocation models were a half- to one-order lower than that of dislocation-free model. Arrhenius plot of self-diffusivity showed slightly different activation energies for edge and screw dislocations. Directional dependency of hydrogen diffusion near dislocation showed high and low diffusivity along edge and screw dislocation lines, respectively, hence so called ‘pipe diffusion’ possibly occur at edge dislocation but does not at screw dislocation
Simulated impacts of insect defoliation on forest carbon dynamics
International Nuclear Information System (INIS)
Medvigy, D; Clark, K L; Skowronski, N S; Schäfer, K V R
2012-01-01
Many temperate and boreal forests are subject to insect epidemics. In the eastern US, over 41 million meters squared of tree basal area are thought to be at risk of gypsy moth defoliation. However, the decadal-to-century scale implications of defoliation events for ecosystem carbon dynamics are not well understood. In this study, the effects of defoliation intensity, periodicity and spatial pattern on the carbon cycle are investigated in a set of idealized model simulations. A mechanistic terrestrial biosphere model, ecosystem demography model 2, is driven with observations from a xeric oak–pine forest located in the New Jersey Pine Barrens. Simulations indicate that net ecosystem productivity (equal to photosynthesis minus respiration) decreases linearly with increasing defoliation intensity. However, because of interactions between defoliation and drought effects, aboveground biomass exhibits a nonlinear decrease with increasing defoliation intensity. The ecosystem responds strongly with both reduced productivity and biomass loss when defoliation periodicity varies from 5 to 15 yr, but exhibits a relatively weak response when defoliation periodicity varies from 15 to 60 yr. Simulations of spatially heterogeneous defoliation resulted in markedly smaller carbon stocks than simulations with spatially homogeneous defoliation. These results show that gypsy moth defoliation has a large effect on oak–pine forest biomass dynamics, functioning and its capacity to act as a carbon sink. (letter)
A hybrid algorithm for parallel molecular dynamics simulations
Mangiardi, Chris M.; Meyer, R.
2017-10-01
This article describes algorithms for the hybrid parallelization and SIMD vectorization of molecular dynamics simulations with short-range forces. The parallelization method combines domain decomposition with a thread-based parallelization approach. The goal of the work is to enable efficient simulations of very large (tens of millions of atoms) and inhomogeneous systems on many-core processors with hundreds or thousands of cores and SIMD units with large vector sizes. In order to test the efficiency of the method, simulations of a variety of configurations with up to 74 million atoms have been performed. Results are shown that were obtained on multi-core systems with Sandy Bridge and Haswell processors as well as systems with Xeon Phi many-core processors.
Computational Fluid Dynamics and Building Energy Performance Simulation
DEFF Research Database (Denmark)
Nielsen, Peter Vilhelm; Tryggvason, T.
1998-01-01
An interconnection between a building energy performance simulation program and a Computational Fluid Dynamics program (CFD) for room air distribution will be introduced for improvement of the predictions of both the energy consumption and the indoor environment. The building energy performance...... simulation program requires a detailed description of the energy flow in the air movement which can be obtained by a CFD program. The paper describes an energy consumption calculation in a large building, where the building energy simulation program is modified by CFD predictions of the flow between three...... zones connected by open areas with pressure and buoyancy driven air flow. The two programs are interconnected in an iterative procedure. The paper shows also an evaluation of the air quality in the main area of the buildings based on CFD predictions. It is shown that an interconnection between a CFD...
Molecular dynamics simulation of bubble nucleation in explosive boiling
International Nuclear Information System (INIS)
Zou Yu; Chinese Academy of Sciences, Beijing; Huai Xiulan; Liang Shiqiang
2009-01-01
Molecular dynamics (MD) simulation is carried out for the bubble nucleation of liquid nitrogen in explosive boiling. The heat is transferred into the simulation system by rescaling the velocity of the molecules. The results indicate that the initial equilibrium temperature of liquid and molecular cluster size affect the energy conversion in the process of bubble nucleation. The potential energy of the system violently varies at the beginning of the bubble nucleation, and then varies around a fixed value. At the end of bubble nucleation, the potential energy of the system slowly increases. In the bubble nucleation of explosive boiling, the lower the initial equilibrium temperature, the larger the size of the molecular cluster, and the more the heat transferred into the system of the simulation cell, causing the increase potential energy in a larger range. (authors)
A Dynamic Compliance Cervix Phantom Robot for Latent Labor Simulation.
Luk, Michelle Jennifer; Lobb, Derek; Smith, James Andrew
2018-05-09
Physical simulation systems are commonly used in training of midwifery and obstetrics students, but none of these systems offers a dynamic compliance aspect that would make them more truly representative of cervix ripening. In this study, we introduce a unique soft robot phantom that simulates the cervix softening during the latent labor phase of birth. This proof-of-concept robotic phantom can be dilated by 1 cm and effaced by 35% through the application of a Foley catheter-like loading mechanism. Furthermore, psychophysics trials demonstrate how untrained subjects can identify hard and soft states of the phantom with specificities of 91% and 87%, respectively. Both results indicated the appropriateness for application of this soft robot technology to birth training simulators.
Simulation of Tailrace Hydrodynamics Using Computational Fluid Dynamics Models
Energy Technology Data Exchange (ETDEWEB)
Cook, Christopher B.; Richmond, Marshall C.
2001-05-01
This report investigates the feasibility of using computational fluid dynamics (CFD) tools to investigate hydrodynamic flow fields surrounding the tailrace zone below large hydraulic structures. Previous and ongoing studies using CFD tools to simulate gradually varied flow with multiple constituents and forebay/intake hydrodynamics have shown that CFD tools can provide valuable information for hydraulic and biological evaluation of fish passage near hydraulic structures. These studies however are incapable of simulating the rapidly varying flow fields that involving breakup of the free-surface, such as those through and below high flow outfalls and spillways. Although the use of CFD tools for these types of flow are still an active area of research, initial applications discussed in this report show that these tools are capable of simulating the primary features of these highly transient flow fields.
Lightweight computational steering of very large scale molecular dynamics simulations
International Nuclear Information System (INIS)
Beazley, D.M.
1996-01-01
We present a computational steering approach for controlling, analyzing, and visualizing very large scale molecular dynamics simulations involving tens to hundreds of millions of atoms. Our approach relies on extensible scripting languages and an easy to use tool for building extensions and modules. The system is extremely easy to modify, works with existing C code, is memory efficient, and can be used from inexpensive workstations and networks. We demonstrate how we have used this system to manipulate data from production MD simulations involving as many as 104 million atoms running on the CM-5 and Cray T3D. We also show how this approach can be used to build systems that integrate common scripting languages (including Tcl/Tk, Perl, and Python), simulation code, user extensions, and commercial data analysis packages