WorldWideScience

Sample records for reactive dna intercalating

  1. Intercalation processes of copper complexes in DNA

    Science.gov (United States)

    Galindo-Murillo, Rodrigo; García-Ramos, Juan Carlos; Ruiz-Azuara, Lena; Cheatham, Thomas E.; Cortés-Guzmán, Fernando

    2015-01-01

    The family of anticancer complexes that include the transition metal copper known as Casiopeínas® shows promising results. Two of these complexes are currently in clinical trials. The interaction of these compounds with DNA has been observed experimentally and several hypotheses regarding the mechanism of action have been developed, and these include the generation of reactive oxygen species, phosphate hydrolysis and/or base-pair intercalation. To advance in the understanding on how these ligands interact with DNA, we present a molecular dynamics study of 21 Casiopeínas with a DNA dodecamer using 10 μs of simulation time for each compound. All the complexes were manually inserted into the minor groove as the starting point of the simulations. The binding energy of each complex and the observed representative type of interaction between the ligand and the DNA is reported. With this extended sampling time, we found that four of the compounds spontaneously flipped open a base pair and moved inside the resulting cavity and four compounds formed stacking interactions with the terminal base pairs. The complexes that formed the intercalation pocket led to more stable interactions. PMID:25958394

  2. Fast photoinduced electron transfer through DNA intercalation.

    Science.gov (United States)

    Murphy, C J; Arkin, M R; Ghatlia, N D; Bossmann, S; Turro, N J; Barton, J K

    1994-06-07

    We report evidence for fast photoinduced electron transfer mediated by the DNA helix that requires metal complexes that are avid intercalators of DNA. Here the donor bis(phenanthroline)(dipyridophenazine)ruthenium(II) [Ru(phen)2dppz2+] and acceptor bis(9,10-phenanthrenequinone diimine)(phenanthroline)rhodium(III) [Rh(phi)2phen3+] intercalate into DNA with Kb > 10(6) M-1. Luminescence quenching experiments in the presence of two different lengths of DNA yield upward-curving Stern-Volmer plots and the loss of luminescence intensity far exceeds the change in emission lifetimes. In the presence of a nonintercalative electron acceptor, Ru(NH3)3+(6), Ru(phen)2dppz2+ luminescence is quenched much less efficiently compared to that found for the intercalative Rh(phi)2phen3+ quencher and follows linear Stern-Volmer kinetics; steady-state and time-resolved Stern-Volmer plots are comparable in scale. These experiments are consistent with a model involving fast long-range electron transfer between intercalators through the DNA helix.

  3. Enantiospecific kinking of DNA by a partially intercalating metal complex

    KAUST Repository

    Reymer, Anna

    2012-01-01

    Opposite enantiomers of [Ru(phenanthroline) 3] 2+ affect the persistence length of DNA differently, a long speculated effect of helix kinking. Our molecular dynamics simulations confirm a substantial change of duplex secondary structure produced by wedge-intercalation of one but not the other enantiomer. This effect is exploited by several classes of DNA operative proteins. © The Royal Society of Chemistry 2012.

  4. Tethered naphthalene diimide intercalators enhance DNA triplex stability.

    Science.gov (United States)

    Gianolio, D A; McLaughlin, L W

    2001-09-01

    Naphthalene diimides function as effective intercalators and when tethered to the 5'-terminus of a pyrimidine-rich oligonucleotide can contribute significantly to the overall stabilization of DNA triplexes. This stabilization can be further enhanced by alterations to the linker tethering the DNA sequence and the intercalator. Less flexible linkers, and particularly one with a phenyl ring present, appear to permit the stabilization afforded by the bound intercalator to be transferred more effectively to the three-stranded complex. The conjugate containing the phenyl linker exhibits a T(M) value that is increased by 28 degrees C relative to the unconjugated triplex. That the linker itself contributes to the observed stabilization is clear since introduction of the phenyl linker increases the observed T(M) by 11 degrees C relative to a simple flexible linker.

  5. DNA intercalator stimulates influenza transcription and virus replication

    Directory of Open Access Journals (Sweden)

    Poon Leo LM

    2011-03-01

    Full Text Available Abstract Influenza A virus uses its host transcription machinery to facilitate viral RNA synthesis, an event that is associated with cellular RNA polymerase II (RNAPII. In this study, various RNAPII transcription inhibitors were used to investigate the effect of RNAPII phosphorylation status on viral RNA transcription. A low concentration of DNA intercalators, such as actinomycin D (ActD, was found to stimulate viral polymerase activity and virus replication. This effect was not observed in cells treated with RNAPII kinase inhibitors. In addition, the loss of RNAPIIa in infected cells was due to the shift of nonphosphorylated RNAPII (RNAPIIa to hyperphosphorylated RNAPII (RNAPIIo.

  6. Reshaping the Energy Landscape Transforms the Mechanism and Binding Kinetics of DNA Threading Intercalation.

    Science.gov (United States)

    Clark, Andrew G; Naufer, M Nabuan; Westerlund, Fredrik; Lincoln, Per; Rouzina, Ioulia; Paramanathan, Thayaparan; Williams, Mark C

    2018-01-05

    Molecules that bind DNA via threading intercalation show high binding affinity as well as slow dissociation kinetics, properties ideal for the development of anticancer drugs. To this end, it is critical to identify the specific molecular characteristics of threading intercalators that result in optimal DNA interactions. Using single-molecule techniques, we quantify the binding of a small metal-organic ruthenium threading intercalator (Δ,Δ-B) and compare its binding characteristics to a similar molecule with significantly larger threading moieties (Δ,Δ-P). The binding affinities of the two molecules are the same, while comparison of the binding kinetics reveals significantly faster kinetics for Δ,Δ-B. However, the kinetics is still much slower than that observed for conventional intercalators. Comparison of the two threading intercalators shows that the binding affinity is modulated independently by the intercalating section and the binding kinetics is modulated by the threading moiety. In order to thread DNA, Δ,Δ-P requires a "lock mechanism", in which a large length increase of the DNA duplex is required for both association and dissociation. In contrast, measurements of the force-dependent binding kinetics show that Δ,Δ-B requires a large DNA length increase for association but no length increase for dissociation from DNA. This contrasts strongly with conventional intercalators, for which almost no DNA length change is required for association but a large DNA length change must occur for dissociation. This result illustrates the fundamentally different mechanism of threading intercalation compared with conventional intercalation and will pave the way for the rational design of therapeutic drugs based on DNA threading intercalation.

  7. Stabilization of chromosomes by DNA intercalators for flow karyotyping and identification by banding of isolated chromosomes

    NARCIS (Netherlands)

    Aten, J. A.; Buys, C. H.; van der Veen, A. Y.; Mesa, J. R.; Yu, L. C.; Gray, J. W.; Osinga, J.; Stap, J.

    1987-01-01

    A number of structurally unrelated DNA intercalators have been studied as stabilizers of mitotic chromosomes during isolation from rodent and human metaphase cells. Seven out of the nine intercalators tested were found to be useful as chromosome stabilizing agents. Chromosome suspensions prepared in

  8. Single-molecule kinetics and footprinting of DNA bis-intercalation: the paradigmatic case of Thiocoraline.

    Science.gov (United States)

    Camunas-Soler, Joan; Manosas, Maria; Frutos, Silvia; Tulla-Puche, Judit; Albericio, Fernando; Ritort, Felix

    2015-03-11

    DNA bis-intercalators are widely used in molecular biology with applications ranging from DNA imaging to anticancer pharmacology. Two fundamental aspects of these ligands are the lifetime of the bis-intercalated complexes and their sequence selectivity. Here, we perform single-molecule optical tweezers experiments with the peptide Thiocoraline showing, for the first time, that bis-intercalation is driven by a very slow off-rate that steeply decreases with applied force. This feature reveals the existence of a long-lived (minutes) mono-intercalated intermediate that contributes to the extremely long lifetime of the complex (hours). We further exploit this particularly slow kinetics to determine the thermodynamics of binding and persistence length of bis-intercalated DNA for a given fraction of bound ligand, a measurement inaccessible in previous studies of faster intercalating agents. We also develop a novel single-molecule footprinting technique based on DNA unzipping and determine the preferred binding sites of Thiocoraline with one base-pair resolution. This fast and radiolabelling-free footprinting technique provides direct access to the binding sites of small ligands to nucleic acids without the need of cleavage agents. Overall, our results provide new insights into the binding pathway of bis-intercalators and the reported selectivity might be of relevance for this and other anticancer drugs interfering with DNA replication and transcription in carcinogenic cell lines. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Critical role of DNA intercalation in enzyme-catalyzed nucleotide flipping.

    Science.gov (United States)

    Hendershot, Jenna M; O'Brien, Patrick J

    2014-11-10

    Nucleotide flipping is a common feature of DNA-modifying enzymes that allows access to target sites within duplex DNA. Structural studies have identified many intercalating amino acid side chains in a wide variety of enzymes, but the functional contribution of these intercalating residues is poorly understood. We used site-directed mutagenesis and transient kinetic approaches to dissect the energetic contribution of intercalation for human alkyladenine DNA glycosylase, an enzyme that initiates repair of alkylation damage. When AAG flips out a damaged nucleotide, the void in the duplex is filled by a conserved tyrosine (Y162). We find that tyrosine intercalation confers 140-fold stabilization of the extrahelical specific recognition complex, and that Y162 functions as a plug to slow the rate of unflipping by 6000-fold relative to the Y162A mutant. Surprisingly, mutation to the smaller alanine side chain increases the rate of nucleotide flipping by 50-fold relative to the wild-type enzyme. This provides evidence against the popular model that DNA intercalation accelerates nucleotide flipping. In the case of AAG, DNA intercalation contributes to the specific binding of a damaged nucleotide, but this enhanced specificity comes at the cost of reduced speed of nucleotide flipping. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Synthesis and DNA interaction of ethylenediamine platinum(II) complexes linked to DNA intercalants.

    Science.gov (United States)

    Duskova, Katerina; Sierra, Sara; Fernández, María-José; Gude, Lourdes; Lorente, Antonio

    2012-12-15

    A series of ethylenediamine platinum(II) complexes connected through semi-rigid chains of 1,2-bis(4-pyridyl)ethane to DNA intercalating subunits (naphthalene, anthracene or phenazine) has been synthesized, and their interactions with calf thymus (CT) DNA have been evaluated by viscometric titrations and equilibrium dialysis experiments. The parent ligands that contain anthracene or phenazine chromophores showed a monointercalative mode of DNA interaction (especially the anthracene derivative), with apparent association constants in the order of 10(4) M(-1). The corresponding platinum(II) complexes bind CT DNA through bisintercalation, as established by the significant increase of DNA contour length inferred from viscosity measurements, and the association constants are in the order of 10(5) M(-1). The naphthalene derivatives, however, exhibit a mixed mode of interaction, which suggests a partial contribution of both intercalation and groove binding for the ligand, and monointercalation in the case of the platinum(II) complex. Competition dialysis experiments carried out on the intercalative compounds have revealed a moderate selectivity towards GC DNA sequences for the derivatives containing the anthracene chromophore. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Search for DNA damage by human alkyladenine DNA glycosylase involves early intercalation by an aromatic residue.

    Science.gov (United States)

    Hendershot, Jenna M; O'Brien, Patrick J

    2017-09-29

    DNA repair enzymes recognize and remove damaged bases that are embedded in the duplex. To gain access, most enzymes use nucleotide flipping, whereby the target nucleotide is rotated 180° into the active site. In human alkyladenine DNA glycosylase (AAG), the enzyme that initiates base excision repair of alkylated bases, the flipped-out nucleotide is stabilized by intercalation of the side chain of tyrosine 162 that replaces the lesion nucleobase. Previous kinetic studies provided evidence for the formation of a transient complex that precedes the stable flipped-out complex, but it is not clear how this complex differs from nonspecific complexes. We used site-directed mutagenesis and transient-kinetic approaches to investigate the timing of Tyr 162 intercalation for AAG. The tryptophan substitution (Y162W) appeared to be conservative, because the mutant protein retained a highly favorable equilibrium constant for flipping the 1, N 6 -ethenoadenine (ϵA) lesion, and the rate of N -glycosidic bond cleavage was identical to that of the wild-type enzyme. We assigned the tryptophan fluorescence signal from Y162W by removing two native tryptophan residues (W270A/W284A). Stopped-flow experiments then demonstrated that the change in tryptophan fluorescence of the Y162W mutant is extremely rapid upon binding to either damaged or undamaged DNA, much faster than the lesion-recognition and nucleotide flipping steps that were independently determined by monitoring the ϵA fluorescence. These observations suggest that intercalation by this aromatic residue is one of the earliest steps in the search for DNA damage and that this interaction is important for the progression of AAG from nonspecific searching to specific-recognition complexes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Characterization of Intercalating State of YOYO-1 in λDNA Using SNOM/AFM

    Science.gov (United States)

    Muramatsu, H.; Homma, K.; Yamamoto, N.; Wang, Jia; Sakata-Sogawa, K.; Shimamoto, N.

    λDNA Molecules, in which YOYO-1 was intercalated, were imaged and characterized using a scanning near-field optical / atomic-force microscope. In the microscope system, a scanning unit is mounted on an inverse microscope where the bent optical fiber probe is used to operate in the dynamic mode AFM. Solution of λDNA, 5 μM (base concentration) with 5 μM and 500 nM YOYO-1, were prepared and cast on a γ-APTES treated-cover slips. λDNA immobilized on the cover slips aggregated in line. For λDNA with 5 μM YOYO-1, there is variation in the fluorescence intensity of the DNA and ratios of the fluorescence intensity showed almost integers in each region. As the fluorescence intensity correlated with the area of cross section in the DNA topography, it was suggested that YOYO-1 intercalated in the DNA homogeneously. Contrary, the fluorescence intensity of λDNA with 500 nM YOYO-1 was heterogeneous and did not correlate with the area of topographic cross section. This suggested that YOYO-1 was not intercalated to 71 λDNA uniformly in the concentration and intercalated partially and cooperatively.

  13. Potent DNA damage by polyhalogenated quinones and H2O2 via a metal-independent and Intercalation-enhanced oxidation mechanism

    Science.gov (United States)

    Yin, Ruichuan; Zhang, Dapeng; Song, Yuling; Zhu, Ben-Zhan; Wang, Hailin

    2013-01-01

    Polyhalogenated quinones are a class of carcinogenic intermediates. We found recently that the highly reactive and biologically/environmentally important ·OH can be produced by polyhalogenated quinones and H2O2 independent of transition metal ions. However, it is not clear whether this unusual metal-independent ·OH producing system can induce potent oxidative DNA damage. Here we show that TCBQ and H2O2 can induce oxidative damage to both dG and dsDNA; but surprisingly, it was more efficient to induce oxidative damage in dsDNA than in dG. We found that this is probably due to its strong intercalating ability to dsDNA through competitive intercalation assays. The intercalation of TCBQ in dsDNA may lead to ·OH generation more adjacent to DNA. This is the first report that polyhalogenated quinoid carcinogens and H2O2 can induce potent DNA damage via a metal-independent and intercalation-enhanced oxidation mechanism, which may partly explain their potential genotoxicity, mutagenesis, and carcinogenicity. PMID:23429247

  14. Potent DNA damage by polyhalogenated quinones and H₂O₂ via a metal-independent and Intercalation-enhanced oxidation mechanism.

    Science.gov (United States)

    Yin, Ruichuan; Zhang, Dapeng; Song, Yuling; Zhu, Ben-Zhan; Wang, Hailin

    2013-01-01

    Polyhalogenated quinones are a class of carcinogenic intermediates. We found recently that the highly reactive and biologically/environmentally important ·OH can be produced by polyhalogenated quinones and H₂O₂ independent of transition metal ions. However, it is not clear whether this unusual metal-independent ·OH producing system can induce potent oxidative DNA damage. Here we show that TCBQ and H₂O₂ can induce oxidative damage to both dG and dsDNA; but surprisingly, it was more efficient to induce oxidative damage in dsDNA than in dG. We found that this is probably due to its strong intercalating ability to dsDNA through competitive intercalation assays. The intercalation of TCBQ in dsDNA may lead to ·OH generation more adjacent to DNA. This is the first report that polyhalogenated quinoid carcinogens and H₂O₂ can induce potent DNA damage via a metal-independent and intercalation-enhanced oxidation mechanism, which may partly explain their potential genotoxicity, mutagenesis, and carcinogenicity.

  15. Flexibility of short ds-DNA intercalated by a dipyridophenazine ligand

    Directory of Open Access Journals (Sweden)

    Fuchao eJia

    2015-04-01

    Full Text Available We use Förster Resonant Energy Transfer (FRET in order to measure the increase of flexibility of short ds-DNA induced by the intercalation of dipyridophenazine (dppz ligand in between DNA base pairs. By using a DNA double strand fluorescently labeled at its extremeties, it is shown that the end-to-end length increase of DNA due to the intercalation of one dppz ligand is smaller than the DNA base pair interdistance. This may be explained either by a local bending of the DNA or by an increase of its flexibility. The persistence length of the formed DNA/ligand is evaluated. The described structure may have implications in the photophysical damages induced by the complexation of DNA by organometallic molecules.

  16. Tethered naphthalene diimide-based intercalators for DNA triplex stabilization

    Science.gov (United States)

    Gianolio, Diego A.; Segismundo, Joanna M.; McLaughlin, Larry W.

    2000-01-01

    The synthesis and triplex stabilizing properties of oligodeoxyribonucleotides functionalized at the 5′- and/or 3′-termini with a naphthalene diimide-based (NDI) intercalator is described. The NDI intercalator was prepared in a single step from the corresponding dianhydride and was attached to the 5′-terminus of an oligodeoxyribonucleotide following a reverse coupling procedure. The DMT protecting group was removed and the sequence phosphitylated to generate the phosphoramidite derivative on the 5′-terminus of the support-bound oligodeoxyribonucleotide. The NDI intercalator with a free hydroxyl was then added in the presence of tetrazole. Attachment of the NDI to the 3′-terminus relied upon a tethered amino group that could be functionalized first with the naphthalene dianhydride, which was subsequently converted to the diimide. Using both procedures, an oligonucleotide conjugate was prepared having the NDI intercalator at both the 5′- and 3′-termini. Thermal denaturation studies were used to determine the remarkable gain in stability for triplexes formed when the NDI-conjugated oligonucleotide was present as the third strand in the complex. PMID:10773082

  17. Concerted intercalation and minor groove recognition of DNA by a homodimeric thiazole orange dye

    DEFF Research Database (Denmark)

    Bunkenborg, Jakob; Gadjev, N I; Deligeorgiev, T

    2000-01-01

    The thiazole orange dye TOTO binds to double-stranded DNA (dsDNA) by a sequence selective bis-intercalation. Each chromophore is sandwiched between two base pairs in a (5'-CpT-3'):(5'-ApG-3') site, and the linker spans two base pairs in the minor groove. We have used one- and two-dimensional NMR...

  18. Imaging of DNA molecule and characterization of the intercalating state of YOYO-1 in λ-DNA using SNOAM

    Science.gov (United States)

    Wang, Jia; Muramatsu, Hiroshi; Homma, Katsunori; Yamamoto, Noritaka; Sakata-Sogawa, K.; Shimamoto, Nobuo

    2000-10-01

    The operation principle and configuration of the Scanning Near-field Optical/Atomic Force Microscope (SNOAM) is introduced in the paper. DNA molecules were imaged in AFM mode and in SNOM mode. The topography images and the fluorescence images of single DNA molecule were obtained. The topography image in SNOM mode is of high resolution. The near-field fluorescence image shows the fluorescence distribution of DNA molecules. (lambda) DNA Molecules, in which YOYO-1 was intercalated, were imaged and characterized. For (lambda) DNA with 5 (mu) M YOYO-1, there is variation in the fluorescence intensity of the DNA and ratios of the fluorescence intensity showed almost integers in each region. As the fluorescence intensity correlated with the area of cross section in the DNA topography, it was suggested that YOYO-1 intercalated in the DNA homogeneously. Contrary, the fluorescence intensity of (lambda) DNA with 500 (mu) M YOYO-1 was heterogeneous and did not correlate with the area of topographic cross section. This suggested that YOYO-1 was not intercalated to (lambda) DNA uniformly in the concentration and intercalated partially and cooperatively.

  19. Intercalation of a Zn(II) complex containing ciprofloxacin drug between DNA base pairs.

    Science.gov (United States)

    Shahabadi, Nahid; Asadian, Ali Ashraf; Mahdavi, Mryam

    2017-11-02

    In this study, an attempt has been made to study the interaction of a Zn(II) complex containing an antibiotic drug, ciprofloxacin, with calf thymus DNA using spectroscopic methods. It was found that Zn(II) complex could bind with DNA via intercalation mode as evidenced by: hyperchromism in UV-Vis spectrum; these spectral characteristics suggest that the Zn(II) complex interacts with DNA most likely through a mode that involves a stacking interaction between the aromatic chromophore and the base pairs of DNA. DNA binding constant (K b = 1.4 × 10 4 M -1 ) from spectrophotometric studies of the interaction of Zn(II) complex with DNA is comparable to those of some DNA intercalative polypyridyl Ru(II) complexes 1.0 -4.8 × 10 4 M -1 . CD study showed stabilization of the right-handed B form of DNA in the presence of Zn(II) complex as observed for the classical intercalator methylene blue. Thermodynamic parameters (ΔH DNA-MB, indicating that it binds to DNA in strong competition with MB for the intercalation.

  20. Intercalating fluorescence dye YOYO-1 prevents the folding transition in giant duplex DNA.

    Science.gov (United States)

    Yoshinaga, N; Akitaya, T; Yoshikawa, K

    2001-08-17

    Recently, it has become clear that with the addition of polyamines, giant DNA molecules of size greater than 10 kbp exhibit all-or-none switching between elongated coil and folded compact states. Here the effects of the intercalating fluorescent labeling dye, YOYO-1, and the minor-groove binding fluorescent labeling dye, DAPI, on the folding transition of single giant T4 DNA (166 kbp) induced by spermidine(3+) were examined, by use of the experimental technique of single molecular chain observation with fluorescence microscopy. It is found that the intercalating dye, YOYO-1, markedly prevents the folding transition, whereas the minor-groove binding dye, DAPI, exhibits negligible effect on the folding transition. This action of YOYO-1 is discussed in relation to the biological effect of intercalators. Copyright 2001 Academic Press.

  1. DNA in a polyvinyl alcohol matrix and interactions with three intercalating cyanine dyes.

    Science.gov (United States)

    Hanczyc, Piotr; Norden, Bengt; Åkerman, Björn

    2011-10-27

    We investigate how DNA interacts with drugs in humid polyvinyl alcohol (PVA) films by using a homologous set of cyanine dyes (YO(+), YO-PRO(2+), and YOYO(4+)) known to intercalate into DNA with increasing affinity with increasing charge. UV-vis spectroscopy shows that the PVA matrix destabilizes all three DNA-dye complexes compared to aqueous solution but to a lesser degree as the dye charge increases. The monovalent YO is fully dissociated from DNA within minutes, whereas the dissociation of the divalent YO-PRO takes about one hour and occurs by a two-step mechanism. The tetravalent homodimer YOYO is even less affected by the PVA environment and remains intercalated in the B-form DNA also in the PVA films. The reduced stability of the DNA-dye complexes is discussed in terms of steric and dielectric properties of the PVA matrix. After being kept in dry PVA films for 48 h the DNA-YOYO complexes can be reformed reversibly by rehumidifying the films for 30 min. The ability to store aligned and confined DNA intercalated with ligand complexes may be useful in studies on structural properties of nucleic acids.

  2. A redox active and electrochemiluminescent threading bis-intercalator and its applications in DNA assays.

    Science.gov (United States)

    Xie, Hong; Tansil, Natalia C; Gao, Zhiqiang

    2006-01-01

    A redox active and electrochemiluminescent (ECL) threading bis-intercalator, consisting of two N,N'-bis(3-propyl-imidazole)-1,4,5,8-naphthalene diimides (PIND) linked by a Ru(dmbpy)2(2+) (dmbpy = 4,4'-dimethyl-2,2'-bipyridine) complex (PIND-Ru-PIND), was synthesized for the first time. Its optical, electrochemical, and ECL properties were studied. UV-vis spectrophotometric measurements indicated that the two PIND groups bind to the double-stranded DNA (ds-DNA) in a threading intercalation mode, while the Ru(dmbpy)2(2+) reinforces the intercalation via electrostatic interaction with ds-DNA. An ECL DNA biosensor was fabricated using PIND-Ru-PIND. A 2000-fold sensitivity enhancement over direct voltammetry was obtained, making this an ultrasensitive system for ECL detection of DNA. Under optimized conditions, the biosensor allowed the detection of a target DNA in the range of 0.70-400 pM with a detection limit of 400 fM.

  3. 1,8-Naphthalimide: A Potent DNA Intercalator and Target for Cancer Therapy.

    Science.gov (United States)

    Tandon, Runjhun; Luxami, Vijay; Kaur, Harsovin; Tandon, Nitin; Paul, Kamaldeep

    2017-10-01

    The poor pharmacokinetics, side effects and particularly the rapid emergence of drug resistance compromise the efficiency of clinically used anticancer drugs. Therefore, the discovery of novel and effective drugs is still an extremely primary mission. Naphthalimide family is one of the highly active anticancer drug based upon effective intercalator with DNA. In this article, we review the discovery and development of 1,8-naphthalimide moiety, and, especially, pay much attention to the structural modifications and structure activity relationships. The review demonstrates how modulation of the moiety affecting naphthalimide compound for DNA binding that is achieved to afford a profile of antitumor activity. The DNA binding of imide and ring substitution at naphthalimide, bisnaphthalimide, naphthalimide-metal complexes is achieved by molecular recognition through intercalation mode. Thus, this synthetic/natural small molecule can act as a drug when activation or inhibition of DNA function, is required to cure or control the cancer disease. The present study is a review of the advances in 1,8-naphthalimide-related research, with a focus on how such derivatives are intercalated into DNA for their anticancer activities. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A naproxen complex of dysprosium intercalates into calf thymus DNA base pairs

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Mengsi; Jin, Jianhua; Xu, Guiqing [School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang 453007 (China); Cui, Fengling, E-mail: fenglingcui@hotmail.com [School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang 453007 (China); Luo, Hongxia [Department of Chemistry, Renmin University of China, Beijing 100872 (China)

    2014-01-15

    Highlights: • Binding mode to ctDNA was studied by various methods. • Intercalation is the most possible binding mode. • Dynamic and static quenching occurred simultaneously. • Hydrophobic force played a major role. • Binding characteristic of rare earth complexes to DNA are dependent on the element. - Abstract: The binding mode and mechanism of dysprosium–naproxen complex (Dy–NAP) with calf thymus deoxyribonucleic acid (ctDNA) were studied using UV–vis and fluorescence spectra in physiological buffer (pH 7.4). The results showed that more than one type of quenching process occurred and the binding mode between Dy–NAP with ctDNA might be intercalation. In addition, ionic strength, iodide quenching and fluorescence polarization experiments corroborated the intercalation binding mode between Dy–NAP and ctDNA. The calculated thermodynamic parameters ΔG, ΔH and ΔS at different temperature demonstrated that hydrophobic interaction force played a major role in the binding process.

  5. Combination probes with intercalating anchors and proximal fluorophores for DNA and RNA detection.

    Science.gov (United States)

    Qiu, Jieqiong; Wilson, Adam; El-Sagheer, Afaf H; Brown, Tom

    2016-09-30

    A new class of modified oligonucleotides (combination probes) has been designed and synthesised for use in genetic analysis and RNA detection. Their chemical structure combines an intercalating anchor with a reporter fluorophore on the same thymine nucleobase. The intercalator (thiazole orange or benzothiazole orange) provides an anchor, which upon hybridisation of the probe to its target becomes fluorescent and simultaneously stabilizes the duplex. The anchor is able to communicate via FRET to a proximal reporter dye (e.g. ROX, HEX, ATTO647N, FAM) whose fluorescence signal can be monitored on a range of analytical devices. Direct excitation of the reporter dye provides an alternative signalling mechanism. In both signalling modes, fluorescence in the unhybridised probe is switched off by collisional quenching between adjacent intercalator and reporter dyes. Single nucleotide polymorphisms in DNA and RNA targets are identified by differences in the duplex melting temperature, and the use of short hybridization probes, made possible by the stabilisation provided by the intercalator, enhances mismatch discrimination. Unlike other fluorogenic probe systems, placing the fluorophore and quencher on the same nucleobase facilitates the design of short probes containing multiple modifications. The ability to detect both DNA and RNA sequences suggests applications in cellular imaging and diagnostics. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. The kinetics of YOYO-1 intercalation into single molecules of double-stranded DNA.

    Science.gov (United States)

    Reuter, Marcel; Dryden, David T F

    2010-12-10

    The cyanine dye, YOYO-1, has frequently been used in single DNA molecule imaging work to stain double-stranded DNA as it fluoresces strongly when bound. The binding of YOYO-1 lengthens the DNA due to bis-intercalation. We have investigated the kinetics of binding, via this increase in DNA length, for single, hydrodynamically-stretched molecules of lambda DNA observed via Total Internal Reflection Fluorescence (TIRF) microscopy. The rate and degree of lengthening in 40mM NaHCO(3) (pH 8.0) buffer depend upon the free dye concentration with the reaction taking several minutes to reach completion even in relatively high, 40nM, concentrations of YOYO-1. In the absence of overstretching of the DNA molecule, we determine the second order rate constant to be 3.8±0.7×10(5)s(-1)M(-1), the dissociation constant to be 12.1±3.4nM and the maximum DNA molecule extension to be 36±4%. The intercalation time constant (inverse of the pseudo-first order rate constant), τ, decreased from 309 to 62s as YOYO-1 levels increased from 10 to 40nM. The kinetics of binding help with interpretation of the behavior of DNA-YOYO-1 complexes when overstretched and establish defined conditions for the preparation of DNA-YOYO-1 complexes. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Voreloxin is an anticancer quinolone derivative that intercalates DNA and poisons topoisomerase II.

    Directory of Open Access Journals (Sweden)

    Rachael E Hawtin

    2010-04-01

    Full Text Available Topoisomerase II is critical for DNA replication, transcription and chromosome segregation and is a well validated target of anti-neoplastic drugs including the anthracyclines and epipodophyllotoxins. However, these drugs are limited by common tumor resistance mechanisms and side-effect profiles. Novel topoisomerase II-targeting agents may benefit patients who prove resistant to currently available topoisomerase II-targeting drugs or encounter unacceptable toxicities. Voreloxin is an anticancer quinolone derivative, a chemical scaffold not used previously for cancer treatment. Voreloxin is completing Phase 2 clinical trials in acute myeloid leukemia and platinum-resistant ovarian cancer. This study defined voreloxin's anticancer mechanism of action as a critical component of rational clinical development informed by translational research.Biochemical and cell-based studies established that voreloxin intercalates DNA and poisons topoisomerase II, causing DNA double-strand breaks, G2 arrest, and apoptosis. Voreloxin is differentiated both structurally and mechanistically from other topoisomerase II poisons currently in use as chemotherapeutics. In cell-based studies, voreloxin poisoned topoisomerase II and caused dose-dependent, site-selective DNA fragmentation analogous to that of quinolone antibacterials in prokaryotes; in contrast etoposide, the nonintercalating epipodophyllotoxin topoisomerase II poison, caused extensive DNA fragmentation. Etoposide's activity was highly dependent on topoisomerase II while voreloxin and the intercalating anthracycline topoisomerase II poison, doxorubicin, had comparable dependence on this enzyme for inducing G2 arrest. Mechanistic interrogation with voreloxin analogs revealed that intercalation is required for voreloxin's activity; a nonintercalating analog did not inhibit proliferation or induce G2 arrest, while an analog with enhanced intercalation was 9.5-fold more potent.As a first-in-class anticancer

  8. Screening of Threading Bis-Intercalators Binding to Duplex DNA by Electrospray Ionization Tandem Mass Spectrometry

    Science.gov (United States)

    Mazzitelli, Carolyn L.; Chu, Yongjun; Reczek, Joseph J.; Iverson, Brent L.

    2007-01-01

    The DNA binding of novel threading bis-intercalators V1, trans-D1, and cis-C1, which contain two naphthalene diimide (NDI) intercalation units connected by a scaffold, was evaluated using electrospray ionization mass spectrometry (ESI-MS) and DNAse footprinting techniques. ESI-MS experiments confirmed that V1, the ligand containing the –Gly3-Lys-peptide scaffold, binds to a DNA duplex containing the 5'-GGTACC-3' specific binding site identified in previous NMR-based studies. The ligand formed complexes with a ligand/DNA binding stoichiometry of 1:1, even when there was excess ligand in solution. Trans-D1 and cis-C1 are new ligands containing a rigid spiro-tricyclic scaffold in the trans- and cis- orientations, respectively. Preliminary DNAse footprinting experiments identified possible specific binding sites of 5'-CAGTGA-5' for trans-D1 and 5'-GGTACC-3' for cis-C1. ESI-MS experiments revealed that both ligands bound to DNA duplexes containing the respective specific binding sequences, with cis-C1 exhibiting the most extensive binding based on a higher fraction of bound DNA value. Cis-C1 formed complexes with a dominant 1:1 binding stoichiometry, whereas trans-D1 was able to form 2:1 complexes at ligand/DNA molar ratios ≥ 1 which is suggestive of non-specific binding. Collisional activated dissociation (CAD) experiments indicate that DNA complexes containing V1, trans-D1, and cis-C1 have a unique fragmentation pathway, which was also observed for complexes containing the commercially available bisintercalator echinomycin, as a result of similar binding interactions, marked by intercalation in addition to hydrogen bonding by the scaffold with the DNA major or minor groove. PMID:17098442

  9. Activation of cGAS-dependent antiviral responses by DNA intercalating agents

    OpenAIRE

    P?pin, Genevi?ve; Nejad, Charlotte; Thomas, Belinda J.; Ferrand, Jonathan; McArthur, Kate; Bardin, Philip G.; Williams, Bryan R.G.; Gantier, Michael P.

    2016-01-01

    Acridine dyes, including proflavine and acriflavine, were commonly used as antiseptics before the advent of penicillins in the mid-1940s. While their mode of action on pathogens was originally attributed to their DNA intercalating activity, work in the early 1970s suggested involvement of the host immune responses, characterized by induction of interferon (IFN)-like activities through an unknown mechanism. We demonstrate here that sub-toxic concentrations of a mixture of acriflavine and profl...

  10. Protein intercalation in DNA as one of main modes of fixation of the most stable chromatin loop domains

    Directory of Open Access Journals (Sweden)

    М. I. Chopei

    2014-08-01

    Full Text Available The main mechanism of DNA track formation during comet assay of nucleoids, obtained after removal of cell membranes and most of proteins, is the extension to anode of negatively supercoiled DNA loops attached to proteins, remaining in nucleoid after lysis treatment. The composition of these residual protein structures and the nature of their strong interaction with the loop ends remain poorly studied. In this work we investigated the influence of chloroquine intercalation and denaturation of nucleoid proteins on the efficiency of electrophoretic track formation during comet assay. The results obtained suggest that even gentle protein denaturation is sufficient to reduce considerably the effectiveness of the DNA loop migration due to an increase in the loops size. The same effect was observed under local DNA unwinding upon chloroquine intercalation around the sites of the attachment of DNA to proteins. The topological interaction (protein intercalation into the double helix between DNA loop ends and nucleoid proteins is discussed.

  11. Concerted intercalation and minor groove recognition of DNA by a homodimeric thiazole orange dye.

    Science.gov (United States)

    Bunkenborg, J; Gadjev, N I; Deligeorgiev, T; Jacobsen, J P

    2000-01-01

    The thiazole orange dye TOTO binds to double-stranded DNA (dsDNA) by a sequence selective bis-intercalation. Each chromophore is sandwiched between two base pairs in a (5'-CpT-3'):(5'-ApG-3') site, and the linker spans two base pairs in the minor groove. We have used one- and two-dimensional NMR spectroscopy to examine the dsDNA binding of an analogue of TOTO in which the linker has been modified to contain a bipyridyl group (viologen) that has minor groove binding properties. We have investigated the binding of this analogue, called TOTOBIPY, to three different dsDNA sequences containing a 5'-CTAG-3', a 5'-CTTAG-3', and a 5'-CTATAG-3' sites, respectively, demonstrating that TOTOBIPY prefers to span three base pairs. The many intermolecular NOE connectivities between TOTOBIPY and the d(CGCTTAGCG):d(CGCTAAGCG) oligonucleotide in the complex shows that the bipyridyl-containing linker is positioned in the minor groove and spans three base pairs. Consequently, we have succeeded in designing and synthesizing a ligand that recognizes an extended recognition sequence of dsDNA as the result of a concerted intercalation and minor groove binding mode.

  12. Photoswitching of monomeric and dimeric DNA-intercalating cyanine dyes for super-resolution microscopy applications.

    Science.gov (United States)

    Flors, Cristina

    2010-05-01

    A growing trend in far-field super resolution fluorescence microscopy based on single molecule photoswitching involves the replacement of photoactivatable fluorophores by common organic dyes in which photoswitching reactions or blinking can be induced. This alternative strategy can greatly simplify the sample preparation and imaging scheme in some cases, and enables its application to a wider range of biological systems. This methodology has been applied successfully to unveil the nanoscale organisation of proteins, but little progress has been seen to date in DNA super-resolution imaging. Previous results have shown that blinking can be induced in the DNA-intercalating dimeric dye YOYO-1 in combination with a reducing buffer, and in turn super-resolution images of DNA can be reconstructed. However, monomeric intercalating dyes like YO-PRO-1 are more advantageous for biological applications. This paper shows that both YO-PRO-1 and YOYO-1 can be used in super-resolution imaging, and different sample preparation strategies are compared in terms of spatial resolution and homogeneity of the reconstructed super-resolution images. Moreover, ensemble and single-molecule experiments provide insight into the switching mechanism. The dyes YOYO-1 and YO-PRO-1 hold great potential for their use in nanoscale imaging of DNA topology in biology and nanoscience.

  13. Effect of intercalator substituent and nucleotide sequence on the stability of DNA- and RNA-naphthalimide complexes.

    Science.gov (United States)

    Johnson, Charles A; Hudson, Graham A; Hardebeck, Laura K E; Jolley, Elizabeth A; Ren, Yi; Lewis, Michael; Znosko, Brent M

    2015-07-01

    DNA intercalators are commonly used as anti-cancer and anti-tumor agents. As a result, it is imperative to understand how changes in intercalator structure affect binding affinity to DNA. Amonafide and mitonafide, two naphthalimide derivatives that are active against HeLa and KB cells in vitro, were previously shown to intercalate into DNA. Here, a systematic study was undertaken to change the 3-substituent on the aromatic intercalator 1,8-naphthalimide to determine how 11 different functional groups with a variety of physical and electronic properties affect binding of the naphthalimide to DNA and RNA duplexes of different sequence compositions and lengths. Wavelength scans, NMR titrations, and circular dichroism were used to investigate the binding mode of 1,8-naphthalimide derivatives to short synthetic DNA. Optical melting experiments were used to measure the change in melting temperature of the DNA and RNA duplexes due to intercalation, which ranged from 0 to 19.4°C. Thermal stabilities were affected by changing the substituent, and several patterns and idiosyncrasies were identified. By systematically varying the 3-substituent, the binding strength of the same derivative to various DNA and RNA duplexes was compared. The binding strength of different derivatives to the same DNA and RNA sequences was also compared. The results of these comparisons shed light on the complexities of site specificity and binding strength in DNA-intercalator complexes. For example, the consequences of adding a 5'-TpG-3' or 5'-GpT-3' step to a duplex is dependent on the sequence composition of the duplex. When added to a poly-AT duplex, naphthalimide binding was enhanced by 5.6-11.5°C, but when added to a poly-GC duplex, naphthalimide binding was diminished by 3.2-6.9°C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Crystal structure of a four-stranded intercalated DNA: d(C4)

    Science.gov (United States)

    Chen, L.; Cai, L.; Zhang, X.; Rich, A.

    1994-01-01

    The crystal structure of d(C4) solved at 2.3-A resolution reveals a four-stranded molecule composed of two interdigitated or intercalated duplexes. The duplexes are held together by hemiprotonated cytosine-cytosine base pairs and are parallel stranded, but the two duplexes point in opposite directions. The molecule has a slow right-handed twist of 12.4 degrees between covalently linked cytosine base pairs, and the base stacking distance is 3.1 A. This is in general agreement with the NMR studies. A biological role for DNA in this conformation is suggested.

  15. Structural, conformational and thermodynamic aspects of groove-directed-intercalation of flavopiridol into DNA.

    Science.gov (United States)

    Ray, Bhumika; Agarwal, Shweta; Lohani, Neelam; Rajeswari, Moganty R; Mehrotra, Ranjana

    2016-11-01

    Certain plant-derived alkaloids and flavonoids have shown propitious cytotoxic acitvity against different types of cancer, having deoxyribose nucleic acid (DNA) as their main cellular target. Flavopiridol, a semi-synthetic derivative of rohitukine (a natural compound isolated from Dysoxylum binectariferum plant), has attained much attention owing to its anticancer potential against various haematological malignancies and solid tumours. This work focuses on investigating interaction between flavopiridol and DNA at molecular level in order to decipher its underlying mechanism of action, which is not well understood. To define direct influence of flavopiridol on the structural, conformational and thermodynamic aspects of DNA, various spectroscopic and calorimetric techniques have been used. ATR-FTIR and SERS spectral outcomes indicate a novel insight into groove-directed-intercalation of flavopiridol into DNA via direct binding with nitrogenous bases guanine (C6=O6) and thymine (C2=O2) in DNA groove together with slight external binding to its sugar-phosphate backbone. Circular dichroism spectral analysis of flavopiridol-DNA complexes suggests perturbation in native B-conformation of DNA and its transition into C-form, which may be localized up to a few base pairs of DNA. UV-visible spectroscopic results illustrate dual binding mode of flavopiridol when interacts with DNA having association constant, Ka = 1.18 × 10(4) M(-1). This suggests moderate type of interaction between flavopiridol and DNA. Further, UV melting analysis also supports spectroscopic outcomes. Thermodynamically, flavopiridol-DNA complexation is an enthalpy-driven exothermic process. These conclusions drawn from this study could be helpful in unveiling mechanism of cytoxicity induced by flavopiridol that can be further applied in the development of flavonoid-based new chemotherapeutics with more specificity and better efficacy.

  16. Hydrogenation and hydrogen intercalation of hexagonal boron nitride on Ni(1 1 1): reactivity and electronic structure

    Science.gov (United States)

    Späth, F.; Gebhardt, J.; Düll, F.; Bauer, U.; Bachmann, P.; Gleichweit, C.; Görling, A.; Steinrück, H.-P.; Papp, C.

    2017-09-01

    We investigate the reactivity of hexagonal boron nitride (h-BN) on a Ni(1 1 1) single crystal towards atomic hydrogen over a wide exposure range. Near edge x-ray absorption fine structure and x-ray photoelectron spectroscopy (XPS) show that for low hydrogen exposures hydrogenation of the h-BN sheet is found. In contrast, intercalation of hydrogen between h-BN and the Ni(1 1 1) substrate occurs for high exposures. For intermediate regimes, a mixture of intercalation and hydrogenation is observed. From temperature-programmed desorption and temperature-programmed XPS experiments, we conclude that the hydrogen covalently bound to h-BN is rather stable with a desorption temperature of 600 K, while intercalated hydrogen is desorbing already at 390 K. Further insight into the structural arrangements and the thermodynamics of the system is obtained by comparing our experimental results with extensive density-functional theory calculations. Together with ultraviolet photoelectron spectroscopy measurements, the calculations provide detailed insight into the influence of hydrogenation on the electronic structure of h-BN.

  17. An exploration of sequence specific DNA-duplex/pyrene interactions for intercalated and surface-associated pyrene species. Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Netzel, T.L.

    1994-01-07

    The use of both short (5-atom) and long (12-atom) covalent linking chains to attach, respectively, a pyrenesulfonate or a pyrenebutyrate moiety to a central region of a DNA duplex allows construction of DNA-duplex/pyrene assemblies of two types. Long linking chains permit pyrene to intercalate within the DNA duplex, while the short chains constrain pyrene to remain in the outer-surface region of the major-groove of the duplex. Electrochemical data suggest that reductive electron-transfer (ET) quenching of photoexcited pyrene (pyrene*) labels will be most exothermic for guanosine than for the other three DNA nucleosides and that oxidative ET quenching of pyrene* will be most exothermic for thymidine than for the other three DNA nucleosides. The study combines two effects, (1) differential DNA/pyrene geometries in covalent assemblies with different length linking chains and (2) differential ET quenching reactivities among the DNA nucleotides to explore sequence specific and duplex/pyrene association specific effects on DNA-base ionization reactions. This report describes progress in synthesizing target pyrene-labeled nucleosides and oligonucleotides, in commissioning our fluorescence lifetime measurement system, and in the photochemical behavior of pyrene-labeled nucleosides, single strands of DNA, and duplexes of DNA.

  18. Compression of the DNA substrate by a viral packaging motor is supported by removal of intercalating dye during translocation.

    Science.gov (United States)

    Dixit, Aparna Banerjee; Ray, Krishanu; Black, Lindsay W

    2012-12-11

    Viral genome packaging into capsids is powered by high-force-generating motor proteins. In the presence of all packaging components, ATP-powered translocation in vitro expels all detectable tightly bound YOYO-1 dye from packaged short dsDNA substrates and removes all aminoacridine dye from packaged genomic DNA in vivo. In contrast, in the absence of packaging, the purified T4 packaging ATPase alone can only remove up to ∼1/3 of DNA-bound intercalating YOYO-1 dye molecules in the presence of ATP or ATP-γ-S. In sufficient concentration, intercalating dyes arrest packaging, but rare terminase mutations confer resistance. These distant mutations are highly interdependent in acquiring function and resistance and likely mark motor contact points with the translocating DNA. In stalled Y-DNAs, FRET has shown a decrease in distance from the phage T4 terminase C terminus to portal consistent with a linear motor, and in the Y-stem DNA compression between closely positioned dye pairs. Taken together with prior FRET studies of conformational changes in stalled Y-DNAs, removal of intercalating compounds by the packaging motor demonstrates conformational change in DNA during normal translocation at low packaging resistance and supports a proposed linear "DNA crunching" or torsional compression motor mechanism involving a transient grip-and-release structural change in B form DNA.

  19. Charging YOYO-1 on capillary wall for online DNA intercalation and integrating this approach with multiplex PCR and bare narrow capillary-hydrodynamic chromatography for online DNA analysis.

    Science.gov (United States)

    Chen, Huang; Zhu, Zaifang; Lu, Joann Juan; Liu, Shaorong

    2015-02-03

    Multiplex polymerase chain reaction (PCR) has been widely utilized for high-throughput pathogen identification. Often, a dye is used to intercalate the amplified DNA fragments, and identifications of the pathogens are carried out by DNA melting curve analysis or gel electrophoresis. Integrating DNA amplification and identification is a logic path toward maximizing the benefit of multiplex PCR. Although PCR and gel electrophoresis have been integrated, replenishing the gels after each run is tedious and time-consuming. In this technical note, we develop an approach to address this issue. We perform multiplex PCR inside a capillary, transfer the amplified fragments to a bare narrow capillary, and measure their lengths online using bare narrow capillary-hydrodynamic chromatography (BaNC-HDC), a new technique recently developed in our laboratory for free-solution DNA separation. To intercalate the DNA with YOYO-1 (a fluorescent dye) for BaNC-HDC, we flush the capillary column with a YOYO-1 solution; positively charged YOYO-1 is adsorbed (or charged) onto the negatively charged capillary wall. As DNA molecules are driven down the column for separation, they react with the YOYO-1 stored on the capillary wall and are online-intercalated with the dye. With a single YOYO-1 charging, the column can be used for more than 40 runs, although the fluorescence signal intensities of the DNA peaks decrease gradually. Although the dye-DNA intercalation occurs during the separation, it does not affect the retention times, separation efficiencies, or resolutions.

  20. Charging YOYO-1 on Capillary Wall for Online DNA Intercalation and Integrating This Approach with Multiplex PCR and Bare Narrow Capillary–Hydrodynamic Chromatography for Online DNA Analysis

    Science.gov (United States)

    2016-01-01

    Multiplex polymerase chain reaction (PCR) has been widely utilized for high-throughput pathogen identification. Often, a dye is used to intercalate the amplified DNA fragments, and identifications of the pathogens are carried out by DNA melting curve analysis or gel electrophoresis. Integrating DNA amplification and identification is a logic path toward maximizing the benefit of multiplex PCR. Although PCR and gel electrophoresis have been integrated, replenishing the gels after each run is tedious and time-consuming. In this technical note, we develop an approach to address this issue. We perform multiplex PCR inside a capillary, transfer the amplified fragments to a bare narrow capillary, and measure their lengths online using bare narrow capillary–hydrodynamic chromatography (BaNC-HDC), a new technique recently developed in our laboratory for free-solution DNA separation. To intercalate the DNA with YOYO-1 (a fluorescent dye) for BaNC-HDC, we flush the capillary column with a YOYO-1 solution; positively charged YOYO-1 is adsorbed (or charged) onto the negatively charged capillary wall. As DNA molecules are driven down the column for separation, they react with the YOYO-1 stored on the capillary wall and are online-intercalated with the dye. With a single YOYO-1 charging, the column can be used for more than 40 runs, although the fluorescence signal intensities of the DNA peaks decrease gradually. Although the dye-DNA intercalation occurs during the separation, it does not affect the retention times, separation efficiencies, or resolutions. PMID:25555111

  1. Conformational flexibility in DNA structure as revealed by structural studies of drug intercalation and its broader implications in understanding the organization of DNA in chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Sobell, H.M.; Reddy, B.S.; Bhandary, K.K.; Jain, S.C.; Sakore, T.D.; Seshadri, T.P.

    1978-01-01

    This paper reviews evidence for conformational flexibility in DNA structure (i.e., the kink) as revealed by structural studies of drug intercalation. It then describes the implications these concepts have in understanding the organization of DNA in chromatin. It is possible that the kink has still broader meaning in understanding the nature of protein-DNA interactions that are important in RNA transcription and DNA replication.

  2. Superresolution imaging of single DNA molecules using stochastic photoblinking of minor groove and intercalating dyes.

    Science.gov (United States)

    Miller, Helen; Zhou, Zhaokun; Wollman, Adam J M; Leake, Mark C

    2015-10-15

    As proof-of-principle for generating superresolution structural information from DNA we applied a method of localization microscopy utilizing photoblinking comparing intercalating dye YOYO-1 against minor groove binding dye SYTO-13, using a bespoke multicolor single-molecule fluorescence microscope. We used a full-length ∼49 kbp λ DNA construct possessing oligo inserts at either terminus allowing conjugation of digoxigenin and biotin at opposite ends for tethering to a glass coverslip surface and paramagnetic microsphere respectively. We observed stochastic DNA-bound dye photoactivity consistent with dye photoblinking as opposed to binding/unbinding events, evidenced through both discrete simulations and continuum kinetics analysis. We analyzed dye photoblinking images of immobilized DNA molecules using superresolution reconstruction software from two existing packages, rainSTORM and QuickPALM, and compared the results against our own novel home-written software called ADEMS code. ADEMS code generated lateral localization precision values of 30-40 nm and 60-70 nm for YOYO-1 and SYTO-13 respectively at video-rate sampling, similar to rainSTORM, running more slowly than rainSTORM and QuickPALM algorithms but having a complementary capability over both in generating automated centroid distribution and cluster analyses. Our imaging system allows us to observe dynamic topological changes to single molecules of DNA in real-time, such as rapid molecular snapping events. This will facilitate visualization of fluorescently-labeled DNA molecules conjugated to a magnetic bead in future experiments involving newly developed magneto-optical tweezers combined with superresolution microscopy. Copyright © 2015. Published by Elsevier Inc.

  3. Bis-intercalation of homodimeric thiazole orange dye derivatives in DNA.

    Science.gov (United States)

    Petersen, M; Hamed, A A; Pedersen, E B; Jacobsen, J P

    1999-01-01

    The thiazole orange dye 1,1'-(4,4,8,8-tetramethyl-4, 8-diazaundecamethylene)-bis-4-[(3-methyl-2,3-dihydro-2(3H)-benzo-1 ,3-thiazolylidene)methyl]quinolinium tetraiodide (TOTO) binds to double-stranded DNA (dsDNA) in a sequence selective bis-intercalation. We have examined the binding of derivatives of TOTO with different substituents on the benzothiazole ring. The analogues are the following: 1,1'-(4,4,8,8-tetramethyl-4, 8-diazaundecamethylene)-[4-[3-(benzyl-2, 3-dihydro-2-(3H)-benzothiazolylidene)methyl]quinolinium]-[4-[3-(++ +methy l-2, 3-dihydro-2-(3H)-benzothiazolylidene)methyl]quinolinium]tetraio dide (TOTOBzl) and 1,1'-(4,4,8,8-tetramethyl-4, 8-diazaundecamethylene)-bis-4-[(3-ethyl-2,3-dihydro-2(3H)-benzo-1, 3-thiazole)methyl]quinolinium tetraiodide (TOTOEt). In this paper, we report the synthesis of TOTOBzl and TOTOEt together with the one- and two-dimensional 1H NMR investigations of complexes between these TOTO analogues and the dsDNA oligonucleotide d(CGCTAGCG)2. Both analogues yield extremely stable complexes in which each chromophore is sandwiched between two base pairs in a (5'-CpT-3'):(5'-ApG-3') site. The linker spans over two base pairs in the minor groove. The benzyl group in TOTOBzl and the ethyl groups in TOTOEt is pointing outward in the major groove.

  4. Variation of the intercalating proline in artificial peptides mimicking the DNA binding and bending IHF protein.

    Science.gov (United States)

    Scholz, S; Liebler, E K; Eickmann, B; Fritz, H-J; Diederichsen, U

    2012-07-01

    The integration host factor (IHF) is a protein which sequence specifically induces a bend of double-stranded DNA by more than 160°. Based on IHF as lead structure, a peptide mimic was introduced resembling the positively charged body of the protein by a lysine dendrimer and the minor groove recognition loop by a cyclopeptide. The proline located close to the tip of the recognition loop intercalates between the base pair plane. It was modified in order to evaluate the influence of the side chain residue with respect to size (1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid), aromaticity (phenylalanine), conformation of the five-membered ring [(4R)-fluoroproline, (4S)-fluoroproline, 3,4-dehydroproline], and the peptide backbone conformation (α-methylproline) on binding dsDNA and bending the double strand. Binding and bending studies were carried out by fluorescence resonance energy transfer experiments and gel electrophoresis using DNA sequences prepared by PCR with the IHF binding site in central or terminal position. Whereas aromatic residues and α-methylproline were not tolerated as proline substitute, incorporation of (4S)-fluoroproline and 3,4-dehydroproline provided enhanced binding.

  5. Base-Displaced Intercalated Structure of the N-(2'-Deoxyguanosin-8-yl)-3-aminobenzanthrone DNA Adduct.

    Science.gov (United States)

    Politica, Dustin A; Malik, Chanchal K; Basu, Ashis K; Stone, Michael P

    2015-12-21

    3-Nitrobenzanthrone (3-NBA), an environmental mutagen found in diesel exhaust and a suspected carcinogen, undergoes metabolic reduction followed by reaction with DNA to form aminobenzanthrone (ABA) adducts, with the major alkylation product being N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (C8-dG-ABA). Site-specific synthesis of the C8-dG-ABA adduct in the oligodeoxynucleotide 5'-d(GTGCXTGTTTGT)-3':5'-d(ACAAACACGCAC)-3'; X = C8-dG-ABA adduct, including codons 272-275 of the p53 gene, has allowed for investigation into the structural and thermodynamic properties of this adduct. The conformation of the C8-dG-ABA adduct was determined using NMR spectroscopy and was refined using molecular dynamics (MD) calculations restrained by experimentally determined interproton distance restraints obtained from NOE experiments. The refined structure revealed that the C8-dG-ABA adduct formed a base-displaced intercalated conformation. The adducted guanine was shifted into the syn conformation about the glycosidic bond. The 5'- and 3'-neighboring base pairs remained intact. While this facilitated π-stacking interactions between the ABA moiety and neighboring bases, the thermal melting temperature (Tm) of the adduct-containing duplex showed a decrease of 11 °C as compared to the corresponding unmodified oligodeoxynucleotide duplex. Overall, in this sequence, the base-displaced intercalated conformation of the C8-dG-ABA lesion bears similarity to structures of other arylamine C8-dG adducts. However, in this sequence, the base-displaced intercalated conformation for the C8-dG-ABA adduct differs from the conformation of the N(2)-dG-ABA adduct reported by de los Santos and co-workers, in which it is oriented in the minor groove toward the 5' end of the duplex, with the modified guanine remaining in the anti conformation about the glyosidic torsion angle, and the complementary base remaining within the duplex. The results are discussed in relationship to differences between the C8-d

  6. DNA intercalation studies and antimicrobial activity of Ag@ZrO{sub 2} core–shell nanoparticles in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Dhanalekshmi, K.I., E-mail: dhanamveni88@gmail.com; Meena, K.S.

    2016-02-01

    Ag@ZrO{sub 2} core–shell nanoparticles were prepared by one pot simultaneous reduction of AgNO{sub 3} and hydrolysis of zirconium (IV) isopropoxide. The formation of core–shell nanoparticles was confirmed by absorption, XRD, and HR-TEM techniques. The antibacterial activity of Ag@ZrO{sub 2} core–shell nanoparticles against Escherichia coli and Staphylococcus aureus and the antifungal properties against Candida albicans, Candida glabrata, Aspergillus niger and Aspergillus flavus were examined by the agar diffusion method. DNA intercalation studies were carried out in CT-DNA. As a result ZrO{sub 2} supported on the surface of AgNPs not only prevented aggregation, but also proved to have enhanced antimicrobial activity and DNA intercalation than the Ag nanoparticles. - Highlights: • Ag@ZrO{sub 2} core–shell nanoparticles were prepared by one pot synthesis. • The ZrO{sub 2} coated AgNPs prevent aggregation and enhanced stability. • The surfaced modified AgNPs showed higher antimicrobial activity. • DNA intercalation studies show better binding affinity of core–shell NPs.

  7. Solution structure of a 2:1 complex of anticancer drug XR5944 with TFF1 estrogen response element: insights into DNA recognition by a bis-intercalator.

    Science.gov (United States)

    Lin, Clement; Mathad, Raveendra I; Zhang, Zhenjiang; Sidell, Neil; Yang, Danzhou

    2014-05-01

    XR5944, a deoxyribonucleic acid (DNA) bis-intercalator with potent anticancer activity, can bind the estrogen response element (ERE) sequence to inhibit estrogen receptor-α activities. This novel mechanism of action may be useful for overcoming drug resistance to currently available antiestrogen treatments, all of which target the hormone-receptor complex. Here we report the nuclear magnetic resonance solution structure of the 2:1 complex of XR5944 with the naturally occurring TFF1-ERE, which exhibits important and unexpected features. In both drug-DNA complexes, XR5944 binds strongly at one intercalation site but weakly at the second site. The sites of intercalation within a native promoter sequence appear to be context and sequence dependent. The binding of one drug molecule influences the binding site of the second. Our structures underscore the fact that the DNA binding of a bis-intercalator is directional and different from the simple addition of two single intercalation sites. Our study suggests that improved XR5944 bis-intercalators targeting ERE may be designed through optimization of aminoalkyl linker and intercalation moieties at the weak binding sites. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Simultaneous binding of a cyclophane and classical intercalators to DNA: observation of FRET-mediated white light emission.

    Science.gov (United States)

    Sanju, Krishnankutty S; Thurakkal, Shameel; Neelakandan, Prakash P; Joseph, Joshy; Ramaiah, Danaboyina

    2015-05-28

    DNA-assisted Förster resonance energy transfer (FRET) between an anthracene-based cyclophane (CP) and mono- and bis-intercalators such as propidium iodide (PI) and ethidium homodimer-1 (EHD), respectively, has been studied using various photophysical and biophysical techniques. The cyclophane and PI exhibited simultaneous binding to DNA at all concentrations studied and showed DNA-assisted FRET from the excimer of cyclophane with a FRET efficiency of ca. 71%. On the other hand, the bis-intercalator EHD, only at lower concentrations (15 μM), EHD, on account of its higher binding affinity, displaces cyclophane from the DNA scaffold. Employing the ternary system comprising of the cyclophane, DNA and PI and fine-tuning the concentrations of the components in a molar ratio of 1 : 0.75 : 0.05 (CP : DNA : PI) we have demonstrated white light emission with CIE coordinates (0.35, 0.37).

  9. Probing the dynamics of doxorubicin-DNA intercalation during the initial activation of apoptosis by fluorescence lifetime imaging microscopy (FLIM).

    Science.gov (United States)

    Chen, Nai-Tzu; Wu, Chia-Yan; Chung, Chao-Yu; Hwu, Yeukuang; Cheng, Shih-Hsun; Mou, Chung-Yuan; Lo, Leu-Wei

    2012-01-01

    Doxorubicin is a potent anthracycline antibiotic, commonly used to treat a wide range of cancers. Although postulated to intercalate between DNA bases, many of the details of doxorubicin's mechanism of action remain unclear. In this work, we demonstrate the ability of fluorescence lifetime imaging microscopy (FLIM) to dynamically monitor doxorubicin-DNA intercalation during the earliest stages of apoptosis. The fluorescence lifetime of doxorubicin in nuclei is found to decrease rapidly during the first 2 hours following drug administration, suggesting significant changes in the doxorubicin-DNA binding site's microenvironment upon apoptosis initiation. Decreases in doxorubicin fluorescence lifetimes were found to be concurrent with increases in phosphorylation of H2AX (an immediate signal of DNA double-strand breakage), but preceded activation of caspase-3 (a late signature of apoptosis) by more than 150 minutes. Time-dependent doxorubicin FLIM analyses of the effects of pretreating cells with either Cyclopentylidene-[4-(4-chlorophenyl)thiazol-2-yl)-hydrazine (a histone acetyltransferase inhibitor) or Trichostatin A (a histone deacetylase inhibitor) revealed significant correlation of fluorescence lifetime with the stage of chromatin decondensation. Taken together, our findings suggest that monitoring the dynamics of doxorubicin fluorescence lifetimes can provide valuable information during the earliest phases of doxorubicin-induced apoptosis; and implicate that FLIM can serve as a sensitive, high-resolution tool for the elucidation of intercellular mechanisms and kinetics of anti-cancer drugs that bear fluorescent moieties.

  10. Probing the dynamics of doxorubicin-DNA intercalation during the initial activation of apoptosis by fluorescence lifetime imaging microscopy (FLIM.

    Directory of Open Access Journals (Sweden)

    Nai-Tzu Chen

    Full Text Available Doxorubicin is a potent anthracycline antibiotic, commonly used to treat a wide range of cancers. Although postulated to intercalate between DNA bases, many of the details of doxorubicin's mechanism of action remain unclear. In this work, we demonstrate the ability of fluorescence lifetime imaging microscopy (FLIM to dynamically monitor doxorubicin-DNA intercalation during the earliest stages of apoptosis. The fluorescence lifetime of doxorubicin in nuclei is found to decrease rapidly during the first 2 hours following drug administration, suggesting significant changes in the doxorubicin-DNA binding site's microenvironment upon apoptosis initiation. Decreases in doxorubicin fluorescence lifetimes were found to be concurrent with increases in phosphorylation of H2AX (an immediate signal of DNA double-strand breakage, but preceded activation of caspase-3 (a late signature of apoptosis by more than 150 minutes. Time-dependent doxorubicin FLIM analyses of the effects of pretreating cells with either Cyclopentylidene-[4-(4-chlorophenylthiazol-2-yl-hydrazine (a histone acetyltransferase inhibitor or Trichostatin A (a histone deacetylase inhibitor revealed significant correlation of fluorescence lifetime with the stage of chromatin decondensation. Taken together, our findings suggest that monitoring the dynamics of doxorubicin fluorescence lifetimes can provide valuable information during the earliest phases of doxorubicin-induced apoptosis; and implicate that FLIM can serve as a sensitive, high-resolution tool for the elucidation of intercellular mechanisms and kinetics of anti-cancer drugs that bear fluorescent moieties.

  11. Label free electrochemical DNA hybridization discrimination effects at the binary and ternary mixed monolayers of single stranded DNA/diluent/s in presence of cationic intercalators.

    Science.gov (United States)

    Dharuman, V; Hahn, Jong Hoon

    2008-03-14

    Electrochemical label free DNA hybridization discrimination of the brain tumor sequence CK20 has been made at the gold-thiol and thiol diluent binary and ternary mixed monolayer interfaces in presence of the [Fe(CN)6](3-) and double stranded DNA (dsDNA) specific cationic intercalators, proflavine (PF) and methylene blue (MB), respectively. Thiol hexane labeled single stranded DNA (HS-ssDNA) and thiol diluents such as 6-mercapto-1-hexanol (MCH) and 3-mercaptopropionic acid (MPA) are used to construct the mixed monolayers. Change in the peak-to-peak separation (Delta Ep) for the [Fe(CN)6](3-) redox reaction indicates the efficiency of the diluents in removing the randomly oriented HS-ssDNA. Smaller Delta Ep 248 mV noticed for the HS-ssDNA/MPA compared to the HS-ssDNA/MCH mixed monolayers (812 mV) indicates the less influence of the MCH diluent on the arrangement of HS-ssDNA layer. However, the hybridization discrimination effect negotiated in presence of both the [Fe(CN)6](3-) and PF intercalator showed zero effect for the HS-ssDNA/MPA interface, and approximately 20-30% effect for the HS-ssDNA/MCH interface. The discrimination effect at the HS-ssDNA/MPA interface further increased to 80% by inserting the MCH at the local defects to form a multicomponent ternary HS-ssDNA/MPA/MCH layer interface. These differential discrimination effects are attributed to the formation of compact and/or defective layer structures, evidenced from their reductive desorption voltammetry in 0.5M KOH. The presence of single base (C-A) mismatch in the hybrid is diagnosed by a decrease in coulometric charge compared to the perfect dsDNA. The target concentration of 10 pM is detected selectively and sensitively.

  12. Femtomole level photoelectrochemical aptasensing for mercury ions using quercetin-copper(II) complex as the DNA intercalator.

    Science.gov (United States)

    Li, Hongbo; Xue, Yan; Wang, Wei

    2014-04-15

    An ultrasensitive and selective photoelectrochemical (PEC) aptasensor for mercury ions was first fabricated based on perylene-3, 4, 9, 10-tetracarboxylic acid/graphene oxide (PTCA/GO) heterojunction using quercetin-copper(II) complex intercalated into the poly(dT)-poly(dA) duplexes. Both the PTCA/GO heterojunction and the quercetin-copper(II) complex are in favor of the sensitivity for the fabricated PEC aptasensor due to band alignment and strong reduction capability, respectively. And they efficiently promote the separation of photoexcited carriers and enhance the photocurrent. The formation of thymine-Hg(2+)-thymine coordination chemistry resulted in the dehybridization of poly(dT)-poly(dA) duplexes and then the intercalator quercetin-copper(II) complex broke away from the surface of the PEC aptasensor. As the concentration of mercury ions increased, the photocurrent gradually decreased. The electrode response for mercury ions detection was in the linear range from 0.01 pmol L(-1) to 1.00 pmol L(-1) with the detection limit of 3.33 fmol L(-1). The label-free PEC aptasensor has excellent performances with ultrasensitivity and good selectivity besides the advantage of economic and facile fabrication. The strategy of quercetin-copper(II) complex as a novel DNA intercalator paves a new way to improve the performances for PEC sensors. © 2013 Published by Elsevier B.V.

  13. DNA damage by reactive species: Mechanisms, mutation and repair

    Indian Academy of Sciences (India)

    DNA is continuously attacked by reactive species that can affect its structure and function severely. Structural modifications to DNA mainly arise from modifications in its bases that primarily occur due to their exposure to different reactive species. Apart from this, DNA strand break, inter- and intra-strand crosslinks and ...

  14. Electrochemical DNA biosensor for detection of porcine oligonucleotides using ruthenium(II) complex as intercalator label redox

    Energy Technology Data Exchange (ETDEWEB)

    Halid, Nurul Izni Abdullah; Hasbullah, Siti Aishah; Heng, Lee Yook; Karim, Nurul Huda Abd [School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan (Malaysia); Ahmad, Haslina; Harun, Siti Norain [Chemistry Department, Faculty of Science, Universiti Putra Malaysia, 43400, Serdang, Selangor (Malaysia)

    2014-09-03

    A DNA biosensor detection of oligonucleotides via the interactions of porcine DNA with redox active complex based on the electrochemical transduction is described. A ruthenium(II) complex, [Ru(bpy){sub 2}(PIP)]{sup 2+}, (bpy = 2,2′bipyridine, PIP = 2-phenylimidazo[4,5-f[[1,10-phenanthroline]) as DNA label has been synthesized and characterized by 1H NMR and mass spectra. The study was carried out by covalent bonding immobilization of porcine aminated DNA probes sequences on screen printed electrode (SPE) modified with succinimide-acrylic microspheres and [Ru(bpy){sub 2}(PIP)]{sup 2+} was used as electrochemical redox intercalator label to detect DNA hybridization event. Electrochemical detection was performed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) over the potential range where the ruthenium (II) complex was active. The results indicate that the interaction of [Ru(bpy){sub 2}(PIP)]{sup 2+} with hybridization complementary DNA has higher response compared to single-stranded and mismatch complementary DNA.

  15. Bulk and single-molecule fluorescence studies of the saturation of the DNA double helix using YOYO-3 intercalator dye.

    Science.gov (United States)

    Lopez, Sergio G; Ruedas-Rama, Maria J; Casares, Salvador; Alvarez-Pez, Jose M; Orte, Angel

    2012-09-27

    We report a thorough photophysical characterization of the interactions between double-stranded DNA (dsDNA) and the trimethine cyanine homodimer dye YOYO-3. The fluorescence emission of this dye is enhanced by intercalation within the DNA double helix. We have explored the saturation of the dsDNA by bound YOYO-3 at the single-molecule level by studying the single-pair Förster resonance energy transfer (FRET) from an energy donor, Alexa Fluor 488, tagged at the 5' end of the double helix and the energy acceptor, YOYO-3, bound to the same DNA molecule. The spontaneous binding of YOYO-3 gives rise to an effective distribution of different FRET efficiencies and, therefore, donor-acceptor (D-A) distances. These distributions reveal the existence of multiple states of YOYO-3. Steady-state and time-resolved fluorescence and circular dichroism confirmed the presence of a DNA-bound aggregate of YOYO-3, conspicuous at high dye/base pair ratios. The spectral features of the aggregate suggest that it may have the structure of a parallel H-aggregate.

  16. Interference of ATP with the fluorescent probes YOYO-1 andYOYO-3 modifies the mechanical properties of intercalator-stained DNA confined in nanochannels.

    Science.gov (United States)

    Roushan, Maedeh; Azad, Zubair; Lim, Shuang Fang; Wang, Hong; Riehn, Robert

    2015-06-01

    Intercalating fluorescent probes are widely used to visualize DNA in studies on DNA-protein interactions. Some require the presence of adenosine triphosphate (ATP). We have investigated the mechanical properties of DNA stained with the fluorescent intercalating dyes YOYO-1 and YOYO-3 as a function of ATP concentrations (up to 2 mM) by stretching single molecules in nanofluidic channels with a channel cross-section as small as roughly 100×100 nm2. The presence of ATP reduces the length of the DNA by up to 11 %. On the other hand, negligible effects are found if DNA is visualized with the minor groove-binding probe 4',6-diamidino-2-phenylindole. The apparent drop in extension under nanoconfinement is attributed to an interaction of the dye and ATP, and the resulting expulsion of YOYO-1 from the double helix.

  17. Linker dependent intercalation of bisbenzimidazole-aminosugars in an RNA duplex; selectivity in RNA vs. DNA binding.

    Science.gov (United States)

    Ranjan, Nihar; Arya, Dev P

    2016-12-15

    Neomycin and Hoechst 33258 are two well-known nucleic acid binders that interact with RNA and DNA duplexes with high affinities respectively. In this manuscript, we report that covalent attachment of bisbenzimidazole unit derived from Hoechst 33258 to neomycin leads to intercalative binding of the bisbenzimidazole unit (oriented at 64-74° with respected to the RNA helical axis) in a linker length dependent manner. The dual binding and intercalation of conjugates were supported by thermal denaturation, CD, LD and UV-Vis absorption experiments. These studies highlight the importance of linker length in dual recognition by conjugates, for effective RNA recognition, which can lead to novel ways of recognizing RNA structures. Additionally, the ligand library screens also identify DNA and RNA selective compounds, with compound 9, containing a long linker, showing a 20.3°C change in RNA duplex T m with only a 13.0°C change in T m for the corresponding DNA duplex. Significantly, the shorter linker in compound 3 shows almost the reverse trend, a 23.8°C change in DNA T m , with only a 9.1°C change in T m for the corresponding RNA duplex. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. 1H NMR studies of the bis-intercalation of a homodimeric oxazole yellow dye in DNA oligonucleotides.

    Science.gov (United States)

    Johansen, F; Jacobsen, J P

    1998-10-01

    We have used one and two dimensional 1H NMR spectroscopy to characterize the binding of a homodimeric oxazole yellow dye, 1,1'-(4,4,8,8-tetramethyl-4,8-diaza-undecamethylene)-bis-4-( 3-methyl-2,3-dihydro-(benzo-1,3-oxazole)-2-methylidene)-quinoliniu m tetraiodide (YOYO), to oligonucleotides containing the (5'-CTAG-3')2 and the (5'-CCGG-3')2 binding sites in either different oligonucleotides or in the same oligonucleotide. YOYO bis-intercalates strongly in all the oligonucleotides used and binds preferentially to a (5'-CTAG-3')2 binding site in the oligonucleotide d(CGCTAGCG)2 (1). YOYO also binds preferentially to a (5'-CCGG-3')2 sequence in the oligonucleotide d(CGCCGGCG)2 (2) but slightly less favorably than to the (5'- CTAG-3')2 sequence in 1. The binding of YOYO to the d(CGCTAGCCGGCG):d(CGCCGGCTAGCG) (3) oligonucleotide, containing two preferential binding sites, was also examined. YOYO forms mixtures of 1:1 and 1:2 complexes with oligonucleotide 3 in ratios dependent on the relative amount of YOYO and the oligonucleotides in the sample. The binding of YOYO to the oligonucleotide 3 occur sequence selective in the (5'-CTAG-3')2 site and the (5'- CCGG-3')2 site. We have also used two dimensional 1H NMR spectroscopy to determine the solution structure of the DNA oligonucleotide d(5'-CGCTAGCG-3')2 complexed with YOYO. The determination of the structure was based on a total relaxation matrix analysis of the NOESY cross peaks intensities. DQF-COSY spectra were used to obtain coupling constants for the deoxyribose ring protons. The coupling constants were transformed into angle estimates. The NOE derived distance and dihedral restraints were applied in restrained molecular dynamics calculations. Twenty final structures each were generated for the YOYO-complex from both A-form and B-form dsDNA starting structures giving a total of 40 final structures. Since many NOE contacts were observed between YOYO and dsDNA the resulting structure has a fairly high resolution and

  19. DNA damage by reactive species: Mechanisms, mutation and repair

    National Research Council Canada - National Science Library

    Jena, N R

    2012-01-01

    .... These structural modifications are involved in mutation, cancer and many other diseases. As it has the least oxidation potential among all the DNA bases, guanine is frequently attacked by reactive species, producing a plethora of lethal lesions...

  20. Base-Displaced Intercalated Structure of the N-(2′-Deoxyguanosin-8-yl)-3-aminobenzanthrone DNA Adduct

    Science.gov (United States)

    Politica, Dustin A.; Malik, Chanchal K.; Basu, Ashis K.; Stone, Michael P.

    2016-01-01

    3-Nitrobenzanthrone (3-NBA), an environmental mutagen found in diesel exhaust and a suspected carcinogen, undergoes metabolic reduction followed by reaction with DNA to form aminobenzanthrone (ABA) adducts, with the major alkylation product being N-(2′-deoxyguanosin-8-yl)-3-aminobenzanthrone (C8-dG-ABA). Site-specific synthesis of the C8-dG-ABA adduct in the oligodeoxynucleotide 5'-d(GTGCXTGTTTGT)-3':5'-d(ACAAACACGCAC)-3'; X = C8-dG-ABA adduct, including codons 272-275 of the p53 gene, has allowed for investigation into the structural and thermodynamic properties of this adduct. The conformation of the C8-dG-ABA adduct was determined using NMR spectroscopy and was refined using molecular dynamics (MD) calculations restrained by experimentally determined interproton distance restraints obtained from NOE experiments. The refined structure revealed that the C8-dG-ABA adduct formed a base-displaced intercalated conformation. The adducted guanine was shifted into the syn conformation about the glycosidic bond. The 5'- and 3'-neighboring base pairs remained intact. While this facilitated π-stacking interactions between the ABA moiety and neighboring bases, the thermal melting temperature (Tm) of the adduct-containing duplex showed a decrease of 11 °C as compared to the corresponding unmodified oligodeoxynucleotide duplex. Overall, in this sequence, the base-displaced intercalated conformation of the C8-dG-ABA lesion bears similarity to structures of other arylamine C8-dG adducts. However, in this sequence, the base-displaced intercalated conformation for the C8-dG-ABA adduct differs from the conformation of the N2-dG-ABA adduct reported by de los Santos and co-workers, which oriented in the minor groove towards the 5' end of the duplex, with the modified guanine remaining in the anti conformation about the glyosidic torsion angle, and the complementary base remaining within the duplex. The results are discussed in relationship to differences between the C8-dG-ABA and

  1. Direction of Intercalation of a bis-Ru(II) Complex to DNA Probed by a Minor Groove Binding Molecule 4',6-Diamidino-2-phenylindole

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Yoon Jung; Kim, Raeyeong; Chitrapriya, Nataraj; Kim, Seog K.; Bae, Inho [Yeungnam Univ., Gyeongsan (Korea, Republic of)

    2013-10-15

    Direction of intercalation to DNA of the planar dipyrido[3,2-a:2',3'-c]phenazine ligands (dppz) of a bis-Ru(II) complex namely, [Ru(1,10-phenanthroline){sub 2}dipyrido[3,2-a:2',3'-c]phenazine]{sup 2+} linkered by a 1,3-bis(4-pyridyl)propane, was investigated by probing the behavior of 4',6-diamidino-2-phenylindole (DAPI) that bound deep in the minor groove. Bis-intercalation of DPPZ resulted in a little blue shift and hyperchromism in DAPI absorption band, and a large decrease in DAPI fluorescence intensity which accompanied by an increase in the dppz emission intensity. Diminishing the intensity of the positive induced circular dichroism (CD) and linear dichroism (LD) were also observed. These spectral changes indicated that insertion of dppz ligand caused the change of the binding mode of DAPI, which probably moved to the exterior of DNA from the minor groove and interacted with the phospghate groups of DNA by electrostatic interaction. At the surface of DNA, DAPI binds at the phosphate groups of DNA by electrostatic attraction. Consequently, this observation indicated that the dppz ligand intercalated from the minor groove.

  2. DNA sequence preferences for an intercalating porphyrin compound revealed by footprinting.

    OpenAIRE

    Ford, K; Fox, K R; Neidle, S; Waring, M J

    1987-01-01

    The DNA sequence preferences of the compound meso-tetra-(4-N-methyl(pyridyl) porphyrin and its nickel complex have been investigated by means of footprinting experiments on several DNA fragments, using DNAase I and micrococcal nuclease as footprinting agents. A complex pattern of both AT and GC-protected sites was found. Ligand-induced long-range conformational changes were inferred in several instances to be related to the observed large-scale blockages of enzymatic cutting.

  3. Effects of TiO2 crystal structure on the luminescence quenching of [Ru(bpy)2(dppz)]2 +-intercalated into DNA

    Science.gov (United States)

    Chen, Linlin; Wang, Yi; Huang, Minggao; Li, Xiaodan; Zhu, Licai; Li, Hong

    2017-06-01

    The intercalation of [Ru(bpy)2(dppz)]2 + labeled as Ru(II) (bpy = 2,2‧-bipyridine and dppz = dipyrido[3,2,-a:2‧,3‧-c]phenazine) into herring sperm DNA leads to the formation of emissive Ru(II)-DNA dyads, which can be quenched by TiO2 nanoparticles (NPs) and sol-gel silica matrices at heterogeneous interfaces. The calcinations temperature exhibits a remarkable influence on the luminescence quenching of the Ru(II)-DNA dyads by TiO2 NPs. With increasing calcinations temperature in the range from 200 to 850 °C, the anatase-to-rutile TiO2 crystal structure transformation increases the average particle size and hydrodynamic diameter of TiO2 and DNA@TiO2. The anatase TiO2 has the stronger ability to unbind the Ru(II)-DNA dyads than the rutile TiO2 at room temperature. The TiO2 NPs and sol-gel silica matrices can quench the luminescence of the Ru(II) complex intercalated into DNA by selectively capturing the negatively DNA and positively charged Ru(II) complex to unbind the dyads, respectively. This present results provide new insights into the luminescence quenching and competitive binding of dye-labeled DNA dyads by inorganic NPs.

  4. Enthalpy and entropy changes for the intercalation of small molecules to DNA. I. substituted naphthalene monoimides and naphthalene diimides

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, H.P.; Stevenson, K.A.; Wilson, W.D.

    1986-07-01

    Calorimetric studies have been performed on the intercalation of a series of nitro and amino substituted naphthalene monoimide cations to calf thymus DNA. For comparison, we also included in the study the unsubstituted naphthalene diimide dication. All of the substituted naphthalene monoimides formed dimers at the concentrations used in the calorimetric titrations, and dimerization constants for these compounds were derived from spectroscopic studies and used in calculating the ..delta..H /SUP o/ /SUB B/ parameters from the calorimetric data. The dimerization constants increase in the order 3-NO/sub 2/MI = 4-NO/sub 2/MI > 3-NH/sub 2/MI > 4-NH/sub 2/MI. For the unsubstituted naphthalene monoimide and 3-NO/sub 2/MI and 4-NO/sub 2/MI, the ..delta..H /SUP o/ /SUB B/ parameters are within experimental error equal to that found for the naphthalene diimide, i.e., -4.3 kcal-mol/sup -1/. Thus, changes in entropy cause the K /SUB B/ for the diimide to be 40 times larger than that for the monoimide. This observation is consistent with the current electrostatic theory for counterion binding to DNA: a dication should cause the release of more counterions than a monocation and produce a more positive ..delta..S /SUP O/ /SUB B/ . For the amino substituted naphthalene monoimides, the K /SUB B/ values are similar to the other monoimides, but ..delta..H /SUP O/ /SUB B/ = -6.7 kcal-mol/sup -1/. We propose that a hydrogen bond is responsible for the unusual enthalpy and entropy effects seen for 3-NH/sub 2/MI and 4-NH/sub 2/MI.

  5. [DNA-intercalating compounds. Synthesis of several monomers and 1 dimer of phenanthridinium bearing aminoalkoylated chains].

    Science.gov (United States)

    Roques, B P; Barnet, J; Oberlin, R; Le Pecq, J B

    1976-11-08

    Several monomeric phenanthridinium salts quaternarized in the 5 position by different aminoalkyl chains are prepared from ammoniac or diamines and 3,8-biscarbethoxyamnio (3-bromo)-5 propyl 6-phenyl phenanthridinium bromide I. The reaction between one of the monomeric salts and I leads, after deprotection of the amino-groups to the dimer: (4,7-diaza decamethylene) bis 5,5' (3,8-diamino-6 phenyl phenanthridinium) tetrachloride. All these compounds show the fluorescence properties of the phenanthridinium ring and exhibit DNA affinity constant higher than ethidium bromide.

  6. Multiplex dsDNA fragment sizing using dimeric intercalation dyes and capillary array electrophoresis: Ionic effects on the stability and electrophoretic mobility of DNA-dye complexes

    Energy Technology Data Exchange (ETDEWEB)

    Clark, S.M.; Mathies, R.A. [Univ. of California, Berkeley, CA (United States)

    1997-04-01

    Methods have been developed for performing accurate, high-resolution, multiplex capillary electrophoresis separations of dsDNA using dimeric intercalation dyes as noncovalent labeling reagents. The quality of these separations is highly dependent on the cation present during electrophoresis. Using buffers that contain only one cation, we show that the tetrapentylammonium (NPe{sub 4}{sup +}) ion results in high-resolution, high-sensitivity separations but that smaller ions such as sodium or the commonly used buffer ion tris produce low-resolution, low-intensity separations of DNA-dye complexes. Using an 80 mM taps-NPe{sub 4}, 1 mM H{sub 2}EDTA, pH 8.4, 0.8% HEC separation buffer, high-quality multiplex separations were performed using TOTO and buTOTIN, YOYO and TOED2, and TO and buTOTIN labeled restriction digests. In the taps-NPe{sub 4} buffer, there is no significant mobility shift when complexes are formed with DNA-dye ratios from 100 to 5 bp per dye and very little dye transfer was observed. This property permits accurate multiplex sizing of samples having a wide concentration range simply by mixing the DNA with a dye solution before electrophoresis. This capability is demonstrated by diluting unpurified PCR products 10-, 100-, and 1,000-fold before mixing with a 1 nM TOTO solution and separating these samples with a {Phi}X174 HAEIII sizing ladder complexed with buTOTIN. 62 refs., 10 figs., 1 tab.

  7. Development of a cost-effective method for capripoxvirus genotyping using snapback primer and dsDNA intercalating dye.

    Directory of Open Access Journals (Sweden)

    Esayas Gelaye

    Full Text Available Sheep pox virus (SPPV, goat pox virus (GTPV and lumpy skin disease virus (LSDV are very closely related viruses of the Capripoxvirus (CaPV genus of the Poxviridae family. They are responsible for sheep pox, goat pox and lumpy skin disease which affect sheep, goat and cattle, respectively. The epidemiology of capripox diseases is complex, as some CaPVs are not strictly host-specific. Additionally, the three forms of the disease co-exist in many sub-Saharan countries which complicates the identification of the virus responsible for an outbreak. Genotyping of CaPVs using a low-cost, rapid, highly specific, and easy to perform method allows a swift and accurate identification of the causative agent and significantly assists in selecting appropriate control and eradication measures, such as the most suitable vaccine against the virus during the outbreaks. The objective of this paper is to describe the design and analytical performances of a new molecular assay for CaPV genotyping using unlabelled snapback primers in the presence of dsDNA intercalating EvaGreen dye. This assay was able to simultaneously detect and genotype CaPVs in 63 samples with a sensitivity and specificity of 100%. The genotyping was achieved by observing the melting temperature of snapback stems of the hairpins and those of the full-length amplicons, respectively. Fourteen CaPVs were genotyped as SPPVs, 25 as GTPVs and 24 as LSDVs. The method is highly pathogen specific and cross platform compatible. It is also cost effective as it does not use fluorescently labelled probes, nor require high-resolution melting curve analysis software. Thus it can be easily performed in diagnostic and research laboratories with limited resources. This genotyping method will contribute significantly to the early detection and genotyping of CaPV infection and to epidemiological studies.

  8. Development of a cost-effective method for capripoxvirus genotyping using snapback primer and dsDNA intercalating dye.

    Science.gov (United States)

    Gelaye, Esayas; Lamien, Charles Euloge; Silber, Roland; Tuppurainen, Eeva S M; Grabherr, Reingard; Diallo, Adama

    2013-01-01

    Sheep pox virus (SPPV), goat pox virus (GTPV) and lumpy skin disease virus (LSDV) are very closely related viruses of the Capripoxvirus (CaPV) genus of the Poxviridae family. They are responsible for sheep pox, goat pox and lumpy skin disease which affect sheep, goat and cattle, respectively. The epidemiology of capripox diseases is complex, as some CaPVs are not strictly host-specific. Additionally, the three forms of the disease co-exist in many sub-Saharan countries which complicates the identification of the virus responsible for an outbreak. Genotyping of CaPVs using a low-cost, rapid, highly specific, and easy to perform method allows a swift and accurate identification of the causative agent and significantly assists in selecting appropriate control and eradication measures, such as the most suitable vaccine against the virus during the outbreaks. The objective of this paper is to describe the design and analytical performances of a new molecular assay for CaPV genotyping using unlabelled snapback primers in the presence of dsDNA intercalating EvaGreen dye. This assay was able to simultaneously detect and genotype CaPVs in 63 samples with a sensitivity and specificity of 100%. The genotyping was achieved by observing the melting temperature of snapback stems of the hairpins and those of the full-length amplicons, respectively. Fourteen CaPVs were genotyped as SPPVs, 25 as GTPVs and 24 as LSDVs. The method is highly pathogen specific and cross platform compatible. It is also cost effective as it does not use fluorescently labelled probes, nor require high-resolution melting curve analysis software. Thus it can be easily performed in diagnostic and research laboratories with limited resources. This genotyping method will contribute significantly to the early detection and genotyping of CaPV infection and to epidemiological studies.

  9. Formation and rejoining of deoxyribonucleic acid double-strand breaks induced in isolated cell nuclei by antineoplastic intercalating agents.

    Science.gov (United States)

    Pommier, Y; Schwartz, R E; Kohn, K W; Zwelling, L A

    1984-07-03

    The biochemical characteristics of the formation and disappearance of intercalator-induced DNA double-strand breaks (DSB) were studied in nuclei from mouse leukemia L1210 cells by using filter elution methodology [Bradley, M. O., & Kohn, K.W. (1979) Nucleic Acids Res. 7, 793-804]. The three intercalators used were 4'-(9-acridinylamino)-methanesulfon-m-anisidide (m-AMSA), 5-iminodaunorubicin (5-ID), and ellipticine. These compounds differ in that they produced predominantly DNA single-strand breaks (SSB) (m-AMSA) or predominantly DNA double-strand breaks (ellipticine) or a mixture of both SSB and DSB (5-ID) in whole cells. In isolated nuclei, each intercalator produced DSB at a frequency comparable to that which is produced in whole cells. Moreover, these DNA breaks reversed within 30 min after drug removal. It thus appeared that neither ATP nor other nucleotides were necessary for intercalator-dependent DNA nicking-closing reactions. The formation of the intercalator-induced DSB was reduced at ice temperature. Break formation was also reduced in the absence of magnesium, at a pH above 6.4 and at NaCl concentrations above 200 mM. In the presence of ATP and ATP analogues, the intercalator-induced cleavage was enhanced. These results suggest that the intercalator-induced DSB are enzymatically mediated and that the enzymes involved in these reactions can catalyze DNA double-strand cleavage and rejoining in the absence of ATP, although the occupancy of an ATP binding site might convert the enzyme to a form more reactive to intercalators. Three inhibitors of DNA topoisomerase II--novobiocin, nalidixic acid, and norfloxacin--reduced the formation of DNA strand breaks.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. DNA reactivity profile of trans-platinum planar amine derivatives.

    Science.gov (United States)

    Musetti, Caterina; Nazarov, Alexey A; Farrell, Nicholas P; Sissi, Claudia

    2011-07-04

    New trans-platinum planar amines (TPAs) represent a family of platinum-based drugs with cytotoxicity equivalent to that of cisplatin, but with negligible cross-resistance. According to the substitution pattern around the metal center, distinct DNA adducts can be formed which yield various levels of cytotoxicity in cell lines. We compared the effects of leaving groups (Cl(-) versus formate or acetate) and amines (NH(3) versus aromatic heterocyclic planar systems) on the efficiency, kinetics, and mode of DNA platination. We show that the substitution of just a single amino group on the transplatin nucleus is optimal, with major effects on the kinetics of metal complex conversion into the reactive aquo species. Additionally, by monitoring TPA reactivity toward variable DNA structures, a lack of preference for double-stranded DNA in over single-stranded or G-quadruplex DNA was observed which is possibly related to steric effects of the planar amine groups. These properties can lead to a unique distribution of platination sites by TPA relative to the lead compound cisplatin, which may help to explain the unique cytotoxic profile of TPAs. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Semi-automated high-throughput fluorescent intercalator displacement-based discovery of cytotoxic DNA binding agents from a large compound library.

    Science.gov (United States)

    Glass, Lateca S; Bapat, Aditi; Kelley, Mark R; Georgiadis, Millie M; Long, Eric C

    2010-03-01

    High-throughput fluorescent intercalator displacement (HT-FID) was adapted to the semi-automated screening of a commercial compound library containing 60,000 molecules resulting in the discovery of cytotoxic DNA-targeted agents. Although commercial libraries are routinely screened in drug discovery efforts, the DNA binding potential of the compounds they contain has largely been overlooked. HT-FID led to the rapid identification of a number of compounds for which DNA binding properties were validated through demonstration of concentration-dependent DNA binding and increased thermal melting of A/T- or G/C-rich DNA sequences. Selected compounds were assayed further for cell proliferation inhibition in glioblastoma cells. Seven distinct compounds emerged from this screening procedure that represent structures unknown previously to be capable of targeting DNA leading to cell death. These agents may represent structures worthy of further modification to optimally explore their potential as cytotoxic anti-cancer agents. In addition, the general screening strategy described may find broader impact toward the rapid discovery of DNA targeted agents with biological activity. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Selenium nanoparticles synthesized in aqueous extract of Allium sativum perturbs the structural integrity of Calf thymus DNA through intercalation and groove binding.

    Science.gov (United States)

    Ezhuthupurakkal, Preedia Babu; Polaki, Lokeswara Rao; Suyavaran, Arumugam; Subastri, Ariraman; Sujatha, Venugopal; Thirunavukkarasu, Chinnasamy

    2017-05-01

    Biomedical application of selenium nanoparticles (SeNPs) demands the eco-friendly composite for synthesis of SeNPs. The present study reports an aqueous extract of Allium sativum (AqEAS) plug-up the current need. Modern spectroscopic, microscopic and gravimetric techniques were employed to characterize the synthesized nanoparticles. Characterization studies revealed the formation of crystalline spherical shaped SeNPs. FTIR spectrum brings out the presence of different functional groups in AqEAS, which influence the SeNPs formation and stabilization. Furthermore the different aspects of the interaction between SeNPs and CT-DNA were scrutinized by various spectroscopic and cyclic voltametric studies. The results reveals the intercalation and groove binding mode of interaction of SeNPs with stacked base pair of CT-DNA. The Stern-Volmer quenching constant (KSV) were found to be 7.02×10(6)M-(1) (ethidium bromide), 4.22×10(6) M-(1) (acridine orange) and 7.6×10(6)M-(1) (Hoechst) indicating strong binding of SeNPs with CT-DNA. The SeNPs - CT-DNA interactions were directly visualized by atomic force microscopy. The present study unveils the cost effective, innocuous, highly stable SeNPs intricate mechanism of DNA interaction, which will be a milestone in DNA targeted chemotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Characterization of the cell growth inhibitory effects of a novel DNA-intercalating bipyridyl-thiourea-Pt(II) complex in cisplatin-sensitive and -resistant human ovarian cancer cells.

    Science.gov (United States)

    Marverti, Gaetano; Ligabue, Alessio; Montanari, Monica; Guerrieri, Davide; Cusumano, Matteo; Di Pietro, Maria Letizia; Troiano, Leonarda; Di Vono, Elena; Iotti, Stefano; Farruggia, Giovanna; Wolf, Federica; Monti, Maria Giuseppina; Frassineti, Chiara

    2011-02-01

    The cellular effects of a novel DNA-intercalating agent, the bipyridyl complex of platinum(II) with diphenyl thiourea, [Pt(bipy)(Ph(2)-tu)(2)]Cl(2), has been analyzed in the cisplatin (cDDP)-sensitive human ovarian carcinoma cell line, 2008, and its -resistant variant, C13* cells, in which the highest accumulation and cytotoxicity was found among six related bipyridyl thiourea complexes. We also show here that this complex causes reactive oxygen species to form and inhibits topoisomerase II activity to a greater extent in the sensitive than in the resistant line. The impairment of this enzyme led to DNA damage, as shown by the comet assay. As a consequence, cell cycle distribution has also been greatly perturbed in both lines. Morphological analysis revealed deep cellular derangement with the presence of cellular masses, together with increased membrane permeability and depolarization of the mitochondrial membrane. Some of these effects, sometimes differentially evident between the two cell lines, might also be related to the decrease of total cell magnesium content caused by this thiourea complex both in sensitive and resistant cells, though the basal content of this ion was higher in the cDDP-resistant line. Altogether these results suggest that this compound exerts its cytotoxicity by mechanisms partly mediated by the resistance phenotype. In particular, cDDP-sensitive cells were affected mostly by impairing topoisomerase II activity and by increasing membrane permeability and the formation of reactive oxygen species; conversely, mitochondrial impairment appeared to play the most important role in the action of complex F in resistant cells.

  14. Triplex-forming twisted intercalating nucleic acids (TINAs): design rules, stabilization of antiparallel DNA triplexes and inhibition of G-quartet-dependent self-association.

    Science.gov (United States)

    Doluca, Osman; Boutorine, Alexandre S; Filichev, Vyacheslav V

    2011-10-17

    The majority of studies on DNA triple helices have been focused on pH-sensitive parallel triplexes with Hoogsteen CT-containing third strands that require protonation of cytosines. Reverse Hoogsteen GT/GA-containing antiparallel triplex-forming oligonucleotides (TFOs) do not require an acidic pH but their applicability in triplex technology is limited because of their tendency to form undesired highly stable aggregates such as G-quadruplexes. In this study, G-rich oligonucleotides containing 2-4 insertions of twisted intercalating nucleic acid(TINA) monomers are demonstrated to disrupt the formation of G-quadruplexes and form stable antiparallel triplexes with target DNA duplexes. The structure of TINA-incorporated oligonucleotides was optimized, the rules of their design were established and the optimal triplex-forming oligonucleotides were selected. These oligonucleotides show high affinity towards a 16 bp homopurine model sequence from the HIV-1 genome; dissociation constants as low as 160 nM are observed whereas the unmodified TFO does not show any triplex formation and instead forms an intermolecular G-quadruplex with T(m) exceeding 90°C in the presence of 50 mM NaCl. Here we present a set of rules that help to reach the full potential of TINATFOs and demonstrate the effect of TINA on the formation and stability of triple helical DNA.

  15. Theoretical study on the correlation between the nature of atomic Li intercalation and electrochemical reactivity in TiS2 and TiO2.

    Science.gov (United States)

    Kim, Yang-Soo; Kim, Hee-Jin; Jeon, Young-A; Kang, Yong-Mook

    2009-02-12

    The electronic structures of LiTiS(2) and LiTiO(2) (having alpha-NaFeO(2) structure) have been investigated using discrete variational Xalpha molecular orbital methods. The alpha-NaFeO(2) structure is the equilibrium structure for LiCoO(2), which is widely used as a commercial cathode material for lithium secondary batteries. This study especially focused on the charge state of Li ions and the magnitude of covalency around Li ions. When the average voltage of lithium intercalation was calculated using pseudopotential methods, the average intercalation voltage of LiTiO(2) (2.076 V) was higher than that of LiTiS(2) (1.958 V). This can be explained by the differences in Mulliken charge of lithium and the bond overlap population between the intercalated Li ions and anion in LiTiO(2) as well as LiTiS(2). The Mulliken charge, which is the ionicity of Li atom, was approximately 0.12 in LiTiS(2), and the bond overlap population (BOP) indicating the covalency between Ti and S was about 0.339. When compared with the BOP (0.6) of C-H, which is one of the most famous example of covalent bonding, the intercalated Li ions in LiTiS(2) tend to form a quite strong covalent bond with the host material. In contrast, the Mulliken charge of lithium was about 0.79, which means that Li is fully ionized and the BOP, the covalency between Ti and O, was 0.181 in LiTiO(2). Because of the high ionicity of Li and the weak covalency between Ti and the nearest anion, LiTiO(2) has a higher intercalation voltage than LiTiS(2).

  16. Genome-wide DNA methylation levels and altered cortisol stress reactivity following childhood trauma in humans

    NARCIS (Netherlands)

    Houtepen, Lotte C|info:eu-repo/dai/nl/413662802; Vinkers, Christiaan H|info:eu-repo/dai/nl/304824755; Carrillo-Roa, Tania; Hiemstra, Marieke; van Lier, Pol A; Meeus, Wim; Branje, Susan; Heim, Christine M; Nemeroff, Charles B; Mill, Jonathan; Schalkwyk, Leonard C; Creyghton, Menno P|info:eu-repo/dai/nl/336269471; Kahn, René S|info:eu-repo/dai/nl/073778532; Joëls, Marian|info:eu-repo/dai/nl/070219249; Binder, Elisabeth B; Boks, Marco P M|info:eu-repo/dai/nl/286852071

    2016-01-01

    DNA methylation likely plays a role in the regulation of human stress reactivity. Here we show that in a genome-wide analysis of blood DNA methylation in 85 healthy individuals, a locus in the Kit ligand gene (KITLG; cg27512205) showed the strongest association with cortisol stress reactivity (P=5.8

  17. COMBINED EFFECT OF ELECTROMAGNETIC RADIATION, DNA-INTERCALATORS, C60-FULLERENE AND CAFFEINE ON HUMAN BUCCAL EPITHELIUM CELLS

    Directory of Open Access Journals (Sweden)

    G. B. Skamrova

    2014-04-01

    Full Text Available Now the number of physical and chemical biologically active damage factors dramatically increased. The ways to neutralize such effects have not been studied enough. In this work the techniques of visual assessment of chromatin granulation and of electronegativity of human buccal epithelium cell nuclei were used in order to study the combined effects of the exposure to low-intensity electromagnetic radiation of the millimeter range electromagnetic radiation and to the DNA-binding compounds, such as: antibiotic doxorubicin, mutagens ethidium bromide and proflavine, as well as to caffeine and C60 -fullerene which are not directly interact with DNA. When the action of electromagnetic radiation and DNA-binding compounds is combined, a synergistic effect of reducing the cell response was observed in contrast to the effects caused by electromagnetic radiation and drugs separately. When cells were irradiated in the presence of C60 -fullerene or caffeine, a protective effect of compounds against electromagnetic radiation influence was observed. The obtained results may provide perspectives in the use of the C60 fullerene and caffeine as DNA-protectors under the action of electromagnetic radiation.

  18. C-1311 (Symadex), a potential anti-cancer drug, intercalates into DNA between A and G moieties. NMR-derived and MD-refined stereostructure of the d(GAGGCCTC)2:C-1311 complex

    Science.gov (United States)

    Laskowski, Tomasz; Borzyszkowska, Julia; Grynda, Jakub; Mazerski, Jan

    2017-08-01

    Imidazoacridinone C-1311 (Symadex®) is an antitumor agent which has been recommended for Phase II clinical trials a few years ago. Previously, it was shown experimentally that during the initial stage of its action C-1311 forms stable intercalation complexes with DNA duplexes. Herein, a NMR-derived stereostructure of d(GAGGCCTC)2:C-1311 complex was reported. The ligand was found locating itself between A and G moieties, forming symmetrical DNA:drug 1:2 mol/mol complex. Intercalation site was located upon the DNA-ligand proton/proton dipolar couplings observed in the NOESY spectrum and the performed MD simulations. NMR-derived stereostructure was hence refined by restrained MD using distance restraints obtained from the NOESY data and the result was compared with MD-derived structure of the proposed complex, obtained from the calculations performed with distance restraints applied only for hydrogen bonds in the terminal GC base pairs. The results of both simulations were coherent. Basing on the observed C-1311's intercalation sites and on our previous results concerning the d(CGATCG)2:C-1311 complex, we stated that AG/GA sequences are the preferred binding sites of imidazoacridinone C-1311.

  19. Differential Immuno-Reactivity to Genomic DNA, RNA and Mitochondrial DNA is Associated with Auto-Immunity

    Directory of Open Access Journals (Sweden)

    Vilena V. Ivanova

    2014-12-01

    Full Text Available Background: Circulating auto-reactive antibodies are hallmark features of auto-immune diseases, however little is known with respect to the specificity of such bio-markers. In the present study, we investigated the specificity of anti-nucleic acid antibodies in the blood of subjects with systemic lupus erythematosus (SLE and healthy controls. Methods: Sera from 12 SLE cases and 8 controls were evaluated for immuno-reactivity to purified RNA, DNA and mitochondrial DNA (mtDNA by enzyme-linked immuno-sorbent assay (ELISA. Results: As expected, immuno-reactivity to total nucleic acids was significantly higher in subjects with SLE when compared to healthy controls, however a clear distinction was observed among the various nucleic acid sub-types, with sera from SLE subjects displaying the greatest immuno-reactivity to RNA followed by mtDNA and then total DNA. Conclusion: The identification of auto-reactive antibodies can serve as highly sensitive biomarkers, although their specificity may not always allow diagnostic certainty. The knowledge that auto-antibodies in subjects with SLE display differential immuno-reactivity may help to improve existing diagnostics and may lead to a better understanding of the pathogenesis of auto-immune disorders.

  20. Photoluminescence quenching/recovery kinetics of [Ru(bpy)2(tatp)]2+ and [Ru(bpy)2(dmtatp)]2+ intercalated within DNA by copper(II) ions and EDTA

    Science.gov (United States)

    Ji, Shibo; Chen, Miaojing; Gan, Guilian; Li, Hong; Li, Weishan

    2012-03-01

    The quenching and recovery kinetics of photoluminescence of [Ru(bpy)2(tatp)]2+ (Ru1) and [Ru(bpy)2(dmtatp)]2+ (Ru2) intercalated within DNA (where bpy = 2,2'-bipyridine, tatp = 1,4,8,9-tetra-aza-triphenylene and dmtatp = 2,3-dimethyl-1,4,8,9-tetra-aza-triphenylene) have been investigated by steady-state and time-resolved methods performed at various temperatures (293-333 K). Two complexes Ru1 and Ru2 show a single-exponential luminescence decay with τRu1 = 246.0 ns and τRu2 = 513.5 ns, whose luminescence upon intercalating into DNA exhibits very consistent bi-exponential decay changes. The addition of Cu2+ ions is found to dynamically quench the luminescence of both DNA-bound Ru(II) complexes, involving a spontaneous exothermic process. The sequential addition of EDTA can partially recover the luminescence quenched by Cu2+, however depending on methyl substituents of the intercalative ligand. The chemical conversion and luminescence control mechanism of the two DNA-bound Ru(II) complexes is discussed in detail. The present results should be of value for better understanding chemical modulation of DNA-bound Ru(II) complexes as luminescence probes.

  1. DNA damage by reactive species: Mechanisms, mutation and repair

    Indian Academy of Sciences (India)

    2012-06-25

    Jun 25, 2012 ... guanine-guanine DNA adducts in human leukocytes by high-performance liquid chromatography coupled to induc- tively coupled plasma mass spectrometry. Chem. Res. Toxicol. 23 1313–132. Hedglin M and O'Brien PJ 2010 Nonspecifically bound proteins spin while diffusing along DNA. ACS Chem. Biol.

  2. Naturally occurring V region connected antibodies inhibit anti-dsDNA antibody reactivity with dsDNA.

    Science.gov (United States)

    Srdic-Rajic, Tatjana; Jurisic, Vladimir; Andrejevic, Sladjana; Bonaci-Nikolic, Branka; Bowker, Timothy; Concas, Daniela; Metlas, Radmila

    2012-01-01

    The production of autoantibodies against a vast array of self antigens, most notably double stranded (ds) DNA, characterized systemic lupus erythematosus (SLE). The purpose of this work is to study specific Ig fractions isolated from normal human serum (NHS) and their effect on the binding of anti-double-stranded deoxyribonucleic acid (dsDNA) antibodies (Abs) to dsDNA. A fraction named immunoglobulin G (IgG)-reactive IgG was purified from total NHS IgG by absorption onto (CNBr)-activated Sepharose 4B linked to intact IgG molecules (IgG-Sepharose column). IgG-reactive IgG was co-incubated with systemic lupus erythematosus (SLE) patient's serum and binding of the anti-dsDNA Abs to dsDNA was measured by enzyme-linked immunosorbent assay (ELISA). Co-incubation of SLE patient's serum with IgG-reactive IgG resulted in a dose-dependent reduction in binding of anti-dsDNA Abs to dsDNA. A reduction greater than 70% was observed at a concentration of 300 μg of IgG-reactive IgG per mL of a 400-fold diluted SLE patient's serum whereas total NHS IgG, at the same concentration, resulted in a 10% reduction in binding. The purification process used to isolate IgG-reactive IgG was based on interactions between intact Ig rather than on interactions between F(ab')(2) portions. IgG(2) is the predominant immunoglobulin (Ig) subclass in IgG-reactive IgG. Thus, IgG(2) might have an important role in the connectivity characteristics of NHS IgG. The capacity of IgG-reactive IgG to inhibit anti-DNA Ab binding to dsDNA may have potential application in the treatment of SLE. This targeted biological approach may provide an alternative strategy to immunosuppressants. Copyright © 2011 Elsevier GmbH. All rights reserved.

  3. Synthesis of a new intercalating nucleic acid analogue with pyrenol insertions and the thermal stability of the resulting oligonucleotides towards DNA over RNA

    DEFF Research Database (Denmark)

    Osman, Amany M. A.; Pedersen, Erik Bjerregaard

    2010-01-01

    A new intercalating nucleic acid monomer Y was obtained via alkylation of pyren-1-ol with (S)-(?)-2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethanol under Mitsunobu conditions followed by hydrolysis with 80% aqueous acetic acid to give a diol which was tritylated with 4,40-dimethoxytrityl chloride followed...... identical hybridization properties with those of intercalating nucleic acid (INA) where neighboring oxygen and carbon atoms are interchanged in the linker. The synthesis of monomer Y avoids the use of allergic intermediates which are a problem in the synthesis of INA....

  4. Discriminating Intercalative Effects of Threading Intercalator Nogalamycin, from Classical Intercalator Daunomycin, Using Single Molecule Atomic Force Spectroscopy.

    Science.gov (United States)

    Banerjee, T; Banerjee, S; Sett, S; Ghosh, S; Rakshit, T; Mukhopadhyay, R

    2016-01-01

    DNA threading intercalators are a unique class of intercalating agents, albeit little biophysical information is available on their intercalative actions. Herein, the intercalative effects of nogalamycin, which is a naturally-occurring DNA threading intercalator, have been investigated by high-resolution atomic force microscopy (AFM) and spectroscopy (AFS). The results have been compared with those of the well-known chemotherapeutic drug daunomycin, which is a non-threading classical intercalator bearing structural similarity to nogalamycin. A comparative AFM assessment revealed a greater increase in DNA contour length over the entire incubation period of 48 h for nogalamycin treatment, whereas the contour length increase manifested faster in case of daunomycin. The elastic response of single DNA molecules to an externally applied force was investigated by the single molecule AFS approach. Characteristic mechanical fingerprints in the overstretching behaviour clearly distinguished the nogalamycin/daunomycin-treated dsDNA from untreated dsDNA-the former appearing less elastic than the latter, and the nogalamycin-treated DNA distinguished from the daunomycin-treated DNA-the classically intercalated dsDNA appearing the least elastic. A single molecule AFS-based discrimination of threading intercalation from the classical type is being reported for the first time.

  5. Enhanced selection of high affinity DNA-reactive B cells following cyclophosphamide treatment in mice.

    Directory of Open Access Journals (Sweden)

    Daisuke Kawabata

    Full Text Available A major goal for the treatment of patients with systemic lupus erythematosus with cytotoxic therapies is the induction of long-term remission. There is, however, a paucity of information concerning the effects of these therapies on the reconstituting B cell repertoire. Since there is recent evidence suggesting that B cell lymphopenia might attenuate negative selection of autoreactive B cells, we elected to investigate the effects of cyclophosphamide on the selection of the re-emerging B cell repertoire in wild type mice and transgenic mice that express the H chain of an anti-DNA antibody. The reconstituting B cell repertoire in wild type mice contained an increased frequency of DNA-reactive B cells; in heavy chain transgenic mice, the reconstituting repertoire was characterized by an increased frequency of mature, high affinity DNA-reactive B cells and the mice expressed increased levels of serum anti-DNA antibodies. This coincided with a significant increase in serum levels of BAFF. Treatment of transgene-expressing mice with a BAFF blocking agent or with DNase to reduce exposure to autoantigen limited the expansion of high affinity DNA-reactive B cells during B cell reconstitution. These studies suggest that during B cell reconstitution, not only is negative selection of high affinity DNA-reactive B cells impaired by increased BAFF, but also that B cells escaping negative selection are positively selected by autoantigen. There are significant implications for therapy.

  6. DNA binding, anti-tumour activity and reactivity toward cell thiols of ...

    Indian Academy of Sciences (India)

    ... biochemical properties and biological activity of a series of new 9-substituted acridine derivatives with a reactive alkene moiety: 9-[(E)-2-phenylethenyl] acridine (1) and methyl (2E)-3-(acridin-9-yl)-prop-2-enoate (2). The interaction of derivatives 1 and 2 with calf thymus DNA was investigated using UV-Vis, fluorescence ...

  7. Abundance of DNA adducts of 4-oxo-2-alkenals, lipid peroxidation-derived highly reactive genotoxins.

    Science.gov (United States)

    Kawai, Yoshichika; Nuka, Erika

    2018-01-01

    Reactive oxygen species and their reaction products can damage DNA to form mutagenic lesions. Among the reactive species, lipid peroxidation-derived aldehydes react with nucleobases and form bulky exocyclic adducts. Many types of aldehyde-derived DNA adducts have been characterized, identified and detected in vitro and in vivo , whereas relative quantitative and pathophysiological contributions of each adduct still remain unclear. In recent years, an abundant class of DNA adducts derived from 4-oxo-2-alkenals have been identified, in addition to classic aldehyde-derived adducts. The presence of 4-oxo-2-alkenal-derived DNA adducts associated with age-related diseases has been revealed in rodents and humans. In vitro studies have demonstrated that 4-oxo-2-alkenals, as compared with other classes of lipid peroxidation-derived aldehydes, are highly reactive with nucleobases. It has been generally recognized that 4-oxo-2-alkenals are generated through oxidative degradation of the corresponding 4-hydroperoxy-2-alkenals, homolytic degradation products of polyunsaturated fatty acid hydroperoxides. Our recent results have also shown an alternative pathway for the formation of 4-oxo-2-alkenals, in which 2-alkenals could undergo the metal-catalyzed autoxidation resulting in the formation of the corresponding 4-oxo-2-alkenals. This review summarizes the basis of the formation of lipid peroxidation-derived genotoxic aldehydes and their covalent adduction to nucleobases, especially focusing on the abundance of 4-oxo-2-alkenal-derived DNA adducts.

  8. Intercalated graphite electrical conductors

    Science.gov (United States)

    Banks, B. A.

    1983-01-01

    For years NASA has wanted to reduce the weight of spacecraft and aircraft. Experiments are conducted to find a lightweight synthetic metal to replace copper. The subject of this paper, intercalated graphite, is such a material. Intercalated graphite is made by heating petroleum or coal to remove the hydrogen and to form more covalent bonds, thus increasing the molecular weight. The coal or petroleum eventually turns to pitch, which can then be drawn into a fiber. With continued heating the pitch-based fiber releases hydrogen and forms a carbon fiber. The carbon fiber, if heated sufficiently, becomes more organized in parallel layers of hexagonally arranged carbon atoms in the form of graphite. A conductor of intercalated graphite is potentially useful for spacecraft or aircraft applications because of its low weight.

  9. Genome-wide DNA methylation levels and altered cortisol stress reactivity following childhood trauma in humans.

    Science.gov (United States)

    Houtepen, Lotte C; Vinkers, Christiaan H; Carrillo-Roa, Tania; Hiemstra, Marieke; van Lier, Pol A; Meeus, Wim; Branje, Susan; Heim, Christine M; Nemeroff, Charles B; Mill, Jonathan; Schalkwyk, Leonard C; Creyghton, Menno P; Kahn, René S; Joëls, Marian; Binder, Elisabeth B; Boks, Marco P M

    2016-03-21

    DNA methylation likely plays a role in the regulation of human stress reactivity. Here we show that in a genome-wide analysis of blood DNA methylation in 85 healthy individuals, a locus in the Kit ligand gene (KITLG; cg27512205) showed the strongest association with cortisol stress reactivity (P=5.8 × 10(-6)). Replication was obtained in two independent samples using either blood (N=45, P=0.001) or buccal cells (N=255, P=0.004). KITLG methylation strongly mediates the relationship between childhood trauma and cortisol stress reactivity in the discovery sample (32% mediation). Its genomic location, a CpG island shore within an H3K27ac enhancer mark, and the correlation between methylation in the blood and prefrontal cortex provide further evidence that KITLG methylation is functionally relevant for the programming of stress reactivity in the human brain. Our results extend preclinical evidence for epigenetic regulation of stress reactivity to humans and provide leads to enhance our understanding of the neurobiological pathways underlying stress vulnerability.

  10. Base-displaced intercalation of the 2-amino-3-methylimidazo[4,5-f]quinolone N2-dG adduct in the NarI DNA recognition sequence.

    Science.gov (United States)

    Stavros, Kallie M; Hawkins, Edward K; Rizzo, Carmelo J; Stone, Michael P

    2014-03-01

    2-Amino-3-methylimidazo[4,5-f]quinolone (IQ), a heterocyclic amine found in cooked meats, undergoes bioactivation to a nitrenium ion, which alkylates guanines at both the C8-dG and N2-dG positions. The conformation of a site-specific N2-dG-IQ adduct in an oligodeoxynucleotide duplex containing the iterated CG repeat restriction site of the NarI endonuclease has been determined. The IQ moiety intercalates, with the IQ H4a and CH3 protons facing the minor groove, and the IQ H7a, H8a and H9a protons facing the major groove. The adducted dG maintains the anti-conformation about the glycosyl bond. The complementary dC is extruded into the major groove. The duplex maintains its thermal stability, which is attributed to stacking between the IQ moiety and the 5'- and 3'-neighboring base pairs. This conformation is compared to that of the C8-dG-IQ adduct in the same sequence, which also formed a 'base-displaced intercalated' conformation. However, the C8-dG-IQ adopted the syn conformation placing the Watson-Crick edge of the modified dG into the major groove. In addition, the C8-dG-IQ adduct was oriented with the IQ CH3 group and H4a and H5a facing the major groove. These differences may lead to differential processing during DNA repair and replication.

  11. Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro.

    Science.gov (United States)

    De Iuliis, Geoffry N; Newey, Rhiannon J; King, Bruce V; Aitken, R John

    2009-07-31

    In recent times there has been some controversy over the impact of electromagnetic radiation on human health. The significance of mobile phone radiation on male reproduction is a key element of this debate since several studies have suggested a relationship between mobile phone use and semen quality. The potential mechanisms involved have not been established, however, human spermatozoa are known to be particularly vulnerable to oxidative stress by virtue of the abundant availability of substrates for free radical attack and the lack of cytoplasmic space to accommodate antioxidant enzymes. Moreover, the induction of oxidative stress in these cells not only perturbs their capacity for fertilization but also contributes to sperm DNA damage. The latter has, in turn, been linked with poor fertility, an increased incidence of miscarriage and morbidity in the offspring, including childhood cancer. In light of these associations, we have analyzed the influence of RF-EMR on the cell biology of human spermatozoa in vitro. Purified human spermatozoa were exposed to radio-frequency electromagnetic radiation (RF-EMR) tuned to 1.8 GHz and covering a range of specific absorption rates (SAR) from 0.4 W/kg to 27.5 W/kg. In step with increasing SAR, motility and vitality were significantly reduced after RF-EMR exposure, while the mitochondrial generation of reactive oxygen species and DNA fragmentation were significantly elevated (PDNA damage bio-marker, 8-OH-dG, and DNA fragmentation after RF-EMR exposure. RF-EMR in both the power density and frequency range of mobile phones enhances mitochondrial reactive oxygen species generation by human spermatozoa, decreasing the motility and vitality of these cells while stimulating DNA base adduct formation and, ultimately DNA fragmentation. These findings have clear implications for the safety of extensive mobile phone use by males of reproductive age, potentially affecting both their fertility and the health and wellbeing of their

  12. Intercalating oleylamines in graphite oxide.

    Science.gov (United States)

    Yang, Kaikun; Liang, Si; Zou, Lianfeng; Huang, Liwei; Park, Cheol; Zhu, Lisheng; Fang, Jiye; Fu, Qiang; Wang, Howard

    2012-02-07

    Graphite oxide has been synthesized from raw graphite particles and been treated with various mass amounts of oleylamine as intercalants to form intercalation compounds. X-ray diffraction patterns reveal that the inter-sheet distances strongly depend on the graphite oxide to oleylamine mass ratios. The equilibrium-like behavior implies diffusion-dominated oleylamine adsorption on graphite oxide in solution and excluded volume intercalations among oleylamine-adsorbed graphite oxide during restacking. The intercalation compounds are soluble in organic solvents, and their applications in the fabrication of transparent and conductive coatings have been demonstrated.

  13. A potential food biopreservative, CecXJ-37N, non-covalently intercalates into the nucleotides of bacterial genomic DNA beyond membrane attack.

    Science.gov (United States)

    Liu, Dongliang; Liu, Jun; Li, Jinyao; Xia, Lijie; Yang, Jianhua; Sun, Surong; Ma, Ji; Zhang, Fuchun

    2017-02-15

    The antibacterial activities and mechanism of an amide-modified peptide CecXJ-37N were investigated in this study. CecXJ-37N showed small MICs (0.25-7.8μM) against eight harmful strains common in food industry. The α-helix proportion of CecXJ-37N increased by 11-fold in prokaryotic membrane comparable environments; cytotoxicity studies demonstrated the MHC was significantly higher than that of non-amidated isoform. Moreover, CecXJ-37N possessed stronger capacities to resist trypsin and pepsin hydrolysis within two hours. Flow cytometry and scanning electron microscopy demonstrated that CecXJ-37N induced pore-formation, morphological changes, and lysed E. coli cells. Fluorescence microscopy indicated that CecXJ-37N penetrated E. coli membrane and accumulated in cytoplasm. Further ultraviolet-visible spectroscopy suggested that CecXJ-37N changed the action mode of parental peptide interacting with bacterial genome from outside binding to a tightly non-covalent intercalation into nucleotides. Overall, this study suggested that amide-modification enhanced antimicrobial activity and reduced the cytotoxicity, thus could be potential strategies for developing novel food preservatives. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. DNA-Conjugated Organic Chromophores in DNA Stacking Interactions

    DEFF Research Database (Denmark)

    Filichev, Vyacheslav V.; Pedersen, Erik Bjerregaard

    2009-01-01

    Since the discovery of the intercalation of acridine derivatives into DNA (1961), chemists have synthesized many intercalators tethered to DNA. Advances in the chemical synthesis of modified nucleosides along with progress in oligonucleotide synthesis have made it possible to introduce organic ch...... review presents those efforts in the design of intercalators/organic chromophores as oligonucleotide conjugates that form a foundation for the generation of novel nucleic acid architectures......Since the discovery of the intercalation of acridine derivatives into DNA (1961), chemists have synthesized many intercalators tethered to DNA. Advances in the chemical synthesis of modified nucleosides along with progress in oligonucleotide synthesis have made it possible to introduce organic...

  15. Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro.

    Directory of Open Access Journals (Sweden)

    Geoffry N De Iuliis

    Full Text Available BACKGROUND: In recent times there has been some controversy over the impact of electromagnetic radiation on human health. The significance of mobile phone radiation on male reproduction is a key element of this debate since several studies have suggested a relationship between mobile phone use and semen quality. The potential mechanisms involved have not been established, however, human spermatozoa are known to be particularly vulnerable to oxidative stress by virtue of the abundant availability of substrates for free radical attack and the lack of cytoplasmic space to accommodate antioxidant enzymes. Moreover, the induction of oxidative stress in these cells not only perturbs their capacity for fertilization but also contributes to sperm DNA damage. The latter has, in turn, been linked with poor fertility, an increased incidence of miscarriage and morbidity in the offspring, including childhood cancer. In light of these associations, we have analyzed the influence of RF-EMR on the cell biology of human spermatozoa in vitro. PRINCIPAL FINDINGS: Purified human spermatozoa were exposed to radio-frequency electromagnetic radiation (RF-EMR tuned to 1.8 GHz and covering a range of specific absorption rates (SAR from 0.4 W/kg to 27.5 W/kg. In step with increasing SAR, motility and vitality were significantly reduced after RF-EMR exposure, while the mitochondrial generation of reactive oxygen species and DNA fragmentation were significantly elevated (P<0.001. Furthermore, we also observed highly significant relationships between SAR, the oxidative DNA damage bio-marker, 8-OH-dG, and DNA fragmentation after RF-EMR exposure. CONCLUSIONS: RF-EMR in both the power density and frequency range of mobile phones enhances mitochondrial reactive oxygen species generation by human spermatozoa, decreasing the motility and vitality of these cells while stimulating DNA base adduct formation and, ultimately DNA fragmentation. These findings have clear implications

  16. An exploration of sequence specific DNA-duplex/pyrene interactions for intercalated and surface-associated pyrene species. Final report, May 1, 1993--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Netzel, T.L.

    1997-03-01

    The broad objective of this DOE sponsored work on photoinduced electron transfer (ET) within covalently modified DNA was to learn about the rates of Et among various DNA bases and commonly used organic electron donor (D) and acceptor (A) molecules. This hypothesis driven, multidisciplinary project combined skills in modified nucleic acid synthesis and in continuous and time-resolved optical spectroscopies. Covalently modified DNA chemistry as investigated in this program had two specific long term goals. The first was to use experimental and theoretical insights into the mechanisms of electron transfer (ET) reactions to design supramolecular assemblies of redox-active chromophores that function as efficient vectorial ET engines. The second was to construct oligonucleotide probes for real-time monitoring of intracellular processes involving DNA and RNA such as m-RNA expression and translocation. This research project laid the groundwork for studying ET reactions within DNA duplexes by examining the photophysics of uridine nucleosides which are covalently labeled at the 5-position with 1-pyrenyl chromophores.

  17. ERK/c-Jun Recruits Tet1 to Induce Zta Expression and Epstein-Barr Virus Reactivation through DNA Demethylation.

    Science.gov (United States)

    Zhang, Wei; Han, Dongjie; Wan, Pin; Pan, Pan; Cao, Yanhua; Liu, Yingle; Wu, Kailang; Wu, Jianguo

    2016-10-06

    DNA demethylation plays an essential role in the reactivation of Epstein-Barr virus (EBV) from latency infection. However, it is unclear how epigenetic modification is initiated in responding to stimuli. Here, we demonstrate that ERK/c-Jun signaling is involved in DNA demethylation of EBV immediate early (IE) gene Zta in response to 12-O-Tetradecanoylphorbol-13-acetate (TPA) stimulation. Remarkably, Ser73 phosphorylation of c-Jun facilitates Zta promoter demethylation and EBV reactivation, whereas knockdown of c-Jun attenuates Zta demethylation and viral reactivation. More importantly, we reveal for the first time that c-Jun interacts with DNA dioxygenase Tet1 and facilitates Tet1 to bind to Zta promoter. The binding of c-Jun and Tet1 to Zta enhances promoter demethylation, resulting in the activation of Zta, the stimulation of BHRF1 (a lytic early gene) and gp350/220 (a lytic late gene), and ultimately the reactivation of EBV. Knockdown of Tet1 attenuates TPA-induced Zta demethylation and EBV reactivation. Thus, TPA activates ERK/c-Jun signaling, which subsequently facilitates Tet1 to bind to Zta promoter, leading to DNA demethylation, gene expression, and EBV reactivation. This study reveals important roles of ERK/c-Jun signaling and Tet1 dioxygenase in epigenetic modification, and provides new insights into the mechanism underlying the regulation of virus latent and lytic infection.

  18. Synthesis and structure of a new trinuclear nickel(II) complex bridged by N-[3-(Dimethylamino)propyl]-N'-(2-hydroxyphenyl)oxamido: in vitro anticancer activities, and reactivities toward DNA and protein.

    Science.gov (United States)

    Wang, Ju-Ju; Wang, Ling-Yang; Zheng, Kang; Li, Yan-Tuan; Yan, Cui-Wei; Wu, Zhi-Yong

    2017-01-01

    A new trinickel(II) complex bridged by N-[3-(dimethylamino)propyl]- N'-(2-hydroxylphenyl)oxamido (H3 pdmapo), namely [Ni3 (pdmapo)2 (H2 O)2 ]⋅4CH3 OH, was synthesized and characterized by X-ray single-crystal diffraction and other methods. In the molecule, two symmetric cis-pdmapo(3-) mononickel(II) complexes as a "complex ligand" using the carbonyl oxygen atoms coordinate to the center nickel(II) ion situated on an inversion point. The Ni···Ni distance through the oxamido bridge is 5.2624(4) Å. The center nickel(II) ion and the lateral ones have octahedral and square-planar coordination geometries, respectively. In the crystal, a three-dimensional supramolecular network dominated by hydrogen bonds is observed. The reactivity toward DNA/protein bovine serum albumin (BSA) revealed that the complex could interact with herring sperm DNA (HS-DNA) through the intercalation mode and quench the intrinsic fluorescence of BSA via a static mechanism. The in vitro anticancer activities suggested that the complex is active against the selected tumor cell lines. © 2016 Wiley Periodicals, Inc.

  19. Magnetism in intercalated graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Sajid [Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai – 600036 (India); Nanda, B. R. K. [Department of Physics, Indian Institute of Technology Madras, Chennai – 600036 (India)

    2016-05-23

    Using density functional calculations we explore the possibilities of inducing spin moments in otherwise non-magnetic electronic structure of graphene. Through intercalation of H, N, O and F atoms between two hexagonal stacked graphene layers, we show that unpaired electrons can be generated when the planar coordinates of the functional atoms coincide with the center of the graphene hexagon. The spin-half states are realized at the functional sites for certain values of interlayer separations. For oxygen and fluorine these interlayer separations represent the natural stable phases and for hydrogen and nitrogen they induce instability which can be overcome by applying external pressure. We attribute the formation of spin-half states to the one dimensional confinement potential exerted by the graphene layers on the valence electrons of the functional elements.

  20. Inhibition of HIV-1 reverse transcriptase-catalyzed synthesis by intercalated DNA Benzo[a]Pyrene 7,8-Dihydrodiol-9,10-Epoxide adducts.

    Directory of Open Access Journals (Sweden)

    Parvathi Chary

    Full Text Available To aid in the characterization of the relationship of structure and function for human immunodeficiency virus type-1 reverse transcriptase (HIV-1 RT, this investigation utilized DNAs containing benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE-modified primers and templates as a probe of the architecture of this complex. BPDE lesions that differed in their stereochemistry around the C10 position were covalently linked to N (6-adenine and positioned in either the primer or template strand of a duplex template-primer. HIV-1 RT exhibited a stereoisomer-specific and strand-specific difference in replication when the BPDE-lesion was placed in the template versus the primer strand. When the C10 R-BPDE adduct was positioned in the primer strand in duplex DNA, 5 nucleotides from the 3΄ end of the primer terminus, HIV-1 RT could not fully replicate the template, producing truncated products; this block to further synthesis did not affect rates of dissociation or DNA binding affinity. Additionally, when the adducts were in the same relative position, but located in the template strand, similar truncated products were observed with both the C10 R and C10 S BPDE adducts. These data suggest that the presence of covalently-linked intercalative DNA adducts distant from the active site can lead to termination of DNA synthesis catalyzed by HIV-1 RT.

  1. Piperlongumine induces pancreatic cancer cell death by enhancing reactive oxygen species and DNA damage

    Directory of Open Access Journals (Sweden)

    Harsharan Dhillon

    2014-01-01

    Full Text Available Pancreatic cancer is one of the most deadly cancers with a nearly 95% mortality rate. The poor response of pancreatic cancer to currently available therapies and the extremely low survival rate of pancreatic cancer patients point to a critical need for alternative therapeutic strategies. The use of reactive oxygen species (ROS-inducing agents has emerged as an innovative and effective strategy to treat various cancers. In this study, we investigated the potential of a known ROS inducer, piperlongumine (PPLGM, a bioactive agent found in long peppers, to induce pancreatic cancer cell death in cell culture and animal models. We found that PPLGM inhibited the growth of pancreatic cancer cell cultures by elevating ROS levels and causing DNA damage. PPLGM-induced DNA damage and pancreatic cancer cell death was reversed by treating the cells with an exogenous antioxidant. Similar to the in vitro studies, PPLGM caused a reduction in tumor growth in a xenograft mouse model of human pancreatic cancer. Tumors from the PPLGM-treated animals showed decreased Ki-67 and increased 8-OHdG expression, suggesting PPLGM inhibited tumor cell proliferation and enhanced oxidative stress. Taken together, our results show that PPLGM is an effective inhibitor for in vitro and in vivo growth of pancreatic cancer cells, and that it works through a ROS-mediated DNA damage pathway. These findings suggest that PPLGM has the potential to be used for treatment of pancreatic cancer.

  2. New binary copper(II) complexes containing intercalating ligands: DNA interactions, an unusual static quenching mechanism of BSA and cytotoxic activities.

    Science.gov (United States)

    İnci, Duygu; Aydın, Rahmiye; Vatan, Özgür; Zorlu, Yunus; Çinkılıç, Nilüfer

    2017-11-24

    New binary copper(II) complexes - [Cu(4-mphen)2(NO3)]NO3·H2O (1), [Cu(5-mphen)2 (NO3)]NO3·H2O (2), the known complex [Cu(dmphen)2(NO3)]NO3 (3) and [Cu(tmphen)2 (NO3)]NO3·H2O (4) - (4-mphen: 4-methyl-1,10-phenanthroline, 5-mphen: 5-methyl-1,10-phenanthroline, dmphen: 4,7-dimethyl-1,10-phenanthroline, tmphen: 3,4,7,8-tetramethyl-1,10-phenanthroline), have been synthesized and characterized by CHN analysis, ESI-MS, FTIR and single-crystal X-ray diffraction techniques. Interaction of these complexes with calf thymus DNA (CT-DNA) has been investigated by absorption spectral titration, ethidium bromide (EB) and Hoechst 33,258 displacement assay and thermal denaturation measurement. These complexes cleaved pUC19 plasmid DNA in the absence and presence of an external agent. Notably, in the presence of H2O2 as an activator, the cleavage abilities of these complexes are obviously enhanced at low concentration. Addition of hydroxyl radical scavengers like DMSO shows significant inhibition of the DNA cleavage activity of these complexes. BSA quenching mechanism was investigated with regard to the type of quenching, binding constant, number of binding locations and the thermodynamic parameters. The experimental results suggested that the probable quenching mechanism was an unusual static process and hydrophobic forces play a dominant role. The CT-DNA and BSA binding efficiencies of these complexes follow the order: 4 > 3 > 1 > 2. Furthermore, in vitro cytotoxicities of these complexes on tumor cells lines (Caco-2, MCF-7 and A549) and healthy cell line (BEAS-2B) showed that these complexes exhibited anticancer activity with low IC50 values. The effect of hydrophobicity of the methyl-substituted phenanthrolines on DNA and protein binding activities of these complexes is discussed.

  3. The Relative Reactivity of Deoxyribose and Ribose: Did DNA Come Before RNA?

    Science.gov (United States)

    Dworkin, Jason P.; Miller, Stanley L.

    1995-01-01

    If it is assumed that there was a precursor to the ribose-phosphate backbone of RNA in the preRNA world (such as peptide nucleic acid), then the entry of various sugars into the genetic material may be related to the stability and non-enzymatic reactivity of the aldose. The rate of decomposition of 2-deoxyribose has been determined to be 1/3 that of ribose. In addition we have measured the amount of free aldehyde by H-1 and C-13 NMR and find that it has approximately 0.15% free aldehyde compared to 0.05% for ribose at 25 C. This suggests that deoxyribose would be significantly more reactive with early bases in the absence of enzymes. This is confirmed by urazole and deoxyribose reacting to form the deoxynucleoside 45 times faster as 25 C than urazole reacts with ribose to form the Ribonucleoside. Urazole is a potential precursor of uracil and is a plausible prebiotic compound which reacts with aldoses to form nucleosides. Thus the non-enzymatic reactivity of deoxyribose would favor its early use over ribose until enzymes could change the relative reactivities. Most of the reasons that RNA is presumed to have come before DNA are extrapolations back from contemporary metabolism (e.g. the abundance of ribose based coenzymes, the biosynthesis of histidine, deoxyribonucleotides are synthesized from ribonucleotides, etc.). It is very difficult to reconstruct biochemical pathways much before the last common ancestor, and it is even more difficult to do more than guess at the biochemistry of very early self-replicating systems. Thus we believe that these reasons are not compelling and that the non-enzymatic chemistry may be more important than enzymatic pathways for constructing the earliest of biochemical pathways. While the RNA world has been discussed at great length, there has not been an exploration of the transition out of the RNA world. We have constructed many possible schemes of genetic takeover events from preRNA to modern DNA, RNA, protein system which could

  4. Voltammetric and electrochemical gravimetric selective detection of interactions between Tl(I) and guanine and the influence on activity of DNA drug-intercalators.

    Science.gov (United States)

    Nowicka, Anna M; Mackiewicz, Marcin; Matysiak, Edyta; Krasnodebska-Ostrega, Beata; Stojek, Zbigniew

    2013-03-15

    The interactions of Tl(I), a well known toxic species, with selected oligonucleotides were examined. The oligonucleotide sequences selected for the investigation were taken from gene hOGG1 responsible for repairing of DNA damage. Cyclic voltammetry was particularly useful, since nitrogen N-7 in guanine can be electrooxidized while its binding with Tl(I) leads to the loss of electroactivity. So, this selected interaction could be quantitatively used in drawing Scatchard's plot and calculating the binding constants and the number of active sites in guanine molecules occupied by one metal ion. Further, we have shown that the presence of Tl(I) leads to a decrease in activity of doxorubicin (DOX), a popular anticancer drug, vs. DNA. The obtained circular dichroism (CD) spectra and the measurements with an electrochemical quartz crystal microbalance (EQCM) led to a conclusion that in the presence of monovalent thallium cations the DNA double helix was neither damaged/oxidized nor its conformation changed substantially. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Comparison of sequence of cDNA clone with other genomic and cDNA sequences for human C-reactive protein

    Energy Technology Data Exchange (ETDEWEB)

    Tenchini, M.L.; Bossi, E.; Marchetti, L.; Malcovati, M. (Universita di Milano Via Viotti (Italy)); Lorenzetti, R. (M.M.D.R.I. Via R. Lepetit, Gerenzano (Italy))

    1992-04-01

    A clone for C-reactive protein (CRP) has been isolated from a human liver cDNA library; this clone harbors a plasmid, pC81, which has an insert of 1631 bp. When compared to genomic and cDNA sequences published to date now, pC81 has revealed homologies and differences that might help to clarify the structure of this gene and the presence of allelic variants in man.

  6. Thymine dimer-induced structural changes to the DNA duplex examined with reactive probes (†).

    Science.gov (United States)

    Rumora, Amy E; Kolodziejczak, Katarzyna M; Malhowski Wagner, Anne; Núñez, Megan E

    2008-12-09

    Despite significant progress in the past decade, questions still remain about the complete structural, dynamic, and thermodynamic effect of the cis-syn cyclobutane pyrimidine dimer lesion (hereafter called the thymine dimer) on double-stranded genomic DNA. We examined a 19-mer oligodeoxynucleotide duplex containing a thymine dimer lesion using several small, base-selective reactive chemical probes. These molecules probe whether the presence of the dimer causes the base pairs to be more accessible to the solution, either globally or adjacent to the dimer. Though all of the probes confirm that the overall structure of the dimer-containing duplex is conserved compared to that of the undamaged parent duplex, reactions with both diethyl pyrocarbonate and Rh(bpy)(2)(chrysi)(3+) indicate that the duplex is locally destabilized near the lesion. Reactions with potassium permanganate and DEPC hint that the dimer-containing duplex may also be globally more accessible to the solution through a subtle shift in the double-stranded DNA ↔ single-stranded DNA equilibrium. To begin to distinguish between kinetic and thermodynamic effects, we determined the helix melting thermodynamic parameters for the dimer-containing and undamaged parent duplexes by microcalorimetry and UV melting. The presence of the thymine dimer causes this DNA duplex to be slightly less stable enthalpically but slightly less unstable entropically at 298 K, causing the overall free energy of duplex melting to remain unchanged by the dimer lesion within the error of the experiment. Here we consider these results in the context of what has been learned about the thymine dimer lesion from NMR, X-ray crystallographic, and molecular biological methods.

  7. Mitochondrial permeability transition increases reactive oxygen species production and induces DNA fragmentation in human spermatozoa.

    Science.gov (United States)

    Treulen, Favián; Uribe, Pamela; Boguen, Rodrigo; Villegas, Juana V

    2015-04-01

    Does mitochondrial permeability transition (MPT) induced by calcium overload cause reactive oxygen species (ROS) production and DNA fragmentation in human spermatozoa? Studies conducted in vitro suggest that in human spermatozoa, MPT occurs in response to intracellular calcium increase and is associated with mitochondrial membrane potential (ΔΨm) dissipation, increased ROS production and DNA fragmentation. Oxidative stress is a major cause of defective sperm function in male infertility. By opening calcium-dependent pores in the inner mitochondrial membrane (IMM), MPT causes, among other things, increased ROS production and ΔΨm dissipation in somatic cells. MPT as a mechanism for generating oxidative stress and DNA fragmentation in human spermatozoa has not been studied. Human sperm were exposed to ionomycin for 1.5 h (n = 8) followed by analysis of sperm IMM permeability, ΔΨm, ROS production and DNA fragmentation. To evaluate the MPT in sperm cells, the calcein-AM and cobalt chloride method was used. The ΔΨm was evaluated by JC-1 staining, intracellular ROS production was evaluated with dihydroethidium and DNA fragmentation was evaluated by a modified TUNEL assay. Measurements were performed by fluorescence microscopy, confocal laser microscopy and flow cytometry. Decreased calcein fluorescence after treatment with ionomycin (P fragmentation. ROS production occurred prior to the decrease in ΔΨm. The study was carried out in vitro using motile sperm from healthy donors; tests on sperm from infertile patients were not carried out. We propose that the MPT, due to pores opening in sperm IMM, is an important mechanism of increased ROS and DNA fragmentation. Therefore, agents that modulate the opening of these pores might contribute to the prevention of damage by oxidative stress in human spermatozoa. This study was funded by grant DI12-0102 from the Universidad de La Frontera (J.V.V.) and a doctoral scholarship from CONICYT Chile (F.T.). The authors disclose

  8. Long term transcriptional reactivation of epigenetically silenced genes in colorectal cancer cells requires DNA hypomethylation and histone acetylation.

    Directory of Open Access Journals (Sweden)

    David Mossman

    Full Text Available UNLABELLED: Epigenetic regulation of genes involves the coordination of DNA methylation and histone modifications to maintain transcriptional status. These two features are frequently disrupted in malignancy such that critical genes succumb to inactivation. 5-aza-2'-deoxycytidine (5-aza-dC is an agent which inhibits DNA methyltransferase, and holds great potential as a treatment for cancer, yet the extent of its effectiveness varies greatly between tumour types. Previous evidence suggests expression status after 5-aza-dC exposure cannot be explained by the DNA methylation status alone. AIM: We sought to identify chromatin changes involved with short and long term gene reactivation following 5-aza-dC exposure. Two colorectal cancer cell lines, HCT116 and SW480, were treated with 5-aza-dC and then grown in drug-free media to allow DNA re-methylation. DNA methylation and chromatin modifications were assessed with bisulfite sequencing and Chromatin Immuno-Precipitation analysis. RESULTS: Increased H3 acetylation, H3K4 tri-methylation and loss of H3K27 tri-methylation were associated with reactivation. Hypermethylated genes that did not show increased acetylation were transiently expressed with 5-aza-dC treatment before reverting to an inactive state. Three reactivated genes, CDO1, HSPC105 and MAGEA3, were still expressed 10 days post 5-aza-dC treatment and displayed localised hypomethylation at the transcriptional start site, and also an increased enrichment of histone H3 acetylation. CONCLUSIONS: These observations suggest that hypomethylation alone is insufficient to reactivate silenced genes and that increased Histone H3 acetylation in unison with localised hypomethylation allows long term reversion of these epigenetically silenced genes. This study suggests that combined DNA methyltransferase and histone deacetylase inhibitors may aid long term reactivation of silenced genes.

  9. Synthesis and crystal structure of binuclear copper(II) complex bridged by N-(2-hydroxyphenyl)-N'-[3-(diethylamino)propyl]oxamide: in vitro anticancer activity and reactivity toward DNA and protein.

    Science.gov (United States)

    Gao, Yang; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2013-08-01

    A new oxamido-bridged bicopper(II) complex, [Cu2(pdpox)(bpy)(CH3OH)](ClO4), where H3pdpox and bpy stand for N-(2-hydroxyphenyl)-N'-[3-(diethylamino)propyl]oxamide and 2,2'-bipyridine, respectively, has been synthesized and characterized by elemental analyses, molar conductivity measurements, infrared and electronic spectra studies, and X-ray single crystal diffraction. In the crystal structure, the pdpox(3-) ligand bridges two copper(II) ions as cisoid conformation. The inner copper(II) ion has a {N3O} square-planar coordination geometry, while the exo- one is in a {N2O3} square-pyramidal environment. There are two sets of interpenetrating two-dimensional hydrogen bonding networks parallel to the planes (2 1 0) and (21¯0), respectively, to form a three-dimensional supramolecular structure. The bicopper(II) complex exhibits cytotoxic activity against the SMMC7721 and A549 cell lines. The reactivity toward herring sperm DNA and bovine serum albumin revealed that the bicopper(II) complex can interact with the DNA by intercalation mode, and the complex binds to protein BSA responsible for quenching of tryptophan fluorescence by static quenching mechanism. © 2013 Wiley Periodicals, Inc.

  10. NO EVIDENCE FOR AN INDEPENDENT ROLE OF ANTI-HEPARAN SULFATE REACTIVITY APART FROM ANTI-DNA IN LUPUS NEPHRITIS

    NARCIS (Netherlands)

    HYLKEMA, MN; ZWET, IVD; KRAMERS, C; VANBRUGGEN, MCJ; SWAAK, AJG; BERDEN, JHM; SMEENK, RJT; Hylkema, Machteld

    The presence of anti-heparan sulphate (HS) reactivity in serum is closely related to the occurrence of nephritis in patients with systemic lupus erythematosus (SLE). Since patients with lupus nephritis in general also have high titres of anti-DNA antibodies, we wanted to clarify the relationship

  11. Apoptosis induction by the dual-action DNA- and protein-reactive antitumor drug irofulven is largely Bcl-2-independent.

    Science.gov (United States)

    Herzig, Maryanne C S; Trevino, Alex V; Liang, Huiyun; Salinas, Richard; Waters, Stephen J; MacDonald, John R; Woynarowska, Barbara A; Woynarowski, Jan M

    2003-02-15

    The overexpression of Bcl-2 is implicated in the resistance of cancer cells to apoptosis. This study explored the potential of irofulven (hydroxymethylacylfulvene, HMAF, MGI 114, NSC 683863), a novel DNA- and protein-reactive anticancer drug, to overcome the anti-apoptotic properties of Bcl-2 in HeLa cells with controlled Bcl-2 overexpression. Irofulven treatment resulted in rapid (12hr) dissipation of the mitochondrial membrane potential, phosphatidylserine externalization, and apoptotic DNA fragmentation, with progressive changes after 24hr. Bcl-2 overexpression caused marginal or partial inhibition of these effects after treatment times ranging from 12 to 48hr. Both Bcl-2-dependent and -independent responses to irofulven were abrogated by a broad-spectrum caspase inhibitor. Despite the somewhat decreased apoptotic indices, cell growth inhibition by irofulven was unaffected by Bcl-2 status. In comparison, Bcl-2 overexpression drastically reduced apoptotic DNA fragmentation by etoposide, acting via topoisomerase II-mediated DNA damage, but had no effect on apoptotic DNA fragmentation by helenalin A, which reacts with proteins but not DNA. Irofulven retains its pro-apoptotic and growth inhibitory potential in cell lines that have naturally high Bcl-2 expression. Collectively, the results implicate multiple mechanisms of apoptosis induction by irofulven, which may differ in time course and Bcl-2 dependence. It is possible that the sustained ability of irofulven to induce profound apoptosis and to block cell growth despite Bcl-2 overexpression may be related to its dual reactivity with both DNA and proteins.

  12. Intercalation compounds involving inorganic layered structures

    Directory of Open Access Journals (Sweden)

    CONSTANTINO VERA R. L.

    2000-01-01

    Full Text Available Two-dimensional inorganic networks can shown intracrystalline reactivity, i.e., simple ions, large species as Keggin ions, organic species, coordination compounds or organometallics can be incorporated in the interlayer region. The host-guest interaction usually causes changes in their chemical, catalytic, electronic and optical properties. The isolation of materials with interesting properties and making use of soft chemistry routes have given rise the possibility of industrial and technological applications of these compounds. We have been using several synthetic approaches to intercalate porphyrins and phthalocyanines into inorganic materials: smectite clays, layered double hydroxides and layered niobates. The isolated materials have been characterized by elemental and thermal analysis, X-ray diffraction, surface area measurements, scanning electronic microscopy, electronic and resonance Raman spectroscopies and EPR. The degree of layer stacking and the charge density of the matrices as well their acid-base nature were considered in our studies on the interaction between the macrocycles and inorganic hosts.

  13. Why apply for an intercalated research degree?

    Science.gov (United States)

    Agha, Riaz; Fowler, Alex; Whitehurst, Katharine; Rajmohan, Shivanchan; Gundogan, Buket; Koshy, Kiron

    2017-07-01

    Intercalated degrees are commonly undertaken as part of the medical undergraduate course. In this article, we discuss the advantages and disadvantages of intercalation, along with alternatives that could be considered.

  14. Reactive oxygen species modify human DNA, eliciting a more discriminating antigen for the diagnosis of systemic lupus erythematosus.

    Science.gov (United States)

    Blount, S; Griffiths, H; Emery, P; Lunec, J

    1990-09-01

    During the development of an ELISA to measure anti-DNA antibodies in systemic lupus erythematosus (SLE) sera, native dsDNA was found not to be the most appropriate antigen to use in ELISA assays for differentiating between SLE patients and those with rheumatoid arthritis (RA), a disease also associated with circulating serum anti-DNA antibodies. By modifying the ELISA technique to incorporate human DNA, denatured by reactive oxygen species, to detect anti-DNA antibodies in SLE sera, results consistently showed an increase in antibody binding when compared with the native antigen; no such trend was observed in the comparable group of RA patients. Using this assay serum anti-dsDNA antibody levels were measured in a group of 20 controls, 20 RA patients (10 seropositive and 10 seronegative) and 30 SLE patients (15 with clinically active disease, 15 with inactive disease). A comparison with the standard radioimmunoassay used to measure anti-DNA antibodies for the diagnosis of SLE showed that the ELISA assay using modified DNA performed better than the standard radioimmunoassay offering an improvement in both clinical specificity and sensitivity. The improved method particularly reduced the problem of false-negative results for SLE patients shown clinically to be either mildly active or inactive.

  15. Robust DNA Damage Response and Elevated Reactive Oxygen Species in TINF2-Mutated Dyskeratosis Congenita Cells.

    Directory of Open Access Journals (Sweden)

    Larisa Pereboeva

    Full Text Available Dyskeratosis Congenita (DC is an inherited multisystem premature aging disorder with characteristic skin and mucosal findings as well as a predisposition to cancer and bone marrow failure. DC arises due to gene mutations associated with the telomerase complex or telomere maintenance, resulting in critically shortened telomeres. The pathogenesis of DC, as well as several congenital bone marrow failure (BMF syndromes, converges on the DNA damage response (DDR pathway and subsequent elevation of reactive oxygen species (ROS. Historically, DC patients have had poor outcomes following bone marrow transplantation (BMT, perhaps as a consequence of an underlying DNA hypersensitivity to cytotoxic agents. Previously, we demonstrated an activated DDR and increased ROS, augmented by chemotherapy and radiation, in somatic cells isolated from DC patients with a mutation in the RNA component of telomerase, TERC. The current study was undertaken to determine whether previous findings related to ROS and DDR in TERC patients' cells could be extended to other DC mutations. Of particular interest was whether an antioxidant approach could counter increased ROS and decrease DC pathologies. To test this, we examined lymphocytes from DC patients from different DC mutations (TERT, TINF2, and TERC for the presence of an active DDR and increased ROS. All DC mutations led to increased steady-state p53 (2-fold to 10-fold and ROS (1.5-fold to 2-fold. Upon exposure to ionizing radiation (XRT, DC cells increased in both DDR and ROS to a significant degree. Exposing DC cells to hydrogen peroxide also revealed that DC cells maintain a significant oxidant burden compared to controls (1.5-fold to 3-fold. DC cell culture supplemented with N-acetylcysteine, or alternatively grown in low oxygen, afforded significant proliferative benefits (proliferation: maximum 2-fold increase; NAC: 5-fold p53 decrease; low oxygen: maximum 3.5-fold p53 decrease. Together, our data supports a

  16. Quantitative comparison between in vivo DNA adduct formation from exposure to selected DNA-reactive carcinogens, natural background levels of DNA adduct formation and tumour incidence in rodent bioassays.

    Science.gov (United States)

    Paini, Alicia; Scholz, Gabriele; Marin-Kuan, Maricel; Schilter, Benoît; O'Brien, John; van Bladeren, Peter J; Rietjens, Ivonne M C M

    2011-09-01

    This study aimed at quantitatively comparing the occurrence/formation of DNA adducts with the carcinogenicity induced by a selection of DNA-reactive genotoxic carcinogens. Contrary to previous efforts, we used a very uniform set of data, limited to in vivo rat liver studies in order to investigate whether a correlation can be obtained, using a benchmark dose (BMD) approach. Dose-response data on both carcinogenicity and in vivo DNA adduct formation were available for six compounds, i.e. 2-acetylaminofluorene, aflatoxin B1, methyleugenol, safrole, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline and tamoxifen. BMD(10) values for liver carcinogenicity were calculated using the US Environmental Protection Agency BMD software. DNA adduct levels at this dose were extrapolated assuming linearity of the DNA adduct dose response. In addition, the levels of DNA adducts at the BMD(10) were compared to available data on endogenous background DNA damage in the target organ. Although for an individual carcinogen the tumour response increases when adduct levels increase, our results demonstrate that when comparing different carcinogens, no quantitative correlation exists between the level of DNA adduct formation and carcinogenicity. These data confirm that the quantity of DNA adducts formed by a DNA-reactive compound is not a carcinogenicity predictor but that other factors such as type of adduct and mutagenic potential may be equally relevant. Moreover, comparison to background DNA damage supports the notion that the mere occurrence of DNA adducts above or below the level of endogenous DNA damage is neither correlated to development of cancer. These data strongly emphasise the need to apply the mode of action framework to understand the contribution of other biological effect markers playing a role in carcinogenicity.

  17. Reactivity in ELISA with DNA-loaded nucleosomes in patients with proliferative lupus nephritis

    NARCIS (Netherlands)

    Dieker, J.W.; Schlumberger, W.; McHugh, N.; Hamann, P.; Vlag, J. van der; Berden, J.H.M.

    2015-01-01

    Autoantibodies against nucleosomes are considered a hallmark of systemic lupus erythematosus (SLE). We compared in patients with proliferative lupus nephritis the diagnostic usefulness of a dsDNA-loaded nucleosome ELISA (anti-dsDNA-NcX) with ELISAs in which dsDNA or nucleosomes alone were coated.

  18. Evolution of interfacial intercalation chemistry on epitaxial graphene/SiC by surface enhanced Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ferralis, Nicola, E-mail: ferralis@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Carraro, Carlo [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 (United States)

    2014-11-30

    Highlights: • H-intercalated epitaxial graphene–SiC interface studied with surface enhanced Raman. • Evolution of graphene and H–Si interface with UV-ozone, annealing and O-exposure. • H–Si interface and quasi-freestanding graphene are retained after UV-ozone treatment. • Enhanced ozonolytic reactivity at the edges of H-intercalated defected graphene. • Novel SERS method for characterizing near-surface graphene–substrate interfaces. - Abstract: A rapid and facile evaluation of the effects of physical and chemical processes on the interfacial layer between epitaxial graphene monolayers on SiC(0 0 0 1) surfaces is essential for applications in electronics, photonics, and optoelectronics. Here, the evolution of the atomic scale epitaxial graphene-buffer-layer–SiC interface through hydrogen intercalation, thermal annealings, UV-ozone etching and oxygen exposure is studied by means of single microparticle mediated surface enhanced Raman spectroscopy (smSERS). The evolution of the interfacial chemistry in the buffer layer is monitored through the Raman band at 2132 cm{sup −1} corresponding to the Si-H stretch mode. Graphene quality is monitored directly by the selectively enhanced Raman signal of graphene compared to the SiC substrate signal. Through smSERS, a simultaneous correlation between optimized hydrogen intercalation in epitaxial graphene/SiC and an increase in graphene quality is uncovered. Following UV-ozone treatment, a fully hydrogen passivated interface is retained, while a moderate degradation in the quality of the hydrogen intercalated quasi-freestanding graphene is observed. While hydrogen intercalated defect free quasi-freestanding graphene is expected to be robust upon UV-ozone, thermal annealing, and oxygen exposure, ozonolytic reactivity at the edges of H-intercalated defected graphene results in enhanced amorphization of the quasi-freestanding (compared to non-intercalated) graphene, leading ultimately to its complete etching.

  19. Correlations between Peripheral Blood Coxiella burnetii DNA Load, Interleukin-6 Levels, and C-Reactive Protein Levels in Patients with Acute Q Fever

    Science.gov (United States)

    Janssen, R.; Wielders, C. C. H.; Kampschreur, L. M.; Schneeberger, P. M.; Netten, P. M.; de Klerk, A.; Hodemaekers, H. M.; Hermans, M. H. A.; Notermans, D. W.; Wever, P. C.

    2014-01-01

    From 2007 to 2010, the Netherlands experienced the largest reported Q fever outbreak, with >4,000 notified cases. We showed previously that C-reactive protein is the only traditional infection marker reflecting disease activity in acute Q fever. Interleukin-6 is the principal inducer of C-reactive protein. We questioned whether increased C-reactive protein levels in acute Q fever patients coincide with increased interleukin-6 levels and if these levels correlate with the Coxiella burnetii DNA load in serum. In addition, we studied their correlation with disease severity, expressed by hospital admission and the development of fatigue. Interleukin-6 and C-reactive protein levels were analyzed in sera from 102 patients diagnosed with seronegative PCR-positive acute Q fever. Significant but weak negative correlations were observed between bacterial DNA loads expressed as cycle threshold values and interleukin-6 and C-reactive protein levels, while a significant moderate-strong positive correlation was present between interleukin-6 and C-reactive protein levels. Furthermore, significantly higher interleukin-6 and C-reactive protein levels were observed in hospitalized acute Q fever patients in comparison to those in nonhospitalized patients, while bacterial DNA loads were the same in the two groups. No marker was prognostic for the development of fatigue. In conclusion, the correlation between interleukin-6 and C-reactive protein levels in acute Q fever patients points to an immune activation pathway in which interleukin-6 induces the production of C-reactive protein. Significant differences in interleukin-6 and C-reactive protein levels between hospitalized and nonhospitalized patients despite identical bacterial DNA loads suggest an important role for host factors in disease presentation. Higher interleukin-6 and C-reactive protein levels seem predictive of more severe disease. PMID:24477856

  20. Antigenicity of bacterial membrane-cardiolipin and reactivity of anti-cardiolipin antibody with bacteria and DNA

    OpenAIRE

    中村, 知明

    1988-01-01

    I investigated the possibility of production of antibody to bacterial membrane-cardiolipin using cardiolipin micelles, Staphylococcus aureus (S.aureus) and L-form of S. aureus. I also investigated and the reactivity of anti-cardiolipin (CL) antibody with bacteria and DNA.I confirmed that the bacterial membrane-cardiolipin induced the production of anti-CL antibody, which was present mainly in the IgM fraction, but also in the IgG fraction.The anti-CL antibody reacted with L-form of bacteria a...

  1. Cy5 labeled single-stranded DNA-polydopamine nanoparticle conjugate-based FRET assay for reactive oxygen species detection

    Directory of Open Access Journals (Sweden)

    Lina Ma

    2015-03-01

    Full Text Available This work reports on a simple and feasible fluorescence resonance energy transfer (FRET assay for detecting reactive oxygen species (ROS both in solution and living cell using polydopamine nanoparticle (PDA NP as energy acceptor and Cy5 labeled single-stranded DNA (Cy5-ssDNA as energy donor. The Cy5-ssDNA and PDA NPs form self-assembled conjugates (Cy5-ssDNA-PDA NP conjugates via π-stacking interactions. In the presence of ROS, the PDA NP adsorbed Cy5-ssDNAs can be effectively cleaved, resulting in the release of Cy5 molecules into solution and recovery of fluorescence emission of Cy5. In order to obtain ROS solution, the glucose oxidase-catalyzed oxidation reaction of glucose with O2 is employed to generate hydrogen peroxide for Fenton-like reaction. The formation of ROS in Fenton-like reaction can be detected as low as glucose oxidase-catalyzed oxidation of 100 pM glucose by the Cy5-ssDNA-PDA NP conjugate-based FRET assay. The recovery ratio of Cy5 fluorescence intensity is increased linearly with logarithm of glucose concentration from 100 pM to 1 μM, demonstrating that the FRET assay has wide dynamic range. In particular, intracellular ROS has been successfully detected in chemical stimulated HepG-2 cells by the Cy5-ssDNA-PDA NP conjugate-based FRET assay with a fluorescence microscopy, indicating that this approach has great potential to monitor ROS in living cells.

  2. Evolution of interfacial intercalation chemistry on epitaxial graphene/SiC by surface enhanced Raman spectroscopy

    Science.gov (United States)

    Ferralis, Nicola; Carraro, Carlo

    2014-11-01

    A rapid and facile evaluation of the effects of physical and chemical processes on the interfacial layer between epitaxial graphene monolayers on SiC(0 0 0 1) surfaces is essential for applications in electronics, photonics, and optoelectronics. Here, the evolution of the atomic scale epitaxial graphene-buffer-layer-SiC interface through hydrogen intercalation, thermal annealings, UV-ozone etching and oxygen exposure is studied by means of single microparticle mediated surface enhanced Raman spectroscopy (smSERS). The evolution of the interfacial chemistry in the buffer layer is monitored through the Raman band at 2132 cm-1 corresponding to the Sisbnd H stretch mode. Graphene quality is monitored directly by the selectively enhanced Raman signal of graphene compared to the SiC substrate signal. Through smSERS, a simultaneous correlation between optimized hydrogen intercalation in epitaxial graphene/SiC and an increase in graphene quality is uncovered. Following UV-ozone treatment, a fully hydrogen passivated interface is retained, while a moderate degradation in the quality of the hydrogen intercalated quasi-freestanding graphene is observed. While hydrogen intercalated defect free quasi-freestanding graphene is expected to be robust upon UV-ozone, thermal annealing, and oxygen exposure, ozonolytic reactivity at the edges of H-intercalated defected graphene results in enhanced amorphization of the quasi-freestanding (compared to non-intercalated) graphene, leading ultimately to its complete etching.

  3. Redox-controlled potassium intercalation into two polyaromatic hydrocarbon solids

    Science.gov (United States)

    Romero, F. Denis; Pitcher, M. J.; Hiley, C. I.; Whitehead, G. F. S.; Kar, S.; Ganin, A. Y.; Antypov, D.; Collins, C.; Dyer, M. S.; Klupp, G.; Colman, R. H.; Prassides, K.; Rosseinsky, M. J.

    2017-07-01

    Alkali metal intercalation into polyaromatic hydrocarbons (PAHs) has been studied intensely after reports of superconductivity in a number of potassium- and rubidium-intercalated materials. There are, however, no reported crystal structures to inform our understanding of the chemistry and physics because of the complex reactivity of PAHs with strong reducing agents at high temperature. Here we present the synthesis of crystalline K2Pentacene and K2Picene by a solid-solid insertion protocol that uses potassium hydride as a redox-controlled reducing agent to access the PAH dianions, and so enables the determination of their crystal structures. In both cases, the inserted cations expand the parent herringbone packings by reorienting the molecular anions to create multiple potassium sites within initially dense molecular layers, and thus interact with the PAH anion π systems. The synthetic and crystal chemistry of alkali metal intercalation into PAHs differs from that into fullerenes and graphite, in which the cation sites are pre-defined by the host structure.

  4. E-Cigarette Aerosol Exposure Induces Reactive Oxygen Species, DNA Damage, and Cell Death in Vascular Endothelial Cells.

    Science.gov (United States)

    Anderson, Chastain; Majeste, Andrew; Hanus, Jakub; Wang, Shusheng

    2016-12-01

    Cigarette smoking remains one of the leading causes of preventable death worldwide. Vascular cell death and dysfunction is a central or exacerbating component in the majority of cigarette smoking related pathologies. The recent development of the electronic nicotine delivery systems known as e-cigarettes provides an alternative to conventional cigarette smoking; however, the potential vascular health risks of e-cigarette use remain unclear. This study evaluates the effects of e-cigarette aerosol extract (EAE) and conventional cigarette smoke extract (CSE) on human umbilical vein endothelial cells (HUVECs). A laboratory apparatus was designed to produce extracts from e-cigarettes and conventional cigarettes according to established protocols for cigarette smoking. EAE or conventional CSE was applied to human vascular endothelial cells for 4-72 h, dependent on the assay. Treated cells were assayed for reactive oxygen species, DNA damage, cell viability, and markers of programmed cell death pathways. Additionally, the anti-oxidants α-tocopherol and n-acetyl-l-cysteine were used to attempt to rescue e-cigarette induced cell death. Our results indicate that e-cigarette aerosol is capable of inducing reactive oxygen species, causing DNA damage, and significantly reducing cell viability in a concentration dependent fashion. Immunofluorescent and flow cytometry analysis indicate that both the apoptosis and programmed necrosis pathways are triggered by e-cigarette aerosol treatment. Additionally, anti-oxidant treatment provides a partial rescue of the induced cell death, indicating that reactive oxygen species play a causal role in e-cigarette induced cytotoxicity. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Magnetism in intercalated compounds of layered manganese ...

    Indian Academy of Sciences (India)

    Administrator

    dilation of the lattice. The host MnPS3 is a two-dimensional antiferromagnet. The intercalated compounds, however, show weak ferromagnetism at low temperatures. When the guest cations are hydrated ions, the intercalates are unstable, losing water to give Mn1–xG2xPS3. In order to keep the guest cations within the ...

  6. Comparing reactive oxygen species and DNA fragmentation in semen samples of unexplained infertile and healthy fertile men.

    Science.gov (United States)

    Zandieh, Zahra; Vatannejad, Akram; Doosti, Mahmood; Zabihzadeh, Sara; Haddadi, Mahnaz; Bajelan, Leila; Rashidi, Batool; Amanpour, Saeid

    2017-11-15

    Male factor infertility has increased to more than 40% during the last decade. About 30% of these couples are diagnosed with unexplained infertility. In fact, reactive oxygen species (ROS), especially superoxide anion (O2-·) and hydrogen peroxide (H2O2), play a crucial role in regulation of physiological and pathological processes in spermatozoa. Moreover, since the diagnosis of unexplained infertility just through semen analysis is a matter of much controversy; we aimed to evaluate the levels of ROS and sperm DNA fragmentation in the semen samples of unexplained infertile and fertile control couples. The semen samples of 28 unexplained infertile couples and 30 fertile control couples were analyzed according to WHO criteria. The intracellular levels of H2O2 and O2-· were detected by flow cytometry with 2',7'-Dichlorodihydrofluorescin diacetate and Dihydroethidium, respectively, and DNA fragmentation was evaluated by sperm chromatin dispersion test. In unexplained infertile group, sperm motility and normal morphology were significantly lower than the control. The levels of sperm H2O2, O2-·, and DNA fragmentation were significantly higher in unexplained infertile men compared to fertile. Moreover, a positive correlation was found between the level of H2O2 and sperm DNA fragmentation in the unexplained infertile group. Besides, reduced sperm motility in the unexplained infertile group was significantly correlated with elevated levels of ROS. The higher levels of intracellular ROS and DNA fragmentation in the semen samples of unexplained infertile couples and their causes might be considered as an important factor related to diagnosis and treatment of the unexplained infertile couples.

  7. Helicobacter pylori induces mitochondrial DNA mutation and reactive oxygen species level in AGS cells.

    Science.gov (United States)

    Huang, Xue-Wen; Luo, Rui-Hua; Zhao, Qi; Shen, Zhong-Ze; Huang, Li-Li; An, Xian-Yuan; Zhao, Lan-Jing; Wang, Jie; Huang, Yu-Zheng

    2011-01-08

    To investigate the role of ROS in the helicobacter pylori (Hp) induced mtDNA mutations, AGS cells were treated by extracts of Hp11638 or Hp11638M. The ROS levels, cytochrome C reductions, and intracellular ATP levels were measured. The coding region and the D-Loop region were amplified and sequenced. Results showed the ROS levels, cytochrome C reduction and mtDNA mutations were markedly increased and cell viability decreased after treatment with both Hp extracts, and 616 mutations were detected in D-Loop region and 3 heteroplasmic point mutations in the Cytb gene. No mutations were found in the coding region. The mutation rates of mtDNA D-Loop region were positively correlated with the ROS levels and negatively to the ATP levels.

  8. Mitochondrial reactive oxygen species are scavenged by Cockayne syndrome B protein in human fibroblasts without nuclear DNA damage.

    Science.gov (United States)

    Cleaver, James E; Brennan-Minnella, Angela M; Swanson, Raymond A; Fong, Ka-wing; Chen, Junjie; Chou, Kai-ming; Chen, Yih-wen; Revet, Ingrid; Bezrookove, Vladimir

    2014-09-16

    Cockayne syndrome (CS) is a human DNA repair-deficient disease that involves transcription coupled repair (TCR), in which three gene products, Cockayne syndrome A (CSA), Cockayne syndrome B (CSB), and ultraviolet stimulated scaffold protein A (UVSSA) cooperate in relieving RNA polymerase II arrest at damaged sites to permit repair of the template strand. Mutation of any of these three genes results in cells with increased sensitivity to UV light and defective TCR. Mutations in CSA or CSB are associated with severe neurological disease but mutations in UVSSA are for the most part only associated with increased photosensitivity. This difference raises questions about the relevance of TCR to neurological disease in CS. We find that CSB-mutated cells, but not UVSSA-deficient cells, have increased levels of intramitochondrial reactive oxygen species (ROS), especially when mitochondrial complex I is inhibited by rotenone. Increased ROS would result in oxidative damage to mitochondrial proteins, lipids, and DNA. CSB appears to behave as an electron scavenger in the mitochondria whose absence leads to increased oxidative stress. Mitochondrial ROS, however, did not cause detectable nuclear DNA damage even when base excision repair was blocked by an inhibitor of polyADP ribose polymerase. Neurodegeneration in Cockayne syndrome may therefore be associated with ROS-induced damage in the mitochondria, independent of nuclear TCR. An implication of our present results is that mitochondrial dysfunction involving ROS has a major impact on CS-B pathology, whereas nuclear TCR may have a minimal role.

  9. Reactive oxygen species generation by copper(II) oxide nanoparticles determined by DNA damage assays and EPR spectroscopy.

    Science.gov (United States)

    Angelé-Martínez, Carlos; Nguyen, Khanh Van T; Ameer, Fathima S; Anker, Jeffrey N; Brumaghim, Julia L

    2017-03-01

    Copper(II) oxide nanoparticles ((NP)CuO) have many industrial applications, but are highly cytotoxic because they generate reactive oxygen species (ROS). It is unknown whether the damaging ROS are generated primarily from copper leached from the nanoparticles, or whether the nanoparticle surface plays a significant role. To address this question, we separated nanoparticles from the supernatant containing dissolved copper, and measured their ability to damage plasmid DNA with addition of hydrogen peroxide, ascorbate, or both. While DNA damage from the supernatant (measured using an electrophoresis assay) can be explained solely by dissolved copper ions, damage by the nanoparticles in the presence of ascorbate is an order of magnitude higher than can be explained by dissolved copper and must, therefore, depend primarily upon the nanoparticle surface. DNA damage is time-dependent, with shorter incubation times resulting in higher EC50 values. Hydroxyl radical ((•)OH) is the main ROS generated by (NP)CuO/hydrogen peroxide as determined by EPR measurements; (NP)CuO/hydrogen peroxide/ascorbate conditions generate ascorbyl, hydroxyl, and superoxide radicals. Thus, (NP)CuO generate ROS through several mechanisms, likely including Fenton-like and Haber-Weiss reactions from the surface or dissolved copper ions. The same radical species were observed when (NP)CuO suspensions were replaced with the supernatant containing leached copper, washed (NP)CuO, or dissolved copper solutions. Overall, (NP)CuO generate significantly more ROS and DNA damage in the presence of ascorbate than can be explained simply from dissolved copper, and the (NP)CuO surface must play a large role.

  10. DNA Base Damage by Reactive Oxygen Species, Oxidizing Agents, and UV Radiation

    Science.gov (United States)

    Cadet, Jean; Wagner, J. Richard

    2013-01-01

    Emphasis has been placed in this article dedicated to DNA damage on recent aspects of the formation and measurement of oxidatively generated damage in cellular DNA in order to provide a comprehensive and updated survey. This includes single pyrimidine and purine base lesions, intrastrand cross-links, purine 5′,8-cyclonucleosides, DNA–protein adducts and interstrand cross-links formed by the reactions of either the nucleobases or the 2-deoxyribose moiety with the hydroxyl radical, one-electron oxidants, singlet oxygen, and hypochlorous acid. In addition, recent information concerning the mechanisms of formation, individual measurement, and repair-rate assessment of bipyrimidine photoproducts in isolated cells and human skin upon exposure to UVB radiation, UVA photons, or solar simulated light is critically reviewed. PMID:23378590

  11. Fabrication of Li-intercalated bilayer graphene

    Directory of Open Access Journals (Sweden)

    K. Sugawara

    2011-06-01

    Full Text Available We have succeeded in fabricating Li-intercalated bilayer graphene on silicon carbide. The low-energy electron diffraction from Li-deposited bilayer graphene shows a sharp 3×3R30° pattern in contrast to Li-deposited monolayer graphene. This indicates that Li atoms are intercalated between two adjacent graphene layers and take the same well-ordered superstructure as in bulk C6Li. The angle-resolved photoemission spectroscopy has revealed that Li atoms are fully ionized and the π bands of graphene are systematically folded by the superstructure of intercalated Li atoms, producing a snowflake-like Fermi surface centered at the Γ point. The present result suggests a high potential of Li-intercalated bilayer graphene for application to a nano-scale Li-ion battery.

  12. Airborne quinones induce cytotoxicity and DNA damage in human lung epithelial A549 cells: the role of reactive oxygen species.

    Science.gov (United States)

    Shang, Yu; Zhang, Ling; Jiang, Yuting; Li, Yi; Lu, Ping

    2014-04-01

    Ambient particulate matter (PM) is associated with adverse health effects. Quinones present in PM are hypothesized to contribute to these harmful effects through the generation of reactive oxygen species (ROS). However, whether the ROS induced by quinones is involved in mediating DNA damage as well as other biological responses in pulmonary cells is less well known. In this study, the toxic effects of five typical airborne quinones, including 1,2-naphthoquinone, 2-methylanthraquinone, 9,10-phenanthrenequinone, 2-methyl-1,4-naphthoquinone, and acenaphthenequinone, on cytotoxicity, DNA damage, intracellular calcium homeostasis, and ROS generation, were studied in human lung epithelial A549 cells. An antioxidant N-acetylcysteine (NAC) was used to examine the involvement of ROS in adverse biological responses induced by quinones. The quinones caused a concentration-dependent viability decrease, cellular LDH release, DNA damage, and ROS production in A549 cells. 1,2-Naphthoquinone, but not the other four quinones, increased intracellular calcium (Ca(2+)) levels in a dose-dependent manner. These toxic effects were abolished by administration of NAC, suggesting that ROS played a key role in the observed toxic effects of quinones in A549 cells. These results emphasize the importance of quinones in PM on the adverse health effects of PMs, which has been underestimated in the past few years, and highlight the need, when evaluating the effects on health and exposure management, to always consider their qualitative chemical compositions in addition to the size and concentration of PMs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Increasing the Analytical Sensitivity by Oligonucleotides Modified with Para- and Ortho-Twisted Intercalating Nucleic Acids - TINA

    DEFF Research Database (Denmark)

    Schneider, Uffe V; Géci, Imrich; Jøhnk, Nina

    2011-01-01

    -TINA molecules and 7-fold by addition of para-TINA molecules (versus the unmodified DNA oligonucleotide), with a 4-fold increase retained at 1 M ionic strength. Both intercalators sustained the discrimination of mismatches in the dsDNA (indicated by ΔTm), unless placed directly adjacent to the mismatch...

  14. Reactive oxygen species and oxidative DNA damage mediate the cytotoxicity of tungsten-nickel-cobalt alloys in vitro.

    Science.gov (United States)

    Harris, R M; Williams, T D; Hodges, N J; Waring, R H

    2011-01-01

    Tungsten alloys (WA) have been introduced in an attempt to find safer alternatives to depleted uranium and lead munitions. However, it is known that at least one alloy, 91% tungsten-6% nickel-3% cobalt (WNC-91-6-3), causes rhabdomyosarcomas when fragments are implanted in rat muscle. This raises concerns that shrapnel, if not surgically removable, may result in similar tumours in humans. There is therefore a clear need to develop rapid and robust in vitro methods to characterise the toxicity of different WAs in order to identify those that are most likely to be harmful to human health and to guide development of new materials in the future. In the current study we have developed a rapid visual in vitro assay to detect toxicity mediated by individual WA particles in cultured L6-C11 rat muscle cells. Using a variety of techniques (histology, comet assay, caspase-3 activity, oxidation of 2'7'-dichlorofluorescin to measure the production of reactive oxygen species and whole-genome microarrays) we show that, in agreement with the in vivo rat carcinogenicity studies, WNC-91-6-3 was the most toxic of the alloys tested. On dissolution, it produces large amounts of reactive oxygen species, causes significant amounts of DNA damage, inhibits caspase-3, triggers a severe hypoxic response and kills the cells in the immediate vicinity of the alloy particles within 24h. By combining these in vitro data we offer a mechanistic explanation of the effect of this alloy in vivo and show that in vitro tests are a viable alternative for assessing new alloys in the future. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Delayed HBV reactivation in rituximab-containing chemotherapy: How long should we continue anti-virus prophylaxis or monitoring HBV-DNA?

    Science.gov (United States)

    Nakaya, Aya; Fujita, Shinya; Satake, Atsushi; Nakanishi, Takahisa; Azuma, Yoshiko; Tsubokura, Yukie; Hotta, Masaaki; Yoshimura, Hideaki; Ishii, Kazuyoshi; Ito, Tomoki; Nomura, Shosaku

    2016-11-01

    Reactivation of hepatitis B virus (HBV) infection is a well-recognized and potentially fatal complication in patients treated with chemotherapy for lymphoid malignancies. Although several guidelines recommend antiviral prophylaxis and/or monitoring for HBV-DNA, there is no consensus over what time period these should occur. Clinically, we have encountered delayed reactivation of HBV infections and have reported 12 cases of reactivation in patients. Among them, five patients developed HBV reactivation more than a year after they completed their chemotherapy. This means there can be a delayed HBV reactivation and prolonged monitoring of more than a year after cessation of chemotherapy may be needed. Hence, the current recommendation of stopping antiviral prophylaxis 6-12 months after the cessation of chemotherapy may not fully protect all patients from HBV reactivation. The optimal duration of follow-up needs to be determined, and until better guidelines are set, there is no choice but to keep monitoring patients for reactivation for as long as practicable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Evaluation of the noncovalent binding interactions between polycyclic aromatic hydrocarbon metabolites and human p53 cDNA.

    Science.gov (United States)

    Wei, Yin; Lin, Yuan; Zhang, Ai-Qian; Guo, Liang-Hong; Cao, Jie

    2010-11-15

    The binding of reactive polycyclic aromatic hydrocarbon (PAH) metabolites, formed enzymatically, to DNA is a crucial step in PAH carcinogenesis in vivo. We investigated the noncovalent binding interactions between 11 PAH metabolites and human p53 complementary DNA (p53 cDNA) using the fluorescence displacement method and molecular docking analysis. All of the examined metabolites predominantly interacted with p53 cDNA by intercalation instead of groove binding. The dissociation constants ranged from 0.02 to 12.34μM. Of the metabolites tested, 1-hydroxypyrene and 3-hydroxybenzo[a]pyrene showed the strongest binding affinities to DNA, while 2-naphthol was the weakest DNA intercalator. The intercalation of the metabolites was stabilized by stacking the PAH phenyl rings with the DNA base pairs and the formation of hydrogen bonds between the oxide or hydroxyl groups on the metabolites, and DNA bases or backbones. The binding of the metabolites to DNA showed some sequence selectivity. The binding affinities and hydrogen bonds for 3-hydroxybenzo[a]pyrene, benzo[a]pyrene-4,5-dihydroepoxide (BPE) and benzo[a]pyrene-r-7,t-8-dihydrodiol-t-9,10-epoxide (BPDE) differed. It seems that the functional groups on the periphery of the PAH aromatic ring play crucial roles in regulating its binding affinity with DNA. Although it was difficult to determine the correlation between DNA noncovalent binding affinity and carcinogenicity for some of the PAH metabolites, the present study improved our understanding of the formation of PAH metabolite-DNA adducts. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Synthesis of novel anthraquinones: Molecular structure, molecular chemical reactivity descriptors and interactions with DNA as antibiotic and anti-cancer drugs

    Science.gov (United States)

    Al-Otaibi, Jamelah S.; EL Gogary, Tarek M.

    2017-02-01

    Anthraquinones are well-known anticancer drugs. Anthraquinones anticancer drugs carry out their cytotoxic activities through their interaction with DNA, and inhibition of topoisomerase II activity. Anthraquinones (AQ5 and AQ5H) were synthesized and studied with 1,5-DAAQ by computational and experimental tools. The purpose of this study is to shade more light on mechanism of interaction between anthraquinone DNA affinic agents and different types of DNA. This study will lead to gain of information useful for drug design and development. Molecular structures were optimized using DFT B3LYP/6-31 + G(d). Depending on intramolecular hydrogen bonding interactions four conformers of AQ5 were detected within the range of about 42 kcal/mol. Molecular reactivity of the anthraquinone compounds was explored using global and condensed descriptors (electrophilicity and Fukui functions). NMR and UV-VIS electronic absorption spectra of anthraquinones/DNA were investigated at the physiological pH. The interaction of the anthraquinones (AQ5 and AQ5H) were studied with different DNA namely, calf thymus DNA, (Poly[dA].Poly[dT]) and (Poly[dG].Poly[dC]). UV-VIS electronic absorption spectral data were employed to measure the affinity constants of drug/DNA binding using Scatchard analysis. NMR study confirms qualitatively the drug/DNA interaction in terms of peak shift and broadening.

  18. [Blocking 1800 MHz mobile phone radiation-induced reactive oxygen species production and DNA damage in lens epithelial cells by noise magnetic fields].

    Science.gov (United States)

    Wu, Wei; Yao, Ke; Wang, Kai-jun; Lu, De-qiang; He, Ji-liang; Xu, Li-hong; Sun, Wen-jun

    2008-01-01

    To investigate whether the exposure to the electromagnetic noise can block reactive oxygen species (ROS) production and DNA damage of lens epithelial cells induced by 1800 MHz mobile phone radiation. The DCFH-DA method and comet assay were used respectively to detect the intracellular ROS and DNA damage of cultured human lens epithelial cells induced by 4 W/kg 1800 MHz mobile phone radiation or/and 2 muT electromagnetic noise for 24 h intermittently. 1800 MHz mobile phone radiation at 4 W/kg for 24 h increased intracellular ROS and DNA damage significantly (PDNA damage of mobile phone radiation plus noise group were not significant enhanced (P>0.05) as compared to sham exposure group. Electromagnetic noise can block intracellular ROS production and DNA damage of human lens epithelial cells induced by 1800 MHz mobile phone radiation.

  19. High Density Data Storage Systems by DNA Complexes and Nano-Particles from DNA Hybrid Materials

    National Research Council Canada - National Science Library

    Ogata, Naoya

    2006-01-01

    ...) In-situ Intercalation of Phtharocyanine dye (PC) into DNA and Polyamine Complex, (3) syntheses and characterization of Nano-particles derived from DNA-polymer Hybrid Materials Containing Optical Dyes, and (4...

  20. Reactive oxygen species mediate soft corals-derived sinuleptolide-induced antiproliferation and DNA damage in oral cancer cells

    Directory of Open Access Journals (Sweden)

    Chang YT

    2017-07-01

    Full Text Available Yung-Ting Chang,1,2,* Chiung-Yao Huang,3,* Jen-Yang Tang,4,5 Chih-Chuang Liaw,1,3 Ruei-Nian Li,6 Jing-Ru Liu,6 Jyh-Horng Sheu,1,3,7,8 Hsueh-Wei Chang6,9–12 1Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan; 2Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan; 3Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; 4Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; 5Department of Radiation Oncology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan; 6Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan; 7Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; 8Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan; 9Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan; 10Cancer Center, Kaohsiung Medical University Hospital; Kaohsiung Medical University, Kaohsiung, Taiwan; 11Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; 12Research Center for Natural Products and Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan *These authors contributed equally to this work Abstract: We previously reported that the soft coral-derived bioactive substance, sinuleptolide, can inhibit the proliferation of oral cancer cells in association with oxidative stress. The functional role of oxidative stress in the cell-killing effect of sinuleptolide on oral cancer cells was not investigated as yet. To address this question, we introduced the reactive oxygen species (ROS scavenger (N-acetylcysteine [NAC] in a pretreatment to evaluate the sinuleptolide-induced changes to cell viability, morphology, intracellular

  1. Dimethylchrysene diol epoxides: mutagenicity in Salmonella typhimurium, tumorigenicity in newborn mice, and reactivity with deoxyadenosine in DNA.

    Science.gov (United States)

    Misra, B; Amin, S; Hecht, S S

    1992-01-01

    In contrast to 5-methylchrysene and 5,9-dimethylchrysene, 5,6-dimethylchrysene and 5,7-dimethylchrysene are weak tumor initiators on mouse skin. In order to investigate the basis for this, we have evaluated the mutagenic activities toward Salmonella typhimurium TA 100 and reactivity with DNA of (+/-)-anti-1,2-dihydroxy-3,4-epoxy-1,2,3,4-tetrahydro-5,6-dimethyl-ch rys ene (anti-5,6-diMeC-1,2-diol 3,4-epoxide) and anti-5,7- and anti-5,9-diMeC-1,2-diol 3,4-epoxide. The tumorigenic activities of anti-5,6- and anti-5,7-diMeC-1,2-diol 3,4-epoxides in newborn mice were also investigated. anti-5,9-diMeC-1,2-diol 3,4-epoxide was the most mutagenic of the three diol epoxides. anti-5,6-diMeC-1,2-diol 3,4-epoxide was highly tumorigenic in newborn mouse lung, with activity significantly greater than that of either anti-5-MeC- or anti-5,7-diMeC-1,2-diol 3,4-epoxide. Although the amounts of total binding of the diol epoxides to calf thymus DNA were similar, anti-5,6-diMeC-1,2-diol 3,4-epoxide bound extensively to deoxyadenosine residues. High binding to deoxyadenosine is related to the presence of a sterically hindered bay or fjord region as present in 5,6-diMeC, 7,12-dimethylbenz[a]anthracene, benzo-[g]chrysene, and benzo[c]phenanthrene. The conformations of the anti- and syn-diol epoxides of 5,6-diMeC and benzo[c]phenanthrene were similar, with both having pseudodiequatorial hydroxyl groups, in contrast to less sterically crowded diol epoxides. The high tumorigenicity of anti-5,6-diMeC-1,2-diol 3,4-epoxide in newborn mice is of interest with respect to its high deoxyadenosine binding.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Cross reactivity of serum antibody responses elicited by DNA vaccines expressing HA antigens from H1N1 subtype influenza vaccines in the past 30 years.

    Science.gov (United States)

    Almansour, Iman; Chen, Huaiqing; Wang, Shixia; Lu, Shan

    2013-10-01

    In the past three decades, ten H1 subtype influenza vaccines have been recommended for global seasonal flu vaccination. Some of them were used only for one year before being replaced by another H1 flu vaccine while others may be used for up to seven years. While the selection of a new seasonal flu vaccine was based on the escape of a new emerging virus that was not effectively protected by the existing flu formulation, there is limited information on the magnitude and breadth of cross reactivity among H1 subtype virus circulation over a long period. In the current study, HA-expressing DNA vaccines were constructed to express individual HA antigens from H1 subtype vaccines used in the past 30 y. Rabbits naïve to HA antibody responses were immunized with these HA DNA vaccines and the cross reactivity of these sera against HA antigen and related H1 viruses in the same period was studied. Our data indicate that the level of cross reactivity was different for different viral isolates and the key mutations responsible for the cross reactivity may involve only a limited number of residues. Our results provide useful information for the development of improved seasonal vaccines than can achieve broad protection against viruses within the same H1 subtype.

  3. Gene-specific DNA methylation association with serum levels of C-reactive protein in African Americans.

    Directory of Open Access Journals (Sweden)

    Yan V Sun

    Full Text Available A more thorough understanding of the differences in DNA methylation (DNAm profiles in populations may hold promise for identifying molecular mechanisms through which genetic and environmental factors jointly contribute to human diseases. Inflammation is a key molecular mechanism underlying several chronic diseases including cardiovascular disease, and it affects DNAm profile on both global and locus-specific levels. To understand the impact of inflammation on the DNAm of the human genome, we investigated DNAm profiles of peripheral blood leukocytes from 966 African American participants in the Genetic Epidemiology Network of Arteriopathy (GENOA study. By testing the association of DNAm sites on CpG islands of over 14,000 genes with C-reactive protein (CRP, an inflammatory biomarker of cardiovascular disease, we identified 257 DNAm sites in 240 genes significantly associated with serum levels of CRP adjusted for age, sex, body mass index and smoking status, and corrected for multiple testing. Of the significantly associated DNAm sites, 80.5% were hypomethylated with higher CRP levels. The most significant Gene Ontology terms enriched in the genes associated with the CRP levels were immune system process, immune response, defense response, response to stimulus, and response to stress, which are all linked to the functions of leukocytes. While the CRP-associated DNAm may be cell-type specific, understanding the DNAm association with CRP in peripheral blood leukocytes of multi-ethnic populations can assist in unveiling the molecular mechanism of how the process of inflammation affects the risks of developing common disease through epigenetic modifications.

  4. ETV6/RUNX1 Induces Reactive Oxygen Species and Drives the Accumulation of DNA Damage in B Cells

    Directory of Open Access Journals (Sweden)

    Hans-Peter Kantner

    2013-11-01

    Full Text Available The t(12;21(p13;q22 chromosomal translocation is the most frequent translocation in childhood B cell precursor-acute lymphoblastic leukemia and results in the expression of an ETV6/RUNX1 fusion protein. The frequency of ETV6/RUNX1 fusions in newborns clearly exceeds the leukemia rate revealing that additional events occur in ETV6/RUNX1-positive cells for leukemic transformation. Hitherto, the mechanisms triggering these second hits remain largely elusive. Thus, we generated a novel ETV6/RUNX1 transgenic mouse model where the expression of the fusion protein is restricted to CD19+ B cells. These animals harbor regular B cell development and lack gross abnormalities. We established stable pro-B cell lines carrying the ETV6/RUNX1 transgene that allowed us to investigate whether ETV6/RUNX1 itself favors the acquisition of second hits. Remarkably, these pro-B cell lines as well as primary bone marrow cells derived from ETV6/RUNX1 transgenic animals display elevated levels of reactive oxygen species (ROS as tested with ETV6/RUNX1 transgenic dihydroethidium staining. In line, intracellular phospho-histone H2AX flow cytometry and comet assay revealed increased DNA damage indicating that ETV6/RUNX1 expression enhances ROS. On the basis of our data, we propose the following model: the expression of ETV6/RUNX1 creates a preleukemic clone and leads to increased ROS levels. These elevated ROS favor the accumulation of secondary hits by increasing genetic instability and doublestrand breaks, thus allowing preleukemic clones to develop into fully transformed leukemic cells.

  5. Influence of plasma-generated reactive species on the plasmid DNA structure and plasmid-mediated transformation of Escherichia coli cells

    Science.gov (United States)

    Lee, Geon Joon; Choi, Min Ah; Kim, Daewook; Kim, Jun Young; Ghimire, Bhagirath; Choi, Eun Ha; Kim, Seong Hwan

    2017-09-01

    The influence of plasma-generated reactive species on the conformation of plasmid DNA (pDNA) and the transformation efficiency of Escherichia coli cells were studied. An atmospheric-pressure plasma jet (APPJ) was used to generate reactive oxygen and nitrogen species (RONS) in an aqueous solution. When E. coli cells were transformed, the transformation efficiency of E. coli with the APPJ-treated plasmid was lower than with the APPJ-untreated plasmid. Transformation efficiency was reduced due to structural modification and degradation of the pDNA by the APPJ. Plasma treatment caused structural modification of the plasmid from the supercoiled form to the linear form, and also decreased the amount of plasmid by degrading the deoxyribonucleic acid (DNA) structure accompanied by disruption of nucleobases and DNA strand breakage. The formation of linear plasmid from supercoiled plasmid by the APPJ treatment was verified through electrophoretic analysis of the NdeI restriction enzyme-cut supercoiled plasmid. The structural modification and/or decrease in the amount of pDNA are attributed to the RONS from the plasma itself and to those derived from the interaction of plasma radicals with the aqueous solution. The effect of plasma treatment on the transformation efficiency of E. coli cells was more pronounced with the linear plasmid than with the supercoiled plasmid, indicating that the linear plasmid is more vulnerable to RONS. Overall, these results revealed that plasma-generated RONS can modify the structural and optical properties of bacterial pDNA, thus affecting its biological function.

  6. Bromine intercalated graphite for lightweight composite conductors

    KAUST Repository

    Amassian, Aram

    2017-07-20

    A method of fabricating a bromine-graphite/metal composite includes intercalating bromine within layers of graphite via liquid-phase bromination to create brominated-graphite and consolidating the brominated-graphite with a metal nanopowder via a mechanical pressing operation to generate a bromine-graphite/metal composite material.

  7. Superconducting Calcium-Intercalated Bilayer Graphene.

    Science.gov (United States)

    Ichinokura, Satoru; Sugawara, Katsuaki; Takayama, Akari; Takahashi, Takashi; Hasegawa, Shuji

    2016-02-23

    We report the direct evidence for superconductivity in Ca-intercalated bilayer graphene C6CaC6, which is regarded as the thinnest limit of Ca-intercalated graphite. We performed the electrical transport measurements with the in situ 4-point-probe method in ultrahigh vacuum under zero- or nonzero-magnetic field for pristine bilayer graphene, Li-intercalated bilayer graphene (C6LiC6) and C6CaC6 fabricated on SiC substrate. We observed that the zero-resistance state occurs in C6CaC6 with the onset temperature (T(c)(onset)) of 4 K, while the T(c)(onset) is gradually decreased upon applying the magnetic field. This directly proves the superconductivity origin of the zero resistance in C6CaC6. On the other hand, both pristine bilayer graphene and C6LiC6 exhibit nonsuperconducting behavior, suggesting the importance of intercalated atoms and its species to drive the superconductivity.

  8. Direct hydrothermal synthesis of metal intercalated hexagonal ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 115; Issue 5-6. Direct hydrothermal synthesis of metal intercalated hexagonal molybdates, M x + Mo 6 − x / 3 O 18 − x (OH) x . y H2O (M = Li, Rb, Cs, NH4). S Upreti A Ramanan. Volume 115 Issue 5-6 October-December 2003 pp 411-417 ...

  9. Intramolecular recombination R-triplex in solution: stabilization by bis-intercalator YOYO.

    Science.gov (United States)

    Kaluzhny, Dmitry N; Timoshin, Vladimir V; Borisova, Olga F; Zhurkin, Victor B; Florentiev, Vladimir L; Shchyolkina, Anna K

    2008-12-01

    Recognition of double-stranded DNA with a mixed nucleotide sequence by oligonucleotide is a long-term challenge. This aim can be achieved via formation of the recombination R-triplex, accommodating two identical DNA strands in parallel orientation, and antiparallel complementary strand. In the absence of proteins the R-triplex stability is low, however, so that intermolecular R-triplex is not formed by three DNA strands in a ligand-free system. Recently, recognition of DNA with mixed base sequence by single-stranded oligonucleotide in the presence of bis-intercalator YOYO was reported. Here, we describe thermodynamic characteristics of YOYO complexes with the model oligonucleotides 5'-GT-2AP-GACTGAG TTTT CTCAGTCTACGC GAA GCGTAGACTGAG-3' (R(2AP)CW) bearing a single reporting 2-aminopurine (2AP) in place of adenine and 5'-CTCAGTCTACGC GAA GCGTAGACTGAG-3' (CW). We found that each oligonucleotide is able to bind two YOYO molecules via intercalation mode in 0.5 M LiCl. Fluorescence intensity of YOYO intercalated in triplex R(2AP)CW and in CW hairpin increased 40-fold compared to the free YOYO. Remarkably, the melting temperature of the triplex (determined using temperature dependence of the 2AP fluorescence) increased from 19 degrees C to 33 degrees C upon binding two YOYO molecules. Further increase in the YOYO concentration resulted in binding of up to five YOYO molecules to R(2AP)CW triplex and up to six YOYO molecules to CW hairpin.

  10. [HYPERBARIC OXYGEN THERAPY IN THE TREATMENT OF MALE INFERTILITY ASSOCIATED WITH INCREASED SPERM DNA FRAGMENTATION AND REACTIVE OXYGEN SPECIES IN SEMEN].

    Science.gov (United States)

    Metelev, A Yu; Bogdanov, A B; Ivkinl, E V; Mitrokhin, A A; Vodneva, M M; Veliev, E I

    2015-01-01

    The aim of this study was to explore the potential of hyperbaric oxygenation (HBO) for reduction of sperm DNA fragmentation level and reactive oxygen species (ROS) in semen. The study included 90 men with idiopathic infertility. Patients of the treatment group (n = 60) underwent HBO before the vitro fertilization (IVF) procedure. In the control group (n = 30) IVF was carried out without prior cours of HBO. Sperm DNA fragmentation analysis was carried out using the TUNEL assay, the level of ROS in the ejaculate was measured by chemiluminescence. HBO treatment resulted in a significant decrease in the mean level of sperm DNA fragmentation from 33.2 ± 7.5 to 11.9 ± 5.9%, and the median ROS in sperm from 0.89 to 0.39 mV/s (p treatment group men and in 36.7% (11/30) of the control group (p treatment of men with idiopathic infertility.

  11. Conjugation of a 3-(1H-phenanthro[9,10-d]imidazol-2-yl)-1H-indole intercalator to a triplex oligonucleotide and to a three-way junction

    DEFF Research Database (Denmark)

    Fatthalla, Maha I.; Elkholy, Yehya M; Abbas, Nermeen S

    2012-01-01

    a phenanthroimidazole moiety linked to the indole ring. Insertion of the new intercalator as a bulge into a Triplex Forming Oligonucleotide resulted in good thermal stability of the corresponding Hoogsteen-type triplexes. Molecular modeling supports the possible intercalating ability of M. Hybridisation properties...... of DNA/DNA and RNA/DNA three-way junctions (TWJ) with M in the branching point were also evaluated by their thermal stability at pH 7. DNA/DNA TWJ showed increase in thermal stability compared to wild type oligonucleotides whereas this was not the case for RNA/DNA TWJ....

  12. Combining reactive triblock copolymers with functional cross-linkers: A versatile pathway to disulfide stabilized-polyplex libraries and their application as pDNA vaccines.

    Science.gov (United States)

    Heller, Philipp; Hobernik, Dominika; Lächelt, Ulrich; Schinnerer, Meike; Weber, Benjamin; Schmidt, Manfred; Wagner, Ernst; Bros, Matthias; Barz, Matthias

    2017-07-28

    Therapeutic nucleic acids such as pDNA hold great promise for the treatment of multiple diseases. These therapeutic interventions are, however, compromised by the lack of efficient and safe non-viral delivery systems, which guarantee stability during blood circulation together with high transfection efficiency. To provide these desired properties within one system, we propose the use of reactive triblock copolypept(o)ides, which include a stealth-like block for efficient shielding, a hydrophobic block based on reactive disulfides for cross-linking and a cationic block for complexation of pDNA. After the complexation step, bifunctional cross-linkers can be employed to bio-reversibly stabilize derived polyplexes by disulfide bond formation and to introduce endosomolytic moieties at the same time. Cross-linked polyplexes show no aggregation in human blood serum. Upon cellular uptake and cleavage of disulfide bonds, the cross-linkers can interact with the endosomal membrane, leading to lysis and efficient endosomal translocation. In principal, the approach allows for the combination of one polymer with various different cross-linkers and thus enables the fast forward creation of a polyplex library. Here, we provide a first insight into the potential of this concept and use a screening strategy to identify a lead candidate, which is able to transfect dendritic cells with a model DNA vaccine. Copyright © 2017. Published by Elsevier B.V.

  13. Ameliorating reactive oxygen species-induced in vitro lipid peroxidation in brain, liver, mitochondria and DNA damage by Zingiber officinale Roscoe.

    Science.gov (United States)

    Ajith, T A

    2010-01-01

    Iron is an essential nutrient for a number of cellular activities. However, excess cellular iron can be toxic by producing reactive oxygen species (ROS) such as superoxide anion (O(2) (-)) and hydroxyl radical (HO(·)) that damage proteins, lipids and DNA. Mutagenic and genotoxic end products of lipid peroxidation can induce the decline of mitochondrial respiration and are associated with various human ailments including aging, neurodegenerative disorders, cancer etc. Zingiber officinale Roscoe (ginger) is a widely used spice around the world. The protective effect of aqueous ethanol extract of Z. officinale against ROS-induced in vitro lipid peroxidation and DNA damage was evaluated in this study. The lipid peroxidation was induced by hydroxyl radical generated from Fenton's reaction in rat liver and brain homogenates and mitochondrial fraction (isolated from rat liver). The DNA protection was evaluated using H(2)O(2)-induced changes in pBR-322 plasmid and Fenton reaction-induced DNA fragmentation in rat liver. The results indicated that Z. officinale significantly (Pofficinale in the liver homogenate was 94 %. However, the extract could partially alleviate the DNA damage. The protective mechanism can be correlated to the radical scavenging property of Z. officinale. The results of the study suggest the possible nutraceutical role of Z. officinale against the oxidative stress induced human ailments.

  14. Easily denaturing nucleic acids derived from intercalating nucleic acids: thermal stability studies, dual duplex invasion and inhibition of transcription start

    DEFF Research Database (Denmark)

    Filichev, Vyacheslav V; Vester, Birte; Hansen, Lykke Haastrup

    2005-01-01

    The bulged insertions of (R)-1-O-(pyren-1-ylmethyl)glycerol (monomer P) in two complementary 8mer DNA strands (intercalating nucleic acids) opposite to each other resulted in the formation of an easily denaturing duplex, which had lower thermal stability (21.0 degrees C) than the wild-type double......-stranded DNA (dsDNA, 26.0 degrees C), but both modified oligodeoxynucleotides had increased binding affinity toward complementary single-stranded DNA (ssDNA) (41.5 and 39.0 degrees C). Zipping of pyrene moieties in an easily denaturing duplex gave formation of a strong excimer band at 480 nm upon excitation...

  15. Intercalation materials for lithium rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Rahner, D.; Machill, S.; Schloerb, H.; Siury, K.; Kloss, M.; Plieth, W. [Dresden University of Technology, Institute of Physical Chemistry and Electrochemistry, Dresden (Germany)

    1996-07-20

    In this contribution an overview will be given about the intercalation materials both for the negative and positive electrode of lithium batteries in comparison with results of our own research. Besides lithium metal as a negative electrode, interest is focused on insertion materials based on aluminium alloys. In the case of the positive electrode metal-oxides, those based on manganese, nickel and cobalt are discussed

  16. Novel pyrazolo[3,4-d]pyrimidine with 4-(1H-benzimidazol-2-yl)-phenylamine as broad spectrum anticancer agents: Synthesis, cell based assay, topoisomerase inhibition, DNA intercalation and bovine serum albumin studies.

    Science.gov (United States)

    Singla, Prinka; Luxami, Vijay; Singh, Raja; Tandon, Vibha; Paul, Kamaldeep

    2017-01-27

    A series of new pyrazolo[3,4-d]pyrimidine possessing 4-(1H-benzimidazol-2-yl)-phenylamine moiety at C4 position and primary as well as secondary amines at C6 position has been designed and synthesized. Their antitumor activities were evaluated against a panel of 60 human cancer cell lines at National Cancer Institute (NCI). Six compounds displayed potent and broad spectrum anticancer activities at 10 μM. Compounds 8, 12, 14 and 17 proved to be the most active and efficacious candidate in this series, with mean GI50 values of 1.30 μM, 1.43 μM, 2.38 μM and 2.18 μM, respectively against several cancer cell lines. Further biological evaluation of these compounds suggested that these compounds induce apoptosis and inhibit human topoisomerase (Topo) IIα as a possible intracellular target. UV-visible and fluorescence studies of these compounds revealed strong interaction with ct-DNA and bovine serum albumin (BSA). Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Superconductivity in Ca-intercalated bilayer graphene

    Science.gov (United States)

    Mazin, I. I.; Balatsky, A. V.

    2010-10-01

    Recent observation of proximity effect [H.B. Heersche, P. Jarillo-Herrero, J.B. Oostinga, L.M.K. Vandersypen, and A.F. Morpurgo, Nature, bf 446 (2007) p. 05555.] has ignited interest in superconductivity in graphene and its derivatives. We consider Ca-intercalated graphene bilayer and argue that it is a superconductor, and likely with a sizeable T c . We find substantial and suggestive similarities between Ca-intercalated bilayer (C6CaC6), and CaC6, an established superconductor with T c = 11.5 K. In particular, the nearly free electron band, proven to be instrumental for superconductivity in intercalated graphites, does cross the chemical potential in (C6CaC6), despite the twice smaller doping level, satisfying the so-called "Cambridge criterion". Calculated properties of zone-center phonons are very similar to those of CaC6. This suggests that the critical temperature would probably be on the same scale as in CaC6.

  18. Superconducting Continuous Graphene Fibers via Calcium Intercalation.

    Science.gov (United States)

    Liu, Yingjun; Liang, Hui; Xu, Zhen; Xi, Jiabin; Chen, Genfu; Gao, Weiwei; Xue, Mianqi; Gao, Chao

    2017-04-25

    Superconductors are important materials in the field of low-temperature magnet applications and long-distance electrical power transmission systems. Besides metal-based superconducting materials, carbon-based superconductors have attracted considerable attention in recent years. Up to now, five allotropes of carbon, including diamond, graphite, C60, CNTs, and graphene, have been reported to show superconducting behavior. However, most of the carbon-based superconductors are limited to small size and discontinuous phases, which inevitably hinders further application in macroscopic form. Therefore, it raises a question of whether continuously carbon-based superconducting wires could be accessed, which is of vital importance from viewpoints of fundamental research and practical application. Here, inspired by superconducting graphene, we successfully fabricated flexible graphene-based superconducting fibers via a well-established calcium (Ca) intercalation strategy. The resultant Ca-intercalated graphene fiber (Ca-GF) shows a superconducting transition at ∼11 K, which is almost 2 orders of magnitude higher than that of early reported alkali metal intercalated graphite and comparable to that of commercial superconducting NbTi wire. The combination of lightness and easy scalability makes Ca-GF highly promising as a lightweight superconducting wire.

  19. Solid intercalation to produce polymer/clay nanocomposites

    Science.gov (United States)

    Carreyette, Shuaijin Chen

    A review of recent literature and current knowledge relating to the development in polymer/clay nanocomposites has been presented. A novel method, solid intercalation, to produce polymer/clay nanocomposites is described based on two polymers, polyethylene oxide and polystyrene with two clays, hydrophilic clay G105 and organoclay 1.28. The clays used in the solid intercalation are selected based on the nanostructure, microstructure and thermal stability results. The polymers are selected based on their potential applications. The structures of the resultant materials are analysed and the possible mechanisms of the solid intercalation in different polymer/clay systems are presented. The experiment results show that the organoclay is more promising in obtaining a good dispersion and expansion of the clay layers in polymer matrices, especially at high clay loading. Hydrophilic clay can be well dispersed and expanded in the polyethylene oxide/clay system for clay contents below 10 wt%. A comparison between solid intercalation and solution synthesis is made for the polyethylene oxide/clay system. The structure diagrams for the corresponding method are illustrated. The nanocomposites produced by solid intercalation are composed of isolated polymer and intercalated/exfoliated polymer/clay structures, while those produced by solution synthesis are mainly composed of intercalated structures. Studies of the processing conditions of solid intercalation of the PEO/G105 clay system were carried out. The results show that the moisture level is critical in producing the composites by solid intercalation. There are two possible mechanisms for producing the composites - the melt and flow of the polymer into the clay galleries or the formation of the polymer solution and flow into the clay galleries. The results also show that high pressure and temperature improve the melt and flow of the polymer in solid intercalation which encourages more intercalation to take place. The mechanical

  20. Reactivation of the tumour suppressor RASSF1A in breast cancer by simultaneous targeting of DNA and E2F1 methylation.

    Directory of Open Access Journals (Sweden)

    María F Montenegro

    Full Text Available BACKGROUND: Tumour suppressor genes are often transcriptionally silenced by promoter hypermethylation, and recent research has implicated alterations in chromatin structure as the mechanistic basis for this repression. In addition to DNA methylation, other epigenetic post-translational modifications that modulate the stability and binding of specific transcription factors to gene promoters have emerged as important mechanisms for controlling gene expression. The aim of this study was to analyse the implications of these mechanisms and their molecular connections in the reactivation of RASSF1A in breast cancer. METHODS: Compounds that modulate the intracellular concentration of adenosine, such as dipyridamole (DIPY, greatly increase the antiproliferative effects of 3-O-(3,4,5-trimethoxybenzoyl-(--catechin (TMCG, a synthetic antifolate derived from the structure of tea catechins. Quantitative real-time PCR arrays and MALDI-TOF mass spectrometry indicated that this combination (TMCG/DIPY induced apoptosis in breast cancer cells by modulating the methylation levels of DNA and proteins (such as E2F1, respectively. Chromatin immunoprecipitation (ChIP assays were employed to confirm that this combination induced chromatin remodelling of the RASSF1A promoter and increased the occupancy of E2F1 at the promoter of this tumour suppressor gene. RESULTS: The TMCG/DIPY combination acted as an epigenetic treatment that reactivated RASSF1A expression and induced apoptosis in breast cancer cells. In addition to modulating DNA methylation and chromatin remodelling, this combination also induced demethylation of the E2F1 transcription factor. The ChIP assay showed enhancement of E2F1 occupancy at the unmethylated RASSF1A promoter after TMCG/DIPY treatment. Interestingly, inhibition of E2F1 demethylation using an irreversible inhibitor of lysine-specific demethylase 1 reduced both TMCG/DIPY-mediated RASSF1A expression and apoptosis in MDA-MB-231 cells, suggesting

  1. Charge carrier density in Li-intercalated graphene

    KAUST Repository

    Kaloni, Thaneshwor P.

    2012-05-01

    The electronic structures of bulk C 6Li, Li-intercalated free-standing bilayer graphene, and Li-intercalated bilayer and trilayer graphene on SiC(0 0 0 1) are studied using density functional theory. Our estimate of Young\\'s modulus suggests that Li-intercalation increases the intrinsic stiffness. For decreasing Li-C interaction, the Dirac point shifts to the Fermi level and the associated band splitting vanishes. For Li-intercalated bilayer graphene on SiC(0 0 0 1) the splitting at the Dirac point is tiny. It is also very small at the two Dirac points of Li-intercalated trilayer graphene on SiC(0 0 0 1). For all the systems under study, a large enhancement of the charge carrier density is achieved by Li intercalation. © 2012 Elsevier B.V. All rights reserved.

  2. The intercalation chemistry of layered iron chalcogenide superconductors

    Science.gov (United States)

    Vivanco, Hector K.; Rodriguez, Efrain E.

    2016-10-01

    The iron chalcogenides FeSe and FeS are superconductors composed of two-dimensional sheets held together by van der Waals interactions, which makes them prime candidates for the intercalation of various guest species. We review the intercalation chemistry of FeSe and FeS superconductors and discuss their synthesis, structure, and physical properties. Before we review the latest work in this area, we provide a brief background on the intercalation chemistry of other inorganic materials that exhibit enhanced superconducting properties upon intercalation, which include the transition metal dichalcogenides, fullerenes, and layered cobalt oxides. From past studies of these intercalated superconductors, we discuss the role of the intercalates in terms of charge doping, structural distortions, and Fermi surface reconstruction. We also briefly review the physical and chemical properties of the host materials-mackinawite-type FeS and β-FeSe. The three types of intercalates for the iron chalcogenides can be placed in three categories: 1.) alkali and alkaline earth cations intercalated through the liquid ammonia technique; 2.) cations intercalated with organic amines such as ethylenediamine; and 3.) layered hydroxides intercalated during hydrothermal conditions. A recurring theme in these studies is the role of the intercalated guest in electron doping the chalcogenide host and in enhancing the two-dimensionality of the electronic structure by spacing the FeSe layers apart. We end this review discussing possible new avenues in the intercalation chemistry of transition metal monochalcogenides, and the promise of these materials as a unique set of new inorganic two-dimensional systems.

  3. Câncer e agentes antineoplásicos ciclo-celular específicos e ciclo-celular não específicos que interagem com o DNA: uma introdução Cancer and cell cicle-specific and cell cicle nonspecific anticancer DNA-interactive agents: an introduction

    Directory of Open Access Journals (Sweden)

    Vera Lúcia de Almeida

    2005-02-01

    Full Text Available The chemotherapy agents against cancer may be classified as "cell cycle-specific" or "cell cycle-nonspecific". Nevertheless, several of them have their biological activity related to any kind of action on DNA such as: antimetabolic agents (DNA synthesis inhibition, inherently reactive agents (DNA alkylating electrophilic traps for macromolecular nucleophiles from DNA through inter-strand cross-linking - ISC - alkylation and intercalating agents (drug-DNA interactions inherent to the binding made due to the agent penetration in to the minor groove of the double helix. The earliest and perhaps most extensively studied and most heavily employed clinical anticancer agents in use today are the DNA inter-strand cross-linking agents.

  4. Morphological Evaluation of Variously Intercalated Pre-baked Clay

    Directory of Open Access Journals (Sweden)

    Ullah Hameed

    2014-06-01

    Full Text Available The use of porous materials is enjoying tremendous popularity and attention of the advance scientific communities due to their excellent adsorptive and catalytic activities. Clays are one of the most important candidates in the porous community which shows the above mentioned activities after modifing with a different intercalating agent. The paper is focused on the infiuence of some inorganic intercalating agents (NaOH on the morphology of the variously intercalated clay samples. The alkali metal was used as the inorganic intercalating agent. The effect of intercalation temperature, intercalation agent concentration and intercalation time on the pre-baked clay morphology were also part of the study. Scanning electron microscopy (SEM study was performed to evaluate the morphological changes of the resultant intercalates. Different morphological properties were improved significantly in the case of the inorganically modified clay samples. Thus, such intercalations are suggested to be effective if the clays under study are to be used for different industrial process at elevated conditions.

  5. Improved efficiency and robustness in qPCR and multiplex end-point PCR by twisted intercalating nucleic acid modified primers.

    Directory of Open Access Journals (Sweden)

    Uffe Vest Schneider

    Full Text Available We introduce quantitative polymerase chain reaction (qPCR primers and multiplex end-point PCR primers modified by the addition of a single ortho-Twisted Intercalating Nucleic Acid (o-TINA molecule at the 5'-end. In qPCR, the 5'-o-TINA modified primers allow for a qPCR efficiency of 100% at significantly stressed reaction conditions, increasing the robustness of qPCR assays compared to unmodified primers. In samples spiked with genomic DNA, 5'-o-TINA modified primers improve the robustness by increased sensitivity and specificity compared to unmodified DNA primers. In unspiked samples, replacement of unmodified DNA primers with 5'-o-TINA modified primers permits an increased qPCR stringency. Compared to unmodified DNA primers, this allows for a qPCR efficiency of 100% at lowered primer concentrations and at increased annealing temperatures with unaltered cross-reactivity for primers with single nucleobase mismatches. In a previously published octaplex end-point PCR targeting diarrheagenic Escherichia coli, application of 5'-o-TINA modified primers allows for a further reduction (>45% or approximately one hour in overall PCR program length, while sustaining the amplification and analytical sensitivity for all targets in crude bacterial lysates. For all crude bacterial lysates, 5'-o-TINA modified primers permit a substantial increase in PCR stringency in terms of lower primer concentrations and higher annealing temperatures for all eight targets. Additionally, crude bacterial lysates spiked with human genomic DNA show lesser formation of non-target amplicons implying increased robustness. Thus, 5'-o-TINA modified primers are advantageous in PCR assays, where one or more primer pairs are required to perform at stressed reaction conditions.

  6. The carcinogen 1-methylpyrene forms benzylic DNA adducts in mouse and rat tissues in vivo via a reactive sulphuric acid ester.

    Science.gov (United States)

    Bendadani, Carolin; Meinl, Walter; Monien, Bernhard H; Dobbernack, Gisela; Glatt, Hansruedi

    2014-03-01

    The common polycyclic aromatic hydrocarbon 1-methylpyrene is hepatocarcinogenic in the newborn mouse assay. In vitro studies showed that it is metabolically activated via benzylic hydroxylation and sulphation to a reactive ester, which forms benzylic DNA adducts, N(2)-(1-methylpyrenyl)-2'-deoxyguanosine (MPdG) and N(6)-(1-methylpyrenyl)-2'-deoxyadenosine (MPdA). Formation of these adducts was also observed in animals treated with the metabolites, 1-hydroxymethylpyrene and 1-sulphooxymethylpyrene (1-SMP), whereas corresponding data are missing for 1-methylpyrene. In the present study, we treated mice with 1-methylpyrene and subsequently analysed blood serum for the presence of the reactive metabolite 1-SMP and tissue DNA for the presence of MPdG and MPdA adducts. We used wild-type mice and a mouse line transgenic for human sulphotransferases (SULT) 1A1 and 1A2, males and females. All analyses were conducted using ultra-performance liquid chromatography coupled with tandem mass spectrometry, for the adducts with isotope-labelled internal standards. 1-SMP was detected in all treated animals. Its serum level was higher in transgenic mice than in the wild-type (p < 0.001). Likewise, both adducts were detected in liver, kidney and lung DNA of all exposed animals. The transgene significantly enhanced the level of each adduct in each tissue of both sexes (p < 0.01-0.001). Adduct levels were highest in the liver, the target tissue of carcinogenesis, in each animal model used. MPdG and MPdA adducts were also observed in rats treated with 1-methylpyrene. Our findings corroborate the hypothesis that 1-SMP is indeed the ultimate carcinogen of 1-methylpyrene and that human SULT are able to mediate the terminal activation in vivo.

  7. DNA repair in human fibroblasts, as reflected by host-cell reactivation of a transfected UV-irradiated luciferase gene, is not related to donor age

    Energy Technology Data Exchange (ETDEWEB)

    Merkle, Thomas J.; O' Brien, Katherine; Brooks, Philip J.; Tarone, Robert E.; Robbins, Jay H

    2004-10-04

    The effect of donor age on the ability of mammalian cells to repair ultraviolet (UV)-induced DNA damage has been studied using several approaches, most recently via assays that measure the host-cell reactivation (HCR) of UV-irradiated reporter gene-containing plasmid vectors following their transfection into cells. Plasmid HCR assays indirectly quantify a cell line's ability to perform nucleotide excision repair (NER) by measuring the enzyme activity of the repaired reporter gene, e.g., chloramphenical acetyltransferase (cat) or luciferase (luc), and are useful in studies investigating whether increasing age may be a risk factor for the deficient repair of potentially cancer-causing, sunlight-induced, DNA lesions in skin cells. In our study, we quantified the DNA repair ability of cultured, nontransformed, human skin fibroblast lines through their HCR of a transfected UV-C-irradiated plasmid containing luc. HCR was measured at various times after transfection in five lines from normal donors of ages 21-96 years, and from one donor who had xeroderma pigmentosum (XP). The normal lines displayed increasing HCR at successive post-transfection time points and showed no significant correlation between HCR and donor age. The XP-A line, known to be markedly deficient in NER of UV-induced DNA damage, showed minimal evidence of HCR compared to the normal lines. To further assess potential variation in HCR with donor age, fibroblast lines from five old donors, ages 84-94 years, were compared with lines from five young donors, ages 17-26 years. While significant differences in HCR were found between some lines, no significant difference was found between the young and old age groups (P=0.44). Our study provides no indication that the higher incidence of skin cancer observed with increasing age is due to an age-related decrease in the ability to repair UV-induced DNA damage.

  8. Reactivating aberrantly hypermethylated p15 gene in leukemic T cells by a phenylhexyl isothiocyanate mediated inter-active mechanism on DNA and chromatin

    Directory of Open Access Journals (Sweden)

    Jiang Shaohong

    2010-11-01

    Full Text Available Abstract Background We have previously demonstrated that phenylhexyl isothiocyanate (PHI, a synthetic isothiocyanate, inhibits histone deacetylases and remodels chromatins to induce growth arrest in HL-60 myeloid leukemia cells in a concentration-dependent manner. Methods To investigate the effect of PHI, a novel histone deacetylases inhibitor (HDACi, on demethylation and activation of transcription of p15 in acute lymphoid leukemia cell line Molt-4, and to further decipher the potential mechanism of demethylation, DNA sequencing and modified methylation specific PCR (MSP were used to screen p15-M and p15-U mRNA after Molt-4 cells were treated with PHI, 5-Aza and TSA. DNA methyltransferase 1 (DNMT1, 3A (DNMT3A, 3B (DNMT3B and p15 mRNA were measured by RT-PCR. P15 protein, acetylated histone H3 and histone H4 were detected by Western Blot. Results The gene p15 in Molt-4 cells was hypermethylated and inactive. Hypermethylation of gene p15 was attenuated and p15 gene was activated de novo after 5 days exposure to PHI in a concentration-dependent manner. DNMT1 and DNMT3B were inhibited by PHI (P Conclusion PHI could induce both DNA demethylation and acetylated H3 and H4 accumulation in Molt-4 cells. Hypermethylation of gene p15 was reversed and p15 transcription could be reactivated de novo by PHI.

  9. Comparison of lithium and sodium intercalation materials

    Directory of Open Access Journals (Sweden)

    Vujković Milica

    2015-01-01

    Full Text Available Low abundance of lithium in Earth’s crust and its high participation in overall cost of lithium-ion batteries incited intensive investigation of sodium-ion batteries, in hope that they may become similar in basic characteristics: specific energy and specific power. Furthermore, over the last years the research has been focused on the replacement of organic electrolytes of Li- and Na-ion batteries, by aqueous electrolytes, in order to simplify the production and improve safety of use. In this lecture, some recent results on the selected intercalation materials are presented: layered structure vanadium oxides, olivine and nasicon phosphates, potentially usable in both Li and Na aqueous rechargeable batteries. After their characterization by X-ray diffraction and electron microscopy, the electrochemical behavior was studied by both cyclic voltammetry and hronopotenciometry. By comparing intercalation kinetics and coulombic capacity of these materials in LiNO3 and NaNO3 solutions, it was shown that the following ones: Na1.2V3O8, Na2V6O16/C , NaFePO4/C and NaTi2(PO43/C may be used as electrode materials in aqueous alkali-ion batteries.

  10. Structural, energetic and electronic properties of intercalated boron ...

    Indian Academy of Sciences (India)

    Abstract. The effects of chirality and the intercalation of transitional metal atoms inside single walled BN nano- tubes on structural, energetic and electronic properties have been considered in this paper. The thermodynamic stability of BN nanotubes can be improved by the intercalation of cobalt or nickel. BN nanotubes can ...

  11. Polysulfide intercalated layered double hydroxides for metal capture applications

    Energy Technology Data Exchange (ETDEWEB)

    Kanatzidis, Mercouri G.; Ma, Shulan

    2017-04-04

    Polysulfide intercalated layered double hydroxides and methods for their use in vapor and liquid-phase metal capture applications are provided. The layered double hydroxides comprise a plurality of positively charged host layers of mixed metal hydroxides separated by interlayer spaces. Polysulfide anions are intercalated in the interlayer spaces.

  12. Structural, energetic and electronic properties of intercalated boron ...

    Indian Academy of Sciences (India)

    The effects of chirality and the intercalation of transitional metal atoms inside single walled BN nanotubes on structural, energetic and electronic properties have been considered in this paper. The thermodynamic stability of BN nanotubes can be improved by the intercalation of cobalt or nickel. BN nanotubes can behave ...

  13. Electronic spectra of anions intercalated in layered double hydroxides

    Indian Academy of Sciences (India)

    Transition metal complexes intercalated in layered double hydroxides have a different electronic structure as compared to their free state owing to their confinement within the interlayer gallery. UV–Vis absorptions of the intercalated complex anions show a significant shift as compared to their free state. The ligand to metal ...

  14. PYRENE INTERCALATING NUCLEIC ACIDS WITH A CARBON LINKER

    DEFF Research Database (Denmark)

    Østergaard, Michael E.; Wamberg, Michael Chr.; Pedersen, Erik Bjerregaard

    2011-01-01

    geminally attached. Fluorescence studies of this intercalating nucleic acid with the pyrene moieties inserted as a bulge showed formation of an excimer band. When a mismatch was introduced at the site of the intercalator, an excimer band was formed for the destabilized duplexes whereas an exciplex band...

  15. Reactivation of mutant p53: Constraints on mechanism highlighted by principal component analysis of the DNA binding domain.

    Science.gov (United States)

    Ouaray, Zahra; ElSawy, Karim M; Lane, David P; Essex, Jonathan W; Verma, Chandra

    2016-10-01

    Most p53 mutations associated with cancer are located in its DNA binding domain (DBD). Many structures (X-ray and NMR) of this domain are available in the protein data bank (PDB) and a vast conformational heterogeneity characterizes the various free and complexed states. The major difference between the apo and the holo-complexed states appears to lie in the L1 loop. In particular, the conformations of this loop appear to depend intimately on the sequence of DNA to which it binds. This conclusion builds upon recent observations that implicate the tetramerization and the C-terminal domains (respectively TD and Cter) in DNA binding specificity. Detailed PCA analysis of the most recent collection of DBD structures from the PDB have been carried out. In contrast to recommendations that small molecules/drugs stabilize the flexible L1 loop to rescue mutant p53, our study highlights a need to retain the flexibility of the p53 DNA binding surface (DBS). It is the adaptability of this region that enables p53 to engage in the diverse interactions responsible for its functionality. Proteins 2016; 84:1443-1461. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Damage to Sperm DNA Mediated by Reactive Oxygen Species: Its Impact on Human Reproduction and the Health Trajectory of Offspring.

    Science.gov (United States)

    Gavriliouk, Dan; Aitken, Robert John

    2015-01-01

    Disruptions to the genetic integrity of the mammalian spermatozoon play a major role in determining the subsequent developmental trajectory of the embryo. This chapter examines the causative links that connect DNA damage in human spermatozoa and the appearance of mutations in the progeny responsible for a variety of clinical conditions from autism to cancer. Integral to this discussion is an abundance of evidence indicating that human spermatozoa are vulnerable to free radical attack and the generation of oxidative DNA damage. The resolution of this damage appears to be initiated by the spermatozoa but is driven to completion by the oocyte in a round of DNA repair that follows fertilization. The persistence of unresolved oxidative DNA damage following zygote formation has the potential to create mutations/epimutations in the offspring that may have a profound impact on the health of the progeny. It is proposed that the creation of oxidative stress in the male germ line is a consequence of a wide variety of environmental/lifestyle factors that influence the health and well-being of the offspring as a consequence of mutational change induced by the aberrant repair of oxidative DNA damage in the zygote. Factors such as paternal age, subfertility, smoking, obesity, and exposure to a range of environmental influences, including radio-frequency electromagnetic radiation and xenobiotics, have all been implicated in this process. Identifying the contributors to oxidative stress in the germ line and resolving the mechanisms by which such stressors influence the mutational load carried by the progeny will be an important task for the future. This task is particularly pressing, given the extensive use of assisted reproductive technologies to achieve pregnancies in vitro that would have been prevented in vivo by the complex array of mechanisms that nature has put in place to ensure that only the fittest gametes participate in the generative process.

  17. Quasi-freestanding graphene on Ni(111) by Cs intercalation

    KAUST Repository

    Alattas, Maha Hassan Mohssen

    2016-05-26

    A possible approach to achieve quasi-freestanding graphene on a substrate for technological purpose is the intercalation of alkali metal atoms. Cs intercalation between graphene and Ni(111) therefore is investigated using density functional theory, incorporating van der Waals corrections. It is known that direct contact between graphene and Ni(111) perturbs the Dirac states. We find that Cs intercalation restores the linear dispersion characteristic of Dirac fermions, which agrees with experiments, but the Dirac cone is shifted to lower energy, i.e., the graphene sheet is n-doped. Cs intercalation therefore decouples the graphene sheet from the substrate except for a charge transfer. On the other hand, the spin polarization of Ni(111) does not extend through the intercalated atoms to the graphene sheet, for which we find virtually spin-degeneracy.

  18. Quasi-freestanding graphene on Ni(111) by Cs intercalation

    KAUST Repository

    Alattas, Maha Hassan Mohssen

    2017-01-08

    It is of technological interest to achieve quasi-freestanding graphene on a substrate. A possible approach is the intercalation of alkali metal atoms. Cs intercalation between graphene and Ni(111) is investigated using density functional theory, incorporating van der Waals corrections. It is known that direct contact between graphene and Ni(111) perturbs the Dirac states. Cs intercalation restores the linear dispersion characteristic of Dirac fermions, which is in agreement with experiments1, but the Dirac cone is shifted to lower energy, i.e., the graphene sheet is n-doped. Cs intercalation therefore effectively decouples the graphene sheet from the substrate except for a charge transfer. On the other hand, the spin polarization of Ni(111) does not extend through the intercalated atoms to the graphene sheet, for which we find virtually spin-degeneracy.

  19. K-intercalated carbon systems: Effects of dimensionality and substrate

    KAUST Repository

    Kaloni, Thaneshwor P.

    2012-06-01

    Density functional theory is employed to investigate the electronic properties of K-intercalated carbon systems. Young\\'s modulus indicates that the intercalation increases the intrinsic stiffness. For K-intercalated bilayer graphene on SiC(0001) the Dirac cone is maintained, whereas a trilayer configuration exhibits a small splitting at the Dirac point. Interestingly, in contrast to many other intercalated carbon systems, the presence of the SiC(0001) substrate does not suppress but rather enhances the charge carrier density. Reasonably high values are found for all systems, the highest carrier density for the bilayer. The band structure and electron-phonon coupling of free-standing K-intercalated bilayer graphene points to a high probability for superconductivity in this system. © 2012 Europhysics Letters Association.

  20. Reactive arthritis.

    Science.gov (United States)

    Keat, A

    1999-01-01

    Reactive arthritis is one of the spondyloarthropathy family of clinical syndromes. The clinical features are those shared by other members of the spondyloarthritis family, though it is distinguished by a clear relationship with a precipitating infection. Susceptibility to reactive arthritis is closely linked with the class 1 HLA allele B27; it is likely that all sub-types pre-dispose to this condition. The link between HLA B27 and infection is mirrored by the development of arthritis in HLA B27-transgenic rats. In this model, arthritis does not develop in animals maintained in a germ-free environment. Infections of the gastrointestinal, genitourinary and respiratory tract appear to provoke reactive arthritis and a wide range of pathogens has now been implicated. Although mechanistic parallels may exist, reactive arthritis is distinguished from Lyme disease, rheumatic fever and Whipple's disease by virtue of the distinct clinical features and the link with HLA B27. As in these conditions both antigens and DNA of several micro-organisms have been detected in joint material from patients with reactive arthritis. The role of such disseminated microbial elements in the provocation or maintenance of arthritis remains unclear. HLA B27-restricted T-cell responses to microbial antigens have been demonstrated and these may be important in disease pathogenesis. The importance of dissemination of bacteria from sites of mucosal infection and their deposition in joints has yet to be fully understood. The role of antibiotic therapy in the treatment of reactive arthritis is being explored; in some circumstances, both the anti-inflammatory and anti-microbial effects of certain antibiotics appear to be valuable. The term reactive arthritis should be seen as a transitory one, reflecting a concept which may itself be on the verge of replacement, as our understanding of the condition develops. Nevertheless it appropriately describes arthritis that is associated with demonstrable

  1. High pressure measurement of the uniaxial stress of host layers on intercalants and staging transformation of intercalation compounds

    CERN Document Server

    Park, T R; Kim, H; Min, P

    2002-01-01

    A layered double-hydroxide intercalation compound was synthesized to measure the uniaxial stress the host layers exert on the intercalants. To measure the uniaxial stress, we employed the photoluminescence (PL) from the intercalated species, the Sm ion complex, as it is sensitive to the deformation of the intercalants. Of the many PL peaks the Sm ion complex produces, the one that is independent of the counter-cation environment was chosen for the measurement since the Sm ion complexes are placed under a different electrostatic environment after intercalation. The peak position of the PL was redshifted linearly with increasing hydrostatic pressure on the intercalated sample. Using this pressure-induced redshifting rate and the PL difference at ambient pressure between the pre-intercalation and the intercalated ions, we found that, in the absence of external pressure, the uniaxial stress exerted on the samarium ion complexes by the host layers was about 13.9 GPa at room temperature. Time-resolved PL data also ...

  2. Rapid assessment of repair of ultraviolet DNA damage with a modified host-cell reactivation assay using a luciferase reporter gene and correlation with polymorphisms of DNA repair genes in normal human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Qiao Yawei; Spitz, Margaret R.; Guo Zhaozheng; Hadeyati, Mohammad; Grossman, Lawrence; Kraemer, Kenneth H.; Wei Qingyi

    2002-11-30

    As DNA repair plays an important role in genetic susceptibility to cancer, assessment of the DNA repair phenotype is critical for molecular epidemiological studies of cancer. In this report, we compared use of the luciferase (luc) reporter gene in a host-cell reactivation (HCR) (LUC) assay of repair of ultraviolet (UV) damage to DNA to use of the chloramphenicol (cat) gene-based HCR (CAT) assay we used previously for case-control studies. We performed both the assays on cryopreserved lymphocytes from 102 healthy non-Hispanic white subjects. There was a close correlation between DNA repair capacity (DRC) as measured by the LUC and CAT assays. Although these two assays had similar variation, the LUC assay was faster and more sensitive. We also analyzed the relationship between DRC and the subjects' previously determined genotypes for four polymorphisms of two nucleotide-excision repair (NER) genes (in intron 9 of xeroderma pigmentosum (XP) C and exons 6, 10 and 23 of XPD) and one polymorphism of a base-excision repair gene in exon 10 of X-ray complementing group 1 (XRCC1). The DRC was significantly lower in subjects homozygous for one or more polymorphisms of the two NER genes than in subjects with other genotypes (P=0.010). In contrast, the polymorphic XRCC1 allele had no significant effect on DRC. These results suggest that the post-UV LUC assay measures NER phenotype and that polymorphisms of XPC and XPD genes modulate DRC. For population studies of the DNA repair phenotype, many samples need to be evaluated, and so the LUC assay has several advantages over the CAT assay: the LUC assay was more sensitive, had less variation, was not radioactive, was easier to perform, and required fewer cryopreserved cells. These features make the LUC-based HCR assay suitable for molecular epidemiological studies.

  3. Intercalated layered clay composites and their applications

    Science.gov (United States)

    Phukan, Anjali

    Supported inorganic reagents are rapidly emerging as new and environmentally acceptable reagents and catalysts. The smectite group of layered clay minerals, such as, Montmorillonite, provides promising character for adsorption, catalytic activity, supports etc. for their large surface area, swelling behavior and ion exchange properties. Aromatic compounds intercalated in layered clays are useful in optical molecular devices. Clay is a unique material for adsorption of heavy metals and various toxic substances. Clay surfaces are known to be catalytically active due to their surface acidity. Acid activated clays possess much improved surface areas and acidities and have higher pore volumes so that can absorb large molecules in the pores. The exchangeable cations in clay minerals play a key role in controlling surface acidity and catalytic activity. Recently, optically active metal-complex-Montmorillonite composites are reported to be active in antiracemization purposes. In view of the above, a research work, relating to the preparation of different modified clay composites and their catalytic applications were carried out. The different aspects and results of the present work have been reported in four major chapters. Chapter I: This is an introductory chapter, which contains a review of the literature regarding clay-based materials. Clay minerals are phyllosilicates with layer structure. Montmorillonite, a member of smectite group of clay, is 2:1 phyllosilicate, where a layer is composed of an octahedral sheet sandwiched by two tetrahedral sheets. Such clay shows cation exchange capacity (CEC) and is expressed in milli-equivalents per 100 gm of dry clay. Clays can be modified by interaction with metal ion, metal complexes, metal cluster and organic cations for various applications. Clays are also modified by treating with acid followed by impregnation with metal salts or ions. Montmorillonite can intercalate suitable metal complexes in excess of CEC to form double

  4. Unexpected Hydration of a Triple Bond During DNA Synthesis

    DEFF Research Database (Denmark)

    Fatthalla, Maha I.; Pedersen, Erik B.

    2016-01-01

    acidic conditions, polarizes the triple bond in the intercalator and this makes hydration of the triple bond possible during the DNA synthesis and an oligonucleotide with 1-(indol-3-yl)-2-(pyren-1-yl)ethanone as the intercalator is formed. Insertion of the unhydrated and hydrated linker systems gave...

  5. Synthesis and crystal structure of a ternary copper(II) complex of 2,2‧-bipyridine and picrate: Molecular docking, reactivity towards DNA and in vitro anticancer activity

    Science.gov (United States)

    Zheng, Kang; Jiang, Man; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2014-01-01

    A new mononuclear ternary copper(II) complex with mixed ligands of 2,2‧-bipyridine (bpy) and picrate (pic), namely [Cu(bpy)(pic)2], has been synthesized and characterized by elemental analysis, molar conductivity measurement, IR and electronic spectral studies, and single-crystal X-ray diffraction. The crystal structure analysis reveals the presence of two crystallographic independent molecules in an asymmetric unit. The copper(II) atoms are in elongated octahedral coordination geometries. A three-dimensional supermolecular network is formed through non-classical C-H⋯O hydrogen bonds. The DNA-binding properties of the copper(II) complex are investigated both theoretically and experimentally, revealing that the copper(II) complex can interact with HS-DNA in the mode of intercalation, and the molecular docking of the copper(II) complex with the self-complementary DNA duplex of sequence d(ACCGACGTCGGT)2 facilitates the binding events. The in vitro anticancer activities suggest that the copper(II) complex is active against the selected tumor cell lines.

  6. Renal intercalated cells and blood pressure regulation

    Directory of Open Access Journals (Sweden)

    Susan M. Wall

    2017-12-01

    Full Text Available Type B and non-A, non-B intercalated cells are found within the connecting tubule and the cortical collecting duct. Of these cell types, type B intercalated cells are known to mediate Cl⁻ absorption and HCO₃⁻ secretion largely through pendrin-dependent Cl⁻/HCO₃⁻ exchange. This exchange is stimulated by angiotensin II administration and is also stimulated in models of metabolic alkalosis, for instance after aldosterone or NaHCO₃ administration. In some rodent models, pendrin-mediated HCO₃⁻ secretion modulates acid-base balance. However, the role of pendrin in blood pressure regulation is likely of more physiological or clinical significance. Pendrin regulates blood pressure not only by mediating aldosterone-sensitive Cl⁻ absorption, but also by modulating the aldosterone response for epithelial Na⁺ channel (ENaC-mediated Na⁺ absorption. Pendrin regulates ENaC through changes in open channel of probability, channel surface density, and channels subunit total protein abundance. Thus, aldosterone stimulates ENaC activity through both direct and indirect effects, the latter occurring through its stimulation of pendrin expression and function. Therefore, pendrin contributes to the aldosterone pressor response. Pendrin may also modulate blood pressure in part through its action in the adrenal medulla, where it modulates the release of catecholamines, or through an indirect effect on vascular contractile force. This review describes how aldosterone and angiotensin II-induced signaling regulate pendrin and the contributory role of pendrin in distal nephron function and blood pressure.

  7. Effect of the intercalation conditions of a montmorillonite with octadecylamine.

    Science.gov (United States)

    Pérez-Santano, A; Trujillano, R; Belver, C; Gil, A; Vicente, M A

    2005-04-01

    Intercalation of montmorillonite with octadecylamine under several conditions is reported. Octadecylamine was protonated in situ with HCl to obtain octadecylammonium cations. Water and water/ethanol mixtures were used as reaction medium, and the ratios amine/clay and HCl/amine were also varied. Intercalation was successful when the amine/clay ratio was in the range 1-3 mmol/g; optimal results were obtained for an amine/clay ratio of 2.0 mmol/g. For a given amine/clay ratio, the HCl/amine ratio also influences the intercalation. Basal spacings of the intercalated solids were between 13.4-36.7 angstroms. The amount of organic matter incorporated into the solids also varied widely; up to 40 wt% is fixed. Specific surface area is very low in all the intercalated solids because of the blockage of the clay porosity by the organic molecules. Co-intercalation of octadecylammonium and of the inorganic polycation [Al13O4(OH)24(H2O)12]7+ was also considered, giving rise to intercalated solids with basal spacings between 17 and 22 A, also with a high fixation of organic matter.

  8. The effect of an intercalated BSc on subsequent academic performance.

    Science.gov (United States)

    Mahesan, Nishanthan; Crichton, Siobhan; Sewell, Hannah; Howell, Simon

    2011-10-03

    The choice of whether to undertake an intercalated Bachelor of Science (BSc) degree is one of the most important decisions that students must make during their time at medical school. An effect on exam performance would improve a student's academic ranking, giving them a competitive edge when applying for foundation posts. Retrospective data analysis of anonymised student records. The effects of intercalating on final year exam results, Foundation Programme score, application form score (from white-space questions), quartile rank score, and success with securing Foundation School of choice were assessed using linear and ordered logistic regression models, adjusted for course type, year of graduation, graduate status and baseline (Year 1) performance. The study included 1158 students, with 54% choosing to do an intercalated BSc, and 9.8% opting to do so at an external institution. Doing an intercalated BSc was significantly associated with improved outcome in Year 5 exams (P = 0.004). This was irrespective of the year students chose to intercalate, with no significant difference between those that intercalated after years 2, 3 and 4 (p = 0.3096). There were also higher foundation application scores (P BSc leads to an improvement in subsequent exam results and develops the skills necessary to produce a strong foundation programme application. It also leads to greater success with securing preferred Foundation School posts in students. Differences between internally- and externally-intercalating students may be due to varying course structures or greater challenge in adjusting to a new study environment.

  9. Strain Lattice Imprinting in Graphene by C60 Intercalation at the Graphene/Cu Interface

    NARCIS (Netherlands)

    Monazami, Ehsan; Bignardi, Luca; Rudolf, Petra; Reinke, Petra

    2015-01-01

    Intercalation of C60 molecules at the graphene-substrate interface by annealing leads to amorphous and crystalline intercalated structures. A comparison of topography and electronic structure with wrinkles and moiré patterns confirms intercalation. The intercalated molecules imprint a local

  10. Method for intercalating alkali metal ions into carbon electrodes

    Science.gov (United States)

    Doeff, Marca M.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard

    1995-01-01

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  11. Removal of cesium ions from clays by cationic surfactant intercalation.

    Science.gov (United States)

    Park, Chan Woo; Kim, Bo Hyun; Yang, Hee-Man; Seo, Bum-Kyoung; Moon, Jei-Kwon; Lee, Kune-Woo

    2017-02-01

    We propose a new approach to remediate cesium-contaminated clays based on intercalation of the cationic surfactant dodecyltrimethylammonium bromide (DTAB) into clay interlayers. Intercalation of DTAB was found to occur very rapidly and involved exchanging interlayer cations. The reaction yielded efficient cesium desorption (∼97%), including of a large amount of otherwise non-desorbable cesium ions by cation exchange with ammonium ions. In addition, the intercalation of DTAB afforded an expansion of the interlayers, and an enhanced desorption of Cs by cation exchange with ammonium ions even at low concentrations of DTAB. Finally, the residual intercalated surfactants were easily removed by a decomposition reaction with hydrogen peroxide in the presence of Cu 2+ /Fe 2+ catalysts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Intercalation of Carbon Nanotube Fibers to Improve their Conductivity Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed research will explore how NASA intercalation technology can be used to lower the resistivity of the new Rice-Teijin fiber make them viable for NASA...

  13. Lithium isotope effect accompanying electrochemical intercalation of lithium into graphite

    CERN Document Server

    Yanase, S; Oi, T

    2003-01-01

    Lithium has been electrochemically intercalated from a 1:2 (v/v) mixed solution of ethylene carbonate (EC) and methylethyl carbonate (MEC) containing 1 M LiClO sub 4 into graphite, and the lithium isotope fractionation accompanying the intercalation was observed. The lighter isotope was preferentially fractionated into graphite. The single-stage lithium isotope separation factor ranged from 1.007 to 1.025 at 25 C and depended little on the mole ratio of lithium to carbon of the lithium-graphite intercalation compounds (Li-GIC) formed. The separation factor increased with the relative content of lithium. This dependence seems consistent with the existence of an equilibrium isotope effect between the solvated lithium ion in the EC/MEC electrolyte solution and the lithium in graphite, and with the formation of a solid electrolyte interfaces on graphite at the early stage of intercalation. (orig.)

  14. Effect of Diffusion on Lithium Intercalation in Titanium Dioxide

    Science.gov (United States)

    Koudriachova, Marina V.; Harrison, Nicholas M.; de Leeuw, Simon W.

    2001-02-01

    A new model of Li intercalation into rutile and anatase structured titania has been developed from first principles calculations. The model includes both thermodynamic and kinetic effects and explains the observed differences in intercalation behavior and their temperature dependence. The important role of strong local deformations of the lattice and elastic screening of interlithium interactions is demonstrated. In addition, a new phase of LiTiO2 is reported.

  15. Syntheses, structure and intercalation properties of low-dimensional ...

    Indian Academy of Sciences (India)

    Unknown

    We reported18 the synthesis, characterization and intercalation chemistry of seven new phenylphos- phonates, A(HO3PC6H5)(H2O3PC6H5) (A = alkali metals, NH4 and ... tered, washed with n-hexane and finally air-dried. Similarly intercalates of thallium (1) phenylar- sonate, 1•(CH3(CH2)n–1NH2)x (n = 5, 8 and 16) were.

  16. Intercalation-driven reversible control of magnetism in bulk ferromagnets.

    Science.gov (United States)

    Dasgupta, Subho; Das, Bijoy; Knapp, Michael; Brand, Richard A; Ehrenberg, Helmut; Kruk, Robert; Hahn, Horst

    2014-07-16

    An extension in magnetoelectric effects is proposed to include reversible chemistry-controlled magnetization variations. This ion-intercalation-driven magnetic control can be fully reversible and pertinent to bulk material volumes. The concept is demonstrated for ferromagnetic iron oxide where the intercalated lithium ions cause valence change and partial redistribution of Fe(3+) cations yielding a large and fully reversible change in magnetization at room temperature. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Catecholase activity, DNA cleavage and cytotoxicity of six Zn(II) complexes synthesized from designed Mannich ligands: higher reactivity of mononuclear over dinuclear.

    Science.gov (United States)

    Sanyal, Ria; Dash, Sandeep Kumar; Das, Sudhanshu; Chattopadhyay, Sourav; Roy, Somenath; Das, Debasis

    2014-10-01

    Six zinc(II) complexes have been synthesized from two designed Mannich-base ligands which consist of three dinuclear complex [Zn2(L(1))2X2] (1-3) and three mononuclear complex [ZnH(L(2))X2] (4-6), respectively, where X = Cl(-) (1,4), Br(-) (2,5), I(-) (3,6), as reported earlier by us (Sanyal et al., Inorg Chem 53:85-96, 2014). The catecholase activity of the complexes has been investigated under completely aerobic conditions in DMF-water medium (9:1) at pH 8.5 against the model substrate 3,5-di-tert-butylcatechol (3,5-DTBC). Saturation kinetic studies show that the order of conversion of substrate to product (quinone) follows the trend 5 > 4 > 2 > 1 while 3 and 6 are inactive. The generation of phenoxyl radicals, confirmed by UV-vis and EPR spectral studies, is supposed to be responsible for the oxidation of 3,5-DTBC. The in vitro evaluation of 1-6 comprises the study of their DNA-cleaving ability using plasmid DNA and the assessment of their cytotoxic activity against Jurkat (T cell lymphoma) cell line by MTT assay. The mechanisms of toxicity appeared to be predominantly by reactive oxygen species (ROS). The comparative analysis helps to arrive at the following facts under experimental conditions: (1) mononuclear species prevail over the dinuclear ones, unlike the behavior in phosphatase activity as reported in Inorganic Chemistry; (2) the halide substituents at the active site control the overall activity in the order: (a) In catecholase activity, Cl(-)  Br(-) (mononuclear) and (b) in biological activity, Cl(-) > Br(-) > I(-) regardless of nuclearity.

  18. Crystal structure of family 4 uracil-DNA glycosylase from Sulfolobus tokodaii and a function of tyrosine 170 in DNA binding.

    Science.gov (United States)

    Kawai, Akito; Higuchi, Shigesada; Tsunoda, Masaru; Nakamura, Kazuo T; Yamagata, Yuriko; Miyamoto, Shuichi

    2015-09-14

    Uracil-DNA glycosylases (UDGs) excise uracil from DNA by catalyzing the N-glycosidic bond hydrolysis. Here we report the first crystal structures of an archaeal UDG (stoUDG). Compared with other UDGs, stoUDG has a different structure of the leucine-intercalation loop, which is important for DNA binding. The stoUDG-DNA complex model indicated that Leu169, Tyr170, and Asn171 in the loop are involved in DNA intercalation. Mutational analysis showed that Tyr170 is critical for substrate DNA recognition. These results indicate that Tyr170 occupies the intercalation site formed after the structural change of the leucine-intercalation loop required for the catalysis. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  19. Is photocleavage of DNA by YOYO-1 using a synchrotron radiation light source sequence dependent?

    DEFF Research Database (Denmark)

    Gilroy, Emma L.; Hoffmann, Søren Vrønning; Jones, Nykola C.

    2011-01-01

    ) throughout the irradiation period. The dependence of LD signals on DNA sequences and on time in the intense light beam was explored and quantified for single-stranded poly(dA), poly[(dA-dT)2], calf thymus DNA (ctDNA) and Micrococcus luteus DNA (mlDNA). The DNA and ligand regions of the spectrum showed...... was predominantly responsible for the catalysis of DNA cleavage. In homopolymeric DNAs, intercalated YOYO was unable to cleave DNA. In mixed-sequence DNAs the data suggest that YOYO in some but not all intercalated binding sites can cause cleavage. It is also likely that cleavage occurs at transient single...

  20. Risk of hepatitis B reactivation in HBsAg-negative/HBcAb-positive patients with undetectable serum HBV DNA after treatment with rituximab for lymphoma: a meta-analysis.

    Science.gov (United States)

    Tang, Zilin; Li, Xiaodong; Wu, Shunquan; Liu, Yan; Qiao, Yan; Xu, Dongping; Li, Jin

    2017-08-30

    Hepatitis B surface antigen (HBsAg)-negative/hepatitis B core antibody (HBcAb)-positive patients with undetectable serum hepatitis B virus (HBV) DNA have experienced and resolved hepatitis B virus (HBV) infection. Lymphoma patients with resolved HBV infection have high risk of HBV reactivation when treated with robust immunosuppressive agents, but the reported rate varies extensively between different studies. This study aims to estimate the risk of HBV reactivation in HBsAg-negative/HBcAb-positive patients receiving rituximab-containing chemotherapy for lymphoma. Databases were searched for papers published in English until 8 August 2016. The pooled risk of HBV reactivation was estimated using a random-effects model. Data from 15 studies were retrieved, including a total of 1312 HBsAg-negative/HBcAb-positive lymphoma patients treated with rituximab-containing chemotherapy. The results revealed HBV reactivation rate of 9.0 % [95 % confidence interval (CI) 0.05-0.15]. In subgroup analysis, the reactivation rates for prospective and retrospective studies were 17 % (I (2) = 87.3 %; 95 % 0.08-0.39, p HBV reactivation in HBsAg-negative/HBcAb-positive patients with rituximab treatment for lymphoma. Prophylactic use of anti-HBV agents should be seriously considered for such patients.

  1. Investigating the Intercalation Chemistry of Alkali Ions in Fluoride Perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Tanghong; Chen, Wei; Cheng, Lei; Bayliss, Ryan D.; Lin, Feng; Plews, Michael R.; Nordlund, Dennis; Doeff, Marca M.; Persson, Kristin A.; Cabana, Jordi (LBNL); (SLAC); (UIC); (UCB)

    2017-02-07

    Reversible intercalation reactions provide the basis for modern battery electrodes. Despite decades of exploration of electrode materials, the potential for materials in the nonoxide chemical space with regards to intercalation chemistry is vast and rather untested. Transition metal fluorides stand out as an obvious target. To this end, we report herein a new family of iron fluoride-based perovskite cathode materials AxK1–xFeF3 (A = Li, Na). By starting with KFeF3, approximately 75% of K+ ions were subsequently replaced by Li+ and Na+ through electrochemical means. X-ray diffraction and Fe X-ray absorption spectroscopy confirmed the existence of intercalation of alkali metal ions in the perovskite structure, which is associated with the Fe2+/3+ redox couple. A computational study by density functional theory showed agreement with the structural and electrochemical data obtained experimentally, which suggested the possibility of fluoride-based materials as potential intercalation electrodes. This study increases our understanding of the intercalation chemistry of ternary fluorides, which could inform efforts toward the exploration of new electrode materials.

  2. Substrate-induced solvent intercalation for stable graphene doping.

    Science.gov (United States)

    Kim, Hyun Ho; Yang, Jae Won; Jo, Sae Byeok; Kang, Boseok; Lee, Seong Kyu; Bong, Hyojin; Lee, Geunsik; Kim, Kwang S; Cho, Kilwon

    2013-02-26

    Here, we report a substrate-induced intercalation phenomenon of an organic solvent at the interface between monolayer graphene and a target substrate. A simple dipping of the transferred chemical vapor deposition (CVD)-grown graphene on the SiO₂ substrate into chloroform (CHCl₃, CF), a common organic solvent, induces a spontaneous formation of CF clusters beneath the basal plane of the graphene as well as inside the wrinkles. The microscopic and spectroscopic observations showed the doping behavior of monolayer graphene, which indicates the adsorption of CF to monolayer graphene. Interestingly, the intercalated organic solvent showed remarkable stability for over 40 days under ambient conditions. To reveal the underlying mechanism of the stable solvent intercalation, desorption energy of CF molecules at the graphene/substrate interface was measured using Arrhenius plots of the conductance change upon time and temperature. Two stages of solvent intercalations with high desorption energies (70 and 370 meV) were observed along with the consecutive shrinkage of the solvent clusters at the basal plane and the wrinkles, respectively. Moreover, the theoretical calculation based on density functional theory (DFT) also shows the strong intercalation energy of CF between monolayer graphene and the SiO₂ substrate, which results from the stabilization of the graphene-SiO₂ interactions. Furthermore, the thermal response of the conductance could be utilized to maintain a certain degree of p-doping of monolayer graphene, which provides the facile, sustainable, and controllable large-area doping method of graphene for future generation of printed flexible electronics.

  3. Understanding Mn-Based Intercalation Cathodes from Thermodynamics and Kinetics

    Directory of Open Access Journals (Sweden)

    Yin Xie

    2017-07-01

    Full Text Available A series of Mn-based intercalation compounds have been applied as the cathode materials of Li-ion batteries, such as LiMn2O4, LiNi1−x−yCoxMnyO2, etc. With open structures, intercalation compounds exhibit a wide variety of thermodynamic and kinetic properties depending on their crystal structures, host chemistries, etc. Understanding these materials from thermodynamic and kinetic points of view can facilitate the exploration of cathodes with better electrochemical performances. This article reviews the current available thermodynamic and kinetic knowledge on Mn-based intercalation compounds, including the thermal stability, structural intrinsic features, involved redox couples, phase transformations as well as the electrical and ionic conductivity.

  4. Intercalated europium metal in epitaxial graphene on SiC

    Science.gov (United States)

    Anderson, Nathaniel A.; Hupalo, Myron; Keavney, David; Tringides, Michael C.; Vaknin, David

    2017-10-01

    X-ray magnetic circular dichroism (XMCD) reveals the magnetic properties of intercalated europium metal under graphene on SiC(0001). The intercalation of Eu nanoclusters (average size 2.5 nm) between graphene and SiC substate are formed by deposition of Eu on epitaxially grown graphene that is subsequently annealed at various temperatures while keeping the integrity of the graphene layer. Using sum-rules analysis of the XMCD of Eu M4 ,5 edges at T =15 K, our samples show paramagnetic-like behavior with distinct anomaly at T ≈90 K, which may be related to the Nèel transition, TN=91 K, of bulk metal Eu. We find no evidence of ferromagnetism due to EuO or antiferromagnetism due to Eu2O3 , indicating that the graphene layer protects the intercalated metallic Eu against oxidation over months of exposure to atmospheric environment.

  5. Materialographic preparation of lithium-carbon intercalation compounds; Materialographische Praeparation von Lithium-Kohlenstoff-Einlagerungsverbindungen

    Energy Technology Data Exchange (ETDEWEB)

    Druee, Martin; Seyring, Martin; Grasemann, Aaron [Jena Univ. (Germany). Otto Schott Institute of Materials Research; Rettenmayr, Markus [Center for Energy and Environmental Chemistry, Jena (Germany)

    2016-12-15

    The materialographic investigation of anode materials for rechargeable lithium ion batteries is a significant step in the understanding and development of electrode materials, but made dramatically more difficult due to the high reactivity of the materials involved. In this work a method is presented which permits the metallographic preparation of the lithium-carbon intercalation compounds used as anode materials in today's rechargeable lithium ion batteries, and which allows the details of their microstructures to be contrasted. After classic, but absolutely water free, preparation in a protective gas atmosphere, the final stage of preparation is carried out using both ion beam polishing and manual polishing on a stationary polishing disc, whereby no significant differences of the quality of the microstructural images obtained is apparent.

  6. Investigation of the Electric and Magnetic Properties of Intercalated Graphites.

    Science.gov (United States)

    1987-01-01

    the two-zone vapor transport method. Employing this groth process. The structure of graphite intercalation the graphite temperature was maintained at...GIC such as CoCl2 , and NiCl2 were also reported by Ka- rnia et . 122,23, recently theme transitos wer also conimed by Elahy et &1 [241. The authors of...intercalating anhydrous FeC 3 into highly ordered pyrolytic graphite using the two-zone vapour transport method. Employing this growth process, the graphite

  7. Single nucleotide polymorphism discrimination with and without an ethidium bromide intercalator

    Energy Technology Data Exchange (ETDEWEB)

    Fenati, Renzo A.; Connolly, Ashley R. [Flinders Centre for Nanoscale Science and Technology, Flinders University, Sturt Road, Bedford Park, Adelaide, South Australia 5042 (Australia); Ellis, Amanda V., E-mail: amanda.ellis@flinders.edu.au [Flinders Centre for Nanoscale Science and Technology, Flinders University, Sturt Road, Bedford Park, Adelaide, South Australia 5042 (Australia); Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, VIC 3010 (Australia)

    2017-02-15

    Single nucleotide polymorphism (SNP) genotyping is an important aspect in understanding genetic variations. Here, we discriminate SNPs using toe-hold mediated displacement reactions. The biological target is an 80 nucleotide long double-stranded–DNA from the mtDNA HV1 region, associated with maternal ancestry. This target has been specially designed with a pendant toehold and a cationic fluorophore, ATTO 647N, as a reporter, produced in a polymerase chain reaction. Rates of reaction for the toehold-polymerase chain reaction products (TPPs) with their corresponding complementary displacing sequences, labelled with a Black Hole Quencher 1, followed the order TPP–Cytosine > TPP–Thymine > TPP–Adenine ≥ TPP–Guanine. Non-complementary rates were the slowest with mismatches involving cytosine. These reactions, operating in a static/or contact mode, gave averaged readouts between SNPs within 15 min (with 80–90% quenching), compared to 25–30 min in previous studies involving fluorescence resonance energy transfer. Addition of an intercalating agent, ethidium bromide, retarded the rate of reaction in which cytosine was involved, presumably through stabilization of the base pairing, which resulted in markedly improved discrimination of cytosine containing SNPs. - Highlights: • Fluorophores and DNA intercalators effect the rate of toehold-mediated strand displacement. • Ethidium bromide had a destabilizing effect on mismatches that contained cytosine. • A cationic fluorophore and Black Hole Quencher 1 strand displacement system was 2–3 times faster than a FRET system. • This enabled SNP detection using toehold-mediated strand displacement in 15 min.

  8. Electrochromic performance of RF sputtered WO3 thin films by Li ion intercalation and de-intercalation

    Science.gov (United States)

    Meenakshi, M.; Sivakumar, R.; Sivanantharaja, A.; Sanjeeviraja, C.

    2017-05-01

    Tungsten oxide (WO3) thin films were prepared by RF sputtering technique at room temperature and 300°C as substrate temperatures keeping the sputtering powers as 100, 150, 200 and 250 W. Films were subjected various characterization like structural by XRD, surface morphology by SEM, composition analysis by EDX, and optical band gap by UV-Vis-NIR spectrometer. Optimized films were used for iono-optical studies using Li ion as intercalation and de-intercalation. Electrochromic parameters were evolved and reported.

  9. Pandemic influenza 1918 H1N1 and 1968 H3N2 DNA vaccines induce cross-reactive immunity in ferrets against infection with viruses drifted for decades

    DEFF Research Database (Denmark)

    Bragstad, Karoline; Martel, Cyril; Thomsen, Joakim S.

    2011-01-01

    Please cite this paper as: Bragstad et al. (2010) Pandemic influenza 1918 H1N1 and 1968 H3N2 DNA vaccines induce cross-reactive immunity in ferrets against infection with viruses drifted for decades. Influenza and Other Respiratory Viruses 5(1), 13-23. Background Alternative influenza vaccines...... in the vaccine formulations. Objective In this study, we compared the ability of pandemic influenza DNA vaccines to induce immunity against distantly related strains within a subtype with the immunity induced by conventional trivalent protein vaccines against homologous virus challenge. Methods Ferrets were...... immunised by particle-mediated epidermal delivery (gene gun) with DNA vaccines based on the haemagglutinin (HA) and neuraminidase (NA) and/or the matrix (M) and nucleoprotein genes of the 1918 H1N1 Spanish influenza pandemic virus or the 1968 H3N2 Hong Kong influenza pandemic virus. The animals were...

  10. Effect of oxygen intercalation on properties of sputtered CuYO2 for ...

    Indian Academy of Sciences (India)

    WINTEC

    on intercalation of oxygen at high pressure, which reduced the transparency in the visible region. The Ca-doped CuYO2 films before oxygen intercalation show an average transmission of about 60% which reduces to about 45% upon oxygen intercalation. The tempera- ture dependence of the conductivity indicates ...

  11. Reactive oxygen species is associated with cryptolepine cytotoxicity ...

    African Journals Online (AJOL)

    Cryptolepine (CLP), the major alkaloid of the West African anti-malarial plant Cryptolepis sanguinolenta is a known in vitro mammalian cytotoxin and a DNA intercalator. We have been studying the potential toxicity of CLP and the aqueous anti-malarial formulation (CSE) to mammalian cells in vitro. The objective of the ...

  12. Structural and energetic considerations of wave propagation in DNA

    Energy Technology Data Exchange (ETDEWEB)

    Sobell, H.M.; Lozansky, E.D.; Lessen, M.

    1978-06-01

    An important dynamic aspect of DNA in solution is the presence of coupled motions in its structure that involve bending, stretching, unwinding, and shearing components. It is postulated that these motions arise from wave propagation in the polymer, excited through impulses generated by the random and continuous bombardment of DNA by solvent molecules along its length. This gives rise to travelling structural distortions in DNA that result in DNA breathing and in drug intercalation. These distortions can be thought of as premelting conformational changes in DNA, and, in this respect, could have important implications in understanding the structure of DNA active in RNA transcription, DNA replication, and genetic recombination. The nature of these distortions is further documented and their relationship to DNA breathing and to drug intercalation is discussed.A key intermediate in these processes is the multiply kinked structure, ..beta.. kinked DNA. This structure has both B and A characteristics, and it is postulated that this structure is a conformational intermediated in the B ..-->.. A polymorphic transition. In addition, a class of intercalators known as the bis functional intercalators, molecules that have two intercalative chromophores separated by about 10.2 A is discussed. These bifunctional intercalators appear to bind DNA in a neighbor exclusion mode, and could, therefore, be probes to detect the migratory ..beta.. kinked DNA structure that has been postulated. The nature of the excitation force due to Brownian motion of solvent molecules that gives rise to wave motion in DNA is examined. This force is temperature dependent and one would therefore expect the average energy density along the DNA molecule to reflect this. As one raises the temperature of DNA in solution, additional localized regions of DNA premelting could arise. Events such as these could have important implications in understanding the mechanism of DNA melting.

  13. Calcium intercalation into layered fluorinated sodium iron phosphate

    Science.gov (United States)

    Lipson, Albert L.; Kim, Soojeong; Pan, Baofei; Liao, Chen; Fister, Timothy T.; Ingram, Brian J.

    2017-11-01

    The energy density and cost of battery systems, relative to the current state-of-the art, can be improved by developing alternative chemistries utilizing multivalent working ions such as calcium. Many challenges must be overcome, such as the identification of cathode materials with high energy density and an electrolyte with a wide electrochemical stability window that can plate and strip calcium metal, before market implementation. Herein, the feasibility and cycling performance of Ca2+ intercalation into a desodiated layered Na2FePO4F host is described. This is the first demonstration of Ca2+ intercalation into a polyanionic framework, which implies that other polyanionic framework materials may be active for Ca2+ intercalation. Although substantial effort is expected in order to develop a high energy density cathode material, this study demonstrates the feasibility of Ca2+ intercalation into multiple host structures types, thereby extending opportunities for development of Ca insertion host structures, suggesting such a cathode material can be identified and developed.

  14. [Raman and infrared spectrograms of organic borate intercalated hydrotalcite].

    Science.gov (United States)

    Zhang, Jing-Yu; Bai, Zhi-Min; Zhao, Dong

    2013-03-01

    The pattern of X-ray diffraction, the Raman and infrared spectra of organic borate intercalated hydrotalcite were discussed. The well crystallized zinc-aluminum layered double hydroxides (Zn-Al LDHs) intercalated by carbonate ions and borate ions were respectively prepared by co-precipitation method. Patterns of X-ray diffraction showed that the (003) reflection of borate-LDHs was sharp and symmetric and shifted to lower angle than that of carbonate-LDHs. The gallery height of borate-LDHs increased from 0. 28 nm to 0.42 nm after intercalation, indicating that interlayered carbonate ions were substituted by borate anions. The Raman and IR spectra showed that specific bands of carbonate ions in the borate-LDHs disappeared, but with the presence of B3O3(OH)4- X B4O5(OH)4(2-) and B(OH)4- in the interlayer galleries. The hydroxide interlayer anions had a significant influence on the band positions in Raman and infrared spectra of modes related to the hydroxyl group. Our results indicate that single phase and pure borate-pillared LDHs can be obtained using tributyl orthoborate as intercalating agents, and the change in the structure and nature of hydrotalcite can be detected precisely by Raman spectroscopy.

  15. Preparation of intercalated polyaniline/clay nanocomposite and its ...

    Indian Academy of Sciences (India)

    Intercalated composite of polyaniline and clay has been reported. The composite was prepared by in situ polymerization of aniline within the layers of `illite' clay. The composite was characterized for its structural, spectral, and microscopic properties. At higher level of loading the layered structure of composite breaks ...

  16. Intercalation of Si between MoS2 layers

    NARCIS (Netherlands)

    van Bremen, Rik; Yao, Qirong; Banerjee, Soumya; Cakir, Deniz; Oncel, Nuri; Zandvliet, Harold J.W.

    2017-01-01

    We report a combined experimental and theoretical study of the growth of sub-monolayer amounts of silicon (Si) on molybdenum disulfide (MoS2). At room temperature and low deposition rates we have found compelling evidence that the deposited Si atoms intercalate between the MoS2 layers. Our evidence

  17. Characterization of Intercalated Graphite Fibers for Microelectromechanical Systems (MEMS) Applications

    Science.gov (United States)

    2007-03-01

    remove. When SU8-5 does come off it is in chunks and would place excessive force on the fibers, snapping them off. 66 4.4.1.5 Fiber mounting with gold...Charge-transfer effects in graphite intercalates: Ab initio calculations and neutron -diffraction experiment”, Phys. Rev. Lett., vol. 58, no. 15, pp

  18. Exfoliation of Hexagonal Boron Nitride via Ferric Chloride Intercalation

    Science.gov (United States)

    Hung, Ching-cheh; Hurst, Janet; Santiago, Diana; Rogers, Richard B.

    2014-01-01

    Sodium fluoride (NaF) was used as an activation agent to successfully intercalate ferric chloride (FeCl3) into hexagonal boron nitride (hBN). This reaction caused the hBN mass to increase by approx.100 percent, the lattice parameter c to decrease from 6.6585 to between 6.6565 and 6.6569 ?, the x-ray diffraction (XRD) (002) peak to widen from 0.01deg to 0.05deg of the full width half maximum value, the Fourier transform infrared (FTIR) spectrum's broad band (1277/cm peak) to change shape, and new FTIR bands to emerge at 3700 to 2700 and 1600/cm. This indicates hBN's structural and chemical properties are significantly changed. The intercalated product was hygroscopic and interacted with moisture in the air to cause further structural and chemical changes (from XRD and FTIR). During a 24-h hold at room temperature in air with 100 percent relative humidity, the mass increased another 141 percent. The intercalated product, hydrated or not, can be heated to 750 C in air to cause exfoliation. Exfoliation becomes significant after two intercalation-air heating cycles, when 20-nm nanosheets are commonly found. Structural and chemical changes indicated by XRD and FTIR data were nearly reversed after the product was placed in hydrochloric acid (HCl), resulting in purified, exfoliated, thin hBN products.

  19. Electrochemical lithium intercalation into vanadium pentoxide xerogel film electrode

    Energy Technology Data Exchange (ETDEWEB)

    Pyun, Su Il; Bae, Joon Sung [Korea Advanced Inst. of Science and Technology, Daejon (Korea, Republic of). Dept. of Materials Science and Engineering

    1997-10-01

    The lithium-ion transport in vanadium pentoxide xerogel film electrodes has been investigated by using cyclic voltammetry and electrochemical impedance spectroscopy. The oxide xerogel film electrodes were prepared by spin-coating a viscous gel on an indium tin oxide (ITO) substrate. The spin-coated xerogel films were dried under vacuum at 130 and 270 C, respectively. The lithium intercalation into the xerogel film electrode dried at 270 C is limited by the interfacial reaction at the electrolyte/electrode interface rather than the lithium-ion transport in the oxide electrode. On the other hand, lithium intercalation into the film electrode dried at 130 C is largely limited by the lithium transport in the oxide film, and the chemical diffusivity of the lithium ion in the oxide film was determined to decrease from 10{sup -10} to 10{sup -12} cm{sup 2} s{sup -1} as the electrode potential of the oxide film fell from 3.0 to 2.2 V{sub Li/Li{sup +}}. The tranition of the diffusion-controlled intercalation to the interfacial reaction-controlled intercalation into the oxide xerogel film with decreasing drying temperature was explained in terms of the modification of the oxide lattice to a more open-structured lattice by structural modification of the oxide film by water molecules incorporated into the film. (orig.)

  20. Ionic liquid intercalated V2O5 nanorods: synthesis and ...

    Indian Academy of Sciences (India)

    Administrator

    owing to their unique periodic and elastic properties, resulting in structural flexibility that provides additional opportunities for nanoengineering. In recent days, the ... gained more interest. Nagaraju and Chandrappa11 have synthesized Na0.28V2O5 nanobelts via intercalation of sodium ions by the hydrothermal method.

  1. Intercalation of paracetamol into the hydrotalcite-like host

    Science.gov (United States)

    Kovanda, František; Maryšková, Zuzana; Kovář, Petr

    2011-12-01

    Hydrotalcite-like compounds are often used as host structures for intercalation of various anionic species. The product intercalated with the nonionic, water-soluble pharmaceuticals paracetamol, N-(4-hydroxyphenyl)acetamide, was prepared by rehydration of the Mg-Al mixed oxide obtained by calcination of hydrotalcite-like precursor at 500 °C. The successful intercalation of paracetamol molecules into the interlayer space was confirmed by powder X-ray diffraction and infrared spectroscopy measurements. Molecular simulations showed that the phenolic hydroxyl groups of paracetamol interact with hydroxide sheets of the host via the hydroxyl groups of the positively charged sites of Al-containing octahedra; the interlayer water molecules are located mostly near the hydroxide sheets. The arrangement of paracetamol molecules in the interlayer is rather disordered and interactions between neighboring molecules cause their tilting towards the hydroxide sheets. Dissolution tests in various media showed slower release of paracetamol intercalated in the hydrotalcite-like host in comparison with tablets containing the powdered pharmaceuticals.

  2. Modes of tetra(4-pyridyl)porphyrinatomanganese(III) ion intercalation inside natural clays.

    Science.gov (United States)

    Zyoud, Ahed; Jondi, Waheed; Mansour, Waseem; Majeed Khan, M A; Hilal, Hikmat S

    2016-01-01

    Metalloporphyrin ions, with planar shape, have been known to intercalate horizontally and diagonally between montmorillonite layers. Perpendicular intercalation inside montmorillonite has not been reported earlier. This work aims at achieving perpendicular intercalation inside montmorillonite in natural clays. Possible intercalation inside other forms of natural clay will also be investigated. Natural clays were purified and characterized. The naked clay powder was then refluxed with tetra(4-pyridyl)porphyrinatomanganese(III) ion (MnTPyP(+)) solution in methanol with continuous stirring for different times. Electronic absorption spectra, atomic absorption spectra, Fourier Transform infrared spectra, scanning electron microscopy and X-ray diffraction were all used in clay characterization and in intercalation study. The natural clay involved different phases, namely montmorillonite, biotite, kaolinite, illite and traces of quartz. Montmorillonite clay allowed horizontal, diagonal and perpendicular intercalation of the metalloporphyrin ions. Biotite allowed only horizontal intercalation. The mode of intercalation was deduced by monitoring the clay inter-planar distance value change. Intercalation occurred inside both micro- and nano-size clay powders to different extents. The nano-powder (average size ~50 nm) showed uptake values up to 3.8 mg MnTPyP/g solid, whereas the micro-size powder (average size ~316 nm) exhibited lower uptake (2.4 mg MnTPyP/g solid). Non-expandable clay phases did not allow any intercalation. The intercalated MnTPyP(+) ions showed promising future supported catalyst applications. Depending on their phase, natural clays hosted metalloporphyrin ions. Montmorillonite can allow all three possible intercalation geometries, horizontal, diagonal and for the first time perpendicular. Biotite allows horizontal intercalation only. Non-expandable clays allow no intercalation. Graphical abstractMetalloporphyrin complexes can be intercalated into

  3. FT-Raman and QM/MM study of the interaction between histamine and DNA

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Chica, A.J. [Departamento de Quimica Fisica, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga (Spain); Soriano, A. [Departamento de Quimica Fisica/IcMol, Facultad de Quimicas, Universidad de Valencia, 46100 Burjassot Valencia (Spain); Tunon, I. [Departamento de Quimica Fisica/IcMol, Facultad de Quimicas, Universidad de Valencia, 46100 Burjassot Valencia (Spain); Sanchez-Jimenez, F.M. [Departamento de Bioquimica y Biologia Molecular, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga (Spain); Silla, E. [Departamento de Quimica Fisica/IcMol, Facultad de Quimicas, Universidad de Valencia, 46100 Burjassot Valencia (Spain); Ramirez, F.J. [Departamento de Quimica Fisica, Facultad de Ciencias, Universidad de Malaga, 29071 Malaga (Spain)], E-mail: ramirez@uma.es

    2006-05-31

    The interaction between histamine and highly polymerized calf-thymus DNA has been investigated using FT-Raman spectroscopy and the hybrid QM/MM (quantum mechanics/molecular mechanics) methodology. Raman spectra of solutions containing histamine and calf-thymus DNA, at different molar ratios, were recorded. Solutions were prepared at physiological settings of pH and ionic strength, using both natural and heavy water as the solvent. The analysis of the spectral changes on the DNA Raman spectra when adding different concentrations of histamine allowed us to identify the reactive sites of DNA and histamine, which were used to built two minor groove and one intercalated binding models. They were further used as starting points of the QM/MM theoretical study. However, minimal energy points were only reached for the two minor groove models. For each optimized structure, we calculated analytical force constants of histamine molecule in order to perform the vibrational dynamics. Normal mode descriptions allowed us to compare calculated wavenumbers for DNA-interacting histamine to those measured in the Raman spectra of DNA-histamine solutions.

  4. Reactive Systems

    DEFF Research Database (Denmark)

    Aceto, Luca; Ingolfsdottir, Anna; Larsen, Kim Guldstrand

    A reactive system comprises networks of computing components, achieving their goals through interaction among themselves and their environment. Thus even relatively small systems may exhibit unexpectedly complex behaviours. As moreover reactive systems are often used in safety critical systems, t...

  5. High-Density Chemical Intercalation of Zero-Valent Copper into Bi 2 Se 3 Nanoribbons

    KAUST Repository

    Koski, Kristie J.

    2012-05-09

    A major goal of intercalation chemistry is to intercalate high densities of guest species without disrupting the host lattice. Many intercalant concentrations, however, are limited by the charge of the guest species. Here we have developed a general solution-based chemical method for intercalating extraordinarily high densities of zero-valent copper metal into layered Bi 2Se 3 nanoribbons. Up to 60 atom % copper (Cu 7.5Bi 2Se 3) can be intercalated with no disruption to the host lattice using a solution disproportionation redox reaction. © 2012 American Chemical Society.

  6. Intercalated duct cell is starting point in development of pancreatic ductal carcinoma?

    Directory of Open Access Journals (Sweden)

    Yamaguchi Toshikazu

    2005-01-01

    Full Text Available Abstract Background Although it is well known that the pancreatic ductal carcinoma may develop having a relationship to the mucous gland hyperplasia (MGH with atypia (PanIN-1B by PanIN system, the starting point of this atypical MGH is unclear. To know it, we examined the pancreas tissue using many methods described below. Methods 1. Twenty-seven surgically resected pancreas tissue specimens, including pancreatic ductal carcinomas (PDC, chronic pancreatitis and normal pancreas, were investigated using immunohistochemical stainings for MUC1, MUC6, 45M1, Ki67 and p53. 2. DNA extraction and analysis of K-ras mutation at codon 12 using microdissection method: The paraffin blocks with 16 regions including the intercalated duct cell (IC adjacant to the atypical MGH were prepared for DNA extraction. Mutation of K-ras codon 12 was analized and compared in enriched polymerase chain reaction-enzyme-linked minisequence assay (PCR-ELMA. Results 1. In the normal pancreas, although no positive cell was seen in 45M1, p53, Ki67, the cytoplasm of IC were always positive for MUC1 and sometimes positive for MUC6. In the pancreas with fibrosis or inflammation, MGH was positive for MUC6 and 45M1. And atypical MGH was positive for MUC1, MUC6 and 45M1. Some IC adjacent to the atypical MGH was positive for Ki67 as well as atypical MGH. The carcinoma cells in all cases of PDC were diffusely positive for MUC1, 45M1, p53 and Ki67, and focally positive for MUC6. 2. In K-ras mutation, we examined the regions including IC adjacent to the atypical MGH, because the immunohistochemical apomucin stainings of these regions resembled those of PDC as decribed above. And K-ras mutation was confirmed in 12 of 16 regions (75%. All mutations were a single mutation, in 6 regions GTT was detected, in 4 regions GAT was detected and in 2 region AGT was detected. Conclusion Some intercalated duct cell may be the starting point of the pancreatic ductal carcinoma, because the exhibitions of

  7. Influence of DNA-dye complex stability on separation resolution in microchip electrophoresis.

    Science.gov (United States)

    Lo, Roger C; Joffe, Aaron M

    2012-03-01

    Different markers have been used to label DNA for sample detection in gel electrophoresis. Intercalating dyes, (e.g., YOYO) have been widely used to label DNA for sample detection, because they do not require the use of radioisotopes, covalent attachment or enzyme reactions. The labeling of DNA fragments can be achieved by simply mixing solutions of the intercalating dye and DNA sample. However, the separation quality of DNA labeled with intercalating dyes is greatly influenced by the buffer used, which affects the DNA-dye complex stability. In this study, we investigated the effects of DNA-dye complex stability on separation resolution of dsDNA migrating in a photopolymerized polyacrylamide gel by measuring mobility and dispersion coefficients on a microfluidic chip and comparing predicted separation resolution under different dye and buffer conditions. We found that a buffer containing tetrapentylammonium (NPe(4)(+)) yielded better separation resolution than the frequently used TBE buffer on our microchip electrophoresis system.

  8. 1-, 2-, and 4-Ethynylpyrenes in the Structure of Twisted Intercalating Nucleic Acids: Structure, Thermal Stability, and Fluorescence Relationship

    DEFF Research Database (Denmark)

    Filichev, Vyacheslav V; Astakhova, Irina V.; Malakhov, Andrei D.

    2008-01-01

    A postsynthetic, on-column Sonogashira reaction was applied on DNA molecules modified by 2- or 4-iodophenylmethylglycerol in the middle of the sequence, to give the corresponding ortho- and para-twisted intercalating nucleic acids (TINA) with 1-, 2-, and 4-ethynylpyrene residues. The convenient...... synthesis of 2- and 4-ethynylpyrenes started from the hydrogenolysis of pyrene that has had the sulfur removed and separation of 4,5,9,10-tetrahydropyrene and 1,2,3,6,7,8-hexahydropyrene, which were later converted to the final compounds by successive Friedel-Crafts acetylation, aromatization by 2...

  9. Exploring encapsulation mechanism of DNA and mononucleotides in sol-gel derived silica.

    Science.gov (United States)

    Kapusuz, Derya; Durucan, Caner

    2017-07-01

    The encapsulation mechanism of DNA in sol-gel derived silica has been explored in order to elucidate the effect of DNA conformation on encapsulation and to identify the nature of chemical/physical interaction of DNA with silica during and after sol-gel transition. In this respect, double stranded DNA and dAMP (2'-deoxyadenosine 5'-monophosphate) were encapsulated in silica using an alkoxide-based sol-gel route. Biomolecule-encapsulating gels have been characterized using UV-Vis, (29)Si NMR, FTIR spectroscopy and gas adsorption (BET) to investigate chemical interactions of biomolecules with the porous silica network and to examine the extent of sol-gel reactions upon encapsulation. Ethidium bromide intercalation and leach out tests showed that helix conformation of DNA was preserved after encapsulation. For both biomolecules, high water-to-alkoxide ratio promoted water-producing condensation and prevented alcoholic denaturation. NMR and FTIR analyses confirmed high hydraulic reactivity (water adsorption) for more silanol groups-containing DNA and dAMP encapsulated gels than plain silica gel. No chemical binding/interaction occurred between biomolecules and silica network. DNA and dAMP encapsulated silica gelled faster than plain silica due to basic nature of DNA or dAMP containing buffer solutions. DNA was not released from silica gels to aqueous environment up to 9 days. The chemical association between DNA/dAMP and silica host was through phosphate groups and molecular water attached to silanols, acting as a barrier around biomolecules. The helix morphology was found not to be essential for such interaction. BET analyses showed that interconnected, inkbottle-shaped mesoporous silica network was condensed around DNA and dAMP molecules.

  10. Influence of carbonate intercalation in the surface-charging behavior of Zn-Cr layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, R., E-mail: rrojas@mail.fcq.unc.edu.ar [INFIQC, Departamento de Fisicoquimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina); Barriga, C. [Departamento de Quimica Inorganica e Ingenieria Quimica, Edificio Marie Curie, Campus de Rabanales, Universidad de Cordoba, 14071 Cordoba (Spain); De Pauli, C.P. [INFIQC, Departamento de Fisicoquimica, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina); Avena, M.J. [Departamento de Quimica, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahia Blanca (Argentina)

    2010-01-15

    The influence of interlayer composition in the surface charge and reactivity of layered double hydroxides (LDHs) has been explored. With this purpose, a chloride-intercalated Zn-Cr-LDH has been synthesized by the constant pH coprecipitation method and afterwards exchanged with carbonate to obtain solids with different Cl{sup -}/CO{sub 3}{sup 2-} ratios. The solids structure has been characterized by elemental chemical analysis, powder X-ray diffraction and infrared spectroscopy, while its surface-charging behavior and reactivity have been studied by acid-base potentiometric titrations and electrophoretic mobility determinations. The chloride-intercalated sample shows an increasing hydroxyl adsorption with increasing pH and decreasing support electrolyte concentration and the particles present positive electrophoretic mobility in the measured pH range. As carbonate content increases in the samples, the total OH{sup -} uptake diminishes and the samples show an isoelectric point at pH around 10. When the gallery is totally occupied by carbonate anions, the OH uptake vs. pH curves registered at different electrolyte concentrations merge at around pH 10. A LDH-water interface model has been used to give an interpretation to the experimental data. The model indicates that as carbonate content increases, the sample behavior becomes similar to that of a metal (hydr)oxide and that surface (bi)carbonate anions undergo acid-base reactions.

  11. DNA length evaluation using cyanine dye and fluorescence correlation spectroscopy.

    Science.gov (United States)

    Shimizu, Masafumi; Sasaki, Satoshi; Tsuruoka, Makoto

    2005-01-01

    To develop a high-performance method for measuring the length of double-stranded DNA (dsDNA) fragments, the capability of fluorescence correlation spectroscopy (FCS) was examined. To omit troublesome and time-consuming labeling operations such as PCR with fluorescently labeled mononucleotides or primers, intercalation of dimeric cyanine dye YOYO-1 iodide (YOYO) to dsDNA was utilized as a simple labeling method. Various lengths of dsDNA fragments were prepared and mixed with YOYO prior to FCS, and the dependence of the diffusion time of a dsDNA-YOYO complex on the length of dsDNA fragment and the dsDNA/YOYO ratio was investigated. It was successfully demonstrated that the dsDNA length can be measured using YOYO and FCS, and the calibration curve was developed taking into account the rewinding and expansion of the dsDNA fragment caused by YOYO intercalation.

  12. Production of High-quality Few-layer Graphene Flakes by Intercalation and Exfoliation

    KAUST Repository

    Alzahrani, Areej A.

    2017-11-30

    Graphene, a two-dimensional nanomaterial, has been given much attention since it was first isolated in 2004. Driving this intensive research effort are the unique properties of this one atom thick sheet of carbon, in particular its electrical, thermal and mechanical properties. While the technological applications proposed for graphene abound, its low-cost production in large scales is still a matter of interrogation. Simple methods to obtain few-layered graphene flakes of high structural quality are being investigated with the exfoliation of graphite taking a prominent place in this arena. From the many suggested approaches, the most promising involve the use of liquid media assisted by intercalants and shear forces acting on the basal layers of graphite. In this thesis, it is discussed how a novel method was developed to produce flakes with consistent lateral dimensions that are also few-layered and retain the expected structural and chemical characteristics of graphene. Here, the source material was a commercially available graphiteintercalated compound, also known as expandable graphite. Several exfoliation-inducing tools were investigated including the use of blenders, homogenizers, and ultrasonic processors. To aid in this process, various solvents and intercalants were explored under different reactive conditions. The more efficient approach in yielding defect-free thin flakes was the use of thermally expanded graphite in boiling dimethylformamide followed by ultrasonic processing and centrifugation. In parallel, a method to fraction the flakes as a function of their lateral size was developed. Ultimately, it was possible to obtain samples of graphene flakes with a lateral dimension of a few micrometers (<5 μm) and thickness of 1-3 nm (i.e. <10 layers).

  13. Fluorescence Images of DNA-Bound YOYO between Coupled Silver Particles

    OpenAIRE

    Zhang, Jian; Fu, Yi; Lakowicz, Joseph R.

    2007-01-01

    Oligonucleotide-bound silver particles were coupled through hybridization with target complementary oligonucleotides. YOYO molecules were intercalated into DNA duplexes bound between the coupled metal particles. Fluorescence images of YOYO molecules were monitored by scanning confocal microscopy. Relative to the free single YOYO, the emission brightness of the image was enhanced 80-fold after intercalating the fluorophores into the DNA duplexes between the coupled silver particles. Some image...

  14. Induced magnetism in transition metal intercalated graphitic systems

    KAUST Repository

    Kaloni, Thaneshwor P.

    2011-10-26

    We investigate the structure, chemical bonding, electronic properties, and magnetic behavior of a three-dimensional graphitic network in aba and aaa stacking with intercalated transition metal atoms (Mn, Fe, Co, Ni, and Cu). Using density functional theory, we find induced spin-polarization of the C atoms both when the graphene sheets are aba stacked (forming graphite) and aaa stacked (resembling bi-layer graphene). The magnetic moment induced by Mn, Fe, and Co turns out to vary from 1.38 μB to 4.10 μB, whereas intercalation of Ni and Cu does not lead to a magnetic state. The selective induction of spin-polarization can be utilized in spintronic and nanoelectronic applications.

  15. Electrochemical Doping of Halide Perovskites with Ion Intercalation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Qinglong [Department; amp, Engineering; Chen, Mingming [Department; amp, Engineering; Li, Junqiang [Department; amp, Engineering; Wang, Mingchao; Zeng, Xiaoqiao [Chemical; Besara, Tiglet [National High Magnetic Field Laboratory, 1800 E Paul Dirac Drive, Tallahassee, Florida 32310, United States; Lu, Jun [Chemical; Xin, Yan [National High Magnetic Field Laboratory, 1800 E Paul Dirac Drive, Tallahassee, Florida 32310, United States; Shan, Xin [Department; amp, Engineering; Pan, Bicai [Key Laboratory; Wang, Changchun [State; Lin, Shangchao; Siegrist, Theo; Xiao, Qiangfeng [Department; Yu, Zhibin [Department; amp, Engineering

    2017-01-10

    Halide perovskites have recently been investigated for various solution-processed optoelectronic devices. The majority of studies have focused on using intrinsic halide perovskites, and the intentional incoporation of dopants has not been well explored. In this work, we discovered that small alkali ions, including lithium and sodium ions, could be electrochemically intercalated into a variety of halide and pseudohalide perovskites. The ion intercalation caused a lattice expansion of the perovskite crystals and resulted in an n-type doping of the perovskites. Such electrochemical doping improved the conductivity and changed the color of the perovskites, leading to an electrochromism with more than 40% reduction of transmittance in the 450–850 nm wavelength range. The doped perovskites exhibited improved electron injection efficiency into the pristine perovskite crystals, resulting in bright light-emitting diodes with a low turn-on voltage.

  16. Phase Separation Dynamics in Isotropic Ion-Intercalation Particles

    CERN Document Server

    Zeng, Yi

    2013-01-01

    Lithium-ion batteries exhibit complex nonlinear dynamics, resulting from diffusion and phase transformations coupled to ion intercalation reactions. Using the recently developed Cahn-Hilliard reaction (CHR) theory, we investigate a simple mathematical model of ion intercalation in a spherical solid nanoparticle, which predicts transitions from solid-solution radial diffusion to two-phase shrinking-core dynamics. This general approach extends previous Li-ion battery models, which either neglect phase separation or postulate a spherical shrinking-core phase boundary, by predicting phase separation only under appropriate circumstances. The effect of the applied current is captured by generalized Butler-Volmer kinetics, formulated in terms of diffusional chemical potentials, and the model consistently links the evolving concentration profile to the battery voltage. We examine sources of charge/discharge asymmetry, such as asymmetric charge transfer and surface "wetting" by ions within the solid, which can lead to...

  17. Exfoliation and intercalation of montmorillonite by small peptides

    Science.gov (United States)

    Block, Karin A.; Trusiak, Adrianna; Katz, Al; Alimova, Alexandra; Wei, Hui; Gottlieb, Paul; Steiner, Jeffrey C.

    2015-01-01

    Understanding structural changes in clay minerals induced by complexation with organic matter is relevant to soil science and agricultural applications. In this study, the effect of peptide storage in montmorillonite and the thermal stability of peptide-clay complexes was examined through characterization by X-ray diffraction (XRD), electron microscopy, UV absorption, and thermogravimetric analysis (TGA). XRD analysis of small peptide-montmorillonite clay complexes produced profiles consisting of reflections associated with the smectite 001 reflection and related peaks similar to that produced by a mixed layer clay mineral structure. Shifts in higher order diffraction maxima were attributed to disorder caused by the intercalation with the peptides. Increasing peptide concentrations resulted in greater shifts towards smaller 2θ from 6.37° (1.39 nm) to 5.45° (1.62 nm) as the interlayer space expanded. The expansion was accompanied by broadening of the 001 reflection (FWHM increases from 0.51 to 1.22° 2θ). The XRD line broadening was interpreted as caused by poorer crystallinity resulting from intercalation and tactoid exfoliation. SEM images revealed montmorillonite platelets with upwardly rolled edges that tend toward cylindrical structures with the production of tubules. High-resolution TEM images revealed bending of montmorillonite platelets, confirming exfoliation. The distribution of basal spacings in the micrographs was determined from the spatial frequencies obtained by Fourier analysis of density profiles. The distribution indicated the presence of discrete coherent crystallite domains. XRD and TGA results indicated that higher peptide concentrations resulted in a greater fraction of intercalated peptides and that surface adsorption of peptides mediated intercalation. Therefore, higher peptide concentration led to more stable organoclay complexes. However, UV absorption and TGA found that peptide adsorption onto montmorillonite had a finite limit at

  18. Structure and Properties of Intercalated Graphite Fiber-Polymer Composites.

    Science.gov (United States)

    1983-07-07

    trifluoride in a nitromethane solution MF5 to form NOZ. and MF6-. The adsorbed NO2 using the method described by Kuhn and Olah (4). captures electrons...polar chlorine - C8 4 4 3 aluminum chloride complex. In either case, the driving force for intercalation is Noteworthy is the close similarity between...electron transfer from graphite to the highly this compound’s X-ray pattern and the fourth electrophylic, positively charged chlorine , stage ccmpound

  19. Molecular Intercalation and Cohesion of Organic Bulk Heterojunction Photovoltaic Devices

    KAUST Repository

    Bruner, Christopher

    2013-01-17

    The phase separated bulk heterojunction (BHJ) layer in BHJ polymer:fullerene organic photovoltaic devices (OPV) are mechanically weak with low values of cohesion. Improved cohesion is important for OPV device thermomechanical reliability. BHJ devices are investigated and how fullerene intercalation within the active layer affects cohesive properties in the BHJ is shown. The intercalation of fullerenes between the side chains of the polymers poly(3,3″′-didocecyl quaterthiophene) (PQT-12) and poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT) is shown to enhance BHJ layer cohesion. Cohesion values range from ≈1 to 5 J m -2, depending on the polymer:fullerene blend, processing conditions, and composition. Devices with non-intercalated BHJ layers are found to have significantly reduced values of cohesion. The resulting device power conversion efficiencies (PCE) are also investigated and correlated with the device cohesion. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The role of reactive oxygen species (ROS and cytochrome P-450 2E1 in the generation of carcinogenic etheno-DNA adducts

    Directory of Open Access Journals (Sweden)

    Kirsten Linhart

    2014-01-01

    Full Text Available Exocyclic etheno-DNA adducts are mutagenic and carcinogenic and are formed by the reaction of lipidperoxidation (LPO products such as 4-hydoxynonenal or malondialdehyde with DNA bases. LPO products are generated either via inflammation driven oxidative stress or via the induction of cytochrome P-450 2E1 (CYP2E1. In the liver CYP2E1 is induced by various compounds including free fatty acids, acetone and ethanol. Increased levels of CYP2E1 and thus, oxidative stress are observed in the liver of patients with non-alcoholic steatohepatitis (NASH as well as in the chronic alcoholic. In addition, chronic ethanol ingestion also increases CYP2E1 in the mucosa of the oesophagus and colon. In all these tissues CYP2E1 correlates significantly with the levels of carcinogenic etheno-DNA adducts. In contrast, in patients with non-alcoholic steatohepatitis (NASH hepatic etheno-DNA adducts do not correlate with CYP2E1 indicating that in NASH etheno-DNA adducts formation is predominately driven by inflammation rather than by CYP2E1 induction. Since etheno-DNA adducts are strong mutagens producing various types of base pair substitution mutations as well as other types of genetic damage, it is strongly believed that they are involved in ethanol mediated carcinogenesis primarily driven by the induction of CYP2E1.

  1. A fluorescence sedimentation assay for dsDNA antibodies

    DEFF Research Database (Denmark)

    Duus, K; Draborg, A H; Güven, E

    2017-01-01

    on precipitation with polyethylene glycol (PEG) and fluorescence of EvaGreen intercalated in dsDNA as detection principle. As dsDNA antibodies are quantified using fluorescence, the disadvantages of working with radioactivity are eliminated. The Fluoro-Farr assay was developed and validated, and the diagnostic...

  2. Synthesis, DNA binding and cytotoxic evaluation of aminoquinoline ...

    Indian Academy of Sciences (India)

    DNA binding studies of selected isomeric compounds showed interaction withDNA via intercalation mode with higher binding affinity of 4-substituted ... Universiti Sains Malaysia, Minden 11800, Penang, Malaysia; New Drug Discovery Research, Department of Medicinal Chemistry, Alwar Pharmacy College, Alwar, ...

  3. Ge-intercalated graphene: The origin of the p-type to n-type transition

    KAUST Repository

    Kaloni, Thaneshwor P.

    2012-09-01

    Recently huge interest has been focussed on Ge-intercalated graphene. In order to address the effect of Ge on the electronic structure, we study Ge-intercalated free-standing C 6 and C 8 bilayer graphene, bulk C 6Ge and C 8Ge, as well as Ge-intercalated graphene on a SiC(0001) substrate, by density functional theory. In the presence of SiC(0001), there are three ways to obtain n-type graphene: i) intercalation between C layers; ii) intercalation at the interface to the substrate in combination with Ge deposition on the surface; and iii) cluster intercalation. All other configurations under study result in p-type states irrespective of the Ge coverage. We explain the origin of the different doping states and establish the conditions under which a transition occurs. © Copyright EPLA, 2012.

  4. Docking studies on DNA-ligand interactions: building and application of a protocol to identify the binding mode.

    Science.gov (United States)

    Ricci, Clarisse G; Netz, Paulo A

    2009-08-01

    Despite DNA being an important target for several drugs, most of the docking programs are validated only for proteins and their ligands. In this paper, we used AutoDock 4.0 to perform self-dockings and cross dockings between two DNA ligands (a minor groove binder and an intercalator) and four distinct receptors: 1) crystallographic DNA without intercalation gap; 2) crystallographic DNA with intercalation gap; 3) canonical B-DNA; and 4) modified B-DNA with intercalation gap. Besides being efficient in self-dockings, AutoDock is capable of correctly identifying two of the main DNA binding modes with the condition that the target possesses an artificial intercalation gap. Therefore, we suggest a default protocol to identify DNA binding modes which uses a modified canonical DNA (with gap) as receptor. This protocol was applied to dock two different Troger bases to DNA and the predicted binding modes agree with those suggested, yet not established, by experimental data. We also applied the protocol to dock aflatoxin B(1) exo-8,9-epoxide, and the results are in complete agreement with experimental data from the literature. We propose that this approach can be used to investigate other ligands whose binding mode to DNA remains unknown, yielding a suitable starting point for further theoretical studies such as molecular dynamics simulations.

  5. Intercalation doping of narrow multilayer graphene interconnects with sub-100 nm widths

    Science.gov (United States)

    Katagiri, Masayuki; Miyazaki, Hisao; Matsumoto, Rika; Kajita, Akihiro; Sakai, Tadashi

    2017-07-01

    An intercalation process for narrow graphene interconnects with linewidths of graphene flakes of >5 µm size induced partial delamination of the graphene layers and insufficient intercalation in some graphene interconnects with linewidths of graphene layers and provided improved doping characteristics with a higher yield in narrow graphene interconnects with linewidths of graphene interconnects under suitable conditions was confirmed by Raman scattering spectroscopy. These results indicate that intercalation using MoCl5 is promising for the fabrication of narrow graphene interconnects.

  6. Structural effects on the electronic characteristics of intramolecularly intercalated alkali-rubrene complexes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tsung-Lung, E-mail: quantum@mail.ncyu.edu.tw [Department of Electrophysics, National Chia-Yi University, 300 Hsueh-Fu Road, Chiayi, 60004, Taiwan, ROC (China); Lu, Wen-Cai, E-mail: wencailu@jlu.edu.cn [Laboratory of Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, College of Physics, Qingdao University, Qingdao, Shandong 266071 (China); State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin 130021 (China)

    2016-11-01

    The geometric and electronic structures of neutral monolithium- and monosodium-rubrene (Li{sub 1} Rub and Na{sub 1} Rub) isomers are investigated and compared with monopotassium-rubrene (K{sub 1} Rub). Based on the alkali binding site, all isomers of these alkali-rubrene complexes can be subdivided into two types: intramolecularly intercalated and extramolecularly adsorbed. The minimum-energy Li{sub 1} Rub and Na{sub 1} Rub are intercalated structures, whereas the minimum-energy K{sub 1} Rub is adsorbed. The fact that the intercalated Li{sub 1} Rub and Na{sub 1} Rub structures are energetically favorable over the adsorbed ones can be explained by two energy rules. First, “double” proximity of the intercalating alkali element to a pair of phenyl side groups enormously reduces the total energy. Second, accommodation of a minuscule intercalant does not significantly deform the carbon frame and, thus, increases the energy only by a small amount. Additionally, the peculiar effects of intramolecular intercalation on the electronic structures of molecules are also studied in this simulation of monoalkali intercalation. In the monoalkali-intercalated rubrene complex, only one of the two pairs of phenyl groups of rubrene is intercalated, intentionally leaving another pair pristine, which facilitates the comparison of electronic structures between the intercalated and pristine pairs of phenyl side groups in a single molecule. The uniformity of chemical environments of the phenyl groups of the intercalated Li{sub 1} Rub/Na{sub 1} Rub is deteriorated by the incorporation of the intercalant, and leads to their spectral characteristics in contrast to K{sub 1} Rub. In particular, the introduction of the intercalant promotes the carbon 2p orbitals of the intercalated phenyl pair to take part in the electronic structures of the HOMO and LUMO peaks of Li{sub 1} Rub/Na{sub 1} Rub. The unpaired electron in the HOMO is delocalized over the backbone with higher probability of

  7. Tuning the Properties of Polymer Bulk Heterojunction Solar Cells by Adjusting Fullerene Size to Control Intercalation

    KAUST Repository

    Cates, Nichole C.

    2009-12-09

    We demonstrate that intercalation of fullerene derivatives between the side chains of conjugated polymers can be controlled by adjusting the fullerene size and compare the properties of intercalated and nonintercalated poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene (pBTTT):fullerene blends. The intercalated blends, which exhibit optimal solar-cell performance at 1:4 polymer:fullerene by weight, have better photoluminescence quenching and lower absorption than the nonintercalated blends, which optimize at 1:1. Understanding how intercalation affects performance will enable more effective design of polymer:fullerene solar cells. © 2009 American Chemical Society.

  8. Mechanism of Si intercalation in defective graphene on SiC

    KAUST Repository

    Kaloni, Thaneshwor P.

    2012-10-01

    Previously reported experimental findings on Si-intercalated graphene on SiC(0001) seem to indicate the possibility of an intercalation process based on the migration of the intercalant through atomic defects in the graphene sheet. We employ density functional theory to show that such a process is in fact feasible and obtain insight into its details. By means of total energy and nudged elastic band calculations we are able to establish the mechanism on an atomic level and to determine the driving forces involved in the different steps of the intercalation process through atomic defects.

  9. Interlayer Structures and Dynamics of Arsenate and Arsenite Intercalated Layered Double Hydroxides: A First Principles Study

    National Research Council Canada - National Science Library

    Yingchun Zhang; Xiandong Liu; Chi Zhang; Mengjia He; Xiancai Lu

    2017-01-01

    In this study, by using first principles simulation techniques, we explored the basal spacings, interlayer structures, and dynamics of arsenite and arsenate intercalated Layered double hydroxides (LDHs...

  10. [Reactive arthritis].

    Science.gov (United States)

    Gerloni, V; Fantini, F

    1990-01-01

    The term reactive arthritis was introduced to describe an acute non-purulent arthritis complicating an infection elsewhere in the body. Reactive arthritis can also be classified into HLA-B27 associated and non-associated forms. Rheumatic fever is an example of the HLA-B27 non-associated forms with genetic factors other than HLA-B27 involved. HLA-B27 associated reactive arthritis includes enteric, urogenic and idiopathic arthritides. The bacteria known to trigger post-enteritic reactive arthritis are: Yersinia, Salmonella, Shigella, Campylobacter, Clostridium difficile and Brucella; those known to trigger post-urethritic reactive arthritis are Chlamydia trachomatis and Ureaplasma urealyticum, but often the germ remains unidentified. Mechanisms through which susceptibility to reactive arthritis is linked to HLA-B27 antigen are still incompletely understood, but a clue could be cross-reactivity between B27 and a surface antigen of pathogenic germs. The clinical profile of the disease is characterized by an asymmetrical oligoarthritis with involvement particularly of the peripheral joints of the lower limbs. The arthritis generally recovers without sequelae within a few weeks or months. Accompanying features can be the involvement of enthesis and tendon sheets in form of a talalgia or dactylitis. In some cases the arthritis can relapse and chronicize. In some cases, in addition, involvement of the axial skeleton can occur (spondylitis and/or sacroiliitis). Another feature of the disease is the frequent association with typical extra-articular manifestations such as uveitis and muco-cutaneous lesions.

  11. A single nucleotide polymorphism melt curve assay employing an intercalating dye probe fluorescence resonance energy transfer for forensic analysis.

    Science.gov (United States)

    Halpern, Micah D; Ballantyne, Jack

    2009-08-01

    The characterization and use of DNA sequence polymorphisms are an important aspect of forensic analysis. A number of approaches are being explored for single nucleotide polymorphism (SNP) genotyping, but current detection methods are subject to limitations that adversely impact their utility for forensic analysis. We have developed a novel method for genotyping both single and multiple SNPs that uses an intercalating dye and a probe labeled with a single fluorophore to affect a fluorescence energy transfer. Melting curve analysis is then used to distinguish true alleles from mismatched alleles. We term the new method dye probe fluorescence resonance energy transfer (dpFRET). In the current work, development proceeded at first with synthetic DNA template testing to establish proof of concept for the chemistry involved, followed by the design of polymerase chain reaction (PCR)-based genomic DNA assays to demonstrate potential forensic applications. The loci chosen for testing included both nuclear (MHC DRB) and mitochondrial DNA (cytochrome b) genes. A preliminary assessment of the sensitivity limits of the technology indicated that dpFRET was capable of accurately genotyping DNA from one single diploid cell equivalent. This technology could also potentially impact a wide range of nonforensic disciplines to aid in discovery, screening, and association of DNA sequence polymorphisms.

  12. Electroanalytical study of proflavine intercalation in 5-methyl or inosine-containing amplicons.

    Science.gov (United States)

    Alexiadou, Despina K; Ioannou, Andrea K; Kouidou-Andreou, Sofia A; Voulgaropoulos, Anastasios N; Girousi, Stella Th

    2008-10-01

    Amplicons corresponding to the GC-rich p53 exon 5 and its analogues, synthesized by substituting 60% of cytosine by 5-methyl-cytosine, or 60% of guanosine by inosine and GC-poor p53 exon 6 were synthesized and investigated electrochemically, in the presence and absence of proflavine, by differential pulse voltammetry (DPV). Incorporation of base analogues and the thermal stability of the resulting amplicons were tested in the presence of a fluorescent probe (Sybr-Green). Peak current at 1.0 V was lower for methylated than for unmethylated PCR amplicons and was similarly affected by proflavine intercalation. In contrast, considerable peak current differences were observed in the presence of proflavine for unmodified exon 5 v.s. exon 6 or inosine-containing amplicons. Thermal analysis verified the expected shifts in melting temperature (T (m)) due to the base analogue incorporation and GC-content variations. In conclusion, methylated and unmethylated PCR amplicons could be distinguished in model DNA systems using differential pulse voltammetry (DPV) and use of proflavine could serve as an electrochemical probe for identifying different DNA conformations.

  13. Effects of organic contaminants in reactive oxygen species, protein carbonylation and DNA damage on digestive gland and haemolymph of land snails.

    Science.gov (United States)

    Itziou, A; Kaloyianni, M; Dimitriadis, V K

    2011-10-01

    The present study focused on early responses of land snails Eobania vermiculata to organic environmental contaminants, by investigating the use of a newly-established method for the measurement of protein carbonylation as a new biomarker of terrestrial pollution, as well as by measuring the ROS production and the DNA damage. Land snails were exposed to different concentrations of chlorpyrifos, parathion-methyl or PAHs in vivo or in vitro in the laboratory. The susceptibility of exposed snails was increased in relation to oxidative stress induced by contaminants tested. A statistically significant increase in ROS production, protein carbonylation and DNA damage was revealed in the snails treated with pollutants, compared to the untreated ones. The results indicated the effectiveness of measuring ROS production and DNA damage and reinforce the application of the present ELISA method in organic terrestrial pollution biomonitoring studies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. A polyvalent influenza DNA vaccine applied by needle-free intradermal delivery induces cross-reactive humoral and cellular immune responses in pigs

    DEFF Research Database (Denmark)

    Borggren, Marie; Nielsen, Jens; Karlsson, Ingrid

    2016-01-01

    BACKGROUND: Pigs are natural hosts for influenza A viruses, and the infection is widely prevalent in swine herds throughout the world. Current commercial influenza vaccines for pigs induce a narrow immune response and are not very effective against antigenically diverse viruses. To control...... influenza in pigs, the development of more effective swine influenza vaccines inducing broader cross-protective immune responses is needed. Previously, we have shown that a polyvalent influenza DNA vaccine using vectors containing antibiotic resistance genes induced a broadly protective immune response...... of the optimized DNA vaccine were evaluated in groups of five to six pigs. The DNA vaccine consisted of six selected influenza genes of pandemic origin, including internally expressed matrix and nucleoprotein and externally expressed hemagglutinin and neuraminidase. RESULTS: Needle-free vaccination of growing pigs...

  15. A label-free GR-5DNAzyme sensor for lead ions detection based on nanoporous gold and anionic intercalator.

    Science.gov (United States)

    Zhou, Yaoyu; Zhang, Jiachao; Tang, Lin; Peng, Bo; Zeng, Guangming; Luo, Lin; Gao, Jun; Pang, Ya; Deng, Yaocheng; Zhang, Fengfeng

    2017-04-01

    A label-free electrochemical sensor, based on a classic lead ions (Pb(2+))-dependent GR-5DNAzyme as the catalytic unit, disodium-anthraquinone-2,6-disulfonate (AQDS) as DNA intercalator, and nanoporous gold (NPG) for signal amplification, was designed for sensitive and selective detection of Pb(2+). Firstly, NPG modified electrode surface were employed as a platform for the immobilization of thiolated probe DNA, and then, hybridized with DNAzyme catalytic beacons. The Pb(2+)-induced catalytic reaction makes the substrate strand break at the cleavage sitGe irreversibly, which disturbs the formation of DNA strands. AQDS served as an indicator that intercalated into the base-pairing regions of DNAzyme, resulting in a strong electrochemical signal. In the presence of Pb(2+), the complementary regions were reduced, due to the fracture of the DNA strand, resulting in the release of AQDS. And a decreased current was obtained, corresponding to Pb(2+) concentration. Taking advantage of the amplification effect of NPG electrode for increasing the reaction sites of thiol modified capture probe, the proposed electrochemical biosensor could detect Pb(2+) quantitatively, in the range of 1-120nM, with a limit of detection as low as 0.02nM, which is much lower than the maximum contamination level for Pb(2+) in drinking water defined by the U.S. Environmental Protection Agency. The electrochemical sensor was also used to detect Pb(2+) from real water samples, and the results showed excellent agreement with the values determined by inductively coupled plasma mass spectroscopy. This biosensor showed a promising potential for on-site detecting Pb(2+) in aqueous environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Intercalation of Si between MoS2 layers.

    Science.gov (United States)

    van Bremen, Rik; Yao, Qirong; Banerjee, Soumya; Cakir, Deniz; Oncel, Nuri; Zandvliet, Harold J W

    2017-01-01

    We report a combined experimental and theoretical study of the growth of sub-monolayer amounts of silicon (Si) on molybdenum disulfide (MoS2). At room temperature and low deposition rates we have found compelling evidence that the deposited Si atoms intercalate between the MoS2 layers. Our evidence relies on several experimental observations: (1) Upon the deposition of Si on pristine MoS2 the morphology of the surface transforms from a smooth surface to a hill-and-valley surface. The lattice constant of the hill-and-valley structure amounts to 3.16 Å, which is exactly the lattice constant of pristine MoS2. (2) The transitions from hills to valleys are not abrupt, as one would expect for epitaxial islands growing on-top of a substrate, but very gradual. (3) I(V) scanning tunneling spectroscopy spectra recorded at the hills and valleys reveal no noteworthy differences. (4) Spatial maps of dI/dz reveal that the surface exhibits a uniform work function and a lattice constant of 3.16 Å. (5) X-ray photo-electron spectroscopy measurements reveal that sputtering of the MoS2/Si substrate does not lead to a decrease, but an increase of the relative Si signal. Based on these experimental observations we have to conclude that deposited Si atoms do not reside on the MoS2 surface, but rather intercalate between the MoS2 layers. Our conclusion that Si intercalates upon the deposition on MoS2 is at variance with the interpretation by Chiappe et al. (Adv. Mater.2014, 26, 2096-2101) that silicon forms a highly strained epitaxial layer on MoS2. Finally, density functional theory calculations indicate that silicene clusters encapsulated by MoS2 are stable.

  17. Copper-Intercalated Birnessite as a Water Oxidation Catalyst.

    Science.gov (United States)

    Thenuwara, Akila C; Shumlas, Samantha L; Attanayake, Nuwan H; Cerkez, Elizabeth B; McKendry, Ian G; Frazer, Laszlo; Borguet, Eric; Kang, Qing; Zdilla, Michael J; Sun, Jianwei; Strongin, Daniel R

    2015-11-24

    We report a synthetic method to increase the catalytic activity of birnessite toward water oxidation by intercalating copper in the interlayer region of the layered manganese oxide. Intercalation of copper, verified by XRD, XPS, ICP, and Raman spectroscopy, was accomplished by exposing a suspension of birnessite to a Cu(+)-bearing precursor molecule that underwent disproportionation in solution to yield Cu(0) and Cu(2+). Electrocatalytic studies showed that the Cu-modified birnessite exhibited an overpotential for water oxidation of ∼490 mV (at 10 mA/cm(2)) and a Tafel slope of 126 mV/decade compared to ∼700 mV (at 10 mA/cm(2)) and 240 mV/decade, respectively, for birnessite without copper. Impedance spectroscopy results suggested that the charge transfer resistivity of the Cu-modified sample was significantly lower than Cu-free birnessite, suggesting that Cu in the interlayer increased the conductivity of birnessite leading to an enhancement of water oxidation kinetics. Density functional theory calculations show that the intercalation of Cu(0) into a layered MnO2 model structure led to a change of the electronic properties of the material from a semiconductor to a metallic-like structure. This conclusion from computation is in general agreement with the aforementioned impedance spectroscopy results. X-ray photoelectron spectroscopy (XPS) showed that Cu(0) coexisted with Cu(2+) in the prepared Cu-modified birnessite. Control experiments using birnessite that was decorated with only Cu(2+) showed a reduction in water oxidation kinetics, further emphasizing the importance of Cu(0) for the increased activity of birnessite. The introduction of Cu(0) into the birnessite structure also increased the stability of the electrocatalyst. At a working current of 2 mA, the Cu-modified birnessite took ∼3 times longer for the overpotential for water oxdiation to increase by 100 mV compared to when Cu was not present in the birnessite.

  18. Force spectroscopy of DNA: there is still a lot to learn

    Science.gov (United States)

    Paik, D. H.; Perkins, Thomas T.

    2012-10-01

    Single-molecule studies of the mechanical properties of individual double-stranded DNA have excited interest across many scientific disciplines because of DNA's fundamental role in biology and DNA's remarkable overstretching transition at higher forces. Here, we discuss a recent result on the overstretching transition of DNA and on the dynamics of dye molecules intercalating into DNA under tension. Overstretching DNA is mechanical transition whereby DNA's extension increases by 70% at 65 pN. Notwithstanding more than a decade of experimental and theoretical studies, there remains significant debate on the nature of overstretched DNA. We developed a topologically closed but torsionally unconstrained DNA assay that contains no nicks or free ends. DNA in this assay exhibited the canonical overstretching transition at 65 pN but without hysteresis upon retraction. Controlled introduction of a nick led to hysteresis in the force extension curve. Moreover, the degree of hysteresis increased with the number of nicks. In the second study, we isolated the effects of binding and intercalation of a DNA staining dye, by combining single molecule force spectroscopy with simple buffer exchange. We showed that force-enhanced intercalation can occur from a reservoir of bound dye that was not bis-intercalated, yet remained out of equilibrium with free dye for long periods (YOYO). Our work highlights that binding/unbinding and intercalation/de-intercalation are distinct processes that can occur on very different time scales. Taken together, these works highlight ongoing discoveries based on a twenty year old technique, force spectroscopy of single DNA molecules.

  19. Antiferro quadrupolar ordering in Fe intercalated few layers graphene

    Directory of Open Access Journals (Sweden)

    Abu Jahid Akhtar

    2013-07-01

    Full Text Available The π electron cloud above and below the honeycomb structure of graphene causes each carbon atom to carry a permanent electric quadrupole moment which can attach any cation to impart interesting physical properties. We have synthesized Fe intercalated graphene structures to investigate tunable magnetic properties as a result of this chemical modification. An interesting antiferro quadrupolar ordering is observed which arises due to a coupling between magnetic dipole moment of Fe and electric quadrupole moment on graphene surface. In contrast to antiferromagnetic Neel temperature (TN, here the ordering temperature (TQ increases from 35.5 K to 47.5 K as the magnetic field is raised upto 1 Tesla.

  20. Three-Dimensional Intercalated Porous Graphene on Si(111)

    Science.gov (United States)

    Pham, Trung T.; Sporken, Robert

    2018-02-01

    Three-dimensional intercalated porous graphene has been formed on Si(111) by electron beam evaporation under appropriate conditions and its structural and electronic properties investigated in detail by reflection high-energy electron diffraction, x-ray photoemission spectroscopy, Raman spectroscopy, high-resolution scanning electron microscopy, atomic force microscopy, and scanning tunneling microscopy. The results show that the crystalline quality of the porous graphene depended not only on the substrate temperature but also on the SiC layer thickness during carbon atom deposition.

  1. Intercalation of small hydrophobic molecules in lipid bilayers containing cholesterol

    Energy Technology Data Exchange (ETDEWEB)

    Worcester, D.L.; Hamacher, K.; Kaiser, H.; Kulasekere, R.; Torbet, J. [Univ. of Missouri, Columbia, MO (United States)

    1994-12-31

    Partitioning of small hydrophobic molecules into lipid bilayers containing cholesterol has been studied using the 2XC diffractometer at the University of Missouri Research Reactor. Locations of the compounds were determined by Fourier difference methods with data from both deuterated and undeuterated compounds introduced into the bilayers from the vapor phase. Data fitting procedures were developed for determining how well the compounds were localized. The compounds were found to be localized in a narrow region at the center of the hydrophobic layer, between the two halves of the bilayer. The structures are therefore intercalated structures with the long axis of the molecules in the plane of the bilayer.

  2. Requirement of yeast Rad1-Rad10 nuclease for the removal of 3'-blocked termini from DNA strand breaks induced by reactive oxygen species.

    Science.gov (United States)

    Guzder, Sami N; Torres-Ramos, Carlos; Johnson, Robert E; Haracska, Lajos; Prakash, Louise; Prakash, Satya

    2004-09-15

    The Rad1-Rad10 nuclease of yeast and its human counterpart ERCC1-XPF are indispensable for nucleotide excision repair, where they act by cleaving the damaged DNA strand on the 5'-side of the lesion. Intriguingly, the ERCC1- and XPF-deficient mice show a severe postnatal growth defect and they die at approximately 3 wk after birth. Here we present genetic and biochemical evidence for the requirement of Rad1-Rad10 nuclease in the removal of 3'-blocked termini from DNA strand breaks induced on treatment of yeast cells with the oxidative DNA damaging agent H(2)O(2). Our genetic studies indicate that 3'-blocked termini are removed in yeast by the three competing pathways that involve the Apn1, Apn2, and Rad1-Rad10 nucleases, and we show that the Rad1-Rad10 nuclease proficiently cleaves DNA modified with a 3'-phosphoglycolate terminus. From these observations, we infer that deficient removal of 3'-blocking groups formed from the action of oxygen free radicals generated during normal cellular metabolism is the primary underlying cause of the inviability of apn1Delta apn2Delta rad1Delta and apn1Deltaapn2Delta rad10Delta mutants and that such a deficiency accounts also for the severe growth defects of ERCC1- and XPF-deficient mice.

  3. Requirement of yeast Rad1–Rad10 nuclease for the removal of 3′-blocked termini from DNA strand breaks induced by reactive oxygen species

    Science.gov (United States)

    Guzder, Sami N.; Torres-Ramos, Carlos; Johnson, Robert E.; Haracska, Lajos; Prakash, Louise; Prakash, Satya

    2004-01-01

    The Rad1-Rad10 nuclease of yeast and its human counterpart ERCC1-XPF are indispensable for nucleotide excision repair, where they act by cleaving the damaged DNA strand on the 5′-side of the lesion. Intriguingly, the ERCC1- and XPF-deficient mice show a severe postnatal growth defect and they die at ∼3 wk after birth. Here we present genetic and biochemical evidence for the requirement of Rad1-Rad10 nuclease in the removal of 3′-blocked termini from DNA strand breaks induced on treatment of yeast cells with the oxidative DNA damaging agent H2O2. Our genetic studies indicate that 3′-blocked termini are removed in yeast by the three competing pathways that involve the Apn1, Apn2, and Rad1-Rad10 nucleases, and we show that the Rad1-Rad10 nuclease proficiently cleaves DNA modified with a 3′-phosphoglycolate terminus. From these observations, we infer that deficient removal of 3′-blocking groups formed from the action of oxygen free radicals generated during normal cellular metabolism is the primary underlying cause of the inviability of apn1Δ apn2Δ rad1Δ and apn1Δapn2Δ rad10Δ mutants and that such a deficiency accounts also for the severe growth defects of ERCC1- and XPF-deficient mice. PMID:15371342

  4. Reactive Systems

    DEFF Research Database (Denmark)

    Aceto, Luca; Ingolfsdottir, Anna; Larsen, Kim Guldstrand

    A reactive system comprises networks of computing components, achieving their goals through interaction among themselves and their environment. Thus even relatively small systems may exhibit unexpectedly complex behaviours. As moreover reactive systems are often used in safety critical systems......, the need for mathematically based formal methodology is increasingly important. There are many books that look at particular methodologies for such systems. This book offers a more balanced introduction for graduate students and describes the various approaches, their strengths and weaknesses, and when...

  5. Reactive Systems

    DEFF Research Database (Denmark)

    Aceto, Luca; Ingolfsdottir, Anna; Larsen, Kim Guldstrand

    A reactive system comprises networks of computing components, achieving their goals through interaction among themselves and their environment. Thus even relatively small systems may exhibit unexpectedly complex behaviours. As moreover reactive systems are often used in safety critical systems, t...... into account. The book has arisen from various courses taught in Denmark and Iceland and is designed to give students a broad introduction to the area, with exercises throughout....

  6. Organization of DNA in chromatin.

    Science.gov (United States)

    Sobell, H M; Tsai, C C; Gilbert, S G; Jain, S C; Sakore, T D

    1976-01-01

    Conformational changes in DNA that accompany drug intercalation have led us to ask if DNA first bends or "kinks" to accept an intercalative drug or dye. Kinking is made possible by altering the normal C2' endo deoxyribose sugar ring puckering in B DNA to a mixed sugar puckering pattern of the type C3' and partially unstacking base-pairs. A kinking scheme such as this would require minimal stereochemical rearrangement and would also involve small energies. This has prompted us to ask more generally if a conformational change such as this could be used by proteins in their interactions with nucleic acids. In this papter we describe an interesting superhelical DNA structure formed by kinking DNA every 10 base-pairs. The structure may be used in the organization of DNA in chromatin. Images PMID:1067602

  7. Organization of DNA in chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Sobell, H.M.; Tsai, C.C.; Gilbert, S.G.; Jain, S.C.; Sakore, T.D.

    1976-09-01

    Conformational changes in DNA that accompany drug intercalation have led us to ask if DNA first bends or ''kinks'' to accept an intercalative drug or dye. Kinking is made possible by altering the normal C2' endo deoxyribose sugar ring puckering in B DNA to a mixed sugar puckering pattern of the type C3' endo (3'--5')C2' endo and partially unstacking base-paris. A kinking scheme such as this would require minimal stereochemical rearrangement and would also involve small energies. This has prompted us to ask more generally if a conformational change such as this could be used by proteins in their interactions with nucleic acids. In this paper we describe an interesting superhelical DNA structure formed by kinking DNA every 10 base-pairs. The structure may be used in the organization of DNA in chromatin.

  8. Resistivity of pristine and intercalated graphite fiber epoxy composites

    Science.gov (United States)

    Gaier, James R.; Hambourger, Paul D.; Slabe, Melissa E.

    1991-01-01

    Laminar composites were fabricated from pristine and bromine intercalated Amoco P-55, P-75, and P-100 graphite fibers and Hysol-Grafil EAG101-1 film epoxy. The thickness and r.f. eddy current resistivity of several samples were measured at grid points and averaged point by point to obtain final values. Although the values obtained this way have high precision (less than 3 percent deviation), the resistivity values appear to be 20 to 90 percent higher than resistivities measured on high aspect ratio samples using multi-point techniques, and by those predicted by theory. The temperature dependence of the resistivity indicates that the fibers are neither damaged nor deintercalated by the composite fabrication process. The resistivity of the composites is a function of sample thickness (i.e., resin content). Composite resistivity is dominated by fiber resistivity, so lowering the resistivity of the fibers, either through increased graphitization or intercalation, results in a lower composite resistivity. A modification of the simple rule of mixtures model appears to predict the conductivity of high aspect ratio samples measured along a fiber direction, but a directional dependence appears which is not predicted by the theory. The resistivity of these materials is clearly more complex than that of homogeneous materials.

  9. Ion transport and phase transformation in thin film intercalation electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wunde, Fabian; Nowak, Susann; Muerter, Juliane; Hadjixenophontos, Efi; Berkemeier, Frank; Schmitz, Guido [Stuttgart Univ. (Germany). Inst. fuer Materialwissenschaft

    2017-11-15

    Thin film battery electrodes of the olivine structure LiFePO{sub 4} and the spinel phase LiMn{sub 2}O{sub 4} are deposited through ion-beam sputtering. The intercalation kinetics is studied by cyclo-voltammetry using variation of the cycling rate over 4 to 5 orders of magnitude. The well-defined layer geometry allows a detailed quantitative analysis. It is shown that LiFePO{sub 4} clearly undergoes phase separation during intercalation, although the material is nano-confined and very high charging rates are applied. We present a modified Randles-Sevcik evaluation adapted to phase-separating systems. Both the charging current and the overpotential depend on the film thickness in a systematic way. The analysis yields evidence that the grain boundaries are important short circuit paths for fast transport. They increase the electrochemical active area with increasing layer thickness. Evidence is obtained that the grain boundaries in LiFePO{sub 4} have the character of an ion-conductor of vanishing electronic conductivity.

  10. Abl suppresses cell extrusion and intercalation during epithelium folding

    Science.gov (United States)

    Jodoin, Jeanne N.; Martin, Adam C.

    2016-01-01

    Tissue morphogenesis requires control over cell shape changes and rearrangements. In the Drosophila mesoderm, linked epithelial cells apically constrict, without cell extrusion or intercalation, to fold the epithelium into a tube that will then undergo epithelial-to-mesenchymal transition (EMT). Apical constriction drives tissue folding or cell extrusion in different contexts, but the mechanisms that dictate the specific outcomes are poorly understood. Using live imaging, we found that Abelson (Abl) tyrosine kinase depletion causes apically constricting cells to undergo aberrant basal cell extrusion and cell intercalation. abl depletion disrupted apical–basal polarity and adherens junction organization in mesoderm cells, suggesting that extruding cells undergo premature EMT. The polarity loss was associated with abnormal basolateral contractile actomyosin and Enabled (Ena) accumulation. Depletion of the Abl effector Enabled (Ena) in abl-depleted embryos suppressed the abl phenotype, consistent with cell extrusion resulting from misregulated ena. Our work provides new insight into how Abl loss and Ena misregulation promote cell extrusion and EMT. PMID:27440923

  11. Electron Beam Irradiated Intercalated CNT Yarns For Aerospace Applications

    Science.gov (United States)

    Waters, Deborah L.; Gaier, James R.; Williams, Tiffany S.; Lopez Calero, Johnny E.; Ramirez, Christopher; Meador, Michael A.

    2015-01-01

    Multi-walled CNT yarns have been experimentally and commercially created to yield lightweight, high conductivity fibers with good tensile properties for application as electrical wiring and multifunctional tendons. Multifunctional tendons are needed as the cable structures in tensegrity robots for use in planetary exploration. These lightweight robust tendons can provide mechanical strength for movement of the robot in addition to power distribution and data transmission. In aerospace vehicles, such as Orion, electrical wiring and harnessing mass can approach half of the avionics mass. Use of CNT yarns as electrical power and data cables could reduce mass of the wiring by thirty to seventy percent. These fibers have been intercalated with mixed halogens to increase their specific electrical conductivity to that near copper. This conductivity, combined with the superior strength and fatigue resistance makes it an attractive alternative to copper for wiring and multifunctional tendon applications. Electron beam irradiation has been shown to increase mechanical strength in pristine CNT fibers through increased cross-linking. Both pristine and intercalated CNT yarns have been irradiated using a 5-megavolt electron beam for various durations and the conductivities and tensile properties will be discussed. Structural information obtained using a field emission scanning electron microscope, energy dispersive X-ray spectroscopy (EDS), and Raman spectroscopy will correlate microstructural details with bulk properties.

  12. Stochastics of diffusion induced damage in intercalation materials

    Science.gov (United States)

    Barai, Pallab; Mukherjee, Partha P.

    2016-10-01

    Fundamental understanding of the underlying diffusion-mechanics interplay in the intercalation electrode materials is critical toward improved life and performance of lithium-ion batteries for electric vehicles. Especially, diffusion induced microcrack formation in brittle, intercalation active materials, with emphasis on the grain/grain-boundary (GB) level implications, has been fundamentally investigated based on a stochastic modeling approach. Quasistatic damage evolution has been analyzed under lithium concentration gradient induced stress. Scaling of total amount of microcrack formation shows a power law variation with respect to the system size. Difference between the global and local roughness exponent indicates the existence of anomalous scaling. The deterioration of stiffness with respect to microcrack density displays two distinct regions of damage propagation; namely, diffused damage evolution and stress concentration driven localized crack propagation. Polycrystalline material microstructures with different grain sizes have been considered to study the diffusion-induced fracture in grain and GB regions. Intergranular crack paths are observed within microstructures containing softer GB region, whereas, transgranular crack paths have been observed in microstructures with relatively strong GB region. Increased tortuosity of the spanning crack has been attributed as the reason behind attaining increased fracture strength in polycrystalline materials with smaller grain sizes.

  13. Induction of cytotoxicity of Pelagia noctiluca venom causes reactive oxygen species generation, lipid peroxydation induction and DNA damage in human colon cancer cells

    Directory of Open Access Journals (Sweden)

    Ayed Yosra

    2011-12-01

    Full Text Available Abstract Background The long-lasting and abundant blooming of Pelagia noctiluca in Tunisian coastal waters compromises both touristic and fishing activities and causes substantial economic losses. Determining their molecular mode of action is, important in order to limit or prevent the subsequent damages. Thus, the aim of the present study was to investigate the propensity of Pelagia noctiluca venom to cause oxidative damage in HCT 116 cells and its associated genotoxic effects. Results Our results indicated an overproduction of ROS, an induction of catalase activity and an increase of MDA generation. We looked for DNA fragmentation by means of the comet assay. Results indicated that venom of Pelagia noctiluca induced DNA fragmentation. SDS-PAGE analysis of Pelagia noctiluca venom revealed at least 15 protein bands of molecular weights ranging from 4 to 120 kDa. Conclusion Oxidative damage may be an initiating event and contributes, in part, to the mechanism of toxicity of Pelagia noctiluca venom.

  14. Controlled Electrochemical Intercalation of Graphene/h-BN van der Waals Heterostructures

    Science.gov (United States)

    Zhao, S. Y. Frank; Elbaz, Giselle A.; Bediako, D. Kwabena; Yu, Cyndia; Efetov, Dmitri K.; Guo, Yinsheng; Ravichandran, Jayakanth; Min, Kyung-Ah; Hong, Suklyun; Taniguchi, Takashi; Watanabe, Kenji; Brus, Louis E.; Roy, Xavier; Kim, Philip

    2018-01-01

    Electrochemical intercalation is a powerful method for tuning the electronic properties of layered solids. In this work, we report an electro-chemical strategy to controllably intercalate lithium ions into a series of van der Waals (vdW) heterostructures built by sandwiching graphene between hexagonal boron nitride (h-BN). We demonstrate that encapsulating graphene with h-BN eliminates parasitic surface side reactions while simultaneously creating a new hetero-interface that permits intercalation between the atomically thin layers. To monitor the electrochemical process, we employ the Hall effect to precisely monitor the intercalation reaction. We also simultaneously probe the spectroscopic and electrical transport properties of the resulting intercalation compounds at different stages of intercalation. We achieve the highest carrier density $> 5 \\times 10^{13} cm^{-2}$ with mobility $> 10^3 cm^2/(Vs)$ in the most heavily intercalated samples, where Shubnikov-de Haas quantum oscillations are observed at low temperatures. These results set the stage for further studies that employ intercalation in modifying properties of vdW heterostructures.

  15. Solid State Electrochemical Intercalation of Lithium and Sodium Ions into Polyparaphenylene

    Science.gov (United States)

    Dubois, M.; Billaud, D.

    1996-11-01

    Polyparaphenylene powders are electrochemically intercalated with Li +and Na +ions in solid state cells operating with poly(ethyleneoxide) based electrolytes. The intercalation-deintercalation process proceeds in two reversible steps. The binders (PEO and PVDF) used in the composite polyparaphenylene electrode give rise to irreversible side reactions.

  16. Intercalation Study of Low-Molecular-Weight Hyperbranched Polyethyleneimine into Graphite Oxide

    NARCIS (Netherlands)

    Tsoufis, Theodoros; Katsaros, Fotios; Sideratou, Zili; Kooi, Bart J.; Karakassides, Michael. A.; Siozios, Anastasios

    2014-01-01

    We report for the first time the intercalation of low-molecular-weight hyperbranched polyethyleneimine (PEI) into graphite oxide (GO) for the facile, bulk synthesis of novel graphene-based hybrid (GO-PEI) materials exhibiting tailored interlayer galleries. The size of the intercalant as well as the

  17. Effect of oxygen intercalation on properties of sputtered CuYO2 for ...

    Indian Academy of Sciences (India)

    ... intercalation show an average transmission of about 60% which reduces to about 45% upon oxygen intercalation. The temperature dependence of the conductivity indicates semiconductor behaviour with low activation energy of 0.59 eV at room temperature. The positive sign of Seebeck coefficient (+274 VK-1) confirms ...

  18. Copper (II) complex of 1,10-phenanthroline and L-tyrosine with DNA oxidative cleavage activity in the gallic acid.

    Science.gov (United States)

    Yang, Zhousheng; Wang, Yong; Yang, Geng

    2011-08-01

    Copper (II) complex of formulation [Cu-Phen-Tyr](H(2)O)](ClO(4)) (Phen = 1,10-phenanthroline, L: -Tyr = L: -tyrosine), has been prepared, and their induced DNA oxidative cleavage activity studied. The complex binds to DNA by intercalation, as deduced from the absorption and fluorescence spectral data. Scatchard plots constructed from the absorption titration data gave binding constant 2.44 × 10(4) M(-1) of base pairs. Extensive hypochromism, broadening, and red shifts in the absorption spectra were observed. Upon binding to DNA, the fluorescence from the DNA--ethidium bromide system was efficiently quenched by the copper (II) complex. Stern--Volmer quenching constant 0.61 × 10(3) M(-1) obtained from the linear quenching plots. [Cu-Phen-Tyr] complex efficiently cleave the supercoiled DNA to its nicked circular form with gallic acid as biological reductant at appropriate complex concentration. The gallic acid as reductant could observably improve copper (II) complex to DNA damage. The pseudo-Michaelis-Menten kinetic parameters (k(cat), K(M)) were calculated to be 1.32 h(-1) and 5.46 × 10(-5) M for [Cu-Phen-Tyr] complex. Mechanistic studies reveal the involvement of superoxide anions and hydroxyl radical (HO(·)) as the reactive species under an aerobic medium.

  19. Synthesis and crystal structures of novel copper(II) complexes with glycine and substituted phenanthrolines: reactivity towards DNA/BSA and in vitro cytotoxic and antimicrobial evaluation.

    Science.gov (United States)

    İnci, Duygu; Aydın, Rahmiye; Vatan, Özgür; Sevgi, Tuba; Yılmaz, Dilek; Zorlu, Yunus; Yerli, Yusuf; Çoşut, Bünyemin; Demirkan, Elif; Çinkılıç, Nilüfer

    2017-01-01

    New copper(II) complexes-dimeric-[Cu(nphen)(gly)(H 2 O)] + (1) and [Cu(dmphen)(gly)(NO 3 )(H 2 O)] (2) (nphen = 5-nitro-1,10-phenanthroline, dmphen = 4,7-dimethyl-1,10-phenanthroline, and gly = glycine)-have been synthesized and characterized by CHN analysis, single-crystal X-ray diffraction techniques, FTIR, EPR spectroscopy, and cyclic voltammetry. The CT-DNA-binding properties of these complexes have been investigated by thermal denaturation measurements and both absorption and emission spectroscopy. The DNA cleavage activity of these complexes has been studied on supercoiled pUC19 plasmid DNA by gel electrophoresis experiments in the absence and presence of H 2 O 2 . Furthermore, the interaction of these complexes with bovine serum albumin (BSA) has been investigated using absorption and emission spectroscopy. The thermodynamic parameters, free-energy change (ΔG), enthalpy change (ΔH), and entropy change (ΔS) for BSA + complexes 1 and 2 systems have been calculated by the van't Hoff equation at three different temperatures (293.2, 303.2, and 310.2 K). The distance between the BSA and these complexes has been determined using fluorescence resonance energy transfer (FRET). Conformational changes of BSA have been observed using the synchronous fluorescence technique. In addition, in vitro cytotoxicities of these complexes on tumor cell lines (Caco-2, A549, and MCF-7) and healthy cells (BEAS-2B) have been examined. The antimicrobial activity of the complexes has also been tested on certain bacteria cells. The effect of mono and dimeric in the above complexes is presented and discussed. New copper(II) complexes-dimeric-[Cu(nphen)(gly)(H 2 O)] + (1) and [Cu(dmphen)(gly) (NO 3 )(H 2 O)] (2) (nphen = 5-nitro-1,10-phenanthroline, dmphen = 4,7-dimethyl-1,10-phenanthroline and gly = glycine)-have been synthesized and characterized by CHN analysis, single-crystal X-ray diffraction techniques, FTIR and EPR spectroscopy. They have been tested for their in vitro

  20. Dynamics of Intercalation/De-Intercalation of Rhodamine B during the Polymorphic Transformation of CdAl Layered Double Hydroxide to the Brucite-Like Cadmium Hydroxide

    KAUST Repository

    Saliba, Daniel

    2016-06-23

    Cadmium-Aluminum layered double hydroxide (CdAl LDH) is thermodynamically unstable and transforms to Cd(OH)2 and Al(OH)3 in a short period of time. We present a reaction-diffusion framework that enables us to use in situ steady-state fluorescence spectroscopy to study the kinetics of intercalation of a fluorescent probe (Rhodamine B (RhB)) during the formation of the CdAl LDH and its de-intercalation upon the conversion of the LDH phase to the β phase (Cd(OH)2). The method involves the diffusion of sodium hydroxide into a hydrogel gel matrix containing the aluminum and cadmium ions as well as the species we wish to incorporate in the interlayers of the LDH. The existence of RhB between the LDH layers and its expel during the transition into the β phase are proved via fluorescence microscopy, XRD and ssNMR. The activation energies of intercalation and de-intercalation of RhB are computed and show dependence on the cationic ratio of the corresponding LDH. We find that the energies of de- intercalation are systematically higher than those of intercalation proving that the dyes are stabilized due to the probe-brucite sheets interactions.

  1. Atomic force microscopy study of anion intercalation into highly oriented pyrolytic graphite

    Energy Technology Data Exchange (ETDEWEB)

    Alliata, D.; Haering, P.; Haas, O.; Koetz, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Siegenthaler, H. [University of Berne (Switzerland)

    1999-08-01

    In the context of ion transfer batteries, we studied highly oriented pyrolytic graphite (HOPG) in perchloric acid, as a model to elucidate the mechanism of electrochemical intercalation in graphite. Aim of the work is the local and time dependent investigation of dimensional changes of the host material during electrochemical intercalation processes on the nanometer scale. We used atomic force microscopy (AFM), combined with cyclic voltammetry, as in-situ tool of analysis during intercalation and expulsion of perchloric anions into the HOPG electrodes. According to the AFM measurements, the HOPG interlayer spacing increases by 32% when perchloric anions intercalate, in agreement with the formation of stage IV of graphite intercalation compounds. (author) 3 figs., 3 refs.

  2. Thermal Stability of Modified i-Motif Oligonucleotides with Naphthalimide Intercalating Nucleic Acids

    DEFF Research Database (Denmark)

    El-Sayed, Ahmed Ali; Pedersen, Erik B.; Khaireldin, Nahid Y.

    2016-01-01

    of naphthalimide (1H-benzo[de]isoquinoline-1,3(2H)-dione) as the intercalating nucleic acid. The stabilities of i-motif structures with inserted naphthalimide intercalating nucleotides were studied using UV melting temperatures (Tm) and circular dichroism spectra at different pH values and conditions (crowding......In continuation of our investigation of characteristics and thermodynamic properties of the i-motif 5′-d[(CCCTAA)3CCCT)] upon insertion of intercalating nucleotides into the cytosine-rich oligonucleotide, this article evaluates the stabilities of i-motif oligonucleotides upon insertion...... and non-crowding). This study indicated a positive effect of the naphthalimide intercalating nucleotides on the stabilities of the i-motif structures compared to the wild-type structure which is in contrast to a previous observation for a pyrene-intercalating nucleotide showing a decrease in Tm values....

  3. Interlayer Structure of Bioactive Molecule, 2-Aminoethanesulfonate, Intercalated into Calcium-Containing Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    Tae-Hyun Kim

    2012-01-01

    Full Text Available We have successfully intercalated 2-aminoethanesulfonate, a well-known biomolecule taurine, into calcium-containing layered double hydroxides via optimized solid phase intercalation. According to X-ray diffraction patterns and infrared spectroscopy, it was revealed that the intercalated taurine molecules were each directly coordinated to other calcium cation and arranged in a zig-zag pattern. Scanning electron microscopy showed that the particle size and morphology of the LDHs were not affected by the solid phase intercalation, and the surface of intercalates was covered by organic moieties. From ninhydrin amine detection tests, we confirmed that most of the taurine molecules were well stabilized between the calcium-containing LDH layers.

  4. First-Principles Study of Lithium and Sodium Atoms Intercalation in Fluorinated Graphite

    Directory of Open Access Journals (Sweden)

    Fengya Rao

    2015-06-01

    Full Text Available The structure evolution of fluorinated graphite (CFx upon the Li/Na intercalation has been studied by first-principles calculations. The Li/Na adsorption on single CF layer and intercalated into bulk CF have been calculated. The better cycling performance of Na intercalation into the CF cathode, comparing to that of Li intercalation, is attributed to the different strength and characteristics of the Li-F and Na-F interactions. The interactions between Li and F are stronger and more localized than those between Na and F. The strong and localized Coulomb attraction between Li and F atoms breaks the C−F bonds and pulls the F atoms away, and graphene sheets are formed upon Li intercalation.

  5. Li-intercalated bilayer SnS2: A potential superconductor

    Science.gov (United States)

    Wang, Z. Y.; Xia, W.; Huang, G. Q.

    2017-12-01

    Electronic structure, lattice dynamics, and electron-phonon coupling of Li-intercalated bilayer SnS2 are systematically investigated via first-principles density functional theory. The energetically stable configuration for Li-intercalated bilayer SnS2 is /AB/ stacking, which is different from /AA/ stacking for pristine bilayer. There is a charge transfer from Li to bilayer SnS2 and the change of the band structure after Li intercalation can be explained well by a rigid band model, suggesting that the intercalated Li atoms mainly play a role of charge reservoir. Our calculations show that the softening of acoustic phonon near K bar high-symmetry point make a large contribution to electron-phonon interaction and the superconducting temperature Tc can achieve 14.0 K. Our study suggest that Li-intercalated SnS2, a potential material of lithium-ion battery, may meanwhile be a quasi two-dimensional superconductor.

  6. Development of a quantitation approach for total human and male DNA based on real time PCR followed by high resolution melting analysis.

    Science.gov (United States)

    Ginart, Santiago; Caputo, Mariela; Alechine, Evguenia; Corach, Daniel; Sala, Andrea

    2016-10-01

    We developed and validated a total human DNA quantitation technique that simultaneously allows male DNA detection. This assay, called Amel-Y, is a duplex Real Time PCR followed by HRM (high resolution melting) analysis using the intercalating dye SYTO9. Amel-Y duplex produces two amplicons, one for the amelogenin gene (106/112 bp, female/male) and another (84 bp) corresponding to human Y chromosome-specific fragment to detect male DNA. After HRM analysis, two melting peaks differing in 5.3°C-5.5°C are detected if both male and female DNA are present and only one if only female DNA is present. For specificity assessment, the inclusion of high concentrations of bacterial and fungal DNA in the quantitation reactions allowed discarding species cross-reactivity. A set of crime scene evidence from forensic casework has been quantified with commercial kits and compared with Amel-Y duplex. Our method detected male DNA from a concentration of 18 pg/μL and supports autosomal/Y DNA detection ratio up to 200:1. A limitation of the technique is its inability to quantify male and female donnors in a mixed sample. The Amel-Y duplex demonstrated to be an efficient system for quantifying total human DNA being a specific, rapid, sensitive, and cost-effective method suitable for mixed DNA samples and applicable to any field where human DNA quantification is required, such as molecular diagnosis, population genetics, and forensic identification. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Development of an Automated DNA Detection System Using an Electrochemical DNA Chip Technology

    Science.gov (United States)

    Hongo, Sadato; Okada, Jun; Hashimoto, Koji; Tsuji, Koichi; Nikaido, Masaru; Gemma, Nobuhiro

    A new compact automated DNA detection system Genelyzer™ has been developed. After injecting a sample solution into a cassette with a built-in electrochemical DNA chip, processes from hybridization reaction to detection and analysis are all operated fully automatically. In order to detect a sample DNA, electrical currents from electrodes due to an oxidization reaction of electrochemically active intercalator molecules bound to hybridized DNAs are detected. The intercalator is supplied as a reagent solution by a fluid supply unit of the system. The feasibility test proved that the simultaneous typing of six single nucleotide polymorphisms (SNPs) associated with a rheumatoid arthritis (RA) was carried out within two hours and that all the results were consistent with those by conventional typing methods. It is expected that this system opens a new way to a DNA testing such as a test for infectious diseases, a personalized medicine, a food inspection, a forensic application and any other applications.

  8. Electrochemical Techniques for Intercalation Electrode Materials in Rechargeable Batteries.

    Science.gov (United States)

    Zhu, Yujie; Gao, Tao; Fan, Xiulin; Han, Fudong; Wang, Chunsheng

    2017-04-18

    Understanding of the thermodynamic and kinetic properties of electrode materials is of great importance to develop new materials for high performance rechargeable batteries. Compared with computational understanding of physical and chemical properties of electrode materials, experimental methods provide direct and convenient evaluation of these properties. Often, the information gained from experimental work can not only offer feedback for the computational methods but also provide useful insights for improving the performance of materials. However, accurate experimental quantification of some properties can still be challenging. Among them, chemical diffusion coefficient is one representative example. It is one of the most crucial parameters determining the kinetics of intercalation compounds, which are by far the dominant electrode type used in rechargeable batteries. Therefore, it is of significance to quantitatively evaluate this parameter. For this purpose, various electrochemical techniques have been invented, for example, galvanostatic intermittent titration technique (GITT), potentiostatic intermittent titration technique (PITT), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). One salient advantage of these electrochemical techniques over other characterization techniques is that some implicit thermodynamic and kinetic quantities can be linked with the readily measurable electrical signals, current, and voltage, with very high precision. Nevertheless, proper application of these techniques requires not just an understanding of the structure and chemistry of the studied materials but sufficient knowledge of the physical model for ion transport within solid host materials and the analysis method to solve for chemical diffusion coefficient. Our group has been focusing on using various electrochemical techniques to investigate battery materials, as well as developing models for studying some emerging materials. In this Account, the

  9. Ruthenium(II) complexes: DNA-binding, cytotoxicity, apoptosis, cellular localization, cell cycle arrest, reactive oxygen species, mitochondrial membrane potential and western blot analysis.

    Science.gov (United States)

    Li, Wei; Jiang, Guang-Bin; Yao, Jun-Hua; Wang, Xiu-Zhen; Wang, Ji; Han, Bing-Jie; Xie, Yang-Yin; Lin, Gan-Jian; Huang, Hong-Liang; Liu, Yun-Jun

    2014-11-01

    The aim of our study was to investigate DNA-binding and cytotoxic activity of the four new Ru(II) polypyridyl complexes [Ru(dmb)₂(HMHPIP)](ClO₄)₂ (1), [Ru(bpy)₂(HMHPIP)](ClO₄)₂ (2), [Ru(phen)₂(HMHPIP)](ClO₄)₂ (3) and [Ru(dmp)₂(HMHPIP)](ClO₄)₂ (4). The complexes interact with DNA through intercalative mode and show relatively high cytotoxic activity against A549 cells, no cytotoxicity toward MG-63 cells. Complexes 1-4 can enhance the levels of ROS in A549 cells and induce the decrease of the mitochondrial membrane potential. These complexes inhibit the cell growth in A549 cells at G0/G1 or S phase. Complex 3 activated caspase 7, and down-regulated the expression of the anti-apoptotic protein Bcl-2. Complexes 1-4 induce apoptosis in A549 cells through ROS-mediated mitochondrial dysfunction pathway. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  10. Mechanism of DNA cleavage by cationic manganese porphyrins: hydroxylations at the 1'-carbon and 5'-carbon atoms of deoxyriboses as initial damages

    National Research Council Canada - National Science Library

    Pratviel, G; Pitié, M; Bernadou, J; Meunier, B

    1991-01-01

    Cationic manganese-porphyrin complexes, free or targetted with an intercalating agent, are able to cleave DNA using oxygen atom donors like potassium monopersulfate or magnesium monoperphthalate as coreactants...

  11. Maghemite Intercalated Montmorillonite as New Nanofillers for Photopolymers

    Directory of Open Access Journals (Sweden)

    Jocelyne Brendle

    2012-11-01

    Full Text Available In this work, maghemite intercalated montmorillonite (γFe2O3-MMT/polymer nanocomposites loaded with 1 or 2 wt.% of nanofillers were obtained by photopolymerization of difunctional acrylate monomers. The γFe2O3-MMT nanofillers were prepared by a new method based on the in situ formation of maghemite in the interlayer space of Fe-MMT using a three step process. X-ray diffraction (XRD, chemical analysis, TG/DTA and transmission electron microscopy (TEM characterization of these nanofillers indicated the efficiency of the synthesis. When following the kinetics of the photopolymerization of diacrylate-γFe2O3-MMT nanocomposites using FTIR spectroscopy no significant inhibition effect of the nanofillers was observed at a loading up to 2 wt.%. These innovative nanocomposites exhibit improved mechanical properties compared to the crude polymer.

  12. Morphology and Structure of Amino-fatty Acid Intercalated Montmorillonite

    Science.gov (United States)

    Reyes, Larry; Sumera, Florentino

    2015-04-01

    Natural clays and its modified forms have been studied for their wide range of applications, including polymer-layered silicate, catalysts and adsorbents. For nanocomposite production, montmorillonite (MMT) clays are often modified with organic surfactants to favor its intermixing with the polymer matrix. In the present study, Na+-montmorillonite (Na+-MMT) was subjected to organo-modification with a protonated 12-aminolauric acid (12-ALA). The amount of amino fatty acid surfactants loaded was 25, 50, 100 and 200% the cation exchange capacity (CEC) of Na+-MMT (25CEC-AMMT, 50CEC-AMMT, 100CEC-AMMT and 200CEC-AMMT). Fatty acid-derived surfactants are an attractive resource of intercalating agents for clays due to their renewability and abundance. X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) were performed to determine the occurrence of intercalation of 12-ALA and their molecular structure in the clay's silicates. XRD analysis revealed that the interlayer spacing between the alumino-silicate layers increased from 1.25 nm to 1.82 nm with increasing ALA content. The amino fatty acid chains were considered to be in a flat monolayer structure at low surfactant loading, and a bilayered to a pseudotrilayered structure at high surfactant loading. On the other hand, FTIR revealed that the alkyl chains adopt a gauche conformation, indicating their disordered state based on their CH2symmetric and asymmetric vibrations. Thermogravimetric analyses (TGA) allows the determination of the moisture and organic content in clays. Here, TGA revealed that the surfactant in the clay was thermally stable, with Td ranging from 353° C to 417° C. The difference in the melting behavior of the pristine amino fatty acids and confined fatty acids in the interlayer galleries of the clay were evaluated by Differential Scanning Calorimerty (DSC). The melting temperatures (Tm) of the amino fatty acid in the clay were initially found to be higher than those of the free

  13. Tuning thermal conductivity in molybdenum disulfide by electrochemical intercalation

    Science.gov (United States)

    Zhu, Gaohua; Liu, Jun; Zheng, Qiye; Zhang, Ruigang; Li, Dongyao; Banerjee, Debasish; Cahill, David G.

    2016-01-01

    Thermal conductivity of two-dimensional (2D) materials is of interest for energy storage, nanoelectronics and optoelectronics. Here, we report that the thermal conductivity of molybdenum disulfide can be modified by electrochemical intercalation. We observe distinct behaviour for thin films with vertically aligned basal planes and natural bulk crystals with basal planes aligned parallel to the surface. The thermal conductivity is measured as a function of the degree of lithiation, using time-domain thermoreflectance. The change of thermal conductivity correlates with the lithiation-induced structural and compositional disorder. We further show that the ratio of the in-plane to through-plane thermal conductivity of bulk crystal is enhanced by the disorder. These results suggest that stacking disorder and mixture of phases is an effective mechanism to modify the anisotropic thermal conductivity of 2D materials. PMID:27767030

  14. Oxygen-intercalated CuScO_2

    Science.gov (United States)

    Draeseke, A. D.; Yanagi, H.; Tucker, D.; Easley, D.; McIntyre, D. H.; Tate, J.; Li, J.; Sleight, A. W.

    2002-03-01

    Oxygen intercalation is a means of introducing p-type carriers into wide bandgap delafossites, CuMO_2, provided the M cation is not too small. We present measurements on a series of thin films of CuScO2 whose oxygen content ranges from 2.0 to 2.5. The conductivity increases from less than 0.001 S/cm to about 20 S/cm as the oxygen introduces carriers into the material, while the average transparency in the visible region decreases from over 70present optical, transport, and structural data for this series of films. This work is supported by the National Science Foundation under DMR0071727 and by the Research Corporation.

  15. Transition Metal Titanophosphates with Intercalated Molecular Photoluminescence and Catalytic Properties.

    Science.gov (United States)

    Hung, Ling-I; Chen, Pei-Lin; Yang, Jia-Hao; Peng, Chi-How; Wang, Sue-Lein

    2017-10-04

    In this study, α-TiP layered structure incorporating a heterometal center for organic ligand binding to enhance structural complexity and functionality were prepared. The protons of the α-TiP layer were replaced with zinc ions coordinated by 4-pyridinecarboxylic acid (PCA) and water to form a layer structure, TiZn(PO4 )2 (H2 O)(PCA) (1). The tetrahedral zinc center with coordinated water in 1 is unprecedented in zincophosphate or zinc-MOF systems and is usually only found in metalloenzyme systems. The neutral zincotitanophosphate layers, tightly stacked through hydrogen bonds, showed velcro-like behavior on intercalating 4,4'-trimethylenedipyridine (TMDP) reversibly. It rendered a remarkable luminescence property to 1, emitting blue-to-white light under UV excitation. Surprisingly, the replacement of TMDP for PCA in the hydrothermal synthesis still resulted in 1, plus another structure, Ti4 Zn2 (H2 TPB)(PO4 )4 (HPO4 )4 (H2 PO4 )2 (2) (TPB=1,2,4,5-tetra(4-pyridyl)benzene). Clearly, in situ C-C cracking and C-C coupling of TMDP simultaneously occurred to generate PCA and TPB and thereafter the oxidant, Zn(NO3 )2 , was quantitatively determined to isolate crystal 1 from 2. The structure of 2 also featured α-TiP layers with pedant Zn tetrahedra but formed a three-dimensional neutral framework through TPB. For the first time, α-TiP-derived structures and their properties have been elucidated, which help in understanding intriguing in situ ligand formation and intercalation-induced luminescence, to exploit potential photocatalysis in polymerization. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Layered zirconium phosphonate with inorganic–organic hybrid structure: Preparation and its assembly with DNA

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Li-Min [School of Chemistry and Chemical Engineering, The Key Laboratory of Coordination Chemistry of Jiangxi Province, Jinggangshan University, Ji’an 343009 (China); State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Lu, Guo-Yuan [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Jiang, Li-Ping, E-mail: jianglp@nju.edu.cn [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Zhu, Jun-Jie [State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

    2014-07-01

    An aminoethoxy-functionalized zirconium phosphonate (Zr(O{sub 3}POCH{sub 2}CH{sub 2}NH{sub 2}){sub 2}·3H{sub 2}O), abbreviated as ZrRP (R=OCH{sub 2}CH{sub 2}NH{sub 2}), with layered structure has been synthesized. This layered compound possesses the characteristic of inorganic–organic hybrid, due to the covalently linked aminoethoxy in the host layer. The anion exchanged property of this zirconium phosphonate is suitable for the direct intercalation of negatively charged DNA, which is different from these reported zirconium phosphates or zirconium phosphonates. As a precursor, this prepared zirconium phosphonate was utilized to fabricate a novel DNA/ZrRP binary hybrid via a delamination-reassembly procedure. The release behavior of DNA from the DNA/ZrRP composite was investigated at different medium pH, because the combination between zirconium phosphonate sheets and DNA was pH-dependent sensitively. Moreover, the helical conformation of DNA was almost retained after the intercalation and release process. These properties of the DNA/ZrRP composite suggested the potential application of layered zirconium phosphonate as a non-viral vector in gene delivery. - Graphical abstract: The intercalation of DNA into zirconium phosphonate and the release of DNA from the interlayer of zirconium phosphonate. - Highlights: ●A layered aminoethoxy-functionalized zirconium phosphonate has been synthesized. ●DNA was intercalated directly into the prepared zirconium phosphonate. ●A novel zirconium phosphonate/DNA binary hybrid was fabricated. ●DNA can be reversibly released from the interlayer of zirconium phosphonate. ●The intercalation/release processes do not induce the denaturalization of DNA.

  17. Fabrication and Resistivity of IBr Intercalated Vapor-Grown Carbon Fiber Composites

    Science.gov (United States)

    Gaier, James R.; Smith, Jaclyn M.; Gahl, Gregory K.; Stevens, Eric C.; Gaier, Elizabeth M.

    1998-01-01

    Composites using vapor-crown carbon fibers (VGCF), the most conductive of the carbon fiber types, are attractive for applications where low density, high strength, and at least moderate conductivity are required, such as electromagnetic interference shielding covers for spacecraft. The conductivity can be enhanced another order of magnitude by intercalation of the VGCF. If a high Z intercalate is used, the protection of components from ionizing radiation can be enhanced also. Thus, the intercalation of VGCF with IBr is reported. Since composite testing is required to verify properties, the intercalation reaction optimization, stability of the intercalation compound, scale-up of the intercalation reaction, composite fabrication, and resistivity of the resulting composites is also reported. The optimum conditions for low resistivity and uniformity for the scaled up reaction (20-30 g of product) were 114 C for at least 72 hr, yielding a fiber with a resistivity of 8.7+/-2 micro-Omega-cm. The thermal stability of these fibers was poor, with degradation occurring at temperatures as low as 40 C in air, though they were insensitive to water vapor. Composite resistivity was 20-30 micro-Omega-cm, as measured by contactless conductivity measurements, about a factor of five higher than would be expected from a simple rule of mixtures. The addition of 1.0 percent Br2, intercalated microfibers increased the resistivity of the composites by more than 20 percent.

  18. Synthesis and characterization of montmorillonite clay intercalated with molecular magnetic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Marcel G.; Martins, Daniel O.T.A.; Carvalho, Beatriz L.C. de [Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24.020–150 (Brazil); Mercante, Luiza A. [Laboratório Nacional de Nanotecnologia para o Agronegócio (LNNA), Embrapa Instrumentação, São Carlos, SP 13560 970 (Brazil); Soriano, Stéphane [Instituto de Física, Universidade Federal Fluminense, Niterói, RJ 24.210 346 (Brazil); Andruh, Marius [Inorganic Chemistry Laboratory, Faculty of Chemistry, University of Bucharest, Str. Dumbrava Rosie nr. 23, Bucharest (Romania); Vieira, Méri D., E-mail: gqimeri@vm.uff.br [Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24.020–150 (Brazil); Vaz, Maria G.F., E-mail: mariavaz@vm.uff.br [Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24.020–150 (Brazil)

    2015-08-15

    In this work montmorillonite (MMT) clay, whose matrix was modified with an ammonium salt (hexadecyltrimethylammonium bromide – CTAB), was employed as an inorganic host for the intercalation of three different molecular magnetic compounds through ion exchange: a nitronyl nitroxide derivative 2-[4-(N-ethyl)-pyridinium]-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (p-EtRad{sup +}) and two binuclear coordination compounds, [Ni(valpn)Ln]{sup 3+}, where H{sub 2}valpn stands for 1,3-propanediyl-bis(2-iminomethylene-6-methoxy-phenol), and Ln=Gd{sup III}; Dy{sup III}. The pristine MMT and the intercalated materials were characterized by X-ray powder diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and magnetic measurements. The X-ray diffraction data analysis showed an increase of the interlamellar space of the intercalated MMT, indicating the intercalation of the magnetic compounds. Furthermore, the magnetic properties of the hybrid compounds were investigated, showing similar behavior as the pure magnetic guest species. - Graphical abstract: Montmorillonite clay was employed as inorganic host for the intercalation of three different molecular magnetic compounds through ion exchange - Highlights: • Montmorillonite was employed as a host material. • Three molecular magnetic compounds were intercalated through ion exchange. • The compounds were successful intercalated maintaining the layered structure. • The hybrid materials exhibited similar magnetic behavior as the pure magnetic guest.

  19. Cerium Oxide Nanoclusters on Graphene/Ru(0001): Intercalation of Oxygen via Spillover

    Energy Technology Data Exchange (ETDEWEB)

    Novotny, Zbynek; Netzer, Falko P.; Dohnálek, Zdenek

    2015-08-25

    Cerium oxide is an important catalytic material known for its ability to store and release oxygen, and as such, it has been used in a range of applications, both as an active catalyst and as a catalyst support. Using scanning tunneling microscopy and Auger electron spectroscopy, we investigated oxygen interactions with CeOx nanoclusters on a complete graphene monolayer-covered Ru(0001) surface at elevated temperatures (600 – 725 K). Under oxidizing conditions (P_(O_2 ) = 1 × 10-7 Torr), oxygen intercalation under the graphene layer is observed. Time dependent studies demonstrate that the intercalation proceeds via spillover of oxygen from CeOx nanoclusters through the graphene (Gr) layer onto the Ru(0001) substrate and extends until the Gr layer is completely intercalated. Atomically resolved images further show that oxygen forms a p(2×1) structure underneath the Gr monolayer. Temperature dependent studies yield an apparent kinetic barrier for the intercalation of 1.26 eV. This value correlates well with the theoretically determined value for the reduction of small CeO2 clusters reported previously. At higher temperatures, the intercalation is followed by a slower etching of the intercalated graphene (apparent barrier of 1.64 eV). Vacuum annealing of the intercalated Gr leads to the formation of carbon monoxide, causing etching of the graphene film, demonstrating that the spillover of oxygen is not reversible. In agreement with previous studies, no intercalation is observed on a complete graphene monolayer without CeOx clusters, even in the presence of a large number of point defects. These studies demonstrate that the easily reducible CeOx clusters act as intercalation gateways capable of efficiently delivering oxygen underneath the graphene layer.

  20. Reactive Systems

    DEFF Research Database (Denmark)

    Aceto, Luca; Ingolfsdottir, Anna; Larsen, Kim Guldstrand

    A reactive system comprises networks of computing components, achieving their goals through interaction among themselves and their environment. Thus even relatively small systems may exhibit unexpectedly complex behaviours. As moreover reactive systems are often used in safety critical systems, t...... into account. The book has arisen from various courses taught in Denmark and Iceland and is designed to give students a broad introduction to the area, with exercises throughout......., the need for mathematically based formal methodology is increasingly important. There are many books that look at particular methodologies for such systems. This book offers a more balanced introduction for graduate students and describes the various approaches, their strengths and weaknesses, and when...... they are best used. Milner's CCS and its operational semantics are introduced, together with the notions of behavioural equivalences based on bisimulation techniques and with recursive extensions of Hennessy-Milner logic. In the second part of the book, the presented theories are extended to take timing issues...

  1. Confined Catalysis in the g-C3N4/Pt(111) Interface: Feasible Molecule Intercalation, Tunable Molecule-Metal Interaction, and Enhanced Reaction Activity of CO Oxidation.

    Science.gov (United States)

    Wang, Shujiao; Feng, Yingxin; Yu, Ming'an; Wan, Qiang; Lin, Sen

    2017-09-27

    The deposition of a two-dimensional (2D) atomic nanosheet on a metal surface has been considered as a new route for tuning the molecule-metal interaction and surface reactivity in terms of the confinement effect. In this work, we use first-principles calculations to systematically explore a novel nanospace constructed by placing a 2D graphitic carbon nitride (g-C3N4) nanosheet over a Pt(111) surface. The confined catalytic activity in this nanospace is investigated using CO oxidation as a model reaction. With the inherent triangular pores in the g-C3N4 overlayer being taken advantage of, molecules such as CO and O2 can diffuse to adsorb on the Pt(111) surface underneath the g-C3N4 overlayer. Moreover, the mechanism of intercalation is also elucidated, and the results reveal that the energy barrier depends mainly on the properties of the molecule and the channel. Importantly, the molecule-catalyst interaction can be tuned by the g-C3N4 overlayer, considerably reducing the adsorption energy of CO on Pt(111) and leading to enhanced reactivity in CO oxidation. This work will provide important insight for constructing a promising nanoreactor in which the following is observed: The molecule intercalation is facile; the molecule-metal interaction is efficiently tuned; the metal-catalyzed reaction is promoted.

  2. Synthesis of reduced graphene oxide intercalated ZnO quantum dots nanoballs for selective biosensing detection

    Science.gov (United States)

    Chen, Jing; Zhao, Minggang; Li, Yingchun; Fan, Sisi; Ding, Longjiang; Liang, Jingjing; Chen, Shougang

    2016-07-01

    ZnO quantum dots (QDs), reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs) are always used in sensors due to their excellent electrochemical characteristics. In this work, ZnO QDs were intercalated by rGO sheets with cross-linked MWCNTs to construct intercalation nanoballs. A MWCNTs/rGO/ZnO QDs 3D hierarchical architecture was fabricated on supporting Ni foam, which exhibited excellent mechanical, kinetic and electrochemical properties. The intercalation construction can introduce strong interfacial effects to improve the surface electronic state. The selectively determinate of uric acid, dopamine, and ascorbic acid by an electrode material using distinct applied potentials was realized.

  3. High voltage and high specific capacity dual intercalating electrode Li-ion batteries

    Science.gov (United States)

    West, William C. (Inventor); Blanco, Mario (Inventor)

    2010-01-01

    The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.

  4. Synthesis and characterization of laurate-intercalated Mg–Al layered double hydroxide prepared by coprecipitation

    DEFF Research Database (Denmark)

    Gerds, Nathalie Christiane; Katiyar, Vimal; Koch, Christian Bender

    2012-01-01

    Effective utilization of layered double hydroxides (LDH) for industrial applications requires the synthesis of pure and well-defined LDH phases. In the present study, dodecanoate (laurate) anions were intercalated into Mg–Al-layered double hydroxide (LDH-C12) by coprecipitation in the presence...... intercalated structure, but we here demonstrate it to be magnesium laurate (Mg-C12). The LDH-C12 compound showed high structural order with a basal spacing of 2.41nm. Fourier-transform IR-spectra confirmed the intercalation of the laurate anions in the interlayer. Transmission electron microscopy showed plate...

  5. DNA-Destabilizing Agents as an Alternative Approach for Targeting DNA: Mechanisms of Action and Cellular Consequences

    Directory of Open Access Journals (Sweden)

    Gaëlle Lenglet

    2010-01-01

    Full Text Available DNA targeting drugs represent a large proportion of the actual anticancer drug pharmacopeia, both in terms of drug brands and prescription volumes. Small DNA-interacting molecules share the ability of certain proteins to change the DNA helix's overall organization and geometrical orientation via tilt, roll, twist, slip, and flip effects. In this ocean of DNA-interacting compounds, most stabilize both DNA strands and very few display helix-destabilizing properties. These types of DNA-destabilizing effect are observed with certain mono- or bis-intercalators and DNA alkylating agents (some of which have been or are being developed as cancer drugs. The formation of locally destabilized DNA portions could interfere with protein/DNA recognition and potentially affect several crucial cellular processes, such as DNA repair, replication, and transcription. The present paper describes the molecular basis of DNA destabilization, the cellular impact on protein recognition, and DNA repair processes and the latter's relationships with antitumour efficacy.

  6. Synthesis and structural characterization of piperazino-modified DNA that favours hybridization towards DNA over RNA

    DEFF Research Database (Denmark)

    Skov, Joan; Bryld, Torsten; Lindegaard, Dorthe

    2011-01-01

    modifications are tolerated in DNA:RNA hybrids but leave their melting temperatures virtually unaffected. Fluorescence data indicate that the pyrene moiety is residing outside the helix. The available data suggest that the DNA discrimination is due to (i) the positive charge of the piperazino ring having...... a greater impact in the narrow and deep minor groove of a B-type dsDNA duplex than in the wide and shallow minor groove of an A-type DNA:RNA hybrid and (ii) the B-type dsDNA duplex allowing the pyrene to intercalate and bury its apolar surface.......We report the synthesis of two C4'-modified DNA analogues and characterize their structural impact on dsDNA duplexes. The 4'-C-piperazinomethyl modification stabilizes dsDNA by up to 5°C per incorporation. Extension of the modification with a butanoyl-linked pyrene increases the dsDNA stabilization...

  7. Some new properties of DNA-YOYO-3 homodimer complexes revealed by electrophoresis and fluorescence lifetime measurements.

    Science.gov (United States)

    Popa, L M; Winter, S; Löber, G

    1994-12-01

    The DNA bis-intercalator oxazole homodimer (YOYO-3: 1,1'-(4,4,7,7-tetramethyl-4,7-diazaundecamethylene)-bis-4-[3-methy l- 2,3-dihydro-(benzo-1,3-oxazole)-2-methylidene]-quinolinium tetraiodide) specifically alters the electrophoretic pattern of covalently closed circular (CCC) DNA molecules. Thus, YOYO-3 seems to remove the CCC DNA supercoils and induces the appearance of additional bands by changing the linking number. It also promotes an unusual "star" activity for the restriction enzyme Hind III. Fluorescence lifetime measurements indicate that YOYO-3 is capable of binding to DNA by bis- and mono-intercalation.

  8. Intercalated vs Non-Intercalated Morphologies in Donor-Acceptor Bulk Heterojunction Solar Cells: PBTTT:Fullerene Charge Generation and Recombination Revisited

    KAUST Repository

    Collado Fregoso, Elisa

    2017-08-04

    In this contribution, we study the role of the donor:acceptor interface nanostructure upon charge separation and recombination in organic photovoltaic devices and blend films, using mixtures of PBTTT and two different fullerene derivatives (PC70BM and ICTA) as models for intercalated and non-intercalated morphologies, respectively. Thermodynamic simulations show that while the completely intercalated system exhibits a large free-energy barrier for charge separation, this barrier is significantly lower in the non-intercalated system, and almost vanishes when energetic disorder is included in the model. Despite these differences, both fs-resolved transient absorption spectroscopy (TAS) and TDCF exhibit extensive first-order losses in that system, suggesting that geminate pairs are the primary product of photoexcitation. In contrast, the system that comprises a combination of fully intercalated polymer:fullerene areas and fullerene aggregated domains (1:4 PBTTT:PC70BM), is the only one that shows slow, second-order recombination of free charges, resulting in devices with an overall higher short circuit current and fill factor. This study therefore provides a novel consideration of the role of the interfacial nanostructure and the nature of bound charges, and their impact upon charge generation and recombination.

  9. Intercalation of alcohols into barium phenylphosphonate: Influence of the number and position of functional groups in the guests on their arrangement in the intercalates

    Science.gov (United States)

    Melánová, Klára; Beneš, Ludvík; Zima, Vítězslav; Svoboda, Jan; Růžička, Aleš

    2017-07-01

    Barium phenylphosphonate dihydrate and its intercalates with alkanols, 1,n-diols and 1,2-diols were prepared and characterized by powder X-ray diffraction. The structure of the ethanol intercalate was solved from single-crystal X-ray data. The intercalate with composition Ba4(C6H5PO3)4·3C2H5OH·4H2O is composed of four crystallographically independent BaO8 polyhedra, the coordination in three of them is complemented by an oxygen atom of the intercalated ethanol molecule. The polyhedra are connected through oxygen atoms of phosphonate groups forming an inorganic layer from which phenyl groups are jutting out below and above. The phenyl groups are arranged in such a way that they form cavities, in which the alcohol molecules reside. The dependence of the basal spacing on the length of the carbon chains is linear in the case of alcohols and 1,2-alkanediols. In the case of 1,n-alkanediol intercalates a strong even-odd effect is observed for diols with six and more carbon atoms in the chain.

  10. Reactivity of the antitumor complex (H2trz)[trans-RuCl4(N2-Htrz)2] in the presence of DNA purines within a fluorinated silica matrix.

    Science.gov (United States)

    Lopes, Luís M F; Kopylovich, Maximilian N; Pombeiro, Armando L; Ilharco, Laura M

    2012-01-26

    The stability of the antitumor Ru(III) complex (H(2)trz)[trans-RuCl(4)(N(2)-Htrz)(2)] within a tailored sol-gel silica matrix was studied, combining the information from UV-vis and infrared spectroscopies. The matrix was synthesized by a one-step sol-gel process catalyzed by hydrofluoric acid, resulting extremely light, hydrophobic and fluorinated. It is shown that upon encapsulation, the complex undergoes a series of processes, starting with the increase in charge density on the metal center, followed by hydrolysis reactions. The modified complex interacts with the matrix through hydrogen bonds between the aquo/hydroxo ligands and the fluorine atoms. Its interactions with DNA purines (guanine and adenine) were probed within the confined medium defined by the same silica matrix. It is found that coencapsulated guanine does not interfere with the complex aquation processes, while coencapsulated adenine has a delaying effect. No covalent bonding between the complex and the purines is detected, but interactions between the triazole ligands and the imidazole ring of guanine and the imidazole and pyrimidine rings of adenine are observed. Hydrogen bonding is established between the carbonyl and the ammine groups of guanine and the aquo/hydroxo ligands of the complex. For adenine, those interactions involve mostly the N9H of the purine and the NH groups of the triazole ligands, in addition to π-π interactions.

  11. Human RAD52 Captures and Holds DNA Strands, Increases DNA Flexibility, and Prevents Melting of Duplex DNA: Implications for DNA Recombination

    Directory of Open Access Journals (Sweden)

    Ineke Brouwer

    2017-03-01

    Full Text Available Human RAD52 promotes annealing of complementary single-stranded DNA (ssDNA. In-depth knowledge of RAD52-DNA interaction is required to understand how its activity is integrated in DNA repair processes. Here, we visualize individual fluorescent RAD52 complexes interacting with single DNA molecules. The interaction with ssDNA is rapid, static, and tight, where ssDNA appears to wrap around RAD52 complexes that promote intra-molecular bridging. With double-stranded DNA (dsDNA, interaction is slower, weaker, and often diffusive. Interestingly, force spectroscopy experiments show that RAD52 alters the mechanics dsDNA by enhancing DNA flexibility and increasing DNA contour length, suggesting intercalation. RAD52 binding changes the nature of the overstretching transition of dsDNA and prevents DNA melting, which is advantageous for strand clamping during or after annealing. DNA-bound RAD52 is efficient at capturing ssDNA in trans. Together, these effects may help key steps in DNA repair, such as second-end capture during homologous recombination or strand annealing during RAD51-independent recombination reactions.

  12. Interactions between Exosomes from Breast Cancer Cells and Primary Mammary Epithelial Cells Leads to Generation of Reactive Oxygen Species Which Induce DNA Damage Response, Stabilization of p53 and Autophagy in Epithelial Cells

    Science.gov (United States)

    Dutta, Sujoy; Warshall, Case; Bandyopadhyay, Chirosree; Dutta, Dipanjan; Chandran, Bala

    2014-01-01

    Exosomes are nanovesicles originating from multivesicular bodies and are released by all cell types. They contain proteins, lipids, microRNAs, mRNAs and DNA fragments, which act as mediators of intercellular communications by inducing phenotypic changes in recipient cells. Tumor-derived exosomes have been shown to play critical roles in different stages of tumor development and metastasis of almost all types of cancer. One of the ways by which exosomes affect tumorigenesis is to manipulate the tumor microenvironments to create tumor permissive “niches”. Whether breast cancer cell secreted exosomes manipulate epithelial cells of the mammary duct to facilitate tumor development is not known. To address whether and how breast cancer cell secreted exosomes manipulate ductal epithelial cells we studied the interactions between exosomes isolated from conditioned media of 3 different breast cancer cell lines (MDA-MB-231, T47DA18 and MCF7), representing three different types of breast carcinomas, and normal human primary mammary epithelial cells (HMECs). Our studies show that exosomes released by breast cancer cell lines are taken up by HMECs, resulting in the induction of reactive oxygen species (ROS) and autophagy. Inhibition of ROS by N-acetyl-L-cysteine (NAC) led to abrogation of autophagy. HMEC-exosome interactions also induced the phosphorylation of ATM, H2AX and Chk1 indicating the induction of DNA damage repair (DDR) responses. Under these conditions, phosphorylation of p53 at serine 15 was also observed. Both DDR responses and phosphorylation of p53 induced by HMEC-exosome interactions were also inhibited by NAC. Furthermore, exosome induced autophagic HMECs were found to release breast cancer cell growth promoting factors. Taken together, our results suggest novel mechanisms by which breast cancer cell secreted exosomes manipulate HMECs to create a tumor permissive microenvironment. PMID:24831807

  13. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE: INDUCED BY RADIATION, CHEMICALS AND ENZYMES

    Science.gov (United States)

    A simple and rapid assay to detect DNA damage is reported. This assay is based on the ability of certain dyes to fluoresce upon intercalation with dsDNA. Damage caused by ultraviolet (UV) radiation, chemicals or restriction enzymes is detected using this assay. UV radiation at...

  14. DNA binding and cleavage activity by a mononuclear iron(II)Schiff ...

    Indian Academy of Sciences (India)

    pharmacological effects by interfering with the biologi- cal processes in which DNA/RNA takes part. Such investigations also sometimes provide insights for the mechanism of action for antitumour antibiotics.2 The metal complexes can interact through π...π interac- tion with the DNA base pairs by intercalation when.

  15. Site specificity of psoralen-DNA interstrand cross-linking determined by nuclease Bal31 digestion

    DEFF Research Database (Denmark)

    Zhen, W P; Buchardt, O; Nielsen, Henrik

    1986-01-01

    was analyzed, and these two psoralens showed identical site specificity. The 5'-TA preference is rationalized on the basis of the local DNA structure in terms of the pi-pi electronic interaction between the thymines and the intercalated psoralens, as well as on the base tilt angles of the DNA....

  16. Synthesis and evaluation of intercalating somatostatin receptor binding peptide conjugates for endoradiotherapy

    National Research Council Canada - National Science Library

    Graham, Keith; Wang, Qin; Garcia Boy, Regine; Eisenhut, Michael; Haberkorn, Uwe; Mier, Walter

    2007-01-01

    .... In order to exploit the cytotoxic potential of intercalator-Auger-emitter conjugates, bis-benzimidazole dyes, Hoechst 33258 and 33342, were linked to a somatostatin receptor affine carrier peptide...

  17. CO intercalation of graphene on Ir(111) in the millibar regime

    DEFF Research Database (Denmark)

    Arman, M.A.; Andersen, Mie; Granas, E.

    2013-01-01

    Here we show that it is possible to intercalate CO under graphene grown on Ir(111) already at room temperature when CO pressures in the millibar regime are used. From the interplay of X-ray photoelectron spectroscopy and scanning tunneling microscopy we conclude that the intercalated CO adsorption...... structure is similar to the (3√3 × 3√3)R30°) adsorption structure that is formed on Ir(111) upon exposure to 1 mbar of CO. Further, density functional theory calculations reveal that the structural and electronic properties of CO-intercalated graphene are similar to p-doped freestanding graphene. Finally we...... characterize nonintercalated stripes and islands that we always observe in the CO-intercalated graphene. We observe these nonintercalated areas predominately in HCP and FCC areas near step edges and suggest that stress release in graphene is the driving force for their formation, while the weak chemical bonds...

  18. Removal of lead from aqueous solution on glutamate intercalated layered double hydroxide

    Directory of Open Access Journals (Sweden)

    Shen Yanming

    2017-05-01

    Full Text Available Glutamate intercalated Mg–Al layered double hydroxide (LDH was prepared by co-precipitation and the removal of Pb2+ in the aqueous solution was investigated. The prepared samples were characterized by XRD, FT-IR and SEM. It was shown that glutamate can intercalate into the interlayer space of Mg–Al LDH. The glutamate intercalated Mg–Al LDH can effectively adsorb Pb2+ in the aqueous solution with an adsorption capacity of 68.49 mg g−1. The adsorption of Pb2+ on glutamate intercalated Mg–Al LDH fitted the pseudo-second-order kinetics model and the isotherm can be well defined by Langmuir model.

  19. Acrylate intercalation and in situ polymerization in iron-, cobalt-, or manganese-substituted nickel hydroxides.

    Science.gov (United States)

    Vaysse, C; Guerlou-Demourgues, L; Duguet, E; Delmas, C

    2003-07-28

    A chimie douce route based on successive redox and exchange reactions has allowed us to prepare new hybrid organic-inorganic materials, composed of polyacrylate macromolecules intercalated into layered double hydroxides (LDHs), deriving from Ni(OH)(2). Monomer intercalation and in situ polymerization mechanisms have appeared to be strongly dependent upon the nature of the substituting cation in the slabs. In the case of iron-based LDHs, a phase containing acrylate monomeric intercalates has been isolated and identified by X-ray diffraction and infrared spectroscopy. Second, interslab free-radical polymerization of acrylate anions has been successfully initiated using potassium persulfate. In cobalt- or manganese-based LDHs, one-step polymerization has been observed, leading directly to a material containing polyacrylate intercalate.

  20. The Mechanism of the Interfacial Charge and Mass Transfer during Intercalation of Alkali Metal Cations.

    Science.gov (United States)

    Ventosa, Edgar; Paulitsch, Bianca; Marzak, Philipp; Yun, Jeongsik; Schiegg, Florian; Quast, Thomas; Bandarenka, Aliaksandr S

    2016-12-01

    Intercalation of alkali metal cations, like Li+ or Na+, follows the same three-stage mechanism of the interfacial charge and mass transfer irrespective of the nature of the electrolyte, electrolyte composition or electrode material.

  1. Influence of Donor Atom Exchange and Intercalator Substitution

    OpenAIRE

    Hormann, Jan

    2016-01-01

    Cancer is among the two leading causes of death worldwide. While mutations of DNA are causing cancer, wilful modification of the DNA structure and its damage can cause death of cancer cells. In this fashion the DNA alkylating agent cisplatin has been used for the treatment of cancer since 1978. Dose-limiting side effects and the increasing resistance of some cancer types against certain drugs call for the development of novel treatments. Among the candidates of such new drugs are metallonucle...

  2. Application of mean-field model of polymer melt intercalation in organo-silicates for nanocomposites.

    Science.gov (United States)

    Meneghetti, Paulo; Qutubuddin, Syed

    2005-08-15

    The mean-field, lattice-based model of polymer melt intercalation in organically-modified layered silicates (OLS) originally developed by Vaia and Giannelis was applied for different polymers such as poly(methyl methacrylate) (PMMA), polypropylene (PP), and poly(ethylene oxide) (PEO). The nature of each polymer controls significantly the intercalation of the system. The internal energy change caused by the interaction of polymer, surfactant and clay is the strongest factor in determining the equilibrium structure of the nanocomposite system.

  3. Intercalation of urea into kaolinite for preparation of controlled release fertilizer

    OpenAIRE

    Mahdavi Fariba; Abdul Rashid Suraya; Khanif Yusop Mohd

    2014-01-01

    In this study urea was intercalated between layers of kaolinite by dry grinding technique to be used for preparing controlled release fertilizer. X-ray powder diffraction (XRPD) patterns confirmed the intercalation of urea into kaolinite by the significant expansion of the basal spacing of kaolinite layers from 0.710 nm to 1.090 nm. Fourier transform infrared spectroscopy (FT-IR) also confirmed the hydrogen bonding between urea and kaolinite. Based on CHNS ...

  4. Research advances in hepatitis B virus reactivation

    Directory of Open Access Journals (Sweden)

    LI Mengyuan

    2017-04-01

    Full Text Available In non-active or cured patients with hepatitis B virus (HBV infection, when the body′s immune homeostasis is broken, HBV reactivation may occur, with the manifestations of liver inflammation and increased HBV DNA level, and lead to varying degrees of abnormal liver function, liver failure, and even death. Systematic management from the aspects of the screening of HBV reactivation, risk stratification of immunosuppression regimens, and patient's individual information needs to be solved urgently. It is very important to perform the screening of HBV serological markers before immunosuppressive therapy and chemotherapy, evaluate the risk of HBV reactivation, and develop individualized prophylactic antiviral therapy. Complete removal of covalently closed circular DNA in hepatocytes is essential for preventing HBV reactivation. This article summarizes related research advances in HBV reactivation from the aspects of its etiology, pathogenesis, diagnosis, prevention, and treatment.

  5. Mechanochemical synthesis and intercalation of Ca(II)Fe(III)-layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Ferencz, Zs.; Szabados, M.; Varga, G.; Csendes, Z. [Department of Organic Chemistry, University of Szeged, Dóm tér 8, Szeged H-6720 (Hungary); Materials and Solution Structure Research Group, Institute of Chemistry, University of Szeged, Aradi Vértanúk tere 1, Szeged H-6720 (Hungary); Kukovecz, Á. [Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720 (Hungary); MTA-SZTE “Lendület” Porous Nanocomposites Research Group, Rerrich Béla tér 1, Szeged H-6720 (Hungary); Kónya, Z. [Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720 (Hungary); MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Rerrich Béla tér 1, Szeged H-6720 (Hungary); Carlson, S. [MAX IV Laboratory, Ole Römers väg 1, Lund SE-223 63 (Sweden); Sipos, P. [Materials and Solution Structure Research Group, Institute of Chemistry, University of Szeged, Aradi Vértanúk tere 1, Szeged H-6720 (Hungary); Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, Szeged H-6720 (Hungary); and others

    2016-01-15

    A mechanochemical method (grinding the components without added water – dry grinding, followed by further grinding in the presence of minute amount of water or NaOH solution – wet grinding) was used in this work for the preparation and intercalation of CaFe-layered double hydroxides (LDHs). Both the pristine LDHs and the amino acid anion (cystinate and tyrosinate) intercalated varieties were prepared by the two-step grinding procedure in a mixer mill. By systematically changing the conditions of the preparation method, a set of parameters could be determined, which led to the formation of close to phase-pure LDH. The optimisation procedure was also applied for the intercalation processes of the amino acid anions. The resulting materials were structurally characterised by a range of methods (X-ray diffractometry, scanning electron microscopy, energy dispersive analysis, thermogravimetry, X-ray absorption and infra-red spectroscopies). It was proven that this simple mechanochemical procedure was able to produce complex organic–inorganic nanocomposites: LDHs intercalated with amino acid anions. - Graphical abstract: Amino acid anion-Ca(II)Fe(III)-LDHs were successfully prepared by a two-step milling procedure. - Highlights: • Synthesis of pristine and amino acid intercalated CaFe-LDHs by two-step milling. • Identifying the optimum synthesis and intercalation parameters. • Characterisation of the samples with a range of instrumental methods.

  6. Dirac cone in two dimensional bilayer graphene by intercalation with V, Nb, and Ta transition metals

    Science.gov (United States)

    Pakhira, Srimanta; Lucht, Kevin P.; Mendoza-Cortes, Jose L.

    2018-02-01

    Bilayer graphene (BLG) is a semiconductor whose band gap and properties can be tuned by various methods such as doping or applying gate voltage. Here, we show how to tune electronic properties of BLG by intercalation of transition metal (TM) atoms between two monolayer graphene (MLG) using a novel dispersion-corrected first-principle density functional theory (DFT) approach. We intercalated V, Nb, and Ta atoms between two MLG. We found that the symmetry, the spin, and the concentration of TM atoms in BLG-intercalated materials are the important parameters to control and to obtain a Dirac cone in their band structures. Our study reveals that the BLG intercalated with one vanadium (V) atom, BLG-1V, has a Dirac cone at the K-point. In all the cases, the present DFT calculations show that the 2pz sub-shells of C atoms in graphene and the 3dyz sub-shells of the TM atoms provide the electron density near the Fermi energy level (EF) which controls the material properties. Thus, we show that out-of-plane atoms can influence in-plane electronic densities in BLG and enumerate the conditions necessary to control the Dirac point. This study offers insight into the physical properties of 2D BLG intercalated materials and presents a new strategy for controlling the electronic properties of BLG through TM intercalation by varying the concentration and spin arrangement of the metals resulting in various conducting properties, which include: metal, semi-metal and semiconducting states.

  7. Why medical students choose not to carry out an intercalated BSc: a questionnaire study.

    Science.gov (United States)

    Nicholson, Jamie A; Cleland, Jennifer; Lemon, John; Galley, Helen F

    2010-03-23

    At some medical schools, students can opt to undertake a 1 year intercalated degree, usually a BSc, in addition to their medical course. Over the last few years the numbers of students who have opted to undertake an intercalated degree have been steadily decreasing despite the advantages in securing foundation posts. The aim of this study was to find out why medical students opted not to take an intercalated degree. All 4th and 5th year medical students (n = 343) who had elected not to take an intercalated degree were personally handed a questionnaire. 293 completed questionnaires were returned (response rate 85%). The most common reason students opted not to intercalate was because they did not want to have another year of study (69.6%) or incur more debt (51.9%). Only 45 (15.3%) students said they had enough information to inform their decision: reported take up of information provision was poor. Our findings indicate that the benefits of intercalating need to be better defined and presented to students in a way that they can make a more informed decision.

  8. An intercalated BSc degree is associated with higher marks in subsequent medical school examinations.

    Science.gov (United States)

    Cleland, Jennifer A; Milne, Andrew; Sinclair, Hazel; Lee, Amanda J

    2009-05-19

    To compare medical students on a modern MBChB programme who did an optional intercalated degree with their peers who did not intercalate; in particular, to monitor performance in subsequent undergraduate degree exams. This was a retrospective, observational study of anonymised databases of medical student assessment outcomes. Data were accessed for graduates, University of Aberdeen Medical School, Scotland, UK, from the years 2003 to 2007 (n = 861). The main outcome measure was marks for summative degree assessments taken after intercalating. Of 861 medical students, 154 (17.9%) students did an intercalated degree. After adjustment for cohort, maturity, gender and baseline (3rd year) performance in matching exam type, having done an IC degree was significantly associated with attaining high (18-20) common assessment scale (CAS) marks in three of the six degree assessments occurring after the IC students rejoined the course: the 4th year written exam (p < 0.001), 4th year OSCE (p = 0.001) and the 5th year Elective project (p = 0.010). Intercalating was associated with improved performance in Years 4 and 5 of the MBChB. This improved performance will further contribute to higher academic ranking for Foundation Year posts. Long-term follow-up is required to identify if doing an optional intercalated degree as part of a modern medical degree is associated with following a career in academic medicine.

  9. Why medical students choose not to carry out an intercalated BSc: a questionnaire study

    Directory of Open Access Journals (Sweden)

    Lemon John

    2010-03-01

    Full Text Available Abstract Background At some medical schools, students can opt to undertake a 1 year intercalated degree, usually a BSc, in addition to their medical course. Over the last few years the numbers of students who have opted to undertake an intercalated degree have been steadily decreasing despite the advantages in securing foundation posts. The aim of this study was to find out why medical students opted not to take an intercalated degree. Methods All 4th and 5th year medical students (n = 343 who had elected not to take an intercalated degree were personally handed a questionnaire. Results 293 completed questionnaires were returned (response rate 85%. The most common reason students opted not to intercalate was because they did not want to have another year of study (69.6% or incur more debt (51.9%. Only 45 (15.3% students said they had enough information to inform their decision: reported take up of information provision was poor. Conclusions Our findings indicate that the benefits of intercalating need to be better defined and presented to students in a way that they can make a more informed decision.

  10. Low cost iodine intercalated graphene for fuel cells electrodes

    Science.gov (United States)

    Marinoiu, Adriana; Raceanu, Mircea; Carcadea, Elena; Varlam, Mihai; Stefanescu, Ioan

    2017-12-01

    On the theoretical predictions, we report the synthesis of iodine intercalated graphene for proton exchange membrane fuel cells (PEMFCs) applications. The structure and morphology of the samples were characterized by X-ray photoelectron spectroscopy (XPS) analysis, specific surface area by BET method, Raman investigations. The presence of elemental iodine in the form of triiodide and pentaiodide was validated, suggesting that iodine was trapped between graphene layers, leading to interactions with C atoms. The electrochemical performances of iodinated graphenes were tested and compared with a typical PEMFC configuration, containing different Pt/C loading (0.4 and 0.2 mg cm-2). If iodinated graphene is included as microporous layer, the electrochemical performances of the fuel cell are higher in terms of power density than the typical fuel cell. Iodine-doped graphenes have been successfully obtained by simple and cost effective synthetic strategy and demonstrated new insights for designing of a high performance metal-free ORR catalyst by a scalable technique.

  11. Nanoporous Ag-CNTs foamed electrode for lithium intercalation

    Directory of Open Access Journals (Sweden)

    B. Khoshnevisan

    2011-07-01

    Full Text Available Intercalation of lithium into Ag-CNTs sample is reported here. We have used a nano-porous silver foam as a frame for deposition of the CNTs   inside   the   pores   by   electrophoresis   deposition   (EPD technique. By using  chronopotentiometry method,  we  have noticed that the Li storage capacity of the prepared Ag-CNTs electrode was improved  noticeably  in  comparison  with  literature.  In  addition,  a very  good functional stability  for  the  prepared  electrode  has  been tested   during   subsequent   cycles   of   charge / discharge   (C&D procedures. By scanning the cycle's regulated current from 0.2 up to 1.0 mA , it was shown that in the range of 0.4–0.6 mA reversibility of the C&D capacity became optimum and the voltage profiles were converged, as well.

  12. Complexation of DNA with ruthenium organometallic compounds: the high complexation ratio limit.

    Science.gov (United States)

    Despax, Stéphane; Jia, Fuchao; Pfeffer, Michel; Hébraud, Pascal

    2014-06-14

    Interactions between DNA and ruthenium organometallic compounds are studied by using visible light absorption and circular dichroism measurements. A titration technique allowing for the absolute determination of the advancement degree of the complexation, without any assumption about the number of complexation modes is developed. When DNA is in excess, complexation involves intercalation of one of the organometallic compound ligands between DNA base pairs. But, in the high complexation ratio limit, where organometallic compounds are in excess relative to the DNA base pairs, a new mode of interaction is observed, in which the organometallic compound interacts weakly with DNA. The weak interaction mode, moreover, develops when all the DNA intercalation sites are occupied. A regime is reached in which one DNA base pair is linked to more than one organometallic compound.

  13. A Molecular Beam Deposition of DNA Nanometer Films

    Science.gov (United States)

    2007-01-01

    layers (EBL) in organic light-emitting devices (OLEDs), showing significant enhancement in both luminance and device efficiency over conventional...emission only when it intercalates within the DNA double helix structure. Figure 4 shows the photoluminescence (PL) spectra of several DNA-CTMA films with...Characteristic17-19 sharp emission lines at 612, 618, and 625 nm were observed due to the Eu3 + 4f inner shell transitions. The insert in Figure 5 shows an

  14. A multi-spectroscopic and molecular docking approach to investigate the interaction of antiviral drug oseltamivir with ct-DNA.

    Science.gov (United States)

    Moghadam, Neda Hosseinpour; Salehzadeh, Sadegh; Shahabadi, Nahid; Golbedaghi, Reza

    2017-07-03

    The possible interaction between the antiviral drug oseltamivir and calf thymus DNA at physiological pH was studied by spectrophotometry, competitive spectrofluorimetry, differential pulse voltammogram (DPV), circular dichroism spectroscopy (CD), viscosity measurements, salt effect, and computational studies. Intercalation of oseltamivir between the base pairs of DNA was shown by a sharp increase in specific viscosity of DNA and a decrease of the peak current and a positive shift in differential pulse voltammogram. Competitive fluorescence experiments were performed using neutral red (NR) as a probe for the intercalation binding mode. The studies showed that oseltamivir is able to release the NR.

  15. Localization of Sodium Channels in Intercalated Disks Modulates Cardiac Conduction

    Science.gov (United States)

    Kucera, Jan P.; Rohr, Stephan; Rudy, Yoram

    2007-01-01

    It is well known that the sodium current (INa) and the degree of gap-junctional electrical coupling are the key determinants of action potential (AP) conduction in cardiac tissue. Immunohistochemical studies have shown that sodium channels (NaChs) are preferentially located in intercalated disks (IDs). Using dual immunocytochemical staining, we confirmed the colocalization of NaChs with connexin43 in cultures of neonatal rat ventricular myocytes. In mathematical simulations of conduction using the Luo-Rudy dynamic model of the ventricular AP, we assessed the hypothesis that conduction could be modulated by the preferential localization of NaChs in IDs. Localization of INa at the ID caused a large negative potential in the intercellular cleft, which influenced conduction in two opposing ways, depending on the degree of electrical coupling: (1) for normal and moderately reduced coupling, the negative cleft potential led to a large overshoot of the transmembrane potential resulting in a decreased driving force for INa itself (self-attenuation), which slowed conduction; (2) for greatly reduced coupling (<10%), the negative cleft potential induced by INa in the prejunctional membrane led to suprathreshold depolarization of the postjunctional membrane, which facilitated and accelerated conduction. When cleft potential effects were not incorporated, conduction was not significantly affected by the ID localization of INa. By enhancing conduction through the establishment of cleft potentials, the localization of NaChs in IDs might protect the myocardium from conduction block, very slow conduction, and microreentry under conditions of greatly reduced coupling. Conversely, by supporting moderately slow conduction, this mechanism could also promote arrhythmias PMID:12480819

  16. Cobalt intercalation at the graphene/iridium(111) interface: Influence of rotational domains, wrinkles, and atomic steps

    Energy Technology Data Exchange (ETDEWEB)

    Vlaic, S.; Kimouche, A.; Coraux, J.; Rougemaille, N. [CNRS, Inst NEEL, F-38042 Grenoble (France); Univ. Grenoble Alpes, Inst NEEL, F-38042 Grenoble (France); Santos, B.; Locatelli, A. [Elettra-Sincrotrone Trieste S.C.p.A., S.S: 14 km 163.5 in AREA Science Park, I-34149 Basovizza, Trieste (Italy)

    2014-03-10

    Using low-energy electron microscopy, we study Co intercalation under graphene grown on Ir(111). Depending on the rotational domain of graphene on which it is deposited, Co is found intercalated at different locations. While intercalated Co is observed preferentially at the substrate step edges below certain rotational domains, it is mostly found close to wrinkles below other domains. These results indicate that curved regions (near substrate atomic steps and wrinkles) of the graphene sheet facilitate Co intercalation and suggest that the strength of the graphene/Ir interaction determines which pathway is energetically more favorable.

  17. Structure and dynamics of proflavine association around DNA.

    Science.gov (United States)

    Sasikala, Wilbee D; Mukherjee, Arnab

    2016-04-21

    Proflavine is a small molecule that intercalates into DNA and, thereby, acts as an anticancer agent. Intercalation of proflavine is shown to be a two-step process in which the first step is believed to be the formation of a pre-intercalative outside bound state. Experimental studies so far have been unable to capture the nature of the outside bound state. However, the sub-millisecond timescale observed in fluorescence kinetic experiments is often attributed to the binding of proflavine outside of DNA. Here, we have performed molecular dynamics simulations with multiple proflavine molecules to study the structure and dynamics of the formation of the outside bound state of DNA at different ion concentrations. We observed that the timescale of the outside bound state formation is, at least, five orders of magnitude faster (in nanoseconds) than the experimentally reported timescale (sub-milliseconds) attributed to binding outside DNA. Moreover, we also observed the stacked arrangement of proflavine all around DNA, which is different from the experimentally predicted stacking arrangement perpendicular to the helical axis of DNA in the close vicinity of the phosphate groups. This study, therefore, provides insight into the molecular structure and dynamics of the pre-intercalative outside bound state and will help in understanding the overall intercalation mechanism.

  18. STUDYING THE INFLUENCE OF THE PYRENE INTERCALATOR TINA ON THE STABILITY OF DNA i-MOTIFS

    DEFF Research Database (Denmark)

    El-Sayed, Ahmed A.; Pedersen, Erik Bjerregaard; Khaireldin, Nahid A.

    2012-01-01

    -motif structures was studied by using UV melting temperature measurements and circular dichroism spectra at different pH values under noncrowding and crowding conditions (20% poly(ethylene glycol)). When TINA ((R)-3-((4-(1-pyrenylethynyl)benzyl)oxy) propane-1,2-diol) is inserted, the oligonucleotides could form...

  19. The Facile Synthesis of N-Aryl Isoxazolones as DNA Intercalators ...

    African Journals Online (AJOL)

    NICO

    2012-02-20

    Feb 20, 2012 ... N-substituted derivatives of 3-arylaminoisoxazol-5(2H)-ones. 1a–c with benzoxazole and benzothiazole at nitrogen in chloro- form under reflux conditions to produce the corresponding. N-benzoxazole and N-benzothiazole derivatives 2a–c and 3a–c. (Scheme 1). We have also reported7–10 the reaction of ...

  20. Premeltons in DNA.

    Science.gov (United States)

    Sobell, Henry M

    2016-03-01

    Premeltons are examples of emergent-structures (i.e., structural-solitons) that arise spontaneously in DNA due to the presence of nonlinear-excitations in its structure. They are of two kinds: B-B (or A-A) premeltons form at specific DNA-regions to nucleate site-specific DNA melting. These are stationary and, being globally-nontopological, undergo breather-motions that allow drugs and dyes to intercalate into DNA. B-A (or A-B) premeltons, on the other hand, are mobile, and being globally-topological, act as phase-boundaries transforming B- into A-DNA during the structural phase-transition. They are not expected to undergo breather motions. A key feature of both types of premeltons is the presence of an intermediate structural-form in their central regions (proposed as being a transition-state intermediate in DNA-melting and in the B- to A-transition), which differs from either A- or B-DNA. Called beta-DNA, this is both metastable and hyperflexible--and contains an alternating sugar-puckering pattern along the polymer backbone combined with the partial unstacking (in its lower energy-forms) of every-other base-pair. Beta-DNA is connected to either B- or to A-DNA on either side by boundaries possessing a gradation of nonlinear structural-change, these being called the kink and the antikink regions. The presence of premeltons in DNA leads to a unifying theory to understand much of DNA physical chemistry and molecular biology. In particular, premeltons are predicted to define the 5' and 3' ends of genes in naked-DNA and DNA in active-chromatin, this having important implications for understanding physical aspects of the initiation, elongation and termination of RNA-synthesis during transcription. For these and other reasons, the model will be of broader interest to the general-audience working in these areas. The model explains a wide variety of data, and carries with it a number of experimental predictions--all readily testable--as will be described in this review.

  1. Intercalation of urea into kaolinite for preparation of controlled release fertilizer

    Directory of Open Access Journals (Sweden)

    Mahdavi Fariba

    2014-01-01

    Full Text Available In this study urea was intercalated between layers of kaolinite by dry grinding technique to be used for preparing controlled release fertilizer. X-ray powder diffraction (XRPD patterns confirmed the intercalation of urea into kaolinite by the significant expansion of the basal spacing of kaolinite layers from 0.710 nm to 1.090 nm. Fourier transform infrared spectroscopy (FT-IR also confirmed the hydrogen bonding between urea and kaolinite. Based on CHNS elemental analysis, 20% (wt. urea was intercalated between kaolinite layers. The urea-intercalated kaolinite was mixed with hydroxypropyl methylcellulose (HPMC binder and was granulated to prepare the nitrogen-based controlled release fertilizer. To study the nitrogen release behavior of granules, ultraviolet/visible (UV-Vis spectroscopy was used through the diacetyl monoxime (DAM colorimetric method. The result of UV-Vis spectroscopy showed that intercalation of urea into kaolinite decreased the nitrogen release from 25.50 to 13.66 % after 24 hours and from 98.15 to 70.01% after 30 days incubation in water. According to the results, the prepared controlled release fertilizer (CRF behaved according to the standard for CRFs.

  2. Synthesis of reduced graphene oxide intercalated ZnO quantum dots nanoballs for selective biosensing detection

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing; Zhao, Minggang, E-mail: zhaomg@ouc.edu.cn; Li, Yingchun; Fan, Sisi; Ding, Longjiang; Liang, Jingjing; Chen, Shougang, E-mail: sgchen@ouc.edu.cn

    2016-07-15

    Highlights: • A MWCNTs/rGO/ZnO quantum dots intercalation nanoballs decorated 3D hierarchical architecture is fabricated on Ni foam. • Large numbers of ZnO quantum dots are intercalated by rGO sheets to construct hierarchical nanoballs. • Improved mechanical, kinetic and electrochemical properties are found. • The strong interfacial effect makes the material can be used for selective detection of dopamine, ascorbic acid and uric acid. - Abstract: ZnO quantum dots (QDs), reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs) are always used in sensors due to their excellent electrochemical characteristics. In this work, ZnO QDs were intercalated by rGO sheets with cross-linked MWCNTs to construct intercalation nanoballs. A MWCNTs/rGO/ZnO QDs 3D hierarchical architecture was fabricated on supporting Ni foam, which exhibited excellent mechanical, kinetic and electrochemical properties. The intercalation construction can introduce strong interfacial effects to improve the surface electronic state. The selectively determinate of uric acid, dopamine, and ascorbic acid by an electrode material using distinct applied potentials was realized.

  3. Intercalation of organic molecules in 2D copper (II) nitroprusside: Intermolecular interactions and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Osiry, H.; Cano, A.; Lemus-Santana, A.A.; Rodríguez, A. [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional (Mexico); Carbonio, R.E. [INFIQC-CONICET, Departamento de Físico Química, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba (Argentina); Reguera, E., E-mail: edilso.reguera@gmail.com [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional (Mexico)

    2015-10-15

    This contribution discusses the intercalation of imidazole and its 2-ethyl derivative, and pyridine in 2D copper nitroprusside. In the interlayer region, neighboring molecules remain interacting throu gh their dipole and quadrupole moments, which supports the solid 3D crystal structure. The crystal structure of this series of intercalation compounds was solved and refined from powder X-ray diffraction patterns complemented with spectroscopic information. The intermolecular interactions were studied from the refined crystal structures and low temperature magnetic measurements. Due to strong attractive forces between neighboring molecules, the resulting π–π cloud overlapping enables the ferromagnetic coupling between metal centers on neighboring layers, which was actually observed for the solids containing imidazole and pyridine as intercalated molecules. For these two solids, the magnetic data were properly described with a model of six neighbors. For the solid containing 2-ethylimidazole and for 2D copper nitroprusside, a model of four neighbors in a plane is sufficient to obtain a reliable data fitting. - Highlights: • Intercalation of organic molecules in 2D copper (II) nitroprusside. • Molecular properties of intercalation compounds of 2D copper (II) nitroprusside. • Magnetic properties of hybrid inorganic–organic solids. • Hybrid inorganic–organic 3D framework.

  4. Intercalation of two-dimensional graphite films on metals by atoms and molecules

    CERN Document Server

    Gall, N R; Tontegode, A Ya; Usufov, M M

    1999-01-01

    An analysis is made of some general laws governing a new physical effect, i.e., the spontaneous penetration of particles (atoms, C/sub 60/ molecules) adsorbed on a two-dimensional graphite film on a metal (Ir, Re, Pt, Mo, ...) to beneath the graphite film (intercalation). It is shown that atoms having low ionization potentials (Cs, K, Na) intercalate a two-dimensional graphite film on iridium at T=300-400 K with an efficiency Aleph approximately=0.5, accumulating beneath the film to a concentration of up to a monolayer. Atoms having high ionization potentials (Si, Pt, Ni, C, Mo, etc.) intercalate a two- dimensional graphite film on iridium at T approximately=1000 K with an efficiency Aleph approximately=1, forming beneath the film a thick intercalate layer which is strongly bonded chemically to the metal substrate but is probably weakly bonded to the graphite monolayer by van der Waals forces. The presence of a graphite "lid" impeding the escape of atoms from the intercalated state up to record high temperatu...

  5. Quaternary ammonium salts intercalated α-ZrP compounds for adsorption of phenolic compounds

    Science.gov (United States)

    Wang, Hongning; Liu, Wenjin; Yao, Wei; Zhang, Ke; Zhong, Jing; Chen, Ruoyu

    2013-03-01

    By using methylamine as the colloidization agent to weaken the interactions of α-ZrP laminate, the quaternary ammonium salts of DTAB, TTAB, CTAB and STAB were successfully intercalated into the methylamine pre-pillared α-ZrP, denoted as DTAB-ZrP, TTAB-ZrP, CTAB-ZrP and STAB-ZrP, respectively. XRD, FTIR, TEM and N2 sorption were used to characterize the intercalated compounds, and the arrangements of intercalated quaternary ammonium salts within ZrP were supposed according to the results. It was shown that the interlayer distances were increased from 0.76 nm to 2.10-3.50 nm and the intercalated quaternary amine salt cationic bonded with Psbnd O- anion through electrostatic interaction. The phenolic compounds adsorption results have demonstrated that all the four intercalated compounds have good adsorption performance, and CTAB-ZrP show the highest maximum adsorption amounts of 0.90, 1.25 and 1.34 mmol g-1, for phenol, 2-chlorophenol and 2,4-dichlorophenolare, respectively. The adsorption isotherms of phenolic compounds are linear with the C0 of 2.0-6.0 mmol L-1 and fit well to both the Linear and the Freundlich models, which indicated that the adsorption mechanism is mainly partition effects of organic phase within ZrP interlayer.

  6. Influence of metal ions intercalation on the vibrational dynamics of water confined between MXene layers

    Science.gov (United States)

    Osti, Naresh C.; Naguib, Michael; Ganeshan, Karthik; Shin, Yun K.; Ostadhossein, Alireza; van Duin, Adri C. T.; Cheng, Yongqiang; Daemen, Luke L.; Gogotsi, Yury; Mamontov, Eugene; Kolesnikov, Alexander I.

    2017-11-01

    Two-dimensional (2D) carbides and nitrides of early transition metals (MXenes) combine high conductivity with hydrophilic surfaces, which make them promising for energy storage, electrocatalysis, and water desalination. The effects of intercalated metal ions on the vibrational states of water confined in Ti3C2Tx MXenes have been explored using inelastic neutron scattering (INS) and molecular-dynamics simulations to better understand the mechanisms that control MXenes' behavior in aqueous electrolytes, water purification, and other important applications. We observe an INS signal from water in all samples, pristine and with lithium, sodium, or potassium ions intercalated between the 2D Ti3C2Tx layers. However, only a small amount of water is found to reside in Ti3C2Tx intercalated with metal ions. Water in pristine Ti3C2Tx is more disordered, with bulklike characteristics, in contrast to intercalated Ti3C2Tx , where water is more ordered, irrespective of the metal ions used for intercalation. The ordering of the confined water increases with the ion size. This finding is further confirmed from molecular-dynamics simulation, which showed an increase in interference of water molecules with increasing ion size resulting in a concomitant decrease in water mobility, therefore providing guidance to tailor MXene properties for energy and environmental applications.

  7. In Situ Study of Li Intercalation into Highly Crystalline Graphitic Flakes of Varying Thicknesses.

    Science.gov (United States)

    Zou, Jianli; Sole, Christopher; Drewett, Nicholas E; Velický, Matěj; Hardwick, Laurence J

    2016-11-03

    An in situ Raman spectroelectrochemical study of Li intercalation into graphite flakes with different thicknesses ranging from 1.7 nm (3 graphene layers) to 61 nm (ca. 178 layers) is presented. The lithiation behavior of these flakes was compared to commercial microcrystalline graphite with a typical flake thickness of ∼100 nm. Li intercalation into the graphitic flakes was observed under potential control via in situ optical microscopy and Raman spectroscopy. As graphite flakes decreased in thickness, a Raman response indicative of increased tensile strain along the graphene sheet was observed during the early stages of intercalation. A progressively negative wavenumber shift of the interior and bounding modes of the split G band (E2g2(i) and E2g2(b)) is interpreted as a weakening of the C-C bonding. Raman spectra of Li intercalation into thin graphitic flakes are presented and discussed in the context of implications for Li ion battery applications, given that intercalation induced strain may accelerate carbon negative electrode aging and reduce long-term cycle life.

  8. INTERPRETATION OF POTENTIAL INTERMITTENCE TITRATION TECHNIQUE EXPERIMENTS FOR VARIOUS Li-INTERCALATION ELECTRODES

    Directory of Open Access Journals (Sweden)

    M.D.Levi

    2002-01-01

    Full Text Available In this paper we compare two different approaches for the calculation of the enhancement factor Wi, based on its definition as the ratio of the chemical and the component diffusion coefficients for species in mixed-conduction electrodes, originated from the "dilute solution" or "lattice gas" models for the ion system. The former approach is only applicable for small changes of the ion concentration while the latter allows one to consider a broad range of intercalation levels. The component diffusion coefficient of lithium ions has been determined for a series of lithium intercalation anodes and cathodes. A new "enhancement factor" for the ion transport has been defined and its relations to the intercalation capacitance and the intercalation isotherm have been established. A correlation between the dependences of the differential capacitance and the partial ion conductivity on the potential has been observed. It is considered as a prove that the intercalation process is controlled by the availability of sites for Li-ion insertion rather than by the concurrent insertion of the counter-balancing electronic species.

  9. Mössbauer study of pH dependence of iron-intercalation in montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmann, E., E-mail: kuzmann@caesar.elte.hu [Eötvös Loránd University, Institute of Chemistry (Hungary); Garg, V. K.; Singh, H.; Oliveira, A. C. de; Pati, S. S. [University of Brasília, Institute of Physics (Brazil); Homonnay, Z.; Rudolf, M. [Eötvös Loránd University, Institute of Chemistry (Hungary); Molnár, Á. M.; Kovács, E. M. [University of Debrecen, Imre Lajos Isotope Laboratory, Department of Colloid and Environmental Chemistry (Hungary); Baranyai, E. [University of Debrecen, Department of Inorganic and Analytical Chemistry (Hungary); Kubuki, S. [Tokyo Metropolitan University, Department of Chemistry (Japan); Nagy, N. M.; Kónya, J. [University of Debrecen, Imre Lajos Isotope Laboratory, Department of Colloid and Environmental Chemistry (Hungary)

    2016-12-15

    {sup 57}Fe Mössbauer spectroscopy and XRD have successfully been applied to show the incorporation of Fe ion into the interlayer space of montmorillonite via treatment with FeCl {sub 3} in acetone. The 78K {sup 57}Fe Mössbauer spectra of montmorillonite samples reflected magnetically split spectrum part indicating the intercalation of iron into the interlayer of montmorillonite via the treatment with FeCl {sub 3}+acetone and washed with water until the initial pH=2.3 increased to pH=4.14. It was found that the occurrence of intercalated iron in the form of oxide-oxihydroxide in montmorillonite increases with the pH. Intercalation was confirmed by the gradual increase in the basal spacing d{sub 001} with pH.

  10. Specific features of the charge and mass transfer in a silver-intercalated hafnium diselenide

    Science.gov (United States)

    Pleshchev, V. G.; Selezneva, N. V.; Baranov, N. V.

    2013-07-01

    The specific features of the charge transfer in intercalated samples of Ag x HfSe2 have been studied for the first time by alternating current (ac) impedance spectroscopy. It has been found that relaxation processes in an ac field are accelerated with increasing silver content in the samples. The complex conductivity ( Y) shows a frequency dispersion described by power law Y ˜ ω s , which is characteristic of the hopping conductivity mechanism. The Ag x HfSe2 compounds demonstrate shorter relaxation times as compared to those observed in hafnium diselenide intercalated with copper atoms, and this fact indicates that the charge carrier mobility in the silver-intercalated compounds is higher. The possibility of silver ion transfer in Ag x HfSe2 is confirmed by the measurements performed by the method of electrochemical cell emf.

  11. NMR studies of the conformation and motion of tetrahydrofuran in graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Caplan, Daniel Franz [Univ. of California, Berkeley, CA (United States)

    1991-11-01

    The behavior of tetrahydrofuran (THF) molecules intercalated in graphite layers in compounds Cs(THF){sub 1.3}C{sub 24} and K(THF){sub 2.5}C{sub 24} was studied by proton NMR. The graphite layers in these compounds impose a uniform ordering on the THF molecules, giving rise to sharp NMR spectra. Experimental and simulated proton NMR spectra were used to investigate geometry, orientation and conformation of intercalated THF, and to determine whether pseudorotation, a large amplitude low-frequency vibration observed in gaseous THF, can also occur in the constrained environment provided by the graphite intercalation compounds. Deuterium and multiple quantum proton NMR spectra were also simulated in order to determine if these techniques could further refine the proton NMR results.

  12. X-ray Spectroscopy and Imaging as Multiscale Probes of Intercalation Phenomena in Cathode Materials

    Science.gov (United States)

    Horrocks, Gregory A.; De Jesus, Luis R.; Andrews, Justin L.; Banerjee, Sarbajit

    2017-09-01

    Intercalation phenomena are at the heart of modern electrochemical energy storage. Nevertheless, as out-of-equilibrium processes involving concomitant mass and charge transport, such phenomena can be difficult to engineer in a predictive manner. The rational design of electrode architectures requires mechanistic understanding of physical phenomena spanning multiple length scales, from atomistic distortions and electron localization at individual transition metal centers to phase inhomogeneities and intercalation gradients in individual particles and concentration variances across ensembles of particles. In this review article, we discuss the importance of the electronic structure in mediating electrochemical storage and mesoscale heterogeneity. In particular, we discuss x-ray spectroscopy and imaging probes of electronic and atomistic structure as well as statistical regression methods that allow for monitoring of the evolution of the electronic structure as a function of intercalation. The layered α-phase of V2O5 is used as a model system to develop fundamental ideas on the origins of mesoscale heterogeneity.

  13. Thermoelectric Properties of Li-Intercalated ZrSe2 Single Crystals

    DEFF Research Database (Denmark)

    Holgate, Tim; Liu, Yufei; Hitchcock, Dale

    2013-01-01

    can profoundly affect the structural, thermal, and electronic properties of such materials. While the thermoelectric potential of layer-structured transitionmetal dichalcogenides has been formerly studied by several groups, to our best knowledge, neither the thermoelectric properties of ZrSe2 nor...... the impact of intercalation on its thermoelectric properties have been reported (specifically, the full evaluation of the dimensionless figure of merit, ZT, which includes the thermal conductivity). In this proof-of-principle study, ZrSe2 single crystals have been synthesized using an iodine-assisted vapor...... transport method, followed by a wet-chemistry lithium intercalation process. The results of resistivity, thermopower, and thermal conductivity measurements between 10 K and 300 K show that Li intercalation induced additional charge carriers and structural disorder that favorably affected the thermoelectric...

  14. Electrode Surface Composition of Dual-Intercalation, All-Graphite Batteries

    Directory of Open Access Journals (Sweden)

    Boris Dyatkin

    2017-02-01

    Full Text Available Dual-intercalation batteries implement graphite electrodes as both cathodes and anodes and offer high specific energy, inexpensive and environmentally sustainable materials, and high operating voltages. Our research investigated the influence of surface composition on capacities and cycling efficiencies of chemically functionalized all-graphite battery electrodes. We subjected coreshell spherical particles and synthetic graphite flakes to high-temperature air oxidation, and hydrogenation to introduce, respectively, –OH, and –H surface functional groups. We identified noticeable influences of electrode surface chemistry on first-cycle efficiencies and charge storage densities of anion and cation intercalation into graphite electrodes. We matched oxidized cathodes and hydrogenated anodes in dual-ion batteries and improved their overall performance. Our approach provides novel fundamental insight into the anion intercalation process and suggests inexpensive and environmentally sustainable methods to improve performance of these grid-scale energy storage systems

  15. Hybrid Doping of Few-Layer Graphene via a Combination of Intercalation and Surface Doping

    KAUST Repository

    Mansour, Ahmed

    2017-05-23

    Surface molecular doping of graphene has been shown to modify its work function and increase its conductivity. However, the associated shifts in work function and increases in carrier concentration are highly coupled and limited by the surface coverage of dopant molecules on graphene. Here we show that few-layer graphene (FLG) can be doped using a hybrid approach, effectively combining surface doping by larger (metal-)organic molecules, while smaller molecules, such as Br2 and FeCl3, intercalate into the bulk. Intercalation tunes the carrier concentration more effectively, whereas surface doping of intercalated FLG can be used to tune its work function without reducing the carrier mobility. This multi-modal doping approach yields a very high carrier density and tunable work function for FLG, demonstrating a new versatile platform for fabricating graphene-based contacts for electronic, optoelectronic and photovoltaic applications.

  16. Metallic conductivity and air stability in copper chloride intercalated carbon fibers

    Science.gov (United States)

    Oshima, H.; Woollam, J. A.; Yavrouian, A.

    1982-01-01

    Carbon-copper chloride intercalation compounds have been obtained by using variously graphitized carbon fibers as host materials. The resultant conductors are air stable, thermally stable to 450 K, have electrical resistivities as low as 12.9 microohm cm at room temperature, and have metallic conductivity temperature dependencies. These intercalated fibers have tensile strengths of 160000 psi, and Young's moduli of 25 x 10 to the 6th psi. For aerospace use, 1/(resistivity x density) is a figure of merit. On this basis, a reduction in resistivity by a factor of two will make this conductor competitive with copper.

  17. Plasma synthesis of lithium based intercalation powders for solid polymer electrolyte batteries

    Science.gov (United States)

    Kong, Peter C [Idaho Falls, ID; Pink, Robert J [Pocatello, ID; Nelson, Lee O [Idaho Falls, ID

    2005-01-04

    The invention relates to a process for preparing lithium intercalation compounds by plasma reaction comprising the steps of: forming a feed solution by mixing lithium nitrate or lithium hydroxide or lithium oxide and the required metal nitrate or metal hydroxide or metal oxide and between 10-50% alcohol by weight; mixing the feed solution with O.sub.2 gas wherein the O.sub.2 gas atomizes the feed solution into fine reactant droplets, inserting the atomized feed solution into a plasma reactor to form an intercalation powder; and if desired, heating the resulting powder to from a very pure single phase product.

  18. Hydroxy double salts loaded with bioactive ions: Synthesis, intercalation mechanisms, and functional performance

    Energy Technology Data Exchange (ETDEWEB)

    Kaassis, Abdessamad Y.A. [UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX (United Kingdom); Xu, Si-Min; Guan, Shanyue; Evans, David G. [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Wei, Min, E-mail: weimin@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Williams, Gareth R., E-mail: g.williams@ucl.ac.uk [UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX (United Kingdom)

    2016-06-15

    The intercalation of the anions of diclofenac (Dic), naproxen (Nap), and valproic acid (Val) into three hydroxy double salts (HDSs) has been explored in this work. Experiments were performed with [Co{sub 1.2}Zn{sub 3.8}(OH){sub 8}](NO{sub 3}){sub 2}·2H{sub 2}O (CoZn-NO{sub 3}), [Ni{sub 2}Zn{sub 3}(OH){sub 8}](NO{sub 3}){sub 2}·2H{sub 2}O (NiZn-NO{sub 3}) and [Zn{sub 5}(OH){sub 8}](NO{sub 3}){sub 2}·2H{sub 2}O (Zn-NO{sub 3}). It proved possible to intercalate diclofenac and naproxen into all three HDSs. In contrast, Val could be intercalated into CoZn-NO{sub 3} but when it was reacted with Zn-NO{sub 3} the HDS structure was destroyed, and the product comprised ZnO. Successful intercalation was verified by X-ray diffraction, IR spectroscopy, and elemental microanalysis. Molecular dynamics simulations showed the Dic and Nap ions to arrange themselves in an “X” shape in the interlayer space, forming a bilayer. Val was found to adopt a position with its aliphatic groups parallel to the HDS layer, again in a bilayer. In situ time resolved X-ray diffraction experiments revealed that intercalation of Dic and Nap into CoZn-NO{sub 3} and Zn-NO{sub 3} is mechanistically complex, with a number of intermediate phases observed. In contrast, the intercalation of all three guests into NiZn-NO{sub 3} and of Val into CoZn-NO{sub 3} are simple one step reactions proceeding directly from the starting material to the product. The HDS-drug composites were found to have sustained release profiles. - Graphical abstract: Seven new drug intercalates of hydroxy double salts (HDSs) have been prepared and characterised. The intercalation mechanisms have been explored, and the drug release properties of the HDS/drug composites quantified. Display Omitted.

  19. Ferric chloride-graphite intercalation compounds as anode materials for Li-ion batteries.

    Science.gov (United States)

    Wang, Lili; Zhu, Yongchun; Guo, Cong; Zhu, Xiaobo; Liang, Jianwen; Qian, Yitai

    2014-01-01

    Ferric chloride-graphite intercalation compounds (FeCl3 -GICs) with stage 1 and stage 2 structures were synthesized by reacting FeCl3 and expanded graphite (EG) in air in a stainless-steel autoclave. As rechargeable Li-ion batteries, these FeCl3 -GICs exhibit high capacity, excellent cycling stability, and superior rate capability, which could be attributed to their unique intercalation features. This work may enable new possibilities for the fabrication of Li-ion batteries. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Li-intercalation into the Bi-based oxychlorides with the layered structures; Bi wo fukumu sojo enka sankabutsu eno Li intercalation

    Energy Technology Data Exchange (ETDEWEB)

    Kato, M.; Abe, Y.; Koike, Y. [Tohoku University, Sendai (Japan)

    2000-10-15

    We have succeeded in preparing Li-intercalated Bi-based oxychlorides with the layered structures Li{sub x}BiOCl and Li{sub x}BiPbO{sub 2}Cl (0 {<=} x {<=} 1) by means of the chemical technique using a solution of n-buthyllithium in hexane and the electrochemical one. In the case of the chemical technique for both BiOCl and BiPbO{sub 2}Cl, the host samples have turned black gradually and the electrical resistivity has decreased with increasing treatment-time. However, the temperature dependence of the electrical resistivity has still remained semiconductive. From the powder x-ray diffraction and ICP analyses, the products have been found to be of the single phase within the Li-content of 0 {<=} x {<=} 1. The time required for the Li-intercalation by the electrochemical technique has been a fraction of that by the chemical technique. (author)

  1. Fluorescence images of DNA-bound YOYO between coupled silver particles.

    Science.gov (United States)

    Zhang, Jian; Fu, Yi; Lakowicz, Joseph R

    2007-11-06

    Oligonucleotide-bound silver particles were coupled through hybridization with target complementary oligonucleotides. YOYO molecules were intercalated into DNA duplexes bound between the coupled metal particles. Fluorescence images of YOYO molecules were monitored by scanning confocal microscopy. Relative to the free single YOYO, the emission brightness of the image was enhanced 80-fold after intercalating the fluorophores into the DNA duplexes between the coupled silver particles. Some images of the labeled metal particle dimers were observed to be dumbbell-shaped, suggesting that the stretching of intercalated YOYO molecules was restricted because of the orientation effect of fluorophores. The shortened lifetime of YOYO molecules between the coupled metal particles indicated that the fluorescence was enhanced via a near-field interaction mechanism between the fluorophore and the metal nanoparticle.

  2. A soliton mechanism for DNA melting: Progress report, November 1, 1988--October 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Sobell, H.M.

    1989-06-01

    A key feature of the soliton mechanism for DNA melting that has been proposed is the existence of an activated metastable DNA conformational state called ..beta..-DNA. Being metastable, this DNA conformation must be ''pinned'' or stabilized by an intercalating drug molecule such as actinomycin D in order to be observed. We have synthesized a series dodecamer oligonucleotide fragments, and have succeeded in forming crystalline complexes with actinomycin D. Their x-ray determination should allow atomic resolution and clarify how actinomycin binds to DNA. This will allow us to prove (or disprove) the actinomycin-DNA model we have proposed.

  3. Synthesis and Structure of a New Copper(II) Coordination Polymer Alternately Bridged by Oxamido and Carboxylate Groups: Evaluation of DNA/BSA Binding and Cytotoxic Activities.

    Science.gov (United States)

    Jin, Xiao-Ting; Zheng, Kang; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2015-08-01

    A new one-dimensional (1D) copper(II) coordination polymer {[Cu2 (dmaepox)(dabt)](NO3) · 0.5 H2 O}n , where H3 dmaepox and dabt denote N-benzoato-N'-(3-methylaminopropyl)oxamide and 2,2'-diamino-4,4'-bithiazole, respectively, was synthesized and characterized by single-crystal X-ray diffraction and other methods. The crystal structure analysis revealed that the two copper(II) ions are bridged alternately by cis-oxamido and carboxylato groups to form a 1-D coordination polymer with the corresponding Cu · · · Cu separations of 5.1946(19) and 5.038(2) Å. There is a three-dimensional supramolecular structure constructed by hydrogen bonding and π-π stacking interactions in the crystal. The reactivity towards herring sperm DNA (HS-DNA) and bovine serum albumin (BSA) indicated that the copper(II) polymer can interact with the DNA in the mode of intercalation, and bind to BSA responsible for quenching of tryptophan fluorescence by the static quenching mechanism. The in vitro cytotoxicity suggested that the copper(II) polymer exhibits cytotoxic effects against the selected tumor cell lines. © 2015 Wiley Periodicals, Inc.

  4. Intercalation synthesis of graphene-capped iron silicide atop Ni(111): Evolution of electronic structure and ferromagnetic ordering

    Energy Technology Data Exchange (ETDEWEB)

    Grebenyuk, G.S. [Ioffe Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation); Vilkov, O.Yu.; Rybkin, A.G. [St. Petersburg State University, 199034 St. Petersburg (Russian Federation); Gomoyunova, M.V. [Ioffe Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation); Senkovskiy, B.V. [St. Petersburg State University, 199034 St. Petersburg (Russian Federation); II. Physikalisches Institut, Universität zu Köln, D-50937 Cologne (Germany); Usachov, D.Yu. [St. Petersburg State University, 199034 St. Petersburg (Russian Federation); Vyalikh, D.V. [St. Petersburg State University, 199034 St. Petersburg (Russian Federation); Institute of Solid State Physics, Dresden University of Technology, 01062 Dresden (Germany); Molodtsov, S.L. [European XFEL GmbH, 22761 Hamburg (Germany); Institute of Experimental Physics, Technische Universität Bergakademie Freiberg, 09599 Freiberg (Germany); ITMO University, 197101 St. Petersburg (Russian Federation); Pronin, I.I., E-mail: Igor.Pronin@mail.ioffe.ru [Ioffe Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation); ITMO University, 197101 St. Petersburg (Russian Federation)

    2017-01-15

    Highlights: • Evolution of Graphene/Ni system due to intercalation with Fe and Si is studied. • Graphene strongly interacts with the topmost atoms of the intercalated fcc Fe film. • The in-plane ferromagnetic ordering of the film arises after intercalation of 5 ML Fe. • Fe-Si solid solution and Fe{sub 3}Si surface silicide are formed after intercalation of Si. • The capping graphene layer is weakly electronically coupled to the silicide phase. - Abstract: A new method for synthesis of graphene-protected iron silicides has been tested, which consists in formation of graphene on Ni(111) followed by two-step intercalation of the system with Fe and Si. Characterization of the samples was performed in situ by low-energy electron diffraction, angular-resolved photoelectron spectroscopy, core-level photoelectron spectroscopy with synchrotron radiation and magnetic linear dichroism in photoemission of Fe 3p electrons. It is shown, that at 400 °C the intercalation of graphene/Ni(111) with iron occurs in a range up to 14 ML. The graphene layer strongly interacts with the topmost Fe atoms and stabilizes the fcc structure of the film. The in-plane ferromagnetic ordering of the film has a threshold nature and arises after the intercalation of 5 ML Fe due to the thickness-driven spin reorientation transition. Subsequent intercalation of graphene/Fe/Ni(111) with Si leads to the formation of the inhomogeneous system consisted of intercalated and nonintercalated areas. The intercalated islands coalesce at 2 ML Si when a Fe-Si solid solution covered with the Fe{sub 3}Si surface silicide is formed. The Fe{sub 3}Si silicide is ferromagnetic and has an ordered (√3 × √3)R30° structure. The graphene layer is weakly electronically coupled to the silicide phase keeping its remarkable properties ready for use.

  5. Multispectroscopic studies on the interaction of a copper(ii) complex of ibuprofen drug with calf thymus DNA.

    Science.gov (United States)

    Shahabadi, Nahid; Shiri, Farshad

    2017-02-01

    The interaction of copper(II)-ibuprofenato complex with calf thymus DNA (ct-DNA) has been explored following, UV-visible spectrophotometry, fluorescence measurement, dynamic viscosity measurements, and circular dichroism spectroscopy. In spectrophotometric studies of ct-DNA it was found that [Cu(ibp) 2 ] 2 can form a complex with double-helical DNA. The association constant of [Cu(ibp) 2 ] 2 with DNA from UV-Vis study was found to be 6.19 × 10 4 L mol -1 . The values of K f from fluorescence measurement clearly underscore the high affinity of [Cu(ibp) 2 ] 2 to DNA. The experimental results showed that the conformational changes in DNA helix induced by [Cu(ibp) 2 ] 2 are the reason for the fluorescence quenching of the DNA-Hoechst system. In addition, the fluorescence emission spectra of intercalated methylene blue (MB) with increasing concentrations of [Cu(ibp) 2 ] 2 represented a significant increase of MB intensity as to release MB from MB-DNA system. The results of circular dichroism (CD) suggested that copper(II)-ibuprofenato complex can change the conformation of DNA. In addition, the results of viscosity measurements suggest that copper(II)-ibuprofenato complex may bind with non-classical intercalative mode. From spectroscopic and hydrodynamic studies, it has been found that [Cu(ibp) 2 ] 2 interacts with DNA by partial intercalation mode which contains intercalation and groove properties.

  6. Ancient DNA

    DEFF Research Database (Denmark)

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair......ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair...

  7. KSHV Rta promoter specification and viral reactivation

    Directory of Open Access Journals (Sweden)

    Jonathan eGuito

    2012-02-01

    Full Text Available Viruses are obligate intracellular pathogens whose biological success depends upon replication and packaging of viral genomes, and transmission of progeny viruses to new hosts. The biological success of herpesviruses is enhanced by their ability to reproduce their genomes without producing progeny viruses or killing the host cells, a process called latency. Latency permits a herpesvirus to remain undetected in its animal host for decades while maintaining the potential to reactivate, or switch, to a productive life cycle when host conditions are conducive to generating viral progeny. Direct interactions between many host and viral molecules are implicated in controlling herpesviral reactivation, suggesting complex biological networks that control the decision. One viral protein that is necessary and sufficient to switch latent KSHV into the lytic infection cycle is called K-Rta. Rta is a transcriptional activator that specifies promoters by binding direct DNA directly and interacting with cellular proteins. Among these cellular proteins, binding of K-Rta to RBP-Jk is essential for viral reactivation.. In contrast to the canonical model for Notch signaling, RBP-Jk is not uniformly and constitutively bound to the latent KSHV genome, but rather is recruited to DNA by interactions with K-Rta. Stimulation of RBP-Jk DNA binding requires high affinity binding of Rta to repetitive and palindromic CANT DNA repeats in promoters, and formation of ternary complexes with RBP-Jk. However, while K-Rta expression is necessary for initiating KSHV reactivation, K-Rta’s role as the switch is inefficient. Many factors modulate K-Rta’s function, suggesting that KSHV reactivation can be significantly regulated post-Rta expression and challenging the notion that herpesviral reactivation is bistable. This review analyzes rapidly evolving research on KSHV K-Rta to consider the role of K-Rta promoter specification in regulating the progression of KSHV reactivation.

  8. Self-assembled nanocomposite film with tunable enhanced fluorescence for the detection of DNA.

    Science.gov (United States)

    Zhu, Xi; Wang, Xiaoyu; He, Fang; Tang, Fu; Li, Lidong

    2015-01-21

    In this study, a simple and environmentally friendly, silver nanocomposite film was prepared via the in situ reduction of silver ions in self-assembled chitosan (CS)/sodium alginate film matrixes. Negatively charged DNA containing the fluorescent intercalator acriflavine (Acf) was assembled on the surface of the silver nanocomposite film, to facilitate the detection of DNA. A tunable fluorescence enhancement was achieved for the Acf in the silver nanocomposite film simply by changing the thickness of the interlayer between the DNA and the silver nanocomposite film. Using the interlayer prepared by an assembly of poly(acrylic acid) and CS, a significant enhancement in the fluorescence of Acf was obtained. Owing to the ability of Acf to intercalate into DNA, this hybrid system with an enhanced Acf fluorescence could be used to monitor the template-independent DNA elongation process in a facile, high-efficiency, label-free fashion.

  9. Nanomechanics of Fluorescent DNA Dyes on DNA Investigated by Magnetic Tweezers.

    Science.gov (United States)

    Wang, Ying; Sischka, Andy; Walhorn, Volker; Tönsing, Katja; Anselmetti, Dario

    2016-10-18

    Fluorescent DNA dyes are broadly used in many biotechnological applications for detecting and imaging DNA in cells and gels. Their binding alters the structural and nanomechanical properties of DNA and affects the biological processes that are associated with it. Although interaction modes like intercalation and minor groove binding already have been identified, associated mechanic effects like local elongation, unwinding, and softening of the DNA often remain in question. We used magnetic tweezers to quantitatively investigate the impact of three DNA-binding dyes (YOYO-1, DAPI, and DRAQ5) in a concentration-dependent manner. By extending and overwinding individual, torsionally constrained, nick-free dsDNA molecules, we measured the contour lengths and molecular forces that allow estimation of thermodynamic and nanomechanical binding parameters. Whereas for YOYO-1 and DAPI the binding mechanisms could be assigned to bis-intercalation and minor groove binding, respectively, DRAQ5 exhibited both binding modes in a concentration-dependent manner. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Synthesis and characterization of organic intercalated layered double hydroxides and their application in bitumen modification

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Song [State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070 (China); Yu, Jianying, E-mail: jyyu@whut.edu.cn [State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070 (China); Sun, Yubin [Center for Materials Research and Analysis, Wuhan University of Technology, Wuhan 430070 (China); Wu, Shaopeng [State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070 (China)

    2015-02-15

    Organic layered double hydroxides (LDHs) intercalated by sodium dodecylbenzenesulfonate (SDBS) were prepared by anion-exchange method and applied to modify bitumen aiming at improving ageing resistance of bitumen. The organic LDHs (SDBS–LDHs) were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and Ultraviolet and visible (UV–vis) spectrophotometry. The effect of SDBS–LDHs and LDHs on physical and anti-ageing properties of bitumen was evaluated by means of conventional and rheological test. The results of XRD, FTIR and SEM show that SDBS is successfully intercalated into interlayer of LDHs, and the UV–vis reflectance and absorbance curves illustrate that intercalation of SDBS enhances the UV shielding effect of LDHs. The addition of SDBS–LDHs or LDHs has little influence on physical properties of bitumen because SDBS–LDHs and LDHs are physically mixed in bitumen. Compared with pristine bitumen after TFOT and UV irradiation ageing, the introduction of SDBS–LDHs and LDHs significantly improves thermal- and photo-oxidative ageing resistance of bitumen. Notably, bitumen with SDBS–LDHs exhibits better anti-ageing performance than that with LDHs, implying more effective modification of SDBS-LDHs which is due to the enhanced UV protective ability and compatibility with bitumen of SDBS–LDHs. - Highlights: • XRD, FTIR and SEM were used to confirm the successful intercalation. • SDBS–LDHs show superior UV protective ability. • SDBS–LDHs improved the anti-ageing properties of bitumen.

  11. Influence of water contamination and conductive additives on the intercalation of lithium into graphite

    Energy Technology Data Exchange (ETDEWEB)

    Joho, F.; Rykart, B.; Novak, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Spahr, M.E.; Monnier, A. [Timcal AG, Sins (Switzerland)

    1999-08-01

    The irreversible charge loss in the first cycle of lithium intercalation into graphite electrodes for lithium-ion batteries is discussed as a function of water contamination of the electrolyte solution. Furthermore, the improvement of the electrode cycle life due to conductive additives to graphite is demonstrated. (author) 5 figs., 3 refs.

  12. A mandatory intercalated degree programme: revitalising and enhancing academic and evidence-based medicine.

    Science.gov (United States)

    Collins, John P; Farish, Stephen; McCalman, Janet S; McColl, Geoffrey J

    2010-01-01

    Recruitment of medical graduates to research careers is declining. Expansion of medical knowledge necessitates all graduates be equipped to critically evaluate new information. To address these challenges, a mandatory intercalated degree programme was introduced as part of curriculum reform. To review the place on intercalated degrees, the methods available for learning about research and to analyse experience with a new university programme focusing on research. A literature review followed by the analysis of experience with eight cohorts of students who had completed the new programme. A total of 1599 students completed the programme. Laboratory-based research was the most common choice followed by clinical research, population health, epidemiology, medical humanities and mental health. Also, 93% of students spent over 75% of their time undertaking research. Sixty-three students published their research, half as first authors. Students and coordinators support the programme. Learning about research during the postgraduate phase is variable and frequently left to individual choice. Intercalating an additional degree focusing on research can achieve a number of learning objectives but demands a level of maturity, autonomy and preparedness, not uniformly present in students undertaking a mandatory intercalated programme. A more realistic goal is the development of 'research-mindedness' amongst all students.

  13. Structure, molecular simulation, and release of aspirin from intercalated Zn-Al-layered double hydroxides.

    Science.gov (United States)

    Meng, Zilin; Li, Xiaowei; Lv, Fengzhu; Zhang, Qian; Chu, Paul K; Zhang, Yihe

    2015-11-01

    Aspirin or acetylsalicylic acid (AA), a non-steroidal anti-inflammatory drug, is intercalated into Zn-Al-layered double hydroxides (ZnAl-LDHs) by co-precipitation and reconstruction methods. The composition, structure, and morphology of the intercalated products as well as their release behavior are determined experimentally and theoretically by Material Studio 5.5. Experimental results disclose the strong interaction between the LDHs sheets and AA in the intercalated ZnAl-LDHs produced by co-precipitation and slow release of AA from the intercalated ZnAl-LDHs in both phosphate buffered saline (PBS) and borate buffered saline (BBS) solutions. The percentage of AA released from the ZnAl-LDHs prepared by both methods in PBS (96.87% and 98.12%) are much more than those in BBS (68.59% and 81.22%) implying that both H4BO4(-) and H2PO4(-) can exchange with AA in the ZnAl-LDHs. After AA is released to PBS, ZnAl-LDHs break into small pieces. The experimental results are explained theoretically based on the calculation of the bonding energy between the anions and LDHs sheets as well as the AlO bond length change in the LDHs sheets. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Highly Efficient Iodine Capture by Layered Double Hydroxides Intercalated with Polysulfides

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Shulan; Islam, Saiful M.; Shim, Yurina; Gu, Qingyang; Wang, Pengli; Li, Hao; Sun, Genban; Yang, Xiaojing; Kanatzidis, Mercouri G.

    2014-12-23

    We demonstrate strong iodine (I-2) vapor adsorption using Mg/Al layered double hydroxide (MgAl-LDH) nanocomposites intercalated with polysulfide (S-x(2-)) groups (S-x-LDH, x = 2, 4, 6). The as-prepared LDH/polysulfide hybrid materials display highly efficient iodine capture resulting from the reducing property of the intercalated polysulfides. During adsorption, the I-2 molecules are reduced to I-3(-) anions by the intercalated [S-x](2-) groups that simultaneously are oxidized to form S8. In addition to the chemical adsorption, additional molecular I-2 is physically captured by the LDH composites. As a result of these parallel processes, and despite their very low BET surface areas, the iodine capture capacities of S-2-LDH, S-4-LDH, and S-6-LDH are similar to 1.32, 1.52, and 1.43 g/g, respectively, with a maximum adsorption of 152% (wt %). Thermogravimetric and differential thermal analysis (TG-DTA), energy dispersive X-ray spectroscopy (EDS), and temperature-variable powder X-ray diffraction (XRD) measurements show the resulting I-3(-) ions that intercalated into the LDH gallery have high thermal stability (>= 350 degrees C). The excellent iodine adsorption performance combined with the facile preparation points to the S-x-LDH systems as potential superior materials for adsorption of radioactive iodine, a waste product of the nuclear power industry.

  15. Copper intercalation at the interface of graphene and Ir(111) studied by scanning tunneling microscopy

    Science.gov (United States)

    Sicot, M.; Fagot-Revurat, Y.; Kierren, B.; Vasseur, G.; Malterre, D.

    2014-11-01

    We report on the intercalation of a submonolayer of copper at 775 K underneath graphene epitaxially grown on Ir(111) studied by means of low energy electron diffraction (LEED) and scanning tunneling microscopy (STM) at 77 K. Nucleation and growth dynamics of Cu below graphene have been investigated, and, most importantly, the intercalation mechanism has been identified. First, LEED patterns reveal the pseudomorphic growth of Cu on Ir under the topmost graphene layer resulting in a large Cu in-plane lattice parameter expansion of about 6% compared to Cu(111). Second, large-scale STM topographs as a function of Cu coverage show that Cu diffusion on Ir below graphene exhibits a low energy barrier resulting in Cu accumulation at Ir step edges. As a result, the graphene sheet undergoes a strong edges reshaping. Finally, atomically-resolved STM images reveal a damaged graphene sheet at the atomic scale after metal intercalation. Point defects in graphene were shown to be carbon vacancies. According to these results, a Cu penetration path beneath graphene is proposed to occur via metal aided defect formation with no or poor self healing of the graphene sheet. This work illustrates the fact that Cu intercalation is harmful for graphene grown on Ir(111) at the atomic scale.

  16. Towards Novel Multifunctional Pillared Nanostructures : Effective Intercalation of Adamantylamine in Graphene Oxide and Smectite Clays

    NARCIS (Netherlands)

    Spyrou, Konstantinos; Potsi, Georgia; Diamanti, Evmorfia K.; Ke, Xiaoxing; Serestatidou, Eleni; Verginadis, Ioannis I.; Velalopoulou, Anastasia P.; Evangelou, Angelos M.; Deligiannakis, Yiannis; Van Tendeloo, Gustaaf; Gournis, Dimitrios; Rudolf, Petra

    2014-01-01

    Multifunctional pillared materials are synthesized by the intercalation of cage-shaped adamantylamine (ADMA) molecules into the interlayer space of graphite oxide (GO) and aluminosilicate clays. The physicochemical and structural properties of these hybrids, determined by X-ray diffraction (XRD),

  17. Electronic properties of Cs-intercalated single-walled carbon nanotubes derived from nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Hamad, E; Goze-Bac, C; Aznar, R [nanoNMRI group, UMR5587, Universite Montpellier II, Place E Bataillon, 34095 Montpellier Cedex 5 (France); Nitze, F; Waagberg, T [Department of Physics, Umeaa University, 90187 Umeaa (Sweden); Schmid, M; Mehring, M, E-mail: Thomas.wagberg@physics.umu.se [Physikalisches Institut, Universitaet Stuttgart, D-70569 Stuttgart (Germany)

    2011-05-15

    We report on the electronic properties of Cs-intercalated single-walled carbon nanotubes (SWNTs). A detailed analysis of the {sup 13}C and {sup 133}Cs nuclear magnetic resonance (NMR) spectra reveals an increased metallization of the pristine SWNTs under Cs intercalation. The 'metallization' of Cs{sub x}C materials where x=0-0.144 is evidenced from the increased local electronic density of states (DOS) n(E{sub F}) at the Fermi level of the SWNTs as determined from spin-lattice relaxation measurements. In particular, there are two distinct electronic phases called {alpha} and {beta} and the transition between these occurs around x=0.05. The electronic DOS at the Fermi level increases monotonically at low intercalation levels x<0.05 ({alpha}-phase), whereas it reaches a plateau in the range 0.05{<=}x{<=}0.143 at high intercalation levels ({beta}-phase). The new {beta}-phase is accompanied by a hybridization of Cs(6s) orbitals with C(sp{sup 2}) orbitals of the SWNTs. In both phases, two types of metallic nanotubes are found with a low and a high local n(E{sub F}), corresponding to different local electronic band structures of the SWNTs.

  18. Li intercalation in graphite: a van der Waals density functional study

    NARCIS (Netherlands)

    Hazrati, E.; de Wijs, G.A.; Brocks, G.

    2014-01-01

    Modeling layered intercalation compounds from first principles poses a problem, as many of their properties are determined by a subtle balance between van der Waals interactions and chemical or Madelung terms, and a good description of van der Waals interactions is often lacking. Using van der Waals

  19. Intercalation and structural aspects of macroRAFT agents into MgAl layered double hydroxides

    Science.gov (United States)

    Kostadinova, Dessislava; Cenacchi Pereira, Ana; Lansalot, Muriel; D’Agosto, Franck; Bourgeat-Lami, Elodie; Leroux, Fabrice; Taviot-Guého, Christine; Cadars, Sylvian

    2016-01-01

    Increasing attention has been devoted to the design of layered double hydroxide (LDH)-based hybrid materials. In this work, we demonstrate the intercalation by anion exchange process of poly(acrylic acid) (PAA) and three different hydrophilic random copolymers of acrylic acid (AA) and n-butyl acrylate (BA) with molar masses ranging from 2000 to 4200 g mol−1 synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization, into LDH containing magnesium(II) and aluminium(III) intralayer cations and nitrates as counterions (MgAl-NO3 LDH). At basic pH, the copolymer chains (macroRAFT agents) carry negative charges which allowed the establishment of electrostatic interactions with the LDH interlayer and their intercalation. The resulting hybrid macroRAFT/LDH materials displayed an expanded interlamellar domain compared to pristine MgAl-NO3 LDH from 1.36 nm to 2.33 nm. Depending on the nature of the units involved into the macroRAFT copolymer (only AA or AA and BA), the intercalation led to monolayer or bilayer arrangements within the interlayer space. The macroRAFT intercalation and the molecular structure of the hybrid phases were further characterized by Fourier transform infrared (FTIR) and solid-state 13C, 1H and 27Al nuclear magnetic resonance (NMR) spectroscopies to get a better description of the local structure. PMID:28144548

  20. Electronic properties of Cs-intercalated single-walled carbon nanotubes derived from nuclear magnetic resonance

    KAUST Repository

    Abou-Hamad, E

    2011-05-24

    We report on the electronic properties of Cs-intercalated single-walled carbon nanotubes (SWNTs). A detailed analysis of the 13C and 133Cs nuclear magnetic resonance (NMR) spectra reveals an increased metallization of the pristine SWNTs under Cs intercalation. The \\'metallization\\' of CsxC materials where x=0–0.144 is evidenced from the increased local electronic density of states (DOS) n(EF) at the Fermi level of the SWNTs as determined from spin–lattice relaxation measurements. In particular, there are two distinct electronic phases called α and β and the transition between these occurs around x=0.05. The electronic DOS at the Fermi level increases monotonically at low intercalation levels x<0.05 (α-phase), whereas it reaches a plateau in the range 0.05≤x≤0.143 at high intercalation levels (β-phase). The new β-phase is accompanied by a hybridization of Cs(6s) orbitals with C(sp2) orbitals of the SWNTs. In both phases, two types of metallic nanotubes are found with a low and a high local n(EF), corresponding to different local electronic band structures of the SWNTs.

  1. Enhancement of electron-phonon coupling in Cs-overlayered intercalated bilayer graphene.

    Science.gov (United States)

    Kleeman, J; Sugawara, K; Sato, T; Takahashi, T

    2016-05-25

    We have performed high-resolution angle-resolved photoemission spectroscopy (ARPES) on cesium (Cs) intercalated bilayer graphene with a Cs overlayer (Cs-C8CsC8). Low-energy electron diffraction shows a (2  ×  2) pattern consistent with intercalation of a Cs layer similar to bulk C8Cs, in addition to the signature of a nearly commensurate superstructure created by the Cs overlayer. ARPES results reveal folding of the π bands due to the periodic (2  ×  2) potential of the intercalated Cs atoms, together with a free-electron-like state at the [Formula: see text] point. Significant mass renormalization is observed in the band dispersion near the Fermi level, indicative of strong electron-phonon coupling. Based on analysis of the self-energy, we find anisotropic electron-phonon coupling with an estimated strength of [Formula: see text]  ±  0.02 in the K-[Formula: see text] direction, and [Formula: see text] in the K-M direction. This coupling is much larger than that of other doped graphenes, and comparable to superconducting bulk GICs. We attribute this large electron-phonon coupling constant to the presence of the Cs overlayer, which highly dopes [Formula: see text] bands, and creates a structure similar to stage-I graphite intercalation compounds.

  2. Ca intercalated bilayer graphene as a thinnest limit of superconducting C6Ca.

    Science.gov (United States)

    Kanetani, Kohei; Sugawara, Katsuaki; Sato, Takafumi; Shimizu, Ryota; Iwaya, Katsuya; Hitosugi, Taro; Takahashi, Takashi

    2012-11-27

    Success in isolating a 2D graphene sheet from bulky graphite has triggered intensive studies of its physical properties as well as its application in devices. Graphite intercalation compounds (GICs) have provided a platform of exotic quantum phenomena such as superconductivity, but it is unclear whether such intercalation is feasible in the thinnest 2D limit (i.e., bilayer graphene). Here we report a unique experimental realization of 2D GIC, by fabricating calcium-intercalated bilayer graphene C(6)CaC(6) on silicon carbide. We have investigated the structure and electronic states by scanning tunneling microscopy and angle-resolved photoemission spectroscopy. We observed a free-electron-like interlayer band at the Brillouin-zone center, which is thought to be responsible for the superconductivity in 3D GICs, in addition to a large π* Fermi surface at the zone boundary. The present success in fabricating Ca-intercalated bilayer graphene would open a promising route to search for other 2D superconductors as well as to explore its application in devices.

  3. Europium underneath graphene on Ir(111): Intercalation mechanism, magnetism, and band structure

    Science.gov (United States)

    Schumacher, Stefan; Huttmann, Felix; Petrović, Marin; Witt, Christian; Förster, Daniel F.; Vo-Van, Chi; Coraux, Johann; Martínez-Galera, Antonio J.; Sessi, Violetta; Vergara, Ignacio; Rückamp, Reinhard; Grüninger, Markus; Schleheck, Nicolas; Meyer zu Heringdorf, Frank; Ohresser, Philippe; Kralj, Marko; Wehling, Tim O.; Michely, Thomas

    2014-12-01

    The intercalation of Eu underneath Gr on Ir(111) is comprehensively investigated by microscopic, magnetic, and spectroscopic measurements, as well as by density functional theory. Depending on the coverage, the intercalated Eu atoms form either a (2 ×2 ) or a (√{3 }×√{3 }) R 30∘ superstructure with respect to Gr. We investigate the mechanisms of Eu penetration through a nominally closed Gr sheet and measure the electronic structures and magnetic properties of the two intercalation systems. Their electronic structures are rather similar. Compared to Gr on Ir(111), the Gr bands in both systems are essentially rigidly shifted to larger binding energies resulting in n doping. The hybridization of the Ir surface state S1 with Gr states is lifted, and the moiré superperiodic potential is strongly reduced. In contrast, the magnetic behavior of the two intercalation systems differs substantially, as found by x-ray magnetic circular dichroism. The (2 ×2 ) Eu structure displays plain paramagnetic behavior, whereas for the (√{3 }×√{3 }) R 30∘ structure the large zero-field susceptibility indicates ferromagnetic coupling, despite the absence of hysteresis at 10 K. For the latter structure, a considerable easy-plane magnetic anisotropy is observed and interpreted as shape anisotropy.

  4. Analysis and prediction of stacking sequences in intercalated lamellar vanadium phosphates

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, Romain [Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS - Ecole Nationale Superieure de Chimie de Rennes (France); Centre Nationale de la Recherche Scientifique (CNRS), Institut des Materiaux Jean Rouxel (IMN), Universite de Nantes (France); Fourre, Yoann; Furet, Eric; Gautier, Regis; Le Fur, Eric [Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS - Ecole Nationale Superieure de Chimie de Rennes (France)

    2015-04-15

    An approach is presented that enables the analysis and prediction of stacking sequences in intercalated lamellar vanadium phosphates. A comparison of previously reported vanadium phosphates reveals two modes of intercalation: (i) 3d transition metal ions intercalated between VOPO{sub 4} layers and (ii) alkali/alkaline earth metal ions between VOPO{sub 4}.H{sub 2}O layers. Both intercalations were investigated using DFT calculations in order to understand the relative shifts of the vanadium phosphate layers. These calculations in addition to an analysis of the stacking sequences in previously reported materials enable the prediction of the crystal structures of M{sub x}(VOPO{sub 4}).yH{sub 2}O (M = Cs{sup +}, Cd{sup 2+} and Sn{sup 2+}). Experimental realization and structural determination of Cd(VOPO{sub 4}){sub 2}.4H{sub 2}O by single-crystal X-ray diffraction confirmed the predicted stacking sequences. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Preparation of Fe-intercalated Graphite Based on Coal Tailings, Dimensional Structure

    Directory of Open Access Journals (Sweden)

    Irfan Gustian

    2015-12-01

    Full Text Available Intercalated graphite from coal tailings have been modified through the intercalation of iron. Coal tailings which is a byproduct of the destruction process and flakes washing results from mining coal. Intercalation of iron goal is to improve the physical properties of graphite and modifying sizes of crystal lattice structure with thermal method. Modification process begins with the carbonization of coal tailings at 500ºC and activated with phosphoric acid. Activation process has done by pyrolysis at 700ºC. The results of pyrolysis was soaked in mineral oil for 24 hours, then pyrolysis again with variations in temperature 800°C and 900ºC for 1 hour and subsequent intercalation iron at 1% and 2%. Material before activated, after activated, and the results of pyrolysis still indicates order nano: 29, 25 and 36 nm respectively. X-ray diffraction characterization results indicate that change in the structure, the sizes crystal lattice structure of the material The greater the concentration of iron was added, the resulting peak at 2θ = 33 and 35 also will be more sharply. The results of SEM showed different morphologies from each treatment.

  6. Intercalation and structural aspects of macroRAFT agents into MgAl layered double hydroxides

    Directory of Open Access Journals (Sweden)

    Dessislava Kostadinova

    2016-12-01

    Full Text Available Increasing attention has been devoted to the design of layered double hydroxide (LDH-based hybrid materials. In this work, we demonstrate the intercalation by anion exchange process of poly(acrylic acid (PAA and three different hydrophilic random copolymers of acrylic acid (AA and n-butyl acrylate (BA with molar masses ranging from 2000 to 4200 g mol−1 synthesized by reversible addition-fragmentation chain transfer (RAFT polymerization, into LDH containing magnesium(II and aluminium(III intralayer cations and nitrates as counterions (MgAl-NO3 LDH. At basic pH, the copolymer chains (macroRAFT agents carry negative charges which allowed the establishment of electrostatic interactions with the LDH interlayer and their intercalation. The resulting hybrid macroRAFT/LDH materials displayed an expanded interlamellar domain compared to pristine MgAl-NO3 LDH from 1.36 nm to 2.33 nm. Depending on the nature of the units involved into the macroRAFT copolymer (only AA or AA and BA, the intercalation led to monolayer or bilayer arrangements within the interlayer space. The macroRAFT intercalation and the molecular structure of the hybrid phases were further characterized by Fourier transform infrared (FTIR and solid-state 13C, 1H and 27Al nuclear magnetic resonance (NMR spectroscopies to get a better description of the local structure.

  7. ORGANIC-INORGANIC HYBRIDS PREPARED FROM ALKYL PHOSPHONIUM SALTS INTERCALATED MONTMORILLONITES

    Directory of Open Access Journals (Sweden)

    SAHELI GANGULY

    2012-12-01

    Full Text Available Present investigation is focused on systematic and detailed characterization of alkyl phosphonium intercalated montmorillonite (MMT. The objective of the work is to provide a better understanding of the specific changes in properties of the hybrid material with changes in structure of incoming organic cations. In the present work, Na-MMT was intercalated with phosphonium salts of two different cationic head compositions namely alkyl triphenyl and alkyl tributyl groups. Length of alkyl chain was also varied. Resultant organic-inorganic hybrids were characterized by X-ray diffraction (XRD, Transmission electron microscopy (TEM, Thermogravimetry (TG and Fourier transformed infrared spectroscopy (FTIR. Effective volume occupied by the cationic heads influenced interlayer arrangements. Intercalated MMT with two different cationic heads behaved differently in relation to thermal decomposition patterns. Possible explanation was given based on hybridization of bonds. Van der Waals attachment of alkyl chains influenced the interlayer stacking and organic loading. Attempts were made to correlate the changes in properties of intercalated MMT with the structural aspects of incoming organic cations.

  8. Electronic properties and orbital-filling mechanism in Rb-intercalated copper phthalocyanine

    NARCIS (Netherlands)

    Evangelista, F.; Gotter, R.; Mahne, N.; Nannarone, S.; Ruocco, A.; Rudolf, P.

    2008-01-01

    The evolution of the electronic properties of a thin film of copper phthalocyanine deposited on Al(100) and progressively intercalated with rubidium atoms was followed by photoemission and X-ray absorption spectroscopies. Electron donation from the Rb atoms to the C32H16N8Cu molecules results in the

  9. Effect of friction on oxidative graphite intercalation and high-quality graphene formation.

    Science.gov (United States)

    Seiler, Steffen; Halbig, Christian E; Grote, Fabian; Rietsch, Philipp; Börrnert, Felix; Kaiser, Ute; Meyer, Bernd; Eigler, Siegfried

    2018-02-26

    Oxidative wet-chemical delamination of graphene from graphite is expected to become a scalable production method. However, the formation process of the intermediate stage-1 graphite sulfate by sulfuric acid intercalation and its subsequent oxidation are poorly understood and lattice defect formation must be avoided. Here, we demonstrate film formation of micrometer-sized graphene flakes with lattice defects down to 0.02% and visualize the carbon lattice by transmission electron microscopy at atomic resolution. Interestingly, we find that only well-ordered, highly crystalline graphite delaminates into oxo-functionalized graphene, whereas other graphite grades do not form a proper stage-1 intercalate and revert back to graphite upon hydrolysis. Ab initio molecular dynamics simulations show that ideal stacking and electronic oxidation of the graphite layers significantly reduce the friction of the moving sulfuric acid molecules, thereby facilitating intercalation. Furthermore, the evaluation of the stability of oxo-species in graphite sulfate supports an oxidation mechanism that obviates intercalation of the oxidant.

  10. Electron beam induced electronic transport in alkyl amine-intercalated VOx nanotubes

    NARCIS (Netherlands)

    O'Dwyer, C.; Lavayen, V.; Clavijo Cedeno, C.E.; Sotomayor Torres, C.M.

    2008-01-01

    The electron beam induced electronic transport in primary alkyl amine-intercalated V2O5 nanotubes is investigated where the organic amine molecules are employed as molecular conductive wires to an aminosilanized substrate surface and contacted to Au interdigitated electrode contacts. The results

  11. Renal intercalated cells are rather energized by a proton than a sodium pump.

    Science.gov (United States)

    Chambrey, Régine; Kurth, Ingo; Peti-Peterdi, Janos; Houillier, Pascal; Purkerson, Jeffrey M; Leviel, Françoise; Hentschke, Moritz; Zdebik, Anselm A; Schwartz, George J; Hübner, Christian A; Eladari, Dominique

    2013-05-07

    The Na(+) concentration of the intracellular milieu is very low compared with the extracellular medium. Transport of Na(+) along this gradient is used to fuel secondary transport of many solutes, and thus plays a major role for most cell functions including the control of cell volume and resting membrane potential. Because of a continuous leak, Na(+) has to be permanently removed from the intracellular milieu, a process that is thought to be exclusively mediated by the Na(+)/K(+)-ATPase in animal cells. Here, we show that intercalated cells of the mouse kidney are an exception to this general rule. By an approach combining two-photon imaging of isolated renal tubules, physiological studies, and genetically engineered animals, we demonstrate that inhibition of the H(+) vacuolar-type ATPase (V-ATPase) caused drastic cell swelling and depolarization, and also inhibited the NaCl absorption pathway that we recently discovered in intercalated cells. In contrast, pharmacological blockade of the Na(+)/K(+)-ATPase had no effects. Basolateral NaCl exit from β-intercalated cells was independent of the Na(+)/K(+)-ATPase but critically relied on the presence of the basolateral ion transporter anion exchanger 4. We conclude that not all animal cells critically rely on the sodium pump as the unique bioenergizer, but can be replaced by the H(+) V-ATPase in renal intercalated cells. This concept is likely to apply to other animal cell types characterized by plasma membrane expression of the H(+) V-ATPase.

  12. Distribution of cardiac sodium channels in clusters potentiates ephaptic interactions in the intercalated disc.

    Science.gov (United States)

    Hichri, Echrak; Abriel, Hugues; Kucera, Jan P

    2017-12-06

    It has been proposed that ephaptic conduction, relying on interactions between the sodium (Na+ ) current and the extracellular potential in intercalated discs, might contribute to cardiac conduction when gap junctional coupling is reduced, but this mechanism is still controversial. In intercalated discs, Na+ channels form clusters near gap junction plaques, but the functional significance of these clusters has never been evaluated. In HEK cells expressing cardiac Na+ channels, we show that restricting the extracellular space modulates the Na+ current, as predicted by corresponding simulations accounting for ephaptic effects. In a high-resolution model of the intercalated disc, clusters of Na+ channels that face each other across the intercellular cleft facilitate ephaptic impulse transmission when gap junctional coupling is reduced. Thus, our simulations reveal a functional role for the clustering of Na+ channels in intercalated discs, and suggest that rearrangement of these clusters in disease may influence cardiac conduction. It has been proposed that ephaptic interactions in intercalated discs, mediated by extracellular potentials, contribute to cardiac impulse propagation when gap junctional coupling is reduced. However, experiments demonstrating ephaptic effects on the cardiac Na+ current (INa ) are scarce. Furthermore, Na+ channels form clusters around gap junction plaques, but the electrophysiological significance of these clusters has never been investigated. In patch clamp experiments with HEK cells stably expressing human Nav 1.5 channels, we examined how restricting the extracellular space modulates INa elicited by an activation protocol. In parallel, we developed a high-resolution computer model of the intercalated disc to investigate how the distribution of Na+ channels influences ephaptic interactions. Approaching the HEK cells to a non-conducting obstacle always increased peak INa at step potentials near the threshold of INa activation and decreased

  13. Direct intercalation of cisplatin into zirconium phosphate nanoplatelets for potential cancer nanotherapy

    Science.gov (United States)

    Díaz, Agustín; González, Millie L.; Pérez, Riviam J.; David, Amanda; Mukherjee, Atashi; Báez, Adriana; Clearfield, Abraham; Colón, Jorge L.

    2013-11-01

    We report the use of zirconium phosphate (ZrP) nanoplatelets for the encapsulation of the anticancer drug cisplatin and its delivery to tumor cells. Cisplatin was intercalated into ZrP by direct ion exchange and was tested in vitro for cytotoxicity in the human breast cancer (MCF-7) cell line. The structural characterization of the intercalated cisplatin in ZrP suggests that during the intercalation process, the chloride ligands of the cisplatin complex were substituted by phosphate groups within the layers. Consequently, a new phosphate phase with the platinum complex directly bound to ZrP (cisPt@ZrP) is produced with an interlayer distance of 9.3 Å. The in vitro release profile of the intercalated drug upon a pH stimulus shows that at low pH under lysosomal conditions the platinum complex is released with simultaneous hydrolysis of the zirconium phosphate material, while at higher pH the complex is not released. Experiments with the MCF-7 cell line show that cisPt@ZrP reduced the cell viability up to 40%. The cisPt@ZrP intercalation product is envisioned as a future nanotherapy agent against cancer. Taking advantage of the shape and sizes of the ZrP particles and controlled release of the drug at low pH, it is intended to exploit the enhanced permeability and retention effect of tumors, as well as their intrinsic acidity, for the destruction of malignant cells.We report the use of zirconium phosphate (ZrP) nanoplatelets for the encapsulation of the anticancer drug cisplatin and its delivery to tumor cells. Cisplatin was intercalated into ZrP by direct ion exchange and was tested in vitro for cytotoxicity in the human breast cancer (MCF-7) cell line. The structural characterization of the intercalated cisplatin in ZrP suggests that during the intercalation process, the chloride ligands of the cisplatin complex were substituted by phosphate groups within the layers. Consequently, a new phosphate phase with the platinum complex directly bound to ZrP (cisPt@ZrP) is

  14. Mg-doped and oxygen-intercalated CuScO2 delafossites

    Science.gov (United States)

    Kykyneshi, R.; Nielsen, B. C.; Tate, J.; Li, J.; Sleight, A. W.

    2004-05-01

    The effect of Mg doping and O-intercalation on the structural and transport properties of CuSc_1-xMg_xO_2+y, a p-type transparent conducting oxide (TCO), were studied in the sintered powder and thin film forms. Mg^2+ substitution on the Sc^3+ site resulted in a maximum conductivity of 0.015 S/cm at x ª 0.06 in CuSc_1-xMg_xO2 sintered pellets, with similar values for polycrystalline thin films of the same composition. Oxygen intercalation allowed substantially more carriers to be introduced, and therefore had a larger impact on the properties of CuSc_1-xMg_xO_2+y. The highest conductivity measured was 0.5 S/cm in a CuSc_0.95Mg_0.05O_2.33 pellet and 25 S/cm in a heavily intercalated thin film. The amount of oxygen entering the lattice varied with Mg doping in powders. Substitutional doping of films at the level of a few percent of Mg introduced no significant change in optical absorption, while the O-intercalation darkened both films and powders. We observed, via x-ray diffraction of powders and films, the formation of two phases during oxygen intercalation with compositions close to CuSc_1-xMg_xO2 and CuSc_1-xMg_xO_2.5, and a systematic increase of the average a-axis lattice parameter. This work is partially funded by the National Science Foundation.

  15. New insights into the intercalation chemistry of Al(OH)3.

    Science.gov (United States)

    Williams, Gareth R; Moorhouse, Saul J; Prior, Timothy J; Fogg, Andrew M; Rees, Nicholas H; O'Hare, Dermot

    2011-06-14

    This paper reports a number of recent developments in the intercalation chemistry of Al(OH)(3). From Rietveld refinement and solid-state NMR, it has been possible to develop a structural model for the recently reported [M(II)Al(4)(OH)(12)](NO(3))(2)·yH(2)O family of layered double hydroxides (LDHs). The M(2+) cations occupy half of the octahedral holes in the Al(OH)(3) layers, and it is thought that there is complete ordering of the metal ions while the interlayer nitrate anions are highly disordered. Filling the remainder of the octahedral holes in the layers proved impossible. While the intercalation of Li salts into Al(OH)(3) is facile, it was found that the intercalation of M(II) salts is much more capricious. Only with Co, Ni, Cu, and Zn nitrates and Zn sulfate were phase-pure LDHs produced. In other cases, there is either no reaction or a phase believed to be an LDH forms concomitantly with impurity phases. Reacting Al(OH)(3) with mixtures of M(II) salts can lead to the production of three-metal M(II)-M(II)'-Al LDHs, but it is necessary to control precisely the starting ratios of the two M(II) salts in the reaction gel because Al(OH)(3) displays selective intercalation of M nitrate (Li > Ni > Co ≈ Zn). The three-metal M(II)-M(II)'-Al LDHs exhibit facile ion exchange intercalation, which has been investigated in the first energy dispersive X-ray diffraction study of a chemical reaction system performed on Beamline I12 of the Diamond Light Source.

  16. Visual characterization and quantitative measurement of artemisinin-induced DNA breakage

    Energy Technology Data Exchange (ETDEWEB)

    Cai Huaihong [Bionanotechnology Lab, and Department of Chemistry, Jinan University, Guangzhou 510632 (China); Yang Peihui [Bionanotechnology Lab, and Department of Chemistry, Jinan University, Guangzhou 510632 (China)], E-mail: typh@jnu.edu.cn; Chen Jianan [Bionanotechnology Lab, and Department of Chemistry, Jinan University, Guangzhou 510632 (China); Liang Zhihong [Experiment and Technology Center, Jinan University, Guangzhou 510632 (China); Chen Qiongyu [Institute of Genetic Engineering, Jinan University, Guangzhou 510632 (China); Cai Jiye [Bionanotechnology Lab, and Department of Chemistry, Jinan University, Guangzhou 510632 (China)], E-mail: tjycai@jnu.edu.cn

    2009-05-01

    DNA conformational change and breakage induced by artemisinin, a traditional Chinese herbal medicine, have been visually characterized and quantitatively measured by the multiple tools of electrochemistry, UV-vis absorption spectroscopy, atomic force microscopy (AFM), and DNA electrophoresis. Electrochemical and spectroscopic results confirm that artemisinin can intercalate into DNA double helix, which causes DNA conformational changes. AFM imaging vividly demonstrates uneven DNA strand breaking induced by QHS interaction. To assess these DNA breakages, quantitative analysis of the extent of DNA breakage has been performed by analyzing AFM images. Basing on the statistical analysis, the occurrence of DNA breaks is found to depend on the concentration of artemisinin. DNA electrophoresis further validates that the intact DNA molecules are unwound due to the breakages occur at the single strands. A reliable scheme is proposed to explain the process of artemisinin-induced DNA cleavage. These results can provide further information for better understanding the anticancer activity of artemisinin.

  17. Investigation on interaction of DNA and several cationic surfactants with different head groups by spectroscopy, gel electrophoresis and viscosity technologies.

    Science.gov (United States)

    Guo, Qing; Zhang, Zhaohong; Song, Youtao; Liu, Shuo; Gao, Wei; Qiao, Heng; Guo, Lili; Wang, Jun

    2017-02-01

    In this study, the interaction between DNA and several cationic surfactants with different head groups such as ethyl hexadecyl dimethyl ammonium bromide (EHDAB), hexadecyl dimethyl benzyl ammonium chloride (HDBAC), and cetyl pyridinium bromide (CPB) were investigated by UV-vis absorption, fluorescence and circular dichroism (CD) spectroscopy, gel electrophoresis, and viscosity technologies. The results show that these cationic surfactants can interact with DNA and major binding modes are electrostatic and hydrophobic. Also, CPB and HDBAC molecules interact with DNA by partial intercalation, and CPB has slightly stronger intercalation than HDBAC, while EHDAB interacts with DNA by non-intercalation. The different head groups of the surfactant molecules can influence the interaction strength. CPB has the stronger interaction with DNA than the others. Moreover, surfactant concentration, the ratio of DNA and fluorescence probe, ionic strength can influence the interaction. The surfactants may interact with DNA by the competition reactions with BR for DNA-BR. The increase of ionic strength may favor the surface binding between DNA and surfactants to some extent. This work provides deep mechanistic insight on the toxicity of cationic surfactants with different head groups to DNA molecules. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effect of a Dual Charge on the DNA-Conjugated Redox Probe on DNA Sensing by Short Hairpin Beacons Tethered to Gold Electrodes.

    Science.gov (United States)

    Kékedy-Nagy, László; Shipovskov, Stepan; Ferapontova, Elena E

    2016-08-16

    Charges of redox species can critically affect both the interfacial state of DNA and electrochemistry of DNA-conjugated redox labels and, as a result, the electroanalytical performance of those systems. Here, we show that the kinetics of electron transfer (ET) between the gold electrode and methylene blue (MB) label conjugated to a double-stranded (ds) DNA tethered to gold strongly depend on the charge of the MB molecule, and that affects the performance of genosensors exploiting MB-labeled hairpin DNA beacons. Positively charged MB binds to dsDNA via electrostatic and intercalative/groove binding, and this binding allows the DNA-mediated electrochemistry of MB intercalated into the duplex and, as a result, a complex mode of the electrochemical signal change upon hairpin hybridization to the target DNA, dominated by the "on-off" signal change mode at nanomolar levels of the analyzed DNA. When MB bears an additional carboxylic group, the negative charge provided by this group prevents intimate interactions between MB and DNA, and then the ET in duplexes is limited by the diffusion of the MB-conjugated dsDNA (the phenomenon first shown in Farjami , E. ; Clima , L. ; Gothelf , K. ; Ferapontova , E. E. Anal. Chem. 2011 , 83 , 1594 ) providing the robust "off-on" nanomolar DNA sensing. Those results can be extended to other intercalating redox probes and are of strategic importance for design and development of electrochemical hybridization sensors exploiting DNA nanoswitchable architectures.

  19. Reactive Kripke semantics

    CERN Document Server

    Gabbay, Dov M

    2013-01-01

    This text offers an extension to the traditional Kripke semantics for non-classical logics by adding the notion of reactivity. Reactive Kripke models change their accessibility relation as we progress in the evaluation process of formulas in the model. This feature makes the reactive Kripke semantics strictly stronger and more applicable than the traditional one. Here we investigate the properties and axiomatisations of this new and most effective semantics, and we offer a wide landscape of applications of the idea of reactivity. Applied topics include reactive automata, reactive grammars, rea

  20. Photoconductivity in DNA-Porphyrin Complexes

    Science.gov (United States)

    Myint, Peco; Oxford, Emma; Nyazenga, Collence; Smith, Walter; Qi, Zhengqing; Johnson, A. T.

    2015-03-01

    We have measured the photoconductivity of λ - DNA that is modified by intercalating a porphyrin compound, meso-tetrakis(N-methyl-4-pyridiniumyl)porphyrin (TMPyP), into its base stacks. Intercalation was verified by a red shift and hypochromism of the Soret absorption peak. The DNA/porphyrin strands were then deposited onto oxidized silicon substrates which had been patterned with interdigitated electrodes, and blown dry. Electrical measurements were carried out under nitrogen, using illumination from a 445 nm laser; this wavelength falls within the absorption peak of the DNA/porphyrin complexes. When initially measured under dry nitrogen, the complexes show no photoconductivity or dark conductivity. However, at relative humidities of 30% and above, we do observe dark conductivity, and also photoconductivity that grows with time. Photoconductivity gets larger at higher relative humidity. Remarkably, when the humidity is lowered again, some photoconductivity is now observed, indicating a change that persists for more than 24 hours. It may be that the humidity alters the structure of the DNA, perhaps allowing for better alignment of the bases. This work was supported by NSF Grant BMAT-1306170.

  1. Environmentally benign graphite intercalation compound composition for exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    Science.gov (United States)

    Zhamu, Aruna; Jang, Bor Z.

    2014-06-17

    A carboxylic-intercalated graphite compound composition for the production of exfoliated graphite, flexible graphite, or nano-scaled graphene platelets. The composition comprises a layered graphite with interlayer spaces or interstices and a carboxylic acid residing in at least one of the interstices, wherein the composition is prepared by a chemical oxidation reaction which uses a combination of a carboxylic acid and hydrogen peroxide as an intercalate source. Alternatively, the composition may be prepared by an electrochemical reaction, which uses a carboxylic acid as both an electrolyte and an intercalate source. Exfoliation of the invented composition does not release undesirable chemical contaminants into air or drainage.

  2. Influence of acoustic phonons on the magnitude of energy fluctuations in DNA

    Energy Technology Data Exchange (ETDEWEB)

    Lozansky, E.D. (Univ. of Rochester, NY); Sobell, H.M.

    1980-01-01

    It is shown that acoustic phonons can play an important role in determining the magnitude of energy fluctuations along the DNA molecule. This reflects heterogeneity in DNA flexibility associated with different stacking energies that stabilize various combinations of nucleotide sequences in its structure. Regions of DNA having greater flexibility undergo larger energy fluctuations. As a result, these regions have higher probability that conformational changes occur and this increases the rates of such kinetic processes as drug intercalation, DNA breathing and protein-DNA interactions. We discuss further biological implications of this effect here.

  3. Two novel ternary dicopper(II) μ-guanazole complexes with aromatic amines strongly activated by quantum dots for DNA cleavage.

    Science.gov (United States)

    Hernández-Gil, Javier; Ferrer, Sacramento; Castiñeiras, Alfonso; Liu-González, Malva; Lloret, Francesc; Ribes, Angela; Coga, Lucija; Bernecker, Anja; Mareque-Rivas, Juan C

    2014-01-06

    Two novel (μ-guanazole)-bridged binuclear copper(II) complexes with 1,10-phenanthroline (phen) or 2,2'-bipyridine (bipy), [Cu2(μ-N2,N4-Hdatrz)(phen)2(H2O)(NO3)4] (1) and [Cu2(μ-N1,N2-datrz)2(μ-OH2)(bipy)2](ClO4)2 (2) (Hdatrz = 3,5-diamino-1,2,4-triazole = guanazole), have been prepared and characterized by X-ray diffraction, spectroscopy, and susceptibility measurements. Compounds 1 and 2 differ in the aromatic amine, which acts as a coligand, and in the Cu···Cu'-bridging system. Compound 1, which contains two mono-bridged copper ions, represents the first example of a discrete Cu-(NCN-trz)-Cu' complex. Compound 2, with two triply bridged copper ions, is one of the few compounds featuring a Cu-[(NN-trz)2 + (O-aquo)]-Cu' unit. Both compounds display antiferromagnetic coupling but of different magnitude: J (μ2,4-triazole) = -52 cm(-1) for 1 and J (μ1,2-triazolate) = -115 cm(-1) for 2. The DNA binding and cleavage properties of the two compounds have been investigated. Fluorescence, viscosimetry, and thermal denaturation studies reveal that both complexes have high affinity for DNA (1 > 2) and that only 1 acts as an intercalator. In the presence of a reducing agent like 3-mercaptopropionic acid, 1 produces significant oxidative DNA cleavage, whereas 2 is inactive. However, in the presence of very small quantities of micelles filled with core-shell CdSe-ZnS quantum dots (15 nM), 1 and 2 are considerably more active and become highly efficient nucleases as a result of the different possible mechanisms for promoting cooperative catalysis (metal-metal, metal-hydrogen bonding, metal-intercalation, and metal-nanoparticle). Electrophoresis DNA-cleavage inhibition experiments, X-ray photoelectron spectroscopy studies, and fluorescence ethidium bromide displacement assays reveal that in these novel nucleases the QDs act as redox-active protein-like nanoparticle structures that bind to the DNA and deliver electrons to the copper(II) centers for the generation of Cu

  4. Native and fluorescent dye-dependent single-DNA molecule microchip dynamics as measured by differential interference contrast microscopy.

    Science.gov (United States)

    Oh, Doori; Lee, Seungah; Kang, Seong Ho

    2011-08-28

    In a free solution of 10.0 mM Gly-Gly (pH 8.2), the flow directions of native-DNA and DNA molecules intercalated with the fluorescent dye YOYO-1 were reversed in the microchip channel. These results clearly showed that in a confined space and under specific environmental conditions, the fluorescent dye modified the original properties and behavior of the native-DNA molecule.

  5. Monadic Functional Reactive Programming

    NARCIS (Netherlands)

    A.J. van der Ploeg (Atze); C Shan

    2013-01-01

    htmlabstractFunctional Reactive Programming (FRP) is a way to program reactive systems in functional style, eliminating many of the problems that arise from imperative techniques. In this paper, we present an alternative FRP formulation that is based on the notion of a reactive computation: a

  6. Synthesis of a drug delivery vehicle for cancer treatment utilizing DNA-functionalized gold nanoparticles

    Science.gov (United States)

    Brann, Tyler

    The treatment of cancer with chemotherapeutic agents has made great strides in the last few decades but still introduces major systemic side effects. The potent drugs needed to kill cancer cells often cause irreparable damage to otherwise healthy organs leading to further morbidity and mortality. A therapy with intrinsic selective properties and/or an inducible activation has the potential to change the way cancer can be treated. Gold nanoparticles (GNPs) are biocompatible and chemically versatile tools that can be readily functionalized to serve as molecular vehicles. The ability of these particles to strongly absorb light with wavelengths in the therapeutic window combined with the heating effect of surface plasmon resonance makes them uniquely suited for noninvasive heating in biologic applications. Specially designed DNA aptamers have shown their ability to serve as drug carriers through intercalation as well as directly acting as therapeutic agents. By combining these separate molecules a multifaceted drug delivery vehicle can be created with great potential as a selective and controllable treatment for cancer. Oligonucleotide-coated GNPs have been created using spherical GNPs but little work has been reported using gold nanoplates in this way. Using the Diasynth method gold nanoplates were produced to absorb strongly in the therapeutic near infrared (nIR) window. These particles were functionalized with two DNA oligonucleotides: one serving as an intercalation site for doxorubicin, and another, AS1411, serving directly as an anticancer targeting/therapeutic agent. These functional particles were fully synthesized and processed along with confirmation of DNA functionalization and doxorubicin intercalation. Doxorubicin is released via denaturation of the DNA structure into which doxorubicin is intercalated upon the heating of the gold nanoplate well above the DNA melting temperature. This temperature increase, due to light stimulation of surface plasmon

  7. Interaction of DNA with Simple and Mixed Ligand Copper(II Complexes of 1,10-Phenanthrolines as Studied by DNA-Fiber EPR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Makoto Chikira

    2015-09-01

    Full Text Available The interaction of simple and ternary Cu(II complexes of 1,10-phenanthrolines with DNA has been studied extensively because of their various interesting and important functions such as DNA cleavage activity, cytotoxicity towards cancer cells, and DNA based asymmetric catalysis. Such functions are closely related to the DNA binding modes of the complexes such as intercalation, groove binding, and electrostatic surface binding. A variety of spectroscopic methods have been used to study the DNA binding mode of the Cu(II complexes. Of all these methods, DNA-fiber electron paramagnetic resonance (EPR spectroscopy affords unique information on the DNA binding structures of the complexes. In this review we summarize the results of our DNA-fiber EPR studies on the DNA binding structure of the complexes and discuss them together with the data accumulated by using other measurements.

  8. Interaction of DNA with Simple and Mixed Ligand Copper(II) Complexes of 1,10-Phenanthrolines as Studied by DNA-Fiber EPR Spectroscopy

    Science.gov (United States)

    Chikira, Makoto; Ng, Chew Hee; Palaniandavar, Mallayan

    2015-01-01

    The interaction of simple and ternary Cu(II) complexes of 1,10-phenanthrolines with DNA has been studied extensively because of their various interesting and important functions such as DNA cleavage activity, cytotoxicity towards cancer cells, and DNA based asymmetric catalysis. Such functions are closely related to the DNA binding modes of the complexes such as intercalation, groove binding, and electrostatic surface binding. A variety of spectroscopic methods have been used to study the DNA binding mode of the Cu(II) complexes. Of all these methods, DNA-fiber electron paramagnetic resonance (EPR) spectroscopy affords unique information on the DNA binding structures of the complexes. In this review we summarize the results of our DNA-fiber EPR studies on the DNA binding structure of the complexes and discuss them together with the data accumulated by using other measurements. PMID:26402668

  9. Uptake of aromatic compounds by DNA: Toward the environmental application of DNA for cleaning water.

    Science.gov (United States)

    Fernández-Solis, Christian; Kuroda, Yasuhiro; Zinchenko, Anatoly; Murata, Shizuaki

    2015-05-01

    Although the interaction of DNA with various types of intercalating chemicals, such as planar polycyclic aromatic compounds, has been extensively investigated over the past several decades, little is known about the relationship between the structure of a DNA binder and its affinity for DNA. The use of DNA as an adsorbent for environmental cleaning purposes requires information on its affinity for organic chemicals with different structures. In the present study we investigated the binding of DNA to aromatic chemicals with various structures and charges by three methods: binding of organic chemicals to DNA followed by removal by precipitation with cationic nanoparticles (1) or a cationic surfactant (2), and absorption of organic chemicals by a DNA hydrogel (3). The results showed that, for most neutral organic chemicals, the hydrophobicity of the organic molecule is the main driving force for efficient binding to DNA. The double-helicity of DNA contributed to stronger binding to most of the compounds. The efficiency of the uptake of organic chemicals increased substantially when a hydrophobic cationic surfactant was used for DNA-complex condensation and removal. The potential environmental application of DNA as an adsorbent for the removal of aromatic organic pollutants from water is discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Synthesis and structure of new tetracopper(II) complexes with N-benzoate-N'-[3-(diethylamino)propyl]oxamide as a bridging ligand: The influence of hydrophobicity on enhanced DNA/BSA-binding and anticancer activity.

    Science.gov (United States)

    Fu, Hong-Lei; Zheng, Kang; Zhang, Mei-Jiao; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2016-08-01

    Two new tetracopper(II) complexes bridged by N-benzoate-N'-[3-(diethylamino)propyl]oxamide (H3bdpox), and ended with 4,4'-dimethyl-2,2'-bipyridine (Me2bpy) or 2,2'-bipyridine (bpy), namely [Cu4(bdpox)2(Me2bpy)2](pic)2 (1) and [Cu4(bdpox)2(bpy)2](pic)2·2H2O (2) (where pic denotes the picrate anion) have been synthesized and characterized by X-ray single-crystal diffraction and other methods. In both complexes, four copper(II) ions are bridged alternately by the cis-oxamido and the carboxylato groups of two bdpox(3-) ligands to form a centrosymmetric cyclic tetranuclear cation, in which, the copper(II) ions at the endo- and exo-sites of cis-bdpox(3-) ligand have square-planar and square-pyramidal coordination geometries, respectively. The reactivity towards DNA/BSA suggests that these complexes can interact with HS-DNA through the intercalation mode and the binding affinity varies as 1>2 depending on the hydrophobicity, and effectively quench the fluorescence of protein BSA via a static mechanism. In vitro anticancer activities showed that the two complexes are active against the selected tumor cell lines, and the anticancer activities are consistent with their DNA-binding affinity. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. In vitro cytotoxic activities, DNA-, and BSA-binding studies of a new dinuclear copper(II) complex with N-[3-(dimethylamino)propyl]-N'-(2-carboxylatophenyl)-oxamide as ligand.

    Science.gov (United States)

    Jiao, Jing; Jiang, Man; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2014-02-01

    A new dinuclear copper(II) complex bridged by N-[3-(dimethylamino)propyl]-N'- (2-carbo-xylatophenyl)oxamide (H3 dmapob), and endcapped with 2,2'-diamino-4,4'-bithiazole (dabt), namely [Cu₂(dmapob)(dabt)(CH₃OH)(pic)]·(DMF)₀.₇₅ ·(CH₃OH)₀.₂₅ has been synthesized and characterized by elemental analysis, molar conductivity measurement, infrared and electronic spectra studies, and single-crystal X-ray diffraction. In the crystal structure, both copper(II) ions have square-pyramidal coordination geometries. The Cu···Cu separation through the oxamido bridge is 5.176(9) Å. A two-dimensional supramolecular framework is formed through hydrogen bonds and π-π stacking interactions. The reactivities toward herring sperm DNA and bovine serum albumin (BSA) show that the complex can interact with the DNA via intercalation mode and bind to the BSA responsible for quenching of tryptophan fluorescence by the static quenching mechanism. The in vitro anticancer activities suggest that the copper(II) complex is active against the selected tumor cell lines. The influence of different bridging ligands in dinuclear complexes on the DNA- and BSA-binding properties as well as anticancer activities is preliminarily discussed. © 2013 Wiley Periodicals, Inc.

  12. Intercalation effect on hyperfine parameters of Fe in FeSe superconductor with Tc = 42 K

    Science.gov (United States)

    Shylin, Sergii I.; Ksenofontov, Vadim; Sedlmaier, Stefan J.; Clarke, Simon J.; Cassidy, Simon J.; Wortmann, Gerhard; Medvedev, Sergey A.; Felser, Claudia

    2015-03-01

    57Fe-Mössbauer spectra of superconducting β-FeSe, the Li/NH3 intercalate product and a subsequent sample of this intercalate treated with moist He gas have been measured in the temperature range 4.7-290 K. A correlation is established between hyperfine parameters and critical temperature T{c} in these phases. A strong increase of the isomer shift upon intercalation is explained by a charge transfer from the Li/NH3 intercalate to the FeSe layers resulting in an increase of T{c} up to 42 K. A significant decrease of the quadrupole splitting above 240 K has been attributed to diffusive motion of Li+ ions within the interlamellar space.

  13. Plasmonic Ag@AgCl-intercalated K4Nb6O17 composite for enhanced photocatalytic degradation of Rhodamine B under visible light

    Science.gov (United States)

    Cui, Wenquan; Wang, Huan; Liu, Li; Liang, Yinghua; McEvoy, Joanne Gamage

    2013-10-01

    A novel plasmonic photocatalyst, Ag@AgCl-intercalated layered niobate (denoted K4Nb6O17/Ag@AgCl), was synthesized via a microwave-assisted ion-exchange method. The composite materials were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), ultraviolet-visible diffuse reflection spectra (UV-vis), photoluminescence measurements (PL), X-ray fluorescence spectrometer (XRF) and X-ray photoelectron spectroscopy (XPS). The as-prepared plasmonic photocatalyst exhibited an enhanced and stable photoactivity for the degradation of Rhodamine B (RhB) under visible light irradiation. The high activity was attributed to the surface plasmon resonance (SPR) exhibited by Ag nanoparticles on the surface of AgCl. The detection of reactive species by radical scavengers displays that ·O2- and ·OH- are the main reactive species for the degradation of RhB under visible light irradiation. The mechanism of separation of the photo-generated electrons and holes at the K4Nb6O17/Ag@AgCl composite was discussed.

  14. Is photocleavage of DNA by YOYO-1 using a synchrotron radiation light source sequence dependent?

    Science.gov (United States)

    Gilroy, Emma L; Hoffmann, Søren Vrønning; Jones, Nykola C; Rodger, Alison

    2011-10-01

    The photocleavage of double-stranded and single-stranded DNA by the fluorescent dye YOYO-1 was investigated in real time by using the synchrotron radiation light source ASTRID (ISA, Denmark) both to initiate the reaction and to monitor its progress using Couette flow linear dichroism (LD) throughout the irradiation period. The dependence of LD signals on DNA sequences and on time in the intense light beam was explored and quantified for single-stranded poly(dA), poly[(dA-dT)(2)], calf thymus DNA (ctDNA) and Micrococcus luteus DNA (mlDNA). The DNA and ligand regions of the spectrum showed different LD kinetic behaviors, and there was significant sequence dependence of the kinetics. However, in contrast to expectations from the literature, we found that poly(dA), mlDNA, low salt ctDNA and low salt poly[(dA-dT)(2)] all had significant populations of groove-bound YOYO. It seems that this mode was predominantly responsible for the catalysis of DNA cleavage. In homopolymeric DNAs, intercalated YOYO was unable to cleave DNA. In mixed-sequence DNAs the data suggest that YOYO in some but not all intercalated binding sites can cause cleavage. It is also likely that cleavage occurs at transient single-stranded regions. The reaction rates for a 100 mA beam current of 0.5-μW power varied from 0.6 h(-1) for single-stranded poly(dA) to essentially zero for low salt poly[(dG-dC)(2)] and high salt poly[(dA-dT)(2)]. At the conclusion of the experiments with each kind of DNA, uncleaved DNA with intercalated YOYO remained.

  15. Pseudo Dirac dispersion in Mn-intercalated graphene on SiC

    KAUST Repository

    Kahaly, M. Upadhyay

    2013-07-01

    The atomic and electronic structures of bulk C6Mn, bulk C 8Mn, and Mn-intercalated graphene on SiC(0 0 0 1) and SiC(0001̄) are investigated by density functional theory. We find for both configurations of Mn-intercalated graphene a nonmagnetic state, in agreement with the experimental situation for SiC(0 0 0 1), and explain this property. The electronic structures around the Fermi energy are dominated by Dirac-like cones at energies consistent with data from angular resolved photoelectron spectroscopy [Gao et al., ACS Nano. 6 (2012) 6562]. However, our results demonstrate that the corresponding states trace back to hybridized Mn d orbitals, and not to the graphene. © 2013 Elsevier B.V. All rights reserved.

  16. Silicene on Monolayer PtSe2: From Strong to Weak Binding via NH3 Intercalation

    KAUST Repository

    Sattar, Shahid

    2018-01-16

    We study the properties of silicene on monolayer PtSe2 by first-principles calculations and demonstrate a much stronger interlayer interaction than previously reported for silicene on other semiconducting substrates. This fact opens the possibility of a direct growth. A band gap of 165 meV results from inversion symmetry breaking and large spin-splittings in the valence and conduction bands from proximity to monolayer PtSe2 and its strong spin–orbit coupling. It is also shown that the interlayer interaction can be effectively reduced by intercalating NH3 molecules between silicene and monolayer PtSe2 without inducing charge transfer or defect states near the Fermi energy. A small NH3 diffusion barrier makes intercalation a viable experimental approach to control the interlayer interaction.

  17. Synchrotron-Radiation X-Ray Investigation of Li+/Na+ Intercalation into Prussian Blue Analogues

    Directory of Open Access Journals (Sweden)

    Yutaka Moritomo

    2013-01-01

    Full Text Available Prussian blue analogies (PBAs are promising cathode materials for lithium ion (LIB and sodium ion (SIB secondary batteries, reflecting their covalent and nanoporous host structure. With use of synchrotron-radiation (SR X-ray source, we investigated the structural and electronic responses of the host framework of PBAs against Li+ and Na+ intercalation by means of the X-ray powder diffraction (XRD and X-ray absorption spectroscopy (XAS. The structural investigation reveals a robust nature of the host framework against Li+ and Na+ intercalation, which is advantageous for the stability and lifetime of the batteries. The spectroscopic investigation identifies the redox processes in respective plateaus in the discharge curves. We further compare these characteristics with those of the conventional cathode materials, such as, LiCoO2, LiFePO4, and LiMn2O4.

  18. Origin of the high p-doping in F intercalated graphene on SiC

    KAUST Repository

    Cheng, Yingchun

    2011-08-04

    The atomic and electronic structures of F intercalated epitaxialgraphene on a SiC(0001) substrate are studied by first-principles calculations. A three-step fluorination process is proposed. First, F atoms are intercalated between the graphene and the SiC, which restores the Dirac point in the band structure. Second, saturation of the topmost Si dangling bonds introduces p-doping up to 0.37 eV. Third, F atoms bond covalently to the graphene to enhance the p-doping. Our model explains the highly p-doped state of graphene on SiC after fluorination [A. L. Walter et al., Appl. Phys. Lett. 98, 184102 (2011)].

  19. Silicene on Monolayer PtSe2: From Strong to Weak Binding via NH3 Intercalation.

    Science.gov (United States)

    Sattar, Shahid; Singh, Nirpendra; Schwingenschlögl, Udo

    2018-01-31

    We study the properties of silicene on monolayer PtSe2 by first-principles calculations and demonstrate a much stronger interlayer interaction than previously reported for silicene on other semiconducting substrates. This fact opens the possibility of a direct growth. A band gap of 165 meV results from inversion symmetry breaking and large spin-splittings in the valence and conduction bands from proximity to monolayer PtSe2 and its strong spin-orbit coupling. It is also shown that the interlayer interaction can be effectively reduced by intercalating NH3 molecules between silicene and monolayer PtSe2 without inducing charge transfer or defect states near the Fermi energy. A small NH3 diffusion barrier makes intercalation a viable experimental approach to control the interlayer interaction.

  20. Three-dimensional metal-intercalated covalent organic frameworks for near-ambient energy storage

    Science.gov (United States)

    Gao, Fei; Ding, Zijing; Meng, Sheng

    2013-01-01

    A new form of nanoporous material, metal intercalated covalent organic framework (MCOF) is proposed and its energy storage property revealed. Employing density functional and thermodynamical analysis, we find that stable, chemically active, porous materials could form by stacking covalent organic framework (COF) layers with metals as a gluing agent. Metal acts as active sites, while its aggregation is suppressed by a binding energy significantly larger than the corresponding cohesive energy of bulk metals. Two important parameters, metal binding and metal-metal separation, are tuned by selecting suitable building blocks and linkers when constructing COF layers. Systematic searches among a variety of elements and organic molecules identify Ca-intercalated COF with diphenylethyne units as optimal material for H2 storage, reaching a striking gravimetric density ~ 5 wt% at near-ambient conditions (300 K, 20 bar), in comparison to < 0.1 wt% for bare COF-1 under the same condition. PMID:23698018

  1. 10th International School of Materials Science and Technology : Intercalation in Layered Materials "Ettore Majorana"

    CERN Document Server

    1986-01-01

    This volume is prepared from lecture notes for the course "Intercalation in Layered Materials" which was held at the Ettore Majorana Centre for Scientific Culture at Erice, Sicily in July, 1986, as part of the International School of Materials Science and Tech­ nology. The course itself consisted of formal tutorial lectures, workshops, and informal discussions. Lecture notes were prepared for the formal lectures, and short summaries of many of the workshop presentations were prepared. This volume is based on these lecture notes and research summaries. The material is addressed to advanced graduate students and postdoctoral researchers and assumes a background in basic solid state physics. The goals of this volume on Intercalation in Layered Materials include an introduc­ tion to the field for potential new participants, an in-depth and broad exposure for stu­ dents and young investigators already working in the field, a basis for cross-fertilization between workers on various layered host materials...

  2. DNA-based materials for electro-optic applications: current status

    Science.gov (United States)

    Grote, James G.; Heckman, Emily M.; Diggs, Darnell E.; Hagen, Joshua A.; Yaney, Perry P.; Steckl, Andrew J.; Clarson, Stephen J.; He, Guang S.; Zheng, Qingdong; Prasad, Paras N.; Zetts, John S.; Hopkins, F. Kenneth

    2005-08-01

    Purified deoxyribonucleic acid (DNA), derived from salmon milt and roe sacs, waste products of the Japanese fishing industry in Hokkaido, has been processed into a promising, optical waveguide quality, biopolymer material suitable for both passive and active optical and electro-optic applications. Intercalation of aromatic compounds into stacked layers within the double helix of DNA molecules has rendered active optical waveguide materials with excellent nonlinear optical properties.

  3. The diffusion-active permeable reactive barrier.

    Science.gov (United States)

    Schwarz, Alex O; Rittmann, Bruce E

    2010-03-01

    Using the biogeochemical model CCBATCH, which we expanded to include transport processes, we study a novel approach for the treatment of aquifers contaminated with toxic concentrations of metals, the diffusion-active permeable reactive barrier (DAPRB), which is based on generation of sulfide by Sulfate Reducing Bacteria (SRB) as the groundwater moves through a layered treatment zone. In the DAPRB, layers of low conductivity (low-K) containing reactive materials are intercalated between layers of high conductivity (high-K) that transport the groundwater across the barrier. Because diffusion dominates transport in the reactive layers, microbial communities can take advantage there of the chemical-gradient mechanism for protection from toxicants. The ideal sulfidic DAPRB design includes particulate organic matter (POM) and solid sulfate mineral inside the reactive (low-K) layer. This leads to sulfate reduction and the formation of sulfide ligands that complex with toxic metals, such as Zn(2+) in the high-K layer. We perform a theoretical biogeochemical analysis of the ideal configuration of a DAPRB for treatment of Zn-contaminated groundwater. Our analysis using the expanded CCBATCH confirms the gradient-resistance mechanism for bio-protection, with the ZnS bio-sink forming at the intersection of the Zn and sulfide plumes inside the high-K layers of the DAPRB. The detailed DAPRB analysis also shows that total alkalinity and pH distributions are representative footprints of the two key biogeochemical processes taking place, sulfidogenesis and Zn immobilization as sulfide mineral. This is so because these two reactions consume or produce acidic hydrogen and alkalinity. Additionally, because Zn immobilization is due to ZnS mineral precipitation, the ZnS mineral distribution is a good indicator for the bio-sink. Bio-sinks are located for the most part within the high-K layers, and their exact position depends on the relative magnitude of metal and sulfide fluxes. Finally

  4. Hole-doping of fullerenes and nanotubes by way of intercalation chemistry.

    Science.gov (United States)

    Claves, D

    2007-01-01

    Succeeding to the electron-doping processes of carbon nanostructures, chemical methods devoted to the hole-doping of the latter have significantly developed over the past ten years. Intercalation chemistry remains a top-rated technique in this purpose, among the variety of available chemical doping schemes. A review of the p-type doping of fullerenes and nanotubes by this method is exposed, which also includes a wide range of derived potential applications and prospects regarding the materials thus obtained.

  5. Intercalation and structural aspects of macroRAFT agents into MgAl layered double hydroxides

    OpenAIRE

    Dessislava Kostadinova; Ana Cenacchi Pereira; Muriel Lansalot; Franck D’Agosto; Elodie Bourgeat-Lami; Fabrice Leroux; Christine Taviot-Guého; Sylvian Cadars; Vanessa Prevot

    2016-01-01

    Increasing attention has been devoted to the design of layered double hydroxide (LDH)-based hybrid materials. In this work, we demonstrate the intercalation by anion exchange process of poly(acrylic acid) (PAA) and three different hydrophilic random copolymers of acrylic acid (AA) and n-butyl acrylate (BA) with molar masses ranging from 2000 to 4200 g mol−1 synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization, into LDH containing magnesium(II) and aluminium(II...

  6. Retention of contaminants Cd and Hg adsorbed and intercalated in aluminosilicate clays: A first principles study.

    Science.gov (United States)

    Crasto de Lima, F D; Miwa, R H; Miranda, Caetano R

    2017-11-07

    Layered clay materials have been used to incorporate transition metal (TM) contaminants. Based on first-principles calculations, we have examined the energetic stability and the electronic properties due to the incorporation of Cd and Hg in layered clay materials, kaolinite (KAO) and pyrophyllite (PYR). The TM can be (i) adsorbed on the clay surface as well as (ii) intercalated between the clay layers. For the intercalated case, the contaminant incorporation rate can be optimized by controlling the interlayer spacing of the clay, namely, pillared clays. Our total energy results reveal that the incorporation of the TMs can be maximized through a suitable tuning of vertical distance between the clay layers. Based on the calculated TM/clay binding energies and the Langmuir absorption model, we estimate the concentrations of the TMs. Further kinetic properties have been examined by calculating the activation energies, where we found energy barriers of ∼20 and ∼130 meV for adsorbed and intercalated cases, respectively. The adsorption and intercalation of ionized TM adatoms were also considered within the deprotonated KAO surface. This also leads to an optimal interlayer distance which maximizes the TM incorporation rate. By mapping the total charge transfers at the TM/clay interface, we identify a net electronic charge transfer from the TM adatoms to the topmost clay surface layer. The effect of such a charge transfer on the electronic structure of the clay (host) has been examined through a set of X-ray absorption near edge structure (XANES) simulations, characterizing the changes of the XANES spectra upon the presence of the contaminants. Finally, for the pillared clays, we quantify the Cd and Hg K-edge energy shifts of the TMs as a function of the interlayer distance between the clay layers and the Al K-edge spectra for the pristine and pillared clays.

  7. Work Function Characterization of Potassium-Intercalated, Boron Nitride Doped Graphitic Petals

    Directory of Open Access Journals (Sweden)

    Patrick T. McCarthy

    2017-07-01

    Full Text Available This paper reports on characterization techniques for electron emission from potassium-intercalated boron nitride-modified graphitic petals (GPs. Carbon-based materials offer potentially good performance in electron emission applications owing to high thermal stability and a wide range of nanostructures that increase emission current via field enhancement. Furthermore, potassium adsorption and intercalation of carbon-based nanoscale emitters decreases work functions from approximately 4.6 eV to as low as 2.0 eV. In this study, boron nitride modifications of GPs were performed. Hexagonal boron nitride is a planar structure akin to graphene and has demonstrated useful chemical and electrical properties when embedded in graphitic layers. Photoemission induced by simulated solar excitation was employed to characterize the emitter electron energy distributions, and changes in the electron emission characteristics with respect to temperature identified annealing temperature limits. After several heating cycles, a single stable emission peak with work function of 2.8 eV was present for the intercalated GP sample up to 1,000 K. Up to 600 K, the potassium-intercalated boron nitride modified sample exhibited improved retention of potassium in the form of multiple emission peaks (1.8, 2.5, and 3.3 eV resulting in a large net electron emission relative to the unmodified graphitic sample. However, upon further heating to 1,000 K, the unmodified GP sample demonstrated better stability and higher emission current than the boron nitride modified sample. Both samples deintercalated above 1,000 K.

  8. Retention of contaminants Cd and Hg adsorbed and intercalated in aluminosilicate clays: A first principles study

    Science.gov (United States)

    Crasto de Lima, F. D.; Miwa, R. H.; Miranda, Caetano R.

    2017-11-01

    Layered clay materials have been used to incorporate transition metal (TM) contaminants. Based on first-principles calculations, we have examined the energetic stability and the electronic properties due to the incorporation of Cd and Hg in layered clay materials, kaolinite (KAO) and pyrophyllite (PYR). The TM can be (i) adsorbed on the clay surface as well as (ii) intercalated between the clay layers. For the intercalated case, the contaminant incorporation rate can be optimized by controlling the interlayer spacing of the clay, namely, pillared clays. Our total energy results reveal that the incorporation of the TMs can be maximized through a suitable tuning of vertical distance between the clay layers. Based on the calculated TM/clay binding energies and the Langmuir absorption model, we estimate the concentrations of the TMs. Further kinetic properties have been examined by calculating the activation energies, where we found energy barriers of ˜20 and ˜130 meV for adsorbed and intercalated cases, respectively. The adsorption and intercalation of ionized TM adatoms were also considered within the deprotonated KAO surface. This also leads to an optimal interlayer distance which maximizes the TM incorporation rate. By mapping the total charge transfers at the TM/clay interface, we identify a net electronic charge transfer from the TM adatoms to the topmost clay surface layer. The effect of such a charge transfer on the electronic structure of the clay (host) has been examined through a set of X-ray absorption near edge structure (XANES) simulations, characterizing the changes of the XANES spectra upon the presence of the contaminants. Finally, for the pillared clays, we quantify the Cd and Hg K-edge energy shifts of the TMs as a function of the interlayer distance between the clay layers and the Al K-edge spectra for the pristine and pillared clays.

  9. Nanoparticle intercalation-induced interlayer-gap-opened graphene–polyaniline nanocomposite for enhanced supercapacitive performances

    Energy Technology Data Exchange (ETDEWEB)

    Im, Sungjin; Park, Young Ran [Graphene Research Institute & Department of Chemistry, Sejong University, Seoul 05006 (Korea, Republic of); Park, Sanghyuk [Graphene Research Institute & Department of Chemistry, Sejong University, Seoul 05006 (Korea, Republic of); Department of Energy and Mineral Resources Engineering, Sejong University, Seoul 05006 (Korea, Republic of); Kim, Hyeong Jin [Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006 (Korea, Republic of); Doh, Ji Hoon [Graphene Research Institute & Department of Chemistry, Sejong University, Seoul 05006 (Korea, Republic of); Division of Electron Microscopy Research, Korea Basic Science Institute (KBSI), Daejeon 34133 (Korea, Republic of); Kwon, Kyungjung [Department of Energy and Mineral Resources Engineering, Sejong University, Seoul 05006 (Korea, Republic of); Hong, Won G. [Division of Electron Microscopy Research, Korea Basic Science Institute (KBSI), Daejeon 34133 (Korea, Republic of); Kim, Byungnam [Radiation Equipment Research Division, Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Yang, Woo Seok [Electronic Material and Device Research Center, Korea Electronics Technology Institute, Seongnam, Gyeonggi-do 13509 (Korea, Republic of); Kim, TaeYoung [Department of Bionanotechnology, Gachon University, Seongnam, Gyeonggi-do 13120 (Korea, Republic of); Hong, Young Joon, E-mail: yjhong@sejong.ac.kr [Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006 (Korea, Republic of)

    2017-08-01

    Highlights: • High energy–power supercapacitor electrode is demonstrated using EDLC–PC hybridized rGO–PANi nanocomposite. • A method for perpetuated intercalation of nanoparticles into interlayer gap of rGO is developed. • The intercalaction (i) exfoliates rGO layers, (ii) prevents self-agglomeration, and (iii) enlarges specific surface area of rGO for high power performance. • Electric resistance is substantially reduced by forming more rGO–PANi links via grafting of PANi to well-opened rGO edges. - Abstract: This study demonstrates a method for improving supercapacitive performance of two-dimensional nanosheet-based composite electrode. As a hybridized electrostatic double layer capacitor–electrochemical pseudocapacitor (EDLC–PC) electrode, we synthesized reduced graphene oxide–polyaniline nanofibers (rGO–PANi NFs) composite electrode. For the enhanced supercapacitive performances, insulator silver chloride nanoparticles (AgCl NPs) were intercalated into the interlayer gap of rGO. The AgCl NP intercalation (i) exfoliated rGO layers and (ii) prevented rGO-self-agglomeration that makes it difficult to utilize the high surface-to-volume ratio of ideal mono- (or few-) atomic-thick rGO layers. As a result, (iii) the specific capacitance was improved in accordance with the enlarged specific surface area of rGO. Furthermore, (iv) the well-developed rGO edges, which were opened by the AgCl intercalation, enabled formation of more bonds between PANi and rGO by selective grafting of PANi to the rGO edges. Hence, the bonds of PANi–rGO, as conducting paths, substantially reduced the total electrical resistance. Enhanced specific capacitance, ion diffusion efficiency, and reduced electrical resistance indicated the bi-functional roles of AgCl NP insertion for high performance hybridized EDLC–PC electrodes.

  10. Photoresponsive multilayer spiral nanotubes: intercalation of polyfluorinated cationic azobenzene surfactant into potassium niobate.

    Science.gov (United States)

    Tong, Zhiwei; Takagi, Shinsuke; Shimada, Tetsuya; Tachibana, Hiroshi; Inoue, Haruo

    2006-01-25

    The first successful synthesis of photoresponsive multilayer spiral nanotubes by the introduction of polyfluorinate cationic azobenzene derivative, trans-[2-(2,2,3,3,4,4,4-heptafluorobutylamino)ethyl]-{2-[4-(4-hexyphenylazo)-phenoxy]ethyl}dimethylammonium (abbreviated as C3F7-Azo+), into layered niobate interlayer I by a two-step guest-guest exchange method using the intercalation compound, methyl viologen (MV2+)-K4Nb6O17, as precursor is reported.

  11. Study of interaction of a fluorescent probe with DNA

    Energy Technology Data Exchange (ETDEWEB)

    Wu Fangying, E-mail: fywu@ncu.edu.c [Department of Chemistry and Center of Analysis and Testing, Nanchang University, Nanchang, 330031 (China); Xiang Yanling [Department of Chemistry and Center of Analysis and Testing, Nanchang University, Nanchang, 330031 (China); Wu Yumei [Packaging Engineering Institute of Jinan University, Zhuhai 519070 (China); Xie Feiyan [Department of Chemistry and Center of Analysis and Testing, Nanchang University, Nanchang, 330031 (China)

    2009-11-15

    The zinc complex of 2-[2-(3, 5-bis(2-pyridylmethyl)aminomethyl-4-hydroxy-phenyl) ethylene]-5-methylpyrazine (1) could bind with the calf thymus deoxyribonucleic acid (ct-DNA). The binding behaviors between them were studied by fluorescence and absorption spectral assay. The absorption titration of 1-Zn with ct-DNA showed no bathochromic shift and hypochromic effect. No anisotropy increase was observed when ct-DNA was added to 1-Zn solution. They both proved the lack of intercalation interaction between 1-Zn and ct-DNA. The ionic strength experiment, Scatchard plot, study of interaction between 1-Zn and denatured ct-DNA all revealed that the interaction mode between 1-Zn and ct-DNA was electrostatic interaction. Binding constant was estimated to be 7.96x10{sup 4} L moL{sup -1}.

  12. Synthesis and Characteristics of Valeric Acid-Zinc Layered Hydroxide Intercalation Material for Insect Pheromone Controlled Release Formulation

    Directory of Open Access Journals (Sweden)

    Rozita Ahmad

    2016-01-01

    Full Text Available A new intercalation compound of insect pheromone, valeric acid (VA, based on zinc layered hydroxide (ZLH as host release material, was successfully prepared through coprecipitation method. The as-produced organic-inorganic nanolayered material, valerate nanohybrid, VAN, shows the formation of a new peak at lower 2θ angle with basal spacing of 19.8 Å with no ZnO reflections, which indicate that the intercalation of anion between the inorganic ZLH interlamellae was accomplished. The elemental, FTIR, and ATR analyses of the nanohybrid supported the fact that the intercalation with the percentage anion loading was calculated to be 23.0% (w/w. The thermal stability property of the resulting nanohybrid was enhanced compared to the unbound anion. Field emission scanning electron micrograph of the ZnO has a nonuniform granular structure but transforms into flake-like structure with various sizes after the intercalation process. Release kinetics of anion from the interlayer of intercalated compound exhibited a slow release behavior governed by the pseudo-second-order kinetic model at different pHs of aqueous media. The valerate anion was released from VAN with the highest release rate at pH 4. These findings provide the basis to further development of controlled release formulation for insect pheromone based on ZLH intercalation.

  13. Mechanochemical synthesis of Cu-Al and methyl orange intercalated Cu-Al layered double hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun, E-mail: forsjun@whut.edu.cn [School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070 (China); He, Xiaoman; Chen, Min; Hu, Huimin [School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070 (China); Zhang, Qiwu, E-mail: zhangqw@whut.edu.cn [School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070 (China); Liu, Xinzhong [College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118 China (China)

    2017-04-15

    In this study, a mechanochemical route to synthesize a Cu-Al layered double hydroxide (LDH) and a methyl orange (MO) intercalated one (MO-LDH) was introduced, in which basic cupric carbonate (Cu{sub 2}(OH){sub 2}CO{sub 3}) and aluminum hydroxide (Al(OH){sub 3}) with Cu/Al molar ratio at 2/1 was first dry ground for 2 h and then agitated in water or methyl orange solution for another 4 h to obtain the LDH and MO-LDH products without any heating operation. The prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Thermogravimetry (TG), Differential scanning calorimetry (DSC) and Scanning electron microscopy (SEM). The products showed high crystallinity phase of Cu-Al and MO intercalated Cu-Al LDH with no evident impurities, proving that the craft introduced here was facile and effective. The new idea can be applied in other fields to produce organic-inorganic composites. - Highlights: • A facile mechanochemical route to synthesize Cu-Al and MO intercalated Cu-Al LDH. • The products possesses high crystalline of LDH phase with no impure phases. • The dry milling process induces the element substitution between the raw materials. • The agitation operation helps the grain growth of LDH.

  14. Effects of Intercalation on the Hole Mobility of Amorphous Semiconducting Polymer Blends

    KAUST Repository

    Cates, Nichole C.

    2010-06-08

    Fullerenes have been shown to intercalate between the side chains of many crystalline and semicrystalline polymers and to affect the properties of polymer:fullerene bulk heterojunction solar cells. Here we present the first in-depth study of intercalation in an amorphous polymer. We study blends of the widely studied amorphous polymer poly(2-methoxy-5-(3studied amorphous polymer poly(,7·studied amorphous polymer poly(-dimethyloctyloxy)-p-phenylene vinylene) (MDMO-PPV) with a variety of molecules using photoluminescence measurements, scanning electron microscopy, and space-charge limited current mobility measurements. The blends with elevated hole mobilities exhibit complete photoluminescence quenching and show no phase separation in a scanning electron microscope. We conclude that intercalation occurs in MDMO-PPV:fullerene blends and is responsible for the increase in the MDMO-PPV hole mobility by several orders of magnitude when it is blended with fullerenes, despite the dilution of the hole-conducting polymer with an electron acceptor. © 2010 American Chemical Society.

  15. Na-Ion Intercalation and Charge Storage Mechanism in 2D Vanadium Carbide

    Energy Technology Data Exchange (ETDEWEB)

    Bak, Seong-Min [Chemistry Division, Brookhaven National Laboratory, Upton NY 11973 USA; Qiao, Ruimin [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley CA 94720 USA; Yang, Wanli [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley CA 94720 USA; Lee, Sungsik [X-Ray Science Division, Argonne National Laboratory, Argonne IL 60439 USA; Yu, Xiqian [Institute of Physics, Chinese Academy of Science, Beijing 100190 China; Anasori, Babak [Department of Material Science and Engineering, A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia PA 19104 USA; Lee, Hungsui [Chemistry Division, Brookhaven National Laboratory, Upton NY 11973 USA; Gogotsi, Yury [Department of Material Science and Engineering, A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia PA 19104 USA; Yang, Xiao-Qing [Chemistry Division, Brookhaven National Laboratory, Upton NY 11973 USA

    2017-07-14

    Two-dimensional vanadium carbide MXene containing surface functional groups (denoted as V2CTx, where Tx are surface functional groups) was synthesized and studied as anode material for Na-ion batteries. V2CTx anode exhibits reversible charge storage with good cycling stability and high rate capability through electrochemical test. The charge storage mechanism of V2CTx material during Na+ intercalation/deintercalation and the redox reaction of vanadium were studied using a combination of synchrotron based X-ray diffraction (XRD), hard X-ray absorption near edge spectroscopy (XANES) and soft X-ray absorption spectroscopy (sXAS). Experimental evidence of a major contribution of redox reaction of vanadium to the charge storage and the reversible capacity of V2CTx during sodiation/desodiation process have been provided through V K-edge XANES and V L2,3-edge sXAS results. A correlation between the CO32- content and Na+ intercalation/deintercalation states in the V2CTx electrode observed from C and O K-edge in sXAS results imply that some additional charge storage reactions may take place between the Na+-intercalated V2CTx and the carbonate based non-aqueous electrolyte. The results of this study will provide valuable information for the further studies on V2CTx as anode material for Na-ion batteries and capacitors.

  16. Oscillatory behaviors and hierarchical assembly of contractile structures in intercalating cells

    Science.gov (United States)

    Fernandez-Gonzalez, Rodrigo; Zallen, Jennifer A.

    2011-08-01

    Fluctuations in the size of the apical cell surface have been associated with apical constriction and tissue invagination. However, it is currently not known if apical oscillatory behaviors are a unique property of constricting cells or if they constitute a universal feature of the force balance between cells in multicellular tissues. Here, we set out to determine whether oscillatory cell behaviors occur in parallel with cell intercalation during the morphogenetic process of axis elongation in the Drosophila embryo. We applied multi-color, time-lapse imaging of living embryos and SIESTA, an integrated tool for automated and semi-automated cell segmentation, tracking, and analysis of image sequences. Using SIESTA, we identified cycles of contraction and expansion of the apical surface in intercalating cells and characterized them at the molecular, cellular, and tissue scales. We demonstrate that apical oscillations are anisotropic, and this anisotropy depends on the presence of intact cell-cell junctions and spatial cues provided by the anterior-posterior patterning system. Oscillatory cell behaviors during axis elongation are associated with the hierarchical assembly and disassembly of contractile actomyosin structures at the medial cortex of the cell, with actin localization preceding myosin II and with the localization of both proteins preceding changes in cell shape. We discuss models to explain how the architecture of cytoskeletal networks regulates their contractile behavior and the mechanisms that give rise to oscillatory cell behaviors in intercalating cells.

  17. Synthesis, characterization and cation adsorption of p-aminobenzoic acid intercalated on calcium phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Camila F.N. [Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR (Brazil); Lazarin, Angélica M., E-mail: amlazarin2@uem.br [Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR (Brazil); Sernaglia, Rosana L.; Andreotti, Elza I.S. [Departamento de Química, Universidade Estadual de Maringá, Av. Colombo, 5790, 87020-900 Maringá, PR (Brazil)

    2012-06-15

    Graphical abstract: Scanning electron microscopy photographs of calcium phosphate (a) and intercalated with p-aminobenzoic acid (b). Highlights: ► Calcium phosphate was intercalated with p-aminobenzoic acid. ► Guest molecule contains nitrogen and oxygen atoms from amine and carboxylic groups. ► These basic centers are potentially useful for cation coordination in ethanol solution. ► Crystal morphology of compounds is lamellar, it agrees with expected structural characteristics. -- Abstract: Crystalline lamellar calcium phosphate retained 4-aminobenzoic acid inside its cavity without leaching. The intense infrared bands in the 1033 and 1010 cm{sup −1} interval confirmed the presence of the phosphonate groups attached to the inorganic layer, with sharp and intense peaks in X-ray diffraction patterns, which gave basal distances of 712 and 1578 pm for the original and the intercalated compounds, respectively. Solid-state {sup 31}P nuclear magnetic resonance spectra presented only one peak for the phosphate groups attached to the main inorganic polymeric structure near −2.4 ppm. The adsorption isotherms from ethanol gave the maximum adsorption capacities of 6.44 and 3.34 mmol g{sup −1} for nickel and cobalt, respectively, which stability constant and distribution coefficient followed Co > Ni.

  18. Multimodality of Structural, Electrical, and Gravimetric Responses of Intercalated MXenes to Water.

    Science.gov (United States)

    Muckley, Eric S; Naguib, Michael; Wang, Hsiu-Wen; Vlcek, Lukas; Osti, Naresh C; Sacci, Robert L; Sang, Xiahan; Unocic, Raymond R; Xie, Yu; Tyagi, Madhusudan; Mamontov, Eugene; Page, Katharine L; Kent, Paul R C; Nanda, Jagjit; Ivanov, Ilia N

    2017-11-28

    Understanding of structural, electrical, and gravimetric peculiarities of water vapor interaction with ion-intercalated MXenes led to design of a multimodal humidity sensor. Neutron scattering coupled to molecular dynamics and ab initio calculations showed that a small amount of hydration results in a significant increase in the spacing between MXene layers in the presence of K and Mg intercalants between the layers. Films of K- and Mg-intercalated MXenes exhibited relative humidity (RH) detection thresholds of ∼0.8% RH and showed monotonic RH response in the 0-85% RH range. We found that MXene gravimetric response to water is 10 times faster than their electrical response, suggesting that H 2 O-induced swelling/contraction of channels between MXene sheets results in trapping of H 2 O molecules that act as charge-depleting dopants. The results demonstrate the use of MXenes as humidity sensors and infer potential impact of water on structural and electrical performance of MXene-based devices.

  19. Interlayer Structures and Dynamics of Arsenate and Arsenite Intercalated Layered Double Hydroxides: A First Principles Study

    Directory of Open Access Journals (Sweden)

    Yingchun Zhang

    2017-03-01

    Full Text Available In this study, by using first principles simulation techniques, we explored the basal spacings, interlayer structures, and dynamics of arsenite and arsenate intercalated Layered double hydroxides (LDHs. Our results confirm that the basal spacings of NO3−-LDHs increase with layer charge densities. It is found that Arsenic (As species can enter the gallery spaces of LDHs with a Mg/Al ratio of 2:1 but they cannot enter those with lower charge densities. Interlayer species show layering distributions. All anions form a single layer distribution while water molecules form a single layer distribution at low layer charge density and a double layer distribution at high layer charge densities. H2AsO4− has two orientations in the interlayer regions (i.e., one with its three folds axis normal to the layer sheets and another with its two folds axis normal to the layer sheets, and only the latter is observed for HAsO42−. H2AsO3− orientates in a tilt-lying way. The mobility of water and NO3− increases with the layer charge densities while As species have very low mobility. Our simulations provide microscopic information of As intercalated LDHs, which can be used for further understanding of the structures of oxy-anion intercalated LDHs.

  20. Regenerable Cu-intercalated MnO2 layered cathode for highly cyclable energy dense batteries

    Science.gov (United States)

    Yadav, Gautam G.; Gallaway, Joshua W.; Turney, Damon E.; Nyce, Michael; Huang, Jinchao; Wei, Xia; Banerjee, Sanjoy

    2017-03-01

    Manganese dioxide cathodes are inexpensive and have high theoretical capacity (based on two electrons) of 617 mAh g-1, making them attractive for low-cost, energy-dense batteries. They are used in non-rechargeable batteries with anodes like zinc. Only ~10% of the theoretical capacity is currently accessible in rechargeable alkaline systems. Attempts to access the full capacity using additives have been unsuccessful. We report a class of Bi-birnessite (a layered manganese oxide polymorph mixed with bismuth oxide (Bi2O3)) cathodes intercalated with Cu2+ that deliver near-full two-electron capacity reversibly for >6,000 cycles. The key to rechargeability lies in exploiting the redox potentials of Cu to reversibly intercalate into the Bi-birnessite-layered structure during its dissolution and precipitation process for stabilizing and enhancing its charge transfer characteristics. This process holds promise for other applications like catalysis and intercalation of metal ions into layered structures. A large prismatic rechargeable Zn-birnessite cell delivering ~140 Wh l-1 is shown.

  1. One-step exfoliation and surface modification of lamellar hydroxyapatite by intercalation of glucosamine

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Honglin [Research Institute for Biomaterials and Transportation, East China Jiaotong University, Nanchang, 330013 (China); School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 (China); Li, Wei; Ji, Dehui [Research Institute for Biomaterials and Transportation, East China Jiaotong University, Nanchang, 330013 (China); Zuo, Guifu [Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and Engineering, Hebei United University, Tangshan, 063009 (China); Xiong, Guangyao, E-mail: xiongguangyao@163.com [Research Institute for Biomaterials and Transportation, East China Jiaotong University, Nanchang, 330013 (China); Zhu, Yong [School of Chemical Engineering, Tianjin University, Tianjin, 300072 (China); Li, Lili; Han, Ming [Research Institute for Biomaterials and Transportation, East China Jiaotong University, Nanchang, 330013 (China); Wu, Caoqun [School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 (China); Wan, Yizao, E-mail: yzwantju@126.com [Research Institute for Biomaterials and Transportation, East China Jiaotong University, Nanchang, 330013 (China); School of Materials Science and Engineering, Tianjin University, Tianjin, 300072 (China)

    2016-04-15

    Effective exfoliation is crucial to the application of layered materials in many fields. Herein, we report a novel effective, scalable, and ecofriendly method for the exfoliation of lamellar HAp by glucosamine intercalation such that individual HAp nanoplates can be obtained. The as-exfoliated HAp nanoplates were characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetric (TG) analysis. It is found that the glucosamine intercalation not only results in complete exfoliation of lamellar HAp but also introduces the glucosamine molecules onto the surface of individual HAp nanoplates, thus obtaining separated glucosamine-grafted HAp nanoplates (Glu-HAps). Results from MTT assay demonstrate that glucosamine grafting on HAp nanoplates greatly improves the cell growth and proliferation as compared to nongrafted HAp counterparts. - Highlights: • Glucosamine was used as intercalation agent to exfoliate lamellar hydroxyapatite. • Glucosamine was grafted onto the as-exfoliated nanoplate-like hydroxyapatite. • Exfoliation and surface grafting were accomplished in one step. • Glucosamine-grafted HAp showed improved biocompatibility over nongrafted one.

  2. Nanoparticle intercalation-induced interlayer-gap-opened graphene-polyaniline nanocomposite for enhanced supercapacitive performances

    Science.gov (United States)

    Im, Sungjin; Park, Young Ran; Park, Sanghyuk; Kim, Hyeong Jin; Doh, Ji Hoon; Kwon, Kyungjung; Hong, Won G.; Kim, Byungnam; Yang, Woo Seok; Kim, TaeYoung; Hong, Young Joon

    2017-08-01

    This study demonstrates a method for improving supercapacitive performance of two-dimensional nanosheet-based composite electrode. As a hybridized electrostatic double layer capacitor-electrochemical pseudocapacitor (EDLC-PC) electrode, we synthesized reduced graphene oxide-polyaniline nanofibers (rGO-PANi NFs) composite electrode. For the enhanced supercapacitive performances, insulator silver chloride nanoparticles (AgCl NPs) were intercalated into the interlayer gap of rGO. The AgCl NP intercalation (i) exfoliated rGO layers and (ii) prevented rGO-self-agglomeration that makes it difficult to utilize the high surface-to-volume ratio of ideal mono- (or few-) atomic-thick rGO layers. As a result, (iii) the specific capacitance was improved in accordance with the enlarged specific surface area of rGO. Furthermore, (iv) the well-developed rGO edges, which were opened by the AgCl intercalation, enabled formation of more bonds between PANi and rGO by selective grafting of PANi to the rGO edges. Hence, the bonds of PANi-rGO, as conducting paths, substantially reduced the total electrical resistance. Enhanced specific capacitance, ion diffusion efficiency, and reduced electrical resistance indicated the bi-functional roles of AgCl NP insertion for high performance hybridized EDLC-PC electrodes.

  3. Interaction of dinuclear cadmium(II) 5-Cl-salicylaldehyde complexes with calf-thymus DNA

    Energy Technology Data Exchange (ETDEWEB)

    Ristovic, Maja Sumar [Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Faculty of Chemistry, University of Belgrade, Studenski Trg 12-16, Belgrade (Serbia); Zianna, Ariadni; Psomas, George; Hatzidimitriou, Antonios G. [Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Coutouli-Argyropoulou, Evdoxia [Department of Organic Chemistry and Biochemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Lalia-Kantouri, Maria, E-mail: lalia@chem.auth.gr [Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece)

    2016-04-01

    Five dinuclear Cd(II) complexes with the anion of 5-Cl-salicylaldehyde (5-Cl-saloH) were synthesized in the absence or presence of the α-diimines: 2,2′-bipyridine (bipy), 1,10-phenanthroline (phen), 2,9-dimethyl-1,10-phenanthroline (neoc) or 2,2′-dipyridylamine (dpamH) and characterized as [Cd(5-Cl-salo){sub 2}(CH{sub 3}OH)]{sub 2} (1), [Cd(5-Cl-salo){sub 2}(bipy)]{sub 2} (2), [Cd(5-Cl-salo){sub 2}(phen)]{sub 2} (3), [Cd(5-Cl-salo)(neoc)(ONO{sub 2})]{sub 2} (4) and [Cd(5-Cl-salo)(dpamΗ)(ONO{sub 2})]{sub 2} (5). The complexes were characterized by spectroscopic techniques (IR, UV‐vis, {sup 1}H-NMR and {sup 13}C–NMR), elemental analysis and molar conductivity measurements. The structures of four complexes (1–3 and 5) were determined by X-ray crystallography, providing all three possible coordination modes of the ligand 5-Cl-salicylaldehyde, i.e. bidentate or tridentate chelating and/or bridging mode. The complexes bind to calf-thymus (CT) DNA mainly by intercalation, as concluded by the viscosity measurements and present relatively high DNA-binding constants. The complexes exhibit significant ability to displace ethidium bromide (EB) from the EB-DNA complex, thus indirectly proving the intercalation as the most possible binding mode to CT DNA. - Graphical abstract: Cadmium complexes of the formulae [Cd(5-Cl-salo){sub 2}(CH{sub 3}OH)]{sub 2} and [Cd(5-Cl-salo){sub 2}(α-diimine)]{sub 2} or [Cd(5-Cl-salo)(α-diimine)(ONO{sub 2})]{sub 2} have been synthesized and characterized. The complexes bind tightly to CT DNA probably by intercalation competing with ethidium bromide for the intercalation site of DNA. - Highlights: • Synthesis of a series of dinuclear Cd complexes • The complexes characterized by diverse techniques. • The crystal structures of four complexes have been determined. • Intercalation is the most possible binding mode of the complexes to DNA. • The complexes compete with ethidium bromide for the DNA-intercalating sites.

  4. Role of minor groove width and hydration pattern on amsacrine interaction with DNA.

    Directory of Open Access Journals (Sweden)

    Deepak K Jangir

    Full Text Available Amsacrine is an anilinoacridine derivative anticancer drug, used to treat a wide variety of malignancies. In cells, amsacrine poisons topoisomerase 2 by stabilizing DNA-drug-enzyme ternary complex. Presence of amsacrine increases the steady-state concentration of these ternary complexes which in turn hampers DNA replication and results in subsequent cell death. Due to reversible binding and rapid slip-out of amsacrine from DNA duplex, structural data is not available on amsacrine-DNA complexes. In the present work, we designed five oligonucleotide duplexes, differing in their minor groove widths and hydration pattern, and examined their binding with amsacrine using attenuated total reflection Fourier transform infrared (ATR-FTIR spectroscopy. Complexes of amsacrine with calf thymus DNA were also evaluated for a comparison. Our results demonstrate for the first time that amsacrine is not a simple intercalator; rather mixed type of DNA binding (intercalation and minor groove takes place between amsacrine and DNA. Further, this binding is highly sensitive towards the geometries and hydration patterns of different minor grooves present in the DNA. This study shows that ligand binding to DNA could be very sensitive to DNA base composition and DNA groove structures. Results demonstrated here could have implication for understanding cytotoxic mechanism of aminoacridine based anticancer drugs and provide directions to modify these drugs for better efficacy and few side-effects.

  5. DNA cleavage system of nanosized graphene oxide sheets and copper ions.

    Science.gov (United States)

    Ren, Hongliu; Wang, Chong; Zhang, Jiali; Zhou, Xuejiao; Xu, Dafeng; Zheng, Jing; Guo, Shouwu; Zhang, Jingyan

    2010-12-28

    The exploration of efficient DNA intercalative agents (intercalators) is essential for understanding DNA scission, repair, and signal transduction. In this work, we explored systematically the graphene oxide (GO) interaction with DNA molecules using fluorescence spectroscopic (FL) and circular dichroism (CD) studies, gel electrophoresis, and DNA thermal denaturation. We demonstrated that the GO nanosheets could intercalate efficiently into DNA molecules. Significantly, we illustrated that the scission of DNA by GO sheets combining with copper ions could take place pronouncedly. The scission of DNA by the GO/Cu(2+) system is critically dependent on the concentrations of GO and Cu(2+) and their ratio. DNA cleavage ability exhibited by the GO with several other metal ions and the fact that GO/Cu(2+)-cleaved DNA fragments can be partially relegated suggest that the mechanism of DNA cleavage by the GO/metal ion system is oxidative and hydrolytic. The result reveals that the GO/Cu(2+) could be used as a DNA cleaving system that should find many practical applications in biotechnology and as therapeutic agents.

  6. Generation of DNA-damaging reactive oxygen species via the autoxidation of hydrogen sulfide under physiologically-relevant conditions: chemistry relevant to both the genotoxic and cell signaling properties of H2S

    Science.gov (United States)

    Hoffman, Marjorie; Rajapakse, Anuruddha; Shen, Xiulong; Gates, Kent S.

    2012-01-01

    Hydrogen sulfide (H2S) has long been known for its toxic properties; however, in recent years, evidence has emerged that this small, gaseous molecule may serve as an endogenous cell-signaling agent. Though perhaps surprising in light of its potential role as an endogenous signaling agent, a number of studies have provided evidence that H2S is a DNA-damaging mutagen. In the work reported here, the chemical mechanisms of DNA damage by H2S were examined. Using a plasmid-based DNA strand cleavage assay, it was found that micromolar concentrations of H2S generated single-strand DNA cleavage. Mechanistic studies indicate that this process involved autoxidation of H2S to generate superoxide, hydrogen peroxide and, ultimately, the well-known DNA-damaging agent hydroxyl radical via a trace metal-mediated Fenton-type reaction. Strand cleavage by H2S proceeded in the presence of physiological thiol concentrations and the known byproducts of H2S oxidation such as thiosulfate, sulfite, and sulfate do not contribute to the strand cleavage process. On the other hand, initially-generated oxidation products such as persulfide (S22−) likely undergo rapid autoxidation reactions that contribute to the generation of superoxide. The potential relevance of autoxidation processes to the genotoxic and cell signaling properties of H2S is discussed. PMID:22621314

  7. Generation of DNA-damaging reactive oxygen species via the autoxidation of hydrogen sulfide under physiologically relevant conditions: chemistry relevant to both the genotoxic and cell signaling properties of H(2)S.

    Science.gov (United States)

    Hoffman, Marjorie; Rajapakse, Anuruddha; Shen, Xiulong; Gates, Kent S

    2012-08-20

    Hydrogen sulfide (H(2)S) has long been known for its toxic properties; however, in recent years, evidence has emerged that this small, gaseous molecule may serve as an endogenous cell-signaling agent. Though perhaps surprising in light of its potential role as an endogenous signaling agent, a number of studies have provided evidence that H(2)S is a DNA-damaging mutagen. In the work reported here, the chemical mechanisms of DNA damage by H(2)S were examined. Using a plasmid-based DNA strand cleavage assay, we found that micromolar concentrations of H(2)S generated single-strand DNA cleavage. Mechanistic studies indicate that this process involved autoxidation of H(2)S to generate superoxide, hydrogen peroxide, and, ultimately, the well-known DNA-damaging agent hydroxyl radical via a trace metal-mediated Fenton-type reaction. Strand cleavage by H(2)S proceeded in the presence of physiological thiol concentrations, and the known byproducts of H(2)S oxidation such as thiosulfate, sulfite, and sulfate do not contribute to the strand cleavage process. However, initially generated oxidation products such as persulfide (S(2)(2-)) likely undergo rapid autoxidation reactions that contribute to the generation of superoxide. The potential relevance of autoxidation processes to the genotoxic and cell signaling properties of H(2)S is discussed.

  8. Modeling Reactivity to Biological Macromolecules with a Deep Multitask Network.

    Science.gov (United States)

    Hughes, Tyler B; Dang, Na Le; Miller, Grover P; Swamidass, S Joshua

    2016-08-24

    Most small-molecule drug candidates fail before entering the market, frequently because of unexpected toxicity. Often, toxicity is detected only late in drug development, because many types of toxicities, especially idiosyncratic adverse drug reactions (IADRs), are particularly hard to predict and detect. Moreover, drug-induced liver injury (DILI) is the most frequent reason drugs are withdrawn from the market and causes 50% of acute liver failure cases in the United States. A common mechanism often underlies many types of drug toxicities, including both DILI and IADRs. Drugs are bioactivated by drug-metabolizing enzymes into reactive metabolites, which then conjugate to sites in proteins or DNA to form adducts. DNA adducts are often mutagenic and may alter the reading and copying of genes and their regulatory elements, causing gene dysregulation and even triggering cancer. Similarly, protein adducts can disrupt their normal biological functions and induce harmful immune responses. Unfortunately, reactive metabolites are not reliably detected by experiments, and it is also expensive to test drug candidates for potential to form DNA or protein adducts during the early stages of drug development. In contrast, computational methods have the potential to quickly screen for covalent binding potential, thereby flagging problematic molecules and reducing the total number of necessary experiments. Here, we train a deep convolution neural network-the XenoSite reactivity model-using literature data to accurately predict both sites and probability of reactivity for molecules with glutathione, cyanide, protein, and DNA. On the site level, cross-validated predictions had area under the curve (AUC) performances of 89.8% for DNA and 94.4% for protein. Furthermore, the model separated molecules electrophilically reactive with DNA and protein from nonreactive molecules with cross-validated AUC performances of 78.7% and 79.8%, respectively. On both the site- and molecule-level, the

  9. Simple method of DNA stretching on glass substrate for fluorescence imaging and spectroscopy

    Science.gov (United States)

    Neupane, Guru P.; Dhakal, Krishna P.; Kim, Min Su; Lee, Hyunsoo; Guthold, Martin; Joseph, Vincent S.; Hong, Jong-Dal; Kim, Jeongyong

    2014-05-01

    We demonstrate a simple method of stretching DNA to its full length, suitable for optical imaging and atomic force microscopy (AFM). Two competing forces on the DNA molecules, which are the electrostatic attraction between positively charged dye molecules (YOYO-1) intercalated into DNA and the negatively charged surface of glass substrate, and the centrifugal force of the rotating substrate, are mainly responsible for the effective stretching and the dispersion of single strands of DNA. The density of stretched DNA molecules could be controlled by the concentration of the dye-stained DNA solution. Stretching of single DNA molecules was confirmed by AFM imaging and the photoluminescence spectra of single DNA molecule stained with YOYO-1 were obtained, suggesting that our method is useful for spectroscopic analysis of DNA at the single molecule level.

  10. Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation

    Science.gov (United States)

    Das, Theerthankar; Kutty, Samuel K.; Tavallaie, Roya; Ibugo, Amaye I.; Panchompoo, Janjira; Sehar, Shama; Aldous, Leigh; Yeung, Amanda W. S.; Thomas, Shane R.; Kumar, Naresh; Gooding, J. Justin; Manefield, Mike

    2015-01-01

    Bacterial resistance to conventional antibiotics necessitates the identification of novel leads for infection control. Interference with extracellular phenomena, such as quorum sensing, extracellular DNA integrity and redox active metabolite release, represents a new frontier to control human pathogens such as Pseudomonas aeruginosa and hence reduce mortality. Here we reveal that the extracellular redox active virulence factor pyocyanin produced by P. aeruginosa binds directly to the deoxyribose-phosphate backbone of DNA and intercalates with DNA nitrogenous base pair regions. Binding results in local perturbations of the DNA double helix structure and enhanced electron transfer along the nucleic acid polymer. Pyocyanin binding to DNA also increases DNA solution viscosity. In contrast, antioxidants interacting with DNA and pyocyanin decrease DNA solution viscosity. Biofilms deficient in pyocyanin production and biofilms lacking extracellular DNA show similar architecture indicating the interaction is important in P. aeruginosa biofilm formation. PMID:25669133

  11. Protective role of quercetin against copper(II)-induced oxidative stress: A spectroscopic, theoretical and DNA damage study.

    Science.gov (United States)

    Jomova, Klaudia; Lawson, Michael; Drostinova, Lenka; Lauro, Peter; Poprac, Patrik; Brezova, Vlasta; Michalik, Martin; Lukes, Vladimir; Valko, Marian

    2017-12-01

    The radical scavenging and metal chelating properties of flavonoids indicate that they may play a protective role in diseases with perturbed metal homeostasis such as Alzheimer's disease. In this work we investigated the effect of the coordination of quercetin to copper(II) in view of the formation of ROS in Cu-catalyzed Fenton reaction. ABTS and DPPH assays confirmed that the copper(II)-quercetin complex exhibits a stronger radical scavenging activity than does quercetin alone. EPR spin trapping experiments have shown that chelation of quercetin to copper significantly suppressed the formation of hydroxyl radicals in the Cu(II)-Fenton reaction. DNA damage experiments revealed a protective effect for quercetin, but only at higher stoichiometric ratios of quercetin relative to copper. DNA protective effect of quercetin against ROS attack was described by two mechanisms. The first mechanism lies in suppressed formation of ROS due to the decreased catalytic action of copper in the Fenton reaction, as a consequence of its chelation and direct scavenging of ROS by free quercetin. Since the Cu-quercetin complex intercalates into DNA, the second mechanism was attributed to a suppressed intercalating ability of the Cu-quercetin complex due to the mildly intercalating free quercetin into DNA, thus creating a protective wall against stronger intercalators. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Reactive Programming in Java

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Reactive Programming in gaining a lot of excitement. Many libraries, tools, and frameworks are beginning to make use of reactive libraries. Besides, applications dealing with big data or high frequency data can benefit from this programming paradigm. Come to this presentation to learn about what reactive programming is, what kind of problems it solves, how it solves them. We will take an example oriented approach to learning the programming model and the abstraction.

  13. DNA DAMAGE AND REPAIR IN CANCER

    OpenAIRE

    Dizdaroglu, Miral

    2017-01-01

     Oxygen- and nitrogen-derived reactive species are constantly generated inliving organisms by endogenous and exogenous sources. Reactions of reactivespecies such as free radicals with DNA cause the formation of multiplemutagenic and cytotoxic lesions, leading to genetic instability, which is ahallmark of cancer. DNA repair mechanisms exist in living organisms to repairDNA lesions. Most effective cancer treatments work by causing DNA damage inmalignant tumors. Just like in normal cell...

  14. Mechanism of dehydroxylation temperature decrease and high temperature phase transition of coal-bearing strata kaolinite intercalated by potassium acetate.

    Science.gov (United States)

    Cheng, Hongfei; Liu, Qinfu; Cui, Xiaonan; Zhang, Qian; Zhang, Zhiliang; Frost, Ray L

    2012-06-15

    The thermal decomposition and dehydroxylation process of coal-bearing strata kaolinite-potassium acetate intercalation complex (CSKK) has been studied using X-ray diffraction (XRD), infrared spectroscopy (IR), thermal analysis, mass spectrometric analysis and infrared emission spectroscopy. The XRD results showed that the potassium acetate (KAc) have been successfully intercalated into coal-bearing strata kaolinite with an obvious basal distance increase of the first basal peak, and the positive correlation was found between the concentration of intercalation regent KAc and the degree of intercalation. As the temperature of the system is raised, the formation of KHCO(3), KCO(3) and KAlSiO(4), which is derived from the thermal decomposition or phase transition of CSKK, is observed in sequence. The IR results showed that new bands appeared, the position and intensities shift can also be found when the concentration of intercalation agent is raised. The thermal analysis and mass spectrometric analysis results revealed that CSKK is stable below 300°C, and the thermal decomposition products (H(2)O and CO(2)) were further proved by the mass spectrometric analysis. A comparison of thermal analysis results of original coal-bearing strata kaolinite and its intercalation complex gives new discovery that not only a new mass loss peak is observed at 285 °C, but also the temperature of dehydroxylation and dehydration of coal bearing strata kaolinite is decreased about 100 °C. This is explained on the basis of the interlayer space of the kaolinite increased obviously after being intercalated by KAc, which led to the interlayer hydrogen bonds weakened, enables the dehydroxylation from kaolinite surface more easily. Furthermore, the possible structural model for CSKK has been proposed, with further analysis required in order to prove the most possible structures. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Thin-walled nanoscrolls by multi-step intercalation from tubular halloysite-10 Å and its rearrangement upon peroxide treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zsirka, Balázs, E-mail: zsirkab@almos.vein.hu [University of Pannonia, Institute of Environmental Engineering, P.O. Box 158, Veszprém 8201 Hungary (Hungary); Horváth, Erzsébet, E-mail: erzsebet.horvath@gmail.com [University of Pannonia, Institute of Environmental Engineering, P.O. Box 158, Veszprém 8201 Hungary (Hungary); Szabó, Péter, E-mail: xysma@msn.com [University of Pannonia, Department of Analytical Chemistry, P.O. Box 158, Veszprém 8201 Hungary (Hungary); Juzsakova, Tatjána, E-mail: yuzhakova@almos.uni-pannon.hu [University of Pannonia, Institute of Environmental Engineering, P.O. Box 158, Veszprém 8201 Hungary (Hungary); Szilágyi, Róbert K., E-mail: szilagyi@montana.edu [Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 (United States); Fertig, Dávid, E-mail: fertig.david92@gmail.com [University of Pannonia, Department of Analytical Chemistry, P.O. Box 158, Veszprém 8201 Hungary (Hungary); Makó, Éva, E-mail: makoe@almos.vein.hu [University of Pannonia, Institute of Materials Engineering, P.O. Box 158, Veszprém 8201 Hungary (Hungary); Varga, Tamás, E-mail: vtamas@chem.u-szeged.hu [University of Szeged, Department of Applied and Environmental Chemistry, Rerrich B. tér 1., Szeged H-6720 Hungary (Hungary); and others

    2017-03-31

    Highlights: • Halloysite intercalation/delamination. • Thin-walled nanoscroll preparation. • Oxidative surface cleaning with H{sub 2}O{sub 2} and heating. • X-ray diffraction, TEM, N{sub 2} adsorption, TG/DTG and FT-IR/ATR measurements. • Nanoscroll rearrangement, periodicity along the crystallographic ‘c’-axis. - Abstract: Surface modification of the halloysite-10 Å mineral with tubular morphology can be achieved by slightly modified procedures developed for the delamination of kaolinite minerals. The resulting delaminated halloysite nanoparticles have unexpected surface/morphological properties that display, new potentials in catalyst development. In this work, a four-step intercalation/delamination procedure is described for the preparation of thin-walled nanoscrolls from the multi-layered hydrated halloysite mineral that consists of (1) intercalation of halloysite with potassium acetate, (2) replacement intercalation with ethylene glycol, (3) replacement intercalation with hexylamine, and (4) delamination with toluene. The intercalation steps were followed by X-ray diffraction, transmission electron microscopy, N{sub 2} adsorption-desorption, thermogravimetry, and infrared spectroscopy. Delamination eliminated the crystalline order and the crystallite size along the ‘c’-axis, increased the specific surface area, greatly decreased the thickness of the mineral tubes to a monolayer, and shifted the pore diameter toward the micropore region. Unexpectedly, the removal of residual organics from intercalation steps adsorbed at the nanoscroll surface with a peroxide treatment resulted in partial recovery of crystallinity and increase of crystallite size along the ‘c’-crystal direction. The d(001) value showed a diffuse pattern at 7.4–7.7 Å due to the rearrangement of the thin-walled nanoscrolls toward the initial tubular morphology of the dehydrated halloysite-7 Å mineral.

  16. Mixed-ligand copper(II) phenolate complexes: Synthesis, spectral characterization, phosphate-hydrolysis, antioxidant, DNA interaction and cytotoxic studies

    Science.gov (United States)

    Gurumoorthy, Perumal; Mahendiran, Dharmasivam; Prabhu, Durai; Arulvasu, Chinnasamy; Rahiman, Aziz Kalilur

    2015-01-01

    A series of phenol-based mixed-ligand copper(II) complexes of the type [CuL1-4(diimine)] (1-8), where L1-4 = N1,N2-bis(5-substituted-2-hydroxybenzylidene)-1,2-ethylene/phenylenediimine and diimine = 2,2‧-bipyridyl (bpy) or 1,10-phenanthroline (phen), have been isolated and fully characterized by analytical and spectral techniques. Electronic spectra of complexes suggest Cu(II) cation has a d9 electronic configuration, adopting distorted octahedral geometry with axial elongation, due to Jahn-Teller effect. Electrochemical studies of complexes evidenced one-electron irreversible reduction wave in the cathodic region. The observed rate constant (k) values for the hydrolysis of 4-nitrophenylphosphate (4-NPP) are in the range of 0.25-3.82 × 10-2 min-1. The obtained room temperature magnetic moment values (1.79-1.90 BM) lies within the range observed for octahedral copper(II) complexes. Antioxidant studies revealed that these complexes possess considerable radical scavenging potency against DPPH. The binding studies of complexes with calf thymus DNA (CT-DNA) revealed intercalation with minor-groove binding, and the complex 4 exhibits highest binding activity than the other complexes. The cleavage activity on supercoiled pBR322 DNA revealed the involvement of hydroxyl radical and singlet-oxygen as reactive oxygen species, and complexes encourage binding to minor-groove. Further, the cytotoxicity of complex 4 on human hepatocellular liver carcinoma HepG2 cell line implies the cell death through apoptosis.

  17. {2-[1-(3-Methoxycarbonylmethyl-1H-indol-2-yl)-1-methyl-ethyl]-1H-indol-3-yl}-acetic acid methyl ester (MIAM): its anti-cancer efficacy and intercalation mechanism identified via multi-model systems.

    Science.gov (United States)

    Wang, Wenjing; Zhao, Ming; Wang, Yuji; Liu, Jiawang; Wu, Jianhui; Kang, Guifeng; Peng, Shiqi

    2011-03-01

    {2-[1-(3-Methoxycarbonylmethyl-1H-indol-2-yl)-1-methyl-ethyl]-1H-indol-3-yl}-acetic acid methyl ester (MIAM) was provided as a DNA-intercalator. For the comprehensive evaluation of this new intercalator, an assay system consisting of cell, S180 mouse, healthy mouse, spectrum, non-spectrum, and gel electrophoresis models was constructed. On the cell (S180, K562, MCF-7, HeLa and HepG2) models, MIAM selectively inhibited the viability of HeLa. On the S180 mouse model, 0.89, 8.9, 89 and 890 μmol kg(-1) of MIAM dose-dependently inhibited the tumor growth. Even at a dose of 890 μmol kg(-1), MIAM did not damage the treated S180 mice. The safety of MIAM was supported by a high spleen index and an obvious increase of body weight of the treated S180 mice. On the healthy mouse model the LD(50) value of MIAM is higher than 890 μmol kg(-1). The ultraviolet (UV), fluorescence, circular dichroism (CD), relative viscosity, melting curve, and gel electrophoresis assays of DNA with or without MIAM consistently supported an intercalation mechanism for MIAM.

  18. Inhibition of human DNA topoisomerase IIα by two novel ellipticine derivatives.

    Science.gov (United States)

    Vann, Kendra R; Ergün, Yavuz; Zencir, Sevil; Oncuoglu, Serkan; Osheroff, Neil; Topcu, Zeki

    2016-04-01

    Ellipticine (5,11-dimethyl-6H-pyrido[4,3-b]carbazole) is an antineoplastic agent that intercalates into DNA and alters topoisomerase II activity. Unfortunately, this compound displays a number of adverse properties. Therefore, to investigate new ellipticine-based compounds for their potential as topoisomerase II-targeted drugs, we synthesized two novel derivatives, N-methyl-5-demethyl ellipticine (ET-1) and 2-methyl-N-methyl-5-demethyl ellipticinium iodide (ET-2). As determined by DNA decatenation and cleavage assays, ET-1 and ET-2 act as catalytic inhibitors of human topoisomerase IIα and are both more potent than the parent compound. Neither compound impairs the ability of the type II enzyme to bind its DNA substrate. Finally, the potency of ET-1 and ET-2 as catalytic inhibitors of topoisomerase IIα appears to be related to their ability to intercalate into the double helix. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. High-resolution 13C nuclear magnetic resonance evidence of phase transition of Rb,Cs-intercalated single-walled nanotubes

    KAUST Repository

    Bouhrara, M.

    2011-09-06

    We present 13 C high-resolution magic-angle-turning (MAT) and magic angle spinning nuclear magnetic resonance data of Cs and Rb intercalated single walled carbon nanotubes. We find two distinct phases at different intercalation levels. A simple charge transfer is applicable at low intercalation level. The new phase at high intercalation level is accompanied by a hybridization of alkali (s) orbitals with the carbon (sp2) orbitals of the single walled nanotubes, which indicate bundle surface sites is the most probable alkali site.

  20. Ruthenium(II) complexes of saccharin with dipyridoquinoxaline and dipyridophenazine: Structures, biological interactions and photoinduced DNA damage activity.

    Science.gov (United States)

    Kumar, Priyaranjan; Dasari, Srikanth; Patra, Ashis K

    2017-08-18

    Ruthenium complexes trans-[Ru(sac) 2 (dpq) 2 ] (1) and trans-[Ru(sac) 2 (dppz) 2 ] (2) where sac is artificial sweetener saccharin (o-sulfobenzimide; 1,2-benzothiazole-3(2H)-one1,1-dioxide (Hsac)), dpq = dipyrido[3,2-d:2',3'-f]quinoxaline and dppz = dipyrido[3,2-a:2',3'-c]phenazine have been synthesized and thoroughly characterized using various analytical and spectral techniques. Saccharin known to act as carbonic anhydrase IX (CA IX) inhibitor which is a biomarker for highly aggressive and proliferative tumor in hypoxic stress, so inhibition of CA IX is a potential strategy for anticancer chemotherapy. The solid state structures, photophysical properties, photostability, DNA and protein binding affinity, and DNA photocleavage activity were explored. The structural analysis revealed Ru(II) centre is in discrete mononuclear, distorted octahedral {RuN 6 } coordination geometry with two monoanionic nitrogen donor saccharinate ligands and two neutral bidentate nitrogen donors ligands dpq and dppz. cis-[Ru(sac) 2 (dppz) 2 ] (cis-2) geometrical isomer was also isolated and structurally characterized by X-ray crystallography. The photo-induced dissociation of monodentate saccharin ligand is observed when irradiated at UV-A light of 365 nm. The complexes show significant binding affinity to the calf thymus DNA (K b  ∼ 10 5  M -1 ) through significant intercalation through planar dpq and dppz ligands. Interaction of complexes 1 and 2 with bovine serum albumin (BSA) showed remarkable tryptophan emission quenching (K BSA ∼10 5  M -1 ). The complexes showed appreciable photoinduced DNA cleavage activity upon irradiation of low power UV-A light of 365 nm from supercoiled (SC) to its nicked circular (NC) form at micromolar complex concentrations. Photocleavage mechanistic studies in presence of O 2 reveals involvement of reactive oxygen species (ROS) mediated through ligand-centered 3 ππ* and/or 3 MLCT excited states generated upon photoactivation leads to

  1. Flows of Reactive Fluids

    CERN Document Server

    Prud'homme, Roger

    2010-01-01

    The modeling of reactive flows has progressed mainly with advances in aerospace, which gave birth to a new science called aerothermochemistry, as well as through developments in chemical and process engineering. The methods employed, the phenomena investigated, and the aims of modeling differ for each field; however, in all cases, the results obtained have considerably enriched the working knowledge of reactive flows. This work examines basic concepts and methods necessary to study reactive flows and transfer phenomena in areas such as fluid mechanics, thermodynamics, and chemistry. Specific topics covered include: * Equations of state * Transfer phenomena and chemical kinetics * Balance equations of reactive flows * Dimensionless numbers and similarity * Chemical reactors * Coupled phenomena * Turbulent flow concepts * Boundary layers and fluid layers * Reactive and nonreactive waves * Interface phenomena * Multiphase flow concepts The book presents tools of interest to graduate students, researchers in math...

  2. Mg2+-modulated KMnO4 reactivity of thymines in the open transcription complex reflects variation in the negative electrostatic potential along the separated DNA strands. Footprinting of Escherichia coli RNA polymerase complex at the lambdaP(R) promoter revisited.

    Science.gov (United States)

    Łoziński, Tomasz; Wierzchowski, Kazimierz L

    2005-06-01

    There is still a controversy over the mechanism of promoter DNA strand separation upon open transcription complex (RPo) formation by Escherichia coli RNA polymerase: is it a single or a stepwise process controlled by Mg2+ ions and temperature? To resolve this question, the kinetics of pseudo-first-order oxidation of thymine residues by KMnO4 in the -11 ... +2 DNA region of RPo at the lambdaP(R) promoter was examined under single-hit conditions as a function of temperature (13-37 degrees C) in the absence or presence of 10 mm MgCl2. The reaction was also studied with respect to thymidine and its nucleotides (TMP, TTP and TpT) as a function of temperature and [MgCl2]. The kinetic parameters, (ox)k and (ox)E(a), and Mg-induced enhancement of (ox)k proved to be of the same order of magnitude for RPo-lambdaP(R) and the nucleotides. Unlike the complex, (ox)E(a) for the nucleotides was found to be Mg-independent. The isothermal increase in (ox)k with increasing [Mg2+] was thus interpreted in terms of a simple model of screening of the negative charges on phosphate groups by Mg2+ ions, lowering the electrostatic barrier to the diffusion of MnO4- anions to the reactive double bond of thymine. Similar screening isotherms were determined for the oxidation of two groups of thymines in RPo at a consensus-like Pa promoter, differing in the magnitude of the Mg effect. Together, the findings show that: (a) the two DNA strands in the -11...+2 region of RPo-lambdaP(R) are completely separated over the whole range of temperatures investigated (13-37 degrees C) in the absence of Mg2+ (b) Mg2+ ions induce an increase in the rate of the oxidation reaction by screening negatively charged phosphate and carboxylate groups; and (c) the observed thymine reactivity and the magnitude of the Mg effect reflect variation in the strength of the electrostatic potential along the separated DNA strands, in agreement with the current structural model of RPo.

  3. Investigating continuous co-intercalation of solvated lithium ions and graphite exfoliation in propylene carbonate-based electrolyte solutions

    Science.gov (United States)

    Song, Hee-Youb; Jeong, Soon-Ki

    2018-01-01

    Forming an effective solid electrolyte interphase (SEI) is a significant issue in lithium ion batteries that utilize graphite as a negative electrode material, because the SEI determines the reversibility of the intercalation and de-intercalation of lithium ions into graphite for secondary batteries. In propylene carbonate (PC)-based electrolyte solutions, ceaseless co-intercalation of solvated lithium ions takes place because no effective SEI is formed. It is indisputable that this continuous co-intercalation leads to graphite exfoliation; however, the reason for this is currently not well understood. In this study, we investigate interfacial reactions that contribute to SEI formation on highly oriented pyrolytic graphite (HOPG) in ethylene carbonate (EC) and PC-based electrolyte solutions by in situ atomic force microscopy. The blisters formed on HOPG after the decomposition of solvated lithium ions within the graphite layers do not change over the course of ten electrochemical cycles in an EC-based electrolyte solution. In contrast, when cycling in PC-based electrolytes, the blisters continually change, and the height at the vicinity of the graphite edge plane increases. These morphological changes are attributed to the continuous co-intercalation of solvated lithium ions in PC-based electrolyte solutions.

  4. Classical Keggin Intercalated into Layered Double Hydroxides: Facile Preparation and Catalytic Efficiency in Knoevenagel Condensation Reactions.

    Science.gov (United States)

    Jia, Yueqing; Fang, Yanjun; Zhang, Yingkui; Miras, Haralampos N; Song, Yu-Fei

    2015-10-12

    The family of polyoxometalate (POM) intercalated layered double hydroxide (LDH) composite materials has shown great promise for the design of functional materials with numerous applications. It is known that intercalation of the classical Keggin polyoxometalate (POM) of [PW12 O40 ](3-) (PW12 ) into layered double hydroxides (LDHs) is very unlikely to take place by conventional ion exchange methods due to spatial and geometrical restrictions. In this paper, such an intercalated compound of Mg0.73 Al0.22 (OH)2 [PW12 O40 ]0.04 ⋅0.98 H2 O (Mg3 Al-PW12 ) has been successfully obtained by applying a spontaneous flocculation method. The Mg3 Al-PW12 has been fully characterized by using a wide range of methods (XRD, SEM, TEM, XPS, EDX, XPS, FT-IR, NMR, BET). XRD patterns of Mg3 Al-PW12 exhibit no impurity phase usually observed next to the (003) diffraction peak. Subsequent application of the Mg3 Al-PW12 as catalyst in Knoevenagel condensation reactions of various aldehydes and ketones with Z-CH2 -Z' type substrates (ethyl cyanoacetate and malononitrile) at 60 °C in mixed solvents (V2-propanol :Vwater =2:1) demonstrated highly efficient catalytic activity. The synergistic effect between the acidic and basic sites of the Mg3 Al-PW12 composite proved to be crucial for the efficiency of the condensation reactions. Additionally, the Mg3 Al-PW12 -catalyzed Knoevenagel condensation of benzaldehyde with ethyl cyanoacetate demonstrated the highest turnover number (TON) of 47 980 reported so far for this reaction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Renal type a intercalated cells contain albumin in organelles with aldosterone-regulated abundance.

    Directory of Open Access Journals (Sweden)

    Thomas Buus Jensen

    Full Text Available Albumin has been identified in preparations of renal distal tubules and collecting ducts by mass spectrometry. This study aimed to establish whether albumin was a contaminant in those studies or actually present in the tubular cells, and if so, identify the albumin containing cells and commence exploration of the origin of the intracellular albumin. In addition to the expected proximal tubular albumin immunoreactivity, albumin was localized to mouse renal type-A intercalated cells and cells in the interstitium by three anti-albumin antibodies. Albumin did not colocalize with markers for early endosomes (EEA1, late endosomes/lysosomes (cathepsin D or recycling endosomes (Rab11. Immuno-gold electron microscopy confirmed the presence of albumin-containing large spherical membrane associated bodies in the basal parts of intercalated cells. Message for albumin was detected in mouse renal cortex as well as in a wide variety of other tissues by RT-PCR, but was absent from isolated connecting tubules and cortical collecting ducts. Wild type I MDCK cells showed robust uptake of fluorescein-albumin from the basolateral side but not from the apical side when grown on permeable support. Only a subset of cells with low peanut agglutinin binding took up albumin. Albumin-aldosterone conjugates were also internalized from the basolateral side by MDCK cells. Aldosterone administration for 24 and 48 hours decreased albumin abundance in connecting tubules and cortical collecting ducts from mouse kidneys. We suggest that albumin is produced within the renal interstitium and taken up from the basolateral side by type-A intercalated cells by clathrin and dynamin independent pathways and speculate that the protein might act as a carrier of less water-soluble substances across the renal interstitium from the capillaries to the tubular cells.

  6. Rapid exchange between atmospheric CO2 and carbonate anion intercalated within magnesium rich layered double hydroxide.

    Science.gov (United States)

    Sahoo, Pathik; Ishihara, Shinsuke; Yamada, Kazuhiko; Deguchi, Kenzo; Ohki, Shinobu; Tansho, Masataka; Shimizu, Tadashi; Eisaku, Nii; Sasai, Ryo; Labuta, Jan; Ishikawa, Daisuke; Hill, Jonathan P; Ariga, Katsuhiko; Bastakoti, Bishnu Prasad; Yamauchi, Yusuke; Iyi, Nobuo

    2014-10-22

    The carbon cycle, by which carbon atoms circulate between atmosphere, oceans, lithosphere, and the biosphere of Earth, is a current hot research topic. The carbon cycle occurring in the lithosphere (e.g., sedimentary carbonates) is based on weathering and metamorphic events so that its processes are considered to occur on the geological time scale (i.e., over millions of years). In contrast, we have recently reported that carbonate anions intercalated within a hydrotalcite (Mg0.75Al0.25(OH)2(CO3)0.125·yH2O), a class of a layered double hydroxide (LDH), are dynamically exchanging on time scale of hours with atmospheric CO2 under ambient conditions. (Ishihara et al., J. Am. Chem. Soc. 2013, 135, 18040-18043). The use of (13)C-labeling enabled monitoring by infrared spectroscopy of the dynamic exchange between the initially intercalated (13)C-labeled carbonate anions and carbonate anions derived from atmospheric CO2. In this article, we report the significant influence of Mg/Al ratio of LDH on the carbonate anion exchange dynamics. Of three LDHs of various Mg/Al ratios of 2, 3, or 4, magnesium-rich LDH (i.e., Mg/Al ratio = 4) underwent extremely rapid exchange of carbonate anions, and most of the initially intercalated carbonate anions were replaced with carbonate anions derived from atmospheric CO2 within 30 min. Detailed investigations by using infrared spectroscopy, scanning electron microscopy, powder X-ray diffraction, elemental analysis, adsorption, thermogravimetric analysis, and solid-state NMR revealed that magnesium rich LDH has chemical and structural features that promote the exchange of carbonate anions. Our results indicate that the unique interactions between LDH and CO2 can be optimized simply by varying the chemical composition of LDH, implying that LDH is a promising material for CO2 storage and/or separation.

  7. Molecular Simulation Models of Carbon Dioxide Intercalation in Hydrated Sodium Montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Myshakin, Evgeniy [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Saidi, Wissam [Univ. of Pittsburgh, PA (United States); Romanov, Vyacheslav [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Cygan, Randall [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jordan, Kenneth [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Univ. of Pittsburgh, PA (United States); Guthrie, George [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-22

    In this study, classical molecular dynamics simulations and density functional theory (DFT)-based molecular dynamics are used to elucidate the process of CO2 intercalation into hydrated Na-montmorillonite at P-T conditions relevant to geological formations suitable for CO2 storage. Of particular interest are the structural and transport properties of interlayer species after CO2 intercalation. The conducted simulations allowed the research team to quantify expansion/contraction of smectite as a function of CO2 and H2O compositions. The resulting swelling curves can be used to gauge the amount of stored CO2, compare it to the experiment, and estimate changes in geomechanical properties of the storage formation. The obtained results showed that the infrared signal of the asymmetric stretch vibration of CO2 molecule is extremely sensitive to the solvent environment. The extent of the frequency shift relative to the gas-phase value can be used to probe hydration level in the interlayer with intercalated CO2. Interaction of supercritical CO2 with brine in deep geological formations promotes an increase of hydrophobicity of clay surfaces. As a result of wettability alteration, estimated diffusion constants of CO2 and H2O increase with the increased CO2 load; this can contribute to faster migration of CO2 throughout the formation.

  8. Methotrexatum intercalated layered double hydroxides: Statistical design, mechanism explore and bioassay study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao-Feng [Department of Gastroenterology, Weihai municipal hospital, Weihai 264200 (China); Liu, Su-Qing [Jiangsu Key Laboratory of Biofunctional Material, College of Chemistry and Material Science, Nanjing Normal University, Nanjing 210023 (China); Li, Shu-Ping, E-mail: lishuping@njnu.edu.cn [Jiangsu Key Laboratory of Biofunctional Material, College of Chemistry and Material Science, Nanjing Normal University, Nanjing 210023 (China)

    2015-04-01

    A series of methotrexatum intercalated layered double hydroxide (MTX/LDH for short) hybrids have been synthesized by a mechanochemical–hydrothermal method, the statistical experiments are planned and conducted to find out the critical factor influencing the physicochemical properties. Four variables, i.e., addition of NaOH solution, grinding duration, hydrothermal temperature and time, are chosen to play as the examined factors in the orthogonal design. Furthermore, three respective levels, i.e., high, medium and low levels, are conducted in the design. The resulting hybrids are then characterized by X-ray diffraction (XRD) patterns, transmission electron microscope (TEM) graphs and Zeta potentials. XRD diffractions indicate that MTX anions have been successfully intercalated into LDH interlayers and the amount of NaOH solution can change the gallery height greatly. The information from TEM graphs and Zeta potentials state that the increase of alkali solution gives rise to regular morphology and the increase of Zeta potentials. As a result of the statistical analysis, addition of alkali solution is the major factor affecting the morphology and drug-loading capacity. At last, the mechanism of particle growth is explored emphatically, and the anticancer efficacy of some MTX/LDH hybrids is estimated by MTT assay on A549 cells as well. - Graphical abstract: Schematic illustration of synthesis and properties of MTX intercalated LDH hybrids. - Highlights: • Increasing NaOH solution gives rise to high drug-loading capacity. • Increasing the alkali solution leads to high layer charge and regular morphology. • The monodispersity has critical effect on the tumor suppression efficiency.

  9. Conformation of nanoconfined DNA as a function of ATP, AMP, CTP, Mg2+, and dye binding

    Science.gov (United States)

    Roushan, Maedeh; Riehn, Robert

    2014-03-01

    DNA molecules stretch in nanochannels with a channel cross-section of 100x100 nm2, thereby allowing analysis by observation of a fluorescent dye. The length and configuration of DNA can be directly observed, and the effect of different DNA-binding proteins on DNA configuration can be studied. Recently, we reported on the ability of T4 ligase to transiently manipulate DNA as a function of ATP and magnesium exposure. In this process we have extensively probed the interactions of dyes and enzyme co-factors with DNA under nanoconfinement. We find negligible effects if DNA is visualized using groove-binding dyes such as DAPI. However, if an intercalating dye (YOYO-1) is used, we find a significant shortening of the DNA in the presence of ATP that we attribute to an interaction of dye and ATP (as well as AMP and CTP). We did not record a noticeable effect due to Mg2+.

  10. Lowering Band Gap of an Electroactive Metal-Organic Framework via Complementary Guest Intercalation.

    Science.gov (United States)

    Guo, Zhiyong; Panda, Dillip K; Gordillo, Monica A; Khatun, Amina; Wu, Hui; Zhou, Wei; Saha, Sourav

    2017-09-27

    A new honeycomb-shaped electroactive metal-organic framework (MOF) has been constructed from an electron deficient naphthalenediimide (NDI) ligand equipped with two terminal salicylic acid groups. π-Intercalation of electron-rich planar tetrathiafulvalene (TTF) guests between the NDI ligands stacked along the walls lowers the electronic band gap of the material by ca. 1 eV. An improved electron delocalization through the guest-mediated π-donor/acceptor stacks is attributed to the diminished band gap of the doped material, which forecasts an improved electrical conductivity.

  11. Formation of hydrotalcite in aqueous solutions and intercalation of ATP by anion exchange

    OpenAIRE

    Tamura, Hiroki; Chiba, Jun; Ito, Masahiro; Takeda, Takashi; Kikkawa, Shinichi; MAWATARI, Yasuteru; TABATA, Masayoshi

    2006-01-01

    The formation reaction and the intercalation of adenosine triphosphate (ATP) were studied for hydrotalcite (HT), a layered double hydroxide (LDH) of magnesium and aluminum. Hydrotalcite with nitrate ions in the interlayer (HT-NO3) was formed (A) by dropwise addition of a solution of magnesium and aluminum nitrates (pH ca. 3) to a sodium hydroxide solution (pH ca. 14) until the pH decreased from 14 to 10 and (B) by dropwise addition of the NaOH solution to the solution of magnesium and aluminu...

  12. Unforeseen high temperature and humidity stability of FeCl3 intercalated few layer graphene

    DEFF Research Database (Denmark)

    Wehenkel, Dominique Joseph; Bointon, Thomas Hardisty; Booth, Tim

    2015-01-01

    We present the first systematic study of the stability of the structure and electrical properties of FeCl3 intercalated few-layer graphene to high levels of humidity and high temperature. Complementary experimental techniques such as electrical transport, high resolution transmission electron...... microscopy and Raman spectroscopy conclusively demonstrate the unforseen stability of this transparent conductor to a relative humidity up to 100% at room temperature for 25 days, to a temperature up to 150 degrees C in atmosphere and to a temperature as high as 620 degrees C in vacuum, that is more than...

  13. Electron-phonon interaction and pairing mechanism in superconducting Ca-intercalated bilayer graphene.

    Science.gov (United States)

    Margine, E R; Lambert, Henry; Giustino, Feliciano

    2016-02-19

    Using the ab initio anisotropic Eliashberg theory including Coulomb interactions, we investigate the electron-phonon interaction and the pairing mechanism in the recently-reported superconducting Ca-intercalated bilayer graphene. We find that C6CaC6 can support phonon-mediated superconductivity with a critical temperature Tc = 6.8-8.1 K, in good agreement with experimental data. Our calculations indicate that the low-energy Caxy vibrations are critical to the pairing, and that it should be possible to resolve two distinct superconducting gaps on the electron and hole Fermi surface pockets.

  14. Efficient dechlorination of carbon tetrachloride by hydrophobic green rust intercalated with dodecanoate anions

    DEFF Research Database (Denmark)

    Ayala Luis, Karina Barbara; Ginette Anneliese Cooper, Nicola; Bender Koch, Christian

    2012-01-01

    similar to those found in heavily contaminated groundwater close to polluted industrial sites (14 988 mu M) was reduced mainly to the fully dechlorinated products carbon monoxide (CO, yields >54 and formic acid (HCOOH, yields >6. Minor formation of chloroform (CF), the only chlorinated degradation product......The reductive dechlorination of carbon tetrachloride (CT) by Fe-II-Fe-III hydroxide (green rust) intercalated with dodecanoate, (Fe4Fe2III)-Fe-II (OH)(12)(C12H23O2)(2)center dot gamma H2O (designated GR(C12)), at pH similar to 8 and at room temperature was investigated. CT at concentration levels...

  15. A lipid membrane intercalating conjugated oligoelectrolyte enables electrode driven succinate production in Shewanella

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, AW; Garner, LE; Nevin, KP; Woodard, TL; Franks, AE; Lovley, DR; Sumner, JJ; Sund, CJ; Bazan, GC

    2013-06-01

    An amphiphilic conjugated oligoelectrolyte (COE) that spontaneously intercalates into lipid membranes enables Shewanella oneidensis to use a graphite electrode as the sole electron donor for succinate production. Current consumed in a poised electrochemical system by Shewanella with micromolar concentrations of COE correlates well with the succinate produced via fumarate reduction as determined by HPLC analysis. Confocal microscopy confirms incorporation of the COE into the microbes on the electrode surface. This work presents a unique strategy to induce favorable bio-electronic interactions for the production of reduced microbial metabolites.

  16. Lithium intercalation and interfacial kinetics of composite anodes formed by oxidized graphite and copper

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, M.; Nobili, F.; Dsoke, S.; Tossici, R.; Marassi, R. [Dipartimento di Scienze Chimiche, Universita di Camerino, Via S. Agostino, 1, 62032 Camerino (MC) (Italy); D' Amico, F. [Dipartimento di Fisica, Universita di Camerino, Via Madonna delle Carceri, 9, 62032 Camerino (MC) (Italy); Croce, F. [Dipartimento di Scienze del Farmaco, Universita degli Studi ' ' G. D' Annunzio' ' , Via dei Vestini, 31, 66013 Chieti (Italy)

    2009-05-01

    The electrochemical behavior of composite anodes prepared either by mixing partially oxidized graphite and Cu powders or by coating the pristine partially oxidized graphite electrodes with few-nanometer-thick Cu layers has been studied by slow-scan-rate cyclic voltammetry (SSCV) and galvanostatic charge/discharge cycles over the temperature range of -30 C to 20 C. The interfacial intercalation/deintercalation kinetics has also been investigated using electrochemical impedance spectroscopy (EIS). The role of the Cu in improving low-temperature performances and kinetics of graphite electrodes is discussed. (author)

  17. Synthesis and Characterization of Graphene Thin Films by Chemical Reduction of Exfoliated and Intercalated Graphite Oxide

    Directory of Open Access Journals (Sweden)

    F. T. Thema

    2013-01-01

    Full Text Available Commercial flakes of graphite were prepared into functionalized graphene oxide (GO by chemical treatment. After the exfoliation and intercalation of graphene into functionalized graphene oxide that formed stable colloidal dispersion in polar aprotic solvent, the reduction process was undertaken by continuous stirring with hydrazine hydrate. The reduced material was characterized by X-ray diffraction (XRD, attenuated total reflectance (ATR FT-IR, ultraviolet visible (UV-vis, atomic force microscopy (AFM and Raman spectroscopy which confirm the oxidation of graphite and reduction of graphene oxide into graphene sheet.

  18. Synthesis and crystal structure of new dicopper(II) complexes having asymmetric N,N'-bis(substituted)oxamides with DNA/protein binding ability: In vitro anticancer activity and molecular docking studies.

    Science.gov (United States)

    Zheng, Kang; Zhu, Ling; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2015-08-01

    Two new dicopper(II) complexes bridged by asymmetric N,N'-bis(substituted)oxamide ligands: N-(5-chloro-2-hydroxyphenyl)-N'-[2-(dimethylamino)ethyl]oxamide (H3chdoxd) and N-hydroxypropyl-N'-(2-carboxylatophenyl)oxamide (H3oxbpa), and end-capped with 2,2'-bipyridine (bpy), namely [Cu2(ClO4)(chdoxd)(CH3OH)(bpy)]·H2O (1) and [Cu2(pic)(oxbpa)(CH3OH)(bpy)]·0.5CH3OH (2) (pic denotes picrate anion), have been synthesized and characterized by elemental analysis, molar conductivity measurement, IR and electronic spectral studies, and single-crystal X-ray diffraction. The X-ray diffraction analysis revealed that both the copper(II) ions bridged by the cis-oxamido ligands in dicopper(II) complexes 1 and 2 are all in square-pyramidal environments with the corresponding Cu⋯Cu separations of 5.194(3) and 5.1714(8)Å, respectively. In the crystals of the two complexes, there are abundant hydrogen bonds and π-π stacking interactions contributing to the supramolecular structure. The reactivities toward herring sperm DNA (HS-DNA) and bovine serum albumin (BSA) of the two complexes are studied both theoretically and experimentally, indicating that both the two complexes can interact with the DNA in the mode of intercalation, and effectively bind to BSA via the favored binding sites Trp134 for the complex 1 and Trp213 for the complex 2. Interestingly, the in vitro anticancer activities of the two complexes against the selected tumor cell lines are consistent with their DNA/BSA-binding affinities following the order of 1>2. The effects of coordinated counterions in the two complexes on DNA/BSA-binding ability and in vitro anticancer activity are preliminarily discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Structural Insights into DNA Replication Without Hydrogen-Bonds

    Science.gov (United States)

    Betz, Karin; Malyshev, Denis A.; Lavergne, Thomas; Welte, Wolfram; Diederichs, Kay; Romesberg, Floyd E.; Marx, Andreas

    2014-01-01

    The genetic alphabet is comprised of two base pairs, and the development of a third, unnatural base pair would increase the genetic and chemical potential of DNA. d5SICS-dNaM is one of the most efficiently replicated unnatural base pairs identified to date, but its pairing is mediated by only hydrophobic and packing forces, and in free duplex DNA it forms a cross-strand intercalated structure that makes its efficient replication difficult to understand. Recent studies of the KlenTaq polymerase revealed that the insertion of d5SICSTP opposite dNaM proceeds via a mutually induced-fit mechanism, where the presence of the triphosphate induces the polymerase to form the catalytically competent closed structure, which in turn induces the pairing nucleotides of the developing unnatural base pair to adopt a planar Watson-Crick-like structure. To understand the remaining steps of replication, we now report the characterization of the pre-chemistry complexes corresponding to the insertion of dNaMTP opposite d5SICS, as well as multiple post-chemistry complexes in which the already formed unnatural base pair is positioned at the post-insertion site. Unlike with the insertion of d5SICSTP opposite dNaM, addition of dNaMTP does not fully induce the formation of the catalytically competent closed state. The data also reveal that once synthesized and translocated to the post-insertion position, the unnatural nucleobases again intercalate. Two modes of intercalation are observed, depending on the nature of the flanking nucleotides, and are each stabilized by different interactions with the polymerase, and each appear to reduce the affinity with which the next correct triphosphate binds. Thus, continued primer extension is limited by de-intercalation and rearrangements with the polymerase active site that are required to populate the catalytically active, triphosphate bound conformation. PMID:24283923

  20. Recognition of double-stranded DNA using energetically activated duplexes with interstrand zippers of 1-, 2-or 4-pyrenyl-functionalized O2 '-alkylated RNA monomers

    DEFF Research Database (Denmark)

    Karmakar, Saswata; Madsen, Andreas Stahl; Guenther, Dale C.

    2014-01-01

    and modifying genes. Invaders, i.e., energetically activated DNA duplexes with interstrand zipper arrangements of intercalator-functionalized nucleotides, are emerging as an attractive approach toward this goal. Here, we characterize and compare Invaders based on 1-, 2- and 4-pyrenyl-functionalized O2......'-alkylated uridine monomers X-Z by means of thermal denaturation experiments, optical spectroscopy, force-field simulations and recognition experiments using DNA hairpins as model targets. We demonstrate that Invaders with +1 interstrand zippers of X or Y monomers efficiently recognize mixed-sequence DNA......-modified Invaders show much lower dsDNA recognition efficiency. Thus, even very conservative changes in the chemical makeup of the intercalator-functionalized nucleotides used to activate Invader duplexes, affects dsDNA-recognition efficiency of the probes, which highlights the importance of systematic structure...

  1. Simultaneous Intercalation of 1-Naphthylacetic Acid and Indole-3-butyric Acid into Layered Double Hydroxides and Controlled Release Properties

    Directory of Open Access Journals (Sweden)

    Shifeng Li

    2014-01-01

    Full Text Available Controlled release formulations have been shown to have potential in overcoming the drawbacks of conventional plant growth regulators formulations. A controlled-release formulation of 1-naphthylacetic acid (NAA and indole-3-butyric acid (IBA simultaneous intercalated MgAl-layered double hydroxides (LDHs was prepared. The synthetic nanohybrid material was characterized by various techniques, and release kinetics was studied. NAA and IBA anions located in the gallery of MgAl-LDHs with bilayer arrangement, and the nanohybrids particles were of typical plate-like shape with the lateral size of 50–100 nm. The results revealed that NAA and IBA have been intercalated into the interlayer spaces of MgAl-LDHs. The release of NAA and IBA fits pseudo-second-order model and is dependent on temperature, pH value, and release medium. The nanohybrids of NAA and IBA simultaneously intercalated in LDHs possessed good controlled release properties.

  2. Hexagonal boron nitride intercalated multi-layer graphene: a possible ultimate solution to ultra-scaled interconnect technology

    Directory of Open Access Journals (Sweden)

    Yong-Jun Li

    2012-03-01

    Full Text Available We proposed intercalation of hexagonal boron nitride (hBN in multilayer graphene to improve its performance in ultra-scaled interconnects for integrated circuit. The effect of intercalated hBN layer in bilayer graphene is investigated using non-equilibrium Green's functions. We find the hBN intercalated bilayer graphene exhibit enhanced transport properties compared with pristine bilayer ones, and the improvement is attributed to suppression of interlayer scattering and good planar bonding condition of inbetween hBN layer. Based on these results, we proposed a via structure that not only benefits from suppressed interlayer scattering between multilayer graphene, but also sustains the unique electrical properties of graphene when many graphene layers are stacking together. The ideal current density across the structure can be as high as 4.6×109 A/cm2 at 1V, which is very promising for the future high-performance interconnect.

  3. Optical contrast spectra studies for determining thickness of stage-1 graphene-FeCl{sub 3} intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Han, Wen-Peng, E-mail: han-wenpeng@163.com, E-mail: yunze.long@163.com; Yan, Xu; Zhao, Hui [College of Physics, Qingdao University, Qingdao 266071 (China); Li, Qiao-Qiao; Lu, Yan [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Long, Yun-Ze, E-mail: han-wenpeng@163.com, E-mail: yunze.long@163.com [College of Physics, Qingdao University, Qingdao 266071 (China); Collaborative Innovation Center for Low-Dimensional Nanomaterials and Optoelectronic Devices, Qingdao University, Qingdao 266071 (China)

    2016-07-15

    Because of novel features in their structural, electronic, magnetic and optical properties, especially potential applications in nanoelectronics, the few-layer graphene intercalation compounds (FLGICs) have been intensively studied recently. In this work, the dielectric constant of the doped graphene of stage-1 FeCl{sub 3}-GIC is obtained by fitting the optical contrast spectra. And fully intercalated stage-1 FeCl{sub 3}-FLGICs were prepared by micromechanical cleavage method from graphite intercalation compounds (GICs) for the first time. Finally, we demonstrated that the thickness of stage-1 FeCl{sub 3}-GICs by micromechanical cleavage can be determined by optical contrast spectra. This method also can be used to other FLGICs, such as SbCl{sub 5}-FLGICs and AuCl{sub 5}-FLGICs, etc.

  4. Synthesis of Various Polyaniline / Clay Nanocomposites Derived from Aniline and Substituted Aniline Derivatives by Mechanochemical Intercalation Method

    Directory of Open Access Journals (Sweden)

    N. Kalaivasan

    2010-01-01

    Full Text Available Polyaniline clay nanocomposite can be prepared by mechano-chemical method in which intercalation of anilinium ion into the clay lattices accomplished by mechanical grinding of sodium montmorillonite (Na+MMT in presence of anilinium hydrochloride at room temperature using mortar & pestle for about 30 min and subsequent grinding with oxidizing agent, ammonium peroxysulfate. The appearance of green colour indicates the formation of polyaniline/clay nanocomposite (PANI/Clay. Similarly aniline derivatives like o-toludine and o-anisidine in the form of HCl salt can form intercalation into the clay lattices. The intercalated aniline derivatives were ground mechanically in presence of oxidizing agent ammonium peroxysulfate lead to formation of substituted polyaniline/ clay nanocomposites. The characteristics of various polyaniline-clay nanocomposites were investigated using UV-Visible, FT-IR, cyclic voltammetry studies.

  5. Hexagonal boron nitride intercalated multi-layer graphene: a possible ultimate solution to ultra-scaled interconnect technology

    Science.gov (United States)

    Li, Yong-Jun; Sun, Qing-Qing; Chen, Lin; Zhou, Peng; Wang, Peng-Fei; Ding, Shi-Jin; Zhang, David Wei

    2012-03-01

    We proposed intercalation of hexagonal boron nitride (hBN) in multilayer graphene to improve its performance in ultra-scaled interconnects for integrated circuit. The effect of intercalated hBN layer in bilayer graphene is investigated using non-equilibrium Green's functions. We find the hBN intercalated bilayer graphene exhibit enhanced transport properties compared with pristine bilayer ones, and the improvement is attributed to suppression of interlayer scattering and good planar bonding condition of inbetween hBN layer. Based on these results, we proposed a via structure that not only benefits from suppressed interlayer scattering between multilayer graphene, but also sustains the unique electrical properties of graphene when many graphene layers are stacking together. The ideal current density across the structure can be as high as 4.6×109 A/cm2 at 1V, which is very promising for the future high-performance interconnect.

  6. Intercalative interaction of asymmetric copper(II) complex with DNA: experimental, molecular docking, molecular dynamics and TDDFT studies.

    Science.gov (United States)

    Hu, Wei; Deng, Suwen; Huang, Jianyin; Lu, Yanmei; Le, Xueyi; Zheng, Wenxu

    2013-10-01

    The intercalative interactions of small molecules with DNA are important in a variety of biological processes including mutagenesis, carcinogenesis, and chemotherapy. A comprehensive research protocol including experiments and calculations was employed to investigate the intercalative interaction between metallointercalator copper(II) complex and DNA. The intercalative binding mode has been validated by UV spectra, fluorescence spectra, CD spectra and viscosity measurements. The classical molecular dynamics simulation was carried out to investigate the intercalative interaction between asymmetric copper(II) complex and DNA. An analytical method was proposed to simulate the dynamically changing absorption spectra of intercalator/DNA system. According to the established model, the changing process of the electronic absorption spectra for intercalator/DNA system can be predicted accurately. A rational explanation for the change law of absorption spectra has been proposed. Moreover, the analyses of the frontier orbital reveal that the red shift of the absorption spectra is due to the increase of π orbital energy caused by the coupling of the π orbital of the intercalated ligand with the π orbital of DNA. This cause of red shift of spectra is completely different from the previous inference. All these insights are of crucial importance for correctly analyzing the absorption spectra of intercalative interaction, as well as for explaining the macroscopic phenomena observed in experiments at the molecular level. © 2013.

  7. Development of a fluorescent-intercalating-dye-based reverse transcription loop-mediated isothermal amplification assay for rapid detection of seasonal Japanese B encephalitis outbreaks in pigs.

    Science.gov (United States)

    Tian, C J; Lin, Z X; He, X M; Luo, Q; Luo, C B; Yu, H Q; Chen, R; Wu, X W; Zhu, D Z; Ren, Z J; Bi, Y Z; Ji, J

    2012-08-01

    The standardization and validation of a one-step, single-tube, accelerated fluorescent-intercalating-dye-based reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay targeting the NS3 gene of Japanese B encephalitis virus (JEV) is described for rapid, simple, and high-throughput detection of JEV. The amplification can be completed in 35 min under isothermal conditions at 63°C by employing a set of six primers targeting the NS3 gene of JEV. The RT-LAMP assay described demonstrated high sensitivity for detecting JEV, with a detection limit in swine samples of 8.13 PFU/ml. The specificity of the selected primer sets was established by cross-reactivity studies with pathogens that exhibit similar clinical signs and testing of samples from healthy animals. The clinical applicability of the RT-LAMP assay was validated using either spiked samples or samples from seasonal outbreaks. The comparative evaluation of the RT-LAMP assay revealed 79.59 % concordance with conventional RT-PCR targeting the E gene of JEV. The RT-LAMP assay reported here is a valuable tool for rapid real-time and high-throughput seasonal infection surveillance and quarantine after outbreak through blood sampling by using ordinary real-time PCR thermocyclers without purchasing an expensive Loopamp real-time turbidimeter.

  8. Studies of interaction between two alkaloids and double helix DNA

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yantao [Key Laboratory of Preparation and Applications of Environmentally Friendly Materials (Jilin Normal University), Ministry of Education China, Siping 136000 (China); College of Chemistry, Jilin Normal University, Siping 136000 (China); Peng, Tingting [College of Chemistry, Jilin Normal University, Siping 136000 (China); College of Chemistry, Baicheng Normal University, Baicheng, 130032 (China); Zhao, Lei [Siping Institute for Food and Drug Control, Siping 136000 (China); Jiang, Dayu [Key Laboratory of Preparation and Applications of Environmentally Friendly Materials (Jilin Normal University), Ministry of Education China, Siping 136000 (China); College of Chemistry, Jilin Normal University, Siping 136000 (China); Cui, Yuncheng, E-mail: 1979yanzi@163.com [Key Laboratory of Preparation and Applications of Environmentally Friendly Materials (Jilin Normal University), Ministry of Education China, Siping 136000 (China); College of Chemistry, Jilin Normal University, Siping 136000 (China)

    2014-12-15

    This article presents the study on the interaction of two alkaloids (matrine and evodiamine) and hs-DNA by absorption, fluorescence, circular dichroism (CD), DNA melting and viscosity experiments. The spectroscopic studies suggested that two alkaloids can bind to DNA through an intercalative mode. The viscosity measurement and thermal denaturation also indicated that two alkaloids can intercalate to DNA. The binding constants (K{sub A}) and the number of binding sites (n) were determined. At the same time, some significant thermodynamic parameters of the binding of the alkaloids to DNA were obtained. Competitive binding studies revealed that alkaloids had an effect on ethidium bromide (EB) bound DNA. In addition, it was also proved that the fluorescence quenching was influenced by ionic strength. - Highlights: • Interaction between two alkaloids and DNA is studied by spectral methods. • The binding constant and the binding sites between two alkaloids and DNA are obtained. • There are a classical intercalative mode between alkaloids and DNA. • The binding of matrine with DNA is weaker than that of evodiamine. • It is important for us to understand the alkaloids–DNA interactions at a molecular level.

  9. Intercalation of a nonionic surfactant (C10E3) bilayer into a Na-montmorillonite clay.

    Science.gov (United States)

    Guégan, Régis

    2010-12-21

    A nonionic surfactant, triethylene glycol mono-n-decyl ether (C(10)E(3)), characterized by its lamellar phase state, was introduced in the interlayer of a Na-montmorillonite clay at several concentrations. The synthesized organoclays were characterized by small-angle X-ray scattering in conjunction with Fourier transform infrared spectroscopy and adsorption isotherms. Experiments showed that a bilayer of C(10)E(3) was intercalated into the interlayer space of the naturally exchanged Na-montmorillonite, resulting in the aggregation of the lyotropic liquid crystal state in the lamellar phase. This behavior strongly differs from previous observations of confinement of nonionic surfactants in clays where the expansion of the interlayer space was limited to two monolayers parallel to the silicate surface and cationic surfactants in clays where the intercalation of organic compounds is introduced into the clay galleries through ion exchange. The confinement of a bilayer of C(10)E(3) nonionic surfactant in clays offers new perspectives for the realization of hybrid nanomaterials, since the synthesized organoclays preserve the electrostatic characteristics of the clays, thus allowing further ion exchange while presenting at the same time a hydrophobic surface and a maximum opening of the interlayer space for the adsorption of neutral organic molecules of important size with functional properties.

  10. Analysis of Charge Transfer for in Situ Li Intercalated Carbon Nanotubes

    KAUST Repository

    Rana, Kuldeep

    2012-05-24

    Vertically aligned carbon nanotube (VA-CNT) arrays have been synthesized with lithium (Li) intercalation through an alcohol-catalyzed chemical vapor deposition technique by using a Li-containing catalyst. Scanning electron microscopy images display that synthesized carbon nanotubes (CNTs) are dense and vertically aligned. The effect of the Li-containing catalyst on VA-CNTs has been studied by using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electron energy loss spectroscopy (EELS). XPS results show the change in binding energy of Li 1s and C 1s peaks, which indicates that Li is inserted in VA-CNTs during growth. Analysis of Raman spectra reveals that the G-band profile of CNTs synthesized with the Li-containing catalyst is shifted, suggesting an electronic interaction between Li and neighboring C atoms of the CNTs. The EELS spectra of the C K edge and Li K edge from CNTs also confirmed that Li is inserted into CNTs during synthesis. We have performed ab inito calculations based on density functional theory for a further understanding of the structural and electronic properties of Li intercalated CNTs, especially addressing the controversial charge-transfer state between Li and C. © 2012 American Chemical Society.

  11. Methotrexate intercalated layered double hydroxides with the mediation of surfactants: Mechanism exploration and bioassay study

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Chao-Fan; Tian, De-Ying; Li, Shu-Ping, E-mail: lishuping@njnu.edu.cn; Li, Xiao-Dong

    2015-12-01

    Methotrexatum intercalated layered double hydroxides (MTX/LDHs) hybrids were synthesized by the co-precipitation method and three kinds of nonionic surfactants with different hydrocarbon chain lengths were used. The resulting hybrids were then characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM). XRD and FTIR investigations manifest the successful intercalation of MTX anions into the interlayer of LDHs. TEM graphs indicate that the morphology of the hybrids changes with the variation of the chain length of the surfactants, i.e., the particles synthesized using polyethylene glycol (PEG-7) present regular disc morphology with good monodispersity, while samples with the mediation of alkyl polyglycoside (APG-14) are heavily aggregated and samples with the addition of polyvinylpyrrolidone (PVP-10) exhibit irregular branches. Furthermore, the release and bioassay experiments show that monodisperse MTX/LDHs present good controlled-release and are more efficient in the suppression of the tumor cells. - Highlights: • Surfactants could be used to modify the dispersing state of MTX/LDHs hybrids. • Surfactants have great effect on the morphology of MTX/LDHs hybrids. • MTX/LDHs with good monodisperse degree are more efficient in the suppression of the tumor cells.

  12. Electron Transfer Governed Crystal Transformation of Tungsten Trioxide upon Li Ions Intercalation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhiguo; He, Yang; Gu, Meng; Du, Yingge; Mao, Scott X.; Wang, Chongmin

    2016-09-21

    Reversible insertion/extraction of ions into a host lattice constitutes the fundamental operating principle of rechargeable battery and electrochromic materials. It is far more commonly observed that insertion of ions into a host lattice can lead to structural evolution of the host lattice, and for the most cases such a lattice evolution is subtle. However, it has never been clear as what kind of factors to control such a lattice structural evolution. Based on tungsten trioxide (WO3) model crystal, we use in situ transmission electron microscopy (TEM) and first principles calculation to explore the nature of Li ions intercalation induced crystal symmetry evolution of WO3. We discovered that Li insertion into the octahedral cavity of WO3 lattice will lead to a low to high symmetry transition, featuring a sequential monoclinic→tetragonal→cubic phase transition. The first principle calculation reveals that the phase transition is essentially governed by the electron transfer from Li to the WO6 octahedrons, which effectively leads to the weakening the W-O bond and modifying system band structure, resulting in an insulator to metal transition. The observation of the electronic effect on crystal symmetry and conductivity is significant, providing deep insights on the intercalation reactions in secondary rechargeable ion batteries and the approach for tailoring the functionalities of material based on insertion of ions in the lattice.

  13. Two-step electrochemical intercalation and oxidation of graphite for the mass production of graphene oxide.

    Science.gov (United States)

    Cao, Jianyun; He, Pei; Mohammed, Mahdi A; Zhao, Xin; Young, Robert J; Derby, Brian; Kinloch, Ian A; Dryfe, Robert A W

    2017-11-01

    Conventional chemical oxidation routes for the production of graphene oxide (GO), such as the Hummers method, suffer from environmental and safety issues due to their use of hazardous and explosive chemicals. These issues are addressed by electrochemical oxidation methods but such approaches typically have a low yield due to inhomogeneous oxidation. Herein we report a two-step electrochemical intercalation and oxidation approach to produce GO on a large laboratory scale (ten's of grams) comprising: (1) forming a stage 1 graphite intercalation compound (GIC) in concentrated sulfuric acid; (2) oxidizing and exfoliating the stage 1 GIC in an aqueous solution of 0.1 M ammonium sulfate. This two-step approach leads to GO with a high yield (>70 wt.%), good quality (>90%, monolayer), and reasonable oxygen content (17.7 at.%). Moreover, the as-produced GO can be subsequently deeply reduced (3.2 at.% oxygen; C/O ratio 30.2) to yield highly conductive (54,600 S m-1) reduced GO. Electrochemical capacitors based on the reduced GO showed an ultra-high rate capability of up to 10 V s-1 due to this high conductivity.

  14. Pitx2, an atrial fibrillation predisposition gene, directly regulates ion transport and intercalated disc genes.

    Science.gov (United States)

    Tao, Ye; Zhang, Min; Li, Lele; Bai, Yan; Zhou, Yuefang; Moon, Anne M; Kaminski, Henry J; Martin, James F

    2014-02-01

    Pitx2 is the homeobox gene located in proximity to the human 4q25 familial atrial fibrillation (AF) locus. When deleted in the mouse germline, Pitx2 haploinsufficiency predisposes to pacing-induced AF, indicating that reduced Pitx2 promotes an arrhythmogenic substrate. Previous work focused on Pitx2 developmental functions that predispose to AF. Although Pitx2 is expressed in postnatal left atrium, it is unknown whether Pitx2 has distinct postnatal and developmental functions. To investigate Pitx2 postnatal function, we conditionally inactivated Pitx2 in the postnatal atrium while leaving its developmental function intact. Unstressed adult Pitx2 homozygous mutant mice display variable R-R interval with diminished P-wave amplitude characteristic of sinus node dysfunction, an AF risk factor in human patients. An integrated genomics approach in the adult heart revealed Pitx2 target genes encoding cell junction proteins, ion channels, and critical transcriptional regulators. Importantly, many Pitx2 target genes have been implicated in human AF by genome-wide association studies. Immunofluorescence and transmission electron microscopy studies in adult Pitx2 mutant mice revealed structural remodeling of the intercalated disc characteristic of human patients with AF. Our findings, revealing that Pitx2 has genetically separable postnatal and developmental functions, unveil direct Pitx2 target genes that include channel and calcium handling genes, as well as genes that stabilize the intercalated disc in postnatal atrium.

  15. Metal porphyrin intercalated reduced graphene oxide nanocomposite utilized for electrocatalytic oxygen reduction

    Directory of Open Access Journals (Sweden)

    Mingyan Wang

    2017-07-01

    Full Text Available In this paper, we report a simple and facile self-assembly method to successfully fabricate cationic metal porphyrin –MtTMPyP (Mt= Cobalt (II, Manganese (III, or Iron (III; TMPyP = 5, 10, 15, 20-tetrakis (N-methylpyridinium-4-yl porphyrin intercalated into the layer of graphene oxide (GO by the cooperative effects of electrostatic and π–π stacking interaction between positively charged metal porphyrin and negatively charged GO sheets. Followed by reduction with hydrazine vapor, a series of novel 2D MtTMPyP/rGOn were fabricated. The as-prepared 2D hybrids were fully characterized and tested as non-noble metal catalysts for oxygen reduction reaction (ORR in an alkaline medium. The MtTMPyP/rGOn hybrids, especially CoTMPyP/rGO5, demonstrated an improved electrocatalytic activity for ORR and a number of exchanged electrons close to 4-electron reaction, increased stability and excellent tolerance to methanol, showing a potential alternative catalyst for ORR in fuel cells and air batteries. Keywords: Metal porphyrin, Reduced graphene oxide, Intercalation, Oxygen reduction reaction, Catalyst

  16. Adsorption and kinetic studies of the intercalation of some organic compounds onto Na+-montmorillonite.

    Science.gov (United States)

    Gemeay, A H; El-Sherbiny, A S; Zaki, A B

    2002-01-01

    The adsorption and the kinetics of the intercalation of metanil yellow dye, p-aminodiphenylamine (p-NH(2)-DPA), and benzidine by colloidally dispersed Na(+)-montmorillonte (Na(+)-MMT) have been studied. The adsorption isotherm parameters confirmed the occurrence of chemical adsorption that is based on the cation-exchange process. The selectivity of these compounds toward Na(+)-MMT follows the order metanil yellowp-NH(2)-DPA>benzidine. The rate of oxidation has been quantitatively measured using a stopped-flow spectrophotometer. The rate constant follows the order benzidineintercalation process.

  17. Final Scientific/Technical Report for Low Cost, High Capacity Non- Intercalation Chemistry Automotive Cells

    Energy Technology Data Exchange (ETDEWEB)

    Berdichevsky, Gene

    2017-09-08

    Commercial Li-ion batteries typically use Ni- and Co-based intercalation cathodes. As the demand for improved performance from batteries increases, these cathode materials will no longer be able to provide the desired energy storage characteristics since they are currently approaching their theoretical limits. Conversion cathode materials are prime candidates for improvement of Li-ion batteries. On both a volumetric and gravimetric basis they have higher theoretical capacity than intercalation cathode materials. Metal fluoride (MFx) cathodes offer higher specific energy density and dramatically higher volumetric energy density. Challenges associated with metal fluoride cathodes were addressed through nanostructured material design and synthesis. A major goal of this project was to develop and demonstrate Li-ion cells based on Si-comprising anodes and metal fluoride (MFx) comprising cathodes. Pairing the high-capacity MFx cathode with a high-capacity anode, such as an alloying Si anode, allows for the highest possible energy density on a cell level. After facing and overcoming multiple material synthesis and electrochemical instability challenges, we succeeded in fabrication of MFx half cells with cycle stability in excess of 500 cycles (to 20% or smaller degradation) and full cells with MFx-based cathodes and Si-based anodes with cycle stability in excess of 200 cycles (to 20% or smaller degradation).

  18. Intercalation of Coordinatively Unsaturated Fe(III) Ion within Interpenetrated Metal-Organic Framework MOF-5.

    Science.gov (United States)

    Holmberg, Rebecca J; Burns, Thomas; Greer, Samuel M; Kobera, Libor; Stoian, Sebastian A; Korobkov, Ilia; Hill, Stephen; Bryce, David L; Woo, Tom K; Murugesu, Muralee

    2016-06-01

    Coordinatively unsaturated Fe(III) metal sites were successfully incorporated into the iconic MOF-5 framework. This new structure, Fe(III) -iMOF-5, is the first example of an interpenetrated MOF linked through intercalated metal ions. Structural characterization was performed with single-crystal and powder XRD, followed by extensive analysis by spectroscopic methods and solid-state NMR, which reveals the paramagnetic ion through its interaction with the framework. EPR and Mössbauer spectroscopy confirmed that the intercalated ions were indeed Fe(III) , whereas DFT calculations were employed to ascertain the unique pentacoordinate architecture around the Fe(III) ion. Interestingly, this is also the first crystallographic evidence of pentacoordinate Zn(II) within the MOF-5 SBU. This new MOF structure displays the potential for metal-site addition as a framework connector, thus creating further opportunity for the innovative development of new MOF materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.