WorldWideScience

Sample records for reactive burn modeling

  1. A Preliminary Assessment of the SURF Reactive Burn Model Implementation in FLAG

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Carl Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McCombe, Ryan Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carver, Kyle [United States Air Force, Washington, DC (United States)

    2017-09-18

    Properly validated and calibrated reactive burn models (RBM) can be useful engineering tools for assessing high explosive performance and safety. Experiments with high explosives are expensive. Inexpensive RBM calculations are increasingly relied on for predictive analysis for performance and safety. This report discusses the validation of Menikoff and Shaw’s SURF reactive burn model, which has recently been implemented in the FLAG code. The LANL Gapstick experiment is discussed as is its’ utility in reactive burn model validation. Data obtained from pRad for the LT-63 series is also presented along with FLAG simulations using SURF for both PBX 9501 and PBX 9502. Calibration parameters for both explosives are presented.

  2. The CREST reactive-burn model for explosives

    Directory of Open Access Journals (Sweden)

    Maheswaran M-A.

    2011-01-01

    Full Text Available CREST is an innovative reactive-burn model that has been developed at AWE for simulating shock initiation and detonation propagation behaviour in explosives. The model has a different basis from other reactive-burn models in that its reaction rate is independent of local flow variables behind the shock wave e.g. pressure and temperature. The foundation for CREST, based on a detailed analysis of data from particle-velocity gauge experiments, is that the reaction rate depends only on the local shock strength and the time since the shock passed. Since a measure of shock strength is the entropy of the non-reacted explosive, which remains constant behind a shock, CREST uses an entropy-dependent reaction rate. This paper will provide an overview of the CREST model and its predictive capability. In particular, it will be shown that the model can predict a wide range of experimental phenomena for both shock initiation (e.g. the effects of porosity and initial temperature on sustained-shock and thin-flyer initiation and detonation propagation (e.g. the diameter effect curve and detonation failure cones using a single set of coefficients.

  3. Reactive burn models and ignition & growth concept

    Directory of Open Access Journals (Sweden)

    Shaw M.S.

    2011-01-01

    Full Text Available Plastic-bonded explosives are heterogeneous materials. Experimentally, shock initiation is sensitive to small amounts of porosity, due to the formation of hot spots (small localized regions of high temperature. This leads to the Ignition & Growth concept, introduced by LeeTarver in 1980, as the basis for reactive burn models. A homo- genized burn rate needs to account for three meso-scale physical effects: (i the density of active hot spots or burn centers; (ii the growth of the burn fronts triggered by the burn centers; (iii a geometric factor that accounts for the overlap of deflagration wavelets from adjacent burn centers. These effects can be combined and the burn model defined by specifying the reaction progress variable λ = g(s as a function of a dimensionless reaction length s(t = rbc/ℓbc, rather than by specifying an explicit burn rate. The length scale ℓbc(Ps = [Nbc(Ps]−1/3 is the average distance between burn centers, where Nbc is the number density of burn centers activated by the lead shock. The reaction length rbc(t = ∫t0 D(P(t′dt′ is the distance the burn front propagates from a single burn center, where D(P is the deflagration speed as a function of the local pressure and t is the time since the shock arrival. A key implementation issue is how to determine the lead shock strength in conjunction with a shock capturing scheme. We have developed a robust algorithm for this purpose based on the Hugoniot jump condition for the energy. The algorithm utilizes the time dependence of density, pressure and energy within each cell. The method is independent of the numerical dissipation used for shock capturing. It is local and can be used in one or more space dimensions. The burn model has a small number of parameters which can be calibrated to fit velocity gauge data from shock initiation experiments.

  4. Model comparisons of the reactive burn model SURF in three ASC codes

    Energy Technology Data Exchange (ETDEWEB)

    Whitley, Von Howard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stalsberg, Krista Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reichelt, Benjamin Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shipley, Sarah Jayne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-12

    A study of the SURF reactive burn model was performed in FLAG, PAGOSA and XRAGE. In this study, three different shock-to-detonation transition experiments were modeled in each code. All three codes produced similar model results for all the experiments modeled and at all resolutions. Buildup-to-detonation time, particle velocities and resolution dependence of the models was notably similar between the codes. Given the current PBX 9502 equations of state and SURF calibrations, each code is equally capable of predicting the correct detonation time and distance when impacted by a 1D impactor at pressures ranging from 10-16 GPa, as long as the resolution of the mesh is not too coarse.

  5. MTR fuel element burn-up measurements by the reactivity method

    International Nuclear Information System (INIS)

    Zuniga, A.; Cuya, T.R.; Ravnik, M.

    2003-01-01

    Fuel element burn-up was measured by the reactivity method in the 10 MW Peruvian MTR reactor RP-10. The main purpose of the experiment was testing the reactivity method for an MTR reactor as the reactivity method was originally developed for TRIGA reactors. The reactivity worth of each measured fuel element was measured in its original core position in order to measure the burn-up of the fuel elements that were part of the experimental core. The burn-up of each measured fuel element was derived by interpolating its reactivity worth from the reactivity worth of two reference fuel elements of known burn-up, whose reactivity worth was measured in the position of the measured fuel element. The accuracy of the method was improved by separating the reactivity effect of burn-up from the effect of the position in the core. The results of the experiment showed that the modified reactivity method for fuel element burn-up determination could be applied also to MTR reactors. (orig.)

  6. Reactive Burn Model Calibration for PETN Using Ultra-High-Speed Phase Contrast Imaging

    Science.gov (United States)

    Johnson, Carl; Ramos, Kyle; Bolme, Cindy; Sanchez, Nathaniel; Barber, John; Montgomery, David

    2017-06-01

    A 1D reactive burn model (RBM) calibration for a plastic bonded high explosive (HE) requires run-to-detonation data. In PETN (pentaerythritol tetranitrate, 1.65 g/cc) the shock to detonation transition (SDT) is on the order of a few millimeters. This rapid SDT imposes experimental length scales that preclude application of traditional calibration methods such as embedded electromagnetic gauge methods (EEGM) which are very effective when used to study 10 - 20 mm thick HE specimens. In recent work at Argonne National Laboratory's Advanced Photon Source we have obtained run-to-detonation data in PETN using ultra-high-speed dynamic phase contrast imaging (PCI). A reactive burn model calibration valid for 1D shock waves is obtained using density profiles spanning the transition to detonation as opposed to particle velocity profiles from EEGM. Particle swarm optimization (PSO) methods were used to operate the LANL hydrocode FLAG iteratively to refine SURF RBM parameters until a suitable parameter set attained. These methods will be presented along with model validation simulations. The novel method described is generally applicable to `sensitive' energetic materials particularly those with areal densities amenable to radiography.

  7. Development of a reactive burn model based upon an explicit visco-plastic pore collapse model

    Science.gov (United States)

    Bouton, Eric; Lefrançois, Alexandre; Belmas, Robert

    2015-06-01

    Our aim in this study is to develop a reactive burn model based upon a microscopic hot spot model to compute the initiation and shock to detonation of pressed TATB explosives. For the sake of simplicity, the hot spots are supposed to result from the viscoplastic collapse of spherical micro-voids inside the composition. Such a model has been incorporated in a lagrangian hydrodynamic code. In our calculations, 8 different pore diameters, ranging from 100 nm to 1.2 μm, have been taken into account and the porosity associated to each pore size has been deduced from the PBX-9502 void distribution derived from the SAXS. The last ingredient of our model is the burn rate that depends on two main variables. The first one is the shock pressure as proposed by the developers of the CREST model. The second one is the number of effective chemical reaction sites calculated by the microscopic model. Furthermore, the function of the reaction progress variable of the burn rate is similar to that in the SURF model proposed by Menikoff. Our burn rate has been calibrated by using pressure profile, material velocities wave forms obtained with embedded particle velocity gauges and run distance to detonation. The comparison between the numerical and experimental results is really good and sufficient to perform a wide variety of simulations including single, double shock waves and the desensitization phenomenon. In conclusion, future works are described.

  8. Reactivity effect of spent fuel depending on burn-up history

    International Nuclear Information System (INIS)

    Hayashi, Takafumi; Suyama, Kenya; Nomura, Yasushi

    2001-06-01

    It is well known that a composition of spent fuel depends on various parameter changes throughout a burn-up period. In this study we aimed at the boron concentration and its change, the coolant temperature and its spatial distribution, the specific power, the operation mode, and the duration of inspection, because the effects due to these parameters have not been analyzed in detail. The composition changes of spent fuel were calculated by using the burn-up code SWAT, when the parameters mentioned above varied in the range of actual variations. Moreover, to estimate the reactivity effect caused by the composition changes, the criticality calculations for an infinite array of spent fuel were carried out with computer codes SRAC95 or MVP. In this report the reactivity effects were arranged from the viewpoint of what parameters gave more positive reactivity effect. The results obtained through this study are useful to choose the burn-up calculation model when we take account of the burn-up credit in the spent fuel management. (author)

  9. Application of reactivity method to MTR fuel burn-up measurement

    International Nuclear Information System (INIS)

    Zuniga, A.; Ravnik, M.; Cuya, R.

    2001-01-01

    Fuel element burn-up has been measured for the first time by reactivity method in a MTR reactor. The measurement was performed in RP-10 reactor of Peruvian Institute for Nuclear Energy (IPEN) in Lima. It is a pool type 10MW material testing reactor using standard 20% enriched uranium plate type fuel elements. A fresh element and an element with well defined burn-up were selected as reference elements. Several elements in the core were selected for burn-up measurement. Each of them was replaced in its original position by both reference elements. Change in excess reactivity was measured using control rod calibration curve. The burn-up reactivity worth of fuel elements was plotted as a function of their calculated burnup. Corrected burn-up values of the measured fuel elements were calculated using the fitting function at experimental reactivity for all elements. Good agreement between measured and calculated burn-up values was observed indicating that the reactivity method can be successfully applied also to MTR fuel element burn-up determination.(author)

  10. Characterization of coal and char reactivity as a function of burn-off

    Energy Technology Data Exchange (ETDEWEB)

    Biede, O.; Swane Lund, J. [DTU, Dept. of Energy Engineering (Denmark); Holst Soerensen, L. [Risoe National Lab. (Denmark); Peck, R.E. [Arizona State University (United States)

    1996-12-01

    Four coal types have been tested under varying burning conditions in three high-temperature experimental facilities: A 1.3 MW test furnace, an entrained flow reactor and a down-fired tube furnace with a flat flame burner have been used to produce char samples. More than one hundred partly burned samples with burn-off from 30% to 99% have been collected from the experimental facilities, and analyzed in a thermogravimetric analyser (TGA) giving, besides the proximate data, a char burning profile of each individual sample, using a linear TGA-temperature ramp of 3 deg. C/minute. The burning profile derived by this procedure agrees well with reactivity profiles derived at a constant temperature. It is shown that small particle burn faster than large particles, and that small particles in general are more reactive than large particles. Particles burn faster when the oxygen partial pressure is increased, and apparently the oxygen partial pressure influences the combustion rate differently for different coal types. Except for one coal type, that apparently behaves differently in different burning environments, the ranking with respect to reactivity among the coals remains consistent at both high and at low temperatures. It is further shown how samples from one coal type varies more in behavior than samples from the other coal types, indicating a larger inhomogeneity of this coal. In general the reactivity of collected samples decrease with high-temperature burn-off. (au) 20 refs.

  11. Biomass burning emissions of reactive gases estimated from satellite data analysis and ecosystem modeling for the Brazilian Amazon region

    Science.gov (United States)

    Potter, Christopher; Brooks-Genovese, Vanessa; Klooster, Steven; Torregrosa, Alicia

    2002-10-01

    To produce a new daily record of trace gas emissions from biomass burning events for the Brazilian Legal Amazon, we have combined satellite advanced very high resolution radiometer (AVHRR) data on fire counts together for the first time with vegetation greenness imagery as inputs to an ecosystem biomass model at 8 km spatial resolution. This analysis goes beyond previous estimates for reactive gas emissions from Amazon fires, owing to a more detailed geographic distribution estimate of vegetation biomass, coupled with daily fire activity for the region (original 1 km resolution), and inclusion of fire effects in extensive areas of the Legal Amazon (defined as the Brazilian states of Acre, Amapá, Amazonas, Maranhao, Mato Grosso, Pará, Rondônia, Roraima, and Tocantins) covered by open woodland, secondary forests, savanna, and pasture vegetation. Results from our emissions model indicate that annual emissions from Amazon deforestation and biomass burning in the early 1990s total to 102 Tg yr-1 carbon monoxide (CO) and 3.5 Tg yr-1 nitrogen oxides (NOx). Peak daily burning emissions, which occurred in early September 1992, were estimated at slightly more than 3 Tg d-1for CO and 0.1 Tg d-1for NOx flux to the atmosphere. Other burning source fluxes of gases with relatively high emission factors are reported, including methane (CH4), nonmethane hydrocarbons (NMHC), and sulfur dioxide (SO2), in addition to total particulate matter (TPM). We estimate the Brazilian Amazon region to be a source of between one fifth and one third for each of these global emission fluxes to the atmosphere. The regional distribution of burning emissions appears to be highest in the Brazilian states of Maranhao and Tocantins, mainly from burning outside of moist forest areas, and in Pará and Mato Grosso, where we identify important contributions from primary forest cutting and burning. These new daily emission estimates of reactive gases from biomass burning fluxes are designed to be used as

  12. Reactivity of coal chars prepared in a fluidised bed reactor at different burn-off degrees

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, A.H.; Arenillas, A.; Rubiera, F.; Fuente, E.; Pis, J.J. [Inst. Nacional del Carbon, Oviedo (Spain)

    1997-12-31

    The main goal of this work has been to study the effect of the textural properties of coal chars, obtained from partially burned coal, on their reactivity to oxygen. A low volatile bituminous coal was used to prepare chars, with different levels of burn-off, in a bench-scale fluidised bed reactor. Textural characterisation of the samples was accomplished by measuring true (helium) and apparent (mercury) densities, and mercury porosimetry. An increase in the burn-off degree gave rise to a densification of the chars. Porosity development greatly changed during progressive burning of the samples. DTG burning profiles and isothermal gasification were utilised to estimate the reactivities of the precursor coal and its partially burned chars. Reactivity reached a maximum value at an intermediate burn-off and strongly decreased at higher burn-off degrees. (orig.)

  13. Fuel cycles with high fuel burn-up: analysis of reactivity coefficients

    International Nuclear Information System (INIS)

    Kryuchkov, E.F.; Shmelev, A.N.; Ternovykh, M.J.; Tikhomirov, G.V.; Jinhong, L.; Saito, M.

    2003-01-01

    Fuel cycles of light-water reactors (LWR) with high fuel burn-up (above 100 MWd/kg), as a rule, involve large amounts of fissionable materials. It leads to forming the neutron spectrum harder than that in traditional LWR. Change of neutron spectrum and significant amount of non-traditional isotopes (for example, 237 Np, 238 Pu, 231 Pa, 232 U) in such fuel compositions can alter substantially reactivity coefficients as compared with traditional uranium-based fuel. The present work addresses the fuel cycles with high fuel burn-up which are based on Th-Pa-U and U-Np-Pu fuel compositions. Numerical analyses are carried out to determine effective neutron multiplication factor and void reactivity coefficient (VRC) for different values of fuel burn-up and different lattice parameters. The algorithm is proposed for analysis of isotopes contribution to these coefficients. Various ways are considered to upgrade safety of nuclear fuel cycles with high fuel burn-up. So, the results obtained in this study have demonstrated that: -1) Non-traditional fuel compositions developed for achievement of high fuel burn-up in LWR can possess positive values of reactivity coefficients that is unacceptable from the reactor operation safety point of view; -2) The lattice pitch of traditional LWR is not optimal for non-traditional fuel compositions, the increased value of the lattice pitch leads to larger value of initial reactivity margin and provides negative VRC within sufficiently broad range of coolant density; -3) Fuel burn-up has an insignificant effect on VRC dependence on coolant density, so, the measures undertaken to suppress positive VRC of fresh fuel will be effective for partially burnt-up fuel compositions also and; -4) Increase of LWR core height and introduction of additional moderators into the fuel lattice can be used as the ways to reach negative VRC values for full range of possible coolant density variations

  14. Reactivity management and burn-up management on JRR-3 silicide-fuel-core

    International Nuclear Information System (INIS)

    Kato, Tomoaki; Araki, Masaaki; Izumo, Hironobu; Kinase, Masami; Torii, Yoshiya; Murayama, Yoji

    2007-08-01

    On the conversion from uranium-aluminum-dispersion-type fuel (aluminide fuel) to uranium-silicon-aluminum-dispersion-type fuel (silicide fuel), uranium density was increased from 2.2 to 4.8 g/cm 3 with keeping uranium-235 enrichment of 20%. So, burnable absorbers (cadmium wire) were introduced for decreasing excess reactivity caused by the increasing of uranium density. The burnable absorbers influence reactivity during reactor operation. So, the burning of the burnable absorbers was studied and the influence on reactor operation was made cleared. Furthermore, necessary excess reactivity on beginning of operation cycle and the time limit for restart after unplanned reactor shutdown was calculated. On the conversion, limit of fuel burn-up was increased from 50% to 60%. And the fuel exchange procedure was changed from the six-batch dispersion procedure to the fuel burn-up management procedure. The previous estimation of fuel burn-up was required for the planning of fuel exchange, so that the estimation was carried out by means of past operation data. Finally, a new fuel exchange procedure was proposed for effective use of fuel elements. On the procedure, burn-up of spent fuel was defined for each loading position. The average length of fuel's staying in the core can be increased by two percent on the procedure. (author)

  15. Fuel cycles with high fuel burn-up: analysis of reactivity coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Kryuchkov, E.F.; Shmelev, A.N.; Ternovykh, M.J.; Tikhomirov, G.V.; Jinhong, L. [Moscow Engineering Physics Institute (State University) (Russian Federation); Saito, M. [Tokyo Institute of Technology (Japan)

    2003-07-01

    Fuel cycles of light-water reactors (LWR) with high fuel burn-up (above 100 MWd/kg), as a rule, involve large amounts of fissionable materials. It leads to forming the neutron spectrum harder than that in traditional LWR. Change of neutron spectrum and significant amount of non-traditional isotopes (for example, {sup 237}Np, {sup 238}Pu, {sup 231}Pa, {sup 232}U) in such fuel compositions can alter substantially reactivity coefficients as compared with traditional uranium-based fuel. The present work addresses the fuel cycles with high fuel burn-up which are based on Th-Pa-U and U-Np-Pu fuel compositions. Numerical analyses are carried out to determine effective neutron multiplication factor and void reactivity coefficient (VRC) for different values of fuel burn-up and different lattice parameters. The algorithm is proposed for analysis of isotopes contribution to these coefficients. Various ways are considered to upgrade safety of nuclear fuel cycles with high fuel burn-up. So, the results obtained in this study have demonstrated that: -1) Non-traditional fuel compositions developed for achievement of high fuel burn-up in LWR can possess positive values of reactivity coefficients that is unacceptable from the reactor operation safety point of view; -2) The lattice pitch of traditional LWR is not optimal for non-traditional fuel compositions, the increased value of the lattice pitch leads to larger value of initial reactivity margin and provides negative VRC within sufficiently broad range of coolant density; -3) Fuel burn-up has an insignificant effect on VRC dependence on coolant density, so, the measures undertaken to suppress positive VRC of fresh fuel will be effective for partially burnt-up fuel compositions also and; -4) Increase of LWR core height and introduction of additional moderators into the fuel lattice can be used as the ways to reach negative VRC values for full range of possible coolant density variations.

  16. Burn mouse models

    DEFF Research Database (Denmark)

    Calum, Henrik; Høiby, Niels; Moser, Claus

    2014-01-01

    Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third-degree b......Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third...... with infected burn wound compared with the burn wound only group. The burn mouse model resembles the clinical situation and provides an opportunity to examine or develop new strategies like new antibiotics and immune therapy, in handling burn wound victims much....

  17. The global impact of biomass burning on tropospheric reactive nitrogen

    International Nuclear Information System (INIS)

    Levy, H. II; Moxim, W.J.; Kasibhatla, P.S.; Logan, J.A.

    1991-01-01

    In this chapter the authors first review their current understanding of both the anthropogenic and natural sources of reactive nitrogen compounds in the troposphere. Then the available observations of both surface concentration and wet deposition are summarized for regions with significant sources, for locations downwind of strong sources, and for remote sites. The obvious sparsity of the data leads to the next step: an attempt to develop a more complete global picture of surface concentrations and deposition of NO y with the help of global chemistry transport model (GCTM). The available source data are inserted into the GCTM and the resulting simulations compared with surface observations. The impact of anthropogenic sources, both downwind and at remote locations, is discussed and the particular role of biomass burning is identified

  18. Full Core Burn-up Calculation at JRR-3 with MVP-BURN

    International Nuclear Information System (INIS)

    Komeda, Masao; Yamamoto, Kazuyoshi; Kusunoki, Tsuyoshi

    2008-01-01

    Research reactors use a burnable poison to suppress an excess reactivity in the beginning of reactor lifetime. The JRR-3 (Japan Research Reactor No.3) has used cadmium wires of radius 0.02 cm as a burnable poison. This report describes burn-up calculations of plate fuel models and full core models with MVP-BURN, which is a burn-up calculation code using Monte Carlo method and has been developed in JAEA (Japan Atomic Energy Agency). As the results of calculations of plate models, between a model composed of one burn-up region along the radius direction and a model composed of a few burn-up regions along the radius direction, the effective absorption cross section of 113 Cd has had different tendency on reaching approximate 40. day (10000 MWd/t). And as results of calculations of full core model, it has been indicated that k eff is almost same till approximate 80. day (22000 MWd/t) between a model composed of one burn-up region along the vertical direction and a model composed of a few burn-up regions along the vertical direction. However difference of 113 Cd burn-up becomes pronounced and each k eff makes a difference after 80. day. (authors)

  19. JOYO MK-III performance test. Criticality test, excess reactivity measurement and burn-up coefficient measurement

    International Nuclear Information System (INIS)

    Maeda, Shigetaka; Sekine, Takashi; Kitano, Akihiro; Nagasaki, Hideaki

    2005-03-01

    The MK-III performance test began in June 2003 to fully characterize the upgraded core and heat transfer system of the experimental fast reactor JOYO. This paper describes the results of the approach to criticality, the excess reactivity evaluation and the burn-up coefficient measurement. In the approach to criticality test, the MK-III core achieved initial criticality at the control rod bank position of 412.8 mm on 14:03 July 2nd, 2003. Because the replacement of the outer two rows of reflector subassemblies with shielding subassemblies reduced the source range monitor signals by a factor of 3 at the same reactor power compared with those in the MK-II core, we measured the change of the monitor's response and determined the count rate 2x10 4 cps.' as an appropriate value judging the zero power criticality. In the excess reactivity evaluation, the zero power excess reactivity at 250degC was 2.99±0.10%Δk/kk' based on the measured critical rod bank position and the measured control rod worths. The predicted value by the JOYO core management code system HESTIA was 3.13±0.16%Δk/kk', showing good agreement with the measured value. The measured excess reactivity was within the safety requirement limit. In the burn-up coefficient measurement, the excess reactivity change versus the reactor burn-up was evaluated. The measurement method adopted was to measure the control rod positions during the rated power operation. A value of -2.12x10 -4 Δk/kk'/MWd was obtained as a measured burn-up coefficient. The value calculated by HESTIA was -2.12x10 -4 Δk/kk'/MWd, and it agreed well with the measured value. All technical safety requirements for MK-III core were satisfied and the calculation accuracy of the core management code system HESTIA was confirmed. (author)

  20. Estimates of global biomass burning emissions for reactive greenhouse gases (CO, NMHCs, and NOx) and CO2

    Science.gov (United States)

    Jain, Atul K.; Tao, Zhining; Yang, Xiaojuan; Gillespie, Conor

    2006-03-01

    Open fire biomass burning and domestic biofuel burning (e.g., cooking, heating, and charcoal making) algorithms have been incorporated into a terrestrial ecosystem model to estimate CO2 and key reactive GHGs (CO, NOx, and NMHCs) emissions for the year 2000. The emissions are calculated over the globe at a 0.5° × 0.5° spatial resolution using tree density imagery, and two separate sets of data each for global area burned and land clearing for croplands, along with biofuel consumption rate data. The estimated global and annual total dry matter (DM) burned due to open fire biomass burning ranges between 5221 and 7346 Tg DM/yr, whereas the resultant emissions ranges are 6564-9093 Tg CO2/yr, 438-568 Tg CO/yr, 11-16 Tg NOx/yr (as NO), and 29-40 Tg NMHCs/yr. The results indicate that land use changes for cropland is one of the major sources of biomass burning, which amounts to 25-27% (CO2), 25 -28% (CO), 20-23% (NO), and 28-30% (NMHCs) of the total open fire biomass burning emissions of these gases. Estimated DM burned associated with domestic biofuel burning is 3,114 Tg DM/yr, and resultant emissions are 4825 Tg CO2/yr, 243 Tg CO/yr, 3 Tg NOx/yr, and 23 Tg NMHCs/yr. Total emissions from biomass burning are highest in tropical regions (Asia, America, and Africa), where we identify important contributions from primary forest cutting for croplands and domestic biofuel burning.

  1. Reactivity loss validation of high burn-up PWR fuels with pile-oscillation experiments in MINERVE

    Energy Technology Data Exchange (ETDEWEB)

    Leconte, P.; Vaglio-Gaudard, C.; Eschbach, R.; Di-Salvo, J.; Antony, M.; Pepino, A. [CEA, DEN, DER, Cadarache, F-13108 Saint-Paul-Lez-Durance (France)

    2012-07-01

    The ALIX experimental program relies on the experimental validation of the spent fuel inventory, by chemical analysis of samples irradiated in a PWR between 5 and 7 cycles, and also on the experimental validation of the spent fuel reactivity loss with bum-up, obtained by pile-oscillation measurements in the MINERVE reactor. These latter experiments provide an overall validation of both the fuel inventory and of the nuclear data responsible for the reactivity loss. This program offers also unique experimental data for fuels with a burn-up reaching 85 GWd/t, as spent fuels in French PWRs never exceeds 70 GWd/t up to now. The analysis of these experiments is done in two steps with the APOLLO2/SHEM-MOC/CEA2005v4 package. In the first one, the fuel inventory of each sample is obtained by assembly calculations. The calculation route consists in the self-shielding of cross sections on the 281 energy group SHEM mesh, followed by the flux calculation by the Method Of Characteristics in a 2D-exact heterogeneous geometry of the assembly, and finally a depletion calculation by an iterative resolution of the Bateman equations. In the second step, the fuel inventory is used in the analysis of pile-oscillation experiments in which the reactivity of the ALIX spent fuel samples is compared to the reactivity of fresh fuel samples. The comparison between Experiment and Calculation shows satisfactory results with the JEFF3.1.1 library which predicts the reactivity loss within 2% for burn-up of {approx}75 GWd/t and within 4% for burn-up of {approx}85 GWd/t. (authors)

  2. Animal Models in Burn Research

    Science.gov (United States)

    Abdullahi, A.; Amini-Nik, S.; Jeschke, M.G

    2014-01-01

    Burn injury is a severe form of trauma affecting more than two million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the various aspects of burn injury; to elucidate the pathophysiology and explore potential treatment interventions. Understanding the advantages and limitations of these animal models is essential for the design and development of treatments that are clinically relevant to humans. This review paper aims to highlight the common animal models of burn injury in order to provide investigators with a better understanding of the benefits and limitations of these models for translational applications. While many animal models of burn exist, we limit our discussion to the skin healing of mouse, rat, and pig. Additionally, we briefly explain hypermetabolic characteristics of burn injury and the animal model utilized to study this phenomena. Finally, we discuss the economic costs associated with each of these models in order to guide decisions of choosing the appropriate animal model for burn research. PMID:24714880

  3. Effects of burn location and investigator on burn depth in a porcine model.

    Science.gov (United States)

    Singer, Adam J; Toussaint, Jimmy; Chung, Won Taek; Thode, Henry C; McClain, Steve; Raut, Vivek

    2016-02-01

    In order to be useful, animal models should be reproducible and consistent regardless of sampling bias, investigator creating burn, and burn location. We determined the variability in burn depth based on biopsy location, burn location and investigator in a porcine model of partial thickness burns. 24 partial thickness burns (2.5 cm by 2.5 cm each) were created on the backs of 2 anesthetized pigs by 2 investigators (one experienced, one inexperienced) using a previously validated model. In one of the pigs, the necrotic epidermis covering each burn was removed. Five full thickness 4mm punch biopsies were obtained 1h after injury from the four corners and center of the burns and stained with Hematoxylin and Eosin and Masson's trichrome for determination of burn depth by a board certified dermatopathologist blinded to burn location and investigator. Comparisons of burn depth by biopsy location, burn location and investigator were performed with t-tests and ANOVA as appropriate. The mean (SD) depth of injury to blood vessels (the main determinant of burn progression) in debrided and non-debrided pigs pooled together was 1.8 (0.3)mm, which included 75% of the dermal depth. Non-debrided burns were 0.24 mm deeper than debrided burns (Plocations, in debrided burns. Additionally, there were also no statistical differences in burn depths from midline to lateral in either of these burn types. Burn depth was similar for both investigators and among biopsy locations. Burn depth was greater for caudal locations in non-debrided burns and overall non-debrided burns were deeper than debrided burns. However, burn depth did not differ based on investigator, biopsy site, and medial-lateral location. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  4. Prolonged C1 Inhibitor Administration Improves Local Healing of Burn Wounds and Reduces Myocardial Inflammation in a Rat Burn Wound Model

    NARCIS (Netherlands)

    Begieneman, Mark P. V.; Kubat, Bela; Ulrich, Magda M. W.; Hahn, Nynke E.; Stumpf-Stolker, Yvette; Tempelaars, Miranda; Middelkoop, Esther; Zeerleder, Sacha; Wouters, Diana; van Ham, Marieke S.; Niessen, Hans W. M.; Krijnen, Paul A. J.

    2012-01-01

    In a previous study, the authors found persistent presence of acute inflammation markers such as C-reactive protein and complement factors locally in burn wounds. This persistence of acute inflammation may not only delay local burn wound healing but also have a systemic effect, for instance on the

  5. Comparing the reported burn conditions for different severity burns in porcine models: a systematic review.

    Science.gov (United States)

    Andrews, Christine J; Cuttle, Leila

    2017-12-01

    There are many porcine burn models that create burns using different materials (e.g. metal, water) and different burn conditions (e.g. temperature and duration of exposure). This review aims to determine whether a pooled analysis of these studies can provide insight into the burn materials and conditions required to create burns of a specific severity. A systematic review of 42 porcine burn studies describing the depth of burn injury with histological evaluation is presented. Inclusion criteria included thermal burns, burns created with a novel method or material, histological evaluation within 7 days post-burn and method for depth of injury assessment specified. Conditions causing deep dermal scald burns compared to contact burns of equivalent severity were disparate, with lower temperatures and shorter durations reported for scald burns (83°C for 14 seconds) compared to contact burns (111°C for 23 seconds). A valuable archive of the different mechanisms and materials used for porcine burn models is presented to aid design and optimisation of future models. Significantly, this review demonstrates the effect of the mechanism of injury on burn severity and that caution is recommended when burn conditions established by porcine contact burn models are used by regulators to guide scald burn prevention strategies. © 2017 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  6. Measurement and reactive burn modeling of the shock to detonation transition for the HMX based explosive LX-14

    Science.gov (United States)

    Jones, J. D.; Ma, Xia; Clements, B. E.; Gibson, L. L.; Gustavsen, R. L.

    2017-06-01

    Gas-gun driven plate-impact techniques were used to study the shock to detonation transition in LX-14 (95.5 weight % HMX, 4.5 weight % estane binder). The transition was recorded using embedded electromagnetic particle velocity gauges. Initial shock pressures, P, ranged from 2.5 to 8 GPa and the resulting distances to detonation, xD, were in the range 1.9 to 14 mm. Numerical simulations using the SURF reactive burn scheme coupled with a linear US -up / Mie-Grueneisen equation of state for the reactant and a JWL equation of state for the products, match the experimental data well. Comparison of simulation with experiment as well as the ``best fit'' parameter set for the simulations is presented.

  7. Myocardial Autophagy after Severe Burn in Rats

    Science.gov (United States)

    Zhang, Qiong; Shi, Xiao-hua; Huang, Yue-sheng

    2012-01-01

    Background Autophagy plays a major role in myocardial ischemia and hypoxia injury. The present study investigated the effects of autophagy on cardiac dysfunction in rats after severe burn. Methods Protein expression of the autophagy markers LC3 and Beclin 1 were determined at 0, 1, 3, 6, and 12 h post-burn in Sprague Dawley rats subjected to 30% total body surface area 3rd degree burns. Autophagic, apoptotic, and oncotic cell death were evaluated in the myocardium at each time point by immunofluorescence. Changes of cardiac function were measured in a Langendorff model of isolated heart at 6 h post-burn, and the autophagic response was measured following activation by Rapamycin and inhibition by 3-methyladenine (3-MA). The angiotensin converting enzyme inhibitor enalaprilat, the angiotensin receptor I blocker losartan, and the reactive oxygen species inhibitor diphenylene iodonium (DPI) were also applied to the ex vivo heart model to examine the roles of these factors in post-burn cardiac function. Results Autophagic cell death was first observed in the myocardium at 3 h post-burn, occurring in 0.008 ± 0.001% of total cardiomyocytes, and continued to increase to a level of 0.022 ± 0.005% by 12 h post-burn. No autophagic cell death was observed in control hearts. Compared with apoptosis, autophagic cell death occurred earlier and in larger quantities. Rapamycin enhanced autophagy and decreased cardiac function in isolated hearts 6 h post-burn, while 3-MA exerted the opposite response. Enalaprilat, losartan, and DPI all inhibited autophagy and enhanced heart function. Conclusion Myocardial autophagy is enhanced in severe burns and autophagic cell death occurred early at 3 h post-burn, which may contribute to post-burn cardiac dysfunction. Angiotensin II and reactive oxygen species may play important roles in this process by regulating cell signaling transduction. PMID:22768082

  8. Mouse Model of Burn Wound and Infection

    DEFF Research Database (Denmark)

    Calum, Henrik; Høiby, Niels; Moser, Claus

    2017-01-01

    The immunosuppression induced by thermal injury renders the burned victim susceptible to infection. A mouse model was developed to examine the immunosuppression, which was possible to induce even at a minor thermal insult of 6% total body surface area. After induction of the burn (48 hr) a depres......The immunosuppression induced by thermal injury renders the burned victim susceptible to infection. A mouse model was developed to examine the immunosuppression, which was possible to induce even at a minor thermal insult of 6% total body surface area. After induction of the burn (48 hr...

  9. Biomass burning in Africa: As assessment of annually burned biomass

    International Nuclear Information System (INIS)

    Delmas, R.A.; Loudjani, P.; Podaire, A.; Menaut, J.C.

    1991-01-01

    It is now established that biomass burning is the dominant phenomenon that controls the atmospheric chemistry in the tropics. Africa is certainly the continent where biomass burning under various aspects and processes is the greatest. Three different types of burnings have to be considered-bush fires in savanna zones which mainly affect herbaceous flora, forest fires due to forestation for shifting agriculture or colonization of new lands, and the use of wood as fuel. The net release of carbon resulting from deforestation is assumed to be responsible for about 20% of the CO 2 increase in the atmosphere because the burning of forests corresponds to a destorage of carbon from the biospheric reservoir. The amount of reactive of greenhouse gases emitted by biomass burning is directly proportional, through individual emission factors, to the biomass actually burned. This chapter evaluates the biomass annually burned on the African continent as a result of the three main burning processes previously mentioned

  10. Satisfaction with life after burn: A Burn Model System National Database Study.

    Science.gov (United States)

    Goverman, J; Mathews, K; Nadler, D; Henderson, E; McMullen, K; Herndon, D; Meyer, W; Fauerbach, J A; Wiechman, S; Carrougher, G; Ryan, C M; Schneider, J C

    2016-08-01

    While mortality rates after burn are low, physical and psychosocial impairments are common. Clinical research is focusing on reducing morbidity and optimizing quality of life. This study examines self-reported Satisfaction With Life Scale scores in a longitudinal, multicenter cohort of survivors of major burns. Risk factors associated with Satisfaction With Life Scale scores are identified. Data from the National Institute on Disability, Independent Living, and Rehabilitation Research (NIDILRR) Burn Model System (BMS) database for burn survivors greater than 9 years of age, from 1994 to 2014, were analyzed. Demographic and medical data were collected on each subject. The primary outcome measures were the individual items and total Satisfaction With Life Scale (SWLS) scores at time of hospital discharge (pre-burn recall period) and 6, 12, and 24 months after burn. The SWLS is a validated 5-item instrument with items rated on a 1-7 Likert scale. The differences in scores over time were determined and scores for burn survivors were also compared to a non-burn, healthy population. Step-wise regression analysis was performed to determine predictors of SWLS scores at different time intervals. The SWLS was completed at time of discharge (1129 patients), 6 months after burn (1231 patients), 12 months after burn (1123 patients), and 24 months after burn (959 patients). There were no statistically significant differences between these groups in terms of medical or injury demographics. The majority of the population was Caucasian (62.9%) and male (72.6%), with a mean TBSA burned of 22.3%. Mean total SWLS scores for burn survivors were unchanged and significantly below that of a non-burn population at all examined time points after burn. Although the mean SWLS score was unchanged over time, a large number of subjects demonstrated improvement or decrement of at least one SWLS category. Gender, TBSA burned, LOS, and school status were associated with SWLS scores at 6 months

  11. Determination of the burn-up of TRIGA fuel elements by calculation with new TRIGLAV program

    International Nuclear Information System (INIS)

    Zagar, T.; Ravnik, M.

    1996-01-01

    The results of fuel element burn-up calculations with new TRIGLAV program are presented. TRIGLAV program uses two dimensional model. Results of calculation are compared to results calculated with program, which uses one dimensional model. The results of fuel element burn-up measurements with reactivity method are presented and compared with the calculated results. (author)

  12. TRIGA criticality experiment for testing burn-up calculations

    International Nuclear Information System (INIS)

    Persic, Andreja; Ravnik, Matjaz; Zagar, Tomaz

    1999-01-01

    A criticality experiment with partly burned TRIGA fuel is described. 20 wt % enriched standard TRIGA fuel elements initially containing 12 wt % U are used. Their average burn-up is 1.4 MWd. Fuel element burn-up is calculated in 2-D four group diffusion approximation using TRIGLAV code. The burn-up of several fuel elements is also measured by reactivity method. The excess reactivity of several critical and subcritical core configurations is measured. Two core configurations contain the same fuel elements in the same arrangement as were used in the fresh TRIGA fuel criticality experiment performed in 1991. The results of the experiment may be applied for testing the computer codes used for fuel burn-up calculations. (author)

  13. Development of a Consistent and Reproducible Porcine Scald Burn Model

    Science.gov (United States)

    Kempf, Margit; Kimble, Roy; Cuttle, Leila

    2016-01-01

    There are very few porcine burn models that replicate scald injuries similar to those encountered by children. We have developed a robust porcine burn model capable of creating reproducible scald burns for a wide range of burn conditions. The study was conducted with juvenile Large White pigs, creating replicates of burn combinations; 50°C for 1, 2, 5 and 10 minutes and 60°C, 70°C, 80°C and 90°C for 5 seconds. Visual wound examination, biopsies and Laser Doppler Imaging were performed at 1, 24 hours and at 3 and 7 days post-burn. A consistent water temperature was maintained within the scald device for long durations (49.8 ± 0.1°C when set at 50°C). The macroscopic and histologic appearance was consistent between replicates of burn conditions. For 50°C water, 10 minute duration burns showed significantly deeper tissue injury than all shorter durations at 24 hours post-burn (p ≤ 0.0001), with damage seen to increase until day 3 post-burn. For 5 second duration burns, by day 7 post-burn the 80°C and 90°C scalds had damage detected significantly deeper in the tissue than the 70°C scalds (p ≤ 0.001). A reliable and safe model of porcine scald burn injury has been successfully developed. The novel apparatus with continually refreshed water improves consistency of scald creation for long exposure times. This model allows the pathophysiology of scald burn wound creation and progression to be examined. PMID:27612153

  14. Method of reactivity control in pressure tube reactor

    International Nuclear Information System (INIS)

    Fukumura, Nobuo.

    1988-01-01

    Purpose: To provide a method of controlling reactivity in a pressure tube reactor at high conversion ratio intended for high burn-up degree. Method: Control tubes are inserted in heavy water moderator. Light water is filled in the tubes at the initial burning stage. Along with the advance of the burning, the light water is gradually removed and replaced with gases of less reactive nuclear reactivity with neutrons such as air or gaseous carbon dioxide. The tubes are made of less neutron absorbing material such as aluminum. By filling light water, infinite multiplication factor is reduced to suppress the reactivity at the initial burning stage. As light water is gradually removed and replaced with air, etc., it provides an effect like that elimination of heavy water moderator to increase the conversion ratio. Accordingly, nuclear fission materials are produced additionally by so much to extend the burn-up degree. In this way, it can provide excellent effect in realizing high burn-up ratio and high conversion ratio. (Kamimura, M.)

  15. Burn-up Credit Criticality Safety Benchmark-Phase II-E. Impact of Isotopic Inventory Changes due to Control Rod Insertions on Reactivity and the End Effect in PWR UO2 Fuel Assemblies

    International Nuclear Information System (INIS)

    Neuber, Jens Christian; Tippl, Wolfgang; Hemptinne, Gwendoline de; Maes, Philippe; Ranta-aho, Anssu; Peneliau, Yannick; Jutier, Ludyvine; Tardy, Marcel; Reiche, Ingo; Kroeger, Helge; Nakata, Tetsuo; Armishaw, Malcom; Miller, Thomas M.

    2015-01-01

    The report describes the final results of the Phase II-E Burn-up Credit Criticality Benchmark conducted by the Expert Group on Burn-up Credit Criticality Safety. The objective of Phase II of the Burn-up Credit Criticality Safety programme is to study the impact of axial burn-up profiles of PWR UO 2 spent fuel assemblies on the reactivity of PWR UO 2 spent fuel assembly configurations. The objective of the Phase II-E benchmark was to study the impact of changes on the spent nuclear fuel isotopic composition due to control rod insertion during depletion on the reactivity and the end effect of spent fuel assemblies with realistic axial burn-up profiles for different control rod insertion depths ranging from 0 cm (no insertion) to full insertion (i.e. to the case that the fuel assemblies were exposed to control rod insertion over their full active length). For this purpose two axial burn-up profiles have been extracted from an AREVA-NP-GmbH-owned 17x17-(24+1) PWR UO 2 spent fuel assembly burn-up profile database. One profile has an average burn-up of 30 MWd/kg U, the other profile is related to an average burn-up of 50 MWd/kg U. Two profiles with different average burn-up values were selected because the shape of the burn-up profile is affected by the average burn-up and the end effect depends on the average burn-up of the fuel. The Phase II-E benchmark exercise complements the Phase II-C and Phase II-D benchmark exercises. In Phase II-D different irradiation histories were analysed using different control rod insertion histories during depletion as well as irradiation histories without control rod insertion. But in all the histories analysed a uniform distribution of the burn-up and hence a uniform distribution of the isotopic composition were assumed; and in all the histories including any usage of control rods full insertion of the control rods was assumed. In Phase II-C the impact of the asymmetry of axial burn-up profiles on the reactivity and the end effect of

  16. The role of grain boundary fission gases in high burn-up fuel under reactivity initiated accident conditions

    International Nuclear Information System (INIS)

    Lemoine, F.; Papin, J.; Frizonnet, J.M.; Cazalis, B.; Rigat, H.

    2002-01-01

    In the frame of reactivity-initiated accidents (RIA) studies, the CABRI REP-Na programme is currently performed, focused on high burn-up UO 2 and MOX fuel behaviour. From 1993 to 1998, seven tests were performed with UO 2 fuel and three with MOX fuel. In all these tests, particular attention has been devoted to the role of fission gases in transient fuel behaviour and in clad loading mechanisms. From the analysis of experimental results, some basic phenomena were identified and a better understanding of the transient fission gas behaviour was obtained in relation to the fuel and clad thermo-mechanical evolution in RIA, but also to the initial state of the fuel before the transient. A high burn-up effect linked to the increasing part of grain boundary gases is clearly evidenced in the final gas release, which would also significantly contribute to the clad loading mechanisms. (authors)

  17. Evaluation of salivary oxidate stress biomarkers, nitric oxide and C-reactive protein in patients with oral lichen planus and burning mouth syndrome.

    Science.gov (United States)

    Tvarijonaviciute, Asta; Aznar-Cayuela, Cristina; Rubio, Camila P; Ceron, José J; López-Jornet, Pia

    2017-05-01

    The aim of this study was to evaluate oxidative stress factors and C-reactive protein in the saliva of patients with oral lichen planus (OLP) and burning mouth syndrome (BMS). This consecutive, cross-sectional study included 20 patients with OLP, 19 with burning mouth syndrome (BMS), and 31 control subjects. The oral cavity of each patient was examined and patients responded to a quality of life questionnaire (OHIP-14) and the xerostomia inventory. The following parameters were measured in whole non-stimulated saliva: trolox equivalent antioxidant capacity (TEAC); total antioxidant capacity (TAC); cupric reducing antioxidant capacity (CUPRAC); ferric reducing ability of plasma (FRAP); C-reactive protein (CRP); nitric oxide; nitrates; and nitrites. The OLP group presented statistically significant differences in reactive oxygen species (ROS) (29 600 cps) in comparison with the control group (39 679 cps) (P < 0.05). In the BMS group, ROS was 29 707 cps with significant difference in comparison with the control group (P < 0.05). Significantly higher salivary nitric oxide (145.7 μmol) and nitrite (141.0 μmol) levels were found in OLP patients in comparison with control group (P < 0.05). Increases in nitric oxide and C-reactive protein were found in the saliva of OLP patients in comparison with BMS and control patients. Further studies are required to confirm these findings. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Resuscitation Strategies for Burn Injuries Sustained in Austere Environments to Improve Renal Perfusion and Function

    Science.gov (United States)

    2017-10-01

    monocyte chemoattractant protein 1; MAP, mean arterial pressure; HIF, hypoxic inducible factor; VEGF, vascular endothelial growth factor; ROS, reactive...TNF-α, tumor necrosis factor-α; AQP, aquaporin; GSH, glutathione; MDA, malondialdehyde; TBARS, thiobarbituric acid-reactive substances; MPO...shrunken glomeruli were present and tubular necrosis was demon- strated by detached basal lamina [42]. Similarly, while models of electrical burns

  19. Creation of Consistent Burn Wounds: A Rat Model

    Directory of Open Access Journals (Sweden)

    Elijah Zhengyang Cai

    2014-07-01

    Full Text Available Background Burn infliction techniques are poorly described in rat models. An accurate study can only be achieved with wounds that are uniform in size and depth. We describe a simple reproducible method for creating consistent burn wounds in rats. Methods Ten male Sprague-Dawley rats were anesthetized and dorsum shaved. A 100 g cylindrical stainless-steel rod (1 cm diameter was heated to 100℃ in boiling water. Temperature was monitored using a thermocouple. We performed two consecutive toe-pinch tests on different limbs to assess the depth of sedation. Burn infliction was limited to the loin. The skin was pulled upwards, away from the underlying viscera, creating a flat surface. The rod rested on its own weight for 5, 10, and 20 seconds at three different sites on each rat. Wounds were evaluated for size, morphology and depth. Results Average wound size was 0.9957 cm2 (standard deviation [SD] 0.1845 (n=30. Wounds created with duration of 5 seconds were pale, with an indistinct margin of erythema. Wounds of 10 and 20 seconds were well-defined, uniformly brown with a rim of erythema. Average depths of tissue damage were 1.30 mm (SD 0.424, 2.35 mm (SD 0.071, and 2.60 mm (SD 0.283 for duration of 5, 10, 20 seconds respectively. Burn duration of 5 seconds resulted in full-thickness damage. Burn duration of 10 seconds and 20 seconds resulted in full-thickness damage, involving subjacent skeletal muscle. Conclusions This is a simple reproducible method for creating burn wounds consistent in size and depth in a rat burn model.

  20. Steady State Investigations of DPF Soot Burn Rates and DPF Modeling

    DEFF Research Database (Denmark)

    Cordtz, Rasmus Lage; Ivarsson, Anders; Schramm, Jesper

    2011-01-01

    and soot mass concentrations are used as model boundary conditions. An in-house developed raw exhaust gas sampling technique is used to measure the soot concentration upstream the DPF which is also needed to find the DPF soot burn rate. The soot concentration is measured basically by filtering the soot...... characteristics are used to fit model constants of soot and filter properties. Measured DPF gas conversions and soot burn rates are used to fit model activation energies of four DPF regeneration reactions using O2 and NO2 as reactants. Modeled DPF pressure drops and soot burn rates are compared to the steady...... state DPF experiments in the temperature range between 260 and 480 °C. The model widely reproduces the experimental results. Especially the exponential soot burn rate versus temperature is accurately reproduced by the model....

  1. Explanatory Model of Resilience in Pediatric Burn Survivors.

    Science.gov (United States)

    Quezada, Lucía; González, Mónica T; Mecott, Gabriel A

    2016-01-01

    Identifying factors of adjustment in pediatric burn patients may facilitate appropriate mental health interventions postinjury. The aim of this is study was to explore the roles of both the patient's and caregivers' resilience and posttraumatic stress in pediatric burn survivor adjustment. For the purposes of the study, "51 patient-parent/guardian" dyads participated. Patients answered the Resilience Questionnaire for Children and Adolescents, and caregivers answered the Mexican Resilience Scale and the Davidson Trauma Scale. The roles of patient age, time since the burn, and size of burn injury were also considered. Statistical analyses included Spearman's ρ for correlations and structural equation modeling. P less than .05 was considered significant. Patients and caregivers reported high levels of resilience, and the majority of caregivers reported low severity of posttraumatic stress disorder symptoms. Pediatric burn survivors' resilience was associated with being younger at the time of the burn and less severity of intrusive and avoidance symptoms in caregivers; it was also associated with a higher resilience in caregivers. It can be concluded that psychological responses of caregivers of pediatric burn survivors affect the well being and positive adjustment of patients; thus psychological services for caregivers would likely have a double benefit for both caregivers and patients.

  2. Sensitivity of physics parameters for establishment of a burned CANDU full-core model for decommissioning waste characterization

    International Nuclear Information System (INIS)

    Cho, Dong-Keun; Sun, Gwang-Min; Choi, Jongwon; Hwang, Dong-Hyun; Hwang, Tae-Won; Yang, Ho-Yeon; Park, Dong-Hwan

    2011-01-01

    The sensitivity of parameters related with reactor physics on the source terms of decommissioning wastes from a CANDU reactor was investigated in order to find a viable, simplified burned core model of a Monte Carlo simulation for decommissioning waste characterization. First, a sensitivity study was performed for the level of nuclide consideration in an irradiated fuel and implicit geometry modeling, the effects of side structural components of the core, and structural supporters for reactive devices. The overall effects for computation memory, calculation time, and accuracy were then investigated with a full-core model. From the results, it was revealed that the level of nuclide consideration and geometry homogenization are not important factors when the ratio of macroscopic neutron absorption cross section (MNAC) relative to a total value exceeded 0.95. The most important factor affecting the neutron flux of the pressure tube was shown to be the structural supporters for reactivity devices, showing an 10% difference. Finally, it was concluded that a bundle-average homogeneous model considering a MNAC of 0.95, which is the simplest model in this study, could be a viable approximate model, with about 25% lower computation memory, 40% faster simulation time, and reasonable engineering accuracy compared with a model with an explicit geometry employing an MNAC of 0.99. (author)

  3. In vitro burn model illustrating heat conduction patterns using compressed thermal papers.

    Science.gov (United States)

    Lee, Jun Yong; Jung, Sung-No; Kwon, Ho

    2015-01-01

    To date, heat conduction from heat sources to tissue has been estimated by complex mathematical modeling. In the present study, we developed an intuitive in vitro skin burn model that illustrates heat conduction patterns inside the skin. This was composed of tightly compressed thermal papers with compression frames. Heat flow through the model left a trace by changing the color of thermal papers. These were digitized and three-dimensionally reconstituted to reproduce the heat conduction patterns in the skin. For standardization, we validated K91HG-CE thermal paper using a printout test and bivariate correlation analysis. We measured the papers' physical properties and calculated the estimated depth of heat conduction using Fourier's equation. Through contact burns of 5, 10, 15, 20, and 30 seconds on porcine skin and our burn model using a heated brass comb, and comparing the burn wound and heat conduction trace, we validated our model. The heat conduction pattern correlation analysis (intraclass correlation coefficient: 0.846, p < 0.001) and the heat conduction depth correlation analysis (intraclass correlation coefficient: 0.93, p < 0.001) showed statistically significant high correlations between the porcine burn wound and our model. Our model showed good correlation with porcine skin burn injury and replicated its heat conduction patterns. © 2014 by the Wound Healing Society.

  4. Experimental model of the burn wound topical treatment

    Directory of Open Access Journals (Sweden)

    Amra Čabaravdić

    2003-11-01

    Full Text Available AbstractBACKGROUND AND PURPOSE:Clinical research of drugs is a researching step subsequent to the preclinical studies in experimental animals. The aim of our research was to evaluate animal model of wound healing process after the burninducement and effects of the ointment containing natural plants on the process of burn healing.MATERIAL AND METHODS:Burn wounds were experimentally induced in two species of experimental animals which were treated with topically applied herbal preparation with concomitant monitoring of the healing process. Experimental groups (1 of 15 animals each (mice and rats, while control group (2 of 10 animals each (mice and rats that were not being treated with herbal ointment. After the hair removal, burn was induced on the back of animals by heated brass seal. Different clinical symptoms including oedema of surrounding tissue, redness, exudation, size of the burn surface, histological and microbiological findings were monitored on the days 1, 3, 7, 14 and 21. A statistically significant difference was observed throughout descriptive statistics and paired Student's t-test.CONCLUSION:Physiological healing processes of the acute burn wound following the topical application of herbal preparation can be monitored on the utilized animal model. A three-week treatment resulted in the 90% of completed epithelization in both animal species, indicating the effectiveness of topically applied herbal preparation.

  5. On numerical considerations for modeling reactive astrophysical shocks

    International Nuclear Information System (INIS)

    Papatheodore, Thomas L.; Messer, O. E. Bronson

    2014-01-01

    Simulating detonations in astrophysical environments is often complicated by numerical approximations to shock structure. A common prescription to ensure correct detonation speeds and associated quantities is to prohibit burning inside the numerically broadened shock. We have performed a series of simulations to verify the efficacy of this approximation and to understand how resolution and dimensionality might affect its use. Our results show that in one dimension, prohibiting burning in the shock is important wherever the carbon burning length is not resolved, in keeping with the results of Fryxell et al. In two dimensions, we find that the prohibition of shock burning effectively inhibits the development of cellular structure for all but the most highly resolved cases. We discuss the possible impacts this outcome may have on sub-grid models and detonation propagation in models of Type Ia supernovae, including potential impacts on observables.

  6. Integrating satellite imagery with simulation modeling to improve burn severity mapping

    Science.gov (United States)

    Eva C. Karau; Pamela G. Sikkink; Robert E. Keane; Gregory K. Dillon

    2014-01-01

    Both satellite imagery and spatial fire effects models are valuable tools for generating burn severity maps that are useful to fire scientists and resource managers. The purpose of this study was to test a new mapping approach that integrates imagery and modeling to create more accurate burn severity maps. We developed and assessed a statistical model that combines the...

  7. Scar formation following excisional and burn injuries in a red Duroc pig model.

    Science.gov (United States)

    Blackstone, Britani N; Kim, Jayne Y; McFarland, Kevin L; Sen, Chandan K; Supp, Dorothy M; Bailey, J Kevin; Powell, Heather M

    2017-08-01

    Scar research is challenging because rodents do not naturally form excessive scars, and burn depth, size, and location cannot be controlled in human longitudinal studies. The female, red Duroc pig model has been shown to form robust scars with biological and anatomical similarities to human hypertrophic scars. To more closely mimic the mode of injury, recreate the complex chemical milieu of the burn wound environment and enhance scar development, an animal model of excessive burn-induced scarring was developed and compared with the more commonly used model, which involves excisional wounds created via dermatome. Standardized, full-thickness thermal wounds were created on the dorsum of female, red Duroc pigs. Wounds for the dermatome model were created using two different total dermatome settings: ∼1.5 mm and ≥ 1.9 mm. Results from analysis over 150 days showed that burn wounds healed at much slower rate and contracted more significantly than dermatome wounds of both settings. The burn scars were hairless, had mixed pigmentation, and displayed fourfold and twofold greater excess erythema values, respectively, compared with ∼1.5 mm and ≥ 1.9 mm deep dermatome injuries. Burn scars were less elastic, less pliable, and weaker than scars resulting from excisional injuries. Decorin and versican gene expression levels were elevated in the burn group at day 150 compared with both dermatome groups. In addition, transforming growth factor-beta 1 was significantly up-regulated in the burn group vs. the ∼1.5 mm deep dermatome group at all time points, and expression remained significantly elevated vs. both dermatome groups at day 150. Compared with scars from dermatome wounds, the burn scar model described here demonstrates greater similarity to human hypertrophic scar. Thus, this burn scar model may provide an improved platform for studying the pathophysiology of burn-related hypertrophic scarring, investigating current anti-scar therapies, and development of

  8. Burn severity mapping using simulation modeling and satellite imagery

    Science.gov (United States)

    Eva C. Karau; Robert E. Keane

    2010-01-01

    Although burn severity maps derived from satellite imagery provide a landscape view of fire impacts, fire effects simulation models can provide spatial fire severity estimates and add a biotic context in which to interpret severity. In this project, we evaluated two methods of mapping burn severity in the context of rapid post-fire assessment for four wildfires in...

  9. Shock loading and reactive flow modeling studies of void induced AP/AL/HTPB propellant

    Science.gov (United States)

    Miller, P. J.; Lindfors, A. J.

    1998-07-01

    The unreactive Hugoniot of a class 1.3 propellant has been investigated by shock compression experiments. The results are analyzed in terms of an ignition and growth reactive flow model using the DYNA2D hydrocode. The calculated shock ignition parameters of the model show a linear dependence on measured void volume which appears to reproduce the observed gauge records well. Shock waves were generated by impact in a 75 mm single stage powder gun. Manganin and PVDF pressure gauges provided pressure-time histories to 140 kbar. The propellants were of similar formulation differing only in AP particle size and the addition of a burn rate modifer (Fe2O3) from that of previous investigations. Results show neglible effect of AP particle size on shock response in contrast to the addition of Fe2O3 which appears to `stiffen' the unreactive Hugoniot and enhances significantly the reactive rates under shock. The unreactive Hugoniot, within experimental error, compares favorably to the solid AP Hugoniot. Shock experiments were performed on propellant samples strained to induce insitu voids. The material state was quantified by uniaxial tension dialatometry. The experimental records show a direct correlation between void volume (0 to 1.7%) and chemical reactivity behind the shock front. These results are discussed in terms of `hot spot' ignition resulting from the shock collapse of the voids.

  10. Simvastatin Treatment Improves Survival in a Murine Model of Burn Sepsis

    Science.gov (United States)

    Beffa, David C; Fischman, Alan J.; Fagan, Shawn P.; Hamrahi, Victoria F.; Kaneki, Masao; Yu, Yong-Ming; Tompkins, Ronald G.; Carter, Edward A.

    2014-01-01

    Infection is the most common and most serious complication of a major burn injury related to burn size. Despite improvements in antimicrobial therapies sepsis still accounts for 50–60% of deaths in burn patients. Given the acute onset and unpredictable nature of sepsis, primary prevention was rarely attempted in its management. However, recent studies have demonstrated that statin treatment can decrease mortality is a murine model of sepsis by preservation of cardiac function and reversal of inflammatory alterations. In addition, it has been shown that treatment with statins is associated with reduced incidence of sepsis in human patients. In the current study groups of CD1 male mice (n=12) were anesthetized and subjected to a dorsal 30% TBSA scald burn injury. Starting 2 hours post burn, the animals were divided into a treatment group receiving 0.2 µ/g simvastatin or a sham group receiving placebo. Simvastatin and placebo were administered by intraperitoneal injection with two dosing regimens; once daily and every 12 hours. On Post burn day 7 cecal ligation and puncture with a 21-gauge needle was performed under ketamine/xylazine anesthesia and the two different dosing schedules were continued. A simvastatin dose dependant improvement in survival was observed in the burn sepsis model. PMID:21145172

  11. Quantitative reactive modeling and verification.

    Science.gov (United States)

    Henzinger, Thomas A

    Formal verification aims to improve the quality of software by detecting errors before they do harm. At the basis of formal verification is the logical notion of correctness , which purports to capture whether or not a program behaves as desired. We suggest that the boolean partition of software into correct and incorrect programs falls short of the practical need to assess the behavior of software in a more nuanced fashion against multiple criteria. We therefore propose to introduce quantitative fitness measures for programs, specifically for measuring the function, performance, and robustness of reactive programs such as concurrent processes. This article describes the goals of the ERC Advanced Investigator Project QUAREM. The project aims to build and evaluate a theory of quantitative fitness measures for reactive models. Such a theory must strive to obtain quantitative generalizations of the paradigms that have been success stories in qualitative reactive modeling, such as compositionality, property-preserving abstraction and abstraction refinement, model checking, and synthesis. The theory will be evaluated not only in the context of software and hardware engineering, but also in the context of systems biology. In particular, we will use the quantitative reactive models and fitness measures developed in this project for testing hypotheses about the mechanisms behind data from biological experiments.

  12. Sensitivity of molecular marker-based CMB models to biomass burning source profiles

    Science.gov (United States)

    Sheesley, Rebecca J.; Schauer, James J.; Zheng, Mei; Wang, Bo

    To assess the contribution of sources to fine particulate organic carbon (OC) at four sites in North Carolina, USA, a molecular marker chemical mass balance model (MM-CMB) was used to quantify seasonal contributions for 2 years. The biomass burning contribution at these sites was found to be 30-50% of the annual OC concentration. In order to provide a better understanding of the uncertainty in MM-CMB model results, a biomass burning profile sensitivity test was performed on the 18 seasonal composites. The results using reconstructed emission profiles based on published profiles compared well, while model results using a single source test profile resulted in biomass burning contributions that were more variable. The biomass burning contribution calculated using an average regional profile of fireplace emissions from five southeastern tree species also compared well with an average profile of open burning of pine-dominated forest from Georgia. The standard deviation of the results using different source profiles was a little over 30% of the annual average biomass contributions. Because the biomass burning contribution accounted for 30-50% of the OC at these sites, the choice of profile also impacted the motor vehicle source attribution due to the common emission of elemental carbon and polycyclic aromatic hydrocarbons. The total mobile organic carbon contribution was less effected by the biomass burning profile than the relative contributions from gasoline and diesel engines.

  13. Predictors of Discharge Disposition in Older Adults With Burns: A Study of the Burn Model Systems.

    Science.gov (United States)

    Pham, Tam N; Carrougher, Gretchen J; Martinez, Erin; Lezotte, Dennis; Rietschel, Carly; Holavanahalli, Radha; Kowalske, Karen; Esselman, Peter C

    2015-01-01

    Older patients with burn injury have a greater likelihood for discharge to nursing facilities. Recent research indicates that older patients discharged to nursing facilities are two to three times as likely to die within a 3-year period relative to those discharged to home. In light of these poor long-term outcomes, we conducted this study to identify predictors for discharge to independent vs nonindependent living status in older patients hospitalized for burns. We retrospectively reviewed all older adults (age ≥ 55 years) who were prospectively enrolled in a longitudinal multicenter study of outcomes from 1993 to 2011. Patient, injury, and treatment outcomes data were analyzed. Recognizing that transfer to inpatient rehabilitation may have impacted final hospital discharge disposition: we assessed the likelihood of inpatient rehabilitation stay, based on identified predictors of inpatient rehabilitation. We subsequently performed a logistic regression analysis on the clustered, propensity-matched cohort to assess associations of burn and injury characteristics on the primary outcome of final discharge status. A total of 591 patients aged ≥55 years were treated and discharged alive from three participating U.S. burn centers during the study period. Mean burn size was 14.8% (SD 11.2%) and mean age was 66.7 years (SD 9.3 years). Ninety-three patients had an inpatient rehabilitation stay before discharge (15.7%). Significant factors predictive of inpatient rehabilitation included a burn >20% TBSA, mechanical ventilation, older age, range of motion deficits at acute care discharge, and study site. These factors were included in the propensity model. Four hundred seventy-one patients (80%) were discharged to independent living status. By matched propensity analysis, older age was significantly associated with a higher likelihood of discharge to nonindependent living (P burn centers need to be elucidated to better understand discharge disposition status in older

  14. Modeling and simulation of reactive flows

    CERN Document Server

    Bortoli, De AL; Pereira, Felipe

    2015-01-01

    Modelling and Simulation of Reactive Flows presents information on modeling and how to numerically solve reactive flows. The book offers a distinctive approach that combines diffusion flames and geochemical flow problems, providing users with a comprehensive resource that bridges the gap for scientists, engineers, and the industry. Specifically, the book looks at the basic concepts related to reaction rates, chemical kinetics, and the development of reduced kinetic mechanisms. It considers the most common methods used in practical situations, along with equations for reactive flows, and va

  15. Development of Erosive Burning Models for CFD Predictions of Solid Rocket Motor Internal Environments

    Science.gov (United States)

    Wang, Qun-Zhen

    2003-01-01

    Four erosive burning models, equations (11) to (14). are developed in this work by using a power law relationship to correlate (1) the erosive burning ratio and the local velocity gradient at propellant surfaces; (2) the erosive burning ratio and the velocity gradient divided by centerline velocity; (3) the erosive burning difference and the local velocity gradient at propellant surfaces; and (4) the erosive burning difference and the velocity gradient divided by centerline velocity. These models depend on the local velocity gradient at the propellant surface (or the velocity gradient divided by centerline velocity) only and, unlike other empirical models, are independent of the motor size. It was argued that, since the erosive burning is a local phenomenon occurring near the surface of the solid propellant, the erosive burning ratio should be independent of the bore diameter if it is correlated with some local flow parameters such as the velocity gradient at the propellant surface. This seems to be true considering the good results obtained by applying these models, which are developed from the small size 5 inch CP tandem motor testing, to CFD simulations of much bigger motors.

  16. Enhancing TRU burning and Am transmutation in Advanced Recycling Reactor

    International Nuclear Information System (INIS)

    Ikeda, Kazumi; Kochendarfer, Richard A.; Moriwaki, Hiroyuki; Kunishima, Shigeru

    2011-01-01

    Research highlights: → This ARR is an oxide fueled sodium cooled reactor based on innovative technologies to destruct TRU. → TRU burning core is designed to burn TRU at 28 kg/TW th h, adding moderator pins of B 4 C (Enriched B-11). → Am transmutation core can transmute Am at 34 kg/TW th h, adding uranium free AmN blanket to TRU burning core. → The TRU burning core improves TRU burning by 40-50% than the previous core. → The Am transmutation core can transmute Am effectively, keeping the void reactivity acceptable. - Abstract: This paper presents about conceptual designs of Advanced Recycling Reactor (ARR) focusing on enhancement in transuranics (TRU) burning and americium (Am) transmutation. The design has been conducted in the context of the Global Nuclear Energy Partnership (GNEP) seeking to close nuclear fuel cycle in ways that reduce proliferation risks, reduce the nuclear waste in the US and further improve global energy security. This study strives to enhance the TRU burning and the Am transmutation, assuming the development of related technologies in this study, while the ARR based on mature technologies was designed in the previous study. It has followed that the provided TRU burning core is designed to burn TRU at 28 kg/TW th h, by adding moderator pins of B 4 C (Enriched B-11) and the Am transmutation core will be able to transmute Am at 34 kg/TW th h, by locating Am blanket of AmN around the TRU burning core. It indicates that these concepts improve TRU burning by 40-50% than the previous core and can transmute Am effectively, keeping the void reactivity acceptable.

  17. Quantifying soil burn severity for hydrologic modeling to assess post-fire effects on sediment delivery

    Science.gov (United States)

    Dobre, Mariana; Brooks, Erin; Lew, Roger; Kolden, Crystal; Quinn, Dylan; Elliot, William; Robichaud, Pete

    2017-04-01

    Soil erosion is a secondary fire effect with great implications for many ecosystem resources. Depending on the burn severity, topography, and the weather immediately after the fire, soil erosion can impact municipal water supplies, degrade water quality, and reduce reservoirs' storage capacity. Scientists and managers use field and remotely sensed data to quickly assess post-fire burn severity in ecologically-sensitive areas. From these assessments, mitigation activities are implemented to minimize post-fire flood and soil erosion and to facilitate post-fire vegetation recovery. Alternatively, land managers can use fire behavior and spread models (e.g. FlamMap, FARSITE, FOFEM, or CONSUME) to identify sensitive areas a priori, and apply strategies such as fuel reduction treatments to proactively minimize the risk of wildfire spread and increased burn severity. There is a growing interest in linking fire behavior and spread models with hydrology-based soil erosion models to provide site-specific assessment of mitigation treatments on post-fire runoff and erosion. The challenge remains, however, that many burn severity mapping and modeling products quantify vegetation loss rather than measuring soil burn severity. Wildfire burn severity is spatially heterogeneous and depends on the pre-fire vegetation cover, fuel load, topography, and weather. Severities also differ depending on the variable of interest (e.g. soil, vegetation). In the United States, Burned Area Reflectance Classification (BARC) maps, derived from Landsat satellite images, are used as an initial burn severity assessment. BARC maps are classified from either a Normalized Burn Ratio (NBR) or differenced Normalized Burned Ratio (dNBR) scene into four classes (Unburned, Low, Moderate, and High severity). The development of soil burn severity maps requires further manual field validation efforts to transform the BARC maps into a product more applicable for post-fire soil rehabilitation activities

  18. Applying Quality Function Deployment Model in Burn Unit Service Improvement.

    Science.gov (United States)

    Keshtkaran, Ali; Hashemi, Neda; Kharazmi, Erfan; Abbasi, Mehdi

    2016-01-01

    Quality function deployment (QFD) is one of the most effective quality design tools. This study applies QFD technique to improve the quality of the burn unit services in Ghotbedin Hospital in Shiraz, Iran. First, the patients' expectations of burn unit services and their priorities were determined through Delphi method. Thereafter, burn unit service specifications were determined through Delphi method. Further, the relationships between the patients' expectations and service specifications and also the relationships between service specifications were determined through an expert group's opinion. Last, the final importance scores of service specifications were calculated through simple additive weighting method. The findings show that burn unit patients have 40 expectations in six different areas. These expectations are in 16 priority levels. Burn units also have 45 service specifications in six different areas. There are four-level relationships between the patients' expectations and service specifications and four-level relationships between service specifications. The most important burn unit service specifications have been identified in this study. The QFD model developed in the study can be a general guideline for QFD planners and executives.

  19. Atmospheric reactivity of hydroxyl radicals with guaiacol (2-methoxyphenol), a biomass burning emitted compound: Secondary organic aerosol formation and gas-phase oxidation products

    Science.gov (United States)

    Lauraguais, Amélie; Coeur-Tourneur, Cécile; Cassez, Andy; Deboudt, Karine; Fourmentin, Marc; Choël, Marie

    2014-04-01

    Methoxyphenols are low molecular weight semi-volatile polar aromatic compounds produced from the pyrolysis of wood lignin. The reaction of guaiacol (2-methoxyphenol) with hydroxyl radicals has been studied in the LPCA simulation chamber at (294 ± 2) K, atmospheric pressure, low relative humidity (RH reactivity of nitroguaiacols with atmospheric oxidants is probably low, we suggest using them as biomass burning emission gas tracers. The atmospheric implications of the guaiacol + OH reaction are also discussed.

  20. Modeling of the solar radiative impact of biomass burning aerosols during the Dust and Biomass-burning Experiment (DABEX)

    Science.gov (United States)

    Myhre, G.; Hoyle, C. R.; Berglen, T. F.; Johnson, B. T.; Haywood, J. M.

    2008-12-01

    The radiative forcing associated with biomass burning aerosols has been calculated over West Africa using a chemical transport model. The model simulations focus on the period of January˜February 2006 during the Dust and Biomass-burning Experiment (DABEX). All of the main aerosol components for this region are modeled including mineral dust, biomass burning (BB) aerosols, secondary organic carbon associated with BB emissions, and carbonaceous particles from the use of fossil fuel and biofuel. The optical properties of the BB aerosol are specified using aircraft data from DABEX. The modeled aerosol optical depth (AOD) is within 15-20% of data from the few available Aerosol Robotic Network (AERONET) measurement stations. However, the model predicts very high AOD over central Africa, which disagrees somewhat with satellite retrieved AOD from Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR). This indicates that BB emissions may be too high in central Africa or that very high AOD may be incorrectly screened out of the satellite data. The aerosol single scattering albedo increases with wavelength in our model and in AERONET retrievals, which contrasts with results from a previous biomass burning aerosol campaign. The model gives a strong negative radiative forcing of the BB aerosols at the top of the atmosphere (TOA) in clear-sky conditions over most of the domain, except over the Saharan desert where surface albedos are high. The all-sky TOA radiative forcing is quite inhomogeneous with values varying from -10 to 10 W m-2. The regional mean TOA radiative forcing is close to zero for the all-sky calculation and around -1.5 W m-2 for the clear-sky calculation. Sensitivity simulations indicate a positive regional mean TOA radiative forcing of up to 3 W m-2.

  1. Quadratic reactivity fuel cycle model

    International Nuclear Information System (INIS)

    Lewins, J.D.

    1985-01-01

    For educational purposes it is highly desirable to provide simple yet realistic models for fuel cycle and fuel economy. In particular, a lumped model without recourse to detailed spatial calculations would be very helpful in providing the student with a proper understanding of the purposes of fuel cycle calculations. A teaching model for fuel cycle studies based on a lumped model assuming the summability of partial reactivities with a linear dependence of reactivity usefully illustrates fuel utilization concepts. The linear burnup model does not satisfactorily represent natural enrichment reactors. A better model, showing the trend of initial plutonium production before subsequent fuel burnup and fission product generation, is a quadratic fit. The study of M-batch cycles, reloading 1/Mth of the core at end of cycle, is now complicated by nonlinear equations. A complete account of the asymptotic cycle for any order of M-batch refueling can be given and compared with the linear model. A complete account of the transient cycle can be obtained readily in the two-batch model and this exact solution would be useful in verifying numerical marching models. It is convenient to treat the parabolic fit rho = 1 - tau 2 as a special case of the general quadratic fit rho = 1 - C/sub tau/ - (1 - C)tau 2 in suitably normalized reactivity and cycle time units. The parabolic results are given in this paper

  2. HERMES: A Model to Describe Deformation, Burning, Explosion, and Detonation

    Energy Technology Data Exchange (ETDEWEB)

    Reaugh, J E

    2011-11-22

    HERMES (High Explosive Response to MEchanical Stimulus) was developed to fill the need for a model to describe an explosive response of the type described as BVR (Burn to Violent Response) or HEVR (High Explosive Violent Response). Characteristically this response leaves a substantial amount of explosive unconsumed, the time to reaction is long, and the peak pressure developed is low. In contrast, detonations characteristically consume all explosive present, the time to reaction is short, and peak pressures are high. However, most of the previous models to describe explosive response were models for detonation. The earliest models to describe the response of explosives to mechanical stimulus in computer simulations were applied to intentional detonation (performance) of nearly ideal explosives. In this case, an ideal explosive is one with a vanishingly small reaction zone. A detonation is supersonic with respect to the undetonated explosive (reactant). The reactant cannot respond to the pressure of the detonation before the detonation front arrives, so the precise compressibility of the reactant does not matter. Further, the mesh sizes that were practical for the computer resources then available were large with respect to the reaction zone. As a result, methods then used to model detonations, known as {beta}-burn or program burn, were not intended to resolve the structure of the reaction zone. Instead, these methods spread the detonation front over a few finite-difference zones, in the same spirit that artificial viscosity is used to spread the shock front in inert materials over a few finite-difference zones. These methods are still widely used when the structure of the reaction zone and the build-up to detonation are unimportant. Later detonation models resolved the reaction zone. These models were applied both to performance, particularly as it is affected by the size of the charge, and to situations in which the stimulus was less than that needed for reliable

  3. A One-Dimensional Global-Scaling Erosive Burning Model Informed by Blowing Wall Turbulence

    Science.gov (United States)

    Kibbey, Timothy P.

    2014-01-01

    A derivation of turbulent flow parameters, combined with data from erosive burning test motors and blowing wall tests results in erosive burning model candidates useful in one-dimensional internal ballistics analysis capable of scaling across wide ranges of motor size. The real-time burn rate data comes from three test campaigns of subscale segmented solid rocket motors tested at two facilities. The flow theory admits the important effect of the blowing wall on the turbulent friction coefficient by using blowing wall data to determine the blowing wall friction coefficient. The erosive burning behavior of full-scale motors is now predicted more closely than with other recent models.

  4. INPUT DATA OF BURNING WOOD FOR CFD MODELLING USING SMALL-SCALE EXPERIMENTS

    Directory of Open Access Journals (Sweden)

    Petr Hejtmánek

    2017-12-01

    Full Text Available The paper presents an option how to acquire simplified input data for modelling of burning wood in CFD programmes. The option lies in combination of data from small- and molecular-scale experiments in order to describe the material as a one-reaction material property. Such virtual material would spread fire, develop the fire according to surrounding environment and it could be extinguished without using complex reaction molecular description. Series of experiments including elemental analysis, thermogravimetric analysis and difference thermal analysis, and combustion analysis were performed. Then the FDS model of burning pine wood in a cone calorimeter was built. In the model where those values were used. The model was validated to HRR (Heat Release Rate from the real cone calorimeter experiment. The results show that for the purpose of CFD modelling the effective heat of combustion, which is one of the basic material property for fire modelling affecting the total intensity of burning, should be used. Using the net heat of combustion in the model leads to higher values of HRR in comparison to the real experiment data. Considering all the results shown in this paper, it was shown that it is possible to simulate burning of wood using the extrapolated data obtained in small-size experiments.

  5. Pulsations of stellar models in H and He burning phases

    Energy Technology Data Exchange (ETDEWEB)

    Gurm, H S; Sukhija, H M; Badalia, J K [Punjabi Univ., Patalia (India). Dept. of Astronomy and Space Sciences

    1983-02-01

    A study of pulsational properties with evolution has been done for a 15.6 Msub(sun) star with Xsub(e)=0.90 and Ysub(e)=0.08. Pulsational properties in the hydrogen-burning stages have been compared with those in helium-burning stages. A comparison with observed characteristics of ..beta.. Cepheids, classical Cepheids and supergiant variables has been made during the course of its evolution. In addition, models of 5, 9, and 15 Msub(sun) with Xsub(e)=0.708, Ysub(e)=0.272 have also been studied for pulsational properties during the helium burning stage. It is also seen that pulsational instability is sensitive to changes in initial chemical composition and opacity parameters, n and s. A low helium abundance could be a reason for the stability of the models, even when lying in the instability strip of the H-R diagram.

  6. Application of transient burning rate model of solid propellant in electrothermal-chemical launch simulation

    Directory of Open Access Journals (Sweden)

    Yan-jie Ni

    2016-04-01

    Full Text Available A 30 mm electrothermal-chemical (ETC gun experimental system is employed to research the burning rate characteristics of 4/7 high-nitrogen solid propellant. Enhanced gas generation rates (EGGR of propellants during and after electrical discharges are verified in the experiments. A modified 0D internal ballistic model is established to simulate the ETC launch. According to the measured pressure and electrical parameters, a transient burning rate law including the influence of EGGR coefficient by electric power and pressure gradient (dp/dt is added into the model. The EGGR coefficient of 4/7 high-nitrogen solid propellant is equal to 0.005 MW−1. Both simulated breech pressure and projectile muzzle velocity accord with the experimental results well. Compared with Woodley's modified burning rate law, the breech pressure curves acquired by the transient burning rate law are more consistent with test results. Based on the parameters calculated in the model, the relationship among propellant burning rate, pressure gradient (dp/dt and electric power is analyzed. Depending on the transient burning rate law and experimental data, the burning of solid propellant under the condition of plasma is described more accurately.

  7. Unifying Model-Based and Reactive Programming within a Model-Based Executive

    Science.gov (United States)

    Williams, Brian C.; Gupta, Vineet; Norvig, Peter (Technical Monitor)

    1999-01-01

    Real-time, model-based, deduction has recently emerged as a vital component in AI's tool box for developing highly autonomous reactive systems. Yet one of the current hurdles towards developing model-based reactive systems is the number of methods simultaneously employed, and their corresponding melange of programming and modeling languages. This paper offers an important step towards unification. We introduce RMPL, a rich modeling language that combines probabilistic, constraint-based modeling with reactive programming constructs, while offering a simple semantics in terms of hidden state Markov processes. We introduce probabilistic, hierarchical constraint automata (PHCA), which allow Markov processes to be expressed in a compact representation that preserves the modularity of RMPL programs. Finally, a model-based executive, called Reactive Burton is described that exploits this compact encoding to perform efficIent simulation, belief state update and control sequence generation.

  8. Reactivity considerations for the on-line refuelling of a pebble bed modular reactor—Illustrating safety for the most reactive core fuel load

    International Nuclear Information System (INIS)

    Reitsma, Frederik

    2012-01-01

    In the multi-pass fuel management scheme employed for the pebble bed modular reactor the fuel pebbles are re-circulated until they reach the target burn-up. The rate at which fresh fuel is loaded and burned fuel is discharged is a result of the core neutronics cycle analysis but in practice (on the plant) this has to be controlled and managed by the fuel handling and storage system and use of the burnup measurement system. The excess reactivity is the additional reactivity available in the core during operating conditions that is the result of loading a fuel mixture in the core that is more reactive (less burned) than what is required to keep the reactor critical at full power operational conditions. The excess reactivity is balanced by the insertion of the control rods to keep the reactor critical. The excess reactivity allows flexibility in operations, for example to overcome the xenon build up when power is decreased as part of load follow. In order to limit reactivity excursions and to ensure safe shutdown the excess reactivity and thus the insertion depth of the control rods at normal operating conditions has to be managed. One way to do this is by operational procedures. The reactivity effect of long-term operation with the control rods inserted deeper than the design point is investigated and a control rod insertion limit is proposed that will not limit normal operations. The effects of other phenomena that can increase the power defect, such as higher-than-expected fuel temperatures, are also introduced. All of these cases are then evaluated by ensuring cold shutdown is still achievable and where appropriate by reactivity insertion accident analysis. These aspects are investigated on the PBMR 400 MW design.

  9. Nursing research on a first aid model of double personnel for major burn patients.

    Science.gov (United States)

    Wu, Weiwei; Shi, Kai; Jin, Zhenghua; Liu, Shuang; Cai, Duo; Zhao, Jingchun; Chi, Cheng; Yu, Jiaao

    2015-03-01

    This study explored the effect of a first aid model employing two nurses on the efficient rescue operation time and the efficient resuscitation time for major burn patients. A two-nurse model of first aid was designed for major burn patients. The model includes a division of labor between the first aid nurses and the re-organization of emergency carts. The clinical effectiveness of the process was examined in a retrospective chart review of 156 cases of major burn patients, experiencing shock and low blood volume, who were admitted to the intensive care unit of the department of burn surgery between November 2009 and June 2013. Of the 156 major burn cases, 87 patients who received first aid using the double personnel model were assigned to the test group and the 69 patients who received first aid using the standard first aid model were assigned to the control group. The efficient rescue operation time and the efficient resuscitation time for the patients were compared between the two groups. Student's t tests were used to the compare the mean difference between the groups. Statistically significant differences between the two groups were found on both measures (P's first aid model based on scientifically validated procedures and a reasonable division of labor can shorten the efficient rescue operation time and the efficient resuscitation time for major burn patients. Given these findings, the model appears to be worthy of clinical application.

  10. Pulsations of stellar models in H and He burning phases

    International Nuclear Information System (INIS)

    Gurm, H.S.; Sukhija, H.M.; Badalia, J.K.

    1983-01-01

    A study of pulsational properties with evolution has been done for a 15.6 Msub(sun) star with Xsub(e)=0.90 and Ysub(e)=0.08. Pulsational properties in the hydrogen-burning stages have been compared with those in helium-burning stages. A comparison with observed characteristics of #betta# Cepheids, classical Cepheids and supergiant variables has been made during the course of its evolution. In addition, models of 5, 9, and 15 Msub(sun) with Xsub(e)=0.708, Ysub(e)=0.272 have also been studied for pulsational properties during the helium burning stage. It is also seen that pulsational instability is sensitive to changes in initial chemical composition and opacity parameters, n and s. A low helium abundance could be a reason for the stability of the models, even when lying in the instability strip of the H-R diagram. (orig.)

  11. Impact of reactive settler models on simulated WWTP performance

    DEFF Research Database (Denmark)

    Gernaey, Krist; Jeppsson, Ulf; Batstone, Damien J.

    2006-01-01

    for an ASM1 case study. Simulations with a whole plant model including the non-reactive Takacs settler model are used as a reference, and are compared to simulation results considering two reactive settler models. The first is a return sludge model block removing oxygen and a user-defined fraction of nitrate......, combined with a non-reactive Takacs settler. The second is a fully reactive ASM1 Takacs settler model. Simulations with the ASM1 reactive settler model predicted a 15.3% and 7.4% improvement of the simulated N removal performance, for constant (steady-state) and dynamic influent conditions respectively....... The oxygen/nitrate return sludge model block predicts a 10% improvement of N removal performance under dynamic conditions, and might be the better modelling option for ASM1 plants: it is computationally more efficient and it will not overrate the importance of decay processes in the settler....

  12. Modeling of WWER-440 Fuel Pin Behavior at Extended Burn-up

    International Nuclear Information System (INIS)

    El-Koliel, M.S.; Abou-Zaid, A.A.; El-Kafas, A.A.

    2004-01-01

    Currently, there is an ongoing effort to increase fuel discharge burn-up of all LWRs fuel including WWER's as much as possible in order to decrease power production cost. Therefore, burn-up is expected to be increased to 60 to 70 Mwd/kg U. The change in the fuel radial power distribution as a function of fuel burn up can affect the radial fuel temperature distribution as well as the fuel microstructure in the fuel pellet rim. In this paper, the radial burn-up and fissile products distributions of WWER-440 UO 2 fuel pin were evaluated using MCNP 4B and ORIGEN2 codes. The impact of the thermal conductivity on predicted fission gas release calculations is needed. For the analysis, a typical WWER-440 fuel pin and surrounding water moderator are considered in a hexagonal pin cell well. The thermal release and the athermal release from the pellet rim were modeled separately. The fraction of the rim structure and the excessive porosity in the rim structure in isothermal irradiation as a function of the fuel burn-up was predicted. a computer program; RIMSC-01, is developed to perform the required FGR calculations. Finally, the relevant phenomena and the corresponding models together with their validation are presented

  13. Total inpatient treatment costs in patients with severe burns: towards a more accurate reimbursement model.

    Science.gov (United States)

    Mehra, Tarun; Koljonen, Virve; Seifert, Burkhardt; Volbracht, Jörk; Giovanoli, Pietro; Plock, Jan; Moos, Rudolf Maria

    2015-01-01

    Reimbursement systems have difficulties depicting the actual cost of burn treatment, leaving care providers with a significant financial burden. Our aim was to establish a simple and accurate reimbursement model compatible with prospective payment systems. A total of 370 966 electronic medical records of patients discharged in 2012 to 2013 from Swiss university hospitals were reviewed. A total of 828 cases of burns including 109 cases of severe burns were retained. Costs, revenues and earnings for severe and nonsevere burns were analysed and a linear regression model predicting total inpatient treatment costs was established. The median total costs per case for severe burns was tenfold higher than for nonsevere burns (179 949 CHF [167 353 EUR] vs 11 312 CHF [10 520 EUR], interquartile ranges 96 782-328 618 CHF vs 4 874-27 783 CHF, p <0.001). The median of earnings per case for nonsevere burns was 588 CHF (547 EUR) (interquartile range -6 720 - 5 354 CHF) whereas severe burns incurred a large financial loss to care providers, with median earnings of -33 178 CHF (30 856 EUR) (interquartile range -95 533 - 23 662 CHF). Differences were highly significant (p <0.001). Our linear regression model predicting total costs per case with length of stay (LOS) as independent variable had an adjusted R2 of 0.67 (p <0.001 for LOS). Severe burns are systematically underfunded within the Swiss reimbursement system. Flat-rate DRG-based refunds poorly reflect the actual treatment costs. In conclusion, we suggest a reimbursement model based on a per diem rate for treatment of severe burns.

  14. Accuracy of Currently Used Paper Burn Diagram vs a Three-Dimensional Computerized Model.

    Science.gov (United States)

    Benjamin, Nicole C; Lee, Jong O; Norbury, William B; Branski, Ludwik K; Wurzer, Paul; Jimenez, Carlos J; Benjamin, Debra A; Herndon, David N

    Burn units have historically used paper diagrams to estimate percent burn; however, unintentional errors can occur. The use of a computer program that incorporates wound mapping from photographs onto a three-dimensional (3D) human diagram could decrease subjectivity in preparing burn diagrams and subsequent calculations of TBSA burned. Analyses were done on 19 burned patients who had an estimated TBSA burned of ≥20%. The patients were admitted to Shriners Hospitals for Children or the University of Texas Medical Branch in Galveston, Texas, from July 2012 to September 2013 for treatment. Digital photographs were collected before the patient's first surgery. Using BurnCase 3D (RISC Software GmbH, Hagenberg, Austria), a burn mapping software, the user traced partial- and full-thickness burns from photographs. The program then superimposed tracings onto a 3D model and calculated percent burned. The results were compared with the Lund and Browder diagrams completed after the first operation. A two-tailed t-test was used to calculate statistical differences. For partial-thickness burns, burn sizes calculated using Lund and Browder diagrams were significantly larger than those calculated using BurnCase 3D (15% difference, P < .01). The opposite was found for full-thickness burns, with burn sizes being smaller when calculated using Lund and Browder diagrams (11% difference, P < .05). In conclusion, substantial differences exist in percent burn estimations derived from BurnCase 3D and paper diagrams. In our studied cohort, paper diagrams were associated with overestimation of partial-thickness burn size and underestimation of full-thickness burn size. Additional studies comparing BurnCase 3D with other commonly used methods are warranted.

  15. Modeling prescribed burning experiments and assessing the fire impacts on local to regional air quality

    Science.gov (United States)

    Zhou, L.; Baker, K. R.; Napelenok, S. L.; Elleman, R. A.; Urbanski, S. P.

    2016-12-01

    Biomass burning, including wildfires and prescribed burns, strongly impact the global carbon cycle and are of increasing concern due to the potential impacts on ambient air quality. This modelling study focuses on the evolution of carbonaceous compounds during a prescribed burning experiment and assesses the impacts of burning on local to regional air quality. The Community Multiscale Air Quality (CMAQ) model is used to conduct 4 and 2 km grid resolution simulations of prescribed burning experiments in southeast Washington state and western Idaho state in summer 2013. The ground and airborne measurements from the field experiment are used to evaluate the model performance in capturing surface and aloft impacts from the burning events. Phase partitioning of organic compounds in the plume are studied as it is a crucial step towards understanding the fate of carbonaceous compounds. The sensitivities of ambient concentrations and deposition to emissions are conducted for organic carbon, elemental carbon and ozone to estimate the impacts of fire on air quality.

  16. Modeling crop residue burning experiments to evaluate smoke emissions and plume transport

    Science.gov (United States)

    Crop residue burning is a common land management practice that results in emissions of a variety of pollutants with negative health impacts. Modeling systems are used to estimate air quality impacts of crop residue burning to support retrospective regulatory assessments and also ...

  17. Spatial frequency domain imaging of burn wounds in a preclinical model of graded burn severity

    Science.gov (United States)

    Nguyen, John Quan; Crouzet, Christian; Mai, Tuan; Riola, Kathleen; Uchitel, Daniel; Liaw, Lih-Huei; Bernal, Nicole; Ponticorvo, Adrien; Choi, Bernard; Durkin, Anthony J.

    2013-06-01

    Frequent monitoring of early-stage burns is necessary for deciding optimal treatment and management. Both superficial and full thickness burns are relatively easy to diagnose based on clinical observation. In between these two extremes are superficial-partial thickness and deep-partial thickness burns. These burns, while visually similar, differ dramatically in terms of clinical treatment and are known to progress in severity over time. The objective of this study was to determine the potential of spatial frequency domain imaging (SFDI) for noninvasively mapping quantitative changes in chromophore and optical properties that may be an indicative of burn wound severity. A controlled protocol of graded burn severity was developed and applied to 17 rats. SFDI data was acquired at multiple near-infrared wavelengths over a course of 3 h. Burn severity was verified using hematoxylin and eosin histology. From this study, we found that changes in water concentration (edema), deoxygenated hemoglobin concentration, and optical scattering (tissue denaturation) to be statistically significant at differentiating superficial partial-thickness burns from deep-partial thickness burns.

  18. Modeling Emissions and Vertical Plume Transport of Crop Residue Burning Experiments in the Pacific Northwest

    Science.gov (United States)

    Zhou, L.; Baker, K. R.; Napelenok, S. L.; Pouliot, G.; Elleman, R. A.; ONeill, S. M.; Urbanski, S. P.; Wong, D. C.

    2017-12-01

    Crop residue burning has long been a common practice in agriculture with the smoke emissions from the burning linked to negative health impacts. A field study in eastern Washington and northern Idaho in August 2013 consisted of multiple burns of well characterized fuels with nearby surface and aerial measurements including trace species concentrations, plume rise height and boundary layer structure. The chemical transport model CMAQ (Community Multiscale Air Quality Model) was used to assess the fire emissions and subsequent vertical plume transport. The study first compared assumptions made by the 2014 National Emission Inventory approach for crop residue burning with the fuel and emissions information obtained from the field study and then investigated the sensitivity of modeled carbon monoxide (CO) and PM2.5 concentrations to these different emission estimates and plume rise treatment with CMAQ. The study suggests that improvements to the current parameterizations are needed in order for CMAQ to reliably reproduce smoke plumes from burning. In addition, there is enough variability in the smoke emissions, stemming from variable field-specific information such as field size, that attempts to model crop residue burning should use field-specific information whenever possible.

  19. Low-dose aripiprazole for refractory burning mouth syndrome.

    Science.gov (United States)

    Umezaki, Yojiro; Takenoshita, Miho; Toyofuku, Akira

    2016-01-01

    We report a case of refractory burning mouth syndrome (BMS) ameliorated with low dose of aripiprazole. The patient was a 66-year-old female who had suffered from chronic burning pain in her tongue for 13 months. No abnormality associated with the burning sensation was detected in the laboratory tests and the oral findings. Considering the clinical feature and the history together, we diagnosed the burning sensation as BMS. The BMS pain was decreased by aripiprazole (powder) 1.0 mg/d, though no other antidepressants had satisfying pain relief. It could be supposed that the efficacy of aripiprazole is caused by dopamine stabilization in this case, and BMS might have a subtype that is reactive to aripiprazole. Further studies are needed to confirm the efficacy of aripiprazole for BMS.

  20. Stochastic modeling for reliability shocks, burn-in and heterogeneous populations

    CERN Document Server

    Finkelstein, Maxim

    2013-01-01

    Focusing on shocks modeling, burn-in and heterogeneous populations, Stochastic Modeling for Reliability naturally combines these three topics in the unified stochastic framework and presents numerous practical examples that illustrate recent theoretical findings of the authors.  The populations of manufactured items in industry are usually heterogeneous. However, the conventional reliability analysis is performed under the implicit assumption of homogeneity, which can result in distortion of the corresponding reliability indices and various misconceptions. Stochastic Modeling for Reliability fills this gap and presents the basics and further developments of reliability theory for heterogeneous populations. Specifically, the authors consider burn-in as a method of elimination of ‘weak’ items from heterogeneous populations. The real life objects are operating in a changing environment. One of the ways to model an impact of this environment is via the external shocks occurring in accordance with some stocha...

  1. User assessment of smoke-dispersion models for wildland biomass burning.

    Science.gov (United States)

    Steve Breyfogle; Sue A. Ferguson

    1996-01-01

    Several smoke-dispersion models, which currently are available for modeling smoke from biomass burns, were evaluated for ease of use, availability of input data, and output data format. The input and output components of all models are listed, and differences in model physics are discussed. Each model was installed and run on a personal computer with a simple-case...

  2. The burning fuse model of unbecoming in time

    Science.gov (United States)

    Norton, John D.

    2015-11-01

    In the burning fuse model of unbecoming in time, the future is real and the past is unreal. It is used to motivate the idea that there is something unbecoming in the present literature on the metaphysics of time: its focus is merely the assigning of a label "real."

  3. Burns education for non-burn specialist clinicians in Western Australia.

    Science.gov (United States)

    McWilliams, Tania; Hendricks, Joyce; Twigg, Di; Wood, Fiona

    2015-03-01

    Burn patients often receive their initial care by non-burn specialist clinicians, with increasingly collaborative burn models of care. The provision of relevant and accessible education for these clinicians is therefore vital for optimal patient care. A two phase design was used. A state-wide survey of multidisciplinary non-burn specialist clinicians throughout Western Australia identified learning needs related to paediatric burn care. A targeted education programme was developed and delivered live via videoconference. Pre-post-test analysis evaluated changes in knowledge as a result of attendance at each education session. Non-burn specialist clinicians identified numerous areas of burn care relevant to their practice. Statistically significant differences between perceived relevance of care and confidence in care provision were reported for aspects of acute burn care. Following attendance at the education sessions, statistically significant increases in knowledge were noted for most areas of acute burn care. Identification of learning needs facilitated the development of a targeted education programme for non-burn specialist clinicians. Increased non-burn specialist clinician knowledge following attendance at most education sessions supports the use of videoconferencing as an acceptable and effective method of delivering burns education in Western Australia. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  4. Modeling crop residue burning experiments to evaluate smoke emissions and plume transport

    Science.gov (United States)

    Luxi Zhou; Kirk R. Baker; Sergey L. Napelenok; George Pouliot; Robert Elleman; Susan M. O' Neill; Shawn P. Urbanski; David C. Wong

    2018-01-01

    Crop residue burning is a common land management practice that results in emissions of a variety of pollutants with negative health impacts. Modeling systems are used to estimate air quality impacts of crop residue burning to support retrospective regulatory assessments and also for forecasting purposes. Ground and airborne measurements from a recent field experiment...

  5. Parameters estimation for reactive transport: A way to test the validity of a reactive model

    Science.gov (United States)

    Aggarwal, Mohit; Cheikh Anta Ndiaye, Mame; Carrayrou, Jérôme

    The chemical parameters used in reactive transport models are not known accurately due to the complexity and the heterogeneous conditions of a real domain. We will present an efficient algorithm in order to estimate the chemical parameters using Monte-Carlo method. Monte-Carlo methods are very robust for the optimisation of the highly non-linear mathematical model describing reactive transport. Reactive transport of tributyltin (TBT) through natural quartz sand at seven different pHs is taken as the test case. Our algorithm will be used to estimate the chemical parameters of the sorption of TBT onto the natural quartz sand. By testing and comparing three models of surface complexation, we show that the proposed adsorption model cannot explain the experimental data.

  6. The Fire Locating and Modeling of Burning Emissions (FLAMBE) Project

    Science.gov (United States)

    Reid, J. S.; Prins, E. M.; Westphal, D.; Richardson, K.; Christopher, S.; Schmidt, C.; Theisen, M.; Eck, T.; Reid, E. A.

    2001-12-01

    The Fire Locating and Modeling of Burning Emissions (FLAMBE) project was initiated by NASA, the US Navy and NOAA to monitor biomass burning and burning emissions on a global scale. The idea behind the mission is to integrate remote sensing data with global and regional transport models in real time for the purpose of providing the scientific community with smoke and fire products for planning and research purposes. FLAMBE is currently utilizing real time satellite data from GOES satellites, fire products based on the Wildfire Automated Biomass Burning Algorithm (WF_ABBA) are generated for the Western Hemisphere every 30 minutes with only a 90 minute processing delay. We are currently collaborating with other investigators to gain global coverage. Once generated, the fire products are used to input smoke fluxes into the NRL Aerosol Analysis and Prediction System, where advection forecasts are performed for up to 6 days. Subsequent radiative transfer calculations are used to estimate top of atmosphere and surface radiative forcing as well as surface layer visibility. Near real time validation is performed using field data collected by Aerosol Robotic Network (AERONET) Sun photometers. In this paper we fully describe the FLAMBE project and data availability. Preliminary result from the previous year will also be presented, with an emphasis on the development of algorithms to determine smoke emission fluxes from individual fire products. Comparisons to AERONET Sun photometer data will be made.

  7. Burn-up TRIGA Mark II benchmark experiment

    International Nuclear Information System (INIS)

    Persic, A.; Ravnik, M.; Zagar, T.

    1998-01-01

    Different reactor codes are used for calculations of reactor parameters. The accuracy of the programs is tested through comparison of the calculated values with the experimental results. Well-defined and accurately measured benchmarks are required. The experimental results of reactivity measurements, fuel element reactivity worth distribution and fuel-up measurements are presented in this paper. The experiments were performed with partly burnt reactor core. The experimental conditions were well defined, so that the results can be used as a burn-up benchmark test case for a TRIGA Mark II reactor calculations.(author)

  8. Preliminary investigation of actinide and xenon reactivity effects in accelerator transmutation of waste high-flux systems

    International Nuclear Information System (INIS)

    Olson, K.R.; Henderson, D.L.

    1995-01-01

    The possibility of an unstable positive reactivity growth in an accelerator transmutation of waste (ATW)-type high-flux system is investigated. While it has always been clear that xenon is an important actor in the reactivity response of a system to flux changes, it has been suggested that in very high thermal flux transuranic burning systems, a positive, unstable reactivity growth could be caused by the actinides alone. Initial system reactivity response to flux changes caused by the actinides and xenon are investigated separately. The maximum change in reactivity after a flux change caused by the effect of the changing quantities of actinides is generally at least two orders of magnitude smaller than either the positive or negative reactivity effect associated with xenon after a shutdown or startup. In any transient flux event, the reactivity response of the system to xenon will generally occlude the response caused by the actinides. The capabilities and applications of both the current actinide model and the xenon model are discussed. Finally, the need for a complete dynamic model for the high-flux fluid-fueled ATW system is addressed

  9. Low-dose aripiprazole for refractory burning mouth syndrome

    Directory of Open Access Journals (Sweden)

    Umezaki Y

    2016-05-01

    Full Text Available Yojiro Umezaki,1 Miho Takenoshita,2 Akira Toyofuku2 1Psychosomatic Dentistry Clinic, Dental Hospital, 2Psychosomatic Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan Abstract: We report a case of refractory burning mouth syndrome (BMS ameliorated with low dose of aripiprazole. The patient was a 66-year-old female who had suffered from chronic burning pain in her tongue for 13 months. No abnormality associated with the burning sensation was detected in the laboratory tests and the oral findings. Considering the clinical feature and the history together, we diagnosed the burning sensation as BMS. The BMS pain was decreased by aripiprazole (powder 1.0 mg/d, though no other antidepressants had satisfying pain relief. It could be supposed that the efficacy of aripiprazole is caused by dopamine stabilization in this case, and BMS might have a subtype that is reactive to aripiprazole. Further studies are needed to confirm the efficacy of aripiprazole for BMS. Keywords: burning mouth syndrome, low-dose aripiprazole, chronic pain

  10. Climate vs. carbon dioxide controls on biomass burning: a model analysis of the glacial-interglacial contrast

    Science.gov (United States)

    Calvo, M. Martin; Prentice, I. C.; Harrison, S. P.

    2014-02-01

    Climate controls fire regimes through its influence on the amount and types of fuel present and their dryness; CO2 availability, in turn, constrains primary production by limiting photosynthetic activity in plants. However, although fuel accumulation depends on biomass production, and hence CO2 availability, the links between atmospheric CO2 and biomass burning are not well known. Here a fire-enabled dynamic global vegetation model (the Land surface Processes and eXchanges model, LPX) is used to attribute glacial-interglacial changes in biomass burning to CO2 increase, which would be expected to increase primary production and therefore fuel loads even in the absence of climate change, vs. climate change effects. Four general circulation models provided Last Glacial Maximum (LGM) climate anomalies - that is, differences from the pre-industrial (PI) control climate - from the Palaeoclimate Modelling Intercomparison Project Phase 2, allowing the construction of four scenarios for LGM climate. Modelled carbon fluxes in biomass burning were corrected for the model's observed biases in contemporary biome-average values. With LGM climate and low CO2 (185 ppm) effects included, the modelled global flux was 70 to 80% lower at the LGM than in PI time. LGM climate with pre-industrial CO2 (280 ppm) however yielded unrealistic results, with global and Northern Hemisphere biomass burning fluxes greater than in the pre-industrial climate. Using the PI CO2 concentration increased the modelled LGM biomass burning fluxes for all climate models and latitudinal bands to between four and ten times their values under LGM CO2 concentration. It is inferred that a substantial part of the increase in biomass burning after the LGM must be attributed to the effect of increasing CO2 concentration on productivity and fuel load. Today, by analogy, both rising CO2 and global warming must be considered as risk factors for increasing biomass burning. Both effects need to be included in models to

  11. A model to calculate the burn of gadolinium in PWR

    International Nuclear Information System (INIS)

    Sannazzaro, L.R.

    1983-01-01

    A cell model to calculate the burnup of a PWR fuel element with gadolinium as a poison, projected by KWU, is presented. With the model proposed, the burn of the gadolinium isotopes is analyzed, as well as the effect of these isotopes in the fuel element behaviour. The results obtained with this cell model are compared with those obtained by a conventional cell model. (E.G.) [pt

  12. The protective effects of sildenafil in acute lung injury in a rat model of severe scald burn: A biochemical and histopathological study.

    Science.gov (United States)

    Gokakin, Ali Kagan; Deveci, Koksal; Kurt, Atilla; Karakus, Boran Cihat; Duger, Cevdet; Tuzcu, Mehmet; Topcu, Omer

    2013-09-01

    Severe burn induces biochemical mediators such as reactive oxygen species that leads to lipid peroxidation which may have a key role in formation of acute lung injury (ALI). Sildenafil is a selective and potent inhibitor of cyclic guanosine monophosphate specific phosphodiesterase-5. Sildenafil preserves alveolar growth, angiogenesis, reduces inflammation and airway reactivity. The purpose of the present study was to evaluate the effects of different dosages of sildenafil in ALI due to severe scald burn in rats. Twenty-four rats were subjected to 30% total body surface area severe scald injury and were randomly divided into three equal groups as follow: control, 10 and 20mg/kg sildenafil groups. Levels of malondialdehyde (MDA), activities of glutathione peroxidase (Gpx), catalase (Cat), total oxidative stress (TOS), and total antioxidative capacity (TAC) were measured in both tissues and serums. Oxidative stress index (OSI) was calculated. A semi-quantitative scoring system was used for the evaluation of histopatological findings. Sildenafil increased Gpx, Cat, TAC and decreased MDA, TOS and OSI. Sildenafil decreased inflammation scores in lungs. Our results reveal that sildenafil is protective against scald burn related ALI by decreasing oxidative stress and inflammation and the dosage of 10mg/kg could be apparently better than 20mg/kg. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  13. Effect of skin graft thickness on scar development in a porcine burn model.

    Science.gov (United States)

    DeBruler, Danielle M; Blackstone, Britani N; McFarland, Kevin L; Baumann, Molly E; Supp, Dorothy M; Bailey, J Kevin; Powell, Heather M

    2018-06-01

    Animal models provide a way to investigate scar therapies in a controlled environment. It is necessary to produce uniform, reproducible scars with high anatomic and biologic similarity to human scars to better evaluate the efficacy of treatment strategies and to develop new treatments. In this study, scar development and maturation were assessed in a porcine full-thickness burn model with immediate excision and split-thickness autograft coverage. Red Duroc pigs were treated with split-thickness autografts of varying thickness: 0.026in. ("thin") or 0.058in. ("thick"). Additionally, the thin skin grafts were meshed and expanded at 1:1.5 or 1:4 to evaluate the role of skin expansion in scar formation. Overall, the burn-excise-autograft model resulted in thick, raised scars. Treatment with thick split-thickness skin grafts resulted in less contraction and reduced scarring as well as improved biomechanics. Thin skin autograft expansion at a 1:4 ratio tended to result in scars that contracted more with increased scar height compared to the 1:1.5 expansion ratio. All treatment groups showed Matrix Metalloproteinase 2 (MMP2) and Transforming Growth Factor β1 (TGF-β1) expression that increased over time and peaked 4 weeks after grafting. Burns treated with thick split-thickness grafts showed decreased expression of pro-inflammatory genes 1 week after grafting, including insulin-like growth factor 1 (IGF-1) and TGF-β1, compared to wounds treated with thin split-thickness grafts. Overall, the burn-excise-autograft model using split-thickness autograft meshed and expanded to 1:1.5 or 1:4, resulted in thick, raised scars similar in appearance and structure to human hypertrophic scars. This model can be used in future studies to study burn treatment outcomes and new therapies. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  14. Challenges in the application of burn-up credit to the criticality safety of the THORP reprocessing plant

    International Nuclear Information System (INIS)

    Mayson, R.T.H.; Gunston, K.J.

    1999-01-01

    Since 1991 BNFL has made a significant investment in the development of the burn-up credit method and the application to its operations. It has recently demonstrated that using this method for the THORP dissolvers, it is possible to justify operating safety with reduced neutron poison concentrations and this has now been submitted to the regulators. The continued challenges the criticality safety community is facing are to show that we are not reducing safety levels because we are using burn-up credit. The burn-up credit method that has been developed can be summarized as follows. It consists of performing reactivity calculations for irradiated fuel using compositions generated by and inventory prediction code, generally in order to determine the limiting burn-up required for that fuel in a particular environment. In addition, it has always been envisaged that a confirmatory measurement of burn-up would be required to be made prior to certain operations such as the sharing of fuel into a dissolver. The burn-up credit method therefore relies upon three key components of inventory prediction, reactivity calculation code and the quantification and verification of burn-up. (J.P.N.)

  15. Primary emissions and chemical oxidation of volatile organic compounds emitted from laboratory biomass burning sources during the 2016 FIREX FireLab campaign: measurements from a H3O+ chemical ionization mass spectrometer

    Science.gov (United States)

    Coggon, M. M.; Warneke, C.; Koss, A.; Sekimoto, K.; Yuan, B.; Lim, C. Y.; Hagan, D. H.; Kroll, J. H.; Cappa, C. D.; Gilman, J.; Lerner, B. M.; Jimenez, J. L.; Yokelson, R. J.; Roberts, J. M.; De Gouw, J. A.

    2017-12-01

    Non-methane organic gases (NMOG) emitted by biomass burning constitute a large source of reactive carbon in the atmosphere. Once emitted, these compounds may undergo series of reactions with the OH radical and nitrogen oxides to form secondary organic aerosol (SOA), ozone, or other health-impacting products. The complex emission profile and strong variability of biomass burning NMOG play an important, yet understudied, role in the variability of air quality outcomes such as SOA and ozone. In this study, we summarize measurements of biomass burning volatile organic compounds (VOCs) conducted using a H3O+ chemical ionization mass spectrometer (H3O+-CIMS) during the 2016 FIREX laboratory campaign in Missoula, MT. Specifically, we will present data demonstrating the chemical evolution of biomass burning VOCs artificially aged in a field-deployable photooxidation chamber and an oxidation flow reactor. More than 50 OH-oxidation experiments were conducted with biomass types representing a range of North American fuels. Across many fuel types, VOCs with high SOA and ozone formation potential, such as aromatics and furans, were observed to quickly react with the OH radical while oxidized species were generated. We compare the calculated OH reactivity of the primary emissions to the calculated OH reactivity used in many photochemical models and highlight areas requiring additional research in order to improve model/measurement comparisons.

  16. Development of a Skin Burn Predictive Model adapted to Laser Irradiation

    Science.gov (United States)

    Sonneck-Museux, N.; Scheer, E.; Perez, L.; Agay, D.; Autrique, L.

    2016-12-01

    Laser technology is increasingly used, and it is crucial for both safety and medical reasons that the impact of laser irradiation on human skin can be accurately predicted. This study is mainly focused on laser-skin interactions and potential lesions (burns). A mathematical model dedicated to heat transfers in skin exposed to infrared laser radiations has been developed. The model is validated by studying heat transfers in human skin and simultaneously performing experimentations an animal model (pig). For all experimental tests, pig's skin surface temperature is recorded. Three laser wavelengths have been tested: 808 nm, 1940 nm and 10 600 nm. The first is a diode laser producing radiation absorbed deep within the skin. The second wavelength has a more superficial effect. For the third wavelength, skin is an opaque material. The validity of the developed models is verified by comparison with experimental results (in vivo tests) and the results of previous studies reported in the literature. The comparison shows that the models accurately predict the burn degree caused by laser radiation over a wide range of conditions. The results show that the important parameter for burn prediction is the extinction coefficient. For the 1940 nm wavelength especially, significant differences between modeling results and literature have been observed, mainly due to this coefficient's value. This new model can be used as a predictive tool in order to estimate the amount of injury induced by several types (couple power-time) of laser aggressions on the arm, the face and on the palm of the hand.

  17. Reactivity feedback models for SSC-K

    Energy Technology Data Exchange (ETDEWEB)

    Han, Do Hee; Kwon, Young Min; Kim, Kyung Du; Chang, Won Pyo [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-06-01

    Safety of KALIMER is assured by the inherent safety of the core and passive safety of the safety-related systems. For the safety analysis of a new reactor design such as KALIMER, analysis models, which are consistent with the design, have to be developed for a plant-wide transient and safety analysis code. Efforts for the development of reactivity feedback models for SSC-K, which is now being developed for the safety analysis of KALIMER, is described in this report. Models for Doppler, sodium density/void, fuel axial expansion, core radial expansion, and CRDL expansion have been developed. Test runs have been performed for the unprotected accident for the verification of the models. Use of KALIMER reactivity coefficients and future development of models for GEM and PSDRS would make it possible to analyze the response of KALIMER under TOP as well as LOF and LOHS accident conditions using SSC-K. (author). 5 refs., 64 figs., 2 tabs.

  18. Conceptual designing of a reduced moderation pressurized water reactor by use of MVP and MVP-BURN

    International Nuclear Information System (INIS)

    Kugo, T.

    2001-01-01

    A conceptual design of a seed-blanket assembly PWR core with a complicated geometry and a strong heterogeneity has been carried forward by use of the continuous-energy Monte Carlo method. Through parametric survey calculations by repeated use of MVP and a lattice burn-up calculation by MVP-BURN, a seed-blanket assembly configuration suitable for a concept of RMWR has been established, by evaluating precisely reactivity, a conversion ratio and a coolant void reactivity coefficient in a realistic computation time on a super computer. (orig.)

  19. Burn-up credit in criticality safety of PWR spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Rowayda F., E-mail: Rowayda_mahmoud@yahoo.com [Metallurgy Department, Nuclear Research Center, Atomic Energy Authority (Egypt); Shaat, Mohamed K. [Nuclear Engineering, Reactors Department, Nuclear Research Center, Atomic Energy Authority (Egypt); Nagy, M.E.; Agamy, S.A. [Professor of Nuclear Engineering, Nuclear and Radiation Department, Alexandria University (Egypt); Abdelrahman, Adel A. [Metallurgy Department, Nuclear Research Center, Atomic Energy Authority (Egypt)

    2014-12-15

    Highlights: • Designing spent fuel wet storage using WIMS-5D and MCNP-5 code. • Studying fresh and burned fuel with/out absorber like “B{sub 4}C and Ag–In–Cd” in racks. • Sub-criticality was confirmed for fresh and burned fuel under specific cases. • Studies for BU credit recommend increasing fuel burn-up to 60.0 GWD/MTU. • Those studies require new core structure materials, fuel composition and cladding. - Abstract: The criticality safety calculations were performed for a proposed design of a wet spent fuel storage pool. This pool will be used for the storage of spent fuel discharged from a typical pressurized water reactor (PWR). The mathematical model based on the international validated codes, WIMS-5 and MCNP-5 were used for calculating the effective multiplication factor, k{sub eff}, for the spent fuel stored in the pool. The data library for the multi-group neutron microscopic cross-sections was used for the cell calculations. The k{sub eff} was calculated for several changes in water density, water level, assembly pitch and burn-up with different initial fuel enrichment and new types and amounts of fixed absorbers. Also, k{sub eff} was calculated for the conservative fresh fuel case. The results of the calculations confirmed that the effective multiplication factor for the spent fuel storage is sub-critical for all normal and abnormal states. The future strategy for the burn-up credit recommends increasing the fuel burn-up to a value >60.0 GWD/MTU, which requires new fuel composition and new fuel cladding material with the assessment of the effects of negative reactivity build up.

  20. Climate versus carbon dioxide controls on biomass burning: a model analysis of the glacial-interglacial contrast

    Science.gov (United States)

    Calvo, M. Martin; Prentice, I. C.; Harrison, S. P.

    2014-11-01

    Climate controls fire regimes through its influence on the amount and types of fuel present and their dryness. CO2 concentration constrains primary production by limiting photosynthetic activity in plants. However, although fuel accumulation depends on biomass production, and hence on CO2 concentration, the quantitative relationship between atmospheric CO2 concentration and biomass burning is not well understood. Here a fire-enabled dynamic global vegetation model (the Land surface Processes and eXchanges model, LPX) is used to attribute glacial-interglacial changes in biomass burning to an increase in CO2, which would be expected to increase primary production and therefore fuel loads even in the absence of climate change, vs. climate change effects. Four general circulation models provided last glacial maximum (LGM) climate anomalies - that is, differences from the pre-industrial (PI) control climate - from the Palaeoclimate Modelling Intercomparison Project Phase~2, allowing the construction of four scenarios for LGM climate. Modelled carbon fluxes from biomass burning were corrected for the model's observed prediction biases in contemporary regional average values for biomes. With LGM climate and low CO2 (185 ppm) effects included, the modelled global flux at the LGM was in the range of 1.0-1.4 Pg C year-1, about a third less than that modelled for PI time. LGM climate with pre-industrial CO2 (280 ppm) yielded unrealistic results, with global biomass burning fluxes similar to or even greater than in the pre-industrial climate. It is inferred that a substantial part of the increase in biomass burning after the LGM must be attributed to the effect of increasing CO2 concentration on primary production and fuel load. Today, by analogy, both rising CO2 and global warming must be considered as risk factors for increasing biomass burning. Both effects need to be included in models to project future fire risks.

  1. Benchmark on traveling wave fast reactor with negative reactivity feedback obtained with MCNPX code

    International Nuclear Information System (INIS)

    Gann, V.V.; Gann, A.V.

    2012-01-01

    This paper presents results of computer simulations of traveling wave fast reactor with negative reactivity feedback. The results were obtained using MCNPX code combined with CINDER90 subroutine for depletion calculations. We considered 1-D model of TWR containing 4 m long core made of mixture of 66 at. % 238 U and 34 at. % 10 B. Ignitor made of 235 U was located in the center of the core. Boron was included as imitator of structural in-core materials and coolant. Negative reactivity feedback was adjusted to reactor power of 500 MW. In this case two burning waves originated from the igniter and travel to the ends of the core during the following 40 years; coefficient of utilization of 238 U reached 80 %. Distribution of specific power in traveling wave, isotope concentration of fission products and actinides, neutron flux, fast neutron spectrum, specific activity were calculated. Data of the computer simulation is in qualitative agreement with theoretical results obtained in slow burning wave approximation

  2. Reliability enhancement through optimal burn-in

    Science.gov (United States)

    Kuo, W.

    1984-06-01

    A numerical reliability and cost model is defined for production line burn-in tests of electronic components. The necessity of burn-in is governed by upper and lower bounds: burn-in is mandatory for operation-critical or nonreparable component; no burn-in is needed when failure effects are insignificant or easily repairable. The model considers electronic systems in terms of a series of components connected by a single black box. The infant mortality rate is described with a Weibull distribution. Performance reaches a steady state after burn-in, and the cost of burn-in is a linear function for each component. A minimum cost is calculated among the costs and total time of burn-in, shop repair, and field repair, with attention given to possible losses in future sales from inadequate burn-in testing.

  3. The development of an erosive burning model for solid rocket motors using direct numerical simulation

    Science.gov (United States)

    McDonald, Brian A.

    A method for developing an erosive burning model for use in solid propellant design-and-analysis interior ballistics codes is described and evaluated. Using Direct Numerical Simulation, the primary mechanisms controlling erosive burning (turbulent heat transfer, and finite rate reactions) have been studied independently through the development of models using finite rate chemistry, and infinite rate chemistry. Both approaches are calibrated to strand burn rate data by modeling the propellant burning in an environment with no cross-flow, and adjusting thermophysical properties until the predicted regression rate matches test data. Subsequent runs are conducted where the cross-flow is increased from M = 0.0 up to M = 0.8. The resulting relationship of burn rate increase versus Mach Number is used in an interior ballistics analysis to compute the chamber pressure of an existing solid rocket motor. The resulting predictions are compared to static test data. Both the infinite rate model and the finite rate model show good agreement when compared to test data. The propellant considered is an AP/HTPB with an average AP particle size of 37 microns. The finite rate model shows that as the cross-flow increases, near wall vorticity increases due to the lifting of the boundary caused by the side injection of gases from the burning propellant surface. The point of maximum vorticity corresponds to the outer edge of the APd-binder flame. As the cross-flow increases, the APd-binder flame thickness becomes thinner; however, the point of highest reaction rate moves only slightly closer to the propellant surface. As such, the net increase of heat transfer to the propellant surface due to finite rate chemistry affects is small. This leads to the conclusion that augmentation of thermal transport properties and the resulting heat transfer increase due to turbulence dominates over combustion chemistry in the erosive burning problem. This conclusion is advantageous in the development of

  4. Modeling and simulation of cement clinkering process with compact internal burning of carbon

    International Nuclear Information System (INIS)

    Chen, Hanmin

    2014-01-01

    This article describes a mathematical model of the thermodynamic process for Cement Clinkering Process with Compact Internal Burning of Carbon. Using simplifying assumptions, results of calculations are presented based on relevant computerized numerical simulation for a set of typical process parameters obtained from the existing cement shaft kiln operation and the electrical furnace test on the mechanical and chemical performance of the compact coal containing cement raw meal pellets. It is revealed that, the carbon internal burning mode, combining fuel combustion and gas solid heat transfer together as well as preheating, calcining, clinkering and cooling of the raw pellets together, is the origin of the process superiority in respect of equipment simplicity, process enhancement, high energy efficiency and low pollution. Important process details are determined, e.g. the features and lengths of the process zones, the material residence time and the burning mode of carbon in each zone, the clinkering reaction course and the maximum burning temperature. It is concluded that numerical simulations could be useful tool for understanding the new process ideas, as well as conducting the technical development and optimizing the process design. - Highlights: • Twin subsystem model is used to simulate a new type of cement shaft kiln process. • Grain-particle structural model is used to describe the pellet solid gas reactions. • The process superiority resulted from the carbon internal burning mode is revealed. • A series of important process details are determined. • An unprecedented comprehensive picture for cement clinkering process is depicted

  5. Minor actinide burning in dedicated lead-bismuth cooled fast reactors

    International Nuclear Information System (INIS)

    Hejzlar, P.; Driscoll, M.J.; Kazimi, M.S.; Todreas, N.E.

    2001-01-01

    The destruction of minor actinides (MA) in dedicated burners is of contemporary interest in Europe and Japan because it requires the deployment of smaller number of special transmutation facilities. A major fraction of Pu from spent LWR fuel can be then burned in PWRs (or fast reactors) using dedicated fertile-free fuel assemblies. However, the design of MA burning fast spectrum cores poses significant challenges because of deterioration of key safety parameters, in particular of the coolant void coefficient. This study proposes the concept of an lead-bismuth eutectic (LBE)-cooled dedicated MA burner having metallic fuel (MA-Pu-Zr) and streaming assemblies to attain acceptable coolant void worth performance. It is shown that a large 1800 MWth fertile-free core containing 37 wt% TRU with very high fraction of MA(59 wt%) from LWR spent fuel can be burned in a first cycle for 700 EFPDs with a very small reactivity swing: less than β eff . Moreover, the reactivity void worth is negative for a fully voided core when all surrounding coolant is kept at reference density. However, the core reactivity increases as coolant density falls from the reference value of 10.25 to 6 g/cm 3 . Because its coolant density coefficient value is less than that of a sodium cooled IFR, the concept provides good potential for the achievement of self-regulation characteristics in unprotected events, provided that small negative fuel temperature feedback can be maintained. (authors)

  6. Global Burned Area and Biomass Burning Emissions from Small Fires

    Science.gov (United States)

    Randerson, J. T.; Chen, Y.; vanderWerf, G. R.; Rogers, B. M.; Morton, D. C.

    2012-01-01

    In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often generate thermal anomalies that can be detected by satellites, their contributions to burned area and carbon fluxes have not been systematically quantified across different regions and continents. Here we developed a preliminary method for combining 1-km thermal anomalies (active fires) and 500 m burned area observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the influence of these fires. In our approach, we calculated the number of active fires inside and outside of 500 m burn scars derived from reflectance data. We estimated small fire burned area by computing the difference normalized burn ratio (dNBR) for these two sets of active fires and then combining these observations with other information. In a final step, we used the Global Fire Emissions Database version 3 (GFED3) biogeochemical model to estimate the impact of these fires on biomass burning emissions. We found that the spatial distribution of active fires and 500 m burned areas were in close agreement in ecosystems that experience large fires, including savannas across southern Africa and Australia and boreal forests in North America and Eurasia. In other areas, however, we observed many active fires outside of burned area perimeters. Fire radiative power was lower for this class of active fires. Small fires substantially increased burned area in several continental-scale regions, including Equatorial Asia (157%), Central America (143%), and Southeast Asia (90%) during 2001-2010. Globally, accounting for small fires increased total burned area by approximately by 35%, from 345 Mha/yr to 464 Mha/yr. A formal quantification of uncertainties was not possible, but sensitivity

  7. Small high temperature gas-cooled reactors with innovative nuclear burning

    International Nuclear Information System (INIS)

    Liem, Peng Hong; Ismail; Sekimoto, Hiroshi

    2008-01-01

    Since the innovative concept of CANDLE (Constant Axial shape of Neutron Flux, nuclide densities and power shape During Life of Energy producing reactor) burning strategy was proposed, intensive research works have been continuously conducted to evaluate the feasibility and the performance of the burning strategy on both fast and thermal reactors. We learned that one potential application of the burning strategy for thermal reactors is for the High Temperature Gas-Cooled Reactors (HTGR) with prismatic/block-type fuel elements. Several characteristics of CANDLE burning strategy such as constant reactor characteristics during burn-up, no need for burn-up reactivity control mechanism, proportionality of core height with core lifetime, sub-criticality of fresh fuel elements, etc. enable us to design small sized HTGR with a high degree of safety easiness of operation and maintenance, and long core lifetime which are required for introducing the reactors into remote areas or developing countries with limited infrastructures and resources. In the present work, we report our evaluation results on small sized block-type HTGR designs with CANDLE burning strategy and compared with other existing small HTGR designs including the ones with pebble fuel elements, under both uranium and thorium fuel cycles. (author)

  8. Towards more efficient burn care: Identifying factors associated with good quality of life post-burn.

    Science.gov (United States)

    Finlay, V; Phillips, M; Allison, G T; Wood, F M; Ching, D; Wicaksono, D; Plowman, S; Hendrie, D; Edgar, D W

    2015-11-01

    As minor burn patients constitute the vast majority of a developed nation case-mix, streamlining care for this group can promote efficiency from a service-wide perspective. This study tested the hypothesis that a predictive nomogram model that estimates likelihood of good long-term quality of life (QoL) post-burn is a valid way to optimise patient selection and risk management when applying a streamlined model of care. A sample of 224 burn patients managed by the Burn Service of Western Australia who provided both short and long-term outcomes was used to estimate the probability of achieving a good QoL defined as 150 out of a possible 160 points on the Burn Specific Health Scale-Brief (BSHS-B) at least six months from injury. A multivariate logistic regression analysis produced a predictive model provisioned as a nomogram for clinical application. A second, independent cohort of consecutive patients (n=106) was used to validate the predictive merit of the nomogram. Male gender (p=0.02), conservative management (p=0.03), upper limb burn (p=0.04) and high BSHS-B score within one month of burn (pburns were excluded due to loss to follow up. For clinicians managing comparable burn populations, the BSWA burns nomogram is an effective tool to assist the selection of patients to a streamlined care pathway with the aim of improving efficiency of service delivery. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  9. What determines area burned in large landscapes? Insights from a decade of comparative landscape-fire modelling

    Science.gov (United States)

    Geoffrey J. Cary; Robert E. Keane; Mike D. Flannigan; Ian D. Davies; Russ A. Parsons

    2015-01-01

    Understanding what determines area burned in large landscapes is critical for informing wildland fire management in fire-prone environments and for representing fire activity in Dynamic Global Vegetation Models. For the past ten years, a group of landscape-fire modellers have been exploring the relative influence of key determinants of area burned in temperate and...

  10. Novel burn device for rapid, reproducible burn wound generation.

    Science.gov (United States)

    Kim, J Y; Dunham, D M; Supp, D M; Sen, C K; Powell, H M

    2016-03-01

    Scarring following full thickness burns leads to significant reductions in range of motion and quality of life for burn patients. To effectively study scar development and the efficacy of anti-scarring treatments in a large animal model (female red Duroc pigs), reproducible, uniform, full-thickness, burn wounds are needed to reduce variability in observed results that occur with burn depth. Prior studies have proposed that initial temperature of the burner, contact time with skin, thermal capacity of burner material, and the amount of pressure applied to the skin need to be strictly controlled to ensure reproducibility. The purpose of this study was to develop a new burner that enables temperature and pressure to be digitally controlled and monitored in real-time throughout burn wound creation and compare it to a standard burn device. A custom burn device was manufactured with an electrically heated burn stylus and a temperature control feedback loop via an electronic microstat. Pressure monitoring was controlled by incorporation of a digital scale into the device, which measured downward force. The standard device was comprised of a heat resistant handle with a long rod connected to the burn stylus, which was heated using a hot plate. To quantify skin surface temperature and internal stylus temperature as a function of contact time, the burners were heated to the target temperature (200±5°C) and pressed into the skin for 40s to create the thermal injuries. Time to reach target temperature and elapsed time between burns were recorded. In addition, each unit was evaluated for reproducibility within and across three independent users by generating burn wounds at contact times spanning from 5 to 40s at a constant pressure and at pressures of 1 or 3lbs with a constant contact time of 40s. Biopsies were collected for histological analysis and burn depth quantification using digital image analysis (ImageJ). The custom burn device maintained both its internal

  11. Atmospheric redistribution of reactive nitrogen and phosphorus by wildfires and implications for global carbon cycling

    Science.gov (United States)

    Randerson, J. T.; Xu, L.; Wiggins, E. B.; Chen, Y.; Riley, W. J.; Mekonnen, Z. A.; Pellegrini, A.; Mahowald, N. M.

    2017-12-01

    Fires are an important process regulating the redistribution of nutrients within terrestrial ecosystems. Frequently burning ecosystems such as savannas are a net source of N and P to the atmosphere each year, with atmospheric transport and dry and wet deposition increasing nutrient availability in downwind ecosystems and over the open ocean. Transport of N and P aerosols from savanna fires within the Hadley circulation contributes to nutrient deposition over tropical forests, yielding an important cross-biome nutrient transfer. Pyrodenitrification of reactive N increases with fire temperature and modified combustion efficiency, generating a global net biospheric loss of approximately 14 Tg N per year. Here we analyze atmospheric N and P redistribution using the Global Fire Emissions Database version 4s and the Accelerated Climate Modeling for Energy earth system model. We synthesize literature estimates of N and P concentrations in fire-emitted aerosols and ecosystem mass balance measurements to help constrain model estimates of these biosphere-atmosphere fluxes. In our analysis, we estimate the fraction of terrestrial net primary production (NPP) that is sustained by fire-emitted P and reactive N from upwind ecosystems. We then evaluate how recent global declines in burned area in savanna and grassland ecosystems may be changing nutrient availability in downwind ecosystems.

  12. Challenges of assessing fire and burn severity using field measures, remote sensing and modelling

    Science.gov (United States)

    Penelope Morgan; Robert E. Keane; Gregory K. Dillon; Theresa B. Jain; Andrew T. Hudak; Eva C. Karau; Pamela G. Sikkink; Zachery A. Holden; Eva K. Strand

    2014-01-01

    Comprehensive assessment of ecological change after fires have burned forests and rangelands is important if we are to understand, predict and measure fire effects. We highlight the challenges in effective assessment of fire and burn severity in the field and using both remote sensing and simulation models. We draw on diverse recent research for guidance on assessing...

  13. The relevance of axial burn-up profiles for the criticality safety analysis of spent nuclear fuel in a final repository

    International Nuclear Information System (INIS)

    Kilger, R.; Gmal, B.; Moser, E.F.

    2008-01-01

    Due to inhomogeneous neutron flux and moderator density distributions in the reactor core, the burn-up of a nuclear fuel assembly is not homogeneous but shows an axial distribution, typically with lower partial burn-up and thus higher remaining reactivity at the fuel ends in particular at the assembly top end. Beyond a burn-up of about 15 to 20 GWd/tHM, the multiplication factor K of the whole assembly is dominated by this lower-burnt end regions, and is usually higher than for assuming a homogeneous uniform distribution of the averaged burn-up. This behaviour commonly referred to as positive ''end effect'' is well known in burn-up credit considerations for transportation and storage casks and is being investigated also in the context of criticality analyses for final disposition of spent nuclear fuel. Sign and value of the end effect depend on several parameters. Based on a generic model one may not conclude that criticality in a final repository is a likely or expected event, but nevertheless it draws the attention to the fact that criticality is not excluded per se but has to be considered in the analysis and probably has to be encountered by certain appropriate measures, maybe e.g. by limitation of the amount of fissile material inside one single cask, or a rigorous prove for prevention of water ingress. The authors also conclude that the higher partial reactivity of the fuel ends has to be accounted for carefully in more realistic analyses of post-closure scenarios with respect to criticality safety.

  14. Computational modeling and sensitivity in uniform DT burn

    International Nuclear Information System (INIS)

    Hansen, Jon; Hryniw, Natalia; Kesler, Leigh A.; Li, Frank; Vold, Erik

    2010-01-01

    Understanding deuterium-tritium (DT) fusion is essential to achieving ignition in inertial confinement fusion. A burning DT plasma in a three temperature (3T) approximation and uniform in space is modeled as a system of five non-linear coupled ODEs. Special focus is given to the effects of Compton coupling, Planck opacity, and electron-ion coupling terms. Semi-implicit differencing is used to solve the system of equations. Time step size is varied to examine the stability and convergence of each solution. Data from NDI, SESAME, and TOPS databases is extracted to create analytic fits for the reaction rate parameter, the Planck opacity, and the coupling frequencies of the plasma temperatures. The impact of different high order fits to NDI date (the reaction rate parameter), and using TOPS versus SESAME opacity data is explored, and the sensitivity to several physics parameters in the coupling terms are also examined. The base model recovers the accepted 3T results for the temperature and burn histories. The Compton coupling is found to have a significant impact on the results. Varying a coefficient of this term shows that the model results can give reasonably good agreement with the peak temperatures reported in multi-group results as well as the accepted 3T results. The base model assumes a molar density of 1 mol/cm 3 , as well as a 5 keV intial temperature for all three temperatures. Different intial conditions are explored as well. Intial temperatures are set to 1 and 3 keV, the ratio of D to T is varied (2 and 3 as opposed to 1 in the base model), and densities are set to 10 mol/cm 3 and 100 mol/cm 3 . Again varying the Compton coefficient, the ion temperature results in the higher density case are in reasonable agreement with a recently published kinetic model.

  15. Computational modeling and sensitivity in uniform DT burn

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Jon [Los Alamos National Laboratory; Hryniw, Natalia [Los Alamos National Laboratory; Kesler, Leigh A [Los Alamos National Laboratory; Li, Frank [Los Alamos National Laboratory; Vold, Erik [Los Alamos National Laboratory

    2010-01-01

    Understanding deuterium-tritium (DT) fusion is essential to achieving ignition in inertial confinement fusion. A burning DT plasma in a three temperature (3T) approximation and uniform in space is modeled as a system of five non-linear coupled ODEs. Special focus is given to the effects of Compton coupling, Planck opacity, and electron-ion coupling terms. Semi-implicit differencing is used to solve the system of equations. Time step size is varied to examine the stability and convergence of each solution. Data from NDI, SESAME, and TOPS databases is extracted to create analytic fits for the reaction rate parameter, the Planck opacity, and the coupling frequencies of the plasma temperatures. The impact of different high order fits to NDI date (the reaction rate parameter), and using TOPS versus SESAME opacity data is explored, and the sensitivity to several physics parameters in the coupling terms are also examined. The base model recovers the accepted 3T results for the temperature and burn histories. The Compton coupling is found to have a significant impact on the results. Varying a coefficient of this term shows that the model results can give reasonably good agreement with the peak temperatures reported in multi-group results as well as the accepted 3T results. The base model assumes a molar density of 1 mol/cm{sup 3}, as well as a 5 keV intial temperature for all three temperatures. Different intial conditions are explored as well. Intial temperatures are set to 1 and 3 keV, the ratio of D to T is varied (2 and 3 as opposed to 1 in the base model), and densities are set to 10 mol/cm{sup 3} and 100 mol/cm{sup 3}. Again varying the Compton coefficient, the ion temperature results in the higher density case are in reasonable agreement with a recently published kinetic model.

  16. BEHAVE: fire behavior prediction and fuel modeling system-BURN Subsystem, part 1

    Science.gov (United States)

    Patricia L. Andrews

    1986-01-01

    Describes BURN Subsystem, Part 1, the operational fire behavior prediction subsystem of the BEHAVE fire behavior prediction and fuel modeling system. The manual covers operation of the computer program, assumptions of the mathematical models used in the calculations, and application of the predictions.

  17. Utilization of laser Doppler flowmetry and tissue spectrophotometry for burn depth assessment using a miniature swine model.

    Science.gov (United States)

    Lotter, Oliver; Held, Manuel; Schiefer, Jennifer; Werner, Ole; Medved, Fabian; Schaller, Hans-Eberhard; Rahmanian-Schwarz, Afshin; Jaminet, Patrick; Rothenberger, Jens

    2015-01-01

    Currently, the diagnosis of burn depth is primarily based on a visual assessment and can be dependent on the surgeons' experience. The goal of this study was to determine the ability of laser Doppler flowmeter combined with a tissue spectrophotometer to discriminate burn depth in a miniature swine burn model. Burn injuries of varying depth, including superficial-partial, deep-partial, and full thickness, were created in seven Göttingen minipigs using an aluminium bar (100 °C), which was applied to the abdominal skin for periods of 1, 3, 6, 12, 30, and 60 seconds with gravity alone. The depth of injury was evaluated histologically using hematoxylin and eosin staining. All burns were assessed 3 hours after injury using a device that combines a laser light and a white light to determine blood flow, hemoglobin oxygenation, and relative amount of hemoglobin. The blood flow (41 vs. 124 arbitrary units [AU]) and relative amount of hemoglobin (32 vs. 52 AU) were significantly lower in full thickness compared with superficial-partial thickness burns. However, no significant differences in hemoglobin oxygenation were observed between these depths of burns (61 vs. 60%). These results show the ability of laser Doppler flowmeter and tissue spectrophotometer in combination to discriminate between various depths of injury in the minipig model, suggesting that this device may offer a valuable tool for burn depth assessment influencing burn management. © 2014 by the Wound Healing Society.

  18. Dynamics of hepatic gene expression and serum cytokine profiles in single and double-hit burn and sepsis animal models

    Directory of Open Access Journals (Sweden)

    Rohit Rao

    2015-06-01

    Full Text Available We simulate the pathophysiology of severe burn trauma and burn-induced sepsis, using rat models of experimental burn injury and cecal ligation and puncture (CLP either individually (singe-hit model or in combination (double-hit model. The experimental burn injury simulates a systemic but sterile pro-inflammatory response, while the CLP simulates the effect of polymicrobial sepsis. Given the liver׳s central role in mediating the host immune response and onset of hypermetabolism after burn injury, elucidating the alterations in hepatic gene expression in response to injury can lead to a better understanding of the regulation of the inflammatory response, whereas circulating cytokine protein expression, reflects key systemic inflammatory mediators. In this article, we present both the hepatic gene expression and circulating cytokine/chemokine protein expression data for the above-mentioned experimental model to gain insights into the temporal dynamics of the inflammatory and hypermetabolic response following burn and septic injury. This data article supports results discussed in research articles (Yang et al., 2012 [1,4]; Mattick et al. 2012, 2013 [2,3]; Nguyen et al., 2014 [5]; Orman et al., 2011, 2012 [6–8].

  19. Reactive magnetron sputtering model at making Ti-TiOx coatings

    International Nuclear Information System (INIS)

    Luchkin, A G; Kashapov, N F

    2014-01-01

    Mathematical model of reactive magnetron sputtering for plant VU 700-D is described. Approximating curves for experimental current-voltage characteristic for two gas input schemas are shown. Choice of gas input schema influences on model parameters (mainly on pumping speed). Reactive magnetron sputtering model allows develop technology of Ti - TiO x coatings deposition without changing atmosphere and pressure in vacuum chamber

  20. Burning mouth disorder

    Directory of Open Access Journals (Sweden)

    Anand Bala

    2012-01-01

    Full Text Available Burning mouth disorder (BMD is a burning or stinging sensation affecting the oral mucosa, lips and/or tongue, in the absence of clinically visible mucosal lesions. There is a strong female predilection, with the age of onset being approximately 50 years. Affected patients often present with multiple oral complaints, including burning, dryness and taste alterations. The causes of BMD are multifactorial and remain poorly understood. Recently, there has been a resurgence of interest in this disorder with the discovery that the pain of burning mouth syndrome (BMS may be neuropathic in origin and originate both centrally and peripherally. The most common sites of burning are the anterior tongue, anterior hard palate and lower lip, but the distribution of oral sites affected does not appear to affect the natural history of the disorder or the response to treatment BMS may persist for many years. This article provides updated information on BMS and presents a new model, based on taste dysfunction, for its pathogenesis.

  1. Astronaut observations of global biomass burning

    International Nuclear Information System (INIS)

    Wood, C.A.; Nelson, R.

    1991-01-01

    One of the most fundamental inputs for understanding and modeling possible effects of biomass burning is knowledge of the size of the area burned. Because the burns are often very large and occur on all continents (except Antarctica), observations from space are essential. Information is presented in this chapter on another method for monitoring biomass burning, including immediate and long-term effects. Examples of astronaut photography of burning during one year give a perspective of the widespread occurrence of burning and the variety of biological materials that are consumed. The growth of burning in the Amazon region is presented over 15 years using smoke as a proxy for actual burning. Possible climate effects of smoke palls are also discussed

  2. Improving burn care and preventing burns by establishing a burn database in Ukraine.

    Science.gov (United States)

    Fuzaylov, Gennadiy; Murthy, Sushila; Dunaev, Alexander; Savchyn, Vasyl; Knittel, Justin; Zabolotina, Olga; Dylewski, Maggie L; Driscoll, Daniel N

    2014-08-01

    Burns are a challenge for trauma care and a contribution to the surgical burden. The former Soviet republic of Ukraine has a foundation for burn care; however data concerning burns in Ukraine has historically been scant. The objective of this paper was to compare a new burn database to identify problems and implement improvements in burn care and prevention in this country. Retrospective analyses of demographic and clinical data of burn patients including Tukey's post hoc test, analysis of variance, and chi square analyses, and Fisher's exact test were used. Data were compared to the American Burn Association (ABA) burn repository. This study included 1752 thermally injured patients treated in 20 hospitals including Specialized Burn Unit in Municipal Hospital #8 Lviv, Lviv province in Ukraine. Scald burns were the primary etiology of burns injuries (70%) and burns were more common among children less than five years of age (34%). Length of stay, mechanical ventilation use, infection rates, and morbidity increased with greater burn size. Mortality was significantly related to burn size, inhalation injury, age, and length of stay. Wound infections were associated with burn size and older age. Compared to ABA data, Ukrainian patients had double the length of stay and a higher rate of wound infections (16% vs. 2.4%). We created one of the first burn databases from a region of the former Soviet Union in an effort to bring attention to burn injury and improve burn care. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  3. Modelling atmospheric OH-reactivity in a boreal forest ecosystem

    DEFF Research Database (Denmark)

    Mogensen, D.; Smolander, S.; Sogachev, Andrey

    2011-01-01

    We have modelled the total atmospheric OH-reactivity in a boreal forest and investigated the individual contributions from gas phase inorganic species, isoprene, monoterpenes, and methane along with other important VOCs. Daily and seasonal variation in OH-reactivity for the year 2008 was examined...

  4. The Importance of Protons in Reactive Transport Modeling

    Science.gov (United States)

    McNeece, C. J.; Hesse, M. A.

    2014-12-01

    The importance of pH in aqueous chemistry is evident; yet, its role in reactive transport is complex. Consider a column flow experiment through silica glass beads. Take the column to be saturated and flowing with solution of a distinct pH. An instantaneous change in the influent solution pH can yield a breakthrough curve with both a rarefaction and shock component (composite wave). This behavior is unique among aqueous ions in transport and is more complex than intuition would tell. Analysis of the hyperbolic limit of this physical system can explain these first order transport phenomenon. This analysis shows that transport behavior is heavily dependent on the shape of the adsorption isotherm. Hence it is clear that accurate surface chemistry models are important in reactive transport. The proton adsorption isotherm has nonconstant concavity due to the proton's ability to partition into hydroxide. An eigenvalue analysis shows that an inflection point in the adsorption isotherm allows the development of composite waves. We use electrostatic surface complexation models to calculate realistic proton adsorption isotherms. Surface characteristics such as specific surface area, and surface site density were determined experimentally. We validate the model by comparison against silica glass bead flow through experiments. When coupled to surface complexation models, the transport equation captures the timing and behavior of breakthrough curves markedly better than with commonly used Langmuir assumptions. Furthermore, we use the adsorption isotherm to predict, a priori, the transport behavior of protons across pH composition space. Expansion of the model to multicomponent systems shows that proton adsorption can force composite waves to develop in the breakthrough curves of ions that would not otherwise exhibit such behavior. Given the abundance of reactive surfaces in nature and the nonlinearity of chemical systems, we conclude that building a greater understanding of

  5. Reactive Power Pricing Model Considering the Randomness of Wind Power Output

    Science.gov (United States)

    Dai, Zhong; Wu, Zhou

    2018-01-01

    With the increase of wind power capacity integrated into grid, the influence of the randomness of wind power output on the reactive power distribution of grid is gradually highlighted. Meanwhile, the power market reform puts forward higher requirements for reasonable pricing of reactive power service. Based on it, the article combined the optimal power flow model considering wind power randomness with integrated cost allocation method to price reactive power. Meanwhile, considering the advantages and disadvantages of the present cost allocation method and marginal cost pricing, an integrated cost allocation method based on optimal power flow tracing is proposed. The model realized the optimal power flow distribution of reactive power with the minimal integrated cost and wind power integration, under the premise of guaranteeing the balance of reactive power pricing. Finally, through the analysis of multi-scenario calculation examples and the stochastic simulation of wind power outputs, the article compared the results of the model pricing and the marginal cost pricing, which proved that the model is accurate and effective.

  6. A model for global biomass burning in preindustrial time: LPJ-LMfire (v1.0

    Directory of Open Access Journals (Sweden)

    M. Pfeiffer

    2013-05-01

    Full Text Available Fire is the primary disturbance factor in many terrestrial ecosystems. Wildfire alters vegetation structure and composition, affects carbon storage and biogeochemical cycling, and results in the release of climatically relevant trace gases including CO2, CO, CH4, NOx, and aerosols. One way of assessing the impacts of global wildfire on centennial to multi-millennial timescales is to use process-based fire models linked to dynamic global vegetation models (DGVMs. Here we present an update to the LPJ-DGVM and a new fire module based on SPITFIRE that includes several improvements to the way in which fire occurrence, behaviour, and the effects of fire on vegetation are simulated. The new LPJ-LMfire model includes explicit calculation of natural ignitions, the representation of multi-day burning and coalescence of fires, and the calculation of rates of spread in different vegetation types. We describe a new representation of anthropogenic biomass burning under preindustrial conditions that distinguishes the different relationships between humans and fire among hunter-gatherers, pastoralists, and farmers. We evaluate our model simulations against remote-sensing-based estimates of burned area at regional and global scale. While wildfire in much of the modern world is largely influenced by anthropogenic suppression and ignitions, in those parts of the world where natural fire is still the dominant process (e.g. in remote areas of the boreal forest and subarctic, our results demonstrate a significant improvement in simulated burned area over the original SPITFIRE. The new fire model we present here is particularly suited for the investigation of climate–human–fire relationships on multi-millennial timescales prior to the Industrial Revolution.

  7. Multiagent-Based Reactive Power Sharing and Control Model for Islanded Microgrids

    DEFF Research Database (Denmark)

    Chen, Feixiong; Chen, Minyou; Li, Qiang

    2016-01-01

    of the control model, in which the uncertainty of intermittent DGs, variations in load demands, as well as impacts of time delays are considered. The simulation results demonstrate the eectiveness of the control model in proportional reactive power sharing, and the plug and play capability of the control model......In islanded microgrids (MGs), the reactive power cannot be shared proportionally among distributed generators (DGs) with conventional droop control, due to the mismatch in feeder impedances. For the purpose of proportional reactive power sharing, a multiagent system (MAS) based distributed control...

  8. Burn-center quality improvement: are burn outcomes dependent on admitting facilities and is there a volume-outcome "sweet-spot"?

    Science.gov (United States)

    Hranjec, Tjasa; Turrentine, Florence E; Stukenborg, George; Young, Jeffrey S; Sawyer, Robert G; Calland, James F

    2012-05-01

    Risk factors of mortality in burn patients such as inhalation injury, patient age, and percent of total body surface area (%TBSA) burned have been identified in previous publications. However, little is known about the variability of mortality outcomes between burn centers and whether the admitting facilities or facility volumes can be recognized as predictors of mortality. De-identified data from 87,665 acute burn observations obtained from the National Burn Repository between 2003 and 2007 were used to estimate a multivariable logistic regression model that could predict patient mortality with reference to the admitting burn facility/facility volume, adjusted for differences in age, inhalation injury, %TBSA burned, and an additional factor, percent full thickness burn (%FTB). As previously reported, all three covariates (%TBSA burned, inhalation injury, and age) were found to be highly statistically significant risk factors of mortality in burn patients (P value improve the multivariable model. The treatment/admitting facility was found to be an independent mortality predictor, with certain hospitals having increased odds of death and others showing a protective effect (decreased odds ratio). Hospitals with high burn volumes had the highest risk of mortality. Mortality outcomes of patients with similar risk factors (%TBSA burned, inhalation injury, age, and %FTB) are significantly affected by the treating facility and their admission volumes.

  9. Antimicrobial photodynamic therapy in a mouse model of Acinetobacter baumannii burn infection

    Science.gov (United States)

    Dai, Tianhong; Tegos, George P.; Lu, Zongshun; Zhiyentayev, Timur; Huang, Liyi; Franklin, Michael J.; Baer, David G.; Hamblin, Michael R.

    2009-06-01

    Multi-drug resistant Acinetobacter baumanii infections represent a growing problem, especially in traumatic wounds and burns suffered by military personnel injured in Middle Eastern conflicts. Effective treatment using traditional antibiotics can be extremely difficult and new antimicrobial approaches are being investigated. One of these antimicrobial alternatives could be the combination of non-toxic photosensitizers (PS) and visible light known as photodynamic therapy (PDT). We report on the establishment of a new mouse model of full thickness thermal burns infected with a bioluminescent derivative of a clinical Iraqi isolate of A. baumannii and its PDT treatment by topical application of a PS produced by covalent conjugation chlorin(e6) to polyethylenimine followed by illumination of the burn surface with red light. Application of 108 A. baumannii cells to the surface of 10-second burns made on the dorsal surface of shaved female BALB/c mice led to chronic infections that lasted on average 22 days characterized by a remarkably stable bacterial bioluminescence. PDT carried out on day 0 soon after applying bacteria gave over three logs of loss of bacterial luminescence in a light exposure dependent manner, while PDT carried out on day 1 and day 2 gave approximately a 1.7-log reduction. Application of PS dissolved in 10% or 20% DMSO without light gave only modest reduction in bacterial luminescence from mouse burns. Some bacterial regrowth in the treated burn was observed but was generally modest. It was also found that PDT did not lead to inhibition of wound healing. The data suggest that PDT may be an effective new treatment for multi-drug resistant localized A. baumannii infections.

  10. Model development for spatial variation of PM2.5 emissions from residential wood burning

    International Nuclear Information System (INIS)

    Yong Q, Tian; Peng Gong; Qian Yu; Radke, John D.

    2004-01-01

    This paper presents a preliminary research result of spatially quantifying and allocating the potential activity of residential wood burning (RWB) by using demographic, hypsographic, climatic and topographic information as independent variables. We also introduce the method for calculating PM 2.5 emission from residential wood combustion with the potential activity as primary variable. A linear regression model was generated to describe spatial and temporal distribution of the potential activity of wood burning as primary heating source. In order to improve the estimation, the classifications of urban, suburban and rural were redefined to meet the specifications of this application. Also, a unique way of defining forest accessibility is found useful in estimating the activity potential of RWB. The results suggest that the potential activity of wood burning is mostly determined by elevation of a location, forest accessibility, urban/non-urban position, climatic conditions and several demographic variables. The analysis results were validated using survey data collected through face-to-face and telephone interviews over the study area in central California. The linear regression model can explain approximately 86% of the variation of surveyed wood burning activity potential. The total PM 2.5 emitted from woodstoves and fireplaces is analyzed for the study region at county level. (Author)

  11. Accuracy of real time radiography burning rate measurement

    Science.gov (United States)

    Olaniyi, Bisola

    The design of a solid propellant rocket motor requires the determination of a propellant's burning-rate and its dependency upon environmental parameters. The requirement that the burning-rate be physically measured, establishes the need for methods and equipment to obtain such data. A literature review reveals that no measurement has provided the desired burning rate accuracy. In the current study, flash x-ray modeling and digitized film-density data were employed to predict motor-port area to length ratio. The pre-fired port-areas and base burning rate were within 2.5% and 1.2% of their known values, respectively. To verify the accuracy of the method, a continuous x-ray and a solid propellant rocket motor model (Plexiglas cylinder) were used. The solid propellant motor model was translated laterally through a real-time radiography system at different speeds simulating different burning rates. X-ray images were captured and the burning-rate was then determined. The measured burning rate was within 1.65% of the known values.

  12. Burn-up calculation of different thorium-based fuel matrixes in a thermal research reactor using MCNPX 2.6 code

    Directory of Open Access Journals (Sweden)

    Gholamzadeh Zohreh

    2014-12-01

    Full Text Available Decrease of the economically accessible uranium resources and the inherent proliferation resistance of thorium fuel motivate its application in nuclear power systems. Estimation of the nuclear reactor’s neutronic parameters during different operational situations is of key importance for the safe operation of nuclear reactors. In the present research, thorium oxide fuel burn-up calculations for a demonstrative model of a heavy water- -cooled reactor have been performed using MCNPX 2.6 code. Neutronic parameters for three different thorium fuel matrices loaded separately in the modelled thermal core have been investigated. 233U, 235U and 239Pu isotopes have been used as fissile element in the thorium oxide fuel, separately. Burn-up of three different fuels has been calculated at 1 MW constant power. 135X and 149Sm concentration variations have been studied in the modelled core during 165 days burn-up. Burn-up of thorium oxide enriched with 233U resulted in the least 149Sm and 135Xe productions and net fissile production of 233U after 165 days. The negative fuel, coolant and void reactivity of the used fuel assures safe operation of the modelled thermal core containing (233U-Th O2 matrix. Furthermore, utilisation of thorium breeder fuel demonstrates several advantages, such as good neutronic economy, 233U production and less production of long-lived α emitter high radiotoxic wastes in biological internal exposure point of view

  13. The effect of a rehabilitation nursing intervention model on improving the comprehensive health status of patients with hand burns.

    Science.gov (United States)

    Li, Lin; Dai, Jia-Xi; Xu, Le; Huang, Zhen-Xia; Pan, Qiong; Zhang, Xi; Jiang, Mei-Yun; Chen, Zhao-Hong

    2017-06-01

    To observe the effect of a rehabilitation intervention on the comprehensive health status of patients with hand burns. Most studies of hand-burn patients have focused on functional recovery. There have been no studies involving a biological-psychological-social rehabilitation model of hand-burn patients. A randomized controlled design was used. Patients with hand burns were recruited to the study, and sixty patients participated. Participants were separated into two groups: (1) The rehabilitation intervention model group (n=30) completed the rehabilitation intervention model, which included the following measures: enhanced social support, intensive health education, comprehensive psychological intervention, and graded exercise. (2) The control group (n=30) completed routine treatment. Intervention lasted 5 weeks. Analysis of variance (ANOVA) and Student's t test were conducted. The rehabilitation intervention group had significantly better scores than the control group for comprehensive health, physical function, psychological function, social function, and general health. The differences between the index scores of the two groups were statistically significant. The rehabilitation intervention improved the comprehensive health status of patients with hand burns and has favorable clinical application. The comprehensive rehabilitation intervention model used here provides scientific guidance for medical staff aiming to improve the integrated health status of hand-burn patients and accelerate their recovery. What does this paper contribute to the wider global clinical community? Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Model stars with degenerate dwarf cores and helium-burning shells - A stationary-burning approximation

    Energy Technology Data Exchange (ETDEWEB)

    Iben, I. Jr.; Tutukov, A.V. (Illinois Univ., Urbana (USA); Astronomicheskii Sovet, Moscow (USSR))

    1989-07-01

    The characteristics of model stars consisting of a degenerate dwarf core and an envelope which is burning a nuclear fuel or fuels in its interior are explored. The models are relevant to stars which are accreting matter from a companion, to single stars in late stages of evolution, to stripped noninteracting remnants of binary star evolution, and to merging and merged degenerate dwarfs. For any given mass and choice of nuclear fuels, a sequence of models is constructed which differ with respect to the mass of the degenerate core and the envelope characteristics. Each sequence has at least three distinct branches: a degenerate dwarf branch along which envelope mass increases with decreasing luminosity, a plateau branch characterized by a very small envelope mass and by a nearly constant luminosity which reaches the maximum achievable value for the sequence, and an asymptotic giant branch which is at the lowest temperatures achievable and along which envelope mass decreases with increasing luminosity. 78 refs.

  15. Model stars with degenerate dwarf cores and helium-burning shells - A stationary-burning approximation

    International Nuclear Information System (INIS)

    Iben, I. Jr.; Tutukov, A.V.

    1989-01-01

    The characteristics of model stars consisting of a degenerate dwarf core and an envelope which is burning a nuclear fuel or fuels in its interior are explored. The models are relevant to stars which are accreting matter from a companion, to single stars in late stages of evolution, to stripped noninteracting remnants of binary star evolution, and to merging and merged degenerate dwarfs. For any given mass and choice of nuclear fuels, a sequence of models is constructed which differ with respect to the mass of the degenerate core and the envelope characteristics. Each sequence has at least three distinct branches: a degenerate dwarf branch along which envelope mass increases with decreasing luminosity, a plateau branch characterized by a very small envelope mass and by a nearly constant luminosity which reaches the maximum achievable value for the sequence, and an asymptotic giant branch which is at the lowest temperatures achievable and along which envelope mass decreases with increasing luminosity. 78 refs

  16. Modelling Carbon Emissions in Calluna vulgaris–Dominated Ecosystems when Prescribed Burning and Wildfires Interact

    Science.gov (United States)

    Santana, Victor M.; Alday, Josu G.; Lee, HyoHyeMi; Allen, Katherine A.; Marrs, Rob H.

    2016-01-01

    A present challenge in fire ecology is to optimize management techniques so that ecological services are maximized and C emissions minimized. Here, we modeled the effects of different prescribed-burning rotation intervals and wildfires on carbon emissions (present and future) in British moorlands. Biomass-accumulation curves from four Calluna-dominated ecosystems along a north-south gradient in Great Britain were calculated and used within a matrix-model based on Markov Chains to calculate above-ground biomass-loads and annual C emissions under different prescribed-burning rotation intervals. Additionally, we assessed the interaction of these parameters with a decreasing wildfire return intervals. We observed that litter accumulation patterns varied between sites. Northern sites (colder and wetter) accumulated lower amounts of litter with time than southern sites (hotter and drier). The accumulation patterns of the living vegetation dominated by Calluna were determined by site-specific conditions. The optimal prescribed-burning rotation interval for minimizing annual carbon emissions also differed between sites: the optimal rotation interval for northern sites was between 30 and 50 years, whereas for southern sites a hump-backed relationship was found with the optimal interval either between 8 to 10 years or between 30 to 50 years. Increasing wildfire frequency interacted with prescribed-burning rotation intervals by both increasing C emissions and modifying the optimum prescribed-burning interval for minimum C emission. This highlights the importance of studying site-specific biomass accumulation patterns with respect to environmental conditions for identifying suitable fire-rotation intervals to minimize C emissions. PMID:27880840

  17. Modelling Carbon Emissions in Calluna vulgaris-Dominated Ecosystems when Prescribed Burning and Wildfires Interact.

    Science.gov (United States)

    Santana, Victor M; Alday, Josu G; Lee, HyoHyeMi; Allen, Katherine A; Marrs, Rob H

    2016-01-01

    A present challenge in fire ecology is to optimize management techniques so that ecological services are maximized and C emissions minimized. Here, we modeled the effects of different prescribed-burning rotation intervals and wildfires on carbon emissions (present and future) in British moorlands. Biomass-accumulation curves from four Calluna-dominated ecosystems along a north-south gradient in Great Britain were calculated and used within a matrix-model based on Markov Chains to calculate above-ground biomass-loads and annual C emissions under different prescribed-burning rotation intervals. Additionally, we assessed the interaction of these parameters with a decreasing wildfire return intervals. We observed that litter accumulation patterns varied between sites. Northern sites (colder and wetter) accumulated lower amounts of litter with time than southern sites (hotter and drier). The accumulation patterns of the living vegetation dominated by Calluna were determined by site-specific conditions. The optimal prescribed-burning rotation interval for minimizing annual carbon emissions also differed between sites: the optimal rotation interval for northern sites was between 30 and 50 years, whereas for southern sites a hump-backed relationship was found with the optimal interval either between 8 to 10 years or between 30 to 50 years. Increasing wildfire frequency interacted with prescribed-burning rotation intervals by both increasing C emissions and modifying the optimum prescribed-burning interval for minimum C emission. This highlights the importance of studying site-specific biomass accumulation patterns with respect to environmental conditions for identifying suitable fire-rotation intervals to minimize C emissions.

  18. Aluminum agglomeration involving the second mergence of agglomerates on the solid propellants burning surface: Experiments and modeling

    Science.gov (United States)

    Ao, Wen; Liu, Xin; Rezaiguia, Hichem; Liu, Huan; Wang, Zhixin; Liu, Peijin

    2017-07-01

    The agglomeration of aluminum particles usually occurs on the burning surface of aluminized composite propellants. It leads to low propellant combustion efficiency and high two-phase flow losses. To reach a thorough understanding of aluminum agglomeration behaviors, agglomeration processes, and particles size distribution of Al/AP/RDX/GAP propellants were studied by using a cinephotomicrography experimental technique, under 5 MPa. Accumulation, aggregation, and agglomeration phenomena of aluminum particles have been inspected, as well as the flame asymmetry of burning agglomerates. Results reveals that the dependency of the mean and the maximum agglomeration diameter to the burning rate and the virgin aluminum size have the same trend. A second-time mergence of multiple agglomerates on the burning surface is unveiled. Two typical modes of second mergence are concluded, based upon vertical and level movement of agglomerates, respectively. The latter mode is found to be dominant and sometimes a combination of the two modes may occur. A new model of aluminum agglomeration on the burning surface of composite propellants is derived to predict the particulates size distribution with a low computational amount. The basic idea is inspired from the well-known pocket models. The pocket size of the region formed by adjacent AP particles is obtained through scanning electron microscopy of the propellant cross-section coupled to an image processing method. The second mergence mechanism, as well as the effect of the burning rate on the agglomeration processes, are included in the present model. The mergence of two agglomerates is prescribed to occur only if their separation distance is less than a critical value. The agglomerates size distribution resulting from this original model match reasonably with the experimental data. Moreover, the present model gives superior results for mean agglomeration diameter compared to common empirical and pocket models. The average prediction

  19. Improved Survival of Patients With Extensive Burns: Trends in Patient Characteristics and Mortality Among Burn Patients in a Tertiary Care Burn Facility, 2004-2013.

    Science.gov (United States)

    Strassle, Paula D; Williams, Felicia N; Napravnik, Sonia; van Duin, David; Weber, David J; Charles, Anthony; Cairns, Bruce A; Jones, Samuel W

    Classic determinants of burn mortality are age, burn size, and the presence of inhalation injury. Our objective was to describe temporal trends in patient and burn characteristics, inpatient mortality, and the relationship between these characteristics and inpatient mortality over time. All patients aged 18 years or older and admitted with burn injury, including inhalation injury only, between 2004 and 2013 were included. Adjusted Cox proportional hazards regression models were used to estimate the relationship between admit year and inpatient mortality. A total of 5540 patients were admitted between 2004 and 2013. Significant differences in sex, race/ethnicity, burn mechanisms, TBSA, inhalation injury, and inpatient mortality were observed across calendar years. Patients admitted between 2011 and 2013 were more likely to be women, non-Hispanic Caucasian, with smaller burn size, and less likely to have an inhalation injury, in comparison with patients admitted from 2004 to 2010. After controlling for patient demographics, burn mechanisms, and differential lengths of stay, no calendar year trends in inpatient mortality were detected. However, a significant decrease in inpatient mortality was observed among patients with extensive burns (≥75% TBSA) in more recent calendar years. This large, tertiary care referral burn center has maintained low inpatient mortality rates among burn patients over the past 10 years. While observed decreases in mortality during this time are largely due to changes in patient and burn characteristics, survival among patients with extensive burns has improved.

  20. Probabilistic models for reactive behaviour in heterogeneous condensed phase media

    Science.gov (United States)

    Baer, M. R.; Gartling, D. K.; DesJardin, P. E.

    2012-02-01

    This work presents statistically-based models to describe reactive behaviour in heterogeneous energetic materials. Mesoscale effects are incorporated in continuum-level reactive flow descriptions using probability density functions (pdfs) that are associated with thermodynamic and mechanical states. A generalised approach is presented that includes multimaterial behaviour by treating the volume fraction as a random kinematic variable. Model simplifications are then sought to reduce the complexity of the description without compromising the statistical approach. Reactive behaviour is first considered for non-deformable media having a random temperature field as an initial state. A pdf transport relationship is derived and an approximate moment approach is incorporated in finite element analysis to model an example application whereby a heated fragment impacts a reactive heterogeneous material which leads to a delayed cook-off event. Modelling is then extended to include deformation effects associated with shock loading of a heterogeneous medium whereby random variables of strain, strain-rate and temperature are considered. A demonstrative mesoscale simulation of a non-ideal explosive is discussed that illustrates the joint statistical nature of the strain and temperature fields during shock loading to motivate the probabilistic approach. This modelling is derived in a Lagrangian framework that can be incorporated in continuum-level shock physics analysis. Future work will consider particle-based methods for a numerical implementation of this modelling approach.

  1. Model-Based Testing of a Reactive System with Coloured Petri Nets

    DEFF Research Database (Denmark)

    Tjell, Simon

    2006-01-01

    In this paper, a reactive and nondeterministic system is tested. This is doneby applying a generic model that has been specified as a configurable Coloured PetriNet. In this way, model-based testing is possible for a wide class of reactive system atthe level of discrete events. Concurrently...

  2. A reactive transport model for Marcellus shale weathering

    Science.gov (United States)

    Heidari, Peyman; Li, Li; Jin, Lixin; Williams, Jennifer Z.; Brantley, Susan L.

    2017-11-01

    Shale formations account for 25% of the land surface globally and contribute a large proportion of the natural gas used in the United States. One of the most productive shale-gas formations is the Marcellus, a black shale that is rich in organic matter and pyrite. As a first step toward understanding how Marcellus shale interacts with water in the surface or deep subsurface, we developed a reactive transport model to simulate shale weathering under ambient temperature and pressure conditions, constrained by soil and water chemistry data. The simulation was carried out for 10,000 years since deglaciation, assuming bedrock weathering and soil genesis began after the last glacial maximum. Results indicate weathering was initiated by pyrite dissolution for the first 1000 years, leading to low pH and enhanced dissolution of chlorite and precipitation of iron hydroxides. After pyrite depletion, chlorite dissolved slowly, primarily facilitated by the presence of CO2 and organic acids, forming vermiculite as a secondary mineral. A sensitivity analysis indicated that the most important controls on weathering include the presence of reactive gases (CO2 and O2), specific surface area, and flow velocity of infiltrating meteoric water. The soil chemistry and mineralogy data could not be reproduced without including the reactive gases. For example, pyrite remained in the soil even after 10,000 years if O2 was not continuously present in the soil column; likewise, chlorite remained abundant and porosity remained small if CO2 was not present in the soil gas. The field observations were only simulated successfully when the modeled specific surface areas of the reactive minerals were 1-3 orders of magnitude smaller than surface area values measured for powdered minerals. Small surface areas could be consistent with the lack of accessibility of some fluids to mineral surfaces due to surface coatings. In addition, some mineral surface is likely interacting only with equilibrated pore

  3. Modelling of turbulence and combustion for simulation of gas explosions in complex geometries

    Energy Technology Data Exchange (ETDEWEB)

    Arntzen, Bjoern Johan

    1998-12-31

    This thesis analyses and presents new models for turbulent reactive flows for CFD (Computational Fluid Dynamics) simulation of gas explosions in complex geometries like offshore modules. The course of a gas explosion in a complex geometry is largely determined by the development of turbulence and the accompanying increased combustion rate. To be able to model the process it is necessary to use a CFD code as a starting point, provided with a suitable turbulence and combustion model. The modelling and calculations are done in a three-dimensional finite volume CFD code, where complex geometries are represented by a porosity concept, which gives porosity on the grid cell faces, depending on what is inside the cell. The turbulent flow field is modelled with a k-{epsilon} turbulence model. Subgrid models are used for production of turbulence from geometry not fully resolved on the grid. Results from laser doppler anemometry measurements around obstructions in steady and transient flows have been analysed and the turbulence models have been improved to handle transient, subgrid and reactive flows. The combustion is modelled with a burning velocity model and a flame model which incorporates the burning velocity into the code. Two different flame models have been developed: SIF (Simple Interface Flame model), which treats the flame as an interface between reactants and products, and the {beta}-model where the reaction zone is resolved with about three grid cells. The flame normally starts with a quasi laminar burning velocity, due to flame instabilities, modelled as a function of flame radius and laminar burning velocity. As the flow field becomes turbulent, the flame uses a turbulent burning velocity model based on experimental data and dependent on turbulence parameters and laminar burning velocity. The laminar burning velocity is modelled as a function of gas mixture, equivalence ratio, pressure and temperature in reactant. Simulations agree well with experiments. 139

  4. Research on mouse model of grade II corneal alkali burn

    Directory of Open Access Journals (Sweden)

    Jun-Qiang Bai

    2016-04-01

    Full Text Available AIM: To choose appropriate concentration of sodium hydroxide (NaOH solution to establish a stable and consistent corneal alkali burn mouse model in grade II. METHODS: The mice (n=60 were randomly divided into four groups and 15 mice each group. Corneal alkali burns were induced by placing circle filter paper soaked with NaOH solutions on the right central cornea for 30s. The concentrations of NaOH solutions of groups A, B, C, and D were 0.1 mol/L, 0.15 mol/L , 0.2 mol/L, and 1.0 mol/L respectively. Then these corneas were irrigated with 20 mL physiological saline (0.9% NaCl. On day 7 postburn, slit lamp microscope was used to observe corneal opacity, corneal epithelial sodium fluorescein staining positive rate, incidence of corneal ulcer and corneal neovascularization, meanwhile pictures of the anterior eyes were taken. Cirrus spectral domain optical coherence tomography was used to scan cornea to observe corneal epithelial defect and corneal ulcer. RESULTS: Corneal opacity scores ( were not significantly different between the group A and group B (P=0.097. Incidence of corneal ulcer in group B was significantly higher than that in group A (P=0.035. Incidence of corneal ulcer and perforation rate in group B was lower than that in group C. Group C and D had corneal neovascularization, and incidence of corneal neovascularization in group D was significantly higher than that in group C (P=0.000. CONCLUSION: Using 0.15 mol/L NaOH can establish grade II mouse model of corneal alkali burns.

  5. Biomass burning aerosol over Romania using dispersion model and Calipso data

    Science.gov (United States)

    Nicolae, Victor; Dandocsi, Alexandru; Marmureanu, Luminita; Talianu, Camelia

    2018-04-01

    The purpose of the study is to analyze the seasonal variability, for the hot and cold seasons, of biomass burning aerosol observed over Romania using forward dispersion calculations based on FLEXPART model. The model was set up to use as input the MODIS fire data with a degree of confidence over 25% after transforming the emitted power in emission rate. The modelled aerosols in this setup was black carbon coated by organics. Distribution in the upper layers were compared to Calipso retrieval.

  6. Expression and activity levels of chymase in mast cells of burn wound tissues increase during the healing process in a hamster model.

    Science.gov (United States)

    Dong, Xianglin; Xu, Tao; Ma, Shaolin; Wen, Hao

    2015-06-01

    The present study aimed to investigate the changes in the expression levels and activity of mast cell chymase in the process of burn wound healing in a hamster model of deep second-degree burn. The hamster model was established by exposing a ~3 cm diameter area of bare skin to hot water (75°C) for 0, 6, 8, 10 or 12 sec. Tissue specimens were collected 24 h after burning and histological analysis revealed that hot water contact for 12 sec was required to produce a deep second-degree burn. Quantitative polymerase chain reaction and a radioimmunoassay were used to the determine changes in chymase mRNA expression levels and activity. The mRNA expression levels and activity of chymase were increased in the burn wound tissues when compared with the normal skin. However, no statistically significant differences were observed in mast cell chymase activity amongst the various post-burn stages. Chymase mRNA expression levels peaked at day 1 post-burn, subsequently decreasing at days 3 and 7 post-burn and finally increasing again at day 14 post-burn. In summary, a hamster model of deep second-degree burn can be created by bringing the skin into contact with water at 75°C for 12 sec. Furthermore, the mRNA expression levels and activity of chymase in the burn wound tissues increased when compared with those in normal skin tissues.

  7. Modelling of power-reactivity coefficient measurement

    International Nuclear Information System (INIS)

    Strmensky, C.; Petenyi, V.; Jagrik, J.; Minarcin, M.; Hascik, R.; Toth, L.

    2005-01-01

    Report describes results of modeling of power-reactivity coefficient analysis on power-level. In paper we calculate values of discrepancies arisen during transient process. These discrepancies can be arisen as result of experiment evaluation and can be caused by disregard of 3D effects on neutron distribution. The results are critically discussed (Authors)

  8. A Reactive Transport Model for Marcellus Shale Weathering

    Science.gov (United States)

    Li, L.; Heidari, P.; Jin, L.; Williams, J.; Brantley, S.

    2017-12-01

    Shale formations account for 25% of the land surface globally. One of the most productive shale-gas formations is the Marcellus, a black shale that is rich in organic matter and pyrite. As a first step toward understanding how Marcellus shale interacts with water, we developed a reactive transport model to simulate shale weathering under ambient temperature and pressure conditions, constrained by soil chemistry and water data. The simulation was carried out for 10,000 years, assuming bedrock weathering and soil genesis began right after the last glacial maximum. Results indicate weathering was initiated by pyrite dissolution for the first 1,000 years, leading to low pH and enhanced dissolution of chlorite and precipitation of iron hydroxides. After pyrite depletion, chlorite dissolved slowly, primarily facilitated by the presence of CO2 and organic acids, forming vermiculite as a secondary mineral. A sensitivity analysis indicated that the most important controls on weathering include the presence of reactive gases (CO2 and O2), specific surface area, and flow velocity of infiltrating meteoric water. The soil chemistry and mineralogy data could not be reproduced without including the reactive gases. For example, pyrite remained in the soil even after 10,000 years if O2 was not continuously present in the soil column; likewise, chlorite remained abundant and porosity remained small with the presence of soil CO2. The field observations were only simulated successfully when the specific surface areas of the reactive minerals were 1-3 orders of magnitude smaller than surface area values measured for powdered minerals, reflecting the lack of accessibility of fluids to mineral surfaces and potential surface coating. An increase in the water infiltration rate enhanced weathering by removing dissolution products and maintaining far-from-equilibrium conditions. We conclude that availability of reactive surface area and transport of H2O and gases are the most important

  9. Preliminary evidence of early bone resorption in a sheep model of acute burn injury: an observational study.

    Science.gov (United States)

    Klein, Gordon L; Xie, Yixia; Qin, Yi-Xian; Lin, Liangjun; Hu, Minyi; Enkhbaatar, Perenlei; Bonewald, Lynda F

    2014-03-01

    Treatment with bisphosphonates within the first 10 days of severe burn injury completely prevents bone loss. We therefore postulated that bone resorption occurs early post burn and is the primary explanation for acute bone loss in these patients. Our objective was to assess bone for histological and biomechanical evidence of early resorption post burn. We designed a randomized controlled study utilizing a sheep model of burn injury. Three sheep received a 40 % total body surface area burn under isoflurane anesthesia, and three other sheep received cotton-smoke inhalation and served as control. Burned sheep were killed 5 days post procedure and controls were killed 2 days post procedure. Backscatter scanning electron microscopy was performed on iliac crests obtained immediately postmortem along with quantitative histomorphometry and compression testing to determine bone strength (Young's modulus). Blood ionized Ca was also determined in the first 24 h post procedure as was urinary CTx. Three of three sheep killed at 5 days had evidence of scalloping of the bone surface, an effect of bone resorption, whereas none of the three sheep killed at 2 days post procedure had scalloping. One of the three burned sheep killed at 5 days showed quantitative doubling of the eroded surface and halving of the bone volume compared to sham controls. Mean values of Young's modulus were approximately one third lower in the burned sheep killed at 5 days compared to controls, p = 0.08 by unpaired t test, suggesting weaker bone. These data suggest early post-burn bone resorption. Urine CTx normalized to creatinine did not differ between groups at 24 h post procedure because the large amounts of fluids received by the burned sheep may have diluted urine creatinine and CTx and because the urine volume produced by the burned sheep was threefold that of the controls. We calculated 24 h urinary CTx excretion, and with this calculation CTx excretion/24 h in the burned sheep was

  10. Key physical parameters and temperature reactivity coefficients of the deep burn modular helium reactor fueled with LWRs waste

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto E-mail: alby@neutron.kth.se; Gudowski, Waclaw E-mail: wacek@neutron.kth.se; Cetnar, Jerzy E-mail: jerzy@neutron.kth.se; Venneri, Francesco E-mail: venneri@lanl.gov

    2004-11-01

    We investigated some important neutronic features of the deep burn modular helium reactor (DB-MHR) using the MCNP/MCB codes. Our attention was focused on the neutron flux and its spectrum, capture to fission ratio of {sup 239}Pu and the temperature coefficient of fuel and moderator. The DB-MHR is a graphite-moderated helium-cooled reactor proposed by General Atomic to address the need for a fast and efficient incineration of plutonium for non-proliferation purposes as well as the management of light water reactors (LWRs) waste. In fact, recent studies have shown that the use of the DB-MHR coupled to ordinary LWRs would keep constant the world inventory of plutonium for a reactor fleet producing 400 TW{sub e}/y. In the present studies, the DB-MHR is loaded with Np-Pu driver fuel (DF) with an isotopic composition corresponding to LWRs spent fuel waste. DF uses fissile isotopes (e.g. {sup 239}Pu and {sup 241}Pu), previously generated in the LWRs, and maintains criticality conditions in the DB-MHR. After an irradiation of three years, the spent DF is reprocessed and its remaining actinides are manufactured into fresh transmutation fuel (TF). TF mainly contains non-fissile actinides which undergo neutron capture and transmutation during the subsequent three-year irradiation in the DB-MHR. At the same time, TF provides control and negative reactivity feedback to the reactor. After extraction of the spent TF, irradiated for three years, over 94% of {sup 239}Pu and 53% of all actinides coming from LWRs waste will have been destroyed in the DB-MHR. In this paper we look at the operation conditions at equilibrium for the DB-MHR and evaluate fluxes and reactivity responses using state of the art 3-D Monte Carlo simulations.

  11. Modeling Smoke Plume-Rise and Dispersion from Southern United States Prescribed Burns with Daysmoke

    Science.gov (United States)

    G L Achtemeier; S L Goodrick; Y Liu; F Garcia-Menendez; Y Hu; M. Odman

    2011-01-01

    We present Daysmoke, an empirical-statistical plume rise and dispersion model for simulating smoke from prescribed burns. Prescribed fires are characterized by complex plume structure including multiple-core updrafts which makes modeling with simple plume models difficult. Daysmoke accounts for plume structure in a three-dimensional veering/sheering atmospheric...

  12. Structural and reactivity models for copper oxygenases: cooperative effects and novel reactivities.

    Science.gov (United States)

    Serrano-Plana, Joan; Garcia-Bosch, Isaac; Company, Anna; Costas, Miquel

    2015-08-18

    Dioxygen is widely used in nature as oxidant. Nature itself has served as inspiration to use O2 in chemical synthesis. However, the use of dioxygen as an oxidant is not straightforward. Its triplet ground-state electronic structure makes it unreactive toward most organic substrates. In natural systems, metalloenzymes activate O2 by reducing it to more reactive peroxide (O2(2-)) or superoxide (O2(-)) forms. Over the years, the development of model systems containing transition metals has become a convenient tool for unravelling O2-activation mechanistic aspects and reproducing the oxidative activity of enzymes. Several copper-based systems have been developed within this area. Tyrosinase is a copper-based O2-activating enzyme, whose structure and reactivity have been widely studied, and that serves as a paradigm for O2 activation at a dimetal site. It contains a dicopper center in its active site, and it catalyzes the regioselective ortho-hydroxylation of phenols to catechols and further oxidation to quinones. This represents an important step in melanin biosynthesis and it is mediated by a dicopper(II) side-on peroxo intermediate species. In the present accounts, our research in the field of copper models for oxygen activation is collected. We have developed m-xylyl linked dicopper systems that mimick structural and reactivity aspects of tyrosinase. Synergistic cooperation of the two copper(I) centers results in O2 binding and formation of bis(μ-oxo)dicopper(III) cores. These in turn bind and ortho-hydroxylate phenolates via an electrophilic attack of the oxo ligand over the arene. Interestingly the bis(μ-oxo)dicopper(III) cores can also engage in ortho-hydroxylation-defluorination of deprotonated 2-fluorophenols, substrates that are well-known enzyme inhibitors. Analysis of Cu2O2 species with different binding modes show that only the bis(μ-oxo)dicopper(III) cores can mediate the reaction. Finally, the use of unsymmetric systems for oxygen activation is a field

  13. Making of a burn unit: SOA burn center

    Directory of Open Access Journals (Sweden)

    Jayant Kumar Dash

    2016-01-01

    Full Text Available Each year in India, burn injuries account for more than 6 million hospital emergency department visits; of which many require hospitalization and are referred to specialized burn centers. There are few burn surgeons and very few burn centers in India. In our state, Odisha, there are only two burn centers to cater to more than 5000 burn victims per year. This article is an attempt to share the knowledge that I acquired while setting up a new burn unit in a private medical college of Odisha.

  14. Rudimentary, low tech incinerators as a means to produce reactive pozzolan out of sugar cane straw

    International Nuclear Information System (INIS)

    Martirena, Fernando; Middendorf, Bernhard; Day, Robert L.; Gehrke, Matthias; Roque, Pablo; Martinez, Lesday; Betancourt, Sergio

    2006-01-01

    The ashes of agricultural wastes from the processing of sugar cane are recognized as having pozzolanic properties. Burning of these wastes under controlled conditions, e.g. temperature and residence time results in significant improvement in reactivity. There are many reports of low-tech incinerators that have been successfully used to produce reactive rice husk ash in Asia. The paper presents the results of the evaluation of a rudimentary incinerator where sugar cane straw is burnt in order to obtain a reactive ash. The incinerator is designed and constructed according to state-of-the-art recommendations for this kind of device. Various burning trials were performed in order to obtain ash for the experiment. X-ray diffraction analysis performed on powdered ash shows significant presence of amorphous (glassy) material. Lime-pozzolana pastes were prepared. The pastes were subjected to X-ray diffraction, thermo-gravimetric analysis, chemical titration, and SEM observation, as a means to examine the pozzolanicity of the ash via the progress with time of calcium hydroxide consumption, and changes in the pore size distribution and strength. Calcium silicate hydrate phases are the main reaction product of the pozzolanic reaction. The long residence time of the ash in the burning chamber seems to be the reason for the fairly low reactivity of the ash; the reactivity of the ash was not significantly improved in comparison with that of the ash burnt in uncontrolled conditions in the open air

  15. 6th International Workshop on Model Reduction in Reactive Flow

    Science.gov (United States)

    2018-01-01

    reduction in reacting flow . Registration DateRegistration TypeFirst Name Middle NameLast Name Affiliation US State /Canadian ProvinceState/Province/R gion...Report: 6th International Workshop on Model Reduction in Reactive Flow The views, opinions and/or findings contained in this report are those of the...Agreement Number: W911NF-17-1-0121 Organization: Princeton University Title: 6th International Workshop on Model Reduction in Reactive Flow Report Term

  16. A fire model with distinct crop, pasture, and non-agricultural burning: use of new data and a model-fitting algorithm for FINAL.1

    Science.gov (United States)

    Rabin, Sam S.; Ward, Daniel S.; Malyshev, Sergey L.; Magi, Brian I.; Shevliakova, Elena; Pacala, Stephen W.

    2018-03-01

    This study describes and evaluates the Fire Including Natural & Agricultural Lands model (FINAL) which, for the first time, explicitly simulates cropland and pasture management fires separately from non-agricultural fires. The non-agricultural fire module uses empirical relationships to simulate burned area in a quasi-mechanistic framework, similar to past fire modeling efforts, but with a novel optimization method that improves the fidelity of simulated fire patterns to new observational estimates of non-agricultural burning. The agricultural fire components are forced with estimates of cropland and pasture fire seasonality and frequency derived from observational land cover and satellite fire datasets. FINAL accurately simulates the amount, distribution, and seasonal timing of burned cropland and pasture over 2001-2009 (global totals: 0.434×106 and 2.02×106 km2 yr-1 modeled, 0.454×106 and 2.04×106 km2 yr-1 observed), but carbon emissions for cropland and pasture fire are overestimated (global totals: 0.295 and 0.706 PgC yr-1 modeled, 0.194 and 0.538 PgC yr-1 observed). The non-agricultural fire module underestimates global burned area (1.91×106 km2 yr-1 modeled, 2.44×106 km2 yr-1 observed) and carbon emissions (1.14 PgC yr-1 modeled, 1.84 PgC yr-1 observed). The spatial pattern of total burned area and carbon emissions is generally well reproduced across much of sub-Saharan Africa, Brazil, Central Asia, and Australia, whereas the boreal zone sees underestimates. FINAL represents an important step in the development of global fire models, and offers a strategy for fire models to consider human-driven fire regimes on cultivated lands. At the regional scale, simulations would benefit from refinements in the parameterizations and improved optimization datasets. We include an in-depth discussion of the lessons learned from using the Levenberg-Marquardt algorithm in an interactive optimization for a dynamic global vegetation model.

  17. Surrogate model approach for improving the performance of reactive transport simulations

    Science.gov (United States)

    Jatnieks, Janis; De Lucia, Marco; Sips, Mike; Dransch, Doris

    2016-04-01

    Reactive transport models can serve a large number of important geoscientific applications involving underground resources in industry and scientific research. It is common for simulation of reactive transport to consist of at least two coupled simulation models. First is a hydrodynamics simulator that is responsible for simulating the flow of groundwaters and transport of solutes. Hydrodynamics simulators are well established technology and can be very efficient. When hydrodynamics simulations are performed without coupled geochemistry, their spatial geometries can span millions of elements even when running on desktop workstations. Second is a geochemical simulation model that is coupled to the hydrodynamics simulator. Geochemical simulation models are much more computationally costly. This is a problem that makes reactive transport simulations spanning millions of spatial elements very difficult to achieve. To address this problem we propose to replace the coupled geochemical simulation model with a surrogate model. A surrogate is a statistical model created to include only the necessary subset of simulator complexity for a particular scenario. To demonstrate the viability of such an approach we tested it on a popular reactive transport benchmark problem that involves 1D Calcite transport. This is a published benchmark problem (Kolditz, 2012) for simulation models and for this reason we use it to test the surrogate model approach. To do this we tried a number of statistical models available through the caret and DiceEval packages for R, to be used as surrogate models. These were trained on randomly sampled subset of the input-output data from the geochemical simulation model used in the original reactive transport simulation. For validation we use the surrogate model to predict the simulator output using the part of sampled input data that was not used for training the statistical model. For this scenario we find that the multivariate adaptive regression splines

  18. A novel model approach for esophageal burns in rats: A comparison of three methods.

    Science.gov (United States)

    Kalkan, Yildiray; Tumkaya, Levent; Akdogan, Remzi Adnan; Yucel, Ahmet Fikret; Tomak, Yakup; Sehitoglu, İbrahim; Pergel, Ahmet; Kurt, Aysel

    2015-07-01

    Corrosive esophageal injury causes serious clinical problems. We aimed to create a new experimental esophageal burn model using a single catheter without a surgical procedure. We conducted the study with two groups of 12 male rats that fasted for 12 h before application. A modified Foley balloon catheter was inserted into the esophageal lumen. The control group was given 0.9% sodium chloride, while the experimental group was given 37.5% sodium hydroxide with the other part of the catheter. After 60s, esophagus was washed with distilled water. The killed rats were examined using histopathological methods after 28 days. In comparison with the histopathological changes experienced by the study groups, the control groups were observed to have no pathological changes. Basal cell degeneration, dermal edema, and a slight increase in the keratin layer and collagen density of submucosa due to stenosis were all observed in the group subjected to esophageal corrosion. A new burn model can thus, we believe, be created without the involvement of invasive laparoscopic surgery and general anesthesia. The burn in our experiment was formed in both the distal and proximal esophagus, as in other models; it can also be formed optionally in the entire esophagus. © The Author(s) 2013.

  19. Relative importance of fuel management, ignition management and weather for area burned: Evidence from five landscape-fire-succession models

    Science.gov (United States)

    Geoffrey J. Cary; Mike D. Flannigan; Robert E. Keane; Ross A. Bradstock; Ian D. Davies; James M. Lenihan; Chao Li; Kimberley A. Logan; Russell A. Parsons

    2009-01-01

    The behaviour of five landscape fire models (CAFE, FIRESCAPE, LAMOS(HS), LANDSUM and SEMLAND) was compared in a standardised modelling experiment. The importance of fuel management approach, fuel management effort, ignition management effort and weather in determining variation in area burned and number of edge pixels burned (a measure of potential impact on assets...

  20. Techniques for Estimating Emissions Factors from Forest Burning: ARCTAS and SEAC4RS Airborne Measurements Indicate which Fires Produce Ozone

    Science.gov (United States)

    Chatfield, Robert B.; Andreae, Meinrat O.

    2016-01-01

    Previous studies of emission factors from biomass burning are prone to large errors since they ignore the interplay of mixing and varying pre-fire background CO2 levels. Such complications severely affected our studies of 446 forest fire plume samples measured in the Western US by the science teams of NASA's SEAC4RS and ARCTAS airborne missions. Consequently we propose a Mixed Effects Regression Emission Technique (MERET) to check techniques like the Normalized Emission Ratio Method (NERM), where use of sequential observations cannot disentangle emissions and mixing. We also evaluate a simpler "consensus" technique. All techniques relate emissions to fuel burned using C(burn) = delta C(tot) added to the fire plume, where C(tot) approximately equals (CO2 = CO). Mixed-effects regression can estimate pre-fire background values of C(tot) (indexed by observation j) simultaneously with emissions factors indexed by individual species i, delta, epsilon lambda tau alpha-x(sub I)/C(sub burn))I,j. MERET and "consensus" require more than emissions indicators. Our studies excluded samples where exogenous CO or CH4 might have been fed into a fire plume, mimicking emission. We sought to let the data on 13 gases and particulate properties suggest clusters of variables and plume types, using non-negative matrix factorization (NMF). While samples were mixtures, the NMF unmixing suggested purer burn types. Particulate properties (b scant, b abs, SSA, AAE) and gas-phase emissions were interrelated. Finally, we sought a simple categorization useful for modeling ozone production in plumes. Two kinds of fires produced high ozone: those with large fuel nitrogen as evidenced by remnant CH3CN in the plumes, and also those from very intense large burns. Fire types with optimal ratios of delta-NOy/delta- HCHO associate with the highest additional ozone per unit Cburn, Perhaps these plumes exhibit limited NOx binding to reactive organics. Perhaps these plumes exhibit limited NOx binding to

  1. [Surgical treatment of burns : Special aspects of pediatric burns].

    Science.gov (United States)

    Bührer, G; Beier, J P; Horch, R E; Arkudas, A

    2017-05-01

    Treatment of pediatric burn patients is very important because of the sheer frequency of burn wounds and the possible long-term ramifications. Extensive burns need special care and are treated in specialized burn centers. The goal of this work is to present current standards in burn therapy and important innovations in the treatment of burns in children so that the common and small area burn wounds and scalds in pediatric patients in day-to-day dermatological practice can be adequately treated. Analysis of current literature, discussion of reviews, incorporation of current guidelines. Burns in pediatric patients are common. Improvement of survival can be achieved by treatment in burn centers. The assessment of burn depth and area is an important factor for proper treatment. We give an overview for outpatient treatment of partial thickness burns. New methods may result in better long-term outcome. Adequate treatment of burn injuries considering current literature and guidelines improves patient outcome. Rational implementation of new methods is recommended.

  2. Modeling biomass burning and related carbon emissions during the 21st century in Europe

    KAUST Repository

    Migliavacca, Mirco; Dosio, Alessandro; Camia, Andrea; Hobourg, Rasmus; Houston-Durrant, Tracy; Kaiser, Johannes W.; Khabarov, Nikolay; Krasovskii, Andrey A.; Marcolla, Barbara; San Miguel-Ayanz, Jesus; Ward, Daniel S.; Cescatti, Alessandro

    2013-01-01

    In this study we present an assessment of the impact of future climate change on total fire probability, burned area, and carbon (C) emissions from fires in Europe. The analysis was performed with the Community Land Model (CLM) extended with a prognostic treatment of fires that was specifically refined and optimized for application over Europe. Simulations over the 21st century are forced by five different high-resolution Regional Climate Models under the Special Report on Emissions Scenarios A1B. Both original and bias-corrected meteorological forcings is used. Results show that the simulated C emissions over the present period are improved by using bias corrected meteorological forcing, with a reduction of the intermodel variability. In the course of the 21st century, burned area and C emissions from fires are shown to increase in Europe, in particular in the Mediterranean basins, in the Balkan regions and in Eastern Europe. However, the projected increase is lower than in other studies that did not fully account for the effect of climate on ecosystem functioning. We demonstrate that the lower sensitivity of burned area and C emissions to climate change is related to the predicted reduction of the net primary productivity, which is identified as the most important determinant of fire activity in the Mediterranean region after anthropogenic interaction. This behavior, consistent with the intermediate fire-productivity hypothesis, limits the sensitivity of future burned area and C emissions from fires on climate change, providing more conservative estimates of future fire patterns, and demonstrates the importance of coupling fire simulation with a climate driven ecosystem productivity model.

  3. Modeling biomass burning and related carbon emissions during the 21st century in Europe

    KAUST Repository

    Migliavacca, Mirco

    2013-12-01

    In this study we present an assessment of the impact of future climate change on total fire probability, burned area, and carbon (C) emissions from fires in Europe. The analysis was performed with the Community Land Model (CLM) extended with a prognostic treatment of fires that was specifically refined and optimized for application over Europe. Simulations over the 21st century are forced by five different high-resolution Regional Climate Models under the Special Report on Emissions Scenarios A1B. Both original and bias-corrected meteorological forcings is used. Results show that the simulated C emissions over the present period are improved by using bias corrected meteorological forcing, with a reduction of the intermodel variability. In the course of the 21st century, burned area and C emissions from fires are shown to increase in Europe, in particular in the Mediterranean basins, in the Balkan regions and in Eastern Europe. However, the projected increase is lower than in other studies that did not fully account for the effect of climate on ecosystem functioning. We demonstrate that the lower sensitivity of burned area and C emissions to climate change is related to the predicted reduction of the net primary productivity, which is identified as the most important determinant of fire activity in the Mediterranean region after anthropogenic interaction. This behavior, consistent with the intermediate fire-productivity hypothesis, limits the sensitivity of future burned area and C emissions from fires on climate change, providing more conservative estimates of future fire patterns, and demonstrates the importance of coupling fire simulation with a climate driven ecosystem productivity model.

  4. A validated methodology for evaluating burn-up credit in spent fuel casks

    International Nuclear Information System (INIS)

    Brady, M.C.; Sanders, T.L.

    1992-01-01

    The concept of allowing reactivity credit for the transmuted state of spent fuel offers both economic and risk incentives. This paper presents a general overview of the technical work being performed in support of the US Department of Energy (USDOE) programme to resolve issues related to the implementation of burn-up credit in spent fuel cask design. An analysis methodology is presented along with information representing the validation of the method against available experimental data. The experimental data that are applicable to burn-up credit include chemical assay data for the validation of the isotopic prediction models, fresh fuel critical experiments for the validation of criticality calculations for various cask geometries, and reactor re-start critical data to validate criticality calculations with spent fuel. The methodology has been specifically developed to be simple and generally applicable, therefore giving rise to uncertainties or sensitivities which are identified and quantified in terms of a percent bias effective multiplication (k eff ). Implementation issues affecting licensing requirements and operational procedures are discussed briefly. (Author)

  5. Decreased reactivation of a herpes simplex virus type 1 (HSV-1) latency associated transcript (LAT) mutant using the in vivo mouse UV-B model of induced reactivation

    Science.gov (United States)

    BenMohamed, Lbachir; Osorio, Nelson; Srivastava, Ruchi; Khan, Arif A.; Simpson, Jennifer L.; Wechsler, Steven L.

    2015-01-01

    Blinding ocular herpetic disease in humans is due to herpes simplex virus type 1 (HSV-1) reactivations from latency, rather than to primary acute infection. The cellular and molecular mechanisms that control the HSV-1 latency-reactivation cycle remain to be fully elucidated. The aim of this study was to determine if reactivation of the HSV-1 latency associated transcript (LAT) deletion mutant (dLAT2903) was impaired in this model, as it is in the rabbit model of induced and spontaneous reactivation and in the explant TG induced reactivation model in mice. The eyes of mice latently infected with wild type HSV-1 strain McKrae (LAT(+) virus) or dLAT2903 (LAT(−) virus) were irradiated with UV-B and reactivation was determined. We found that compared to LAT(−) virus, LAT(+) virus reactivated at a higher rate as determined by shedding of virus in tears on days 3 to 7 after UV-B treatment. Thus, the UV-B induced reactivation model of HSV-1 appears to be a useful small animal model for studying the mechanisms involved in how LAT enhances the HSV-1 reactivation phenotype. The utility of the model for investigating the immune evasion mechanisms regulating the HSV-1 latency/reactivation cycle and for testing the protective efficacy of candidate therapeutic vaccines and drugs are discussed. PMID:26002839

  6. Modeling the surface tension of complex, reactive organic-inorganic mixtures

    Science.gov (United States)

    Schwier, A. N.; Viglione, G. A.; Li, Z.; McNeill, V. Faye

    2013-11-01

    Atmospheric aerosols can contain thousands of organic compounds which impact aerosol surface tension, affecting aerosol properties such as heterogeneous reactivity, ice nucleation, and cloud droplet formation. We present new experimental data for the surface tension of complex, reactive organic-inorganic aqueous mixtures mimicking tropospheric aerosols. Each solution contained 2-6 organic compounds, including methylglyoxal, glyoxal, formaldehyde, acetaldehyde, oxalic acid, succinic acid, leucine, alanine, glycine, and serine, with and without ammonium sulfate. We test two semi-empirical surface tension models and find that most reactive, complex, aqueous organic mixtures which do not contain salt are well described by a weighted Szyszkowski-Langmuir (S-L) model which was first presented by Henning et al. (2005). Two approaches for modeling the effects of salt were tested: (1) the Tuckermann approach (an extension of the Henning model with an additional explicit salt term), and (2) a new implicit method proposed here which employs experimental surface tension data obtained for each organic species in the presence of salt used with the Henning model. We recommend the use of method (2) for surface tension modeling of aerosol systems because the Henning model (using data obtained from organic-inorganic systems) and Tuckermann approach provide similar modeling results and goodness-of-fit (χ2) values, yet the Henning model is a simpler and more physical approach to modeling the effects of salt, requiring less empirically determined parameters.

  7. Reactivity and burnout of wood fuels

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Ora, M.

    2011-07-01

    pyrolysis temperature increased. During fast pyrolysis wood particles underwent melting, yet to different extents for the two investigated fuels: pine wood produced chars of porous spherical particles, whereas beech sawdust chars showed a somewhat less drastic change of morphology with respect to the parent fuel. Char produced by low heating rate pyrolysis fully retained the original fibrous structure of wood. Fast pyrolysis chars were significantly more reactive than slow pyrolysis chars (for the same activation energy, the pre-exponential factor was up to 2 orders of magnitude greater for chars increased). The amount and composition of the ash forming matter of the wood fuels is believed to play an important role in determining the differences in char yield, morphology and reactivity. The modelling of wood char combustion is the subject of Chapter 5. The lowest and the highest reactivities obtained for the chars produced in the EFR are used in a simple single particle combustion model in combination with a description of Avedoerevaerket's boiler. In the model the char particle is assumed to burn in a gas with constant temperature and constant oxygen fraction. The particle temperature is on the other hand determined taking reaction heat, convection through boundary gas layer and radiation into account. The model accounts for external diffusion of oxygen to the particle outer surface, internal diffusion in the pores and heterogeneous chemical reaction (CO is considered the only product). The model calculates an overall efficiency factor for combustion, yet assumes that all the reacting carbon is consumed at the outer surface of the char. The model predicts that at an average furnace temperature of 1200 K the conversion of char particles with radius 20-350 {micro}m is very much affected by the reactivity of the char. The influence of the particle's reactivity is lower at higher temperatures: at furnace temperatures of 1500 K and 1700 K the combustion of the char is

  8. Coupled hydrogeological and reactive transport modelling of the Simpevarp area (Sweden)

    International Nuclear Information System (INIS)

    Molinero, Jorge; Raposo, Juan R.; Galindez, Juan M.; Arcos, David; Guimera, Jordi

    2008-01-01

    The Simpevarp area is one of the alternative sites being considered for the deep geological disposal of high level radioactive waste in Sweden. In this paper, a coupled regional groundwater flow and reactive solute transport model of the Simpevarp area is presented that integrates current hydrogeological and hydrochemical data of the area. The model simulates the current hydrochemical pattern of the groundwater system in the area. To that aim, a conceptual hydrochemical model was developed in order to represent the dominant chemical processes. Groundwater flow conditions were reproduced by taking into account fluid-density-dependent groundwater flow and regional hydrogeologic boundary conditions. Reactive solute transport calculations were performed on the basis of the velocity field so obtained. The model was calibrated and sensitivity analyses were carried out in order to investigate the effects of heterogeneities of hydraulic conductivity in the subsurface medium. Results provided by the reactive transport model are in good agreement with much of the measured hydrochemical data. This paper emphasizes the appropriateness of the use of reactive solute transport models when water-rock interaction reactions are involved, and demonstrates what powerful tools they are for the interpretation of hydrogeological and hydrochemical data from site geological repository characterization programs, by providing a qualitative framework for data analysis and testing of conceptual assumptions in a process-oriented approach

  9. Impacts of the turbogenerator reactive operation in the nuclear fuel burnup

    International Nuclear Information System (INIS)

    Oliveira, Helio Ricardo V. de; Martinez, Aquilino S.

    2002-01-01

    The parameterization of the losses in a turbogenerator in function of an operation with the electrical system reactive allowed to model in a simple and exact way the equations that define and they quantify the additional of nuclear potency that it should be generated by a reactor, in order to maintain the commitment with the national system operator, that is, the electric active power contracted. starting from this additional of nuclear power it was modeled the additional burn up of the fuel elements, as well as the numbers of effective days to full power wasted. it was promoted a safety analysis and some limitations due to the reactive operation of the electrical system. inside of this context it was made a financial evaluation in which we ask some questions to companies and government organs in order to define what losses are acceptable and also the reason why we don't use other technician resources such as: increase of the electrical mesh, electrical power injection in strategic points, capacitor banks and increase of the number the electrical plants. (author)

  10. Modeling Of A Reactive Distillation Column: Methyl Tertiary Butyl Ether (Mtbe Simulation Studies

    Directory of Open Access Journals (Sweden)

    Ismail Mohd Saaid Abdul Rahman Mohamed and Subhash Bhatia

    2012-10-01

    Full Text Available A process simulation stage-wise reactive distillation column model formulated from equilibrium stage theory was developed. The algorithm for solving mathematical model represented by sets of differential-algebraic equations was based on relaxation method. Numerical integration scheme based on backward differentiation formula was selected for solving the stiffness of differential-algebraic equations. Simulations were performed on a personal computer (PC Pentium processor through a developed computer program using FORTRAN90 programming language. The proposed model was validated by comparing the simulated results with the published simulation results and with the pilot plant data from the literature. The model was capable of predicting high isobutene conversion for heterogeneous system, as desirable in industrial MTBE production process. The comparisons on temperature profiles, liquid composition profile and operating conditions of reactive distillation column also showed promising results. Therefore the proposed model can be used as a tool for the development and simulation of reactive distillation column.Keywords: Modeling, simulation, reactive distillation, relaxation method, equilibrium stage, heterogeneous, MTBE

  11. Reactive nitrogen in the environment and its effect on climate change

    NARCIS (Netherlands)

    Erisman, J.W.; Galloway, J.N.; Seitzinger, S.; Bleeker, A.; Butterbach-Bahl, K.

    2011-01-01

    Humans have doubled levels of reactive nitrogen in circulation, largely as a result of fertilizer application and fossil fuel burning. This massive alteration of the nitrogen cycle affects climate, food security, energy security, human health and ecosystem services. Our estimates show that nitrogen

  12. Satellite data driven modeling system for predicting air quality and visibility during wildfire and prescribed burn events

    Science.gov (United States)

    Nair, U. S.; Keiser, K.; Wu, Y.; Maskey, M.; Berendes, D.; Glass, P.; Dhakal, A.; Christopher, S. A.

    2012-12-01

    The Alabama Forestry Commission (AFC) is responsible for wildfire control and also prescribed burn management in the state of Alabama. Visibility and air quality degradation resulting from smoke are two pieces of information that are crucial for this activity. Currently the tools available to AFC are the dispersion index available from the National Weather Service and also surface smoke concentrations. The former provides broad guidance for prescribed burning activities but does not provide specific information regarding smoke transport, areas affected and quantification of air quality and visibility degradation. While the NOAA operational air quality guidance includes surface smoke concentrations from existing fire events, it does not account for contributions from background aerosols, which are important for the southeastern region including Alabama. Also lacking is the quantification of visibility. The University of Alabama in Huntsville has developed a state-of-the-art integrated modeling system to address these concerns. This system based on the Community Air Quality Modeling System (CMAQ) that ingests satellite derived smoke emissions and also assimilates NASA MODIS derived aerosol optical thickness. In addition, this operational modeling system also simulates the impact of potential prescribed burn events based on location information derived from the AFC prescribed burn permit database. A lagrangian model is used to simulate smoke plumes for the prescribed burns requests. The combined air quality and visibility degradation resulting from these smoke plumes and background aerosols is computed and the information is made available through a web based decision support system utilizing open source GIS components. This system provides information regarding intersections between highways and other critical facilities such as old age homes, hospitals and schools. The system also includes satellite detected fire locations and other satellite derived datasets

  13. Modelling fire frequency and area burned across phytoclimatic regions in Spain using reanalysis data and the Canadian Fire Weather Index System

    Science.gov (United States)

    Bedia, J.; Herrera, S.; Gutiérrez, J. M.

    2013-09-01

    We develop fire occurrence and burned area models in peninsular Spain, an area of high variability in climate and fuel types, for the period 1990-2008. We based the analysis on a phytoclimatic classification aiming to the stratification of the territory into homogeneous units in terms of climatic and fuel type characteristics, allowing to test model performance under different climatic and fuel conditions. We used generalized linear models (GLM) and multivariate adaptive regression splines (MARS) as modelling algorithms and temperature, relative humidity, precipitation and wind speed, taken from the ERA-Interim reanalysis, as well as the components of the Canadian Forest Fire Weather Index (FWI) System as predictors. We also computed the standardized precipitation-evapotranspiration index (SPEI) as an additional predictor for the models of burned area. We found two contrasting fire regimes in terms of area burned and number of fires: one characterized by a bimodal annual pattern, characterizing the Nemoral and Oro-boreal phytoclimatic types, and another one exhibiting an unimodal annual cycle, with the fire season concentrated in the summer months in the Mediterranean and Arid regions. The fire occurrence models attained good skill in most of the phytoclimatic zones considered, yielding in some zones notably high correlation coefficients between the observed and modelled inter-annual fire frequencies. Total area burned also exhibited a high dependence on the meteorological drivers, although their ability to reproduce the observed annual burned area time series was poor in most cases. We identified temperature and some FWI system components as the most important explanatory variables, and also SPEI in some of the burned area models, highlighting the adequacy of the FWI system for fire modelling applications and leaving the door opened to the development a more complex modelling framework based on these predictors. Furthermore, we demonstrate the potential usefulness

  14. Determining the Uncertainties in Prescribed Burn Emissions Through Comparison of Satellite Estimates to Ground-based Estimates and Air Quality Model Evaluations in Southeastern US

    Science.gov (United States)

    Odman, M. T.; Hu, Y.; Russell, A. G.

    2016-12-01

    Prescribed burning is practiced throughout the US, and most widely in the Southeast, for the purpose of maintaining and improving the ecosystem, and reducing the wildfire risk. However, prescribed burn emissions contribute significantly to the of trace gas and particulate matter loads in the atmosphere. In places where air quality is already stressed by other anthropogenic emissions, prescribed burns can lead to major health and environmental problems. Air quality modeling efforts are under way to assess the impacts of prescribed burn emissions. Operational forecasts of the impacts are also emerging for use in dynamic management of air quality as well as the burns. Unfortunately, large uncertainties exist in the process of estimating prescribed burn emissions and these uncertainties limit the accuracy of the burn impact predictions. Prescribed burn emissions are estimated by using either ground-based information or satellite observations. When there is sufficient local information about the burn area, the types of fuels, their consumption amounts, and the progression of the fire, ground-based estimates are more accurate. In the absence of such information satellites remain as the only reliable source for emission estimation. To determine the level of uncertainty in prescribed burn emissions, we compared estimates derived from a burn permit database and other ground-based information to the estimates by the Biomass Burning Emissions Product derived from a constellation of NOAA and NASA satellites. Using these emissions estimates we conducted simulations with the Community Multiscale Air Quality (CMAQ) model and predicted trace gas and particulate matter concentrations throughout the Southeast for two consecutive burn seasons (2015 and 2016). In this presentation, we will compare model predicted concentrations to measurements at monitoring stations and evaluate if the differences are commensurate with our emission uncertainty estimates. We will also investigate if

  15. South American smoke coverage and flux estimations from the Fire Locating and Modeling of Burning Emissions (FLAMBE') system.

    Science.gov (United States)

    Reid, J. S.; Westphal, D. L.; Christopher, S. A.; Prins, E. M.; Gasso, S.; Reid, E.; Theisen, M.; Schmidt, C. C.; Hunter, J.; Eck, T.

    2002-05-01

    The Fire Locating and Modeling of Burning Emissions (FLAMBE') project is a joint Navy, NOAA, NASA and university project to integrate satellite products with numerical aerosol models to produce a real time fire and emissions inventory. At the center of the program is the Wildfire Automated Biomass Burning Algorithm (WF ABBA) which provides real-time fire products and the NRL Aerosol Analysis and Prediction System to model smoke transport. In this presentation we give a brief overview of the system and methods, but emphasize new estimations of smoke coverage and emission fluxes from the South American continent. Temporal and smoke patterns compare reasonably well with AERONET and MODIS aerosol optical depth products for the 2000 and 2001 fire seasons. Fluxes are computed by relating NAAPS output fields and MODIS optical depth maps with modeled wind fields. Smoke emissions and transport fluxes out of the continent can then be estimated by perturbing the modeled emissions to gain agreement with the satellite and wind products. Regional smoke emissions are also presented for grass and forest burning.

  16. [Clinical and biological monitoring of nutritional status in severe burns].

    Science.gov (United States)

    Bargues, L; Cottez-Gacia, S; Jault, P; Renard, C; Vest, P

    2009-01-01

    Burn patients are subject to hypermetabolism and catabolic states. Aim was to evaluate our current practice in nutrition. Twenty-one severely burned patients were prospectively included during three months period. Body weight was measured at least two times in a week during all stay in burn ICU. Biological markers of inflammation (C-reactive protein, CRP) and nutrition (prealbumin) were performed weekly. Protocol included early nasogastric feeding, tolerated gastric stasis less than 250 mL at four hours nasogastric aspirations, caloric target value of 40 Kcal/kg per day and measurement of total daily calorie intakes. Patient demographics showed a mean percent total body surface burn of 51.1+/-27 % (range 20-90), age of 38.7+/-13.1 years (range 18-67) and 57.3 % of smoke inhalation. All patients were ventilated and 19 patients survived. Length of stay was 75.7+/-47 days (range 22-184). Patients received only 58.9+/-10 % of calorie intakes recommended by French burn society. Loss of body mass was 15.2+/-9 kg (range 3-31) or 19.1+/-10 % of admission weight (range 5-37). Erosion of body mass was not correlated with burned surface (p=0.08), calorie intakes (p=0.26), smoke inhalation (p=0.46), lengths of stay (p=0.53), lengths of ventilation (p=0.08) or nutrition (p=0.12), days of antibiotic (p=0.72), number of dressing changes (p=0.6) or surgery (p=0.64). Biological parameters showed CRP decreasing and prealbumin improving values. New strategies of nutrition are necessary to improve outcome and reduce body mass loss in burns.

  17. Burning Mouth Syndrome and "Burning Mouth Syndrome".

    Science.gov (United States)

    Rifkind, Jacob Bernard

    2016-03-01

    Burning mouth syndrome is distressing to both the patient and practitioner unable to determine the cause of the patient's symptoms. Burning mouth syndrome is a diagnosis of exclusion, which is used only after nutritional deficiencies, mucosal disease, fungal infections, hormonal disturbances and contact stomatitis have been ruled out. This article will explore the many causes and treatment of patients who present with a chief complaint of "my mouth burns," including symptomatic treatment for those with burning mouth syndrome.

  18. Modelling of pore coarsening in the high burn-up structure of UO{sub 2} fuel

    Energy Technology Data Exchange (ETDEWEB)

    Veshchunov, M.S.; Tarasov, V.I., E-mail: tarasov@ibrae.ac.ru

    2017-05-15

    The model for coalescence of randomly distributed immobile pores owing to their growth and impingement, applied by the authors earlier to consideration of the porosity evolution in the high burn-up structure (HBS) at the UO{sub 2} fuel pellet periphery (rim zone), was further developed and validated. Predictions of the original model, taking into consideration only binary impingements of growing immobile pores, qualitatively correctly describe the decrease of the pore number density with the increase of the fractional porosity, however notably underestimate the coalescence rate at high burn-ups attained in the outmost region of the rim zone. In order to overcome this discrepancy, the next approximation of the model taking into consideration triple impingements of growing pores was developed. The advanced model provides a reasonable consent with experimental data, thus demonstrating the validity of the proposed pore coarsening mechanism in the HBS.

  19. The Fire INventory from NCAR (FINN: a high resolution global model to estimate the emissions from open burning

    Directory of Open Access Journals (Sweden)

    C. Wiedinmyer

    2011-07-01

    Full Text Available The Fire INventory from NCAR version 1.0 (FINNv1 provides daily, 1 km resolution, global estimates of the trace gas and particle emissions from open burning of biomass, which includes wildfire, agricultural fires, and prescribed burning and does not include biofuel use and trash burning. Emission factors used in the calculations have been updated with recent data, particularly for the non-methane organic compounds (NMOC. The resulting global annual NMOC emission estimates are as much as a factor of 5 greater than some prior estimates. Chemical speciation profiles, necessary to allocate the total NMOC emission estimates to lumped species for use by chemical transport models, are provided for three widely used chemical mechanisms: SAPRC99, GEOS-CHEM, and MOZART-4. Using these profiles, FINNv1 also provides global estimates of key organic compounds, including formaldehyde and methanol. Uncertainties in the emissions estimates arise from several of the method steps. The use of fire hot spots, assumed area burned, land cover maps, biomass consumption estimates, and emission factors all introduce error into the model estimates. The uncertainty in the FINNv1 emission estimates are about a factor of two; but, the global estimates agree reasonably well with other global inventories of biomass burning emissions for CO, CO2, and other species with less variable emission factors. FINNv1 emission estimates have been developed specifically for modeling atmospheric chemistry and air quality in a consistent framework at scales from local to global. The product is unique because of the high temporal and spatial resolution, global coverage, and the number of species estimated. FINNv1 can be used for both hindcast and forecast or near-real time model applications and the results are being critically evaluated with models and observations whenever possible.

  20. The effect of adipose derived stromal vascular fraction on stasis zone in an experimental burn model.

    Science.gov (United States)

    Eyuboglu, Atilla Adnan; Uysal, Cagri A; Ozgun, Gonca; Coskun, Erhan; Markal Ertas, Nilgun; Haberal, Mehmet

    2018-03-01

    Stasis zone is the surrounding area of the coagulation zone which is an important part determining the extent of the necrosis in burn patients. In our study we aim to salvage the stasis zone by injecting adipose derived stromal vascular fraction (ADSVF). Thermal injury was applied on dorsum of Sprague-Dawley rats (n=20) by the "comb burn" model as described previously. When the burn injury was established on Sprague-Dawley rats (30min); rat dorsum was separated into 2 equal parts consisting of 4 burn zones (3 stasis zone) on each pair. ADSVF cells harvested from inguinal fat pads of Sprague-Dawley rats (n=5) were injected on the right side while same amount of phosphate buffered saline (PBS) injected on the left side of the same animal. One week later, average vital tissue on the statis zone was determined by macroscopy, angiography and microscopy. Vascular density, inflammatory cell density, gradient of fibrosis and epithelial thickness were determined via immunohistochemical assay. Macroscopic stasis zone tissue viability (32±3.28%, 57±4.28%) (p51, 1.50±0.43) (pzone on acute burn injuries. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  1. Recent Progress and Emerging Issues in Measuring and Modeling Biomass Burning Emissions

    Science.gov (United States)

    Yokelson, R. J.; Stockwell, C.; Veres, P. R.; Hatch, L. E.; Barsanti, K. C.; Simpson, I. J.; Blake, D. R.; Alvarado, M.; Kreidenweis, S. M.; Robinson, A. L.; Akagi, S. K.; McMeeking, G. R.; Stone, E.; Gilman, J.; Warneke, C.; Sedlacek, A. J.; Kleinman, L. I.

    2013-12-01

    . The detection rate for the sampled US prescribed fires was zero by burned area and evolution was measured for numerous gas-phase precursors and products, ozone, OA, ions, and BC and BrC mixing state. BC particles were coated within one hour and the smoke evolution was, in general, strongly impacted by the unidentified low volatility gases. An informative synthesis of lab and field fire data with fuels from the same sites was carried out. A preliminary comparison of wildfire and prescribed fire emissions will be presented. Novel schemes are under development to summarize the new emissions data for models, with limited mechanisms and parameterize fast, sub-grid processes. Key current issues to be discussed include: packaging/parameterizing the recent explosion of emissions/evolution data for use in model mechanisms; addressing fires not detected from space; addressing the large amount of unidentified semi-volatile gases emitted by all fires; and developing appropriate airborne and ground-based sampling scales/strategies for local-global models. We briefly summarize a recently funded project that will sample emissions and quantify biomass consumption by peat fires in Indonesia and a pending proposal for comprehensive sampling of cooking fires, brick kilns, garbage burning, diesel super-emitters, etc. in South Asia.

  2. Benchmarks for multidimensional recovery after burn injury in young adults: the development, validation, and testing of the American Burn Association/Shriners Hospitals for Children young adult burn outcome questionnaire.

    Science.gov (United States)

    Ryan, Colleen M; Schneider, Jeffrey C; Kazis, Lewis E; Lee, Austin; Li, Nien-Chen; Hinson, Michelle; Bauk, Helena; Peck, Michael; Meyer, Walter J; Palmieri, Tina; Pidcock, Frank S; Reilly, Debra; Tompkins, Ronald G

    2013-01-01

    Although data exist on burn survival, there are little data on long-term burn recovery. Patient-centered health outcomes are useful in monitoring and predicting recovery and evaluating treatments. An outcome questionnaire for young adult burn survivors was developed and tested. This 5-year (2003-2008) prospective, controlled, multicenter study included burned and nonburned adults ages 19 to 30 years. The Young Adult Burn Outcome Questionnaires were completed at initial contact, 10 days, and 6 and 12 months. Factor analysis established construct validity. Reliability assessments used Cronbach α and test-retest. Recovery patterns were investigated using generalized linear models, with generalized estimating equations using mixed models and random effects. Burned (n = 153) and nonburned subjects (n = 112) completed 620 questionnaires (47 items). Time from injury to first questionnaire administration was 157 ± 36 days (mean ± SEM). Factor analysis included 15 factors: Physical Function, Fine Motor Function, Pain, Itch, Social Function Limited by Physical Function, Perceived Appearance, Social Function Limited by Appearance, Sexual Function, Emotion, Family Function, Family Concern, Satisfaction With Symptom Relief, Satisfaction With Role, Work Reintegration, and Religion. Cronbach α ranged from 0.72 to 0.92, with 11 scales >0.8. Test-retest reliability ranged from 0.29 to 0.94, suggesting changes in underlying health status after burns. Recovery curves in five domains, Itch, Perceived Appearance, Social Function Limited by Appearance, Family Concern, and Satisfaction with Symptom Relief, remained below the reference group at 24 months. The Young Adult Burn Outcome Questionnaire is a reliable and valid instrument for multidimensional functional outcomes assessment. Recovery in some domains was incomplete.

  3. Predictive model for convective flows induced by surface reactivity contrast

    Science.gov (United States)

    Davidson, Scott M.; Lammertink, Rob G. H.; Mani, Ali

    2018-05-01

    Concentration gradients in a fluid adjacent to a reactive surface due to contrast in surface reactivity generate convective flows. These flows result from contributions by electro- and diffusio-osmotic phenomena. In this study, we have analyzed reactive patterns that release and consume protons, analogous to bimetallic catalytic conversion of peroxide. Similar systems have typically been studied using either scaling analysis to predict trends or costly numerical simulation. Here, we present a simple analytical model, bridging the gap in quantitative understanding between scaling relations and simulations, to predict the induced potentials and consequent velocities in such systems without the use of any fitting parameters. Our model is tested against direct numerical solutions to the coupled Poisson, Nernst-Planck, and Stokes equations. Predicted slip velocities from the model and simulations agree to within a factor of ≈2 over a multiple order-of-magnitude change in the input parameters. Our analysis can be used to predict enhancement of mass transport and the resulting impact on overall catalytic conversion, and is also applicable to predicting the speed of catalytic nanomotors.

  4. Modeling and Mechanisms of Intercontinental Transport of Biomass-Burning Plumes

    Science.gov (United States)

    Reid, J. S.; Westphal, D. L.; Christopher, S. A.; Prins, E. M.; Justice, C. O.; Richardson, K. A.; Reid, E. A.; Eck, T. F.

    2003-12-01

    With the aid of fire products from GOES and MODIS, the NRL Aerosol Analysis and Prediction System (NAAPS) successfully monitors and predicts the formation and transport of massive smoke plumes between the continents in near real time. The goal of this system, formed under the joint Navy, NASA, and NOAA sponsored Fire Locating and Modeling of Burning Emissions (FLAMBE) project, is to provide 5 day forecasts of large biomass burning plumes and evaluate impacts on air quality, visibility, and regional radiative balance. In this paper we discuss and compare the mechanisms of intercontinental transport from the three most important sources in the world prone to long range advection: Africa, South/Central America, and Siberia. We demonstrate how these regions impact neighboring continents. As the meteorology of these three regions are distinct, differences in transport phenomenon subsequently result, particularly with respect to vertical distribution. Specific examples will be given on prediction and the impact of Siberian and Central American smoke plumes on the United States as well as transport phenomena from Africa to Australia. We present rules of thumb for radiation and air quality impacts. We also model clear sky bias (both positive and negative) with respect to MODIS data, and show the frequency to which frontal advection of smoke plumes masks remote sensing retrievals of smoke optical depth.

  5. Biomass burning losses of carbon estimated from ecosystem modeling and satellite data analysis for the Brazilian Amazon region

    Science.gov (United States)

    Potter, Christopher; Brooks Genovese, Vanessa; Klooster, Steven; Bobo, Matthew; Torregrosa, Alicia

    To produce a new daily record of gross carbon emissions from biomass burning events and post-burning decomposition fluxes in the states of the Brazilian Legal Amazon (Instituto Brasileiro de Geografia e Estatistica (IBGE), 1991. Anuario Estatistico do Brasil, Vol. 51. Rio de Janeiro, Brazil pp. 1-1024). We have used vegetation greenness estimates from satellite images as inputs to a terrestrial ecosystem production model. This carbon allocation model generates new estimates of regional aboveground vegetation biomass at 8-km resolution. The modeled biomass product is then combined for the first time with fire pixel counts from the advanced very high-resolution radiometer (AVHRR) to overlay regional burning activities in the Amazon. Results from our analysis indicate that carbon emission estimates from annual region-wide sources of deforestation and biomass burning in the early 1990s are apparently three to five times higher than reported in previous studies for the Brazilian Legal Amazon (Houghton et al., 2000. Nature 403, 301-304; Fearnside, 1997. Climatic Change 35, 321-360), i.e., studies which implied that the Legal Amazon region tends toward a net-zero annual source of terrestrial carbon. In contrast, our analysis implies that the total source fluxes over the entire Legal Amazon region range from 0.2 to 1.2 Pg C yr -1, depending strongly on annual rainfall patterns. The reasons for our higher burning emission estimates are (1) use of combustion fractions typically measured during Amazon forest burning events for computing carbon losses, (2) more detailed geographic distribution of vegetation biomass and daily fire activity for the region, and (3) inclusion of fire effects in extensive areas of the Legal Amazon covered by open woodland, secondary forests, savanna, and pasture vegetation. The total area of rainforest estimated annually to be deforested did not differ substantially among the previous analyses cited and our own.

  6. To burn or not to burn

    International Nuclear Information System (INIS)

    Busch, L.

    1993-01-01

    While taking a match to an oil slick may sound like the making of a chaotic inferno, emergency response specialists say burning may be the most efficient way to remove large oil spills from the ocean's surface. But tests of this technique are being resisted by environmentalists as well as the Environmental Protection Agency (EPA), which has final authority over the matter. The debate over test burning arose most recently in Alaska when a proposal to spill and then ignite 1,000 barrels of crude on the Arctic Ocean this past summer was rejected by the EPA. The EPA didn't object to the technique or to the notion of burning spilled oil. However, it contends that it's not necessary to spill thousands of gallons of oil to conduct tests, and unnecessarily pollute the environment, when plenty of oil is already available from accidental spills. Researchers disagree, claiming they won't be able to use the burning technique on an actual spill until it has been tested in a controlled experiment. Despite such concerns, the Canadian government is going ahead with a test burn off the coast of Newfoundland next year. Faced with a choice of test burning or the kind of shoreline contamination left in the wake of the Exxon Valdez disaster, Environment Canada opts for testing. Learning valuable lessons about rapid oil-spill cleanup is worth the relatively minor risks to the environment that test burning would pose

  7. Dynamics of proteolytic activity of blood enzymes in combined burn and radiation injury and in its treatment with local cryoeffect and with wound closing preparation RZP-3

    International Nuclear Information System (INIS)

    Gertman, V.Z.

    1982-01-01

    The proteolytic activity of trypsine-like proteases of blood at acute injury period doesn't increase as in animals with mere burn and in animals with nure irradiation as well. It can be explained by the absence of adequate stress reaction of the organism due to the sharp decrease of organism reactivity in case of combined burn and radiation injury. Application of low temperatures and combination of cryogenic effect and RZP-3 preparation promotes proteolytic activity increase in animals with combined burn and radiation injury in the climax of radiation sickness. The normalization of the factor was observed at late periods of the investigation. It can be regarded as recovery of the organism reactivity

  8. Burn wound: Pathophysiology and its management by herbal plants

    Directory of Open Access Journals (Sweden)

    Dhirender Kaushik

    2013-01-01

    Full Text Available In human body, wound healing is a normal biological phenomenon. Burns may be acute or chronic depending upon the source and its time of exposure. Burn wounds may be superficial, partial or full thickness wounds. When skin comes in contact with higher temperature, protein denaturation takes place due to which the plasma membrane integrity is lost. When skin is burned, a number of inflammatory mediators and releasing agents such as histamine, nitric oxide, oxygen free radicals, eicosanoid products, tumor necrosis factors, and interleukins etc., are released at the site. For wound healing mechanism, the keratinocytes has to move from uninjured site to the burned area. For deeper burns this process takes a long time. By some unknown mechanisms, burn wounds may convert from one form to another form. So burn wound depth must be accurately measured before starting the treatment to prevent the complications. Burns can be induced in experimental animals by using different models. Many treatments such as herbal drugs, topical agents, gene therapy, volume therapy, and rehabilitation can be employed. This review article mainly deals with the theoretical and practical aspects of burn wound healing. Some burn wound healing plants with their chemical constituents, plant part used, uses and animal models are described here.

  9. The burn-up credit physics and the 40. Minerve anniversary; La physique du credit Burn-Up et le 40. anniversaire de Minerve

    Energy Technology Data Exchange (ETDEWEB)

    Santamarina, A [CEA/Cadarache, Departement d' Etudes des Reacteurs, DER/SPRC, 13 - Saint-Paul-lez-Durance (France); Toubon, H [Cogema, 78 - Velizy Villacoublay (France); Trakas, C [FRAMATOME, 92 - Paris La Defense (France); and others

    2000-03-21

    The technical meeting organized by the SFEN on the burn-up credit (CBU) physics, took place the 23 november 1999 at Cadarache. the first presentation dealt with the economic interest and the neutronic problems of the CBU. Then two papers presented how taking into account the CBU in the industry in matter of transport, storage in pool, reprocessing and criticality calculation (MCNP4/Apollo2-F benchmark). An experimental method for the reactivity measurement through oscillations in the Minerve reactor, has been presented with an analysis of the possible errors. The future research program OSMOSE, taking into account the minor actinides in the CBU, was also developed. The last paper presented the national and international research programs in the CBU domain, in particular experiments realized in CEA/Valduc and the OECD Burn-up Criticality Benchmark Group activities. (A.L.B.)

  10. Two dimensional burn-up calculation of TRIGA core

    International Nuclear Information System (INIS)

    Persic, A.; Ravnik, M.; Slavic, S.

    1996-01-01

    TRIGLAV is a new computer program for burn-up calculation of mixed core of research reactors. The code is based on diffusion model in two dimensions and iterative procedure is applied for its solution. The material data used in the model are calculated with the transport program WIMS. In regard to fission density distribution and energy produced by the reactor the burn-up increment of fuel elements is determined. In this paper the calculation model of diffusion constants and burn-up calculation are described and some results of calculations for TRIGA MARK II reactor are presented. (author)

  11. Reactive Kripke semantics

    CERN Document Server

    Gabbay, Dov M

    2013-01-01

    This text offers an extension to the traditional Kripke semantics for non-classical logics by adding the notion of reactivity. Reactive Kripke models change their accessibility relation as we progress in the evaluation process of formulas in the model. This feature makes the reactive Kripke semantics strictly stronger and more applicable than the traditional one. Here we investigate the properties and axiomatisations of this new and most effective semantics, and we offer a wide landscape of applications of the idea of reactivity. Applied topics include reactive automata, reactive grammars, rea

  12. A combustion model of vegetation burning in "Tiger" fire propagation tool

    Science.gov (United States)

    Giannino, F.; Ascoli, D.; Sirignano, M.; Mazzoleni, S.; Russo, L.; Rego, F.

    2017-11-01

    In this paper, we propose a semi-physical model for the burning of vegetation in a wildland fire. The main physical-chemical processes involved in fire spreading are modelled through a set of ordinary differential equations, which describe the combustion process as linearly related to the consumption of fuel. The water evaporation process from leaves and wood is also considered. Mass and energy balance equations are written for fuel (leaves and wood) assuming that combustion process is homogeneous in space. The model is developed with the final aim of simulating large-scale wildland fires which spread on heterogeneous landscape while keeping the computation cost very low.

  13. Biomass burning contribution to ambient volatile organic compounds (VOCs) in the Chengdu-Chongqing Region (CCR), China

    Science.gov (United States)

    Li, Lingyu; Chen, Yuan; Zeng, Limin; Shao, Min; Xie, Shaodong; Chen, Wentai; Lu, Sihua; Wu, Yusheng; Cao, Wei

    2014-12-01

    Ambient volatile organic compounds (VOCs) were measured intensively using an online gas chromatography-mass spectrometry/flame ionization detector (GC-MS/FID) at Ziyang in the Chengdu-Chongqing Region (CCR) from 6 December 2012 to 4 January 2013. Alkanes contributed the most (59%) to mixing ratios of measured non-methane hydrocarbons (NMHCs), while aromatics contributed the least (7%). Methanol was the most abundant oxygenated VOC (OVOC), contributing 42% to the total amount of OVOCs. Significantly elevated VOC levels occurred during three pollution events, but the chemical composition of VOCs did not differ between polluted and clean days. The OH loss rates of VOCs were calculated to estimate their chemical reactivity. Alkenes played a predominant role in VOC reactivity, among which ethylene and propene were the largest contributors; the contributions of formaldehyde and acetaldehyde were also considerable. Biomass burning had a significant influence on ambient VOCs during our study. We chose acetonitrile as a tracer and used enhancement ratio to estimate the contribution of biomass burning to ambient VOCs. Biomass burning contributed 9.4%-36.8% to the mixing ratios of selected VOC species, and contributed most (>30% each) to aromatics, formaldehyde, and acetaldehyde.

  14. Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model

    International Nuclear Information System (INIS)

    Fang, Yilin; Scheibe, Timothy D.; Mahadevan, Radhakrishnan; Garg, Srinath; Long, Philip E.; Lovley, Derek R.

    2011-01-01

    The activity of microorganisms often plays an important role in dynamic natural attenuation or engineered bioremediation of subsurface contaminants, such as chlorinated solvents, metals, and radionuclides. To evaluate and/or design bioremediated systems, quantitative reactive transport models are needed. State-of-the-art reactive transport models often ignore the microbial effects or simulate the microbial effects with static growth yield and constant reaction rate parameters over simulated conditions, while in reality microorganisms can dynamically modify their functionality (such as utilization of alternative respiratory pathways) in response to spatial and temporal variations in environmental conditions. Constraint-based genome-scale microbial in silico models, using genomic data and multiple-pathway reaction networks, have been shown to be able to simulate transient metabolism of some well studied microorganisms and identify growth rate, substrate uptake rates, and byproduct rates under different growth conditions. These rates can be identified and used to replace specific microbially-mediated reaction rates in a reactive transport model using local geochemical conditions as constraints. We previously demonstrated the potential utility of integrating a constraint based microbial metabolism model with a reactive transport simulator as applied to bioremediation of uranium in groundwater. However, that work relied on an indirect coupling approach that was effective for initial demonstration but may not be extensible to more complex problems that are of significant interest (e.g., communities of microbial species, multiple constraining variables). Here, we extend that work by presenting and demonstrating a method of directly integrating a reactive transport model (FORTRAN code) with constraint-based in silico models solved with IBM ILOG CPLEX linear optimizer base system (C library). The models were integrated with BABEL, a language interoperability tool. The

  15. Psychiatric aspects of burn

    Directory of Open Access Journals (Sweden)

    Dalal P

    2010-10-01

    Full Text Available Burn injuries and their subsequent treatment cause one of the most excruciating forms of pain imaginable. The psychological aspects of burn injury have been researched in different parts of the world, producing different outcomes. Studies have shown that greater levels of acute pain are associated with negative long-term psychological effects such as acute stress disorder, depression, suicidal ideation, and post-traumatic stress disorder for as long as 2 years after the initial burn injury. The concept of allostatic load is presented as a potential explanation for the relationship between acute pain and subsequent psychological outcomes. A biopsychosocial model is also presented as a means of obtaining better inpatient pain management and helping to mediate this relationship.

  16. Modeling the dynamics of Plasmodium vivax infection and hypnozoite reactivation in vivo.

    Directory of Open Access Journals (Sweden)

    Adeshina I Adekunle

    2015-03-01

    Full Text Available The dynamics of Plasmodium vivax infection is characterized by reactivation of hypnozoites at varying time intervals. The relative contribution of new P. vivax infection and reactivation of dormant liver stage hypnozoites to initiation of blood stage infection is unclear. In this study, we investigate the contribution of new inoculations of P. vivax sporozoites to primary infection versus reactivation of hypnozoites by modeling the dynamics of P. vivax infection in Thailand in patients receiving treatment for either blood stage infection alone (chloroquine, or the blood and liver stages of infection (chloroquine + primaquine. In addition, we also analysed rates of infection in a study in Papua New Guinea (PNG where patients were treated with either artesunate, or artesunate + primaquine. Our results show that up to 96% of the P. vivax infection is due to hypnozoite reactivation in individuals living in endemic areas in Thailand. Similar analysis revealed the around 70% of infections in the PNG cohort were due to hypnozoite reactivation. We show how the age of the cohort, primaquine drug failure, and seasonality may affect estimates of the ratio of primary P. vivax infection to hypnozoite reactivation. Modeling of P. vivax primary infection and hypnozoite reactivation provides important insights into infection dynamics, and suggests that 90-96% of blood stage infections arise from hypnozoite reactivation. Major differences in infection kinetics between Thailand and PNG suggest the likelihood of drug failure in PNG.

  17. High-burn-up fuels for fast reactors. Past experience and novel applications

    International Nuclear Information System (INIS)

    Weaver, Kevan D.; Gilleland, John; Whitmer, Charles; Zimmerman, George

    2009-01-01

    Fast reactors in the U.S. routinely achieved fuel burn-ups of 10%, with some fuel able to reach peak burn-ups of 20%, notably in the Experimental Breeder Reactor II and the Fast Flux Test Facility. Maximum burn-up has historically been constrained by chemical and mechanical interactions between the fuel and its cladding, and to some extent by radiation damage and thermal effects (e.g., radiation-induced creep, thermal creep, and radiation embrittlement) that cause the cladding to weaken. Although fast reactors have used several kinds of fuel - including oxide, metal alloy, carbide, and nitride - the vast majority of experience with fast reactors has been using oxide (including mixed oxide) and metal-alloy fuels based on uranium. Our understanding of high-burn-up operation is also limited by the fact that breeder reactor programs have historically assumed that their fuel would eventually undergo reprocessing; the programs thus have not made high burn-up a top priority. Recently a set of novel designs have emerged for fast reactors that require little initial enrichment and no reprocessing. These reactors exploit a concept known as a traveling wave (sometimes referred to as a breed-and-burn wave, fission wave, or nuclear-burning wave). By breeding and using its own fuel in place as it operates, a traveling-wave reactor can obtain burn-ups that approach 50%, well beyond the current base of knowledge and experience. Our computational work on the physics of traveling-wave reactors shows that they require metal-alloy fuel to provide the margins of reactivity necessary to sustain a breed-and-burn wave. This paper reviews operating experience with high-burn-up fuels and the technical feasibility of moving to a qualitatively new burn-up regime. We discuss our calculations on traveling-wave reactors, including those concerning the possible use of thorium. The challenges associated with high burn-up and fluence in fuels and materials are also discussed. (author)

  18. Is proportion burned severely related to daily area burned?

    International Nuclear Information System (INIS)

    Birch, Donovan S; Morgan, Penelope; Smith, Alistair M S; Kolden, Crystal A; Hudak, Andrew T

    2014-01-01

    The ecological effects of forest fires burning with high severity are long-lived and have the greatest impact on vegetation successional trajectories, as compared to low-to-moderate severity fires. The primary drivers of high severity fire are unclear, but it has been hypothesized that wind-driven, large fire-growth days play a significant role, particularly on large fires in forested ecosystems. Here, we examined the relative proportion of classified burn severity for individual daily areas burned that occurred during 42 large forest fires in central Idaho and western Montana from 2005 to 2007 and 2011. Using infrared perimeter data for wildfires with five or more consecutive days of mapped perimeters, we delineated 2697 individual daily areas burned from which we calculated the proportions of each of three burn severity classes (high, moderate, and low) using the differenced normalized burn ratio as mapped for large fires by the Monitoring Trends in Burn Severity project. We found that the proportion of high burn severity was weakly correlated (Kendall τ = 0.299) with size of daily area burned (DAB). Burn severity was highly variable, even for the largest (95th percentile) in DAB, suggesting that other variables than fire extent influence the ecological effects of fires. We suggest that these results do not support the prioritization of large runs during fire rehabilitation efforts, since the underlying assumption in this prioritization is a positive relationship between severity and area burned in a day. (letters)

  19. Functional Group Analysis of Biomass Burning Particles Using Infrared Spectroscopy

    Science.gov (United States)

    Horrell, K.; Lau, A.; Bond, T.; Iraci, L. T.

    2008-12-01

    Biomass burning is a significant source of particulate organic carbon in the atmosphere. These particles affect the energy balance of the atmosphere directly by absorbing and scattering solar radiation, and indirectly through their ability to act as cloud condensation nuclei (CCN). The chemical composition of biomass burning particles influences their ability to act as CCN, thus understanding the chemistry of these particles is required for understanding their effects on climate and air quality. As climate change influences the frequency and severity of boreal forest fires, the influence of biomass burning aerosols on the atmosphere may become significantly greater. Only a small portion of the organic carbon (OC) fraction of these particles has been identified at the molecular level, although several studies have explored the general chemical classes found in biomass burning smoke. To complement those studies and provide additional information about the reactive functional groups present, we are developing a method for polarity-based separation of compound classes found in the OC fraction, followed by infrared (IR) spectroscopic analysis of each polarity fraction. It is our goal to find a simple, relatively low-tech method which will provide a moderate chemical understanding of the entire suite of compounds present in the OC fraction of biomass burning particles. Here we present preliminary results from pine and oak samples representative of Midwestern United States forests burned at several different temperatures. Wood type and combustion temperature are both seen to affect the composition of the particles. The latter seems to affect relative contributions of certain functional groups, while oak demonstrates at least one additional chemical class of compounds, particularly at lower burning temperatures, where gradual solid-gas phase reactions can produce relatively large amounts of incompletely oxidized products.

  20. Web-based reactive transport modeling using PFLOTRAN

    Science.gov (United States)

    Zhou, H.; Karra, S.; Lichtner, P. C.; Versteeg, R.; Zhang, Y.

    2017-12-01

    Actionable understanding of system behavior in the subsurface is required for a wide spectrum of societal and engineering needs by both commercial firms and government entities and academia. These needs include, for example, water resource management, precision agriculture, contaminant remediation, unconventional energy production, CO2 sequestration monitoring, and climate studies. Such understanding requires the ability to numerically model various coupled processes that occur across different temporal and spatial scales as well as multiple physical domains (reservoirs - overburden, surface-subsurface, groundwater-surface water, saturated-unsaturated zone). Currently, this ability is typically met through an in-house approach where computational resources, model expertise, and data for model parameterization are brought together to meet modeling needs. However, such an approach has multiple drawbacks which limit the application of high-end reactive transport codes such as the Department of Energy funded[?] PFLOTRAN code. In addition, while many end users have a need for the capabilities provided by high-end reactive transport codes, they do not have the expertise - nor the time required to obtain the expertise - to effectively use these codes. We have developed and are actively enhancing a cloud-based software platform through which diverse users are able to easily configure, execute, visualize, share, and interpret PFLOTRAN models. This platform consists of a web application and available on-demand HPC computational infrastructure. The web application consists of (1) a browser-based graphical user interface which allows users to configure models and visualize results interactively, and (2) a central server with back-end relational databases which hold configuration, data, modeling results, and Python scripts for model configuration, and (3) a HPC environment for on-demand model execution. We will discuss lessons learned in the development of this platform, the

  1. Numerical solution of the point reactor kinetics equations with fuel burn-up and temperature feedback

    International Nuclear Information System (INIS)

    Tashakor, S.; Jahanfarnia, G.; Hashemi-Tilehnoee, M.

    2010-01-01

    Point reactor kinetics equations are solved numerically using one group of delayed neutrons and with fuel burn-up and temperature feedback included. To calculate the fraction of one-group delayed neutrons, a group of differential equations are solved by an implicit time method. Using point reactor kinetics equations, changes in mean neutrons density, temperature, and reactivity are calculated in different times during the reactor operation. The variation of reactivity, temperature, and maximum power with time are compared with the predictions by other methods.

  2. Development of Metabolic Indicators of Burn Injury: Very Low Density Lipoprotein (VLDL and Acetoacetate Are Highly Correlated to Severity of Burn Injury in Rats

    Directory of Open Access Journals (Sweden)

    Maria-Louisa Izamis

    2012-07-01

    Full Text Available Hypermetabolism is a significant sequela to severe trauma such as burns, as well as critical illnesses such as cancer. It persists in parallel to, or beyond, the original pathology for many months as an often-fatal comorbidity. Currently, diagnosis is based solely on clinical observations of increased energy expenditure, severe muscle wasting and progressive organ dysfunction. In order to identify the minimum number of necessary variables, and to develop a rat model of burn injury-induced hypermetabolism, we utilized data mining approaches to identify the metabolic variables that strongly correlate to the severity of injury. A clustering-based algorithm was introduced into a regression model of the extent of burn injury. As a result, a neural network model which employs VLDL and acetoacetate levels was demonstrated to predict the extent of burn injury with 88% accuracy in the rat model. The physiological importance of the identified variables in the context of hypermetabolism, and necessary steps in extension of this preliminary model to a clinically utilizable index of severity of burn injury are outlined.

  3. An assessment of burn care professionals' attitudes to major burn.

    LENUS (Irish Health Repository)

    Murphy, A D

    2008-06-01

    The resuscitation of severe burn remains a controversial area within the burn care profession. There is ongoing debate as to what percentage burn is associated with a sufficient quality of life to support initial resuscitation efforts. We conducted a survey of delegates at the 39th Annual Meeting of the British Burns Association (2005), regarding attitudes towards resuscitation following major burns. Respondents were asked the maximum percentage total body surface area (TBSA) burn beyond which they would not wish to be resuscitated. They were also asked what maximum TBSA they perceived to be commensurate with an acceptable quality of life (QOL). One hundred and forty three of 300 delegates responded to the questionnaire. Thirty three percent of respondents would not wish to be resuscitated with 50-75% TBSA burns or greater. A further 35% would not wish to have life-sustaining intervention with 75-95% TBSA burns or greater. The remaining 32% indicated that they would not want resuscitation with TBSA burns>95%. Regardless of TBSA affected, 16% would not wish resuscitation if they had full thickness facial burns, a further 10% did not want resuscitation if both their hands and faces were affected. Our survey demonstrates the diversity of personal preference amongst burn care professionals. This would suggest that a unifying philosophy regarding the resuscitation of extensive burns will remain elusive.

  4. Air-Freshener Burns: A New Paradigm in Burns Etiology?

    OpenAIRE

    Sarwar, Umran; Nicolaou, M.; Khan, M. S.; Tiernan, E.

    2011-01-01

    Objectives: We report a rare case of burns following the use of automated air-fresheners. Methods: We present a case report with a brief overview of the literature relating to burns associated with air-fresheners. The mechanism and treatment of these types of injuries are also described. Results: A 44 year-old female was admitted under the care of the burns team following burns secondary to an exploding air-freshener canister. The patient sustained burns to the face, thorax and arms re...

  5. Air-freshener burns: a new paradigm in burns etiology?

    Science.gov (United States)

    Sarwar, Umran; Nicolaou, M; Khan, M S; Tiernan, E

    2011-10-01

    We report a rare case of burns following the use of automated air-fresheners. We present a case report with a brief overview of the literature relating to burns associated with air-fresheners. The mechanism and treatment of these types of injuries are also described. A 44 year-old female was admitted under the care of the burns team following burns secondary to an exploding air-freshener canister. The patient sustained burns to the face, thorax and arms resulting in a seven-day hospital admission. The burns were treated conservatively. To our knowledge this is one of the few documented cases of burns as a result of air-fresheners. As they become more ubiquitous, we anticipate the incidence of such cases to increase. As such, they pose a potential public health concern on a massive scale.

  6. Design of a model to predict surge capacity bottlenecks for burn mass casualties at a large academic medical center.

    Science.gov (United States)

    Abir, Mahshid; Davis, Matthew M; Sankar, Pratap; Wong, Andrew C; Wang, Stewart C

    2013-02-01

    To design and test a model to predict surge capacity bottlenecks at a large academic medical center in response to a mass-casualty incident (MCI) involving multiple burn victims. Using the simulation software ProModel, a model of patient flow and anticipated resource use, according to principles of disaster management, was developed based upon historical data from the University Hospital of the University of Michigan Health System. Model inputs included: (a) age and weight distribution for casualties, and distribution of size and depth of burns; (b) rate of arrival of casualties to the hospital, and triage to ward or critical care settings; (c) eligibility for early discharge of non-MCI inpatients at time of MCI; (d) baseline occupancy of intensive care unit (ICU), surgical step-down, and ward; (e) staff availability-number of physicians, nurses, and respiratory therapists, and the expected ratio of each group to patients; (f) floor and operating room resources-anticipating the need for mechanical ventilators, burn care and surgical resources, blood products, and intravenous fluids; (g) average hospital length of stay and mortality rate for patients with inhalation injury and different size burns; and (h) average number of times that different size burns undergo surgery. Key model outputs include time to bottleneck for each limiting resource and average waiting time to hospital bed availability. Given base-case model assumptions (including 100 mass casualties with an inter-arrival rate to the hospital of one patient every three minutes), hospital utilization is constrained within the first 120 minutes to 21 casualties, due to the limited number of beds. The first bottleneck is attributable to exhausting critical care beds, followed by floor beds. Given this limitation in number of patients, the temporal order of the ensuing bottlenecks is as follows: Lactated Ringer's solution (4 h), silver sulfadiazine/Silvadene (6 h), albumin (48 h), thrombin topical (72 h), type

  7. Role of Daptomycin on Burn Wound Healing in an Animal Methicillin-Resistant Staphylococcus aureus Infection Model.

    Science.gov (United States)

    Simonetti, Oriana; Lucarini, Guendalina; Orlando, Fiorenza; Pierpaoli, Elisa; Ghiselli, Roberto; Provinciali, Mauro; Castelli, Pamela; Guerrieri, Mario; Di Primio, Roberto; Offidani, Annamaria; Giacometti, Andrea; Cirioni, Oscar

    2017-09-01

    Prolonged hospitalization and antibiotic therapy are risk factors for the development of methicillin-resistant Staphylococcus aureus (MRSA) infections in thermal burn patients. We used a rat model to study the in vivo efficacy of daptomycin in the treatment of burn wound infections by S. aureus , and we evaluated the wound healing process through morphological and immunohistochemical analysis. A copper bar heated in boiling water was applied on a paraspinal site of each rat, resulting in two full-thickness burns. A small gauze was placed over each burn and inoculated with 5 × 10 7 CFU of S. aureus ATCC 43300. The study included two uninfected control groups with and without daptomycin treatment, an infected control group that did not receive any treatment, and two infected groups treated, respectively, with intraperitoneal daptomycin and teicoplanin. The main outcome measures were quantitative culture, histological evaluation of tissue repair, and immunohistochemical expression of wound healing markers: epidermal growth factor receptor (EGFR) and fibroblast growth factor 2 (FGF-2). The highest inhibition of infection was achieved in the group that received daptomycin, which reduced the bacterial load from 10 7 CFU/ml to about 10 3 CFU/g ( P repair by possibly reducing hypertrophic burn scar formation. Copyright © 2017 American Society for Microbiology.

  8. Abiotic/biotic coupling in the rhizosphere: a reactive transport modeling analysis

    Science.gov (United States)

    Lawrence, Corey R.; Steefel, Carl; Maher, Kate

    2014-01-01

    A new generation of models is needed to adequately simulate patterns of soil biogeochemical cycling in response changing global environmental drivers. For example, predicting the influence of climate change on soil organic matter storage and stability requires models capable of addressing complex biotic/abiotic interactions of rhizosphere and weathering processes. Reactive transport modeling provides a powerful framework simulating these interactions and the resulting influence on soil physical and chemical characteristics. Incorporation of organic reactions in an existing reactive transport model framework has yielded novel insights into soil weathering and development but much more work is required to adequately capture root and microbial dynamics in the rhizosphere. This endeavor provides many advantages over traditional soil biogeochemical models but also many challenges.

  9. Non-linear analysis of solid propellant burning rate behavior

    Energy Technology Data Exchange (ETDEWEB)

    Junye Wang [Zhejiang Univ. of Technology, College of Mechanical and Electrical Engineering, Hanzhou (China)

    2000-07-01

    The parametric analysis of the thermal wave model of the non-steady combustion of solid propellants is carried out under a sudden compression. First, to observe non-linear effects, solutions are obtained using a computer under prescribed pressure variations. Then, the effects of rearranging the spatial mesh, additional points, and the time step on numerical solutions are evaluated. Finally, the behaviour of the thermal wave combustion model is examined under large heat releases (H) and a dynamic factor ({beta}). The numerical predictions show that (1) the effect of a dynamic factor ({beta}), related to the magnitude of dp/dt, on the peak burning rate increases as the value of beta increases. However, unsteady burning rate 'runaway' does not appear and will return asymptotically to ap{sup n}, when {beta}{>=}10.0. The burning rate 'runaway' is a numerical difficulty, not a solution to the models. (2) At constant beta and m, the amplitude of the burning rate increases with increasing H. However, the increase in the burning rate amplitude is stepwise, and there is no apparent intrinsic instability limit. A damped oscillation of burning rate occurs when the value of H is less. However, when H>1.0, the state of an intrinsically unstable model is composed of repeated, amplitude spikes, i.e. an undamped oscillation occurs. (3) The effect of the time step on the peak burning rate increases as H increases. (Author)

  10. Development of the life impact burn recovery evaluation (LIBRE) profile: assessing burn survivors' social participation.

    Science.gov (United States)

    Kazis, Lewis E; Marino, Molly; Ni, Pengsheng; Soley Bori, Marina; Amaya, Flor; Dore, Emily; Ryan, Colleen M; Schneider, Jeff C; Shie, Vivian; Acton, Amy; Jette, Alan M

    2017-10-01

    Measuring the impact burn injuries have on social participation is integral to understanding and improving survivors' quality of life, yet there are no existing instruments that comprehensively measure the social participation of burn survivors. This project aimed to develop the Life Impact Burn Recovery Evaluation Profile (LIBRE), a patient-reported multidimensional assessment for understanding the social participation after burn injuries. 192 questions representing multiple social participation areas were administered to a convenience sample of 601 burn survivors. Exploratory factor analysis and confirmatory factor analysis (CFA) were used to identify the underlying structure of the data. Using item response theory methods, a Graded Response Model was applied for each identified sub-domain. The resultant multidimensional LIBRE Profile can be administered via Computerized Adaptive Testing (CAT) or fixed short forms. The study sample included 54.7% women with a mean age of 44.6 (SD 15.9) years. The average time since burn injury was 15.4 years (0-74 years) and the average total body surface area burned was 40% (1-97%). The CFA indicated acceptable fit statistics (CFI range 0.913-0.977, TLI range 0.904-0.974, RMSEA range 0.06-0.096). The six unidimensional scales were named: relationships with family and friends, social interactions, social activities, work and employment, romantic relationships, and sexual relationships. The marginal reliability of the full item bank and CATs ranged from 0.84 to 0.93, with ceiling effects less than 15% for all scales. The LIBRE Profile is a promising new measure of social participation following a burn injury that enables burn survivors and their care providers to measure social participation.

  11. BurnCase 3D software validation study: Burn size measurement accuracy and inter-rater reliability.

    Science.gov (United States)

    Parvizi, Daryousch; Giretzlehner, Michael; Wurzer, Paul; Klein, Limor Dinur; Shoham, Yaron; Bohanon, Fredrick J; Haller, Herbert L; Tuca, Alexandru; Branski, Ludwik K; Lumenta, David B; Herndon, David N; Kamolz, Lars-P

    2016-03-01

    The aim of this study was to compare the accuracy of burn size estimation using the computer-assisted software BurnCase 3D (RISC Software GmbH, Hagenberg, Austria) with that using a 2D scan, considered to be the actual burn size. Thirty artificial burn areas were pre planned and prepared on three mannequins (one child, one female, and one male). Five trained physicians (raters) were asked to assess the size of all wound areas using BurnCase 3D software. The results were then compared with the real wound areas, as determined by 2D planimetry imaging. To examine inter-rater reliability, we performed an intraclass correlation analysis with a 95% confidence interval. The mean wound area estimations of the five raters using BurnCase 3D were in total 20.7±0.9% for the child, 27.2±1.5% for the female and 16.5±0.1% for the male mannequin. Our analysis showed relative overestimations of 0.4%, 2.8% and 1.5% for the child, female and male mannequins respectively, compared to the 2D scan. The intraclass correlation between the single raters for mean percentage of the artificial burn areas was 98.6%. There was also a high intraclass correlation between the single raters and the 2D Scan visible. BurnCase 3D is a valid and reliable tool for the determination of total body surface area burned in standard models. Further clinical studies including different pediatric and overweight adult mannequins are warranted. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  12. Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region

    Science.gov (United States)

    Moreira, Demerval S.; Longo, Karla M.; Freitas, Saulo R.; Yamasoe, Marcia A.; Mercado, Lina M.; Rosário, Nilton E.; Gloor, Emauel; Viana, Rosane S. M.; Miller, John B.; Gatti, Luciana V.; Wiedemann, Kenia T.; Domingues, Lucas K. G.; Correia, Caio C. S.

    2017-12-01

    Every year, a dense smoke haze covers a large portion of South America originating from fires in the Amazon Basin and central parts of Brazil during the dry biomass burning season between August and October. Over a large portion of South America, the average aerosol optical depth at 550 nm exceeds 1.0 during the fire season, while the background value during the rainy season is below 0.2. Biomass burning aerosol particles increase scattering and absorption of the incident solar radiation. The regional-scale aerosol layer reduces the amount of solar energy reaching the surface, cools the near-surface air, and increases the diffuse radiation fraction over a large disturbed area of the Amazon rainforest. These factors affect the energy and CO2 fluxes at the surface. In this work, we applied a fully integrated atmospheric model to assess the impact of biomass burning aerosols in CO2 fluxes in the Amazon region during 2010. We address the effects of the attenuation of global solar radiation and the enhancement of the diffuse solar radiation flux inside the vegetation canopy. Our results indicate that biomass burning aerosols led to increases of about 27 % in the gross primary productivity of Amazonia and 10 % in plant respiration as well as a decline in soil respiration of 3 %. Consequently, in our model Amazonia became a net carbon sink; net ecosystem exchange during September 2010 dropped from +101 to -104 TgC when the aerosol effects are considered, mainly due to the aerosol diffuse radiation effect. For the forest biome, our results point to a dominance of the diffuse radiation effect on CO2 fluxes, reaching a balance of 50-50 % between the diffuse and direct aerosol effects for high aerosol loads. For C3 grasses and savanna (cerrado), as expected, the contribution of the diffuse radiation effect is much lower, tending to zero with the increase in aerosol load. Taking all biomes together, our model shows the Amazon during the dry season, in the presence of high

  13. Modeling the radiative effects of biomass burning aerosols on carbon fluxes in the Amazon region

    Directory of Open Access Journals (Sweden)

    D. S. Moreira

    2017-12-01

    Full Text Available Every year, a dense smoke haze covers a large portion of South America originating from fires in the Amazon Basin and central parts of Brazil during the dry biomass burning season between August and October. Over a large portion of South America, the average aerosol optical depth at 550 nm exceeds 1.0 during the fire season, while the background value during the rainy season is below 0.2. Biomass burning aerosol particles increase scattering and absorption of the incident solar radiation. The regional-scale aerosol layer reduces the amount of solar energy reaching the surface, cools the near-surface air, and increases the diffuse radiation fraction over a large disturbed area of the Amazon rainforest. These factors affect the energy and CO2 fluxes at the surface. In this work, we applied a fully integrated atmospheric model to assess the impact of biomass burning aerosols in CO2 fluxes in the Amazon region during 2010. We address the effects of the attenuation of global solar radiation and the enhancement of the diffuse solar radiation flux inside the vegetation canopy. Our results indicate that biomass burning aerosols led to increases of about 27 % in the gross primary productivity of Amazonia and 10 % in plant respiration as well as a decline in soil respiration of 3 %. Consequently, in our model Amazonia became a net carbon sink; net ecosystem exchange during September 2010 dropped from +101 to −104 TgC when the aerosol effects are considered, mainly due to the aerosol diffuse radiation effect. For the forest biome, our results point to a dominance of the diffuse radiation effect on CO2 fluxes, reaching a balance of 50–50 % between the diffuse and direct aerosol effects for high aerosol loads. For C3 grasses and savanna (cerrado, as expected, the contribution of the diffuse radiation effect is much lower, tending to zero with the increase in aerosol load. Taking all biomes together, our model shows the Amazon during the dry

  14. In-situ burning of Orimulsion : small scale burns

    International Nuclear Information System (INIS)

    Fingas, M.F.

    2002-01-01

    This study examined the feasibility of burning Orimulsion. In-situ burning has always been a viable method for cleaning oil spills on water because it can effectively reduce the amount of spilled oil and eliminate the need to collect, store, transport and dispose of recovered oil. Orimulsion, however, behaves very differently from conventional oil when it is spilled because of its composition of 70 per cent bitumen in 30 per cent water. In-situ burning of this surfactant-stablized oil-in-water emulsion has never been seriously considered because of the perception that Orimulsion could not be ignited, and if it could, ignition would not be sustained. In this study, burn tests were conducted on 3 scales in a Cleveland Open Cup apparatus of 5 cm, 10 cm and 50 cm diameters. Larger scale burns were conducted in specially built pans. All tests were conducted on salt water which caused the bitumen to separate from the water. The objective was to determine if sufficient vapours could be generated to ignite the Orimulsion. The study also measured if a sustained flame would result in successful combustion. Both objectives were successfully accomplished. Diesel fuel was used to ignite the Orimulsion in the specially designed pan for large scale combustion. Quantitative removal of Orimulsion was achieved in all cases, but in some burns it was necessary to re-ignite the Orimulsion. It was noted that when Orimulsion burns, some trapped water droplets in the bitumen explode with enough force to extinguish a small flame. This did not occur on large-scale burns. It was concluded that the potential for successful in-situ burning increases with size. It was determined that approximately 1 mm in thickness of diesel fuel is needed to ignite a burn. 5 refs., 3 tabs., 4 figs

  15. Long term mortality in critically ill burn survivors.

    Science.gov (United States)

    Nitzschke, Stephanie; Offodile, Anaeze C; Cauley, Ryan P; Frankel, Jason E; Beam, Andrew; Elias, Kevin M; Gibbons, Fiona K; Salim, Ali; Christopher, Kenneth B

    2017-09-01

    Little is known about long term survival risk factors in critically ill burn patients who survive hospitalization. We hypothesized that patients with major burns who survive hospitalization would have favorable long term outcomes. We performed a two center observational cohort study in 365 critically ill adult burn patients who survived to hospital discharge. The exposure of interest was major burn defined a priori as >20% total body surface area burned [TBSA]. The modified Baux score was determined by age + %TBSA+ 17(inhalational injury). The primary outcome was all-cause 5year mortality based on the US Social Security Administration Death Master File. Adjusted associations were estimated through fitting of multivariable logistic regression models. Our final model included adjustment for inhalational injury, presence of 3rd degree burn, gender and the acute organ failure score, a validated ICU risk-prediction score derived from age, ethnicity, surgery vs. medical patient type, comorbidity, sepsis and acute organ failure covariates. Time-to-event analysis was performed using Cox proportional hazard regression. Of the cohort patients studied, 76% were male, 29% were non white, 14% were over 65, 32% had TBSA >20%, and 45% had inhalational injury. The mean age was 45, 92% had 2nd degree burns, 60% had 3rd degree burns, 21% received vasopressors, and 26% had sepsis. The mean TBSA was 20.1%. The mean modified Baux score was 72.8. Post hospital discharge 5year mortality rate was 9.0%. The 30day hospital readmission rate was 4%. Patients with major burns were significantly younger (41 vs. 47 years) had a significantly higher modified Baux score (89 vs. 62), and had significantly higher comorbidity, acute organ failure, inhalational injury and sepsis (all Pburns. In the multivariable logistic regression model, major burn was associated with a 3 fold decreased odds of 5year post-discharge mortality compared to patients with TBSAburn, gender and the acute organ failure score

  16. Performance of the Lead-Alloy Cooled Concept Balanced for Actinide Burning and Electricity Production

    International Nuclear Information System (INIS)

    Pavel Hejzlar; Cliff Davis

    2004-01-01

    A lead-bismuth-cooled fast reactor concept targeted for a balanced mission of actinide burning and low-cost electricity production is proposed and its performance analyzed. The design explores the potential benefits of thorium-based fuel in actinide-burning cores, in particular in terms of the reduction of the large reactivity swing and enhancement of the small Doppler coefficient typical of fertile-free actinide burners. Reduced electricity production cost is pursued through a longer cycle length than that used for fertile-free burners and thus a higher capacity factor. It is shown that the concept can achieve a high transuranics destruction rate, which is only 20% lower than that of an accelerator-driven system with fertile-free fuel. The small negative fuel temperature reactivity coefficient, small positive coolant temperature reactivity coefficient, and negative core radial expansion coefficient provide self-regulating characteristics so that the reactor is capable of inherent shutdown during major transients without scram, as in the Integral Fast Reactor. This is confirmed by thermal-hydraulic analysis of several transients without scram, including primary coolant pump trip, station blackout, and reactivity step insertion, which showed that the reactor was able to meet all identified thermal limits. However, the benefits of high actinide consumption and small reactivity swing can be attained only if the uranium from the discharged fuel is separated and not recycled. This additional uranium separation step and thorium reprocessing significantly increase the fuel cycle costs. Because the higher fuel cycle cost has a larger impact on the overall cost of electricity than the savings from the higher capacity factor afforded through use of thorium, this concept appears less promising than the fertile-free actinide burners

  17. Refined Use of Satellite Aerosol Optical Depth Snapshots to Constrain Biomass Burning Emissions in the GOCART Model

    Science.gov (United States)

    Petrenko, Mariya; Kahn, Ralph; Chin, Mian; Limbacher, James

    2017-10-01

    Simulations of biomass burning (BB) emissions in global chemistry and aerosol transport models depend on external inventories, which provide location and strength for BB aerosol sources. Our previous work shows that to first order, satellite snapshots of aerosol optical depth (AOD) near the emitted smoke plume can be used to constrain model-simulated AOD, and effectively, the smoke source strength. We now refine the satellite-snapshot method and investigate where applying simple multiplicative emission adjustment factors alone to the widely used Global Fire Emission Database version 3 emission inventory can achieve regional-scale consistency between Moderate Resolution Imaging Spectroradiometer (MODIS) AOD snapshots and the Goddard Chemistry Aerosol Radiation and Transport model. The model and satellite AOD are compared globally, over a set of BB cases observed by the MODIS instrument during the 2004, and 2006-2008 biomass burning seasons. Regional discrepancies between the model and satellite are diverse around the globe yet quite consistent within most ecosystems. We refine our approach to address physically based limitations of our earlier work (1) by expanding the number of fire cases from 124 to almost 900, (2) by using scaled reanalysis-model simulations to fill missing AOD retrievals in the MODIS observations, (3) by distinguishing the BB components of the total aerosol load from background aerosol in the near-source regions, and (4) by including emissions from fires too small to be identified explicitly in the satellite observations. The small-fire emission adjustment shows the complimentary nature of correcting for source strength and adding geographically distinct missing sources. Our analysis indicates that the method works best for fire cases where the BB fraction of total AOD is high, primarily evergreen or deciduous forests. In heavily polluted or agricultural burning regions, where smoke and background AOD values tend to be comparable, this approach

  18. Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model.

    Science.gov (United States)

    Fang, Yilin; Scheibe, Timothy D; Mahadevan, Radhakrishnan; Garg, Srinath; Long, Philip E; Lovley, Derek R

    2011-03-25

    The activity of microorganisms often plays an important role in dynamic natural attenuation or engineered bioremediation of subsurface contaminants, such as chlorinated solvents, metals, and radionuclides. To evaluate and/or design bioremediated systems, quantitative reactive transport models are needed. State-of-the-art reactive transport models often ignore the microbial effects or simulate the microbial effects with static growth yield and constant reaction rate parameters over simulated conditions, while in reality microorganisms can dynamically modify their functionality (such as utilization of alternative respiratory pathways) in response to spatial and temporal variations in environmental conditions. Constraint-based genome-scale microbial in silico models, using genomic data and multiple-pathway reaction networks, have been shown to be able to simulate transient metabolism of some well studied microorganisms and identify growth rate, substrate uptake rates, and byproduct rates under different growth conditions. These rates can be identified and used to replace specific microbially-mediated reaction rates in a reactive transport model using local geochemical conditions as constraints. We previously demonstrated the potential utility of integrating a constraint-based microbial metabolism model with a reactive transport simulator as applied to bioremediation of uranium in groundwater. However, that work relied on an indirect coupling approach that was effective for initial demonstration but may not be extensible to more complex problems that are of significant interest (e.g., communities of microbial species and multiple constraining variables). Here, we extend that work by presenting and demonstrating a method of directly integrating a reactive transport model (FORTRAN code) with constraint-based in silico models solved with IBM ILOG CPLEX linear optimizer base system (C library). The models were integrated with BABEL, a language interoperability tool. The

  19. Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model

    Science.gov (United States)

    Fang, Yilin; Scheibe, Timothy D.; Mahadevan, Radhakrishnan; Garg, Srinath; Long, Philip E.; Lovley, Derek R.

    2011-03-01

    The activity of microorganisms often plays an important role in dynamic natural attenuation or engineered bioremediation of subsurface contaminants, such as chlorinated solvents, metals, and radionuclides. To evaluate and/or design bioremediated systems, quantitative reactive transport models are needed. State-of-the-art reactive transport models often ignore the microbial effects or simulate the microbial effects with static growth yield and constant reaction rate parameters over simulated conditions, while in reality microorganisms can dynamically modify their functionality (such as utilization of alternative respiratory pathways) in response to spatial and temporal variations in environmental conditions. Constraint-based genome-scale microbial in silico models, using genomic data and multiple-pathway reaction networks, have been shown to be able to simulate transient metabolism of some well studied microorganisms and identify growth rate, substrate uptake rates, and byproduct rates under different growth conditions. These rates can be identified and used to replace specific microbially-mediated reaction rates in a reactive transport model using local geochemical conditions as constraints. We previously demonstrated the potential utility of integrating a constraint-based microbial metabolism model with a reactive transport simulator as applied to bioremediation of uranium in groundwater. However, that work relied on an indirect coupling approach that was effective for initial demonstration but may not be extensible to more complex problems that are of significant interest (e.g., communities of microbial species and multiple constraining variables). Here, we extend that work by presenting and demonstrating a method of directly integrating a reactive transport model (FORTRAN code) with constraint-based in silico models solved with IBM ILOG CPLEX linear optimizer base system (C library). The models were integrated with BABEL, a language interoperability tool. The

  20. Isothermal CO2 Gasification Reactivity and Kinetic Models of Biomass Char/Anthracite Char

    Directory of Open Access Journals (Sweden)

    Hai-Bin Zuo

    2015-07-01

    Full Text Available Gasification of four biomass chars and anthracite char were investigated under a CO2 atmosphere using a thermo-gravimetric analyzer. Reactivity differences of chars were considered in terms of pyrolysis temperature, char types, crystallinity, and inherent minerals. The results show that the gasification reactivity of char decreased with the increase of pyrolysis temperature. Char gasification reactivity followed the order of anthracite coal char (AC-char ˂ pine sawdust char (PS-char ˂ peanut hull char (PH-char ˂ wheat straw char (WS-char ˂ corncob char (CB-char under the same pyrolysis temperature. Two repesentative gas-solid models, the random pore model (RPM and the modified random pore model (MRPM, were applied to describe the reactive behaviour of chars. The results indicate RPM performs well to describe gasification rates of chars but cannot predict the phenomenon that there appears to exist a peak conversion for biomass chars at a high conversion rate, where the MRPM performs better.

  1. Concept on coupled spectrum B/T (burning and/or transmutation) reactor for treatment of minor actinides by thermal and fast neutrons

    International Nuclear Information System (INIS)

    Aziz, Ferhat; Kitamoto, Asashi

    1996-01-01

    A conceptual design of B/T (burning and/or transmutation) reactor based on a modified conventional 1150 MWe-PWR system, with core consisted of two concentric regions for thermal and fast neutrons, was proposed herein for B/T treatment of MA (minor actinides). The B/T fuel considered was supposed such that MA discharged from 1 GWe-LWR was blended homogeneously with the composition of LWR fuel. In the outer region 23- Np, 241 Am and 243 Am were loaded and burned by thermal neutron, while in the inner region 244 Cm was loaded and burned mainly by fast neutron. The geometry of B/T fuel and the fuel assembly in the outer region was left in the same condition to those of standard PWR while in the inner region the B/T fuel was arranged in the hexagonal geometry, allowed high fuel to coolant volume ratio (V m /V f ), to keep the harder neutron spectrum. Two cases of the Coupled Spectrum B/T Reactor (CSR) with different (V m 1 f ) ratio in the inner region were studied, and the results for the tight lattice with (V m /V f ) = 0.5 showed that those isotopes approached the equilibrium composition after about 5 recycle period, when the CSR was operated under the reactivity swing of 2.8 % dk/k. The evaluations on the void coefficient of reactivity, the Doppler effect and the reactivity swing showed that the CSR concept has the inherent safety and can burn and/or transmute all kind of MA in a single reactor. This CSR can burn about 808 kg of MA in one recycle period of 3 years, which is equivalent to the discharged fuel from about 12 units of LWR in a year. (author)

  2. Evaluating the influences of biomass burning during 2006 BASE-ASIA: a regional chemical transport modeling

    Science.gov (United States)

    Fu, J. S.; Hsu, N. C.; Gao, Y.; Huang, K.; Li, C.; Lin, N.-H.; Tsay, S.-C.

    2012-05-01

    To evaluate the impact of biomass burning from Southeast Asia to East Asia, this study conducted numerical simulations during NASA's 2006 Biomass-burning Aerosols in South-East Asia: Smoke Impact Assessment (BASE-ASIA). Two typical episode periods (27-28 March and 13-14 April) were examined. Two emission inventories, FLAMBE and GFED, were used in the simulations. The influences during two episodes in the source region (Southeast Asia) contributed to the surface CO, O3 and PM2.5 concentrations as high as 400 ppbv, 20 ppbv and 80 μg m-3, respectively. The perturbations with and without biomass burning of the above three species during the intense episodes were in the range of 10 to 60%, 10 to 20% and 30 to 70%, respectively. The impact due to long-range transport could spread over the southeastern parts of East Asia and could reach about 160 to 360 ppbv, 8 to 18 ppbv and 8 to 64 μg m-3 on CO, O3 and PM2.5, respectively; the percentage impact could reach 20 to 50% on CO, 10 to 30% on O3, and as high as 70% on PM2.5. In March, the impact of biomass burning mainly concentrated in Southeast Asia and southern China, while in April the impact becomes slightly broader and even could go up to the Yangtze River Delta region. Two cross-sections at 15° N and 20° N were used to compare the vertical flux of biomass burning. In the source region (Southeast Asia), CO, O3 and PM2.5 concentrations had a strong upward transport from surface to high altitudes. The eastward transport becomes strong from 2 to 8 km in the free troposphere. The subsidence process during the long-range transport contributed 60 to 70%, 20 to 50%, and 80% on CO, O3 and PM2.5, respectively to surface in the downwind area. The study reveals the significant impact of Southeastern Asia biomass burning on the air quality in both local and downwind areas, particularly during biomass burning episodes. This modeling study might provide constraints of lower limit. An additional study is underway for an active

  3. Okanagan indoor wood burning appliance inventory survey

    International Nuclear Information System (INIS)

    2001-01-01

    A survey was conducted to determine the usage and nature of wood burning appliances used by residents in British Columbia's Okanagan region. The objective was to better understand this source of air quality concern and to facilitate strategic planning, guidelines and legislation. The survey also provides a baseline to track the effectiveness of any reduction strategies. It identifies the different types of wood burning appliances used in the community and presents residential options about potential bylaws to protect air quality. The receptivity of households to switch to more efficient wood burning appliances was also examined. The survey completes a portion of an overall emissions inventory for the Okanagan Valley. Environment Canada uses the particulate loading results to model the air quality in the airshed. Results showed that approximately 21 per cent of the households in the Okanagan use indoor wood burning appliances, and burn an average of 2.3 cords of wood each year. Only 11 per cent of the appliances are considered to have advanced burning technology. It is projected that the use of wood burning appliances in the Okanagan will increase by 5 to 7 per cent in the next 2 years. Most residents have good burning habits, but some improvements can still be made. Many residents are considering exchanging old wood burning appliances for clean burning technology appliances for environmental and health reasons. Most households would support a bylaw to control nuisance amounts of smoke from wood burning appliances. 20 tabs., 5 figs

  4. Burn Injury Assessment Tool with Morphable 3D Human Body Models

    Science.gov (United States)

    2017-04-21

    graphical user interface toolkit, Qt 5.8, for armeabi-v7a processor and linked to Java Development Kit 8 as well as Android NDK (Native Development Kit...demarcation, e.g. armpits and groin regions. We have previously added a skeletal framework to the ANSUR II male model through an Army SBIR Phase II project...of the whole body and each body part independently to simulate compartment swelling after burns. This skeletal framework will be added to our male

  5. Estimating NIRR-1 burn-up and core life time expectancy using the codes WIMS and CITATION

    Science.gov (United States)

    Yahaya, B.; Ahmed, Y. A.; Balogun, G. I.; Agbo, S. A.

    The Nigeria Research Reactor-1 (NIRR-1) is a low power miniature neutron source reactor (MNSR) located at the Centre for Energy Research and Training, Ahmadu Bello University, Zaria Nigeria. The reactor went critical with initial core excess reactivity of 3.77 mk. The NIRR-1 cold excess reactivity measured at the time of commissioning was determined to be 4.97 mk, which is more than the licensed range of 3.5-4 mk. Hence some cadmium poison worth -1.2 mk was inserted into one of the inner irradiation sites which act as reactivity regulating device in order to reduce the core excess reactivity to 3.77 mk, which is within recommended licensed range of 3.5 mk and 4.0 mk. In this present study, the burn-up calculations of the NIRR-1 fuel and the estimation of the core life time expectancy after 10 years (the reactor core expected cycle) have been conducted using the codes WIMS and CITATION. The burn-up analyses carried out indicated that the excess reactivity of NIRR-1 follows a linear decreasing trend having 216 Effective Full Power Days (EFPD) operations. The reactivity worth of top beryllium shim data plates was calculated to be 19.072 mk. The result of depletion analysis for NIRR-1 core shows that (7.9947 ± 0.0008) g of U-235 was consumed for the period of 12 years of operating time. The production of the build-up of Pu-239 was found to be (0.0347 ± 0.0043) g. The core life time estimated in this research was found to be 30.33 years. This is in good agreement with the literature

  6. Simulation of reactive nanolaminates using reduced models: II. Normal propagation

    Energy Technology Data Exchange (ETDEWEB)

    Salloum, Maher; Knio, Omar M. [Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD 21218-2686 (United States)

    2010-03-15

    Transient normal flame propagation in reactive Ni/Al multilayers is analyzed computationally. Two approaches are implemented, based on generalization of earlier methodology developed for axial propagation, and on extension of the model reduction formalism introduced in Part I. In both cases, the formulation accommodates non-uniform layering as well as the presence of inert layers. The equations of motion for the reactive system are integrated using a specially-tailored integration scheme, that combines extended-stability, Runge-Kutta-Chebychev (RKC) integration of diffusion terms with exact treatment of the chemical source term. The detailed and reduced models are first applied to the analysis of self-propagating fronts in uniformly-layered materials. Results indicate that both the front velocities and the ignition threshold are comparable for normal and axial propagation. Attention is then focused on analyzing the effect of a gap composed of inert material on reaction propagation. In particular, the impacts of gap width and thermal conductivity are briefly addressed. Finally, an example is considered illustrating reaction propagation in reactive composites combining regions corresponding to two bilayer widths. This setup is used to analyze the effect of the layering frequency on the velocity of the corresponding reaction fronts. In all cases considered, good agreement is observed between the predictions of the detailed model and the reduced model, which provides further support for adoption of the latter. (author)

  7. Modelling carbonaceous aerosol from residential solid fuel burning with different assumptions for emissions

    Directory of Open Access Journals (Sweden)

    R. Ots

    2018-04-01

    Full Text Available Evidence is accumulating that emissions of primary particulate matter (PM from residential wood and coal combustion in the UK may be underestimated and/or spatially misclassified. In this study, different assumptions for the spatial distribution and total emission of PM from solid fuel (wood and coal burning in the UK were tested using an atmospheric chemical transport model. Modelled concentrations of the PM components were compared with measurements from aerosol mass spectrometers at four sites in central and Greater London (ClearfLo campaign, 2012, as well as with measurements from the UK black carbon network.The two main alternative emission scenarios modelled were Base4x and combRedist. For Base4x, officially reported PM2.5 from the residential and other non-industrial combustion source sector were increased by a factor of four. For the combRedist experiment, half of the baseline emissions from this same source were redistributed by residential population density to simulate the effect of allocating some emissions to the smoke control areas (that are assumed in the national inventory to have no emissions from this source. The Base4x scenario yielded better daily and hourly correlations with measurements than the combRedist scenario for year-long comparisons of the solid fuel organic aerosol (SFOA component at the two London sites. However, the latter scenario better captured mean measured concentrations across all four sites. A third experiment, Redist – all emissions redistributed linearly to population density, is also presented as an indicator of the maximum concentrations an assumption like this could yield.The modelled elemental carbon (EC concentrations derived from the combRedist experiments also compared well with seasonal average concentrations of black carbon observed across the network of UK sites. Together, the two model scenario simulations of SFOA and EC suggest both that residential solid fuel emissions may be higher than

  8. Modelling carbonaceous aerosol from residential solid fuel burning with different assumptions for emissions

    Science.gov (United States)

    Ots, Riinu; Heal, Mathew R.; Young, Dominique E.; Williams, Leah R.; Allan, James D.; Nemitz, Eiko; Di Marco, Chiara; Detournay, Anais; Xu, Lu; Ng, Nga L.; Coe, Hugh; Herndon, Scott C.; Mackenzie, Ian A.; Green, David C.; Kuenen, Jeroen J. P.; Reis, Stefan; Vieno, Massimo

    2018-04-01

    Evidence is accumulating that emissions of primary particulate matter (PM) from residential wood and coal combustion in the UK may be underestimated and/or spatially misclassified. In this study, different assumptions for the spatial distribution and total emission of PM from solid fuel (wood and coal) burning in the UK were tested using an atmospheric chemical transport model. Modelled concentrations of the PM components were compared with measurements from aerosol mass spectrometers at four sites in central and Greater London (ClearfLo campaign, 2012), as well as with measurements from the UK black carbon network.The two main alternative emission scenarios modelled were Base4x and combRedist. For Base4x, officially reported PM2.5 from the residential and other non-industrial combustion source sector were increased by a factor of four. For the combRedist experiment, half of the baseline emissions from this same source were redistributed by residential population density to simulate the effect of allocating some emissions to the smoke control areas (that are assumed in the national inventory to have no emissions from this source). The Base4x scenario yielded better daily and hourly correlations with measurements than the combRedist scenario for year-long comparisons of the solid fuel organic aerosol (SFOA) component at the two London sites. However, the latter scenario better captured mean measured concentrations across all four sites. A third experiment, Redist - all emissions redistributed linearly to population density, is also presented as an indicator of the maximum concentrations an assumption like this could yield.The modelled elemental carbon (EC) concentrations derived from the combRedist experiments also compared well with seasonal average concentrations of black carbon observed across the network of UK sites. Together, the two model scenario simulations of SFOA and EC suggest both that residential solid fuel emissions may be higher than inventory

  9. Possibilities of achieving non-positive void reactivity effect in fast sodium-cooled reactors with increased self-protection

    International Nuclear Information System (INIS)

    Alekseev, P.N.; Zverkov, Yu.A.; Morozov, A.G.; Orlov, V.V.; Slesarev, I.S.; Subbotin, S.A.

    1989-01-01

    The problems of self-protection inhancement for the liquid-metal cooled fast reactors with intra-assembly heterogeneity of the core are studied. Possible approaches to arrangement of such reactors with various powers characterized by high levels of coolant natural circulation, minimum reactivity changes during fuel burn-up and non-positive void effect of reactivity are found. 10 refs.; 11 figs

  10. Fuel burn-up distribution and transuranic nuclide contents produced at the first cycle operation of AP1000

    International Nuclear Information System (INIS)

    Jati Susilo; Jupiter Sitorus Pane

    2016-01-01

    AP1000 reactor core was designed with nominal power of 1154 MWe (3415 MWth), operated within life time of 60 years and cycle length of 18 months. For the first cycle, the AP1000 core uses three kinds of UO 2 enrichment, they are 2.35 w/o, 3.40 w/o and 4.45 w/o. Absorber materials such as ZrB 2 , Pyrex and Boron solution are used to compensate the excess reactivity at the beginning of cycle. In the core, U-235 fuels are burned by fission reaction and produce energy, fission products and new neutron. Because of the U-238 neutron absorption reaction, the high level radioactive waste of heavy nuclide transuranic such as Pu, Am, Cm and Np are also generated. They have a very long half life. The purpose of this study is to evaluate the result of fuel burn-up distribution and heavy nuclide transuranic contents produced by AP1000 at the end of first cycle operation (EOFC). Calculation of ¼ part of the AP1000 core in the 2 dimensional model has been done using SRAC2006 code with the module of COREBN/HIST. The input data called the table of macroscopic cross section, is calculated using module of PIJ. The result shows that the maximum fuel assembly (FA) burn-up is 27.04 GWD/MTU, that is still lower than allowed maximum burn-up of 62 GWD/MTU. Fuel loading position at the center/middle of the core will produce bigger burn-up and transuranic nuclide than one at the edges the of the core. The use of IFBA fuel just give a small effect to lessen the fuel burn-up and transuranic nuclide production. (author)

  11. Modeling and processing of laser Doppler reactive hyperaemia signals

    Science.gov (United States)

    Humeau, Anne; Saumet, Jean-Louis; L'Huiller, Jean-Pierre

    2003-07-01

    Laser Doppler flowmetry is a non-invasive method used in the medical domain to monitor the microvascular blood cell perfusion through tissue. Most commercial laser Doppler flowmeters use an algorithm calculating the first moment of the power spectral density to give the perfusion value. Many clinical applications measure the perfusion after a vascular provocation such as a vascular occlusion. The response obtained is then called reactive hyperaemia. Target pathologies include diabetes, hypertension and peripheral arterial occlusive diseases. In order to have a deeper knowledge on reactive hyperaemia acquired by the laser Doppler technique, the present work first proposes two models (one analytical and one numerical) of the observed phenomenon. Then, a study on the multiple scattering between photons and red blood cells occurring during reactive hyperaemia is carried out. Finally, a signal processing that improves the diagnosis of peripheral arterial occlusive diseases is presented.

  12. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or burned coal mine waste shall be removed from a permitted disposal...

  13. Integrated predictive modelling simulations of burning plasma experiment designs

    International Nuclear Information System (INIS)

    Bateman, Glenn; Onjun, Thawatchai; Kritz, Arnold H

    2003-01-01

    Models for the height of the pedestal at the edge of H-mode plasmas (Onjun T et al 2002 Phys. Plasmas 9 5018) are used together with the Multi-Mode core transport model (Bateman G et al 1998 Phys. Plasmas 5 1793) in the BALDUR integrated predictive modelling code to predict the performance of the ITER (Aymar A et al 2002 Plasma Phys. Control. Fusion 44 519), FIRE (Meade D M et al 2001 Fusion Technol. 39 336), and IGNITOR (Coppi B et al 2001 Nucl. Fusion 41 1253) fusion reactor designs. The simulation protocol used in this paper is tested by comparing predicted temperature and density profiles against experimental data from 33 H-mode discharges in the JET (Rebut P H et al 1985 Nucl. Fusion 25 1011) and DIII-D (Luxon J L et al 1985 Fusion Technol. 8 441) tokamaks. The sensitivities of the predictions are evaluated for the burning plasma experimental designs by using variations of the pedestal temperature model that are one standard deviation above and below the standard model. Simulations of the fusion reactor designs are carried out for scans in which the plasma density and auxiliary heating power are varied

  14. The burn-up credit physics and the 40. Minerve anniversary

    International Nuclear Information System (INIS)

    Santamarina, A.; Toubon, H.; Trakas, C.

    2000-01-01

    The technical meeting organized by the SFEN on the burn-up credit (CBU) physics, took place the 23 november 1999 at Cadarache. the first presentation dealt with the economic interest and the neutronic problems of the CBU. Then two papers presented how taking into account the CBU in the industry in matter of transport, storage in pool, reprocessing and criticality calculation (MCNP4/Apollo2-F benchmark). An experimental method for the reactivity measurement through oscillations in the Minerve reactor, has been presented with an analysis of the possible errors. The future research program OSMOSE, taking into account the minor actinides in the CBU, was also developed. The last paper presented the national and international research programs in the CBU domain, in particular experiments realized in CEA/Valduc and the OECD Burn-up Criticality Benchmark Group activities. (A.L.B.)

  15. Modeling biogechemical reactive transport in a fracture zone

    Energy Technology Data Exchange (ETDEWEB)

    Molinero, Jorge; Samper, Javier; Yang, Chan Bing, and Zhang, Guoxiang; Guoxiang, Zhang

    2005-01-14

    A coupled model of groundwater flow, reactive solute transport and microbial processes for a fracture zone of the Aspo site at Sweden is presented. This is the model of the so-called Redox Zone Experiment aimed at evaluating the effects of tunnel construction on the geochemical conditions prevailing in a fracture granite. It is found that a model accounting for microbially-mediated geochemical processes is able to reproduce the unexpected measured increasing trends of dissolved sulfate and bicarbonate. The model is also useful for testing hypotheses regarding the role of microbial processes and evaluating the sensitivity of model results to changes in biochemical parameters.

  16. Modeling biogeochemical reactive transport in a fracture zone

    International Nuclear Information System (INIS)

    Molinero, Jorge; Samper, Javier; Yang, Chan Bing; Zhang, Guoxiang; Guoxiang, Zhang

    2005-01-01

    A coupled model of groundwater flow, reactive solute transport and microbial processes for a fracture zone of the Aspo site at Sweden is presented. This is the model of the so-called Redox Zone Experiment aimed at evaluating the effects of tunnel construction on the geochemical conditions prevailing in a fracture granite. It is found that a model accounting for microbially-mediated geochemical processes is able to reproduce the unexpected measured increasing trends of dissolved sulfate and bicarbonate. The model is also useful for testing hypotheses regarding the role of microbial processes and evaluating the sensitivity of model results to changes in biochemical parameters

  17. On the Response of Nascent Soot Nanostructure and Oxidative Reactivity to Photoflash Exposure

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2017-07-01

    Full Text Available Soot particles are a kind of major pollutant from fuel combustion. To enrich the understanding of soot, this work focuses on investigating detailed influences of instantaneous external irradiation (conventional photoflash exposure on nanostructure as well as oxidation reactivity of nascent soot particles. By detailed soot characterizations flash can reduce the mass of soot and soot nanostructure can be reconstructed substantially without burning. After flash, the degree of soot crystallization increases while the soot reactive rate decreases and the activation energy increases. In addition, nanostructure and oxidative reactivity of soot in air and Ar after flash are different due to their different thermal conductivities.

  18. Stress and sleep reactivity: a prospective investigation of the stress-diathesis model of insomnia.

    Science.gov (United States)

    Drake, Christopher L; Pillai, Vivek; Roth, Thomas

    2014-08-01

    To prospectively assess sleep reactivity as a diathesis of insomnia, and to delineate the interaction between this diathesis and naturalistic stress in the development of insomnia among normal sleepers. Longitudinal. Community-based. 2,316 adults from the Evolution of Pathways to Insomnia Cohort (EPIC) with no history of insomnia or depression (46.8 ± 13.2 y; 60% female). None. Participants reported the number of stressful events they encountered at baseline (Time 1), as well as the level of cognitive intrusion they experienced in response to each stressor. Stressful events (OR = 1.13; P stress-induced cognitive intrusion (OR = 1.61; P stressful events on risk for insomnia (P sleep reactivity significantly increased risk for insomnia (OR = 1.78; P sleep reactivity moderated the effects of stress-induced intrusion (P sleep reactivity. Trait sleep reactivity also constituted a significant risk for depression (OR = 1.67; P sleep reactivity is a significant risk factor for incident insomnia, and that it triggers insomnia by exacerbating the effects of stress-induced intrusion. Sleep reactivity is also a precipitant of depression, as mediated by insomnia. These findings support the stress-diathesis model of insomnia, while highlighting sleep reactivity as an important diathesis. Drake CL, Pillai V, Roth T. Stress and sleep reactivity: a prospective investigation of the stress-diathesis model of insomnia.

  19. Melioidosis: reactivation during radiation therapy

    International Nuclear Information System (INIS)

    Jegasothy, B.V.; Goslen, J.B.; Salvatore, M.A.

    1980-01-01

    Melioidosis is caused by Pseudomonas pseudomallei, a gram-negative, motile bacillus which is a naturally occurring soil saprophyte. The organism is endemic in Southeast Asia, the Philippines, Australia, and parts of Central and South America. Most human disease occurs from infection acquired in these countries. Infection with P pseudomallei may produce no apparent clinical disease. Acute pneumonitis or septicemia may result from inhalation of the organism, and inoculation into sites of trauma may cause localized skin abscesses, or the disease may remain latent and be reactivated months or years later by trauma, burns, or pneumococcal pneumonia, diabetic ketoacidosis, influenza, or bronchogenic carcinoma. The last is probably the commonest form of melioidosis seen in the United States. We present the first case of reactivation of melioidosis after radiation therapy for carcinoma of the lung, again emphasizing the need to consider melioidosis in a septic patient with a history of travel, especially to Southeast Asia

  20. Impact of a Newly Implemented Burn Protocol on Surgically Managed Partial Thickness Burns at a Specialized Burns Center in Singapore.

    Science.gov (United States)

    Tay, Khwee-Soon Vincent; Chong, Si-Jack; Tan, Bien-Keem

    2016-03-01

    This study evaluated the impact of a newly implemented protocol for superficial to mid-dermal partial thickness burns which involves early surgery and rapid coverage with biosynthetic dressing in a specialized national burns center in Singapore. Consecutive patients with 5% or greater total body surface area (TBSA) superficial to mid-dermal partial thickness burns injury admitted to the Burns Centre at the Singapore General Hospital between August and December 2014 for surgery within 48 hours of injury were prospectively recruited into the study to form the protocol group. Comparable historical cases from the year 2013 retrieved from the burns center audit database were used to form the historical control group. Demographics (age, sex), type and depth of burns, %TBSA burnt, number of operative sessions, and length of stay were recorded for each patient of both cohorts. Thirty-nine burns patients managed under the new protocol were compared with historical control (n = 39) comparable in age and extensiveness of burns. A significantly shorter length of stay (P burns was observed in the new protocol group (0.74 day/%TBSA) versus historical control (1.55 day/%TBSA). Fewer operative sessions were needed under the new protocol for burns 10% or greater TBSA burns (P protocol for surgically managed burns patients which involves early surgery and appropriate use of biosynthetic dressing on superficial to mid-dermal partial thickness burns. Clinically, shorter lengths of stay, fewer operative sessions, and decreased need for skin grafting of burns patient were observed.

  1. Performance of the Lead-Alloy-Cooled Reactor Concept Balanced for Actinide Burning and Electricity Production

    International Nuclear Information System (INIS)

    Hejzlar, Pavel; Davis, Cliff B.

    2004-01-01

    A lead-bismuth-cooled fast reactor concept targeted for a balanced mission of actinide burning and low-cost electricity production is proposed and its performance analyzed. The design explores the potential benefits of thorium-based fuel in actinide-burning cores, in particular in terms of the reduction of the large reactivity swing and enhancement of the small Doppler coefficient typical of fertile-free actinide burners. Reduced electricity production cost is pursued through a longer cycle length than that used for fertile-free burners and thus a higher capacity factor. It is shown that the concept can achieve a high transuranics destruction rate, which is only 20% lower than that of an accelerator-driven system with fertile-free fuel. The small negative fuel temperature reactivity coefficient, small positive coolant temperature reactivity coefficient, and negative core radial expansion coefficient provide self-regulating characteristics so that the reactor is capable of inherent shutdown during major transients without scram, as in the Integral Fast Reactor. This is confirmed by thermal-hydraulic analysis of several transients without scram, including primary coolant pump trip, station blackout, and reactivity step insertion, which showed that the reactor was able to meet all identified thermal limits. However, the benefits of high actinide consumption and small reactivity swing can be attained only if the uranium from the discharged fuel is separated and not recycled. This additional uranium separation step and thorium reprocessing significantly increase the fuel cycle costs. Because the higher fuel cycle cost has a larger impact on the overall cost of electricity than the savings from the higher capacity factor afforded through use of thorium, this concept appears less promising than the fertile-free actinide burners

  2. Air Pollution Episodes Associated with Prescribed Burns

    Science.gov (United States)

    Hart, M.; Di Virgilio, G.; Jiang, N.

    2017-12-01

    Air pollution events associated with wildfires have been associated with extreme health impacts. Prescribed burns are an important tool to reduce the severity of wildfires. However, if undertaken during unfavourable meteorological conditions, they too have the capacity to trigger extreme air pollution events. The Australian state of New South Wales has increased the annual average area treated by prescribed burn activities by 45%, in order to limit wildfire activity. Prescribed burns need to be undertaken during meteorological conditions that allow the fuel load to burn, while still allowing the burn to remain under control. These conditions are similar to those that inhibit atmospheric dispersion, resulting in a fine balance between managing fire risk and managing ambient air pollution. During prescribed burns, the Sydney air shed can experience elevated particulate matter concentrations, especially fine particulates (PM2.5) that occasionally exceed national air quality standards. Using pollutant and meteorological data from sixteen monitoring stations in Sydney we used generalized additive model and CART analyses to profile the meteorological conditions influencing air quality during planned burns. The insights gained from this study will help improve prescribed burn scheduling in order to reduce the pollution risk to the community, while allowing fire agencies to conduct this important work.

  3. Burns

    Science.gov (United States)

    A burn is damage to your body's tissues caused by heat, chemicals, electricity, sunlight, or radiation. Scalds from hot ... and gases are the most common causes of burns. Another kind is an inhalation injury, caused by ...

  4. Analgesic effects of dexamethasone in burn injury

    DEFF Research Database (Denmark)

    Werner, Mads U; Lassen, Birgit Vibeke; Kehlet, Henrik

    2002-01-01

    and secondary hyperalgesia. RESULTS: The burn injury induced significant increases in erythema (P burn did not differ between dexamethasone and placebo treatments (P >.6). There were no significant......BACKGROUND AND OBJECTIVES: Glucocorticoids are well-known adjuvant analgesics in certain chronic pain states. There is, however, a paucity of data on their analgesic efficacy in acute pain. Therefore, the aim of the study was to examine the analgesic effects of dexamethasone in a validated burn...... model of acute inflammatory pain in humans. METHODS: Twenty-two volunteers were investigated in a double-blind, randomized, placebo-controlled cross-over study. Intravenous dexamethasone 8 mg or placebo was administered on 2 separate study days. Two hours after drug administration, a first-degree burn...

  5. Modelling hydrological connectivity in burned areas. A case study from South of Spain

    OpenAIRE

    Martínez-Murillo, Juan F.; López-Vicente, Manuel

    2016-01-01

    Overland flow connectivity depends on the spatio-temporal interactions of hydrological and geomorphic processes as well as on the human footprint on the landscape. This study deals with the modelling of hydrological connectivity in a burned area with different levels of fire severity. Namely, the objectives are to: i) characterize and ii) modelling the pre- (PreF) and post-fire (PostF) scenarios, as well as iii) evaluate the effect of the vegetation changes due to the fire and the initial ...

  6. Accelerant-related burns and drug abuse: Challenging combination.

    Science.gov (United States)

    Leung, Leslie T F; Papp, Anthony

    2018-05-01

    Accelerants are flammable substances that may cause explosion when added to existing fires. The relationships between drug abuse and accelerant-related burns are not well elucidated in the literature. Of these burns, a portion is related to drug manufacturing, which have been shown to be associated with increased burn complications. 1) To evaluate the demographics and clinical outcomes of accelerant-related burns in a Provincial Burn Centre. 2) To compare the clinical outcomes with a control group of non-accelerant related burns. 3) To analyze a subgroup of patients with history of drug abuse and drug manufacturing. Retrospective case control study. Patient data associated with accelerant-related burns from 2009 to 2014 were obtained from the British Columbia Burn Registry. These patients were compared with a control group of non-accelerant related burns. Clinical outcomes that were evaluated include inhalational injury, ICU length of stay, ventilator support, surgeries needed, and burn complications. Chi-square test was used to evaluate categorical data and Student's t-test was used to evaluate mean quantitative data with the p value set at 0.05. A logistic regression model was used to evaluate factors affecting burn complications. Accelerant-related burns represented 28.2% of all burn admissions (N=532) from 2009 to 2014. The accelerant group had higher percentage of patients with history of drug abuse and was associated with higher TBSA burns, ventilator support, ICU stay and pneumonia rates compared to the non-accelerant group. Within the accelerant group, there was no difference in clinical outcomes amongst people with or without history of drug abuse. Four cases were associated with methamphetamine manufacturing, all of which underwent ICU stay and ventilator support. Accelerant-related burns cause significant burden to the burn center. A significant proportion of these patients have history of drug abuse. Copyright © 2017 Elsevier Ltd and ISBI. All rights

  7. Comparison of mortality prediction models and validation of SAPS II in critically ill burns patients.

    Science.gov (United States)

    Pantet, O; Faouzi, M; Brusselaers, N; Vernay, A; Berger, M M

    2016-06-30

    Specific burn outcome prediction scores such as the Abbreviated Burn Severity Index (ABSI), Ryan, Belgian Outcome of Burn Injury (BOBI) and revised Baux scores have been extensively studied. Validation studies of the critical care score SAPS II (Simplified Acute Physiology Score) have included burns patients but not addressed them as a cohort. The study aimed at comparing their performance in a Swiss burns intensive care unit (ICU) and to observe whether they were affected by a standardized definition of inhalation injury. We conducted a retrospective cohort study, including all consecutive ICU burn admissions (n=492) between 1996 and 2013: 5 epochs were defined by protocol changes. As required for SAPS II calculation, stays burned (TBSA) and inhalation injury (systematic standardized diagnosis since 2006). Study epochs were compared (χ2 test, ANOVA). Score performance was assessed by receiver operating characteristic curve analysis. SAPS II performed well (AUC 0.89), particularly in burns burns <40% TBSA. Ryan and BOBI scores were least accurate, as they heavily weight inhalation injury.

  8. Detailed characterization of a Comparative Reactivity Method (CRM) instrument for ambient OH reactivity measurements: experiments vs. modeling

    Science.gov (United States)

    Michoud, Vincent; Locoge, Nadine; Dusanter, Sébastien

    2015-04-01

    The Hydroxyl radical (OH) is the main daytime oxidant in the troposphere, leading to the oxidation of Volatile Organic Compounds (VOCs) and the formation of harmful pollutants such as ozone (O3) and Secondary Organic Aerosols (SOA). While OH plays a key role in tropospheric chemistry, recent studies have highlighted that there are still uncertainties associated with the OH budget, i.e the identification of sources and sinks and the quantification of production and loss rates of this radical. It has been demonstrated that ambient measurements of the total OH loss rate (also called total OH reactivity) can be used to identify and reduce these uncertainties. In this context, the Comparative Reactivity Method (CRM), developed by Sinha et al. (ACP, 2008), is a promising technique to measure total OH reactivity in ambient air and has already been used during several field campaigns. This technique relies on monitoring competitive reactions of OH with ambient trace gases and a reference compound (pyrrole) in a sampling reactor to derive ambient OH reactivity. However, this technique requires a complex data processing chain that has yet to be carefully investigated in the laboratory. In this study, we present a detailed characterization of a CRM instrument developed at Mines Douai, France. Experiments have been performed to investigate the dependence of the CRM response on humidity, ambient NOx levels, and the pyrrole-to-OH ratio inside the sampling reactor. Box modelling of the chemistry occurring in the reactor has also been performed to assess our theoretical understanding of the CRM measurement. This work shows that the CRM response is sensitive to both humidity and NOx, which can be accounted for during data processing using parameterizations depending on the pyrrole-to-OH ratio. The agreement observed between laboratory studies and model results suggests a good understanding of the chemistry occurring in the sampling reactor and gives confidence in the CRM

  9. Development of a model for the synthesis of unsaturated polyester by reactive distillation

    NARCIS (Netherlands)

    Shah, M.R.; Zondervan, E.; Oudshoorn, M.L.; Haan, de A.B.; Haan, de A.B.; Kooijman, H.; Górak, A.

    2010-01-01

    Traditionally polyester production is done in a batch reactor equipped with a separation column for batch distillation. A promising alternative for the intensification of this process is reactive distillation. In this paper, a reactive distillation model is developed for the synthesis of an

  10. Performance of high burned PWR fuel during transient

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Fujishiro, Toshio

    1992-01-01

    In a majority of Japanese light water type commercial powder reactors (LWRs), UO 2 pellet sheathed by zircaloy cladding is used. Licensed discharged burn-up of the PWR fuel rod is going to be increased from 39 MWd/kgU to 48 MWd/kgU. This requests the increased reliability of cladding material as a strong barrier against fission product (FP). A long time usage in the neutron field and in the high temperature coolant will cause the zircaloy hardening and embrittlement. The cladding material is also degraded by waterside corrosion. These degradations are enhanced much by increased burn-up. A increased magnitude of the pellet-cladding mechanical interaction (PCMI) is of importance for increasing the stress of cladding material. In addition, aggressive FPs released from the fuel tends to attack the cladding material to cause stress corrosion cracking (SCC). At the Nuclear Safety Research Reactor (NSRR) in JAERI, 14 x 14 PWR type fuel rods preirradiation up to 42 MWd/kgU was prepared for the transient pulse irradiation under the simulated reactivity initiated accident (RIA) conditions. This will cause a prompt increase of the fuel temperature and stress on the highly burned cladding material. In the present paper, steady-state and transient behavior observed from the tested PWR fuel rod and calculational results obtained from the computer code FPRETAIN will be described. (author)

  11. In-situ burning of heavy oils and Orimulsion : mid-scale burns

    International Nuclear Information System (INIS)

    Fingas, M.F.; Fieldhouse, B.; Brown, C.E.; Gamble, L.

    2004-01-01

    In-situ burning is considered to be a viable means to clean oil spills on water. In-situ burning, when performed under the right conditions, can reduce the volume of spilled oil and eliminate the need to collect, store, transport and dispose of the recovered oil. This paper presented the results of bench-scale in-situ burning tests in which Bunker C, Orimulsion and weathered bitumen were burned outdoors during the winter in burn pans of approximately 1 square metre. Each test was conducted on salt water which caused the separation of the bitumen from the water in the Orimulsion. Small amounts of diesel fuel was used to ignite the heavy oils. Quantitative removal of the fuels was achieved in all cases, but re-ignition was required for the Orimulsion. Maximum efficiency was in the order of 70 per cent. The residue was mostly asphaltenes and resins which cooled to a solid, glass like material that could be readily removed. The study showed that the type of oil burned influences the behaviour of the burns. Bunker C burned quite well and Orimulsion burned efficiently, but re-ignition was necessary. It was concluded that there is potential for burning heavy oils of several types in-situ. 6 refs., 7 tabs., 18 figs

  12. Assessing burn depth in tattooed burn lesions with LASCA Imaging

    Science.gov (United States)

    Krezdorn, N.; Limbourg, A.; Paprottka, F.J.; Könneker; Ipaktchi, R.; Vogt, P.M

    2016-01-01

    Summary Tattoos are on the rise, and so are patients with tattooed burn lesions. A proper assessment with regard to burn depth is often impeded by the tattoo dye. Laser speckle contrast analysis (LASCA) is a technique that evaluates burn lesions via relative perfusion analysis. We assessed the effect of tattoo skin pigmentation on LASCA perfusion imaging in a multicolour tattooed patient. Depth of burn lesions in multi-coloured tattooed and untattooed skin was assessed using LASCA. Relative perfusion was measured in perfusion units (PU) and compared to various pigment colours, then correlated with the clinical evaluation of the lesion. Superficial partial thickness burn (SPTB) lesions showed significantly elevated perfusion units (PU) compared to normal skin; deep partial thickness burns showed decreased PU levels. PU of various tattoo pigments to normal skin showed either significantly lower values (blue, red, pink) or significantly increased values (black) whereas orange and yellow pigment showed values comparable to normal skin. In SPTB, black and blue pigment showed reduced perfusion; yellow pigment was similar to normal SPTB burn. Deep partial thickness burn (DPTB) lesions in tattoos did not show significant differences to normal DPTB lesions for black, green and red. Tattoo pigments alter the results of perfusion patterns assessed with LASCA both in normal and burned skin. Yellow pigments do not seem to interfere with LASCA assessment. However proper determination of burn depth both in SPTB and DPTB by LASCA is limited by the heterogenic alterations of the various pigment colours. PMID:28149254

  13. A mobile-mobile transport model for simulating reactive transport in connected heterogeneous fields

    Science.gov (United States)

    Lu, Chunhui; Wang, Zhiyuan; Zhao, Yue; Rathore, Saubhagya Singh; Huo, Jinge; Tang, Yuening; Liu, Ming; Gong, Rulan; Cirpka, Olaf A.; Luo, Jian

    2018-05-01

    Mobile-immobile transport models can be effective in reproducing heavily tailed breakthrough curves of concentration. However, such models may not adequately describe transport along multiple flow paths with intermediate velocity contrasts in connected fields. We propose using the mobile-mobile model for simulating subsurface flow and associated mixing-controlled reactive transport in connected fields. This model includes two local concentrations, one in the fast- and the other in the slow-flow domain, which predict both the concentration mean and variance. The normalized total concentration variance within the flux is found to be a non-monotonic function of the discharge ratio with a maximum concentration variance at intermediate values of the discharge ratio. We test the mobile-mobile model for mixing-controlled reactive transport with an instantaneous, irreversible bimolecular reaction in structured and connected random heterogeneous domains, and compare the performance of the mobile-mobile to the mobile-immobile model. The results indicate that the mobile-mobile model generally predicts the concentration breakthrough curves (BTCs) of the reactive compound better. Particularly, for cases of an elliptical inclusion with intermediate hydraulic-conductivity contrasts, where the travel-time distribution shows bimodal behavior, the prediction of both the BTCs and maximum product concentration is significantly improved. Our results exemplify that the conceptual model of two mobile domains with diffusive mass transfer in between is in general good for predicting mixing-controlled reactive transport, and particularly so in cases where the transfer in the low-conductivity zones is by slow advection rather than diffusion.

  14. REDSHANK I and GREENSHANK I (comprehensive point reactivity programmes for liquid moderated UO2 lattices)

    International Nuclear Information System (INIS)

    Alpiar, R.A.

    1963-08-01

    A recently issued programme (SANDPIPER I) enables few group diffusion parameters and reactivities to be derived for liquid moderated UO 2 lattices. The present programmes investigate the life history of such lattices. Burn up equations recalculate the fuel isotopic composition, in a series of steps. At each step, new few group constants and reactivity are recalculated for the new fuel composition. In addition, at each step, the control required to keep the reactivity of the reactor within a given deadband is recalculated. This control is effected by control rod withdrawal in Redshank, and by heavy water spectrum shift in Greenshank. The programme continues until the reactivity of the uncontrolled reactor falls below the deadband. (author)

  15. Study of ignition, combustion, and production of harmful substances upon burning solid organic fuel at a test bench with a vortex chamber

    Science.gov (United States)

    Burdukov, A. P.; Chernetskiy, M. Yu.; Dekterev, A. A.; Anufriev, I. S.; Strizhak, P. A.; Greben'kov, P. Yu.

    2016-01-01

    Results of investigation of furnace processes upon burning of pulverized fuel at a test bench with a power of 5 MW are presented. The test bench consists of two stages with tangential air and pulverized coal feed, and it is equipped by a vibrocentrifugal mill and a disintegrator. Such milling devices have an intensive mechanical impact on solid organic fuel, which, in a number of cases, increases the reactivity of ground material. The processes of ignition and stable combustion of a mixture of gas coal and sludge (wastes of concentration plant), as well as Ekibastus coal, ground in the disintegrator, were studied at the test bench. The results of experimental burning demonstrated that preliminary fuel grinding in the disintegrator provides autothermal combustion mode even for hardly inflammable organic fuels. Experimental combustion of biomass, wheat straw with different lignin content (18, 30, 60%) after grinding in the disintegrator, was performed at the test bench in order to determine the possibility of supporting stable autothermal burning. Stable biofuel combustion mode without lighting by highly reactive fuel was achieved in the experiments. The influence of the additive GTS-Powder (L.O.M. Leaders Co., Ltd., Republic of Korea) in the solid and liquid state on reducing sulfur oxide production upon burning Mugun coal was studied. The results of experimental combustion testify that, for an additive concentration from 1 to 15% of the total mass of the burned mixture, the maximum SO2 concentration reduction in ejected gases was not more than 18% with respect to the amount for the case of burning pure coal.

  16. Fundamental burn-up mode in a pebble-bed type reactor

    International Nuclear Information System (INIS)

    Chen, Xue-Nong; Kiefhaber, Edgar; Maschek, Werner

    2008-01-01

    This paper deals with a pebble-bed type reactor, in which the fuel is loaded from one side (top) and discharged from the other side (bottom). A boundary value problem of a single group diffusion equation coupled with simplified burn-up equations is studied, where the natural radioactive decay processes are neglected in the burn-up modelling. An asymptotic burning wave solution is found analytically in the one-dimensional case, which is called as fundamental burn-up mode. Among this solution family there are two particular cases, namely, a classic fundamental solution with a zero burn-up and a partial solitary burn-up wave solution with a highest burn-up. An example of Th-U conversion is considered and the solutions are presented in order to show the mechanism of the burning wave. (author)

  17. Burning issues

    International Nuclear Information System (INIS)

    Raloff, J.

    1993-01-01

    The idea of burning oil slicks at sea has intrigued oil-cleanup managers for more than a decade, but it wasn't until the advent of fireproof booms in the mid-1980's and a major spill opportunity (the March 1989 Exxon Valdez) that in-situ burning got a real sea trial. The results of this and other burning experiments indicate that, when conditions allow it, nothing can compete with fire's ability to remove oil from water. Burns have the potential to remove as much oil in one day as mechanical devices can in one month, along with minimal equipment, labor and cost. Reluctance to burn in appropriate situations comes primarily from the formation of oily, black smoke. Analysis of the potentially toxic gases have been done, indicating that burning will not increase the levels of polluting aldehydes, ketones, dioxins, furans, and PAHs above those that normally evaporate from spilled oil. This article contains descriptions of planned oil fires and the discussion on the advantages and concerns of such a policy

  18. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal mine... extinguishing operations. (b) No burning or unburned coal mine waste shall be removed from a permitted disposal...

  19. Experimental Comparison of Efficiency of First Aid Dressings in Burning White Phosphorus on Bacon Model

    Science.gov (United States)

    Witkowski, Wojciech; Surowiecka-Pastewka, Agnieszka; Biesaga, Magdalena; Gierczak, Tomasz

    2015-01-01

    Background The aim of this study was to determine effectiveness of first aid dressings in extinguishing burning white phosphorous (WP), eliminating WP pieces from the surface, inhibiting re-ignition on the model (fresh bacon covered with military uniform), and preventing from late re-ignition caused by persistent WP pieces. Material/Methods Burning WP was extinguished with several dressings: tactical Military Dressing (WJ10), wet gauze, 2 hydrocolloids, and 3 prototypes of hydrocolloids developed by the authors. Results All examined dressings were effective in extinguishing WP provided that the entire area of the burning substance was completely covered. Moist gauze was especially effective in extinguishing WP, and also removed and absorbed the majority of the WP mass, preventing deeper penetration of WP particles. The immediate re-ignition was observed when all the remaining examined dressings were removed from the bacon. A stream of water was dangerous, as it splashed and transferred pieces of WP around. Conclusions Moist gauze placed on burning WP for approximately 3 min was most effective in extinguishing WP and removing most of the WP pieces. We recommend moist gauze, used once or twice, as the best primary means for WP elimination and preventing tissue penetration. As a dressing used for medical evacuation (MEDEVAC), or as a second step after complete removal of visible WP, innovative hydrocolloid or hydrogel dressings should be used. PMID:26264209

  20. Comparing the Global Charcoal Database with Burned Area Trends from an Offline Fire Model Driven by the NCAR Last Millennium Ensemble

    Science.gov (United States)

    Schaefer, A.; Magi, B. I.; Marlon, J. R.; Bartlein, P. J.

    2017-12-01

    This study uses an offline fire model driven by output from the NCAR Community Earth System Model Last Millennium Ensemble (LME) to evaluate how climate, ecological, and human factors contributed to burned area over the past millennium, and uses the Global Charcoal Database (GCD) record of fire activity as a constraint. The offline fire model is similar to the fire module within the NCAR Community Land Model. The LME experiment includes 13 simulations of the Earth system from 850 CE through 2005 CE, and the fire model simulates burned area using LME climate and vegetation with imposed land use and land cover change. The fire model trends are compared to GCD records of charcoal accumulation rates derived from sediment cores. The comparisons are a way to assess the skill of the fire model, but also set up a methodology to directly test hypotheses of the main drivers of fire patterns over the past millennium. The focus is on regions selected from the GCD with high data density, and that have lake sediment cores that best capture the last millennium. Preliminary results are based on a fire model which excludes burning cropland and pasture land cover types, but this allows some assessment of how climate variability is captured by the fire model. Generally, there is good agreement between modeled burned area trends and fire trends from GCD for many regions of interest, suggesting the strength of climate variability as a control. At the global scale, trends and features are similar from 850 to 1700, which includes the Medieval Climate Anomaly and the Little Ice Age. After 1700, the trends significantly deviate, which may be due to non-cultivated land being converted to cultivated. In key regions of high data density in the GCD such as the Western USA, the trends agree from 850 to 1200 but diverge from 1200 to 1300. From 1300 to 1800, the trends show good agreement again. Implementing processes to include burning cultivated land within the fire model is anticipated to

  1. Multivariable model predictive control design of reactive distillation column for Dimethyl Ether production

    Science.gov (United States)

    Wahid, A.; Putra, I. G. E. P.

    2018-03-01

    Dimethyl ether (DME) as an alternative clean energy has attracted a growing attention in the recent years. DME production via reactive distillation has potential for capital cost and energy requirement savings. However, combination of reaction and distillation on a single column makes reactive distillation process a very complex multivariable system with high non-linearity of process and strong interaction between process variables. This study investigates a multivariable model predictive control (MPC) based on two-point temperature control strategy for the DME reactive distillation column to maintain the purities of both product streams. The process model is estimated by a first order plus dead time model. The DME and water purity is maintained by controlling a stage temperature in rectifying and stripping section, respectively. The result shows that the model predictive controller performed faster responses compared to conventional PI controller that are showed by the smaller ISE values. In addition, the MPC controller is able to handle the loop interactions well.

  2. Modeling food matrix effects on chemical reactivity: Challenges and perspectives.

    Science.gov (United States)

    Capuano, Edoardo; Oliviero, Teresa; van Boekel, Martinus A J S

    2017-06-29

    The same chemical reaction may be different in terms of its position of the equilibrium (i.e., thermodynamics) and its kinetics when studied in different foods. The diversity in the chemical composition of food and in its structural organization at macro-, meso-, and microscopic levels, that is, the food matrix, is responsible for this difference. In this viewpoint paper, the multiple, and interconnected ways the food matrix can affect chemical reactivity are summarized. Moreover, mechanistic and empirical approaches to explain and predict the effect of food matrix on chemical reactivity are described. Mechanistic models aim to quantify the effect of food matrix based on a detailed understanding of the chemical and physical phenomena occurring in food. Their applicability is limited at the moment to very simple food systems. Empirical modeling based on machine learning combined with data-mining techniques may represent an alternative, useful option to predict the effect of the food matrix on chemical reactivity and to identify chemical and physical properties to be further tested. In such a way the mechanistic understanding of the effect of the food matrix on chemical reactions can be improved.

  3. SeSBench - An initiative to benchmark reactive transport models for environmental subsurface processes

    Science.gov (United States)

    Jacques, Diederik

    2017-04-01

    As soil functions are governed by a multitude of interacting hydrological, geochemical and biological processes, simulation tools coupling mathematical models for interacting processes are needed. Coupled reactive transport models are a typical example of such coupled tools mainly focusing on hydrological and geochemical coupling (see e.g. Steefel et al., 2015). Mathematical and numerical complexity for both the tool itself or of the specific conceptual model can increase rapidly. Therefore, numerical verification of such type of models is a prerequisite for guaranteeing reliability and confidence and qualifying simulation tools and approaches for any further model application. In 2011, a first SeSBench -Subsurface Environmental Simulation Benchmarking- workshop was held in Berkeley (USA) followed by four other ones. The objective is to benchmark subsurface environmental simulation models and methods with a current focus on reactive transport processes. The final outcome was a special issue in Computational Geosciences (2015, issue 3 - Reactive transport benchmarks for subsurface environmental simulation) with a collection of 11 benchmarks. Benchmarks, proposed by the participants of the workshops, should be relevant for environmental or geo-engineering applications; the latter were mostly related to radioactive waste disposal issues - excluding benchmarks defined for pure mathematical reasons. Another important feature is the tiered approach within a benchmark with the definition of a single principle problem and different sub problems. The latter typically benchmarked individual or simplified processes (e.g. inert solute transport, simplified geochemical conceptual model) or geometries (e.g. batch or one-dimensional, homogeneous). Finally, three codes should be involved into a benchmark. The SeSBench initiative contributes to confidence building for applying reactive transport codes. Furthermore, it illustrates the use of those type of models for different

  4. Evaluation of protocol change in burn-care management using the Cox proportional hazards model with time-dependent covariates.

    Science.gov (United States)

    Ichida, J M; Wassell, J T; Keller, M D; Ayers, L W

    1993-02-01

    Survival analysis methods are valuable for detecting intervention effects because detailed information from patient records and sensitive outcome measures are used. The burn unit at a large university hospital replaced routine bathing with total body bathing using chlorhexidine gluconate for antimicrobial effect. A Cox proportional hazards model was used to analyse time from admission until either infection with Staphylococcus aureus or discharge for 155 patients, controlling for burn severity and two time-dependent covariates: days until first wound excision and days until first administration of prophylactic antibiotics. The risk of infection was 55 per cent higher in the historical control group, although not statistically significant. There was also some indication that early wound excision may be important as an infection-control measure for burn patients.

  5. Reactivation of latent herpes simplex virus infection by ultraviolet light: a human model

    International Nuclear Information System (INIS)

    Perna, J.J.; Mannix, M.L.; Rooney, J.F.; Notkins, A.L.; Straus, S.E.

    1987-01-01

    Infection with herpes simplex virus often results in a latent infection of local sensory ganglia and a disease characterized by periodic viral reactivation and mucocutaneous lesions. The factors that trigger reactivation in humans are still poorly defined. In our study, five patients with documented histories of recurrent herpes simplex virus infection on the buttocks or sacrum were exposed to three times their minimal erythema dose of ultraviolet light. Site-specific cutaneous herpes simplex virus infection occurred at 4.4 +/- 0.4 days after exposure to ultraviolet light in 8 of 13 attempts at reactivation. We conclude that ultraviolet light can reactivate herpes simplex virus under experimentally defined conditions. This model in humans should prove useful in evaluating the pathophysiology and prevention of viral reactivation

  6. Controlling material reactivity using architecture

    Science.gov (United States)

    Sullivan, Kyle

    2017-06-01

    The reactivity of thermites can be tailored through selection of several parameters, and can range from very slow burns to rapid deflagrations. 3D printing is a rapidly emerging field, and offers the potential to build architected parts. Here we sought to explore whether controlling such features could be a suitable path forward for gaining additional control of the reactivity. This talk discusses several new methods for preparing thermite samples with controlled architectures using 3D printing. Additionally, we demonstrate that the architecture can play a role in the reactivity of an object. Our results suggest that architecture can be used to tailor the convective and/or advective energy transport during a deflagration, thus enhancing or retarding the reaction. The results are promising in that they give researchers an additional way of controlling the energy release rate without defaulting to the conventional approach of changing the formulation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. LLNL-ABS-708525. In collaboration with: Cheng Zhu, Eric Duoss, Matt Durban, Alex Gash, Alexandra Golobic, Michael Grapes, David Kolesky, Joshua Kuntz, Jennifer Lewis, Christopher Spadaccini; LAWRENCE LIVERMORE NATIONAL LAB.

  7. Burn mortality in patients with preexisting cardiovascular disease.

    Science.gov (United States)

    Knowlin, Laquanda; Reid, Trista; Williams, Felicia; Cairns, Bruce; Charles, Anthony

    2017-08-01

    Burn shock, a complex process, which develops following burn leads to severe and unique derangement of cardiovascular function. Patients with preexisting comorbidities such as cardiovascular diseases may be more susceptible. We therefore sought to examine the impact of preexisting cardiovascular disease on burn outcomes. A retrospective analysis of patients admitted to a regional burn center from 2002 to 2012. Independent variables analyzed included basic demographics, burn mechanism, presence of inhalation injury, TBSA, pre-existing comorbidities, and length of ICU/hospital stay. Bivariate analysis was performed and Poisson regression modeling was utilized to estimate the incidence of being in the ICU and mortality. There were a total of 5332 adult patients admitted over the study period. 6% (n=428) had a preexisting cardiovascular disease. Cardiovascular disease patients had a higher mortality rate (16%) compared to those without cardiovascular disease (3%, pwill likely be a greater number of individuals at risk for worse outcomes following burn. This knowledge can help with burn prognostication. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  8. Nucleic acid reactivity : challenges for next-generation semiempirical quantum models

    OpenAIRE

    Huang, Ming; Giese, Timothy J.; York, Darrin M.

    2015-01-01

    Semiempirical quantum models are routinely used to study mechanisms of RNA catalysis and phosphoryl transfer reactions using combined quantum mechanical/molecular mechanical methods. Herein, we provide a broad assessment of the performance of existing semiempirical quantum models to describe nucleic acid structure and reactivity in order to quantify their limitations and guide the development of next-generation quantum models with improved accuracy. Neglect of diatomic diffierential overlap (...

  9. Recent Biomass Burning in the Tropics and Related Changes in Tropospheric Ozone

    Science.gov (United States)

    Ziemke; Chandra, J. R. S.; Duncan, B. N.; Schoeberl, M. R.; Torres, O.; Damon, M. R.; Bhartia, P. K.

    2009-01-01

    Biomass burning is an important source of chemical precursors of tropospheric ozone. In the tropics, biomass burning produces ozone enhancements over broad regions of Indonesia, Africa, and South America including Brazil. Fires are intentionally set in these regions during the dry season each year to clear cropland and to clear land for human/industrial expansion. In Indonesia enhanced burning occurs during dry El Nino conditions such as in 1997 and 2006. These burning activities cause enhancement in atmospheric particulates and trace gases which are harmful to human health. Measurements from the Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) from October 2004-November 2008 are used to evaluate the effects of biomass burning on tropical tropospheric ozone. These measurements show sizeable decreases approx.15-20% in ozone in Brazil during 2008 compared to 2007 which we attribute to the reduction in biomass burning. Three broad biomass burning regions in the tropics (South America including Brazil, western Africa, and Indonesia) were analyzed in the context of OMI/MLS measurements and the Global Modeling Initiative (GMI) chemical transport model developed at Goddard Space Flight Center. The results indicate that the impact of biomass burning on ozone is significant within and near the burning regions with increases of approx.10-25% in tropospheric column ozone relative to average background concentrations. The model suggests that about half of the increases in ozone from these burning events come from altitudes below 3 km. Globally the model indicates increases of approx.4-5% in ozone, approx.7-9% in NO, (NO+NO2), and approx.30-40% in CO.

  10. Experimental Modeling of the Effect of Terrain Slope on Marginal Burning

    Science.gov (United States)

    X. Zhou; S. Mahalingam; D. Weise

    2005-01-01

    A series of laboratory fire spread experiments were completed to analyze the effect of terrain slope on marginal burning behavior of live chaparral shrub fuels that grow in the mountains of southern California. We attempted to burn single species fuel beds of four common chaparral plants under various fuel bed configurations and ambient conditions. Seventy-three (or 42...

  11. Coupled Modeling of Rhizosphere and Reactive Transport Processes

    Science.gov (United States)

    Roque-Malo, S.; Kumar, P.

    2017-12-01

    The rhizosphere, as a bio-diverse plant root-soil interface, hosts many hydrologic and biochemical processes, including nutrient cycling, hydraulic redistribution, and soil carbon dynamics among others. The biogeochemical function of root networks, including the facilitation of nutrient cycling through absorption and rhizodeposition, interaction with micro-organisms and fungi, contribution to biomass, etc., plays an important role in myriad Critical Zone processes. Despite this knowledge, the role of the rhizosphere on watershed-scale ecohydrologic functions in the Critical Zone has not been fully characterized, and specifically, the extensive capabilities of reactive transport models (RTMs) have not been applied to these hydrobiogeochemical dynamics. This study uniquely links rhizospheric processes with reactive transport modeling to couple soil biogeochemistry, biological processes, hydrologic flow, hydraulic redistribution, and vegetation dynamics. Key factors in the novel modeling approach are: (i) bi-directional effects of root-soil interaction, such as simultaneous root exudation and nutrient absorption; (ii) multi-state biomass fractions in soil (i.e. living, dormant, and dead biological and root materials); (iii) expression of three-dimensional fluxes to represent both vertical and lateral interconnected flows and processes; and (iv) the potential to include the influence of non-stationary external forcing and climatic factors. We anticipate that the resulting model will demonstrate the extensive effects of plant root dynamics on ecohydrologic functions at the watershed scale and will ultimately contribute to a better characterization of efflux from both agricultural and natural systems.

  12. Sustained oxidative stress causes late acute renal failure via duplex regulation on p38 MAPK and Akt phosphorylation in severely burned rats.

    Directory of Open Access Journals (Sweden)

    Yafei Feng

    Full Text Available BACKGROUND: Clinical evidence indicates that late acute renal failure (ARF predicts high mortality in severely burned patients but the pathophysiology of late ARF remains undefined. This study was designed to test the hypothesis that sustained reactive oxygen species (ROS induced late ARF in a severely burned rat model and to investigate the signaling mechanisms involved. MATERIALS AND METHODS: Rats were exposed to 100°C bath for 15 s to induce severe burn injury (40% of total body surface area. Renal function, ROS generation, tubular necrosis and apoptosis, and phosphorylation of MAPK and Akt were measured during 72 hours after burn. RESULTS: Renal function as assessed by serum creatinine and blood urea nitrogen deteriorated significantly at 3 h after burn, alleviated at 6 h but worsened at 48 h and 72 h, indicating a late ARF was induced. Apoptotic cells and cleavage caspase-3 in the kidney went up slowly and turned into significant at 48 h and 72 h. Tubular cell ROS production shot up at 6 h and continuously rose during the 72-h experiment. Scavenging ROS with tempol markedly attenuated tubular apoptosis and renal dysfunction at 72 h after burn. Interestingly, renal p38 MAPK phosphorylation elevated in a time dependent manner whereas Akt phosphorylation increased during the first 24 h but decreased at 48 h after burn. The p38 MAPK specific inhibitor SB203580 alleviated whereas Akt inhibitor exacerbated burn-induced tubular apoptosis and renal dysfunction. Furthermore, tempol treatment exerted a duplex regulation through inhibiting p38 MAPK phosphorylation but further increasing Akt phosphorylation at 72 h postburn. CONCLUSIONS: These results demonstrate that sustained renal ROS overproduction induces continuous tubular cell apoptosis and thus a late ARF at 72 h after burn in severely burned rats, which may result from ROS-mediated activation of p38 MAPK but a late inhibition of Akt phosphorylation.

  13. The effect of pre-existing malnutrition on pediatric burn mortality in a sub-Saharan African burn unit.

    Science.gov (United States)

    Grudziak, Joanna; Snock, Carolyn; Mjuweni, Stephen; Gallaher, Jared; Cairns, Bruce; Charles, Anthony

    2017-11-01

    Nutritional status predicts burn outcomes in the developed world, but its effect on burn mortality in the developing world has not been widely studied. In sub Saharan Africa, burn is primarily a disease of children, and the majority of children in sub-Saharan Africa are malnourished. We therefore sought to determine the prevalence and effect of malnutrition on burn mortality at our institution. This is a retrospective review of children aged 0-5, with anthropomorphic measurements available, who were admitted to our burn unit from July 2011 to May 2016. Age-adjusted Z scores were calculated for height, weight, weight for height, and mid-upper arm circumference (MUAC). Following bivariate analysis, we used logistic regression to construct a fully adjusted model of predictors of mortality. Of the 1357 admitted patients, 839 (61.2%) were aged 0-5. Of those, 512 (62.9%) had one or more anthropomorphic measurements available, and were included in the analysis. 54% were male, and the median age was 28 months. The median TBSA was 15%, with a majority of burns caused by scalds (77%). Mortality was 16%. Average Z-score for any of the indicators of malnutrition was -1.45±1.66. TBSA (OR: 1.08, 95% CI: 1.06, 1.11), decreasing Z-score (OR: 1.19, 95% CI: 1.00, 1.41), and flame burn (OR: 2.51, 95% CI: 1.40, 4.49) were associated with an increase in mortality. Preexisting malnutrition in burn patients in sub-Saharan Africa increases odds of mortality after controlling for significant covariates. Survival of burn patients in this region will not reach that of the developed world until a strategy of aggressive nutritional support is implemented in this population. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  14. Using Lagrangian Chemical Transport Modeling to Assess the Impact of Biomass Burning on Ozone and PM2.5

    Science.gov (United States)

    Alvarado, M. J.; Lonsdale, C. R.; Brodowski, C. M.

    2017-12-01

    One of the challenges of using in situ measurements to study the air quality and climate impacts of biomass burning is correctly determining the contribution of biomass burning sources to the measured ambient concentrations. This is especially important for policy purposes, as the ozone (O3) and fine particulate matter (PM2.5) from natural wildfires should not be confused with that from controllable anthropogenic sources. We have developed a Lagrangian chemical transport model called STILT-ASP that is able to quantify the impact of wildfire events on O3 and PM2.5 measurements made at surface monitoring sites, by mobile laboratories, or by aircraft. STILT-ASP is built by coupling the Stochastic Time Inverted Lagrangian Transport (STILT) model with AER's Aerosol Simulation Program (ASP), which has been used in many studies of the gas and aerosol chemistry of biomass burning smoke. Here we present recent revisions made in STILT-ASP v2.0, including the use of more detailed chemical speciation of fire emissions and biogenic emissions calculated using the MEGAN model with meteorological inputs consistent with those used to drive STILT. We will present the results of an evaluation of the performance of STILT-ASP v2.0 using surface, mobile lab, and aircraft data from the 2013 Houston DISCOVER-AQ campaign. STILT-ASP v2.0 showed good average performance for O3 during the peak of the high O3 episodes on Sept. 25-26, 2013, with a mean bias of -4 ppbv. We will also demonstrate the use of STILT-ASP to evaluate the impact of biomass burning on O3 and PM2.5 in urban areas and to assess the impact of remote fires on the boundary conditions used in Eulerian chemical transport models like CAMx.

  15. Effects of Burn Injury on Markers of Hypermetabolism in Rats

    OpenAIRE

    Izamis, Maria-Louisa; Uygun, Korkut; Uygun, Basak; Yarmush, Martin L.; Berthiaume, François

    2009-01-01

    The basic metrics of hypermetabolism have not been thoroughly characterized in rat burn injury models. We examined three models expected to differ in sensitivity to burn injury to identify that which group(s) exhibited the most clinically relevant metabolic response. Six and 12 weeks old male CD (6 week mCD and 12 week mCD) rats, and 12 weeks old female Fischer (12 week fFI) rats received a 20% total body surface area burn, followed by saline resuscitation. Activity, core body temperature, he...

  16. Inverse modeling of multicomponent reactive transport through single and dual porosity media

    Science.gov (United States)

    Samper, Javier; Zheng, Liange; Fernández, Ana María; Montenegro, Luis

    2008-06-01

    Compacted bentonite is foreseen as buffer material for high-level radioactive waste in deep geological repositories because it provides hydraulic isolation, chemical stability, and radionuclide sorption. A wide range of laboratory tests were performed within the framework of FEBEX ( Full-scale Engineered Barrier EXperiment) project to characterize buffer properties and develop numerical models for FEBEX bentonite. Here we present inverse single and dual-continuum multicomponent reactive transport models of a long-term permeation test performed on a 2.5 cm long sample of FEBEX bentonite. Initial saline bentonite porewater was flushed with 5.5 pore volumes of fresh granitic water. Water flux and chemical composition of effluent waters were monitored during almost 4 years. The model accounts for solute advection and diffusion and geochemical reactions such as aqueous complexation, acid-base, cation exchange, protonation/deprotonation by surface complexation and dissolution/precipitation of calcite, chalcedony and gypsum. All of these processes are assumed at local equilibrium. Similar to previous studies of bentonite porewater chemistry on batch systems which attest the relevance of protonation/deprotonation on buffering pH, our results confirm that protonation/deprotonation is a key process in maintaining a stable pH under dynamic transport conditions. Breakthrough curves of reactive species are more sensitive to initial porewater concentration than to effective diffusion coefficient. Optimum estimates of initial porewater chemistry of saturated compacted FEBEX bentonite are obtained by solving the inverse problem of multicomponent reactive transport. While the single-continuum model reproduces the trends of measured data for most chemical species, it fails to match properly the long tails of most breakthrough curves. Such limitation is overcome by resorting to a dual-continuum reactive transport model.

  17. Reasons for Distress Among Burn Survivors at 6, 12, and 24 Months Postdischarge: A Burn Injury Model System Investigation.

    Science.gov (United States)

    Wiechman, Shelley A; McMullen, Kara; Carrougher, Gretchen J; Fauerbach, Jame A; Ryan, Colleen M; Herndon, David N; Holavanahalli, Radha; Gibran, Nicole S; Roaten, Kimberly

    2017-12-16

    To identify important sources of distress among burn survivors at discharge and 6, 12, and 24 months postinjury, and to examine if the distress related to these sources changed over time. Exploratory. Outpatient burn clinics in 4 sites across the country. Participants who met preestablished criteria for having a major burn injury (N=1009) were enrolled in this multisite study. Participants were given a previously developed list of 12 sources of distress among burn survivors and asked to rate on a 10-point Likert-type scale (0=no distress to 10=high distress) how much distress each of the 12 issues was causing them at the time of each follow-up. The Medical Outcomes Study 12-Item Short-Form Health Survey was administered at each time point as a measure of health-related quality of life. The Satisfaction With Appearance Scale was used to understand the relation between sources of distress and body image. Finally, whether a person returned to work was used to determine the effect of sources of distress on returning to employment. It was encouraging that no symptoms were worsening at 2 years. However, financial concerns and long recovery time are 2 of the highest means at all time points. Pain and sleep disturbance had the biggest effect on ability to return to work. These findings can be used to inform burn-specific interventions and to give survivors an understanding of the temporal trajectory for various causes of distress. In particular, it appears that interventions targeted at sleep disturbance and high pain levels can potentially effect distress over financial concerns by allowing a person to return to work more quickly. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  18. The burning and smoke release rates of sodium pool fires

    International Nuclear Information System (INIS)

    Newman, R.N.; Payne, J.F.B.

    1976-10-01

    The burning rates and smoke release fractions of sodium pool fires have been measured over the pool temperature range 250 0 C to 750 0 C. A theoretical model is derived which satisfactorily predicts the burning rate over the above temperature range. The theory further predicts that the burning rate should be independent of pool diameter, a prediction supported by a comparison of burning rate data from this study and available data from other studies. (author)

  19. Photochemistry of the African troposphere: Influence of biomass-burning emissions

    Science.gov (United States)

    Marufu, L.; Dentener, F.; Lelieveld, J.; Andreae, M. O.; Helas, G.

    2000-06-01

    The relative importance of biomass-burning (pyrogenic) emissions from savannas, deforestation, agricultural waste burning, and biofuel consumption to tropospheric ozone abundance over Africa has been estimated for the year 1993, on the basis of global model calculations. We also calculated the importance of this emission source to tropospheric ozone in other regions of the world and compared it to different sources on the African regional and global scales. The estimated annual average total tropospheric ozone abundance over Africa for the reference year is 26 Tg. Pyrogenic, industrial, biogenic, and lightning emissions account for 16, 19, 12, and 27%, respectively, while stratospheric ozone input accounts for 26%. In the planetary boundary layer over Africa, the contribution by biomass burning is ˜24%. A large fraction of the African biomass-burning-related ozone is transported away from the continent. On a global scale, biomass burning contributes ˜9% to tropospheric ozone. Our model calculations suggest that Africa is the single most important region for biomass-burning-related tropospheric ozone, accounting for ˜35% of the global annual pyrogenic ozone enhancement of 29 Tg in 1993.

  20. Burn-up credit applications for UO2 and MOX fuel assemblies in AREVA/COGEMA

    International Nuclear Information System (INIS)

    Toubon, H.; Riffard, C.; Batifol, M.; Pelletier, S.

    2003-01-01

    For the last seven years, AREVA/COGEMA has been implementing the second phase of its burn-up credit program (the incorporation of fission products). Since the early nineties, major actinides have been taken into account in criticality analyses first for reprocessing applications, then for transport and storage of fuel assemblies Next year (2004) COGEMA will take into account the six main fission products (Rh103, Cs133, Nd143, Sm149, Sm152 and Gd155) that make up 50% of the anti-reactivity of all fission products. The experimental program will soon be finished. The new burn-up credit methodology is in progress. After a brief overview of BUC R and D program and COGEMA's application of the BUC, this paper will focus on the new burn-up measurement for UO2 and MOX fuel assemblies. It details the measurement instrumentation and the measurement experiments on MOX fuels performed at La Hague in January 2003. (author)

  1. Studies of a deep burn fuel cycle for the incineration of military plutonium in the GT-MHR using the Monte-Carlo burnup code

    International Nuclear Information System (INIS)

    Talamo, A.; Gudowski, W.

    2004-01-01

    The deep burn fuel cycle for the incineration of military plutonium in the GT-MHR is studied using the Monte-Carlo burnup code. The irradiation is DF is so rich in fissile isotopes that the TF cannot guarantee a negative reactive feedback, and the presence of erbium as burnable poison is absolutely necessary for the reactivity safety reasons. At beginning of life (BOL) the fuel composed of DF, consisting of fresh military plutonium, after an irradiation period of three years the fuel is reprocessed into post driver fuel (PDF). The mass flow of the GT-MHR fuelled by military plutonium at the equilibrium of the fuel composition shows that 66% of 239 Pu is burned in three years and 92% in six years. (authors)

  2. Validation of MCNP and ORIGEN-S 3-D computational model for reactivity predictions during BR2 operation

    International Nuclear Information System (INIS)

    Kalcheva, S.; Koonen, E.; Ponsard, B.

    2005-01-01

    The Belgian Material Test Reactor (MTR) BR2 is strongly heterogeneous high flux engineering test reactor at SCK-CEN (Centre d'Etude de l'energie Nucleaire) in Mol at a thermal power 60 to 100 MW. It deploys highly enriched uranium, water cooled concentric plate fuel elements, positioned inside a beryllium reflector with complex hyperboloid arrangement of test holes. The objective of this paper is the validation of a MCNP and ORIGEN-S 3D model for reactivity predictions of the entire BR2 core during reactor operation. We employ the Monte Carlo code MCNP-4C for evaluating the effective multiplication factor k eff and 3D space dependent specific power distribution. The 1D code ORIGEN-S is used for calculation of isotopic fuel depletion versus burn up and preparation of a database (DB) with depleted fuel compositions. The approach taken is to evaluate the 3D power distribution at each time step and along with DB to evaluate the 3D isotopic fuel depletion at the next step and to deduce the corresponding shim rods positions of the reactor operation. The capabilities of the both codes are fully exploited without constraints on the number of involved isotope depletion chains or increase of the computational time. The reactor has a complex operation, with important shutdowns between cycles, and its reactivity is strongly influenced by poisons, mainly 3 He and 6 Li from the beryllium reflector, and burnable absorbers 149 Sm and 10 B in the fresh UAlx fuel. Our computational predictions for the shim rods position at various restarts are within 0.5$ (β eff =0.0072). (author)

  3. The National Institute on Disability, Independent Living, and Rehabilitation Research Burn Model System: Twenty Years of Contributions to Clinical Service and Research.

    Science.gov (United States)

    Goverman, Jeremy; Mathews, Katie; Holavanahalli, Radha K; Vardanian, Andrew; Herndon, David N; Meyer, Walter J; Kowalske, Karen; Fauerbach, Jim; Gibran, Nicole S; Carrougher, Gretchen J; Amtmann, Dagmar; Schneider, Jeffrey C; Ryan, Colleen M

    The National Institute on Disability, Independent Living, and Rehabilitation Research (NIDILRR) established the Burn Model System (BMS) in 1993 to improve the lives of burn survivors. The BMS program includes 1) a multicenter longitudinal database describing the functional and psychosocial recovery of burn survivors; 2) site-specific burn-related research; and 3) a knowledge dissemination component directed toward patients and providers. Output from each BMS component was analyzed. Database structure, content, and access procedures are described. Publications using the database were identified and categorized to illustrate the content area of the work. Unused areas of the database were identified for future study. Publications related to site-specific projects were cataloged. The most frequently cited articles are summarized to illustrate the scope of these projects. The effectiveness of dissemination activities was measured by quantifying website hits and information downloads. There were 25 NIDILRR-supported publications that utilized the database. These articles covered topics related to psychological outcomes, functional outcomes, community reintegration, and burn demographics. There were 172 site-specific publications; highly cited articles demonstrate a wide scope of study. For information dissemination, visits to the BMS website quadrupled between 2013 and 2014, with 124,063 downloads of educational material in 2014. The NIDILRR BMS program has played a major role in defining the course of burn recovery, and making that information accessible to the general public. The accumulating information in the database serves as a rich resource to the burn community for future study. The BMS is a model for collaborative research that is multidisciplinary and outcome focused.

  4. Evaluating the influences of biomass burning during 2006 BASE-ASIA: a regional chemical transport modeling

    Directory of Open Access Journals (Sweden)

    N. C. Hsu

    2012-05-01

    areas, particularly during biomass burning episodes. This modeling study might provide constraints of lower limit. An additional study is underway for an active biomass burning year to obtain an upper limit and climate effects.

  5. REDSHANK I and GREENSHANK I (comprehensive point reactivity programmes for liquid moderated UO{sub 2} lattices)

    Energy Technology Data Exchange (ETDEWEB)

    Alpiar, R A [Technical Assessments and Services Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1963-08-15

    A recently issued programme (SANDPIPER I) enables few group diffusion parameters and reactivities to be derived for liquid moderated UO{sub 2} lattices. The present programmes investigate the life history of such lattices. Burn up equations recalculate the fuel isotopic composition, in a series of steps. At each step, new few group constants and reactivity are recalculated for the new fuel composition. In addition, at each step, the control required to keep the reactivity of the reactor within a given deadband is recalculated. This control is effected by control rod withdrawal in Redshank, and by heavy water spectrum shift in Greenshank. The programme continues until the reactivity of the uncontrolled reactor falls below the deadband. (author)

  6. Development of continuous energy Monte Carlo burn-up calculation code MVP-BURN

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Nakagawa, Masayuki; Sasaki, Makoto

    2001-01-01

    Burn-up calculations based on the continuous energy Monte Carlo method became possible by development of MVP-BURN. To confirm the reliably of MVP-BURN, it was applied to the two numerical benchmark problems; cell burn-up calculations for High Conversion LWR lattice and BWR lattice with burnable poison rods. Major burn-up parameters have shown good agreements with the results obtained by a deterministic code (SRAC95). Furthermore, spent fuel composition calculated by MVP-BURN was compared with measured one. Atomic number densities of major actinides at 34 GWd/t could be predicted within 10% accuracy. (author)

  7. Burning/Rubble Pits: Environmental information document

    International Nuclear Information System (INIS)

    Huber, L.A.; Johnson, W.F.; Marine, I.W.

    1987-03-01

    The Burning/Rubble Pits, located near each of the major operating areas at the Savannah River Plant (SRP), began collecting burnable waste in 1951. The waste was incinerated monthly. All Burning/Rubble Pits are currently closed except for Burning/Rubble Pit 131-1R, which has not been backfilled but is inactive. No soil cores from the Burning/Rubble Pits have been analyzed. There are four groundwater monitoring wells located around each of the pits, which have been sampled quarterly since 1984. The closure options considered for the Burning/Rubble Pits are waste removal and closure, no waste removal and closure, and no action. Modeling calculations were made to determine the risks to human population for the three postulated closure options. An ecological assessment was conducted to predict the environmental impacts on aquatic and terrestrial biota. The relative costs for each of the closure options were estimated. An evaluation of the environmental impacts from the Burning/Rubble Pits indicates that the relative risks to human health and ecosystems for the postulated closure options are low. The ecological assessment shows that the effects of any closure activities on river water quality and wildlife would be insignificant. The cost estimates show the waste removal and closure option to be the most expensive for all of the pits. 38 refs., 35 figs., 47 tabs

  8. Bacterial infections in burn patients at a burn hospital in Iran.

    Science.gov (United States)

    Ekrami, Alireza; Kalantar, Enayat

    2007-12-01

    The major challenge for a burn team is nosocomial infection in burn patients, which is known to cause over 50% of burn deaths. Most studies on infection in burn patients focus on burn wound infection, whereas other nosocomial infections in these patients are not well described. We undertook this study to determine three types of nosocomial infections viz., burn wound infection, urinary tract infection, and blood stream infection in burn patients in a burn hospital in Iran. During the one year period (May 2003 to April 2004), 182 patients were included in this study. Blood, urine and wound biopsy samples were taken 7 and 14 days after admission to Taleghani Burn hospital. Isolation and identification of microorganisms was done using the standard procedure. Disk diffusion test were performed for all the isolates for antimicrobial susceptibility. Of the 182 patients, 140 (76.9%) acquired at least one type of infection of the 140, 116 patients (82.8%) were culture positive on day 7 while 24 (17.2%) on 14 days after admission. Primary wound infection was most common (72.5%), followed by blood stream (18.6%) and urinary tract infections (8.9 %). The microorganisms causing infections were Pseudomonas aeruginosa (37.5%), Staphylococcus aureus (20.2%), and Acinetobacter baumanni (10.4%). Among these isolates P. aeruginosa was found to be 100 per cent resistant to amikacin, gentamicin , carbenicillin, ciprofloxacin, tobramycin and ceftazidime; 58 per cent of S. aureus and 60 per cent of coagulase negative Staphylococcus were methicillin resistant. High prevalence of nosocomial infections and the presence of multidrug resistant bacteria, and methicillin resistant S. aureus in patients at Taleghani Burn Hospital suggest continuous surveillance of burn infections and develop strategies for antimicrobial resistance control and treatment of infectious complications.

  9. Mechanistic modeling of reactive soil nitrogen emissions across agricultural management practices

    Science.gov (United States)

    Rasool, Q. Z.; Miller, D. J.; Bash, J. O.; Venterea, R. T.; Cooter, E. J.; Hastings, M. G.; Cohan, D. S.

    2017-12-01

    The global reactive nitrogen (N) budget has increased by a factor of 2-3 from pre-industrial levels. This increase is especially pronounced in highly N fertilized agricultural regions in summer. The reactive N emissions from soil to atmosphere can be in reduced (NH3) or oxidized (NO, HONO, N2O) forms, depending on complex biogeochemical transformations of soil N reservoirs. Air quality models like CMAQ typically neglect soil emissions of HONO and N2O. Previously, soil NO emissions estimated by models like CMAQ remained parametric and inconsistent with soil NH3 emissions. Thus, there is a need to more mechanistically and consistently represent the soil N processes that lead to reactive N emissions to the atmosphere. Our updated approach estimates soil NO, HONO and N2O emissions by incorporating detailed agricultural fertilizer inputs from EPIC, and CMAQ-modeled N deposition, into the soil N pool. EPIC addresses the nitrification, denitrification and volatilization rates along with soil N pools for agricultural soils. Suitable updates to account for factors like nitrite (NO2-) accumulation not addressed in EPIC, will also be made. The NO and N2O emissions from nitrification and denitrification are computed mechanistically using the N sub-model of DAYCENT. These mechanistic definitions use soil water content, temperature, NH4+ and NO3- concentrations, gas diffusivity and labile C availability as dependent parameters at various soil layers. Soil HONO emissions found to be most probable under high NO2- availability will be based on observed ratios of HONO to NO emissions under different soil moistures, pH and soil types. The updated scheme will utilize field-specific soil properties and N inputs across differing manure management practices such as tillage. Comparison of the modeled soil NO emission rates from the new mechanistic and existing schemes against field measurements will be discussed. Our updated framework will help to predict the diurnal and daily variability

  10. Therapeutic effects of zerumbone in an alkali-burned corneal wound healing model.

    Science.gov (United States)

    Kim, Jong Won; Jeong, Hyuneui; Yang, Myeon-Sik; Lim, Chae Woong; Kim, Bumseok

    2017-07-01

    Cornea is an avascular transparent tissue. Ocular trauma caused by a corneal alkali burn induces corneal neovascularization (CNV), inflammation, and fibrosis, leading to vision loss. The purpose of this study was to examine the effects of Zerumbone (ZER) on corneal wound healing caused by alkali burns in mice. CNV was induced by alkali-burn injury in BALB/C female mice. Topical ZER (three times per day, 3μl each time, at concentrations of 5, 15, and 30μM) was applied to treat alkali-burned mouse corneas for 14 consecutive days. Histopathologically, ZER treatment suppressed alkali burn-induced CNV and decreased corneal epithelial defects induced by alkali burns. Corneal tissue treated with ZER showed reduced mRNA levels of pro-angiogenic genes, including vascular endothelial growth factor, matrix metalloproteinase-2 and 9, and pro-fibrotic factors such as alpha smooth muscle actin and transforming growth factor-1 and 2. Immunohistochemical analysis demonstrated that the infiltration of F4/80 and/or CCR2 positive cells was significantly decreased in ZER-treated corneas. ZER markedly inhibited the mRNA and protein levels of monocyte chemoattractant protein-1 (MCP-1) in human corneal fibroblasts and murine peritoneal macrophages. Immunoblot analysis revealed that ZER decreased the activation of signal transducer and activator of transcription 3 (STAT3), with consequent reduction of MCP-1 production by these cells. In conclusion, topical administration of ZER accelerated corneal wound healing by inhibition of STAT3 and MCP-1 production. Copyright © 2017. Published by Elsevier B.V.

  11. Cardiovascular risk profile in burn survivors.

    Science.gov (United States)

    Leung, Becky; Younger, John F; Stockton, Kellie; Muller, Michael; Paratz, Jennifer

    2017-11-01

    Burn patients have prolonged derangements in metabolic, endocrine, cardiac and psychosocial systems, potentially impacting on their cardiovascular health. There are no studies on the risk of cardiovascular disease (CVD) after-burn. The aim of our study was to record lipid values and evaluate CVD risk in adult burn survivors. In a cross-sectional study patients ≥18 years with burn injury between 18-80% total burn surface area (TBSA) from 1998 to 2012 had total cholesterol, low density lipoprotein (LDL), high density lipoprotein (HDL) and triglycerides measured via finger prick. Means were compared to optimal ranges. Multivariate regression models were performed to assess the association of lipids with age, years after-burn and total body surface area % (TBSA). A p value Risk Score (FGCRS) was calculated. Fifty patients were included in the study. Compared to optimal values, patients had low HDL and high triglycerides. Greater %TBSA was associated with statistically significant elevation of triglycerides (p=0.007) and total cholesterol/HDL ratio (p=0.027). The median FGCRS was 3.9% (low) 10-year risk of CVD with 82% of patients in the low-risk category. Patients involved in medium/high level of physical activity had optimal values of HDL, TC/HDL and triglycerides despite the magnitude of TBSA%. Adult burn survivors had alterations in lipid profile proportional to TBSA, which could be modified by exercise, and no increase in overall formally predicted CVD risk in this cross sectional study. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  12. Optimalisation Of Oxide Burn-Up Enhanced For RSG-Gas Core

    International Nuclear Information System (INIS)

    Tukiran; Sembiring, Tagor Malem

    2000-01-01

    Strategy of fuel management of the RSG-Gas core has been changed from 6/1 to 5/1 pattern so the evaluation of fuel management is necessary to be done. The aim of evaluation is to look for the optimal fuel management so that the fuel can be stayed longer in the core and finally can save cost of operation. Using Batan-EQUIL-2D code did the evaluation of fuel management with 5/1 pattern. The result of evaluation is used to choose which one is more advantage without break the safety margin which is available in the Safety Analysis Report (SAR) firstly, the fuel management was calculated with core excess reactivity of 9,2% criteria. Secondly, fuel burn-up maximum of 56% criteria and the last, fuel burn-up maximum of 64% criteria. From the result of fuel management calculation of the RSG-Gas equilibrium core can be concluded that the optimal RSG-Gas equilibrium core with 5/1 pattern is if the fuel burn-up maximum 64% and the energy in a cycle of operation is 715 MWD. The fuel can be added one more step in the core without break any safety margin. It means that the RSG-Gas equilibrium core can save fuel and cost reduction

  13. Burning Mouth Syndrome

    Science.gov (United States)

    ... Care Home Health Info Health Topics Burning Mouth Burning Mouth Syndrome (BMS) is a painful, complex condition often described ... or other symptoms. Read More Publications Cover image Burning Mouth Syndrome Publication files Download Language English PDF — Number of ...

  14. Reactive transport models and simulation with ALLIANCES

    International Nuclear Information System (INIS)

    Leterrier, N.; Deville, E.; Bary, B.; Trotignon, L.; Hedde, T.; Cochepin, B.; Stora, E.

    2009-01-01

    Many chemical processes influence the evolution of nuclear waste storage. As a result, simulations based only upon transport and hydraulic processes fail to describe adequately some industrial scenarios. We need to take into account complex chemical models (mass action laws, kinetics...) which are highly non-linear. In order to simulate the coupling of these chemical reactions with transport, we use a classical Sequential Iterative Approach (SIA), with a fixed point algorithm, within the mainframe of the ALLIANCES platform. This approach allows us to use the various transport and chemical modules available in ALLIANCES, via an operator-splitting method based upon the structure of the chemical system. We present five different applications of reactive transport simulations in the context of nuclear waste storage: 1. A 2D simulation of the lixiviation by rain water of an underground polluted zone high in uranium oxide; 2. The degradation of the steel envelope of a package in contact with clay. Corrosion of the steel creates corrosion products and the altered package becomes a porous medium. We follow the degradation front through kinetic reactions and the coupling with transport; 3. The degradation of a cement-based material by the injection of an aqueous solution of zinc and sulphate ions. In addition to the reactive transport coupling, we take into account in this case the hydraulic retroaction of the porosity variation on the Darcy velocity; 4. The decalcification of a concrete beam in an underground storage structure. In this case, in addition to the reactive transport simulation, we take into account the interaction between chemical degradation and the mechanical forces (cracks...), and the retroactive influence on the structure changes on transport; 5. The degradation of the steel envelope of a package in contact with a clay material under a temperature gradient. In this case the reactive transport simulation is entirely directed by the temperature changes and

  15. Model predictive control of a lean-burn gasoline engine coupled with a passive selective catalytic reduction system

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Pingen [Tennessee Technological University (TTU); Lin, Qinghua [Tennessee Technological University (TTU); Prikhodko, Vitaly Y. [ORNL

    2017-10-01

    Lean-burn gasoline engines have demonstrated 10–20% engine efficiency gain over stoichiometric engines and are widely considered as a promising technology for meeting the 54.5 miles-per-gallon (mpg) Corporate Average Fuel Economy standard by 2025. Nevertheless, NOx emissions control for lean-burn gasoline for meeting the stringent EPA Tier 3 emission standards has been one of the main challenges towards the commercialization of highly-efficient lean-burn gasoline engines in the United States. Passive selective catalytic reduction (SCR) systems, which consist of a three-way catalyst and SCR, have demonstrated great potentials of effectively reducing NOx emissions for lean gasoline engines but may cause significant fuel penalty due to ammonia generation via rich engine combustion. The purpose of this study is to develop a model-predictive control (MPC) scheme for a lean-burn gasoline engine coupled with a passive SCR system to minimize the fuel penalty associated with passive SCR operation while satisfying stringent NOx and NH3 emissions requirements. Simulation results demonstrate that the MPC-based control can reduce the fuel penalty by 47.7% in a simulated US06 cycle and 32.0% in a simulated UDDS cycle, compared to the baseline control, while achieving over 96% deNOx efficiency and less than 15 ppm tailpipe ammonia slip. The proposed MPC control can potentially enable high engine efficiency gain for highly-efficient lean-burn gasoline engine while meeting the stringent EPA Tier 3 emission standards.

  16. Chemical Modeling of the Reactivity of Short-Lived Greenhouse Gases: A Model Inter-Comparison Prescribing a Well-Measured, Remote Troposphere

    Science.gov (United States)

    Prather, Michael J.; Flynn, Clare M.; Zhu, Xin; Steenrod, Stephen D.; Strode, Sarah A.; Fiore, Arlene M.; Correa, Gustavo; Murray, Lee T.; Lamarque, Jean-Francois

    2018-01-01

    We develop a new protocol for merging in situ measurements with 3-D model simulations of atmospheric chemistry with the goal of integrating over the data to identify the most reactive air parcels in terms of tropospheric production and loss of the greenhouse gases ozone and methane. Presupposing that we can accurately measure atmospheric composition, we examine whether models constrained by such measurements agree on the chemical budgets for ozone and methane. In applying our technique to a synthetic data stream of 14,880 parcels along 180W, we are able to isolate the performance of the photochemical modules operating within their global chemistry-climate and chemistry-transport models, removing the effects of modules controlling tracer transport, emissions, and scavenging. Differences in reactivity across models are driven only by the chemical mechanism and the diurnal cycle of photolysis rates, which are driven in turn by temperature, water vapor, solar zenith angle, clouds, and possibly aerosols and overhead ozone, which are calculated in each model. We evaluate six global models and identify their differences and similarities in simulating the chemistry through a range of innovative diagnostics. All models agree that the more highly reactive parcels dominate the chemistry (e.g., the hottest 10% of parcels control 25-30% of the total reactivities), but do not fully agree on which parcels comprise the top 10%. Distinct differences in specific features occur, including the regions of maximum ozone production and methane loss, as well as in the relationship between photolysis and these reactivities. Unique, possibly aberrant, features are identified for each model, providing a benchmark for photochemical module development. Among the 6 models tested here, 3 are almost indistinguishable based on the inherent variability caused by clouds, and thus we identify 4, effectively distinct, chemical models. Based on this work, we suggest that water vapor differences in

  17. Simulation of reactive geochemical transport in groundwater using a semi-analytical screening model

    Science.gov (United States)

    McNab, Walt W.

    1997-10-01

    A reactive geochemical transport model, based on a semi-analytical solution to the advective-dispersive transport equation in two dimensions, is developed as a screening tool for evaluating the impact of reactive contaminants on aquifer hydrogeochemistry. Because the model utilizes an analytical solution to the transport equation, it is less computationally intensive than models based on numerical transport schemes, is faster, and it is not subject to numerical dispersion effects. Although the assumptions used to construct the model preclude consideration of reactions between the aqueous and solid phases, thermodynamic mineral saturation indices are calculated to provide qualitative insight into such reactions. Test problems involving acid mine drainage and hydrocarbon biodegradation signatures illustrate the utility of the model in simulating essential hydrogeochemical phenomena.

  18. Educational Materials - Burn Wise

    Science.gov (United States)

    Burn Wise outreach material. Burn Wise is a partnership program of that emphasizes the importance of burning the right wood, the right way, in the right wood-burning appliance to protect your home, health, and the air we breathe.

  19. A regional chemical transport modeling to identify the influences of biomass burning during 2006 BASE-ASIA

    Science.gov (United States)

    Fu, J. S.; Hsu, N. C.; Gao, Y.; Huang, K.; Li, C.; Lin, N.-H.; Tsay, S.-C.

    2011-01-01

    To evaluate the impact of biomass burning from Southeast Asia to East Asia, this study conducted numerical simulations during NASA's 2006 Biomass-burning Aerosols in South-East Asia: Smoke Impact Assessment (BASE-ASIA). Two typical episode periods (27-28 March and 13-14 April) were examined. Two emission inventories, FLAMBE and GFED, were used in the simulations. The influences during two episodes in the source region (Southeast Asia) contributed to CO, O3 and PM2.5 concentrations as high as 400 ppbv, 20 ppbv and 80 μg/m3, respectively. The perturbations with and without biomass burning of the above three species were in the range of 10 to 60%, 10 to 20% and 30 to 70%, respectively. The impact due to long-range transport could spread over the southeastern parts of East Asia and could reach about 160 to 360 ppbv, 8 to 18 ppbv and 8 to 64 μg/m3 on CO, O3 and PM2.5, respectively; the percentage impact could reach 20 to 50% on CO, 10 to 30% on O3, and as high as 70% on PM2.5. An impact pattern can be found in April, while the impact becomes slightly broader and goes up to Yangtze River Delta. Two cross-sections at 15° N and 20° N were used to compare the vertical flux of biomass burning. In the source region (Southeast Asia), CO, O3 and PM2.5 concentrations had a strong upward tendency from surface to high altitudes. The eastward transport becomes strong from 2 to 8 km in the free troposphere. The subsidence contributed 60 to 70%, 20 to 50%, and 80% on CO, O3 and PM2.5, respectively to surface in the downwind area. The study reveals the significant impact of Southeastern Asia biomass burning on the air quality in both local and downwind areas, particularly during biomass burning episodes. This modeling study might provide constraints of lower limit. An additional study is underway for an active biomass burning year to obtain an upper limit and climate effects.

  20. How important is biomass burning in Canada to mercury contamination?

    Science.gov (United States)

    Fraser, Annemarie; Dastoor, Ashu; Ryjkov, Andrei

    2018-05-01

    Wildfire frequency has increased in past four decades in Canada and is expected to increase in future as a result of climate change (Wotton et al., 2010). Mercury (Hg) emissions from biomass burning are known to be significant; however, the impact of biomass burning on air concentration and deposition fluxes in Canada has not been previously quantified. We use estimates of burned biomass from FINN (Fire INventory from NCAR) and vegetation-specific emission factors (EFs) of mercury to investigate the spatiotemporal variability of Hg emissions in Canada. We use Environment and Climate Change Canada's GEM-MACH-Hg (Global Environmental Multi-scale, Modelling Air quality and Chemistry model, mercury version) to quantify the impact of biomass burning in Canada on spatiotemporal variability of air concentrations and deposition fluxes of mercury in Canada. We use North American gaseous elemental mercury (GEM) observations (2010-2015), GEM-MACH-Hg, and an inversion technique to optimize the EFs for GEM for five vegetation types represented in North American fires to constrain the biomass burning impacts of mercury. The inversion results suggest that EFs representing more vegetation types - specifically peatland - are required. This is currently limited by the sparseness of measurements of Hg from biomass burning plumes. More measurements of Hg concentration in the air, specifically downwind of fires, would improve the inversions. We use three biomass burning Hg emissions scenarios in Canada to conduct three sets of model simulations for 2010-2015: two scenarios where Hg is emitted only as GEM using literature or optimized EFs and a third scenario where Hg is emitted as GEM using literature EFs and particle bound mercury (PBM) emitted using the average GEM/PBM ratio from lab measurements. The three biomass burning emission scenarios represent a range of possible values for the impacts of Hg emissions from biomass burning in Canada on Hg concentration and deposition. We find

  1. Poverty, population density, and the epidemiology of burns in young children from Mexico treated at a U.S. pediatric burn facility.

    Science.gov (United States)

    Patel, Dipen D; Rosenberg, Marta; Rosenberg, Laura; Foncerrada, Guillermo; Andersen, Clark R; Capek, Karel D; Leal, Jesus; Lee, Jong O; Jimenez, Carlos; Branski, Ludwik; Meyer, Walter J; Herndon, David N

    2018-03-07

    Children 5 and younger are at risk for sustaining serious burn injuries. The causes of burns vary depending on demographic, cultural and socioeconomic variables. At this pediatric burn center we provided medical care to children from Mexico with severe injuries. The purpose of this study was to understand the impact of demographic distribution and modifiable risk factors of burns in young children to help guide prevention. A retrospective chart review was performed with children 5 and younger from Mexico who were injured from 2000-2013. The medical records of 447 acute patients were reviewed. Frequency counts and percentages were used to identify geographic distribution and calculate incidence of burns. Microsoft Powermap software was used to create a geographical map of Mexico based on types of burns. A binomial logistic regression was used to model the incidence of flame burns as opposed to scald burns in each state with relation to population density and poverty percentage. In all statistical tests, alpha=0.05 for a 95% level of confidence. Burns were primarily caused by flame and scald injuries. Admissions from flame injuries were mainly from explosions of propane tanks and gas lines and house fires. Flame injuries were predominantly from the states of Jalisco, Chihuahua, and Distrito Federal. Scalds were attributed to falling in large containers of hot water or food on the ground, and spills of hot liquids. Scald injuries were largely from the states of Oaxaca, Distrito Federal, and Hidalgo. The odds of a patient having flame burns were significantly associated with poverty percentage (ppoverty led to decrease in odds of a flame burn, but an increase in the odds of scald burns. Similarly, we found that increasing population density led to a decrease in the odds of a flame burn, but an increase in the odds of a scald burn. Burns in young children from Mexico who received medical care at this pediatric burn center were attributed to flame and scalds. Potential

  2. Manufacturing Data Uncertainties Propagation Method in Burn-Up Problems

    Directory of Open Access Journals (Sweden)

    Thomas Frosio

    2017-01-01

    Full Text Available A nuclear data-based uncertainty propagation methodology is extended to enable propagation of manufacturing/technological data (TD uncertainties in a burn-up calculation problem, taking into account correlation terms between Boltzmann and Bateman terms. The methodology is applied to reactivity and power distributions in a Material Testing Reactor benchmark. Due to the inherent statistical behavior of manufacturing tolerances, Monte Carlo sampling method is used for determining output perturbations on integral quantities. A global sensitivity analysis (GSA is performed for each manufacturing parameter and allows identifying and ranking the influential parameters whose tolerances need to be better controlled. We show that the overall impact of some TD uncertainties, such as uranium enrichment, or fuel plate thickness, on the reactivity is negligible because the different core areas induce compensating effects on the global quantity. However, local quantities, such as power distributions, are strongly impacted by TD uncertainty propagations. For isotopic concentrations, no clear trends appear on the results.

  3. Instrumented tube burns: theoretical and experimental observations

    Energy Technology Data Exchange (ETDEWEB)

    Yarrington, Cole Davis [Los Alamos National Laboratory; Obrey, Stephen J [Los Alamos National Laboratory; Foley, Timothy J [Los Alamos National Laboratory; Son, Steven F [Los Alamos National Laboratory

    2009-01-01

    The advent of widely available nanoscale energetic composites has resulted in a flurry of novel applications. One of these applications is the use of nanomaterials in energetic compositions. In compositions that exhibit high sensitivity to stimulus, these materials are often termed metastable intermolecular composites (MIC). More generally, these compositions are simply called nanoenergetics. Researchers have used many different experimental techniques to analyze the various properties of nanoenergetic systems. Among these various techniques, the confined tube burn is a simple experiment that is capable of obtaining much data related to the combustion of these materials. The purpose of this report is to review the current state of the confined tube burn experiment, including the drawbacks of the technique and possible remedies. As this report is intended to focus on the specific experimental technique, data from many different energetic materials, and experimental configurations will be presented. The qualitative and quantitative data that can be gathered using confined tube burn experiments include burning rates, total impulse, pressure rise rate, and burning rate differences between different detector types. All of these measurements lend insight into the combustion properties and mechanisms of specific nanoenergetics. Finally, certain data indicates a more complicated flow scenario which may need to be considered when developing burn tube models.

  4. Factors Influencing Resilience of Burn Patients in South Korea.

    Science.gov (United States)

    Jang, Mi Heui; Park, Jongui; Chong, Mi Kyong; Sok, Sohyune R

    2017-09-01

    To examine and identify the factors influencing the degree of resilience among Korean burn patients. A cross-sectional descriptive design was employed. The study sample consisted of 138 burn patients recovering from the acute phase in H hospital, Seoul. The male patient participants numbered 93 (67.4%) and the female participants numbered 45 (32.6%). The average age of the participants was 46.79 years. Measures used were the Beck Depression Inventory, State Trait Anxiety Inventory, self-esteem scale, family support scale, and resilience scale. The analyses showed that the prediction model for resilience among burn patients was significant (F = 33.94, p resilience among burn patients was self-esteem (β = .35), followed by family support (β = .29). This study provides preliminary evidence that self-esteem is a major and primary predictor of resilience among burn patients, next followed by family support. In the nursing practice, nurses need to pay attention to the burn patient's self-esteem and family support. Concrete interventions and strategies to improve the resilience of burn patients are needed. © 2017 Sigma Theta Tau International.

  5. Phase behavior and reactive transport of partial melt in heterogeneous mantle model

    Science.gov (United States)

    Jordan, J.; Hesse, M. A.

    2013-12-01

    The reactive transport of partial melt is the key process that leads to the chemical and physical differentiation of terrestrial planets and smaller celestial bodies. The essential role of the lithological heterogeneities during partial melting of the mantle is increasingly recognized. How far can enriched melts propagate while interacting with the ambient mantle? Can the melt flow emanating from a fertile heterogeneity be localized through a reactive infiltration feedback in a model without exogenous factors or contrived initial conditions? A full understanding of the role of heterogeneities requires reactive melt transport models that account for the phase behavior of major elements. Previous work on reactive transport in the mantle focuses on trace element partitioning; we present the first nonlinear chromatographic analysis of reactive melt transport in systems with binary solid solution. Our analysis shows that reactive melt transport in systems with binary solid solution leads to the formation of two separate reaction fronts: a slow melting/freezing front along which enthalpy change is dominant and a fast dissolution/precipitation front along which compositional changes are dominated by an ion-exchange process over enthalpy change. An intermediate state forms between these two fronts with a bulk-rock composition and enthalpy that are not necessarily bounded by the bulk-rock composition and enthalpy of either the enriched heterogeneity or the depleted ambient mantle. The formation of this intermediate state makes it difficult to anticipate the porosity changes and hence the stability of reaction fronts. Therefore, we develop a graphical representation for the solution that allows identification of the intermediate state by inspection, for all possible bulk-rock compositions and enthalpies of the heterogeneity and the ambient mantle. We apply the analysis to the partial melting of an enriched heterogeneity. This leads to the formation of moving precipitation

  6. Deciding Where to Burn: Stakeholder Priorities for Prescribed Burning of a Fire-Dependent Ecosystem

    Directory of Open Access Journals (Sweden)

    Jennifer K. Costanza

    2011-03-01

    Full Text Available Multiagency partnerships increasingly work cooperatively to plan and implement fire management. The stakeholders that comprise such partnerships differ in their perceptions of the benefits and risks of fire use or nonuse. These differences inform how different stakeholders prioritize sites for burning, constrain prescribed burning, and how they rationalize these priorities and constraints. Using a survey of individuals involved in the planning and implementation of prescribed fire in the Onslow Bight region of North Carolina, we examined how the constraints and priorities for burning in the longleaf pine (Pinus palustris ecosystem differed among three stakeholder groups: prescribed burn practitioners from agencies, practitioners from private companies, and nonpractitioners. Stakeholder groups did not differ in their perceptions of constraints to burning, and development near potentially burned sites was the most important constraint identified. The top criteria used by stakeholders to decide where to burn were the time since a site was last burned, and a site's ecosystem health, with preference given to recently burned sites in good health. Differences among stakeholder groups almost always pertained to perceptions of the nonecological impacts of burning. Prescribed burning priorities of the two groups of practitioners, and particularly practitioners from private companies, tended to be most influenced by nonecological impacts, especially through deprioritization of sites that have not been burned recently or are in the wildland-urban interface (WUI. Our results highlight the difficulty of burning these sites, despite widespread laws in the southeast U.S. that limit liability of prescribed burn practitioners. To avoid ecosystem degradation on sites that are challenging to burn, particularly those in the WUI, conservation partnerships can facilitate demonstration projects involving public and private burn practitioners on those sites. In summary

  7. Epidemiology of burns

    NARCIS (Netherlands)

    Dokter, Jan

    2016-01-01

    The aim of this thesis is to understand the epidemiology, treatment and outcomes of specialized burn care in The Netherlands. This thesis is mainly based on historical data of the burn centre in Rotterdam from 1986, combined with historical data from the burn centres in Groningen and Beverwijk from

  8. Actinide-only and full burn-up credit in criticality assessment of RBMK-1500 spent nuclear fuel storage cask using axial burn-up profile

    Energy Technology Data Exchange (ETDEWEB)

    Barkauskas, V., E-mail: vytenis.barkauskas@ftmc.lt; Plukiene, R., E-mail: rita.plukiene@ftmc.lt; Plukis, A., E-mail: arturas.plukis@ftmc.lt

    2016-10-15

    Highlights: • RBMK-1500 fuel burn-up impact on k{sub eff} in the SNF cask was calculated using SCALE 6.1. • Positive end effect was noticed at certain burn-up for the RBMK-1500 spent nuclear fuel. • The non-uniform uranium depletion is responsible for the end effect in RBMK-1500 SNF. • k{sub eff} in the SNF cask does not exceed a value of 0.95 which is set in the safety requirements. - Abstract: Safe long-term storage of spent nuclear fuel (SNF) is one of the main issues in the field of nuclear safety. Burn-up credit application in criticality analysis of SNF reduces conservatism of usually used fresh fuel assumption and implies a positive economic impact for the SNF storage. Criticality calculations of spent nuclear fuel in the CONSTOR® RBMK-1500/M2 cask were performed using pre-generated ORIGEN-ARP spent nuclear fuel composition libraries, and the results of the RBMK-1500 burn-up credit impact on the effective neutron multiplication factor (k{sub eff}) have been obtained and are presented in the paper. SCALE 6.1 code package with the STARBUCKS burn-up credit evaluation tool was used for modeling. Pre-generated ARP (Automatic Rapid Processing) crosssection libraries based on ENDF/B-VII cross section library were used for fast burn-up inventory modeling. Different conditions in the SNF cask were modeled: 2.0% and 2.8% initial enrichment fuel of various burn-up and water density inside cavities of the SNF cask. The fuel composition for the criticality analysis was chosen taking into account main actinides and most important fission products used in burn-up calculations. A significant positive end effect is noticed from 15 GWd/tU burn-up for 2.8% enrichment fuel and from 9 GWd/tU for 2.0% enrichment fuel applying the actinide-only approach. The obtained results may be applied in further evaluations of the RBMK type reactor SNF storage as well as help to optimize the SNF storage volume inside the CONSTOR® RBMK-1500/M2 cask without compromising criticality

  9. Actinide-only and full burn-up credit in criticality assessment of RBMK-1500 spent nuclear fuel storage cask using axial burn-up profile

    International Nuclear Information System (INIS)

    Barkauskas, V.; Plukiene, R.; Plukis, A.

    2016-01-01

    Highlights: • RBMK-1500 fuel burn-up impact on k_e_f_f in the SNF cask was calculated using SCALE 6.1. • Positive end effect was noticed at certain burn-up for the RBMK-1500 spent nuclear fuel. • The non-uniform uranium depletion is responsible for the end effect in RBMK-1500 SNF. • k_e_f_f in the SNF cask does not exceed a value of 0.95 which is set in the safety requirements. - Abstract: Safe long-term storage of spent nuclear fuel (SNF) is one of the main issues in the field of nuclear safety. Burn-up credit application in criticality analysis of SNF reduces conservatism of usually used fresh fuel assumption and implies a positive economic impact for the SNF storage. Criticality calculations of spent nuclear fuel in the CONSTOR® RBMK-1500/M2 cask were performed using pre-generated ORIGEN-ARP spent nuclear fuel composition libraries, and the results of the RBMK-1500 burn-up credit impact on the effective neutron multiplication factor (k_e_f_f) have been obtained and are presented in the paper. SCALE 6.1 code package with the STARBUCKS burn-up credit evaluation tool was used for modeling. Pre-generated ARP (Automatic Rapid Processing) crosssection libraries based on ENDF/B-VII cross section library were used for fast burn-up inventory modeling. Different conditions in the SNF cask were modeled: 2.0% and 2.8% initial enrichment fuel of various burn-up and water density inside cavities of the SNF cask. The fuel composition for the criticality analysis was chosen taking into account main actinides and most important fission products used in burn-up calculations. A significant positive end effect is noticed from 15 GWd/tU burn-up for 2.8% enrichment fuel and from 9 GWd/tU for 2.0% enrichment fuel applying the actinide-only approach. The obtained results may be applied in further evaluations of the RBMK type reactor SNF storage as well as help to optimize the SNF storage volume inside the CONSTOR® RBMK-1500/M2 cask without compromising criticality safety.

  10. Biofuel gasifier feedstock reactivity - explaining the differences and creating prediction models

    Energy Technology Data Exchange (ETDEWEB)

    Konttinen, J. (Jyvaeskylae Univ. (Finland)), Email: jukontti@jyu.fi; Moilanen, A. (VTT Processes, Espoo (Finland)); DeMartini, N.; Hupa, M. (AaboAkademi Univ., Turku (Finland))

    2009-07-01

    In this project in progress, the objective is to generate a method with reasonable cost and effort, to predict the gasification behavior of biomass fuels in a gasification reactor. The results of the project will help to understand the differences in the gasification behavior of biomass fuels. An essential hypothesis in the project is that the decrease of the catalysis properties of biomass ash will decrease biomass char gasification reactivity and thus the final carbon conversion. The project will involve TGA experiments to characterize char reactivity from 3 biomass fuels, ash characterization by fuel fractionation and SEM analysis; bench scale fluidized bed gasification for the 3 fuels; and kinetic modeling to include the change in the carbon conversion rate for different fuels as carbon gasification proceeds to completion. The constants and reactivity models will be used as part of a fluidized-bed gasification reactor model called. 'Carbon conversion predictor', in order to predict the effect of fuel ash composition on the gasification kinetics of biomass char. The University of Jyvaeskylae, Aabo Akademi University and VTT processes will work in cooperation with the private companies in Finland in the field of gasification. Also some cooperation in the USA will possibly be generated. The results of this project can be used in the design of commercial-scale biomass gasification reactors firing a variety of biomass fuels. (orig.)

  11. A model for nuclear research reactor dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Barati, Ramin, E-mail: Barati.ramin@aut.ac.ir; Setayeshi, Saeed, E-mail: setayesh@aut.ac.ir

    2013-09-15

    Highlights: • A thirty-fourth order model is used to simulate the dynamics of a research reactor. • We consider delayed neutrons fraction as a function of time. • Variable fuel and temperature reactivity coefficients are used. • WIMS, BORGES and CITVAP codes are used for initial condition calculations. • Results are in agreement with experimental data rather than common codes. -- Abstract: In this paper, a useful thirty-fourth order model is presented to simulate the kinetics and dynamics of a research reactor core. The model considers relevant physical phenomena that govern the core such as reactor kinetics, reactivity feedbacks due to coolant and fuel temperatures (Doppler effects) with variable reactivity coefficients, xenon, samarium, boron concentration, fuel burn up and thermal hydraulics. WIMS and CITVAP codes are used to extract neutron cross sections and calculate the initial neuron flux respectively. The purpose is to present a model with results similar to reality as much as possible with reducing common simplifications in reactor modeling to be used in different analyses such as reactor control, functional reliability and safety. The model predictions are qualified by comparing with experimental data, detailed simulations of reactivity insertion transients, and steady state for Tehran research reactor reported in the literature and satisfactory results have been obtained.

  12. Prestudy of burn control in NET

    International Nuclear Information System (INIS)

    Anderson, D.; Hamnen, H.; Lisak, M.

    1990-02-01

    The present report describes our ongoing work on a number of selected topics, and the plans for the nearest future. In chapter 2 we have specialized the system of the previous report to form an easily tractable, second-order system. In this case one can give an explicit, analytical condition for stability. A code providing quick answers regarding stability, time scales and eigenvectors has been written and tested. The zerodimensional modelling of a burning plasma described by space dependent equations is often done in a heuristic way, with no clear relation between the two systems of equations. We have tried to put the approximation procedure involved in the transition to 0-D models on a more formal basis. This is the topic of chapter 3. The 1-D equilibrium solution is also investigated with respect to its stability properties, which are shown to be the same as those derived from the simplest 0-D space averaged model. Chapter 4 contains a few emerging thoughts on burn control. First, the limited swing of the auxiliary heating gives rise to limitations on the possibilities to intervene against temperature excursions by an auxiliary heating modulation. This problem becomes severe when one operates at high Q values. Another analysis concerns the problem of selecting a proper control action when a temperature profile differs from the equilibrium shape. A couple of alternative schemes for burn control, minor radius alterations and dynamic stabilization are tentatively discussed; no definite answers on their feasibility are obtained. The problem of diagnosing the plasma with respect to burn conditions is the topic of chapter 5. The influence on the energy distribution of control actions and the reliability of neutron measurements are discussed, and the question of how to handle sawteeth is briefly revisited. Chapter 6 is a description of process identification and how it could be used for burn control. A particular advantage is that it can be combined with physical

  13. Evaluation of the reactive nitrogen budget of the remote atmosphere in global models using airborne measurements

    Science.gov (United States)

    Murray, L. T.; Strode, S. A.; Fiore, A. M.; Lamarque, J. F.; Prather, M. J.; Thompson, C. R.; Peischl, J.; Ryerson, T. B.; Allen, H.; Blake, D. R.; Crounse, J. D.; Brune, W. H.; Elkins, J. W.; Hall, S. R.; Hintsa, E. J.; Huey, L. G.; Kim, M. J.; Moore, F. L.; Ullmann, K.; Wennberg, P. O.; Wofsy, S. C.

    2017-12-01

    Nitrogen oxides (NOx ≡ NO + NO2) in the background atmosphere are critical precursors for the formation of tropospheric ozone and OH, thereby exerting strong influence on surface air quality, reactive greenhouse gases, and ecosystem health. The impact of NOx on atmospheric composition and climate is sensitive to the relative partitioning of reactive nitrogen between NOx and longer-lived reservoir species of the total reactive nitrogen family (NOy) such as HNO3, HNO4, PAN and organic nitrates (RONO2). Unfortunately, global chemistry-climate models (CCMs) and chemistry-transport models (CTMs) have historically disagreed in their reactive nitrogen budgets outside of polluted continental regions, and we have lacked in situ observations with which to evaluate them. Here, we compare and evaluate the NOy budget of six global models (GEOS-Chem CTM, GFDL AM3 CCM, GISS E2.1 CCM, GMI CTM, NCAR CAM CCM, and UCI CTM) using new observations of total reactive nitrogen and its member species from the NASA Atmospheric Tomography (ATom) mission. ATom has now completed two of its four planned deployments sampling the remote Pacific and Atlantic basins of both hemispheres with a comprehensive suite of measurements for constraining reactive photochemistry. All six models have simulated conditions climatologically similar to the deployments. The GMI and GEOS-Chem CTMs have in addition performed hindcast simulations using the MERRA-2 reanalysis, and have been sampled along the flight tracks. We evaluate the performance of the models relative to the observations, and identify factors contributing to their disparate behavior using known differences in model oxidation mechanisms, heterogeneous loss pathways, lightning and surface emissions, and physical loss processes.

  14. Burns and military clothing.

    Science.gov (United States)

    McLean, A D

    2001-02-01

    Burn injury is a ubiquitous threat in the military environment. The risks during combat are well recognised, but the handling of fuel, oil, munitions and other hot or flammable materials during peacetime deployment and training also imposes an inherent risk of accidental burn injury. Over the last hundred years, the burn threat in combat has ranged from nuclear weapons to small shoulder-launched missiles. Materials such as napalm and white phosphorus plainly present a risk of burn, but the threat extends to encompass personnel in vehicles attacked by anti-armour weapons, large missiles, fuel-air explosives and detonations/conflagrations on weapons platforms such as ships. Large numbers of burn casualties were caused at Pearl Harbor, in Hiroshima and Nagasaki, Vietnam, during the Arab/Israeli Wars and in the Falkland Islands conflict. The threat from burns is unlikely to diminish, indeed new developments in weapons seek to exploit the vulnerability of the serviceman and servicewoman to burns. Clothing can be a barrier to some types of burn--both inherently in the properties of the material, but also by trapping air between clothing layers. Conversely, ignition of the clothing may exacerbate a burn. There is hearsay that burnt clothing products within a wound may complicate the clinical management, or that materials that melt (thermoplastic materials) should not be worn if there is a burn threat. This paper explores the incidence of burn injury, the mechanisms of heat transfer to bare skin and skin covered by materials, and the published evidence for the complication of wound management by materials. Even light-weight combat clothing can offer significant protection to skin from short duration flash burns; the most vulnerable areas are the parts of the body not covered--face and hands. Multilayered combat clothing can offer significant protection for short periods from engulfment by flames; lightweight tropical wear with few layers offers little protection. Under

  15. Ceruloplasmin and Hypoferremia: Studies in Burn and Non-Burn Trauma Patients

    Science.gov (United States)

    2015-03-06

    ceruloplasmin; ferroxidase; iron status; oxidant stress; burn; trauma 1. Introduction Iron is an essential element for life that facilitates...899–906. 45. Shakespeare , P.G. Studies on the serum levels of iron, copper and zinc and the urinary excretion of zinc after burn injury. Burns Incl

  16. Combined Injury Modeling: Radiation and Burn Workshop Report

    Science.gov (United States)

    2010-10-01

    the effects manifest from 6-12 months post exposure, which is later than the lung and GI effects. Liver effects may also play a prominent role...when radiation exposure is combined with burn. For instance, in the Chernobyl accident, hepatic encephalopathy was a major cause of death in patients

  17. The treatment of mixing in core helium-burning models - III. Suppressing core breathing pulses with a new constraint on overshoot

    Science.gov (United States)

    Constantino, Thomas; Campbell, Simon W.; Lattanzio, John C.

    2017-12-01

    Theoretical predictions for the core helium burning phase of stellar evolution are highly sensitive to the uncertain treatment of mixing at convective boundaries. In the last few years, interest in constraining the uncertain structure of their deep interiors has been renewed by insights from asteroseismology. Recently, Spruit proposed a limit for the rate of growth of helium-burning convective cores based on the higher buoyancy of material ingested from outside the convective core. In this paper we test the implications of such a limit for stellar models with a range of initial mass and metallicity. We find that the constraint on mixing beyond the Schwarzschild boundary has a significant effect on the evolution late in core helium burning, when core breathing pulses occur and the ingestion rate of helium is fastest. Ordinarily, core breathing pulses prolong the core helium burning lifetime to such an extent that models are at odds with observations of globular cluster populations. Across a wide range of initial stellar masses (0.83 ≤ M/M⊙ ≤ 5), applying the Spruit constraint reduces the core helium burning lifetime because core breathing pulses are either avoided or their number and severity reduced. The constraint suggested by Spruit therefore helps to resolve significant discrepancies between observations and theoretical predictions. Specifically, we find improved agreement for R2 (the observed ratio of asymptotic giant branch to horizontal branch stars in globular clusters), the luminosity difference between these two groups, and in asteroseismology, the mixed-mode period spacing detected in red clump stars in the Kepler field.

  18. Burning velocity measurements of nitrogen-containing compounds.

    Science.gov (United States)

    Takizawa, Kenji; Takahashi, Akifumi; Tokuhashi, Kazuaki; Kondo, Shigeo; Sekiya, Akira

    2008-06-30

    Burning velocity measurements of nitrogen-containing compounds, i.e., ammonia (NH3), methylamine (CH3NH2), ethylamine (C2H5NH2), and propylamine (C3H7NH2), were carried out to assess the flammability of potential natural refrigerants. The spherical-vessel (SV) method was used to measure the burning velocity over a wide range of sample and air concentrations. In addition, flame propagation was directly observed by the schlieren photography method, which showed that the spherical flame model was applicable to flames with a burning velocity higher than approximately 5 cm s(-1). For CH3NH2, the nozzle burner method was also used to confirm the validity of the results obtained by closed vessel methods. We obtained maximum burning velocities (Su0,max) of 7.2, 24.7, 26.9, and 28.3 cm s(-1) for NH3, CH3NH2, C2H5NH2, and C3H7NH2, respectively. It was noted that the burning velocities of NH3 and CH3NH2 were as high as those of the typical hydrofluorocarbon refrigerants difluoromethane (HFC-32, Su0,max=6.7 cm s(-1)) and 1,1-difluoroethane (HFC-152a, Su0,max=23.6 cm s(-1)), respectively. The burning velocities were compared with those of the parent alkanes, and it was found that introducing an NH2 group into hydrocarbon molecules decreases their burning velocity.

  19. Mutability and Deformity: Models of the Body and the Art of Edward Burne-Jones

    Directory of Open Access Journals (Sweden)

    Caroline Arscott

    2008-10-01

    Full Text Available This essay discusses the alternatives that emerged in the Victorian period to a perfect and regular neoclassical conception of the heroic male body. It charts the evolving fascination with mutable forms, whether heroic or monstrous, imagined first of all in the 1850s in terms of a body conceived of as bolted together or modified by the fusion of organic and inorganic substances. The early work of Burne-Jones is discussed in relation to investigations of cell structure and mechanical inventions in the Great Exhibition of 1851 such as the 'Expanding Model of a Man' invented by Count Dunin. Arscott also discusses the cybernetic implications of Burne-Jones's gouache, 'The Merciful Knight' (1863. Later works of Burne-Jones, in particular 'Perseus and the Graiae' (1878 and the reworked composition 'Love Among the Ruins' (1894, are discussed in terms of a turn towards a sense of the spread and mutation of organic being through and beyond the self. Arscott considers this alongside contemporary investigations of the role of bacilli in disease, looking at leprosy and the heroisation of the Leper Priest of Molokai, Father Damien in the 1880s and 1890s. In the late-Victorian period, Arscott concludes, monstrous distortion was imagined as the unpredictable and unruly proliferation of the organic by the organism in both its vital and morbid states.

  20. Fission gas release at high burn-up: beyond the standard diffusion model

    International Nuclear Information System (INIS)

    Landskron, H.; Sontheimer, F.; Billaux, M.R.

    2002-01-01

    At high burn-up standard diffusion models describing the release of fission gases from nuclear fuel must be extended to describe the experimental loss of xenon observed in the fuel matrix of the rim zone. Marked improvements of the prediction of integral fission gas release of fuel rods as well as of radial fission gas profiles in fuel pellets are achieved by using a saturation concept to describe fission gas behaviour not only in the pellet rim but also as an additional fission gas path in the whole pellet. (author)

  1. Burn Wise

    Science.gov (United States)

    Burn Wise is a partnership program of the U.S. Environmental Protection Agency that emphasizes the importance of burning the right wood, the right way, in the right appliance to protect your home, health, and the air we breathe.

  2. Henslow's sparrow winter-survival estimates and response to prescribed burning

    Science.gov (United States)

    Thatcher, B.S.; Krementz, D.G.; Woodrey, M.S.

    2006-01-01

    Wintering Henslow's sparrow (Ammodramus henslowii) populations rely on lands managed with prescribed burning, but the effects of various burn regimes on their overwinter survival are unknown. We studied wintering Henslow's sparrows in coastal pine savannas at the Mississippi Sandhill Crane National Wildlife Refuge, Jackson County, Mississippi, USA, during January and February 2001 and 2002. We used the known-fate modeling procedure in program MARK to evaluate the effects of burn age (1 or 2 growing seasons elapsed), burn season (growing, dormant), and calendar year on the survival rates of 83 radiomarked Henslow's sparrows. We found strong evidence that Henslow's sparrow survival rates differed by burn age (with higher survival in recently burned sites) and by year (with lower survival rates in 2001 likely because of drought conditions). We found some evidence that survival rates also differed by bum season (with higher survival in growing-season sites), although the effects of burn season were only apparent in recently burned sites. Avian predation was the suspected major cause of mortality (causing 6 of 14 deaths) with 1 confirmed loggerhead shrike (Lanius ludovicianus) depredation. Our results indicated that recently burned savannas provide high-quality wintering habitats and suggested that managers can improve conditions for wintering Henslow's sparrows by burning a large percentage of savannas each year.

  3. 3D hydrodynamic simulations of carbon burning in massive stars

    Science.gov (United States)

    Cristini, A.; Meakin, C.; Hirschi, R.; Arnett, D.; Georgy, C.; Viallet, M.; Walkington, I.

    2017-10-01

    We present the first detailed 3D hydrodynamic implicit large eddy simulations of turbulent convection of carbon burning in massive stars. Simulations begin with radial profiles mapped from a carbon-burning shell within a 15 M⊙ 1D stellar evolution model. We consider models with 1283, 2563, 5123, and 10243 zones. The turbulent flow properties of these carbon-burning simulations are very similar to the oxygen-burning case. We performed a mean field analysis of the kinetic energy budgets within the Reynolds-averaged Navier-Stokes framework. For the upper convective boundary region, we find that the numerical dissipation is insensitive to resolution for linear mesh resolutions above 512 grid points. For the stiffer, more stratified lower boundary, our highest resolution model still shows signs of decreasing sub-grid dissipation suggesting it is not yet numerically converged. We find that the widths of the upper and lower boundaries are roughly 30 per cent and 10 per cent of the local pressure scaleheights, respectively. The shape of the boundaries is significantly different from those used in stellar evolution models. As in past oxygen-shell-burning simulations, we observe entrainment at both boundaries in our carbon-shell-burning simulations. In the large Péclet number regime found in the advanced phases, the entrainment rate is roughly inversely proportional to the bulk Richardson number, RiB (∝RiB-α, 0.5 ≲ α ≲ 1.0). We thus suggest the use of RiB as a means to take into account the results of 3D hydrodynamics simulations in new 1D prescriptions of convective boundary mixing.

  4. Silica fractionation and reactivity in soils

    Science.gov (United States)

    Unzué Belmonte, Dácil; Barão, Lúcia; Vandevenne, Floor; Schoelynck, Jonas; Struyf, Eric; Meire, Patrick

    2014-05-01

    The Si cycle is a globally important biogeochemical cycle, with strong connections to other biogeochemical cycles, including C. Silica is taken up by plants to form protective structures called phytoliths, which become a part of the soil and contribute strongly to soil Si cycling upon litter burial. Different silica fractions are found in soils, with phytoliths among the most easily soluble, especially compared to silicate minerals. A whole set of secondary non-biogenic fractions exist, that also have a high reactivity (adsorbed Si, reactive secondary minerals…). A good characterization of the different fractions of reactive silica is crucial to move forward knowledge on ecosystem Si cycling, which has been recognized in the last decade as crucial for terrestrial Si fluxes. A new method to analyze the different fractions of silica in soils has been described by Koning et al. (2002) and adapted by our research team (Barão et al. 2013). Using a continuous extraction of Si and aluminum in 0.5M NaOH, biogenic and non-biogenic reactive fractions are separated based on their Si/Al ratios and their reactivity in NaOH. Applying this new method I will investigate three emerging ideas on how humans can affect directly terrestrial Si fluxes. -Land use. I expect strong silica fractionation and reactivity differences in different land uses. These effects due to agricultural and forestry management have already been shown earlier in temperate soils (Vandevenne et al. 2012). Now we will test this hypothesis in recently deforested soils, in the south of Brazil. 'Pristine' forest, managed forest and tobacco field soils (with and without rotation crops) will be studied. This research belongs to an interdisciplinary project on soils and global change. -Fire. According to the IPCC report, extreme events such as fires (number and intensity) would increase due to climate change. We analyzed litter from spruce forest, beech forest and peat soils at two burning levels, after 350°C and

  5. The use of an atmospheric dispersion model to determine influence regions in the Prince George, B.C. airshed from the burning of open wood waste piles.

    Science.gov (United States)

    Ainslie, B; Jackson, P L

    2009-06-01

    A means of determining air emission source regions adversely influencing the city of Prince George, British Columbia, Canada from potential burning of isolated piles of mountain pine beetle-killed lodge pole pine is presented. The analysis uses the CALPUFF atmospheric dispersion model to identify safe burning regions based on atmospheric stability and wind direction. Model results show that the location and extent of influence regions is sensitive to wind speed, wind direction, atmospheric stability and a threshold used to quantify excessive concentrations. A concentration threshold based on the Canada Wide PM(2.5) Standard is used to delineate the influence regions while Environment Canada's (EC) daily ventilation index (VI) is used to quantify local atmospheric stability. Results from the analysis, to be used by air quality meteorologists in assessing daily requests for burning permits, are presented as a series of maps delineating acceptable burning locations for sources placed at various distances from the city center and under different ventilation conditions. The results show that no burning should be allowed within 10 km of the city center; under poor ventilation conditions, no burning should be allowed within 20 km of the city center; under good ventilation conditions, burning can be allowed within 10-15 km of the city center; under good to fair ventilation conditions, burning can be allowed beyond 15 km of the city center; and if the wind direction can be reliably forecast, burning can be allowed between 5 and 10 km downwind of the city center under good ventilation conditions.

  6. Effects of radiation, burn and combined radiation-burn injury on hemodynamics

    International Nuclear Information System (INIS)

    Ye Benlan; Cheng Tianming; Xiao Jiasi

    1996-01-01

    Changes in hemodynamics after radiation, burn and combined radiation burn injury within eight hours post injury were studied. The results indicate: (1) Shock of rats in the combined injury group is more severe than that in the burn group. One of the reasons is that the blood volume in the combined injury group is less than that in the burn group. Radiation injury plays an important role in this effect, which enhances the increase in vascular permeability and causes the loss of plasma. (2) Decrease in cardiac output and stroke work and increase in vascular resistance in the combined radiation burn group are more drastic than those in the burn group, which may cause and enhance shock. Replenishing fluid is useful for recovery of hemodynamics. (3) Rb uptake is increased in the radiation group which indicates that compensated increase of myocardial nutritional blood flow may take place before the changes of hemodynamics and shock. Changes of Rb uptake in the combined injury group is different from that in the radiation groups and in the burn group. The results also suggest that changes of ion channel activities may occur to a different extent after injury. (4) Verapamil is helpful to the recovery of hemodynamics post injury. It is better to combine verapamil with replenishing fluid

  7. CLINICAL STUDY OF ELECTRICAL BURNS AMONG ALL BURNS CASES- 3 YEARS’ EXPERIENCE

    Directory of Open Access Journals (Sweden)

    Nagabathula Durga Prasad

    2017-08-01

    Full Text Available BACKGROUND With the advances in technology, electrical injuries are becoming more common and are the leading cause of work-related traumatic death. One third of all electrical traumas and most high-voltage injuries are job related and more than 50% of these injuries result from power line contact. The management of the major burn injury represents a significant challenge to every member of the burns team. Most of electrical burns present with gangrene of toes and limbs with eschar over body parts. Their presentation is mostly due to contact with high-voltage electricity at their work places. MATERIALS AND METHODS A retrospective study was made to study the clinico-social profile of patients suffering electric burns admitted into Department of General Surgery. RESULTS 92 cases were evaluated and studied. Majority of patients developed gangrene of limbs and toes. Amputations and skin grafting was done. Most patients who suffered electric burns were males of age group 21 to 40 years. All cases are accidental and mostly occurred at work places. Most electric burns are high-voltage based and caused deep burns. Major complications like acute renal failure and septicaemia were encountered. Most of them suffered 16 to 30% burns. Most commonly isolated organism from wounds is pseudomonas. Most of them suffered a hospital stay of 1 to 2 months. CONCLUSION Electric burns are a burden to the society. Prevention is the best way to deal with them. Electricity-based employees have to be trained properly regarding safety measures to be taken. General education of public regarding safety measures can prevent electrical burn injuries.

  8. Studies of the reactivity effects of hydrogenous material in a sodium cooled fast reactor

    International Nuclear Information System (INIS)

    Ingram, D.; Sweet, D.W.

    1979-01-01

    The reactivity effects of hydrogenous substances, such as the oil used in the primary coolant pumps, which could enter the core of a fast reactor in a hypothetical accident, have been studied in a series of experiments and calculations. Measurements to study the influence of the density of the hydrogen and its location on reactivity were made in two assemblies in the zero power reactor ZEBRA. The first of these was similar in size to PFR and the second was the large BZB assembly of the BIZET programme. The results of this work have been compared with calculations using the FGL5 nuclear data library. Calculations for a 1200 MW (e) CFR have been made using three quantities of material (8, 40 and 160 Kg of hydrocarbon, equivalent to 10, 50 and 200 litres of oil). The calculations have used different geometrical models and hydrocarbon distributions and have explored the influence of core temperature, fuel burn-up and the presence of control rods to estimate the maximum reactivity changes that can be obtained. The results have been analysed in terms of components of the change in neutron balance produced by the material and uncertainties in these have been derived from the ZEBRA work. (author)

  9. Outcomes of burns in the elderly: revised estimates from the Birmingham Burn Centre.

    Science.gov (United States)

    Wearn, Christopher; Hardwicke, Joseph; Kitsios, Andreas; Siddons, Victoria; Nightingale, Peter; Moiemen, Naiem

    2015-09-01

    Outcomes after burn have continued to improve over the last 70 years in all age groups including the elderly. However, concerns have been raised that survival gains have not been to the same magnitude in elderly patients compared to younger age groups. The aims of this study were to analyze the recent outcomes of elderly burn injured patients admitted to the Birmingham Burn Centre, compare data with a historical cohort and published data from other burn centres worldwide. A retrospective review was conducted of all patients ≥65 years of age, admitted to our centre with cutaneous burns, between 2004 and 2012. Data was compared to a previously published historical cohort (1999-2003). 228 patients were included. The observed mortality for the study group was 14.9%. The median age of the study group was 79 years, the male to female ratio was 1:1 and median Total Body Surface Area (TBSA) burned was 5%. The incidence of inhalation injury was 13%. Median length of stay per TBSA burned for survivors was 2.4 days/% TBSA. Mortality has improved in all burn size groups, but differences were highly statistically significant in the medium burn size group (10-20% TBSA, p≤0.001). Burn outcomes in the elderly have improved over the last decade. This reduction has been impacted by a reduction in overall injury severity but is also likely due to general improvements in burn care, improved infrastructure, implementation of clinical guidelines and increased multi-disciplinary support, including Geriatric physicians. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  10. Modeling variably saturated multispecies reactive groundwater solute transport with MODFLOW-UZF and RT3D

    Science.gov (United States)

    Bailey, Ryan T.; Morway, Eric D.; Niswonger, Richard G.; Gates, Timothy K.

    2013-01-01

    A numerical model was developed that is capable of simulating multispecies reactive solute transport in variably saturated porous media. This model consists of a modified version of the reactive transport model RT3D (Reactive Transport in 3 Dimensions) that is linked to the Unsaturated-Zone Flow (UZF1) package and MODFLOW. Referred to as UZF-RT3D, the model is tested against published analytical benchmarks as well as other published contaminant transport models, including HYDRUS-1D, VS2DT, and SUTRA, and the coupled flow and transport modeling system of CATHY and TRAN3D. Comparisons in one-dimensional, two-dimensional, and three-dimensional variably saturated systems are explored. While several test cases are included to verify the correct implementation of variably saturated transport in UZF-RT3D, other cases are included to demonstrate the usefulness of the code in terms of model run-time and handling the reaction kinetics of multiple interacting species in variably saturated subsurface systems. As UZF1 relies on a kinematic-wave approximation for unsaturated flow that neglects the diffusive terms in Richards equation, UZF-RT3D can be used for large-scale aquifer systems for which the UZF1 formulation is reasonable, that is, capillary-pressure gradients can be neglected and soil parameters can be treated as homogeneous. Decreased model run-time and the ability to include site-specific chemical species and chemical reactions make UZF-RT3D an attractive model for efficient simulation of multispecies reactive transport in variably saturated large-scale subsurface systems.

  11. Smoke plume trajectory from in-situ burning of crude oil: complex terrain modeling

    International Nuclear Information System (INIS)

    McGrattan, K.

    1997-01-01

    Numerical models have been used to predict the concentration of particulate matter or other combustion products downwind from a proposed in- situ burning of an oil spill. One of the models used was the National Institute of Standards and Technology (NIST) model, ALOFT (A Large Outdoor Fire plume Trajectory), which is based on the conservation equations that govern the introduction of hot gases and particulate matter into the atmosphere. By using a model based on fundamental equations, it becomes a relatively simple matter to simulate smoke dispersal flow patterns, and to compute the solution to the equations of motion that govern the transport of pollutants in the lower atmosphere at a resolution that is comparable to that of the underlying terrain data. 9 refs., 2 tabs., 5 figs

  12. Fasudil hydrochloride, a potent ROCK inhibitor, inhibits corneal neovascularization after alkali burns in mice

    Science.gov (United States)

    Zeng, Peng; Pi, Rong-biao; Li, Peng; Chen, Rong-xin; Lin, Li-mian; He, Hong

    2015-01-01

    Purpose To investigate the effects and mechanisms of fasudil hydrochloride (fasudil) on and in alkali burn-induced corneal neovascularization (CNV) in mice. Methods To observe the effect of fasudil, mice with alkali-burned corneas were treated with either fasudil eye drops or phosphate-buffered saline (PBS) four times per day for 14 consecutive days. After injury, CNV and corneal epithelial defects were measured. The production of reactive oxygen species (ROS) and heme oxygenase-1(HO-1) was measured. The infiltration of polymorphonuclear neutrophils (PMNs) and the mRNA expressions of CNV-related genes were analyzed on day 14. Results The incidence of CNV was significantly lower after treatment with 100 μM and 300 μM fasudil than with PBS, especially with 100 μM fasudil. Meanwhile, the incidences of corneal epithelial defects was lower (n=15, all palkali burn-induced CNV and promote the healing of corneal epithelial defects in mice. These effects are attributed to a decrease in inflammatory cell infiltration, reduction of ROS, and upregulation of HO-1 protein after fasudil treatment. PMID:26120273

  13. Wound management and outcome of 595 electrical burns in a major burn center.

    Science.gov (United States)

    Li, Haisheng; Tan, Jianglin; Zhou, Junyi; Yuan, Zhiqiang; Zhang, Jiaping; Peng, Yizhi; Wu, Jun; Luo, Gaoxing

    2017-06-15

    Electrical burns are important causes of trauma worldwide. This study aims to analyze the clinical characteristics, wound management, and outcome of electric burns. This retrospective study was performed at the Institute of Burn Research of the Third Military Medical University during 2013-2015. Data including the demographics, injury patterns, wound treatment, and outcomes were collected and analyzed. A total of 595 electrical burn patients (93.8% males) were included. The average age was 37.3 ± 14.6 y, and most patients (73.5%) were aged 19∼50 years. Most patients (67.2%) were injured in work-related circumstances. The mean total body surface area was 8.8 ± 11.8% and most wounds (63.5%) were full-thickness burns. Operation times of high-voltage burns and current burns were higher than those of low-voltage burns and arc burns, respectively. Of the 375 operated patients, 83.2% (n = 312) underwent skin autografting and 49.3% (n = 185) required skin flap coverage. Common types of skin flaps were adjacent (50.3%), random (42.2%), and pedicle (35.7%). Amputation was performed in 107 cases (18.0%) and concentrated on the hands (43.9%) and upper limbs (39.3%). The mean length of stay was 42.9 ± 46.3 d and only one death occurred (0.2%). Current burns and higher numbers of operations were major risk factors for amputation and length of stay, respectively. Electrical burns mainly affected adult males with occupational exposures in China. Skin autografts and various skin flaps were commonly used for electric burn wound management. More standardized and effective strategies of treatment and prevention are still needed to decrease amputation rates. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Minor actinide transmutation in a board type sodium cooled breed and burn reactor core

    International Nuclear Information System (INIS)

    Zheng, Meiyin; Tian, Wenxi; Zhang, Dalin; Qiu, Suizheng; Su, Guanghui

    2015-01-01

    Highlights: • A 1250 MWt board type sodium cooled breed and burn reactor core is further designed. • MCNP–ORIGEN coupled code MCORE is applied to perform neutronics and depletion calculation. • Transmutation efficiency and neutronic safety parameters are compared under different MA weight fraction. - Abstract: In this paper, a board type sodium cooled breed and burn reactor core is further designed and applied to perform minor actinide (MA) transmutation. MA is homogeneously loaded in all the fuel sub-assemblies with a weight fraction of 2.0 wt.%, 4.0 wt.%, 6.0 wt.%, 8.0 wt.%, 10.0 wt.% and 12.0 wt.%, respectively. The transmutation efficiency, transmutation amount, power density distribution, neutron fluence distribution and neutronic safety parameters, such as reactivity, Doppler feedback, void worth and delayed neutron fraction, are compared under different MA weight fraction. Neutronics and depletion calculations are performed based on the self-developed MCNP–ORIGEN coupled code with the ENDF/B-VII data library. In the breed and burn reactor core, a number of breeding sub-assemblies are arranged in the inner core in a board type way (scatter load) to breed, and a number of absorbing sub-assemblies are arranged in the inner side of the outer core to absorb neutrons and reduce power density in this area. All the fuel sub-assemblies (ignition and breeding sub-assemblies) are shuffled from outside in. The core reached asymptotically steady state after about 22 years, and the average and maximum discharged burn-up were about 17.0% and 35.3%, respectively. The transmutation amount increased linearly with the MA weight fraction, while the transmutation rate parabolically varied with the MA weight fraction. Power density in ignition sub-assembly positions increased with the MA weight fraction, while decreased in breeding sub-assembly positions. Neutron fluence decreased with the increase of MA weight fraction. Generally speaking, the core reactivity and void

  15. Burning mouth syndrome

    Directory of Open Access Journals (Sweden)

    K A Kamala

    2016-01-01

    Full Text Available Burning mouth syndrome (BMS is multifactorial in origin which is typically characterized by burning and painful sensation in an oral cavity demonstrating clinically normal mucosa. Although the cause of BMS is not known, a complex association of biological and psychological factors has been identified, suggesting the existence of a multifactorial etiology. As the symptom of oral burning is seen in various pathological conditions, it is essential for a clinician to be aware of how to differentiate between symptom of oral burning and BMS. An interdisciplinary and systematic approach is required for better patient management. The purpose of this study was to provide the practitioner with an understanding of the local, systemic, and psychosocial factors which may be responsible for oral burning associated with BMS, and review of treatment modalities, therefore providing a foundation for diagnosis and treatment of BMS.

  16. Assessment of burn-specific health-related quality of life and patient scar status following burn.

    Science.gov (United States)

    Oh, Hyunjin; Boo, Sunjoo

    2017-11-01

    This study assessed patient-perceived levels of scar assessment and burn-specific quality of life (QOL) in Korean burn patients admitted to burn care centers and identified differences in scar assessment and QOL based on various patient characteristics. A cross-sectional descriptive study using anonymous paper-based survey methods was conducted with 100 burn patients from three burn centers specializing in burn care in South Korea. Mean subject age was 44.5 years old, and 69% of the subjects were men. The overall mean QOL was 2.91 out of 5. QOL was lowest for the work subdomain (2.25±1.45) followed by the treatment regimen subdomain (2.32±1.16). The subjects' mean total scar assessment score was 35.51 out of 60, and subjects were most unsatisfied with scar color. Subjects with low income, flame-source burns, severe burns, visible scars, and scars on face or hand reported significantly lower QOL. Subjects with severe burn degree and burn range perceived their burn scar condition to be worse than that of others. The results show that burn subjects experience the most difficulties with their work and the treatment regimen. Subjects with severe burn and visible scarring have a reduced QOL and a poor scar status. Scar management intervention may improve QOL of burn patients especially those with severe burn and visible scars. Further studies are warranted to evaluate the relationship between scar assessment and QOL. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  17. Accounting for the Decreasing Denitrification Potential of Aquifers in Travel-Time Based Reactive-Transport Models of Nitrate

    Science.gov (United States)

    Cirpka, O. A.; Loschko, M.; Wöhling, T.; Rudolph, D. L.

    2017-12-01

    Excess nitrate concentrations pose a threat to drinking-water production from groundwater in all regions of intensive agriculture worldwide. Natural organic matter, pyrite, and other reduced constituents of the aquifer matrix can be oxidized by aerobic and denitrifying bacteria, leading to self-cleaning of groundwater. Various studies have shown that the heterogeneity of both hydraulic and chemical aquifer properties influence the reactive behavior. Since the exact spatial distributions of these properties are not known, predictions on the temporal evolution of nitrate should be probabilistic. However, the computational effort of pde-based, spatially explicit multi-component reactive-transport simulations are so high that multiple model runs become impossible. Conversely, simplistic models that treat denitrification as first-order decay process miss important controls on denitrification. We have proposed a Lagrangian framework of nonlinear reactive transport, in which the electron-donor supply by the aquifer matrix is parameterized by a relative reactivity, that is the reaction rate relative to a standard reaction rate for identical solute concentrations (Loschko et al., 2016). We could show that reactive transport simplifies to solving a single ordinary dfferential equation in terms of the cumulative relative reactivity for a given combination of inflow concentrations. Simulating 3-D flow and reactive transport are computationally so inexpensive that Monte Carlo simulation become feasible. The original scheme did not consider a change of the relative reactivity over time, implying that the electron-donor pool in the matrix is infinite. We have modified the scheme to address the consumption of the reducing aquifer constituents upon the reactions. We also analyzed how a minimally complex model of aerobic respiration and denitrification could look like. With the revised scheme, we performed Monte Carlo simulations in 3-D domains, confirming that the uncertainty in

  18. Reactive nitrogen over the tropical western Pacific: Influence from lightning and biomass burning during BIBLE A

    Science.gov (United States)

    Koike, M.; Kondo, Y.; Kita, K.; Nishi, N.; Liu, S. C.; Blake, D.; Ko, M.; Akutagawa, D.; Kawakami, S.; Takegawa, N.; Zhao, Y.; Ogawa, T.

    2003-02-01

    The Biomass Burning and Lightning Experiment phase A (BIBLE A) aircraft campaign was carried out over the tropical western Pacific in September and October 1998. During this period, biomass burning activity in Indonesia was quite weak. Mixing ratios of NOx and NOy in air masses that had crossed over the Indonesian islands within 3 days prior to the measurement (Indonesian air masses) were systematically higher than those in air masses originating from the central Pacific (tropical air masses). Sixty percent of the Indonesian air masses at 9-13 km (upper troposphere, UT) originated from the central Pacific. The differences in NOy mixing ratio between these two types of air masses were likely due to processes that occurred while air masses were over the Islands. Evidence presented in this paper suggests convection carries material from the surface, and NO is produced from lightning. At altitudes below 3 km (lower troposphere, LT), typical gradient of NOx and NOy to CO (dNOy/dCO and dNOx/dCO) was smaller than that in the biomass burning plumes and in urban areas, suggesting that neither source has a dominant influence. When the CO-NOx and CO-NOy relationships in the UT are compared to the reference relationships chosen for the LT, the NOx and NOy values are higher by 40-60 pptv (80% of NOx) and 70-100 pptv (50% of NOy). This difference is attributed to in situ production of NO by lightning. Analyses using air mass trajectories and geostationary meteorological satellite (GMS) derived cloud height data show that convection over land, which could be accompanied by lightning activity, increases the NOx values, while convection over the ocean generally lowers the NOx level. These processes are found to have a significant impact on the O3 production rate over the tropical western Pacific.

  19. Epidemiology, etiology and outcomes of burn patients in a Referral Burn Hospital, Tehran

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Soltan Dallal

    2016-08-01

    Full Text Available Background: Burns and its complications are regarded as a major problem in the society. Skin injuries resulted from ultraviolet radiation, radioactivity, electricity or chemicals as well as respiratory damage from smoke inhalation are considered burns. This study aimed to determine the epidemiology and outcome of burn patients admitted to Motahari Hospital, Tehran, Iran. Methods: Two hundred patients with second-degree burns admitted to Motahari Referral Center of Burn in Tehran, Iran. They were studied during a period of 12 months from May 2012 to May 2013. During the first week of treatment swabs were collected from the burn wounds after cleaning the site with sterile normal saline. Samples were inoculated in blood agar and McConkey agar, then incubation at 37 C for 48 hours. Identification was carried out according to standard conventional biochemical tests. Treatment continued up to epithelial formation and wound healing. Results of microbial culture for each patient was recorded. Healing time of the burn wounds in patients was recorded in log books. Chi-square test and SPSS Software v.19 (IBM, NY, USA were used for data analysis. Results: Our findings indicate that the most causes of burns are hot liquids in 57% of cases and flammable liquid in 21% of cases. The most cases of burns were found to be in the range of 21 to 30 percent with 17.5% and 7% in male and female respectively. Gram-negative bacteria were dominated in 85.7% and among them pseudomonas spp. with 37.5% were the most common cause of infected burns, followed by Enterobacter, Escherichia coli, Staphylococcus aureus, Acinetobacter and Klebsiella spp. Conclusion: The results of this study showed that the most cause of burns in both sex is hot liquid. Men were more expose to burn than women and this might be due to the fact that men are involved in more dangerous jobs than female. Pseudomonas aeruginosa was the most common organism encountered in burn infection.

  20. Effects of different components of serum after radiation, burn and combined radiation-burn injury on inward rectifier potassium channel of myocardial cells

    International Nuclear Information System (INIS)

    Ye Benlan; Cheng Tianmin; Xiao Jiasi

    1997-01-01

    Objective: To study the effects of different components of serum in rats inflicted with radiation, burn and combined radiation-burn injury on inward rectifier potassium channel of cultured myocardial cells. Method: Using patch clamp method to study the action of single ion channel. Results: The low molecular and lipid components of serum after different injuries models could all activate the inward rectifier potassium channel in cultured myocardial cells. The components of serum after combined radiation-burn injury showed the most significant effect, and the way of this effect was different from that from single injury. Conclusion: The serum components post injury altered the electric characteristic of myocardial cells, which may play a role in the combined effect of depressed cardiac function after combined radiation-burn injury

  1. A simple reactivity feedback model accounting for radial core expansion effects in the liquid metal fast reactor

    International Nuclear Information System (INIS)

    Kwon, Young Min; Lee, Yong Bum; Chang, Won Pyo; Haha, Do Hee

    2002-01-01

    The radial core expansion due to the structure temperature rise is one of major negative reactivity insertion mechanisms in metallic fueled reactor. Thermal expansion is a result of both the laws of nature and the particular core design and it causes negative reactivity feedback by the combination of increased core volume captures and increased core surface leakage. The simple radial core expansion reactivity feedback model developed for the SSC-K code was evaluated by the code-to-code comparison analysis. From the comparison results, it can be stated that the radial core expansion reactivity feedback model employed into the SSC-K code may be reasonably accurate in the UTOP analysis

  2. A simple reactivity feedback model accounting for radial core expansion effects in the liquid metal fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young Min; Lee, Yong Bum; Chang, Won Pyo; Haha, Do Hee [KAERI, Taejon (Korea, Republic of)

    2002-10-01

    The radial core expansion due to the structure temperature rise is one of major negative reactivity insertion mechanisms in metallic fueled reactor. Thermal expansion is a result of both the laws of nature and the particular core design and it causes negative reactivity feedback by the combination of increased core volume captures and increased core surface leakage. The simple radial core expansion reactivity feedback model developed for the SSC-K code was evaluated by the code-to-code comparison analysis. From the comparison results, it can be stated that the radial core expansion reactivity feedback model employed into the SSC-K code may be reasonably accurate in the UTOP analysis.

  3. Burning rates of hydrogen-air mixtures in containment buildings and the consequent pressure transients

    International Nuclear Information System (INIS)

    Tennankore, K.N.; Kumar, R.K.; Razzaghi, M.

    1987-01-01

    One-dimensional flame models are often used to predict the pressure transients caused by hydrogen combustion in containments during postulated severe accidents. In the absence of data, these models account for prevailing flame acceleration mechanisms, such as initial turbulence, venting and obstacle-induced turbulence, by using arbitrarily large burning velocities that are much higher than laminar burning velocities. Using an intermediate-scale test facility at the Whiteshell Nuclear Research Establishment we have obtained necessary data on the effects of flame acceleration mechanisms, to estimate the safety margin in the buring velocities used in the models. So far, data have been analyzed, with a one-dimensional model, to determine effective burning velocities and burning-rate enhancement factors. The results of the analyses indicate that the effect of initial turbulence on the burning rate can be bounded only if the effect of flame-generated turbulence is included. The effect of venting can be accounted for by using two burning velocities, one for the pre-vent duration and a second increased value during the vented-combustion stage. The enhancement factors due to these two mechanisms, for the different conditions analyzed, varied up to 5.4, and the effective burning velocities varied up to 8.4 m/s

  4. The epidemology of burn injuries of children and the importance of modern burn centre

    Directory of Open Access Journals (Sweden)

    Janez Mohar

    2007-01-01

    Full Text Available Background: Burns represent the major percentage of injuries to children. Their incidence level, injury mechanisms and treatment often differ from the burn injuries of adults.Methods: From the medical records of the Department for Plastic and Reconstructive Surgery of the Ljubljana Medical Centre we gathered, analyzed and compared the burn injuries of children up to the age of 15 who were admitted to hospital in the year 2003 to those who were treated as outpatients. Moreover, we compared the burn injuries of hospitalized children at the same department in the years 2003, 1993 and 1983 respectively. We compared their gender, age, the total body surface area of burns, the depth of burns, frequency of the mechanisms of injury, the affected parts of the body and the length and mode of treatment. Finally, we compared our results with the results of similar studies from other burn centres.Results: The number of children treated for burns at the department has declined. In all the years studied, the injured children were younger than 5 and the majority of them were boys. The number of children admitted with substantial total body surface areas of burns was also declining. However, there was an increase in the number of children admitted with burns less than 10 % of their total body surface area. The number of burns treated by surgery slightly increased over the years studied. There was a similar sex and age distribution among the hospitalized children and those treated as outpatients.Conclusions: The number of children hospitalized with burns is in decline. In the years 1983, 1993 and 2003, there was no significant difference in the percentage of children who were treated surgically and those who were treated conservatively (P = 0.247. The Burn Centre at the Department for Plastic and Reconstructive Surgery of the Ljubljana Medical Centre which together with the Burn Department of the Maribor General Hospital covers the population of two million

  5. Deep-Burn MHR Neutronic Analysis with a SiC-Gettered TRU Kernel

    International Nuclear Information System (INIS)

    Jo, Chang Keun; Noh, Jae Man; Kim, Yong Hee; Venneric, F.

    2010-01-01

    This paper is focused on the nuclear core design of a DB-MHR (Deep Burn-Modular Helium Reactor) core loaded with a SiC-gettered TRU fuel. The SiC oxygen getter is added to reduce the CO pressure in the buffer zone of TRISO. In the paper, the cycle length, reactivity swing, discharged burnup, and the burning rate of plutonium were calculated for the DB-MHR. Also, impacts of uranium addition to the TRU kernel were investigated. Recently, the decay heat of TRU fueled DB core was found to be highly dependent on the TRU loading: the higher the loading, the higher the decay heat. The high decay heat of TRU fuel may lead to unacceptably high peak fuel temperature during an LPCC (Low Pressure Conduction Cooling) accident. Thus, we tried to minimize the decay heat of the core for a minimal peak fuel temperature during LPCC

  6. Pediatric burns: Kids' Inpatient Database vs the National Burn Repository.

    Science.gov (United States)

    Soleimani, Tahereh; Evans, Tyler A; Sood, Rajiv; Hartman, Brett C; Hadad, Ivan; Tholpady, Sunil S

    2016-04-01

    Burn injuries are one of the leading causes of morbidity and mortality in young children. The Kids' Inpatient Database (KID) and National Burn Repository (NBR) are two large national databases that can be used to evaluate outcomes and help quality improvement in burn care. Differences in the design of the KID and NBR could lead to differing results affecting resultant conclusions and quality improvement programs. This study was designed to validate the use of KID for burn epidemiologic studies, as an adjunct to the NBR. Using the KID (2003, 2006, and 2009), a total of 17,300 nonelective burn patients younger than 20 y old were identified. Data from 13,828 similar patients were collected from the NBR. Outcome variables were compared between the two databases. Comparisons revealed similar patient distribution by gender, race, and burn size. Inhalation injury was more common among the NBR patients and was associated with increased mortality. The rates of respiratory failure, wound infection, cellulitis, sepsis, and urinary tract infection were higher in the KID. Multiple regression analysis adjusting for potential confounders demonstrated similar mortality rate but significantly longer length of stay for patients in the NBR. Despite differences in the design and sampling of the KID and NBR, the overall demographic and mortality results are similar. The differences in complication rate and length of stay should be explored by further studies to clarify underlying causes. Investigations into these differences should also better inform strategies to improve burn prevention and treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Tracking the daily availability of burn beds for national emergencies.

    Science.gov (United States)

    Barillo, David J; Jordan, Marion H; Jocz, Richard J; Nye, Donna; Cancio, Leopoldo C; Holcomb, John B

    2005-01-01

    Medical planning for Operation Iraqi Freedom included predictive models of expected number of burn casualties. In all but the best-case scenario, casualty estimates exceeded the capacity of the only Department of Defense burn center. Examination of existing federal-civilian disaster plans for military hospital augmentation revealed that bed availability data were neither timely nor accurate. Recognizing the need for accurate knowledge of burn bed availability, the Department of Defense requested assistance from the American Burn Association (ABA). Directors of burn centers in the United States were queried for interest in participation in a mass casualty plan to provide overflow burn bed capacity. A list of 70 participating burn centers was devised based upon proximity to planned military embarkation points. A computer tracking program was developed. Daily automated e-mail messages requesting bed status were sent to burn center directors at 6 am Central time with responses requested before 11 am. The collated list of national overflow burn bed capacity was e-mailed each day to the ABA Central Office and to federal and military agencies involved with burn patient triage and transportation. Once automated, this task required only 1-2 hours a day. Available burn-bed lists were generated daily between March 17 and May 2, 2003 and then every other day until May 9, 2003. A total of 2151 responses were received (mean, 43 burn centers per day). A system to track daily nationwide burn bed availability was successfully implemented. Although intended for military conflict, this system is equally applicable to civilian mass casualty situations. We advocate adoption of this or a similar bed tracking system by the ABA for use during burn mass casualty incidents.

  8. The effect of smoking status on burn inhalation injury mortality.

    Science.gov (United States)

    Knowlin, Laquanda; Stanford, Lindsay; Cairns, Bruce; Charles, Anthony

    2017-05-01

    Three factors that effect burn mortality are age, total body surface of burn (TBSA), and inhalation injury. Of the three, inhalation injury is the strongest predictor of mortality thus its inclusion in the revised Baux score (age+TBSA+17* (inhalation injury, 1=yes, 0=no)). However, the weighted contribution of specific comorbidities such as smoker status on mortality has traditionally not been accounted for nor studied in this subset of burn patients. We therefore sought to examine the impact of current tobacco and/or marijuana smoking in patients with inhalation injury. A retrospective analysis of patients admitted to a regional burn center from 2002 to 2012. Independent variables analyzed included basic demographics, burn mechanism, presence of inhalation injury, TBSA, pre-existing comorbidities, and smoker status. Bivariate analysis was performed and logistic regression modeling using significant variables was utilized to estimate odds of mortality. There were a total of 7640 patients over the study period. 7% (n=580) of the burn cohort with inhalation injury were included in this study. In-hospital burn mortality for inhalation injury patients was 23%. Current smokers (20%) included cigarette smokers and marijuana users, 19% and 3%, respectively. Preexisting respiratory disease (17%) was present in 36% of smokers compared to 13% of non-smokers (psmoke inhalation injury. Future prospective studies in human and/or animal models are needed to confirm these findings. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  9. Establishing the long-term fuel management scheme using point reactivity model

    International Nuclear Information System (INIS)

    Park, Yong-Soo; Kim, Jae-Hak; Lee, Young-Ouk; Song, Jae-Woong; Zee, Sung-Kyun

    1994-01-01

    A new approach to establish the long-term fuel management scheme is presented in this paper. The point reactivity model is used to predict the core average reactivity. An attempt to calculate batchwise power fraction is introduced through the two-dimensional nodal power algorithm based on the modified one-group diffusion equation and the number of fuel assemblies on the core periphery. Suggested is an empirical formula to estimate the radial leakage reactivity with ripe core design experience reflected. This approach predicts the cycle lengths and the discharge burnups of individual fuel batches up to an equilibrium core when the proper input data such as batch enrichment, batch size, type and content of burnable poison and reloading strategies are given. Eight benchmark calculations demonstrate that the new approach used in this study is reasonably accurate and highly efficient for the purpose of scoping calculation when compared with design code predictions. (author)

  10. Identification of protective postexposure mycobacterial vaccine antigens using an immunosuppression-based reactivation model in the zebrafish

    Directory of Open Access Journals (Sweden)

    Henna Myllymäki

    2018-03-01

    Full Text Available Roughly one third of the human population carries a latent Mycobacterium tuberculosis infection, with a 5-10% lifetime risk of reactivation to active tuberculosis and further spreading the disease. The mechanisms leading to the reactivation of a latent Mycobacterium tuberculosis infection are insufficiently understood. Here, we used a natural fish pathogen, Mycobacterium marinum, to model the reactivation of a mycobacterial infection in the adult zebrafish (Danio rerio. A low-dose intraperitoneal injection (∼40 colony-forming units led to a latent infection, with mycobacteria found in well-organized granulomas surrounded by a thick layer of fibrous tissue. A latent infection could be reactivated by oral dexamethasone treatment, which led to disruption of the granuloma structures and dissemination of bacteria. This was associated with the depletion of lymphocytes, especially CD4+ T cells. Using this model, we verified that ethambutol is effective against an active disease but not a latent infection. In addition, we screened 15 mycobacterial antigens as postexposure DNA vaccines, of which RpfB and MMAR_4207 reduced bacterial burdens upon reactivation, as did the Ag85-ESAT-6 combination. In conclusion, the adult zebrafish-M. marinum infection model provides a feasible tool for examining the mechanisms of reactivation in mycobacterial infections, and for screening vaccine and drug candidates. This article has an associated First Person interview with the first author of the paper.

  11. Reactivating dynamics for the susceptible-infected-susceptible model: a simple method to simulate the absorbing phase

    Science.gov (United States)

    Macedo-Filho, A.; Alves, G. A.; Costa Filho, R. N.; Alves, T. F. A.

    2018-04-01

    We investigated the susceptible-infected-susceptible model on a square lattice in the presence of a conjugated field based on recently proposed reactivating dynamics. Reactivating dynamics consists of reactivating the infection by adding one infected site, chosen randomly when the infection dies out, avoiding the dynamics being trapped in the absorbing state. We show that the reactivating dynamics can be interpreted as the usual dynamics performed in the presence of an effective conjugated field, named the reactivating field. The reactivating field scales as the inverse of the lattice number of vertices n, which vanishes at the thermodynamic limit and does not affect any scaling properties including ones related to the conjugated field.

  12. Stress and Sleep Reactivity: A Prospective Investigation of the Stress-Diathesis Model of Insomnia

    Science.gov (United States)

    Drake, Christopher L.; Pillai, Vivek; Roth, Thomas

    2014-01-01

    Study Objectives: To prospectively assess sleep reactivity as a diathesis of insomnia, and to delineate the interaction between this diathesis and naturalistic stress in the development of insomnia among normal sleepers. Design: Longitudinal. Setting: Community-based. Participants: 2,316 adults from the Evolution of Pathways to Insomnia Cohort (EPIC) with no history of insomnia or depression (46.8 ± 13.2 y; 60% female). Interventions: None. Measurements and Results: Participants reported the number of stressful events they encountered at baseline (Time 1), as well as the level of cognitive intrusion they experienced in response to each stressor. Stressful events (OR = 1.13; P insomnia one year hence (Time 2). Intrusion mediated the effects of stressful events on risk for insomnia (P insomnia (OR = 1.78; P insomnia as a function of intrusion was significantly higher in individuals with high sleep reactivity. Trait sleep reactivity also constituted a significant risk for depression (OR = 1.67; P Insomnia at Time 2 significantly mediated this effect (P insomnia, and that it triggers insomnia by exacerbating the effects of stress-induced intrusion. Sleep reactivity is also a precipitant of depression, as mediated by insomnia. These findings support the stress-diathesis model of insomnia, while highlighting sleep reactivity as an important diathesis. Citation: Drake CL, Pillai V, Roth T. Stress and sleep reactivity: a prospective investigation of the stress-diathesis model of insomnia. SLEEP 2014;37(8):1295-1304. PMID:25083009

  13. The Burning Saints

    DEFF Research Database (Denmark)

    Xygalatas, Dimitris

    . Carrying the sacred icons of the saints, participants dance over hot coals as the saint moves them. The Burning Saints presents an analysis of these rituals and the psychology behind them. Based on long-term fieldwork, The Burning Saints traces the historical development and sociocultural context......, The Burning Saints presents a highly original analysis of how mental processes can shape social and religious behaviour....

  14. Covering techniques for severe burn treatment: lessons for radiological burn accidents

    International Nuclear Information System (INIS)

    Carsin, H.; Stephanazzi, J.; Lambert, F.; Curet, P.M.; Gourmelon, P.

    2002-01-01

    Covering techniques for severe burn treatment: lessons for radiological burn accidents. After a severe burn, the injured person is weakened by a risk of infection and a general inflammation. The necrotic tissues have to be removed because they are toxic for the organism. The injured person also needs to be covered by a cutaneous envelope, which has to be done by a treatment centre for burned people. The different techniques are the following: - auto grafts on limited burned areas; - cutaneous substitutes to cover temporary extended burned areas. Among them: natural substitutes like xenografts (pork skin, sheep skin,..) or allografts (human skin), - treated natural substitutes which only maintain the extracellular matrix. Artificial skins belong to this category and allow the development of high quality scars, - cell cultures in the laboratory: multiplying the individual cells and grafting them onto the patient. This technique is not common but allows one to heal severely injured patients. X-ray burns are still a problem. Their characteristics are analysed: intensive, permanent, antalgic resistant pain. They are difficult to compare with heat burns. In spite of a small number of known cases, we can give some comments and guidance on radio necrosis cures: the importance of the patients comfort, of ending the pain, of preventing infection, and nutritional balance. At the level of epidermic inflammation and phlyctena (skin blisters), the treatment may be completed by the use of growth factors. At the level of necrosis, after a temporary cover, an auto graft can be considered only if a healthy basis is guaranteed. The use of cellular cultures in order to obtain harmonious growth factors can be argued. (author)

  15. Modelling of reactive fluid transport in deformable porous rocks

    Science.gov (United States)

    Yarushina, V. M.; Podladchikov, Y. Y.

    2009-04-01

    One outstanding challenge in geology today is the formulation of an understanding of the interaction between rocks and fluids. Advances in such knowledge are important for a broad range of geologic settings including partial melting and subsequent migration and emplacement of a melt into upper levels of the crust, or fluid flow during regional metamorphism and metasomatism. Rock-fluid interaction involves heat and mass transfer, deformation, hydrodynamic flow, and chemical reactions, thereby necessitating its consideration as a complex process coupling several simultaneous mechanisms. Deformation, chemical reactions, and fluid flow are coupled processes. Each affects the others. Special effort is required for accurate modelling of the porosity field through time. Mechanical compaction of porous rocks is usually treated under isothermal or isoentropic simplifying assumptions. However, joint consideration of both mechanical compaction and reactive porosity alteration requires somewhat greater than usual care about thermodynamic consistency. Here we consider the modelling of multi-component, multi-phase systems, which is fundamental to the study of fluid-rock interaction. Based on the conservation laws for mass, momentum, and energy in the form adopted in the theory of mixtures, we derive a thermodynamically admissible closed system of equations describing the coupling of heat and mass transfer, chemical reactions, and fluid flow in a deformable solid matrix. Geological environments where reactive transport is important are located at different depths and accordingly have different rheologies. In the near surface, elastic or elastoplastic properties would dominate, whereas viscoplasticity would have a profound effect deeper in the lithosphere. Poorly understood rheologies of heterogeneous porous rocks are derived from well understood processes (i.e., elasticity, viscosity, plastic flow, fracturing, and their combinations) on the microscale by considering a

  16. Sex Differences in Adolescent Depression: Stress Exposure and Reactivity Models

    Science.gov (United States)

    Hankin, Benjamin L.; Mermelstein, Robin; Roesch, Linda

    2007-01-01

    Stress exposure and reactivity models were examined as explanations for why girls exhibit greater levels of depressive symptoms than boys. In a multiwave, longitudinal design, adolescents' depressive symptoms, alcohol usage, and occurrence of stressors were assessed at baseline, 6, and 12 months later (N=538; 54.5% female; ages 13-18, average…

  17. Epidemiology of operative burns at Kijabe Hospital from 2006 to 2010: pilot study of a web-based tool for creation of the Kenya Burn Repository.

    Science.gov (United States)

    Dale, Elizabeth L; Mueller, Melissa A; Wang, Li; Fogerty, Mary D; Guy, Jeffrey S; Nthumba, Peter M

    2013-06-01

    In order to implement effective burn prevention strategies, the WHO has called for improved data collection to better characterize burn injuries in low and middle income countries (LMIC). This study was designed to gather information on burn injury in Kenya and to test a model for such data collection. The study was designed as a retrospective case series study utilizing an electronic data collection tool to assess the scope of burn injuries requiring operation at Kijabe Hospital from January 2006 to May 2010. Data were entered into a web-based tool to test its utility as the potential Kenya Burn Repository (KBR). 174 patients were included. The median age was 10 years. There was a male predominance (59% vs. 41%). Findings included that timing of presentation was associated with burn etiology (p=0.009). Length of stay (LOS) was associated with burn etiology (pBurn injuries in Kenya show similarities with other LMIC in etiology and pediatric predominance. Late presentation for care and prolonged LOS are areas for further investigation. The web-based database is an effective tool for data collection and international collaboration. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  18. [Combined burn trauma in the array of modern civilian and combat burns].

    Science.gov (United States)

    Ivchenko, E V; Borisov, D N; Golota, A S; Krassiĭ, A B; Rusev, I T

    2015-02-01

    The current article positions the combined burn and non-burn injuries in the general array of civilian and combat burns. For that purpose the official state statistics and scientific medical publications, domestic as well as foreign, have been analyzed. It has been shown that in peace time the combined burn/trauma injuries are infrequent. But the same type of injury becomes routine especially among the civilian population in the conditions of the modern so called "hybrid war". And the medical service should be prepared for it.

  19. Free radicals and lipid peroxidation mediated injury in burn trauma: the role of antioxidant therapy

    International Nuclear Information System (INIS)

    Horton, Jureta W.

    2003-01-01

    Burn trauma produces significant fluid shifts that, in turn, reduce cardiac output and tissue perfusion. Treatment approaches to major burn injury include administration of crystalloid solutions to correct hypovolemia and to restore peripheral perfusion. While this aggressive postburn volume replacement increases oxygen delivery to previously ischemic tissue, this restoration of oxygen delivery is thought to initiate a series of deleterious events that exacerbate ischemia-related tissue injury. While persistent hypoperfusion after burn trauma would produce cell death, volume resuscitation may exacerbate the tissue injury that occurred during low flow state. It is clear that after burn trauma, tissue adenosine triphosphate (ATP) levels gradually fall, and increased adenosine monophosphate (AMP) is converted to hypoxanthine, providing substrate for xanthine oxidase. These complicated reactions produce hydrogen peroxide and superoxide, clearly recognized deleterious free radicals. In addition to xanthine oxidase related free radical generation in burn trauma, adherent-activated neutrophils produce additional free radicals. Enhanced free radical production is paralleled by impaired antioxidant mechanisms; as indicated by burn-related decreases in superoxide dismutase, catalase, glutathione, alpha tocopherol, and ascorbic acid levels. Burn related upregulation of inducible nitric oxide synthase (iNOS) may produce peripheral vasodilatation, upregulate the transcription factor nuclear factor kappa B (NF-κB), and promote transcription and translation of numerous inflammatory cytokines. NO may also interact with the superoxide radical to yield peroxynitrite, a highly reactive mediator of tissue injury. Free radical mediated cell injury has been supported by postburn increases in systemic and tissue levels of lipid peroxidation products such as conjugated dienes, thiobarbituric acid reaction products, or malondialdehyde (MDA) levels. Antioxidant therapy in burn therapy

  20. Calculation of isotope burn-up and change in efficiency of absorbing elements of WWER-1000 control and protection system during burn-up

    International Nuclear Information System (INIS)

    Timofeeva, O.A.; Kurakin, K.U.

    2006-01-01

    The report deals with fast and thermal neutron flows distribution in structural elements of WWER-1000 fuel assembly and absorbing rods, determination of absorbing isotope burn-up and worth variation in WWER reactor control and protection system rods. Simulation of absorber rod burn-up is provided using code package SAPPHIRE 9 5 end RC W WER allowing detailed description of the core segment spatial model. Maximum burn-up of absorbing rods and respective worth variation of control and protection system rods is determined on the basis of a number of calculations considering known characteristics of fuel cycles (Authors)

  1. Skin banking at a regional burns centre-The way forward.

    Science.gov (United States)

    Keswani, Sunil Manohar; Mishra, Mukesh Gopinath; Karnik, Shilpa; Dutta, Shruti; Mishra, Mamata; Panda, Sangita; Varghese, Reshmi; Virkar, Tanvi; Upendran, Vaishna

    2018-04-13

    In India approximately 1 million people get burnt every year and most of them are from the lower or middle income strata. Therefore it is obligatory to find out an economic way of treatment for the affected populace. Since use of human skin allograft is the gold standard for the treatment of burn wound, in-house skin banking for a burn unit hospital is prerequisite to make the treatment procedure affordable. Although, there was one skin bank at India till 2009, but it was difficult for a single bank to cover the entire country's need. Looking at the necessities, National Burns Centre (a tertiary burn care centre) along with Rotary International and Euro Skin Bank collaborated and developed an effective cadaveric skin banking model in Mumbai, Maharashtra in 2009. Initial two to three years were formation phase; by the year 2013 the entire system was organized and started running full fledged. The model has also been replicated in other states of India to accommodate the large burn population of the country. This paper therefore, gives a step by step account of how the bank evolved and its present status. Copyright © 2017. Published by Elsevier Ltd.

  2. Uniform DT 3T burn: computations and sensitivities

    Energy Technology Data Exchange (ETDEWEB)

    Vold, Erik [Los Alamos National Laboratory; Hryniw, Natalia [Los Alamos National Laboratory; Hansen, Jon A [Los Alamos National Laboratory; Kesler, Leigh A [Los Alamos National Laboratory; Li, Frank [Los Alamos National Laboratory

    2011-01-27

    A numerical model was developed in C to integrate the nonlinear deutrium-tritium (DT) burn equations in a three temperature (3T) approximation for spatially uniform test problems relevant to Inertial Confinement Fusion (ICF). Base model results are in excellent agreement with standard 3T results. Data from NDI, SESAME, and TOPS databases is extracted to create fits for the reaction rate parameter, the Planck opacity, and the coupling frequencies of the plasma temperatures. The impact of different fits (e.g., TOPS versus SESAME opacity data, higher order polynomial fits ofNDI data for the reaction rate parameter) were explored, and sensitivity to several model inputs are presented including: opacity data base, Coulomb logarithm, and Bremsstrahlung. Sensitivity to numerical integration time step size, and the relative insensitivity to the discretized numerics and numerical integration method was demonstrated. Variations in the IC for densities and temperatures were explored, showing similar DT burn profiles in most cases once ignition occurs. A coefficient multiplying the Compton coupling term (default, A = 1) can be adjusted to approximate results from more sophisticated models. The coefficient was reset (A = 0.4) to match the maximum temperatures resulting from standard multi-group simulations of the base case test problem. Setting the coefficient to a larger value, (A = 0.6) matches maximum ion temperatures in a kinetic simulation of a high density ICF-like regime. Matching peak temperatures does not match entire temperature-time profiles, indicating the Compton coefficient is density and time dependent as the photon distribution evolves. In the early time burn during the ignition of the DT, the present model with modified Compton coupling provides a very simple method to obtain a much improved match to the more accurate solution from the multi-group radiation model for these DT burn regimes.

  3. Burnout of pulverized biomass particles in large scale boiler - Single particle model approach

    Energy Technology Data Exchange (ETDEWEB)

    Saastamoinen, Jaakko; Aho, Martti; Moilanen, Antero [VTT Technical Research Centre of Finland, Box 1603, 40101 Jyvaeskylae (Finland); Soerensen, Lasse Holst [ReaTech/ReAddit, Frederiksborgsveij 399, Niels Bohr, DK-4000 Roskilde (Denmark); Clausen, Soennik [Risoe National Laboratory, DK-4000 Roskilde (Denmark); Berg, Mogens [ENERGI E2 A/S, A.C. Meyers Vaenge 9, DK-2450 Copenhagen SV (Denmark)

    2010-05-15

    Burning of coal and biomass particles are studied and compared by measurements in an entrained flow reactor and by modelling. The results are applied to study the burning of pulverized biomass in a large scale utility boiler originally planned for coal. A simplified single particle approach, where the particle combustion model is coupled with one-dimensional equation of motion of the particle, is applied for the calculation of the burnout in the boiler. The particle size of biomass can be much larger than that of coal to reach complete burnout due to lower density and greater reactivity. The burner location and the trajectories of the particles might be optimised to maximise the residence time and burnout. (author)

  4. Burn Specific Health Scale-Brief in Pregnant Burned Women: Translation and Psychometric Evaluation of the Persian Version

    Directory of Open Access Journals (Sweden)

    Amir Hossein Goudarzian

    2017-07-01

    Full Text Available Background   The aim of this study was to investigate the validity and reliability of the Persian version of Burn Specific Health Scale-Brief (BSHS-B in pregnant women suffering from burns.   Materials and Methods   This cross-cultural psychometrics study was done in 2015 to 2016 and included 410 pregnant burned patients. Participants completed BSHS-B. The face, content and construct validity of the scale were ascertained. Reliability was also assessed using internal consistency, construct reliability and intra-class correlation coefficient (ICC.   Results   Construct validity determined nine factors with an eigenvalue greater than 1. The model had a good fit [(c2(68 = 412.038, p < .05, c2/df= 4.612, GFI = .893, CFI = .912, NFI = .902, IFI = .931, RMSEA (90% C.I. = .091 (.088 - .112] with all factors loadings greater than 0.5 and statistically significant. The internal consistency, construct reliability and ICC were greater than 0.70.   Conclusion   Findings revealed that the Persian version of the BSHS-B is valid and reliable, and may be used to assess and evaluate quality of life in Iranian pregnant burned patients.

  5. Modeling biomass burning over the South, South East and East Asian Monsoon regions using a new, satellite constrained approach

    Science.gov (United States)

    Lan, R.; Cohen, J. B.

    2017-12-01

    Biomass burning over the South, South East and East Asian Monsoon regions, is a crucial contributor to the total local aerosol loading. Furthermore, the impact of the ITCZ, and Monsoonal circulation patterns coupled with complex topography also have a prominent impact on the aerosol loading throughout much of the Northern Hemisphere. However, at the present time, biomass burning emissions are highly underestimated over this region, in part due to under-reported emissions in space and time, and in part due to an incomplete understanding of the physics and chemistry of the aerosols emitted in fires and formed downwind from them. Hence, a better understanding of the four-dimensional source distribution, plume rise, and in-situ processing, in particular in regions with significant quantities of urban air pollutants, is essential to advance our knowledge of this problem. This work uses a new modeling methodology based on the simultaneous constraints of measured AOD and some trace gasses over the region. The results of the 4-D constrained emissions are further expanded upon using different fire plume height rise and in-situ processing assumptions. Comparisons between the results and additional ground-based and remotely sensed measurements, including AERONET, CALIOP, and NOAA and other ground networks are included. The end results reveal a trio of insights into the nonlinear processes most-important to understand the impacts of biomass burning in this part of the world. Model-measurement comparisons are found to be consistent during the typical burning years of 2016. First, the model performs better under the new emissions representations, than it does using any of the standard hotspot based approaches currently employed by the community. Second, long range transport and mixing between the boundary layer and free troposphere contribute to the spatial-temporal variations. Third, we indicate some source regions that are new, either because of increased urbanization, or of

  6. Reactive nitrogen deposition to South East Asian rainforest

    Science.gov (United States)

    di Marco, Chiara F.; Phillips, Gavin J.; Thomas, Rick; Tang, Sim; Nemitz, Eiko; Sutton, Mark A.; Fowler, David; Lim, Sei F.

    2010-05-01

    The supply of reactive nitrogen (N) to global terrestrial ecosystems has doubled since the 1960s as a consequence of human activities, such as fertilizer application and production of nitrogen oxides by fossil-fuel burning. The deposition of atmospheric N species constitutes a major nutrient input to the biosphere. Tropical forests have been undergoing a radical land use change by increasing cultivation of sugar cane and oil palms and the remaining forests are increasingly affected by anthropogenic activities. Yet, quantifications of atmospheric nitrogen deposition to tropical forests, and nitrogen cycling under near-pristine and polluted conditions are rare. The OP3 project ("Oxidant and Particle Photochemical Processes above a Southeast Asian Tropical Rainforest") was conceived to study how emissions of reactive trace gases from a tropical rain forest mediate the regional scale production and processing of oxidants and particles, and to better understand the impact of these processes on local, regional and global scale atmospheric composition, chemistry and climate. As part of this study we have measured reactive, nitrogen containing trace gas (ammonia, nitric acid) and the associated aerosol components (ammonium, nitrate) at monthly time resolution using a simple filter / denuder for 16 months. These measurements were made at the Bukit Atur Global Atmospheric Watch tower near Danum Valley in the Malaysian state of Sabah, Borneo. In addition, the same compounds were measured at hourly time-resolution during an intensive measurement period, with a combination of a wet-chemistry system based on denuders and steam jet aerosol collectors and an aerosol mass spectrometer (HR-ToF-AMS), providing additional information on the temporal controls. During this period, concentrations and fluxes of NO, NO2 and N2O were also measured. The measurements are used for inferential dry deposition modelling and combined with wet deposition data from the South East Asian Acid

  7. Survival after burn in a sub-Saharan burn unit: Challenges and opportunities

    Science.gov (United States)

    Tyson, Anna F.; Boschini, Laura P.; Kiser, Michelle M.; Samuel, Jonathan C.; Mjuweni, Steven N.; Cairns, Bruce A.; Charles, Anthony G.

    2013-01-01

    Background Burns are among the most devastating of all injuries and a major global public health crisis, particularly in sub-Saharan Africa. In developed countries, aggressive management of burns continues to lower overall mortality and increase lethal total body surface area (TBSA) at which 50% of patients die (LA50). However, lack of resources and inadequate infrastructure significantly impede such improvements in developing countries. Methods This study is a retrospective analysis of patients admitted to the burn center at Kamuzu Central Hospital in Lilongwe, Malawi between June 2011 and December 2012. We collected information including patient age, gender, date of admission, mechanism of injury, time to presentation to hospital, total body surface area (TBSA) burn, comorbidities, date and type of operative procedures, date of discharge, length of hospital stay, and survival. We then performed bivariate analysis and logistic regression to identify characteristics associated with increased mortality. Results A total of 454 patients were admitted during the study period with a median age of 4 years (range 0.5 months to 79 years). Of these patients, 53% were male. The overall mean TBSA was 18.5%, and average TBSA increased with age—17% for 0–18 year olds, 24% for 19–60 year olds, and 41% for patients over 60 years old. Scald and flame burns were the commonest mechanisms, 52% and 41% respectively, and flame burns were associated with higher mortality. Overall survival in this population was 82%; however survival reduced with increasing age categories (84% in patients 0–18 years old, 79% in patients 19–60 years old, and 36% in patients older than 60 years). TBSA remained the strongest predictor of mortality after adjusting for age and mechanism of burn. The LA50 for this population was 39% TBSA. Discussion Our data reiterate that burn in Malawi is largely a pediatric disease and that the high burn mortality and relatively low LA50 have modestly improved

  8. Modelling and prediction of air pollutant transport during the 2014 biomass burning and forest fires in peninsular Southeast Asia.

    Science.gov (United States)

    Duc, Hiep Nguyen; Bang, Ho Quoc; Quang, Ngo Xuan

    2016-02-01

    During the dry season, from November to April, agricultural biomass burning and forest fires especially from March to late April in mainland Southeast Asian countries of Myanmar, Thailand, Laos and Vietnam frequently cause severe particulate pollution not only in the local areas but also across the whole region and beyond due to the prevailing meteorological conditions. Recently, the BASE-ASIA (Biomass-burning Aerosols in South East Asia: Smoke Impact Assessment) and 7-SEAS (7-South-East Asian Studies) studies have provided detailed analysis and important understandings of the transport of pollutants, in particular, the aerosols and their characteristics across the region due to biomass burning in Southeast Asia (SEA). Following these studies, in this paper, we study the transport of particulate air pollution across the peninsular region of SEA and beyond during the March 2014 burning period using meteorological modelling approach and available ground-based and satellite measurements to ascertain the extent of the aerosol pollution and transport in the region of this particular event. The results show that the air pollutants from SEA biomass burning in March 2014 were transported at high altitude to southern China, Hong Kong, Taiwan and beyond as has been highlighted in the BASE-ASIA and 7-SEAS studies. There are strong evidences that the biomass burning in SEA especially in mid-March 2014 has not only caused widespread high particle pollution in Thailand (especially the northern region where most of the fires occurred) but also impacted on the air quality in Hong Kong as measured at the ground-based stations and in LulinC (Taiwan) where a remote background monitoring station is located.

  9. Modification of the finite element heat and mass transfer code (FEHMN) to model multicomponent reactive transport

    International Nuclear Information System (INIS)

    Viswanathan, H.S.

    1995-01-01

    The finite element code FEHMN is a three-dimensional finite element heat and mass transport simulator that can handle complex stratigraphy and nonlinear processes such as vadose zone flow, heat flow and solute transport. Scientists at LANL have been developed hydrologic flow and transport models of the Yucca Mountain site using FEHMN. Previous FEHMN simulations have used an equivalent K d model to model solute transport. In this thesis, FEHMN is modified making it possible to simulate the transport of a species with a rigorous chemical model. Including the rigorous chemical equations into FEHMN simulations should provide for more representative transport models for highly reactive chemical species. A fully kinetic formulation is chosen for the FEHMN reactive transport model. Several methods are available to computationally implement a fully kinetic formulation. Different numerical algorithms are investigated in order to optimize computational efficiency and memory requirements of the reactive transport model. The best algorithm of those investigated is then incorporated into FEHMN. The algorithm chosen requires for the user to place strongly coupled species into groups which are then solved for simultaneously using FEHMN. The complete reactive transport model is verified over a wide variety of problems and is shown to be working properly. The simulations demonstrate that gas flow and carbonate chemistry can significantly affect 14 C transport at Yucca Mountain. The simulations also provide that the new capabilities of FEHMN can be used to refine and buttress already existing Yucca Mountain radionuclide transport studies

  10. Control Rod Driveline Reactivity Feedback Model for Liquid Metal Reactors

    International Nuclear Information System (INIS)

    Kwon, Young-Min; Jeong, Hae-Yong; Chang, Won-Pyo; Cho, Chung-Ho; Lee, Yong-Bum

    2008-01-01

    The thermal expansion of the control rod drivelines (CRDL) is one important passive mitigator under all unprotected accident conditions in the metal and oxide cores. When the CRDL are washed by hot sodium in the coolant outlet plenum, the CRDL thermally expands and causes the control rods to be inserted further down into the active core region, providing a negative reactivity feedback. Since the control rods are attached to the top of the vessel head and the core attaches to the bottom of the reactor vessel (RV), the expansion of the vessel wall as it heats will either lower the core or raise the control rods supports. This contrary thermal expansion of the reactor vessel wall pulls the control rods out of the core somewhat, providing a positive reactivity feedback. However this is not a safety factor early in a transient because its time constant is relatively large. The total elongated length is calculated by subtracting the vessel expansion from the CRDL expansion to determine the net control rod expansion into the core. The system-wide safety analysis code SSC-K includes the CRDL/RV reactivity feedback model in which control rod and vessel expansions are calculated using single-nod temperatures for the vessel and CRDL masses. The KALIMER design has the upper internal structures (UIS) in which the CRDLs are positioned outside the structure where they are exposed to the mixed sodium temperature exiting the core. A new method to determine the CRDL expansion is suggested. Two dimensional hot pool thermal hydraulic model (HP2D) originally developed for the analysis of the stratification phenomena in the hot pool is utilized for a detailed heat transfer between the CRDL mass and the hot pool coolant. However, the reactor vessel wall temperature is still calculated by a simple lumped model

  11. Children with burns referred for child abuse evaluation: Burn characteristics and co-existent injuries.

    Science.gov (United States)

    Pawlik, Marie-Christin; Kemp, Alison; Maguire, Sabine; Nuttall, Diane; Feldman, Kenneth W; Lindberg, Daniel M

    2016-05-01

    Intentional burns represent a serious form of physical abuse that must be identified to protect children from further harm. This study is a retrospectively planned secondary analysis of the Examining Siblings To Recognize Abuse (ExSTRA) network data. Our objective was to describe the characteristics of burns injuries in children referred to Child Abuse Pediatricians (CAPs) in relation to the perceived likelihood of abuse. We furthermore compare the extent of diagnostic investigations undertaken in children referred to CAPs for burn injuries with those referred for other reasons. Within this dataset, 7% (215/2890) of children had burns. Children with burns were older than children with other injuries (median age 20 months vs. 10 months). Physical abuse was perceived as likely in 40.9% (88) and unlikely in 59.1% (127). Scalds accounted for 52.6% (113) and contact burns for 27.6% (60). Several characteristics of the history and burn injury were associated with a significantly higher perceived likelihood of abuse, including children with reported inflicted injury, absent or inadequate explanation, hot water as agent, immersion scald, a bilateral/symmetric burn pattern, total body surface area ≥10%, full thickness burns, and co-existent injuries. The rates of diagnostic testing were significantly lower in children with burns than other injuries, yet the yield of skeletal survey and hepatic transaminases testing were comparable between the two groups. This would imply that children referred to CAPs for burns warrant the same level of comprehensive investigations as those referred for other reasons. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Fine scale vegetation classification and fuel load mapping for prescribed burning

    Science.gov (United States)

    Andrew D. Bailey; Robert Mickler

    2007-01-01

    Fire managers in the Coastal Plain of the Southeastern United States use prescribed burning as a tool to reduce fuel loads in a variety of vegetation types, many of which have elevated fuel loads due to a history of fire suppression. While standardized fuel models are useful in prescribed burn planning, those models do not quantify site-specific fuel loads that reflect...

  13. Comparing two non-equilibrium approaches to modelling of a free-burning arc

    International Nuclear Information System (INIS)

    Baeva, M; Uhrlandt, D; Benilov, M S; Cunha, M D

    2013-01-01

    Two models of high-pressure arc discharges are compared with each other and with experimental data for an atmospheric-pressure free-burning arc in argon for arc currents of 20–200 A. The models account for space-charge effects and thermal and ionization non-equilibrium in somewhat different ways. One model considers space-charge effects, thermal and ionization non-equilibrium in the near-cathode region and thermal non-equilibrium in the bulk plasma. The other model considers thermal and ionization non-equilibrium in the entire arc plasma and space-charge effects in the near-cathode region. Both models are capable of predicting the arc voltage in fair agreement with experimental data. Differences are observed in the arc attachment to the cathode, which do not strongly affect the near-cathode voltage drop and the total arc voltage for arc currents exceeding 75 A. For lower arc currents the difference is significant but the arc column structure is quite similar and the predicted bulk plasma characteristics are relatively close to each other. (paper)

  14. Foot burns: epidemiology and management.

    Science.gov (United States)

    Hemington-Gorse, S; Pellard, S; Wilson-Jones, N; Potokar, T

    2007-12-01

    This is a retrospective study of the epidemiology and management of isolated foot burns presenting to the Welsh Centre for Burns from January 1998 to December 2002. A total of 289 were treated of which 233 were included in this study. Approximately 40% were in the paediatric age group and the gender distribution varied dramatically for adults and children. In the adult group the male:female ratio was 3.5:1, however in the paediatric group the male:female ratio was more equal (1.6:1). Scald burns (65%) formed the largest group in children and scald (35%) and chemical burns (32%) in adults. Foot burns have a complication rate of 18% and prolonged hospital stay. Complications include hypertrophic scarring, graft loss/delayed healing and wound infection. Although isolated foot burns represent a small body surface area, over half require treatment as in patients to allow for initial aggressive conservative management of elevation and regular wound cleansing to avoid complications. This study suggests a protocol for the initial acute management of foot burns. This protocol states immediate referral of all foot burns to a burn centre, admission of these burns for 24-48 h for elevation, regular wound cleansing with change of dressings and prophylactic antibiotics.

  15. The reasoned/reactive model: A new approach to examining eating decisions among female college dieters and nondieters.

    Science.gov (United States)

    Ruhl, Holly; Holub, Shayla C; Dolan, Elaine A

    2016-12-01

    Female college students are prone to unhealthy eating patterns that can impact long-term health. This study examined female students' healthy and unhealthy eating behaviors with three decision-making models. Specifically, the theory of reasoned action, prototype/willingness model, and new reasoned/reactive model were compared to determine how reasoned (logical) and reactive (impulsive) factors relate to dietary decisions. Females (N=583, M age =20.89years) completed measures on reasoned cognitions about foods (attitudes, subjective norms, nutrition knowledge, intentions to eat foods), reactive cognitions about foods (prototypes, affect, willingness to eat foods), dieting, and food consumption. Structural equation modeling (SEM) revealed the new reasoned/reactive model to be the preeminent model for examining eating behaviors. This model showed that attitudes were related to intentions and willingness to eat healthy and unhealthy foods. Affect was related to willingness to eat healthy and unhealthy foods, whereas nutrition knowledge was related to intentions and willingness to eat healthy foods only. Intentions and willingness were related to healthy and unhealthy food consumption. Dieting status played a moderating role in the model and revealed mean-level differences between dieters and nondieters. This study highlights the importance of specific factors in relation to female students' eating decisions and unveils a comprehensive model for examining health behaviors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Microbiological Monitoring and Proteolytic Study of Clinical Samples From Burned and Burned Wounded Patients

    International Nuclear Information System (INIS)

    Toema, M.A.; El-Bazza, Z.E.; El-Hifnawi, H.N.; Abd-El-Hakim, E.E.

    2013-01-01

    In this study, clinical samples were collected from 100 patients admitted to Burn and Plastic Surgery Department, Faculty of Medicine, Ain Shams University, Egypt, over a period of 12 months. The proteolytic activity of 110 clinical samples taken from surfaces swabs which taken from burned and burned wounded patients with different ages and gender was examined. Screening for the proteolytic activity produced by pathogenic bacteria isolated from burned and burned wounded patients was evaluated as gram positive Bacilli and gram negative bacilli showed high proteolytic activity (46.4%) while 17.9% showed no activity. The isolated bacteria proved to have proteolytic activity were classified into high, moderate and weak. The pathogenic bacteria isolated from burned and burned wounded patients and showing proteolytic activity were identified as Pseudomonas aeruginosa, Proteus mirabilis, Proteus vulgaris, Bacillus megaterium, Bacillus cereus, Staphylococcus aureus, Escherichia coli, Klebsiella ozaeanae, Klebsiella oxytoca, Klebsiella pneumoniae and Pseudomonas fluoresces.

  17. Experimental measurements and numerical modeling of marginal burning in live chaparral fuel beds

    Science.gov (United States)

    X. Zhou; D.R. Weise; S Mahalingam

    2005-01-01

    An extensive experimental and numerical study was completed to analyze the marginal burning behavior of live chaparral shrub fuels that grow in the mountains of southern California. Laboratory fire spread experiments were carried out to determine the effects of wind, slope, moisture content, and fuel characteristics on marginal burning in fuel beds of common...

  18. Epidemiology of burns throughout the World. Part II: intentional burns in adults.

    Science.gov (United States)

    Peck, Michael D

    2012-08-01

    A significant number of burns and deaths from fire are intentionally wrought. Rates of intentional burns are unevenly distributed throughout the world; India has a particularly high rate in young women whereas in Europe rates are higher in men in mid-life. Data from hospitalized burn patients worldwide reveal incidence rates for assault by fire and scalds ranging from 3% to 10%. The average proportion of the body surface area burned in an assault by fire or scalds is approximately 20%. In different parts of the world, attempted burning of others or oneself can be attributed to different motives. Circumstances under which assaults occur fall largely into the categories of interpersonal conflict, including spousal abuse, elder abuse, or interactions over contentious business transactions. Contributing social factors to assaults by burning include drug and alcohol abuse, non-constructive use of leisure time, non-participation in religious and community activities, unstable relationships, and extramarital affairs. Although the incidence of self-mutilation and suicide attempts by burning are relatively low, deliberate self-harm carries a significant risk of death, with an overall mortality rate of 65% worldwide. In those who resort to self-immolation, circumstantial themes reflect domestic discord, family dysfunction, and the social ramifications of unemployment. Preventing injurious burn-related violence requires a multifaceted approach, including legislation and enforcement, education, and advocacy. Better standardized assessment tools are needed to screen for risks of abuse and for psychiatric disorders in perpetrators. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  19. Reactivity of lignin and lignin models towards UV-assisted peroxide

    International Nuclear Information System (INIS)

    Sun, Y.P.; Wallis, A.F.A.; Nguyen, K.L.

    1997-01-01

    The comparative reactivities of a series of guaiacyl and syringyl lignin model compounds and their methylated analogues towards alkaline peroxide and UV-alkaline peroxide were investigated. The overall reaction was followed by monitoring the reduction of the substrate as a function of time, and in every case, the reaction showed pseudo-first-order kinetics. The reaction rates of most lignin models having identical sidechains with alkaline peroxide and with UV-alkaline peroxide were in the order syringyl guaiacyl 3,4,5-trimethoxyphenyl veratryl. Thus phenols react faster than their methyl ethers, and an extra ortho methoxyl group promotes the reaction. Lignin models possessing electron-donating sidechains had generally higher reaction rates than those with electron-withdrawing sidechains. The reaction rates of the series of benzoic acids were 2-4 times higher at pH 11 than at pH 5. UV-peroxide degradation of a eucalypt kraft lignin was faster than that of a pine kraft lignin, and degradation was 1.4-1.6 times faster at pH 11 than at pH 5. The data are consistent with the formation of higher amounts of reactive radicals under alkaline conditions, and aromatic rings with greater electronegativities promoting reactions with the radicals

  20. Burning mouth syndrome

    OpenAIRE

    K A Kamala; S Sankethguddad; S G Sujith; Praveena Tantradi

    2016-01-01

    Burning mouth syndrome (BMS) is multifactorial in origin which is typically characterized by burning and painful sensation in an oral cavity demonstrating clinically normal mucosa. Although the cause of BMS is not known, a complex association of biological and psychological factors has been identified, suggesting the existence of a multifactorial etiology. As the symptom of oral burning is seen in various pathological conditions, it is essential for a clinician to be aware of how to different...

  1. Characterizing and modeling of an 88 MW grate-fired boiler burning wheat straw: Experience and lessons

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse Aistrup; Clausen, Sønnik

    2012-01-01

    and availability. To better understand grate-firing of biomass and to establish a reliable but relatively simple Computational Fluid Dynamics (CFD) modeling methodology for industrial applications, biomass combustion in a number of different grate boilers has been measured and modeled. As one of the case studies......, modeling effort on an 88 MW grate-fired boiler burning wheat straw is presented in this paper. Different modeling issues and their expected impacts on CFD analysis of the kind of grate boilers are discussed. The modeling results are compared with in-flame measurements in the 88 MW boiler, which shows...... measures will be tested in a modern 500 kW grate boiler rig...

  2. Adult survivors' lived experience of burns and post-burn health: A qualitative analysis.

    Science.gov (United States)

    Abrams, Thereasa E; Ogletree, Roberta J; Ratnapradipa, Dhitinut; Neumeister, Michael W

    2016-02-01

    The individual implications of major burns are likely to affect the full spectrum of patients' physical, emotional, psychological, social, environmental, spiritual and vocational health. Yet, not all of the post-burn health implications are inevitably negative. Utilizing a qualitative approach, this heuristic phenomenological study explores the experiences and perceptions early (ages 18-35) and midlife (ages 36-64) adults providing insight for how participants perceived their burns in relationship to their post-burn health. Participants were interviewed using semi-structured interview questions framed around seven domains of health. Interview recordings were transcribed verbatim then coded line by line, identifying dominant categories related to health. Categories were analyzed identifying shared themes among the study sample. Participants were Caucasian, seven males and one female. Mean age at time of interviews was 54.38 and 42.38 at time of burns. Mean time since burns occurred was 9.38 years with a minimum of (20%) total body surface area (TBSA) burns. Qualitative content analysis rendered three emergent health-related categories and associated themes that represented shared meanings within the participant sample. The category of "Physical Health" reflected the theme physical limitations, pain and sensitivity to temperature. Within the category of "Intellectual Health" were themes of insight, goal setting and self-efficacy, optimism and humor and within "Emotional Health" were the themes empathy and gratitude. By exploring subjective experiences and perceptions of health shared through dialog with experienced burned persons, there are opportunities to develop a more complete picture of how holistic health may be affected by major burns that in turn could support future long-term rehabilitative trajectories of early and midlife adult burn patients. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  3. Burn-related factors affecting anxiety, depression and self-esteem in burn patients: an exploratory study.

    Science.gov (United States)

    Jain, M; Khadilkar, N; De Sousa, A

    2017-03-31

    Burns are physically, psychologically and economically challenging injuries, and the factors leading to them are many and under-studied. The aim of the current study was to assess level of anxiety, depression and self-esteem in burn patients, and look at various burn-related variables that affect them. This cross-sectional study included 100 patients with burn injuries admitted to a tertiary care private hospital in an urban metropolis in India. The patients were assessed for anxiety, depression and self-esteem using the Hamilton anxiety rating scale, Hamilton depression rating scale and Rosenberg self-esteem scale respectively. Assessment was carried out within 2-8 weeks of injury following medical stabilization. The data was tabulated and statistically analyzed. The study sample was predominantly male (54%), married (69%), with a mean age of 34.1 ± 10.8 years. Accidental burns (94%) were the most common modality of injury. The majority (46%) suffered burns involving 20-59% total body surface area (TBSA), and facial burns were present (57%). No significant association was found between TBSA and anxiety, depression or self-esteem, and the same was true for facial burns. Deep burns, however, were significantly associated with anxiety (p=0.03) and depression (p=0.0002). High rates of anxiety and depression are associated with burn injuries and related to burn depth. Adjustment and recovery in these patients depends on various other factors like the patient's psychological status, nature/extent of the injury and ensuing medical care. Further research is warranted to reveal the magnitude and predictors of psychological problems in burn patients.

  4. Thermal injury induces impaired function in polymorphonuclear neutrophil granulocytes and reduced control of burn wound infection

    DEFF Research Database (Denmark)

    Calum, H.; Moser, C.; Jensen, P. O.

    2009-01-01

    Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6% third-degree burn...... injury was induced in mice with a hot-air blower. The third-degree burn was confirmed histologically. The mice were allocated into five groups: control, shave, burn, infection and burn infection group. At 48 h, a decline in the concentration of peripheral blood leucocytes was observed in the group...... of mice with burn wound. The reduction was ascribed to the decline in concentration of polymorphonuclear neutrophil leucocytes and monocytes. When infecting the skin with Pseudomonas aeruginosa, a dissemination of bacteria was observed only in the burn wound group. Histological characterization...

  5. Effect of Chinese medical herbs- burn liniment on deep second ...

    African Journals Online (AJOL)

    Materials and methods: The animals were divided into four groups including control group, model group,1% silver sulfadiazine (SSD) group and BL group. On days 0,3,7,14 and 21,animal weight ... activity in rats. Keywords: Burn Liniment; Deep second degree; Burn wound; Anti-inflammatory; Antibacterial; Toxicological test ...

  6. Revised (Mixed-Effects) Estimation for Forest Burning Emissions of Gases and Smoke, Fire/Emission Factor Typology, and Potential Remote Sensing Classification of Types for Ozone and Black-Carbon Simulation

    Science.gov (United States)

    Chatfield, Robert B.; Segal Rozenhaimer, M.

    2014-01-01

    We summarize recent progress (a) in correcting biomass burning emissions factors deduced from airborne sampling of forest fire plumes, (b) in understanding the variability in reactivity of the fresh plumes sampled in ARCTAS (2008), DC3 (2012), and SEAC4RS (2013) airborne missions, and (c) in a consequent search for remotely sensed quantities that help classify forest-fire plumes. Particle properties, chemical speciation, and smoke radiative properties are related and mutually informative, as pictures below suggest (slopes of lines of same color are similar). (a) Mixed-effects (random-effects) statistical modeling provides estimates of both emission factors and a reasonable description of carbon-burned simultaneously. Different fire plumes will have very different contributions to volatile organic carbon reactivity; this may help explain differences of free NOx(both gas- and particle-phase), and also of ozone production, that have been noted for forest-fire plumes in California. Our evaluations check or correct emission factors based on sequential measurements (e.g., the Normalized Ratio Enhancement and similar methods). We stress the dangers of methods relying on emission-ratios to CO. (b) This work confirms and extends many reports of great situational variability in emissions factors. VOCs vary in OH reactivity and NOx-binding. Reasons for variability are not only fuel composition, fuel condition, etc., but are confused somewhat by rapid transformation and mixing of emissions. We use "unmixing" (distinct from mixed-effects) statistics and compare briefly to approaches like neural nets. We focus on one particularly intense fire the notorious Yosemite Rim Fire of 2013. In some samples, NOx activity was not so suppressed by binding into nitrates as in other fires. While our fire-typing is evolving and subject to debate, the carbon-burned delta(CO2+CO) estimates that arise from mixed effects models, free of confusion by background-CO2 variation, should provide a

  7. Simulation study of burning control with internal transport barrier

    Energy Technology Data Exchange (ETDEWEB)

    Tateishi, Gonta [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka (Japan); Yagi, Masatoshi; Itoh, S.I. [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    2000-02-01

    Dynamics of burning plasma with internal transport barrier is studied by use of a one dimensional transport simulation code. Two possible mechanisms are modeled for internal transport barrier collapse. One is the collapse, which occurs above the critical pressure gradient, the impact of which is modeled by the enhancement of thermal conductivity. The other is the collapse, which occurs due to the sawtooth trigger. The extended Kadomtsev type reconnection model with multiple resonant surfaces is introduced. Both models are examined for the analysis of long time sustainment of burning. A test of profile control to mitigate the collapse is investigated. The additional circulating power to suppress thermal quench (collapse) is evaluated. (author)

  8. Thermal chemical-mechanical reactive flow model of shock initiation in solid explosives

    International Nuclear Information System (INIS)

    Nicholls, A.L. III; Tarver, C.M.

    1998-01-01

    The three dimensional Arbitrary Lagrange Eulerian hydrodynamic computer code ALE3D with fully coupled thermal-chemical-mechanical material models provides the framework for the development of a physically realistic model of shock initiation and detonation of solid explosives. The processes of hot spot formation during shock compression, subsequent ignition of reaction or failure to react, growth of reaction in individual hot spots, and coalescence of reacting hot spots during the transition to detonation can now be modeled using Arrhenius chemical kinetic rate laws and heat transfer to propagate the reactive flow. This paper discusses the growth rates of reacting hot spots in HMX and TATB and their coalescence during shock to detonation transition. Hot spot deflagration rates are found to be fast enough to consume explosive particles less than 10 mm in diameter during typical shock duration times, but larger particles must fragment and create more reactive surface area in order to be rapidly consumed

  9. The effects of sildenafil in liver and kidney injury in a rat model of severe scald burn: a biochemical and histopathological study.

    Science.gov (United States)

    Gökakın, Ali Kağan; Atabey, Mustafa; Deveci, Koksal; Sancakdar, Enver; Tuzcu, Mehmet; Duger, Cevdet; Topcu, Omer

    2014-09-01

    Severe burn induces systemic inflammation and reactive oxygen species leading to lipid peroxidation which may play role in remote organs injury. Sildenafil is a selective and potent inhibitor of cyclic guanosine monophosphate specific phosphodiesterase-5. Sildenafil reduces oxidative stress and inflammation in distant organs. The aim of the present study was to evaluate the effects of different dosages of sildenafil in remote organs injury. A total of thirty-two rats were randomly divided into four equal groups. The groups were designated as follows: Sham, Control, 10, and T20 mg/kg sildenafil treatment groups. Levels of malondialdehyde (MDA), vascular endothelial growth factor (VEGF), VEGF receptor (Flt-1), activities of glutathione peroxidase (Gpx), levels of total antioxidative capacity (TAC), and total oxidant status (TOS) were measured in both tissues and serum, and a semi-quantitative scoring system was used for the evaluation of histopathological findings. Sildenafil increased levels of Gpx, and Flt-1, and decreased MDA and VEGF levels in tissues. Sildenafil also increased serum levels of TAC and Flt-1 and decreased TOS, OSI, and VEGF. Sildenafil decreased inflammation scores in remote organs in histopathological evaluation. It has protective effects in severe burn-related remote organ injuries by decreasing oxidative stress and inflammation.

  10. Treatment of Palm Burns in Children

    OpenAIRE

    Argirova, M.; Hadzhiyski, O.

    2005-01-01

    The timing and methods of treatment of palm burns in children vary widely. From January 2002 to November 2004, 492 children with burns - 125 of them with hand burns or other body burns - were hospitalized and treated at the N.I. Pirogov Clinic for Burns and Plastic Surgery in Bulgaria. Fifty-four children (for a total of 73 burned hands) presented isolated palm burns.Twenty-two hands were operated on. In this review we present the incidence, causes, treatment methods, functional results, and ...

  11. Etiology of Burn Injuries Among 0-6 Aged Children in One University Hospital Burn Unit, Bursa, Turkey

    Directory of Open Access Journals (Sweden)

    Neriman Akansel

    2013-01-01

    Full Text Available Background; Children whose verbal communications are not fully developed are the ones at risk for burn injuries. Causes of burn injuries vary among different age groups and scald injuries are the common cause of burn injuries among children. The majority of burns result from contact with thermal agents such as flame, hot surfaces, or hot liquids.Aim: The aim of this study was to determine etiologic factors of the burn injured children Methods: Data were collected for burn injured children treated in Uludag University Medical Hospital Burn Unit between January 2001 – December 2008. Patients’ demographic variables, etiology of burn injury, TBSA(total body surface area, degree of the burn injury, duration of hospitalization was detected from medical records of the hospitalized patients.Results: The mean age of the children was 2.5±1.5 (median=2. Although 4.6 % of burned patients were under one year of age, most of the children (67.8% were between 1-3 years. All of the patients were burned as a result of accident and house environment was the place where the burn incident occurred. Burn injuries occurredmostly during summer (29.9% and spring (28.7%. Scald injuries (75.3% were mostly seen burn injury types all among other burn injuries.Conclusions: Lack of supervision and observation are usually the most common causes of burn injuries in children. Statistical differences were found among age groups according to their burn etiology (p<0.05. An effect of TBSA on patient survival was statistically significant (p<0.000 and also statistically significant results were seen among age groups according to their TBSA’s (p<0.005.

  12. The effect of preexisting respiratory co-morbidities on burn outcomes☆

    Science.gov (United States)

    Knowlin, Laquanda T.; Stanford, Lindsay B.; Cairns, Bruce A.; Charles, Anthony G.

    2018-01-01

    Introduction Burns cause physiologic changes in multiple organ systems in the body. Burn mortality is usually attributable to pulmonary complications, which can occur in up to 41% of patients admitted to the hospital after burn. Patients with preexisting comorbidities such as chronic lung diseases may be more susceptible. We therefore sought to examine the impact of preexisting respiratory disease on burn outcomes. Methods A retrospective analysis of patients admitted to a regional burn center from 2002–2012. Independent variables analyzed included basic demographics, burn mechanism, presence of inhalation injury, TBSA, pre-existing comorbidities, smoker status, length of hospital stay, and days of mechanical ventilation. Bivariate analysis was performed and Cox regression modeling using significant variables was utilized to estimate hazard of progression to mechanical ventilation and mortality. Results There were a total of 7640 patients over the study period. Overall survival rate was 96%. 8% (n=672) had a preexisting respiratory disease. Chronic lung disease patients had a higher mortality rate (7%) compared to those without lung disease (4%, pburn. Given the increasing number of Americans with chronic respiratory diseases, there will likely be a greater number of individuals at risk for worse outcomes following burn. PMID:28341260

  13. Hot soup! Correlating the severity of liquid scald burns to fluid and biomedical properties.

    Science.gov (United States)

    Loller, Cameron; Buxton, Gavin A; Kerzmann, Tony L

    2016-05-01

    Burns caused by hot drinks and soups can be both debilitating and costly, especially to pediatric and geriatric patients. This research is aimed at better understanding the fluid properties that can influence the severity of skin burns. We use a standard model which combines heat transfer and biomedical equations to predict burn severity. In particular, experimental data from a physical model serves as the input to our numerical model to determine the severity of scald burns as a consequence of actual fluid flows. This technique enables us to numerically predict the heat transfer from the hot soup into the skin, without the need to numerically estimate the complex fluid mechanics and thermodynamics of the potentially highly viscous and heterogeneous soup. While the temperature of the soup is obviously is the most important fact in determining the degree of burn, we also find that more viscous fluids result in more severe burns, as the slower flowing thicker fluids remain in contact with the skin for longer. Furthermore, other factors can also increase the severity of burn such as a higher initial fluid temperature, a greater fluid thermal conductivity, or a higher thermal capacity of the fluid. Our combined experimental and numerical investigation finds that for average skin properties a very viscous fluid at 100°C, the fluid must be in contact with the skin for around 15-20s to cause second degree burns, and more than 80s to cause a third degree burn. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  14. Optimization of burn referrals

    DEFF Research Database (Denmark)

    Reiband, Hanna K; Lundin, Kira; Alsbjørn, Bjarne

    2014-01-01

    INTRODUCTION: Correct estimation of the severity of burns is important to obtain the right treatment of the patient and to avoid over- and undertriage. In this study we aimed to assess how often the guidelines for referral of burn injured patients are met at the national burn centre (NBC), Denmar...

  15. Eradication of multidrug-resistant A. baumannii in burn wounds by antiseptic pulsed electric field

    Science.gov (United States)

    Golberg, Alexander; Broelsch, G. Felix; Vecchio, Daniela; Khan, Saiqa; Hamblin, Michael R.; Austen, William G.; Sheridan, Robert L.; Yarmush, Martin L.

    2014-01-01

    Emerging bacterial resistance to multiple drugs is an increasing problem in burn wound management. New non-pharmacologic interventions are needed for burn wound disinfection. Here we report on a novel physical method for disinfection: antiseptic pulsed electric field (PEF) applied externally to the infected burns. In a mice model, we show that PEF can reduce the load of multidrug resistant Acinetobacter baumannii present in a full thickness burn wound by more than four orders of magnitude, as detected by bioluminescence imaging. Furthermore, using a finite element numerical model, we demonstrate that PEF provides non-thermal, homogeneous, full thickness treatment for the burn wound, thus, overcoming the limitation of treatment depth for many topical antimicrobials. These modeling tools and our in vivo results will be extremely useful for further translation of the PEF technology to the clinical setting, as they provide the essential elements for planning of electrode design and treatment protocol. PMID:25089285

  16. Digital reactivity meter

    International Nuclear Information System (INIS)

    Copie, M.; Valantic, B.

    1978-01-01

    Digital reactivity meters (DRM) are mostly used as measuring instruments, e.g. for calibration of control rods, and there are only a few cases of their incorporation into the control systems of the reactors. To move in this direction there is more development work needed. First of all, fast algorithms are needed for inverse kinetics equations to relieve the computer for more important tasks of reactor model solving in real time. The next problem, currently under investigation, is the incorporation of the reactor thermal-hydraulic model into the DRM so that it can be used in the power range. Such an extension of DHM allows presentation not only of the instantaneous reactivity of the system, but also the inserted reactivity can be estimated from the temperature reactivity feed-backs. One of the applications of this concept is the anomalous digital reactivity monitor (ADRN) as part of the reactor protection system. As a solution of the first problem, a fast algorithm for solving the inverse kinetics equations has been implemented in the off-line program RODCAL on CDC 1700 computer and tested for its accuracy by performing different control rod calibrations on the reactor TRIGA

  17. Incidence and characteristics of chemical burns.

    Science.gov (United States)

    Koh, Dong-Hee; Lee, Sang-Gil; Kim, Hwan-Cheol

    2017-05-01

    Chemical burns can lead to serious health outcomes. Previous studies about chemical burns have been performed based on burn center data so these studies have provided limited information about the incidence of chemical burns at the national level. The aim of this study was to evaluate the incidence and characteristics of chemical burns using nationwide databases. A cohort representing the Korean population, which was established using a national health insurance database, and a nationwide workers' compensation database were used to evaluate the incidence and characteristics of chemical burns. Characteristics of the affected body region, depth of burns, industry, task, and causative agents were analyzed from two databases. The incidence of chemical burns was calculated according to employment status. The most common regions involving chemical burns with hospital visits were the skin followed by the eyes. For skin lesions, the hands and wrists were the most commonly affected regions. Second degree burns were the most common in terms of depth of skin lesions. The hospital visit incidence was 1.96 per 10,000 person-year in the general population. The compensated chemical burns incidence was 0.17 per 10,000 person-year. Employees and the self-employed showed a significantly increased risk of chemical burns undergoing hospital visits compared to their dependents. Chemical burns on the skin and eyes are almost equally prevalent. The working environment was associated with increased risk of chemical burns. Our results may aid in estimating the size of the problem and prioritizing prevention of chemical burns. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  18. Direct Radiative Impacts of Central American Biomass Burning Smoke Aerosols: Analysis from a Coupled Aerosol-Radiation-Meteorology Model RAMS-AROMA

    Science.gov (United States)

    Wang, J.; Christopher, S. A.; Nair, U. S.; Reid, J. S.; Prins, E. M.

    2005-12-01

    Considerable efforts including various field experiments have been carried out in the last decade for studying the regional climatic impact of smoke aerosols produced by biomass burning activities in Africa and South America. In contrast, only few investigations have been conducted for Central American Biomass Burning (CABB) region. Using a coupled aerosol-radiation-meteorology model called RAMS-AROMA together with various ground-based observations, we present a comprehensive analysis of the smoke direct radiative impacts on the surface energy budget, boundary layer evolution, and e precipitation process during the CABB events in Spring 2003. Quantitative estimates are also made regarding the transboundary carbon mass to the U.S. in the form of smoke particles. Buult upon the Regional Atmospheric Modeling System (RAMS) mesoscale model, the RAMS AROMA has several features including Assimilation and Radiation Online Modeling of Aerosols (AROMA) algorithms. The model simulates smoke transport by using hourly smoke emission inventory from the Fire Locating and Modeling of Burning Emissions (FLAMBE) geostationary satellite database. It explicitly considers the smoke effects on the radiative transfer at each model time step and model grid, thereby coupling the dynamical processes and aerosol transport. Comparison with ground-based observation show that the simulation realistically captured the smoke transport timeline and distribution from daily to hourly scales. The effects of smoke radiative extinction on the decrease of 2m air temperature (2mT), diurnal temperature range (DTR), and boundary layer height over the land surface are also quantified. Warming due to smoke absorption of solar radiation can be found in the lower troposphere over the ocean, but not near the underlying land surface. The increase of boundary layer stability produces a positive feedback where more smoke particles are trapped in the lower boundary layer. These changes in temperature, surface

  19. Comparison between TRU burning reactors and commercial fast reactor

    International Nuclear Information System (INIS)

    Fujimura, Koji; Sanda, Toshio; Ogawa, Takashi

    2001-03-01

    additional consideration should be required in nuclear design and fuel treating facilities due to reactivity coefficient being shifted to the plus side, larger neutron yield and increased heat source caused by MA loading. (2) Confirmation of TRU burning reactor core concepts. The core specification of sodium cooled-nitride fueled TRU burning large reactor was designed based on commercial type fast reactor (sodium cooled nitride fueled large fast reactor, 38000 MWt) which was designed in the feasibility studies on commercialized fast reactor cycle system. The composition of MAs from LWR's spent fuel was supposed. MA content in the core fuel is settled to 60 wt% based on the JAERI's design in order to maximize the MA transmutation amount. We need to exchange 25% of core fuel with zirconium hydride (ZrH 1.6 ) to attain Doppler coefficient being equivalent to that of the conventional type commercial fast reactor loaded 5 wt% MA. Furthermore, this reactor could transmute MAs produced in forty-eight sodium cooled nitride fueled large fast reactors generating the same output. In order to investigate the dependency of MA transmutation characteristics on the reactor output, 1200 MWt TRU burning middle or small reactor core concept was designed. This core was settled by reducing the number of core fuel assemblies from that of TRU burning large reactor designed above. MA transmutation rate in this core is smaller than that in the TRU burning large reactor core because the neutron flux of this core becomes smaller than that of the TRU burning large reactor core due to the higher Pu enrichment. (3) Comparison between TRU burning reactor and conventional type commercial fast reactor. MA transmutation and nuclear characteristics of the sodium cooled nitride fuel commercial type fast reactor loaded 5 wt%MA were evaluated and compared with those of TRU burning large reactor designed in (2). The commercial type fast reactor could only transmute MAs produced in seven sodium cooled nitride

  20. Method of burning highly reactive strongly slagging coal dust in a chamber furnace

    Energy Technology Data Exchange (ETDEWEB)

    Protsaylo, M.Ya.; Kotler, V.R.; Lobov, G.V.; Mechev, V.P.; Proshkin, A.V.; Zhuravlev, Yu.A.

    1982-01-01

    In the chamber furnace in order to reduce slagging, it is proprosed that, above the coal dust burners, nozzles be installed with inclination downwards through which air is fed in a mixture with flue gases. Under the influence of this flue gas-air mixture, the coal dust flame is deviated downwards. In this case there is an increase in the length of the flame and degree of filling of the volume of the furnace with the flame. This increases the effectiveness of dust burning. The input into the furnace of fuel jointly with the air and flue gases (optimally 10-15% of the total quantity of gases formed during fuel combustion) makes it possible to reduce the temperature in the furnace and the probability of slagging of the furnace walls.

  1. Characterization of Emissions and Air Quality Modeling for Predicting the Impacts of Prescribed Burns at DoD Lands

    Science.gov (United States)

    2012-10-01

    unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Objectives: Prescribed burning (PB) is an effective and economical land management tool for maintaining...situ emissions measurements. ?Daysmoke,? an empirical plume model designed specifically for PB, and the Community Multiscale Air Quality (CMAQ) model...adaptive minus standard) in nitrate (left) and biogenic organic aerosol (right) when only transport and aerosol modules are turned on (i.e., no gas

  2. Modelling reactive transport in a phosphogypsum dump, Venezia, Italia

    Science.gov (United States)

    Calcara, Massimo; Borgia, Andrea; Cattaneo, Laura; Bartolo, Sergio; Clemente, Gianni; Glauco Amoroso, Carlo; Lo Re, Fabio; Tozzato, Elena

    2013-04-01

    We develop a reactive-transport porous media flow model for a phosphogypsum dump located on the intertidal deposits of the Venetian Lagoon: 1. we construct a complex conceptual and geologic model from field data using the GMS™ graphical user interface; 2. the geological model is mapped onto a rectangular MODFLOW grid; 3. using the TMT2 FORTRAN90 code we translate this grid into the MESH, INCON and GENER input files for the TOUGH2 series of codes; 4. we run TOUGH-REACT to model flow and reactive transport in the dump and the sediments below it. The model includes 3 different dump materials (phosphogypsum, bituminous and hazardous wastes) with the pores saturated by specific fluids. The sediments below the dump are formed by an intertidal sequence of calcareous sands and silts, in addition to clays and organic deposits, all of which are initially saturated with lagoon salty waters. The recharge rain-water dilutes the dump fluids. In turn, the percolates from the dump react with the underlying sediments and the sea water that saturates them. Simulation results have been compared with chemical sampled analyses. In fact, in spite of the simplicity of our model we are able to show how the pH becomes neutral at a short distance below the dump, a fact observed during aquifer monitoring. The spatial and temporal evolution of dissolution and precipitation reactions occur in our model much alike reality. Mobility of some elements, such as divalent iron, are reduced by specific and concurrent conditions of pH from near-neutrality to moderately high values and positive redox potential; opposite conditions favour mobility of potentially toxic metals such as Cr, As Cd and Pb. Vertical movement are predominant. Trend should be therefore heavily influenced by pH and Eh values. If conditions are favourable to mobility, concentration of these substances in the bottom strata could be high. However, simulation suggest that the sediments tend to reduce the transport potential of

  3. Automated chemical kinetic modeling via hybrid reactive molecular dynamics and quantum chemistry simulations.

    Science.gov (United States)

    Döntgen, Malte; Schmalz, Felix; Kopp, Wassja A; Kröger, Leif C; Leonhard, Kai

    2018-06-13

    An automated scheme for obtaining chemical kinetic models from scratch using reactive molecular dynamics and quantum chemistry simulations is presented. This methodology combines the phase space sampling of reactive molecular dynamics with the thermochemistry and kinetics prediction capabilities of quantum mechanics. This scheme provides the NASA polynomial and modified Arrhenius equation parameters for all species and reactions that are observed during the simulation and supplies them in the ChemKin format. The ab initio level of theory for predictions is easily exchangeable and the presently used G3MP2 level of theory is found to reliably reproduce hydrogen and methane oxidation thermochemistry and kinetics data. Chemical kinetic models obtained with this approach are ready-to-use for, e.g., ignition delay time simulations, as shown for hydrogen combustion. The presented extension of the ChemTraYzer approach can be used as a basis for methodologically advancing chemical kinetic modeling schemes and as a black-box approach to generate chemical kinetic models.

  4. Burning characteristics of chemically isolated biomass ingredients

    International Nuclear Information System (INIS)

    Haykiri-Acma, H.; Yaman, S.; Kucukbayrak, S.

    2011-01-01

    This study was performed to investigate the burning characteristics of isolated fractions of a biomass species. So, woody shells of hazelnut were chemically treated to obtain the fractions of extractives-free bulk, lignin, and holocellulose. Physical characterization of these fractions were determined by SEM technique, and the burning runs were carried out from ambient to 900 o C applying thermal analysis techniques of TGA, DTG, DTA, and DSC. The non-isothermal model of Borchardt-Daniels was used to DSC data to find the kinetic parameters. Burning properties of each fraction were compared to those of the raw material to describe their effects on burning, and to interpret the synergistic interactions between the fractions in the raw material. It was found that each of the fractions has its own characteristic physical and thermal features. Some of the characteristic points on the thermograms of the fractions could be followed definitely on those of the raw material, while some of them seriously shifted to other temperatures or disappeared as a result of the co-existence of the ingredients. Also, it is concluded that the presence of hemicellulosics and celluloses makes the burning of lignin easier in the raw material compared to the isolated lignin. The activation energies can be arranged in the order of holocellulose < extractives-free biomass < raw material < lignin.

  5. Car radiator burns: a prevention issue.

    Science.gov (United States)

    Rabbitts, Angela; Alden, Nicole E; Conlin, Tara; Yurt, Roger W

    2004-01-01

    Scald burns continue to be the major cause of injury to patients admitted to the burn center. Scald burns occurring from car radiator fluid comprise a significant subgroup. Although manufacturer warning labels have been placed on car radiators, these burns continue to occur. This retrospective review looks at all patients admitted to our burn center who suffered scald burns from car radiator fluid to assess the extent of this problem. During the study period, 86 patients were identified as having suffered scald burns as a result of contact with car radiator fluid. Seventy-one percent of the burn injuries occurred in the summer months. The areas most commonly burned were the head and upper extremities. Burn prevention efforts have improved greatly over the years; however, this study demonstrates that scald burns from car radiator fluid continue to cause physical, emotional, and financial devastation. The current radiator warning labels alone are not effective. The National Highway Traffic Safety Administration has proposed a new federal motor vehicle safety standard to aid in decreasing the number of scald burns from car radiators. The results of this study were submitted to the United States Department of Transportation for inclusion in a docket for federal legislation supporting these safety measures.

  6. Alpha Heating and Burning Plasmas in Inertial Confinement Fusion.

    Science.gov (United States)

    Betti, R; Christopherson, A R; Spears, B K; Nora, R; Bose, A; Howard, J; Woo, K M; Edwards, M J; Sanz, J

    2015-06-26

    Estimating the level of alpha heating and determining the onset of the burning plasma regime is essential to finding the path towards thermonuclear ignition. In a burning plasma, the alpha heating exceeds the external input energy to the plasma. Using a simple model of the implosion, it is shown that a general relation can be derived, connecting the burning plasma regime to the yield enhancement due to alpha heating and to experimentally measurable parameters such as the Lawson ignition parameter. A general alpha-heating curve is found, independent of the target and suitable to assess the performance of all laser fusion experiments whether direct or indirect drive. The onset of the burning plasma regime inside the hot spot of current implosions on the National Ignition Facility requires a fusion yield of about 50 kJ.

  7. Two-year follow-up of outcomes related to scarring and distress in children with severe burns.

    Science.gov (United States)

    Wurzer, Paul; Forbes, Abigail A; Hundeshagen, Gabriel; Andersen, Clark R; Epperson, Kathryn M; Meyer, Walter J; Kamolz, Lars P; Branski, Ludwik K; Suman, Oscar E; Herndon, David N; Finnerty, Celeste C

    2017-08-01

    We assessed the perception of scarring and distress by pediatric burn survivors with burns covering more than one-third of total body surface area (TBSA) for up to 2 years post-burn. Children with severe burns were admitted to our hospital between 2004 and 2012, and consented to this IRB-approved-study. Subjects completed at least one Scars Problems and/or Distress questionnaire between discharge and 24 months post burn. Outcomes were modeled with generalized estimating equations or using mixed linear models. Significance was accepted at p body areas over time (p self-conscious with respect to their body image even 2 years after burn injury. Implications for Rehabilitation According to self-assessment questionnaires, severely burned children perceive significant improvements in scarring and distress during the first 2 years post burn. Significant improvements were seen in reduction of pain, itching, sleeping disturbances, tightness, range of motion, and strength (p body areas. The rehabilitation team should provide access to wigs or other aids to pediatric burn survivors to address these needs.

  8. Oral Rehydration Therapy in Burn Patients

    Science.gov (United States)

    2014-04-24

    Burn Any Degree Involving 20-29 Percent of Body Surface; Burn Any Degree Involving 30-39 Percent of Body Surface; Burn Any Degree Involving 40-49 Percent of Body Surface; Burn Any Degree Involving 50-59 Percent of Body Surface; Burn Any Degree Involving 60-65 Percent of Body Surface

  9. Health-related quality of life 6 months after burns among hospitalized patients: Predictive importance of mental disorders and burn severity.

    Science.gov (United States)

    Palmu, Raimo; Partonen, Timo; Suominen, Kirsi; Saarni, Samuli I; Vuola, Jyrki; Isometsä, Erkki

    2015-06-01

    Major burns are likely to have a strong impact on health-related quality of life (HRQoL). We investigated the level of and predictors for quality of life at 6 months after acute burn. Consecutive acute adult burn patients (n=107) admitted to the Helsinki Burn Centre were examined with a structured diagnostic interview (SCID) at baseline, and 92 patients (86%) were re-examined at 6 months after injury. During follow-up 55% (51/92) suffered from at least one mental disorder. The mean %TBSA was 9. TBSA of men did not differ from that of women. Three validated instruments (RAND-36, EQ-5, 15D) were used to evaluate the quality of life at 6 months. All the measures (RAND-36, EQ-5, 15D) consistently indicated mostly normal HRQoL at 6 months after burn. In the multivariate linear regression model, %TBSA predicted HRQoL in one dimension (role limitations caused by physical health problems, p=0.039) of RAND-36. In contrast, mental disorders overall and particularly major depressive disorder (MDD) during follow-up (p-values of 0.001-0.002) predicted poor HRQoL in all dimensions of RAND-36. HRQoL of women was worse than that of men. Self-perceived HRQoL among acute burn patients at 6 months after injury seems to be mostly as good as in general population studies in Finland. The high standard of acute treatment and the inclusion of small burns (%TBSAburn itself on HRQoL. Mental disorders strongly predicted HRQoL at 6 months. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  10. A comparison between EGR and lean-burn strategies employed in a natural gas SI engine using a two-zone combustion model

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Amr; Bari, Saiful [Sustainable Energy Centre, School of Advanced Manufacturing and Mechanical Engineering, Univ. of South Australia, Mawson Lakes SA 5095 (Australia)

    2009-12-15

    Exhaust gas recirculation (EGR) strategy has been recently employed in natural gas SI engines as an alternative to lean burn technique in order to satisfy the increasingly stringent emission standards. However, the effect of EGR on some of engine performance parameters compared to lean burn is not yet quite certain. In the current study, the effect of both EGR and lean burn on natural gas SI engine performance was compared at similar operating conditions. This was achieved numerically by developing a computer simulation of the four-stroke spark-ignition natural gas engine. A two-zone combustion model was developed to simulate the in-cylinder conditions during combustion. A kinetic model based on the extended Zeldovich mechanism was also developed in order to predict NO emission. The combustion model was validated using experimental data and a good agreement between the results was found. It was demonstrated that adding EGR to the stoichiometric inlet charge at constant inlet pressure of 130 kPa decreased power more rapidly than excess air; however, the power loss was recovered by increasing the inlet pressure from 130 kPa at zero dilution to 150 kPa at 20% EGR dilution. The engine fuel consumption increased by 10% when 20% EGR dilution was added at inlet pressure of 150 kPa compared to using 20% air dilution at 130 kPa. However, it was found that EGR dilution strategy is capable of producing extremely lower NO emission than lean burn technique. NO emission was reduced by about 70% when the inlet charge was diluted at a rate of 20% using EGR instead of excess air. (author)

  11. A comparison between EGR and lean-burn strategies employed in a natural gas SI engine using a two-zone combustion model

    International Nuclear Information System (INIS)

    Ibrahim, Amr; Bari, Saiful

    2009-01-01

    Exhaust gas recirculation (EGR) strategy has been recently employed in natural gas SI engines as an alternative to lean burn technique in order to satisfy the increasingly stringent emission standards. However, the effect of EGR on some of engine performance parameters compared to lean burn is not yet quite certain. In the current study, the effect of both EGR and lean burn on natural gas SI engine performance was compared at similar operating conditions. This was achieved numerically by developing a computer simulation of the four-stroke spark-ignition natural gas engine. A two-zone combustion model was developed to simulate the in-cylinder conditions during combustion. A kinetic model based on the extended Zeldovich mechanism was also developed in order to predict NO emission. The combustion model was validated using experimental data and a good agreement between the results was found. It was demonstrated that adding EGR to the stoichiometric inlet charge at constant inlet pressure of 130 kPa decreased power more rapidly than excess air; however, the power loss was recovered by increasing the inlet pressure from 130 kPa at zero dilution to 150 kPa at 20% EGR dilution. The engine fuel consumption increased by 10% when 20% EGR dilution was added at inlet pressure of 150 kPa compared to using 20% air dilution at 130 kPa. However, it was found that EGR dilution strategy is capable of producing extremely lower NO emission than lean burn technique. NO emission was reduced by about 70% when the inlet charge was diluted at a rate of 20% using EGR instead of excess air.

  12. The management of small area burns and unexpected illness after burn in children under five years of age - A costing study in the English healthcare setting.

    Science.gov (United States)

    Kandiyali, R; Sarginson, J H; Hollén, L I; Spickett-Jones, F; Young, A E R

    2018-02-01

    The objective of this economic study was to evaluate the resource use and cost associated with the management of small area burns, including the additional costs associated with unexpected illness after burn in children of less than five years of age. This study was conducted as a secondary analysis of a multi-centre prospective observational cohort study investigating the physiological response to burns in children. 452 children were included in the economic analysis (median age=1.60years, 61.3% boys, median total burn surface area [TBSA]=1.00%) with a mean length of stay of 0.69 days. Of these children, 21.5% re-presented to medical care with an unexpected illness within fourteen days of injury. The cost of managing a burn of less than 10% TBSA in a child less than five years of age was £785. The additional cost associated with the management of illness after burn was £1381. A generalised linear regression model was used to determine the association between an unexpected illness after burn, presenting child characteristics and NHS cost. Our findings may be of value to those planning economic evaluations of novel technologies in burn care. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  13. Distinguishing Environment and System in Coloured Petri Net Models of Reactive Systems

    DEFF Research Database (Denmark)

    Tjell, Simon

    2007-01-01

    This paper introduces and formally defines the environment-and-system-partitioned property for behavioral models of reactive systems expressed in the formal modeling language Coloured Petri Net. The purpose of the formalization is to make it possible to automatically validate any CPN model...... with respect to this property based on structural analysis. A model has the environment-and-system-partitioned property if it is based on a clear division between environment and system. This division is important in many model-driven approaches to software development such as model-based testing and automated...

  14. Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.; Ajo-Franklin, J.B.; Spycher, N.; Hubbard, S.S.; Zhang, G.; Williams, K.H.; Taylor, J.; Fujita, Y.; Smith, R.

    2011-07-15

    Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH{sub 4}{sup

  15. Treatment of secondary burn wound progression in contact burns-a systematic review of experimental approaches.

    Science.gov (United States)

    Schmauss, Daniel; Rezaeian, Farid; Finck, Tom; Machens, Hans-Guenther; Wettstein, Reto; Harder, Yves

    2015-01-01

    After a burn injury, superficial partial-thickness burn wounds may progress to deep partial-thickness or full-thickness burn wounds, if kept untreated. This phenomenon is called secondary burn wound progression or conversion. Burn wound depth is an important determinant of patient morbidity and mortality. Therefore, reduction or even the prevention of secondary burn wound progression is one goal of the acute care of burned patients. The objective of this study was to review preclinical approaches evaluating therapies to reduce burn wound progression. A systematic review of experimental approaches in animals that aim at reducing or preventing secondary burn wound progression was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta Analysis (PRISMA) guidelines. The selected references consist of all the peer-reviewed studies performed in vivo in animals and review articles published in English, German, Italian, Spanish, or French language relevant to the topic of secondary burn wound progression. We searched MEDLINE, Cochrane Library, and Google Scholar including all the articles published from the beginning of notations to the present. The search was conducted between May 3, 2012 and December 26, 2013. We included 29 experimental studies in this review, investigating agents that maintain or increase local perfusion conditions, as well as agents that exhibit an anti-coagulatory, an anti-inflammatory, or an anti-apoptotic property. Warm water, simvastatin, EPO, or cerium nitrate may represent particularly promising approaches for the translation into clinical use in the near future. This review demonstrates promising experimental approaches that might reduce secondary burn wound progression. Nevertheless, a translation into clinical application needs to confirm the results compiled in experimental animal studies.

  16. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions

    International Nuclear Information System (INIS)

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C.; Brooks, Scott C; Pace, Molly; Kim, Young Jin; Jardine, Philip M.; Watson, David B.

    2007-01-01

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M. partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M. species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing NE equilibrium reactions and a set of reactive transport equations of M-NE kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions

  17. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions.

    Science.gov (United States)

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C; Brooks, Scott C; Pace, Molly N; Kim, Young-Jin; Jardine, Philip M; Watson, David B

    2007-06-16

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing N(E) equilibrium reactions and a set of reactive transport equations of M-N(E) kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.

  18. Modification of the finite element heat and mass transfer code (FEHM) to model multicomponent reactive transport

    International Nuclear Information System (INIS)

    Viswanathan, H.S.

    1996-08-01

    The finite element code FEHMN, developed by scientists at Los Alamos National Laboratory (LANL), is a three-dimensional finite element heat and mass transport simulator that can handle complex stratigraphy and nonlinear processes such as vadose zone flow, heat flow and solute transport. Scientists at LANL have been developing hydrologic flow and transport models of the Yucca Mountain site using FEHMN. Previous FEHMN simulations have used an equivalent Kd model to model solute transport. In this thesis, FEHMN is modified making it possible to simulate the transport of a species with a rigorous chemical model. Including the rigorous chemical equations into FEHMN simulations should provide for more representative transport models for highly reactive chemical species. A fully kinetic formulation is chosen for the FEHMN reactive transport model. Several methods are available to computationally implement a fully kinetic formulation. Different numerical algorithms are investigated in order to optimize computational efficiency and memory requirements of the reactive transport model. The best algorithm of those investigated is then incorporated into FEHMN. The algorithm chosen requires for the user to place strongly coupled species into groups which are then solved for simultaneously using FEHMN. The complete reactive transport model is verified over a wide variety of problems and is shown to be working properly. The new chemical capabilities of FEHMN are illustrated by using Los Alamos National Laboratory's site scale model of Yucca Mountain to model two-dimensional, vadose zone 14 C transport. The simulations demonstrate that gas flow and carbonate chemistry can significantly affect 14 C transport at Yucca Mountain. The simulations also prove that the new capabilities of FEHMN can be used to refine and buttress already existing Yucca Mountain radionuclide transport studies

  19. Fuel element reactivity worth in different rings of the IPR-R1 TRIGA reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gomes do Prado Souza, Rose Mary

    2008-10-29

    The thermal power of the IPR-R1 TRIGA Reactor will be upgraded from 100 kW to 250 kW. Starting core: loaded with 59 aluminum cladded fuel elements; 1.34 $ excess reactivity; and 100 kW power. It is planned to go 2.5 times the power licensed, i.e., 250 kW. This forces to enlarge the reactivity level. Nuclear reactors must have sufficient excess reactivity to compensate the negative reactivity feedback effects caused by: the fuel temperature, fuel burnup, fission poisoning production, and to allow full power operation for predetermined period of time. To provide information for the calculation of the new core arrangement, the reactivity worth of some fuel elements in the core were measured as well as the determination of the core reactivity increase in the substitution of the original fuels, cladded with aluminium, for new ones, cladded with stainless steel. The reactivity worth of fuel element was measured from the difference in critical position of the control rods, calibrated by the positive period method, before and after the fuel element was withdrawn from the core. The magnitude of reactivity increase was determined when withdrawing the original Al-clad fuel (a little burned up) and the graphite elements, and inserting a fresh Al-clad fuel element, one by one. Experimental results indicated that to obtain enough reactivity excess to increase the rector power the addition of 4 new fuel elements in the core would be sufficient: - Substitution of 4 Al-clad fuel elements in ring C for fresh stainless steel clad fuel elements; - increase the reactivity {approx_equal} 4 x 6.5 = 26 cents; - The removed 4 Al-clad F. E. (a little burned up) put in the core periphery, ring F, replacing graphite elements; - add < 4 x 39 156 cents (39 cents was measured with a fresh F.E.). Neutron source was changed from position F7 to F8. Control and Safety rods were moved from ring D to C in order to increase their reactivity worth. Regulating rod was kept at the same position, F16. Four

  20. Modelization of reactive transport: application to the dedolomitization (Institut del Ciencies de la Tierr, CSIC, Barcelona (ES))

    International Nuclear Information System (INIS)

    Ayora, C.; Taberner, C.; Samper, J.

    1994-01-01

    The replacement of dolomite with calcite (dedolomization) has been analyzed by means of two numerical models of reactive transport. The results of successive calculations under different scenarios have been compared with the observations made on the dedolomites developed on the Triassic strata from Prades (Tarragona, Spain). The model based on the local equilibrium assumption for water-rock interaction does not predict the development of the porosity associated to the replacement. The model based on kinetic laws for mineral dissolution and precipitation does predict the observed proportions of calcite, dolomite and porosity. The result of modeling under kinetic laws is sensitive to parameters such as the flow velocity, the chemical composition of the recharge water and the reactive surface of the minerals. The replacement and associated porosity is only formed for infiltration flows higher than 100 mm/year. The water has a neutral to slightly alkaline pH, far from equilibrium with carbonates and the atmosphere. The calcium concentrations must be one order of magnitude higher the average of surficial waters, probably due to sulfate dissolution. The reactive surface of dolomite has been estimated from a simple geometric model of fractures, whereas that of calcite has been inferred from calculations based on nucleation and crystal growth theory. The reactive surface of calcite appears to be several orders of magnitude lower than that of dolomite, in agreement with what is required for reactive transport calculations to generate porosity. The dedolomization and associated porosity takes place in the first meter of aquifers, whereas downstream the replacement vanishes and does not create porosity

  1. In-situ burning: NIST studies

    International Nuclear Information System (INIS)

    Evans, D.D.

    1992-01-01

    In-situ burning of spilled oil has distinct advantages over other countermeasures. It offers the potential to convert rapidly large quantities of oil into its primary combustion products, carbon dioxide and water, with a small percentage of other unburned and residue byproducts. Because the oil is converted to gaseous products of combustion by burning, the need for physical collection, storage, and transport of recovered fluids is reduced to the few percent of the original spill volume that remains as residue after burning. Burning oil spills produces a visible smoke plume containing smoke particulate and other products of combustion which may persist for many kilometers from the burn. This fact gives rise to public health concerns, related to the chemical content of the smoke plume and the downwind deposition of particulate, which need to be answered. In 1985, a joint Minerals Management Service (MMS) and Environment Canada (EC) in-situ burning research program was begun at the National Institute of Standards and Technology (NIST). This research program was designed to study the burning of large crude oil spills on water and how this burning would affect air quality by quantifying the products of combustion and developing methods to predict the downwind smoke particulate deposition. To understand the important features of in-situ burning, it is necessary to perform both laboratory and mesoscale experiments. Finally, actual burns of spilled oil at sea will be necessary to evaluate the method at the anticipated scale of actual response operations. In this research program there is a continuing interaction between findings from measurements on small fire experiments performed in the controlled laboratory environments of NIST and the Fire Research Institute (FRI) in Japan, and large fire experiments at facilities like the USCG Fire Safety and Test Detachment in Mobile, Alabama where outdoor liquid fuel burns in large pans are possible

  2. Antecedent thermal injury worsens split-thickness skin graft quality: A clinically relevant porcine model of full-thickness burn, excision and grafting.

    Science.gov (United States)

    Carlsson, Anders H; Rose, Lloyd F; Fletcher, John L; Wu, Jesse C; Leung, Kai P; Chan, Rodney K

    2017-02-01

    Current standard of care for full-thickness burn is excision followed by autologous split-thickness skin graft placement. Skin grafts are also frequently used to cover surgical wounds not amenable to linear closure. While all grafts have potential to contract, clinical observation suggests that antecedent thermal injury worsens contraction and impairs functional and aesthetic outcomes. This study evaluates the impact of antecedent full-thickness burn on split-thickness skin graft scar outcomes and the potential mediating factors. Full-thickness contact burns (100°C, 30s) were created on the backs of anesthetized female Yorkshire Pigs. After seven days, burn eschar was tangentially excised and covered with 12/1000th inch (300μm) split-thickness skin graft. For comparison, unburned wounds were created by sharp excision to fat before graft application. From 7 to 120days post-grafting, planimetric measurements, digital imaging and biopsies for histology, immunohistochemistry and gene expression were obtained. At 120days post-grafting, the Observer Scar Assessment Scale, colorimetry, contour analysis and optical graft height assessments were performed. Twenty-nine porcine wounds were analyzed. All measured metrics of clinical skin quality were significantly worse (pskin graft quality, likely by multiple mechanisms including burn-related inflammation, microscopically inadequate excision, and dysregulation of tissue remodeling. A valid, reliable, clinically relevant model of full-thickness burn, excision and skin replacement therapy has been demonstrated. Future research to enhance quality of skin replacement therapies should be directed toward modulation of inflammation and assessments for complete excision. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  3. Phoenix Society for Burn Survivors

    Science.gov (United States)

    ... in 2018! Learn More For Loved Ones A burn injury doesn't just impact the survivor. Families ... to support longterm recovery, improve the quality of burn care, and prevent burn injury. Explore articles on ...

  4. Comparison of the SASSYS/SAS4A radial core expansion reactivity feedback model and the empirical correlation for FFTF

    International Nuclear Information System (INIS)

    Wigeland, R.A.

    1987-01-01

    The present emphasis on inherent safety for LMR designs has resulted in a need to represent the various reactivity feedback mechanisms as accurately as possible. The dominant negative reactivity feedback has been found to result from radial expansion of the core for most postulated ATWS events. For this reason, a more detailed model for calculating the reactivity feedback from radial core expansion has been recently developed for use with the SASSYS/SAS4A Code System. The purpose of this summary is to present an extension to the model so that it is more suitable for handling a core restraint design as used in FFTF, and to compare the SASSYS/SAS4A results using this model to the empirical correlation presently being used to account for radial core expansion reactivity feedback to FFTF

  5. Mapping burned areas using dense time-series of Landsat data

    Science.gov (United States)

    Hawbaker, Todd J.; Vanderhoof, Melanie; Beal, Yen-Ju G.; Takacs, Joshua; Schmidt, Gail L.; Falgout, Jeff T.; Williams, Brad; Brunner, Nicole M.; Caldwell, Megan K.; Picotte, Joshua J.; Howard, Stephen M.; Stitt, Susan; Dwyer, John L.

    2017-01-01

    Complete and accurate burned area data are needed to document patterns of fires, to quantify relationships between the patterns and drivers of fire occurrence, and to assess the impacts of fires on human and natural systems. Unfortunately, in many areas existing fire occurrence datasets are known to be incomplete. Consequently, the need to systematically collect burned area information has been recognized by the United Nations Framework Convention on Climate Change and the Intergovernmental Panel on Climate Change, which have both called for the production of essential climate variables (ECVs), including information about burned area. In this paper, we present an algorithm that identifies burned areas in dense time-series of Landsat data to produce the Landsat Burned Area Essential Climate Variable (BAECV) products. The algorithm uses gradient boosted regression models to generate burn probability surfaces using band values and spectral indices from individual Landsat scenes, lagged reference conditions, and change metrics between the scene and reference predictors. Burn classifications are generated from the burn probability surfaces using pixel-level thresholding in combination with a region growing process. The algorithm can be applied anywhere Landsat and training data are available. For this study, BAECV products were generated for the conterminous United States from 1984 through 2015. These products consist of pixel-level burn probabilities for each Landsat scene, in addition to, annual composites including: the maximum burn probability and a burn classification. We compared the BAECV burn classification products to the existing Global Fire Emissions Database (GFED; 1997–2015) and Monitoring Trends in Burn Severity (MTBS; 1984–2013) data. We found that the BAECV products mapped 36% more burned area than the GFED and 116% more burned area than MTBS. Differences between the BAECV products and the GFED were especially high in the West and East where the

  6. A simulation study on burning profile tailoring of steady state, high bootstrap current tokamaks

    International Nuclear Information System (INIS)

    Nakamura, Y.; Takei, N.; Tobita, K.; Sakamoto, Y.; Fujita, T.; Fukuyama, A.; Jardin, S.C.

    2007-01-01

    From the aspect of fusion burn control in steady state DEMO plant, the significant challenges are to maintain its high power burning state of ∝3-5 GW without burning instability, hitherto well-known as ''thermal stability'', and also to keep its desired burning profile relevant with internal transport barrier (ITB) that generates high bootstrap current. The paper presents a simulation modeling of the burning stability coupled with the self-ignited fusion burn and the structure-formation of the ITB. A self-consistent simulation, including a model for improved core energy confinement, has pointed out that in the high power fusion DEMO plant there is a close, nonlinear interplay between the fusion burnup and the current source of non-inductive, ITB-generated bootstrap current. Consequently, as much distinct from usual plasma controls under simulated burning conditions with lower power (<<1 GW), the selfignited fusion burn at a high power burning state of ∝3-5 GW becomes so strongly selforganized that any of external means except fuelling can not provide the effective control of the stable fusion burn.It is also demonstrated that externally applied, inductive current perturbations can be used to control both the location and strength of ITB in a fully noninductive tokamak discharge. We find that ITB structures formed with broad noninductive current sources such as LHCD are more readily controlled than those formed by localized sources such as ECCD. The physics of the inductive current is well known. Consequently, we believe that the controllability of the ITB is generic, and does not depend on the details of the transport model (as long as they can form an ITB for sufficiently reversed magnetic shear q-profile). Through this external control of the magnetic shear profile, we can maintain the ITB strength that is otherwise prone to deteriorate when the bootstrap current increases. These distinguishing capabilities of inductive current perturbation provide steady

  7. A Hierarchical Modeling for Reactive Power Optimization With Joint Transmission and Distribution Networks by Curve Fitting

    DEFF Research Database (Denmark)

    Ding, Tao; Li, Cheng; Huang, Can

    2018-01-01

    –slave structure and improves traditional centralized modeling methods by alleviating the big data problem in a control center. Specifically, the transmission-distribution-network coordination issue of the hierarchical modeling method is investigated. First, a curve-fitting approach is developed to provide a cost......In order to solve the reactive power optimization with joint transmission and distribution networks, a hierarchical modeling method is proposed in this paper. It allows the reactive power optimization of transmission and distribution networks to be performed separately, leading to a master...... optimality. Numerical results on two test systems verify the effectiveness of the proposed hierarchical modeling and curve-fitting methods....

  8. Ultrasound assessed thickness of burn scars in association with laser Doppler imaging determined depth of burns in paediatric patients.

    Science.gov (United States)

    Wang, Xue-Qing; Mill, Julie; Kravchuk, Olena; Kimble, Roy M

    2010-12-01

    This study describes the ultrasound assessment of burn scars in paediatric patients and the association of these scar thickness with laser Doppler imaging (LDI) determined burn depth. A total of 60 ultrasound scar assessments were conducted on 33 scars from 21 paediatric burn patients at 3, 6 and 9 months after-burn. The mean of peak scar thickness was 0.39±0.032 cm, with the thickest at 6 months (0.40±0.036 cm). There were 17 scald burn scars (0.34±0.045 cm), 4 contact burn scars (0.61±0.092 cm), and 10 flame burn scars (0.42±0.058 cm). Each group of scars followed normal distributions. Twenty-three scars had original burns successfully scanned by LDI and various depths of burns were presented by different colours according to blood perfusion units (PU), with dark blue burns, with the thinnest scars for green coloured burns and the thickest for dark blue coloured burns. Within light blue burns, grafted burns healed with significantly thinner scars than non-grafted burns. This study indicates that LDI can be used for predicting the risk of hypertrophic scarring and for guiding burn care. To our knowledge, this is the first study to correlate the thickness of burns scars by ultrasound scan with burn depth determined by LDI. Copyright © 2010 Elsevier Ltd and ISBI. All rights reserved.

  9. Examination of flame length for burning pulverized coal in laminar flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Dong; Kim, Gyu Bo; Chang, Young June; Song, Ju Hun; Jeon, Chung Hwan [Pusan National University, Busan (Korea, Republic of)

    2010-12-15

    Because there has been a recent increase in the use of low calorific coal compared to standard coal, it is crucial to control the char flame length governing the burning life-time of coal in a coal-fired utility boiler. The main objective of this study is to develop a simplified model that can theoretically predict the flame length for burning coal in a laboratory-scale entrained laminar flow reactor (LFR) system. The char burning behavior was experimentally observed when sub-bituminous pulverized coal was fed into the LFR under burning conditions similar to those in a real boiler: a heating rate of 1000 K/s, an oxygen molar fraction of 7.7 %, and reacting flue gas temperatures ranging from 1500 to 2000 K. By using the theoretical model developed in this study, the effect of particle size on the coal flame length was exclusively addressed. In this model, the effect of particle mass was eliminated to compare with the experimental result performed under a constant mass feeding of coal. Overall, the computed results for the coal flame length were in good agreement with the experimental data, particularly when the external oxygen diffusion effect was considered in the model

  10. Examination of flame length for burning pulverized coal in laminar flow reactor

    International Nuclear Information System (INIS)

    Kim, Jae Dong; Kim, Gyu Bo; Chang, Young June; Song, Ju Hun; Jeon, Chung Hwan

    2010-01-01

    Because there has been a recent increase in the use of low calorific coal compared to standard coal, it is crucial to control the char flame length governing the burning life-time of coal in a coal-fired utility boiler. The main objective of this study is to develop a simplified model that can theoretically predict the flame length for burning coal in a laboratory-scale entrained laminar flow reactor (LFR) system. The char burning behavior was experimentally observed when sub-bituminous pulverized coal was fed into the LFR under burning conditions similar to those in a real boiler: a heating rate of 1000 K/s, an oxygen molar fraction of 7.7 %, and reacting flue gas temperatures ranging from 1500 to 2000 K. By using the theoretical model developed in this study, the effect of particle size on the coal flame length was exclusively addressed. In this model, the effect of particle mass was eliminated to compare with the experimental result performed under a constant mass feeding of coal. Overall, the computed results for the coal flame length were in good agreement with the experimental data, particularly when the external oxygen diffusion effect was considered in the model

  11. The Predictive Effect of Big Five Factor Model on Social Reactivity ...

    African Journals Online (AJOL)

    The study tested a model of providing a predictive explanation of Big Five Factor on social reactivity among secondary school adolescents of Cross River State, Nigeria. A sample of 200 students randomly selected across 12 public secondary schools in the State participated in the study (120 male and 80 female). Data ...

  12. Ignition and fusion burn in fast ignition scheme

    International Nuclear Information System (INIS)

    Takabe, Hideaki

    1998-01-01

    The target physics of fast ignition is briefly reviewed by focusing on the ignition and fusion burn in the off-center ignition scheme. By the use of a two dimensional hydrodynamic code with an alpha heating process, the ignition condition is studied. It is shown that the ignition condition of the off-center ignition scheme coincides with that of the the central isochoric model. After the ignition, a nuclear burning wave is seen to burn the cold main fuel with a velocity of 2 - 3 x 10 8 cm/s. The spark energy required for the off-center ignition is 2 - 3 kJ or 10 - 15 kJ for the core density of 400 g/cm 3 or 200 g/cm 3 , respectively. It is demonstrated that a core gain of more than 2,000 is possible for a core energy of 100 kJ with a hot spark energy of 13 kJ. The requirement for the ignition region's heating time is also discussed by modeling a heating source in the 2-D code. (author)

  13. Modeling of marginal burning state of fire spread in live chaparral shrub fuel bed

    Science.gov (United States)

    X. Zhou; S. Mahalingam; D. Weise

    2005-01-01

    Prescribed burning in chaparral, currently used to manage wildland fuels and reduce wildfire hazard, is often conducted under marginal burning conditions. The relative importance of the fuel and environmental variables that determine fire spread success in chaparral fuels is not quantitatively understood. Based on extensive experimental study, a two-dimensional...

  14. Increased airway reactivity in a neonatal mouse model of Continuous Positive Airway Pressure (CPAP)

    Science.gov (United States)

    Mayer, Catherine A.; Martin, Richard J.; MacFarlane, Peter M.

    2015-01-01

    Background Continuous positive airway pressure (CPAP) is a primary form of respiratory support used in the intensive care of preterm infants, but its long-term effects on airway (AW) function are unknown. Methods We developed a neonatal mouse model of CPAP treatment to determine whether it modifies later AW reactivity. Un-anesthetized spontaneously breathing mice were fitted with a mask to deliver CPAP (6cmH2O, 3hrs/day) for 7 consecutive days starting at postnatal day 1. Airway reactivity to methacholine was assessed using the in vitro living lung slice preparation. Results One week of CPAP increased AW responsiveness to methacholine in male, but not female mice, compared to untreated control animals. The AW hyper-reactivity of male mice persisted for 2 weeks (at P21) after CPAP treatment ended. 4 days of CPAP, however, did not significantly increase AW reactivity. Females also exhibited AW hyper-reactivity at P21, suggesting a delayed response to early (7 days) CPAP treatment. The effects of 7 days of CPAP on hyper-reactivity to methacholine were unique to smaller AWs whereas larger ones were relatively unaffected. Conclusion These data may be important to our understanding of the potential long-term consequences of neonatal CPAP therapy used in the intensive care of preterm infants. PMID:25950451

  15. Development of a Conceptual Framework to Measure the Social Impact of Burns.

    Science.gov (United States)

    Marino, Molly; Soley-Bori, Marina; Jette, Alan M; Slavin, Mary D; Ryan, Colleen M; Schneider, Jeffrey C; Resnik, Linda; Acton, Amy; Amaya, Flor; Rossi, Melinda; Soria-Saucedo, Rene; Kazis, Lewis E

    Measuring community reintegration following burn injury is important to assess the efficacy of therapies designed to optimize recovery. This project aims to develop and validate a conceptual framework for understanding the social impact of burn injuries in adults. The framework is critical for developing the item banks used for a computerized adaptive test. We performed a comprehensive literature review and consulted with clinical experts and burn survivors about social life areas impacted by burn injury. Focus groups with burn survivors and clinicians were conducted to inform and validate the framework. Transcripts were coded using grounded theory methodology. The World Health Organization's International Classification of Functioning, Disability and Health, was chosen to ground the content model. The primary construct identified was social participation, which contains two concepts: societal role and personal relationships. The subdomains chosen for item development were work, recreation and leisure, relating with strangers, and romantic, sexual, family, and informal relationships. Qualitative results strongly suggest that the conceptual model fits the constructs for societal role and personal relationships with the respective subdomains. This conceptual framework has guided the implementation of a large-scale calibration study currently underway which will lead to a computerized adaptive test for monitoring the social impacts of burn injuries during recovery.

  16. Probing thermonuclear burning on accreting neutron stars

    Science.gov (United States)

    Keek, L.

    2008-12-01

    Neutron stars are the most compact stars that can be directly observed, which makes them ideal laboratories to study physics at extreme densities. Neutron stars in low-mass X-ray binaries accrete hydrogen and helium from a lower-mass companion star through Roche lobe overflow. This matter undergoes thermonuclear burning in the neutron star envelope, creating carbon and heavier elements. The fusion process may proceed in an unstable manner, resulting in a thermonuclear runaway. Within one second the entire surface is burned, which is observable as a sharp rise in the emitted X-ray flux: a type I X-ray burst. Afterwards the neutron star surface cools down on a timescale of ten to one hundred seconds. During these bursts the surface of an accreting neutron star can be observed directly, which makes them instrumental for studying this type of stars. We have studied rare kinds of X-ray bursts. One such rare burst is the superburst, which lasts a thousand times longer than an ordinary burst. Superbursts are thought to result from the explosive burning of a thick carbon layer, which lies deeper inside the neutron star, close to a layer known as the crust. A prerequisite for the occurrence of a superburst is a high enough temperature, which is set by the temperature of the crust and the heat conductivity of the envelope. The latter is lowered by the presence of heavy elements that are produced during normal X-ray bursts. Using a large set of observations from the Wide Field Camera's onboard the BeppoSAX satellite, we find that, at high accretion rate, sources which do not exhibit normal bursts likely have a longer superburst recurrence time, than the observed superburst recurrence time of one burster. We analyze in detail the first superburst from a transient source, which went into outburst only 55 days before the superburst. Recent models of the neutron star crust predict that this is too small a time to heat the crust sufficiently for superburst ignition, indicating

  17. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer's disease.

    Science.gov (United States)

    Jo, Seonmi; Yarishkin, Oleg; Hwang, Yu Jin; Chun, Ye Eun; Park, Mijeong; Woo, Dong Ho; Bae, Jin Young; Kim, Taekeun; Lee, Jaekwang; Chun, Heejung; Park, Hyun Jung; Lee, Da Yong; Hong, Jinpyo; Kim, Hye Yun; Oh, Soo-Jin; Park, Seung Ju; Lee, Hyo; Yoon, Bo-Eun; Kim, YoungSoo; Jeong, Yong; Shim, Insop; Bae, Yong Chul; Cho, Jeiwon; Kowall, Neil W; Ryu, Hoon; Hwang, Eunmi; Kim, Daesoo; Lee, C Justin

    2014-08-01

    In Alzheimer's disease (AD), memory impairment is the most prominent feature that afflicts patients and their families. Although reactive astrocytes have been observed around amyloid plaques since the disease was first described, their role in memory impairment has been poorly understood. Here, we show that reactive astrocytes aberrantly and abundantly produce the inhibitory gliotransmitter GABA by monoamine oxidase-B (Maob) and abnormally release GABA through the bestrophin 1 channel. In the dentate gyrus of mouse models of AD, the released GABA reduces spike probability of granule cells by acting on presynaptic GABA receptors. Suppressing GABA production or release from reactive astrocytes fully restores the impaired spike probability, synaptic plasticity, and learning and memory in the mice. In the postmortem brain of individuals with AD, astrocytic GABA and MAOB are significantly upregulated. We propose that selective inhibition of astrocytic GABA synthesis or release may serve as an effective therapeutic strategy for treating memory impairment in AD.

  18. Neutron and thermo - hydraulic model of a reactivity transient in a nuclear power plant fuel element

    International Nuclear Information System (INIS)

    Oliva, Jose de Jesus Rivero

    2012-01-01

    A reactivity transient without reactor scram was modeled and calculated using analytical expressions for the space distributions of the temperature fields, combined with discrete numerical calculations for the time dependences of thermal power and temperatures. The transient analysis covered the time dependencies of reactivity, global thermal power, fuel heat flux and temperatures in fuel, cladding and cooling water. The model was implemented in Microsoft Office Excel, dividing the Excel file in several separated worksheets for input data, initial steady-state calculations, calculation of parameters non-depending on eigenvalues, eigenvalues determination, calculation of parameters depending on eigenvalues, transient calculation and graphical representation of intermediate and final results. The results show how the thermal power reaches a new equilibrium state due to the negative reactivity feedback derived from the fuel temperature increment. Nevertheless, the reactor mean power increases 40% during the first second and, in the hottest channel, the maximum fuel temperature goes to a significantly high value, slightly above 2100 deg C, after 8 seconds of transient. Consequently, the results confirm that certain degree of fuel damage could be expected in case of a reactor scram failure. Once the basic model has being established the scope of accidents for future analyses can be extended, modifying the nuclear power behavior (reactivity) during transient and the boundary conditions for coolant temperature. A more complex model is underway for an annular fuel element. (author)

  19. Is location of burns related to outcome? A comparison between burns on extremities and burns on head and/or trunk in patients with low to intermediate TBSA in a burn center in The Netherlands.

    Science.gov (United States)

    Menger, Tirsa; Krijnen, Pieta; Tuinebreijer, Willem E; Breederveld, Roelf S

    2014-01-01

    In the literature no study was found about the effect of location of burns on outcome. The objective of this retrospective study was to investigate the effect of location on outcome parameters of 371 patients, admitted to our burn center from January 2009 to December 2011. The patients were included in the study if more than 80% of the burn(s) was localized either on the extremities or on the head and/or trunk. Two groups of TBSA were elaborated, low: 0 to 5% and intermediate: 5 to 15%. Two-hundred ninety-two patients (78.7%) had a low TBSA (burns on the head and/or trunk were more often admitted to the intensive care unit, mostly as a result of suspected inhalation injury (6.2 vs 0.9%; P = .008). More complications were seen in the intermediate TBSA group. In this study no difference in outcome was found between burns on the head and/or trunk or on extremities. The patients with burns on the head and/or trunk group are more frequently admitted to intensive care.

  20. Evaluating Alternative Prescribed Burning Policies to Reduce Net Economic Damages from Wildfire

    OpenAIRE

    D. Evan Mercer; Jeffrey P. Prestemon; David T. Butry; John M. Pye

    2007-01-01

    We estimate a wildfire risk model with a new measure of wildfire output, intensity-weighted risk and use it in Monte Carlo simulations to estimate welfare changes from alternative prescribed burning policies. Using Volusia County, Florida as a case study, an annual prescribed burning rate of 13% of all forest lands maximizes net welfare; ignoring the effects on wildfire intensity may underestimate optimal rates of prescribed burning. Our estimated supply function for prescribed fire services ...

  1. Burn Wise Educational Materials for Businesses

    Science.gov (United States)

    Burn Wise outreach material. Burn Wise is a partnership program of that emphasizes the importance of burning the right wood, the right way, in the right wood-burning appliance to protect your home, health, and the air we breathe.

  2. The treatment of extensively burned patents and β irradiational injury skin burn patients with irradiated pigskin

    International Nuclear Information System (INIS)

    Tang Zhongyi; Lu Xingan; Jing Ling; Qi Qiang

    1994-01-01

    Obvious therapeutic effects achieved by the covering of irradiation sterilized pigskin on burn wounds, escarectomized 3rd degree burn wounds β injured burns are discussed. The article also describes the manufacture processes of irradiated pigskins and the selection of surgical treatments of various burns. 5 refs., 1 tab., 4 figs

  3. Assault by burning in Jordan

    Science.gov (United States)

    Haddadin, W.

    2012-01-01

    Summary Criminal attacks by burns on women in Jordan are highlighted in this retrospective study carried out of all proved cases of criminal burns in female patients treated at the burn unit of the Royal Rehabilitation Center in Jordan between January 2005 and June 2012. Thirteen patients were included in our study, out of a total of 550 patients admitted, all in the age range of 16-45 yr. Of these 13 women, six were burned by acid throwing, five by hot water, and two by direct flames from fuel thrown over them. Burn percentage ranged from 15 to 75% of the total body surface area, with involvement in most cases of the face and upper trunk. The mean hospital stay was 33 days and the mortality rate was 3/13, i.e. 23%. Violence against women exists in Jordanian society, yet burning assaults are rare. Of these, burning by throwing acid is the most common and most disfiguring act, with a higher mortality rate in domestic environments. PMID:23766757

  4. Silicon Burning. II. Quasi-Equilibrium and Explosive Burning

    International Nuclear Information System (INIS)

    Hix, W.R.; Thielemann, F.

    1999-01-01

    Having examined the application of quasi-equilibrium to hydrostatic silicon burning in Paper I of this series, we now turn our attention to explosive silicon burning. Previous authors have shown that for material that is heated to high temperature by a passing shock and then cooled by adiabatic expansion, the results can be divided into three broad categories, incomplete burning, normal freezeout, and α-rich freezeout, with the outcome depending on the temperature, density, and cooling timescale. In all three cases, we find that the important abundances obey quasi-equilibrium for temperatures greater than approximately 3x10 9 K, with relatively little nucleosynthesis occurring following the breakdown of quasi-equilibrium. We will show that quasi-equilibrium provides better abundance estimates than global nuclear statistical equilibrium, even for normal freezeout, and particularly for α-rich freezeout. We will also examine the accuracy with which the final nuclear abundances can be estimated from quasi-equilibrium. copyright copyright 1999. The American Astronomical Society

  5. Scaling of the burning efficiency for multicomponent fuel pool fires

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Farahani, Hamed Farmahini; Rangwala, Ali S.

    In order to improve the validity of small scale crude oil burning experiments, which seem to underestimate the burning efficiency obtained in larger scales, the gasification mechanism of crude oil was studied. Gasification models obtained from literature were used to make a set of predictions for...... an external heat source to simulate the larger fire size are currently in process....

  6. Methylated spirit burns: an ongoing problem.

    Science.gov (United States)

    Jansbeken, J R H; Vloemans, A F P M; Tempelman, F R H; Breederveld, R S

    2012-09-01

    Despite many educational campaigns we still see burns caused by methylated spirit every year. We undertook a retrospective study to analyse the impact of this problem. We retrospectively collected data of all patients with burns caused by methylated spirit over twelve years from 1996 to 2008. Our main endpoints were: incidence, age, mechanism of injury, total body surface area (TBSA) burned, burn depth, need for surgery and length of hospital stay. Ninety-seven patients with methylated spirit burns were included. During the study period there was no decrease in the number of patients annually admitted to the burn unit with methylated spirit burns. 28% of the patients (n=27) were younger than eighteen years old, 15% (n=15) were ten years old or younger. The most common cause of burns was carelessness in activities involving barbecues, campfires and fondues. Mean TBSA burned was 16% (SD 12.4). 70% (n=68) had full thickness burns. 66% (n=64) needed grafting. Mean length of hospital stay was 23 days (SD 24.7). The use of methylated spirit is an ongoing problem, which continues to cause severe burns in adults and children. Therefore methylated spirit should be banned in households. We suggest sale only in specialised shops, clear labelling and mandatory warnings. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  7. Experimental measurement and modelling of reactive species generation in TiO2 nanoparticle photocatalysis.

    Science.gov (United States)

    Turolla, Andrea; Piazzoli, Andrea; Budarz, Jeffrey Farner; Wiesner, Mark R; Antonelli, Manuela

    2015-07-01

    The generation of reactive species in titanium dioxide (TiO 2 ) nanoparticle photocatalysis was assessed in a laboratory scale setup, in which P25 Aeroxide TiO 2 suspensions were photoactivated by means of UV-A radiation. Photogenerated holes and hydroxyl radicals were monitored over time by observing their selective reaction with probe compounds, iodide and terephthalic acid, respectively. TiO 2 aggregate size and structure were characterized over the reaction time. Reactive species quenching was then described by a model, accounting for radiative phenomena, TiO 2 nanoparticle aggregation and kinetic reactions. The interaction between iodide and photogenerated holes was influenced by iodide adsorption on TiO 2 surface, described by a Langmuir-Hinshelwood mechanism, whose parameters were studied as a function of TiO 2 concentration and irradiation time. Iodide oxidation was effectively simulated by modelling the reaction volume as a completely stirred two-dimensional domain, in which irradiation phenomena were described by a two-flux model and the steady state for reactive species was assumed. The kinetic parameters for iodide adsorption and oxidation were estimated and successfully validated in a different experimental setup. The same model was adapted to describe the oxidation of terephthalic acid by hydroxyl radicals. The kinetic parameters for terephthalic acid oxidation were estimated and validated, while the issues in investigating the interaction mechanisms among the involved species have been discussed. The sensitivity of operating parameters on model response was assessed and the most relevant parameters were highlighted.

  8. Burns (For Parents)

    Science.gov (United States)

    ... small, and have sensitive skin that needs extra protection. Although some minor burns aren't cause for concern and can ... burns, the mildest of the three, are limited to the top layer of skin: Signs ... pain, and minor swelling. The skin is dry without blisters. Healing ...

  9. Impacts of the turbogenerator reactive operation in the nuclear fuel burnup; Impactos da operacao reativa do turbogerador na queima do combustivel nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Helio Ricardo V. de; Martinez, Aquilino S. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear

    2002-07-01

    The parameterization of the losses in a turbogenerator in function of an operation with the electrical system reactive allowed to model in a simple and exact way the equations that define and they quantify the additional of nuclear potency that it should be generated by a reactor, in order to maintain the commitment with the national system operator, that is, the electric active power contracted. starting from this additional of nuclear power it was modeled the additional burn up of the fuel elements, as well as the numbers of effective days to full power wasted. it was promoted a safety analysis and some limitations due to the reactive operation of the electrical system. inside of this context it was made a financial evaluation in which we ask some questions to companies and government organs in order to define what losses are acceptable and also the reason why we don't use other technician resources such as: increase of the electrical mesh, electrical power injection in strategic points, capacitor banks and increase of the number the electrical plants. (author)

  10. SURF Model Calibration Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-10

    SURF and SURFplus are high explosive reactive burn models for shock initiation and propagation of detonation waves. They are engineering models motivated by the ignition & growth concept of high spots and for SURFplus a second slow reaction for the energy release from carbon clustering. A key feature of the SURF model is that there is a partial decoupling between model parameters and detonation properties. This enables reduced sets of independent parameters to be calibrated sequentially for the initiation and propagation regimes. Here we focus on a methodology for tting the initiation parameters to Pop plot data based on 1-D simulations to compute a numerical Pop plot. In addition, the strategy for tting the remaining parameters for the propagation regime and failure diameter is discussed.

  11. Using Logistic Regression to Predict the Probability of Debris Flows in Areas Burned by Wildfires, Southern California, 2003-2006

    Science.gov (United States)

    Rupert, Michael G.; Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Helsel, Dennis R.

    2008-01-01

    Logistic regression was used to develop statistical models that can be used to predict the probability of debris flows in areas recently burned by wildfires by using data from 14 wildfires that burned in southern California during 2003-2006. Twenty-eight independent variables describing the basin morphology, burn severity, rainfall, and soil properties of 306 drainage basins located within those burned areas were evaluated. The models were developed as follows: (1) Basins that did and did not produce debris flows soon after the 2003 to 2006 fires were delineated from data in the National Elevation Dataset using a geographic information system; (2) Data describing the basin morphology, burn severity, rainfall, and soil properties were compiled for each basin. These data were then input to a statistics software package for analysis using logistic regression; and (3) Relations between the occurrence or absence of debris flows and the basin morphology, burn severity, rainfall, and soil properties were evaluated, and five multivariate logistic regression models were constructed. All possible combinations of independent variables were evaluated to determine which combinations produced the most effective models, and the multivariate models that best predicted the occurrence of debris flows were identified. Percentage of high burn severity and 3-hour peak rainfall intensity were significant variables in all models. Soil organic matter content and soil clay content were significant variables in all models except Model 5. Soil slope was a significant variable in all models except Model 4. The most suitable model can be selected from these five models on the basis of the availability of independent variables in the particular area of interest and field checking of probability maps. The multivariate logistic regression models can be entered into a geographic information system, and maps showing the probability of debris flows can be constructed in recently burned areas of

  12. Burned area detection based on Landsat time series in savannas of southern Burkina Faso

    Science.gov (United States)

    Liu, Jinxiu; Heiskanen, Janne; Maeda, Eduardo Eiji; Pellikka, Petri K. E.

    2018-02-01

    West African savannas are subject to regular fires, which have impacts on vegetation structure, biodiversity and carbon balance. An efficient and accurate mapping of burned area associated with seasonal fires can greatly benefit decision making in land management. Since coarse resolution burned area products cannot meet the accuracy needed for fire management and climate modelling at local scales, the medium resolution Landsat data is a promising alternative for local scale studies. In this study, we developed an algorithm for continuous monitoring of annual burned areas using Landsat time series. The algorithm is based on burned pixel detection using harmonic model fitting with Landsat time series and breakpoint identification in the time series data. This approach was tested in a savanna area in southern Burkina Faso using 281 images acquired between October 2000 and April 2016. An overall accuracy of 79.2% was obtained with balanced omission and commission errors. This represents a significant improvement in comparison with MODIS burned area product (67.6%), which had more omission errors than commission errors, indicating underestimation of the total burned area. By observing the spatial distribution of burned areas, we found that the Landsat based method misclassified cropland and cloud shadows as burned areas due to the similar spectral response, and MODIS burned area product omitted small and fragmented burned areas. The proposed algorithm is flexible and robust against decreased data availability caused by clouds and Landsat 7 missing lines, therefore having a high potential for being applied in other landscapes in future studies.

  13. Smartphone applications in burns.

    Science.gov (United States)

    Wurzer, Paul; Parvizi, Daryousch; Lumenta, David B; Giretzlehner, Michael; Branski, Ludwik K; Finnerty, Celeste C; Herndon, David N; Tuca, Alexandru; Rappl, Thomas; Smolle, Christian; Kamolz, Lars P

    2015-08-01

    Since the introduction of applications (apps) for smartphones, the popularity of medical apps has been rising. The aim of this review was to demonstrate the current availability of apps related to burns on Google's Android and Apple's iOS store as well as to include a review of their developers, features, and costs. A systematic online review of Google Play Store and Apple's App Store was performed by using the following search terms: "burn," "burns," "thermal," and the German word "Verbrennung." All apps that were programmed for use as medical apps for burns were included. The review was performed from 25 February until 1 March 2014. A closer look at the free and paid calculation apps including a standardized patient was performed. Four types of apps were identified: calculators, information apps, book/journal apps, and games. In Google Play Store, 31 apps were related to burns, of which 20 were calculation apps (eight for estimating the total body surface area (TBSA) and nine for total fluid requirement (TFR)). In Apple's App Store, under the category of medicine, 39 apps were related to burns, of which 21 were calculation apps (19 for estimating the TBSA and 17 for calculating the TFR). In 19 out of 32 available calculation apps, our study showed a correlation of the calculated TFR compared to our standardized patient. The review demonstrated that many apps for medical burns are available in both common app stores. Even free available calculation apps may provide a more objective and reproducible procedure compared to manual/subjective estimations, although there is still a lack of data security especially in personal data entered in calculation apps. Further clinical studies including smartphone apps for burns should be performed. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  14. Physicochemical model for reactive sputtering of hot target

    Energy Technology Data Exchange (ETDEWEB)

    Shapovalov, Viktor I., E-mail: vishapovalov@mail.ru; Karzin, Vitaliy V.; Bondarenko, Anastasia S.

    2017-02-05

    A physicochemical model for reactive magnetron sputtering of a metal target is described in this paper. The target temperature in the model is defined as a function of the ion current density. Synthesis of the coating occurs due to the surface chemical reaction. The law of mass action, the Langmuir isotherm and the Arrhenius equation for non-isothermal conditions were used for mathematical description of the reaction. The model takes into consideration thermal electron emission and evaporation of the target surface. The system of eight algebraic equations, describing the model, was solved for the tantalum target sputtered in the oxygen environment. It was established that the hysteresis effect disappears with the increase of the ion current density. - Highlights: • When model is applied for a cold target, hysteresis width is proportional to the ion current density. • Two types of processes of hot target sputtering are possible, depending on the current density: with and without the hysteresis. • Sputtering process is dominant at current densities less than 50 A/m{sup 2} and evaporation can be neglected. • For current densities over 50 A/m{sup 2} the hysteresis width reaches its maximum and the role of evaporation increases.

  15. Stable isotope reactive transport modeling in water-rock interactions during CO2 injection

    Science.gov (United States)

    Hidalgo, Juan J.; Lagneau, Vincent; Agrinier, Pierre

    2010-05-01

    Stable isotopes can be of great usefulness in the characterization and monitoring of CO2 sequestration sites. Stable isotopes can be used to track the migration of the CO2 plume and identify leakage sources. Moreover, they provide unique information about the chemical reactions that take place on the CO2-water-rock system. However, there is a lack of appropriate tools that help modelers to incorporate stable isotope information into the flow and transport models used in CO2 sequestration problems. In this work, we present a numerical tool for modeling the transport of stable isotopes in groundwater reactive systems. The code is an extension of the groundwater single-phase flow and reactive transport code HYTEC [2]. HYTEC's transport module was modified to include element isotopes as separate species. This way, it is able to track isotope composition of the system by computing the mixing between the background water and the injected solution accounting for the dependency of diffusion on the isotope mass. The chemical module and database have been expanded to included isotopic exchange with minerals and the isotope fractionation associated with chemical reactions and mineral dissolution or precipitation. The performance of the code is illustrated through a series of column synthetic models. The code is also used to model the aqueous phase CO2 injection test carried out at the Lamont-Doherty Earth Observatory site (Palisades, New York, USA) [1]. References [1] N. Assayag, J. Matter, M. Ader, D. Goldberg, and P. Agrinier. Water-rock interactions during a CO2 injection field-test: Implications on host rock dissolution and alteration effects. Chemical Geology, 265(1-2):227-235, July 2009. [2] Jan van der Lee, Laurent De Windt, Vincent Lagneau, and Patrick Goblet. Module-oriented modeling of reactive transport with HYTEC. Computers & Geosciences, 29(3):265-275, April 2003.

  16. Outcome after burns: an observational study on burn scar maturation and predictors for severe scarring.

    Science.gov (United States)

    van der Wal, Martijn B A; Vloemans, Jos F P M; Tuinebreijer, Wim E; van de Ven, Peter; van Unen, Ella; van Zuijlen, Paul P M; Middelkoop, Esther

    2012-01-01

    Long-term outcome of burn scars as well as the relation with clinically relevant parameters has not been studied quantitatively. Therefore, we conducted a detailed analysis on the clinical changes of burn scars in a longitudinal setup. In addition, we focused on the differences in scar quality in relation to the depth, etiology of the burn wound and age of the patient. Burn scars of 474 patients were subjected to a scar assessment protocol 3, 6, and 12 months postburn. Three different age groups were defined (≤5, 5-18, and ≥18 years). The observer part of the patient and observer scar assessment scale revealed a significant (p burned (p  0.230) have no significant influence on scar quality when corrected for sex, total body surface area burned, time, and age or etiology, respectively. © 2012 by the Wound Healing Society.

  17. Effect of nonlinear void reactivity on bifurcation characteristics of a lumped-parameter model of a BWR: A study relevant to RBMK

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Dinkar, E-mail: dinkar@iitk.ac.in [Nuclear Engineering and Technology Program, Indian Institute of Technology Kanpur, Kanpur 208 016 (India); Kalra, Manjeet Singh, E-mail: drmanjeet.singh@dituniversity.edu.in [DIT University, Dehradun 248 009 (India); Wahi, Pankaj, E-mail: wahi@iitk.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016 (India)

    2017-04-15

    Highlights: • A simplified model with nonlinear void reactivity feedback is studied. • Method of multiple scales for nonlinear analysis and oscillation characteristics. • Second order void reactivity dominates in determining system dynamics. • Opposing signs of linear and quadratic void reactivity enhances global safety. - Abstract: In the present work, the effect of nonlinear void reactivity on the dynamics of a simplified lumped-parameter model for a boiling water reactor (BWR) is investigated. A mathematical model of five differential equations comprising of neutronics and thermal-hydraulics encompassing the nonlinearities associated with both the reactivity feedbacks and the heat transfer process has been used. To this end, we have considered parameters relevant to RBMK for which the void reactivity is known to be nonlinear. A nonlinear analysis of the model exploiting the method of multiple time scales (MMTS) predicts the occurrence of the two types of Hopf bifurcation, namely subcritical and supercritical, leading to the evolution of limit cycles for a range of parameters. Numerical simulations have been performed to verify the analytical results obtained by MMTS. The study shows that the nonlinear reactivity has a significant influence on the system dynamics. A parametric study with varying nominal reactor power and operating conditions in coolant channel has also been performed which shows the effect of change in concerned parameter on the boundary between regions of sub- and super-critical Hopf bifurcations in the space constituted by the two coefficients of reactivities viz. the void and the Doppler coefficient of reactivities. In particular, we find that introduction of a negative quadratic term in the void reactivity feedback significantly increases the supercritical region and dominates in determining the system dynamics.

  18. Lawn mower-related burns.

    Science.gov (United States)

    Still, J; Orlet, H; Law, E; Gertler, C

    2000-01-01

    Lawn mower-related injuries are fairly common and are usually caused by the mower blades. Burns may also be associated with the use of power lawn mowers. We describe 27 lawn mower-related burn injuries of 24 male patients and 3 female patients. Three of the patients with burn injuries were children. Burn sizes ranged from 1% to 99% of the total body surface area (mean, 18.1%). Two of the patients died. The hospital stay ranged from 1 day to 45 days. Twenty-six injuries involved gasoline, which is frequently associated with refueling accidents. Safety measures should involve keeping children away from lawn mowers that are being used. The proper use and storage of gasoline is stressed.

  19. Did Aboriginal vegetation burning affect the Australian summer monsoon?

    Science.gov (United States)

    Balcerak, Ernie

    2011-08-01

    For thousands of years, Aboriginal Australians burned forests, creating grasslands. Some studies have suggested that in addition to changing the landscape, these burning practices also affected the timing and intensity of the Australian summer monsoon. Different vegetation types can alter evaporation, roughness, and surface reflectivity, leading to changes in the weather and climate. On the basis of an ensemble of experiments with a global climate model, Notaro et al. conducted a comprehensive evaluation of the effects of decreased vegetation cover on the summer monsoon in northern Australia. They found that although decreased vegetation cover would have had only minor effects during the height of the monsoon season, during the premonsoon season, burning-induced vegetation loss would have caused significant decreases in precipitation and increases in temperature. Thus, by burning forests, Aboriginals altered the local climate, effectively extending the dry season and delaying the start of the monsoon season. (Geophysical Research Letters, doi:10.1029/2011GL047774, 2011)

  20. Reactive Programming in Java

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Reactive Programming in gaining a lot of excitement. Many libraries, tools, and frameworks are beginning to make use of reactive libraries. Besides, applications dealing with big data or high frequency data can benefit from this programming paradigm. Come to this presentation to learn about what reactive programming is, what kind of problems it solves, how it solves them. We will take an example oriented approach to learning the programming model and the abstraction.

  1. Knowledge of childhood burn risks and burn first aid: Cool Runnings.

    Science.gov (United States)

    Burgess, Jacqueline D; Watt, Kerrianne A; Kimble, Roy M; Cameron, Cate M

    2018-01-31

    The high incidence of hot beverage scalds among young children has not changed in the past 15 years, but preventive campaigns have been scarce. A novel approach was used to engage mothers of young children in an app-based hot beverage scald prevention campaign 'Cool Runnings'. This paper provides baseline data for this randomised controlled trial (RCT). Queensland-based mothers aged 18+ years with at least one child aged 5-12 months were recruited via social media to Cool Runnings, which is a two-group, parallel, single-blinded RCT. In total, 498 participants from across Queensland completed the baseline questionnaire. The most common source of burn first aid information was the internet (79%). One-third (33%) correctly identified hot beverage scalds as the leading cause of childhood burns, 43% knew the age group most at risk. While 94% reported they would cool a burn with water, only 10% reported the recommended 20min duration. After adjusting for all relevant variables, there were two independent predictors of adequate burn first aid knowledge: first aid training in the past year (OR=3.32; 95% CI 1.8 to 6.1) and smoking status (OR=0.17; 95% CI 0.04 to 0.7). In this study, mothers of young children were largely unaware how frequently hot beverage scalds occur and the age group most susceptible to them. Inadequate burn first aid knowledge is prevalent across mothers of young children; there is an urgent and compelling need to improve burn first aid knowledge in this group. Given the high incidence of hot beverages scalds in children aged 6-24 months, it is important to target future burn prevention/first aid campaigns at parents of young children. ACTRN12616000019404; Pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. The First 3D Simulations of Carbon Burning in a Massive Star

    Science.gov (United States)

    Cristini, A.; Meakin, C.; Hirschi, R.; Arnett, D.; Georgy, C.; Viallet, M.

    2017-11-01

    We present the first detailed three-dimensional hydrodynamic implicit large eddy simulations of turbulent convection for carbon burning. The simulations start with an initial radial profile mapped from a carbon burning shell within a 15 M⊙ stellar evolution model. We considered 4 resolutions from 1283 to 10243 zones. These simulations confirm that convective boundary mixing (CBM) occurs via turbulent entrainment as in the case of oxygen burning. The expansion of the boundary into the surrounding stable region and the entrainment rate are smaller at the bottom boundary because it is stiffer than the upper boundary. The results of this and similar studies call for improved CBM prescriptions in 1D stellar evolution models.

  3. Burn-out

    OpenAIRE

    Patricia van Echtelt

    2014-01-01

    Deze publicatie is alleen elektronisch verkrijgbaar (downloaden van deze site) Burn-out (ofwel: emotionele uitputting) komt relatief vaak voor: ongeveer één op de acht werknemers in Nederland heeft er last van. Het wordt dan ook gezien als een serieus maatschappelijk probleem dat beleidsmatig aandacht vergt. Dit rapport presenteert de resultaten van twee specifieke analyses over burn-out. Ten eerste gaan we na wat het effect is van emotionele uitputting op de loopbaan van werknemers. Ten twee...

  4. Influence of the void fraction in the linear reactivity model

    International Nuclear Information System (INIS)

    Castillo, J.A.; Ramirez, J.R.; Alonso, G.

    2003-01-01

    The linear reactivity model allows the multicycle analysis in pressurized water reactors in a simple and quick way. In the case of the Boiling water reactors the void fraction it varies axially from 0% of voids in the inferior part of the fuel assemblies until approximately 70% of voids to the exit of the same ones. Due to this it is very important the determination of the average void fraction during different stages of the reactor operation to predict the burnt one appropriately of the same ones to inclination of the pattern of linear reactivity. In this work a pursuit is made of the profile of power for different steps of burnt of a typical operation cycle of a Boiling water reactor. Starting from these profiles it builds an algorithm that allows to determine the voids profile and this way to obtain the average value of the same one. The results are compared against those reported by the CM-PRESTO code that uses another method to carry out this calculation. Finally, the range in which is the average value of the void fraction during a typical cycle is determined and an estimate of the impact that it would have the use of this value in the prediction of the reactivity produced by the fuel assemblies is made. (Author)

  5. Systematic care management: a comprehensive approach to catastrophic injury management applied to a catastrophic burn injury population--clinical, utilization, economic, and outcome data in support of the model.

    Science.gov (United States)

    Kucan, John; Bryant, Ernest; Dimick, Alan; Sundance, Paula; Cope, Nathan; Richards, Reginald; Anderson, Chris

    2010-01-01

    The new standard for successful burn care encompasses both patient survival and the burn patient's long-term quality of life. To provide optimal long-term recovery from catastrophic injuries, including catastrophic burns, an outcome-based model using a new technology called systematic care management (SCM) has been developed. SCM provides a highly organized system of management throughout the spectrum of care that provides access to outcome data, consistent oversight, broader access to expert providers, appropriate allocation of resources, and greater understanding of total costs. Data from a population of 209 workers' compensation catastrophic burn cases with a mean TBSA of 27.9% who were managed under the SCM model of care were analyzed. The data include treatment type, cost, return to work, and outcomes achieved. Mean duration of management to achieve all guaranteed outcomes was 20 months. Of the 209 injured workers, 152 (72.7%) achieved sufficient recovery to be released to return to work, of which 97 (46.8%) were both released and competitively employed. Assessment of 10 domains of functional independence indicated that 47.2% of injured workers required total assistance at initiation of SCM. However, at termination of SCM, 84% of those injured workers were fully independent in the 10 functional activities. When compared with other burn research outcome data, the results support the value of the SCM model of care.

  6. Increased airway reactivity in a neonatal mouse model of Continuous Positive Airway Pressure (CPAP)

    OpenAIRE

    Mayer, Catherine A.; Martin, Richard J.; MacFarlane, Peter M.

    2015-01-01

    Background Continuous positive airway pressure (CPAP) is a primary form of respiratory support used in the intensive care of preterm infants, but its long-term effects on airway (AW) function are unknown. Methods We developed a neonatal mouse model of CPAP treatment to determine whether it modifies later AW reactivity. Un-anesthetized spontaneously breathing mice were fitted with a mask to deliver CPAP (6cmH2O, 3hrs/day) for 7 consecutive days starting at postnatal day 1. Airway reactivity to...

  7. Outpatient presentations to burn centers: data from the Burns Registry of Australia and New Zealand outpatient pilot project.

    Science.gov (United States)

    Gabbe, Belinda J; Watterson, Dina M; Singer, Yvonne; Darton, Anne

    2015-05-01

    Most studies about burn injury focus on admitted cases. To compare outpatient and inpatient presentations at burn centers in Australia to inform the establishment of a repository for outpatient burn injury. Data for sequential outpatient presentations were collected at seven burn centers in Australia between December 2010 and May 2011 and compared with inpatient admissions from these centers recorded by the Burns Registry of Australia and New Zealand for the corresponding period. There were 788 outpatient and 360 inpatient presentations. Pediatric outpatients included more children burns (39% vs 24%). Adult outpatients included fewer males (58% vs 73%) and intentional injuries (3.3% vs 10%), and more scald (46% vs 30%) and contact burns (24% vs 13%). All pediatric, and 98% of adult, outpatient presentations involved a %TBSAburns presenting to burn centers differed to inpatient admission data, particularly with respect to etiology and burn severity, highlighting the importance of the need for outpatient data to enhance burn injury surveillance and inform prevention. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  8. Lizard activity and abundance greater in burned habitat of a xeric montane forest

    Science.gov (United States)

    Fouts, Kevin L.; Moore, Clinton; Johnson, Kristine D.; Maerz, John C.

    2017-01-01

    Restoring the natural or historical state of ecosystems is a common objective among resource managers, but determining whether desired system responses to management actions are occurring is often protracted and challenging. For wildlife, the integration of mechanistic habitat modeling with population monitoring may provide expedited measures of management effectiveness and improve understanding of how management actions succeed or fail to recover populations. Southern Appalachia is a region of high biodiversity that has undergone dramatic change as a result of human activities such as historic logging, exotic invasions, and alteration of disturbance regimes—including reduction in application of fire. Contemporary efforts to restore fire-maintained ecosystems within southern Appalachian forests require tools to assess the effects of fire management practices on individual animal fitness and relate them to corresponding influences on species abundance. Using automated sensing equipment, we investigated the effects of burned forests on reptile habitat suitability within the western portion of Great Smoky Mountains National Park, Tennessee. Specifically, we used microclimate measurements to model northern fence lizard Sceloporus undulatus hyacinthinus diurnal activity budgets in unburned and variable burn age (3–27-y) forest stands. We estimated northern fence lizard occurrence and abundance along transects through burned and unburned forests. Burned forest stands had microclimates that resulted in longer modeled daily activity periods under most conditions during summer. S. undulatus abundance was 4.75 times greater on burned stands compared to paired unburned stands, although the relationship between burn age and abundance was not well determined. Results suggest the more open habitat structure of burned areas within these xeric pine–oak forests may benefit S. undulatus.

  9. High burn rate solid composite propellants

    Science.gov (United States)

    Manship, Timothy D.

    High burn rate propellants help maintain high levels of thrust without requiring complex, high surface area grain geometries. Utilizing high burn rate propellants allows for simplified grain geometries that not only make production of the grains easier, but the simplified grains tend to have better mechanical strength, which is important in missiles undergoing high-g accelerations. Additionally, high burn rate propellants allow for a higher volumetric loading which reduces the overall missile's size and weight. The purpose of this study is to present methods of achieving a high burn rate propellant and to develop a composite propellant formulation that burns at 1.5 inches per second at 1000 psia. In this study, several means of achieving a high burn rate propellant were presented. In addition, several candidate approaches were evaluated using the Kepner-Tregoe method with hydroxyl terminated polybutadiene (HTPB)-based propellants using burn rate modifiers and dicyclopentadiene (DCPD)-based propellants being selected for further evaluation. Propellants with varying levels of nano-aluminum, nano-iron oxide, FeBTA, and overall solids loading were produced using the HTPB binder and evaluated in order to determine the effect the various ingredients have on the burn rate and to find a formulation that provides the burn rate desired. Experiments were conducted to compare the burn rates of propellants using the binders HTPB and DCPD. The DCPD formulation matched that of the baseline HTPB mix. Finally, GAP-plasticized DCPD gumstock dogbones were attempted to be made for mechanical evaluation. Results from the study show that nano-additives have a substantial effect on propellant burn rate with nano-iron oxide having the largest influence. Of the formulations tested, the highest burn rate was a 84% solids loading mix using nano-aluminum nano-iron oxide, and ammonium perchlorate in a 3:1(20 micron: 200 micron) ratio which achieved a burn rate of 1.2 inches per second at 1000

  10. Biomass Burning: Major Uncertainties, Advances, and Opportunities

    Science.gov (United States)

    Yokelson, R. J.; Stockwell, C.; Veres, P. R.; Hatch, L. E.; Barsanti, K. C.; Liu, X.; Huey, L. G.; Ryerson, T. B.; Dibb, J. E.; Wisthaler, A.; Müller, M.; Alvarado, M. J.; Kreidenweis, S. M.; Robinson, A. L.; Toon, O. B.; Peischl, J.; Pollack, I. B.

    2014-12-01

    Domestic and open biomass burning are poorly-understood, major influences on Earth's atmosphere composed of countless individual fires that (along with their products) are difficult to quantify spatially and temporally. Each fire is a minimally-controlled complex phenomenon producing a diverse suite of gases and aerosols that experience many different atmospheric processing scenarios. New lab, airborne, and space-based observations along with model and algorithm development are significantly improving our knowledge of biomass burning. Several campaigns provided new detailed emissions profiles for previously undersampled fire types; including wildfires, cooking fires, peat fires, and agricultural burning; which may increase in importance with climate change and rising population. Multiple campaigns have better characterized black and brown carbon and used new instruments such as high resolution PTR-TOF-MS and 2D-GC/TOF-MS to improve quantification of semi-volatile precursors to aerosol and ozone. The aerosol evolution and formation of PAN and ozone, within hours after emission, have now been measured extensively. The NASA DC-8 sampled smoke before and after cloud-processing in two campaigns. The DC-8 performed continuous intensive sampling of a wildfire plume from the source in California to Canada probing multi-day aerosol and trace gas aging. Night-time plume chemistry has now been measured in detail. Fire inventories are being compared and improved, as is modeling of mass transfer between phases and sub-grid photochemistry for global models.

  11. Community integration after burn injuries.

    Science.gov (United States)

    Esselman, P C; Ptacek, J T; Kowalske, K; Cromes, G F; deLateur, B J; Engrav, L H

    2001-01-01

    Evaluation of community integration is a meaningful outcome criterion after major burn injury. The Community Integration Questionnaire (CIQ) was administered to 463 individuals with major burn injuries. The CIQ results in Total, Home Integration, Social Integration, and Productivity scores. The purposes of this study were to determine change in CIQ scores over time and what burn injury and demographic factors predict CIQ scores. The CIQ scores did not change significantly from 6 to 12 to 24 months postburn injury. Home integration scores were best predicted by sex and living situation; Social Integration scores by marital status; and Productivity scores by functional outcome, burn severity, age, and preburn work factors. The data demonstrate that individuals with burn injuries have significant difficulties with community integration due to burn and nonburn related factors. CIQ scores did not improve over time but improvement may have occurred before the initial 6-month postburn injury follow-up in this study.

  12. Lattice Boltzmann based multicomponent reactive transport model coupled with geochemical solver for scale simulations

    NARCIS (Netherlands)

    Patel, R.A.; Perko, J.; Jaques, D.; De Schutter, G.; Ye, G.; Van Breugel, K.

    2013-01-01

    A Lattice Boltzmann (LB) based reactive transport model intended to capture reactions and solid phase changes occurring at the pore scale is presented. The proposed approach uses LB method to compute multi component mass transport. The LB multi-component transport model is then coupled with the

  13. Is there a threshold age and burn size associated with poor outcomes in the elderly after burn injury?

    Science.gov (United States)

    Jeschke, Marc G; Pinto, Ruxandra; Costford, Sheila R.; Amini-Nik, Saeid

    2016-01-01

    Elderly burn care represents a vast challenge. The elderly are one of the most susceptible populations to burn injuries, but also one of the fastest growing demographics, indicating a substantial increase in patient numbers in the near future. Despite the need and importance of elderly burn care, survival of elderly burn patients is poor. Additionally, little is known about the responses of elderly patients after burn. One central question that has not been answered is what age defines an elderly patient. The current study was conducted to determine whether there is a cut-off age for elderly burn patients that is correlated with an increased risk for mortality and to determine the burn size in modern burn care that is associated with increased mortality. To answer these questions, we applied appropriate statistical analyses to the Ross Tilley Burn Centre and the Inflammatory and Host Response to Injury databases. We could not find a clear cut-off age that differentiates or predicts between survival and death. Risk of death increased linearly with increasing age. Additionally, we found that the LD50 decreases from 45% total body surface area (TBSA) to 25% TBSA from the age of 55 years to the age of 70 years, indicating that even small burns lead to poor outcome in the elderly. We therefore concluded that age is not an ideal to predictor of burn outcome, but we strongly suggest that burn care providers be aware that if an elderly patient sustains even a 25% TBSA burn, the risk of mortality is 50% despite the implementation of modern protocolized burn care. PMID:26803373

  14. Reactive model for developing applications using Vert.x toolkit

    OpenAIRE

    Ožbot, Žan

    2017-01-01

    Web and mobile applications consist of real-time events of different kinds in order to ensure the best possible user experience. To develop such applications, proper tools are needed and reactive programming is one of the possible solutions. Due to its many advantages, reactive programming is becoming an increasing reason to abandon standard object-oriented approach. Therefore, in this thesis we first describe the concepts of reactive programming and compare it to object-oriented programming....

  15. Crude oil burning mechanisms

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Malmquist, L.M.V.; Jomaas, Grunde

    2015-01-01

    In order to improve predictions for the burning efficiency and the residue composition of in-situ burning of crude oil, the burning mechanism of crude oil was studied in relation to the composition of its hydrocarbon mixture, before, during and after the burning. The surface temperature, flame...... height, mass loss rate and residues of three hydrocarbon liquids (n-octane, dodecane and hexadecane), two crude oils (DUC and REBCO) and one hydrocarbon liquid mixture of the aforementioned hydrocarbon liquids were studied using the Crude Oil Flammability Apparatus. The experimental results were compared...... on the highest achievable oil slick temperature. Based on this mechanism, predictions can then be made depending on the hydrocarbon composition of the fuel and the measured surface temperature....

  16. [Influence of three-level collaboration network of pediatric burns treatment in Anhui province on treatment effects of burn children].

    Science.gov (United States)

    Xia, Z G; Zhou, X L; Kong, W C; Li, X Z; Song, J H; Fang, L S; Hu, D L; Cai, C; Tang, Y Z; Yu, Y X; Wang, C H; Xu, Q L

    2018-03-20

    Objective: To explore the influence of three-level collaboration network of pediatric burns in Anhui province on treatment effects of burn children. Methods: The data of medical records of pediatric burn children transferred from Lu'an People's Hospital and Fuyang People's Hospital to the First Affiliated Hospital of Anhui Medical University from January 2014 to December 2015 and January 2016 to September 2017 (before and after establishing three-level collaboration network of pediatric burns treatment) were analyzed: percentage of transferred burn children to hospitalized burn children in corresponding period, gender, age, burn degree, treatment method, treatment result, occurrence and treatment result of shock, and operative and non-operative treatment time and cost. Rehabilitation result of burn children transferred back to local hospitals in 2016 and 2017. Data were processed with t test, chi-square test, Mann-Whitney U test, and Fisher's exact test. Results: (1) Percentage of burn children transferred from January 2014 to December 2015 was 34.3% (291/848) of the total number of hospitalized burn children in the same period of time, which was close to 30.4% (210/691) of burn children transferred from January 2016 to September 2017 ( χ (2)=2.672, P >0.05). (2) Gender, age, burn degree, and treatment method of burn children transferred from the two periods of time were close ( χ (2)=3.382, Z =-1.917, -1.911, χ (2)=3.133, P >0.05). (3) Cure rates of children with mild, moderate, and severe burns transferred from January 2016 to September 2017 were significantly higher than those of burn children transferred from January 2014 to December 2015 ( χ (2)=11.777, 6.948, 4.310, P burns transferred from the two periods of time were close ( χ (2)=1.181, P >0.05). (4) Children with mild and moderate burns transferred from the two periods of time were with no shock. The incidence of shock of children with severe burns transferred from January 2014 to December 2015 was 6

  17. Formal Requirements Modeling for Reactive Systems with Coloured Petri Nets

    DEFF Research Database (Denmark)

    Tjell, Simon

    This dissertation presents the contributions of seven publications all concerned with the application of Coloured Petri Nets (CPN) to requirements modeling for reactive systems. The publications are introduced along with relevant background material and related work, and their contributions...... to take into concern that the behavior of human actors is less likely to be predictable than the behavior of e.g. mechanical components.   In the second approach, the CPN model is parameterized and utilizes a generic and reusable CPN module operating as an SD interpreter. In addition to distinguishing...... and events. A tool is presented that allows automated validation of the structure of CPN models with respect to the guidelines. Next, three publications on integrating Jackson's Problem Frames with CPN requirements models are presented: The first publication introduces a method for systematically structuring...

  18. A rare case of failed healing in previously burned skin after a secondary burns.

    Science.gov (United States)

    Goldie, Stephen J; Parsons, Shaun; Menezes, Hana; Ives, Andrew; Cleland, Heather

    2017-01-01

    Patients presenting with large surface area burns are common in our practice; however, patients with a secondary large burn on pre-existing burn scars and grafts are rare and not reported. We report on an unusual case of a patient sustaining a secondary large burn to areas previously injured by a burn from a different mechanism. We discuss the potential implications when managing a case like this and suggest potential biological reasons why the skin may behave differently. Our patient was a 33-year-old man who presented with a 5% TBSA burn on skin scarred by a previous 40% total body surface area (TBSA) burn and skin grafts. Initially assessed as superficial partial thickness in depth, the wounds were treated conservatively with dressings; however, they failed to heal and became infected requiring surgical management. Burns sustained in areas of previous burn scars and grafts may behave differently to normal patterns of healing, requiring more aggressive management and surgical intervention at an early stage.

  19. Estimation of fuel burning rate and heating value with highly variable properties for optimum combustion control

    International Nuclear Information System (INIS)

    Hsi, C.-L.; Kuo, J.-T.

    2008-01-01

    Estimating solid residue gross burning rate and heating value burning in a power plant furnace is essential for adequate manipulation to achieve energy conversion optimization and plant performance. A model based on conservation equations of mass and thermal energy is established in this work to calculate the instantaneous gross burning rate and lower heating value of solid residue fired in a combustion chamber. Comparing the model with incineration plant control room data indicates that satisfactory predictions of fuel burning rates and heating values can be obtained by assuming the moisture-to-carbon atomic ratio (f/a) within the typical range from 1.2 to 1.8. Agreement between mass and thermal analysis and the bed-chemistry model is acceptable. The model would be useful for furnace fuel and air control strategy programming to achieve optimum performance in energy conversion and pollutant emission reduction

  20. Modeling a High Explosive Cylinder Experiment

    Science.gov (United States)

    Zocher, Marvin A.

    2017-06-01

    Cylindrical assemblies constructed from high explosives encased in an inert confining material are often used in experiments aimed at calibrating and validating continuum level models for the so-called equation of state (constitutive model for the spherical part of the Cauchy tensor). Such is the case in the work to be discussed here. In particular, work will be described involving the modeling of a series of experiments involving PBX-9501 encased in a copper cylinder. The objective of the work is to test and perhaps refine a set of phenomenological parameters for the Wescott-Stewart-Davis reactive burn model. The focus of this talk will be on modeling the experiments, which turned out to be non-trivial. The modeling is conducted using ALE methodology.

  1. Computer modelling of RF ablation in cortical osteoid osteoma: Assessment of the insulating effect of the reactive zone.

    Science.gov (United States)

    Irastorza, Ramiro M; Trujillo, Macarena; Martel Villagrán, Jose; Berjano, Enrique

    2016-05-01

    The aim was to study by computer simulations the insulating role of the reactive zone surrounding a cortical osteoid osteoma (OO) in terms of electrical and thermal performance during radiofrequency ablation (RFA). We modelled a cortical OO consisting of a nidus (10 mm diameter) enclosed by a reactive zone. The OO was near a layer of cortical bone 1.5 mm thick. Trabecular bone partially surrounds the OO and there was muscle around the cortical bone layer. We modelled RF ablations with a non-cooled-tip 17-gauge needle electrode (300 s duration and 90 °C target temperature). Sensitivity analyses were conducted assuming a reactive zone electrical conductivity value (σrz) within the limits of the cortical and trabecular bone, i.e. 0.02 S/m and 0.087 S/m, respectively. In this way we were really modelling the different degrees of osteosclerosis associated with the reactive zone. The presence of the reactive zone drastically reduced the maximum temperature reached outside it. The temperature drop was proportional to the thickness of the reactive zone: from 68 °C when it was absent to 44 °C when it is 7.5 mm thick. Higher nidus conductivity values (σn) implied higher temperatures, while lower temperatures meant higher σrz values. Changing σrz from 0.02 S/m to 0.087 S/m reduced lesion diameters from 2.4 cm to 1.8 cm. The computer results suggest that the reactive zone plays the role of insulator in terms of reducing the temperature in the surrounding area.

  2. Repeated Prescribed Burning in Aspen

    Science.gov (United States)

    Donald A. Perala

    1974-01-01

    Infrequent burning weather, low flammability of the aspen-hardwood association, and prolific sprouting and seeding of shrubs and hardwoods made repeated dormant season burning a poor tool to convert good site aspen to conifers. Repeat fall burns for wildlife habitat maintenance is workable if species composition changes are not important.

  3. Combination of Radiation and Burn Injury Alters FDG Uptake in Mice

    Science.gov (United States)

    Carter, Edward A.; Winter, David; Tolman, Crystal; Paul, Kasie; Hamrahi, Victoria; Tompkins, Ronald; Fischman, Alan J.

    2012-01-01

    Radiation exposure and burn injury have both been shown to alter glucose utilization in vivo. The present study was designed to study the effect of burn injury combined with radiation exposure, on glucose metabolism in mice using [18F] Fluorodeoxyglucose (18FDG). Groups of male mice weighing approximately 30g were studied. Group 1 was irradiated with a 137Cs source (9 Gy). Group 2 received full thickness burn injury on 25% total body surface area followed by resuscitated with saline (2mL, IP). Group 3 received radiation followed 10 minutes later by burn injury. Group 4 were sham treated controls. After treatment, the mice were fasted for 23 hours and then injected (IV) with 50 µCi of 18FDG. One hour post injection, the mice were sacrificed and biodistribution was measured. Positive blood cultures were observed in all groups of animals compared to the shams. Increased mortality was observed after 6 days in the burn plus radiated group as compared to the other groups. Radiation and burn treatments separately or in combination produced major changes in 18FDG uptake by many tissues. In the heart, brown adipose tissue (BAT) and spleen, radiation plus burn produced a much greater increase (p<0.0001) in 18FDG accumulation than either treatment separately. All three treatments produced moderate decreases in 18FDG accumulation (p<0.01) in the brain and gonads. Burn injury, but not irradiation, increased 18FDG accumulation in skeletal muscle; however the combination of burn plus radiation decreased 18FDG accumulation in skeletal muscle. This model may be useful for understanding the effects of burns + irradiation injury on glucose metabolism and in developing treatments for victims of injuries produced by the combination of burn plus irradiation. PMID:23143615

  4. 21 CFR 880.5180 - Burn sheet.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Burn sheet. 880.5180 Section 880.5180 Food and... Burn sheet. (a) Identification. A burn sheet is a device made of a porous material that is wrapped aroung a burn victim to retain body heat, to absorb wound exudate, and to serve as a barrier against...

  5. Physical functional outcome assessment of patients with major burns admitted to a UK Burn Intensive Care Unit.

    Science.gov (United States)

    Smailes, Sarah T; Engelsman, Kayleen; Dziewulski, Peter

    2013-02-01

    Determining the discharge outcome of burn patients can be challenging and therefore a validated objective measure of functional independence would assist with this process. We developed the Functional Assessment for Burns (FAB) score to measure burn patients' functional independence. FAB scores were taken on discharge from ICU (FAB 1) and on discharge from inpatient burn care (FAB 2) in 56 patients meeting the American Burn Association criteria for major burn. We retrospectively analysed prospectively collected data to measure the progress of patients' physical functional outcomes and to evaluate the predictive validity of the FAB score for discharge outcome. Mean age was 38.6 years and median burn size 35%. Significant improvements were made in the physical functional outcomes between FAB 1 and FAB 2 scores (pburn patients. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  6. IASI measurements of reactive trace species in biomass burning plumes

    Directory of Open Access Journals (Sweden)

    P.-F. Coheur

    2009-08-01

    Full Text Available This work presents observations of a series of short-lived species in biomass burning plumes from the Infrared Atmospheric Sounding Interferometer (IASI, launched onboard the MetOp-A platform in October 2006. The strong fires that have occurred in the Mediterranean Basin – and particularly Greece – in August 2007, and those in Southern Siberia and Eastern Mongolia in the early spring of 2008 are selected to support the analyses. We show that the IASI infrared spectra in these fire plumes contain distinctive signatures of ammonia (NH3, ethene (C2H4, methanol (CH3OH and formic acid (HCOOH in the atmospheric window between 800 and 1200 cm−1, with some noticeable differences between the plumes. Peroxyacetyl nitrate (CH3COOONO2, abbreviated as PAN was also observed with good confidence in some plumes and a tentative assignment of a broadband absorption spectral feature to acetic acid (CH3COOH is made. For several of these species these are the first reported measurements made from space in nadir geometry. The IASI measurements are analyzed for plume height and concentration distributions of NH3, C2H4 and CH3OH. The Greek fires are studied in greater detail for the days associated with the largest emissions. In addition to providing information on the spatial extent of the plume, the IASI retrievals allow an estimate of the total mass emissions for NH3, C2H4 and CH3OH. Enhancement ratios are calculated for the latter relative to carbon monoxide (CO, giving insight in the chemical processes occurring during the transport, the first day after the emission.

  7. Some observations on the pre-boilover burning of a slick of oil on water

    International Nuclear Information System (INIS)

    Garo, J.P.; Vantelon, J.P.; Gandhi, S.; Torero, J.L.

    1996-01-01

    The effects of burning oil in water were investigated to establish a systematic methodology for ignition of oil-spills. A simple heat conduction model was used to describe the pre-boil over burning rate of crude oil and heating oil. Results from the model were compared with experimental pool burning test results. The calculations agreed well with experiments conducted with crude oil and heating oil. Theoretical expressions were also successfully correlated with emulsified and weathered crude. The parameters considered for the calculations included the fuel layer thickness, the weathering level and the percentage of water emulsified in the fuel. The model accurately described the regression rate for fuel layers thicker than 8 mm. 22 refs., 1 tab., 13 figs

  8. Development of the ClearSky smoke dispersion forecast system for agricultural field burning in the Pacific Northwest

    Science.gov (United States)

    Jain, Rahul; Vaughan, Joseph; Heitkamp, Kyle; Ramos, Charleston; Claiborn, Candis; Schreuder, Maarten; Schaaf, Mark; Lamb, Brian

    The post-harvest burning of agricultural fields is commonly used to dispose of crop residue and provide other desired services such as pest control. Despite careful regulation of burning, smoke plumes from field burning in the Pacific Northwest commonly degrade air quality, particularly for rural populations. In this paper, ClearSky, a numerical smoke dispersion forecast system for agricultural field burning that was developed to support smoke management in the Inland Pacific Northwest, is described. ClearSky began operation during the summer through fall burn season of 2002 and continues to the present. ClearSky utilizes Mesoscale Meteorological Model version 5 (MM5v3) forecasts from the University of Washington, data on agricultural fields, a web-based user interface for defining burn scenarios, the Lagrangian CALPUFF dispersion model and web-served animations of plume forecasts. The ClearSky system employs a unique hybrid source configuration, which treats the flaming portion of a field as a buoyant line source and the smoldering portion of the field as a buoyant area source. Limited field observations show that this hybrid approach yields reasonable plume rise estimates using source parameters derived from recent field burning emission field studies. The performance of this modeling system was evaluated for 2003 by comparing forecast meteorology against meteorological observations, and comparing model-predicted hourly averaged PM 2.5 concentrations against observations. Examples from this evaluation illustrate that while the ClearSky system can accurately predict PM 2.5 surface concentrations due to field burning, the overall model performance depends strongly on meteorological forecast error. Statistical evaluation of the meteorological forecast at seven surface stations indicates a strong relationship between topographical complexity near the station and absolute wind direction error with wind direction errors increasing from approximately 20° for sites in

  9. Genital burns in the national burn repository: incidence, etiology, and impact on morbidity and mortality.

    Science.gov (United States)

    Harpole, Bethany G; Wibbenmeyer, Lucy A; Erickson, Bradley A

    2014-02-01

    To better characterize national genital burns (GBs) characteristics using a large burn registry. We hypothesized that mortality and morbidity will be higher in patients with GBs. The National Burn Repository, a large North American registry of hospitalized burn patients, was queried for patients with GB. Burn characteristics and mechanism, demographics, mortality, and surgical interventions were retrieved. Outcomes of interest were mortality, hospital-acquired infection (HAI), and surgical intervention on the genitalia. Adjusted odds ratios (aOR) for outcomes were determined with binomial logistic regression controlling for age, total burn surface area, race, length of stay, gender, and inhalation injury presence. GBs were present in 1245 cases of 71,895 burns (1.7%). Patients with GB had significantly greater average total burn surface area, length of stay, and mortality. In patients with GB, surgery of the genitalia was infrequent (10.4%), with the aOR of receiving surgery higher among men (aOR 2.7, P burns (aOR 3.1, P <.002). Presence of a GB increased the odds of HAI (aOR 3.0, P <.0001) and urinary tract infections (aOR 3.4, P <.0001). GB was also an independent predictor of mortality (aOR 1.54) even after adjusting for the increased HAI risk. GBs are rare but associated with higher HAI rates and higher mortality after adjusting for well-established mortality risk factors. Although a cause and effect relationship cannot be established using these registry data, we believe this study suggests the need for special management considerations in GB cases to improve overall outcomes. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. The Burns Registry of Australia and New Zealand: progressing the evidence base for burn care.

    Science.gov (United States)

    Cleland, Heather; Greenwood, John E; Wood, Fiona M; Read, David J; Wong She, Richard; Maitz, Peter; Castley, Andrew; Vandervord, John G; Simcock, Jeremy; Adams, Christopher D; Gabbe, Belinda J

    2016-03-21

    Analysis of data from the Burns Registry of Australia and New Zealand (BRANZ) to determine the extent of variation between participating units in treatment and in specific outcomes during the first 4 years of its operation. BRANZ, an initiative of the Australian and New Zealand Burn Association, is a clinical quality registry developed in accordance with the Australian Commission on Safety and Quality in Healthcare national operating principles. Patients with burn injury who fulfil pre-defined criteria are transferred to and managed in designated burn units. There are 17 adult and paediatric units in Australia and New Zealand that manage almost all patients with significant burn injury. Twelve of these units treat adult patients. Data on 7184 adult cases were contributed by ten acute adult burn units to the registry between July 2010 and June 2014.Major outcomes: In-hospital mortality, hospital length of stay, skin grafting rates, and rates of admission to intensive care units. Considerable variations in unit profiles (including numbers of patients treated), in treatment and in outcomes were identified. Despite the highly centralised delivery of care to patients with severe or complex burn injury, and the relatively small number of specialist burn units, we found significant variation between units in clinical management and in outcomes. BRANZ data from its first 4 years of operation support its feasibility and the value of further development of the registry. Based on these results, the focus of ongoing research is to improve understanding of the reasons for variations in practice and of their effect on outcomes for patients, and to develop evidence-informed clinical guidelines for burn management in Australia and New Zealand.

  11. Review of reactive kinetic models describing reductive dechlorination of chlorinated ethenes in soil and groundwater

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia; Bjerg, Poul Løgstrup; Scheutz, Charlotte

    2013-01-01

    Reductive dechlorination is a major degradation pathway of chlorinated ethenes in anaerobic subsurface environments, and reactive kinetic models describing the degradation process are needed in fate and transport models of these contaminants. However, reductive dechlorination is a complex biologi...

  12. Accuracy of burn size estimation in patients transferred to adult Burn Units in Sydney, Australia: an audit of 698 patients.

    Science.gov (United States)

    Harish, Varun; Raymond, Andrew P; Issler, Andrea C; Lajevardi, Sepehr S; Chang, Ling-Yun; Maitz, Peter K M; Kennedy, Peter

    2015-02-01

    The purpose of this study was to compare burn size estimation between referring centres and Burn Units in adult patients transferred to Burn Units in Sydney, Australia. A review of all adults transferred to Burn Units in Sydney, Australia between January 2009 and August 2013 was performed. The TBSA estimated by the referring institution was compared with the TBSA measured at the Burns Unit. There were 698 adults transferred to a Burns Unit. Equivalent TBSA estimation between the referring hospital and Burns Unit occurred in 30% of patients. Overestimation occurred at a ratio exceeding 3:1 with respect to underestimation, with the difference between the referring institutions and Burns Unit estimation being statistically significant (Pburn-injured patients as well as in patients transferred more than 48h after the burn (Pburn (Pburns (≥20% TBSA) were found to have more satisfactory burn size estimations compared with less severe injuries (burn size assessment by referring centres. The systemic tendency for overestimation occurs throughout the entire TBSA spectrum, and persists with increasing time after the burn. Underestimation occurs less frequently but rises with increasing time after the burn and with increasing TBSA. Severe burns (≥20% TBSA) are more accurately estimated by the referring hospital. The inaccuracies in burn size assessment have the potential to result in suboptimal treatment and inappropriate referral to specialised Burn Units. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  13. The reactive extrusion of thermoplastic polyurethane

    NARCIS (Netherlands)

    Verhoeven, Vincent Wilhelmus Andreas

    2006-01-01

    The objective of this thesis was to increase the understanding of the reactive extrusion of thermoplastic polyurethane. Overall, several issues were identified: • Using a relative simple extrusion model, the reactive extrusion process can be described. This model can be used to further investigate

  14. Checklist and Decision Support in Nutritional Care for Burned Patients

    Science.gov (United States)

    2016-10-01

    able to construct a checklist of a clinical and physiologic model and then a computerised decision support system that will perform two functions: the...the provision of nutritional therapy, and assessment of use by nursing and physician staff KEYWORDS Nutrition, severe burn, decision support... clinical testing. Checklist and Decision Support in Nutritional Care for Burned Patients Proposal Number: 12340011 W81XWH-12-2-0074 PI: Steven E

  15. Burns in sub-Saharan Africa: A review.

    Science.gov (United States)

    Nthumba, Peter M

    2016-03-01

    Burns are important preventable causes of morbidity and mortality, with a disproportionate incidence in sub-Saharan Africa. The management of these injuries in sub-Saharan Africa is a challenge because of multiple other competing problems such as infectious diseases (HIV/AIDS, tuberculosis and malaria), terrorist acts and political instability. There is little investment in preventive measures, pre-hospital, in-hospital and post-discharge care of burns, resulting in high numbers of burns, high morbidity and mortality. Lack of data that can be used in legislation and policy formulation is a major hindrance in highlighting the problem of burns in this sub-region. An online search of publications on burns from sub-Saharan countries was performed. A total of 54 publications with 32,862 patients from 14 countries qualified for inclusion in the study. The average age was 15.3 years. Children aged 10 years and below represented over 80% of the burn patient population. Males constituted 55% of those who suffered burns. Scalds were the commonest cause of thermal injuries, accounting for 59% of all burns, while flame burns accounted for 33%. The burn mortality averaged 17%, or the death of one of every five burn victims. These statistics indicate the need for an urgent review of burn policies and related legislation across the sub-Saharan region to help reduce burns, and provide a safe environment for children. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  16. Management of post burn hand deformities

    Directory of Open Access Journals (Sweden)

    Sabapathy S

    2010-10-01

    Full Text Available The hand is ranked among the three most frequent sites of burns scar contracture deformity. One of the major determinants of the quality of life in burns survivors is the functionality of the hands. Burns deformities, although largely preventable, nevertheless do occur when appropriate treatment is not provided in the acute situation or when they are part of a major burns. Reconstructive procedures can greatly improve the function of the hands. Appropriate choice of procedures and timing of surgery followed by supervised physiotherapy can be a boon for a burns survivor.

  17. Global biomass burning. Atmospheric, climatic, and biospheric implications

    International Nuclear Information System (INIS)

    Levine, J.S.

    1991-01-01

    Biomass burning is a significant source of atmospheric gases and, as such, may contribute to global climate changes. Biomass burning includes burning forests and savanna grasslands for land clearing, burning agricultural stubble and waste after harvesting, and burning biomass fuels. The chapters in this volume include the following topics: remote sensing of biomass burning from space;geographical distribution of burning; combustion products of burning in tropical, temperate and boreal ecosystems; burning as a global source of atmospheric gases and particulates; impacts of biomass burning gases and particulates on global climate; and the role of biomass burning on biodiversity and past global extinctions. A total of 1428 references are cited for the 63 chapters. Individual chapters are indexed separately for the data bases

  18. A Conceptual Framework for Predicting the Toxicity of Reactive Chemicals: Modeling Soft Electrophilicity

    Science.gov (United States)

    Although the literature is replete with QSAR models developed for many toxic effects caused by reversible chemical interactions, the development of QSARs for the toxic effects of reactive chemicals lacks a consistent approach. While limitations exit, an appropriate starting-point...

  19. Burn-related peripheral neuropathy: A systematic review.

    Science.gov (United States)

    Tu, Yiji; Lineaweaver, William C; Zheng, Xianyou; Chen, Zenggan; Mullins, Fred; Zhang, Feng

    2017-06-01

    Peripheral neuropathy is the most frequent disabling neuromuscular complication of burns. However, the insidious and progressive onset of burn neuropathy makes it often undiagnosed or overlooked. In our study, we reviewed the current studies on the burn-related peripheral neuropathy to summarize the morbidity, mechanism, detecting method and management of peripheral neuropathy in burn patients. Of the 1533 burn patients included in our study, 98 cases (6.39%) were presented with peripheral neuropathy. Thermal and electrical burns were the most common etiologies. Surgical procedures, especially nerve decompression, showed good effect on functional recovery of both acute and delayed peripheral neuropathy in burn patients. It is noteworthy that, for early detection and prevention of peripheral neuropathy, electrodiagnostic examinations should be performed on burn patients independent of symptoms. Still, the underlying mechanisms of burn-related peripheral neuropathy remain to be clarified. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  20. Development of a robust model-based reactivity control system

    International Nuclear Information System (INIS)

    Rovere, L.A.; Otaduy, P.J.; Brittain, C.R.

    1990-01-01

    This paper describes the development and implementation of a digital model-based reactivity control system that incorporates a knowledge of the plant physics into the control algorithm to improve system performance. This controller is composed of a model-based module and modified proportional-integral-derivative (PID) module. The model-based module has an estimation component to synthesize unmeasurable process variables that are necessary for the control action computation. These estimated variables, besides being used within the control algorithm, will be used for diagnostic purposes by a supervisory control system under development. The PID module compensates for inaccuracies in model coefficients by supplementing the model-based output with a correction term that eliminates any demand tracking or steady state errors. This control algorithm has been applied to develop controllers for a simulation of liquid metal reactors in a multimodular plant. It has shown its capability to track demands in neutron power much more accurately than conventional controllers, reducing overshoots to almost negligible value while providing a good degree of robustness to unmodeled dynamics. 10 refs., 4 figs