WorldWideScience

Sample records for reactions nuclear collisions

  1. From nuclear reactions to liquid-drop collisions

    International Nuclear Information System (INIS)

    Menchaca R, A.; Huidobro, F.; Martinez D, A.; Michaelian, K.; Perez, A.; Rodriguez, V.; Carjan, N.

    1997-01-01

    A review of the experimental and theoretical situation in coalescence and fragmentation studies of binary liquid-drop collisions is given, putting in perspective our own contributions, which include experiments with mercury and oil drops and the application of a nuclear reaction model, specifically modified by us for the macroscopic case. (Author)

  2. Final stage of high energy hadron-nucleus nuclear collision reactions

    International Nuclear Information System (INIS)

    Strugal'ski, Z.; Jedrzejec, H.; Strugalska-Gola, E.; Mulas, E.

    1996-01-01

    The final or 'slow' stage of the hadron-nucleus collision reactions at high energy is considered on the basis of the collision mechanism prompted experimentally. The transmutation process of the damaged target nucleus into nucleons and stable nuclear fragments is discussed. Relations between intensities or multiplicities n p of the emitted fast protons and the mean intensities or multiplicities b > of the evaporated nucleons and nuclear fragments are presented. 14 refs

  3. The mechanisms of the hadron-nucleus collision processes and of the hadron-nucleus collision induced nuclear reactions - in the light of experimental data

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.

    1997-01-01

    The mechanisms of the hadron-nucleus collision processes and of the hadron-nucleus collision induced nuclear reactions are described - as experimentally based. The target nuclei are damaged definitely and locally in the collisions and the configurations of the nucleons in them became instable. The configuration must transit into stable stages of the nuclear transition reaction products. The difference between the initial internal energy of the unstable residual nucleus and the total final energy of the stable products of the nuclear transition reaction may be released in some cases

  4. Nuclear energy release in hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.

    1998-01-01

    Energy release process in nuclear reactions induced by fast hadrons in hadron-nucleus collisions is discussed. Some portion of the internal nuclear energy is released when the locally damaged in a collision, and instable therefore, residual target nucleus transits itself into light nuclear fragments (nucleons, D, T) and a stable lighter final nucleus or some number of stable lighter nuclei. It is not excluded that in some of the collisions the induced intranuclear nuclear reactions may be energy overcompensating. Corresponding reconnaissance should be made - in analysing the nuclear reactions induced in hadron-nucleus collisions

  5. A method of simulating and visualizing nuclear reactions

    International Nuclear Information System (INIS)

    Atwood, C.H.; Paul, K.M.

    1994-01-01

    Teaching nuclear reactions to students is difficult because the mechanisms are complex and directly visualizing them is impossible. As a teaching tool, the authors have developed a method of simulating nuclear reactions using colliding water droplets. Videotaping of the collisions, taken with a high shutter speed camera and run frame-by-frame, shows details of the collisions that are analogous to nuclear reactions. The method for colliding the water drops and videotaping the collisions are shown

  6. Relativistic nuclear collisions: theory

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1980-07-01

    Some of the recent theoretical developments in relativistic (0.5 to 2.0-GeV/nucleon) nuclear collisions are reviewed. The statistical model, hydrodynamic model, classical equation of motion calculations, billiard ball dynamics, and intranuclear cascade models are discussed in detail. Inclusive proton and pion spectra are analyzed for a variety of reactions. Particular attention is focused on how the complex interplay of the basic reaction mechanism hinders attempts to deduce the nuclear matter equation of state from data. 102 references, 19 figures

  7. Reaction mechanism in high energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Tanihata, Isao.

    1982-04-01

    The reaction mechanism in high energy heavy-ion collision is discussed. The discussion is mainly based on the experimental data. Empirical equations have been given for the total cross-sections of nucleus-nucleus reactions and the reaction cross-sections. These cross-sections are well described by the geometrical size of the colliding nuclei. The cross-sections are also understood by microscopic calculation. The charged particle multiplicity gives additional information about the geometrical aspect of heavy ion collision. The data suggested that the total energy, independent of projectile size, is most important for determining the multiplicity. The inclusive proton spectrum in a heavy ion collision showed two distinct regions. The one is the fragment region, and the other the participant region. The spectral shapes of inclusive pion spectra are reasonably well explained by the Coulomb interaction of pions with nuclear fragments. The high energy heavy ion reaction occurs in the overlap region of the projectile and target. This has been tested by measuring the number of participants for various reactions. The space and the time structure of the collision are also discussed in this paper as well as the dynamical aspects of the collision. (Kato, T.)

  8. Transparency in high-energy nuclear collisions

    International Nuclear Information System (INIS)

    Karol, P.J.

    1992-01-01

    Problems associated with transparency schemes based on sharp cutoff models are discussed. The soft spheres model of hadron-nucleus and nucleus-nucleus collisions has been used to explore the influence of the realistic nuclear density geometry on transparency. An average nuclear transparency and an average reaction transparency are defined and their dependence on target and projectile dimensions and on the hadron-nucleon collision cross section are described. The results are expected to be valid for projectile energies above several hundred MeV/nucleon through the ultrarelativistic regime. For uniform (hard sphere) nuclear profiles, methods for obtaining effective total transparencies are suggested

  9. The unified theory of nuclear reactions

    International Nuclear Information System (INIS)

    Tobocman, W.

    A unified nuclear reaction theory is a formalism for the scattering reactions of many-body nuclear systems which is capable of describing both direct interaction and compound nucleus formation processes. The Feshbach projection operator formalism is the original unified nuclear reaction theory. An alternative unified nuclear reaction theory called the X-matrix formalism is described. The X-matrix formalism is a generalization of the Brown-de Dominicis formalism. It does not require projection operators and is readly applied to rearrangement collisions

  10. Theoretical studies in nuclear reactions and nuclear structure

    International Nuclear Information System (INIS)

    Wallace, S.J.

    1991-05-01

    This report discusses topics in the following areas: Hadronic structure; hadrons in nuclei; hot hadronic matter; relativistic nuclear physics and NN interaction; leptonic emissions from high-Z heavy ion collisions; theoretical studies of heavy ion dynamics; nuclear pre-equilibrium reactions; classical chaotic dynamics and nuclear structure; and, theory of nuclear fission

  11. Theoretical interpretation of data from high-energy nuclear collisions

    International Nuclear Information System (INIS)

    Fai, G.

    1988-09-01

    Nuclear collision data at energies ranging from medium to relativistic are interpreted theoretically. The major objective is a better understanding of high-energy heavy-ion collisions, with particular emphasis on the properties of excited nuclear matter. Further progress towards a satisfactory description of excited subsaturation nuclear matter is achieved. The mean free path of a nucleon in nuclear matter, which is a critical parameter in assessing the applicability of certain nuclear collision models, is investigated. Experimental information is used together with theoretical concepts in collaborations with experimentalists in order to learn about the reaction mechanism and about excited nuclear matter properties. In the framework of a more strictly theoretical program development, subnuclear degrees of freedom and nonlinear phenomena in model field theories are studied

  12. Inelastic collisions of heavy ions and their reaction mechanisms; Collisions inelastiques d'ions lourds et mecanismes de reaction

    Energy Technology Data Exchange (ETDEWEB)

    Scarpaci, J.A

    2004-06-01

    This work is dedicated to the study of inelastic collisions of heavy ions. Most experiments took place in Ganil facility. The 2 first chapters introduce the notion of inelastic scattering of heavy ions. The third chapter deals with target excitation, giant monopolar or dipolar or quadrupolar resonances ant the multi-phonon concept and presents relevant experimental results from the Ca{sup 40} + Ca{sup 40} nuclear reaction at 50 MeV/A. The fourth chapter is dedicated to nuclear processes involved in inelastic collisions: pick-up break-up mechanisms, the angular distribution of emitted protons and the towing mode. These notions are applied to the reaction Zr{sup 90}(Ar{sup 40}, Ar{sup 40}'). The fifth chapter presents the solving of the time dependent Schroedinger equation (TDSE) applied to the wave function of a particle plunged in a variable potential. TDSE solving is applied to the break-up of Be{sup 11}. These calculations have been validated by comparing them with experimental results from the nuclear reaction Ti{sup 48}(Be{sup 11}, Be{sup 10} + n + {gamma}) that is described in the chapter 6. The last chapter presents the advantages of inelastic scattering considered as a tool to study exotic nuclei.

  13. Central collisions in intermediate energy heavy-ion reactions

    International Nuclear Information System (INIS)

    Wong, C.Y.

    1979-01-01

    The critical collisions in intermediate energy heavy-ion reactions are examined from both a microscopic and macroscopic viewpoint. In the microscopic description the proper tool is the extended TDHF approximation involving both the mean field and the particle collisions. To understand the underlying physics, the effect of the mean field and the effect of particle collisions are studied separately. It is found that th sudden increase in the density of the overlapping region can cause the volcano effect, leading to the complete disintegration of one of the nuclei. The self-consistent mean field also gives rise to the bunching instability when the two Fermi spheres of the colliding nucleons separate. The collision between nucleons, on the other hand, leads to irreversible dissipation, thermalization, and the possibility of a hydrodynamical description of the dynamics. Next is studied the dynamics of central collisions using the hydrodynamical description for many combinations of targets and projectiles at different energies. The formation of shock waves, sidesplash, and the complete disintegration of the whole nucleus are examined. Nuclear viscosity is found to affect the angular distribution of the reaction products and also the maximum compression ratio achieved during the collision. 28 references

  14. Nuclear reactions as structure probes

    International Nuclear Information System (INIS)

    Fernandez, Bernard; Cugnon, Joseph; Roussel-Chomaz, Patricia; Sparenberg, Jean-Marc; Oliveira Santos, Francois de; Bauge, Eric; Poves, Alfredo; Keeley, Nicholas; Simenel, Cedric; Avez, Benoit; Lacroix, Denis; Baye, Daniel; Cortina-Gil, Dolores; Pons, Alexandre

    2007-09-01

    This publication gathers courses which aim at giving a view on new experiments which are performed by using radioactive beams, notably low intensity beams, in different accelerators, and allow the structure of very exotic nuclei to be characterized. Experimental as well as theoretical aspects are thus addressed. The contributions propose: a brief history of nuclear reactions and of instruments used to study them from the discovery of nucleus to the DWBA (Distorted Wave Born Approximation); an overview of nuclear reactions; experimental techniques; the theory of collisions at low energy; resonant elastic scattering, inelastic scattering and astrophysical reactions; to probe nuclear structure with nucleons; shell model and spectroscopic factors; analysis of transfer reactions and determination of spectroscopic factors; microscopic approaches of nuclear dynamics; theoretical aspects of dissociation reactions; experimental aspects of knockout reactions; research in oenology with the chemical characterisation of defective ageing of dry white wines

  15. Inner shell ionization accompanying nuclear collisions

    International Nuclear Information System (INIS)

    Sujkowski, Z.

    1987-01-01

    Selected phenomena leading to inner shell ionization and being of relevance for nuclear physics are discussed. The selection emphasizes the K-shell ionization induced in head-on collisions by fast light and medium-heavy ions. Cross-sections are reviewed. Effects of multiple inner shell ionization on the K X-ray spectra are illustrated with recent results. Implications for nuclear experiments are noted. Use of atomic observables as clocks for proton induced nuclear reactions is reviewed. Prospects for H.I. reactions are discussed. Preliminary experimental results on the direct K-shell ionization accompanying H.I. fusion reactions are presented. The post-collisional K-shell ionization due to internal conversion of γ-rays is discussed as the dominating contribution to the ionization for residues of dissipative nuclear reactions with Z > 40. Systematics of the corresponding K X-ray multiplicities are presented for rotational nuclei. These multiplicity values can be used for determining cross-sections for e.g. incomplete fusion reactions. Examples of such applications are given. Also discussed is the use of target K X-rays for normalization purposes and of the post-collisional, residue K X-rays in the studies of high spin phenomena. 96 references, 35 figures, 3 tables

  16. High energy gamma-ray production in nuclear reactions

    International Nuclear Information System (INIS)

    Pinston, J.A.; Nifenecker, H.; Nifenecker, H.

    1989-01-01

    Experimental techniques used to study high energy gamma-ray production in nuclear reactions are reviewed. High energy photon production in nucleus-nucleus collisions is discussed. Semi-classical descriptions of the nucleus-nucleus gamma reactions are introduced. Nucleon-nucleon gamma cross sections are considered, including theoretical aspects and experimental data. High energy gamma ray production in proton-nucleus reactions is explained. Theoretical explanations of photon emission in nucleus-nucleus collisions are treated. The contribution of charged pion currents to photon production is mentioned

  17. Comparison of models of high energy nuclear collisions

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1978-01-01

    The treatment of high energy nuclear reaction models covers goals of such collisions, the choice of theoretical framework, the zoo of models (p inclusive), light composites, models versus experiment, conclusions drawn, needed experiments, and pion production. 30 diagrams

  18. Influence of the nuclear autocorrelation function on the positron production in heavy-ion collisions

    International Nuclear Information System (INIS)

    Tomoda, T.; Weidenmueller, H.A.

    1983-01-01

    The influence of a nuclear reaction on atomic positron production in heavy-ion collisions is investigated. Using statistical concepts, we describe the nuclear S matrix for a heavy-ion induced reaction as a statistically fluctuating function of energy. The positron production rate is then dependent on the autocorrelation function of this S matrix, and on the ratio of the ''direct'' versus the ''fluctuating'' part of the nuclear cross section. Numerical calculations show that in this way, current experimental results on positron production in heavy-ion collisions can be reproduced in a semiquantitative fashion

  19. Fragmentation processes in nuclear reactions

    International Nuclear Information System (INIS)

    Legrain, R.

    1984-08-01

    Projectile and nuclear fragmentation are defined and processes referred to are recalled. The two different aspects of fragmentation are considered but the emphasis is also put on heavy ion induced reactions. The preliminary results of an experiment performed at GANIL to study peripheral heavy ions induced reactions at intermediate energy are presented. The results of this experiment will illustrate the characteristics of projectile fragmentation and this will also give the opportunity to study projectile fragmentation in the transition region. Then nuclear fragmentation is considered which is associated with more central collisions in the case of heavy ion induced reactions. This aspect of fragmentation is also ilustrated with two heavy ion experiments in which fragments emitted at large angle have been observed

  20. Thermal Bremsstrahlung probing nuclear multifragmentation in nucleus-nucleus collisions around the Fermi energy

    International Nuclear Information System (INIS)

    D'Enterria, D.G.

    2000-05-01

    The thermodynamical properties of nuclear matter at moderate temperatures and densities, in the vicinity of the predicted nuclear liquid-gas phase transition, are studied using as experimental probe the hard-photons (E γ > 30 MeV) emitted in nucleus-nucleus collisions. Photon and charged-particle production in four different heavy-ion reactions (Ar 36 + Au 197 , Ag 107 , Ni 58 , C 12 at 60 A*MeV) is measured exclusively and inclusively coupling the TAPS photon spectrometer with two charged-particle and intermediate-mass-fragment detectors covering nearly 4π. We confirm that Bremsstrahlung emission in first-chance (off-equilibrium) proton-neutron collisions (pnγ) is the dominant origin of hard photons. We also firmly establish the existence of a thermal radiation component emitted in second-chance proton-neutron collisions. This thermal Bremsstrahlung emission takes place in semi-central and central nucleus-nucleus reactions involving heavy targets. We exploit this observation i) to demonstrate that thermal equilibrium is reached during the reaction, ii) to establish a new thermometer of nuclear matter based on Bremsstrahlung photons, iii) to derive the thermodynamical properties of the excited nuclear sources and, in particular, to establish a 'caloric curve' (temperature versus excitation energy), and iv) to assess the time-scales of the nuclear break-up process. (author)

  1. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2002-01-01

    Full text: Department of Nuclear Reactions has had a very productive year. We have carried out our work in close collaborations with physicists from many laboratories, home and foreign. The following reports cover three major domains of our activities: nuclear, material and atomic physics. * Nuclear physics: In collaboration with scientists from Ukraine experimental studies of nuclear reaction induced by heavy ions from the Warsaw Cyclotron have been performed. The aim of the experiments is to study nuclear reactions leading to the exotic light nuclei in exit channels and energy dependence of the nucleus - nucleus interactions. Proton induced charge-exchange reactions were investigated theoretically by means of multistep-direct model. Good agreement with the experimental data was achieved. A novel approach to the problem of the nuclear liquid → gas phase transition was proposed, based on synergetics - a domain of science dealing with self-organization in macroscopic systems. Decay properties of the Roper resonance were studied. Final analysis of the analysing powers for the polarized deuterons scattered on protons was accomplished. Experimental programme of the near-threshold meson production in proton - proton scattering has been started in collaboration with Forschungszentrum. Juelich. * Atomic physics: Spectra of the X-rays emitted by energetic sulphur ions scattered off carbon atoms were analysed in order to study the role of the multiple charge states of the inner shells in the dynamics of the collision process. Ionization probabilities in collision of oxygen ions with gold atoms were measured. The observed disagreement of the experimental data with the theoretical predictions suggest a strong effect generated by the sub-shell couplings. * Materials research: Ion channelling method was applied to investigate transformation of the defects in Al x Ga 1-x As crystalline layers. Activities of our colleagues in didactics have grown considerably. Lectures

  2. Multiple scattering in the nuclear rearrangement reactions at medium energy

    International Nuclear Information System (INIS)

    Tekou, A.

    1980-09-01

    It is shown that the multiple scattering mechanism is very important in the transfer of the large momenta involved in the nuclear rearrangement reactions at medium energy. In contrast to the usual belief, the reaction cross-section is not very sensitive to the high momenta components of the nuclear wave function. The multiple scattering mechanism is especially important in 4 He(p,d) 3 He reaction around 800 MeV. Here the collisions involving two nucleons of the target nucleus are dominant. The triple collisions contribution is also important. The four collision contribution is negligible in the forward direction and sizeable at large angles. Thus, using the K.M.T. approach in DWBA calculations, the second order term of the optical potential must be included. So, is it not well established that the second term of the K.M.T. optical potential is important for the proton elastic scattering on light nuclei. (author)

  3. Quantum mechanical theory of positron production in heavy ion collisions with nuclear contact

    International Nuclear Information System (INIS)

    Heinz, U.

    1986-01-01

    The interplay between atomic and nuclear interactions in heavy ion collisions with nuclear contact is studied. The general theoretical description is outlined and analyzed in a number of different limits (semiclassical approximation, DWBA, fully quantal description). The two most important physical mechanisms for generating atomic-nuclear interference, i.e., energy conservation and the introduction of additional phase shifts by nuclear reactions, are extracted. The resulting typical coupling matrix elements are analyzed for their relative importance in atomic and nuclear excitations. The description of nuclear influence on atomic excitations in terms of a classical time delay caused by nuclear reactions is reviewed, and its relationship to the underlying quantal character of the nuclear reaction is discussed. The theory is applied to spontaneous positron emission in supercritical heavy-ion collisions (Z/sub tot/ ≥ 173). It is shown that nuclear contact can lead to line structures in the positron energy spectra if the probability distribution for nuclear delay times caused by the contact has contributions for T ≥ 10 -19 sec. We explicitly evaluate a model where a pocket in the internuclear potential near the touching configuration leads to formation of nuclear molecules, and predict a resonance-like excitation function for the positron peak. 25 refs., 7 figs

  4. Investigations of nuclear structure and nuclear reactions induced by complex projectiles. Technical progress report, November 1, 1978-October 31, 1979

    International Nuclear Information System (INIS)

    Sarantites, D.G.

    1979-01-01

    Experimental research on nuclear structure and reactions both published and in progress is summarized. Included are fusion reactions, strongly damped heavy ion collisions, and nuclear structure at high angular momentum. A list of publications is included

  5. On nuclear reaction duration at the range of overlapping resonances

    International Nuclear Information System (INIS)

    Olkhovsky, V.S.

    1981-01-01

    Nuclear reaction duration above the threshold of overlapping resonances is investigated and its importance to obtain a new information on a collision mechanism is evidenced. It is shown also that the duration of resonant nuclear reactions is asymptotically decreasing according to the law[E 2 n(E)] -1 when the energy E and the number of open channels n(E) are increasing [ru

  6. 1-4 Strangeness Production in Antiproton Induced Nuclear Reactions.

    Institute of Scientific and Technical Information of China (English)

    Feng; Zhaoqing[1

    2014-01-01

    More localized energy deposition is able to be produced in antiproton-nucleus collisions in comparison withheavy-ion collisions due to annihilation reactions. Searching for the cold quark-gluon plasma (QGP) with antiprotonbeamshas been considered as a hot topic both in experiments and in theretical calculations over the past severaldecades. Strangeness production and hypernucleus formation in antiproton-induced nuclear reactions are importancein exploring the hyperon (antihyperon)-nucleon (HN) potential and the antinucleon-nucleon interaction, whichhave been hot topics in the forthcoming experiments at PANDA in Germany.

  7. On Markov processes in the hadron-nuclear and nuclear-nuclear collisions at superhigh energies

    International Nuclear Information System (INIS)

    Lebedeva, A.A.; Rus'kin, V.I.

    2001-01-01

    In the article the possibility of the Markov processes use as simulation method for mean characteristics of hadron-nuclear and nucleus-nuclear collisions at superhigh energies is discussed. The simple (hadron-nuclear collisions) and non-simple (nucleus-nuclear collisions) non-uniform Markov process of output constant spectrum and absorption in a nucleon's nucleus-target with rapidity y are considered. The expression allowing to simulate the different collision modes were obtained

  8. Abstract ID: 240 A probabilistic-based nuclear reaction model for Monte Carlo ion transport in particle therapy.

    Science.gov (United States)

    Maria Jose, Gonzalez Torres; Jürgen, Henniger

    2018-01-01

    In order to expand the Monte Carlo transport program AMOS to particle therapy applications, the ion module is being developed in the radiation physics group (ASP) at the TU Dresden. This module simulates the three main interactions of ions in matter for the therapy energy range: elastic scattering, inelastic collisions and nuclear reactions. The simulation of the elastic scattering is based on the Binary Collision Approximation and the inelastic collisions on the Bethe-Bloch theory. The nuclear reactions, which are the focus of the module, are implemented according to a probabilistic-based model developed in the group. The developed model uses probability density functions to sample the occurrence of a nuclear reaction given the initial energy of the projectile particle as well as the energy at which this reaction will take place. The particle is transported until the reaction energy is reached and then the nuclear reaction is simulated. This approach allows a fast evaluation of the nuclear reactions. The theory and application of the proposed model will be addressed in this presentation. The results of the simulation of a proton beam colliding with tissue will also be presented. Copyright © 2017.

  9. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    International Nuclear Information System (INIS)

    Sarantites, D.G.

    1993-01-01

    This is a progress report on activities of the Washington University group in nuclear reaction studies for the period Sept 1, 1992 to Aug 31, 1993. This group has a research program which touches five areas of nuclear physics: nuclear structure studies at high spin; studies at the interface between structure and reactions; production and study of hot nuclei; reaction mechanism studies; development and use of novel techniques and instrumentation in the above areas of research. Specific activities of the group include in part: superdeformation in 82 Sr; structure of and identical bands in 182 Hg and 178 Pt; a highly deformed band in 136 Pm; particle decay of the 164 Yb compound nucleus; fusion reactions; proton evaporation; two-proton decay of 12 O; modeling and theoretical studies; excited 16 O disassembly into four alpha particles; 209 Bi + 136 Xe collisions at 28.2 MeV/amu; and development work on 4π solid angle gamma detectors, and x-ray detectors

  10. Proceedings of the 12. International Symposium on Nuclear Physics - Heavy-Ion Collisions and Nuclear Fission - organized by the Technical University of Dresden, November 22-26, 1982 in Gaussig (GDR)

    International Nuclear Information System (INIS)

    Reif, R.; Teichert, J.

    1982-12-01

    The following problems in experimental and theoretical investigations of heavy-ion reactions and the dynamics of nuclear fission processes are discussed: (1) emission of fast light particles in heavy-ion collisions, preequilibrium effects; (2) dynamics of deep inelastic heavy-ion reactions; (3) selected topics in quasi-elastic heavy-ion collisions; and (4) collective transport theory for fission, cross sections and neutron spectra of fission. Problems of neutron induced reactions and nuclear data evaluation are also covered. (author)

  11. Effect of free-particle collisions in high energy proton and pion-induced nuclear reactions

    International Nuclear Information System (INIS)

    Jacob, N.P. Jr.

    1975-07-01

    The effect of free-particle collisions in simple ''knockout'' reactions of the form (a,aN) and in more complex nuclear reactions of the form (a,X) was investigated by using protons and pions. Cross sections for the 48 Ti(p,2p) 47 Sc and the 74 Ge(p,2p) 73 Ga reactions were measured from 0.3 to 4.6 GeV incident energy. The results indicate a rise in (p,2p) cross section for each reaction of about (25 +- 3) percent between the energies 0.3 and 1.0 GeV, and are correlated to a large increase in the total free-particle pp scattering cross sections over the same energy region. Results are compared to previous (p,2p) excitation functions in the GeV energy region and to (p,2p) cross section calculations based on a Monte Carlo intranuclear cascade-evaporation model. Cross section measurements for (π/sup +-/, πN) and other more complex pion-induced spallation reactions were measured for the light target nuclei 14 N, 16 O, and 19 F from 45 to 550 MeV incident pion energy. These measurements indicate a broad peak in the excitation functions for both (π,πN) and (π,X) reactions near 180 MeV incident energy. This corresponds to the large resonances observed in the free-particle π + p and π - p cross sections at the same energy. Striking differences in (π,πN) cross section magnitudes are observed among the light nuclei targets. The experimental cross section ratio sigma(π - ,π - n)/sigma(π + ,πN) at 180 MeV is 1.7 +- 0.2 for all three targets. The experimental results are compared to previous pion and analogous proton-induced reactions, to Monte Carlo intranuclear cascade-evaporation calculations, and to a semi-classical nucleon charge exchange model. (108 references) (auth)

  12. Theoretical interpretation of high-energy nuclear collisions

    International Nuclear Information System (INIS)

    Fai, G.

    1992-06-01

    Nuclear collisions are interpreted theoretically. The nuclear equation of state is studied in a wide energy range. Subnucleonic degrees of freedom are invoked at high energy densities and at short length-scales. Questions of dynamical collision simulations are investigated. Direct support is provided for experiment in the form of collaborative projects. The major objective of this nuclear theory program is a better understanding of the properties of strongly interacting matter on the nuclear energy scale, as manifested in high-energy heavy-ion collisions

  13. Pre-equilibrium nuclear reactions: An introduction to classical and quantum-mechanical models

    International Nuclear Information System (INIS)

    Koning, A.J.; Akkermans, J.M.

    1999-01-01

    In studies of light-ion induced nuclear reactions one distinguishes three different mechanisms: direct, compound and pre-equilibrium nuclear reactions. These reaction processes can be subdivided according to time scales or, equivalently, the number of intranuclear collisions taking place before emission. Furthermore, each mechanism preferably excites certain parts of the nuclear level spectrum and is characterized by different types of angular distributions. This presentation includes description of the classical, exciton model, semi-classical models, with some selected results, and quantum mechanical models. A survey of classical versus quantum-mechanical pre-equilibrium reaction theory is presented including practical applications

  14. Proceedings of the 2nd joint seminar on atomic collisions and heavy ion induced nuclear reactions

    International Nuclear Information System (INIS)

    Harada, Kichinosuke; Ozawa, Kunio; Kamitsubo, H.; Nomura, T.; Awaya, Y.; Watanabe, T.

    1982-11-01

    The meeting of the 2nd joint seminar on atomic collisions and heavy ion induced nuclear reactions was held at the University of Tokyo, May 13 and 14, 1982. The aim of this seminar has been not only to recognize the common problems lying between above two research fields, but also to obtain an overview of the theoretical and experimental approaches to clear the current problems. In the seminar, more than 50 participants gathered and presented 16 papers. These are two general reviews and fourteen comprehensive surveys on topical subjects which have been developed very intensively in recent years. The editors would like to thank all participants for their assistance and cooperation in making possible a publication of these proceedings. (author)

  15. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2003-01-01

    Full text: In 2002, the Department has been involved in two new experimental programmes. Our colleagues led by Prof. Pawel Zupranski joined a large international collaboration HERMES and took part in experiments at DESY devoted to the study of the spin structure of the nucleon. Another group directed by Associate Prof. Bogdan Zwieglinski has worked on a conceptual design of a new generation detector PANDA (Proton-Antiproton Detection) which will be used in future experiments at GSI. Moreover, the experimental programmes covering three major domains of our scientific activities: nuclear physics, materials research and atomic physics were continued. - Nuclear physics: Experimental studies of nuclear reactions induced by heavy ions provided by the Warsaw U-200P Cyclotron were performed in collaboration with scientists from the Institute for Nuclear Studies in Kiev, Ukraine. The aim of the experiments was to investigate isotopic effects in the scattering of 11 B from carbon nuclides. Also, excited states of 6 Li predicted theoretically but never seen in experiments were investigated by means of one-neutron transfer reactions. Proton induced reactions were investigated theoretically by means of the multistep-direct model. Good agreement with the experimental data was achieved. The mechanism of fragments production in collisions of 197 Au with a gold target in the wide range of energies was studied by ALADIN and INDRA Collaborations. The production of η mesons from proton - proton collisions was investigated experimentally at the Juelich Cooler Synchrotron COSY. - Atomic physics: The ionisation of Au, Bi, Th and U atoms by Si ions was investigated in collaboration with the Swietokrzyska Academy, Kielce, and the University of Erlangen-Nuernberg. - Materials research: The sensitivity of the Solid State Nuclear Track PM-355 detectors was tested against intensive gamma and electron radiation. Moreover, using a monoenergetic sulphur ion beam from the Warsaw Cyclotron, the

  16. Macroscopic/microscopic simulation of nuclear reactions at intermediate energies

    International Nuclear Information System (INIS)

    Lacroix, D.; Van Lauwe, A.; Durand, D.

    2003-01-01

    An event generator, HIPSE (Heavy-Ion Phase-Space Exploration), dedicated to the description of nuclear collisions in the intermediate energy range is presented. The model simulates events for reactions close to the fusion barrier (5-10 MeV/A) up to higher energy (100 MeV/A) and it gives access to the phase-space explored during the collision. The development of HIPSE has been largely influenced by experimental observations. We have separated the reaction into 4 steps: contact, fragment formation, chemical freeze-out, and in-flight deexcitation. HIPSE will be useful for a study of various mechanisms such as neck fragmentation or multi-fragmentation

  17. Photon production in relativistic nuclear collisions at SPS and RHIC energies

    CERN Document Server

    Turbide, S; Rapp, R; 10.1142/S0217751X0402258X

    2004-01-01

    Chiral Lagrangians are used to compute the production rate of photons from the hadronic phase of relativistic nuclear collisions. Special attention is paid to the role of the a/sub 1/ pseudovector. Calculations that include strange meson reactions, form factors, the use of consistent vector spectral densities, the emission from a quark-gluon plasma, and primordial nucleon-nucleon collisions reproduce the photon spectra measured at the Super Proton Synchrotron (SPS). Some predictions for the Relativistic Heavy Ion Collider (RHIC) are made.

  18. The heavy-ion total reaction cross-section and nuclear transparancy

    International Nuclear Information System (INIS)

    Rego, R.A.; Hussein, M.S.

    1982-10-01

    The total reaction cross section of heavy ions at intermediate energies is discussed. The special role played by the individual nucleon-nucleon collisions in determining the nuclear transparancy is analysed. Several competing effects arising from the nuclear and Coulomb interactions between the two ions are found to be important in determing σ sub(R) at lower energies. (Author) [pt

  19. The heavy-ion total reaction cross-section and nuclear transparency

    International Nuclear Information System (INIS)

    Rego, R.A.; Hussein, M.S.

    1982-01-01

    The total reaction cross section of heavy ions at intermediate energies is discussed. The special role played by the individual nucleon-nucleon collisions in determining the nuclear transparency is analysed. Several competing effects arising from the nuclear and Coulomb interactions between the two ions are found to be important in determining σ(sub R) at lower energies. (Author) [pt

  20. Calculation of Direct photon production in nuclear collisions

    CERN Document Server

    Cepila, J

    2012-01-01

    Prompt photons produced in a hard reaction are not expected to be accompanied by any final state interaction, either energy loss or absorption and one should not expect any nuclear effects at high pT . However, data from the PHENIX experiment indicates large-pT suppression in d+Au and central Au+Au collisions that cannot be accompanied by coherent phenomena. We propose a mechanism based on the energy sharing problem at large pT near the kinematic limit that is induced by multiple initial state interactions and that improves the agreement of calculations with PHENIX data. We calculate inclusive direct photon production cross sections in p+p collisions at RHIC and LHC energies using the color dipole approach without any additional parameter. Our predictions are in good agreement with the available data. Within the same framework, we calculate direct photon production rates in d+A and A+A collisions at RHIC energy. We also provide predictions for the same process in p+A collisions at LHC energy. Since the kinema...

  1. Perspectives in high energy nuclear collisions

    International Nuclear Information System (INIS)

    Rafelski, J.

    1983-08-01

    This report gives an overview of some aspects of hadronic physics relevant for the conception of a research facility devoted to the study of high energy nuclear collisions. Several concepts to be studied in nuclear collisions are selected, with emphasis placed on the properties and nature of the quark-gluon plasma, the formation of the plasma state in the central region and its anticipated lifetime, and the observability, through strangeness content of this new form of nuclear matter. (orig.)

  2. Kaon production in intermediate-energy nuclear collisions

    International Nuclear Information System (INIS)

    Russkikh, V.N.; Ivanov, Yu.B.

    1992-01-01

    Production of positive kaons in nuclear collisions at intermediate energies (∝ 1-2 GeV/nucleon) is studied within the 3-dimensional fluid dynamics combined with the hadrochemical kinetics for strangeness production. Sensitivity of the kaon probe to a form of the nuclear equation of state is analyzed. The model reproduces total and differential cross sections of Ne+NaF→K + +X and Ne+Pb→K + +X reactions at E lab =2.1 GeV/nucleon, provided a soft equation of state is used. The pion-production data are also well described employing the same equation of state. Predictions are made for the current experiment on kaon production at the SIS accelerator. The obtained results are compared with the predictions of other models. (orig.)

  3. Nuclear quantum many-body dynamics: from collective vibrations to heavy-ion collisions

    International Nuclear Information System (INIS)

    Simenel, Cedric

    2012-01-01

    This report gives a summary of my research on nuclear dynamics during the past ten years. The choice of this field has been motivated by the desire to understand the physics of complex systems obeying quantum mechanics. In particular, the interplay between collective motion and single-particle degrees of freedom is a source of complex and fascinating behaviours. For instance, giant resonances are characterised by a collective vibration of many nucleons, but their decay may occur by the emission of a single nucleon. Another example could be taken from the collision of nuclei where the transfer of few nucleons may have a strong impact on the formation of a compound system is non trivial. To describe these complex systems, one needs to solve the quantum many-body problem. The description of the dynamics of composite systems can be very challenging, especially when two such systems interact. An important goal of nuclear physics is to find a unified way to describe the dynamics of nuclear systems. Ultimately, the same theoretical model should be able to describe vibrations, rotations, fission, all the possible outcomes of heavy-ion collisions (elastic and inelastic scattering, particle transfer, fusion, and multifragmentation), and even the dynamics of neutron star crust. This desire for a global approach to nuclear dynamics has strongly influenced my research activities. In particular, all the numerical applications presented in this report have been obtained from few numerical codes solving equations derived from the same variational principle. Beside the quest for a unified model of nuclear dynamics, possible applications of heavy-ion collisions such as the formation of new nuclei is also a strong motivation for the experimental and theoretical studies of reaction mechanisms. This report is not a review article, but should be considered as a reading guide of the main papers my collaborators and myself have published. It also gives the opportunity to detail some

  4. Isospin aspects in nuclear reactions involving Ca beams at 25 MeV/nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, I., E-mail: ilombardo@lns.infn.it; Agodi, C.; Alba, R.; Amorini, F.; Anzalone, A. [INFN Laboratori Nazionali del Sud (Italy); Auditore, L. [Universita di Messina, and INFN-Gr. Coll. Messina, Dipartimento di Fisica (Italy); Berceanu, I. [Institute for Physics and Nuclear Engineering (Romania); Cardella, G. [INFN, Sezione di Catania (Italy); Cavallaro, S. [INFN Laboratori Nazionali del Sud (Italy); Chatterjee, M. B. [Saha Institute of Nuclear Physics (India); Filippo, E. De [INFN, Sezione di Catania (Italy); Di Pietro, A.; Figuera, P. [INFN Laboratori Nazionali del Sud (Italy); Giuliani, G.; Geraci, E.; Grassi, L. [Dipartimento di Fisica e Astronomia Universita di Catania (Italy); Grzeszczuk, A. [University of Silesia, Institute of Physics (Poland); Han, J. [INFN Laboratori Nazionali del Sud (Italy); La Guidara, E. [INFN, Sezione di Catania (Italy); Lanzalone, G. [INFN Laboratori Nazionali del Sud (Italy); and others

    2011-11-15

    Isospin dependence of dynamical and thermodynamical properties observed in reactions {sup 40}Ca+ {sup 40,48}Ca and {sup 40}Ca + {sup 46}Ti at 25 MeV/nucleon has been studied. We used the CHIMERA multi-detector array. Strong isospin effects are seen in the isotopic distributions of light nuclei and in the competition between different reaction mechanisms in semi-central collisions. We will show also preliminary results obtained in nuclear collision {sup 48}Ca + {sup 48}Ca at 25MeV/nucleon, having very high N/Z value in the entrance channel (N/Z = 1.4). The enhancement of evaporation residue production confirms the strong role played by the N/Z degree of freedom in nuclear dynamics.

  5. High-energy nuclear reaction mechanisms - fission, fragmentation and spallation

    International Nuclear Information System (INIS)

    Kaufman, S.B.

    1987-01-01

    Measurements of the correlations in kinetic energy, mass, charge, and angle of coincident fragments formed in high-energy nuclear reactions have helped to characterize the processes of fission, fragmentation and spallation. For example, fission or fission-like two-body breakup mechanisms result in a strong angular correlation between two heavy fragments; in addition, the momentum transfer in the reaction can be deduced from the correlation. Another example is the multiplicity of light charged particles associated with a given heavy fragment, which is a measure of the violence of the collision, thus distinguishing between central and peripheral collisions. A summary of what has been learned about these processes from such studies will be given, along with some suggestions for further experiments

  6. Studies of Fluctuation Processes in Nuclear Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Ayik, Sakir [Tennessee Technological Univ., Cookeville, TN (United States). Dept. of Physics

    2016-04-14

    The standard one-body transport approaches have been extensively applied to investigate heavy-ion collision dynamics at low and intermediate energies. At low energies the approach is the mean-field description of the time-dependent Hartree-Fock (TDHF) theory. At intermediate energies the approach is extended by including a collision term, and its application has been carried out mostly in the semi-classical framework of the Boltzmann-Uhling-Uhlenbeck (BUU) model. The standard transport models provide a good understanding of the average properties of the collision dynamics in terms of the effective interactions in both low and intermediate energies. However, the standard models are inadequate for describing the fluctuation dynamics of collective motion at low energies and disassembling of the nuclear system into fragments at intermediate energies resulting from the growth of density fluctuations in the spinodal region. Our tasks have been to improve the standard transport approaches by incorporating fluctuation mechanisms into the description. There are mainly two different mechanisms for fluctuations: (i) Collisional fluctuations generated by binary nucleon collisions, which provide the dominant mechanism at intermediate energies, and (ii) One-body mechanism or mean-field fluctuations, which is the dominant mechanism at low energies. In the first part of our project, the PI extended the standard transport model at intermediate energies by incorporating collisional mechanism according to the “Generalized Langevin Description” of Mori formalism. The PI and his collaborators carried out a number of applications for describing dynamical mechanism of nuclear multi fragmentations, and nuclear collective response in the semi-classical framework of the approach, which is known as the Boltzmann-Langevin model. In the second part of the project, we considered dynamical description at low energies. Because of the effective Pauli blocking, the collisional dissipation and

  7. A quantum chaotic clock and damping of the coherent nuclear rotation in the 28Si+64Ni dissipative collision

    International Nuclear Information System (INIS)

    Kun, S.Y.; Vagov, A.V.

    1997-01-01

    We employ the statistical reactions with memory approach to study oscillating excitation functions in the 28 Si(E lab =120-126.75 MeV)+ 64 Ni strongly dissipative reaction and the time evolution of the collision process. The nonself-averaging of the oscillations in the excitation functions is interpreted as indication of quantum chaos and damping of the coherent nuclear rotation in dissipative heavy-ion collisions. (orig.)

  8. Atomic nuclei and nuclear reactions. Theory and application

    International Nuclear Information System (INIS)

    Sitenko, A.G.; Tartakovsky, V.K.; Kenjebaev, K.K.; Shunkeyev, K.Sh.; Ismatov, E.I.; Mukhammedov, S.; Comsan, M.N.H.; Djuraev, Sh.Kh.

    2004-01-01

    Full text: The short description of the book preparation by the collective authors from Ukraine, Kazakhstan, Uzbekistan and Egypt is given. The present book is the expanded course of lectures on the theory of nuclei, nuclear reactions and their applications delivered by the authors for a number of years in the Ukrainian National University, Aktubinsk State University of the Kazakhstan Republic, Tashkent National University, Samarkand and Termez State Universities of Uzbekistan Republic, Egyptian National Universities (Al-Az'har, Menoufeya, Suez-Canal and Tanta) and the Institute of Nuclear Physics of the Academy of Sciences of the Republic of Uzbekistan. The lectures present foundations of the modern concepts of the structure of nuclei, on the nature of nuclear processes and nuclear transformations. Main attention in the book was paid to the presentation of the basics and some modern achievements in the field of the theory of nuclei and nuclear reactions. A number of problems was investigated in original works and were not presented in the physics textbooks. The book presents the non-relativistic theory of nuclear reactions, questions of relativistic nuclear physics were not considered here. Non-relativistic theory of nuclear reactions is based on the notions of collision matrix or S-matrix. In absence of consequent microscopic theory, the scattering matrix can be found phenomenological based on definite assumptions on the character of nuclear interactions. Modern applications of nuclear reactions for the development of nuclear methods of analysis are presented. The delayed and nuclear techniques with nuclear reactor, accelerators and radioisotopic sources are considered. The book is designed as a textbook for bachelor and postgraduate students of physical faculties of universities and engineering-physical institutions, lecturers and researchers, working in the field of nuclear physics. The book gives an up-to-date list of references on nuclear reaction theory and

  9. Interferometry of high energy nuclear collisions

    International Nuclear Information System (INIS)

    Padula, S.S.

    1990-01-01

    The interferometry is used for determining large space time dimensions of the Quark Gluon Plasma formed in high energy nuclear collisions or in high multiplicity fluctuations in p-barp collisions. (M.C.K.)

  10. Thermal Bremsstrahlung probing nuclear multifragmentation in nucleus-nucleus collisions around the Fermi energy; Bremsstrahlung thermique comme sonde de la multifragmentation nucleaire dans les collisions noyau-noyau aux energies de Fermi

    Energy Technology Data Exchange (ETDEWEB)

    D' Enterria, D.G

    2000-05-15

    The thermodynamical properties of nuclear matter at moderate temperatures and densities, in the vicinity of the predicted nuclear liquid-gas phase transition, are studied using as experimental probe the hard-photons (E{sub {gamma}} > 30 MeV) emitted in nucleus-nucleus collisions. Photon and charged-particle production in four different heavy-ion reactions (Ar{sup 36} + Au{sup 197}, Ag{sup 107}, Ni{sup 58}, C{sup 12} at 60 A*MeV) is measured exclusively and inclusively coupling the TAPS photon spectrometer with two charged-particle and intermediate-mass-fragment detectors covering nearly 4{pi}. We confirm that Bremsstrahlung emission in first-chance (off-equilibrium) proton-neutron collisions (pn{gamma}) is the dominant origin of hard photons. We also firmly establish the existence of a thermal radiation component emitted in second-chance proton-neutron collisions. This thermal Bremsstrahlung emission takes place in semi-central and central nucleus-nucleus reactions involving heavy targets. We exploit this observation i) to demonstrate that thermal equilibrium is reached during the reaction, ii) to establish a new thermometer of nuclear matter based on Bremsstrahlung photons, iii) to derive the thermodynamical properties of the excited nuclear sources and, in particular, to establish a 'caloric curve' (temperature versus excitation energy), and iv) to assess the time-scales of the nuclear break-up process. (author)

  11. Deconfinement and nuclear collisions

    International Nuclear Information System (INIS)

    Sarma, Nataraja

    1992-01-01

    Expensive experiments to detect a deconfined parton phase have been done and are being planned. In these experiments it is hoped that nuclear collisions at relativistic energies will exhibit signals of this new phase. So far all the results may be interpreted in terms of independent nucleon-nucleon interactions. These elementary collisions at very high energies are therefore worth examination since each such collision produces a highly excited entity which emits a large number of hadrons. In the hadronic phase this results in the GS multiplicity distribution. In the parton phase, parton branching results in the popular negative binomial distribution. Though neither the GS nor the NB distribution alone agrees with the data beyond 200 GeV, it is fitted exceedingly well by a weighted sum of the two distributions. Since the negative binomial distribution arises from the branching of partons, we interpret the increase with energy of the negative binomial component in the weighted sum as the onset of a deconfined phase. The rising cross section for the negative binomial component parallels very closely the inclusive cross section for hadron jets which is also considered a consequence of partons branching. The consequences of this picture to nuclear collisions is discussed. (author). 8 refs., 9 figs., 3 tabs

  12. Initial angular momentum and flow in high energy nuclear collisions

    Science.gov (United States)

    Fries, Rainer J.; Chen, Guangyao; Somanathan, Sidharth

    2018-03-01

    We study the transfer of angular momentum in high energy nuclear collisions from the colliding nuclei to the region around midrapidity, using the classical approximation of the color glass condensate (CGC) picture. We find that the angular momentum shortly after the collision (up to times ˜1 /Qs , where Qs is the saturation scale) is carried by the "β -type" flow of the initial classical gluon field, introduced by some of us earlier. βi˜μ1∇iμ2-μ2∇iμ1 (i =1 ,2 ) describes the rapidity-odd transverse energy flow and emerges from Gauss's law for gluon fields. Here μ1 and μ2 are the averaged color charge fluctuation densities in the two nuclei, respectively. Interestingly, strong coupling calculations using anti-de Sitter/conformal field theory (AdS/CFT) techniques also find an energy flow term featuring this particular combination of nuclear densities. In classical CGC the order of magnitude of the initial angular momentum per rapidity in the reaction plane, at a time 1 /Qs , is |d L2/d η |≈ RAQs-3ɛ¯0/2 at midrapidity, where RA is the nuclear radius, and ɛ¯0 is the average initial energy density. This result emerges as a cancellation between a vortex of energy flow in the reaction plane aligned with the total angular momentum, and energy shear flow opposed to it. We discuss in detail the process of matching classical Yang-Mills results to fluid dynamics. We will argue that dissipative corrections should not be discarded to ensure that macroscopic conservation laws, e.g., for angular momentum, hold. Viscous fluid dynamics tends to dissipate the shear flow contribution that carries angular momentum in boost-invariant fluid systems. This leads to small residual angular momentum around midrapidity at late times for collisions at high energies.

  13. Novel Role of Superfluidity in Low-Energy Nuclear Reactions.

    Science.gov (United States)

    Magierski, Piotr; Sekizawa, Kazuyuki; Wlazłowski, Gabriel

    2017-07-28

    We demonstrate, within symmetry unrestricted time-dependent density functional theory, the existence of new effects in low-energy nuclear reactions which originate from superfluidity. The dynamics of the pairing field induces solitonic excitations in the colliding nuclear systems, leading to qualitative changes in the reaction dynamics. The solitonic excitation prevents collective energy dissipation and effectively suppresses the fusion cross section. We demonstrate how the variations of the total kinetic energy of the fragments can be traced back to the energy stored in the superfluid junction of colliding nuclei. Both contact time and scattering angle in noncentral collisions are significantly affected. The modification of the fusion cross section and possibilities for its experimental detection are discussed.

  14. Theoretical interpretation of high-energy nuclear collisions

    International Nuclear Information System (INIS)

    Fai, G.

    1991-07-01

    Nuclear collision data are interpreted theoretically. The nuclear equation of state is investigated with particular emphasis on momentum-dependent mean field effects. Subnucleonic degrees of freedom are invoked at high energies and densities, and a short length-scales. A nontopological soliton model for baryons is studied in which effective meson fields are generated from extended quark-antiquark pairs. The major objective of this nuclear theory project is a better understanding of the properties of strongly interacting matter on the nuclear energy scale, as manifested in high-energy heavy-ion collisions

  15. K X-rays and nuclear reaction times in the deep inelastic reactions U+U and U+Pb at 7.5 MeV/amu

    International Nuclear Information System (INIS)

    Stoller, C.

    1985-01-01

    The K-shell ionisation probability of the heavy reaction products emerging from binary deep inelastic collisions of U + U and U + Pb at 7.5 MeV/amu has been measured as a function of the total kinetic energy loss - Q. After subtraction of the ionisation probability due to internal conversion of γ-rays, a strongly Q-dependent Psub(K) is found, in agreement with theoretical predictions relating the change in ionisation probability to the nuclear sticking time. The deduced nuclear reaction times are in qualitative agreement with predictions from nuclear models of deep inelastic reactions. (orig.)

  16. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    International Nuclear Information System (INIS)

    Sarantites, D.G.

    1992-01-01

    The research program described touches five areas of nuclear physics: nuclear structure studies at high spin (hyperdeformation in the mass A ≅ 182 region, structure of 182 Hg and 182 Au at high spin, a highly deformed band in 136 Pm and the anomalous h 11/2 proton crossing in the A∼135 superdeformed region), studies at the interface between structure and reactions (population of entry states in heavy-ion fusion reactions, nuclear structure effects in proton evaporation spectra, nuclear structure- dependent entry state population by total spectroscopy, entrance channel effects in fusion near the barrier, lifetimes of subbarrier α particles by the atomic clock method), production and study of hot nuclei (the statistical model evaporation code EVAP, statistical emission of deuterons and tritons from highly excited compound nuclei, heavy-fragment emission as a probe of the thermal properties of highly excited compound nuclei, use of incoming-wave boundary condition transmission coefficients in the statistical model: implications in the particle evaporation spectra, study of transparency in the optical model), reaction mechanism studies (binary character of highly dissipative 209 Bi + 136 Xe collisions at E/A=28.2 MeV), and development and use of novel techniques and instrumentation in these areas of research (including a 4π channel selection device, a novel x-ray detector, and a simple channel-selecting detector)

  17. 1-3 Nuclear In-medium Effects of Strange Particles in Proton-nucleus Collisions

    Institute of Scientific and Technical Information of China (English)

    Feng; Zhaoqing[1

    2014-01-01

    Extraction of the in-medium properties of strange particles from heavy-ion collisions is very complicated, since he nuclear density varies in the evolution of nucleus-nucleus collisions. To avoid the uncertainties of the baryon ensities during the stage of strange particle production, one can investigate proton-nucleus collisions where the uclear density is definite around the saturation density. Dynamics of strange particles produced in the protoninduced uclear the reactions near the threshold energies has been investigated within the Lanzhou quantum olecular dynamics (LQMD) transport model. The in-medium modifications on particle production in densenuclear matter are considered through the corrections to the elementary cross sections via the effective mass and he mean-field potentials[1].

  18. Hipse: an event generator for nuclear collisions at intermediate energies

    International Nuclear Information System (INIS)

    Lacroix, D.; Van Lauwe, A.; Durand, D.

    2003-11-01

    An event generator, HIPSE (Heavy-Ion Phase-Space Exploration), dedicated to the description of nuclear collisions in the intermediate energy range is presented. Based on the sudden approximation and on geometrical hypothesis, it can conveniently simulate heavy-ion interactions at all impact parameters and thus can constitute a valuable tool for the understanding of processes such as neck emission or multifragmentation in peripheral or/and central collisions. After a detailed description of the ingredients of the model, first comparisons with experimental data collected by the INDRA collaboration are shown. Special emphasis is put on the kinematical characteristics of fragments and light particles observed at all impact parameters for Xe+Sn reactions at 25 and 50 MeV/u and Ni + Ni at 82 MeV/u. (authors)

  19. Fragmentation processes in nuclear reactions

    International Nuclear Information System (INIS)

    Baur, G.; Roesel, F.; Trautmann, D.; Shyam, R.

    1983-10-01

    Fragmentation processes in nuclear collisions are reviewed. The main emphasis is put on light ion breakup at nonrelativistic energies. The post- and prior-form DWBA theories are discussed. The post-form DWBA, appropriate for the ''spectator breakup'' describes elastic as well as inelastic breakup modes. This theory can also account for the stripping to unbound states. The theoretical models are compared to typical experimental results to illustrate the various possible mechanisms. It is discussed, how breakup reactions can be used to study high-lying single particle strength in the continuum; how it can yield information about momentum distributions of fragments in the nucleus. (orig.)

  20. Light particle emission as a probe of reaction mechanism and nuclear excitation

    International Nuclear Information System (INIS)

    Guerreau, D.

    1989-01-01

    The central part of these lectures will be dealing with the problem of energy dissipation. A good understanding of the mechanisms for the dissipation requires to study both peripheral and central collisions or, in other words, to look at the impact paramenter dependence. This should also provide valuable information on the time scale. In order to probe the reaction mechanism and nuclear excitation, one of the most powerful tool is unquestionably the observation of light particle emission, including neutrons and charged particles. Several examples will be discussed related to peripheral collisions (the fate of transfer reactions, the excitation energy generation, the production of projectile-like fragments) as well as inner collisions for which extensive studies have demonstrated the strength of intermediate energy heavy ions for the production of very hot nuclei and detailed study of their decay properties

  1. Nuclear stopping in oxygen-induced reactions at 200 A GeV

    International Nuclear Information System (INIS)

    Obenshain, F.E.; Albrecht, R.; Awes, T.C.

    1988-01-01

    A primary goal of relativistic heavy-ion studies is to verify the existence of the postulated quark-gluon plasma (QGP). Since most of the possible plasma signatures are indistinguishable from background created by nonplasma events. Thorough understanding of reaction mechanisms is an important prerequisite in any QGP search. To isolate collective features of nucleus-nucleus collisions from those that may be expected on the basis of linear superposition of nucleon-nucleus collisions, we compare measured quantities with calculations that reproduce data from nucleon-induced reactions and that make predictions for nucleus-nucleus reactions. Here we discuss the data obtained from our Zero-Degree Calorimeter (ZDC) and the transverse energy obtained from the Mid-Rapidity Calorimeter (MIRAC). The primary reactions considered are: 16 O + 16 C and 16 O + 197 Au. The measurements show a high degree of nuclear stopping and the energy densities may be large enough to produce a transition to the quark-gluon plasma. 10 refs., 5 figs

  2. Novel High Transverse Momentum Phenomena in Hadronic and Nuclear Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC

    2009-04-10

    I discuss a number of novel phenomenological features of QCD in high transverse momentum reactions. The presence of direct higher-twist processes, where a proton is produced directly in the hard subprocess, can explain the 'baryon anomaly' - the large proton-to-pion ratio seen at RHIC in high centrality heavy ion collisions. Direct hadronic processes can also account for the deviation from leading-twist PQCD scaling at fixed x{sub T} = 2 p{sub T}/{radical}s. I suggest that the 'ridge' --the same-side long-range rapidity correlation observed at RHIC in high centrality heavy ion collisions is due to the imprint of semihard DGLAP gluon radiation from initial-state partons which have transverse momenta biased toward the trigger. A model for early thermalization of the quark-gluon medium is also outlined. Rescattering interactions from gluon-exchange, normally neglected in the parton model, have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, the breakdown of the Lam-Tung relation in Drell-Yan reactions, nuclear shadowing--all leading-twist dynamics not incorporated in the light-front wavefunctions of the target computed in isolation. Anti shadowing is shown to be quark flavor specific and thus different in charged and neutral deep inelastic lepton-nucleus scattering. I also discuss other aspects of quantum effects in heavy ion collisions, such as tests of hidden color in nuclear wavefunctions, the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency, and the important consequences of color-octet intrinsic heavy quark distributions in the proton for particle and Higgs production at high x{sub F}. I also discuss how the AdS/CFT correspondence between Anti-de Sitter space and conformal gauge theories allows one to compute the analytic form of frame-independent light

  3. Pion production in relativistic collisions of nuclear drops

    International Nuclear Information System (INIS)

    Alonso, C.T.; Wilson, J.R.; McAbee, T.L.; Zingman, J.A.

    1988-09-01

    In a continuation of the long-standing effort of the nuclear physics community to model atomic nuclei as droplets of a specialized nuclear fluid, we have developed a hydrodynamic model for simulating the collisions of heavy nuclei at relativistic speeds. Our model couples ideal relativistic hydrodynamics with a new Monte Carlo treatment of dynamic pion production and tracking. The collective flow for low-energy (200 MeV/N) collisions predicted by this model compares favorably with results from earlier hydrodynamic calculations which used quite different numerical techniques. Our pion predictions at these lower energies appear to differ, however, from the experimental data on pion multiplicities. In this case of ultra-relativistic (200 GeV/N) collisions, our hydrodynamic model has produced baryonic matter distributions which are in reasonable agreement with recent experimental data. These results may shed some light on the sensitivity of relativistic collision data to the nuclear equation of state. 20 refs., 12 figs

  4. Study of the most violent collisions in Kr + Au and Pb + Au reactions close to 30 MeV per nucleon

    International Nuclear Information System (INIS)

    Galin, J.

    1991-01-01

    Within the past two years, the use of the high efficiency, sectorized 4π neutron detector, ORION, enabled a new approach in the investigation of nuclear collisions between very heavy nuclei. This talk discusses recent developments of this technique applied to Kr + Au and Pb + Au reactions induced at 32 and 29 MeV per nucleon respectively. The effectiveness of the neutron multiplicity meter as a filter on the violence of the collision is presented and the characteristics of the most violent collisions examined in some detail by considering associated charged particles

  5. Origin of the finite nuclear spin and its effect in intermediate energy heavy ion collisions

    International Nuclear Information System (INIS)

    Zhang Guoqiang; Cao Xiguang; Fu Yao

    2012-01-01

    The heavy-ion phase-space exploration (HIPSE) model is used to discuss the origin of the nuclear spin in intermediate energy heavy-ion collision (HIC). The spin of maximal projectile-like fragment is found to depend strongly on impact parameter of a reaction system,while it relates weakly to the collision violence. Some interesting multi-fragmentation phenomena related to the spin are shown. We also found that the excitation energy in the de-excitation stage plays a robust role at the de-excitation stage in HIC. (authors)

  6. Nuclear dynamics in heavy ion induced fusion-fission reactions

    International Nuclear Information System (INIS)

    Kapoor, S.S.

    1992-01-01

    Heavy ion induced fission and fission-like reactions evolve through a complex nuclear dynamics encountered in the medium energy nucleus-nucleus collisions. In the recent years, measurements of the fragment-neutron and fragment-charged particle angular correlations in heavy ion induced fusion-fission reactions, have provided new information on the dynamical times of nuclear deformations of the initial dinuclear complex to the fission saddle point and the scission point. From the studies of fragment angular distributions in heavy ion induced fission it has been possible to infer the relaxation times of the dinuclear complex in the K-degree of freedom and our recent measurements on the entrance channel dependence of fragment anisotropies have provided an experimental signature of the presence of fissions before K-equilibration. This paper reviews recent experimental and theoretical status of the above studies with particular regard to the questions relating to dynamical times, nuclear dissipation and the effect of nuclear dissipation on the K-distributions at the fission saddle in completely equilibrated compound nucleus. (author). 19 refs., 9 figs

  7. Nuclear compression effects on pion production in nuclear collisions

    International Nuclear Information System (INIS)

    Sano, M.; Gyulassy, M.; Wakai, M.; Kitazoe, Y.

    1984-11-01

    The pion multiplicity produced in nuclear collisions between 0.2 and 2 AGeV is calculated assuming shock formation. We also correct the procedure of extracting the nuclear equation of state as proposed by Stock et al. The nuclear equation of state would have to be extremely stiff for this model to reproduce the observed multiplicities. The assumptions of this model are critically analyzed. (author)

  8. Constituent quark model for nuclear stopping in high energy nuclear collisions

    International Nuclear Information System (INIS)

    Choi, T.K.; Maruyama, M.; Takagi, F.

    1997-01-01

    We study nuclear stopping in high energy nuclear collisions using the constituent quark model. It is assumed that wounded nucleons with a different number of interacted quarks hadronize in different ways. The probabilities of having such wounded nucleons are evaluated for proton-proton, proton-nucleus, and nucleus-nucleus collisions. After examining our model in proton-proton and proton-nucleus collisions and fixing the hadronization functions, it is extended to nucleus-nucleus collisions. It is used to calculate the rapidity distribution and the rapidity shift of final-state protons in nucleus-nucleus collisions. The computed results are in good agreement with the experimental data on 32 S+ 32 S at E lab =200A GeV and 208 Pb+ 208 Pb at E lab =160A GeV. Theoretical predictions are also given for proton rapidity distribution in 197 Au+ 197 Au at √(s)=200A GeV (BNL-RHIC). We predict that the nearly baryon-free region will appear in the midrapidity region and the rapidity shift is left-angle Δy right-angle=2.24

  9. Models of high energy nuclear collisions

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1978-06-01

    The discussion covers nuclear collisions at relativistic energies including classes of high energy nucleus--nucleus collisions, and the kinetics of a central collision; and the asymptotic hadron spectrum including known and unknown hadrons, the relevance of the spectrum and the means of its study, thermodynamics of hadronic matter, examples of hadronic spectra, the temperature, composition of the initial fireball and its expansion, isoergic expansion with no pre-freezeout radiation, isentropic expansion of the fireball, the quasi-dynamical expansion, and finally antinuclei, hypernuclei, and the quark phase. 28 references

  10. High energy nuclear collisions

    Indian Academy of Sciences (India)

    We review some basic concepts of relativistic heavy-ion physics and discuss our understanding of some key results from the experimental program at the relativistic heavy-ion collider (RHIC). We focus in particular on the early time dynamics of nuclear collisions, some result from lattice QCD, hard probes and photons.

  11. Reaction mechanisms and staggering in S+Ni collisions

    International Nuclear Information System (INIS)

    D'Agostino, M.; Bruno, M.; Gulminelli, F.; Morelli, L.; Baiocco, G.; Bardelli, L.; Barlini, S.; Cannata, F.; Casini, G.; Geraci, E.; Gramegna, F.; Kravchuk, V.L.; Marchi, T.; Moroni, A.; Ordine, A.; Raduta, Ad.R.

    2011-01-01

    The reactions 32 S+ 58 Ni and 32 S+ 64 Ni are studied at 14.5 A MeV. After a selection of the collision mechanism, we show that important even-odd effects are present in the isotopic fragment distributions when the excitation energy is small. Close to the multifragmentation threshold this staggering appears hidden by the rapid variation of the production yields with the fragment size. Once this effect is accounted for, the staggering appears to be a universal feature of fragment production, slightly enhanced when the emission source is neutron poor. A closer look at the behavior of the production yields as a function of the neutron excess N-Z, reveals that odd-even effects cannot be explained by pairing effects in the nuclear masses alone, but depend in a more complex way on the de-excitation chain.

  12. Extension of PENELOPE to protons: Simulation of nuclear reactions and benchmark with Geant4

    International Nuclear Information System (INIS)

    Sterpin, E.; Sorriaux, J.; Vynckier, S.

    2013-01-01

    Purpose: Describing the implementation of nuclear reactions in the extension of the Monte Carlo code (MC) PENELOPE to protons (PENH) and benchmarking with Geant4.Methods: PENH is based on mixed-simulation mechanics for both elastic and inelastic electromagnetic collisions (EM). The adopted differential cross sections for EM elastic collisions are calculated using the eikonal approximation with the Dirac–Hartree–Fock–Slater atomic potential. Cross sections for EM inelastic collisions are computed within the relativistic Born approximation, using the Sternheimer–Liljequist model of the generalized oscillator strength. Nuclear elastic and inelastic collisions were simulated using explicitly the scattering analysis interactive dialin database for 1 H and ICRU 63 data for 12 C, 14 N, 16 O, 31 P, and 40 Ca. Secondary protons, alphas, and deuterons were all simulated as protons, with the energy adapted to ensure consistent range. Prompt gamma emission can also be simulated upon user request. Simulations were performed in a water phantom with nuclear interactions switched off or on and integral depth–dose distributions were compared. Binary-cascade and precompound models were used for Geant4. Initial energies of 100 and 250 MeV were considered. For cases with no nuclear interactions simulated, additional simulations in a water phantom with tight resolution (1 mm in all directions) were performed with FLUKA. Finally, integral depth–dose distributions for a 250 MeV energy were computed with Geant4 and PENH in a homogeneous phantom with, first, ICRU striated muscle and, second, ICRU compact bone.Results: For simulations with EM collisions only, integral depth–dose distributions were within 1%/1 mm for doses higher than 10% of the Bragg-peak dose. For central-axis depth–dose and lateral profiles in a phantom with tight resolution, there are significant deviations between Geant4 and PENH (up to 60%/1 cm for depth–dose distributions). The agreement is much

  13. Extension of PENELOPE to protons: simulation of nuclear reactions and benchmark with Geant4.

    Science.gov (United States)

    Sterpin, E; Sorriaux, J; Vynckier, S

    2013-11-01

    Describing the implementation of nuclear reactions in the extension of the Monte Carlo code (MC) PENELOPE to protons (PENH) and benchmarking with Geant4. PENH is based on mixed-simulation mechanics for both elastic and inelastic electromagnetic collisions (EM). The adopted differential cross sections for EM elastic collisions are calculated using the eikonal approximation with the Dirac-Hartree-Fock-Slater atomic potential. Cross sections for EM inelastic collisions are computed within the relativistic Born approximation, using the Sternheimer-Liljequist model of the generalized oscillator strength. Nuclear elastic and inelastic collisions were simulated using explicitly the scattering analysis interactive dialin database for (1)H and ICRU 63 data for (12)C, (14)N, (16)O, (31)P, and (40)Ca. Secondary protons, alphas, and deuterons were all simulated as protons, with the energy adapted to ensure consistent range. Prompt gamma emission can also be simulated upon user request. Simulations were performed in a water phantom with nuclear interactions switched off or on and integral depth-dose distributions were compared. Binary-cascade and precompound models were used for Geant4. Initial energies of 100 and 250 MeV were considered. For cases with no nuclear interactions simulated, additional simulations in a water phantom with tight resolution (1 mm in all directions) were performed with FLUKA. Finally, integral depth-dose distributions for a 250 MeV energy were computed with Geant4 and PENH in a homogeneous phantom with, first, ICRU striated muscle and, second, ICRU compact bone. For simulations with EM collisions only, integral depth-dose distributions were within 1%/1 mm for doses higher than 10% of the Bragg-peak dose. For central-axis depth-dose and lateral profiles in a phantom with tight resolution, there are significant deviations between Geant4 and PENH (up to 60%/1 cm for depth-dose distributions). The agreement is much better with FLUKA, with deviations within

  14. Nuclear reactions

    International Nuclear Information System (INIS)

    Lane, A.M.

    1980-01-01

    In reviewing work at Harwell over the past 25 years on nuclear reactions it is stated that a balance has to be struck in both experiment and theory between work on cross-sections of direct practical relevance to reactors and on those relevant to an overall understanding of reaction processes. The compound nucleus and direct process reactions are described. Having listed the contributions from AERE, Harwell to developments in nuclear reaction research in the period, work on the optical model, neutron capture theory, reactions at doorway states with fine structure, and sum-rules for spectroscopic factors are considered in more detail. (UK)

  15. High energy nuclear collisions in the few GeV/nucleon region: projectile and target fragmentation

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1980-06-01

    A general review of nucleon-nucleus and nucleus-nucleus collisions for incident energies <10 GeV/nucleon is presented. The division of these interactions into peripheral and central collisions is briefly discussed. Subjects treated include the following: target and projectile fragmentation systematics, production of exotic nuclear fragments, studies of multiparticle final states, total cross section measurements, results from an experiment that indicate the production of projectile fragments with an anomalously short reaction mean free path, high-energy particle production at backward angles beyond simple N-N kinematic limits, and recent results on backward particle emission in studies with the Berkeley streamer chamber. Both the particle and nuclear physics aspects that are present are considered. A brief discussion of future trends in this energy range ends the presentation. 65 references, 37 figures

  16. On the balance energy and nuclear dynamics in peripheral heavy-ion collisions

    International Nuclear Information System (INIS)

    Chugh, Rajiv; Puri, Rajeev K.

    2010-01-01

    We present here the system size dependence of balance energy for semi-central and peripheral collisions using quantum molecular dynamics model. For this study, the reactions of Ne 20 +Ne 20 , Ca 40 +Ca 40 , Ni 58 + Ni 58 , Nb 93 +Nb 93 , Xe 131 +Xe 131 , and Au 197 +Au 197 are simulated at different incident energies and impact parameters. A hard equation of state along with nucleon–nucleon cross-sections between 40 and 55 mb explains the data nicely. Interestingly, balance energy follows a power law ∝A τ for the mass dependence at all colliding geometries. The power factor τ is close to –1/3 in central collisions, whereas it is –2/3 for peripheral collisions suggesting stronger system size dependence at peripheral geometries. This also suggests that in the absence of momentum dependent interactions, Coulomb's interaction plays an exceedingly significant role. These results are further analyzed for nuclear dynamics at the balance point. (author)

  17. Putting Reaction Rates and Collision Theory in the Hands of Your Students.

    Science.gov (United States)

    Evenson, Andy

    2002-01-01

    Describes a simulation that can be used to give concrete analogies of collision theory and the factors that affect reaction rates including temperature, concentration, catalyst, and molecular orientation. The simulation works best if done as an introduction to the concepts to help prevent misconceptions about reaction rates and collision theory.…

  18. High energy nuclear collisions: theory review

    International Nuclear Information System (INIS)

    Fries, Rainer J.

    2009-01-01

    Full text: High Energy Nuclear Collisions are studied at the Relativistic Heavy Ion Collider (RHIC) and, starting next year, also at the Large Hadron Collider (LHC) to study the formation and properties of quark gluon plasma (QGP). This effort is driven by the prediction that above a certain critical temperature quarks and gluons are deconfined. For the past ten years of running RHIC has performed marvelously. Data from RHIC has answered many initial questions, but it has also provided new, more challenging problems to understand the nature of quark gluon plasma and the dynamics of heavy ion collisions. In this talk I review some of the basic concepts of high energy nuclear collisions and quark gluon plasma formation. We also discuss some of the novel and open questions that we are faced with. We discuss recent predictions on properties of hot quantum chromodynamics, emerging signatures for the color glass condensate, the fascinating idea of local P and CP violation in QCD, as well as ongoing research on hard probes and electromagnetic signatures

  19. Need for reaction coordinates to ensure a complete basis set in an adiabatic representation of ion-atom collisions

    Science.gov (United States)

    Rabli, Djamal; McCarroll, Ronald

    2018-02-01

    This review surveys the different theoretical approaches, used to describe inelastic and rearrangement processes in collisions involving atoms and ions. For a range of energies from a few meV up to about 1 keV, the adiabatic representation is expected to be valid and under these conditions, inelastic and rearrangement processes take place via a network of avoided crossings of the potential energy curves of the collision system. In general, such avoided crossings are finite in number. The non-adiabatic coupling, due to the breakdown of the Born-Oppenheimer separation of the electronic and nuclear variables, depends on the ratio of the electron mass to the nuclear mass terms in the total Hamiltonian. By limiting terms in the total Hamiltonian correct to first order in the electron to nuclear mass ratio, a system of reaction coordinates is found which allows for a correct description of both inelastic channels. The connection between the use of reaction coordinates in the quantum description and the electron translation factors of the impact parameter approach is established. A major result is that only when reaction coordinates are used, is it possible to introduce the notion of a minimal basis set. Such a set must include all avoided crossings including both radial coupling and long range Coriolis coupling. But, only when reactive coordinates are used, can such a basis set be considered as complete. In particular when the centre of nuclear mass is used as centre of coordinates, rather than the correct reaction coordinates, it is shown that erroneous results are obtained. A few results to illustrate this important point are presented: one concerning a simple two-state Landau-Zener type avoided crossing, the other concerning a network of multiple crossings in a typical electron capture process involving a highly charged ion with a neutral atom.

  20. Microscopic description of low-energy nuclear collisions: review and perspective

    International Nuclear Information System (INIS)

    Bonche, Paul

    2000-01-01

    The primary goal of this lecture is a review of the microscopic approaches to nuclear reactions. Semi-phenomenological theories will not be discussed. First the Time-Dependent Hartree-Fock formalism is recalled. The effective nucleon-nucleon interactions used in TDHF calculations are discussed. Applications to collisions are presented in different approximation scheme, one-dimensional dynamics, approximate three-dimensional ones.... Finally two microscopic extensions beyond mean-field are reviewed: the variational principal of Balian and Veneroni and the implementation of residual two-body interactions in the Time-Dependent Density Matrix (TDDM) and the Extended Time-Dependent Hartree-Fock schemes (ET-DHF). (author)

  1. Transverse Characteristics of Hadron Production in Elementary and Nuclear Collisions at the CERN SPS Energies

    CERN Document Server

    AUTHOR|(CDS)2076476; Bialkowska, H

    2004-01-01

    A comprehensive study of transverse phenomena at CERN-SPS energies has been performed using data collected by the NA49 experiment. Results on p, p, pi+ and pi- production in elementary hadronic interactions (p + p, pi+ +p and pi- + p) as well as in nuclear collisions (centrality-defined p + Pb, C + C, Si + Si And Pb + Pb) are presented. The dependence of transverse momentum spectra, and in particular the - xF correlations, on particle species, collision energy, size and structure of the colliding objects has been investigated. Particle composition, in terms of the nuclear modification factors RpA (pT) for different xF regions – and particle ratios, has been also studied. The whole set of experimental data puts strong constraints on theoretical models aiming at the description of hadron production in the studied reactions.

  2. Nuclear fragmentation reactions in extended media studied with Geant4 toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Pshenichnov, Igor, E-mail: pshenich@fias.uni-frankfurt.d [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); Institute for Nuclear Research, Russian Academy of Science, 117312 Moscow (Russian Federation); Botvina, Alexander [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); Institute for Nuclear Research, Russian Academy of Science, 117312 Moscow (Russian Federation); Mishustin, Igor [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); Kurchatov Institute, Russian Research Center, 123182 Moscow (Russian Federation); Greiner, Walter [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany)

    2010-03-15

    It is well-known from numerous experiments that nuclear multifragmentation is a dominating mechanism for production of intermediate mass fragments in nucleus-nucleus collisions at energies above 100AMeV. In this paper we investigate the validity and performance of the Fermi break-up model and the statistical multifragmentation model implemented as parts of the Geant4 toolkit. We study the impact of violent nuclear disintegration reactions on the depth-dose profiles and yields of secondary fragments for beams of light and medium-weight nuclei propagating in extended media. Implications for ion-beam cancer therapy and shielding from cosmic radiation are discussed.

  3. Nuclear fragmentation reactions in extended media studied with Geant4 toolkit

    International Nuclear Information System (INIS)

    Pshenichnov, Igor; Botvina, Alexander; Mishustin, Igor; Greiner, Walter

    2010-01-01

    It is well-known from numerous experiments that nuclear multifragmentation is a dominating mechanism for production of intermediate mass fragments in nucleus-nucleus collisions at energies above 100AMeV. In this paper we investigate the validity and performance of the Fermi break-up model and the statistical multifragmentation model implemented as parts of the Geant4 toolkit. We study the impact of violent nuclear disintegration reactions on the depth-dose profiles and yields of secondary fragments for beams of light and medium-weight nuclei propagating in extended media. Implications for ion-beam cancer therapy and shielding from cosmic radiation are discussed.

  4. Nuclear reactions of medium and heavy target nuclei with high-energy projectiles

    International Nuclear Information System (INIS)

    Kozma, P.; Damdinsuren, C.

    1988-01-01

    The cross sections of a number of target fragmentation products formed in nuclear reactions of 3.65 AGeV 12 C-ions and 3.65 GeV protons with 197 Au have been measured. The measurements have been done by direct counting of irradiated targets with Ge(Li) gamma-spectrometers. Comparison between these and other data has been used to test the hypotheses of factorization and limiting fragmentation. The total cross section for residue production in both reactions indicates that target residues are formed mainly in central collisions

  5. Collision simulations of an exclusive ship of spent nuclear fuels

    International Nuclear Information System (INIS)

    Kitamura, Ou; Endo, Hisayoshi

    2000-01-01

    Exclusive ships for sea transport of irradiated nuclear fuels operating in Japanese territorial waters are required to be built with the special hull structure against collision. To comply with the official notice 'KAISA No. 520' issued by the Ministry of Transport, the side structure of any such exclusive ship must be designed to secure the specified energy absorption capability based on Minorsky's ship collision model. The Shipbuilding Research Association of Japan (JSRA) has studied the safety in sea transport of nuclear fuels intermittently for these several decades. Recently, the adoption of finite element method has made detailed collision analyses practicable. Since 1998, the regulation research panel No. 46 of JSRA has carried out a series of finite element collision simulations in order to estimate the realistic damage to a typical exclusive ship of spent nuclear fuels. The expected structural responses, global motions and energy absorption capabilities of both colliding and struck ships during collision were investigated. The results of the investigations have shown that the ship is very likely to withstand the collision even with one of the world's largest ship. This is due mainly to her hull structure specially strengthened beyond the crushing strength of the colliding bow structures. (author)

  6. Mean free paths for high energy hadron collisions in nuclear matter

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1983-01-01

    The mean free paths for various collisions of high energy pion in nuclear matter are determined experimentally using pion-xenon nucleus collision events at 3.5 GeV/c momentum. The relation between the mean free path lambdasub(i) for hadron-nucleon particle producing collisions in nuclear matter and corresponding cross section σsub(i) for particle producing collisions of this hadron with free nucleon is derived and discussed. This relation is lambdasub(i)=k/σsub(i), where lambdasub(i) is in nucleons per fm 2 and σ sub(i) - in fm 2 per nucleon, correspondingly, k=3.00+-0.26 is a coefficient accounting for the display of the nucleon inner structure in hadron-nucleus collisions

  7. [Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    1993-01-01

    Research in progress and plans for future investigations are briefly summarized for the following areas: light-ion structure and reactions; nuclear structure; peripheral heavy-ion reactions at medium and high energy; medium-energy heavy-ion collisions and properties of highly excited nuclear matter; and high-energy heavy-ion collisions and QCD plasma

  8. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2001-01-01

    Full text: The last year of the twentieth-century was productive for our Department. Although the name of the Department suggests that we are all involved in investigations of nuclear reactions, in fact our activities are spread over three major domains: nuclear, atomic and material physics. Some of the projects we were involved in the last year have been realized using national facilities and accelerators, like the Van de Graaff accelerator of our Department at 69 Hoza Street, Warsaw Cyclotron U-200P of Warsaw University, and compact C30 cyclotron of our Institute at Swierk. Other projects were done abroad, using facilities of the Gesellschaft fuer Schwerionenforschung in Darmstadt, Institute de Physique Nucleaire at Orsay, and Universitaet Erlangen-Nuernberg in Erlangen. We carried out our work in close collaborations with physicists from many laboratories, Polish and foreign. - Low energy nuclear reactions. In collaboration with scientists from Ukraine experiments, using heavy ion beam provided by the Warsaw Cyclotron, were started. The aim of the experiments is to study nuclear reactions leading to the exotic light nuclei in exit channels and energy dependence of the nucleus - nucleus interaction. Efforts were made to develop a multistep direct model of nuclear reactions. In the model contributions due to the low energy collective excitations were taken into account. Good agreement with the experimental data was achieved. - Multifragmentation of relativistic heavy ions. ALADIN Collaboration studied multifragmentation reactions induced by relativistic heavy ions. The main activities of our scientists concentrated on an upgrade of the detecting system in order to replace photo multipliers with large area avalanche photodiodes in the central section of the TOF-wall. Some tests of the photodiodes manufactured by Advanced Photonix Inc. were performed using standard β - and γ-sources. - Structure of a nucleon. Decay properties of the Roper resonance were studied. A

  9. Macroscopic and microscopic description of HE-HI collisions; classical equations of motion calculations. [Rapidity, cross sections, central and noncentral collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bodmer, A. R.

    1978-01-01

    The study of high energy heavy ion reactions includes the three principle a priori approaches used for central collisions, namely, hydrodynamics, cascade--Boltzman equation, and the classical equations of motion. While no clearly justified central or near central collisions are found, the classical equations of motion are used to illustrate some general features of these reactions. It is expected that the hot nuclear matter produced in such collisions is a dense, viscous, and thermally conductive fluid with important nonequilibrium and nonclassical features, rapidity, distribution, noncentral collisions, potential dependent effects for a given two-body scattering, and c.m. cross sections for a central collision with given parameters are among the properties considered. 12 references. (JFP)

  10. Global Lambda hyperon polarization in nuclear collisions

    Czech Academy of Sciences Publication Activity Database

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Bielčík, J.; Bielčíková, Jana; Chaloupka, P.; Federič, Pavol; Federičová, P.; Harlenderová, A.; Kocmánek, Martin; Kvapil, J.; Lidrych, J.; Rusňák, Jan; Rusňáková, O.; Šaur, Miroslav; Šimko, Miroslav; Šumbera, Michal; Trzeciak, B. A.

    2017-01-01

    Roč. 548, č. 7665 (2017), č. článku 23004. ISSN 0028-0836 R&D Projects: GA MŠk LG15001; GA MŠk LM2015054 Institutional support: RVO:61389005 Keywords : STAR collaboration * heavy ion collisions * vorticity Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 40.137, year: 2016

  11. Exotic phenomena in collisions of heavy ions

    International Nuclear Information System (INIS)

    Soff, G.; Schramm, S.; Reus, T. de; Mehler, G.; Reinhardt, J.; Mueller, B.; Greiner, W.; Mueller, U.

    1985-08-01

    To exemplify current theoretical investigations we discuss three different topics. After a presentation of the underlying theoretical framework for ionization processes we will sketch the possibility to employ delta-electron emission as a clock to measure nuclear reaction times in intermediate energy collisions of very heavy ions. Besides the phenomenon of vacuum decay into a new twofold negatively charged stable vacuum ground state, electron excitation in heavy ion collisions may be employed for the determination of delay and deceleration times on the nuclear time scale, i.e. offering an atomic clock, operating in the range 10 -21 -10 -24 s. In deep-inelastic heavy ion collisions this provides a test for classical nuclear reaction models. In collisions at intermediate energies an independent measurement of the deceleration time is of interest for comparison, e.g., with the results of the pion bremsstrahlung model. After that we investigate the influence of one or more pockets in the ion scattering potential on the energy distribution of emitted positrons within a quantum mechanical framework. Finally we very briefly consider some phenomenological corrections to the Dirac equation and its consequences on electron binding energies in heavy and superheavy atoms. (orig./HSI)

  12. [Studies of target fragmentation in intermediate energy, relativistic and ultra-relativistic nuclear collisions

    International Nuclear Information System (INIS)

    Loveland, W.D.

    1991-08-01

    The work described herein is part of a project involving the study of low energy ( 250 MeV/A) heavy ion reactions. In the low energy regime, we published a monograph on the properties of the heaviest elements and used that publication as a basis for making a set of ''best'' semi-empirical predictions of heavy element decay properties. The intermediate energy research effort focussed upon the completion of studies already begun and the initiation of a number of new experiments. In our study of a interaction of 21 MeV/nucleon 129 Xe with 197 Au, we compared the characteristics of the observed deep inelastic phenomena with various models of dissipative reactions and found significant discrepancies between observations and predictions. These discrepancies seemed to be caused by an improper treatment of pre-equilibrium in the early stages of the collision. In our study of the relativistic interaction of 400 MeV/nucleon 12 C with 197 Au, we reported the first direct physical measurement of the properties of the spallation residues from a nucleus-nucleus collision. We found the residue energies to be much lower than those predicted by the intranuclear cascade model, indicating some substantial modifications of that model are needed. But, we also found, indications of significant, non-zero values of the residue transverse momentum, a finding that calls into question the interpretation of a number of radiochemical recoil studies of the kinematics of high energy reactions. A program of performing numerical simulations of intermediate and high energy nuclear collisions using the QMD model was initiated

  13. Pair production from nuclear collisions and cosmic ray transport

    International Nuclear Information System (INIS)

    Norbury, John W

    2006-01-01

    Modern cosmic ray transport codes, that are capable of use for a variety of applications, need to include all significant atomic, nuclear and particle reactions at a variety of energies. Lepton pair production from nucleus-nucleus collisions has not been included in transport codes to date. Using the methods of Baur, Bertulani and Baron, the present report provides estimates of electron-positron pair production cross sections for nuclei and energies relevant to cosmic ray transport. It is shown that the cross sections are large compared to other typical processes such as single neutron removal due to strong or electromagnetic interactions. Therefore, lepton pair production may need to be included in some transport code applications involving MeV electrons. (brief report)

  14. On transient effects in violent nuclear collisions

    International Nuclear Information System (INIS)

    Suraud, E.; Belkacem, M.; Feng-Shou Zhang; Academia Sinica, Lanzhou, GS

    1993-01-01

    It is shown that the numerical simulations of the recently developed Boltzmann-Langevin model exhibit large dynamical fluctuations in momentum space during the early stages of heavy-ion collisions, which arise from an interplay between the nuclear meanfield and binary collisions. It is pointed out that this transient behaviour provides an initial seed for the development of density fluctuations, and could strongly influence the particle production cross-sections at subthreshold energies. (author) 13 refs.; 3 figs

  15. Hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1981-01-01

    Qualitative picture of high energy hadron-nucleus collision process, emerging from the analysis of experimental data, is presented. Appropriate description procedure giving a possibility of reproducing various characteristics of this process in terms of the data on elementary hadron-nucleon interaction is proposed. Formula reproducing hadron-nucleus collision cross sections is derived. Inelastic collision cross sections for pion-nucleus and proton-nucleus reactions at wide energy interval are calculated for Pb, Ag, and Al targets. A-dependence of cross sections for pion-nucleus and proton-nucleus collisions at nearly 50 GeV/c momentum were calculated and compared with existing experimental data. Energy dependence of cross sections for hadron-nucleus collisions is determined simply by energy dependence of corresponding cross sections for hadron-nucleon collisions; A-dependence is determined simply by nuclear sizes and nucleon density distributions in nuclei

  16. Nuclear Reaction Data File for Astrophysics (NRDF/A) in Hokkaido University Nuclear Reaction Data Center

    International Nuclear Information System (INIS)

    Kato, Kiyoshi; Kimura, Masaaki; Furutachi, Naoya; Makinaga, Ayano; Togashi, Tomoaki; Otuka, Naohiko

    2010-01-01

    The activities of the Japan Nuclear Reaction Data Centre is explained. The main task of the centre is data compilation of Japanese nuclear reaction data in collaboration of the International Network of Nuclear Reaction Data Centres. As one of recent activities, preparation of a new database (NRDF/A) and evaluation of astronuclear reaction data are reported. Collaboration in the nuclear data activities among Asian countries is proposed.

  17. Brake reactions of distracted drivers to pedestrian Forward Collision Warning systems.

    Science.gov (United States)

    Lubbe, Nils

    2017-06-01

    Forward Collision Warning (FCW) can be effective in directing driver attention towards a conflict and thereby aid in preventing or mitigating collisions. FCW systems aiming at pedestrian protection have been introduced onto the market, yet an assessment of their safety benefits depends on the accurate modeling of driver reactions when the system is activated. This study contributes by quantifying brake reaction time and brake behavior (deceleration levels and jerk) to compare the effectiveness of an audio-visual warning only, an added haptic brake pulse warning, and an added Head-Up Display in reducing the frequency of collisions with pedestrians. Further, this study provides a detailed data set suited for the design of assessment methods for car-to-pedestrian FCW systems. Brake response characteristics were measured for heavily distracted drivers who were subjected to a single FCW event in a high-fidelity driving simulator. The drivers maintained a self-regulated speed of 30km/h in an urban area, with gaze direction diverted from the forward roadway by a secondary task. Collision rates and brake reaction times differed significantly across FCW settings. Brake pulse warnings resulted in the lowest number of collisions and the shortest brake reaction times (mean 0.8s, SD 0.29s). Brake jerk and deceleration were independent of warning type. Ninety percent of drivers exceeded a maximum deceleration of 3.6m/s 2 and a jerk of 5.3m/s 3 . Brake pulse warning was the most effective FCW interface for preventing collisions. In addition, this study presents the data required for driver modeling for car-to-pedestrian FCW similar to Euro NCAP's 2015 car-to-car FCW assessment. Practical applications: Vehicle manufacturers should consider the introduction of brake pulse warnings to their FCW systems. Euro NCAP could introduce an assessment that quantifies the safety benefits of pedestrian FCW systems and thereby aid the proliferation of effective systems. Copyright © 2017

  18. Study of electron pair production in hadron and nuclear collisions at the CERN SPS

    CERN Multimedia

    Liebold, H-P; Sako, H; Belaga, V; Bielcikova, J; Stachel, J

    2002-01-01

    The NA45/CERES experiment investigates primarily the production of electron-positron pairs and of direct photons in proton-nucleus and nucleus-nucleus collisions. For electron-positron pairs the experiment studies the continuum in the mass region of about 0.05 to 2 GeV/c$^2$ and the vector mesons $\\varrho ,~ \\omega$, and, $\\phi$. Since for electromagnetic probes final state interactions are practically negligible these observables are unique for studying the evolution and dynamics of ultrarelativistic heavy-ion collisions from the hot and dense early stage where a quark-gluon plasma is expected to be formed to the final freeze-out stage when hadrons decouple.\\\\ \\\\ The experiment also studies the spectral distributions of charged particles, their distribution relative to the reaction plane, and identified high momentum pions. Another topic of investigation are QED pairs produced in peripheral nuclear collisions.\\\\ \\\\ The first phase of the experiment, NA45, has been concluded with two main results: i) There is...

  19. High energy collisions of nuclei: experiments

    International Nuclear Information System (INIS)

    Heckman, H.H.

    1977-09-01

    Heavy-ion nuclear reactions with projectile energies up to 2.1 GeV/A are reviewed. The concept of ''rapidity'' is elucidated, and the reactions discussed are divided into sections dealing with target fragmentation, projectile fragmentation, and the intermediate region, with emphasis on the production of light nuclei in high-energy heavy-ion collisions. Target fragmentation experiments using nuclear emulsion and AgCl visual track detectors are also summarized. 18 figures

  20. Department of Nuclear Reactions - Overview

    International Nuclear Information System (INIS)

    Budzanowski, A.

    1999-01-01

    Full text: The year 1998 can be considered as very successful both in harvesting important results from the existing collaborations as well as establishing new ones. In the frame of the COSY-11 collaboration cross section for η' production in p-p collision close to the threshold has been measured. In the region of excess energy between 1.5 and 4.1 MeV the η' cross sections are much lower than those of the π 0 and η production. There seems to be no indication that N * resonance doorway-like state governs the reaction mechanisms. The determined coupling constant g η'pp appears to be consistent with the prediction of the simple quark model. Results were published in Phys. Rev. Letters. Using the GEM detector, investigations of the isospin symmetry breaking were performed. Two reactions channels 3 Heπ 0 and 3 Hπ + from the reaction at proton momenta 700, 767, and 825 MeV/c were measured. Data analysis is in progress. The model of the meson cloud in the nucleon which is a speciality of our department has been successfully applied to explain the leading proton and neutron cross sections from the e + or e - proton collisions at the HERA ring. General formulas to calculate polarization of the particles with spin transmitted through the barrier in the presence of strong magnetic fields were obtained. New collaboration between our laboratory and the Institute for Nuclear Research in Kiev has been established. One PhD thesis was completed in the frame of this collaboration. We joined the new collaboration with Lund University concerning studies of hot nuclear matter properties using heavy ions from CELSIUS ring. First test of the phoswich detector for the forward wall was performed in Uppsala. Isoscalar giant dipole resonance strength distribution 3 ℎω has been evaluated in 208 Pb in the space of 1p1h and 2p2h excitation. The centroid energy of this state can directly be related to the nuclear incompressibility module. Our result indicates rather large values of

  1. Nuclear Reaction Data Centers

    International Nuclear Information System (INIS)

    McLane, V.; Nordborg, C.; Lemmel, H.D.; Manokhin, V.N.

    1988-01-01

    The cooperating Nuclear Reaction Data Centers are involved in the compilation and exchange of nuclear reaction data for incident neutrons, charged particles and photons. Individual centers may also have services in other areas, e.g., evaluated data, nuclear structure and decay data, reactor physics, nuclear safety; some of this information may also be exchanged between interested centers. 20 refs., 1 tab

  2. Nuclear reaction data and nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Paver, N [University of Trieste (Italy); Herman, M [International Atomic Energy Agency, Vienna (Austria); Gandini, A [ENEA, Rome (Italy)

    2001-12-15

    These two volumes contain the lecture notes of the workshop 'Nuclear Reaction Data and Nuclear Reactors: Physics, Design and Safety', which was held at the Abdus Salam ICTP in the Spring of 2000. The workshop consisted of five weeks of lecture courses followed by practical computer exercises on nuclear data treatment and design of nuclear power systems. The spectrum of topics is wide enough to timely cover the state-of-the-art and the perspectives of this broad field. The first two weeks were devoted to nuclear reaction models and nuclear data evaluation. Nuclear data processing for applications to reactor calculations was the subject of the third week. On the last two weeks reactor physics and on-going projects in nuclear power generation, waste disposal and safety were presented.

  3. {gamma}-radiation of excited nuclear discrete levels in peripheral heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Korotkikh, V.L.; Chikin, K.A. [Scobeltsyn Institute of Nuclear Physics, Moscow State University (Russian Federation)

    2002-06-01

    A new process of a nuclear excitation to discrete states in peripheral heavy ion collisions is studied. High-energy photons are emitted by the exited nuclei with energies up to a few tens of GeV at angles of a few hundred microradians with respect to the beam direction. We show that a two-stage process, where an electron-positron pair is produced by virtual photons emitted by nuclei and then the electron or positron excites the nucleus, has a large cross-section. It is equal to about 5 b for CaCa collisions. On the one hand, it produces a significant {gamma}-rays background in the nuclear fragmentation region but, on the other hand, it could be used for monitoring the nuclear beam intensity at the LHC. These secondary nuclear photons could be a good signal for triggering peripheral nuclear collisions. (orig.)

  4. γ-radiation of excited nuclear discrete levels in peripheral heavy ion collisions

    Science.gov (United States)

    Korotkikh, V. L.; Chikin, K. A.

    A new process of a nuclear excitation to discrete states in peripheral heavy ion collisions is studied. High-energy photons are emitted by the exited nuclei with energies up to a few tens of GeV at angles of a few hundred microradians with respect to the beam direction. We show that a two-stage process, where an electron-positron pair is produced by virtual photons emitted by nuclei and then the electron or positron excites the nucleus, has a large cross-section. It is equal to about 5 b for CaCa collisions. On the one hand, it produces a significant γ-rays background in the nuclear fragmentation region but, on the other hand, it could be used for monitoring the nuclear beam intensity at the LHC. These secondary nuclear photons could be a good signal for triggering peripheral nuclear collisions.

  5. γ-radiation of excited nuclear discrete levels in peripheral heavy ion collisions

    International Nuclear Information System (INIS)

    Korotkikh, V.L.; Chikin, K.A.

    2002-01-01

    A new process of a nuclear excitation to discrete states in peripheral heavy ion collisions is studied. High-energy photons are emitted by the exited nuclei with energies up to a few tens of GeV at angles of a few hundred microradians with respect to the beam direction. We show that a two-stage process, where an electron-positron pair is produced by virtual photons emitted by nuclei and then the electron or positron excites the nucleus, has a large cross-section. It is equal to about 5 b for CaCa collisions. On the one hand, it produces a significant γ-rays background in the nuclear fragmentation region but, on the other hand, it could be used for monitoring the nuclear beam intensity at the LHC. These secondary nuclear photons could be a good signal for triggering peripheral nuclear collisions. (orig.)

  6. Study of the Nuclear Transparency in $\\alpha$ + A Reactions at Energies $\\geq$ 12 GeV/nucleon

    CERN Multimedia

    2002-01-01

    The question about transparency is crucial for heavy ion reaction studies. If the transparency is low at 10-15 GeV per nucleon then very large baryon densities can be achieved in this energy range, maybe enough to produce quark-gluon plasma in U+U collisions. We propose to measure, event by event, pseudo-rapidity and multiplicity distributions of singly charged relativistic particles (@b~$>$~0.7) globally and in selected regions of rapidity as well as multiplicities of recoiling protons (30-400~Me charged nuclear fragments. These studies will explore general features of @a+A reactions at energies @$>$~12~GeV/nucleon. The main goal of the experiment is to measure the transparency of nuclear matter in this energy range. The detector will be nuclear emulsion.

  7. Nuclear excitations and reaction mechanisms. Progress report

    International Nuclear Information System (INIS)

    Fallieros, S.; Levin, F.S.

    1986-01-01

    Theoretical research is being conducted on the following topics: photon scattering, gauge invariance and the extension of Siefert's Theorem; retardation effects in photonuclear absorption and the Cabibbo Radicati Sum Rule; isovector transition densities, currents and response functions; the electric polarizability, the magnetic susceptibility and the distribution of oscillator strengths in some elementary systems; relativistic models and processes; properties of skyrmions; multiquark compound bags and the charge form factor of the A = 3 nuclei; nuclear reaction theory; three-particle scattering theory; deuteron-nucleus model calculations; asymptotia in three-particle scattering systems; and time-dependent approach to few-nucleon collisions. Progress in each of these areas is reviewed briefly. A list of invited talks and of publications for the fiscal year 1986 is included. 27 refs

  8. Cluster formation in nuclear reactions from mean-field inhomogeneities

    Science.gov (United States)

    Napolitani, Paolo; Colonna, Maria; Mancini-Terracciano, Carlo

    2018-05-01

    Perturbing fluids of neutrons and protons (nuclear matter) may lead, as the most catastrophic effect, to the rearrangement of the fluid into clusters of nucleons. A similar process may occur in a single atomic nucleus undergoing a violent perturbation, like in heavy-ion collisions tracked in particle accelerators at around 30 to 50 MeV per nucleon: in this conditions, after the initial collision shock, the nucleus expands and then clusterises into several smaller nuclear fragments. Microscopically, when violent perturbation are applied to nuclear matter, a process of clusterisation arises from the combination of several fluctuation modes of large-amplitude where neutrons and protons may oscillate in phase or out of phase. The imposed perturbation leads to conditions of instability, the wavelengths which are the most amplified have sizes comparable to small atomic nuclei. We found that these conditions, explored in heavy-ion collisions, correspond to the splitting of a nucleus into fragments ranging from Oxygen to Neon in a time interval shorter than one zeptosecond (10 ‑ 21s). From the out-of-phase oscillations of neutrons and protons another property arises, the smaller fragments belonging to a more volatile phase get more neutron enriched: in the heavy-ion collision case this process, called distillation, reflects in the isotopic distributions of the fragments. The resulting dynamical description of heavy-ion collisions is an improvement with respect to more usual statistical approaches, based on the equilibrium assumption. It allows in fact to characterise also the very fast early stages of the collision process which are out of equilibrium. Such dynamical description is the core of the Boltzmann-Langevin One Body (BLOB) model, which in its latest development unifies in a common approach the description of fluctuations in nuclear matter, and a predictive description of the disintegration of nuclei into nuclear fragments. After a theoretical introduction, a few

  9. Collective phenomena in non-central nuclear collisions

    International Nuclear Information System (INIS)

    Voloshin, Sergei A.; Poskanzer, Arthur M.; Snellings, Raimond

    2008-01-01

    Recent developments in the field of anisotropic flow in nuclear collision are reviewed. The results from the top AGS energy to the top RHIC energy are discussed with emphasis on techniques, interpretation, and uncertainties in the measurements

  10. Collective phenomena in non-central nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Voloshin, Sergei A.; Poskanzer, Arthur M.; Snellings, Raimond

    2008-10-20

    Recent developments in the field of anisotropic flow in nuclear collision are reviewed. The results from the top AGS energy to the top RHIC energy are discussed with emphasis on techniques, interpretation, and uncertainties in the measurements.

  11. High energy nuclear collisions: Theory overview

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.J.

    2010-08-01

    We review some basic concepts of relativistic heavy-ion physics and discuss our understanding of some key results from the experimental program at the relativistic heavy-ion collider (RHIC). We focus in particular on the early time dynamics of nuclear collisions, some result from lattice QCD, hard probes and photons.

  12. Linear cascade calculations of matrix due to neutron-induced nuclear reactions

    International Nuclear Information System (INIS)

    Avila, Ricardo E

    2000-01-01

    A method is developed to calculate the total number of displacements created by energetic particles resulting from neutron-induced nuclear reactions. The method is specifically conceived to calculate the damage in lithium ceramics by the 6L i(n, α)T reaction. The damage created by any particle is related to that caused by atoms from the matrix recoiling after collision with the primary particle. An integral equation for that self-damage is solved by interactions, using the magic stopping powers of Ziegler, Biersack and Littmark. A projectile-substrate dependent Kinchin-Pease model is proposed, giving and analytic approximation to the total damage as a function of the initial particle energy (au)

  13. Department of Nuclear Reaction - Overview

    International Nuclear Information System (INIS)

    Budzanowski, A.

    2002-01-01

    Full text: Our research in 2001 can be characterized by a wide range of various subjects e.g. search for new physics in Au + Au collisions at the energy in the centre of mass per nucleon pair √ s NN = 200 GeV through hunting dibaryon formation in p + p → K + + D (dibaryon) reaction to the application of the random matrix theory taken from nuclear reaction studies in the analysis of fluctuations of the stock exchange time and space correlations. Heavy ion reactions have been studied in a broad range of energies. At low energy of the 12 C ions (E CM = 25.57 MeV), delivered by the Warsaw U200P cyclotron, the reactions induced on 11 B target were studied. Coupling effects between various reaction channels were found. At the energies corresponding to the liquid-to-gas phase transition, the onset of the flow phenomena was found in the multifragmentation of the 197 Au nuclei induced by a sequence of projectiles p, 4 He, 12 C of the energies from 1-3 GeV per nucleon. Finally, evidence of the melting of the baryonic structure of the colliding nuclei was found at the highest available energies of 200 GeV per nucleon pair, in the collision of gold nuclei studied at the Relativistic Heavy Ion Collider within the BRAHMS and PHOBOS collaboration. We entered a new collaboration HIRES with the aim to discover S = -1 dibaryonic state by studying the reaction p+p → K + +D. So far many attempts to prove experimentally the existence of a dibaryonic state failed. We hope to use the unique properties of the Big Karl spectrometer to prove the existence of a sharp peak in the energy spectra of kaons. To do so, we have to reduce strongly the background of pions. A diffusely reflective threshold Cherenkov detector made from silica aerogel was designed. Preliminary tests indicate that pionic signals can be reduced by a factor of 58. Extensive studies of the mechanism of generating collective levels and the energy gap by means of diagonalizing matrices with random elements ended up with

  14. (Studies of target fragmentation in intermediate energy, relativistic and ultra-relativistic nuclear collisions)

    Energy Technology Data Exchange (ETDEWEB)

    Loveland, W.D.

    1991-08-01

    The work described herein is part of a project involving the study of low energy (< 10 MeV/A), intermediate energy (10--100 MeV/A) and relativistic (> 250 MeV/A) heavy ion reactions. In the low energy regime, we published a monograph on the properties of the heaviest elements and used that publication as a basis for making a set of best'' semi-empirical predictions of heavy element decay properties. The intermediate energy research effort focussed upon the completion of studies already begun and the initiation of a number of new experiments. In our study of a interaction of 21 MeV/nucleon {sup 129}Xe with {sup 197}Au, we compared the characteristics of the observed deep inelastic phenomena with various models of dissipative reactions and found significant discrepancies between observations and predictions. These discrepancies seemed to be caused by an improper treatment of pre-equilibrium in the early stages of the collision. In our study of the relativistic interaction of 400 MeV/nucleon {sup 12}C with {sup 197}Au, we reported the first direct physical measurement of the properties of the spallation residues from a nucleus-nucleus collision. We found the residue energies to be much lower than those predicted by the intranuclear cascade model, indicating some substantial modifications of that model are needed. But, we also found, indications of significant, non-zero values of the residue transverse momentum, a finding that calls into question the interpretation of a number of radiochemical recoil studies of the kinematics of high energy reactions. A program of performing numerical simulations of intermediate and high energy nuclear collisions using the QMD model was initiated.

  15. High energy photons production in nuclear reactions

    International Nuclear Information System (INIS)

    Nifenecker, H.; Pinston, J.A.

    1990-01-01

    Hard photon production, in nucleus-nucleus collisions, were studied at beam energies between 10 and 125 MeV. The main characteristics of the photon emission are deduced. They suggest that the neutron-proton collisions in the early stage of the reaction are the main source of high energy gamma-rays. An overview of the theoretical approaches is given and compared with experimental results. Theoretical attempts to include the contribution of charged pion exchange currents to photon production, in calculations of proton-nucleus-gamma and nucleus-nucleus-gamma reactions, showed suitable fitting with experimental data

  16. Experimental effects of dynamics and thermodynamics in nuclear reactions on the symmetry energy as seen by the CHIMERA 4 π detector

    Energy Technology Data Exchange (ETDEWEB)

    De Filippo, E.; Pagano, A. [INFN, Catania (Italy)

    2014-02-15

    Heavy-ion collisions have been widely used in the last decade to constrain the parameterizations of the symmetry energy term of the nuclear equation of state (EOS) for asymmetric nuclear matter as a function of baryonic density. In the Fermi energy domain one is faced with variations of the density within a narrow range of values around the saturation density ρ{sub 0}=0.16 fm{sup -3} down towards sub-saturation densities. The experimental observables which are sensitive to the symmetry energy are constructed starting from the detected light particles, clusters and heavy fragments that, in heavy-ion collisions, are generally produced by different emission mechanisms at different stages and time scales of the reaction. In this review the effects of dynamics and thermodynamics on the symmetry energy in nuclear reactions are discussed and characterized using an overview of the data taken so far with the CHIMERA multi detector array. (orig.)

  17. Quantum control of quasi-collision states: A protocol for hybrid fusion

    Science.gov (United States)

    Vilela Mendes, R.

    2018-04-01

    When confined to small regions quantum systems exhibit electronic and structural properties different from their free space behavior. These properties are of interest, for example, for molecular insertion, hydrogen storage and the exploration of new pathways for chemical and nuclear reactions. Here, a confined three-body problem is studied, with emphasis on the study of the “quantum scars” associated to dynamical collisions. For the particular case of nuclear reactions, it is proposed that a molecular cage might simply be used as a confining device with the collision states accessed by quantum control techniques.

  18. Computing the cross sections of nuclear reactions with nuclear clusters emission for proton energies between 30 MeV and 2.6 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Korovin, Yu. A.; Maksimushkina, A. V., E-mail: AVMaksimushkina@mephi.ru; Frolova, T. A. [Obninsk Institute for Nuclear Power Engineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2016-12-15

    The cross sections of nuclear reactions involving emission of clusters of light nuclei in proton collisions with a heavy-metal target are computed for incident-proton energies between 30 MeV and 2.6 GeV. The calculation relies on the ALICE/ASH and CASCADE/INPE computer codes. The parameters determining the pre-equilibrium cluster emission are varied in the computation.

  19. A perspective on relativistic nuclear collisions

    International Nuclear Information System (INIS)

    Glendenning, N.K.; Paris-11 Univ., 91 - Orsay

    1979-01-01

    A quasi-dynamical model for the disassembly of a high energy hadronic fireball has been developed. It is fund that some signals from the early high density stage are expected to survive the expansion stage. Indeed cetain signals, the π /N and K / N ratio at high kinetic energy, are so qualitatively unique in their dependance on target projectile mass, that we believe they will survive a refinement of the collision dynamics. Therefore a determination of the assymptotic form of the hadron spectrum can be made by studying nuclear collisions. The required energies are high (approximately 10 GeV/ nucleon in C.M.), but they are within the reach of present technology

  20. Nuclear suppression in p-A collisions from induced radiation

    International Nuclear Information System (INIS)

    Arleo, F.; Kolevatov, R.; Peigne, S.; Sami, T.

    2016-01-01

    The current status of coherent energy loss is reviewed, both in theory and in its phenomenological applications to p-A collisions. The induced energy loss is not bounded in general, but only in the specific situation where the energetic parton is suddenly accelerated (as in deep inelastic scattering) in the nuclear medium. In the situation where the parton is asymptotic, i.e. 'prepared' at t = -∞ and 'tagged' at t = +∞ after crossing a nuclear medium of thickness L (a situation relevant to forward hadron production in p-A collisions), ΔE appears to be proportional to E. Both situations are detailed in the article

  1. Probing the nuclear symmetry energy with heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    De Filippo E.

    2015-01-01

    Full Text Available Heavy ion collisions (HIC have been widely used to extract the parametrization of symmetry energy term of nuclear equation of state as a function of barionic density. HIC in fact are a unique tool in terrestrial laboratories to explore the symmetry energy around the saturation density (ρ0 = 0.16fm−3 from sub-saturation densities (Fermi energies towards compressed nuclear matter (ρ > 2 − 3ρ0 that can be reached at relativistic energies, as a function of different conditions of temperature, mass asymmetry and isospin. One of the main study at present is to reach a coherent description of EOS of asymmetric nuclear matter from heavy ion collisions of stable and exotic nuclei, nuclear structure studies and astrophysical observations. In this work an overview of the current status of the research is shortly reviewed together with new perspectives aimed to reduce the present experimental and theoretical uncertainties.

  2. Heavy Quark and Quarkonium Transport in High Energy Nuclear Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Kai [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China); Institute for Theoretical Physics, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Frankfurt Institute for Advanced Studies, Ruth-Moufang-Str. 1, D-60438 Frankfurt am Main (Germany); Dai, Wei [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China); Xu, Nu [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Zhuang, Pengfei [Physics Department, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China)

    2016-12-15

    The strong interaction between heavy quarks and the quark gluon plasma makes the open and hidden charm hadrons be sensitive probes of the deconfinement phase transition in high energy nuclear collisions. Both the cold and hot nuclear matter effects change with the colliding energy and significantly influence the heavy quark and charmonium yield and their transverse momentum distributions. The ratio of averaged quarkonium transverse momentum square and the elliptic flow reveal the nature of the QCD medium created in heavy ion collisions at SPS, RHIC and LHC energies.

  3. Heavy Quark and Quarkonium Transport in High Energy Nuclear Collisions

    International Nuclear Information System (INIS)

    Zhou, Kai; Dai, Wei; Xu, Nu; Zhuang, Pengfei

    2016-01-01

    The strong interaction between heavy quarks and the quark gluon plasma makes the open and hidden charm hadrons be sensitive probes of the deconfinement phase transition in high energy nuclear collisions. Both the cold and hot nuclear matter effects change with the colliding energy and significantly influence the heavy quark and charmonium yield and their transverse momentum distributions. The ratio of averaged quarkonium transverse momentum square and the elliptic flow reveal the nature of the QCD medium created in heavy ion collisions at SPS, RHIC and LHC energies.

  4. Multifragmentation and evaporation: two competing processes in intermediate energy nuclear collisions

    International Nuclear Information System (INIS)

    Campi, X.; Desbois, J.; Lipparini, E.

    1984-05-01

    We study the conditions at which mutiple break up of nuclei occurs during a collision. A minimal temperature of about 5MeV seems to be necessary to produce multifragmentation. The average number of fragments produced is correlated with the average number of primary nucleon-nucleon collisions. Based on these ideas a simple model of evaporation-multifragmentation reactions is developed, which accounts for most of the existing data for protons and heavy ions induced reactions

  5. Single-collision studies of hot atom energy transfer and chemical reaction

    International Nuclear Information System (INIS)

    Valentini, J.J.

    1991-01-01

    This report discusses research in the collision dynamics of translationally hot atoms, with funding with DOE for the project ''Single-Collision Studies of Hot Atom Energy Transfer and Chemical Reaction,'' Grant Number DE-FG03-85ER13453. The work reported here was done during the period September 9, 1988 through October 31, 1991. During this period this DOE-funded work has been focused on several different efforts: (1) experimental studies of the state-to-state dynamics of the H + RH → H 2 R reactions where RH is CH 4 , C 2 H 6 , or C 3 H 8 , (2) theoretical (quasiclassical trajectory) studies of hot hydrogen atom collision dynamics, (3) the development of photochemical sources of translationally hot molecular free radicals and characterization of the high resolution CARS spectroscopy of molecular free radicals, (4) the implementation of stimulated Raman excitation (SRE) techniques for the preparation of vibrationally state-selected molecular reactants

  6. Angular pattern of minijet transverse energy flow in hadron and nuclear collisions

    International Nuclear Information System (INIS)

    Leonidov, A.V.; Ostrovsky, D.M.

    2002-01-01

    The azimuthal asymmetry of a minijet system produced at the early stage of nucleon-nucleon and nuclear collisions in a central rapidity window is studied. We show that, in pp collisions, the minijet-transverse-energy production in a central rapidity window is essentially unbalanced in azimuth because of asymmetric contributions in which only one minijet hits the acceptance window. We further study the angular pattern of the transverse-energy flow generated by semihard degrees of freedom at the early stage of high-energy nuclear collisions and its dependence on the number of semihard collisions in the models either including or neglecting soft contributions to the inelastic cross section at RHIC and LHC energies, as well as on the choice of infrared cutoff

  7. Angular pattern of minijet transverse energy flow in hadron and nuclear collisions

    International Nuclear Information System (INIS)

    Leonidov, A.V.; Ostrovsky, D.M.

    2000-01-01

    The azimuthal asymmetry of a minijet system produced at the early stage of nucleon-nucleon and nuclear collisions in a central rapidity window is studied. We show that in pp collisions the minijet transverse energy production in a central rapidity window is essentially unbalanced in the azimuth due to asymmetric contributions in which only one minijet hits the acceptance window. We further study the angular pattern of the transverse energy flow generated by the semihard degrees of freedom at the early stage of high energy nuclear collisions and its dependence on the number of semihard collisions in the models both including and neglecting soft contributions to the inelastic cross section at RHIC and LHC energies as well as on the choice of the infrared cutoff. (orig.)

  8. Outline of cold nuclear fusion reaction

    International Nuclear Information System (INIS)

    Tachikawa, Enzo

    1991-01-01

    In 2010, as the total supply capacity of primary energy, 666 million liter is anticipated under the measures of thorough energy conservation. The development of energy sources along the energy policy based on environment preservation, safety, the quantity of resources and economy is strongly demanded. The nuclear power generation utilizing nuclear fission has been successfully carried out. As the third means of energy production, the basic research and technical development have been actively advanced on the energy production utilizing nuclear fusion reaction. The main object of the nuclear fusion research being advanced now is D-D reaction and D-T reaction. In order to realize low temperature nuclear fusion reaction, muon nuclear fusion has been studied so far. The cold nuclear fusion reaction by the electrolysis of heavy water has been reported in 1989, and its outline is ixplained in this report. The trend of the research on cold nuclear fusion is described. But the possibility of cold nuclear fusion as an energy source is almost denied. (K.I.)

  9. The nuclear reaction model code MEDICUS

    International Nuclear Information System (INIS)

    Ibishia, A.I.

    2008-01-01

    The new computer code MEDICUS has been used to calculate cross sections of nuclear reactions. The code, implemented in MATLAB 6.5, Mathematica 5, and Fortran 95 programming languages, can be run in graphical and command line mode. Graphical User Interface (GUI) has been built that allows the user to perform calculations and to plot results just by mouse clicking. The MS Windows XP and Red Hat Linux platforms are supported. MEDICUS is a modern nuclear reaction code that can compute charged particle-, photon-, and neutron-induced reactions in the energy range from thresholds to about 200 MeV. The calculation of the cross sections of nuclear reactions are done in the framework of the Exact Many-Body Nuclear Cluster Model (EMBNCM), Direct Nuclear Reactions, Pre-equilibrium Reactions, Optical Model, DWBA, and Exciton Model with Cluster Emission. The code can be used also for the calculation of nuclear cluster structure of nuclei. We have calculated nuclear cluster models for some nuclei such as 177 Lu, 90 Y, and 27 Al. It has been found that nucleus 27 Al can be represented through the two different nuclear cluster models: 25 Mg + d and 24 Na + 3 He. Cross sections in function of energy for the reaction 27 Al( 3 He,x) 22 Na, established as a production method of 22 Na, are calculated by the code MEDICUS. Theoretical calculations of cross sections are in good agreement with experimental results. Reaction mechanisms are taken into account. (author)

  10. Two-dimensional multiplicity fluctuation analysis of target residues in nuclear collisions

    International Nuclear Information System (INIS)

    Dong-Hai, Zhang; Yao-Jie, Niu; Li-Chun, Wang; Wen-Jun, Yan; Li-Juan, Gao; Ming-Xing, Li; Li-Ping, Wu; Hui-Ling, Li; Jun-Sheng, Li

    2010-01-01

    Multiplicity fluctuation of the target residues emitted in the interactions in a wide range of projectile energies from 500 A MeV to 60 A GeV is investigated in the framework of two-dimensional scaled factorial moment methodology. The evidence of non-statistical multiplicity fluctuation is found in 16 O–AgBr collisions at 60 A GeV, but not in 56 Fe–AgBr collisions at 500 A MeV, 84 Kr–AgBr collisions at 1.7 A GeV, 16 O–AgBr collisions at 3.7 A GeV and 197 Au–AgBr collisions at 10.7 A GeV. (nuclear physics)

  11. Hydrogen release from irradiated elastomers measured by Nuclear Reaction Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jagielski, J., E-mail: jacek.jagielski@itme.edu.pl [Institute for Electronic Materials Technology, Wolczynska 133, 01-926 Warszawa (Poland); National Centre for Nuclear Research, A. Soltana 7, 05-400 Swierk/Otwock (Poland); Ostaszewska, U. [Institute for Engineering of Polymer Materials & Dyes, Division of Elastomers & Rubber Technology, Harcerska 30, 05-820 Piastow (Poland); Bielinski, D.M. [Technical University of Lodz, Institute of Polymer & Dye Technology, Stefanowskiego 12/16, 90-924 Lodz (Poland); Grambole, D. [Institute of Ion Beam Physics and Materials Research, Helmholtz Zentrum Dresden Rossendorf, PO Box 51 01 19, D-01314 Dresden (Germany); Romaniec, M.; Jozwik, I.; Kozinski, R. [Institute for Electronic Materials Technology, Wolczynska 133, 01-926 Warszawa (Poland); Kosinska, A. [National Centre for Nuclear Research, A. Soltana 7, 05-400 Swierk/Otwock (Poland)

    2016-03-15

    Ion irradiation appears as an interesting method of modification of elastomers, especially friction and wear properties. Main structural effect caused by heavy ions is a massive loss of hydrogen from the surface layer leading to its smoothening and shrinking. The paper presents the results of hydrogen release from various elastomers upon irradiation with H{sup +}, He{sup +} and Ar{sup +} studied by using Nuclear Reaction Analysis (NRA) method. The analysis of the experimental data indicates that the hydrogen release is controlled by inelastic collisions between ions and target electrons. The last part of the study was focused on preliminary analysis of mechanical properties of irradiated rubbers.

  12. Statistical theory of precompound nuclear reactions

    International Nuclear Information System (INIS)

    Nishioka, H.

    1986-01-01

    The purpose of the paper is to show the application of the Grassmann-integration method (or the graded-symmetry method) to a pre-equilibrium process in nuclear reactions. The Grassmann-integration method for random systems was first introduced by Efetov and later largely extended and applied to nuclear physics by Verbaarschot, Weidenmuller and Zirnbauer (referred to as VWZ). They have applied it to the equilibrium nuclear reactions; namely; the compound-nucleus reactions. It will be shown in this paper that this method is also applicable to non-equilibrium nuclear reactions. Applying this method to precompound nuclear reactions, the authors have obtained the same expression of the cross-section as Agassi, Weidenmuller and Mantzouranis (referred to as AWM) in the weak-coupling limit. In the general case their results show an important modification to AWM

  13. Nuclear excitations and reaction mechanisms

    International Nuclear Information System (INIS)

    Fallieros, S.; Levin, F.S.

    1990-01-01

    The main theme of this report is the study and interpretation of the sequence of events that occur during the collisions of nuclear particles. Some of the processes discussed in parts A and B involve short range interactions; others involve interactions of long range. In most of part A one of the particles in the initial or in the final state (or in both) is a photon, which serves as a probe of the second particle, which may be a nucleus, a proton, a pion or any other hadron. The complexity of the processes taking place during the collisions makes it necessary to simplify some aspects of the physical problem. This leads to the introduction of modals which are used to describe a limited number of features in as much detail as possible. The main interest is the understanding of the hadronic excitations which result from the absorption of a photon and the determination of the fundamental structure constants of the target particle. In part B, all the particles are hadrons. The purpose here is to develop and apply optimal quantal methods appropriate for describing the interacting systems. Of particular interest are three-particle collision systems in which the final state consists of three free particles. Part B also considers the process of nuclear fusion as catalyzed by bound muons

  14. Whole study of nuclear matter collective motion in central collisions of heavy ions of the FOPI detector

    International Nuclear Information System (INIS)

    Bendarag, A.

    1999-01-01

    In this work we study the collective phenomena in the central collisions of heavy ions for the Au + Au, Xe + CsI and Ni + Ni systems at incident energies from 150 to 400 MeV/nucleon with the data of the FOPI detector. In order to describe completely the flow of the nuclear matter, we fit the double differential momentum distributions with two-dimensional Gaussian. We study the characteristic parameters of the collective flow (flow range, aspect ratios, flow parameter) versus the charge and the mass of the fragments as well as the incident energy and the centrality of the collisions. The transverse energy is used for selecting the central collisions. The method of the Gaussian fits requires also to reconstruct the reaction plane of the event. Then we correct the parameters for the finite number of particles effects and account for the influence of the acceptance of the detector. We confirm the importance of the thermal motion for the light charge or mass fragments and, conversely, the predominance of the collective motion for the heavy fragments. A common flow angle for all the types of particles is highlighted for the first time, demonstrating the power of the method of the Gaussian fits; The evolution of the other parameters confirms the observations done with other methods of flow analysis. These results should contribute to put constraints on the collision models and to enlarge our knowledge of the properties of the nuclear matter. (author)

  15. Memory effects in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Greiner, C.; Wagner, K.; Reinhard, P.

    1994-01-01

    We consider equilibration in relativistic nuclear dynamics starting from a nonequilibrium Green's-functions approach. The widely used Boltzmann-Uehling-Uhlenbeck equation is obtained only as the Markovian limit (i.e., negligible memory time). The actual memory time in energetic nuclear collisions turns out to be ∼2--3 fm/c, which interferes substantially with the time scale of the relaxation process. The memory kernels of the collision process will be presented. Because of their more involved structure, depending sensitively on the kinematical regime, both less and more stopping power is observed in the reaction compared to the Markovian description

  16. SkyNet: Modular nuclear reaction network library

    Science.gov (United States)

    Lippuner, Jonas; Roberts, Luke F.

    2017-10-01

    The general-purpose nuclear reaction network SkyNet evolves the abundances of nuclear species under the influence of nuclear reactions. SkyNet can be used to compute the nucleosynthesis evolution in all astrophysical scenarios where nucleosynthesis occurs. Any list of isotopes can be evolved and SkyNet supports various different types of nuclear reactions. SkyNet is modular, permitting new or existing physics, such as nuclear reactions or equations of state, to be easily added or modified.

  17. Matter in extremis: Ultrarelativistic nuclear collisions at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Peter; Wang, Xin-Nian

    2004-08-20

    We review the physics of nuclear matter at high energy density and the experimental search for the Quark-Gluon Plasma at the Relativistic Heavy Ion Collider (RHIC). The data obtained in the first three years of the RHIC physics program provide several lines of evidence that a novel state of matter has been created in the most violent, head-on collisions of Au nuclei at {radical}s = 200 GeV. Jet quenching and global measurements show that the initial energy density of the strongly interacting medium generated in the collision is about two orders of magnitude larger than that of cold nuclear matter, well above the critical density for the deconfinement phase transition predicted by lattice QCD. The observed collective flow patterns imply that the system thermalizes early in its evolution, with the dynamics of its expansion consistent with ideal hydrodynamic flow based on a Quark-Gluon Plasma equation of state.

  18. Matter in extremis: Ultrarelativistic nuclear collisions at RHIC

    International Nuclear Information System (INIS)

    Jacobs, Peter; Wang, Xin-Nian

    2004-01-01

    We review the physics of nuclear matter at high energy density and the experimental search for the Quark-Gluon Plasma at the Relativistic Heavy Ion Collider (RHIC). The data obtained in the first three years of the RHIC physics program provide several lines of evidence that a novel state of matter has been created in the most violent, head-on collisions of Au nuclei at √s = 200 GeV. Jet quenching and global measurements show that the initial energy density of the strongly interacting medium generated in the collision is about two orders of magnitude larger than that of cold nuclear matter, well above the critical density for the deconfinement phase transition predicted by lattice QCD. The observed collective flow patterns imply that the system thermalizes early in its evolution, with the dynamics of its expansion consistent with ideal hydrodynamic flow based on a Quark-Gluon Plasma equation of state

  19. Nonelastic nuclear reactions induced by light ions with the BRIEFF code

    CERN Document Server

    Duarte, H

    2010-01-01

    The intranuclear cascade (INC) code BRIC has been extended to compute nonelastic reactions induced by light ions on target nuclei. In our approach the nucleons of the incident light ion move freely inside the mean potential of the ion in its center-of-mass frame while the center-of-mass of the ion obeys to equations of motion dependant on the mean nuclear+Coulomb potential of the target nucleus. After transformation of the positions and momenta of the nucleons of the ion into the target nucleus frame, the collision term between the nucleons of the target and of the ion is computed taking into account the partial or total breakup of the ion. For reactions induced by low binding energy systems like deuteron, the Coulomb breakup of the ion at the surface of the target nucleus is an important feature. Preliminary results of nucleon production in light ion induced reactions are presented and discussed.

  20. b-jet tagged nuclear modification factors in heavy ion collisions with CMS

    CERN Document Server

    Jung, Kurt

    2014-01-01

    The energy loss of jets in heavy-ion collisions is expected to depend on the flavor of the fragmenting parton. Thus, measurements of jet quenching as a function of flavor place powerful constraints on the thermodynamical and transport properties of the hot and dense medium. Measurements of the nuclear modification factors of the heavy-flavor-tagged jets in both PbPb and pPb collisions can quantify such energy loss effects. Specifically, pPb measurements provide crucial insights into the behavior of the cold nuclear matter effect, which is required to fully understand the hot and dense medium effects on jets in PbPb collisions. In this talk, we present the b-jet spectra and the first measurement of the nuclear modification factors as a function of transverse momentum and pseudorapidity, using the high statistics pp, pPb and PbPb data taken in 2011 and 2013.

  1. Low Energy Nuclear Reactions: 2007 Update

    Science.gov (United States)

    Krivit, Steven B.

    2007-03-01

    This paper presents an overview of low energy nuclear reactions, a subset of the field of condensed matter nuclear science. Condensed matter nuclear science studies nuclear effects in and/or on condensed matter, including low energy nuclear reactions, an entirely new branch of science that gained widespread attention and notoriety beginning in 1989 with the announcement of a previously unrecognized source of energy by Martin Fleischmann and Stanley Pons that came to be known as cold fusion. Two branches of LENR are recognized. The first includes a set of reactions like those observed by Fleischmann and Pons that use palladium and deuterium and yield excess heat and helium-4. Numerous mechanisms have been proposed to explain these reactions, however there is no consensus for, or general acceptance of, any of the theories. The claim of fusion is still considered speculative and, as such, is not an ideal term for this work. The other branch is a wide assortment of nuclear reactions that may occur with either hydrogen or deuterium. Anomalous nuclear transmutations are reported that involve light as well as heavy elements. The significant questions that face this field of research are: 1) Are LENRs a genuine nuclear reaction? 2) If so, is there a release of excess energy? 3) If there is, is the energy release cost-effective?

  2. Asian collaboration on nuclear reaction data compilation

    International Nuclear Information System (INIS)

    Aikawa, Masayuki; Furutachi, Naoya; Kato, Kiyoshi; Makinaga, Ayano; Devi, Vidya; Ichinkhorloo, Dagvadorj; Odsuren, Myagmarjav; Tsubakihara, Kohsuke; Katayama, Toshiyuki; Otuka, Naohiko

    2013-01-01

    Nuclear reaction data are essential for research and development in nuclear engineering, radiation therapy, nuclear physics and astrophysics. Experimental data must be compiled in a database and be accessible to nuclear data users. One of the nuclear reaction databases is the EXFOR database maintained by the International Network of Nuclear Reaction Data Centres (NRDC) under the auspices of the International Atomic Energy Agency. Recently, collaboration among the Asian NRDC members is being further developed under the support of the Asia-Africa Science Platform Program of the Japan Society for the Promotion of Science. We report the activity for three years to develop the Asian collaboration on nuclear reaction data compilation. (author)

  3. Probing vacuum structure in nuclear collisions. Research report period: 1992--1995

    International Nuclear Information System (INIS)

    Rafelski, J.

    1995-02-01

    This is a report of the research activities in the field of Relativistic Nuclear Collisions/Theoretical Nuclear Physics of Johann Refelski at University of Arizona, supported by the Department of Energy, Nuclear Physics Division under grant No. DE-FG02-92ER40733. This report comprises: Section 1 surveys the general context of the work and presents summary of wider research objectives; Section 2 reviews the progress in the interpretation of experimental data, primarily related to diagnosis of high density nuclear matter with strange particle production, in heavy ion collisions at 10--200 GeV A; Section 3 presents the status of the studies of a relativistic quantum transport theory and the related vacuum structure and particle production processes; Section 4 presents a compilation of research projects completed under auspices of this program, with a short narrative description of publication contents

  4. Characteristics of violent collisions in Ar-induced reactions at intermediaire energies

    International Nuclear Information System (INIS)

    Rivet, M.F.; Borderie, B.

    1984-01-01

    We report on two experiments performed with the Ganil facility using the 27 MeV/u Ar beam. The first one concerns an intermediate mass system, Ar + Ag. For the second one a heavier fissile system, Ar + U, was chosen. For Ar + Ag information about fusion requires the measurements of evaporation residues and fission. In the Ar + U reaction, most of the collisions lead to fission. The violence of the collision is therefore determined from the correlation angle of the coincidence fission fragments

  5. Formation and disintegration of high-density nuclear matter in heavy-ion collisions

    International Nuclear Information System (INIS)

    Kitazoe, Yasuhiro; Matsuoka, Kazuo; Sano, Mitsuo

    1976-01-01

    The formation of high-density nuclear matter which may be expected to be attained in high-energy heavy-ion collisions and the subsequent disintegration of dense matter are investigated by means of the hydrodynamics. Head-on collisions of identical nuclei are considered in the nonrelativistic approximation. The compressed density cannot exceed 4 times of the normal one so long as the freedom of only nucleons is considered, and can become higher than 4 times when other freedoms such as the productions of mesons and also nucleon isobars are additionally taken into account. The angular distributions for ejected particles predominate both forwards and backwards at low collision energies, corresponding to the formation of nuclear density less than 2 times of the normal density and become isotropic at the point of 2 times of the normal one. As the collision energy increases further, lateral ejection is intensified gradually. (auth.)

  6. Fusion chain reaction - a chain reaction with charged particles

    International Nuclear Information System (INIS)

    Peres, A.; Shvarts, D.

    1975-01-01

    When a DT-plasma is compressed to very high density, the particles resulting from nuclear reactions give their energy mostly to D and T ions, by nuclear collisions, rather than to electrons as usual. Fusion can thus proceed as a chain reaction, without the need of thermonuclear temperatures. In this paper, we derive relations for the suprathermal ion population created by a fusion reaction. Numerical integration of these equations shows that a chain reaction can proceed in a cold infinite DT-plasma at densities above 8.4x10 27 ions.cm -3 . Seeding the plasma with a small amount of 6 Li reduces the critical density to 7.2x10 27 ions.cm -3 (140000times the normal solid density). (author)

  7. Nuclear reactions excited by recoil protons on a nuclear reactor

    International Nuclear Information System (INIS)

    Mukhammedov, S.; Khaydarov, A.; Barsukova, E.G.

    2006-01-01

    The nuclear reactions excited by recoil protons and of the detection possibility of the various chemical elements with the use of these secondary nucleus reactions were investigated. The recoil protons are produced on a nuclear reactor in the result of (n, p) inelastic and elastic scattering interaction of fast neutrons with nuclei of hydrogen. It is well known that the share of fast neutrons in energetic spectrum of reactor's neutrons in comparison with the share of thermal neutrons is small. . Consequently, the share of recoil protons produced in the result of fast neutron interaction with nuclei of light elements, capable to cause the nuclear reactions, is also small, des, due to Coulomb barrier of nuclei the recoil protons can cause the nuclear reactions only on nuclei of light and some middle elements. Our studies show that observable yields have radio nuclides excited in the result of nuclear reactions on Li, B, O, V and Cu. Our experimental results have demonstrated that the proton activation analysis based on the application of secondary nuclear reactions is useful technique to determine large contents of various light and medium chemical elements. Detection limits for studied chemical elements are estimated better than 10 ppm

  8. Introduction to nuclear reactions

    International Nuclear Information System (INIS)

    Satchler, G.R.

    1980-01-01

    This introduction to nuclear reaction phenomena is aimed primarily but not exclusively at readers at the undergraduate student level. An overview of the subject is presented in the first two chapters entitled - Some background information and Introduction to nuclear reactions. The third chapter reviews scattering theory with emphasis on the underlying physical ideas and also provides schematic entrees to the more advanced topics. The physical models which have been developed to account for the various aspects of nuclear phenomena are described in more detail in chapter 4. References and exercises are appended to each chapter. (U.K.)

  9. A semi-classical model for the description of angular distribution of light particles emitted in nuclear reactions

    International Nuclear Information System (INIS)

    Zhang Jingshang

    1990-04-01

    A semi-classical model of multi-step direct and compound nuclear reactions has been proposed to describe the angular distributions of light particles emitted in reaction processes induced by nucleons with energies of several tens of MeV. The exact closed solution for the time-dependent master equation of the exciton model is applied. Based on the Fermi gas model, the scattering kernel for two-nucleon collisions includes the influence of the Fermi motion and the Pauli exclusion principle, which give a significant improvement in the description of the rise of the backward distributions. The angle-energy correlation for the first few steps of the collision process (multi-step direct process) yields further improvements in the description of the angular distribution. The pick-up mechanism is employed to describe the composite particle emission. This reasonable physical picture reproduces the experimental data of the energy spectra of composite particles satisfactorily. The angular distribution of the emitted composite particles is determined by an angular factor in terms of the momentum conservation of the nucleons forming the composite cluster. The generalized master equation is employed for the multi-step compound process. Thus a classical approach has been established to calculate the double differential cross sections for all kinds of particles emitted in multi-step nuclear reaction processes. (author). 19 refs, 6 figs, 1 tab

  10. On the implementation of a chain nuclear reaction of thermonuclear fusion on the basis of the p+11B process

    Science.gov (United States)

    Belyaev, V. S.; Krainov, V. P.; Zagreev, B. V.; Matafonov, A. P.

    2015-07-01

    Various theoretical and experimental schemes for implementing a thermonuclear reactor on the basis of the p+11B reaction are considered. They include beam collisions, fusion in degenerate plasmas, ignition upon plasma acceleration by ponderomotive forces, and the irradiation of a solid-state target from 11B with a proton beam under conditions of a Coulomb explosion of hydrogen microdrops. The possibility of employing ultra-short high-intensity laser pulses to initiate the p+11B reaction under conditions far from thermodynamic equilibrium is discussed. This and some other weakly radioactive thermonuclear reactions are promising owing to their ecological cleanness—there are virtually no neutrons among fusion products. Nuclear reactions that follow the p+11B reaction may generate high-energy protons, sustaining a chain reaction, and this is an advantage of the p+11B option. The approach used also makes it possible to study nuclear reactions under conditions close to those in the early Universe or in the interior of stars.

  11. Macroscopic and microscopic description of HE-HI collisions; classical equations of motion calculations

    International Nuclear Information System (INIS)

    Bodmer, A.R.

    1978-01-01

    The study of high energy heavy ion reactions includes the three principle a priori approaches used for central collisions, namely, hydrodynamics, cascade--Boltzman equation, and the classical equations of motion. While no clearly justified central or near central collisions are found, the classical equations of motion are used to illustrate some general features of these reactions. It is expected that the hot nuclear matter produced in such collisions is a dense, viscous, and thermally conductive fluid with important nonequilibrium and nonclassical features, rapidity, distribution, noncentral collisions, potential dependent effects for a given two-body scattering, and c.m. cross sections for a central collision with given parameters are among the properties considered. 12 references

  12. An interface between the nuclear physics and the atomic physics; how to measure nuclear times observing atomic transitions

    International Nuclear Information System (INIS)

    Pinho, A.G. de

    1985-01-01

    Recent observations are related in which processes resulting from the ionization in ion-atom collisions are observed in coincidence with nuclear processes (where the incidence ion nucleus hits the target atom nucleus). The delay introduced by the nuclear reaction contaminates the results of the atomic collision and manifest itself either in the X rays (positrons) emitted in the joined atom system or in the X rays (Auger electrons) emitted by separeted atoms, after the collision. Both effects serve to obtain information on the reaction times (in general much less then 10 -16 sec). Following this line, other experimental possibilities are discussed. (L.C.) [pt

  13. [Studies of target fragmentation in intermediate energy, relativistic and ultra-relativistic nuclear collisions]. Nuclear chemistry progress report, August 1, 1990--August 1, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Loveland, W.D.

    1991-08-01

    The work described herein is part of a project involving the study of low energy (< 10 MeV/A), intermediate energy (10--100 MeV/A) and relativistic (> 250 MeV/A) heavy ion reactions. In the low energy regime, we published a monograph on the properties of the heaviest elements and used that publication as a basis for making a set of ``best`` semi-empirical predictions of heavy element decay properties. The intermediate energy research effort focussed upon the completion of studies already begun and the initiation of a number of new experiments. In our study of a interaction of 21 MeV/nucleon {sup 129}Xe with {sup 197}Au, we compared the characteristics of the observed deep inelastic phenomena with various models of dissipative reactions and found significant discrepancies between observations and predictions. These discrepancies seemed to be caused by an improper treatment of pre-equilibrium in the early stages of the collision. In our study of the relativistic interaction of 400 MeV/nucleon {sup 12}C with {sup 197}Au, we reported the first direct physical measurement of the properties of the spallation residues from a nucleus-nucleus collision. We found the residue energies to be much lower than those predicted by the intranuclear cascade model, indicating some substantial modifications of that model are needed. But, we also found, indications of significant, non-zero values of the residue transverse momentum, a finding that calls into question the interpretation of a number of radiochemical recoil studies of the kinematics of high energy reactions. A program of performing numerical simulations of intermediate and high energy nuclear collisions using the QMD model was initiated.

  14. Hadron chemistry in heavy ion collisions

    International Nuclear Information System (INIS)

    Montvay, I.; Zimanyi, J.

    1978-06-01

    In the models for energetic heavy ion reactions it is assumed that during the reaction a hot and dense nuclear matter, a fireball is formed from all or a part of nucleons of the target and projectile nuclei. The process is similar to the chemical processes leading to dynamical equilibrium. The relaxation times necessary to establish ''chemical'' equilibrium among different hadrons in hot, dense hadronic matter is deducted in a statistical model. Consequences for heavy ion collisions are discussed. The possibility of Bose-Einstein pion condensation around the break-up time of the nuclear fireball is pointed out. (D.P.)

  15. Fragmentation in central collisions of heavy systems

    International Nuclear Information System (INIS)

    Claesson, G.; Doss, K.G.R.; Ferguson, R.

    1987-01-01

    One of the goals of heavy ion reaction studies is to understand the fragmentation of hot nuclei. The LBL/GSI Plastic Ball detector system has been used to achieve a very high solid angle for detection of light and medium-heavy fragments emitted in 200 Mev/A Au + Au and Au + Fe reactions. The simultaneous measurement of almost all of the nucleons and nuclei resulting from each collision allows an estimation of the total charged particle multiplicity and hence the impact parameter. By choosing subsets of the data corresponding to a peripheral or central collision, the assumptions inherent in various models of nuclear fragmentation can be tested. 3 refs., 3 figs

  16. Mass and angular distributions of the reaction products in heavy ion collisions

    Science.gov (United States)

    Nasirov, A. K.; Giardina, G.; Mandaglio, G.; Kayumov, B. M.; Tashkhodjaev, R. B.

    2018-05-01

    The optimal reactions and beam energies leading to synthesize superheavy elements is searched by studying mass and angular distributions of fission-like products in heavy-ion collisions since the evaporation residue cross section consists an ignorable small part of the fusion cross section. The intensity of the yield of fission-like products allows us to estimate the probability of the complete fusion of the interacting nuclei. The overlap of the mass and angular distributions of the fusion-fission and quasifission products causes difficulty at estimation of the correct value of the probability of the compound nucleus formation. A study of the mass and angular distributions of the reaction products is suitable key to understand the interaction mechanism of heavy ion collisions.

  17. Coloring Rate of Phenolphthalein by Reaction with Alkaline Solution Observed by Liquid-Droplet Collision.

    Science.gov (United States)

    Takano, Yuuka; Kikkawa, Shigenori; Suzuki, Tomoko; Kohno, Jun-ya

    2015-06-11

    Many important chemical reactions are induced by mixing two solutions. This paper presents a new way to measure rates of rapid chemical reactions induced by mixing two reactant solutions using a liquid-droplet collision. The coloring reaction of phenolphthalein (H2PP) by a reaction with NaOH is investigated kinetically. Liquid droplets of H2PP/ethanol and NaOH/H2O solutions are made to collide, which induces a reaction that transforms H2PP into a deprotonated form (PP(2-)). The concentration of PP(2-) is evaluated from the RGB values of pixels in the colored droplet images, and is measured as a function of the elapsed time from the collision. The obtained rate constant is (2.2 ± 0.7) × 10(3) M(-1) s(-1), which is the rate constant for the rate-determining step of the coloring reaction of H2PP. This method was shown to be applicable to determine rate constants of rapid chemical reactions between two solutions.

  18. Nuclear structure in deep-inelastic reactions

    International Nuclear Information System (INIS)

    Rehm, K.E.

    1986-01-01

    The paper concentrates on recent deep inelastic experiments conducted at Argonne National Laboratory and the nuclear structure effects evident in reactions between super heavy nuclei. Experiments indicate that these reactions evolve gradually from simple transfer processes which have been studied extensively for lighter nuclei such as 16 O, suggesting a theoretical approach connecting the one-step DWBA theory to the multistep statistical models of nuclear reactions. This transition between quasi-elastic and deep inelastic reactions is achieved by a simple random walk model. Some typical examples of nuclear structure effects are shown. 24 refs., 9 figs

  19. Collisions of polyatomic ions with surfaces: incident energy partitioning and chemical reactions

    International Nuclear Information System (INIS)

    Zabka, J.; Roithova, J.; Dolejsek, Z.; Herman, Z.

    2002-01-01

    Collision of polyatomic ions with surfaces were investigated in ion-surface scattering experiments to obtain more information on energy partitioning in ion-surface collision and on chemical reactions at surfaces. Mass spectra, translation energy and angular distributions of product ions were measured in dependence on the incident energy and the incident angle of polyatomic projectiles. From these data distributions of energy fractions resulting in internal excitation of the projectile, translation energy of the product ions, and energy absorbed by the surface were determined. The surface investigated were a standard stainless steel surface, covered by hydrocarbons, carbon surfaces at room and elevated temperatures, and several surfaces covered by a self-assembled monolayers (C 12 -hydrocarbon SAM, C 11 -perfluorohydrocarbon SAM, and C 11 hydrocarbon with terminal -COOH group SAM). The main processes observed at collision energies of 10 - 50 eV were: neutralization of the ions at surfaces, inelastic scattering and dissociations of the projectile ions, quasi elastic scattering of the projectile ions, and chemical reactions with the surface material (usually hydrogen-atom transfer reactions). The ion survival factor was estimated to be a few percent for even-electron ions (like protonated ethanol ion, C 2 H 5 O + , CD 5 + ) and about 10 - 10 2 times lower for radical ions (like ethanol and benzene molecular ions, CD 4 + ). In the polyatomic ion -surface energy transfer experiments, the ethanol molecular ion was used as a well-characterized projectile ion. The results with most of the surfaces studied showed in the collision energy range of 13 - 32 eV that most collisions were strongly inelastic with about 6 - 8 % of the incident projectile energy transformed into internal excitation of the projectile (independent of the incident angle) and led partially to its further dissociation in a unimolecular way after the interaction with the surface. The incident energy

  20. Nuclear Astrophysics and Neutron Induced Reactions: Quasi-Free Reactions and RIBs

    International Nuclear Information System (INIS)

    Cherubini, S.; Spitaleri, C.; Crucilla, V.; Gulino, M.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Puglia, S.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Coc, A.; Kubono, S.; Binh, D. N.; Hayakawa, S.; Wakabayashi, Y.; Yamaguchi, H.; Burjan, V.; Kroha, V.; De Sereville, N.

    2010-01-01

    The use of quasi-free reactions in studying nuclear reactions between charged particles of astrophysical interest has received much attention over the last two decades. The Trojan Horse Method is based on this approach and it has been used to study a number of reactions relevant for Nuclear Astrophysics. Recently we applied this method to the study of nuclear reactions that involve radioactive species, namely to the study of the 18 F+p→ 15 O+α process at temperatures corresponding to the energies available in the classical novae scenario. Quasi-free reactions can also be exploited to study processes induced by neutrons. This technique is particularly interesting when applied to reaction induced by neutrons on unstable short-lived nuclei. Such processes are very important in the nucleosynthesis of elements in the sand r-processes scenarios and this technique can give hints for solving key questions in nuclear astrophysics where direct measurements are practically impossible.

  1. Study of the reactions resulting in heavy fragment formation in the collisions {sup 40}Ar + Cu, Ag and Au at 8 to 115 MeV/u; Etude des reactions avec formation d`un fragment lourd dans les collisions {sup 40}Ar + Cu, Ag et Au de 8 a 115 MeV/u

    Energy Technology Data Exchange (ETDEWEB)

    Colin, Eric Yves [Universite Claude Bernard Lyon-1, 69 - Lyon (France)

    1998-11-06

    This work concerns the study of nuclear collisions showing a heavy fragment in {sup 40}Ar + Cu, Ag and Au from 8 A MeV to 115 A MeV. The reactions are classified by centrality or collision violence via the multiplicity of charged particles detected in a 4{pi} array. For the most peripheral reactions (low multiplicities) we always find a projectile-like fragment with velocity near to that of the beam and a heavy target-like fragment with very small velocity. For the more central collisions we find the well-known incomplete fusion reactions at 17 and 27 A MeV. Above 27 A MeV two groups of very dissipative reactions are observed, both with high charged particle multiplicities. The first reaction group forms several fragments with Z {<=} 10 and average longitudinal velocity near to that of c.m. These are very rare, and are found only for the highest 1% of multiplicities. They produce a heavy fragment and a forward spray ({theta}{<=}60 angle) of particles with charge going from 1 to {approx_equal}13. The momentum carried out by the spray is randomly spread over all the particles. In spite of the increase of momentum carried by this spray with increasing beam energy, a heavy emission source is formed with 1 - 2 GeV of excitation energy. After a phase of expansion, especially signaled by Z = 1 particles, this source then evaporates many particles. Finally we observed the remaining heavy residual nucleus. (author) 117 refs., 85 figs., 12 tabs.

  2. Using MUSIC to study relativistic nuclear collisions

    International Nuclear Information System (INIS)

    1983-01-01

    A large Multiple Sampling Ionization Chamber (MUSIC) has been developed as a part of the Heavy Ion Spectrometer System (HISS). This facility is being used for the study of relativistic nuclear collisions at the Bevalac of Lawrence Berkeley Laboratory. Preliminary data from MUSIC indicate that a charge resolution of one unit should be achieved from Z approximately equal to 7 to Z approximately equal to 100. (author)

  3. Innershell ionisation at small impactparameters in proton-atom collisions

    International Nuclear Information System (INIS)

    Duinker, W.

    1981-01-01

    This thesis concentrates on innershell ionisation in proton-atom collisions. An experiment on K-shell ionisation of argon is described, performed in a gasfilled collision chamber under single collision conditions. Further experiments with carbon and aluminium were performed, the K-shell vacancy production in the collision of protons with these atoms being detected through the measurement of Auger-electrons. A spectrometer with a large solid angle was specially constructed for this and its performance is described. K-shell ionisation accompanying nuclear (p,γ) reactions has also been measured using 26 Mg and 27 Al. (Auth./C.F.)

  4. Multistep processes in nuclear reactions

    International Nuclear Information System (INIS)

    Hodgson, P.E.

    1988-01-01

    The theories of nuclear reactions are reviewed with particular attention to the recent work on multistep processes. The evidence for compound nucleus and direct interaction reactions is described together with the results of comparisons between theories and experimental data. These theories have now proved inadequate, and there is evidence for multistep processes that take place after the initial direct stage but long before the attainment of the statistical equilibrium characteristic of compound nucleus processes. The theories of these reactions are described and it is shown how they can account for the experimental data and thus give a comprehensive understanding of nuclear reactions. (author)

  5. QMD and JAM calculations for high energy nucleon-nucleus collisions

    International Nuclear Information System (INIS)

    Niita, Koji

    2002-01-01

    We describe the two simulation codes, QMD and JAM (Jet AA Microscopic Transport Model), for high energy nuclear reactions. QMD can treat the nucleus-nucleus reactions as well as nucleon-nucleus reactions based on the molecular dynamics. We have applied the QMD code intensively to nucleon-nucleus reactions and checked its validity. The cross sections obtained by the QMD are now used for evaluation of high energy nuclear data in JAERI. JAM is a hadronic cascade code including the resonance and string model for the hadron-hadron collisions at high energy up to 200 GeV. We have developed a high energy particle transport code NMTC/JAM by including the JAM code for the intra-nuclear cascade part. (author)

  6. Effective interaction: From nuclear reactions to neutron stars

    Indian Academy of Sciences (India)

    pact stars. The nuclear EoS for β-equilibrated neutron star (NS) matter obtained using density-dependent effective nucleon–nucleon interaction satisfies the constraints from the observed flow data from heavy-ion collisions. The energy density of quark matter is lower than that of the nuclear EoS at higher densities implying ...

  7. Studying heavy-ion collisions with FAUST-QTS

    Directory of Open Access Journals (Sweden)

    Cammarata P.

    2015-01-01

    Full Text Available Heavy-ion collisions at lower energies provide a rich environment for investigating reaction dynamics. Recent theory has suggested a sensitivity to the symmetry energy and the equation of state via deformations of the reaction system and ternary breaking of the deformed reaction partners into three heavy fragments. A new detection system has been commissioned at Texas A&M University in an attempt to investigate some of the observables sensitive to the nuclear equation of state.

  8. Statistical calculation of complete events in medium-energy nuclear collisions

    International Nuclear Information System (INIS)

    Randrup, J.

    1984-01-01

    Several heavy-ion accelerators throughout the world are presently able to deliver beams of heavy nuclei with kinetic energies in the range from tens to hundreds of MeV per nucleon, the so-called medium or intermediate energy range. At such energies a large number of final channels are open, each consisting of many nuclear fragments. The disassembly of the collision system is expected to be a very complicated process and a detailed dynamical description is beyond their present capability. However, by virtue of the complexity of the process, statistical considerations may be useful. A statistical description of the disassembly yields the least biased expectations about the outcome of a collision process and provides a meaningful reference against which more specific dynamical models, as well as the data, can be discussed. This lecture presents the essential tools for formulating a statistical model for the nuclear disassembly process. The authors consider the quick disassembly (explosion) of a hot nuclear system, a so-called source, into multifragment final states, which complete according to their statistical weight. First some useful notation is introduced. Then the expressions for exclusive and inclusive distributions are given and the factorization of an exclusive distribution into inclusive ones is carried out. In turn, the grand canonical approximation for one-fragment inclusive distributions is introduced. Finally, it is outlined how to generate a statistical sample of complete final states. On this basis, a model for statistical simulation of complete events in medium-energy nuclear collisions has been developed

  9. Nuclear reactions video (knowledge base on low energy nuclear physics)

    International Nuclear Information System (INIS)

    Zagrebaev, V.; Kozhin, A.

    1999-01-01

    The NRV (nuclear reactions video) is an open and permanently extended global system of management and graphical representation of nuclear data and video-graphic computer simulation of low energy nuclear dynamics. It consists of a complete and renewed nuclear database and well known theoretical models of low energy nuclear reactions altogether forming the 'low energy nuclear knowledge base'. The NRV solves two main problems: 1) fast and visualized obtaining and processing experimental data on nuclear structure and nuclear reactions; 2) possibility for any inexperienced user to analyze experimental data within reliable commonly used models of nuclear dynamics. The system is based on the realization of the following principal things: the net and code compatibility with the main existing nuclear databases; maximal simplicity in handling: extended menu, friendly graphical interface, hypertext description of the models, and so on; maximal visualization of input data, dynamics of studied processes and final results by means of real three-dimensional images, plots, tables and formulas and a three-dimensional animation. All the codes are composed as the real Windows applications and work under Windows 95/NT

  10. Nuclear reactions

    International Nuclear Information System (INIS)

    Corner, J.; Richardson, K.; Fenton, N.

    1990-01-01

    Nuclear reactions' marks a new development in the study of television as an agency of public policy debate. During the Eighties, nuclear energy became a major international issue. The disasters at Three-mile Island and Chernobyl created a global anxiety about its risks and a new sensitivity to it among politicians and journalists. This book is a case-study into documentary depictions of nuclear energy in television and video programmes and into the interpretations and responses of viewers drawn from many different occupational groupings. How are the complex and specialist arguments about benefit, risk and proof conveyed through the different conventions of commentary, interview and film sequence? What symbolic associations does the visual language of television bring to portrayals of the issue? And how do viewers make sense of various and conflicting accounts, connecting what they see and hear on the screen with their pre-existing knowledge, experience and 'civic' expectations. The authors examine some of the contrasting forms and themes which have been used by programme makers to explain and persuade, and then give a sustained analysis of the nature and sources of viewers' own accounts. 'Nuclear Reactions' inquires into the public meanings surrounding energy and the environment, spelling out in its conclusion some of the implications for future media treatments of this issue. It is also a key contribution to the international literature on 'television knowledge' and the processes of active viewing. (author)

  11. Annual report of the Grenoble Institute of nuclear science

    International Nuclear Information System (INIS)

    Vignon, B.

    1988-01-01

    Research in theoretical nuclear physics; peripheral reactions and intermediate energy physics; characteristics of reaction mechanisms in heavy ion collisions; nuclear structure; fundamental interactions; interdisciplinary studies; experimental methods and instrumentation; and the SARA accelerator is presented [fr

  12. Nuclear reaction inputs based on effective interactions

    Energy Technology Data Exchange (ETDEWEB)

    Hilaire, S.; Peru, S.; Dubray, N.; Dupuis, M.; Bauge, E. [CEA, DAM, DIF, Arpajon (France); Goriely, S. [Universite Libre de Bruxelles, Institut d' Astronomie et d' Astrophysique, CP-226, Brussels (Belgium)

    2016-11-15

    Extensive nuclear structure studies have been performed for decades using effective interactions as sole input. They have shown a remarkable ability to describe rather accurately many types of nuclear properties. In the early 2000 s, a major effort has been engaged to produce nuclear reaction input data out of the Gogny interaction, in order to challenge its quality also with respect to nuclear reaction observables. The status of this project, well advanced today thanks to the use of modern computers as well as modern nuclear reaction codes, is reviewed and future developments are discussed. (orig.)

  13. Nuclear collisions in measurements of the cosmic ray charge spectrum with a counter telescope

    International Nuclear Information System (INIS)

    Lindstam, S.

    1975-06-01

    The importance of nuclear collisions of cosmic ray particles in a counter detector telescope is studied by simple Monte Carlo techniques. The interest concentrates on the charge region just below iron and the calculations are restricted to fully relativistic cosmic rays. It is found that it is difficult to avoid a blurring in the charge spectrum from nuclear collisions leading to considerable systematic errors in some abundance ratios. (Auth.)

  14. Multifragmentation in peripheral nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Trautmann, W.; Adloff, J.C.; Bouissou, P.; Hubele, J.; Imme, G.; Iori, I.; Kreutz, P.; Leray, S.; Lindenstruth, V.; Liu, Z.; Lynen, U.; Meijer, R.J.; Milkau, U.; Moroni, A.; Mueller, W.F.J.; Ngo, C.; Ogilvie, C.A.; Pochodzalla, J.; Raciti, G.; Rudolf, G.; Schuettauf, A.; Stuttge, L.

    1993-10-01

    The complete fragmentation of highly excited nuclear systems into fragments of intermediate mass is observed in heavy-ion reactions at relativistic bombarding energies in the range of several hundreds of MeV per nucleon. Similar features are found for peripheral collisions between heavy nuclei and for more central collisions between a heavy and a light nucleus. The partition space explored in multifragment decays is well described by the statistical multifragmentation models. The expansion before breakup is confirmed by the analysis of the measured fragment energies of ternary events in their own rest frame. Collective radial flow is confined to rather small values in these peripheral-type reactions. Many conceptually different models seem to be capable of reproducing the charge correlations measured for the multifragment decays. (orig.)

  15. Disoriented Chiral Condensates in High-Energy Nuclear Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Randrup, Jorgen

    2000-10-18

    This brief lecture series discusses how our current understanding of chiral symmetry may be tested more globally in high-energy nuclear collisions by suitable extraction of pionic observables. After briefly recalling the general features of chiral symmetry, we focus on the SU(2) linear sigma model and show how a semi-classical mean-field treatment makes it possible to calculate its statistical properties, including the chiral phase diagram. Subsequently, we consider scenarios of relevance to high-energy collisions and discuss the features of the ensuing non-equilibrium dynamics and the associated characteristic signals. Finally, we illustrate how the presence of vacuum fluctuations or the inclusion of strangeness may affect the results quantitatively.

  16. Electromagnetic radiation from nuclear collisions at RHIC energies

    CERN Document Server

    Turbide, Simon; Frodermann, Evan; Heinz, Ulrich

    2008-01-01

    The hot and dense strongly interacting matter created in collisions of heavy nuclei at RHIC energies is modeled with relativistic hydrodynamics, and the spectra of real and virtual photons produced at mid-rapidity in these events are calculated. Several different sources are considered, and their relative importance is compared. Specifically, we include jet fragmentation, jet-plasma interactions, the emission of radiation from the thermal medium and from primordial hard collisions. Our calculations consistently take into account jet energy loss, as evaluated in the AMY formalism. We obtain results for the spectra, the nuclear modification factor (R_AA), and the azimuthal anisotropy (v_2) that agree with the photon measurements performed by the PHENIX collaboration at RHIC.

  17. Nuclear reaction database on Meme Media

    International Nuclear Information System (INIS)

    Ohbayashi, Yoshihide; Masui, Hiroshi; Aoyama, Shigeyoshi; Kato, Kiyoshi; Chiba, Masaki

    2000-01-01

    We have developed the system of charged particle nuclear reaction data (CPND) on the IntelligentPad architecture. We called the system CONTIP, which is an abbreviation of 'Creative, Cooperative and Cultural Objects for Nuclear data and Tools'. NRDF (Nuclear Reaction Data File), which is a kind of CPND compilation, is applied as an application example. Although CONTIP is currently applied to NRDF, the framework can be generalized to use the other nuclear database. We will develop CONTIP to give the framework for effective utilization of nuclear data. (author)

  18. Catalysis of Nuclear Reactions by Electrons

    Science.gov (United States)

    Lipoglavšek, Matej

    2018-01-01

    Electron screening enhances nuclear reaction cross sections at low energies. We studied the nuclear reaction 1H(19F,αγ)16O in inverse kinematics in different solid hydrogen targets. Measured resonance strengths differed by up to a factor of 10 in different targets. We also studied the 2H(p,γ)3He fusion reaction and observed electrons emitted as reaction products instead of γ rays. In this case electron screening greatly enhances internal conversion probability.

  19. Nuclear Reactions for Astrophysics and Other Applications

    Energy Technology Data Exchange (ETDEWEB)

    Escher, J E; Burke, J T; Dietrich, F S; Scielzo, N D; Ressler, J J

    2011-03-01

    Cross sections for compound-nuclear reactions are required for many applications. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  20. Nuclear theory progress report

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses research performed at University of Washington in nuclear theory. Some of the topics discussed are: nuclear astrophysics; symmetry; time reversal invariance; quark matter; superallowed beta decay; exclusive reactions; nuclear probes; soliton model; relativistic heavy ion collisions; supernova explosions; neutrino processes in dense matter; field theories; weak interaction physics; and nuclear structure

  1. Fourier analysis of nonself-averaging quasiperiodic oscillations in the excitation functions of dissipative heavy-ion collisions: quantum chaos in dissipative heavy-ion collisions?

    International Nuclear Information System (INIS)

    Kun, S.Yu.; Australian Nat. Univ., Canberra; Australian National Univ., Canberra, ACT

    1997-01-01

    We employ stochastic modelling of statistical reactions with memory to study quasiperiodic oscillations in the excitation functions of dissipative heavy-ion collisions. The Fourier analysis of excitation function oscillations is presented. It suggests that S-matrix spin and parity decoherence, damping of the coherent nuclear rotation and quantum chaos are sufficient conditions to explain the nonself-averaging of quasiperiodic oscillations in the excitation functions of dissipative heavy-ion collisions. (orig.)

  2. J/$\\psi$ azimuthal anisotropy relative to the reaction plane in Pb-Pb collisions at 158 GeV per nucleon

    CERN Document Server

    Prino, F; Alexa, C; Arnaldi, R; Atayan, M; Beolè, S; Boldea, V; Bordalo, P; Borges, G; Castanier, C; Castor, J; Chaurand, B; Cheynis, B; Chiavassa, E; Cicalo, C; Comets, M P; Constantinescu, S; Cortese, P; De Falco, A; De Marco, N; Dellacasa, G; Devaux, A; Dita, S; Fargeix, J; Force, P; Gallio, M; Gerschel, C; Giubellino, P; Golubeva, M B; Grigoryan, A A; Grigoryan, S; Guber, F F; Guichard, A; Gulkanyan, H; Idzik, M; Jouan, D; Karavicheva, T L; Kluberg, L; Kurepin, A B; Le Bornec, Y; Lourenço, C; Mac Cormick, M; Marzari-Chiesa, A; Masera, M; Masoni, A; Monteno, M; Musso, A; Petiau, P; Piccotti, A; Pizzi, J R; Puddu, G; Quintans, C; Ramello, L; Ramos, S; Riccati, L; Santos, H; Saturnini, P; Scomparin, E; Serci, S; Shahoyan, R; Sigaudo, F; Sitta, M; Sonderegger, P; Tarrago, X; Topilskaya, N S; Usai, G L; Vercellin, E; Villatte, L; Willis, N; Wu, T

    2009-01-01

    The J/$\\psi$ azimuthal distribution relative to the reaction plane has been measured by the NA50 experiment in Pb-Pb collisions at 158 GeV/nucleon. Various physical mechanisms related to charmonium dissociation in the medium created in the heavy ion collision are expected to introduce an anisotropy in the azimuthal distribution of the observed J/$\\psi$ mesons at SPS energies. Hence, the measurement of J/$\\psi$ elliptic anisotropy, quantified by the Fourier coefficient v$_2$ of the J/$\\psi$ azimuthal distribution relative to the reaction plane, is an important tool to constrain theoretical models aimed at explaining the anomalous J/$\\psi$ suppression observed in Pb-Pb collisions. We present the measured J/$\\psi$ yields in different bins of azimuthal angle relative to the reaction plane, as well as the resulting values of the Fourier coefficient v$_{2}$ as a function of the collision centrality and of the J/$\\psi$ transverse momentum. The reaction plane has been estimated from the azimuthal distribution of the ...

  3. Study of the reactions resulting in heavy fragment formation in the collisions 40Ar + Cu, Ag and Au at 8 to 115 MeV/u

    International Nuclear Information System (INIS)

    Colin, Eric Yves

    1998-01-01

    This work concerns the study of nuclear collisions showing a heavy fragment in 40 Ar + Cu, Ag and Au from 8 A MeV to 115 A MeV. The reactions are classified by centrality or collision violence via the multiplicity of charged particles detected in a 4π array. For the most peripheral reactions (low multiplicities) we always find a projectile-like fragment with velocity near to that of the beam and a heavy target-like fragment with very small velocity. For the more central collisions we find the well-known incomplete fusion reactions at 17 and 27 A MeV. Above 27 A MeV two groups of very dissipative reactions are observed, both with high charged particle multiplicities. The first reaction group forms several fragments with Z ≤ 10 and average longitudinal velocity near to that of c.m. These are very rare, and are found only for the highest 1% of multiplicities. They produce a heavy fragment and a forward spray (θ≤60 angle) of particles with charge going from 1 to ≅13. The momentum carried out by the spray is randomly spread over all the particles. In spite of the increase of momentum carried by this spray with increasing beam energy, a heavy emission source is formed with 1 - 2 GeV of excitation energy. After a phase of expansion, especially signaled by Z = 1 particles, this source then evaporates many particles. Finally we observed the remaining heavy residual nucleus. (author)

  4. Pion production and fragmentation of nuclei in high energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Oskarsson, A.

    1983-01-01

    In collisions between nuclei at high energies one can study the behaviour of nuclear matter under extreme conditions, regarding nuclear density and temperature. The Bevalac and the CERN SC beams have been used and nuclear emulsion and scintillation telescopes have measured the reaction products. Collisions at 50A-200A MeV and at 2A GeV have been investigated. Proton spectra from 12 C induced reactions at 85A MeV have been recorded for different targets. Energetic protons at large angles can be assumed to be emitted from a source moving with half the beam velocity and a temperature between 13 and 17 MeV, depending on the target. In collisions between nuclei, pions can be produced below 290A MeV due to the internal Fermi motion of the nucleons. Subthreshold pion production has been studied for 12 C induced reactions at 85A and 75A Mev. The cross-sections are consistent with a quasi-free nucleon-nucleon scattering picture, involving Fermi motion, Pauli blocking and pion reabsorption. 16 C induced reactions in emulsion have been studied at 75A, 175A and 2000A MeV. It is shown that the excitation of the parts of the nuclei which are not overlapping (the spectators) increases with the beam energy. The 16 O projectile frequently breaks up into multiple He fragments. These events are associated with large impact parameters. Central collisions with Ag, Br target at 50A-110A MeV have been analysed separately. It is shown that the momentum transfer to the target nucleus is limited to a value considerably lower than the full momentum transfer in a fusion reactions. Events are observed where there are numerous fragments with 3< Z<8. These multifragmentation events cannot be understood in a thermal approach. (author)

  5. Studies of heavy-ion reactions and transuranic nuclei

    International Nuclear Information System (INIS)

    Schroeder, W.U.; Huizenga, J.R.

    1991-08-01

    The development of the ''cold-fusion'' episode is reviewed. Ongoing studies of compound-nucleus formation and decay via the neutron multiplicity distribution confirm the validity of conventional statistical theory. The excitation energy partition in near-barrier damped 58 Ni + 208 Pb collisions is found to be largely independent of the direction of net mass transfer, supporting a diffusion-like nucleon-exchange mechanism. Exclusive experiments on the heavy reaction systems 197 Au + 208 Pb and 209 Bi + 136 Xe in the Fermi-energy domain have revealed important new insights into the reaction mechanism, which is found to be dominated by damped, binary processes. The effectiveness of the neutron multiplicity as an impact-parameter filter is demonstrated. It is shown that very-heavy-ion reactions lead to transient nuclear systems with temperatures in excess of τ = 6 MeV and transfer of large, aligned spins to reaction fragments. The first measurements of neutrons in coincidence with kinematically identified reaction fragments provide evidence for the binary, sequential character of dissipative collisions in the Fermi-energy domain. Also for the first time, a full event characterization was achieved for nuclear reactions in terms of neutrons and charged particles. Technical information on this experiment is provided. First results yield strong evidence for dominantly binary primary reaction dynamics of even highly dissipative 209 Bi + (28MeV/u) 136 Xe collisions, associated with several intermediate-mass fragments

  6. Inner shells as a link between atomic and nuclear physics

    International Nuclear Information System (INIS)

    Merzbacher, E.

    1982-01-01

    Nuclear decay and reaction processes generally take place in neutral or partially ionized atoms. The effects of static nuclear properties (size, shape, moments) on atomic spectra are well known, as are electronic transitions accompanying nuclear transitions, e.g. K capture and internal conversion. Excitation or ionization of initially filled inner shells, really or virtually, may modify nuclear Q values, will require correction to measured beta-decay endpoint energies, and can permit the use of inner-shell transitions in the determination of nuclear widths. Improvements in resolution continue to enhance the importance of these effects. There is also beginning to appear experimental evidence of the dynamical effects of atomic electrons on the course of nuclear reactions. The dynamics of a nuclear reaction, which influences and may in turn be influenced by atomic electrons in inner shells, offers instructive examples of the interplay between strong and electromagnetic interactions and raises interesting questions about coherence properties of particle beams. A variety of significantly different collision regimes, depending on the atomic numbers of the collision partners and the collision velocity, will be discussed and illustrated. 21 References, 5 figures

  7. Impact parameter selected nuclear temperatures of hot nuclei from excited state populations for 40Ar+197Au reactions at E/A=25MeV

    International Nuclear Information System (INIS)

    Li Zuyu; He Zhiyong; Duan Limin; Jin Genming; Wu Heyu; Zhang Baoguo; Wen Wanxin; Qi Yujin; Luo Qingzheng; Dai Guangxi; Wang Hongwei

    1997-01-01

    Nuclear temperatures extracted from excited state populations were measured as a function of linear momentum transfer (LMT) for 40 Ar+ 197 Au reactions at 25MeV/nucleon. The emission temperatures increased slightly with increasing linear momentum transfer or decreasing impact parameter. Taking into account the corrections of detection efficiency and sequential feeding from higher-lying states, a temperature of T∼4MeV was deduced for central collisions. For peripheral collisions the extracted temperatures increased with the energy of the particles. (orig.)

  8. Contribution to very inelastic collisions. Emission mechanism of light charged particles and angular momentum transfer in 40Ar (280 MeV) + 58Ni nuclear reactions

    International Nuclear Information System (INIS)

    Babinet, R.

    1981-07-01

    This work ends a particularly detailed study on very inelastic collisions in 40 A (280 MeV) + 58 Ni reaction. The two experiments in coincidence (fragment-fragment and particle-fragment) which are this work basis, essentially experimental, are the following of the very precise inclusive measurements already done on this system. They allowed to precise many important aspects of the reaction mechanism. Conclusions from a precise analysis of the fragment kinematics near the mass symmetry is the new aspect of this study. Information implicitely contained in the two complementary fragment angular correlation width are particularly detailed. Concerning the particle-fragment coincidence experiment, a quantitative analysis method of the invariant cross sections (in the reaction plane) has been developed; it shows clearly what is the origin of the emitted particles. The result of a two-stage mechanism allows to interpret simply the anisotropy out-of-plane of the alpha particle emission. The individual spin has been obtained for the first time for each of the two fragments of very inelastic collisions in nearly all the mass asymmetry domain [fr

  9. Study of Particle Production and Nuclear Fragmentation in Relativistic Heavy-Ion Collisions in Nuclear Emulsions

    CERN Multimedia

    2002-01-01

    % EMU11 \\\\ \\\\ We propose to use nuclear emulsions for the study of nuclear collisions of $^{207}$Pb, $^{197}$Au, and any other heavy-ion beams when they are available. We have, in the past, used $^{32}$S at 200A~GeV and $^{16}$O at 200A and 60A~GeV from CERN (Experiment EMU08) and at present the analysis is going on with $^{28}$Si beam from BNL at 14.5A~GeV. It will be important to compare the previous and the present investigations with the new $^{207}$Pb beam at 60-160A~GeV. We want to measure in nuclear emulsion, on an event by event basis, shower particle multiplicity, pseudorapidity density and density fluctuations of charged particles, charge multiplicity and angular distributions of projectile fragments, production and interaction cross-sections of heavily ionizing particles emitted from the target fragmentation. Special emphasis will be placed on the analysis of events produced in the central collisions which are selected on the basis of low energy fragments emitted from the target excitation. It woul...

  10. Mesonic atom production in high-energy nuclear collisions

    International Nuclear Information System (INIS)

    Wakai, M.; Bando, H.; Sano, M.

    1987-08-01

    The production probability of π-mesonic atom in high-energy nuclear collisions is estimated by a coalescence model. The production cross section is calculated for p + Ne and Ne + Ne systems at 2.1 GeV/A and 5.0 GeV/A beam energy. It is shown that nuclear fragments with larger charge numbers have the advantage in the formation of π-mesonic atoms. The cross section is proportional to Z 3 and of the order of magnitude of 1 ∼ 10 μb in all the above cases. The production cross sections of K-mesonic atoms are also estimated. (author)

  11. Nuclear shape evolution starting from superdeformed state. Role of two-body collision and rotation

    International Nuclear Information System (INIS)

    Liu, Yu-xin; Sakata, Fumihiko

    1999-01-01

    With the nuclear density distribution being simulated by the Boltzmann Uehling-Uhlenbeck equation and Vlasov equation with several rotational frequencies, the time evolution of the quadrupole moment of nucleus 86 Zr starting with superdeformed shape is studied. The contribution of two-body collisions and the effects of collective rotation to the shape evolution is investigated. The numerical results indicate that the two-body collisions play a role of damping on the evolution from a superdeformed shape to a normal deformed one in a case without rotation. In a case of rotation with lower frequency, the two-body collisions accelerate the evolution process. A new role of the collective rotation to enhance the nuclear fission is proposed. (author)

  12. UPC photo-nuclear dijet production in 5.02 TeV 
Pb+Pb collisions

    CERN Document Server

    Angerami, Aaron; The ATLAS collaboration

    2017-01-01

    Ultra-peripheral heavy ion collisions provide a unique opportunity to study the parton distributions in the colliding nuclei via the measurement of photo-nuclear dijet production. An analysis of dijet production in ultra-peripheral $\\sqrt{s}_{\\mathrm{NN}}$=5.02 TeV Pb+Pb collisions performed using data collected in 2015 is described. The data set corresponds to a total integrated luminosity of 0.38 $\\mathrm{nb}^{−1}$. The ultra-peripheral collisions are selected using a combination of trigger, zero degree calorimeter, and gap requirements. The jets are reconstructed using the anti-$k_t$ algorithm. The results of the measurement include cross-sections for photo-nuclear dijet production as a function of different dijet kinematic variables.

  13. Continuous spectrum of electromagnetic radiation in the collision of nuclear particles

    International Nuclear Information System (INIS)

    Amusia, M.Y.; Solovyov, A.V.

    1988-01-01

    The bremsstrahlung arising at the scattering of various particles on a nucleus has been considered with the demonstration of an important participation of the nuclear polarization in the collision process

  14. Theory of nuclear reactions, with applications to heavy ion scattering reactions

    International Nuclear Information System (INIS)

    Youssef, M.S.A.

    1981-01-01

    Nuclear science to day, has gained its stature through the pioneer work of both theorists and experimentalists within its two main divisions, Nuclear Reaction and Nuclear Structure theories. Our main interest in this theoretical work in nuclear reaction theory is focused on three topics, come under the headings of three parts which are the constituents of the present paper. Part 1 is concerned with ''Contributions to the theory of Threshold phenomena in nuclear reactions; cluster threshold states in heavy ion reactions''. Part II is devoted to ''Hermiticity of the Laplacian operator, R-matrix theories and direct interaction theory'', while part xII is ascribed to ''Heavy ion transfer reactions and scattering''. The aforementioned selected topics are the backbones of this thesis, which starts with general introduction giving a brief account about the material included in. In each part, investiqations are given in an extended manner through several chapters. Finally, the thesis is ended eith the chapter on ''General Discussions and Conclusions''. Appendices, references, and figure captions are found at the end of each part, the matter which we believe to facilitate much the reading through of the thesis. The first two parts are based (to some extent) on the same formal background (R-matrix, Kapur-Peierls-theories) and they converge to solve some physical problems originating from flux conservation laws in nuclear reactions, while the third part is indirect related to the first two; in principle it joins the other two parts under computational aspects. All of them after all, form the solidarity of the material included in the thesis. (author)

  15. Collisions between heavy nuclei near the barrier

    International Nuclear Information System (INIS)

    Henning, W.

    1988-05-01

    Detailed information has recently become available on the reaction behavior in very heavy nuclear systems close to the Coulomb barrier. Starting from an experimental study of the distribution of the reaction strength above and below the barrier, the dominant reaction channels of quasi-elastic and strongly-damped processes are examined. With decreasing incident energy, the sub-barrier collisions are increasingly dominated by quasi-elastic processes. From the division of internal excitation energy, new information is obtained on the nature of the dissipative processes. (orig.)

  16. Exotic phenomena in collisions of very heavy ions

    International Nuclear Information System (INIS)

    Soff, G.; Mueller, U.; Schramm, S.; de Reus, T.; Mehler, G.; Reinhardt, J.; Mueller, B.; Greiner, W.

    1987-01-01

    Over the last decade their knowledge on atomic structure of superheavy quasimolecules in the range 110 ≤ Z/sub tot/ ≤ 188 has increased considerably. Heavy ion collisions, in which superheavy quasimolecules are formed for a short period of time, offer them a unique tool to investigate the electronic structure of ultra-high Z-systems, which are not otherwise accessible to experiment. Comparison of K-vacancy formation, δ-electron and positron emission with available experimental data suggests the validity of the quasimolecular picture, which will be taken as the theoretical framework of these calculations. To exemplify current theoretical investigations three different topics will be discussed. After a presentation of the underlying theoretical framework for ionization processes the possibility to employ δ-electron emission as a clock to measure nuclear reaction times in intermediate energy collisions of very heavy ions will be sketched. Besides the phenomenon of vacuum decay into a new twofold negatively charged stable vacuum ground state, electron excitation in heavy ion collisions may be employed for the determination of delay and deceleration times on the nuclear time scale, i.e. offering an atomic clock, operating in the range 10 -21 - 10 -24 s. In deep-inelastic heavy ion collisions this provides a test for classical nuclear reaction models. In collisions at intermediate energies an independent measurement of the deceleration time is of interest for comparison, e.g., with the results of the pion bremsstrahlung model. After that the influence of one or more pockets in the ion scattering potential on the energy distribution of emitted positrons within a quantum mechanical framework is investigated. Finally phenomenological corrections to the Dirac equation and its consequences on electron binding energies in heavy and superheavy atoms is briefly considered. 42 references, 5 figures

  17. Hadron--hadron reactions, high multiplicity

    International Nuclear Information System (INIS)

    Diebold, R.

    1978-09-01

    A coverage of results on high energy and high multiplicity hadron reactions, charm searches and related topics, ultrahigh energy events and exotic phenomena (cosmic rays), and the nuclear effects in high energy collisions and related topics is discussed. 67 references

  18. Nuclear reaction database on Meme Media

    Energy Technology Data Exchange (ETDEWEB)

    Ohbayashi, Yoshihide; Masui, Hiroshi [Meme Media Laboratory, Hokkaido University, Sapporo, Hokkaido (Japan); Aoyama, Shigeyoshi [Information Processing Center, Kitami Institute of Technology, Kitami, Hokkaido (Japan); Kato, Kiyoshi [Division of Physics, Graduate School of Science, Hokkaido Univ., Sapporo, Hokkaido (Japan); Chiba, Masaki [Division of Social Information, Sapporo Gakuin University, Ebetsu, Hokkaido (Japan)

    2000-03-01

    We have developed the system of charged particle nuclear reaction data (CPND) on the IntelligentPad architecture. We called the system CONTIP, which is an abbreviation of 'Creative, Cooperative and Cultural Objects for Nuclear data and Tools'. NRDF (Nuclear Reaction Data File), which is a kind of CPND compilation, is applied as an application example. Although CONTIP is currently applied to NRDF, the framework can be generalized to use the othernuclear database. We will develop CONTIP to give the framework for effective utilization of nuclear data. (author)

  19. PICA95: An intranuclear-cascade code for 25-MeV to 3.5-GeV photon-induced nuclear reactions

    International Nuclear Information System (INIS)

    Fu, C.Y.; Gabriel, T.A.; Lillie, R.A.

    1997-01-01

    PICA95, an intranuclear-cascade code for calculating photon-induced nuclear reactions for incident photon energies up to 3.5 GeV, is an extension of the original PICA code package that works for incident photon energies up to 400 MeV. The original code includes the quasi-deuteron breakup and single-pion production channels. The extension to an incident photon energy of 3.5 GeV requires the addition of multiple-pion production channels capable of emitting up to five pions. Relativistic phase-space relations are used to conserve energy and momentum in multi-body breakups. Fermi motion of the struck nucleon is included in the phase-space calculations as well as secondary nuclear collisions of the produced particles. Calculated doubly differential cross sections for the productions of protons, neutrons, π + , π 0 , and π - for incident photon energies of 500 MeV, 1 GeV, and 2 GeV are compared with predictions by other codes. Due to the sparsity of experimental data, more experiments are needed in order to refine the gamma nuclear collision model

  20. Calculated nuclide production yields in relativistic collisions of fissile nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Benlliure, J.; Schmidt, K.H. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Grewe, A.; Jong, M. de [Technische Univ. Darmstadt (Germany). Inst. fuer Kernphysik; Zhdanov, S. [AN Kazakhskoj SSR, Alma-Ata (USSR). Inst. Yadernoj Fiziki

    1997-11-01

    A model calculation is presented which predicts the complex nuclide distribution resulting from peripheral relativistic heavy-ion collisions involving fissile nuclei. The model is based on a modern version of the abrasion-ablation model which describes the formation of excited prefragments due to the nuclear collisions and their consecutive decay. The competition between the evaporation of different light particles and fission is computed with an evaporation code which takes dissipative effects and the emission of intermediate-mass fragments into account. The nuclide distribution resulting from fission processes is treated by a semiempirical description which includes the excitation-energy dependent influence of nuclear shell effects and pairing correlations. The calculations of collisions between {sup 238}U and different reaction partners reveal that a huge number of isotopes of all elements up to uranium is produced. The complex nuclide distribution shows the characteristics of fragmentation, mass-asymmetric low-energy fission and mass-symmetric high-energy fission. The yields of the different components for different reaction partners are studied. Consequences for technical applications are discussed. (orig.)

  1. PARTON SATURATION, PRODUCTION, AND EQUILIBRATION IN HIGH ENERGY NUCLEAR COLLISIONS

    International Nuclear Information System (INIS)

    VENUGOPALAN, R.

    1999-01-01

    Deeply inelastic scattering of electrons off nuclei can determine whether parton distributions saturate at HERA energies. If so, this phenomenon will also tell us a great deal about how particles are produced, and whether they equilibrate, in high energy nuclear collisions

  2. Constraining the EOS of Neutron-Rich Nuclear Matter and Properties of Neutron Stars with Heavy-Ion Reactions

    International Nuclear Information System (INIS)

    Li Baoan; Worley, Aaron; Chen, L.-W.; Ko, Che Ming; Krastev, Plamen G.; Wen Dehua; Xiao Zhigang; Zhang Ming; Xu Jun; Yong Gaochan

    2009-01-01

    Heavy-ion reactions especially those induced by radioactive beams provide useful information about the density dependence of the nuclear symmetry energy, thus the Equation of State of neutron-rich nuclear matter, relevant for many astrophysical studies. The latest developments in constraining the symmetry energy at both sub- and supra-saturation densities from analyses of the isopsin diffusion and the π - /π + ratio in heavy-ion collisions using the IBUU04 transport model are discussed. Astrophysical ramifications of the partially constrained symmetry energy on properties of neutron star crusts, gravitational waves emitted by deformed pulsars and the w-mode oscillations of neutron stars are presented briefly.

  3. Multiparticle Production in Particle and Nuclear Collisions. I

    Science.gov (United States)

    Kanki, T.; Kinoshita, K.; Sumiyoshi, H.; Takagi, F.

    The dominant phenomenon in high-energy particle and nuclear collisions is multiple production of hadrons. This had attracted may physicists in 1950's, the period of the first remarkable development of particle physics. Multiparticle production was already observed in cosmic-ray experiments and expected to be explained as a natural consequence of the strong Yukawa interaction. Statistical and hydrodynamical models were then proposed by Fermi, Landau and others. These theories are still surviving even today as a prototype of modern ``fire-ball'' models. After twenty years, a golden age came in this field of physics. It was closely related to the rapid development of accelerator facilities, especially, the invention of colliding-beam machines which yield high enough center-of-mass energies for studying reactions with high multiplicity. Abundant data on final states of multiparticle production have been accumulated mainly by measuring inclusive cross sections and multiplicity distributions. In super high-energy bar{p}p collisions at CERN S pmacr pS Collider, we confirmed the increasing total cross section and found violations of many scaling laws which seemed to be valid at lower energies. This suggests a fundamental complexity of the multiparticle phenomena and offers new materials for further development of theoretical investigations. In the same period, studies of constituent (quark-gluon) structure of hadrons had also been develped. Nowadays, pysicists believe that the quantum chromodynamics (QCD) is the fundamental law of the hadronic world. Multiparticle dynamics should also be described by QCD. We have known that the hard-jet phenomena are well explained by the perturbative QCD. On the other hand, the soft processes are considered to be non-perturbative phenomena which have not yet been solved, and related to the mechanism of the color confinement and formation of strings or color-flux tubes. Multiparticle production would offer useful information on this

  4. Multiparticle Production in Particle and Nuclear Collisions. II

    Science.gov (United States)

    Kanki, T.; Kinoshita, K.; Sumiyoshi, H.; Takagi, F.

    The dominant phenomenon in high-energy particle and nuclear collisions is multiple production of hadrons. This had attracted may physicists in 1950's, the period of the first remarkable development of particle physics. Multiparticle production was already observed in cosmic-ray experiments and expected to be explained as a natural consequence of the strong Yukawa interaction. Statistical and hydrodynamical models were then proposed by Fermi, Landau and others. These theories are still surviving even today as a prototype of modern ``fire-ball'' models. After twenty years, a golden age came in this field of physics. It was closely related to the rapid development of accelerator facilities, especially, the invention of colliding-beam machines which yield high enough center-of-mass energies for studying reactions with high multiplicity. Abundant data on final states of multiparticle production have been accumulated mainly by measuring inclusive cross sections and multiplicity distributions. In super high-energy bar{p}p collisions at CERN S pmacr pS Collider, we confirmed the increasing total cross section and found violations of many scaling laws which seemed to be valid at lower energies. This suggests a fundamental complexity of the multiparticle phenomena and offers new materials for further development of theoretical investigations. In the same period, studies of constituent (quark-gluon) structure of hadrons had also been develped. Nowadays, pysicists believe that the quantum chromodynamics (QCD) is the fundamental law of the hadronic world. Multiparticle dynamics should also be described by QCD. We have known that the hard-jet phenomena are well explained by the perturbative QCD. On the other hand, the soft processes are considered to be non-perturbative phenomena which have not yet been solved, and related to the mechanism of the color confinement and formation of strings or color-flux tubes. Multiparticle production would offer useful information on this

  5. Relativistic nucleus-nucleus collisions: Zone of reactions and space-time structure of fireball

    International Nuclear Information System (INIS)

    Anchishkin, D.; Muskeyev, A.; Yezhov, S.

    2010-01-01

    A zone of reactions is determined and then exploited as a tool in studying the space-time structure of an interacting system formed in a collision of relativistic nuclei. The time dependence of the reaction rates integrated over spatial coordinates is also considered. Evaluations are made with the help of the microscopic transport model UrQMD. The relation of the boundaries of different zones of reactions and the hypersurfaces of sharp chemical and kinetic freeze-outs is discussed.

  6. Nuclear fission, chain reaction and criticality

    International Nuclear Information System (INIS)

    Reuss, Paul

    2016-01-01

    Criticality is, notably for nuclear reactors, the status which separates the case of a fission chain reaction which inexorably decays, from that of a reaction which grows faster and faster until a counter-reaction occurs. If this status is an objective in nuclear reactors, it must not be reached or exceeded in any case in other types of installations in which fissile materials are handled (fabrication, transports, nuclear fuel processing). The author proposes an insight into this notion of criticality, discusses elements of neutron science which allow the multiplication factor to be assessed, analyses accidental scenarios which may happen, and presents associated experiments and computation codes

  7. Nuclear matter flow in the Kr+Au collisions at 43 MeV/u

    International Nuclear Information System (INIS)

    Bougault, R.; Delaunay, F.; Genoux-Lubain, A.; Lebrun, C.; Lecolley, J.F.; Lefebvres, F.; Louvel, M.; Steckmeyer, J.C.; Aloff, J.C.; Bilwes, B.; Bilwes, R.; Glaser, M.; Rudolf, G.; Scheibling, F.; Stuttge, L.

    1989-01-01

    When heavy nuclei collide at energy far above the Coulomb barrier we may study the property of nuclear matter in temperature and also density regions far away from the equilibrium. We then hope to study dynamical effects related to the compressibility and the two body collision term. At relativistic energies, some collective effects (flow, bounce off) have been established from a shape analysis done with a large number of light particles with Z ≤ 10. For incident energies lower than 100 MeV/u we may expect that the number of nuclear species formed will be smaller and that a large part of the nuclear matter involved in the collision will be shared in a limited number of heavy fragments (Z ≥ 10). If dynamical effects are still present at GANIL energies they ought to manifest themselves through the properties of the produced fragments (masses, emission angles, velocities and correlated variables). We will present an analysis of heavy nuclei collisions at 43 MeV/u based on as exclusive as possible detection of large fragments

  8. Probabilistic risk assessment on maritime spent nuclear fuel transportation (Part II: Ship collision probability)

    International Nuclear Information System (INIS)

    Christian, Robby; Kang, Hyun Gook

    2017-01-01

    This paper proposes a methodology to assess and reduce risks of maritime spent nuclear fuel transportation with a probabilistic approach. Event trees detailing the progression of collisions leading to transport casks’ damage were constructed. Parallel and crossing collision probabilities were formulated based on the Poisson distribution. Automatic Identification System (AIS) data were processed with the Hough Transform algorithm to estimate possible intersections between the shipment route and the marine traffic. Monte Carlo simulations were done to compute collision probabilities and impact energies at each intersection. Possible safety improvement measures through a proper selection of operational transport parameters were investigated. These parameters include shipment routes, ship's cruise velocity, number of transport casks carried in a shipment, the casks’ stowage configuration and loading order on board the ship. A shipment case study is presented. Waters with high collision probabilities were identified. Effective range of cruising velocity to reduce collision risks were discovered. The number of casks in a shipment and their stowage method which gave low cask damage frequencies were obtained. The proposed methodology was successful in quantifying ship collision and cask damage frequency. It was effective in assisting decision making processes to minimize risks in maritime spent nuclear fuel transportation. - Highlights: • Proposes a probabilistic framework on the safety of spent nuclear fuel transportation by sea. • Developed a marine traffic simulation model using Generalized Hough Transform (GHT) algorithm. • A transportation case study on South Korean waters is presented. • Single-vessel risk reduction method is outlined by optimizing transport parameters.

  9. Elements from chlorine to calcium nuclear reactions

    CERN Document Server

    Kunz, Wunibald

    1968-01-01

    Nuclear Tables: Part II Nuclear Reactions, Volume 3: The Elements from Chlorine to Calcium contains tabulations of the nuclear reaction values of elements chlorine, argon, potassium, and calcium. These tabulations provide the calculated Q-values of the elements and their isotopes. This book will be of value to general chemistry researchers.

  10. Nuclear data needs in nuclear astrophysics: Charged-particle reactions

    International Nuclear Information System (INIS)

    Smith, Michael S.

    2001-01-01

    Progress in understanding a diverse range of astrophysical phenomena - such as the Big Bang, the Sun, the evolution of stars, and stellar explosions - can be significantly aided by improved compilation, evaluation, and dissemination of charged-particle nuclear reaction data. A summary of the charged-particle reaction data needs in these and other astrophysical scenarios is presented, along with recommended future nuclear data projects. (author)

  11. Collective processes in heavy-ion collisions with atomic nuclei. Dissipation of energy and angular momentum

    International Nuclear Information System (INIS)

    Kuzminski, J.

    1980-01-01

    The collective processes in collision of heavy-ions with atomic nuclei are discussed. Measured data on the S+Ti collision at Esub(LAB)=105, 130 and 144 MeV have been analysed in terms of a ''fission-like'' processes which seem to be a special case of deep inelastic collisions whose total available kinetic energy is completely dissipated. Applying transport theory it was possible to introduce a ''clock'' for measuring the time scale of nuclear processes in collision of heavy-ions by measuring the FWHM of mass distribution of emitted reaction products. Experimental data on continuum gamma spectra from Cu+Au collision at Esub(LAB)=400 MeV are presented and the angular momentum dissipation in this reaction is discussed. (author)

  12. The mechanism of nuclear energy release in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.

    1998-01-01

    The mechanism of intranuclear energy release in reactions induced by nucleus-nucleus collisions at energies higher than ∼ 0.5 GeV/nucl. is presented - as prompted experimentally. The intranuclear energy release goes through local damages of the colliding nuclei

  13. Some comments on the behaviour of the excited nuclear matter formed in nuclear collisions at high energies

    International Nuclear Information System (INIS)

    Besliu, Calin; Jipa, Alexandru; Argintaru, Dan

    2003-01-01

    In the last years many experiments have been performed in different laboratories to investigate the behaviour of the nuclear matter formed in nuclear collisions at high energies. Therefore, many experimental results are available at present. For explaining these experimental results a lot of models have been proposed. A very large number of concepts have been used. Taking into account some own experimental results obtained in proton-nucleus and nucleus-nucleus collisions at energies between a few A GeV and a few hundred A GeV we comments in the frame a phenomenological geometric picture the main experimental results on charged particle multiplicities, participants, cross sections, momentum spectra, temperature slopes, nuclear matter flow, size and structure of the participant regions, antiparticle to particle ratios and chemical potential. Some jumps in the dependencies of some interesting physical quantities on the available energies in the centre of mass system can be reported. Trends to behaviours like-saturation of some physical quantities are observed, too. Therefore, some connections with the possible phase transitions in nuclear matter are included. A few specific signals of different phase transitions in nuclear matter are suggested. (authors)

  14. Japan Nuclear Reaction Data Centre (JCPRG) Progress Report

    International Nuclear Information System (INIS)

    2011-01-01

    In this report, we give a brief review of the activities carried out by the ''Japan Nuclear Reaction Data Centre (JCPRG)'' since the last NRDC meeting in 2009. The main subjects of our activities are; (1) reaction data compilation, (2) evaluation of the astrophysical nuclear reaction data for light nuclei, and (3) cooperation of nuclear data activities in Asia. Our activities in detail are as follows. a) New reaction data compilation (NRDF and EXFOR) b) Conversion of old NRDF to EXFOR c) Bibliography compilation (CINDA) d) Evaluation of astrophysical nuclear reaction data based on theoretical calculations for light nuclei e) Collaboration among nuclear data physicists in Asia for the EXFOR compilation to form a stable base f) Database maintenance and services (NRDF, EXFOR/ENDF and CINDA) g) Development of software systems (GSYS) h) Customer services

  15. Nuclear reactions. An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Paetz gen. Schieck, Hans [Koeln Univ. (Germany). Inst. fuer Kernphysik

    2014-03-01

    Modern, self-contained introduction to the subject matter. Emphasizes the interplay between theory and experiment. Course-tested tutorial style, contains many derivations. Nuclei and nuclear reactions offer a unique setting for investigating three (and in some cases even all four) of the fundamental forces in nature. Nuclei have been shown - mainly by performing scattering experiments with electrons, muons, and neutrinos - to be extended objects with complex internal structures: constituent quarks; gluons, whose exchange binds the quarks together; sea-quarks, the ubiquitous virtual quark-antiquark pairs and, last but not least, clouds of virtual mesons, surrounding an inner nuclear region, their exchange being the source of the nucleon-nucleon interaction. The interplay between the (mostly attractive) hadronic nucleon-nucleon interaction and the repulsive Coulomb force is responsible for the existence of nuclei; their degree of stability, expressed in the details and limits of the chart of nuclides; their rich structure and the variety of their interactions. Despite the impressive successes of the classical nuclear models and of ab-initio approaches, there is clearly no end in sight for either theoretical or experimental developments as shown e.g. by the recent need to introduce more sophisticated three-body interactions to account for an improved picture of nuclear structure and reactions. Yet, it turns out that the internal structure of the nucleons has comparatively little influence on the behavior of the nucleons in nuclei, and nuclear physics - especially nuclear structure and reactions - is thus a field of science in its own right, without much recourse to subnuclear degrees of freedom. This book collects essential material that was presented in the form of lectures notes in nuclear physics courses for graduate students at the University of Cologne. It follows the course's approach, conveying the subject matter by combining experimental facts and

  16. Nuclear reactions. An introduction

    International Nuclear Information System (INIS)

    Paetz gen. Schieck, Hans

    2014-01-01

    Modern, self-contained introduction to the subject matter. Emphasizes the interplay between theory and experiment. Course-tested tutorial style, contains many derivations. Nuclei and nuclear reactions offer a unique setting for investigating three (and in some cases even all four) of the fundamental forces in nature. Nuclei have been shown - mainly by performing scattering experiments with electrons, muons, and neutrinos - to be extended objects with complex internal structures: constituent quarks; gluons, whose exchange binds the quarks together; sea-quarks, the ubiquitous virtual quark-antiquark pairs and, last but not least, clouds of virtual mesons, surrounding an inner nuclear region, their exchange being the source of the nucleon-nucleon interaction. The interplay between the (mostly attractive) hadronic nucleon-nucleon interaction and the repulsive Coulomb force is responsible for the existence of nuclei; their degree of stability, expressed in the details and limits of the chart of nuclides; their rich structure and the variety of their interactions. Despite the impressive successes of the classical nuclear models and of ab-initio approaches, there is clearly no end in sight for either theoretical or experimental developments as shown e.g. by the recent need to introduce more sophisticated three-body interactions to account for an improved picture of nuclear structure and reactions. Yet, it turns out that the internal structure of the nucleons has comparatively little influence on the behavior of the nucleons in nuclei, and nuclear physics - especially nuclear structure and reactions - is thus a field of science in its own right, without much recourse to subnuclear degrees of freedom. This book collects essential material that was presented in the form of lectures notes in nuclear physics courses for graduate students at the University of Cologne. It follows the course's approach, conveying the subject matter by combining experimental facts and experimental

  17. Jet probes of the nuclear and proton wavefunctions in proton--lead collisions with the ATLAS detector

    CERN Document Server

    Perepelitsa, Dennis; The ATLAS collaboration

    2014-01-01

    Measurements of high pT processes in ultrarelativistic proton-nucleus collisions are sensitive to changes in the partonic densities arising from the presence of the high-density nuclear environment. Such measurements are thought to serve as a benchmark of the so called "cold nuclear matter" effects, providing the context within which to understand the strong suppression of high pT processes observed in nucleus-nucleus collisions. However, measurements of the centrality dependence of jet production at forward (proton-going) rapidities may additionally shed light on the behavior of the proton wavefunction at large Bjorken-x. The latest ATLAS results for inclusive jets and charged particles in 31/nb of 5.02 TeV proton-lead collisions at the LHC are presented. The centrality in these collisions is characterized through the sum of the transverse energy in the lead-going forward calorimeter. The nuclear modification factors RpPb and RCP are presented for jets and high-pT charged particles as a function of transvers...

  18. The problem of space nuclear power sources collisions with artificial space objects in near-earth orbits

    International Nuclear Information System (INIS)

    Gafarov, A.A.

    1993-01-01

    Practically all space objects with onboard nuclear power sources stay in earth satellite orbits with an orbital lifetime long enough to reduce their radioactivity to levels presenting no danger for the Earth population. One of the reasons for orbit lifetime reduction can be collisions with other space objects in near-earth orbits. The possible consequence of collisions can be partial, or even complete, destruction of the spacecraft with an onboard nuclear power source; as well as delivery of additional impulse both to the spacecraft and its fragments. It is shown that collisions in orbit do not cause increase of radiation hazard for the Earth population if there is aerodynamic breakup of nuclear power sources into fragments of safe sizes during atmospheric reentry

  19. Numerical magneto-hydrodynamics for relativistic nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Inghirami, Gabriele [Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Goethe-Universitaet, Institute for Theoretical Physics, Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Forschungszentrum Juelich, John von Neumann Institute for Computing, Juelich (Germany); Del Zanna, Luca [Universita di Firenze, Dipartimento di Fisica e Astronomia, Firenze (Italy); INAF - Osservatorio Astrofisico di Arcetri, Firenze (Italy); INFN - Sezione di Firenze, Firenze (Italy); Beraudo, Andrea [INFN - Sezione di Torino, Torino (Italy); Moghaddam, Mohsen Haddadi [INFN - Sezione di Torino, Torino (Italy); Hakim Sabzevari University, Department of Physics, P. O. Box 397, Sabzevar (Iran, Islamic Republic of); Becattini, Francesco [Universita di Firenze, Dipartimento di Fisica e Astronomia, Firenze (Italy); INFN - Sezione di Firenze, Firenze (Italy); Bleicher, Marcus [Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Goethe-Universitaet, Institute for Theoretical Physics, Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Forschungszentrum Juelich, John von Neumann Institute for Computing, Juelich (Germany)

    2016-12-15

    We present an improved version of the ECHO-QGP numerical code, which self-consistently includes for the first time the effects of electromagnetic fields within the framework of relativistic magneto-hydrodynamics (RMHD). We discuss results of its application in relativistic heavy-ion collisions in the limit of infinite electrical conductivity of the plasma. After reviewing the relevant covariant 3 + 1 formalisms, we illustrate the implementation of the evolution equations in the code and show the results of several tests aimed at assessing the accuracy and robustness of the implementation. After providing some estimates of the magnetic fields arising in non-central high-energy nuclear collisions, we perform full RMHD simulations of the evolution of the quark-gluon plasma in the presence of electromagnetic fields and discuss the results. In our ideal RMHD setup we find that the magnetic field developing in non-central collisions does not significantly modify the elliptic flow of the final hadrons. However, since there are uncertainties in the description of the pre-equilibrium phase and also in the properties of the medium, a more extensive survey of the possible initial conditions as well as the inclusion of dissipative effects are indeed necessary to validate this preliminary result. (orig.)

  20. Nonlinear many-body reaction theories from nuclear mean field approximations

    International Nuclear Information System (INIS)

    Griffin, J.J.

    1983-01-01

    Several methods of utilizing nonlinear mean field propagation in time to describe nuclear reaction have been studied. The property of physical asymptoticity is analyzed in this paper, which guarantees that the prediction by a reaction theory for the physical measurement of internal fragment properties shall not depend upon the precise location of the measuring apparatus. The physical asymptoticity is guaranteed in the Schroedinger collision theory of a scuttering system with translationally invariant interaction by the constancy of the S-matrix elements and by the translational invariance of the internal motion for well-separated fragments. Both conditions are necessary for the physical asymptoticity. The channel asymptotic single-determinantal propagation can be described by the Dirac-TDHF (time dependent Hartree-Fock) time evolution. A new asymptotic Hartree-Fock stationary phase (AHFSP) description together with the S-matrix time-dependent Hartree-Fock (TD-S-HF) theory constitute the second example of a physically asymptotic nonlinear many-body reaction theory. A review of nonlinear mean field many-body reaction theories shows that initial value TDHF is non-asymptotic. The TD-S-HF theory is asymptotic by the construction. The gauge invariant periodic quantized solution of the exact Schroedinger problem has been considered to test whether it includes all of the exact eigenfunctions as it ought to. It did, but included as well an infinity of all spurions solutions. (Kato, T.)

  1. Statistical nuclear reactions

    International Nuclear Information System (INIS)

    Hilaire, S.

    2001-01-01

    A review of the statistical model of nuclear reactions is presented. The main relations are described, together with the ingredients necessary to perform practical calculations. In addition, a substantial overview of the width fluctuation correction factor is given. (author)

  2. Nuclei transmutation by collisions with fast hadrons and nuclei

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.; Drzymala, A.

    1998-01-01

    Atomic nuclei change their mass- and charge-numbers if bombarded by fast hadrons and nuclei; the transmutation appears as a complicated process. It proceeds in a definite way - through a few stages or phases. Adequate identification of the nucleons and light nuclear fragments emitted and evaporated in a hadron-nucleus or nucleus-nucleus collisions and in the collision-induced intranuclear reactions allows one to estimate quantitatively the nuclei transmutations in the various stages (phases) of the process

  3. The 1989 annual report: Nuclear Physics Institute

    International Nuclear Information System (INIS)

    1989-01-01

    The 1988 annual report of the Nuclear Physics Institute (Orsay, France) is presented. The results concerning exotic nuclei and structure studies by means of nuclear reactions are summarized. Research works involving the inertial fusion and the actinides are discussed. Theoretical and experimental work on the following fields is also included: high excitation energy nuclear states, heavy ion collision, intermediate energy nuclear physics, transfer reactions, dibaryonic resonances, thermodiffusion, management of radioactive wastes [fr

  4. Verification of cold nuclear fusion reaction, (1)

    International Nuclear Information System (INIS)

    Yoshida, Zenko; Aratono, Yasuyuki; Hirabayashi, Takakuni

    1991-01-01

    Can cold nuclear fusion reaction occur as is expected? If it occurs, what extent is its reaction probability? At present after 2 years elapsed since its beginning, the clear solution of these questions is not yet obtained. In many reaction systems employing different means, the experiments to confirm the cold nuclear fusion reaction have been attempted. In order to confirm that the nuclear fusion reaction of deuterium mutually has occurred, the neutrons, He-3, protons, tritium or generated heat, which were formed by the reaction and released from the system, are measured. Since it is considered that the frequency of the occurrence at normal temperature of the reaction is very low, it is necessary to select the most suitable method upon evaluating the limit of detection peculiar to the measuring methods. The methods of measuring neutrons, protons, gamma ray and generated heat, and the reaction systems by electrolytic process and dry process are explained. The detection of plural kinds of the reaction products and the confirmation of synchronism of signals are important. (K.I.)

  5. Japan Nuclear Reaction Data Centre (JCPRG), Progress Report

    International Nuclear Information System (INIS)

    Aikawa, M.

    2012-01-01

    In this report, we review the activities of Japan Nuclear Reaction Data Centre (JCPRG) since the last NRDC meeting in 2011. Our main objectives are as follows: a) Compilation of nuclear reaction data for two databases, NRDF and EXFOR b) Evaluation of astrophysical nuclear reaction data c) Development of software and systems d) Development of collaboration among Asian countries. (author)

  6. Exclusive observables from a statistical simulation of energetic nuclear collisions

    International Nuclear Information System (INIS)

    Fai, G.

    1983-01-01

    Exclusive observables are calculated in the framework of a statistical model for medium-energy nuclear collisions. The collision system is divided into a few (participant/spectator) sources, that are assumed to disassemble independently. Sufficiently excited sources explode into pions, nucleons, and composite, possibly particle unstable, nuclei. The different final states compete according to their microcanonical weight. Less excited sources, and the unstable explosion products, deexcite via light-particle evaporation. The model has been implemented as a Monte Carlo computer code that is sufficiently efficient to permit generation of large event samples. Some illustrative applications are discussed. (author)

  7. Signatures of new phenomena in ultrarelativistic nuclear collisions

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1983-11-01

    Three classes of observables are discussed which may shed light on the properties of the quark-gluon plasma formed in ultrarelativistic nuclear collisions. They are: (1) thermometers: the penetrating probes μ + μ - , γ, c, (2) barometers: transverse flow via , and (3) seismometers: fluctuations of dN/dy and dE perpendicular/dy. The need for reliable estimates of the background due to the non-equilibrium processes is emphasized. 49 references

  8. Solar nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kocharov, G

    1978-04-01

    The current state of neutrino solar astrophysics is outlined, showing the contradictions between the experimental results of solar neutrino detection and the standard solar models constructed on the basis of the star structure and development theory, which give values for high-energy neutrino fluxes considerably exceeding the upper experimental limit. A number of hypotheses interpreting the experimental results are summarized. The hypotheses are critically assessed and experiments are recommended for refining or verifying experimental data. Also dealt with are nuclear reactions in the Sun, as is the attempt to interpret the anomalous by high /sup 3/He fluxes from the Sun and the relatively small amounts of solar neutrinos and gamma quanta. The importance is emphasized of the simultaneous and complex measurement of the fluxes of neutrons, gamma radiation, and isotopes of hydrogen, helium, and boron from the Sun as indicators of nuclear reactions in the Sun.

  9. Heavy ion collisions at intermediate energy

    International Nuclear Information System (INIS)

    Bertsch, G.; Amsden, A.A.

    1978-01-01

    Two types of measurement are proposed for the analysis of heavy ion collisions in the range of energy of 20--200 MeV/A. First, measurement of the longitudinal component of the kinetic energy of the collision products characterizes the impact parameter of the collision. The distribution in this quantity allows the dissipation in the theoretical models to be determined. A second kind of measurement is that of the coefficients of a spherical harmonic expansion of the angular distribution of the products. Besides giving independent information on the impact parameter and reaction dynamics, measurement of these coefficients offers the possibility of measuring the stiffness of the equation of state of nuclear matter. These ideas are explored in the context of a hydrodynamic model for the collision. In the purely hydrodynamic model there is a large measurable asymmetry in the angular distribution, but the dependence on the equation of state is small

  10. J/ψ azimuthal anisotropy relative to the reaction plane in Pb-Pb collisions at 158 GeV per nucleon

    International Nuclear Information System (INIS)

    Prino, F.; Alessandro, B.; Arnaldi, R.; Beole, S.; Chiavassa, E.; De Marco, N.; Gallio, M.; Giubellino, P.; Marzari-Chiesa, A.; Masera, M.; Monteno, M.; Musso, A.; Piccotti, A.; Riccati, L.; Scomparin, E.; Sigaudo, F.; Vercellin, E.; Alexa, C.; Boldea, V.; Constantinescu, S.; Dita, S.; Atayan, M.; Grigoryan, A.A.; Grigoryan, S.; Gulkanyan, H.; Bordalo, P.; Borges, G.; Quintans, C.; Ramos, S.; Santos, H.; Shahoyan, R.; Castanier, C.; Castor, J.; Devaux, A.; Fargeix, J.; Force, P.; Saturnini, P.; Chaurand, B.; Petiau, P.; Cheynis, B.; Guichard, A.; Pizzi, J.R.; Cicalo, C.; De Falco, A.; Masoni, A.; Puddu, G.; Serci, S.; Usai, G.L.; Comets, M.P.; Gerschel, C.; Jouan, D.; Le Bornec, Y.; Mac Cormick, M.; Tarrago, X.; Villatte, L.; Willis, N.; Wu, T.; Cortese, P.; Dellacasa, G.; Ramello, L.; Sitta, M.; Golubeva, M.B.; Guber, F.F.; Karavicheva, T.L.; Kurepin, A.B.; Topilskaya, N.S.; Idzik, M.; Kluberg, L.; Lourenco, C.; Sonderegger, P.

    2009-01-01

    The J/ψ azimuthal distribution relative to the reaction plane has been measured by the NA50 experiment in Pb-Pb collisions at 158 GeV/nucleon. Various physical mechanisms related to charmonium dissociation in the medium created in the heavy ion collision are expected to introduce an anisotropy in the azimuthal distribution of the observed J/ψ mesons at SPS energies. Hence, the measurement of J/ψ elliptic anisotropy, quantified by the Fourier coefficient v 2 of the J/ψ azimuthal distribution relative to the reaction plane, is an important tool to constrain theoretical models aimed at explaining the anomalous J/ψ suppression observed in Pb-Pb collisions. We present the measured J/ψ yields in different bins of azimuthal angle relative to the reaction plane, as well as the resulting values of the Fourier coefficient v 2 as a function of the collision centrality and of the J/ψ transverse momentum. The reaction plane has been estimated from the azimuthal distribution of the neutral transverse energy detected in an electromagnetic calorimeter. The analysis has been performed on a data sample of about 100,000 events, distributed in five centrality or p T sub-samples. The extracted v 2 values are significantly larger than zero for non-central collisions and are seen to increase with p T . (orig.)

  11. Studies of complex fragment emission in heavy ion reactions. Progress report, January 1, 1993 - September 1, 1995

    International Nuclear Information System (INIS)

    Charity, R.J.; Sobotka, L.G.

    1995-01-01

    This work involves the study of low and intermediate energy heavy-ion nuclear reactions. This work has two foci. First, the authors desired to learn about the properties of both nuclei and nuclear matter under abnormal conditions. Their efforts towards this end run abreast of those for their second focus which is the study of the relevant reaction mechanisms. The two objectives are inexorably linked because their experimental laboratory for studying nuclear properties is a dynamic one. Their task is to answer the questions of how nuclear and nuclear matter properties are reflected in the dynamics of the reactions. The second objective also has great intrinsic value in that they can anticipate improving upon their understanding of the reaction mechanism themselves and therefore to the response characteristics of finite, perhaps non-equilibrium, strongly interacting systems. The program has been: to study the dynamics of fusion reactions, specifically the dynamics of energy, mass, and angular momentum deposition. This work includes reactions near the Coulomb barrier, where fusion dominates the reaction cross section as well as higher energies where incomplete fusion reactions are the primary reactions. This includes the dynamics of fission, still the premier example of collective nuclear motion, as a function of excitation, spin, mass, and mass asymmetry. The authors push these kinds of studies into the intermediate energy domain, and where novel reaction scenarios are predicted. They have studied very central and peripheral collisions between very massive nuclei, and simplified projectile fragmentation reactions utilizing medium to light mass projectiles. The study of central collisions has shown us the importance of collective expansion. The study of peripheral collisions between very heavy nuclei has demonstrated the importance of dynamical production of fragments from the neck region

  12. Strangeness in nuclear collisions

    International Nuclear Information System (INIS)

    Gazdzicki, M.; Roehrich, D.

    1996-01-01

    Data on the mean multiplicity of strange hadrons produced in minimum bias proton-proton and central nucleus-nucleus collisions at momenta between 2.8 and 400 GeV/c per nucleon have been compiled. The multiplicities for nucleon-nucleon interactions were constructed. The ratios of strange particle multiplicity to participant nucleon as well as to pion multiplicity are larger for central nucleus-nucleus collisions than for nucleon-nucleon interactions at all studied energies. The data at AGS energies suggest that the latter ratio saturates with increasing masses of the colliding nuclei. The strangeness to pion multiplicity ratio observed in nucleon-nucleon interactions increases with collision energy in the whole energy range studied. A qualitatively different behaviour is observed for central nucleus-nucleus collisions: the ratio rapidly increases when going from Dubna to AGS energies and changes little between AGS and SPS energies. This change in the behaviour can be related to the increase in the entropy production observed in central nucleus-nucleus collisions at the same energy range. The results are interpreted within a statistical approach. They are consistent with the hypothesis that the quark gluon plasma is created at SPS energies, the critical collision energy being between AGS and SPS energies. (orig.)

  13. Report on the 1984 LBL workshop on detectors for relativistic nuclear collisions

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1984-11-01

    Highlights of the Workshop on Detectors for Relativistic Nuclear Collisions, held March 26-30, 1984, at the Lawrence Berkeley Laboratory are reviewed. (Complete proceedings are available as report LBL-18225.)

  14. Characteristics of particle production in high energy nuclear collisions a model-based analysis

    CERN Document Server

    Guptaroy, P; Bhattacharya, S; Bhattacharya, D P

    2002-01-01

    The present work pertains to the production of some very important negatively charged secondaries in lead-lead and gold-gold collisions at AGS, SPS and RHIC energies. We would like to examine here the role of the particular version of sequential chain model (SCM), which was applied widely in the past in analysing data on various high-energy hadronic collisions, in explaining now the latest findings on the features of particle production in the relativistic nucleus-nucleus collisions. The agreement between the model of our choice and the measured data is found to be modestly satisfactory in cases of the most prominent and abundantly produced varieties of the secondaries in the above-stated two nuclear collisions. (25 refs).

  15. Studies of fluctuation processes in nuclear collisions

    International Nuclear Information System (INIS)

    Ayik, S.

    1991-02-01

    This report summarizes the progress on grant No. DE-FG05-89ER40530 during the period April 15, 1990 to February 15, 1991. Our studies of heavy-ion collisions in the framework of ''a stochastic one-body transport model'' has progress in several directions. We developed a method for obtaining approximate numerical solutions of the transport-equation in semi-classical limit, i.e., Boltzmann-Langevin equation, and tested the method in realistic cases of heavy-ion collisions at energies below 100 MeV per nucleon. Some results of the numerical simulations for a head-on collision of 12 C + 12 C system is included in this report. Work has also continued on studying the stochastic one-body transport model in a quantal representation, which provides a microscopic basis for a consistent description of dissipation and fluctuation properties of large amplitude collective nuclear motion. The previous derivation of the stochastic one-body transport model was presented within the density matrix formalisam. We generalized this treatment and proposed an alternative derivation of the model by employing the Green's function approach within the real-time path formalism of Keldish. One manuscript has been submitted to Nucl. Phys. A for publication. Two other manuscripts are in preparation for publication. Several seminars and contributed talks were presented at various meeting

  16. arXiv Isothermal compressibility of hadronic matter formed in relativistic nuclear collisions

    CERN Document Server

    Mukherjee, Maitreyee; Chatterjee, Arghya; Chatterjee, Sandeep; Adhya, Souvik Priyam; Thakur, Sanchari; Nayak, Tapan K.

    We present the first estimates of isothermal compressibility (\\kT) of hadronic matter formed in relativistic nuclear collisions (\\sNN=7.7~GeV to 2.76~TeV) using experimentally observed quantities. \\kT~is related to the fluctuation in particle multiplicity, temperature and volume of the system formed in the collisions. Multiplicity fluctuations are obtained from the event-by-event distributions of charged particle multiplicities in narrow centrality bins. The dynamical components of the fluctuations are extracted by removing the contributions to the fluctuations from the number of participating nucleons. From the available experimental data, a constant value of \\kT~has been observed as a function of collision energy. The results are compared with calculations from UrQMD, AMPT and EPOS event generators, and estimations of \\kT~are made for Pb-Pb collisions at the CERN Large Hadron Collider. A hadron resonance gas (HRG) model has been used to calculate \\kT~as a function of collision energy. Our results show a dec...

  17. Correlations and polarization in electronic and atomic collisions and (e,2e) reactions

    International Nuclear Information System (INIS)

    Teubner, P.J.O.; Weigold, E.

    1992-01-01

    This volume contains the invited papers presented at the Sixth International Symposium on Correlations and Polarization in Electronic and Atomic collisions and (e,2e) Reactions held at Flinders University, Adelaide, Australia from 18-21 July, 1991. This symposium was a satellite meeting to the XVII International Conference on the Physics of Electronic and Atomic Collisions (ICPEAC) held in Brisbane, Australia. It follows a tradition of satellite meetings on (e,2e) collisions and on correlation and polarization in electronic and atomic collisions held in association with previous ICPEACs. The subject matter of this symposium covered that of the previous meeting at Hoboken, USA (1989) on correlation and polarization phenomena as well as that of the previous meeting at the University of Maryland (1989) on (e,2e) collisions. In addition it extended the scope to include some discussion of (e,3e), (γ,eγ) and (γ,2γ) coincidence measurements. The discussion of the current rapid advances in coincidence experiments, correlations and polarization measurements and related theoretical developments brought together 100 scientist from many countries with broad interdisciplinary backgrounds. The symposium stressed the common threads weaving through all these areas of research. (Author)

  18. Nuclear reactions in astrophysics

    International Nuclear Information System (INIS)

    Cardenas, M.

    1976-01-01

    It is revised the nuclear reactions which present an interest in astrophysics regarding the explanation of some problems such as the relative quantity of the elements, the structure and evolution of the stars. The principal object of the study is the determination of the experimental possibilities in the field of astrophysics, of an accelerator Van de Graaff's 700 KeV type. Two hundred nuclear reactions approximately, were found, and nothing or very little has been done in the intervals of energy which are of interest. Since the bombardment energies and the involved sections are low in some cases, there are real possibilities, for the largest number of stars to obtain important statistical data with the above mentioned accelerator, taking some necessary precautions. (author)

  19. Interplay of short-range correlations and nuclear symmetry energy in hard-photon production from heavy-ion reactions at Fermi energies

    Science.gov (United States)

    Yong, Gao-Chan; Li, Bao-An

    2017-12-01

    Within an isospin- and momentum-dependent transport model for nuclear reactions at intermediate energies, we investigate the interplay of the nucleon-nucleon short-range correlations (SRCs) and nuclear symmetry energy Esym(ρ ) on hard-photon spectra in collisions of several Ca isotopes on 112Sn and 124Sn targets at a beam energy of 45 MeV/nucleon. It is found that over the whole spectra of hard photons studied, effects of the SRCs overwhelm those owing to the Esym(ρ ) . The energetic photons come mostly from the high-momentum tails (HMTs) of single-nucleon momentum distributions in the target and projectile. Within the neutron-proton dominance model of SRCs based on the consideration that the tensor force acts mostly in the isosinglet and spin-triplet nucleon-nucleon interaction channel, there are equal numbers of neutrons and protons, thus a zero isospin asymmetry in the HMTs. Therefore, experimental measurements of the energetic photons from heavy-ion collisions at Fermi energies have the great potential to help us better understand the nature of SRCs without any appreciable influence by the uncertain Esym(ρ ) . These measurements will be complementary to but also have some advantages over the ongoing and planned experiments using hadronic messengers from reactions induced by high-energy electrons or protons. Because the underlying physics of SRCs and Esym(ρ ) are closely correlated, a better understanding of the SRCs will, in turn, help constrain the nuclear symmetry energy more precisely in a broad density range.

  20. Nuclear reactions in ultra-magnetized supernovae

    International Nuclear Information System (INIS)

    Kondratyev, V.N.

    2002-06-01

    The statistical model is employed to investigate nuclear reactions in ultrastrong magnetic fields relevant for supernovae and neutron stars. For radiative capture processes the predominant mechanisms are argued to correspond to modifications of nuclear level densities, and γ-transition energies due to interactions of the field with magnetic moments of nuclei. The density of states reflects the nuclear structure and results in oscillations of reaction cross sections as a function of field strength, while magnetic interaction energy enhances radiative neutron capture process. Implications in the synthesis of r-process nuclei in supernova site are discussed. (author)

  1. Nuclear chain reaction: forty years later

    International Nuclear Information System (INIS)

    Sachs, R.G.

    1984-01-01

    The proceedings from a 1982 symposium 40 years after the first controlled nuclear chain reaction took place in Chicago covers four sessions and public discussion. The session covered the history of the chain reaction; peaceful uses in technology, medicine, and biological science; peaceful uses in power generation; and nuclear weapons control. Among the speakers were Eugene Wigner, Glenn Seaborg, Alvin Weinberg, and others who participated in the first chain reaction experiments. The proceedings reflect differences of opinion among the scientists as well as the general public. References, slides, and tables used to illustrate the individual talks are included with the papers

  2. SkyNet: A Modular Nuclear Reaction Network Library

    Science.gov (United States)

    Lippuner, Jonas; Roberts, Luke F.

    2017-12-01

    Almost all of the elements heavier than hydrogen that are present in our solar system were produced by nuclear burning processes either in the early universe or at some point in the life cycle of stars. In all of these environments, there are dozens to thousands of nuclear species that interact with each other to produce successively heavier elements. In this paper, we present SkyNet, a new general-purpose nuclear reaction network that evolves the abundances of nuclear species under the influence of nuclear reactions. SkyNet can be used to compute the nucleosynthesis evolution in all astrophysical scenarios where nucleosynthesis occurs. SkyNet is free and open source, and aims to be easy to use and flexible. Any list of isotopes can be evolved, and SkyNet supports different types of nuclear reactions. SkyNet is modular so that new or existing physics, like nuclear reactions or equations of state, can easily be added or modified. Here, we present in detail the physics implemented in SkyNet with a focus on a self-consistent transition to and from nuclear statistical equilibrium to non-equilibrium nuclear burning, our implementation of electron screening, and coupling of the network to an equation of state. We also present comprehensive code tests and comparisons with existing nuclear reaction networks. We find that SkyNet agrees with published results and other codes to an accuracy of a few percent. Discrepancies, where they exist, can be traced to differences in the physics implementations.

  3. Hadronic matter in collision: Proceedings of the second international workshop on local equilibrium in strong interaction physics

    International Nuclear Information System (INIS)

    Carruthers, P.; Stottman, D.

    1986-01-01

    This book contains papers given at a conference on hadronic matter in collision. Some of the topics include the following: Nuclear Fragmentation; Nucleus-Nucleus Reactions; Phase Transformations; Hydrodynamics of Nuclear Matter; Hadron Hadronic Multi-Particle Production; and Bose Einstien Correlations

  4. (d)over-bar and (3)(He)over-bar production in root s(NN) = 130 GeV Au+Au collisions

    Czech Academy of Sciences Publication Activity Database

    Adler, C.; Ahammed, Z.; Allgower, C.; Amonett, J.; Anderson, B. D.; Anderson, M.; Averichev, G. S.; Balewski, J.; Barannikova, O.; Barny, LS.; Baudot, J.; Bekele, J.; Belaga, VV.; Bellwied, R.; Berger, J.; Bichsel, H.; Bland, LC.; Blyth, CO.; Bonner, BE.; Boucham, A.; Brandin, A.; Cadman, R. V.; Caines, H.; Sanchez, MCD.; Cardenas, A.; Carroll, J.; Castillo, J.; Castro, M.; Cebra, D.; Chattopadhyay, S.; Chen, ML.; Chen, Y.; Chernenko, SP.; Cherney, M.; Chikanian, A.; Choi, B.; Christie, W.; Coffin, JP.; Cormier, TM.; Cramer, J. G.; Crawford, H. J.; DeMello, M.; Deng, WS.; Derevschikov, AA.; Didenko, L.; Draper, J. E.; Dunin, V. B.; Dunlop, JC.; Eckardt, V.; Efimov, LG.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Fachini, P.; Faine, V.; Finch, E.; Fisyak, Y.; Flierl, D.; Foley, KJ.; Fu, J.; Gagunashvili, N.; Gans, J.; Gaudichet, L.; Germain, M.; Geurts, F.; Ghazikhanian, V.; Grabski, J.; Grachov, O.; Greiner, D.; Grigoriev, V.; Guedon, M.; Gushin, E.; Hallman, T. J.; Hardtke, D.; Harris, JW.; Heffner, M.; Heppelmann, S.; Herston, T.; Hippolyte, B.; Hirsh, A.; Hjort, E.; Hoffmann, GW.; Horsley, M.; Huang, HZ.; Humanic, TJ.; Hummler, H.; Igo, H.; Ishihara, A.; Ivanshin, YI.; Jacobs, R.; Janík, M.; Johnson, I.; Jones, PG.; Judd, E.; Kaneta, M.; Kaplan, M.; Keane, D.; Kisiel, A.; Klay, J.; Klein, SR.; Klachko, A.; Konstatinov, AS.; Kotchenda, L.; Kovalenko, AD.; Kramer, M.; Kravtsov, R.; Krueger, K.; Kuhn, C.; Kulikov, AI.; Kunde, GJ.; Kunz, CL.; Kutuev, RK.; Kuznetsov, AA.; Lakehal-Ayat, L.; Lamas-Valverde, J.; Lamont, MAC.; Landgraf, JM.; Lange, S.; Lansdell, CP.; Lasiuk, B.; Laue, F.; Šumbera, Michal; Zborovský, Imrich

    2001-01-01

    Roč. 8727, č. 27 (2001), s. 9902 ISSN 0031-9007 R&D Projects: GA MŠk ME 475 Keywords : heavy-ion collisions * energy nuclear-reactions * plus Pb collisions Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 6.668, year: 2001

  5. Evaluation of electon and nuclear bremsstrahlung in heavy ion collisions

    International Nuclear Information System (INIS)

    Gippner, P.

    1975-01-01

    The detection of quasimolecular X-ray continua provides the possibility of investigating the electron shells of quasimolecules transiently formed during adiabatic heavy ion-atomic collision. The contribution of the electron and nuclear bremsstrahlung to quasimolecular X-ray continua observed in bombarding various targets with 65 and 96 MeV Nb ions were estimated

  6. Testing nuclear parton distributions with pA collisions at the LHC

    CERN Document Server

    Quiroga-Arias, Paloma; Wiedemann, Urs Achim

    2010-01-01

    Global perturbative QCD analyses, based on large data sets from electron-proton and hadron collider experiments, provide tight constraints on the parton distribution function (PDF) in the proton. The extension of these analyses to nuclear parton distributions (nPDF) has attracted much interest in recent years. nPDFs are needed as benchmarks for the characterization of hot QCD matter in nucleus-nucleus collisions, and attract further interest since they may show novel signatures of non-linear density-dependent QCD evolution. However, it is not known from first principles whether the factorization of long-range phenomena into process-independent parton distribution, which underlies global PDF extractions for the proton, extends to nuclear effects. As a consequence, assessing the reliability of nPDFs for benchmark calculations goes beyond testing the numerical accuracy of their extraction and requires phenomenological tests of the factorization assumption. Here we argue that a proton-nucleus collision program at...

  7. The nuclear response and the imaginary potential for nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Phatak, S.C.; Sinha, B.

    1983-01-01

    The Fermi-gas model is used in this paper to study the nucleus-nucleus collision. The field produced by one of the nuclei is considered to act on nucleons in the other nucleus, which is treated as a Fermi gas of radius R. The imaginary part of the (non-local) nucleus-nucleus potential is then computed by evaluating the energy-conserving second-order term in which the intermediate states are particle-hole excitations produced in the Fermi gas. The equivalent local potential, obtained by using the Perey-Saxon method, is compared with phenomenological imaginary potentials. Later it is shown that, in the limit of small range of non-locality, the imaginary potential can be related to the nuclear response function. With this, one can write the nuclear friction coefficient that is used in phenomenological analyses of heavy-ion collisions in terms of the imaginary potential. (orig.)

  8. Nuclear phenomena in low-energy nuclear reaction research.

    Science.gov (United States)

    Krivit, Steven B

    2013-09-01

    This is a comment on Storms E (2010) Status of Cold Fusion, Naturwissenschaften 97:861-881. This comment provides the following remarks to other nuclear phenomena observed in low-energy nuclear reactions aside from helium-4 make significant contributions to the overall energy balance; and normal hydrogen, not just heavy hydrogen, produces excess heat.

  9. Atomic inner shell ionization: a new method of nuclear interaction lifetimes in the range 10-16-10-18 second. Lifetime measurement of the compound nucleus in the reaction 106Cd+p (Ep=10 and 12 MeV)

    International Nuclear Information System (INIS)

    Chemin, J.-F.

    1978-01-01

    A new method to measure the lifetime of the compound nucleus formed in the reaction 106 Cd+p at Ep=10 and 12 MeV is described. The nuclear lifetime is compared to the known lifetime of an atomic inner shell vacancy created in the entrance channel of the nuclear reaction. If the ionization probability in he way-in of the nuclear reaction is kown the compound nucleus lifetime is deduced by a simple relation from the number of compound X-rays measured in coincidence with one of the reaction products. A large number of ionization probability values measured in very small impact parameter collisions induced by H + , He + , D + on Al, Cu, S, Ti, Si, Ag, Cd are reported. The data are interpreted in terms of the corrected SCA theory of ionization. New effects such as angular dependence and trajectory effect (hair-pin-curve effect) are shown experimentally. The influence of a nuclear delay time on the ionization probability value is considered; the effect on a nuclear reaction of the energy losses by the projectile during the ionization process is analysed in detail. The yield curve of the resonant nuclear reaction 27 Al(p,γ) 28 Si is taken as an example. A detailed analysis of the compound nucleus 107 In lifetimes is given. Attention has been paid to competitive processes leading to X ray emission of same energy as the compound X rays. Extensions of the method to measure compound nucleus lifetimes in collision induced by heavy ions and to separate the shape elastic and compound elastic mechanisms are presented [fr

  10. Breakup of spectator residues in relativistic nuclear collisions

    International Nuclear Information System (INIS)

    Warwick, A.I.; Wieman, H.H.; Gutbrod, H.H.

    1983-01-01

    Low energy nuclear fragments (12 4 He, and 20 Ne projectiles are measured to yield information on the breakup of the target nucleus. We discuss the shapes of the fragment energy spectra across this broad range of fragment mass and pick out the fission component by its binary breakup. Multiplicities of coincident fast charged particles are presented as a measure of the degree of violence of the initial stage of the collision. Angular distributions of light fragments (8< or =Z< or =11) give the average velocities imparted to the residue in central collisions, and these values are compared to the results of cascade calculations. Measurements of slow fragment multiplicities from central events reveal a many-fragment final state. In the light of this finding we develop a simple calculation of the Coulomb features of the observed spectra. The applicability of a statistical breakup model is discussed

  11. Nuclear alignment following compound nucleus reactions

    International Nuclear Information System (INIS)

    Butler, P.A.; Nolan, P.J.

    1981-01-01

    A procedure for calculating the alignment of a nuclear state populated by a compound nucleus reaction is given and used to investigate how alignment varies for different types of population mechanisms. The calculations are compared to both predictions of Gaussian models for the state population distribution and to experimental data, for a variety of types of nuclear reactions. The treatment of alignment in the analysis of γ-ray angular distribution is discussed. (orig.)

  12. Hard probes in heavy ion collisions at the LHC: PDFs, shadowing and $pA$ collisions

    CERN Document Server

    Accardi, Alberto; Botje, M.; Brodsky, S.J.; Cole, B.; Eskola, K.J.; Fai, George I.; Frankfurt, L.; Fries, R.J.; Geist, Walter M.; Guzey, V.; Honkanen, H.; Kolhinen, V.J.; Kovchegov, Yu.V.; McDermott, M.; Morsch, A.; Qiu, Jian-wei; Salgado, C.A.; Strikman, M.; Takai, H.; Tapprogge, S.; Vogt, R.; Zhang, X.f.

    2003-01-01

    This manuscript is the outcome of the subgroup ``PDFs, shadowing and $pA$ collisions'' from the CERN workshop ``Hard Probes in Heavy Ion Collisions at the LHC''. In addition to the experimental parameters for $pA$ collisions at the LHC, the issues discussed are factorization in nuclear collisions, nuclear parton distributions (nPDFs), hard probes as the benchmark tests of factorization in $pA$ collisions at the LHC, and semi-hard probes as observables with potentially large nuclear effects. Also, novel QCD phenomena in $pA$ collisions at the LHC are considered. The importance of the $pA$ program at the LHC is emphasized.

  13. Nuclear excitations and reaction mechanisms

    International Nuclear Information System (INIS)

    Fallieros, S.; Levin, F.S.

    1989-01-01

    This Progress Report describes the work of the Brown University Nuclear Theory Group for the period 1 August 1988--31 July 1989 under Grant FG02-87ER40334. Completed and on-going research includes various theoretical and numerical studies on: virtual photons, electric polarizability, the Cabibo-Radicati sum rule, photon scattering, electron scattering, electron scattering sum rules, muon catalyzed fusion, few body collisions and breakup phenomena. Since it accompanies the three-year Renewal Proposal of the Group, it goes into more detail than our typical one-year reports

  14. Theoretical studies in nuclear reaction and nuclear structure. Final report, January 1, 1975--June 30, 1976

    International Nuclear Information System (INIS)

    Banerjee, M.K.; Griffin, J.J.

    1977-07-01

    Progress in theoretical research is reported under the following readings: (1) few nuclear reactions, Eikonal approximations, and optical models; (2) pion reactions; (3) nuclear structure by reaction studies; (4) nuclear dynamics

  15. Investigation of nuclear matter properties by means of high energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Stock, R.

    1985-09-01

    We review recent advances towards an understanding of high density nuclear matter, as created in central collisions of nuclei at high energy. In particular, information obtained for the nuclear matter equation of state will be discussed. The lectures focus on the Bevalac energy domain of 0.4 to 2 GeV per projectile nucleon. (orig.)

  16. Are the toroidal shapes of heavy-ion reactions seen in macroscopic drop collisions?

    International Nuclear Information System (INIS)

    Menchaca R, A.; Borunda, M.; Hidalgo, S.S.; Huidobro, F.; Michaelian, K.; Perez, A.; Rodriguez, V.

    1996-01-01

    Experiments involving the collisions of water, and mineral oil, drops are reported. The aim is to search for toroidal configurations predicted by, both, macroscopic fluid dynamic and nuclear models. Instead, we find the formation of thin liquid sheets surrounded by a somewhat thicker rim presenting a fingering instability. (Author)

  17. NMTC/JAM, Simulates High Energy Nuclear Reactions and Nuclear-Meson Transport Processes

    International Nuclear Information System (INIS)

    Furihata, Shiori

    2002-01-01

    1 - Description of program or function: NMTC/JAM is an upgraded version of the code system NMTC/JAERI97. NMTC/JAERI97 simulates high energy nuclear reactions and nucleon-meson transport processes. It implements an intra-nuclear cascade model taking account of the in-medium nuclear effects and the pre-equilibrium calculation model based on the exciton one. For treating the nucleon transport process, the nucleon-nucleus cross sections are revised to those derived by the systematics of Pearlstein. Moreover, the level density parameter derived by Ignatyuk is included as a new option for particle evaporation calculation. A geometry package based on the Combinatorial Geometry with multi-array system and the importance sampling technique is implemented in the code. Tally function is also employed for obtaining such physical quantities as neutron energy spectra, heat deposition and nuclide yield without editing a history file. The code can simulate both the primary spallation reaction and the secondary particle transport in the intermediate energy region from 20 MeV to 3.5 GeV by the use of the Monte Carlo technique. The code has been employed in combination with the neutron-photon transport codes available to the energy region below 20 MeV for neutronics calculation of accelerator-based subcritical reactors, analyses of thick target spallation experimented and so on. 2 - Methods: High energy nuclear reactions induced by incident high energy protons, neutrons and pions are simulated with the Monte Carlo Method by the intra-nuclear nucleon-nucleon reaction probabilities based on an intra-nuclear nucleon cascade model followed by the particle evaporation including high energy fission process. Jet-Aa Microscopic transport model (JAM) is employed to simulate high energy nuclear reactions in the energy range of GeV. All reaction channels are taken into account in the JAM calculation. An intra-nuclear cascade model (ISOBAR code) taking account of the in-medium nuclear effects

  18. Nuclear modification factor for J/ψ production in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Xu Xiaoming; Zhou Jie

    2011-01-01

    The STAR Collaboration has offered an eminent nuclear modification factor of J/ψ at high p T and midrapidity produced in Cu-Cu collisions at √ s NN= 200 GeV. Recalling a prediction, we can understand that the feature of high-p T nuclear modification factor is related to cc produced by 2 → 1 and 2 → 2 partonic processes in deconfined matter, particularly in the prethermal stage and to the recombination of c and c-bar. The nuclear modification factor at high p T is sensitive to the earliest form of deconfined matter that does not have a temperature.(authors)

  19. The double nuclear system is a new object of nuclear physics studies

    International Nuclear Information System (INIS)

    Volkov, V.V.

    1980-01-01

    Deep inelastic collisions of two complex nuclei result in formation of the specific nuclear complex - a double nuclear system which is a new unit of nuclear microworld. In this paper we consider the conditions under which the double nuclear system is formed, its properties, the statistical regularities of its disintegration, and the nuclear shell structure effect on its evolution. The possibility of using deep inelastic transfer reactions to produce nuclear far from the region of β-stability and nuclei with high angular momentum is discussed. (author)

  20. Inner-shell excitation in heavy ion collisions up to intermediate incident energies

    International Nuclear Information System (INIS)

    Reus, T. de.

    1987-04-01

    Electronic excitations in collisions of very heavy ions with a total nuclear charge Z greater than 1/α ≅ 137 at bombarding energies reaching from 3.6 MeV/n up to 100 MeV/n are the subject of this thesis. The dynamical behaviour of the electron-positron-field is described within a semiclassical model, which is reviewed and extended to include electronic interactions via a mean field. A detailed comparison with experimental data of K-vacancy formation, δ-electron and positron emission shows an improved agreement compared with former calculations. Structures in spectra of positrons emitted in sub- and supercritical collision are discussed in two respects: Firstly as a signal of the vacuum decay in supercritical electromagnetic fields which evolve in the vicinity of long living giant nuclear molecules. Secondly as an atomic effect, which might be related to an instaneous formation of molecular 1sσ- and 2p 1/2 σ- levels. However, beyond this speculation the emission spectra of electrons and positrons in deep inelastic reactions have proven to be a powerful tool for measuring nuclear reaction or delay times in the order of 10 -21 s. This property was transfered to the domain of intermediate energy collisions. In first order perturbation theory we derived a scaling law, exhibiting how nuclear stopping times could be extracted from the emission spectra of high energetic δ-electrons. Quantitative calculations within a coupled channel code have been carried out for the system Pb+Pb, yielding cross sections of up to 20 nb for the emission of electrons with a kinetic energy of 50 MeV in 60 MeV/n-collisions. (orig./HSI)

  1. Whole study of nuclear matter collective motion in central collisions of heavy ions of the FOPI detector; Etude complete du mouvement collectif de la matiere nucleaire dans les collisions centrales d'ions lourds avec le detecteur FOPI

    Energy Technology Data Exchange (ETDEWEB)

    Bendarag, A

    1999-07-09

    In this work we study the collective phenomena in the central collisions of heavy ions for the Au + Au, Xe + CsI and Ni + Ni systems at incident energies from 150 to 400 MeV/nucleon with the data of the FOPI detector. In order to describe completely the flow of the nuclear matter, we fit the double differential momentum distributions with two-dimensional Gaussian. We study the characteristic parameters of the collective flow (flow range, aspect ratios, flow parameter) versus the charge and the mass of the fragments as well as the incident energy and the centrality of the collisions. The transverse energy is used for selecting the central collisions. The method of the Gaussian fits requires also to reconstruct the reaction plane of the event. Then we correct the parameters for the finite number of particles effects and account for the influence of the acceptance of the detector. We confirm the importance of the thermal motion for the light charge or mass fragments and, conversely, the predominance of the collective motion for the heavy fragments. A common flow angle for all the types of particles is highlighted for the first time, demonstrating the power of the method of the Gaussian fits; The evolution of the other parameters confirms the observations done with other methods of flow analysis. These results should contribute to put constraints on the collision models and to enlarge our knowledge of the properties of the nuclear matter. (author)

  2. Anisotropy of dilepton emission from nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bratkovskaya, E.L.; Teryaev, O.V. [Joint Inst. for Nuclear Research, Dubna (Russian Federation). Bogolubov Lab. of Theoretical Physics; Toneev, V.D. [Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory]|[Joint Inst. for Nuclear Research, Dubna (Russian Federation). Bogolubov Lab. of Theoretical Physics

    1994-11-07

    Attention is paid to studying the angular characteristics of e{sup +}e{sup {minus}} pairs created in collisions with nuclear targets at intermediate and relativistic energies. Arising due to general spin and angular momentum constraints, the dilepton anisotropy seems to be quite sensitive to the contribution of different sources and may be used for disentangling these sources (or models) as well as an additional signature of a possible chiral symmetry restoration and phase transition of hadrons into the quark-gluon plasma. An anisotropy estimate for some dilepton sources is given and its relevance to the problems mentioned is discussed.

  3. Anisotropy of dilepton emission from nuclear collisions

    International Nuclear Information System (INIS)

    Bratkovskaya, E.L.; Teryaev, O.V.; Toneev, V.D.; Joint Inst. for Nuclear Research, Dubna

    1994-01-01

    Attention is paid to studying the angular characteristics of e + e - pairs created in collisions with nuclear targets at intermediate and relativistic energies. Arising due to general spin and angular momentum constraints, the dilepton anisotropy seems to be quite sensitive to the contribution of different sources and may be used for disentangling these sources (or models) as well as an additional signature of a possible chiral symmetry restoration and phase transition of hadrons into the quark-gluon plasma. An anisotropy estimate for some dilepton sources is given and its relevance to the problems mentioned is discussed

  4. Effect of nuclear reaction rates on primordial abundances

    International Nuclear Information System (INIS)

    Mishra, Abhishek; Basu, D.N.

    2011-01-01

    The theoretical predictions of the primordial abundances of elements in the big-bang nucleosynthesis (BBN) are dominated by uncertainties in the input nuclear reaction rates. The effect of modifying these reaction rates on light element abundance yields in BBN by replacing the thirty-five reaction rates out of the existing eighty-eight has been investigated. Also the study have been taken of these yields as functions of evolution time or temperature. Here it has been found that using these new reaction rates results in only a little increase in helium mass fraction over that obtained previously in BBN calculations. This allows insights into the role of the nuclear reaction rates in the setting of the neutron-to-proton ratio during the BBN epoch. We observe that most of these nuclear reactions have minimal effect on the standard BBN abundance yields of 6 Li and 7 Li

  5. Multi-element Analysis of variable sample matrices using collision/reaction cell inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Zahran, N.F.; Helal, A.I.; Amr, M.A.; Amr, M.A.; Al-saad, K.A.

    2008-01-01

    An ICP-MS with an octopole reaction/collision cell is used for the multielement determination of trace elements in water, plants, and soil samples. The use of a reaction or collision gas reduces serious spectral interferences from matrix elements such as Ar Cl or Ar Na. The background equivalent concentration (BEC) is reduced one order of magnitude at helium flow rate of 1 mL/min. Certified reference material namely , NIST Water-1643d, Tomato leaves 1573a, and Montana soil 2711 are used. The trace elements Mn, Fe, Co, Ni, Cu, Zn, As, Mo, Cd and Pb are determined in the different matrices with a accuracy better than 8% to the certified values

  6. Induced isospin mixing in direct nuclear reactions

    International Nuclear Information System (INIS)

    Lenske, H.

    1979-07-01

    The effect of charge-dependent interactions on nuclear reactions is investigated. First, a survey is given on the most important results concerning the charge dependence of the nucleon-nucleon interaction. The isospin symmetry and invariance principles are discussed. Violations of the isospin symmetry occuring in direct nuclear reactions are analysed using the soupled channel theory, the folding model and microscopic descriptions. Finally, induced isospin mixing in isospin-forbidden direct reactions is considered using the example of the inelastic scattering of deuterons on 12 C. (KBE)

  7. Report of seminar on relativistic approach to nuclear reaction and nuclear structure

    International Nuclear Information System (INIS)

    1986-05-01

    A seminar on 'Relativistic Approach to Nuclear Reaction and Nuclear Structure' was held in 1985 at Osaka University. This booklet includes twenty-four reports given at the seminar, which deal with: Conventional Nonrelativistic Description of Nuclear Matter and Nuclear Spin-Orbit Interactions; Relativistic Approach to Nuclear Structure; Atomic and Molecular Structure Calculations; Electromagnetic Interaction in Nucleus and Relativistic Effect; Nuclear Magnetic Moment in the Relativistic Mean Field Theory, Effective Mass and Particle-Vibration Coupling in the Relativistic σ-ω Model; Gauge Invariance in Relativistic Many-Body Theory; Relativistic Description of Nucleon-Nucleon Interaction in Review; σ-Particle in NN Interaction; Nuclear Optical Potentials Based on the Brueckner-Hartree-Fock Approach; Elastic Backscattering and Optical Potential; Description of Intermediate-Energy Nuclear Reactions; Dirac Phenomenology at E(p) = 65 MeV; Relativistic Impulse Approximation; Reaction Studies with Intermediate Energy Deuterons at SATURNE; Folding Model for Intermediate-Energy Deutron Scattering; Folding Model for Polarized Deutron Scattering at 700 MeV; Dirac Approach Problems and a Different Viewpoint; Relativistic Approach and EMC Effect; Quasielastic Electron Scattering; Response Function of Quasielastic Electron Scattering; Relativistic Hartree Response Function for Quasielastic Electron Scattering on 12 C and 40 Ca; Backflow-, Retardation- and Relativistic Effects on the Longitudinal Response Function of Nuclear Matter; Pion-Photoproduction in the σ-ω Model. (Nogami, K.)

  8. Nuclear excitations and reaction mechanisms: Progress report

    International Nuclear Information System (INIS)

    Fallieros, S.; Levin, F.S.

    1988-01-01

    This report describes activities of the Nuclear Theory Group at Brown University during the period 1 August 1987-31 July 1988, under Grant FG02-87ER40334. Completed and on-going research includes various theoretical and numerical studies on: parity non-conserving interactions in a relativistic system, processes involving virtual photons and real photons, deuteron-nucleus and neutron-deuteron collisions systems, and muon-catalyzed fusion

  9. Testing string dynamics in lepton nucleus reactions

    International Nuclear Information System (INIS)

    Gyulassy, M.; Pluemer, M.

    1989-10-01

    The sensitivity of nuclear attenuation of 10-100 GeV lepton nucleus (ell A) reactions to space-time aspects of hadronization is investigated within the context of the Lund string model. We consider two mechanisms for attenuation in a nucleus: final state cascading and string flip excitations. Implications for the evolution of the energy density in nuclear collisions are discussed. 16 refs., 10 figs

  10. Multilayer Network Analysis of Nuclear Reactions

    Science.gov (United States)

    Zhu, Liang; Ma, Yu-Gang; Chen, Qu; Han, Ding-Ding

    2016-08-01

    The nuclear reaction network is usually studied via precise calculation of differential equation sets, and much research interest has been focused on the characteristics of nuclides, such as half-life and size limit. In this paper, however, we adopt the methods from both multilayer and reaction networks, and obtain a distinctive view by mapping all the nuclear reactions in JINA REACLIB database into a directed network with 4 layers: neutron, proton, 4He and the remainder. The layer names correspond to reaction types decided by the currency particles consumed. This combined approach reveals that, in the remainder layer, the β-stability has high correlation with node degree difference and overlapping coefficient. Moreover, when reaction rates are considered as node strength, we find that, at lower temperatures, nuclide half-life scales reciprocally with its out-strength. The connection between physical properties and topological characteristics may help to explore the boundary of the nuclide chart.

  11. Study of the central collisions in the reactions Ni + Al and Ni + Ni at 28 A.MeV; Etude des collisions centrales dans les reactions Ni + Al et Ni + Ni a 28 A.MeV

    Energy Technology Data Exchange (ETDEWEB)

    Lebreton, L.

    1995-12-01

    The work is in characterisation of mechanisms in the energy range of onset of multifragmentation (excitation energy of composed nucleus around 4 - 5 AMeV). This work focused on an experiment performed at the SARA facility, in Grenoble, using the AMPHORA multi detection array. I have been particularly interested in central collisions in the Ni + Al and Ni + Ni systems. The possibility to detect complete events for Ni + Al, and quasi-complete events for the Ni + Ni case, is the reason of this choice. Furthermore Ni + Ni presents the interest of a symmetrical system, for which the excitation energy per nucleon is maximum. The study of these reactions has been focused on the quasi-complete events (events for which at least 80 % of the total charge has been detected). Heavy ions produced in peripheral collisions are very likely emitted along the beam line or stopped in the plastic detectors, energy thresholds are too high for the quasi-target products detection, consequently by requiring complete or quasi-complete measurement of the total charge, we are able to detect mostly central events. The knowledge of informations like charge, energy or detection angles allows to isolate the source(s) and to reconstruct the size and the excitation energy of the source(s). Comparisons with simulations like sequential emission (GEMINI code), very deep inelastic collision or instantaneous emission (Berliner code) allows to characterise the first stage of the collision (binary collisions or central collisions) and the type of deexcitation of the source(s). Some calculations was also performed with the statistical model code MODGAN. Indeed azimuthal correlations seem to be a good tool in getting more information about involved reaction mechanisms. Comparisons with MODGAN provide information about angular momentum of the source and time delay between emissions of the two particles (separation between sequential or instantaneous process). (author). 69 refs.

  12. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    International Nuclear Information System (INIS)

    Sarantites, D.G.

    1991-01-01

    The research program of our group touches five areas of nuclear physics: (1) Nuclear structure studies at high spin; (2) Studies at the interface between structure and reactions; (3) Production and study of hot nuclei; (4) Incomplete fusion and fragmentation reactions; and (5) Development and use of novel techniques and instrumentation in the above areas of research. The papers from these areas are discussed in this report

  13. Pauli-blocking effect in two-body collisions dominates the in-medium effects in heavy-ion reactions near Fermi energy

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Yong-Zhong, E-mail: yzxing@tsnu.edu.cn [Institute for the Fundamental Physics, Tianshui Normal University, Gansu, Tianshui 741000 (China); Zhang, H.F. [Institute for the Fundamental Physics, Tianshui Normal University, Gansu, Tianshui 741000 (China); School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Liu, Xiao-Bin [Institute for the Fundamental Physics, Tianshui Normal University, Gansu, Tianshui 741000 (China); Zheng, Yu-Ming [Institute for the Fundamental Physics, Tianshui Normal University, Gansu, Tianshui 741000 (China); China Institute of Atomic Energy, P.O. Box 275(18), Beijing 102413 (China)

    2017-01-15

    The dissipation phenomenon in the heavy-ion reaction at incident energy near Fermi energy is studied by simulating the reactions {sup 129}Xe + {sup 129}Sn and {sup 58}Ni + {sup 58}Ni with isospin-dependent quantum molecular dynamics model (IQMD). The isotropy ratio in terms of transverse and longitudinal energies of the free protons emitted in the final states of these reactions is quantitatively analyzed to explore the in-medium correlation of the binary collisions. Comparison of the calculations with the experimental data recently released by INDRA collaboration exhibits that the ratio is very sensitive to the Pauli blocking effect in two-body collisions and Pauli exclusion principle is indispensable in the theoretical simulations for the heavy-ion reactions near the Fermi energy.

  14. Laboratory approaches of nuclear reactions involved in primordial and stellar nucleosynthesis

    International Nuclear Information System (INIS)

    Rolfs, C.; California Inst. of Tech., Pasadena

    1986-01-01

    Laboratory-based studies of primordial and stellar nucleosynthesis are reviewed, with emphasis on the nuclear reactions induced by charged particles. The analytical approach used to investigate nuclear reactions associated with stellar reactions is described, as well as the experimental details and procedures used to investigate nuclear reactions induced by charged particles. The present knowledge of some of the key reactions involved in primordial nucleosynthesis is discussed, along with the progress and problems of nuclear reactions involved in the hydrogen and helium burning phases of a star. Finally, a description is given of new experimental techniques which might be useful for future experiments in the field of nuclear astrophysics. (U.K.)

  15. Investigations of nuclear structure and nuclear reactions induced by complex projectiles

    International Nuclear Information System (INIS)

    Sarantites, D.G.

    1990-01-01

    This report discusses research in the following areas: nuclear structure; fusion reactions near and below the barrier; incomplete fusion and fragmentation reactions; and instrumentation and analysis. (LSP)

  16. δ-electron spectroscopy and the atomic clock effect in heavy-ion collisions

    International Nuclear Information System (INIS)

    Mueller-Nehler, U.

    1993-11-01

    The properties of strongly bound electrons in superheavy quasimolecular systems with combined nuclear charge numbers Z = Z P + Z T ≥ 110 are investigated. The emission of δ-electrons may serve as an atomic clock for nuclear reactions which is associated with the large overlap of the electron probability density with the nuclear interior. Excitation and emission rates of inner-shell electrons in collisions of very heavy ions with beam energies at or above the nuclear Coulomb barrier depend explicitly on details of the nuclear dynamics. Theoretical and experimental results are reviewed. (orig.)

  17. Determination of nuclear friction in strongly damped reactions from prescission neutron multiplicities

    International Nuclear Information System (INIS)

    Wilczynski, J.; Siwek-Wilczynska, K.; Wilschut, H.W.

    1996-01-01

    Nonfusion, fissionlike reactions in collisions of four heavy systems (well below the fusion extra-push energy threshold), for which Hinde and co-workers had measured the prescission neutron multiplicities, have been analyzed in terms of the deterministic dynamic model of Feldmeier coupled to a time-dependent statistical cascade calculation. In order to reproduce the measured prescission multiplicities and the observed (nearly symmetric) mass divisions, the energy dissipation must be dramatically changed with regard to the standard one-body dissipation: In the entrance channel, in the process of forming a composite system, the energy dissipation has to be reduced to at least half of the one-body dissipation strength (k s in ≤0.5), and in the exit channel (from a mononucleus shape to scission) it must be increased by a factor ranging for the studied reactions from k s out =4 to k s out =12. These results are compared with the temperature dependence of the friction coefficient, recently deduced by Hofman, Back, and Paul from data on the prescission giant dipole resonance emission in fusion-fission reactions. The combined picture of the temperature dependence of the friction coefficient, for both fusion-fission and nonfusion reactions, may indicate the onset of strong two-body dissipation already at a nuclear temperature of about 2 MeV. copyright 1996 The American Physical Society

  18. Investigation of Rare Particle Production in High Energy Nuclear Collisions

    International Nuclear Information System (INIS)

    Crawford, Henry J.; Engelage, Jon M.

    1999-01-01

    Our program is an investigation of the hadronization process through measurement of rare particle production in high energy nuclear interactions. Such collisions of heavy nuclei provide an environment similar in energy density to the conditions in the Big Bang. We are currently involved in two major experiments to study this environment, E896 at the AGS and STAR at RHIC. We have completed our physics running of E896, a search for the H dibaryon and measurement of hyperon production in AuAu collisions, and are in the process of analyzing the data. We have produced the electronics and software for the STAR trigger and will begin to use these tools to search for anti-nuclei and strange hadrons when RHIC turns on later this year

  19. Probing the nuclear structure with heavy-ion reactions

    International Nuclear Information System (INIS)

    Broglia, R.A.

    1982-01-01

    Nuclei display distortions in both ordinary space and in gauge space. It is suggested that it is possible to learn about the spatial distribution of the Nilsson orbitals and about the change of the pairing gap with the rotational frequency through the analysis of one- and two-nucleon transfer reactions induced in heavy-ion collisions

  20. Identifying Understudied Nuclear Reactions by Text-mining the EXFOR Experimental Nuclear Reaction Library

    Energy Technology Data Exchange (ETDEWEB)

    Hirdt, J.A. [Department of Mathematics and Computer Science, St. Joseph' s College, Patchogue, NY 11772 (United States); Brown, D.A., E-mail: dbrown@bnl.gov [National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)

    2016-01-15

    The EXFOR library contains the largest collection of experimental nuclear reaction data available as well as the data's bibliographic information and experimental details. We text-mined the REACTION and MONITOR fields of the ENTRYs in the EXFOR library in order to identify understudied reactions and quantities. Using the results of the text-mining, we created an undirected graph from the EXFOR datasets with each graph node representing a single reaction and quantity and graph links representing the various types of connections between these reactions and quantities. This graph is an abstract representation of the connections in EXFOR, similar to graphs of social networks, authorship networks, etc. We use various graph theoretical tools to identify important yet understudied reactions and quantities in EXFOR. Although we identified a few cross sections relevant for shielding applications and isotope production, mostly we identified charged particle fluence monitor cross sections. As a side effect of this work, we learn that our abstract graph is typical of other real-world graphs.

  1. Identifying Understudied Nuclear Reactions by Text-mining the EXFOR Experimental Nuclear Reaction Library

    International Nuclear Information System (INIS)

    Hirdt, J.A.; Brown, D.A.

    2016-01-01

    The EXFOR library contains the largest collection of experimental nuclear reaction data available as well as the data's bibliographic information and experimental details. We text-mined the REACTION and MONITOR fields of the ENTRYs in the EXFOR library in order to identify understudied reactions and quantities. Using the results of the text-mining, we created an undirected graph from the EXFOR datasets with each graph node representing a single reaction and quantity and graph links representing the various types of connections between these reactions and quantities. This graph is an abstract representation of the connections in EXFOR, similar to graphs of social networks, authorship networks, etc. We use various graph theoretical tools to identify important yet understudied reactions and quantities in EXFOR. Although we identified a few cross sections relevant for shielding applications and isotope production, mostly we identified charged particle fluence monitor cross sections. As a side effect of this work, we learn that our abstract graph is typical of other real-world graphs.

  2. Proceedings of the 10. Workshop on Nuclear Physics in Brazil

    International Nuclear Information System (INIS)

    1987-01-01

    Theoretical and experimental studies on Nuclear Physics are presented. Nuclei structures, nuclear reaction cross sections, collision phenomena between particles at several energy ranges and radiation effects on solids and liquids are analysed. (M.C.K.) [pt

  3. Theoretical nuclear physics in France: overview and perspectives - 2004 and 2009

    International Nuclear Information System (INIS)

    2004-11-01

    A first report published in 2004 proposes an overview of the situation of research in theoretical nuclear physics in France per field of research: nucleus structure, nuclear reactions at low and medium energies (fusion, fission, multi fragmentation), hadron physics, state equation of nuclear matter and of neutron matter, and nuclear astrophysics, plasma of quarks and gluons, and nucleus-nucleus collisions at high energy, developments of the theory of the nuclear N-body problem and its impact on other disciplines. For each theme, the report indicates the involved research themes and their specific fields of research, comments the research themes, objectives and perspectives, discusses how the theoretical activity matches experimental programmes. The second report published in 2009 proposes the same kind of overview for the following themes: nucleus structure, state equation of nuclear and stellar matter, collisions and reactions at low and medium energy, hadron physics, quarks and gluons in nuclear physics, interdisciplinary applications of nuclear theory. Each report also provides some statistics about the researcher community

  4. Glenn T. Seaborg and heavy ion nuclear science

    International Nuclear Information System (INIS)

    Loveland, W.

    1992-04-01

    Radiochemistry has played a limited but important role in the study of nucleus-nucleus collisions. Many of the important radiochemical studies have taken place in Seaborg's laboratory or in the laboratories of others who have spent time in Berkeley working with Glenn T. Seaborg. I will discuss studies of low energy deep inelastic reactions with special emphasis on charge equilibration, studies of the properties of heavy residues in intermediate energy nuclear collisions and studies of target fragmentation in relativistic and ultrarelativistic reactions. The emphasis will be on the unique information afforded by radiochemistry and the physical insight derived from radiochemical studies. Future roles of radiochemistry in heavy ion nuclear science also will be discussed

  5. Jets in high energy nucleon-nucleon collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1982-01-01

    From the experimental studies of high-energy hardon-nucleon and nucleon-nucleon collisions, by means of nuclear targets applied as detectors, it follows that particles are produced via intermediate objects created first in a 2 → 2 type endoergic reaction. These objects, called generons, decay in flight into finally observed particles and resonances after their lifetime tausub(g) > or approximately 10 - 22 s. The jet structure of the outcome in nucleon-nucleon collisions is a simple and indispensable consequence of this particle production mechanism. The picture of the jet structure in the collision outcome observed in the CMS of the colliding nucleons depends on the energy of these nUcleons. New particle production scheme is proposed, which can be tested experimentally; corresponding simple relations between characteristics of colliding nucleons and of produced jets are proposed for a testing

  6. Nuclear fission and reactions

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The nuclear fission research programs are designed to elucidate basic features of the fission process. Specifically, (1) factors determining how nucleons of a fissioning nucleus are distributed between two fission fragments, (2) factors determining kinetic energy and excitation energies of fragments, and (3) factors controlling fission lifetimes. To these ends, fission studies are reported for several heavy elements and include investigations of spontaneous and neutron-induced fission, heavy ion reactions, and high energy proton reactions. The status of theoretical research is also discussed. (U.S.)

  7. Max-Planck-Institute for Nuclear Physics. Annual report 1987

    International Nuclear Information System (INIS)

    Klapdor, H.V.; Jessberger, E.K.

    1987-01-01

    This annual report contains short communications and extended abstracts about the work performed at the named institute together with a list of publications and talks. The work concerns technical developments on accelerators and ion sources, developments of detectors and experimental setups, electronics, data processing, target developments, giant resonances, nuclear spectroscopy, nuclear reaction mechanisms, atomic physics, medium- and high-energy physics, statistical models of nuclei and nuclear reactions, nuclear reactions at high energies, many-particle theory, quantum chromodynamics, meteorites, comets, interstellar dust, planetary atmospheres, cosmic radiation, molecular collisions in the earth atmosphere, nuclear geology and geochemistry, as well as archaeology. See hints under the relevant topics. (HSI)

  8. Nuclear reactions and synthesis of new transuranium species

    International Nuclear Information System (INIS)

    Seaborg, G.T.

    1983-01-01

    In this short review, I shall describe the special aspects of heavy ion nuclear reaction mechanisms operative in the transuranium region, the role of new techniques, possible nuclear reactions for the production of additional transuranium elements and nuclear species and the importance of work in this region for the development of nuclear models and theoretical concepts. This discussion should make it clear that a continuing supply of leements and isotopes, some fo them relatively short-lived, produced by the HFIR-TRU facilities, will be a requirement for future synthesis of new elements and isotopes

  9. Nuclear Science Division: 1993 Annual report

    International Nuclear Information System (INIS)

    Myers, W.D.

    1994-06-01

    This report describes the activities of the Nuclear Science Division for the 1993 calendar year. This was another significant year in the history of the Division with many interesting and important accomplishments. Activities for the following programs are covered here: (1) nuclear structure and reactions program; (2) the Institute for Nuclear and Particle Astrophysics; (3) relativistic nuclear collisions program; (4) nuclear theory program; (5) nuclear data evaluation program, isotope project; and (6) 88-inch cyclotron operations

  10. Nuclear Science Division: 1993 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Myers, W.D. [ed.

    1994-06-01

    This report describes the activities of the Nuclear Science Division for the 1993 calendar year. This was another significant year in the history of the Division with many interesting and important accomplishments. Activities for the following programs are covered here: (1) nuclear structure and reactions program; (2) the Institute for Nuclear and Particle Astrophysics; (3) relativistic nuclear collisions program; (4) nuclear theory program; (5) nuclear data evaluation program, isotope project; and (6) 88-inch cyclotron operations.

  11. Peripheral collisions in the reaction 40Ar + 93Nb at 27.5 MeV/nucleon

    International Nuclear Information System (INIS)

    Pastel, R.

    1987-09-01

    This thesis describes an experimental study of the reaction 40 Ar + 93 Nb at 27.5 MeV/nucleon carried out at the GANIL accelerator. Reaction products were detected in a large position sensitive localization ionization chamber. The experimental data were used to obtain information concerning the reaction mechanism especially for peripheral collisions. A model using the properties of random works were applied successfully to the interpretation of the data. The importance of the deflection produced by the ion-ion potential as well as of the emission of alpha particles in the reaction is stressed [fr

  12. Nuclear science annual report, July 1, 1977-June 30, 1978. [Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, L.S.; Gough, R.A.; Nurmia, M.J. (eds.)

    1978-01-01

    Activities for the period July 1, 1977, through June 30, 1978, are reported in the following areas: experimental research (nuclear structure; nuclear reactions and scattering; relativistic heavy ions - projectile and target fragmentation, central collisions; the Table of Isotopes Project, atomic physics, and magnetic monopoles), theory of nuclear collisions (microscopic, macroscopic, relativistic), and apparatus (accelerator operations and development, nuclear instrumentation). Also included are thesis abstracts, publications lists, and an author index. Individual abstracts were prepared for 33 of the reports in this volume. (RWR)

  13. Violent heavy ion collisions around the Fermi energy

    International Nuclear Information System (INIS)

    Borderie, B.

    1985-01-01

    Experimental results on central collisions will be presented and it will be shown that a fusion process still occurs; deexcitation of the hot fused systems formed will be discussed. Then, from the qualitative evolution of central collision products from different reactions studied in the E/A range 20-84 MeV, the vanishing of fusion processes will be inferred; it will be discussed in terms of critical energy deposit and maximum excitation energy per nucleon that nuclei can carry. Finally results concerning the large production of light fragments (3 < approximately Z < approximately 12) experimentally observed in the Fermi energy domain will be presented and discussed in terms of a multifragmentation of the whole nuclear system or of part of it for intermediate impact parameter collisions (109 refs, 49 fig)

  14. Improved predictions of nuclear reaction rates for astrophysics applications with the TALYS reaction code

    International Nuclear Information System (INIS)

    Goriely, S.; Hilaire, S.; Koning, A.J.

    2008-01-01

    Nuclear reaction rates for astrophysics applications are traditionally determined on the basis of Hauser-Feshbach reaction codes, like MOST. These codes use simplified schemes to calculate the capture reaction cross section on a given target nucleus, not only in its ground state but also on the different thermally populated states of the stellar plasma at a given temperature. Such schemes include a number of approximations that have never been tested, such as an approximate width fluctuation correction, the neglect of delayed particle emission during the electromagnetic decay cascade or the absence of the pre-equilibrium contribution at increasing incident energies. New developments have been brought to the reaction code TALYS to estimate the Maxwellian-averaged reaction rates of astrophysics relevance. These new developments give us the possibility to calculate with an improved accuracy the reaction cross sections and the corresponding astrophysics rates. The TALYS predictions for the thermonuclear rates of astrophysics relevance are presented and compared with those obtained with the MOST code on the basis of the same nuclear ingredients for nuclear structure properties, optical model potential, nuclear level densities and γ-ray strength. It is shown that, in particular, the pre-equilibrium process significantly influences the astrophysics rates of exotic neutron-rich nuclei. The reciprocity theorem traditionally used in astrophysics to determine photo-rates is also shown no to be valid for exotic nuclei. The predictions obtained with different nuclear inputs are also analyzed to provide an estimate of the theoretical uncertainties still affecting the reaction rate prediction far away from the experimentally known regions. (authors)

  15. A comprehensive survey of nuclear reactions; Panorama des reactions nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Cugnon, J. [Liege Univ., IFPA, AGO Dept. (Belgium)

    2007-07-01

    The various mechanisms of nuclear reactions are surveyed and classified in different regimes, based on the notions of coherent mechanisms and hard versus soft processes. The emphasis is put on the concepts at the basis of the understanding of these regimes and on the elements of nuclear structure which are involved in these different regimes, as well as the on the possibility of extracting this information. Due to lack of space and for pedagogical reasons, the discussion is limited to nucleon-induced and light-ion-induced reactions. However, a few remarks are given concerning some specific probes, such as weakly bound projectiles or neutron-rich nuclei. (author)

  16. Reaction Dynamics and Nuclear Structure Studies of n-Rich Nuclei Around 48Ca via Deep Inelastic Collisions with Heavy-Ions

    International Nuclear Information System (INIS)

    Leoni, S.

    2011-01-01

    The population and γ decay of neutron rich nuclei around 48 Ca has been measured at Legnaro National Laboratory with the PRISMA-CLARA setup, using deep-inelastic collisions on 64 Ni, at 5.9 MeV/A. The reaction properties of the main products are investigated, focusing on total cross-sections and energy integrated angular distributions. Gamma spectroscopy studies are also performed for the most intense transfer channels, making use of angular distributions and polarization measurements to firmly establish spin and parity of the excited states. In the case of 49 Ca candidates for particle-core couplings are investigated and interpreted on basis of lifetime measurements and comparison with model predictions. (author)

  17. QUARKONIUM PRODUCTION IN RELATIVISTIC NUCLEAR COLLISIONS. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 12

    Energy Technology Data Exchange (ETDEWEB)

    KHARZEEV,D.

    1999-04-20

    The RIKEN-BNL Workshop on Quarkonium Production in Relativistic Nuclear Collisions was held September 28--October 2, 1998, at Brookhaven National Laboratory. The Workshop brought together about 50 invited participants from around the world and a number of Brookhaven physicists from both particle and nuclear physics communities.

  18. Quarkonium production in relativistic nuclear collisions. Proceedings of Riken BNL Research Center Workshop,Volume 12

    International Nuclear Information System (INIS)

    Kharzeev, D.

    1999-01-01

    The RIKEN-BNL Workshop on Quarkonium Production in Relativistic Nuclear Collisions was held September 28--October 2, 1998, at Brookhaven National Laboratory. The Workshop brought together about 50 invited participants from around the world and a number of Brookhaven physicists from both particle and nuclear physics communities

  19. Measurements of jet production and electromagnetic processes in ultra-peripheral Pb+Pb collisions with the ATLAS detector

    CERN Document Server

    Steinberg, Peter; The ATLAS collaboration

    2017-01-01

    Beams of relativistic heavy ions are accompanied by a large flux of equivalent photons, and photon- induced reactions are the dominant interaction mechanism in heavy-ion collisions when the colliding nuclei have transverse separation larger that the nuclear diameter. In these ultra- peripheral collisions (UPC) the photon can provide a clean probe of the partonic structure of the nucleus analogous with deep inelastic scattering. This talk presents measurements of jet production and electromagnetic processes in UPC in association with Pb+Pb collisions performed with the ATLAS detector. Dijet events are selected using requirements on rapidity gaps and forward neutron production to identify the photo-nuclear processes. The relatively clean environment of these events allows for measurements in a region of x and Q^2 where significant nuclear PDF modifications are expected to be present and not strongly constrained by previous measurements. High-mass dilepton pair continuum rates for Pb+Pb collisions are also prese...

  20. Improved predictions of nuclear reaction rates with the TALYS reaction code for astrophysical applications

    International Nuclear Information System (INIS)

    Goriely, S.; Hilaire, S.; Koning, A.J

    2008-01-01

    Context. Nuclear reaction rates of astrophysical applications are traditionally determined on the basis of Hauser-Feshbach reaction codes. These codes adopt a number of approximations that have never been tested, such as a simplified width fluctuation correction, the neglect of delayed or multiple-particle emission during the electromagnetic decay cascade, or the absence of the pre-equilibrium contribution at increasing incident energies. Aims. The reaction code TALYS has been recently updated to estimate the Maxwellian-averaged reaction rates that are of astrophysical relevance. These new developments enable the reaction rates to be calculated with increased accuracy and reliability and the approximations of previous codes to be investigated. Methods. The TALYS predictions for the thermonuclear rates of relevance to astrophysics are detailed and compared with those derived by widely-used codes for the same nuclear ingredients. Results. It is shown that TALYS predictions may differ significantly from those of previous codes, in particular for nuclei for which no or little nuclear data is available. The pre-equilibrium process is shown to influence the astrophysics rates of exotic neutron-rich nuclei significantly. For the first time, the Maxwellian- averaged (n, 2n) reaction rate is calculated for all nuclei and its competition with the radiative capture rate is discussed. Conclusions. The TALYS code provides a new tool to estimate all nuclear reaction rates of relevance to astrophysics with improved accuracy and reliability. (authors)

  1. The nuclear reaction matrix

    International Nuclear Information System (INIS)

    Krenciglowa, E.M.; Kung, C.L.; Kuo, T.T.S.; Osnes, E.; and Department of Physics, State University of New York at Stony Brook, Stony Brook, New York 11794)

    1976-01-01

    Different definitions of the reaction matrix G appropriate to the calculation of nuclear structure are reviewed and discussed. Qualitative physical arguments are presented in support of a two-step calculation of the G-matrix for finite nuclei. In the first step the high-energy excitations are included using orthogonalized plane-wave intermediate states, and in the second step the low-energy excitations are added in, using harmonic oscillator intermediate states. Accurate calculations of G-matrix elements for nuclear structure calculations in the Aapprox. =18 region are performed following this procedure and treating the Pauli exclusion operator Q 2 /sub p/ by the method of Tsai and Kuo. The treatment of Q 2 /sub p/, the effect of the intermediate-state spectrum and the energy dependence of the reaction matrix are investigated in detail. The present matrix elements are compared with various matrix elements given in the literature. In particular, close agreement is obtained with the matrix elements calculated by Kuo and Brown using approximate methods

  2. Activation cross-section data for -particle-induced nuclear reactions ...

    Indian Academy of Sciences (India)

    B M ALI

    2018-02-20

    particle-induced nuclear reactions on natural vanadium up to 20 MeV. It should be mentioned that this study represents a part of (a supplement) systematical study of charged particles-induced nuclear reactions. Earlier studies were.

  3. Department of Nuclear Reaction - Overview

    International Nuclear Information System (INIS)

    Budzanowski, A.

    2000-01-01

    Full text: This year 1999 can be considered as very successful. Not only that we have published 33 papers in journals listed by the Philadelphia Institute of Science but because our hard work allowed us to obtain new and exciting results. A group of theoretical papers concerned with application of correlation among random matrices elements developed for statistical aspects of nuclear coupling into continuum to study of the collective effects in brain activity and stock market dynamics. These papers arose quite an interest and got several citations. Studies of the nonpartonic components in the nucleon structure function led to better understanding of the higher-twist effects. It was shown that inclusion of the terms of the order of 1/Q 4 improves fits to the experimental data. A review paper summarizing results on the role of the leading baryon in high energy reactions appeared in Progress on Nuclear and Particle Physics. Studies on multistep transfer reactions of light heavy ions in collaboration with the Institute of Nuclear Physics of the Ukrainian Academy of Sciences in Kiev have explained angular distributions of many reactions using the coupled channel theory. We have shown that it is possible to determine energy dependence of the optical model potential for such unstable nuclei like 8 Be. Further studies of mechanism of near threshold light meson production in collaboration with Juelich and Jagiellonian University were performed. Within COSY 10 and COSY 11 collaborations new data on the isospin symmetry breaking in pionic reactions and strange meson accompanied by hyperons emission were obtained. Together with colleagues from the Flerov Nuclear Reaction Laboratory we have started experiments with radioactive beams. Using magnetic separator COMBAS velocity distributions of isotopes with 2 ≤Z≤11 in reactions induced by 16 O on 9 Be were obtained. At the high resolution radioactive beam channel ACCULINA reactions induced by 6 He and 8 He nuclei were studied

  4. New methods in nuclear reaction theory

    International Nuclear Information System (INIS)

    Redish, E.F.

    1979-01-01

    Standard nuclear reaction methods are limited to treating problems that generalize two-body scattering. These are problems with only one continuous (vector) degree of freedom (CDOF). The difficulty in extending these methods to cases with two or more CDOFs is not just the additional numerical complexity: the mathematical problem is usually not well-posed. It is hard to guarantee that the proper boundary conditions (BCs) are satisfied. Since this is not generally known, the discussion is begun by considering the physics of this problem in the context of coupled-channel calculations. In practice, the difficulties are usually swept under the rug by the use of a highly developed phenomenology (or worse, by the failure to test a calculation for convergence). This approach limits the kind of reactions that can be handled to ones occurring on the surface of where a second CDOF can be treated perturbatively. In the past twenty years, the work of Faddeev, the quantum three-body problem has been solved. Many techniques (and codes) are now available for solving problems with two CDOFs. A method for using these techniques in the nuclear N-body problem is presented. A set of well-posed (connected kernal) equations for physical scattering operators is taken. Then it is shown how approximation schemes can be developed for a wide range of reaction mechanisms. The resulting general framework for a reaction theory can be applied to a number of nuclear problems. One result is a rigorous treatment of multistep transfer reactions with the possibility of systematically generating corrections. The application of the method to resonance reactions and knock-out is discussed. 12 figures

  5. On the geometric nature of high energy nucleus-nucleus reaction cross sections

    International Nuclear Information System (INIS)

    Townsend, L.W.; Wilson, J.W.; Bidasaria, H.B.

    1982-01-01

    Within the context of a high energy double-folding optical potential approximation to the exact nucleus-nucleus multiple-scattering series, eikonal scattering theory is used to investigate the validity of geometric reaction cross sections in relativistic heavy ion collisions. The potential used includes a finite range interaction and nuclear single-particle densities extracted from nuclear charge distributions by unfolding the proton charge distribution. Pauli correlation effects are also included in an approximate way. The sensitivity of the predictions to be assumed interaction, Pauli correlation approximation, and nuclear density distributions is investigated. These results are in agreement with early predictions concerning the geometric nature of relativistic heavy ion collisions and in disagreement with a recent analysis, utilizing the zero range approximation, which suggested otherwise. Reasons for the lack of agreement between the analyses are also presented. Finally, approximate applicability for geometric reaction cross sections are determined

  6. Contribution to the understanding of ion-gas reactions in ICP-MS collision reaction cells: application to the resolution of isobaric and polyatomic interferences

    International Nuclear Information System (INIS)

    Quemet, A.

    2012-01-01

    Inductively Coupled Plasma Mass Spectrometry (ICP-MS) emerged as the most essential technique in inorganic analytical chemistry thanks to its numerous assets, particularly its flexibility, its sensitivity and its reproducibility. As part of the elementary and isotopic analysis of irradiated fuel and transmutation target, the analyst is faced with a complex mass spectrum, due to the presence of many radionuclides. ICP-MS can not differentiate ions with the same mass, which induces isobaric and polyatomic interferences when the ions at the same mass are different chemical species. Last generations of ICP-MS have introduced collision reaction cells. It can in situ reduce these isobaric or polyatomic interferences. The cell is a multipole (quadrupole, hexapole or octupole) device filled with a collision and/or reaction gas. The gas molecules collide or possibly react with the ion beam, which eliminates or reduces interferences. Such resolution of interferences is based on the difference of chemical behaviours between the analyte and the interfering species: the choice of the gas is crucial. A better understanding of the 'ion - gas' reaction should help choosing the reacting gases. Three ICP-MS, with the different cell geometries, were used for this study: Perkin Elmer Elan DRC e (quadrupole), Thermo Fischer X serie II (hexapole) and Agilent Technologies 7700x (octupole). The effects of the cell geometry on different experimental parameters and on the resolution of the 56 Fe + / 40 Ar 16 O + polyatomic interferences were examined to measure iron at trace or ultra-trace level. This preliminary study was applied to measure iron as impurities in uranium oxide, the method was then validated with a Certified Reference Material. The reactivities of transition metals (Zr, Ru, Pd, Ag, Cd, Sn), lanthanides (La, Ce, Nd, Sm, Eu, Gd, Dy, Er and Yb) and actinides (U, Np, Pu, Am and Cm), elements of interest in the nuclear field, are studied with numerous gases (O 2 , CO, CO 2 , N 2

  7. Drift-tube studies of ion-molecule reactions at low collision energies

    International Nuclear Information System (INIS)

    Chatterjee, B.K.

    1988-01-01

    This thesis presents experimental studies of ion-molecule reactions at low collision energies using two drift tube mass spectrometer apparatus. The reactions studied are (i) proton transfer from HeH + to ArH + , (ii) charge and ion transfer reactions of O 2 2+ with NO, CO 2 , Ne and O 2 + ( 4 π u ) with CO 2 , (iii) oxidation reactions of Zr + and ZrO + with NO, CO 2 and O 2 , (iv) vibrational quenching reactions of H 3 + with He, (v) termolecular clustering reactions of H 2 CN + and H 2 CN + (HCN) (with He as the third body), (vi) three body association reactions of H + and D + with He (with He as the third body) and (vii) termolecular association reaction of NO + with NO (with Ne as third body). All the reactions were studied at thermal energies (at room temperature), reactions of O 2 2+ with NO and CO 2 , Zr + with NO/CO 2 /O 2 were also studied at center-of-mass energies higher than thermal and the association reactions of H 2 CN + /H 2 CN + (HCN) with HCN and H + /D + with He were studied at low temperatures. In addition, the thesis presents model calculations for the sweep-out effect which is an instrumental effect. A super Langevin rate constant is introduced which is a higher-order correction to the Langevin model. A theoretical model for the three-body ion-atom association rate constant is presented in the appendix of the thesis

  8. Studies on the dynamics of heavy ion collisions at intermediate energies

    International Nuclear Information System (INIS)

    David, C.; Hartnack, C; Aichelin, J.

    1997-01-01

    We use the Quantum Molecular Dynamics model for the investigation of the dynamics of heavy ion collisions at intermediate energies. A detailed comparison between different versions of the models demonstrate the influence of not exactly known parameters in the description of nuclei like interaction range or initial densities and thus describes the limits of predictive power. The dynamics of the reaction are discussed quite similarly in the different models. A radial expansion with a linear velocity profile is found at central collisions. A strong interaction of pions with nuclear matter is reported. This interaction is strongly influenced by the lifetime of baryonic resonances in nuclear matter. These lifetimes depend strongly on the mass distribution of the resonances. These mass distributions are influenced by the momentum distribution in the nuclei. Here the inclusion of the spectral function shows visible effects. These effects influence the energy dissipation in nuclei and thus enter e.g. into the analysis of p + A collisions for the GEDEON project. (author)

  9. Statistical theory of neutron nuclear reactions

    International Nuclear Information System (INIS)

    Moldauer, P.A.

    1978-02-01

    The statistical theory of average neutron nucleus reaction cross sections is reviewed with emphasis on the justification of the Hauser Feshbach formula and its modifications for situations including isolated compound nucleus resonances, overlapping and interfering resonances, the competition of compound and direct reactions, and continuous treatment of residual nuclear states

  10. Statistical theory of neutron nuclear reactions

    International Nuclear Information System (INIS)

    Moldauer, P.A.

    1980-01-01

    The statistical theory of average neutron nucleus reaction cross sections is reviewed with emphasis on the justification of the Hauser Feshbach formula and its modifications for situations including isolated compound nucleus resonances, overlapping and interfering resonances, the competition of compound and direct reactions, and continuous treatment of residual nuclear states. (author)

  11. Sequential series for nuclear reactions

    International Nuclear Information System (INIS)

    Izumo, Ko

    1975-01-01

    A new time-dependent treatment of nuclear reactions is given, in which the wave function of compound nucleus is expanded by a sequential series of the reaction processes. The wave functions of the sequential series form another complete set of compound nucleus at the limit Δt→0. It is pointed out that the wave function is characterized by the quantities: the number of degrees of freedom of motion n, the period of the motion (Poincare cycle) tsub(n), the delay time t sub(nμ) and the relaxation time tausub(n) to the equilibrium of compound nucleus, instead of the usual quantum number lambda, the energy eigenvalue Esub(lambda) and the total width GAMMAsub(lambda) of resonance levels, respectively. The transition matrix elements and the yields of nuclear reactions also become the functions of time given by the Fourier transform of the usual ones. The Poincare cycles of compound nuclei are compared with the observed correlations among resonance levels, which are about 10 -17 --10 -16 sec for medium and heavy nuclei and about 10 -20 sec for the intermediate resonances. (auth.)

  12. Theoretical investigation of exchange and recombination reactions in O(3P)+NO(2Π) collisions

    International Nuclear Information System (INIS)

    Ivanov, M. V.; Zhu, H.; Schinke, R.

    2007-01-01

    We present a detailed dynamical study of the kinetics of O( 3 P)+NO( 2 Π) collisions including O atom exchange reactions and the recombination of NO 2 . The classical trajectory calculations are performed on the lowest 2 A ' and 2 A '' potential energy surfaces, which were calculated by ab initio methods. The calculated room temperature exchange reaction rate coefficient, k ex , is in very good agreement with the measured one. The high-pressure recombination rate coefficient, which is given by the formation rate coefficient and to a good approximation equals 2k ex , overestimates the experimental data by merely 20%. The pressure dependence of the recombination rate, k r , is described within the strong-collision model by assigning a stabilization probability to each individual trajectory. The measured falloff curve is well reproduced over five orders of magnitude by a single parameter, i.e., the strong-collision stabilization frequency. The calculations also yield the correct temperature dependence, k r ∝T -1.5 , of the low-pressure recombination rate coefficient. The dependence of the rate coefficients on the oxygen isotopes are investigated by incorporating the difference of the zero-point energies between the reactant and product NO radicals, Δ ZPE , into the potential energy surface. Similar isotope effects as for ozone are predicted for both the exchange reaction and the recombination. Finally, we estimate that the chaperon mechanism is not important for the recombination of NO 2 , which is in accord with the overall T -1.4 dependence of the measured recombination rate even in the low temperature range

  13. Signatures of quantum radiation reaction in laser-electron-beam collisions

    International Nuclear Information System (INIS)

    Wang, H. Y.; Yan, X. Q.; Zepf, M.

    2015-01-01

    Electron dynamics in the collision of an electron beam with a high-intensity focused ultrashort laser pulse are investigated using three-dimensional QED particle-in-cell (PIC) simulations, and the results are compared with those calculated by classical Landau and Lifshitz PIC simulations. Significant differences are observed from the angular dependence of the electron energy distribution patterns for the two different approaches, because photon emission is no longer well approximated by a continuous process in the quantum radiation-dominated regime. The stochastic nature of photon emission results in strong signatures of quantum radiation-reaction effects under certain conditions. We show that the laser spot size and duration greatly influence these signatures due to the competition of QED effects and the ponderomotive force, which is well described in the classical approximation. The clearest signatures of quantum radiation reaction are found in the limit of large laser spots and few cycle pulse durations

  14. Statistical theory of neutron nuclear reactions

    International Nuclear Information System (INIS)

    Moldauer, P.A.

    1975-01-01

    The statistical theory of average neutron nucleus reaction cross sections is reviewed with emphasis on the justification of the Hauser Feshbach formula and its modifications for situations including isolated compound nucleus resonances, overlapping and interfering resonances, the competition of compound and direct reactions, and continuous treatment of residual nuclear states. 3 figures

  15. Nuclear Science Division annual report, July 1, 1981-September 30, 1982

    International Nuclear Information System (INIS)

    Mahoney, J.

    1983-06-01

    This report summarizes the scientific research carried out within the Nuclear Science Division between July 1, 1981, and September 30, 1982. Heavy-ion investigations continue to dominate the experimental and theoretical research efforts. Complementary programs in light-ion nuclear science, in nuclear data evaluation, and in the development of advanced instrumentation are also carried out. Results from Bevalac experiments employing a wide variety of heavy ion beams, along with new or upgraded detector facilities (HISS, the Plastic Ball, and the streamer chamber) are contained in this report. These relativistic experiments have shed important light on the degree of equilibration for central collisions, the time evolution of a nuclear collision, the nuclear density and compressional energy of these collisions, and strange particle production. Reaction mechanism work dominates the heavy-ion research at the 88-Inch Cyclotron and the SuperHILAC. Recent experiments have contributed to our understanding of the nature of light-particle emission in deep-inelastic collisions, of peripheral reactions, incomplete fusion, fission, and evaporation. Nuclear structure investigations at these accelerators continue to be directed toward the understanding of the behavior of nuclei at high angular momentum. Research in the area of exotic nuclei has led to the observation at the 88-Inch Cyclotron of the β-delayed proton decay of odd-odd T/sub z/ = -2 nuclides; β-delayed proton emitters in the rare earth region are being investigated at the SuperHILAC

  16. Nuclear Science Division annual report, July 1, 1981-September 30, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J. (ed.)

    1983-06-01

    This report summarizes the scientific research carried out within the Nuclear Science Division between July 1, 1981, and September 30, 1982. Heavy-ion investigations continue to dominate the experimental and theoretical research efforts. Complementary programs in light-ion nuclear science, in nuclear data evaluation, and in the development of advanced instrumentation are also carried out. Results from Bevalac experiments employing a wide variety of heavy ion beams, along with new or upgraded detector facilities (HISS, the Plastic Ball, and the streamer chamber) are contained in this report. These relativistic experiments have shed important light on the degree of equilibration for central collisions, the time evolution of a nuclear collision, the nuclear density and compressional energy of these collisions, and strange particle production. Reaction mechanism work dominates the heavy-ion research at the 88-Inch Cyclotron and the SuperHILAC. Recent experiments have contributed to our understanding of the nature of light-particle emission in deep-inelastic collisions, of peripheral reactions, incomplete fusion, fission, and evaporation. Nuclear structure investigations at these accelerators continue to be directed toward the understanding of the behavior of nuclei at high angular momentum. Research in the area of exotic nuclei has led to the observation at the 88-Inch Cyclotron of the ..beta..-delayed proton decay of odd-odd T/sub z/ = -2 nuclides; ..beta..-delayed proton emitters in the rare earth region are being investigated at the SuperHILAC.

  17. Two-proton correlation functions in nuclear reactions

    International Nuclear Information System (INIS)

    Verde, G.

    2001-01-01

    Full text: Proton-proton correlation functions can be used to study the space-time characteristics of nuclear reactions. For very short-lived sources, the maximum value of the correlation at 20 MeV/c, due to the attractive nature of the S-wave phase shift, provides a unique measure of the size of the emitting source. For long-lived sources, the height of this maximum depends, in addition, on the life time of the source. In this talk, we investigate the common reaction scenario involving both fast dynamical as well as slower emissions from evaporation and/or secondary decays of heavy fragments. We show that the maximum at 20 MeV/c depends both on the source dimension and on the fraction of coincident proton pairs produced in the early stage of the reaction, dominated by fast dynamical preequilibrium emission. The width of the peak at 20 MeV/c, on the other hand, is uniquely correlated to the size of the source. Hence, the size of the emitting source must be extracted from the width or, even better, from the entire shape of the correlation peak, and not from the height. By numerically inverting the measured correlation function, we show that existing data determine only the shape of the fast dynamical source and that its size changes little with proton momenta, contrary to previous analyses with Gaussian sources of zero-lifetime. We further show that the well documented dramatic decrease in the correlation maximum with decreasing total proton momentum reflects directly a corresponding decrease in the fraction of contributing proton pairs from preequilibrium emissions. This provides a powerful method to decompose the proton spectrum into a fraction that originates from fast dynamical emission and a complimentary fraction that originates from slower evaporative emission or secondary decays. We discuss also the comparison of such correlations to transport theories and the generalizations of these techniques to correlations between composite particles. Such studies can

  18. Collective flow studies in central collisions between nuclei at several hundreds of MeV per nucleon

    International Nuclear Information System (INIS)

    Demoulins, M.

    1990-02-01

    The main purpose for studying collisions between heavy nuclei, in the 200-2000 MeV per nucleon energy range, is to determine the equation of state and the properties of dense and hot nuclear matter. The insensitiveness of the inclusive data to the equation of state has led experimental physicists to build large solid angle detectors capable of detecting simultaneously the tens of particles emitted in each event. Such measurements allow to estimate the impact parameter, the reaction plane on an event-by-event basis, and to calculate various global variables involving all particles emitted in each event. In this thesis, we study global variables which characterize the nuclear matter collective flow in a direction which is different from the direction of incident motion, for argon-nucleus collisions at 400 and 600 MeV by nucleon and for neon-nucleus collisions at 400 and 800 MeV by nucleon. The measurements have been performed with the DIOGENE detector installed at SATURNE. For the argon-beam experiments, two parallel plate avalanche counters have been used to locate the interaction point of each incoming ion with the target, which improves the reconstruction of the particle tracks in the DIOGENE central chamber. Double differential cross-sections, in the reaction plane and in the plane orthogonal to the reaction plane, are fitted with two-dimensional Gaussian distributions. Through this procedure, we get rid of geometrical acceptance effects. Several quantities, related to the collective flow (flow angle, aspect ratios, flow parameter), are thus extracted and corrected for the fluctuations of the estimated reaction plane. For argon-nucleus collisions at 400 MeV by nucleon, our results are in agreement with results obtained by other groups with different methods. For argon-nucleus collisions, the discrepancy between our experimental results and predictions of intranuclear cascade calculations is increasing with the mass asymmetry of the colliding system [fr

  19. Collective flow studies in central collisions between nuclei at several hundreds of MeV per nucleon

    International Nuclear Information System (INIS)

    Demoulins, M.

    1989-01-01

    The main purpose for studying collisions between heavy nuclei, in the 200-2000 MeV per nucleon energy range, is to determine the equation of state and the properties of dense and hot nuclear matter. The insensitiveness of the inclusive data to the equation of state has led experimental physicists to build large solid angle detectors capable of detecting simultaneously the tens of particles emitted in each event. Such measurements allow to estimate the impact parameter, the reaction plane on an event-by-event basis, and to calculate various global variables involving all particles emitted in each event. In this thesis, we study global variables which characterize the nuclear matter collective flow in a direction which is different from the direction of incident motion, for argon-nucleus collisions at 400 and 600 MeV by nucleon and for neon-nucleus collisions at 400 and 800 MeV by nucleon. The measurements have been performed with the DIOGENE detector installed at SATURNE. For the argon-beam experiments, two parallel plate avalanche counters have been used to locate the interaction point of each incoming ion with the target, which improves the reconstruction of the particle tracks in the DIOGENE central chamber. Double differential cross sections, in the reaction plane and in the plane orthogonal to the reaction plane, are fitted with two-dimensional Gaussian distributions. Through this procedure, we get rid of geometrical acceptance effects. Several quantities, related to the collective flow (flow angle, aspect ratios, flow parameter), are thus extracted and corrected for the fluctuations of the estimated reaction plane. For the argon-nucleus collisions at 400 MeV by nucleon, our results are in agreement with results obtained by other groups with different methods. For argon-nucleus collisions, the discrepancy between our experimental results and predictions of intranuclear cascade calculations is increasing with the mass asymmetry of the colliding system [fr

  20. Quantitative surface analysis using deuteron-induced nuclear reactions

    International Nuclear Information System (INIS)

    Afarideh, Hossein

    1991-01-01

    The nuclear reaction analysis (NRA) technique consists of looking at the energies of the reaction products which uniquely define the particular elements present in the sample and it analysis the yield/energy distribution to reveal depth profiles. A summary of the basic features of the nuclear reaction analysis technique is given, in particular emphasis is placed on quantitative light element determination using (d,p) and (d,alpha) reactions. The experimental apparatus is also described. Finally a set of (d,p) spectra for the elements Z=3 to Z=17 using 2 MeV incident deutrons is included together with example of more applications of the (d,alpha) spectra. (author)

  1. Studies of nuclear second moments for pre-equilibrium nuclear reaction theories

    International Nuclear Information System (INIS)

    Sato, K.; Yoshida, S.

    1987-01-01

    The nuclear second moments, important inputs to pre-equilibrium reaction theories, are evaluated by assuming a simple model. The positive definite nature of the second moments is examined, and the nuclear level densities are calculated using positive definite second moments. (orig.)

  2. Evidence for two different reaction mechanisms in heavy ion collisions in the GeV/nucl. region

    International Nuclear Information System (INIS)

    Baumgardt, H.G.; Friedlaender, E.; Schopper, E.

    1981-01-01

    It is the aim of this paper to show up evidence for two different types of interactions in N-N collisions which are mutually excluding each other. The complexity of N-N interactions and dissipation effects make it difficult to disentangle signatures for collective mechanisms from the observable data of the final state of the reaction. Hence rough separation into different types of collisions - central or peripheral - has often been attempted, for instance by means of the multiplity of target and/or projectile fragments. (orig.)

  3. Nuclear Reaction and Structure Databases of the National Nuclear Data Center

    International Nuclear Information System (INIS)

    Pritychenko, B.; Arcilla, R.; Herman, M. W.; Oblozinsky, P.; Rochman, D.; Sonzogni, A. A.; Tuli, J. K.; Winchell, D. F.

    2006-01-01

    The National Nuclear Data Center (NNDC) collects, evaluates, and disseminates nuclear physics data for basic research and applied nuclear technologies. In 2004, the NNDC migrated all databases into modern relational database software, installed new generation of Linux servers and developed new Java-based Web service. This nuclear database development means much faster, more flexible and more convenient service to all users in the United States. These nuclear reaction and structure database developments as well as related Web services are briefly described

  4. Studies of the hydrodynamic evolution of matter produced in fluctuations in p-barp collisions and in ultrarelativistic nuclear collisions. II. Transverse-momentum distributions

    International Nuclear Information System (INIS)

    Kataja, M.; Ruuskanen, P.V.; McLerran, L.D.; von Gersdorff, H.

    1986-01-01

    We study solutions to the hydrodynamic equations appropriate for ultrarelativistic nuclear collisions. We find that the matter produced in such collisions spends time t>30 fm/c at temperatures larger than 150 MeV. The transverse momentum of protons, kaons, and pions is computed in the central region of ultrarelativistic nuclear collisions. Assuming Bjorken's initial conditions for the hydrodynamic equations, and a bag-model equation of state, we show that the transverse-momentum distribution as a function of dN/dy does reflect properties of the equation of state. We demonstrate that such a distribution approximately scales as a function of (1/A)dN/dy. The relation between p/sub t/ and dN/dy is shown to be significantly altered under different assumptions about the equation of state. The transverse-momentum distribution of heavy hadrons is shown to be much enhanced relative to that of light pions. These distributions are little changed by differences in the assumptions about the initial transverse density and velocity profile. We are unable to fit the observed correlation between p/sub t/ and dE/dy observed in the Japanese-American Cooperative Emulsion Experiment

  5. International conference: Features of nuclear excitation states and mechanisms of nuclear reactions. 51. Meeting on nuclear spectroscopy and nuclear structure. The book of abstracts

    International Nuclear Information System (INIS)

    2001-01-01

    Results of the LI Meeting on Nuclear Spectroscopy and Nuclear Structure are presented. Properties of excited states of atomic nuclei and mechanisms of nuclear reactions are considered. Studies on the theory of nucleus and fundamental interactions pertinent to experimental study of nuclei properties and mechanisms of nuclear reactions, technique and methods of experiment, application of nuclear-physical method, are provided [ru

  6. Nuclear collisions at several tens of MeV per nucleus

    International Nuclear Information System (INIS)

    Randrup, J.

    1979-10-01

    Nuclear beams with energies of several tens of MeV per nucleon will soon be available at a number of research centers around the world. Such beams offer a tool for probing new aspects of nuclear structure and dynamics. As the energy is raised models and concepts developed for the relatively well studied lower energy domain will be pressed to their limits and are likely to grow obsolete as novel phenomena enter the scene. The theory of ordinary damped collisions is considered; the testing of such theories is one important aspect of the research with higher beam energies. Another is the search for truly novel phenomena, and some more speculative material on that aspect are given. 15 references

  7. Nuclear collisions at several tens of MeV per nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Randrup, J.

    1979-10-01

    Nuclear beams with energies of several tens of MeV per nucleon will soon be available at a number of research centers around the world. Such beams offer a tool for probing new aspects of nuclear structure and dynamics. As the energy is raised models and concepts developed for the relatively well studied lower energy domain will be pressed to their limits and are likely to grow obsolete as novel phenomena enter the scene. The theory of ordinary damped collisions is considered; the testing of such theories is one important aspect of the research with higher beam energies. Another is the search for truly novel phenomena, and some more speculative material on that aspect are given. 15 references.

  8. Reaction list for charged-particle-induced nuclear reactions: Z = 1 to Z = 98 (H to Cf), July 1973--September 1974

    International Nuclear Information System (INIS)

    McGowan, F.K.; Milner, W.T.

    1975-01-01

    This Reaction List for charged-particle-induced nuclear reactions has been prepared from the journal literature for the period from July 1973 through September 1974. Each published experimental paper is listed under the target nucleus in the nuclear reaction with a brief statement of the type of data in the paper. The nuclear reaction is denoted by A(a,b)B, where the mass of a is greater than or equal to (one nucleon mass). There is no restriction on energy. Nuclear reactions involving mesons in the outgoing channel are not included. Theoretical papers which treat directly with the analysis of nuclear reaction data and results are included in the Reaction List. The cutoff date for literature was September 30, 1974. (U.S.)

  9. Overview of Light Hydrogen-Based Low Energy Nuclear Reactions

    Science.gov (United States)

    Miley, George H.; Shrestha, Prajakti J.

    This paper reviews light water and hydrogen-based low-energy nuclear reactions (LENRs) including the different methodologies used to study these reactions and the results obtained. Reports of excess heat production, transmutation reactions, and nuclear radiation emission are cited. An aim of this review is to present a summary of the present status of light water LENR research and provide some insight into where this research is heading.

  10. The nuclear structure and low-energy reactions (NSLER) collaboration

    International Nuclear Information System (INIS)

    Dean, D J

    2006-01-01

    The long-term vision of the Nuclear Structure and Low-Energy Reactions (NSLER) collaboration is to arrive at a comprehensive and unified description of nuclei and their reactions that is grounded in the interactions between the constituent nucleons. For this purpose, we will develop a universal energy density functional for nuclei and replace current phenomenological models of nuclear structure and reactions with a well-founded microscopic theory that will deliver maximum predictive power with minimal uncertainties that are well quantified. Nuclear structure and reactions play an essential role in the science to be investigated at rare isotope facilities, and in nuclear physics applications to the Science-Based Stockpile Stewardship Program, next-generation reactors, and threat reduction. We anticipate an expansion of the computational techniques and methods we currently employ, and developments of new treatments, to take advantage of petascale architectures and demonstrate the capability of the leadership class machines to deliver new science heretofore impossible

  11. Compilation status and research topics in Hokkaido University Nuclear Reaction Data Centre

    International Nuclear Information System (INIS)

    Aikawa, M.; Furutachi, N.; Katō, K.; Ebata, S.; Ichinkhorloo, D.; Imai, S.; Sarsembayeva, A.; Zhou, B.; Otuka, N.

    2015-01-01

    Nuclear reaction data are necessary and applicable for many application fields. The nuclear reaction data must be compiled into a database for convenient availability. One such database is the EXFOR database maintained by the International Network of Nuclear Reaction Data Centres (NRDC). As a member of the NRDC, the Hokkaido University Nuclear Reaction Data Centre (JCPRG) compiles charged-particle induced reaction data and contributes about 10 percent of the EXFOR database. In this paper, we show the recent compilation status and related research topics of JCPRG. (author)

  12. Lin's theory of flux and nuclear reactions

    International Nuclear Information System (INIS)

    Ping-Wha Lin

    2002-01-01

    Mathematical development of Lin's theory of flux is presented. Based on the Theory, when a chemical reaction system is subjected to a high time rate of temperature change, it changes from equilibrium to non-equilibrium conditions. It is proved mathematically that, when a gas system is subjected to a high time rate of temperature increase, the activities of particles (molecules, atoms or nuclei, and electrons) are increased: the particles are accelerated; frequencies and amplitudes of electron and atomic vibrations in a molecule increased; average kinetic energy of the particles increased; atomic bonds are ruptured; electrons are caused to leave their orbits. If most or all of the electrons leave their orbits, the gas fluid becomes plasma, which is very active chemically. The acceleration of nuclei in the dynamic condition can lead to nuclear reactions. In the pilot plant studies conducted at Research Triangle, NC, USA, for SO 2 conversion to SO 3 by rapid heating, a 10-ft high vertically fired combustor (VFC) was used. Air containing 0.5% SO 2 is forced continuously through the VFC, where it is heated by burners for conversion of SO 2 to SO 3 . During the idle period of operation, no external heat is added to the system by turning off the burners. It is observed that, as the air passing through the VFC during the idle period of sixteen hours, the temperature of the flowing air consistently rises up rapidly from ambient temperature (90 deg F) at inlet of the VFC to an average temperature as high as 582 deg F (in the range of 840 deg F to 455 deg F) at one section of the VFC, an increase of about 500 deg F. The air flow temperature increase of such large magnitude and long duration clearly indicates that nuclear reactions are present in VFC. It is also found that the water vapour in the air stream has completely disappeared in the VFC, for no sulphuric acid formation resulting from the reaction of water and SO 3 is detected there. Presumably, the water vapour in the

  13. International Network of Nuclear Reaction Data Centres

    International Nuclear Information System (INIS)

    Otsuka, Naohiko; Dunaeva, Svetlana

    2010-11-01

    The activities of fourteen nuclear data centres are summarized, and their cooperation under the auspices of the International Atomic Energy Agency is described. Each of the centres provides coverage for different geographical zones and/or specific types of nuclear data, thus together providing a complete service for users worldwide. The International Network of Nuclear Reaction Data Centres (NRDC) was established with the objective of providing nuclear physics databases that are required for nuclear technology (encompassing energy and non-energy applications) by coordinating the collection, compilation and dissemination of nuclear data on an international scale. (author)

  14. The (n,p) reaction as a probe of nuclear structure

    International Nuclear Information System (INIS)

    Jackson, K.P.; Celler, A.

    1988-08-01

    An account is given of some results of studies of the (n,p) reaction on nuclear targets at TRIUMF. The (n,p) reaction, inducing spin flip transitions in isospin space, appears to exhibit a unique sensitivity to certain aspects of nuclear structure. The TRIUMF facility is the first to exploit the (n,p) reaction as a detailed probe of nuclear structure at energies above 65 MeV. In the (n,p) reaction Fermi transitions are absent, but there is a dramatic impact on Gamow-Teller and other collective transactions. Some nuclear transition matrix elements can be estimated on the basis of (n,p) measurements. Experiments have been carried out at TRIUMF on Li 6 , Fe 5 4, and Zr 9 0 targets. The calibration of the (n,p) reaction as a probe of the Gamow-Teller strength B + GT has been achieved for three targets. (L.L.) (45 refs., 10 figs.)

  15. Nuclear clusters as a probe for expansion flow in heavy ion reactions at (10 endash 15)A GeV

    International Nuclear Information System (INIS)

    Mattiello, R.; Mattiello, R.; Sorge, H.; Stoecker, H.; Greiner, W.

    1997-01-01

    A phase space coalescence description based on the Wigner-function method for cluster formation in relativistic nucleus-nucleus collisions is presented. The momentum distributions of nuclear clusters d, t, and He are predicted for central Au(11.6A GeV)Au and Si(14.6A GeV)Si reactions in the framework of the relativistic quantum molecular dynamics transport approach. Transverse expansion leads to a strong shoulder-arm shape and different inverse slope parameters in the transverse spectra of nuclear clusters deviating markedly from thermal distributions. A clear open-quotes bounce-off close-quote close-quote event shape is seen: The averaged transverse flow velocities in the reaction plane are for clusters larger than for protons. The cluster yields, particularly at low p t at midrapidities, and the in-plane (anti)flow of clusters and pions change if suitably strong baryon potential interactions are included. This allows one to study the transient pressure at high density via the event shape analysis of nucleons, nucleon clusters, and other hadrons. copyright 1997 The American Physical Society

  16. Study of heavy ions collision at SIS energies with the detector FOPI; Etude des collisions d'ions lourds aux energies de SIS avec le detecteur FOPI

    Energy Technology Data Exchange (ETDEWEB)

    Bastid, N

    1999-09-23

    The present work has been carried out in the framework of experiments performed with the FOPI detector at the SIS/ESR accelerator facility of GSI-Darmstadt. It is devoted to the study of central and semi-central heavy ion collisions at beam energies ranging from 100 MeV to 2 GeV per nucleon. We present first generalities on relativistic heavy ion collisions then the FOPI detector with a special attention to the FOPI Inner Wall constructed by the Clermont-Ferrand group. The main results of the FOPI collaboration obtained with light and intermediate mass fragments and kaons are presented. A systematic study of the different forms of collection motion of nuclear matter, radial flow in very central reactions, sideward flow and squeeze-out in semi-central collisions, is performed. Further exciting possibilities concerning production and propagation of strangeness at SIS energies will be offered soon with the upgrade of the FOPI detector. The FOPI data have introduced constraints on parameters of theoretical models. Important progress concerning the knowledge of the properties of nuclear matter, the dynamics of the collisions and in-medium effects have been achieved. (author)

  17. The nuclear equation of state in effective relativistic field theories and pion yields in heavy-ion collisions

    International Nuclear Information System (INIS)

    Schoenhofen, M.; Cubero, M.; Gering, M.; Sambataro, M.; Feldmeier, H.; Noerenberg, W.

    1989-06-01

    Within the framework of relativistic field theory for nucleons, deltas, scalar and vector mesons, a systematic study of the nuclear equation of state and its relation to pion yields in heavy-ion collisions is presented. Not the compressibility but the effective nucleon mass at normal nuclear density turns out to be the most sensitive parameter. Effects from vaccum fluctuations are well modelled within the mean-field no-sea approximation by self-interaction terms for the scalar meson field. Incomplete thermalization in the fireball may be the reason for the low pion yields observed in heavy-ion collisions. (orig.)

  18. Collective phenomena in relativistic heavy-ion collisions

    Science.gov (United States)

    Wang, Shan

    1998-12-01

    Collective motion in the final state of relativistic nucleus-nucleus collisions, produced by the release of compressional energy built-up during the stage of maximum density, is widely accepted as a good observable to test models and a useful tool to probe the nuclear equation of state. This dissertation presents an experimental study of nuclear collisions at the Bevalac accelerator at Lawrence Berkeley National Laboratory, with special emphasis on collective phenomena. The main detector used is a time projection chamber with more than two million pixels. Using high statistics measurements of all charged final- state fragments in Au + Au reactions at 0.25, 0.4, 0.6, 0.8, 1.0, and 1.15A GeV, we present a new method to unify the description of light fragment spectra and the three main categories of collective motion: sideward flow, squeeze-out, and transverse expansion. In this alternative representation, the speed of collective expansion is shown to be slowest in the plane of the reaction, and is modulated sinusoidally according to fragment azimuth relative to this plane. This simple yet complete characterization of squeeze-out leads to its interpretation as an in-plane retardation of collective expansion. We test momentum space power law behavior by studying the momentum-space densities of fragments up to 4He. We conclude that the simple momentum-space power law consistently describes light participant fragment production at p⊥/A/ge0.2 GeV/c over a remarkably wide range of transverse momentum, azimuth relative to the reaction plane, rapidity, multiplicity and beam energy in intermediate-energy heavy-ion collisions and in particular, the increase in sideward flow with fragment mass is well described by a momentum- space power law under these conditions. This behavior is consistent with composite fragment formation through a statistical coalescence mechanism in momentum space. Our conclusion supports the use of models without composite formation to interpret flow

  19. Multiparticle production in particle and nuclear collisions, 2

    International Nuclear Information System (INIS)

    Kanki, Takeshi; Kinoshita, Kisei; Sumiyoshi, Hiroyuki; Takagi, Fujio.

    1990-01-01

    Multiparticle dynamics is related to many branches of particle and nuclear physics. This book provides a comprehensive review which covers the whole domain of multiparticle dynamics. The review consists of five chapters. Chapter D, which is the first chapter of this volume, is titled 'Mechanism of Fragmentation' and contains six sections dealing with 'parton densities inside hadrons', 'hadron fragmentation and quark picture', 'recombination type models', 'quark fragmentation models in soft interaction', 'diquark and its fragmentation' and 'fragmentation in string models'. Chapter E 'Diffractive Production of Hadrons' discusses 'diffractive inelastic processes of composite particles', 'diffractive processes and triple-pomeron coupling', 'properties of diffractive inelastic final states', and 'nature of pomeron'. Chapter F 'Unified Descriptions' focuses on 'general chain picture', 'dual parton model', 'Monte Carlo simulations' and 'unification of hard and soft interactions'. Chapter G, titled 'Multiparticle Production in Hadron-Nucleus Collisions and Other Nuclear Processes' and contains 11 sections. Chapter H presents conclusions. (N.K.)

  20. Intensity-interferometric test of nuclear collision geometries obtained from the Boltzmann-Uehling-Uhlenbeck equation

    International Nuclear Information System (INIS)

    Gong, W.G.; Bauer, W.; Gelbke, C.K.; Carlin, N.; de Souza, R.T.; Kim, Y.D.; Lynch, W.G.; Murakami, T.; Poggi, G.; Sanderson, D.P.; Tsang, M.B.; Xu, H.M.; Pratt, S.; Fields, D.E.; Kwiatkowski, K.; Planeta, R.; Viola, V.E. Jr.; Yennello, S.J.

    1990-01-01

    Two-proton correlation functions measured for the 14 N+ 27 Al reaction at E/A=75 MeV are compared to correlation functions predicted for collision geometries obtained from numerical solutions of the Boltzmann-Uehling-Uhlenbeck (BUU) equation. The calculations are in rather good agreement with the experimental correlation function, indicating that the BUU equation gives a reasonable description of the space-time evolution of the reaction

  1. Crossed beam study of He+-O2 charge transfer reactions in the collision energy range 0.5-200 eV

    International Nuclear Information System (INIS)

    Bischof, G.; Linder, F.

    1986-01-01

    Energy spectra and angular distributions of the O + and O 2 + product ions resulting from the He + -O 2 charge transfer reaction have been measured in the collision energy range 0.5-200 eV using the crossed-beam method. The O 2 + ions represent only a minor fraction of the reaction products (0.2-0.6% over the energy range measured). In the dissociative charge transfer reaction, four main processes are identified leading to O+O + reaction products in different electronic states. Two different mechanisms can be distinguished, each being responsible for two of the observed processes: (i) a long-distance energy-resonant charge transfer process involving the c 4 Σsub(u) - (upsilon'=0) state of O 2 + and (ii) a slightly exothermic charge transfer process via the (III) 2 PIsub(u) state of O 2 + (with the exothermicity depending on the collision energy). Angle-integrated branching ratios and partial cross sections (in absolute units) have been determined. The branching ratios of the individual processes show a pronounced dependence on the collision energy. At low energies, the O + product ions are preferentially formed in the 2 P 0 and 2 D 0 excited states. The angular distributions of the O + product ions show an anisotropic behaviour indicating an orientation-dependent charge transfer probability in the He + -O 2 reaction. (orig.)

  2. Heavy-flavor production and medium properties in high-energy nuclear collisions --What next?

    NARCIS (Netherlands)

    Aarts, G.; Aichelin, J.; Allton, C.; Arnaldi, R.; Bass, S. A.; Bedda, C.; Brambilla, N.; Bratkovskaya, E.; Braun-Munzinger, P.; Bruno, G. E.; Dahms, T.; Das, S. K.; Dembinski, H.; Djordjevic, M.; Ferreiro, E. G.; Frawley, A.; Gossiaux, P. B.; Granier de Cassagnac, R.; Grelli, A.; He, Ming; Horowitz, W. A.; Innocenti, G. M.; Jo, M.; Kaczmarek, O.; Kuijer, P; Laine, M.; Lombardo, M. P.; Mischke, A.; Munhoz, M. G.; Nahrgang, M.; Nguyen, Mai; Oliveira da Silva, A. C.; Petreczky, P.; Rothkopf, A.; Schmelling, M.; Scomparin, E.; Song, Ting; Stachel, J.; Suaide, A. A P; Tolos, L.; Trzeciak, B.; Uras, A.; van Doremalen, L.; Vermunt, L.; Vigolo, S.; Xu, N.; Ye, Z.; Zanoli, H.J.C.; Zhuang, P.

    2017-01-01

    Open and hidden heavy-flavor physics in high-energy nuclear collisions are entering a new and exciting stage towards reaching a clearer understanding of the new experimental results with the possibility to link them directly to the advancement in lattice Quantum Chromo-Dynamics (QCD). Recent results

  3. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    1999-01-01

    Full text: The Department of Nuclear Reactions had a very productive year. The following reports cover three major domains of our activities: nuclear, material and atomic physics. One of the current questions in modern nuclear physics is question of the phase transitions in nuclear matter. Our physicists, the members of the ALADIN Collaboration at Gesellschaft fuer Schwerionenforschung, participated in new experiments exploring properties of highly excited nuclear matter and the phenomenon of the liquid - gas phase transition. The experiments yielded a number of important results. Details can be found in the three short reports presented in this volume. Structure of a nucleon is another important subject of nuclear science research. In the last year energy region of Δ resonance has been investigated by means of charge exchange reaction. The experiment was performed at Laboratory National Saturne in Saclay by SPESIV-π collaboration consisting of physicist from Institute of Nuclear Physics Orsay, Niels Bohr Institute Copenhagen and from our Department. The main achievement of the experiment was evidence for a Δ - hole attraction in the spin longitudinal channel. Reactions induced by radioactive ion beams such as 6 He recently attract a lot of interest. There exist some evidences that the 6 He nucleus has a two-neutron halo structure similar to that well established for 11 Li. An analysis of 6 He + 4 He scattering data reported in this volume revealed some similarities between the loosely bound 6 Li nucleus and the neutron rich 6 He. Research in material physics has focused on two basic topics: a crystallographic model of uranium dioxide, a material currently used as a nuclear fuel and transformations of defects in GaAs crystals at low temperature. The investigations have been carried out in a wide collaboration with scientists from the University of Jena, Research Center Karlsruhe and Centre de Spectrometrie Nucleaire Orsay. Some experiments have been performed at

  4. Charge separation relative to the reaction plane in Pb-Pb collisions at $\\sqrt{s_{NN}}$= 2.76 TeV

    CERN Document Server

    Abelev, Betty; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan; Aglieri Rinella, Gianluca; Agocs, Andras Gabor; Agostinelli, Andrea; Aguilar Salazar, Saul; Ahammed, Zubayer; Ahmad, Arshad; Ahmad, Nazeer; Ahn, Sang Un; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Almaraz Avina, Erick Jonathan; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshauser, Harald; Arbor, Nicolas; Arcelli, Silvia; Armesto, Nestor; Arnaldi, Roberta; Aronsson, Tomas Robert; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bailhache, Raphaelle Marie; Bala, Renu; Baldini Ferroli, Rinaldo; Baldisseri, Alberto; Baldit, Alain; Baltasar Dos Santos Pedrosa, Fernando; Ban, Jaroslav; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont-Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bergognon, Anais Annick Erica; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, F; Blanco, Francesco; Blau, Dmitry; Blume, Christoph; Bock, Nicolas; Boettger, Stefan; Bogdanov, Alexey; Boggild, Hans; Bogolyubsky, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Book, Julian; Borel, Herve; Borissov, Alexander; Bose, Suvendu Nath; Bossu, Francesco; Botje, Michiel; Boyer, Bruno Alexandre; Braidot, Ermes; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Browning, Tyler Allen; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Bugaiev, Kyrylo; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Francesco; Carena, Wisla; Carminati, Federico; Casanova Diaz, Amaya Ofelia; Castillo Castellanos, Javier Ernesto; Casula, Ester Anna Rita; Catanescu, Vasile; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Sukalyan; Chattopadhyay, Subhasis; Chawla, Isha; Cherney, Michael Gerard; Cheshkov, Cvetan; Cheynis, Brigitte; Chiavassa, Emilio; Chibante Barroso, Vasco Miguel; Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Coccetti, Fabrizio; Colamaria, Fabio; Colella, Domenico; Conesa Balbastre, Gustavo; Conesa del Valle, Zaida; Constantin, Paul; Contin, Giacomo; Contreras, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Cotallo, Manuel Enrique; Crochet, Philippe; Cruz Alaniz, Emilia; Cuautle, Eleazar; Cunqueiro, Leticia; D'Erasmo, Ginevra; Dainese, Andrea; Dalsgaard, Hans Hjersing; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Kushal; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; de Barros, Gabriel; De Caro, Annalisa; de Cataldo, Giacinto; de Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; de Rooij, Raoul Stefan; Delagrange, Hugues; Deloff, Andrzej; Demanov, Vyacheslav; Denes, Ervin; Deppman, Airton; Di Bari, Domenico; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Dominguez, Isabel; Donigus, Benjamin; Dordic, Olja; Driga, Olga; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Dutta Majumdar, AK; Dutta Majumdar, Mihir Ranjan; Elia, Domenico; Emschermann, David Philip; Engel, Heiko; Erazmus, Barbara; Erdal, Hege Austrheim; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Eyyubova, Gyulnara; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fedunov, Anatoly; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Fenton-Olsen, Bo; Feofilov, Grigory; Fernandez Tellez, Arturo; Ferretti, Alessandro; Ferretti, Roberta; Festanti, Andrea; Figiel, Jan; Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoje, Jens Joergen; Gagliardi, Martino; Gago, Alberto; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos, Jose; Garcia-Solis, Edmundo; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Geuna, Claudio; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Gianotti, Paola; Girard, Martin Robert; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez, Ramon; Gonzalez Ferreiro, Elena; Gonzalez-Trueba, Laura Helena; Gonzalez-Zamora, Pedro; Gorbunov, Sergey; Goswami, Ankita; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoriev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grinyov, Boris; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerra Gutierrez, Cesar; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Gutbrod, Hans; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harmanova, Zuzana; Harris, John William; Hartig, Matthias; Hasegan, Dumitru; Hatzifotiadou, Despoina; Hayrapetyan, Arsen; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Norbert; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hicks, Bernard; Hille, Per Thomas; Hippolyte, Boris; Horaguchi, Takuma; Hori, Yasuto; Hristov, Peter Zahariev; Hrivnacova, Ivana; Huang, Meidana; Humanic, Thomas; Hwang, Dae Sung; Ichou, Raphaelle; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Incani, Elisa; Innocenti, Gian Michele; Ippolitov, Mikhail; Irfan, Muhammad; Ivan, Cristian George; Ivanov, Andrey; Ivanov, Marian; Ivanov, Vladimir; Ivanytskyi, Oleksii; Jacobs, Peter; Janik, Malgorzata Anna; Janik, Rudolf; Jayarathna, Sandun; Jena, Satyajit; Jha, Deeptanshu Manu; Jimenez Bustamante, Raul Tonatiuh; Jirden, Lennart; Jones, Peter Graham; Jung, Hyung Taik; Jusko, Anton; Kakoyan, Vanik; Kalcher, Sebastian; Kalinak, Peter; Kalliokoski, Tuomo Esa Aukusti; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kazantsev, Andrey; Kebschull, Udo Wolfgang; Keidel, Ralf; Khan, Mohisin Mohammed; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Dong Jo; Kim, Do Won; Kim, Jonghyun; Kim, Jin Sook; Kim, Minwoo; Kim, Mimae; Kim, Se Yong; Kim, Seon Hee; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Klay, Jennifer Lynn; Klein, Jochen; Klein-Bosing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Koch, Kathrin; Kohler, Markus; Kollegger, Thorsten; Kolojvari, Anatoly; Kondratiev, Valery; Kondratyeva, Natalia; Konevskih, Artem; Korneev, Andrey; Kour, Ravjeet; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kraus, Ingrid Christine; Krawutschke, Tobias; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucheriaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paul; Kulakov, Igor; Kumar, Jitendra; Kurashvili, Podist; Kurepin, A; Kurepin, AB; Kuryakin, Alexey; Kushpil, Svetlana; Kushpil, Vasily; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Ladron de Guevara, Pedro; Lakomov, Igor; Langoy, Rune; Lara, Camilo Ernesto; Lardeux, Antoine Xavier; Lazzeroni, Cristina; Le Bornec, Yves; Lea, Ramona; Lechman, Mateusz; Lee, Graham Richard; Lee, Ki Sang; Lee, Sung Chul; Lefevre, Frederic; Lehnert, Joerg Walter; Leistam, Lars; Lemmon, Roy Crawford; Lenti, Vito; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Leoncino, Marco; Levai, Peter; Lien, Jorgen; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Liu, Lijiao; Loggins, Vera; Loginov, Vitaly; Lohn, Stefan Bernhard; Lohner, Daniel; Loizides, Constantinos; Loo, Kai Krister; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lovhoiden, Gunnar; Lu, Xianguo; Luettig, Philipp; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luquin, Lionel; Luzzi, Cinzia; Ma, Rongrong; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Mal'Kevich, Dmitry; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Ludmila; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Marin Tobon, Cesar Augusto; Markert, Christina; Martashvili, Irakli; Martinengo, Paolo; Martinez, Mario Ivan; Martinez Davalos, Arnulfo; Martinez Garcia, Gines; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Mastroserio, Annalisa; Matthews, Zoe Louise; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mercado Perez, Jorge; Meres, Michal; Miake, Yasuo; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Monteno, Marco; Montes, Esther; Moon, Taebong; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Munhoz, Marcelo; Musa, Luciano; Musso, Alfredo; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Naumov, Nikolay; Navin, Sparsh; Nayak, Tapan Kumar; Nazarenko, Sergey; Nazarov, Gleb; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Niida, Takafumi; Nikolaev, Sergey; Nikolic, Vedran; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Nilsson, Mads Stormo; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Novitzky, Norbert; Nyanin, Alexandre; Nyatha, Anitha; Nygaard, Casper; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Oleniacz, Janusz; Oppedisano, Chiara; Ortona, Giacomo; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Pachmayer, Yvonne Chiara; Pachr, Milos; Padilla, Fatima; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares, Carlos; Pal, Susanta Kumar; Palaha, Arvinder Singh; Palmeri, Armando; Papikyan, Vardanush; Pappalardo, Giuseppe; Park, Woo Jin; Passfeld, Annika; Patalakha, Dmitri Ivanovich; Paticchio, Vincenzo; Pavlinov, Alexei; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitri; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Perini, Diego; Perrino, Davide; Peryt, Wiktor Stanislaw; Pesci, Alessandro; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrov, Plamen Rumenov; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Piccotti, Anna; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Pitz, Nora; Piuz, Francois; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polichtchouk, Boris; Pop, Amalia; Porteboeuf-Houssais, Sarah; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puchagin, Sergey; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Pulvirenti, Alberto; Punin, Valery; Putis, Marian; Putschke, Jorn Henning; Quercigh, Emanuele; Qvigstad, Henrik; Rachevski, Alexandre; Rademakers, Alphonse; Raiha, Tomi Samuli; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Ramirez Reyes, Abdiel; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Rehman, Attiq Ur; Reichelt, Patrick; Reicher, Martijn; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riccati, Lodovico; Ricci, Renato Angelo; Richert, Tuva; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rodrigues Fernandes Rabacal, Bartolomeu; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roed, Ketil; Rohr, David; Rohrich, Dieter; Romita, Rosa; Ronchetti, Federico; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Rybicki, Andrzej; Sadovsky, Sergey; Safarik, Karel; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakaguchi, Hiroaki; Sakai, Shingo; Sakata, Dosatsu; Salgado, Carlos Albert; Salzwedel, Jai; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sano, Satoshi; Santo, Rainer; Santoro, Romualdo; Sarkamo, Juho Jaako; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schreiner, Steffen; Schuchmann, Simone; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Patrick Aaron; Scott, Rebecca; Segato, Gianfranco; Selyuzhenkov, Ilya; Senyukov, Serhiy; Seo, Jeewon; Serci, Sergio; Serradilla, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Sharma, Natasha; Sharma, Satish; Shigaki, Kenta; Shimomura, Maya; Shtejer, Katherin; Sibiriak, Yury; Siciliano, Melinda; Sicking, Eva; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Sogaard, Carsten; Soltz, Ron Ariel; Son, Hyungsuk; Song, Jihye; Song, Myunggeun; Soos, Csaba; Soramel, Francesca; Sputowska, Iwona; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Stefanini, Giorgio; Steinpreis, Matthew; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strabykin, Kirill; Strmen, Peter; Suaide, Alexandre Alarcon do Passo; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Sukhorukov, Mikhail; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Szanto de Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szostak, Artur Krzysztof; Szymanski, Maciej; Takahashi, Jun; Tapia Takaki, Daniel Jesus; Tarazona Martinez, Alfonso; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Thader, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony; Toia, Alberica; Torii, Hisayuki; Tosello, Flavio; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Ulrich, Jochen; Uras, Antonio; Urban, Jozef; Urciuoli, Guido Marie; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; van der Kolk, Naomi; van Leeuwen, Marco; Vande Vyvre, Pierre; Vannucci, Luigi; Vargas, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Vikhlyantsev, Oleg; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Viyogi, Yogendra; Vodopianov, Alexander; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; von Haller, Barthelemy; Vranic, Danilo; Øvrebekk, Gaute; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Vladimir; Wan, Renzhuo; Wang, Dong; Wang, Mengliang; Wang, Yifei; Wang, Yaping; Watanabe, Kengo; Weber, Michael; Wessels, Johannes; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Alexander; Wilk, Grzegorz Andrzej; Williams, Crispin; Windelband, Bernd Stefan; Xaplanteris Karampatsos, Leonidas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Shiming; Yasnopolsky, Stanislav; Yi, JunGyu; Yin, Zhongbao; Yoo, In-Kwon; Yoon, Jongik; Yu, Weilin; Yuan, Xianbao; Yushmanov, Igor; Zach, Cenek; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zaviyalov, Nikolai; Zbroszczyk, Hanna Paulina; Zelnicek, Pierre; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhou, Daicui; Zhou, Fengchu; Zhou, You; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo; Zyzak, Maksym

    2013-01-02

    Measurements of charge dependent azimuthal correlations with the ALICE detector at the LHC are reported for Pb-Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV. Two- and three-particle charge-dependent azimuthal correlations in the pseudo-rapidity range $|\\eta | < 0.8$ are presented as a function of the collision centrality, particle separation in pseudo-rapidity, and transverse momentum. A clear signal compatible with the expectation of a charge-dependent separation relative to the reaction plane is observed, which shows little or no collision energy dependence when compared to measurements at RHIC energies. Models incorporating effects of local parity violation in strong interactions fail to describe the observed collision energy dependence.

  5. Analysis of the apparent nuclear modification in peripheral Pb-Pb collisions at 5.02 TeV

    CERN Document Server

    Acharya, Shreyasi; The ALICE collaboration; Adamova, Dagmar; Adolfsson, Jonatan; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Al-turany, Mohammad; Alam, Sk Noor; Silva De Albuquerque, Danilo; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Ali, Yasir; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altenkamper, Lucas; Altsybeev, Igor; Anaam, Mustafa Naji; Andrei, Cristian; Andreou, Dimitra; Andrews, Harry Arthur; Andronic, Anton; Angeletti, Massimo; Anguelov, Venelin; Anson, Christopher Daniel; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Anwar, Rafay; Apadula, Nicole; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Ball, Markus; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barioglio, Luca; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartsch, Esther; Bastid, Nicole; Basu, Sumit; Batigne, Guillaume; Batyunya, Boris; Batzing, Paul Christoph; Bazo Alba, Jose Luis; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Espinoza Beltran, Lucina Gabriela; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhaduri, Partha Pratim; Bhasin, Anju; Bhat, Inayat Rasool; Bhatt, Himani; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Antonio; Bianchi, Livio; Bianchi, Nicola; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biro, Gabor; Biswas, Rathijit; Biswas, Saikat; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Boca, Gianluigi; Bock, Friederike; Bogdanov, Alexey; Boldizsar, Laszlo; Bombara, Marek; Bonomi, Germano; Bonora, Matthias; Borel, Herve; Borissov, Alexander; Borri, Marcello; Botta, Elena; Bourjau, Christian; Bratrud, Lars; Braun-munzinger, Peter; Bregant, Marco; Broker, Theo Alexander; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buhler, Paul; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Cabala, Jan; Caffarri, Davide; Caines, Helen Louise; Caliva, Alberto; Calvo Villar, Ernesto; Soto Camacho, Rabi; Camerini, Paolo; Capon, Aaron Allan; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Chandra, Sinjini; Chang, Beomsu; Chang, Wan; Chapeland, Sylvain; Chartier, Marielle; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chauvin, Alex; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Chowdhury, Tasnuva; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Concas, Matteo; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Costanza, Susanna; Crkovska, Jana; Crochet, Philippe; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Dani, Sanskruti; Danisch, Meike Charlotte; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Derradi De Souza, Rafael; Franz Degenhardt, Hermann; Deisting, Alexander; Deloff, Andrzej; Delsanto, Silvia; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Ruzza, Benedetto; Arteche Diaz, Raul; Dietel, Thomas; Dillenseger, Pascal; Ding, Yanchun; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Van Doremalen, Lennart Vincent; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dudi, Sandeep; Duggal, Ashpreet Kaur; Dukhishyam, Mallick; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Endress, Eric; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erhardt, Filip; Ersdal, Magnus Rentsch; Espagnon, Bruno; Eulisse, Giulio; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Fabbietti, Laura; Faggin, Mattia; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Fernandez Tellez, Arturo; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiorenza, Gabriele; Flor, Fernando; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Francisco, Audrey; Frankenfeld, Ulrich Michael; Fronze, Gabriele Gaetano; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gajdosova, Katarina; Gallio, Mauro; Duarte Galvan, Carlos; Ganoti, Paraskevi; Garabatos Cuadrado, Jose; Garcia-solis, Edmundo Javier; Garg, Kunal; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; De Leone Gay, Maria Beatriz; Germain, Marie; Ghosh, Jhuma; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Gonzalez, Victor; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Greiner, Leo Clifford; Grelli, Alessandro; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Gronefeld, Julius Maximilian; Grosa, Fabrizio; Grosse-oetringhaus, Jan Fiete; Grosso, Raffaele; Guernane, Rachid; Guerzoni, Barbara; Guittiere, Manuel; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Bautista Guzman, Irais; Haake, Rudiger; Habib, Michael Karim; Hadjidakis, Cynthia Marie; Hamagaki, Hideki; Hamar, Gergoe; Hamid, Mohammed; Hamon, Julien Charles; Hannigan, Ryan; Haque, Md Rihan; Harlenderova, Alena; Harris, John William; Harton, Austin Vincent; Hassan, Hadi; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Hellbar, Ernst; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Gonzalez Hernandez, Emma; Herrera Corral, Gerardo Antonio; Herrmann, Florian; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hills, Christopher; Hippolyte, Boris; Hohlweger, Bernhard; Horak, David; Hornung, Sebastian; Hosokawa, Ritsuya; Hota, Jyotishree; Hristov, Peter Zahariev; Huang, Chun-lu; Hughes, Charles; Huhn, Patrick; Humanic, Thomas; Hushnud, Hushnud; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Iddon, James Philip; Iga Buitron, Sergio Arturo; Ilkaev, Radiy; Inaba, Motoi; Ippolitov, Mikhail; Islam, Md Samsul; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacak, Barbara; Jacazio, Nicolo; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jadlovsky, Jan; Jaelani, Syaefudin; Jahnke, Cristiane; Jakubowska, Monika Joanna; Janik, Malgorzata Anna; Jena, Chitrasen; Jercic, Marko; Jevons, Oliver; Jimenez Bustamante, Raul Tonatiuh; Jin, Muqing; Jones, Peter Graham; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karczmarczyk, Przemyslaw; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Ketzer, Bernhard Franz; Khabanova, Zhanna; Khan, Ahsan Mehmood; Khan, Shaista; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Khatun, Anisa; Khuntia, Arvind; Kielbowicz, Miroslaw Marek; Kileng, Bjarte; Kim, Byungchul; Kim, Daehyeok; Kim, Dong Jo; Kim, Eun Joo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Jiyoung; Kim, Minjung; Kim, Se Yong; Kim, Taejun; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Varga-kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Konopka, Piotr Jan; Konyushikhin, Maxim; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Kralik, Ivan; Kravcakova, Adela; Kreis, Lukas; Krivda, Marian; Krizek, Filip; Kruger, Mario; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Jitendra; Kumar, Lokesh; Kumar, Shyam; Kundu, Sourav; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kvapil, Jakub; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lai, Yue Shi; Lakomov, Igor; Langoy, Rune; Lapidus, Kirill; Lardeux, Antoine Xavier; Larionov, Pavel; Laudi, Elisa; Lavicka, Roman; Lea, Ramona; Leardini, Lucia; Lee, Seongjoo; Lehas, Fatiha; Lehner, Sebastian; Lehrbach, Johannes; Lemmon, Roy Crawford; Leon Monzon, Ildefonso; Levai, Peter; Li, Xiaomei; Li, Xing Long; Lien, Jorgen Andre; Lietava, Roman; Lim, Bong-hwi; Lindal, Svein; Lindenstruth, Volker; Lindsay, Scott William; Lippmann, Christian; Lisa, Michael Annan; Litichevskyi, Vladyslav; Liu, Alwina; Ljunggren, Hans Martin; Llope, William; Lodato, Davide Francesco; Loginov, Vitaly; Loizides, Constantinos; Loncar, Petra; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Luhder, Jens Robert; Lunardon, Marcello; Luparello, Grazia; Lupi, Matteo; Maevskaya, Alla; Mager, Magnus; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Malik, Qasim Waheed; Malinina, Liudmila; Mal'kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martinengo, Paolo; Martinez, Jacobb Lee; Martinez Hernandez, Mario Ivan; Martinez-garcia, Gines; Martinez Pedreira, Miguel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Masson, Erwann; Mastroserio, Annalisa; Mathis, Andreas Michael; Toledo Matuoka, Paula Fernanda; Matyja, Adam Tomasz; Mayer, Christoph; Mazzilli, Marianna; Mazzoni, Alessandra Maria; Meddi, Franco; Melikyan, Yuri; Menchaca-rocha, Arturo Alejandro; Meninno, Elisa; Mercado-perez, Jorge; Meres, Michal; Soncco Meza, Carlos; Mhlanga, Sibaliso; Miake, Yasuo; Micheletti, Luca; Mieskolainen, Matti Mikael; Mihaylov, Dimitar Lubomirov; Mikhaylov, Konstantin; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Auro Prasad; Mohanty, Bedangadas; Khan, Mohammed Mohisin; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Mrnjavac, Teo; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munning, Konstantin; Arratia Munoz, Miguel Ignacio; Munzer, Robert Helmut; Murakami, Hikari; Murray, Sean; Musa, Luciano; Musinsky, Jan; Myers, Corey James; Myrcha, Julian Wojciech; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Narayan, Amrendra; Naru, Muhammad Umair; Nassirpour, Adrian Fereydon; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Rosado Navarro, Sebastian; Nayak, Kishora; Nayak, Ranjit; Nayak, Tapan Kumar; Nazarenko, Sergey; Negrao De Oliveira, Renato Aparecido; Nellen, Lukas; Nesbo, Simon Voigt; Neskovic, Gvozden; Ng, Fabian; Nicassio, Maria; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oh, Hoonjung; Ohlson, Alice Elisabeth; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Oravec, Matej; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Pachmayer, Yvonne Chiara; Pacik, Vojtech; Pagano, Davide; Paic, Guy; Palni, Prabhakar; Pan, Jinjin; Pandey, Ashutosh Kumar; Panebianco, Stefano; Papikyan, Vardanush; Pareek, Pooja; Park, Jonghan; Parkkila, Jasper Elias; Parmar, Sonia; Passfeld, Annika; Pathak, Surya Prakash; Patra, Rajendra Nath; Paul, Biswarup; Pei, Hua; Peitzmann, Thomas; Peng, Xinye; Pereira, Luis Gustavo; Pereira Da Costa, Hugo Denis Antonio; Peresunko, Dmitry Yurevich; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrovici, Mihai; Petta, Catia; Peretti Pezzi, Rafael; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Ozelin De Lima Pimentel, Lais; Pinazza, Ombretta; Pinsky, Lawrence; Pisano, Silvia; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pliquett, Fabian; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Poppenborg, Hendrik; Porteboeuf, Sarah Julie; Pozdniakov, Valeriy; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Punin, Valery; Putschke, Jorn Henning; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Ratza, Viktor; Ravasenga, Ivan; Read, Kenneth Francis; Redlich, Krzysztof; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reshetin, Andrey; Revol, Jean-pierre; Reygers, Klaus Johannes; Riabov, Viktor; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-lucian; Rode, Sudhir Pandurang; Rodriguez Cahuantzi, Mario; Roeed, Ketil; Rogalev, Roman; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Rokita, Przemyslaw Stefan; Ronchetti, Federico; Dominguez Rosas, Edgar; Roslon, Krystian; Rosnet, Philippe; Rossi, Andrea; Rotondi, Alberto; Roukoutakis, Filimon; Roy, Christelle Sophie; Roy, Pradip Kumar; Vazquez Rueda, Omar; Rui, Rinaldo; Rumyantsev, Boris; Rustamov, Anar; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Saarinen, Sampo; Sadhu, Samrangy; Sadovskiy, Sergey; Safarik, Karel; Saha, Sumit Kumar; Sahoo, Baidyanath; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandoval, Andres; Sarkar, Amal; Sarkar, Debojit; Sarkar, Nachiketa; Sarma, Pranjal; Sas, Mike Henry Petrus; Scapparone, Eugenio; Scarlassara, Fernando; Schaefer, Brennan; Scheid, Horst Sebastian; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schmidt, Marten Ole; Schmidt, Martin; Schmidt, Nicolas Vincent; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sett, Priyanka; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shahoyan, Ruben; Shaikh, Wadut; Shangaraev, Artem; Sharma, Anjali; Sharma, Ankita; Sharma, Meenakshi; Sharma, Natasha; Sheikh, Ashik Ikbal; Shigaki, Kenta; Shimomura, Maya; Shirinkin, Sergey; Shou, Qiye; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singh, Randhir; Singhal, Vikas; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Song, Jihye; Soramel, Francesca; Sorensen, Soren Pontoppidan; Sozzi, Federica; Sputowska, Iwona Anna; Stachel, Johanna; Stan, Ionel; Stankus, Paul; Stenlund, Evert Anders; Stocco, Diego; Storetvedt, Maksim Melnik; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Sumowidagdo, Suharyo; Suzuki, Ken; Swain, Sagarika; Szabo, Alexander; Szarka, Imrich; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Teyssier, Boris; Thakur, Dhananjaya; Thakur, Sanchari; Thomas, Deepa; Thoresen, Freja; Tieulent, Raphael Noel; Tikhonov, Anatoly; Timmins, Anthony Robert; Toia, Alberica; Topilskaya, Nataliya; Toppi, Marco; Rojas Torres, Solangel; Tripathy, Sushanta; Trogolo, Stefano; Trombetta, Giuseppe; Tropp, Lukas; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Trzcinski, Tomasz Piotr; Trzeciak, Barbara Antonina; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Umaka, Ejiro Naomi; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vala, Martin; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vazquez Doce, Oton; Vechernin, Vladimir; Veen, Annelies Marianne; Vercellin, Ermanno; Vergara Limon, Sergio; Vermunt, Luuk; Vernet, Renaud; Vertesi, Robert; Vickovic, Linda; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Virgili, Tiziano; Vislavicius, Vytautas; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Voscek, Dominik; Vranic, Danilo; Vrlakova, Janka; Wagner, Boris; Wang, Hongkai; Wang, Mengliang; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Wegrzynek, Adam; Weiser, Dennis Franz; Wenzel, Sandro Christian; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Willems, Guido Alexander; Williams, Crispin; Willsher, Emily; Windelband, Bernd Stefan; Witt, William Edward; Xu, Ran; Yalcin, Serpil; Yamakawa, Kosei; Yano, Satoshi; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correa Zanoli, Henrique Jose; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zhalov, Mikhail; Zhang, Xiaoming; Zhang, Yonghong; Zhang, Zuman; Zhao, Chengxin; Zherebchevskii, Vladimir; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Ya; Zichichi, Antonino; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zmeskal, Johann; Zou, Shuguang

    2018-01-01

    Charged-particle spectra at midrapidity are measured in Pb-Pb collisions at the centre-of-mass energy per nucleon-nucleon pair $\\sqrt{s_{NN}}$ = 5.02 TeV and presented in centrality classes ranging from most central (0-5%) to most peripheral (95-100%) collisions. Possible medium effects are quantified using the nuclear modification factor ($R_{AA}$) by comparing the measured spectra with those from proton-proton collisions, scaled by the number of independent nucleon-nucleon collisions obtained from a Glauber model. At large transverse momenta (8 < $p_{T}$ < 20 GeV/$c$), the average $R_{AA}$ is found to increase from about 0.15 in 0-5% central to a maximum value of about 0.8 in 75-85% peripheral collisions, beyond which it falls off strongly to below 0.2 for the most peripheral collisions. Furthermore, $R_{AA}$ initially exhibits a positive slope as a function of $p_{T}$ in the 8–20 GeV/$c$ interval, while for collisions beyond the 80% class the slope is negative. To reduce uncertainties rela...

  6. Peripheral collisions in Ar induced reactions between 27 and 44 A.MeV: study of energy dissipation by measuring the correlated neutron multiplicities

    International Nuclear Information System (INIS)

    Guerreau, D.; Doubre, H.; Galin, J.; Pouthas, J.; Jahnke, U.; Jiang, D.X.; Lott, B.; Jacquet, D.

    1988-01-01

    A 4 π detector measuring the neutron multiplicities has been used to investigate the energy dissipation during peripheral collisions in Ar induced reactions around the Fermi Energy. Besides the persistance of direct transfer reactions for the most peripheral collisions, there are strong evidences for the occurrence of quite large energy dissipation, a clear signature for the one body friction to still play a major role at these intermediate energies

  7. DEPENDENCE OF X-RAY BURST MODELS ON NUCLEAR REACTION RATES

    Energy Technology Data Exchange (ETDEWEB)

    Cyburt, R. H.; Keek, L.; Schatz, H. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Amthor, A. M. [Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837 (United States); Heger, A.; Meisel, Z.; Smith, K. [Joint Institute for Nuclear Astrophysics (JINA), Michigan State University, East Lansing, MI 48824 (United States); Johnson, E. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2016-10-20

    X-ray bursts are thermonuclear flashes on the surface of accreting neutron stars, and reliable burst models are needed to interpret observations in terms of properties of the neutron star and the binary system. We investigate the dependence of X-ray burst models on uncertainties in (p, γ ), ( α , γ ), and ( α , p) nuclear reaction rates using fully self-consistent burst models that account for the feedbacks between changes in nuclear energy generation and changes in astrophysical conditions. A two-step approach first identified sensitive nuclear reaction rates in a single-zone model with ignition conditions chosen to match calculations with a state-of-the-art 1D multi-zone model based on the Kepler stellar evolution code. All relevant reaction rates on neutron-deficient isotopes up to mass 106 were individually varied by a factor of 100 up and down. Calculations of the 84 changes in reaction rate with the highest impact were then repeated in the 1D multi-zone model. We find a number of uncertain reaction rates that affect predictions of light curves and burst ashes significantly. The results provide insights into the nuclear processes that shape observables from X-ray bursts, and guidance for future nuclear physics work to reduce nuclear uncertainties in X-ray burst models.

  8. Exploring reaction mechanisms and their competition in 58Ni+48Ca collisions at E = 25 AMeV

    Directory of Open Access Journals (Sweden)

    Francalanza L.

    2014-03-01

    Full Text Available Latest results concerning the study of central collisions in 58Ni+48Ca reactions at Elab(Ni=25 AMeV are presented. The experimental data, collected with the CHIMERA 4π device, have been analyzed in order to investigate the competition among different reaction mechanisms for central collisions in the Fermi energy domain. The method adopted to perform the centrality selection refers to the global variable “flow angle”, that is related to the event shape in momentum space, as it is determined by the eigenvectors of the experimental kinetic-energy tensor. The main features of the reaction products were explored by using different constraints on some of the relevant observables, such as mass and velocity distributions and their correlations. Much emphasis was devoted to the competition between fusion-evaporation processes with subsequent identification of a heavy residue and a prompt multifragmentation mechanism. The reaction mechanism was simulated in the framework of transport theories (dynamical stochastic BNV calculations, followed by sequential SIMON code and further comparison with dynamical calculations from transport model (QMD, CoMD are in progress. Moreover, an extension of this study taking into account for the light particles has been envisaged.

  9. Evidence for radial flow of thermal dileptons in high-energy nuclear collisions

    CERN Document Server

    Arnaldi, R; Castor, J; Chaurand, B; Cicalò, C; Colla, A; Cortese, P; Damjanovic, S; David, A; De Falco, A; Devaux, A; Ducroux, L; Enyo, H; Fargeix, J; Ferretti, A; Floris, M; Förster, A; Force, P; Guettet, N; Guichard, A; Gulkanian, H R; Heuser, J M; Keil, M; Kluberg, L; Lourenço, C; Lozano, J; Manso, F; Martins, P; Masoni, A; Neves, A; Ohnishi, H; Oppedisano, C; Parracho, P; Pillot, P; Poghosyan, T; Puddu, G; Radermacher, E; Ramalhete, P; Rosinsky, P; Scomparin, E; Seixas, J; Serci, S; Shahoyan, R; Sonderegger, P; Specht, H J; Tieulent, R; Usai, G; Veenhof, R; Wöhri, H K

    2008-01-01

    The NA60 experiment at the CERN SPS has studied low-mass dimuon production in 158 AGeV In-In collisions. An excess of pairs above the known meson decays has been reported before. We now present precision results on the associated transverse momentum spectra. The slope parameter Teff extracted from the spectra rises with dimuon mass up to the rho, followed by a sudden decline above. While the initial rise is consistent with the expectations for radial flow of a hadronic decay source, the decline signals a transition to an emission source with much smaller flow. This may well represent the first direct evidence for thermal radiation of partonic origin in nuclear collisions.

  10. Hadronic energy spectra from nuclear collisions: Effects from collective transverse flow and the phase transition to quark matter

    International Nuclear Information System (INIS)

    Heinz, U.

    1988-11-01

    I give an overview of the processes determining the shape of energy spectra of hadrons emitted in relativistic nuclear collisions, and discuss how one can extract from them information on the presence of collective transverse flow and on the transition to quark-gluon matter in such collisions. 6 refs., 3 figs

  11. New results from dissipative diabatic dynamics and nuclear elastoplasticity

    International Nuclear Information System (INIS)

    Noerenberg, W.; Technische Hochschule Darmstadt

    1986-10-01

    I present new results about dissipative diabatic dynamics and nuclear elastoplasticity, in particular on a self-consistent diabatic formulation, on first numerical calculations of dissipative diabatic dynamics in two collective degrees of freedom, on quasi-elastic recoil in central nucleus-nucleus collisions, on the diabatic hindrance of fusion reactions and on the diabatic emission of nucleons in central nucleus-nucleus collisions. (orig./HSI)

  12. Dispersion Theory of Direct Nuclear Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, I. S. [Institute Of Theoretical And Experimental Physics, Moscow, USSR (Russian Federation)

    1963-01-15

    The main difficulty of nuclear theory is that nuclei contain many (i. e. more than two) but not too many particles. Therefore, the precise equations of motion (Schrodinger equation) become practically useless, and at the same time it is impossible to apply statistical methods with confidence. The latter circumstance is graphically expressed in direct nuclear reactions. The essence of these phenomena consists in that a particle hitting the target nucleus transfers its energy and momentum either to one nuclear nucleon or to a comparatively small group of nucleons. This fact would not by itself be surprising if at the same time we did not observe a directly opposite picture corresponding to the production of a compound nucleus, i. e. the statistical distribution among all degrees of freedom of the energy transferred to the nucleus. In macroscopic physics the co-existence of. such processes is impossible since they would contradict the second law of thermodynamics. Such processes occur quite often in nuclear physics because of the inapplic- ability of the asymptotic laws of the theory of probabilities. Since statistical methods were obviously unsuited for the direct process theory, this led to the conviction that it was necessary to return to the Schrodinger equation for a system of many interacting particles. But the technique of solving such equations is still confined to perturbation theory and therefore it was the latter that was used to describe direct nuclear reactions despite the fact that the interaction between nucleons is strong and the application of perturb- ation theory to the interaction of free nucleons (to n-p or p-p scattering, for example) leads to results which strongly contradict experimental data. The results of the application of perturbation theory to direct nuclear reactions sometimes agree with experimental data and sometimes cqntradict them, but in either case they can hardly satisfy the investigator because it seems impossible to give the

  13. Dispersion Theory of Direct Nuclear Reactions

    International Nuclear Information System (INIS)

    Shapiro, I.S.

    1963-01-01

    The main difficulty of nuclear theory is that nuclei contain many (i. e. more than two) but not too many particles. Therefore, the precise equations of motion (Schrodinger equation) become practically useless, and at the same time it is impossible to apply statistical methods with confidence. The latter circumstance is graphically expressed in direct nuclear reactions. The essence of these phenomena consists in that a particle hitting the target nucleus transfers its energy and momentum either to one nuclear nucleon or to a comparatively small group of nucleons. This fact would not by itself be surprising if at the same time we did not observe a directly opposite picture corresponding to the production of a compound nucleus, i. e. the statistical distribution among all degrees of freedom of the energy transferred to the nucleus. In macroscopic physics the co-existence of. such processes is impossible since they would contradict the second law of thermodynamics. Such processes occur quite often in nuclear physics because of the inapplic- ability of the asymptotic laws of the theory of probabilities. Since statistical methods were obviously unsuited for the direct process theory, this led to the conviction that it was necessary to return to the Schrodinger equation for a system of many interacting particles. But the technique of solving such equations is still confined to perturbation theory and therefore it was the latter that was used to describe direct nuclear reactions despite the fact that the interaction between nucleons is strong and the application of perturb- ation theory to the interaction of free nucleons (to n-p or p-p scattering, for example) leads to results which strongly contradict experimental data. The results of the application of perturbation theory to direct nuclear reactions sometimes agree with experimental data and sometimes cqntradict them, but in either case they can hardly satisfy the investigator because it seems impossible to give the

  14. Centrality in Hadron-Carbon, Hadron-Lead, and Lead-Lead Reactions at 158 GeV/c

    International Nuclear Information System (INIS)

    Rybicki, A.

    2006-08-01

    A study of centrality in p + C, π + C, p + Pb, π + Pb, and Pb + Pb reactions is made. The analysis is performed by means of a simple geometrical model. The mean number of elementary collisions, , is estimated in minimum bias p + C reactions. For the specific case of the carbon nucleus, estimates on appear to depend strongly on assumed nuclear densities. Most realistic of the presented assumptions result in a value of 1.71 ± 0.05. Additional quantities, like predictions for the total inelastic cross-section in p + C reactions, or the number of participants in minimum bias C + C collisions, are given. The analysis is subsequently extended to minimum bias π + C, π + Pb, and p + Pb reactions. Estimates are given for the mean number of elementary collisions as well as for the contribution of single collisions P(1). A comparison with experimental data is made. Finally, the impact parameter dependence of p + Pb and Pb + Pb collisions is discussed. In view of future studies, various aspects of the analysis are discussed in detail; a bibliography of used references is included. (author)

  15. Specialized reactions: reactions at intermediate energies: Baryon--nucleus collisions, 150 MeV--1 GeV

    International Nuclear Information System (INIS)

    Igo, G.

    1974-01-01

    The high energy collision approximation proposed by Glauber to describe experimental data at the upper end of the intermediate range is reviewed. Some aspects of the model which limit its validity are outlined. Elastic scattering of protons from light nuclei is discussed in the framework of the Glauber model. For data in the energy region near 200 MeV, the plane wave impulse approximation (PWIA) and the distorted wave impulse approximation (DWIA) are applied. Quasielastic scattering is treated by considering (p,p') and (p,2p) reactions with light nuclei. A short discussion of the high resolution spectrometer facility at LAMPF and the SPES 1 facility at Saturne is given. (46 figures, 3 tables, 102 references) (U.S.)

  16. Microscopic description of nuclear reactions

    International Nuclear Information System (INIS)

    Gorbatov, A.M.

    1992-01-01

    The genealogical series method has been extended to the continuous spectrum of the many-body systems. New nonlinear integral equations have been formulated to perform the microscopical description of the nuclear reactions with arbitrary number of particles. The way to solve them numerically is demonstrated

  17. Superheavy nuclei and quasi-atoms produced in collisions of transuranium ions

    International Nuclear Information System (INIS)

    Zagrebaev, V.; Oganessian, Y.; Itkis, M.; Greiner, W.

    2005-01-01

    For near-barrier collisions of heavy nuclei it is very important to perform a combined (unified) analysis of all strongly coupled channels: deep-inelastic scattering, quasi-fission, fusion and regular fission. This ambitious goal has now become possible within our new approach. The standard (most important) degrees of freedom are used and a unified potential energy surface is derived determining evolution of the nuclear system in all the channels. This potential has also appropriate values of the Coulomb barriers in the entrance channel and proper values of the fission barriers in the exit one. A unified set of dynamic Langevin type equations is proposed for the simultaneous description of DI and fusion-fission processes including nucleon transfer at all reaction stages. For the first time, the whole evolution of the heavy nuclear system can be traced starting from the approaching stage and ending in DI, QF, and/or fusion-fission channels. The calculated mass, charge, energy and angular distributions of the reaction products agree well with available experimental data. Satisfactory agreement of the first calculations with experiments gives us hope not only to obtain rather accurate predictions for the probabilities of superheavy element formation in near-barrier fusion reactions but also to clarify much better than before the mechanisms of quasi-fission and fusion-fission processes. Also the determination of such fundamental characteristics of nuclear dynamics as the nuclear viscosity and the nucleon transfer rate is now possible. Low energy collisions of very heavy nuclei ( 238 U+ 238 U, 232 Th+ 250 Cf and 238 U + 248 Cm) have been studied within the proposed dynamical model. The multidimensional potential energy surfaces of such systems are rather complicated due to the shell effects and dynamic deformations, even if there is no distinct potential pocket. We found that at low near barrier collision energies these very heavy nuclei, after touching their surfaces

  18. Experimental (Network) and Evaluated Nuclear Reaction Data at NDS

    International Nuclear Information System (INIS)

    Otsuka, N.; Semkova, V.; Simakov, S.P.; Zerkin, V.

    2011-01-01

    Dr Simakov of Nuclear Data Services Unit in the Nuclear Data Section (NDS) gave a brief overview of the data compilation and evaluation activities in the nuclear data community: experimental nuclear reaction data (EXFOR, http://www-nds.iaea.org/exfor/) and evaluated nuclear reaction data (ENDF, http://www-nds.iaea.org/endf). The International Network of Nuclear Reaction Data Centres (NRDC) coordinated by NDS includes 14 Centres in 8 Countries (China, Hungary, India, Japan, Korea, Russian, Ukraine, USA) and 2 International Organizations (NEA, IAEA). It had the first meeting of four core centres (Brookhaven, Saclay, Obninsk, Vienna) in 1966 and the EXFOR was adopted as an official data exchange format. In 2000, IAEA implemented the EXFOR database as a relational multiform database and the EXFOR is a trusted, increasing and living database with 19100 experimental works (as of September 2011) and 141600 data tables. The EXFOR provides a compilation control system for selection of articles and compilation of data and the NRDC home page provides manuals, documents and codes. The nuclear data can be retrieved by the web-retrieval system or distributed on a DVD on request. The EXFOR data play a critical role in the development of evaluated nuclear reaction data. There are several major general purpose libraries: ENDF (US), CENDL (China), JEFF (EU), JENDL (Japan) and RUSFOND (Russia). In addition, there are special libraries for particular applications: EAF (European Activation File), FENDL (Fusion Evaluated Nuclear Data Library for ITER neutronics), IBANDL (Ion Beam Analysis Nuclear Data Library for surface analysis of solids), IRDF, DXS (Dosimetry, radiation damage and gas production data) and Medical portal. Dr V. Zerkin of NDS demonstrated the data retrieval from the EXFOR database and the ENDF library.

  19. Experimental (Network) and Evaluated Nuclear Reaction Data at NDS

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, N; Semkova, V; Simakov, S P; Zerkin, V [Nuclear Data Services Unit, Nuclear Data Section, IAEA, Vienna (Austria)

    2011-11-15

    Dr Simakov of Nuclear Data Services Unit in the Nuclear Data Section (NDS) gave a brief overview of the data compilation and evaluation activities in the nuclear data community: experimental nuclear reaction data (EXFOR, http://www-nds.iaea.org/exfor/) and evaluated nuclear reaction data (ENDF, http://www-nds.iaea.org/endf). The International Network of Nuclear Reaction Data Centres (NRDC) coordinated by NDS includes 14 Centres in 8 Countries (China, Hungary, India, Japan, Korea, Russian, Ukraine, USA) and 2 International Organizations (NEA, IAEA). It had the first meeting of four core centres (Brookhaven, Saclay, Obninsk, Vienna) in 1966 and the EXFOR was adopted as an official data exchange format. In 2000, IAEA implemented the EXFOR database as a relational multiform database and the EXFOR is a trusted, increasing and living database with 19100 experimental works (as of September 2011) and 141600 data tables. The EXFOR provides a compilation control system for selection of articles and compilation of data and the NRDC home page provides manuals, documents and codes. The nuclear data can be retrieved by the web-retrieval system or distributed on a DVD on request. The EXFOR data play a critical role in the development of evaluated nuclear reaction data. There are several major general purpose libraries: ENDF (US), CENDL (China), JEFF (EU), JENDL (Japan) and RUSFOND (Russia). In addition, there are special libraries for particular applications: EAF (European Activation File), FENDL (Fusion Evaluated Nuclear Data Library for ITER neutronics), IBANDL (Ion Beam Analysis Nuclear Data Library for surface analysis of solids), IRDF, DXS (Dosimetry, radiation damage and gas production data) and Medical portal. Dr V. Zerkin of NDS demonstrated the data retrieval from the EXFOR database and the ENDF library.

  20. Astrophysical Nuclear Reaction Rates in the Dense Metallic Environments

    Science.gov (United States)

    Kilic, Ali Ihsan

    2017-09-01

    Nuclear reaction rates can be enhanced by many orders of magnitude in dense and relatively cold astrophysical plasmas such as in white dwarfs, brown dwarfs, and giant planets. Similar conditions are also present in supernova explosions where the ignition conditions are vital for cosmological models. White dwarfs are compact objects that have both extremely high interior densities and very strong local magnetic fields. For the first time, a new formula has been developed to explain cross section and reaction rate quantities for light elements that includes not only the nuclear component but also the material dependence, magnetic field, and crystal structure dependency in dense metallic environments. I will present the impact of the developed formula on the cross section and reaction rates for light elements. This could have possible technological applications in energy production using nuclear fusion reactions.

  1. Theoretical studies in medium-energy nuclear and hadronic physics. [Indiana Univ. Nuclear Theory Center and Department of Physics

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, C J; Macfarlane, M H; Matsui, T; Serot, B D

    1993-01-01

    A proposal for theoretical nuclear physics research is made for the period April 1, 1993 through March 31, 1996. Research is proposed in the following areas: relativistic many-body theory of nuclei and nuclear matter, quasifree electroweak scattering and strange quarks in nuclei, dynamical effects in (e,e[prime]p) scattering at large momentum transfer, investigating the nucleon's parton sea with polarized leptoproduction, physics of ultrarelativistic nucleus[endash]nucleus collisions, QCD sum rules and hadronic properties, non-relativistic models of nuclear reactions, and spin and color correlations in a quark-exchange model of nuclear matter. Highlights of recent research, vitae of principal investigators, and lists of publications and invited talks are also given. Recent research dealt primarily with medium-energy nuclear physics, relativistic theories of nuclei and the nuclear response, the nuclear equation of state under extreme conditions, the dynamics of the quark[endash]gluon plasma in relativistic heavy-ion collisions, and theories of the nucleon[endash]nucleon force.

  2. Third international workshop on compound nuclear reactions and related topics. Book of abstracts

    International Nuclear Information System (INIS)

    2012-09-01

    The conference was divided into the following sections: Fission; Surrogate reactions; Heavy ion reactions; Neutron-induced reactions; Gamma-ray strength functions; Nuclear astrophysics; Superheavy nuclei; Nuclear level density; Various nuclear reactions; Optical model simulations; and Pre-equilibrium. The publication contains 82 abstracts. (P.A.)

  3. Nuclear research with heavy ions

    International Nuclear Information System (INIS)

    Kaplan, M.

    1991-08-01

    This report discusses the following topics: Asymmetric fission of 149 Tb* from the finite-range, rotating-liquid-drop model: mean total kinetic energies for binary fragmentation; charged-particle evaporation from hot composite nuclei: evidence over a broad Z range for distortions from cold nuclear profiles; the role of reversed kinematics and double kinematic solutions in nuclear reactions studies; production of intermediate-mass-fragments in the reaction 98 Mo + 51 V at an excitation energy E* = 224-MeV; emission of light charged particles in the reaction 344-MeV 28 Si + 121 Sb; continued developments of the statistical evaporation code LILITA N90; and planning for heavy-ion-collision studies at very high energies: the STAR collaboration at RHIC

  4. Bimodality: A Sign of Critical Behavior in Nuclear Reactions

    International Nuclear Information System (INIS)

    Le Fevre, A.; Aichelin, J.

    2008-01-01

    The recently discovered coexistence of multifragmentation and residue production for the same total transverse energy of light charged particles, which has been dubbed bimodality like it has been introduced in the framework of equilibrium thermodynamics, can be well reproduced in numerical simulations of heavy ion reactions. A detailed analysis shows that fluctuations (introduced by elementary nucleon-nucleon collisions) determine which of the exit states is realized. Thus, we can identify bifurcation in heavy ion reactions as a critical phenomenon. Also the scaling of the coexistence region with beam energy is well reproduced in these results from the quantum molecular dynamics simulation program

  5. Charge exchange and ionization in atom-multiply-charged ion collisions

    International Nuclear Information System (INIS)

    Presnyakov, L.P.; Uskov, D.B.

    1988-01-01

    This study investigates one-electron transitions to the continuous and discrete spectra induced by a collision of atom A and multiply-charged ion B +Z with nuclear charge Z > 3. An analytical method is developed the charge-exchange reaction; this method is a generalization of the decay model and the approximation of nonadiabatic coupling of two states that are used as limiting cases in the proposed approach

  6. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2004-01-01

    Full text: In spite of reduced personnel the number of papers published and in press exceeded fifty, almost ten more than a year ago. Another good sign is the growing number of PhD students. The following short reports cover the three major domains of our scientific activities: nuclear, material and atomic physics. Nuclear physics: The structure of light nuclei was investigated, and studies of nuclear reactions induced by heavy ions were performed including experiments at the Heavy Ion Laboratory of Warsaw University. The experiments were carried out in collaboration with scientists from the Institute of Nuclear Research from Kiev, Ukraine. Proton induced reactions on zirconium were investigated theoretically by means of a multistep-direct model extended for the unbound particle - hole states. Good agreement with the experimental data was achieved. Isospin effects in multifragmentation of relativistic heavy ions were studied by the ALADIN Collaboration. Elements of a new generation detector PANDA were tested experimentally using a proton beam provided by the C-30 compact cyclotron at Swierk. Evidence of a narrow baryon state was found in a quasi - real photoproduction on the deuterium target by the HERMES Collaboration. Atomic physics: Ionisation of selected heavy elements by sulphur ions was investigated in collaboration with the Swietokrzyska Academy, Kielce. Materials research: Hydrogen release from ultrahigh molecular weight polythene was investigated by means of an α - particle beam from the Van de Graaff accelerator of our Department. Last but not least, many of our colleagues have been involved in education. Lectures on nuclear physics, accelerators, detectors used in nuclear research as well as nuclear methods applied in solid state studies for students from many high schools of Warsaw and for students of Warsaw University were given by Dr. Andrzej Korman and Dr. Lech Nowicki. Also, our Department made a significant contribution to the 7 th Science

  7. Nuclear de-excitation processes following medium energy heavy ion collisions

    International Nuclear Information System (INIS)

    Blann, M.

    1986-09-01

    As heavy ion reaction studies have progressed from beam energies below 10 MeV/nucleon to higher energies, many non-equilibrium reaction phenomena have been observed. Among these are nucleon emission with velocities in excess of the beam velocity, incomplete momentum transfer to evaporation residue and fission-like fragments, γ-rays with energies in excess of 100 MeV, and π 0 production when beam energies are below the threshold for production by the nucleon-nucleon collision mechanism. Additionally, prefission neutrons have been observed in excess of numbers expected from equilibrium models. A few of the approaches which have been applied to these phenomena are as follows: Intranuclear cascade: two body collisions are assumed to mediate the equilibration. The geometry and momentum space is followed semiclassically. The approach has many successes though it may suffer in a few applications is not following holes; TDHF considers one body processes only; in the energy regime of interest, two body processes are important so that this may not be a viable approach; Boltzmann-Uehling-Uhlenbeck or Vlasov-Uehling-Uhlenbeck (BUU/VUU) equations combine both one body and two body dynamics. The spatial and momentum evolution of the reactions are followed in a mean field. These should be the Cadillacs of the models. They are computationally tedious, and sometimes significant approximations are made in order to achieve computational tract ability; models of collective deceleration. A very simple model approach is discussed to interpret these phenomena, the Boltzmann master equation (BME). The hybrid model was the first to be applied to the question of heavy ion precompound decay, and the BME second. 26 refs., 5 figs., 2 tabs

  8. Nuclear physics studies with medium energy probes. Progress report and renewal proposal

    International Nuclear Information System (INIS)

    Seth, K.K.

    1986-01-01

    Research is concerned with nuclear reactions, nuclear structure, pion production in elementary collisions, symmetry tests, and searches for dibaryon structures. Increasing emphasis is being placed on fundamental problems relating to quantum chromodynamics. A list of publications is provided. 43 refs., 12 figs

  9. NATO Advanced Study Institute on Topics in Atomic and Nuclear Collisions

    CERN Document Server

    Rémaud, B; Zoran, V

    1994-01-01

    The ASI 'Topics in Atomic and Nuclear Collisions' was organized in Predeal from August 31 to September 11. It brought together people with a broad interest in Atomic and Nuclear Physics from several research institutes and universities in Ro­ mania and 16 other countries. The school continues a tradition that started on a small scale back in 1968, fo­ cussing mainly on current problems in nuclear physics. Though the organizing of this edition started very late and in very uncertain economic and financial conditions, it turned out to be the largest meeting of this type ever organized in Romania, both in topics and participation. There were many applicants for participation and grants, considerably more than could be handled. The selection made by the local organizing committee was based on the following criteria: a proper balance of atomic and nuclear physicists, a broad representation of people from Research Institutes and Universities, a balanced par­ ticipat!on with respect to age, sex, nationali...

  10. Nuclear Physics Laboratory annual report, University of Washington April 1992

    International Nuclear Information System (INIS)

    1992-01-01

    This report contains short discusses on topics in the following areas: astrophysics; giant resonances and photonuclear reactions; nucleus-nucleus reactions; fundamental symmetries; accelerator mass spectrometry; medium energy nuclear physics; ultra-relativistic heavy ion collisions; cluster fusion; instrumentation; van de graaff accelerators and ion sources; and computer data acquisition systems

  11. Testing collinear factorization and nuclear parton distributions with pA collisions at the LHC

    CERN Document Server

    Quiroga-Arias, Paloma; Wiedemann, Urs Achim

    2011-01-01

    Global perturbative QCD analyses, based on large data sets from electron-proton and hadron collider experiments, provide tight constraints on the parton distribution function (PDF) in the proton. The extension of these analyses to nuclear parton distributions (nPDF) has attracted much interest in recent years. nPDFs are needed as benchmarks for the characterization of hot QCD matter in nucleus-nucleus collisions, and attract further interest since they may show novel signatures of non- linear density-dependent QCD evolution. However, it is not known from first principles whether the factorization of long-range phenomena into process-independent parton distribution, which underlies global PDF extractions for the proton, extends to nuclear effects. As a consequence, assessing the reliability of nPDFs for benchmark calculations goes beyond testing the numerical accuracy of their extraction and requires phenomenological tests of the factorization assumption. Here we argue that a proton-nucleus collision program a...

  12. Low energy nuclear reaction polyplasmon postulate

    Energy Technology Data Exchange (ETDEWEB)

    Russell, John L. [201 Heritage Drive, Apt. 208, Canton, GA 30093 (United States)], E-mail: RUSSELLJL@aol.com

    2008-11-15

    An explanation is proposed for the nuclear reactions that occur in the electrolysis class of LENR processes. The proposed explanation postulates that a proton, or deuteron, dissolved in the hydrogen bearing metal cathode, absorbs its associated atomic electron to become a short lived state of the neutron with the resulting neutrino in a singular wave function centered on the neutron. The energy required to initiate this endothermic reaction is supplied either by the ion current during electrolysis type experiments, or by ion bombardment in plasma type experiments. It is the energy of this bombardment of the cathode with heavy ions that creates a coherent polyplasmon field within crystalline metallic grains that are present in the metal cathode of typical active electrolysis cells. The LENR process consists of a second order reaction mediated by a coherent plasmon field excited in the conduction electrons in a hydrogen bearing metal that is in the form of crystalline grains of the order of a few microns in dimension. The coherent plasmon field in each grain is called a polyplasmon. The metallic grains typically form during solidification of a metal, the impurities being forced to the grain surfaces. The resulting grain thus forms a resonant structure that can be filled with a number of coherent plasmons, i.e., a polyplasmon. Energy from the polyplasmon is coupled to the nucleus via electron capture by hydrogen. Because the neutrino has mass, its wave function has a second class of solutions. This description can take the form of a short lived pairing with the neutron that results from electron capture by the hydrogen nucleus. This short-lived compound particle is named the 'dion' and in the case of deuterium results in a 'dineutron'. Because the dion and dineutron are formed with essentially thermal kinetic energy, they can capture in nearby nuclei, either in hydrogen or in the host metal. Most of the resulting exothermic nuclear energy is

  13. Low energy nuclear reaction polyplasmon postulate

    International Nuclear Information System (INIS)

    Russell, John L.

    2008-01-01

    An explanation is proposed for the nuclear reactions that occur in the electrolysis class of LENR processes. The proposed explanation postulates that a proton, or deuteron, dissolved in the hydrogen bearing metal cathode, absorbs its associated atomic electron to become a short lived state of the neutron with the resulting neutrino in a singular wave function centered on the neutron. The energy required to initiate this endothermic reaction is supplied either by the ion current during electrolysis type experiments, or by ion bombardment in plasma type experiments. It is the energy of this bombardment of the cathode with heavy ions that creates a coherent polyplasmon field within crystalline metallic grains that are present in the metal cathode of typical active electrolysis cells. The LENR process consists of a second order reaction mediated by a coherent plasmon field excited in the conduction electrons in a hydrogen bearing metal that is in the form of crystalline grains of the order of a few microns in dimension. The coherent plasmon field in each grain is called a polyplasmon. The metallic grains typically form during solidification of a metal, the impurities being forced to the grain surfaces. The resulting grain thus forms a resonant structure that can be filled with a number of coherent plasmons, i.e., a polyplasmon. Energy from the polyplasmon is coupled to the nucleus via electron capture by hydrogen. Because the neutrino has mass, its wave function has a second class of solutions. This description can take the form of a short lived pairing with the neutron that results from electron capture by the hydrogen nucleus. This short-lived compound particle is named the 'dion' and in the case of deuterium results in a 'dineutron'. Because the dion and dineutron are formed with essentially thermal kinetic energy, they can capture in nearby nuclei, either in hydrogen or in the host metal. Most of the resulting exothermic nuclear energy is absorbed in the plasmon

  14. Production of hypernuclei in peripheral collisions of relativistic ions

    Energy Technology Data Exchange (ETDEWEB)

    Botvina, A.S., E-mail: a.botvina@gsi.de [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); Institute for Nuclear Research, Russian Academy of Science, 117312 Moscow (Russian Federation); Gudima, K.K. [Institute of Applied Physics, Academy of Sciences of Moldova, MD-2028 Kishinev (Moldova, Republic of); Steinheimer, J. [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); Mishustin, I.N. [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); Kurchatov Institute, Russian Research Center, 123182 Moscow (Russian Federation); Pochodzalla, J.; Sanchez Lorente, A. [The Helmholtz Institute Mainz (HIM), Johann-Joachim-Becher-Weg 36, 55099 Mainz (Germany); Bleicher, M. [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); Stoecker, H. [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); GSI - Helmholtzzentrum fuer Schwerionenforschung GmbH, 62491 Darmstadt (Germany)

    2012-05-01

    Formation of hypernuclei in peripheral collisions of relativistic light and heavy ions is studied theoretically within the transport and statistical approaches. New mechanisms for the formation of strange nuclear systems via capture of hyperons by slightly excited spectator matter and their subsequent disintegration are investigated. These processes lead to production of specific and exotic hypernuclei, which may not be accessible in other reactions. Similar mechanisms processing via absorption of strange particles by nuclei can take place in reactions initiated by electrons, antiprotons and other hadrons. It is demonstrated that our approach is consistent with experimental data.

  15. Production of hypernuclei in peripheral collisions of relativistic ions

    International Nuclear Information System (INIS)

    Botvina, A.S.; Gudima, K.K.; Steinheimer, J.; Mishustin, I.N.; Pochodzalla, J.; Sanchez Lorente, A.; Bleicher, M.; Stoecker, H.

    2012-01-01

    Formation of hypernuclei in peripheral collisions of relativistic light and heavy ions is studied theoretically within the transport and statistical approaches. New mechanisms for the formation of strange nuclear systems via capture of hyperons by slightly excited spectator matter and their subsequent disintegration are investigated. These processes lead to production of specific and exotic hypernuclei, which may not be accessible in other reactions. Similar mechanisms processing via absorption of strange particles by nuclei can take place in reactions initiated by electrons, antiprotons and other hadrons. It is demonstrated that our approach is consistent with experimental data.

  16. The role of nuclear reaction theory and data in nuclear energy and safety applications

    International Nuclear Information System (INIS)

    Schmidt, J.J.

    1993-01-01

    The nuclear data requirements for nuclear fission reactor design and safety computations are so large that they cannot be satisfied by experimental measurements alone. Nuclear reaction theories and models have recently been developed and refined to the extent, that, with suitable parametrisation and fitting to accurately known experimental data, they can be used for filling gaps in the available experimental nuclear data base as well as for bulk computations of nuclear reaction, e.g. activation cross sections. The concurrent rapid development of ever more powerful mainframe and personal computers has stimulated the development of comprehensive nuclear model computer codes. A representative selection of such codes will be presented in the lectures and computer exercises of this Workshop. In order to fulfill nuclear data requirements of the nineties and, at the same time, develop improved tools for nuclear physics teaching at developing country universities it will be required and a major future task of the IAEA nuclear data programme to develop computer files of ''best'' sets of nuclear parameters for standardised input to nuclear model computations of nuclear data. Nuclear scientists from developing countries can make substantial contributions to this project. (author). 25 refs

  17. Nuclear reactions an introduction

    CERN Document Server

    Paetz gen. Schieck, Hans

    2014-01-01

    Nuclei and nuclear reactions offer a unique setting for investigating three (and in some cases even all four) of the fundamental forces in nature. Nuclei have been shown – mainly by performing scattering experiments with electrons, muons, and neutrinos – to be extended objects with complex internal structures: constituent quarks; gluons, whose exchange binds the quarks together; sea-quarks, the ubiquitous virtual quark-antiquark pairs and, last but not least, clouds of virtual mesons, surrounding an inner nuclear region, their exchange being the source of the nucleon-nucleon interaction.   The interplay between the (mostly attractive) hadronic nucleon-nucleon interaction and the repulsive Coulomb force is responsible for the existence of nuclei; their degree of stability, expressed in the details and limits of the chart of nuclides; their rich structure and the variety of their interactions. Despite the impressive successes of the classical nuclear models and of ab-initio approaches, there is clearly no ...

  18. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2000-01-01

    Full text: During last year the physicists of the Department of Nuclear Reactions were involved in many experiments and projects: -Low energy nuclear reactions: For the first time a heavy ion beam from the Warsaw Cyclotron C-200 was used to investigate elastic and inelastic scattering of 12 C ions from 12 C target. The experiment is a part of a long range programme devoted to study the energy dependence of the nucleus-nucleus interactions. -Multifragmentation of relativistic heavy ions: Multifragmentation reactions induced by 12 C on different heavy targets and at different energies were studied in experiments performed at Gesellschaft fuer Schwerionenforschung by the ALADIN Collaboration. These asymmetric systems were investigated in order to study the interplay between preequilibrium and equilibrium phenomena in the nuclear liquid - gas phase transition. -The structure of nucleons: A novel, two-structure description of the Roper resonance was proposed on the basis of the α-p scattering data reanalysed by means of a T-matrix formalism. -Atomic physics: Emission of the X-rays by fast heavy ions (S, Ti, Fe) as they traverse the matter (thin carbon or other light element foil) was investigated in a series of experiments performed at University of Erlangen. It was demonstrated, that the characteristic K α X-rays emitted by a heavy ion can serve as a tool for Z-value control of the ion. -Material research: Semiconductor heterostructures were investigated by means of Rutherford Back Scattering and Channeling methods using the 2 MeV α particles from the Van de Graaff accelerator ''Lech'' at the Department. The following reports present the results and major successes which were achieved in 1999. (author)

  19. Central Au on Au collisions

    Energy Technology Data Exchange (ETDEWEB)

    Alard, J.P.; Amouroux, V. [Labo de Phys. Corp., IN2P3-CRNS, Univ. Blaise Pascal, Clermont-Fd. (France); Basrak, Z. [Rudjer Boskovic Institute, Zagreb (Croatia)] [and others; FOPI-Collaboration

    1995-02-06

    In nucleus-nucleus collisions the initial relative kinetic energy of target and projectile is available for internal excitation of the interacting system; it is however still not well established to what extent local equilibrium and thermalisation occur. Local equilibrium is of interest to derive, within the formalism of transport equations and of the equation of state, (EOS), general properties of compressed and excited nuclear matter. Such approach describes in relatively simple terms the complex many body interactions occuring within extended baryonic and hadronic (or quark) matter. For a basic microscopic understanding it is highly desirable to investigate the elementary in-medium interactions in relation to the free elementary processes. Excitation function measurements of central collisions between the heaviest available nuclei (like Au on Au), supply the best ground for such studies: the highest degree of thermalisation and compression is expected for such reactions. The consideration presented here of energy thermalisation and of an expanding system clusterizing at freeze-out in a situation close to the liquid gas phase transition can be of interest to astrophysics as well as to the quark gluon plasma deconfinement studied in nucleus-nucleus collisions at the higher energy regime of CERN and Brookhaven. (orig.).

  20. Shannon information entropy in heavy-ion collisions

    Science.gov (United States)

    Ma, Chun-Wang; Ma, Yu-Gang

    2018-03-01

    The general idea of information entropy provided by C.E. Shannon "hangs over everything we do" and can be applied to a great variety of problems once the connection between a distribution and the quantities of interest is found. The Shannon information entropy essentially quantify the information of a quantity with its specific distribution, for which the information entropy based methods have been deeply developed in many scientific areas including physics. The dynamical properties of heavy-ion collisions (HICs) process make it difficult and complex to study the nuclear matter and its evolution, for which Shannon information entropy theory can provide new methods and observables to understand the physical phenomena both theoretically and experimentally. To better understand the processes of HICs, the main characteristics of typical models, including the quantum molecular dynamics models, thermodynamics models, and statistical models, etc., are briefly introduced. The typical applications of Shannon information theory in HICs are collected, which cover the chaotic behavior in branching process of hadron collisions, the liquid-gas phase transition in HICs, and the isobaric difference scaling phenomenon for intermediate mass fragments produced in HICs of neutron-rich systems. Even though the present applications in heavy-ion collision physics are still relatively simple, it would shed light on key questions we are seeking for. It is suggested to further develop the information entropy methods in nuclear reactions models, as well as to develop new analysis methods to study the properties of nuclear matters in HICs, especially the evolution of dynamics system.

  1. Nucleus-Nucleus Collision as Superposition of Nucleon-Nucleus Collisions

    International Nuclear Information System (INIS)

    Orlova, G.I.; Adamovich, M.I.; Aggarwal, M.M.; Alexandrov, Y.A.; Andreeva, N.P.; Badyal, S.K.; Basova, E.S.; Bhalla, K.B.; Bhasin, A.; Bhatia, V.S.; Bradnova, V.; Bubnov, V.I.; Cai, X.; Chasnikov, I.Y.; Chen, G.M.; Chernova, L.P.; Chernyavsky, M.M.; Dhamija, S.; Chenawi, K.El; Felea, D.; Feng, S.Q.; Gaitinov, A.S.; Ganssauge, E.R.; Garpman, S.; Gerassimov, S.G.; Gheata, A.; Gheata, M.; Grote, J.; Gulamov, K.G.; Gupta, S.K.; Gupta, V.K.; Henjes, U.; Jakobsson, B.; Kanygina, E.K.; Karabova, M.; Kharlamov, S.P.; Kovalenko, A.D.; Krasnov, S.A.; Kumar, V.; Larionova, V.G.; Li, Y.X.; Liu, L.S.; Lokanathan, S.; Lord, J.J.; Lukicheva, N.S.; Lu, Y.; Luo, S.B.; Mangotra, L.K.; Manhas, I.; Mittra, I.S.; Musaeva, A.K.; Nasyrov, S.Z.; Navotny, V.S.; Nystrand, J.; Otterlund, I.; Peresadko, N.G.; Qian, W.Y.; Qin, Y.M.; Raniwala, R.; Rao, N.K.; Roeper, M.; Rusakova, V.V.; Saidkhanov, N.; Salmanova, N.A.; Seitimbetov, A.M.; Sethi, R.; Singh, B.; Skelding, D.; Soderstrem, K.; Stenlund, E.; Svechnikova, L.N.; Svensson, T.; Tawfik, A.M.; Tothova, M.; Tretyakova, M.I.; Trofimova, T.P.; Tuleeva, U.I.; Vashisht, Vani; Vokal, S.; Vrlakova, J.; Wang, H.Q.; Wang, X.R.; Weng, Z.Q.; Wilkes, R.J.; Yang, C.B.; Yin, Z.B.; Yu, L.Z.; Zhang, D.H.; Zheng, P.Y.; Zhokhova, S.I.; Zhou, D.C.

    1999-01-01

    Angular distributions of charged particles produced in 16 O and 32 S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b NA , that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus

  2. Nucleus-Nucleus Collision as Superposition of Nucleon-Nucleus Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Orlova, G I; Adamovich, M I; Aggarwal, M M; Alexandrov, Y A; Andreeva, N P; Badyal, S K; Basova, E S; Bhalla, K B; Bhasin, A; Bhatia, V S; Bradnova, V; Bubnov, V I; Cai, X; Chasnikov, I Y; Chen, G M; Chernova, L P; Chernyavsky, M M; Dhamija, S; Chenawi, K El; Felea, D; Feng, S Q; Gaitinov, A S; Ganssauge, E R; Garpman, S; Gerassimov, S G; Gheata, A; Gheata, M; Grote, J; Gulamov, K G; Gupta, S K; Gupta, V K; Henjes, U; Jakobsson, B; Kanygina, E K; Karabova, M; Kharlamov, S P; Kovalenko, A D; Krasnov, S A; Kumar, V; Larionova, V G; Li, Y X; Liu, L S; Lokanathan, S; Lord, J J; Lukicheva, N S; Lu, Y; Luo, S B; Mangotra, L K; Manhas, I; Mittra, I S; Musaeva, A K; Nasyrov, S Z; Navotny, V S; Nystrand, J; Otterlund, I; Peresadko, N G; Qian, W Y; Qin, Y M; Raniwala, R; Rao, N K; Roeper, M; Rusakova, V V; Saidkhanov, N; Salmanova, N A; Seitimbetov, A M; Sethi, R; Singh, B; Skelding, D; Soderstrem, K; Stenlund, E; Svechnikova, L N; Svensson, T; Tawfik, A M; Tothova, M; Tretyakova, M I; Trofimova, T P; Tuleeva, U I; Vashisht, Vani; Vokal, S; Vrlakova, J; Wang, H Q; Wang, X R; Weng, Z Q; Wilkes, R J; Yang, C B; Yin, Z B; Yu, L Z; Zhang, D H; Zheng, P Y; Zhokhova, S I; Zhou, D C

    1999-03-01

    Angular distributions of charged particles produced in {sup 16}O and {sup 32}S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b{sub NA}, that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus.

  3. Nucleus-nucleus collision as superposition of nucleon-nucleus collisions

    International Nuclear Information System (INIS)

    Orlova, G.I.; Adamovich, M.I.; Aggarwal, M.M.

    1999-01-01

    Angular distributions of charged particles produced in 16 O and 32 S collisions with nuclear track emulsion were studied at momenta 4.5 and 200 A GeV/c. Comparison with the angular distributions of charged particles produced in proton-nucleus collisions at the same momentum allows to draw the conclusion, that the angular distributions in nucleus-nucleus collisions can be seen as superposition of the angular distributions in nucleon-nucleus collisions taken at the same impact parameter b NA , that is mean impact parameter between the participating projectile nucleons and the center of the target nucleus. (orig.)

  4. Aerosol simulation including chemical and nuclear reactions

    International Nuclear Information System (INIS)

    Marwil, E.S.; Lemmon, E.C.

    1985-01-01

    The numerical simulation of aerosol transport, including the effects of chemical and nuclear reactions presents a challenging dynamic accounting problem. Particles of different sizes agglomerate and settle out due to various mechanisms, such as diffusion, diffusiophoresis, thermophoresis, gravitational settling, turbulent acceleration, and centrifugal acceleration. Particles also change size, due to the condensation and evaporation of materials on the particle. Heterogeneous chemical reactions occur at the interface between a particle and the suspending medium, or a surface and the gas in the aerosol. Homogeneous chemical reactions occur within the aersol suspending medium, within a particle, and on a surface. These reactions may include a phase change. Nuclear reactions occur in all locations. These spontaneous transmutations from one element form to another occur at greatly varying rates and may result in phase or chemical changes which complicate the accounting process. This paper presents an approach for inclusion of these effects on the transport of aerosols. The accounting system is very complex and results in a large set of stiff ordinary differential equations (ODEs). The techniques for numerical solution of these ODEs require special attention to achieve their solution in an efficient and affordable manner. 4 refs

  5. HMI Section of Nuclear and Radiation Physics - annual report 1987

    International Nuclear Information System (INIS)

    1988-01-01

    This annual report contains extended abstracts of the scientific work performed at the named institute together with a list of publications and talks. The scientific work is concerned with the theory of nuclear and atomic processes with heavy ions, the experimental study of heavy ion reactions, nuclear structure studies, nuclear solid-state physics, atomic collisions, and the operation of VICKSI. (HSI)

  6. Nuclear Physics Laboratory annual report, University of Washington April 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    This report contains short discusses on topics in the following areas: astrophysics; giant resonances and photonuclear reactions; nucleus-nucleus reactions; fundamental symmetries; accelerator mass spectrometry; medium energy nuclear physics; ultra-relativistic heavy ion collisions; cluster fusion; instrumentation; van de graaff accelerators and ion sources; and computer data acquisition systems. (LSP)

  7. Nuclear Physics Laboratory annual report, University of Washington April 1992

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, John G.; Ramirez, Maria G.

    1992-01-01

    This report contains short discusses on topics in the following areas: astrophysics; giant resonances and photonuclear reactions; nucleus-nucleus reactions; fundamental symmetries; accelerator mass spectrometry; medium energy nuclear physics; ultra-relativistic heavy ion collisions; cluster fusion; instrumentation; van de graaff accelerators and ion sources; and computer data acquisition systems. (LSP)

  8. Isospin splitting of nucleon effective mass and symmetry energy in isotopic nuclear reactions

    Science.gov (United States)

    Guo, Ya-Fei; Chen, Peng-Hui; Niu, Fei; Zhang, Hong-Fei; Jin, Gen-Ming; Feng, Zhao-Qing

    2017-10-01

    Within an isospin and momentum dependent transport model, the dynamics of isospin particles (nucleons and light clusters) in Fermi-energy heavy-ion collisions are investigated for constraining the isospin splitting of nucleon effective mass and the symmetry energy at subsaturation densities. The impacts of the isoscalar and isovector parts of the momentum dependent interaction on the emissions of isospin particles are explored, i.e., the mass splittings of and (). The single and double neutron to proton ratios of free nucleons and light particles are thoroughly investigated in the isotopic nuclear reactions of 112Sn+112Sn and 124Sn+124Sn at incident energies of 50 and 120 MeV/nucleon, respectively. It is found that both the effective mass splitting and symmetry energy impact the kinetic energy spectra of the single ratios, in particular at the high energy tail (larger than 20 MeV). The isospin splitting of nucleon effective mass slightly impacts the double ratio spectra at the energy of 50 MeV/nucleon. A soft symmetry energy with stiffness coefficient of γ s=0.5 is constrained from the experimental data with the Fermi-energy heavy-ion collisions. Supported by Major State Basic Research Development Program in China (2014CB845405, 2015CB856903), National Natural Science Foundation of China (11722546, 11675226, 11675066, U1332207) and Youth Innovation Promotion Association of Chinese Academy of Sciences

  9. Pion source parameters in heavy ion collisions

    International Nuclear Information System (INIS)

    Crowe, K.M.; Bistirlich, J.A.; Bossingham, R.R.

    1984-12-01

    Following the early work of Goldhaber, Lee, and Pais, many experiments have used the momentum correlations between identical bosons to determine the space-time extent of the pion source for various reactions between elementary hadrons. This technique, known as intensity interferometry, has recently been applied to nuclear collisions at both intermediate and very high energies. Here we report on measurements of the radius and lifetime of the pion source in the reactions 1.8 A GeV 40 Ar + KCl → 2π/sup +-/ + X, 1.8 A GeV 20 Na + NaF → 2π - + X, and 1.71 A GeV 56 Fe + Fe → 2π - + X. 11 references

  10. Status of CONRAD, a nuclear reaction analysis tool

    International Nuclear Information System (INIS)

    Saint Jean, C. de; Habert, B.; Litaize, O.; Noguere, G.; Suteau, C.

    2008-01-01

    The development of a software tool (CONRAD) was initiated at CEA/Cadarache to give answers to various problems arising in the data analysis of nuclear reactions. This tool is then characterized by the handling of uncertainties from experimental values to covariance matrices for multi-group cross sections. An object oriented design was chosen allowing an easy interface with graphical tool for input/output data and being a natural framework for innovative nuclear models (Fission). The major achieved developments are a data model for describing channels, nuclear reactions, nuclear models and processes with interface to classical data formats, theoretical calculations for the resolved resonance range (Reich-Moore) and unresolved resonance range (Hauser-Feshbach, Gilbert-Cameron,...) with nuclear model parameters adjustment on experimental data sets and a Monte Carlo method based on conditional probabilities developed to calculate properly covariance matrices. The on-going developments deal with the experimental data description (covariance matrices) and the graphical user interface. (authors)

  11. A panorama of phase transition signals and influence of collision-induced correlations

    Energy Technology Data Exchange (ETDEWEB)

    Bougault, R. [LPC Caen IN2P3-CNRS/ENSICAEN et Univ., 14 - Caen (France)

    2003-07-01

    The presented results will show the richness of nuclear heavy-ion physics where data are accumulated as a succession of independent events. The different reaction mechanisms can provide for 39 A.MeV Ta+Au, 40 and 80 A.MeV Au+Au peripheral collisions a set of data almost free of entrance channel effects as well as a set of events where collision-induced correlations can be evidenced. The event selection method will be presented and it will be shown how the entrance channel dynamical effects affect determination of heat capacity through partial energy fluctuation measurements. (author)

  12. A panorama of phase transition signals and influence of collision-induced correlations

    International Nuclear Information System (INIS)

    Bougault, R.

    2003-01-01

    The presented results will show the richness of nuclear heavy-ion physics where data are accumulated as a succession of independent events. The different reaction mechanisms can provide for 39 A.MeV Ta+Au, 40 and 80 A.MeV Au+Au peripheral collisions a set of data almost free of entrance channel effects as well as a set of events where collision-induced correlations can be evidenced. The event selection method will be presented and it will be shown how the entrance channel dynamical effects affect determination of heat capacity through partial energy fluctuation measurements. (author)

  13. Multiple nucleon transfer in damped nuclear collisions. [Lectures, mass charge, and linear and angular momentum transport

    Energy Technology Data Exchange (ETDEWEB)

    Randrup, J.

    1979-07-01

    This lecture discusses a theory for the transport of mass, charge, linear, and angular momentum and energy in damped nuclear collisions, as induced by multiple transfer of individual nucleons. 11 references.

  14. Overview of light water/hydrogen-based low energy nuclear reactions

    International Nuclear Information System (INIS)

    Miley, George H.; Shrestha, Prajakti J.

    2006-01-01

    This paper reviews light water and hydrogen-based low-energy nuclear reactions (LENRs) including the different methodologies used to study these reactions and the results obtained. Reports of excess heat production, transmutation reactions, and nuclear radiation emission are cited. An aim of this review is to present a summary of the present status of light water LENR research and provide some insight into where this research is heading. (author)

  15. Nuclear chemistry research of high-energy nuclear reactions at Carnegie-Mellon University, 1961--1977. Summary report

    International Nuclear Information System (INIS)

    Caretto, A.A. Jr.

    1977-11-01

    The activities and the results of research in the study of high energy nuclear reactions carried out at Carnegie Institute of Technology from 1957 to 1967 and at Carnegie-Mellon University from 1967 to 1977 are summarized. A complete list of all publications, doctoral dissertations, and reports resulting from the research of this project is also included. A major part of the report is a review of the research activities and results. The objective of the research of this project was the study of reactions initiated by projectiles of energy above about 100 MeV. The main effort was the investigation of simple nuclear reactions with the objective to deduce reaction mechanisms. These reactions were also used as probes to determine the nuclear structure of the target. In addition, a number of studies of spallation reactions were undertaken which included the determination of excitation functions and recoil properties. Recent research activities which have involved the study of pion induced reactions as well as reactions initiated by heavy ions is also discussed

  16. Concrete alkali-silica reaction and nuclear radiation damage

    International Nuclear Information System (INIS)

    Ichikawa, Tsuneki

    2008-01-01

    The deterioration of concrete by alkali-silica reaction of aggregates (ASR) and the effect of nuclear radiations on the ASR have been reviewed based on our studies on the mechanism of ASR and the effect of nuclear radiations on the resistivity of minerals to alkaline solution. It has been found that the ASR is initiated by the attack of alkaline solution in concrete to silicious aggregates to convert them into hydrated alkali silicate. The consumption of alkali hydroxide by the aggregates induces the dissolution of Ca 2+ ions into the solution. The alkali silicate surrounding the aggregates then reacts with Ca 2+ ions to convert to insoluble tight and rigid reaction rims. The reaction rim allows the penetration of alkaline solution but prevents the leakage of viscous alkali silicate, so that alkali silicate generated afterward is accumulated in the aggregate to give an expansive pressure enough for cracking the aggregate and the surrounding concrete. The effect of nuclear radiation on the reactivity of quartz and plagioclase, a part of major minerals composing volcanic rocks as popular aggregates, to alkaline solution has been examined for clarifying whether nuclear radiations accelerates the ASR. It has been found that the irradiation of these minerals converts them into alkali-reactive amorphous ones. The radiation dose for plagioclase is as low as 10 8 Gy, which suggests that the ASR of concrete surrounding nuclear reactors is possible to be accelerated by nuclear radiation. (author)

  17. Exclusive study of nuclear collisions at the AGS

    International Nuclear Information System (INIS)

    Rai, G.

    1993-08-01

    We propose to carry out a systematic and exclusive measurement of the energy and mass dependence of particle production, correlations and collective effects in Au+Au collisions. We wish to determine the highest compression achievable in nuclear matter and to study its properties. We shall search for evidence for an exotic Equation of State, that is, new physics such as Resonance Matter, Exotica, and QGP. We are also interested in signatures of critical phenomena in dilute nuclear matter. We propose to measure the four-momentum of light mass particles (π ± , K s 0 , K ± , Λ, n,p,d, 3 He, 4 He, 6 He, and the isotopes of Li and Be), projectile fragments from Z = 6 to Z = 79, and anti-proton production. The majority of the data will be acquired, on an event by event basis, from a state-of-the-art Time Projection Chamber (EOSTPC) built and used at LBL by the EOC collaboration. The TPC provides continuous tracking, almost 4π acceptance and particle identification for the light mass particles

  18. Testing nuclear parton distributions with pA collisions at the TeV scale

    International Nuclear Information System (INIS)

    Quiroga-Arias, Paloma; Milhano, Jose Guilherme; Wiedemann, Urs Achim

    2010-01-01

    Global perturbative QCD analyses, based on large data sets from electron-proton and hadron collider experiments, provide tight constraints on the parton distribution function (PDF) in the proton. The extension of these analyses to nuclear parton distribution functions (nPDFs) has attracted much interest in recent years. nPDFs are needed as benchmarks for the characterization of hot QCD matter in nucleus-nucleus collisions, and attract further interest since they may show novel signatures of nonlinear density-dependent QCD evolution. However, it is not known from first principles whether the factorization of long-range phenomena into process-independent parton distribution, which underlies global PDF extractions for the proton, extends to nuclear effects. As a consequence, assessing the reliability of nPDFs for benchmark calculations goes beyond testing the numerical accuracy of their extraction and requires phenomenological tests of the factorization assumption. Here, we argue that a proton-nucleus collision program at the Large Hadron Collider would provide a set of measurements, which allow for unprecedented tests of the factorization assumption, underlying global nPDF fits.

  19. New aspects of high energy heavy-ion transfer reactions

    International Nuclear Information System (INIS)

    Scott, D.K.

    1975-03-01

    New aspects of heavy ion reactions at incident energies in the region of 10 MeV/nucleon are discussed with an emphasis on the peripheral nature of the collisions, which leads to simplicities in the differential cross sections. The distortion of the peripheral distribution through the interference of direct and multistep processes is used to illustrate aspects of high energy reactions unique to heavy ions. The simplicities of the distributions for reactions on lighter nuclei are exploited to give new information about nuclear structure from direct and compound reactions at high energy. (16 figures, 32 references) (U.S.)

  20. Dynamic screening in solar and stellar nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Daeppen, W. [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA (United States); Mussack, K. [Los Alamos National Laboratory, XTD-2, Los Alamos, NM (United States)

    2012-02-15

    In the hot, dense plasma of solar and stellar interiors, Coulomb potentials are screened, resulting in increased nuclear reaction rates. Although Salpeter's approximation for static screening is widely accepted and used in stellar modeling, the question of screening in nuclear reactions was revisited in the 1990s. In particular the issue of dynamic effects was raised by Shaviv and Shaviv, who applied the techniques of molecular dynamics to the conditions in the Sun's core in order to numerically determine the effect of screening. By directly calculating the motion of ions and electrons due to Coulomb interactions, the simulations are used to compute the effect of screening without the mean-field assumption inherent in Salpeter's approximation. In the last few years, the USC group has first reproduced Shaviv and Shaviv's numerical analysis of the screening energy, showing an effect of dynamic screening. When the consequence for the reaction-rate was computed, a rather surprising resulted, which is contrary to that from static screening theory. Our calculations showed that dynamic screening does not significantly change the reaction rate from that of the bare Coulomb potential. If this can be independently confirmed, then the effects of dynamic screening are highly relevant and should be included in stellar nuclear reaction rates (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Forging the link between nuclear reactions and nuclear structure.

    Science.gov (United States)

    Mahzoon, M H; Charity, R J; Dickhoff, W H; Dussan, H; Waldecker, S J

    2014-04-25

    A comprehensive description of all single-particle properties associated with the nucleus Ca40 is generated by employing a nonlocal dispersive optical potential capable of simultaneously reproducing all relevant data above and below the Fermi energy. The introduction of nonlocality in the absorptive potentials yields equivalent elastic differential cross sections as compared to local versions but changes the absorption profile as a function of angular momentum suggesting important consequences for the analysis of nuclear reactions. Below the Fermi energy, nonlocality is essential to allow for an accurate representation of particle number and the nuclear charge density. Spectral properties implied by (e, e'p) and (p, 2p) reactions are correctly incorporated, including the energy distribution of about 10% high-momentum nucleons, as experimentally determined by data from Jefferson Lab. These high-momentum nucleons provide a substantial contribution to the energy of the ground state, indicating a residual attractive contribution from higher-body interactions for Ca40 of about 0.64  MeV/A.

  2. Ex-vacuo nuclear reaction analysis of deuterium

    International Nuclear Information System (INIS)

    Lee, S.R.; Doyle, B.L.

    1989-01-01

    A novel technique for performing in-air d( 3 He, p) nuclear reaction analysis of deuterium using external 3 He ion beams ranging in energy from 0.3-2.0 MeV is presented. Variable on-target beam energies for the depth profiling of deuterium are obtained by varying the transmission distance of the external 3 He beam in air. The ex-vacuo nuclear reaction analysis (XNRA) apparatus is described, and unique aspects and limitations of in-air depth profiling of deuterium using the d( 3 He, p) reaction are discussed. Example analyses where XNRA has been used for the multidimensional measurement of deuterium in fusion reactor components are presented in order to illustrate the advantages of XNRA for deuterium. These advantages include nondestructive analysis of large targets, efficient depth profiling via variable air gap energy tuning, and rapid analysis of numerous samples in the absence of vacuum cycling. (orig.)

  3. The nuclear structure dependence of (p,α) reactions on light nuclei

    International Nuclear Information System (INIS)

    Leitner, W.

    1985-01-01

    As the theoretical predictions on nuclear structure and on nucleon-nucleon correlations implied by the nuclear wave functions are not subject to an immediate experimental verification the authors require a reaction theory connecting these state functions with observable quantities. The application of (rho,α) reactions as a spectroscopic tool has found widespread interest, as a number of microscopic descriptions of the reaction mechanism have facilitated the extraction of nuclear structure information. A microscopic formulation results in a strong dependence of the cross section on the nuclear structure of the reaction partners. The different basic configurations of the transferred nucleon system contribute coherently, thus causing a great sensitivity to the relative phases of the wave functions' amplitudes. A major disadvantage inherent to these microscopic theories of multinucleon-transfer reactions is based on the destruction of the transition amplitude's formal symmetry in the dynamic and in the nuclear structure part. In order to retain the factorization of the reaction amplitude, the authors applied the cluster ansatz to the microscopic theory of an earlier studies. The attractive features of this procedure are the conservation of the coherence properties of the structure term and the straightforward determination of transition strengths, independent of an elaborate DWBA treatment

  4. Measurements of cold nuclear matter effects on J/ψ in the PHENIX experiment via deuteron-gold collisions

    International Nuclear Information System (INIS)

    Cianciolo, Vince

    2008-01-01

    A new calculation of R dAu has been performed using the 2003 d+Au data and the higher-statistics 2005 p+p data. These nuclear modification factors are compared to calculations using nuclear-modified PDFs and a J/ψ breakup cross section is extracted. These values are then used to project the cold nuclear matter effects in Au+Au collisions. Additionally, a more data-driven projection is performed

  5. Heavy lon Reactions The Elementary Processes, Parts I and II

    CERN Document Server

    Broglia, Ricardo A

    2004-01-01

    Combining elastic and inelastic processes with transfer reactions, this two-part volume explores how these events affect heavy ion collisions. Special attention is given to processes involving the transfer of two nucleons, which are specific for probing pairing correlations in nuclei. This novel treatment provides, together with the description of surface vibration and rotations, a unified picture of heavy ion reactions in terms of the elementary modes of nuclear excitation. Heavy Ion Reactions is essential reading for beginning graduate students as well as experienced researchers.

  6. Nuclear reaction studies using inverse kinematics

    International Nuclear Information System (INIS)

    Shapira, D.

    1985-01-01

    Reaction studies with reversed kinematics refer to studies of nuclear reactions induced by a heavy projectile colliding with lighter target nuclei. The technique of using reversed kinematics is costly in terms of the available center-of-mass energy. Most of the projectile's energy goes into forward motion of the reaction products in the laboratory system. Examples are presented where the use of reversed kinematics techniques has provided new information on certain reaction processes. A list of kinematic properties and advantages they may afford is shown. Clearly the possible studies listed can be done without using reversed kinematics but because of the difficulty associated with some of these studies they were never performed until more energetic heavier beams have become available and the reversed kinematics technique was utilized

  7. Negative heat capacities in central Xe+Sn reactions

    International Nuclear Information System (INIS)

    Le Neindre, N.; Bougault, R.; Gulminelli, F.

    2000-02-01

    In this study the fluctuation method is applied to the 32-50 A.MeV Xe + Sn central collisions detected with the INDRA multidetector. This method based on kinetic energy fluctuations allows the authors to provide information on the liquid gas phase transition in nuclear multifragmentation. In the case of Xe + Sn central reactions a divergence in the total heat capacity is observed. This divergence corresponds to large fluctuations on the detected fragment partitions. A negative heat capacity branch is measured and so tends to confirm the observation of a first order phase transition in heavy-ion collisions. (A.C.)

  8. Forward-backward multiplicity fluctuation and longitudinal harmonics in high-energy nuclear collisions

    Science.gov (United States)

    Jia, Jiangyong; Radhakrishnan, Sooraj; Zhou, Mingliang; Huo, Peng

    2016-12-01

    Forward-backward (FB) multiplicity fluctuation in high-energy nuclear collisions can be quantified by two-particle pseudo-rapidity correlation function and its expansion into Legendre polynomials. The corresponding coefficients represent different fluctuation modes in longitudinal direction. The leading term corresponds to the asymmetry of numbers of the participants from the two colliding nuclei. This method is tested in events generated from AMPT and HIJING model. The an signal are found to be strongly dampened in AMPT than in HIJIGN, due to weaker short-range correlaitons and final-state effects in AMPT. Two-particle correlation also reveals an intresting shallow minimum around Δη ≈ 0 in AMPT events, which is absent in HIJING results. The method opens a new avenue to elucidate the particle production mechanism and early time dynamics in heavy-ion collisions.

  9. A detailed test of the statistical theory of nuclear reactions

    NARCIS (Netherlands)

    Spijkervet, Andreas Lambertus

    1978-01-01

    Low-energy nuclear reactions are governed by two principal kinds of mechanisms: direct reaction mechanisms characterized by reaction times of the order of the transit time of the bombarding particle through the nucleus , and compound nucelar reaction mechanisms. The reaction times ot the latter are

  10. Complex nuclear-structure phenomena revealed from the nuclide production in fragmentation reactions

    International Nuclear Information System (INIS)

    Ricciardi, M.V.; Kelic, A.; Napolitani, P.; Schmidt, K.H.; Yordanov, O.; Ignatyuk, A.V.; Rejmund, F.

    2003-12-01

    Complex structural effects in the nuclide production from the projectile fragmentation of 1 A GeV 238 U nuclei in a titanium target are reported. The structure seems to be insensitive to the excitation energy induced in the reaction. This is in contrast to the prominent structural features found in nuclear fission and in transfer reactions, which gradually disappear with increasing excitation energy. Using the statistical model of nuclear reactions, relations to structural effects in nuclear binding and in the nuclear level density are demonstrated. (orig.)

  11. High energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Bhalla, K.B.

    1980-01-01

    An attempt is made to explain nucleus-nucleus collisions based on nuclear emulsion experiments. Peripheral and central collisions are described in detail. Assuming the fireball model, the concepts of geometry, kinematics and thermodynamics in this model are discussed. Projectile and target fragmentations are studied. The advantages of using nuclear emulsions as detectors, are mentioned. Proton-nucleus collisions and nucleus-nucleus collisions are compared. Interactions, of projectiles such as Ca, B and C on targets such as Pb, Ag, Br etc. at very high energies (approximately 300 to 1700 Gev) are listed. A comparison of the near multiplicities in these interactions is given. A generalized explanation is given on the processes involved in these interactions. (A.K.)

  12. Photon correlation: a micrometer of the nuclear reaction

    International Nuclear Information System (INIS)

    Marques, F.M.

    1997-01-01

    The technique of intensity interferometry was largely applied to pairs of bosons produced in heavy ion collisions to study the properties of their source. Recently this technique was applied also to photons which can be considered 'natural' probes in interferometry. The analysis of the results of two experiments, namely Kr + Mi at 60 MeV/N and Ta + Au at 40 MeV/N carried out with the multidetector TAPS at GANIL has shown the complexity of the space-time characteristic of the photon source. The standard hypothesis describing the production of high energy protons (E γ > 25 MeV) as starting from p-n Bremsstrahlung exclusively in the initial superposition of the two nuclei was rejected. Actually the typical form of the correlation function in which the correlation width corresponds to the inverse of the source size, is not satisfied by any of the two systems. Only, by the taking into account in the BUU calculations the photons produced later bring near the calculations and the data. This late production could originate in the recompression of the di-nuclei system. In analogy with previous application of this technique to stellar interferometry we have studied the structure of the photon source by Monte-Carlo calculations of the correlation function. For the simple case of a binary source the correlation function is dependent on the two source distributions, relative intensity and the space-time separation of the two sources. The results of this calculations evidence the sensitivity of the photon interferometry to different reaction mechanisms by the magnitude and also the shape of the correlation function. The best agreement with the data is obtained when the two nuclear fragments emit simultaneously the photons at a moment subsequent to the reaction moment

  13. Triangle Universities Nuclear Laboratory annual report: TUNL XVI, 1 January 1977--31 December 1977

    International Nuclear Information System (INIS)

    1977-01-01

    A summary of research is presented on nuclear physics. Included in the studies are neutron and fission physics, neutron polarization studies, high resolution studies, gamma ray spectroscopy, charged-particle reactions with polarized beams, radiative capture reactions, atomic collision physics, heavy ion physics, the development of facilities, ion source development, accelerator development and instrumentation computer-related development, and nuclear theory and phenomenology. A list of publications is included

  14. Hadron Cancer Therapy: Role of Nuclear Reactions

    Science.gov (United States)

    Chadwick, M. B.

    2000-06-20

    Recently it has become feasible to calculate energy deposition and particle transport in the body by proton and neutron radiotherapy beams, using Monte Carlo transport methods. A number of advances have made this possible, including dramatic increases in computer speeds, a better understanding of the microscopic nuclear reaction cross sections, and the development of methods to model the characteristics of the radiation emerging from the accelerator treatment unit. This paper describes the nuclear reaction mechanisms involved, and how the cross sections have been evaluated from theory and experiment, for use in computer simulations of radiation therapy. The simulations will allow the dose delivered to a tumor to be optimized, whilst minimizing the dos given to nearby organs at risk.

  15. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    International Nuclear Information System (INIS)

    Ryan, R.R.

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research

  16. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  17. Nuclear reactions in astrophysics

    International Nuclear Information System (INIS)

    Arnould, M.; Rayet, M.

    1990-01-01

    At all times and at all astrophysical scales, nuclear reactions have played and continue to play a key role. This concerns the energetics as well as the production of nuclides (nucleosynthesis). After a brief review of the observed composition of various objects in the universe, and especially of the solar system, the basic ingredients that are required in order to build up models for the chemical evolution of galaxies are sketched. Special attention is paid to the evaluation of the stellar yields through an overview of the important burning episodes and nucleosynthetic processes that can develop in non-exploding or exploding stars. Emphasis is put on the remaining astrophysical and nuclear physics uncertainties that hamper a clear understanding of the observed characteristics, and especially compositions, of a large variety of astrophysical objects

  18. Nuclear phenomena and the short distance structure of hadrons

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1979-09-01

    In certain cases, nuclear corrections to hadronic phenomena depend in detail on the nature of quark and gluon interactions, as well as the effects of jet development within the nuclear medium. Applications of quantum chromodynamics to fast particle production in nuclear collisions, nuclear form factors, and shadowing in deep inelastic lepton processes are reviewed. Also discussed is a new approach to particle production in hadron-nucleus, nucleus-nucleus and deep-inelastic nuclear reactions from the standpoint of a color-neutralization model. 74 references

  19. Multichannel approach to the Glauber model for heavy-ion collisions

    International Nuclear Information System (INIS)

    Lenzi, S.M.; Zardi, F.; Vitturi, A.

    1990-01-01

    A formalism is developed in order to describe, within the Glauber model, the scattering processes between heavy ions in situations involving several coupled channels. The approach is based on a suitable truncation of the number of nuclear states which can be excited at each microscopic nucleon-nucleon collision. The set of coupled equations for the S-matrix elements of the conventional reaction theory is replaced by simple matrix relations, only involving the nucleon-nucleon scattering amplitude and the nuclear densities and transition densities. This method avoids the difficulties arising from the combinatorial aspects of the multiple scattering theories, the slow convergence of the series, and the problems of center-of-mass correlations. We discuss some specific examples of multichannel collisions where the multiple-scattering series can be summed to give analytic expressions for the scattering amplitude. We finally explicate the formalism for the perturbative treatment of mutual excitation and charge-exchange processes

  20. On the nuclear fragmentation mechanisms in nuclear collisions at intermediate and high energies

    International Nuclear Information System (INIS)

    Jipa, Al; Besliu, C.; Felea, D.

    2004-01-01

    The nuclear fragmentation mechanisms can be discussed by taking into account different scales related to the fragment sizes. Considering two fragmentation mechanisms of the nuclei at the same incident energy an analysis of the experimental results obtained was done. Goldhaber formula was improved by analyzing the discrepancies between data and theories concerning the projectile fragmentation. We implied that the projectile fragmentation process would be governed by the distribution of nucleon momenta in the projectile after the collision occurred. We used in our analysis protons from the 4 He + 7 Li at 4.5 GeV/c per nucleon incident momentum, as well as from 40 Ar + 12 C at 213 AMeV bombarding energy. We proved that in order to proceed in analyzing the projectile fragmentation process at intermediate and high energies one has to consider the dependence σ 0 on the apparent temperature of projectile nucleus after the collision took place. The generalized Bertsch correction for light projectile nuclei and fragments was used and the number of spatial correlations between identical nucleons having anticorrelated momenta was found. Thus we found apparent temperature values close to the separation energies of the considered fragments per number of fragments. The temperatures associated to kinetic energy spectra of the projectile fragments were calculated following two methods. The results from Bauer's method were compared with those obtained by fitting the kinetic energy distributions of the projectile fragments in the rest frame of the projectile with a Maxwellian curve. We also accomplished the comparison of the experimental results with similar events simulated with RQMD 2.4. All the results obtained suggested two nuclear fragmentation mechanisms: a sudden fragmentation by explosive mechanisms, like shock waves and a slow fragmentation by the 'fission' of the spectator regions, mainly because of the interactions with the particles or fragments emitted from the

  1. Nuclear targets, recoil ion catchers and reaction chambers

    NARCIS (Netherlands)

    Dionisio, JS; Vieu, C; Schuck, C; Collatz, R; Meunier, R; Ledu, D; Folger, H; Lafoux, A; Lagrange, JM; Pautrat, M; Waast, B; Phillips, WR; Blunt, D; Durell, JL; Varley, BJ; Dagnall, PG; Dorning, SJ; JONES, MA; Smith, AG; Bacelar, JCS; Rzaca-Urban, T; Amzal, N; Meliani, Z; Vanhorenbeeck, J; Passoja, A; Urban, W

    1998-01-01

    The main features of nuclear targets, recoil ion catchers and reaction chambers used in nuclear spectroscopic investigations involving in-beam multi-e-gamma spectrometers are discussed. The relative importance of the F-ray background due to the accelerated ion-target and the recoil-ion-target

  2. Light ion reaction mechanisms and nuclear structure

    International Nuclear Information System (INIS)

    Robson, B.A.

    1986-01-01

    Of the many contributions to the subject 'Light ion reaction mechanism and nuclear structure', a few are selected and reviewed which highlight the present state of the field. Some contributions to the conference dealing with nuclear interactions are briefly outlined in the second section following an introductory section. Lane model calculations are compared with data for 9 Be and results are given showing angular distributions of the cross sections, the analyzing powers and the spin-rotation parameters for p - 40 Ca. Real central potential for d + 32 s resulting from the FB-analysis are compared with frozen density folding and delta-function folding. The third section deals with reaction mechanism. Data are cited which show near-side and far-side contributions to the calculated analyzing powers in the 116 Sn(d,p) 117 Sn (11.2 - ) transition. Calculations are compared with experimental A y and -(A yy + 2)/3. Also given are measurements of the cross sections and analyzing powers of the continuum energy spectra for the 58 Ni(p,p'x), along with relations between the analyzing powers and momentum transfer. The fourth section addresses nuclear structure. Cross sections and analyzing powers measured at 22 MeV for the reaction 208 Pb(p,t) 206 Pb(3 2 + ) are cited and considered. (Nogami, K.)

  3. Images of mycobacterium for nuclear reactions

    International Nuclear Information System (INIS)

    Lima, C.T.S.; Crispim, V.R.; Silva, M.G.

    2007-01-01

    According to the World Health Organization (WHO) tuberculosis is responsible for 2.9 million deaths annually worldwide. The necessity for optimizing time to detect the tuberculosis bacillus (mycobacterium tuberculosis) in the sputum samples of affected individuals (TB patients) led to the development of a methodology based on the doping with boron of the bacillus, submission of the samples to thermal neutron beam and ionizing particles, generating nuclear reactions of the types: 10 B (n,α) 7 Li and 10 B(α, p) 13 C. Images of these bacilli are obtained by means of the nuclear tracks produced in the CR-39 detector for particles products of these nuclear reactions, α and p. When the CR-39 is submitted to a chemical attack the traces are developed and the images of the microorganisms registered in the detector can be observed with a conventional light microscope, characterizing them by morphology. The use of this methodology results in images of the mycobacterium tuberculosis becoming more defined and enlarged than those obtained by bacilloscopy, in which the sample is submitted to the method of coloration of Ziehl-Neelsen (ZN) and observed in light microscopy. (author)

  4. Intermediate behaviour of reaction mechanisms in 27Al + 63Cu collisions at 13.4 MeV/nucleon

    International Nuclear Information System (INIS)

    Bougault, R.

    1983-09-01

    This experiment aimed to investigate the nuclear reaction mechanisms in the energy transition region between 10 and 20 MeV/Nucleon. So, collisions between 27 Al (projectile) and 63 Cu (target) were studied for a bombarding energy of 13.4 MeV/nucleon. For that purpose, projectile-like fragments were detected at the grazing angle (thetasub(g)) for that system by a spectrometer and an E-ΔE telescope. A second telescope was set at various angles for light particle detection; both inclusive and coincident measurements were performed. Isotope production at angle thetasub(g) cannot be clearly explained neither by inelastic transfers nor by ''cold'' projectile fragmentation. This production seems rather to occur through an intermediate process where the Al nucleus is slowed down, and excited, and then dissociates. Moreover, kinematical correlations between fragments show evidence for a mechanism where the projectile is splitted after picking up some nucleons to the target. Finally, light particles are shown to araise essentially from a fusion-like system thermalized at T=3,5 MeV; such a temperature may be considered as an intermediate value [fr

  5. The theory of relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    1993-07-01

    This program began in January 1993. Its primary goals are studies of highly excited matter and its production in nuclear collisions at very high energies. After a general orientation on the project, abstracts describing the contents of completed papers and providing some details of current projects are given. Principal topics of interest are the following: the dynamics of nuclear collisions at very high energies (RHIC and LHC), the dynamics of nuclear collisions at AGS energies, high-temperature QCD and the physics of the quark-gluon plasma, and the production of strangelets and other rare objects

  6. Direct nuclear reactions and the structure of atomic nuclei

    International Nuclear Information System (INIS)

    Osterfeld, F.

    1985-01-01

    The present thesis deals with two different aspects of direct nuclear reactions, namely on the one hand with the microscopic calculation of the imaginary optical potential for the elastic nucleon-nucleus scattering as well as on the other hand with the microscopic analysis of giant magnetic resonances in atomic nuclei which are excited by (p,n) charge-exchange reactions. In the first part of the thesis the imaginary part of the optical potential for the elastic proton- and neutron-nucleus scattering is microscopically calculated in the framework of the so called nuclear-structure approximation to the optical potential. The calculations are performed in the Feshbach formalism in second-order perturbation theory corresponding to an effective projectile-target-nucleon interaction. In the second part of this thesis in the framework of microscopic nuclear models a complete analysis of different A(p,n)B charge-exchange reactions at high incident energies 160 MeV 90 Zr(p,n) reaction three collective spin-isospin resonances could be uniquely identified. (orig./HSI) [de

  7. Nuclear interactions and hadronic matter

    International Nuclear Information System (INIS)

    Petrovici, Mihai; Pop, Amalia; Stoicea, Gabriel; Berceanu, Ionela; Moisa, Dorin; Petris, Mariana; Simion, Victor; Aiftimiei, Cristina; Cruceru, Ilie; Ciobanu, Mircea; Catanescu, Vasile; Caragheorgheopol; Gheorghe

    2002-01-01

    The new generation of heavy ion accelerators and complex experimental devices, developed in the last two decades, give access to new information concerning the dynamics of nuclear collisions and allow to obtain and study in the laboratory the nuclear matter under extreme conditions of density and temperature. Of special interest is the intermediate energy region where the reactions are dominated by the competition between the mean field and nucleon-nucleon interaction. Fundamental aspects of nuclear reaction studies are probed at different instants of a nuclear collision. One can learn about the transport properties of nuclear matter in pure nucleonic regime and understand the modification of the nucleon-nucleon cross section due to various in-medium effects: density effects, effective mass, quantum effects, three-body interactions. With increasing energy, fast particle emission associated with direct nucleon-nucleon collisions in the first steps of the reaction come into play too. At higher energy, flow measurements are crucial tests of the influence of medium effects by probing the elastic part of the nucleon-nucleon collisions. On the other side, at higher incident energies, the characteristics of the nuclear equation of state (EoS) can be studied if local thermal and chemical equilibrium turns out to be established. Understanding of the properties of the nuclear matter in extreme conditions is a fundamental goal. The EoS is also an essential ingredient in the description of the massive stars leading to supernova explosion and neutron star formation. Experimental studies of such aspects needs experimental devices of high complexity which can detect and identify event by event all products coming out from heavy ion interactions at intermediate, relativistic and ultra-relativistic energies, having as complete as possible information on their mass, charge, velocity vector. CHIMERA and FOPI are such devices for intermediate and relativistic energy, respectively. Our

  8. Nuclear physics at small distances

    Indian Academy of Sciences (India)

    We report on the study of meson and resonance production in nuclear collisions near the threshold. Because of the large momentum transfer, these reactions occur at length scales less than the size of the hadrons. We explore whether they are best described in terms of the quark–gluon picture or the meson-exchange ...

  9. MARTINI: An event generator for relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Schenke, Bjoern; Gale, Charles; Jeon, Sangyong

    2009-01-01

    We introduce the modular algorithm for relativistic treatment of heavy ion interactions (MARTINI), a comprehensive event generator for the hard and penetrating probes in high-energy nucleus-nucleus collisions. Its main components are a time-evolution model for the soft background, PYTHIA 8.1, and the McGill-Arnold, Moore, and Yaffe (AMY) parton-evolution scheme, including radiative as well as elastic processes. This allows us to generate full event configurations in the high p T region that take into account thermal quantum chromodynamic (QCD) and quantum electrodynamic (QED) effects as well as effects of the evolving medium. We present results for the neutral pion nuclear modification factor in Au+Au collisions at the BNL Relativistic Heavy Ion Collider as a function of p T for different centralities and also as a function of the angle with respect to the reaction plane for noncentral collisions. Furthermore, we study the production of high-transverse-momentum photons, incorporating a complete set of photon-production channels.

  10. Analysis of the apparent nuclear modification in peripheral Pb-Pb collisions at 5.02 TeV arXiv

    CERN Document Server

    Acharya, Shreyasi; Adamova, Dagmar; Adolfsson, Jonatan; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Al-turany, Mohammad; Alam, Sk Noor; Silva De Albuquerque, Danilo; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Ali, Yasir; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altenkamper, Lucas; Altsybeev, Igor; Anaam, Mustafa Naji; Andrei, Cristian; Andreou, Dimitra; Andrews, Harry Arthur; Andronic, Anton; Angeletti, Massimo; Anguelov, Venelin; Anson, Christopher Daniel; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Anwar, Rafay; Apadula, Nicole; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Arnaldi, Roberta; Arnold, Oliver Werner; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Ball, Markus; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barioglio, Luca; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartsch, Esther; Bastid, Nicole; Basu, Sumit; Batigne, Guillaume; Batyunya, Boris; Batzing, Paul Christoph; Bazo Alba, Jose Luis; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Espinoza Beltran, Lucina Gabriela; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhaduri, Partha Pratim; Bhasin, Anju; Bhat, Inayat Rasool; Bhatt, Himani; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Antonio; Bianchi, Livio; Bianchi, Nicola; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biro, Gabor; Biswas, Rathijit; Biswas, Saikat; Blair, Justin Thomas; Blau, Dmitry; Blume, Christoph; Boca, Gianluigi; Bock, Friederike; Bogdanov, Alexey; Boldizsar, Laszlo; Bombara, Marek; Bonomi, Germano; Bonora, Matthias; Borel, Herve; Borissov, Alexander; Borri, Marcello; Botta, Elena; Bourjau, Christian; Bratrud, Lars; Braun-munzinger, Peter; Bregant, Marco; Broker, Theo Alexander; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buhler, Paul; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Cabala, Jan; Caffarri, Davide; Caines, Helen Louise; Caliva, Alberto; Calvo Villar, Ernesto; Soto Camacho, Rabi; Camerini, Paolo; Capon, Aaron Allan; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Ceballos Sanchez, Cesar; Chandra, Sinjini; Chang, Beomsu; Chang, Wan; Chapeland, Sylvain; Chartier, Marielle; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chauvin, Alex; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Chowdhury, Tasnuva; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Concas, Matteo; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Costanza, Susanna; Crkovska, Jana; Crochet, Philippe; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Dani, Sanskruti; Danisch, Meike Charlotte; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Conti, Camila; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Derradi De Souza, Rafael; Franz Degenhardt, Hermann; Deisting, Alexander; Deloff, Andrzej; Delsanto, Silvia; Deplano, Caterina; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Ruzza, Benedetto; Arteche Diaz, Raul; Dietel, Thomas; Dillenseger, Pascal; Ding, Yanchun; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Van Doremalen, Lennart Vincent; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dudi, Sandeep; Duggal, Ashpreet Kaur; Dukhishyam, Mallick; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Endress, Eric; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erhardt, Filip; Ersdal, Magnus Rentsch; Espagnon, Bruno; Eulisse, Giulio; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Fabbietti, Laura; Faggin, Mattia; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Feliciello, Alessandro; Feofilov, Grigorii; Fernandez Tellez, Arturo; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiorenza, Gabriele; Flor, Fernando; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Francisco, Audrey; Frankenfeld, Ulrich Michael; Fronze, Gabriele Gaetano; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gajdosova, Katarina; Gallio, Mauro; Duarte Galvan, Carlos; Ganoti, Paraskevi; Garabatos Cuadrado, Jose; Garcia-solis, Edmundo Javier; Garg, Kunal; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; De Leone Gay, Maria Beatriz; Germain, Marie; Ghosh, Jhuma; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Gonzalez, Victor; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Greiner, Leo Clifford; Grelli, Alessandro; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Gronefeld, Julius Maximilian; Grosa, Fabrizio; Grosse-oetringhaus, Jan Fiete; Grosso, Raffaele; Guernane, Rachid; Guerzoni, Barbara; Guittiere, Manuel; Gulbrandsen, Kristjan Herlache; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Bautista Guzman, Irais; Haake, Rudiger; Habib, Michael Karim; Hadjidakis, Cynthia Marie; Hamagaki, Hideki; Hamar, Gergoe; Hamid, Mohammed; Hamon, Julien Charles; Hannigan, Ryan; Haque, Md Rihan; Harlenderova, Alena; Harris, John William; Harton, Austin Vincent; Hassan, Hadi; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Hellbar, Ernst; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Gonzalez Hernandez, Emma; Herrera Corral, Gerardo Antonio; Herrmann, Florian; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hills, Christopher; Hippolyte, Boris; Hohlweger, Bernhard; Horak, David; Hornung, Sebastian; Hosokawa, Ritsuya; Hota, Jyotishree; Hristov, Peter Zahariev; Huang, Chun-lu; Hughes, Charles; Huhn, Patrick; Humanic, Thomas; Hushnud, Hushnud; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Iddon, James Philip; Iga Buitron, Sergio Arturo; Ilkaev, Radiy; Inaba, Motoi; Ippolitov, Mikhail; Islam, Md Samsul; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacak, Barbara; Jacazio, Nicolo; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jadlovsky, Jan; Jaelani, Syaefudin; Jahnke, Cristiane; Jakubowska, Monika Joanna; Janik, Malgorzata Anna; Jena, Chitrasen; Jercic, Marko; Jevons, Oliver; Jimenez Bustamante, Raul Tonatiuh; Jin, Muqing; Jones, Peter Graham; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karczmarczyk, Przemyslaw; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Ketzer, Bernhard Franz; Khabanova, Zhanna; Khan, Ahsan Mehmood; Khan, Shaista; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Khatun, Anisa; Khuntia, Arvind; Kielbowicz, Miroslaw Marek; Kileng, Bjarte; Kim, Byungchul; Kim, Daehyeok; Kim, Dong Jo; Kim, Eun Joo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Jiyoung; Kim, Minjung; Kim, Se Yong; Kim, Taejun; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-boesing, Christian; Klewin, Sebastian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Varga-kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Konopka, Piotr Jan; Konyushikhin, Maxim; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Kralik, Ivan; Kravcakova, Adela; Kreis, Lukas; Krivda, Marian; Krizek, Filip; Kruger, Mario; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Jitendra; Kumar, Lokesh; Kumar, Shyam; Kundu, Sourav; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kvapil, Jakub; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lai, Yue Shi; Lakomov, Igor; Langoy, Rune; Lapidus, Kirill; Lardeux, Antoine Xavier; Larionov, Pavel; Laudi, Elisa; Lavicka, Roman; Lea, Ramona; Leardini, Lucia; Lee, Seongjoo; Lehas, Fatiha; Lehner, Sebastian; Lehrbach, Johannes; Lemmon, Roy Crawford; Leon Monzon, Ildefonso; Levai, Peter; Li, Xiaomei; Li, Xing Long; Lien, Jorgen Andre; Lietava, Roman; Lim, Bong-hwi; Lindal, Svein; Lindenstruth, Volker; Lindsay, Scott William; Lippmann, Christian; Lisa, Michael Annan; Litichevskyi, Vladyslav; Liu, Alwina; Ljunggren, Hans Martin; Llope, William; Lodato, Davide Francesco; Loginov, Vitaly; Loizides, Constantinos; Loncar, Petra; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Luhder, Jens Robert; Lunardon, Marcello; Luparello, Grazia; Lupi, Matteo; Maevskaya, Alla; Mager, Magnus; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Malik, Qasim Waheed; Malinina, Liudmila; Mal'kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martinengo, Paolo; Martinez, Jacobb Lee; Martinez Hernandez, Mario Ivan; Martinez-garcia, Gines; Martinez Pedreira, Miguel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Masson, Erwann; Mastroserio, Annalisa; Mathis, Andreas Michael; Toledo Matuoka, Paula Fernanda; Matyja, Adam Tomasz; Mayer, Christoph; Mazzilli, Marianna; Mazzoni, Alessandra Maria; Meddi, Franco; Melikyan, Yuri; Menchaca-rocha, Arturo Alejandro; Meninno, Elisa; Mercado-perez, Jorge; Meres, Michal; Soncco Meza, Carlos; Mhlanga, Sibaliso; Miake, Yasuo; Micheletti, Luca; Mieskolainen, Matti Mikael; Mihaylov, Dimitar Lubomirov; Mikhaylov, Konstantin; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Auro Prasad; Mohanty, Bedangadas; Khan, Mohammed Mohisin; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Mrnjavac, Teo; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munning, Konstantin; Arratia Munoz, Miguel Ignacio; Munzer, Robert Helmut; Murakami, Hikari; Murray, Sean; Musa, Luciano; Musinsky, Jan; Myers, Corey James; Myrcha, Julian Wojciech; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Narayan, Amrendra; Naru, Muhammad Umair; Nassirpour, Adrian Fereydon; Ferreira Natal Da Luz, Pedro Hugo; Nattrass, Christine; Rosado Navarro, Sebastian; Nayak, Kishora; Nayak, Ranjit; Nayak, Tapan Kumar; Nazarenko, Sergey; Negrao De Oliveira, Renato Aparecido; Nellen, Lukas; Nesbo, Simon Voigt; Neskovic, Gvozden; Ng, Fabian; Nicassio, Maria; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oh, Hoonjung; Ohlson, Alice Elisabeth; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Oravec, Matej; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Pachmayer, Yvonne Chiara; Pacik, Vojtech; Pagano, Davide; Paic, Guy; Palni, Prabhakar; Pan, Jinjin; Pandey, Ashutosh Kumar; Panebianco, Stefano; Papikyan, Vardanush; Pareek, Pooja; Park, Jonghan; Parkkila, Jasper Elias; Parmar, Sonia; Passfeld, Annika; Pathak, Surya Prakash; Patra, Rajendra Nath; Paul, Biswarup; Pei, Hua; Peitzmann, Thomas; Peng, Xinye; Pereira, Luis Gustavo; Pereira Da Costa, Hugo Denis Antonio; Peresunko, Dmitry Yurevich; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrovici, Mihai; Petta, Catia; Peretti Pezzi, Rafael; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Ozelin De Lima Pimentel, Lais; Pinazza, Ombretta; Pinsky, Lawrence; Pisano, Silvia; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pliquett, Fabian; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Poppenborg, Hendrik; Porteboeuf, Sarah Julie; Pozdniakov, Valeriy; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Punin, Valery; Putschke, Jorn Henning; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Ratza, Viktor; Ravasenga, Ivan; Read, Kenneth Francis; Redlich, Krzysztof; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reshetin, Andrey; Revol, Jean-pierre; Reygers, Klaus Johannes; Riabov, Viktor; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-lucian; Rode, Sudhir Pandurang; Rodriguez Cahuantzi, Mario; Roeed, Ketil; Rogalev, Roman; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Rokita, Przemyslaw Stefan; Ronchetti, Federico; Dominguez Rosas, Edgar; Roslon, Krystian; Rosnet, Philippe; Rossi, Andrea; Rotondi, Alberto; Roukoutakis, Filimon; Roy, Christelle Sophie; Roy, Pradip Kumar; Vazquez Rueda, Omar; Rui, Rinaldo; Rumyantsev, Boris; Rustamov, Anar; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Saarinen, Sampo; Sadhu, Samrangy; Sadovskiy, Sergey; Safarik, Karel; Saha, Sumit Kumar; Sahoo, Baidyanath; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandoval, Andres; Sarkar, Amal; Sarkar, Debojit; Sarkar, Nachiketa; Sarma, Pranjal; Sas, Mike Henry Petrus; Scapparone, Eugenio; Scarlassara, Fernando; Schaefer, Brennan; Scheid, Horst Sebastian; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schmidt, Marten Ole; Schmidt, Martin; Schmidt, Nicolas Vincent; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Sefcik, Michal; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senyukov, Serhiy; Serradilla Rodriguez, Eulogio; Sett, Priyanka; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shahoyan, Ruben; Shaikh, Wadut; Shangaraev, Artem; Sharma, Anjali; Sharma, Ankita; Sharma, Meenakshi; Sharma, Natasha; Sheikh, Ashik Ikbal; Shigaki, Kenta; Shimomura, Maya; Shirinkin, Sergey; Shou, Qiye; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singh, Randhir; Singhal, Vikas; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Song, Jihye; Soramel, Francesca; Sorensen, Soren Pontoppidan; Sozzi, Federica; Sputowska, Iwona Anna; Stachel, Johanna; Stan, Ionel; Stankus, Paul; Stenlund, Evert Anders; Stocco, Diego; Storetvedt, Maksim Melnik; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Sumowidagdo, Suharyo; Suzuki, Ken; Swain, Sagarika; Szabo, Alexander; Szarka, Imrich; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Teyssier, Boris; Thakur, Dhananjaya; Thakur, Sanchari; Thomas, Deepa; Thoresen, Freja; Tieulent, Raphael Noel; Tikhonov, Anatoly; Timmins, Anthony Robert; Toia, Alberica; Topilskaya, Nataliya; Toppi, Marco; Rojas Torres, Solangel; Tripathy, Sushanta; Trogolo, Stefano; Trombetta, Giuseppe; Tropp, Lukas; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Trzcinski, Tomasz Piotr; Trzeciak, Barbara Antonina; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Umaka, Ejiro Naomi; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vala, Martin; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vazquez Doce, Oton; Vechernin, Vladimir; Veen, Annelies Marianne; Vercellin, Ermanno; Vergara Limon, Sergio; Vermunt, Luuk; Vernet, Renaud; Vertesi, Robert; Vickovic, Linda; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Virgili, Tiziano; Vislavicius, Vytautas; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Voscek, Dominik; Vranic, Danilo; Vrlakova, Janka; Wagner, Boris; Wang, Hongkai; Wang, Mengliang; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Wegrzynek, Adam; Weiser, Dennis Franz; Wenzel, Sandro Christian; Wessels, Johannes Peter; Westerhoff, Uwe; Whitehead, Andile Mothegi; Wiechula, Jens; Wikne, Jon; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Willems, Guido Alexander; Williams, Crispin; Willsher, Emily; Windelband, Bernd Stefan; Witt, William Edward; Xu, Ran; Yalcin, Serpil; Yamakawa, Kosei; Yano, Satoshi; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-kwon; Yoon, Jin Hee; Yurchenko, Volodymyr; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correa Zanoli, Henrique Jose; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zhalov, Mikhail; Zhang, Xiaoming; Zhang, Yonghong; Zhang, Zuman; Zhao, Chengxin; Zherebchevskii, Vladimir; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Ya; Zichichi, Antonino; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zmeskal, Johann; Zou, Shuguang

    Charged-particle spectra at midrapidity are measured in Pb-Pb collisions at the centre-of-mass energy per nucleon-nucleon pair $\\sqrt{s_{\\rm NN}}$ = 5.02 TeV and presented in centrality classes ranging from most central (0-5%) to most peripheral (95-100%) collisions. Possible medium effects are quantified using the nuclear modification factor ($R_{\\rm AA}$) by comparing the measured spectra with those from proton-proton collisions, scaled by the number of independent nucleon-nucleon collisions obtained from a Glauber model. At large transverse momenta ($8collisions, beyond which it falls off strongly to below $0.2$ for the most peripheral collisions. Furthermore, $R_{\\rm AA}$ initially exhibits a positive slope as a function of $p_{\\rm T}$ in the $8$-$20$ GeV/$c$ interval, while for collisions beyond the 80% class the slope is negative. To reduce...

  11. Phenomenological approaches of dissipative heavy ion collisions

    International Nuclear Information System (INIS)

    Ngo, C.

    1983-09-01

    These lectures describe the properties of dissipative heavy ion collisions observed in low bombarding energy heavy ion reactions. These dissipative collisions are of two different types: fusion and deep inelastic reactions. Their main experimental properties are described on selected examples. It is shown how it is possible to give a simple interpretation to the data. A large number of phenomenological models have been developped to understand dissipative heavy ion collisions. The most important are those describing the collision by classical mechanics and friction forces, the diffusion models, and transport theories which merge both preceding approaches. A special emphasis has been done on two phenomena observed in dissipative heavy ion collisions: charge equilibratium for which we can show the existence of quantum fluctuations, and fast fission which appears as an intermediate mechanism between deep inelastic reactions and compound nucleus formation [fr

  12. Nuclear research with heavy ions. Annual progress report, January 1, 1981-December 31, 1981

    International Nuclear Information System (INIS)

    Kaplan, M.

    1981-11-01

    The experimental research program is primarily concerned with the nuclear reactions induced by collisions between heavy-ion projectiles and complex target nuclei, the dynamics and thermodynamics associated with such collisions, and the relationships of the observables to the equilibrium and non-equilibrium properties of nuclear matter. As a sensitive probe of the nuclear interactions, detailed measurements of light-charged-particle emission were performed using counter telescopes for atomic number and mass number identification. Preliminary results from a new experiment on direct and evaporation-like emission of 4 He from reactions of 340-MeV 40 Ar with 238 U are reported. Using a large two-dimensional position-sensitive avalanche detector, and measuring three-fold coincidence events between two fission fragments and an emitted 4 He particle, we were able to distinguish emission processes in fusion-like fission from those associated with inelastic reactions. Analysis of the data shows isotropic and strongly forward-peaked 4 He components for both fusion and sequential fission, and kinematic evidence indicates substantial evaporation-like emission from the composite system rather than from fission fragments. The effects of light element impurities on charged particle spectra from heavy ion collisions are discussed, and a technique for directly evaluating the impurity contribution is briefly described

  13. Nuclear reaction mechanisms. Progress report, June 1976--July 1977

    Energy Technology Data Exchange (ETDEWEB)

    Blann, M.

    1977-01-01

    Research under the subject contract is on heavy ion induced reactions, both on experimental measurement and theoretical interpretation. Measurements have included determination of elastic scattering, evaporation residue, fission, quasi elastic and deep inelastic scattering cross sections. From these data we have extracted information on fusion barrier heights and radii, nucleus-nucleus potentials and fission parameterizations at high angular momenta. We have started investigating influence of excitation energies on inverse cross sections and of precompound decay in heavy ion reactions, and have investigated multidimensional potential energy surfaces for heavy ion collisions. Work which has been published is listed in the Publications Section; work not yet published and/or in progress is discussed herein.

  14. Nuclear reaction mechanisms. Progress report, June 1976--July 1977

    International Nuclear Information System (INIS)

    Blann, M.

    1977-01-01

    Research under the subject contract is on heavy ion induced reactions, both on experimental measurement and theoretical interpretation. Measurements have included determination of elastic scattering, evaporation residue, fission, quasi elastic and deep inelastic scattering cross sections. From these data we have extracted information on fusion barrier heights and radii, nucleus-nucleus potentials and fission parameterizations at high angular momenta. We have started investigating influence of excitation energies on inverse cross sections and of precompound decay in heavy ion reactions, and have investigated multidimensional potential energy surfaces for heavy ion collisions. Work which has been published is listed in the Publications Section; work not yet published and/or in progress is discussed herein

  15. Explosion-evaporation model for fragment production in intermediate-energy nuclear collisions

    International Nuclear Information System (INIS)

    Fai, G.; Randrup, J.

    1981-01-01

    Nuclear collisions at intermediate energies may create transient systems of hot nuclear matter that decay into many nuclear fragments. The disassembly of such a nuclear fireball is described as a two-stage process. In the primary explosion stage the system quickly fragments into nucleons and composite nuclei according to the available phase space. The explosion produces excited nuclei with half-lives longer than the time associated with the breakup. In the secondary evaporation stage, these nuclei decay, first by sequential emission of light particles (neutrons, protons, alphas), later by electromagnetic radiation. The secondary stage in general changes the relative abundancies of the various fragment species. This general feature makes it essential to take account of the composite fragments before using d/p as a measure of the entropy of the initial source. The formation of unbound nuclei at the explosion stage also has the desirable effect of enhancing the final abundancies of particularly stable nuclei, e.g., 4 He. For neutron-excessive sources the presence of composite nuclei amplifies the ratio of observed neutrons and protons; this effect persists for heavier mirror systems. Predictions of the model are qualitatively compared to available experimental data. The model offers a convenient way to augment existing dynamical models, such as intra-nuclear cascade and nuclear fluid dynamics, to yield actual nuclear fragments rather than merely matter distributions

  16. Theoretical studies in medium-energy nuclear and hadronic physics

    International Nuclear Information System (INIS)

    Horowitz, C.J.; Macfarlane, M.H.; Matsui, T.; Serot, B.D.

    1993-01-01

    A proposal for theoretical nuclear physics research is made for the period April 1, 1993 through March 31, 1996. Research is proposed in the following areas: relativistic many-body theory of nuclei and nuclear matter, quasifree electroweak scattering and strange quarks in nuclei, dynamical effects in (e,e'p) scattering at large momentum transfer, investigating the nucleon's parton sea with polarized leptoproduction, physics of ultrarelativistic nucleus endash nucleus collisions, QCD sum rules and hadronic properties, non-relativistic models of nuclear reactions, and spin and color correlations in a quark-exchange model of nuclear matter. Highlights of recent research, vitae of principal investigators, and lists of publications and invited talks are also given. Recent research dealt primarily with medium-energy nuclear physics, relativistic theories of nuclei and the nuclear response, the nuclear equation of state under extreme conditions, the dynamics of the quark endash gluon plasma in relativistic heavy-ion collisions, and theories of the nucleon endash nucleon force

  17. Determination of nuclear friction in strongly damped reactions from prescission neutron multiplicities

    NARCIS (Netherlands)

    Wilczynski, J; SiwekWilczynska, K; Wilschut, HW

    Nonfusion, fissionlike reactions in collisions of four heavy systems (well below the fusion extra-push energy threshold), Mr which Hinde and co-workers had measured the prescission neutron multiplicities, have been analyzed in terms of the deterministic dynamic model of Feldmeier coupled to a

  18. [Electromagnetic studies of nuclear structure and reactions

    International Nuclear Information System (INIS)

    1992-01-01

    The experimental goals are focused on developing an understanding of strong interactions and the structure of hadronic systems by determination of the electromagnetic response; these goals will be accomplished through coincidence detection of final states. Nuclear modeling objectives are to organize and interpret the data through a consistent description of a broad spectrum of reaction observables; calculations are performed in a nonrelativistic diagrammatic framework as well as a relativistic QHD approach. Work is described according to the following arrangement: direct knockout reactions (completion of 16 O(e,e'p), 12 C(e,e'pp) progress, large acceptance detector physics simulations), giant resonance studies (intermediate-energy experiments with solid-state detectors, the third response function in 12 C(e,e'p 0 ) and 16 O(e,e'p 0 ), comparison of the 12 C(e, e'p 0 ) and 16 O(e,e'p 3 ) reactions, quadrupole strength in the 16 O(e,e'α 0 ) reaction, quadrupole strength in the 12 C(e,e'α) reaction, analysis of the 12 C(e,e'p 1 ) and 16 O(e,e'p 3 ) angular distributions, analysis of the 40 Ca(e,e'x) reaction at low q, analysis of the higher-q 12 C(e,e'x) data from Bates), models of nuclear structure (experimental work, Hartree-Fock calculations, phonon excitations in spherical nuclei, shell model calculations, variational methods for relativistic fields), and instrumentation development efforts (developments at CEBAF, CLAS contracts, BLAST developments)

  19. Reaction mechanisms in collisions induced by $^{8}$B beam close to the barrier

    CERN Multimedia

    The aim of the proposed experiment is to investigate the reaction dynamics of proton-halo induced collisions at energies around the Coulomb barrier where coupling to continuum effects are expected to be important. We propose to measure the $^{8}$B + $^{64}$Zn elastic scattering angular distribution together with the measurement, for the first time, of p - $^{7}$Be coincidences coming from transfer and/or break-up of $^{8}$B. The latter will allow a better understanding of the relative contribution of elastic $\\textit{vs}$ non-elastic break-up in reactions induced by extremely weakly-bound nuclei. We believe that with the availability of the post accelerated $^{8}$B beam at REX-ISOLDE we will be able to collect for the first time high quality data for the study of such an important topic.

  20. Experimental and theoretical studies of the O(3P) + C2H4 reaction dynamics: Collision energy dependence of branching ratios and extent of intersystem crossing

    Science.gov (United States)

    Fu, Bina; Han, Yong-Chang; Bowman, Joel M.; Leonori, Francesca; Balucani, Nadia; Angelucci, Luca; Occhiogrosso, Angela; Petrucci, Raffaele; Casavecchia, Piergiorgio

    2012-12-01

    The reaction of O(3P) with C2H4, of importance in combustion and atmospheric chemistry, stands out as paradigm reaction involving not only the indicated triplet state potential energy surface (PES) but also an interleaved singlet PES that is coupled to the triplet surface. This reaction poses great challenges for theory and experiment, owing to the ruggedness and high dimensionality of these potentials, as well as the long lifetimes of the collision complexes. Crossed molecular beam (CMB) scattering experiments with soft electron ionization detection are used to disentangle the dynamics of this polyatomic multichannel reaction at a collision energy Ec of 8.4 kcal/mol. Five different primary products have been identified and characterized, which correspond to the five exothermic competing channels leading to H + CH2CHO, H + CH3CO, CH3 + HCO, CH2 + H2CO, and H2 + CH2CO. These experiments extend our previous CMB work at higher collision energy (Ec ˜ 13 kcal/mol) and when the results are combined with the literature branching ratios from kinetics experiments at room temperature (Ec ˜ 1 kcal/mol), permit to explore the variation of the branching ratios over a wide range of collision energies. In a synergistic fashion, full-dimensional, QCT surface hopping calculations of the O(3P) + C2H4 reaction using ab initio PESs for the singlet and triplet states and their coupling, are reported at collision energies corresponding to the CMB and the kinetics ones. Both theory and experiment find almost an equal contribution from the triplet and singlet surfaces to the reaction, as seen from the collision energy dependence of branching ratios of product channels and extent of intersystem crossing (ISC). Further detailed comparisons at the level of angular distributions and translational energy distributions are made between theory and experiment for the three primary radical channel products, H + CH2CHO, CH3 + HCO, and CH2 + H2CO. The very good agreement between theory and

  1. Energy transfer in diatom/diatom molecular collisions

    International Nuclear Information System (INIS)

    Sohlberg, K.W.

    1992-01-01

    In a collision of two molecules, the translational energy of the collision may be redistributed into internal energy of rotation, vibration, or electron motion, in one or both of the colliding partners. In addition, internal energy in one or more of these modes may be open-quotes quenchedclose quotes into translation, leading to a superelastic collision. Such energy transfer may take place by a number of mechanisms. This energy transfer is of fundamental importance in understanding chemical reaction dynamics. Nearly all chemical reactions take place through a bimolecular collision process (or multiple bimolecular collisions) and the quantum state specificity of the reaction can have a major role in determining the kinetics of the reaction, In particular, the author has investigated vibrational energy transfer in collisions between two diatomic molecules. In addition to serving as models for all molecular collision process, gas phase collisions of these species are ubiquitous in atmospheric phenomena which are of critical importance in answering the current questions about the human induced degradation of the earth's atmospheric. Classical trajectory methods have been used to explore the excitation of vibrations in gas-phase collisions of the nitrogen molecular ion with its parent molecule. The near symmetry of the reactants is shown to result in a high probability that the two molecules are excited by an equal amount of energy. This provides a possible explanation of the molecular beam measurements which show that the total number of vibrational energy quanta excited in the collision is, with a high probability that the two molecules are excited by an equal amount of energy. This provides a possible explanation of the molecular beam measurements which show that the total number of vibrational energy quanta excited in the collision is, with a high probability, even

  2. Effects on nuclear fusion reaction on diffusion and thermal conduction in a magnetoplasma

    International Nuclear Information System (INIS)

    Sakai, Kazuo; Aono, Osamu.

    1976-12-01

    In spite of the well spread belief in the field of irreversible thermodynamics, vectorial phenomena couple thermodynamically with the scalar phenomena. Transport coefficients concerning the diffusion and the thermal conduction across a strong magnetic field are calculated in the presence of the deuteron-triton fusion reaction on the basis of the gas kinetic theory. When the reaction takes place, the diffusion increases and the thermal conduction decreases. Effects of the reaction exceed those of the Coulomb collision as the temperature is high enough. (auth.)

  3. Microjets and coated wheels: versatile tools for exploring collisions and reactions at gas-liquid interfaces.

    Science.gov (United States)

    Faust, Jennifer A; Nathanson, Gilbert M

    2016-07-07

    This tutorial review describes experimental aspects of two techniques for investigating collisions and reactions at the surfaces of liquids in vacuum. These gas-liquid scattering experiments provide insights into the dynamics of interfacial processes while minimizing interference from vapor-phase collisions. We begin with a historical survey and then compare attributes of the microjet and coated-wheel techniques, developed by Manfred Faubel and John Fenn, respectively, for studies of high- and low-vapor pressure liquids in vacuum. Our objective is to highlight the strengths and shortcomings of each technique and summarize lessons we have learned in using them for scattering and evaporation experiments. We conclude by describing recent microjet studies of energy transfer between O2 and liquid hydrocarbons, HCl dissociation in salty water, and super-Maxwellian helium evaporation.

  4. Nuclear science. Annual report, July 1, 1978-June 30, 1979

    International Nuclear Information System (INIS)

    Gough, R.A.; Nurmia, M.J.; Westfall, G.D.

    1980-03-01

    This Annual Report of the Nuclear Science Division describes the scientific research that has been carried out within the Division during the period between July 1, 1978 and June 30, 1979. The principal objective of the Nuclear Science Division continues to be the experimental and theoretical investigation of the interactions of heavy ions with target nuclei, both for their intrinsic application in developing understanding of microscopic and macroscopic nuclear science and for their use in the synthesis of new exotic isotopes and new chemical elements. Complementary programs in light ion nuclear science, in nuclear data compilations, and in advanced instrumentation development are also pursued. The Division operates the 88-inch cyclotron as a major research facility which also supports a strong outside user program; experimentalists within the Division also use the Super HILAC and the Bevalac accelerators for their studies. Experimental research was carried out on nuclear structure, nuclear reactions and scattering, and relativistic heavy ions (projectile and target fragmentation, central collisions), with lesser effort devoted to atomic physics, the isotopes project, and other activities. The theoretical study of nuclear collisions involved both nonrelativistic and relativistic reactions. Other work was devoted to the subjects of accelerator operations and development and nuclear instrumentation. Publications lists are also included. 30 items with significant information were abstracted and indexed individually

  5. Testing collinear factorization and nuclear parton distributions with pA collisions at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Quiroga-Arias, Paloma [Departamento de Fisica de PartIculas and IGFAE, Universidade de Santiago de Compostela 15706 Santiago de Compostela (Spain); Milhano, Jose Guilherme [CENTRA, Departamento de Fisica, Instituto Superior Tecnico (IST), Av. Rovisco Pais 1, P-1049-001 Lisboa (Portugal); Wiedemann, Urs Achim, E-mail: pquiroga@fpaxpl.usc.es [Physics Department, Theory Unit, CERN, CH-1211 Geneve 23 (Switzerland)

    2011-01-01

    Global perturbative QCD analyses, based on large data sets from electron-proton and hadron collider experiments, provide tight constraints on the parton distribution function (PDF) in the proton. The extension of these analyses to nuclear parton distributions (nPDF) has attracted much interest in recent years. nPDFs are needed as benchmarks for the characterization of hot QCD matter in nucleus-nucleus collisions, and attract further interest since they may show novel signatures of non- linear density-dependent QCD evolution. However, it is not known from first principles whether the factorization of long-range phenomena into process-independent parton distribution, which underlies global PDF extractions for the proton, extends to nuclear effects. As a consequence, assessing the reliability of nPDFs for benchmark calculations goes beyond testing the numerical accuracy of their extraction and requires phenomenological tests of the factorization assumption. Here we argue that a proton-nucleus collision program at the LHC would provide a set of measurements allowing for unprecedented tests of the factorization assumption underlying global nPDF fits.

  6. J/psi production in proton-nucleus collisions at ALICE: cold nuclear matter really matters

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Heavy quarkonia are expected to be sensitive to the properties of strongly interacting matter, at both low and high temperatures. In nucleus-nucleus collisions, a phase transition to a deconfined state of quarks and gluons (Quark-Gluon Plasma) is thought to take place once the temperature of the system exceeds a critical temperature of the order of 150-200 MeV. The deconfined state can induce a suppression of charmonium (due to color screening, dominant at SPS and RHIC energies), which can be overturned at LHC energy by the (re)combination of the large number of free c and cbar quarks, taking place when the system cools down below the critical temperature. Cold nuclear matter also has an influence on heavy quarkonia. Such effects can be studied in proton-nucleus collisions, where no deconfined state is expected to be created. At LHC energy, they mainly include nuclear shadowing, gluon saturation, break-up of the quarkonium states, and parton energy loss in the initial and final state. The study of these eff...

  7. Measurement of the ionization probability of the 1s sigma molecular orbital in half a collision at zero impact parameter

    International Nuclear Information System (INIS)

    Chemin, J.F.; Andriamonje, S.; Guezet, D.; Thibaud, J.P.; Aguer, P.; Hannachi, F.; Bruandet, J.F.

    1984-01-01

    We have measured, for the first time, the ionization probability Psub(1s sigma) of the 1s sigma molecular orbital in the way into a nuclear reaction (in half a collision at zero impact parameter) in a near symmetric collision 58 Ni + 54 Fe at 230 MeV leads to a compound nucleus of 112 Xe highly excited which decays first by sequential emission of charged particles and then by sequential emission of gamma rays. The determination of Psub(1s sigma) is based on the coincidence measurement between X-rays and γ-rays and the Doppler shift method is used to discrimine the ''atomic'' and ''nuclear'' X-rays

  8. Neck instabilities in deep inelastic collisions at medium energies

    International Nuclear Information System (INIS)

    Colonna, M.; Guarnera, A.; Istituto Nazionale di Fisica Nucleare, Catania; Catania Univ.; Di Toro, M.; Latora, V.; Smerzi, A.; Catania Univ.; Jiquan, Z.; Catania Univ.; Lanzhou Univ., GS

    1994-01-01

    A novel reaction mechanism for semi-peripheral heavy ion collisions is discussed due to new features of the nuclear dynamics in the overlapping region. In a very selected beam energy range, between 40 and 70 Me/u, we see the onset of new neck instabilities coupled to an increasing amount of dynamical fluctuations. Expected consequences are a possibility of intermediate mass fragment emission form the neck region and large variances in the projectile-like and target-like observables. (authors). 11 refs., 3 figs

  9. Nuclear Forensics and Radiochemistry: Reaction Networks

    Energy Technology Data Exchange (ETDEWEB)

    Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-22

    In the intense neutron flux of a nuclear explosion the production of isotopes may occur through successive neutron induced reactions. The pathway to these isotopes illustrates both the complexity of the problem and the need for high quality nuclear data. The growth and decay of radioactive isotopes can follow a similarly complex network. The Bateman equation will be described and modified to apply to the transmutation of isotopes in a high flux reactor. A alternative model of growth and decay, the GD code, that can be applied to fission products will also be described.

  10. Stochastic aspects of multiparticle production in relativistic nuclear reactions

    International Nuclear Information System (INIS)

    Tachung, M.

    1988-01-01

    Midrapidity multiparticle production process in ordinary hadron and heavy-ion induced reactions at sufficiently high incident energies are analyzed. It is shown that stochastic aspects of multiparticle production process in relativistic range plays a dominating role in understanding the observable phenomena. The basic idea and the main results of the multisource model for hadron-nucleus and nucleus-nucleus collisions are shown. The concept of the NES (number of effective sources) scaling is discussed. 16 refs.; 7 figs

  11. HMI Section of Nuclear and Radiation Physics - annual report 1985

    International Nuclear Information System (INIS)

    1986-01-01

    This annual report contains extended abstracts about the work performed at the named institute concerning theoretical physics, nuclear reactions, hyperfine structure, atomic collisions, and developments of the VICKSI accelerator together with a list of publications and talks. (HSI) [de

  12. Low energy nuclear reactions: 2007 update

    International Nuclear Information System (INIS)

    Krivit, S. B.

    2007-01-01

    Introduction: This paper presents an overview of the field of low energy nuclear reactions (LENR), a branch of condensed matter nuclear science. It explains some of the various terminologies that have been used to describe this field since it debuted as 'cold fusion' in 1989. The paper also reviews some of the most interesting news and developments regarding low energy nuclear reaction experiments and theory, and some of the sociological and political trends that have affected the field over the last 18 years. It concludes with a list of resources and information for scientists, journalists and decision makers. Understanding the Nature of the Reactions The worldwide LENR research effort includes 200 researchers in 13 nations. Over the last 18 years, 12 international conferences have been held, as well as 7 regional conferences in Italy, 14 in Russia and 7 in Japan. The significant questions that face this field of research are: a) Are LENRs a genuine nuclear reaction? b) If so, is there a release of excess energy? and c) Are transmutations possible? If the answers to these questions turn out to be positive, the next questions will be: d) Is the energy release cost-effective? and e) Are the transmutations useful? Despite the fact that repeatability and reproducibility are challenging, the required parameters for achieving the excess heat effect are well understood. First, a high atomic loading ratio of D into Pd is required. In most conditions, 0.90 is the minimum threshold required to produce an excess heat effect. Second, a high electrical current density in the cathode is needed, 250 mA/cm 2 under most conditions. The third requirement is for some kind of dynamic trigger to impose a deuterium flux in, on or around the cathode. The challenge that researchers face is how to achieve these conditions. Some of the Most Interesting Research Developments Work by Stanislaw Szpak, Pamela Boss and Frank Gordon at the U.S. Navy's SPAWAR Systems Center in San Diego has

  13. Low Energy Nuclear Reactions?

    CERN Multimedia

    CERN. Geneva; Faccini, R.

    2014-01-01

    After an introduction to the controversial problem of Low Energy Nuclear Reactions (LENR) catalyzed by neutrons on metallic hydride surfaces we present the results of an experiment, made in collaboration with ENEA Labs in Frascati, to search neutrons from plasma discharges in electrolytic cells. The negative outcome of our experiment goes in the direction of ruling out those theoretical models expecting LENR to occur in condensed matter systems under specific conditions. Our criticism on the theoretical foundations of such models will also be presented.

  14. High energy nuclear collisions: Theory overview

    Indian Academy of Sciences (India)

    1012 K, were deconfined and existed as a quark gluon plasma (QGP). These ideas can be tested in collisions of nuclei at ultra-relativistic energies. At the relativistic heavy-ion collider (RHIC), nuclei as heavy as gold are accelerated to an energy of 100 GeV per nucleon. A total energy of 40 TeV is available in the collision of.

  15. Nuclear fragmentation in central collisions: Ni + Au from 32 to 90 A*MeV

    International Nuclear Information System (INIS)

    Bellaize, N.

    2000-01-01

    Heavy ion collisions are one of tools for studying nuclear system far away from its equilibrium state. This work concerns the most violent collisions in the Ni + Au system for incident energies ranging from 32 up to 90 AMeV. These events were detected with the multidetector INDRA and selected by the Principal Component Analysis (multidimensional analysis). This method classifies the events according their detection features and their degree of dissipation. We observed two deexcitation mechanisms: a fusion/fission - evaporation process and a multifragmentation process. Those two coexist from 32 to 52 AMeV whereas only one subsists at 90 AMeV. For those two mechanisms, an component was observed which seems to be linked to the initial phase of the reaction. The energy fluctuations of this component leads to variations in the energy deposit which determines the deexcitation of the system. The experimental multifragmentation data of the Ni + Au system (52 and 90 AMeV) were compared to the predictions of a statistical model and to the experimental data of the system Xe + Sn at 50 AMeV (also detected with INDRA). These comparisons show the lack of collective radial energy for fragments (Z≥10) in the Ni + Au system, and show that the degree of multifragmentation depends of the thermal excitation energy. Mean kinetic energies of particles and lights fragments (Z≥10) are larger in the Ni + Au system than the Xe + Sn system. This observation shows that these particles are more sensitive to the entrance channel for an asymmetric system than for a symmetric system (for the same number of nucleons). (author)

  16. Nuclear reaction studies: Progress report

    International Nuclear Information System (INIS)

    Thaler, R.M.

    1986-01-01

    A principal focus of recent research has been the three-body problem. A great deal of effort has been devoted to the creation of a computer program to calculate physical observables in the three body problem below 1 GeV. Successful results have been obtained for the triton. Additional work concerns scattering of K + mesons from nuclei, antinucleon physics, relativistic nuclear physics and inclusive reactions

  17. Kinetics of chemical reactions initiated by hot atoms

    International Nuclear Information System (INIS)

    Firsova, L.P.

    1977-01-01

    Modern ideas about kinetics of chemical reactions of hot atoms are generalized. The main points of the phenomenological theories (''kinetic theory'' of Wolfgang-Estrup hot reactions and the theory of ''reactions integral probability'' of Porter) are given. Physico-chemical models of elastic and non-elastic collisions are considered which are used in solving Boltzmann integro-differential equations and stochastic equations in the Porter theory. The principal formulas are given describing probabilities or yields of chemical reactions, initiated with hot atoms, depending on the distribution functions of hot particles with respect to energy. Briefly described are the techniques and the results of applying the phenomenological theories for interpretation of the experimental data obtained during nuclear reactions with hot atoms, photochemical investigations, etc. 96 references are given

  18. Dynamical and statistical bimodality in nuclear fragmentation

    Science.gov (United States)

    Mallik, S.; Chaudhuri, G.; Gulminelli, F.

    2018-02-01

    The origin of bimodal behavior in the residue distribution experimentally measured in heavy ion reactions is reexamined using Boltzmann-Uehling-Uhlenbeck simulations. We suggest that, depending on the incident energy and impact parameter of the reaction, both entrance channel and exit channel effects can be at the origin of the observed behavior. Specifically, fluctuations in the reaction mechanism induced by fluctuations in the collision rate, as well as thermal bimodality directly linked to the nuclear liquid-gas phase transition, are observed in our simulations. Both phenomenologies were previously proposed in the literature but presented as incompatible and contradictory interpretations of the experimental measurements. These results indicate that heavy ion collisions at intermediate energies can be viewed as a powerful tool to study both bifurcations induced by out-of-equilibrium critical phenomena, as well as finite-size precursors of thermal phase transitions.

  19. Development of a utility system for nuclear reaction data file: WinNRDF

    International Nuclear Information System (INIS)

    Aoyama, Shigeyoshi; Ohbayasi, Yosihide; Masui, Hiroshi; Chiba, Masaki; Kato, Kiyoshi; Ohnishi, Akira

    2000-01-01

    A utility system, WinNRDF, is developed for charged particle nuclear reaction data of NRDF (Nuclear Reaction Data File) on the Windows interface. By using this system, we can easily search the experimental data of a charged particle nuclear reaction in NRDF than old retrieval systems on the mainframe and also see graphically the experimental data on GUI (Graphical User Interface). We adopted a mechanism of making a new index of keywords to put to practical use of the time dependent properties of the NRDF database. (author)

  20. Direct nuclear reaction experiments for stellar nucleosynthesis

    International Nuclear Information System (INIS)

    Cherubini, S.

    2016-01-01

    During the last two decades indirect methods where proposed and used in many experiments in order to measure nuclear cross sections between charged particles at stellar energies. These are among the lowest to be measured in nuclear physics. One of these methods, the Trojan Horse method, is based on the Quasi- Free reaction mechanism and has proved to be particularly flexible and reliable. It allowed for the measurement of the cross sections of various reactions of astrophysical interest using stable beams. The use and reliability of indirect methods become even more important when reactions induced by Radioactive Ion Beams are considered, given the much lower intensity generally available for these beams. The first Trojan Horse measurement of a process involving the use of a Radioactive Ion Beam dealt with the "1"8F(p,α)"1"5O process in Nova conditions. To obtain pieces of information on this process, in particular about its cross section at Nova energies, the Trojan Horse method was applied to the "1"8F(d,α "1"5O)n three body reaction. In order to establish the reliability of the Trojan Horse method approach, the Treiman-Yang criterion is an important test and it will be addressed briefly in this paper.

  1. The Cascade-Exciton Approach to Nuclear Reactions. (Foundation and Achievements)

    International Nuclear Information System (INIS)

    Mashnik, S.G.

    1994-01-01

    The relativistic kinetic equations describing nuclear reactions at intermediate energies are obtained on the dynamical basis. These equations are analyzed and realized in several versions of the Cascade Exciton Model (CEM). The CEM assumes that reactions occur in three stages: the intranuclear cascade, pre-equilibrium and the evaporative ones. A large variety of experimental data on hadron- and photonuclear reactions in the bombarding energy range up to several GeV are analyzed in this approach. The contributions of different pion and photon absorption mechanisms and the relative role of different particle and photon production mechanisms in these reactions are estimated. The CEM describes adequately nuclear reactions at intermediate energies and has one of the best predictive powers as compared to other available modern models. 55 refs., 10 figs., 1 tab

  2. Global Λ hyperon polarization in nuclear collisions

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; de La Barca Sánchez, M. Calderón; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; de Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Y.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, H.; Liu, P.; Liu, Y.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, G. L.; Ma, L.; Ma, Y. G.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y. F.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, C.; Yang, S.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, X. P.; Zhang, J. B.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.

    2017-08-01

    The extreme energy densities generated by ultra-relativistic collisions between heavy atomic nuclei produce a state of matter that behaves surprisingly like a fluid, with exceptionally high temperature and low viscosity. Non-central collisions have angular momenta of the order of 1,000ћ, and the resulting fluid may have a strong vortical structure that must be understood to describe the fluid properly. The vortical structure is also of particular interest because the restoration of fundamental symmetries of quantum chromodynamics is expected to produce novel physical effects in the presence of strong vorticity. However, no experimental indications of fluid vorticity in heavy ion collisions have yet been found. Since vorticity represents a local rotational structure of the fluid, spin-orbit coupling can lead to preferential orientation of particle spins along the direction of rotation. Here we present measurements of an alignment between the global angular momentum of a non-central collision and the spin of emitted particles (in this case the collision occurs between gold nuclei and produces Λ baryons), revealing that the fluid produced in heavy ion collisions is the most vortical system so far observed. (At high energies, this fluid is a quark-gluon plasma.) We find that Λ and hyperons show a positive polarization of the order of a few per cent, consistent with some hydrodynamic predictions. (A hyperon is a particle composed of three quarks, at least one of which is a strange quark; the remainder are up and down quarks, found in protons and neutrons.) A previous measurement that reported a null result, that is, zero polarization, at higher collision energies is seen to be consistent with the trend of our observations, though with larger statistical uncertainties. These data provide experimental access to the vortical structure of the nearly ideal liquid created in a heavy ion collision and should prove valuable in the development of hydrodynamic models that

  3. Event characterization and high order flow components of Au-Au collisions at 1.23 AGeV with HADES

    Energy Technology Data Exchange (ETDEWEB)

    Kardan, Behruz; Blume, Christoph; Subotic, Maja [Goethe-Universitaet, Frankfurt am Main (Germany); Collaboration: HADES-Collaboration

    2015-07-01

    HADES provides a large acceptance combined with a high mass resolution and therefor allows to study dielectron and hadron production in heavy-ion collisions with unprecedented precision. With the high statistics of seven billion Au-Au collisions at 1.23 AGeV recorded in April/May 2012 also the investigation of higher order flow harmonics is possible. Collective flow is a sensitive probe for the properties of extreme QCD matter. However, its interpretation relies on the understanding of the initial conditions e.g. the eccentricity of the fireball created in the nuclear overlap region. Based on Glauber Monte Carlo calculations the initial conditions of nuclear collisions, with special emphasis on the correlations between participating nucleons, were examined. Observables of event-by-event flow fluctuations with respect to the reaction centrality are deduced from geometrical properties of the initial state and compared to the measured data.

  4. Molecular treatment of the ion-pair formation reaction in H(1s) + H(1s) collisions

    Energy Technology Data Exchange (ETDEWEB)

    Borondo, F.; Martin, F.; Yaez, M.

    1987-01-01

    All the available theoretical calculations of the cross section for the ion-pair formation reaction H(1s)+H(1s)..-->..H/sup +/H/sup -/(1s/sup 2/) have been performed using methods that are only valid at high collision energies. They get good agreement with the experiments for impact energies greater than 25 keV, but fail completely at smaller energies. In this work we report the cross section for this reaction at impact energies less than 10 keV, calculated in the framework of the impact-parameter approximation and using the molecular method with a common translation factor.

  5. Molecular treatment of the ion-pair formation reaction in H(1s) + H(1s) collisions

    International Nuclear Information System (INIS)

    Borondo, F.; Martin, F.; Yaez, M.

    1987-01-01

    All the available theoretical calculations of the cross section for the ion-pair formation reaction H(1s)+H(1s)→H + H - (1s 2 ) have been performed using methods that are only valid at high collision energies. They get good agreement with the experiments for impact energies greater than 25 keV, but fail completely at smaller energies. In this work we report the cross section for this reaction at impact energies less than 10 keV, calculated in the framework of the impact-parameter approximation and using the molecular method with a common translation factor

  6. BNL325 - Nuclear reaction data display program

    International Nuclear Information System (INIS)

    Dunford, C.L.

    1994-01-01

    A computer code for the graphical display of nuclear reaction data is described. The code, which works on a computer with VMS operating system, can overlay experimental data from an EXFOR/CSISRS table-computation format with evaluated data from ENDF formatted data libraries. Originally, this code has been used at the U.S. National Nuclear Data Center to produce the well-known neutron cross-section atlas published as report BNL-325. (author). 3 tabs

  7. BNL325 - Nuclear reaction data display program

    Energy Technology Data Exchange (ETDEWEB)

    Dunford, C L

    1994-11-27

    A computer code for the graphical display of nuclear reaction data is described. The code, which works on a computer with VMS operating system, can overlay experimental data from an EXFOR/CSISRS table-computation format with evaluated data from ENDF formatted data libraries. Originally, this code has been used at the U.S. National Nuclear Data Center to produce the well-known neutron cross-section atlas published as report BNL-325. (author). 3 tabs.

  8. Development of the system for excitation function automatic measurement of nuclear reactions

    International Nuclear Information System (INIS)

    Sapozhnikov, A.B.

    2004-01-01

    Full text: The resonance nuclear reaction method is applied at the tandem accelerator UKP-2-1 to determinate films thickness and obtain light element depth distribution. The system for automatic measurement of the nuclear reaction excitation curve has been developed. It allowed to obtain an excitation function of nuclear reaction using continuous changing potential of the target with energy step of 6 eV. Saw-tooth voltage with amplitude up to 6 kV from the block of scanning beam is fed to a target. The amplitude is determined by constant voltage from the scanning beam block control. Nal(Tl) detector detects gamma quanta - the products of a nuclear reaction and transforms they in voltage impulses. The impulses through the amplifier income in the single-channel analyzer which forms impulses to start the analog-to-digital converter. The value of saw-tooth voltage corresponding to the moment of gamma quantum detection is read by the analog-to-digital converter, where it is transformed to digital code and transmitted to the computer. The computer program has been developed to control the process of accumulation of excitation function. The dependence a detected γ-quanta yield from a target potential is automatically plotted by the program. This dependence corresponds to the nuclear reaction excitation function. If scanning amplitude is not enough in order to scan need depth of a sample, an operator increases energy of the proton beam changing high voltage potential of the terminal up 3 keV and measures the nuclear reaction excitation function with the new energy. This procedure can be repeated some times. After that 'sewing' of excitation functions is carried out by the program under the hypothesis that nuclear reaction yield in last points be identical

  9. Probing the nuclear symmetry energy at high densities with nuclear reactions

    Science.gov (United States)

    Leifels, Y.

    2017-11-01

    The nuclear equation of state is a topic of highest current interest in nuclear structure and reactions as well as in astrophysics. The symmetry energy is the part of the equation of state which is connected to the asymmetry in the neutron/proton content. During recent years a multitude of experimental and theoretical efforts on different fields have been undertaken to constraint its density dependence at low densities but also above saturation density (ρ_0=0.16 fm ^{-3} . Conventionally the symmetry energy is described by its magnitude S_v and the slope parameter L , both at saturation density. Values of L = 44 -66MeV and S_v=31 -33MeV have been deduced in recent compilations of nuclear structure, heavy-ion reaction and astrophysics data. Apart from astrophysical data on mass and radii of neutron stars, heavy-ion reactions at incident energies of several 100MeV are the only means do access the high density behaviour of the symmetry energy. In particular, meson production and collective flows upto about 1 AGeV are predicted to be sensitive to the slope of the symmetry energy as a function of density. From the measurement of elliptic flow of neutrons with respect to charged particles at GSI, a more stringent constraint for the slope of the symmetry energy at supra-saturation densities has been deduced. Future options to reach even higher densities will be discussed.

  10. Electromagnetic processes in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Bertulani, C.A.; Rio de Janeiro Univ.

    1987-05-01

    A study of the processes generated by the electromagnetic interaction in relativistic nuclear, and atomic collisions is presented. Very strong electromagnetic fields for a very short time are present in distant collisions with no nuclear contact. Such fields can also lead to interesting effects, which are discussed here. (orig.)

  11. Particle production in high energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Stock, R.

    1985-05-01

    Recent data on the production of pions and strange particles at the Bevalac and Synchrophasotron accelerators are reviewed, covering pion spectra and multiplicity distributions, Λ, K + and K - yields and spectra, and Λ polarization. Emphasis is placed on recent progress in determining the equation of state of compressed fireball nuclear matter from the observed pion yield in central collisions. Further, the information derived from apparent spectral temperatures is critically examined, along with a discussion of thermal and chemical equilibrium attainment in the reactions, as revealed by particle spectra and yields. (orig.)

  12. Dynamical and statistical aspects in nucleus-nucleus collisions around the Fermi energy

    Energy Technology Data Exchange (ETDEWEB)

    Tamain, B.; Bocage, F.; Bougault, R.; Brou, R. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Assenard, M. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees; Auger, G.; Benlliure, J. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Bacri, C.O.; Borderie, B. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Bisquer, E. [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire] [and others

    1997-12-31

    Nucleus-nucleus collisions at low incident energy are mainly governed by statistical dissipative processes, fusion and deep inelastic reactions being the most important ones. Conversely, in the relativistic energy regime, dynamical effects play a dominant role and one should apply a participant-spectator picture in order to understand the data. In between, the intermediate energy region is a transition one in which it is necessary to disentangle dynamics from statistical effects. Moreover, the Fermi energy region corresponds to available energies comparable with nuclear binding energies and one may except to observe phase transition effects. Experiments performed recently with 4{pi} devices have given quite new data and a much better insight into involved mechanisms and hot nuclear matter properties. INDRA data related to reaction mechanisms and multifragmentation are presented. (author) 53 refs.

  13. Dynamical and statistical aspects in nucleus-nucleus collisions around the Fermi energy

    International Nuclear Information System (INIS)

    Tamain, B.; Bocage, F.; Bougault, R.; Brou, R.; Bacri, C.O.; Borderie, B.; Bisquer, E.

    1997-01-01

    Nucleus-nucleus collisions at low incident energy are mainly governed by statistical dissipative processes, fusion and deep inelastic reactions being the most important ones. Conversely, in the relativistic energy regime, dynamical effects play a dominant role and one should apply a participant-spectator picture in order to understand the data. In between, the intermediate energy region is a transition one in which it is necessary to disentangle dynamics from statistical effects. Moreover, the Fermi energy region corresponds to available energies comparable with nuclear binding energies and one may except to observe phase transition effects. Experiments performed recently with 4π devices have given quite new data and a much better insight into involved mechanisms and hot nuclear matter properties. INDRA data related to reaction mechanisms and multifragmentation are presented. (author)

  14. Kinematical properties of spectator fragments in heavy-ion collisions at relativistic energies

    International Nuclear Information System (INIS)

    Bacquias, A.

    2008-07-01

    Contrary to central collisions experiments, some experiments are designed for the investigation of nuclear-matter properties thanks to spectator matter. These experiments concentrate their selection on events of peripheral and mid-peripheral collisions. Spectator matter is not subject to compression but is highly excited. The observables related to spectator fragments can then be used as probes on nuclear matter at low density in the case of mid-peripheral collisions. Recently, experiments with the Fragment Separator (FRS) at GSI have proven to be suited for yielding valuable complementary information to spectator matter studies. We will first give an overview of the types of reaction relevant for this study and the different features that condition the reaction mechanisms leading to fragmentation. In the second chapter, we will describe the experimental set-up used at the FRS and explain the role of each detector and the method to exploit these data at best. In the third chapter we will concentrate our efforts on kinematics data from a 136 Xe + Pb experiment at the energy of 1 GeV per nucleon. Experimental results come in the fourth chapter and they are interpreted and discussed in chapters 5, 6 and 7. We will first comment the shapes of the velocity spectra and discuss the link between observation and physical processes. The surprising fact that one has means to assess the centrality despite the low acceptance of the experimental set-up will be underlined. This new way of presenting the data will permit a new approach to the nucleon-nucleon cross-section, by making comparison with theoretical models possible. Eventually, we will concentrate on the width of the velocity spectra. After going through previous models and predictions we will present a new description of the reaction mechanisms and their influence on the kinematics of observed fragments, reliable for a very broad range of fragments. (A.C.)

  15. Effects of the in-medium nucleon-nucleon cross section on collective flow and nuclear stopping in heavy-ion collisions in the Fermi-energy domain

    Science.gov (United States)

    Li, Pengcheng; Wang, Yongjia; Li, Qingfeng; Guo, Chenchen; Zhang, Hongfei

    2018-04-01

    With the newly updated version of the ultrarelativistic quantum molecular dynamics (UrQMD) model, a systematic investigation of the effects of in-medium nucleon-nucleon (NN ) elastic cross section on the collective flow and the stopping observables in 197Au+197Au collisions at beam energies from 40 to 150 MeV/nucleon is performed. Simulations with the medium correction factors F =σNN in -medium/σNN free=0.2 ,0.3 ,0.5 and the one obtained with the FU3FP1 parametrization which depends on both the density and the momentum are compared to the FOPI and INDRA experimental data. It is found that, to best fit the experimental data of the slope of the directed flow and the elliptic flow at midrapidity as well as the nuclear stopping, the correction factors of F =0.2 and 0.5 are required for reactions at beam energies of 40 and 150 MeV/nucleon, respectively. Whereas calculations with the FU3FP1 parametrization can simultaneously reproduce these experimental data reasonably well. And, the observed increasing nuclear stopping with increasing beam energy in experimental data can also be reproduced by using the FU3FP1 parametrization, whereas the calculated stopping power in Au + Au collisions with beam energies from 40 to 150 MeV /nucleon almost remains constant when taking F equal to a fixed value.

  16. High-spin nuclear target of 178m2Hf: creation and nuclear reaction studies

    International Nuclear Information System (INIS)

    Oganessyan, Yu.Ts.; Karamyan, S.A.; Gangrskij, Yu.P.

    1993-01-01

    A long-lived (31 years) four-quasiparticle isomer 178m 2 Hf(I,K π =16,16 + ) was produced in microweight quantities using the nuclear reaction 176 Yb( 4 He, 2n). Methods of precision chemistry and mass-separation for the purification of the produced Hf material have been developed. Thin targets of isomeric hafnium-178 on carbon backings were prepared and used in experiments on a neutron, proton and deuteron beams. First results on nuclear reactions on a high-spin exotic target were obtained. Experiments on electromagnetic interactions of the isomeric hafnium using methods of the collinear laser spectroscopy as well as of the nuclear orientation of hafnium implanted into a crystalline media were started. 11 refs.; 11 figs.; 2 tabs

  17. Effect of collision energy and vibrational excitation on endothermic ion-molecule reactions

    International Nuclear Information System (INIS)

    Turner, T.P.

    1984-07-01

    This thesis is divided into two major parts. In the first part an experimental study of proton and deuteron transfer in H 2 + + He and HD + + He has been carried out as a function of kinetic and vibrational energy. The data gives evidence that at lower kinetic energies, the spectator stripping mechanism indeed plays an important role when H 2 + or HD + is vibrationally excited. The second half of this thesis examines the relative efficiencies between the excitation of C-C stretching vibration and collision energy on the promotion of the H atom transfer reaction of C 2 H 2 + + H 2 → C 2 H 3 + + H

  18. Resonance reactions and enhancement of weak interactions in collisions of cold molecules

    International Nuclear Information System (INIS)

    Flambaum, V. V.; Ginges, J. S. M.

    2006-01-01

    With the creation of ultracold atoms and molecules, a new type of chemistry - 'resonance' chemistry - emerges: chemical reactions can occur when the energy of colliding atoms and molecules matches a bound state of the combined molecule (Feshbach resonance). This chemistry is rather similar to reactions that take place in nuclei at low energies. In this paper we suggest some problems for future experimental and theoretical work related to the resonance chemistry of ultracold molecules. Molecular Bose-Einstein condensates are particularly interesting because in this system collisions and chemical reactions are extremely sensitive to weak fields; also, a preferred reaction channel may be enhanced due to a finite number of final states. The sensitivity to weak fields arises due to the high density of narrow compound resonances and the macroscopic number of molecules with kinetic energy E=0 (in the ground state of a mean-field potential). The high sensitivity to the magnetic field may be used to measure the distribution of energy intervals, widths, and magnetic moments of compound resonances and study the onset of quantum chaos. A difference in the production rate of right-handed and left-handed chiral molecules may be produced by external electric E and magnetic B fields and the finite width Γ of the resonance (correlation ΓE·B). The same effect may be produced by the parity-violating energy difference in chiral molecules

  19. Probing properties of neutron stars with terrestrial nuclear reactions

    International Nuclear Information System (INIS)

    Li Baoan; Chen Liewen; Ko, C.M.; Steiner, Andrew W.; Yong Gaochan

    2006-01-01

    Heavy-ion reactions induced by neutron-rich nuclei provide the unique opportunity in terrestrial laboratories to constrain the nuclear symmetry energy Esym in a broad density range. A conservative constraint, 32(ρ/ρ0)0.7 < Esym(ρ) < 32(ρ/ρ0)1.1, around the nuclear matter saturation density ρ0 has recently been obtained from analyzing the isospin diffusion data within a transport model for intermediate energy heavy-ion reactions. This subsequently puts a stringent constraint on properties of neutron stars, especially their radii and cooling mechanisms

  20. The US nuclear reaction data network. Summary of the first meeting, March 13 ampersand 14 1996

    International Nuclear Information System (INIS)

    1996-03-01

    The first meeting of the US Nuclear Reaction Data Network (USNRDN) was held at the Colorado School of Mines, March 13-14, 1996 chaired by F. Edward Cecil. The Agenda of the meeting is attached. The Network, its mission, products and services; related nuclear data and data networks, members, and organization are described in Attachment 1. The following progress reports from the members of the USNRDN were distributed prior to the meeting and are given as Attachment 2. (1) Measurements and Development of Analytic Techniques for Basic Nuclear Physics and Nuclear Applications; (2) Nuclear Reaction Data Activities at the National Nuclear Data Center; (3) Studies of nuclear reactions at very low energies; (4) Nuclear Reaction Data Activities, Nuclear Data Group; (5) Progress in Neutron Physics at Los Alamos - Experiments; (6) Nuclear Reaction Data Activities in Group T2; (7) Progress Report for the US Nuclear Reaction Data Network Meeting; (8) Nuclear Astrophysics Research Group (ORNL); (9) Progress Report from Ohio University; (10) Exciton Model Phenomenology; and (11) Progress Report for Coordination Meeting USNRDN

  1. Nuclear science. Annual report, July 1, 1976--June 30, 1977

    International Nuclear Information System (INIS)

    Conzett, H.E.; Myers, W.D.; Schroeder, L.S.

    1977-01-01

    Brief reports (ca 2 pages in length) summarize research in experimental and theoretical aspects of nuclear structure, reactions and scattering. Experimental heavy-ion reactions (projectile and target fragmentation, central collisions) and atomic physics and the quark search are included. Reports are also provided on accelerator operations and development and nuclear instrumentation. Thesis abstracts and publications lists complete the volume. It is safe to assume that work reported here will be published upon completion; indeed, many of the reports are indicated as condensations of works accepted for publication or already published

  2. Charged-particle transfer reactions and nuclear astrophysics problems

    International Nuclear Information System (INIS)

    Artemov, S.V.; Yarmukhamedov, R.; Yuldashev, B.S.; Burtebaev, N.; Duysebaev, A.; Kadyrzhanov, K.K.

    2002-01-01

    In the report a review of the recent results of calculation of the astrophysical S-factors S(E) for the D(α, γ) 6 Li, 3 He(α, γ) 7 Be, 7 Be(p, γ) 8 Be, 12,13 C(p, γ) 13, 14 N and 12 C(p,γ) 16 O* reactions at extremely low energies E, including value E=0 , performed within the framework of a new method taking into account the additional information about the nuclear vertex constant (Nc) (or the respective asymptotic normalization coefficient) are presented. The required values of Nc can be obtained from an analysis of measured differential cross-sections of proton and α-particle transfer reactions (for example A( 3 He,d)B, 6 Li(d, 6 Li)d, 6 Li(α, 6 Li)α, 12 C( 6 Li, d) 16 O* etc.). A comparative analysis between the results obtained by different authors is also done. Taking into account an important role of the NVC's values for the nuclear astrophysical A(p, γ)B and A(α, γ)B reactions, a possibility of obtaining the reliable NVC values for the virtual decay B→A+p and B→A+α from the analysis of differential cross sections both sub- and above-barrier A( 3 He, d) and A( 6,7 Li, 2,3 H)B reactions is discussed in detail. In this line the use the isochronous cyclotron U-150 M, the 'DC-60' heavy ion machine and electrostatic charge-exchanging accelerator UKP-2-1 of Institute of Nuclear Physics of National Nuclear Center of the Republic of Kazakhstan for carrying out the needed experiments is considered and the possibility of the obtained data application for the astrophysical interest is also discussed

  3. Heavy ion collision dynamics of 10,11B+10,11B reactions

    Directory of Open Access Journals (Sweden)

    Singh BirBikram

    2015-01-01

    Full Text Available The dynamical cluster-decay model (DCM of Gupta and collaborators has been applied successfully to the decay of very-light (A ∼ 30, light (A ∼ 40−80, medium, heavy and super-heavy mass compound nuclei for their decay to light particles (evaporation residues, ER, fusion-fission (ff, and quasi-fission (qf depending on the reaction conditions. We intend to extend here the application of DCM to study the extreme case of decay of very-light nuclear systems 20,21,22Ne∗ formed in 10,11B+10,11B reactions, for which experimental data is available for their binary symmetric decay (BSD cross sections, i.e., σBSD. For the systems under study, the calculations are presented for the σBSD in terms of their preformation and barrier penetration probabilities P0 and P. Interesting results are that in the decay of such lighter systems there is a competing reaction mechanism (specifically, the deep inelastic orbiting of non-compound nucleus (nCN origin together with ff. We have emipirically estimated the contribution of σnCN. Moreover, the important role of nuclear structure characteristics via P0 as well as angular momentum ℓ in the reaction dynamics are explored in the study.

  4. Investigating the intra-nuclear cascade process using the reaction 136Xe on deuterium at 500 AMeV

    Directory of Open Access Journals (Sweden)

    Rejmund F.

    2010-10-01

    Full Text Available More than 600 residual nuclei, formed in the spallation of 136Xe projectiles impinging on deuterium at 500 AMeV of incident energy, have been unambiguously identified and their production cross sections have been determined with high accuracy. By comparing these data to others previously measured for the reactions 136Xe  +  p at 1 AGeV and 136Xe  +  p at 500 AMeV we investigated the role that neutrons play in peripheral collisions and to understand the energy dissipation in frontal collisions in spallation reactions.

  5. Nuclear collision theory with many-body correlations, 2

    International Nuclear Information System (INIS)

    Kurihara, Yukio.

    1984-12-01

    A nuclear collision theory, in which the many-body correlation induced by the strong short-ranged repulsion and medium-ranged attraction of the realistic NN interaction is explicitly included, is applied to the deuteron+deuteron elastic scattering at low energies. Pair correlation functions calculated by the present theory are very different from the Hackenbroich et al. 's one. They contain not only the short-ranged suppressive correlation, but also the medium-ranged enhancing correlation. The former changes the shape of the d-d potential from the wine-bottle one. And the latter makes the d-d potential much more attractive. This effect is necessary for reproducing a bump around thatesub(cm)=90 0 in the experimental elastic differential cross section. The phase shifts evaluated by the present theory are compared with those from the resonating-group method. (author)

  6. X detection in heavy ion induced reactions. Application to the lifetime measurement of a compound nucleus

    International Nuclear Information System (INIS)

    Liatard, E.

    1984-01-01

    The ionization of inner electronic shells can be used to determine the lifetime of a compound nucleus formed in a nuclear reaction. The principle of the measure is based on the comparison between the unknown lifetime of the nuclear process and the known lifetime of a K-shell vacancy created during the collision. Besides testing this method, which we call the ''atomic-clok'' method with the compound nucleus 112 Te formed by the reaction 20 Ne (205 MeV) + 92 Mo, the work in this thesis basically consists of a description and a study of the problems presented by the use of X-ray spectroscopy in nuclear-decay-time measurements and Z-identification of heavy nuclear products [fr

  7. Nuclear reaction matrix and nuclear forces

    International Nuclear Information System (INIS)

    Nagata, Sinobu; Bando, Hiroharu; Akaishi, Yoshinori.

    1979-01-01

    An essentially exact method of solution is presented for the reaction- matrix (G-matrix) equation defined with the orthogonalized plane-wave intermediate spectrum for high-lying two-particle states. The accuracy is examined for introduced truncations and also in comparison with the Tsai-Kuo and Sauer methods. Properties of the G-matrix are discussed with emphasis on the relation with the saturation mechanism, especially overall saturation from light to heavy nuclei. Density and starting-energy dependences of the G-matrix are separately extracted and discussed. It is demonstrated that the triplet-even tensor component of the nuclear force is principally responsible for these dependences and hence for the saturation mechanism. In this context different nuclear potentials are used in the renormalized Brueckner calculation for energies of closed-shell nuclei in the harmonic oscillator basis. A semi-phenomenological ''two-body potential'' is devised so that it can reproduce the saturation energies and densities of nuclear matter and finite nuclei in the lowest-order Brueckner treatment. It is composed of a realistic N-N potential and two additional parts; one incorporates the three-body force effect and the other is assumed to embody higher-cluster correlations in G. The tensor component in the triplet-even state of this potential is enhanced by the three-body force effect. The G-matrix is represented in the effective local form and decomposed into central, LS and tensor components. (author)

  8. Enhancement Mechanisms of Low Energy Nuclear Reactions

    OpenAIRE

    Gareev, F. A.; Zhidkova, I. E.

    2005-01-01

    The review of possible stimulation mechanisms of LENR (low energy nuclear reaction) is represented. We have concluded that transmutation of nuclei at low energies and excess heat are possible in the framework of the modern physical theory - the universal resonance synchronization principle [1] and based on its different enhancement mechanisms of reaction rates are responsible for these processes [2]. The excitation and ionization of atoms may play role as a trigger for LENR. Superlow energy o...

  9. Do nuclear collisions create a locally equilibrated quark-gluon plasma?

    Energy Technology Data Exchange (ETDEWEB)

    Romatschke, P. [University of Colorado at Boulder, Department of Physics, 390 UCB, Boulder, CO (United States); University of Colorado, Center for Theory of Quantum Matter, Boulder, CO (United States)

    2017-01-15

    Experimental results on azimuthal correlations in high energy nuclear collisions (nucleus-nucleus, proton-nucleus, and proton-proton) seem to be well described by viscous hydrodynamics. It is often argued that this agreement implies either local thermal equilibrium or at least local isotropy. In this note, I present arguments why this is not the case. Neither local near-equilibrium nor near-isotropy are required in order for hydrodynamics to offer a successful and accurate description of experimental results. However, I predict the breakdown of hydrodynamics at momenta of order seven times the temperature, corresponding to a smallest possible QCD liquid drop size of 0.15 fm. (orig.)

  10. Measurement of the nuclear modification factor for high-$p_\\mathrm{T}$ charged hadrons in p+Pb collisions with the ATLAS detector

    CERN Document Server

    Balek, Petr; The ATLAS collaboration

    2016-01-01

    The charged hadron spectra in p+Pb and pp collisions at $\\sqrt{s}=5.02$TeV are measured with the ATLAS experiment at the LHC. The measurements are performed with p+Pb data recorded in 2013 with an integrated luminosity of 25nb${}^{-1}$ and pp data recorded in 2015 with an integrated luminosity of 28pb${}^{-1}$. The p+Pb results are directly compared to pp spectra, as a ratio scaled by the number of binary nucleon-nucleon collisions, the nuclear modification factor $R_\\mathrm{pPb}$. The study of $R_\\mathrm{pPb}$ allows a detailed comparison of the collision systems in different centrality intervals and up to high transverse momentum. It is shown that the nuclear modification factor does not have any significant deviation from unity in the high transverse momentum region.

  11. Production of neutron-rich nuclides in the vicinity of N = 126 shell closure in multinucleon transfer reactions

    Directory of Open Access Journals (Sweden)

    Karpov Alexander

    2017-01-01

    Full Text Available Multinucleon transfer in low-energy nucleus-nucleus collisions is widely discussed as a method of production of yet-unknown neutron-rich nuclei hardly accessible (or inaccessible by other methods. Modeling of complicated dynamics of nuclear reactions induced by heavy ions is done within a multidimensional dynamical model of nucleus-nucleus collisions based on the Langevin equations. The model gives a continuous description of the system evolution starting from the well-separated target and projectile in the entrance channel of the reaction up to the formation of final reaction products. In this paper, rather recent sets of experimental data for the 136Xe+198Pt,208Pb reactions are analyzed together with the production cross sections for neutron-rich nuclei in the vicinity of the N = 126 magic shell.

  12. Statistical theory of neutron-nuclear reactions

    International Nuclear Information System (INIS)

    Moldauer, P.A.

    1981-01-01

    In addition to the topics dealt with by the author in his lectures at the Joint IAEA/ICTP Course held at Trieste in 1978, recent developments in the statistical theory of multistep reactions are reviewed as well as the transport theory and intranuclear cascade approaches to the description of nuclear multi-step processes. (author)

  13. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    International Nuclear Information System (INIS)

    Ryan, R.R.

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research

  14. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  15. Forward Λ production and nuclear stopping power in d+Au collisions at sNN=200 GeV

    Science.gov (United States)

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Belaga, V. V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Betts, R. R.; Bhardwaj, S.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Blyth, S.-L.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Brandin, A. V.; Bravar, A.; Burton, T. P.; Bystersky, M.; Cai, X. Z.; Caines, H.; Sánchez, M. Calderón De La Barca; Callner, J.; Catu, O.; Cebra, D.; Cervantes, M. C.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chung, S. U.; Clarke, R. F.; Codrington, M. J. M.; Coffin, J. P.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; Moura, M. M. De; Dedovich, T. G.; Dephillips, M.; Derevschikov, A. A.; Didenko, L.; Dietel, T.; Djawotho, P.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, F.; Dunin, V. B.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Eckardt, V.; Edwards, W. R.; Efimov, L. G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C. A.; Gaillard, L.; Ganti, M. S.; Garcia-Solis, E.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. N.; Gos, H.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S. M.; Guimaraes, K. S. F. F.; Gupta, N.; Haag, B.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Henry, T. W.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D. J.; Hollis, R. S.; Horner, M. J.; Huang, H. Z.; Hughes, E. W.; Humanic, T. J.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jia, F.; Jones, P. G.; Judd, E. G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V. Yu.; Kiryluk, J.; Kisiel, A.; Kislov, E. M.; Klein, S. R.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Kollegger, T.; Kopytine, M.; Kotchenda, L.; Kouchpil, V.; Kowalik, K. L.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Kuhn, C.; Kulikov, A. I.; Kumar, A.; Kurnadi, P.; Kuznetsov, A. A.; Lamont, M. A. C.; Landgraf, J. M.; Lange, S.; Lapointe, S.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C.-H.; Lehocka, S.; Levine, M. J.; Li, C.; Li, Q.; Li, Y.; Lin, G.; Lin, X.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Love, W. A.; Lu, Y.; Ludlam, T.; Lynn, D.; Ma, G. L.; Ma, J. G.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Martin, L.; Matis, H. S.; Matulenko, Yu. A.; McClain, C. J.; McShane, T. S.; Melnick, Yu.; Meschanin, A.; Millane, J.; Miller, M. L.; Minaev, N. G.; Mioduszewski, S.; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Nepali, C.; Netrakanti, P. K.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okorokov, V.; Oldenburg, M.; Olson, D.; Pachr, M.; Pal, S. K.; Panebratsev, Y.; Pavlinov, A. I.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Planinic, M.; Pluta, J.; Poljak, N.; Porile, N.; Poskanzer, A. M.; Potekhin, M.; Potrebenikova, E.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Putschke, J.; Qattan, I. A.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Relyea, D.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Sazhin, P. S.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shen, W. Q.; Shimanskiy, S. S.; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Speltz, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, T. D. S.; Staszak, D.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Subba, N. L.; Sumbera, M.; Sun, X. M.; Sun, Z.; Surrow, B.; Symons, T. J. M.; Toledo, A. Szanto De; Takahashi, J.; Tang, A. H.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Timoshenko, S.; Tokarev, M.; Trainor, T. A.; Trentalange, S.; Tribble, R. E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Buren, G. Van; Kolk, N. Van Der; Leeuwen, M. Van; Molen, A. M. Vander; Varma, R.; Vasilevski, I. M.; Vasiliev, A. N.; Vernet, R.; Vigdor, S. E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Wada, M.; Waggoner, W. T.; Wang, F.; Wang, G.; Wang, J. S.; Wang, X. L.; Wang, Y.; Webb, J. C.; Westfall, G. D.; , C. Whitten, Jr.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, J.; Wu, Y.; Xu, N.; Xu, Q. H.; Xu, Z.; Yepes, P.; Yoo, I.-K.; Yue, Q.; Yurevich, V. I.; Zawisza, M.; Zhan, W.; Zhang, H.; Zhang, W. M.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.; Zhong, C.; Zhou, J.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zubarev, A. N.; Zuo, J. X.

    2007-12-01

    We report the measurement of Λ and Λ¯ yields and inverse slope parameters in d+Au collisions at sNN=200 GeV at forward and backward rapidities (y=±2.75), using data from the STAR forward time projection chambers. The contributions of different processes to baryon transport and particle production are probed exploiting the inherent asymmetry of the d+Au system. Comparisons to model calculations show that baryon transport on the deuteron side is consistent with multiple collisions of the deuteron nucleons with gold participants. On the gold side, HIJING-based models without a hadronic rescattering phase do not describe the measured particle yields, while models that include target remnants or hadronic rescattering do. The multichain model can provide a good description of the net baryon density in d+Au collisions at energies currently available at the BNL Relativistic Heavy Ion Collider, and the derived parameters of the model agree with those from nuclear collisions at lower energies.

  16. Event-shape-engineering study of charge separation in heavy-ion collisions

    Science.gov (United States)

    Wen, Fufang; Bryon, Jacob; Wen, Liwen; Wang, Gang

    2018-01-01

    Recent measurements of charge-dependent azimuthal correlations in high-energy heavy-ion collisions have indicated charge-separation signals perpendicular to the reaction plane, and have been related to the chiral magnetic effect (CME). However, the correlation signal is contaminated with the background caused by the collective motion (flow) of the collision system, and an effective approach is needed to remove the flow background from the correlation. We present a method study with simplified Monte Carlo simulations and a multi-phase transport model, and develop a scheme to reveal the true CME signal via event-shape engineering with the flow vector of the particles of interest. Supported by a grant (DE-FG02-88ER40424) from U.S. Department of Energy, Office of Nuclear Physics

  17. Linking Nuclear Reactions and Nuclear Structure on the Way to the Drip Line

    Science.gov (United States)

    Dickhoff, Willem

    2012-10-01

    The present understanding of the role of short- and long-range physics in determining proton properties near the Fermi energy for stable closed-shell nuclei has relied on data from the (e,e'p) reaction. Hadronic tools to extract such spectroscopic information have been hampered by the lack of a consistent reaction description that provides unambiguous and undisputed results. The dispersive optical model (DOM), originally conceived by Claude Mahaux, provides a unified description of both elastic nucleon scattering and structure information related to single-particle properties below the Fermi energy. The DOM provides the starting point to provide a framework in which nuclear reactions and structure data can be analyzed consistently to provide unambiguous spectroscopic information including its asymmetry dependence. Recent extensions of this approach include the treatment of non-locality to describe experimental data like the nuclear charge density based on information of the spectral density below the Fermi energy, the application of the DOM ingredients to the description of transfer reactions, a comparison of the microscopic content of the nucleon self-energy based on Faddeev-RPA calculations emphasizing long-range correlations with DOM potentials, and a study of the relation between a self-energy which includes the effect of short-range correlations with DOM potentials. The most recent Dom implementation currently in progress abandons the constraint of local potentials completely to allow an accurate description of various properties of the nuclear ground state.

  18. Azimuthal anisotropy of D-meson production in Pb-Pb collisions at root $\\sqrt{s_{NN}}$ = 2.76 TeV

    CERN Document Server

    Abelev, Betty Bezverkhny; Adamova, Dagmar; Aggarwal, Madan Mohan; Agnello, Michelangelo; Agostinelli, Andrea; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Nazeer; Ahmed, Ijaz; Ahn, Sang Un; Ahn, Sul-Ah; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont Moreno, Ernesto; Belmont Iii, Ronald John; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Berger, Martin Emanuel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Bogolyubskiy, Mikhail; Boehmer, Felix Valentin; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Casula, Ester Anna Rita; Catanescu, Vasile Ioan; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cortes Maldonado, Ismael; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dainese, Andrea; Dang, Ruina; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Kushal; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; Delagrange, Hugues; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; De Rooij, Raoul Stefan; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Di Bari, Domenico; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dorheim, Sverre; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Dutt Mazumder, Abhee Kanti; Hilden, Timo Eero; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erdal, Hege Austrheim; Eschweiler, Dominic; Espagnon, Bruno; Esposito, Marco; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigory; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floratos, Emmanouil; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gumbo, Mervyn; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Khan, Kamal; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hippolyte, Boris; Hladky, Jan; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Innocenti, Gian Michele; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter Martin; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kadyshevskiy, Vladimir; Kalcher, Sebastian; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Konevskikh, Artem; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; La Pointe, Sarah Louise; La Rocca, Paola; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leoncino, Marco; Leon Monzon, Ildefonso; Levai, Peter; Li, Shuang; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Lohner, Daniel; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Ma, Rongrong; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martin Blanco, Javier; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Okatan, Ali; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Ortona, Giacomo; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Sahoo, Pragati; Pachmayer, Yvonne Chiara; Pachr, Milos; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares Vales, Carlos; Pal, Susanta Kumar; Palmeri, Armando; Pant, Divyash; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Patalakha, Dmitry; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Pesci, Alessandro; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Pohjoisaho, Esko Heikki Oskari; Polishchuk, Boris; Poljak, Nikola; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Rauf, Aamer Wali; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Sharma, Rohni; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sanchez Rodriguez, Fernando Javier; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Segato, Gianfranco; Seger, Janet Elizabeth; Sekiguchi, Yuko; Selyuzhenkov, Ilya; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Natasha; Sharma, Satish; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Sicking, Eva; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tarazona Martinez, Alfonso; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Vande Vyvre, Pierre; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wagner, Vladimir; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Weber, Michael; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yang, Shiming; Yano, Satoshi; Yasnopolskiy, Stanislav; Yi, Jungyu; Yin, Zhongbao; Yoo, In-Kwon; Yushmanov, Igor; Zaccolo, Valentina; Zach, Cenek; Zaman, Ali; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, Fengchu; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zyzak, Maksym

    2014-09-10

    The production of the prompt charmed mesons $D^0$, $D^+$ and $D^{*+}$ relative to the reaction plane was measured in Pb-Pb collisions at a centre-of-mass energy per nucleon--nucleon collision of $\\sqrt{s_{NN}}$ = 2.76 TeV with the ALICE detector at the LHC. D mesons were reconstructed via their hadronic decays at central rapidity in the transverse momentum ($p_T$) interval 2-16 Gev/c. The azimuthal anisotropy is quantified in terms of the second coefficient $v_2$ in a Fourier expansion of the D meson azimuthal distribution, and in terms of the nuclear modification factor $R_{AA}$, measured in the direction of the reaction plane and orthogonal to it. The $v_2$ coefficient was measured with three different methods and in three centrality classes in the interval 0-50%. A positive $v_2$ is observed in mid-central collisions (30-50% centrality class), with an mean value of $0.204_{-0.036}^{+0.099}$(tot.unc.) in the interval 2 < $p_T$ < 6 Gev/c, which decreases towards more central collisions (10-30% and 0-10...

  19. Observation of strong azimuthal asymmetry between slow and fast particles from high energy nuclear collisions

    International Nuclear Information System (INIS)

    Gustafsson, H.A.; Gutbrod, H.H.; Kolb, B.; Loehner, H.; Ludewigt, B.; Poskanzer, A.M.; Renner, T.; Riedesel, H.; Ritter, H.G.; Siemiarczuk, T.; Stepaniak, J.; Warwick, A.; Wieman, H.

    1984-10-01

    Evidence is presented for the strong azimuthal asymmetry between slow and fast fragments in nuclear collisions in the energy interval of 0.4 to 1 GeV per nucleon. The asymmetry gets stronger when incident energy and impact parameter decrease. The results on the A dependence of the azimuthal asymmetry are also presented. (orig.)

  20. The decay of hot nuclei formed in La-induced reactions at intermediate energies

    International Nuclear Information System (INIS)

    Libby, B.; Mignerey, A.C.; Madani, H.; Marchetti, A.A.; Colonna, M.; DiToro, M.

    1992-01-01

    The decay of hot nuclei formed in lanthanum-induced reactions utilizing inverse kinematics has been studied from E/A = 35 to 55 MeV. At each bombarding energy studied, the probability for the multiple emission of complex fragments has been found to be independent of target. Global features (total charge, source velocity) of the reaction La + Al at E/A = 45 MeV have been reproduced by coupling a dynamical model to study the collision stage of the reaction to a statistical model of nuclear decay