WorldWideScience

Sample records for reaction-generated probes derived

  1. The generation of radiolabeled DNA and RNA probes with polymerase chain reaction

    International Nuclear Information System (INIS)

    Schowalter, D.B.; Sommer, S.S.

    1989-01-01

    By including a radioactive triphosphate during polymerase chain reaction (PCR), probes of very high specific activity can be generated. The advantages of PCR labeling include (1) uniform labeling with a specific activity of 5 X 10(9) cpm/micrograms or higher (sensitivity of detection: 0.028 pg of target DNA per 24 h); (2) ease of regulation of both the specific activity and the amount of labeled probe produced; (3) efficient labeling of fragments less than 500 bp; (4) efficient incorporation over a wide range of input DNA template; (5) labeling with subnanogram amounts of input DNA; and (6) direct labeling of genomic DNA. The minimal amount of input DNA allows a virtually unlimited number of PCR labeling reactions to be performed on DNA generated by one amplification under the previously described nonlabeling conditions. This obviates the need for CsCl gradients or other large scale methods of DNA preparation. The above advantages except for the very high specific activity can also be achieved by transcript labeling after an amplification where one or both of PCR primers contain a phage promoter sequence

  2. Bioactive Properties of Maillard Reaction Products Generated From Food Protein-derived Peptides.

    Science.gov (United States)

    Arihara, K; Zhou, L; Ohata, M

    Food protein-derived peptides are promising food ingredients for developing functional foods, since various bioactive peptides are released from food proteins. The Maillard reaction, which plays an important role in most processed foods, generates various chemical components during processing. Although changes of amino acids or proteins and reduced sugars by the Maillard reaction have been studied extensively, such changes of peptides by the Maillard reaction are still not resolved enough. Since food protein-derived peptides are widely utilized in many processed foods, it deserves concern and research on the changes of peptides by the Maillard reaction in foods during processing or storage. This chapter initially overviewed food protein-derived bioactive peptides. Then, Maillard reaction products generated from peptides are discussed. We focused particularly on their bioactivities. © 2017 Elsevier Inc. All rights reserved.

  3. Direct Light-up of cAMP Derivatives in Living Cells by Click Reactions

    Directory of Open Access Journals (Sweden)

    Yan Xu

    2013-10-01

    Full Text Available 8-Azidoadenosine 3′,5′-cyclic monophosphate (8-azido cAMP was directly detected in living cells, by applying Cu-free azide-alkyne cycloaddition to probe cAMP derivatives by fluorescence light-up. Fluorescence emission was generated by two non-fluorescent molecules, 8-azido cAMP as a model target and difluorinated cyclooctyne (DIFO reagent as a probe. The azide-alkyne cycloaddition reaction between 8-azido cAMP and DIFO induces fluorescence in 8-azido cAMP. The fluorescence emission serves as a way to probe 8-azido cAMP in cells.

  4. Probing the RAFT process using a model reaction between alkoxyamine and dithioester

    NARCIS (Netherlands)

    Zhou, Y.

    2012-01-01

    A small-molecular model reaction was designed to probe the reversible addition–fragmentation chain transfer (RAFT) process. In this reaction, alkoxyamine releases radicals that react in situ with dithioester through the RAFT process, generating new radicals through the fragmentation of the

  5. Probing reaction dynamics with GDR decay

    International Nuclear Information System (INIS)

    Beene, J.R.

    1994-01-01

    The giant dipole resonance (GDR) has been a prolific source of information on the physics of the nucleus. Mostly it has taught us about nuclear structure, but recently experiments have utilized the GDR as a probe of nuclear reaction dynamics. In this report two examples of such investigations are discussed involving very different reactions and probing time scales that differ by a factor of ∼10 3

  6. Polymerase chain reaction as a tool for developing stress protein probes

    Energy Technology Data Exchange (ETDEWEB)

    Cochrane, B.J.; Mattley, Y.D. (Univ. of South Florida, Tampa, FL (United States). Dept. of Biology); Snell, T.W. (Georgia Inst. of Tech., Atlanta, GA (United States). Div. of Biology)

    1994-08-01

    Because of the high degree of evolutionary conservation of stress proteins, potential exists for the development of nucleic acid probes from particular species that could be used to monitor stress-related changes in mRNA abundance. The polymerase chain reaction (PCR) is a powerful tool that can be applied to the generation of these probes, provided that primer sequences can be identified that specifically amplify sequences of interest from a wide variety of organisms. The authors identified such sequences from multiple alignments of published chaperonin and stress-70 sequences, and tested their ability to amplify appropriately sized fragments from genomic DNA from a variety of vertebrates and invertebrates. Although no primer pair could be used successfully with all species, the authors were able to derive specific products from most species by testing different pairs. One primer pair for chaperonin proved particularly useful. Products were obtained from all tested species, and with a single exception (human), these primers appeared to amplify a single copy sequence. The authors determined the nucleotide sequence of the product obtained from the rotifer Brachionus plicatilis and determined by phylogenetic analysis of the inferred protein product that the product obtained is most likely derived from a rotifer DNA template. Finally, the authors show that this product can be used to detect changes in abundance of homologous mRNA in heat-stressed rotifers.

  7. Carpatizine, a novel bridged oxazine derivative generated by non-enzymatic reactions.

    Science.gov (United States)

    Fu, Peng; MacMillan, John B

    2017-06-27

    Carpatizine (1), a new bridged oxazine derivative, was isolated from a marine-derived Streptomyces strain SNE-011. The structure was fully determined by spectroscopic analysis, ECD calculations and chemical methods. A plausible non-enzymatic reaction mechanism from daryamide D leading to carpatizine was presented, which was confirmed by chemical transformation.

  8. Design of mitochondria-targeted colorimetric and ratiometric fluorescent probes for rapid detection of SO2 derivatives in living cells

    Science.gov (United States)

    Yang, Yutao; Zhou, Tingting; Bai, Bozan; Yin, Caixia; Xu, Wenzhi; Li, Wei

    2018-05-01

    Two mitochondria-targeted colorimetric and ratiometric fluorescent probes for SO2 derivatives were constructed based on the SO2 derivatives-triggered Michael addition reaction. The probes exhibit high specificity toward HSO3-/SO32- by interrupting their conjugation system resulting in a large ratiometric blue shift of 46-121 nm in their emission spectrum. The two well-resolved emission bands can ensure accurate detection of HSO3-. The detection limits were calculated to be 1.09 and 1.35 μM. Importantly, probe 1 and probe 2 were successfully used to fluorescence ratiometric imaging of endogenous HSO3- in BT-474 cells.

  9. Nuclear reactions as structure probes

    International Nuclear Information System (INIS)

    Fernandez, Bernard; Cugnon, Joseph; Roussel-Chomaz, Patricia; Sparenberg, Jean-Marc; Oliveira Santos, Francois de; Bauge, Eric; Poves, Alfredo; Keeley, Nicholas; Simenel, Cedric; Avez, Benoit; Lacroix, Denis; Baye, Daniel; Cortina-Gil, Dolores; Pons, Alexandre

    2007-09-01

    This publication gathers courses which aim at giving a view on new experiments which are performed by using radioactive beams, notably low intensity beams, in different accelerators, and allow the structure of very exotic nuclei to be characterized. Experimental as well as theoretical aspects are thus addressed. The contributions propose: a brief history of nuclear reactions and of instruments used to study them from the discovery of nucleus to the DWBA (Distorted Wave Born Approximation); an overview of nuclear reactions; experimental techniques; the theory of collisions at low energy; resonant elastic scattering, inelastic scattering and astrophysical reactions; to probe nuclear structure with nucleons; shell model and spectroscopic factors; analysis of transfer reactions and determination of spectroscopic factors; microscopic approaches of nuclear dynamics; theoretical aspects of dissociation reactions; experimental aspects of knockout reactions; research in oenology with the chemical characterisation of defective ageing of dry white wines

  10. Method and means for a spatial and temporal probe for laser-generated plumes based on density gradients

    Science.gov (United States)

    Yeung, E.S.; Chen, G.

    1990-05-01

    A method and means are disclosed for a spatial and temporal probe for laser generated plumes based on density gradients includes generation of a plume of vaporized material from a surface by an energy source. The probe laser beam is positioned so that the plume passes through the probe laser beam. Movement of the probe laser beam caused by refraction from the density gradient of the plume is monitored. Spatial and temporal information, correlated to one another, is then derived. 15 figs.

  11. Identification of human rotavirus serotype by hybridization to polymerase chain reaction-generated probes derived from a hyperdivergent region of the gene encoding outer capsid protein VP7

    International Nuclear Information System (INIS)

    Flores, J.; Sears, J.; Schael, I.P.; White, L.; Garcia, D.; Lanata, C.; Kapikian, A.Z.

    1990-01-01

    We have synthesized 32 P-labeled hybridization probes from a hyperdivergent region (nucleotides 51 to 392) of the rotavirus gene encoding the VP7 glycoprotein by using the polymerase chain reaction method. Both RNA (after an initial reverse transcription step) and cloned cDNA from human rotavirus serotypes 1 through 4 could be used as templates to amplify this region. High-stringency hybridization of each of the four probes to rotavirus RNAs dotted on nylon membranes allowed the specific detection of corresponding sequences and thus permitted identification of the serotype of the strains dotted. The procedure was useful when applied to rotaviruses isolated from field studies

  12. Identification of human rotavirus serotype by hybridization to polymerase chain reaction-generated probes derived from a hyperdivergent region of the gene encoding outer capsid protein VP7

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J.; Sears, J.; Schael, I.P.; White, L.; Garcia, D.; Lanata, C.; Kapikian, A.Z. (National Institutes of Health, Bethesda, MD (USA))

    1990-08-01

    We have synthesized {sup 32}P-labeled hybridization probes from a hyperdivergent region (nucleotides 51 to 392) of the rotavirus gene encoding the VP7 glycoprotein by using the polymerase chain reaction method. Both RNA (after an initial reverse transcription step) and cloned cDNA from human rotavirus serotypes 1 through 4 could be used as templates to amplify this region. High-stringency hybridization of each of the four probes to rotavirus RNAs dotted on nylon membranes allowed the specific detection of corresponding sequences and thus permitted identification of the serotype of the strains dotted. The procedure was useful when applied to rotaviruses isolated from field studies.

  13. Chemical reactions induced and probed by positive muons

    International Nuclear Information System (INIS)

    Ito, Yasuo

    1990-01-01

    The application of μ + science, collectively called μSR, but encompassing a variety of methods including muon spin rotation, muon spin relaxation, muon spin repolarization, muon spin resonance and level-crossing resonance, to chemistry is introduced emphasizing the special aspects of processes which are 'induced and probed' by the μ + itself. After giving a general introduction to the nature and methods of muon science and a short history of muon chemistry, selected topics are given. One concerns the usefulness of muonium as hydrogen-like probes of chemical reactions taking polymerization of vinyl monomers and reaction with thiosulphate as examples. Probing solitons in polyacetylene induced and probed by μ + is also an important example which shows the unique nature of muonium. Another important topic is 'lost polarization'. Although this term is particular to muonium. Another important topic is 'lost polarization'. Although this term is particular to muon chemistry, the chemistry underlining the phenomenon of lost polarization has an importance to both radiation and hot atom chemistries. (orig.)

  14. Surface chemical reactions probed with scanning force microscopy

    NARCIS (Netherlands)

    Werts, M.P L; van der Vegte, E.W.; Hadziioannou, G

    1997-01-01

    In this letter we report the study of surface chemical reactions with scanning force microscopy (SFM) with chemical specificity. Using chemically modified SFM probes, we can determine the local surface reaction conversion during a chemical surface modification. The adhesion forces between a

  15. ¹⁹F magnetic resonance probes for live-cell detection of peroxynitrite using an oxidative decarbonylation reaction.

    Science.gov (United States)

    Bruemmer, Kevin J; Merrikhihaghi, Sara; Lollar, Christina T; Morris, Siti Nur Sarah; Bauer, Johannes H; Lippert, Alexander R

    2014-10-21

    We report a newly discovered oxidative decarbonylation reaction of isatins that is selectively mediated by peroxynitrite (ONOO(-)) to provide anthranilic acid derivatives. We have harnessed this rapid and selective transformation to develop two reaction-based probes, 5-fluoroisatin and 6-fluoroisatin, for the low-background readout of ONOO(-) using (19)F magnetic resonance spectroscopy. 5-fluoroisatin was used to non-invasively detect ONOO(-) formation in living lung epithelial cells stimulated with interferon-γ (IFN-γ).

  16. Chemoproteomic profiling of targets of lipid-derived electrophiles by bioorthogonal aminooxy probe

    Directory of Open Access Journals (Sweden)

    Ying Chen

    2017-08-01

    Full Text Available Redox imbalance in cells induces lipid peroxidation and generates a class of highly reactive metabolites known as lipid-derived electrophiles (LDEs that can modify proteins and affects their functions. Identifying targets of LDEs is critical to understand how such modifications are functionally implicated in oxidative-stress associated diseases. Here we report a quantitative chemoproteomic method to globally profile protein targets and sites modified by LDEs. In this strategy, we designed and synthesized an alkyne-functionalized aminooxy probe to react with LDE-modified proteins for imaging and proteomic profiling. Using this probe, we successfully quantified >4000 proteins modified by 4-hydroxy-2-nonenal (HNE of high confidence in mammalian cell lysate and combined with a tandem-orthogonal proteolysis activity-based protein profiling (TOP-ABPP strategy, we identified ~400 residue sites targeted by HNE including reactive cysteines in peroxiredoxins, an important family of enzymes with anti-oxidant roles. Our method expands the toolbox to quantitatively profile protein targets of endogenous electrophiles and the enlarged inventory of LDE-modified proteins and sites will contribute to functional elucidation of cellular pathways affected by oxidative stress. Keywords: Lipid-derived electrophile, 4-hydroxy-2-nonenal, Chemoproteomics, Aminooxy probe, Activity-based protein profiling

  17. Energy balance and flow in steam generator part with sodium-water reaction

    International Nuclear Information System (INIS)

    Matal, O.

    1980-01-01

    Relations were derived for the calculation of heat liberated during the sodium water reaction in a tube failure in different parts of a steam generator. The results are graphically shown in i-T diagrams. Heat removal is described from the reaction zone to water and steam in undisturbed tubes and to the steam generator metal structure. (author)

  18. The (n,p) reaction as a probe of nuclear structure

    International Nuclear Information System (INIS)

    Jackson, K.P.; Celler, A.

    1988-08-01

    An account is given of some results of studies of the (n,p) reaction on nuclear targets at TRIUMF. The (n,p) reaction, inducing spin flip transitions in isospin space, appears to exhibit a unique sensitivity to certain aspects of nuclear structure. The TRIUMF facility is the first to exploit the (n,p) reaction as a detailed probe of nuclear structure at energies above 65 MeV. In the (n,p) reaction Fermi transitions are absent, but there is a dramatic impact on Gamow-Teller and other collective transactions. Some nuclear transition matrix elements can be estimated on the basis of (n,p) measurements. Experiments have been carried out at TRIUMF on Li 6 , Fe 5 4, and Zr 9 0 targets. The calibration of the (n,p) reaction as a probe of the Gamow-Teller strength B + GT has been achieved for three targets. (L.L.) (45 refs., 10 figs.)

  19. Photopion reactions, a probe for nuclear critical opalescence

    International Nuclear Information System (INIS)

    Delorme, J.

    1980-07-01

    It is shown that photopion reactions are a good probe of the nuclear pion field for momenta characteristic of pion condensation. They are thus a direct detector of critical opalescence. Best conditions for experimental detection are discussed

  20. Sum Frequency Generation Studies of Hydrogenation Reactions on Platinum Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Krier, James M. [Univ. of California, Berkeley, CA (United States)

    2013-08-31

    Sum Frequency Generation (SFG) vibrational spectroscopy is used to characterize intermediate species of hydrogenation reactions on the surface of platinum nanoparticle catalysts. In contrast to other spectroscopy techniques which operate in ultra-high vacuum or probe surface species after reaction, SFG collects information under normal conditions as the reaction is taking place. Several systems have been studied previously using SFG on single crystals, notably alkene hydrogenation on Pt(111). In this thesis, many aspects of SFG experiments on colloidal nanoparticles are explored for the first time. To address spectral interference by the capping agent (PVP), three procedures are proposed: UV cleaning, H2 induced disordering and calcination (core-shell nanoparticles). UV cleaning and calcination physically destroy organic capping while disordering reduces SFG signal through a reversible structural change by PVP.

  1. Laser-based ultrasonics by dual-probe interferometer detection and narrow-band ultrasound generation

    Science.gov (United States)

    Huang, Jin

    1993-01-01

    Despite the advantages of laser-based ultrasonic (LBU) systems, the overall sensitivity of LBU systems needs to be improved for practical applications. Progress is reported to achieve better LBU detection accuracy and sensitivity for applications with surface waves and Lamb waves. A novel dual-probe laser interferometer has been developed to measure the same signal at two points. The dual-probe interferometer is a modification of a conventional single-probe interferometer in that the reference beam is guided to a second detecting point on the specimen surface to form a differential measurement mode, which measure the difference of the displacements at the two points. This dual-probe interferometer is particularly useful for accurate measurements of the speed and attenuation of surface waves and Lamb waves. The dual-probe interferometer has been applied to obtain accurate measurements of the surface wave speed and attenuation on surfaces of increasing surface roughness. It has also been demonstrated that with an appropriate signal processing method, namely, the power cepstrum method, the dual-probe interferometer is applicable to measure the local surface wave speed even when the probe separation is so small that the two waveforms in the interferometer output signal overlap in the time domain. Narrow-band signal generation and detection improve the sensitivity of LBU systems. It is proposed to use a diffraction grating to form an array of illuminating strips which form a source of narrowband surface and Lamb waves. The line-array of thermoelastic sources generates narrow-band signals whose frequency and bandwidth can be easily controlled. The optimum line-array parameters, such as width, spacing and the number of lines in the array have been derived theoretically and verified experimentally. Narrow-band signal generation with optimum parameters has been demonstrated. The enhanced LBU system with dual-probe detection and narrowband signal generation has been

  2. Light particle emission as a probe of reaction mechanism and nuclear excitation

    International Nuclear Information System (INIS)

    Guerreau, D.

    1989-01-01

    The central part of these lectures will be dealing with the problem of energy dissipation. A good understanding of the mechanisms for the dissipation requires to study both peripheral and central collisions or, in other words, to look at the impact paramenter dependence. This should also provide valuable information on the time scale. In order to probe the reaction mechanism and nuclear excitation, one of the most powerful tool is unquestionably the observation of light particle emission, including neutrons and charged particles. Several examples will be discussed related to peripheral collisions (the fate of transfer reactions, the excitation energy generation, the production of projectile-like fragments) as well as inner collisions for which extensive studies have demonstrated the strength of intermediate energy heavy ions for the production of very hot nuclei and detailed study of their decay properties

  3. An integrated high temperature environmental cell for atom probe tomography studies of gas-surface reactions: Instrumentation and results

    International Nuclear Information System (INIS)

    Dumpala, S.; Broderick, S.R.; Bagot, P.A.J.; Rajan, K.

    2014-01-01

    An integrated environmental cell has been designed and developed for the latest generation of Atom Probe Tomography LEAP™ instruments, allowing controlled exposure of samples to gases at high temperatures. Following treatment, samples can be transferred through the LEAP vacuum system for subsequent APT analysis, which provides detailed information on changes to chemical microstructures following the reactions with near-atomic resolution. A full description of the cell is presented, along with some sample results on the oxidation of aluminum and two platinum-group alloys, demonstrating the capability of combining exposure/characterization functionality in a single instrument. - Highlights: • Designed and built atom probe environmental cell for in situ reactions. • Investigated Al oxidation, and demonstrated improvement with new cell. • in situ APT analysis of Pt-alloys showed surface segregation of Rh and Ir

  4. Characterisation of corrosion processes of using electron micro-probe, scanning probe microscopy and synchrotron-generated x-ray fluorescence imaging

    International Nuclear Information System (INIS)

    Neufeld, A.K.; Cole, I.S.; Furman, S.A.; Isaacs, H.S.

    2002-01-01

    Full text: With recent advances in computerized technology, the study of chemical reactions can now be visualized as they occur in real time and has resulted in analytical techniques with orders of magnitude greater sensitivity and resolution. This ability offers the corrosion scientist a unique opportunity to study the processes relevant to degradation science which could only be theoretically considered. Neufeld el al (1,2) have attempted to explain in great detail the mechanism of corrosion initiation of zinc by using X-ray micro-probe, Scanning Kelvin probe, and more recently by using synchrotron-generated X-rays and X-ray fluorescence imaging. New results are presented from the synchrotron studies where the transport of ions in-situ has been investigated. The synthesis of information from the techniques will also be discussed in its relevance to atmospheric corrosion processes. Copyright (2002) Australian Society for Electron Microscopy Inc

  5. Protein recognition by a pattern-generating fluorescent molecular probe

    Science.gov (United States)

    Pode, Zohar; Peri-Naor, Ronny; Georgeson, Joseph M.; Ilani, Tal; Kiss, Vladimir; Unger, Tamar; Markus, Barak; Barr, Haim M.; Motiei, Leila; Margulies, David

    2017-12-01

    Fluorescent molecular probes have become valuable tools in protein research; however, the current methods for using these probes are less suitable for analysing specific populations of proteins in their native environment. In this study, we address this gap by developing a unimolecular fluorescent probe that combines the properties of small-molecule-based probes and cross-reactive sensor arrays (the so-called chemical 'noses/tongues'). On the one hand, the probe can detect different proteins by generating unique identification (ID) patterns, akin to cross-reactive arrays. On the other hand, its unimolecular scaffold and selective binding enable this ID-generating probe to identify combinations of specific protein families within complex mixtures and to discriminate among isoforms in living cells, where macroscopic arrays cannot access. The ability to recycle the molecular device and use it to track several binding interactions simultaneously further demonstrates how this approach could expand the fluorescent toolbox currently used to detect and image proteins.

  6. Probing a molecular electronic transition by two-colour sum-frequency generation spectroscopy

    International Nuclear Information System (INIS)

    Humbert, C.; Dreesen, L.; Nihonyanagi, S.; Masuda, T.; Kondo, T.; Mani, A.A.; Uosaki, K.; Thiry, P.A.; Peremans, A.

    2003-01-01

    We demonstrate that a new emerging technique, two-colour sum-frequency generation (SFG) spectroscopy, can be used to probe the molecular electronic properties of self-assembled monolayers (SAMs). In the CH spectral range (2800-3200 cm -1 ), we show that the sum-frequency generation signal of a porphyrin alkanethiol derivative adsorbed on Pt(1 1 1) reaches a maximum intensity at ∼435 nm SFG wavelength. This wavelength corresponds to the porphyrin moiety specific π-π* molecular electronic transition which is called the Soret or B band. This resonant behaviour is not observed for 1-dodecanethiol SAMs, which are devoid of molecular electronic transition in the investigated visible spectral range

  7. Correlations between reaction product yields as a tool for probing heavy-ion reaction scenarios

    International Nuclear Information System (INIS)

    Gawlikowicz, W.; Agnihotri, D. K.; Baldwin, S. A.; Schroeder, W. U.; Toke, J.; Charity, R. J.; Sarantites, D. G.; Sobotka, L. G.; Souza, R. T. de; Barczyk, T.; Grotowski, K.; Micek, S.; Planeta, R.; Sosin, Z.

    2010-01-01

    Experimental multidimensional joint distributions of neutrons and charged reaction products were analyzed for 136 Xe + 209 Bi reactions at E/A=28, 40, and 62 MeV and were found to exhibit several different types of prominent correlation patterns. Some of these correlations have a simple explanation in terms of the system excitation energy and pose little challenge to most statistical decay theories. However, several other types of correlation patterns are difficult to reconcile with some, but not other, possible reaction scenarios. In this respect, correlations between the average atomic numbers of intermediate-mass fragments, on the one hand, and light particle multiplicities, on the other, are notable. This kind of multiparticle correlation provides a useful tool for probing reaction scenarios, which is different from the traditional approach of interpreting inclusive yields of individual reaction products.

  8. A convenient colorimetric and ratiometric fluorescent probe for detection of cyanide based on BODIPY derivative in aqueous media

    Directory of Open Access Journals (Sweden)

    Yanhua Yu

    2017-06-01

    Full Text Available A convenient colorimetric and ratiometric fluorescent probe based on BODIPY derivative for cyanide detection has been synthesized, whose structural contains a dicyanovinyl group used as a sensing unit. Among the tested analytes, such as CN−, F−, Cl−, Br−, I−, ClO4−, AcO−, NO3−, H2PO4− HSO4−, S2− and N3−, only CN− could react with dicyanovinyl moiety by nucleophilic addition, which disrupted the π-conjugation of the probe and hindered the intramolecular charge transfer (ICT, leading a blue shift of absorption and fluorescence spectrum and a concomitant color change from yellow to light pink. The detection limit of this probe was calculated to be 0.98 μM, which is lower than the maximum concentration in drinking water (1.9 μM permitted by the World Health Organization (WHO. Moreover, the probe showed excellent selectivity and anti-interference ability towards CN− over other anions. The reaction mechanism was fully supported by 1H NMR and MS spectrum.

  9. Oligonucleotides as probes for studying polymerization reactions in dilute aqueous solution

    Science.gov (United States)

    Kolb, V.; Orgel, L. E.; Miller, S. L. (Principal Investigator)

    1994-01-01

    We have prepared a [32P]-labled oligonucleotide probe carrying a free primary amine at its 3'-terminus. This probe is used to initiate polymerization of aziridine (ethyleneimine) in aqueous solution. The nature of the oligomeric products and the kinetics of their formation are then monitored by gel electrophoresis. Our results are generally consistent with those obtained using conventional techniques. We have also investigated the effect of polyanionic templates on the rate of oligomerization of aziridine. We find that water-soluble polyanions generally accelerate the polymerization. The sodium salt of polymethacrylic acid is the most effective of the templates that we studied. The methods introduced in this paper should be applicable to a variety of polymerization reactions in aqueous solution. They should greatly simplify the screening of potentially prebiotic polymerization reactions.

  10. Reactions probing effects of quark clusters in nuclei

    International Nuclear Information System (INIS)

    Lassila, K.E.; Sukhatme, U.P.

    1988-01-01

    We study signatures of quark clusters in reactions which probe quarks in nuclei. We examine the EMC effect and use physical arguments to establish features of valence and ocean parton distributions in multiquark clusters. We predict from these distributions ratios of structure functions and cross sections measured with neutrino, antineutrinos and proton beams. It appears that a unique determination of the source of the EMC effect will be possible. 6 refs., 4 figs

  11. SNAP: Small Next-generation Atmospheric Probe Concept

    Science.gov (United States)

    Sayanagi, K. M.; Dillman, R. A.; Atkinson, D. H.; Li, J.; Saikia, S.; Simon, A. A.; Spilker, T. R.; Wong, M. H.; Hope, D.

    2017-12-01

    We present a concept for a small, atmospheric probe that could be flexibly added to future missions that orbit or fly-by a giant planet as a secondary payload, which we call the Small Next-generation Atmospheric Probe (SNAP). SNAP's main scientific objectives are to determine the vertical distribution of clouds and cloud-forming chemical species, thermal stratification, and wind speed as a function of depth. As a case study, we present the advantages, cost and risk of adding SNAP to the future Uranus Orbiter and Probe flagship mission; in combination with the mission's main probe, SNAP would perform atmospheric in-situ measurements at a second location, and thus enable and enhance the scientific objectives recommended by the 2013 Planetary Science Decadal Survey and the 2014 NASA Science Plan to determine atmospheric spatial variabilities. We envision that the science objectives can be achieved with a 30-kg entry probe 0.5m in diameter (less than half the size of the Galileo probe) that reaches 5-bar pressure-altitude and returns data to Earth via the carrier spacecraft. As the baseline instruments, the probe will carry an Atmospheric Structure Instrument (ASI) that measures the temperature, pressure and acceleration, a carbon nanotube-based NanoChem atmospheric composition sensor, and an Ultra-Stable Oscillator (USO) to conduct a Doppler Wind Experiment (DWE). We also catalog promising technologies currently under development that will strengthen small atmospheric entry probe missions in the future. While SNAP is applicable to multiple planets, we examine the feasibility, benefits and impacts of adding SNAP to the Uranus Orbiter and Probe flagship mission. Our project is supported by NASA PSDS3 grant NNX17AK31G.

  12. Eddy current magnetic bias x-probe qualification and inspection of steam generator Monel 400 tubing in Pickering Nuclear Generating Station

    International Nuclear Information System (INIS)

    Lepine, B.A.; Van Langen, J.; Obrutsky, L.

    2006-01-01

    This paper presents an overview of the x-probe MB 350 eddy current inspection array probe, for detection of open OD axial crack-like flaws in Monel 400 tubes at Pickering Nuclear Generating Station. This report contains a selection of inspection results from the field inspections performed with this probe during the 2003 and 2004 period at Pickering Nuclear Generating Station A and B. During the 2003 in-service eddy current inspection results of Pickering Nuclear Generating Station A (PNGS-A) Unit 2, a 13 mm (0.5 inch) long axial indication was detected by the CTR1 bobbin and CTR2-C4 array probes in Tube R25-C52 of Steam Generator (SG) 11 in the hot leg sludge pile region. An experimental magnetic bias X-probe, specially designed by Zetec for inspection of Monel 400 tubing, was deployed and the indication was characterized as a potential out diameter (OD) axially oriented crack. Post-inspection tube pulling and destructive examination confirmed the presence of an Environmentally Assisted Crack (EAC), approximately 80% deep and 13mm long. Due to the significance of this discovery, Ontario Power Generation (OPG) requested AECL to initiate a program for qualification of the X-probe MB 350 for the detection of OD axial cracks in medium to high magnetic permeability μ r Monel 400 PNGS-A and B steam generator tubing at different locations. The X-probe MB 350 subsequently has been deployed as a primary inspection probe for crack detection for PNGS steam generators. (author)

  13. Simultaneous fingering, double-diffusive convection, and thermal plumes derived from autocatalytic exothermic reaction fronts

    Science.gov (United States)

    Eskew, Matthew W.; Harrison, Jason; Simoyi, Reuben H.

    2016-11-01

    Oxidation reactions of thiourea by chlorite in a Hele-Shaw cell are excitable, autocatalytic, exothermic, and generate a lateral instability upon being triggered by the autocatalyst. Reagent concentrations used to develop convective instabilities delivered a temperature jump at the wave front of 2.1 K. The reaction zone was 2 mm and due to normal cooling after the wave front, this generated a spike rather than the standard well-studied front propagation. The reaction front has solutal and thermal contributions to density changes that act in opposite directions due to the existence of a positive isothermal density change in the reaction. The competition between these effects generates thermal plumes. The fascinating feature of this system is the coexistence of plumes and fingering in the same solution which alternate in frequency as the front propagates, generating hot and cold spots within the Hele-Shaw cell, and subsequently spatiotemporal inhomogeneities. The small ΔT at the wave front generated thermocapillary convection which competed effectively with thermogravitational forces at low Eötvös Numbers. A simplified reaction-diffusion-convection model was derived for the system. Plume formation is heavily dependent on boundary effects from the cell dimensions. This work was supported by Grant No. CHE-1056366 from the NSF and a Research Professor Grant from the University of KwaZulu-Natal.

  14. Probe for detection of denting in PWR steam generator tubes

    International Nuclear Information System (INIS)

    Gerardin, J.P.; Germain, J.L.; Nio, J.C.

    1994-07-01

    In certain types of PWR steam generator, oxide deposits can lead to embedding, and subsequently to deformation of a tube (the phenomenon of ''denting''). Such embedding changes the vibratory behavior of the tubes and can result in fatigue cracking. This type of cracking can also be worsened in the event of improper assembly of the anti-vibration spacer bars supporting the U-bends. To prevent such incidents and provide for effective preventive condition-directed maintenance of its PWR steam generators, EDF has undertaken the study and development of a probe to detect this type of phenomenon. The studies began in 1990 and led to the building of an initial prototype probe. The principle behind the probe consists in inducing vibration in the U-bend and determining the main resonance modes of the tube. Measurements of frequency and amplitude and calculation of damping enable characterization of the mechanical behavior of the U-bend. The most important parameter is damping, for which the value must be sufficiently high to ensure that the tube is not subjected to major vibratory amplitudes during operation. Numerous tests have been performed with the first prototype version of the probe, on a mock-up in the test area and on one of the demounted steam generators on the Dampierre site. These different tests have enabled validation of the operating principle, fine-tuning the process, pinpointing certain mechanical problems in the probe design, and obtaining the first indications as to the real vibratory behavior of U-bends on a steam generator. On the basis of these preliminary tests, the specifications were drawn up for an industrial version of the probe. Following a call for bids and the choice of a manufacturer, work began on fabrication of a new probe model in 1993. This version was delivered at the end of 1993 and testing began in 1994. (authors). 5 figs., 2 tabs

  15. Small leak detection by measuring surface oscillation during sodium-water reaction in steam generator

    International Nuclear Information System (INIS)

    Nei, Hiromichi; Hori, Masao

    1977-01-01

    Small leak sodium-water reaction tests were conducted to develop various kinds of leak detectors for the sodium-heated steam generator in FBR. The super-heated steam was injected into sodium in a reaction vessel having a sodium free surface, simulating the steam generator. The level gauge in the reaction vessel generated the most reliable signal among detectors, as long as the leak rates were relatively high. The level gauge signal was estimated to be the sodium surface oscillation caused by hydrogen bubbles produced in sodium-water reaction. Experimental correlation was derived, predicting the amplitude as a function of leak rate, hydrogen dissolution ratio, bubble rise velocity and other parameters concerned, assuming that the surface oscillation is in proportion to the gas hold-up. The noise amplitude under normal operation without water leak was increased with sodium flow rate and found to be well correlated with Froud number. These two correlations predict that a water leak in a ''MONJU'' class (300 MWe) steam generator could possibly be detected by level gauges at a leak rate above 2 g/sec. (auth.)

  16. Probe-holding apparatus for holding a probe for checking steam generator tubes particularly in a nuclear reactor installation

    International Nuclear Information System (INIS)

    Adamowski, A.; Gagny; Gallet, G.; Lhermitte, J.; Monne, M.; Vautherot, G.

    1984-01-01

    Probe-holding apparatus for holding a probe for checking steam generator tubes particularly in a nuclear reactor installation. The apparatus comprises a telescopic arm supported via a ball and socket joint from a support mounted in or near an access aperture in a chamber at one end of the steam generator. A probe guide is carried by a carriage pivotally mounted at the other end of the telescopic arm. The carriage includes an endless belt having a series of spaced projections which engage into the ends of the tubes, the projections being spaced by a distance equal to the tube pitch or a multiple thereof. The belt is driven by a stepping motor in order to move the carriage and place the probe guide opposite different ones of the tubes

  17. Advantages of the first-derivative probe technique over the three- and four-parameter probe techniques in fusion plasmas diagnostics

    Czech Academy of Sciences Publication Activity Database

    Hasan, E.; Dimitrova, Miglena; Popov, T.; Ivanova, P.; Dejarnac, Renaud; Stöckel, Jan; Pánek, Radomír

    2018-01-01

    Roč. 13, č. 4 (2018), č. článku P04005. ISSN 1748-0221 R&D Projects: GA MŠk(CZ) LM2015045 Institutional support: RVO:61389021 Keywords : Plasma potential * electron temperature * bi-Maxwellian EEDF * Divertor Langmuir probes * three- and four-parameter probe techniques * first-derivative probe technique Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: 2.11 Other engineering and technologies Impact factor: 1.220, year: 2016 http://iopscience.iop.org/article/10.1088/1748-0221/13/04/P04005/meta

  18. (p,n) and (n,p) reactions as probes of isovector giant monopole resonances

    International Nuclear Information System (INIS)

    Auerbach, N.; Bowman, J.D.; Franey, M.A.; Love, W.G.

    1983-01-01

    Nucleon charge exchange reactions are explored as prospective probes of isovector giant monopole resonances. Using charge exchange transition densities based on random-phase approximation sum rules, distorted wave impulse approximation calculations are made for the (p,n) and (n,p) reactions exciting the isovector giant monopole resonances in several nuclei at bombarding energies of 120 and 800 MeV. Based on our calculations, the charge exchange reactions at 800 MeV appear more promising

  19. Distributed order reaction-diffusion systems associated with Caputo derivatives

    Science.gov (United States)

    Saxena, R. K.; Mathai, A. M.; Haubold, H. J.

    2014-08-01

    This paper deals with the investigation of the solution of an unified fractional reaction-diffusion equation of distributed order associated with the Caputo derivatives as the time-derivative and Riesz-Feller fractional derivative as the space-derivative. The solution is derived by the application of the joint Laplace and Fourier transforms in compact and closed form in terms of the H-function. The results derived are of general nature and include the results investigated earlier by other authors, notably by Mainardi et al. ["The fundamental solution of the space-time fractional diffusion equation," Fractional Calculus Appl. Anal. 4, 153-202 (2001); Mainardi et al. "Fox H-functions in fractional diffusion," J. Comput. Appl. Math. 178, 321-331 (2005)] for the fundamental solution of the space-time fractional equation, including Haubold et al. ["Solutions of reaction-diffusion equations in terms of the H-function," Bull. Astron. Soc. India 35, 681-689 (2007)] and Saxena et al. ["Fractional reaction-diffusion equations," Astrophys. Space Sci. 305, 289-296 (2006a)] for fractional reaction-diffusion equations. The advantage of using the Riesz-Feller derivative lies in the fact that the solution of the fractional reaction-diffusion equation, containing this derivative, includes the fundamental solution for space-time fractional diffusion, which itself is a generalization of fractional diffusion, space-time fraction diffusion, and time-fractional diffusion, see Schneider and Wyss ["Fractional diffusion and wave equations," J. Math. Phys. 30, 134-144 (1989)]. These specialized types of diffusion can be interpreted as spatial probability density functions evolving in time and are expressible in terms of the H-function in compact forms. The convergence conditions for the double series occurring in the solutions are investigated. It is interesting to observe that the double series comes out to be a special case of the Srivastava-Daoust hypergeometric function of two variables

  20. C60 and Sc3N@C80(TMB-PPO derivatives as constituents of singlet oxygen generating, thiol-ene polymer nanocomposites

    Directory of Open Access Journals (Sweden)

    Ashli R. Toles

    2016-07-01

    Full Text Available Numerous functionalization methods have been employed to increase the solubility, and therefore, the processability of fullerenes in composite structures, and of these radical addition reactions continue to be an important methodology. C60 and Sc3N@C80 derivatives were prepared via radical addition of the photodecomposition products from the commercial photoinitiator TMB-PPO, yielding C60(TMB-PPO5 and Sc3N@C80(TMB-PPO3 as preferred soluble derivatives obtained in high yields. Characterization of the mixture of isomers using standard techniques suggests an overall 1PPO:6TMB ratio of addends, reflecting the increased reactivity of the carbon radical. Although, a higher percentage of PPO is observed in the Sc3N@C80(TMB-PPO3 population, perhaps due to reverse electronic requirements of the substrate. Visually dispersed thiol-ene nanocomposites with low extractables were prepared using two monomer compositions (PETMP:TTT and TMPMP:TMPDE with increasing fullerene derivative loading to probe network structure-property relationships. Thermal stability of the derivatives and the resulting networks decreased with increased functionality and at high fullerene loadings, respectively. TMPMP:TMPDE composite networks show well-dispersed derivatives via TEM imaging, and increasing Tg’s with fullerene loading, as expected for the incorporation of a more rigid network component. PETMP:TTT composites show phase separation in TEM, which is supported by the observed Tg’s. Singlet oxygen generation of the derivatives decreases with increased functionality; however, this is compensated for by the tremendous increase in solubility in organic solvents and miscibility with monomers. Most importantly, singlet oxygen generation from the composites increased with fullerene derivative loading, with good photostability of the networks.

  1. Evaluation and field validation of Eddy-Current array probes for steam generator tube inspection

    International Nuclear Information System (INIS)

    Dodd, C.V.; Pate, J.R.

    1996-07-01

    The objective of the Improved Eddy-Current ISI for Steam Generator Tubing program is to upgrade and validate eddy-current inspections, including probes, instrumentation, and data processing techniques for inservice inspection of new, used, and repaired steam generator tubes; to improve defect detection, classification, and characterization as affected by diameter and thickness variations, denting, probe wobble, tube sheet, tube supports, copper and sludge deposits, even when defect types and other variables occur in combination; to transfer this advanced technology to NRC's mobile NDE laboratory and staff. This report describes the design of specialized high-speed 16-coil eddy-current array probes. Both pancake and reflection coils are considered. Test results from inspections using the probes in working steam generators are given. Computer programs developed for probe calculations are also supplied

  2. Polymerase chain reaction for detection of invasive Shigella flexneri in food.

    OpenAIRE

    Lampel, K A; Jagow, J A; Trucksess, M; Hill, W E

    1990-01-01

    The polymerase chain reaction (PCR) was used to amplify a 760-base-pair (bp) fragment with the 220-kbp invasive plasmids of enteroinvasive Escherichia coli, Shigella flexneri, Shigella dysenteriae, Shigella boydii, and Shigella sonnei as templates. This PCR product was easily detected by agarose gel electrophoresis. A 210-bp AccI-PstI fragment lying within the amplified region was used as a probe in Southern hybridization blots and showed that the PCR-generated product was derived from the in...

  3. Combining ligation reaction and capillary gel electrophoresis to obtain reliable long DNA probes.

    Science.gov (United States)

    García-Cañas, Virginia; Mondello, Monica; Cifuentes, Alejandro

    2011-05-01

    New DNA amplification methods are continuously developed for sensitive detection and quantification of specific DNA target sequences for, e.g. clinical, environmental or food applications. These new applications often require the use of long DNA oligonucleotides as probes for target sequences hybridization. Depending on the molecular technique, the length of DNA probes ranges from 40 to 450 nucleotides, solid-phase chemical synthesis being the strategy generally used for their production. However, the fidelity of chemical synthesis of DNA decreases for larger DNA probes. Defects in the oligonucleotide sequence result in the loss of hybridization efficiency, affecting the sensitivity and selectivity of the amplification method. In this work, an enzymatic procedure has been developed as an alternative to solid-phase chemical synthesis for the production of long oligonucleotides. The enzymatic procedure for probe production was based on ligation of short DNA sequences. Long DNA probes were obtained from smaller oligonucleotides together with a short sequence that acts as bridge stabilizing the molecular complex for DNA ligation. The ligation reactions were monitored by capillary gel electrophoresis with laser-induced fluorescence detection (CGE-LIF) using a bare fused-silica capillary. The capillary gel electrophoresis-LIF method demonstrated to be very useful and informative for the characterization of the ligation reaction, providing important information about the nature of some impurities, as well as for the fine optimization of the ligation conditions (i.e. ligation cycles, oligonucleotide and enzyme concentration). As a result, the yield and quality of the ligation product were highly improved. The in-lab prepared DNA probes were used in a novel multiplex ligation-dependent genome amplification (MLGA) method for the detection of genetically modified maize in samples. The great possibilities of the whole approach were demonstrated by the specific and sensitive

  4. A sensitive DNA biosensor based on a facile sulfamide coupling reaction for capture probe immobilization

    International Nuclear Information System (INIS)

    Wang, Qingxiang; Ding, Yingtao; Gao, Feng; Jiang, Shulian; Zhang, Bin; Ni, Jiancong; Gao, Fei

    2013-01-01

    Graphical abstract: A novel DNA biosensor was fabricated through a facile sulfamide coupling reaction between probe DNA and the sulfonic dye of 1-amino-2-naphthol-4-sulfonic acid that electrodeposited on a glassy carbon electrode. -- Highlights: •A versatile sulfonic dye of ANS was electrodeposited on a GCE. •A DNA biosensor was fabricated based on a facile sulfamide coupling reaction. •High probe DNA density of 3.18 × 10 13 strands cm −2 was determined. •A wide linear range and a low detection limit were obtained. -- Abstract: A novel DNA biosensor was fabricated through a facile sulfamide coupling reaction. First, the versatile sulfonic dye molecule of 1-amino-2-naphthol-4-sulfonate (AN-SO 3 − ) was electrodeposited on the surface of a glassy carbon electrode (GCE) to form a steady and ordered AN-SO 3 − layer. Then the amino-terminated capture probe was covalently grafted to the surface of SO 3 − -AN deposited GCE through the sulfamide coupling reaction between the amino groups in the probe DNA and the sulfonic groups in the AN-SO 3 − . The step-by-step modification process was characterized by electrochemistry and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Using Ru(NH 3 ) 6 3+ as probe, the probe density and the hybridization efficiency of the biosensor were determined to be 3.18 × 10 13 strands cm −2 and 86.5%, respectively. The hybridization performance of the biosensor was examined by differential pulse voltammetry using Co(phen) 3 3+/2+ (phen = 1,10-phenanthroline) as the indicator. The selectivity experiments showed that the biosensor presented distinguishable response after hybridization with the three-base mismatched, non-complementary and complementary sequences. Under the optimal conditions, the oxidation peak currents of Co(phen) 3 3+/2+ increased linearly with the logarithm values of the concentration of the complementary sequences in the range from 1.0 × 10 −13 M to 1.0 × 10 −8 M with

  5. S-Nitroglutathione, a product of the reaction between peroxynitrite and glutathione that generates nitric oxide.

    Science.gov (United States)

    Balazy, M; Kaminski, P M; Mao, K; Tan, J; Wolin, M S

    1998-11-27

    Peroxynitrite (ONOO-) has been shown in studies on vascular relaxation and guanylate cyclase activation to react with glutathione (GSH), generating an intermediate product that promotes a time-dependent production of nitric oxide (NO). In this study, reactions of ONOO- with GSH produced a new substance, which was characterized by liquid chromatography, ultraviolet spectroscopy, and electrospray tandem mass spectrometry. The mass spectrometric data provided evidence that the product of this reaction was S-nitroglutathione (GSNO2) and that S-nitrosoglutathione (GSNO) was not a detectable product of this reaction. Further evidence was obtained by comparison of the spectral and chromatographic properties with synthetic standards prepared by reaction of GSH with nitrosonium or nitronium borofluorates. Both the synthetic and ONOO-/GSH-derived GSNO2 generated a protonated ion, GSNO2H+, at m/z 353, which was unusually resistant to decomposition under collision activation, and no fragmentation was observed at collision energy of 25 eV. In contrast, an ion at m/z 337 (GSNOH+), generated from the synthetic GSNO, readily fragmented with the abundant loss of NO at 9 eV. Reactions of ONOO- with GSH resulted in the generation of NO, which was detected by the head space/NO-chemiluminescence analyzer method. The generation of NO was inhibited by the presence of glucose and/or CO2 in the buffers employed. Synthetic GSNO2 spontaneously generated NO in a manner that was not significantly altered by glucose or CO2. Thus, ONOO- reacts with GSH to form GSNO2, and GSNO2 decomposes in a manner that generates NO.

  6. Using muonium to probe the kinetics of the reaction between the H atom and OH"- in superheated water

    International Nuclear Information System (INIS)

    Ghandi, K.; Alcorn, C.; Brodovitch, J.-C.; Driedger, E.; Mozafari, M.; Percival, P.W.

    2011-01-01

    Operation of a supercritical-water-cooled nuclear reactor requires knowledge of water chemistry over a wide range of conditions. The considerable knowledge gap for conditions above the operating temperature of current-generation CANDU reactors is the target of this study. Since the H atom is difficult to probe at the desired temperatures and pressures, muonium is used as an alternative. In the current CANDU reactors, coolant pH is controlled using LiOH. We are studying how the rate constants for the reaction of muonium with LiOH and NaOH change with temperature and pressure. (author)

  7. Pre-service baseline inspection using x-probe of Oconee replacement steam generators

    International Nuclear Information System (INIS)

    Addario, M.; Shipp, P.; Davis, K.; Fogal, C.

    2003-01-01

    The eddy current method has been the industry standard for inspecting steam generator tubing for many years and the level of sophistication of coil technology has continued to evolve during that time. State of the art array probe systems now employ multiple sensitivity zones in the probe to better detect and characterize defects in an efficient manner. Owners and regulators of nuclear power plants are interested in the most effective and efficient inspection possible. The ultimate goal has been to meet or exceed new and existing regulatory and design requirements by maximizing the quantity and quality of eddy current data collected while minimizing both the time needed to perform the inspection and the radiation exposure. The X-Probe is an example of this new eddy current array technology. Qualified to detect all types of known defects in steam generator tubing, the technology is comprised of a system of probe, data acquisition instrumentation, computer and human interface software. Recently, Duke Power, along with Babcock and Wilcox Canada and the system developer R/D Tech, collaborated to implement this technology in a first of a kind full scale pre-service inspection of replacement steam generators for Duke Power's Oconee nuclear generating station at Babcock and Wilcox Canada's Cambridge plant. The discussion in this paper will briefly describe the X-Probe technology, describe the system required to perform the inspection, present the general results of the inspection and finally draw some comparative benefit conclusions for both pre-service and in-service applications. (author)

  8. Alchemical derivatives of reaction energetics

    Science.gov (United States)

    Sheppard, Daniel; Henkelman, Graeme; von Lilienfeld, O. Anatole

    2010-08-01

    Based on molecular grand canonical ensemble density functional theory, we present a theoretical description of how reaction barriers and enthalpies change as atoms in the system are subjected to alchemical transformations, from one element into another. The change in the energy barrier for the umbrella inversion of ammonia is calculated along an alchemical path in which the molecule is transformed into water, and the change in the enthalpy of protonation for methane is calculated as the molecule is transformed into a neon atom via ammonia, water, and hydrogen fluoride. Alchemical derivatives are calculated analytically from the electrostatic potential in the unperturbed system, and compared to numerical derivatives calculated with finite difference interpolation of the pseudopotentials for the atoms being transformed. Good agreement is found between the analytical and numerical derivatives. Alchemical derivatives are also shown to be predictive for integer changes in atomic numbers for oxygen binding to a 79 atom palladium nanoparticle, illustrating their potential use in gradient-based optimization algorithms for the rational design of catalysts.

  9. Optimization of crack detection in steam generator tubes using a punctual probe

    International Nuclear Information System (INIS)

    Levy, R.; Ferre, C.

    1985-01-01

    The existence of cracks at the upper end of the expanded zone of a steam generator tube is a recent problem. A differential pencil probe was used for the detection of those cracks with encouraging results. An optimization study has been necessary to solve the difficulties in the evaluation of defects, due to the design of the first probe; the result is a probe making possible a precise analysis of detected signals

  10. Entropy Generation in a Chemical Reaction

    Science.gov (United States)

    Miranda, E. N.

    2010-01-01

    Entropy generation in a chemical reaction is analysed without using the general formalism of non-equilibrium thermodynamics at a level adequate for advanced undergraduates. In a first approach to the problem, the phenomenological kinetic equation of an elementary first-order reaction is used to show that entropy production is always positive. A…

  11. Hybridization chain reaction-based colorimetric aptasensor of adenosine 5'-triphosphate on unmodified gold nanoparticles and two label-free hairpin probes.

    Science.gov (United States)

    Gao, Zhuangqiang; Qiu, Zhenli; Lu, Minghua; Shu, Jian; Tang, Dianping

    2017-03-15

    This work designs a new label-free aptasensor for the colorimetric determination of small molecules (adenosine 5'-triphosphate, ATP) by using visible gold nanoparticles as the signal-generation tags, based on target-triggered hybridization chain reaction (HCR) between two hairpin DNA probes. The assay is carried out referring to the change in the color/absorbance by salt-induced aggregation of gold nanoparticles after the interaction with hairpins, gold nanoparticles and ATP. To construct such an assay system, two hairpin DNA probes with a short single-stranded DNA at the sticky end are utilized for interaction with gold nanoparticles. In the absence of target ATP, the hairpin DNA probes can prevent gold nanoparticles from the salt-induced aggregation through the interaction of the single-stranded DNA at the sticky end with gold nanoparticles. Upon target ATP introduction, the aptamer-based hairpin probe is opened to expose a new sticky end for the strand-displacement reaction with another complementary hairpin, thus resulting in the decreasing single-stranded DNA because of the consumption of hairpins. In this case, gold nanoparticles are uncovered owing to the formation of double-stranded DNA, which causes their aggregation upon addition of the salt, thereby leading to the change in the red-to-blue color. Under the optimal conditions, the HCR-based colorimetric assay presents good visible color or absorbance responses for the determination of target ATP at a concentration as low as 1.0nM. Importantly, the methodology can be further extended to quantitatively or qualitatively monitor other small molecules or biotoxins by changing the sequence of the corresponding aptamer. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Using muonium to probe the kinetics of the reaction between the H atom and OH{sup -} in superheated water

    Energy Technology Data Exchange (ETDEWEB)

    Ghandi, K.; Alcorn, C. [Mount Allison Univ., Sackville, NB (Canada); Brodovitch, J.-C. [Simon Fraser Univ., Burnaby, BC (Canada); Driedger, E. [Mount Allison Univ., Sackville, NB (Canada); Mozafari, M. [Simon Fraser Univ., Burnaby, BC (Canada); Percival, P.W. [Simon Fraser Univ., Burnaby, BC (Canada); TRIUMF, Vancouver, BC (Canada)

    2011-07-01

    Operation of a supercritical-water-cooled nuclear reactor requires knowledge of water chemistry over a wide range of conditions. The considerable knowledge gap for conditions above the operating temperature of current-generation CANDU reactors is the target of this study. Since the H atom is difficult to probe at the desired temperatures and pressures, muonium is used as an alternative. In the current CANDU reactors, coolant pH is controlled using LiOH. We are studying how the rate constants for the reaction of muonium with LiOH and NaOH change with temperature and pressure. (author)

  13. Collective flow as a probe of heavy-ion reaction dynamics

    International Nuclear Information System (INIS)

    Awes, T.C.

    1997-01-01

    Collective flow of nuclear matter probes the dynamics of heavy-ion reactions and can provide information about the nuclear-matter equation of state. In particular, the incident energy dependences of collective flow may be a sensitive means to deduce the existence of a Quark Gluon Plasma phase in the equation of state. Collective flow measurements from 30 A MeV to 200 A GeV incident energies are briefly reviewed. Preliminary results on collective flow from the WA98 experiment at the CERN SPS are presented

  14. Probing the pairing interaction through two-neutron transfer reactions

    Directory of Open Access Journals (Sweden)

    Margueron J.

    2012-12-01

    Full Text Available The treatment of the pairing interaction in mean-field-based models is addressed. In particular, the possibility to use pair transfers as A tool to better constrain this interaction is discussed. First, pairing inter-actions with various density dependencies (surface/volume mixing are used in the microscopic Hartree-Fock-Bogoliubov + quasiparticle random-phase approximation model to generate the form factors to be used in reaction calculations. Cross sections for (p,t two-neutron transfer reactions are calculated in the one-step zero-range distorted-wave Born approximation for some Tin isotopes and for incident proton energies from 15 to 35 MeV. Three different surface/volume mixings of A zero-range density-dependent pairing interaction are employed in the microscopic calculations and the sensitivity of the cross sections to the different mixings is analyzed. Differences among the three different theoretical predictions are found espacially for the nucleus 136Sn and they are more important at the incident proton energy of 15 MeV. We thus indicate (p,t two-neutron transfer reactions with very neutron-rich Sn isotopes and at proton energies around 15 MeV as good experimental cases where the surface/volume mixing of the pairing interaction may be probed. In the second part of the manuscript, ground-state to ground-state transitions are investigated. Approximations made to estimate two-nucleon transfer probabilities in ground-state to ground-state transitions and the physical interpretation of these probabilities are discussed. Probabilities are often calculated by approximating both ground states of the initial nucleus A and of the final nucleus A±2 by the same quasiparticle vacuum. We analyze two improvements of this approach. First, the effect of using two different ground states with average numbers of particles A and A±2 is quantified. Second, by using projection techniques, the role of particle number restoration is analyzed. Our analysis

  15. Overview of magnetic bias X-probe qualification and inspection of PNGS Monel 400 steam generator tubing

    International Nuclear Information System (INIS)

    Lepine, B.A.; Van Langen, J.; Obrutsky, L.

    2006-01-01

    This paper presents an overview of the X-probe MB 350, the qualification for detection of open OD axial crack-like flaws, and a selection of inspection results from the subsequent field inspections performed with this probe during the 2003 and 2004 period at Pickering Nuclear Generating Station A and B. Examples of the field indications to be presented are axial cracking, OD pitting at top of tubesheet location (TTS), and flow assisted corrosion (top hats). During the 2003 in-service eddy current inspection results of Pickering Nuclear Generating Station A (PNGS-A) Unit 2, a 13 mm (0.5 inch) long axial indication was detected by the CTR1 bobbin and CTR2-C4 array probes in Tube R25-C52 of Steam Generator (SG) 11 in the hot leg sludge pile region. An experimental magnetic bias X-probe, especially designed by Zetec for inspection of Monel 400 tubing, was deployed and the indication was characterized as a potential outer diameter (OD) axially oriented crack. Posterior tube pulling and destructive examination confirmed the presence of an Environmentally Assisted Crack (EAC), approximately 80% deep and 13 mm long. Due to the significance of this discovery, Ontario Power Generation (OPG) requested AECL to initiate a program for qualification of the X-Probe MB 350 for the detection of OD axial cracks in medium to high magnetic permeability (μ r ) Monel 400 PNGS-A and B steam generator tubing at different locations. The X-probe MB 350 subsequently has been deployed as a primary inspection probe for crack detection for PNGS steam generators. (author)

  16. A novel acidic pH fluorescent probe based on a benzothiazole derivative

    Science.gov (United States)

    Ma, Qiujuan; Li, Xian; Feng, Suxiang; Liang, Beibei; Zhou, Tiqiang; Xu, Min; Ma, Zhuoyi

    2017-04-01

    A novel acidic pH fluorescent probe 1 based on a benzothiazole derivative has been designed, synthesized and developed. The linear response range covers the acidic pH range from 3.44 to 6.46, which is valuable for pH researches in acidic environment. The evaluated pKa value of the probe 1 is 4.23. The fluorescence enhancement of the studied probe 1 with an increase in hydrogen ions concentration is based on the hindering of enhanced photo-induced electron transfer (PET) process. Moreover, the pH sensor possesses a highly selective response to H+ in the presence of metal ions, anions and other bioactive small molecules which would be interfere with its fluorescent pH response. Furthermore, the probe 1 responds to acidic pH with short response time that was less than 1 min. The probe 1 has been successfully applied to confocal fluorescence imaging in live HeLa cells and can selectively stain lysosomes. All of such good properties prove it can be used to monitoring pH fluctuations in acidic environment with high sensitivity, pH dependence and short response time.

  17. Reaction Mechanism Generator: Automatic construction of chemical kinetic mechanisms

    Science.gov (United States)

    Gao, Connie W.; Allen, Joshua W.; Green, William H.; West, Richard H.

    2016-06-01

    Reaction Mechanism Generator (RMG) constructs kinetic models composed of elementary chemical reaction steps using a general understanding of how molecules react. Species thermochemistry is estimated through Benson group additivity and reaction rate coefficients are estimated using a database of known rate rules and reaction templates. At its core, RMG relies on two fundamental data structures: graphs and trees. Graphs are used to represent chemical structures, and trees are used to represent thermodynamic and kinetic data. Models are generated using a rate-based algorithm which excludes species from the model based on reaction fluxes. RMG can generate reaction mechanisms for species involving carbon, hydrogen, oxygen, sulfur, and nitrogen. It also has capabilities for estimating transport and solvation properties, and it automatically computes pressure-dependent rate coefficients and identifies chemically-activated reaction paths. RMG is an object-oriented program written in Python, which provides a stable, robust programming architecture for developing an extensible and modular code base with a large suite of unit tests. Computationally intensive functions are cythonized for speed improvements.

  18. Styrene oligomerization as a molecular probe reaction for zeolite acidity: a UV-Vis spectroscopy and DFT study

    NARCIS (Netherlands)

    Buurmans, I.L.C.; Pidko, E.A.; Groot, de J.M.; Stavitski, E.; Santen, van R.A.; Weckhuysen, B.M.

    2010-01-01

    A series of H-ZSM-5 crystallites with different framework Si/Al ratios was studied by analyzing the kinetics and reaction mechanism of the oligomerization of 4-fluorostyrene as molecular probe reaction for Brønsted acidity. The formation of carbocationic species was followed by UV-Vis spectroscopy.

  19. Surface sampling concentration and reaction probe

    Science.gov (United States)

    Van Berkel, Gary J; Elnaggar, Mariam S

    2013-07-16

    A method of analyzing a chemical composition of a specimen is described. The method can include providing a probe comprising an outer capillary tube and an inner capillary tube disposed co-axially within the outer capillary tube, where the inner and outer capillary tubes define a solvent capillary and a sampling capillary in fluid communication with one another at a distal end of the probe; contacting a target site on a surface of a specimen with a solvent in fluid communication with the probe; maintaining a plug volume proximate a solvent-specimen interface, wherein the plug volume is in fluid communication with the probe; draining plug sampling fluid from the plug volume through the sampling capillary; and analyzing a chemical composition of the plug sampling fluid with an analytical instrument. A system for performing the method is also described.

  20. Imaging the reactions of molecular dications: a new probe of dicationic reaction dynamics and energetics

    International Nuclear Information System (INIS)

    Wan-Ping Hu, S.; Harper, S.M.; Price, S.D.

    2002-01-01

    Experiments which generated angularly resolved data to prove the dynamics of dication chemical reactions were performed using a position sensitive coincidence (PSCO) apparatus, to detect in coincidence both of the charged products from such reaction. It consists of a ion source, a hemispherical energy analyser, and a time-of-flight mass spectrometer. Initial experiments to test the apparatus performance were runned on the atomic electron transfer reaction: Ne 2+ + Ar → Ne + + Ar + . Angular distributions, translational and internal energies of the product ions were extracted, as well as the scattering diagram among other data. (nevyjel)

  1. Reaction of organic ytterbium derivatives with alkyl- and arylhalogenides

    International Nuclear Information System (INIS)

    Rybakova, L.F.; Syutkina, O.P.; Garbar, A.V.; Petrov, Eh.S.

    1988-01-01

    Interaction of a series of organic halogenides with organic bivalent ytterbium derivatives (like Grignard reagent, RYbX, where R=CH 3 , C 6 H 5 ; X=Br, I) under metal complex catalysis is studied. Aromatic and aliphatic ytterbium derivatives undergo a reaction of cross combination with organic iodides and bromides under catalysis by NiCl 2 (PPh 3 ) 2 and Pd(PPh 3 ) 4 complexes. Therewith organo-ytterbium compounds quantitatively react with alkyl (aryl) iodides, bromine substitution for iodine in arylhalogenides results in decrease of yield of cross-combination products. Reactions of organo-ytterbium compounds with organic halogenides are more effectively catalysed by nickel complexes than by palladium ones

  2. Simulation of chemical reactions using fractional derivatives

    International Nuclear Information System (INIS)

    Zabadal, J.; Vilhena, M.; Livotto, P.

    2001-01-01

    In this work a new approach to solve time-dependant Schroedinger equation for molecular systems is proposed. The method employs functional derivatives to describe the time evolution of the wave functions in reactive systems, in order to establish the mechanisms and products of the reaction. A numerical simulation is reported

  3. In situ composition measurements of Bunsen reaction solution by radiation probes

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Shinji; Nagaya, Yasunobu [Japan Atomic Energy Agency (Japan)

    2010-07-01

    Measuring equipments are integral to chemical process controls. A stable hydrogen production by the Iodine-Sulfur thermochemical water-splitting process is relatively difficult because of lack of existing in situ composition measurement techniques for multiple components and corrosive solution. Composition regulations of Bunsen reaction solution is particularly important, since a closed cycle system provided with this process causes that the many streams with different composition return to this section. Accordingly Bunsen solution becomes changeable composition. Radiation probes have a potential for applications to determine this multiple component solution while the non-contact approach avoids the corrosive issues. Moreover the probes have features of the promptness, contact-less and sequential use. Laboratory scale experiments to evaluate these possibilities of the measurement were conducted with use of simulated Bunsen solution, HIx solution and H{sub 2}SO{sub 4} solution, containing HI, I2, H{sub 2}SO{sub 4} and H{sub 2}O and sealed radiation sources. Radiations were counted, which were interacted with the solutions in various compositions around room temperature contained in vessels. For HIx solution, the obtained counting rates were correlated with hydrogen volume concentrations; moreover, the application of the Monte Carlo method suggests possibilities that the detector responses for HIx solution by the radiation probes are predictable. For H{sub 2}SO{sub 4} solution, iodine atoms had significant influences on the relationship between output values of two gamma-ray density meters, cesium source as higher energy and barium source as lower energy. This results suggest that the neutron ray probe, the gamma-ray probes of both lower energy and higher energy have possibilities to determine the composition of Bunsen solution of HIx and H{sub 2}SO{sub 4} solutions. (orig.)

  4. Photonuclear reaction as a probe for α -clustering nuclei in the quasi-deuteron region

    Science.gov (United States)

    Huang, B. S.; Ma, Y. G.; He, W. B.

    2017-03-01

    Photon-nuclear reaction in a transport model frame, namely an extended quantum molecular dynamics model, has been realized at the photon energy of 70-140 MeV in the quasi-deuteron regime. For an important application, we pay a special focus on photonuclear reactions of 12C(γ ,n p )10B where 12C is considered as different configurations including α clustering. Obvious differences for some observables have been observed among different configurations, which can be attributed to spatial-momentum correlation of a neutron-proton pair inside nucleus, and therefore it gives us a sensitive probe to distinguish the different configurations including α clustering with the help of the photonuclear reaction mechanism.

  5. Isotopic Exchange Reaction Assisted with Cu (I) generated ''in situ'' For Synthesis of Ready-to-Use for on-the-spot Formulation of [131 I] Iodobenzyl Derivatives

    International Nuclear Information System (INIS)

    Abudaia, J.A.; Suliman, M.O.

    2007-01-01

    It has been examined that meta-Iodobenzylguanidine (m-IBG), para-Iodoamphetamine (p-IPA) and orth-Iodohippuric acid (o-IHA) are three commonly used Iodobenzyl derivative compounds, and can be formulated as Ready-to-Use Kits for on-the-spot labeling catalyzed with copper ion Cu+ (I) generated ''In Situ''. The labeling procedure efficiently has been established within 30 min of heating using an autoclave, 20 min. and 90 min. using dry heating block respectively. Isotopic exchange reaction with Iodine-131 radioactive of those three Ready-to-Use Kits has led to Radiochemical Purity ''RCP'' equals to 98%, > 98%, and almost 99%, and Radiochemical Yield ''RCY'' > 97%, >93% and > 98% respectively. Attention was paid to the Radiochemical Stability of those three Iodobenzyl derivatives for a period time of preservation at low temperature. As a result, this gave evidence that such Radiopharmaceuticals could be used as Ready-to-Use products at different times of preservations.

  6. Detection of hepatitis A virus by hybridization with single-stranded RNA probes

    International Nuclear Information System (INIS)

    Xi, J.; Estes, M.K.; Metcalf, T.G.

    1987-01-01

    An improved method of dot-blot hybridization to detect hepatitis A virus (HAV) was developed with single-stranded RNA (ssRNA) probes. Radioactive and nonradioactive ssRNA probes were generated by in vitro transcription of HAV templates inserted into the plasmid pGEM-1. 32 P-labeled ssRNA probes were at least eightfold more sensitive than the 32 P-labeled double-stranded cDNA counterparts, whereas biotin-labeled ssRNA probes showed a sensitivity comparable with that of the 32 P-labeled double-stranded cDNA counterparts. Hybridization of HAV with the ssRNA probes at high stringency revealed specific reactions with a high signal-to-noise ratio. The differential hybridization reactions seen with probes of positive and negative sense (compared with HAV genomic RNA) were used to detect HAV in clinical and field samples. A positive/negative ratio was introduced as an indicator that permitted an semiquantitative expression of a positive HAV reaction. Good agreement of this indicator was observed with normal stool samples and with HAV-seeded samples. By using this system, HAV was detected in estuarine and freshwater samples collected from a sewage-polluted bayou in Houston and a saltwater tributary of Galveston Bay

  7. Sodium-water reaction studies for MONJU steam generators

    International Nuclear Information System (INIS)

    Hori, M.; Sato, M.; Nei, H.; Harasaki, T.; Hishida, M.; Saito, T.

    1975-01-01

    The R and D results of the PNC's sodium-water reaction project are reviewed. The purposes of the project with the specific object for each test rig and computer code are given. The test items which should be investigated for the safety evaluation of the MONJU steam generators are discussed, and the status of the PNC's work on each item is described. The results on the small-leak wastage measurement are shown and the improved experimental equations to predict the wastage rate from the leak rate and the sodium temperature are given. The preliminary results on the wastage of tube bundle in the intermediate leak range are shown. The depth and the area of the wastage and also the wastage rate for each tube are shown graphically. The measured peak value of the initial pressure spike for the large leak is shown. The scatter of the data and its causes are discussed. The bubble growth rate estimated from the void probe measurement is presented. The results of the simulation experiment on the pressure wave propagation to the secondary circuit are given, comparing them with the prediction by the one-dimensional computer codes SWAC-5K and SWAC-5H. (author)

  8. Sodium-water reaction studies for MONJU steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Hori, M; Sato, M; Nei, H; Harasaki, T; Hishida, M; Saito, T

    1975-07-01

    The R and D results of the PNC's sodium-water reaction project are reviewed. The purposes of the project with the specific object for each test rig and computer code are given. The test items which should be investigated for the safety evaluation of the MONJU steam generators are discussed, and the status of the PNC's work on each item is described. The results on the small-leak wastage measurement are shown and the improved experimental equations to predict the wastage rate from the leak rate and the sodium temperature are given. The preliminary results on the wastage of tube bundle in the intermediate leak range are shown. The depth and the area of the wastage and also the wastage rate for each tube are shown graphically. The measured peak value of the initial pressure spike for the large leak is shown. The scatter of the data and its causes are discussed. The bubble growth rate estimated from the void probe measurement is presented. The results of the simulation experiment on the pressure wave propagation to the secondary circuit are given, comparing them with the prediction by the one-dimensional computer codes SWAC-5K and SWAC-5H. (author)

  9. Probing deformed orbitals with vector A( vector e, e' N)B reactions

    International Nuclear Information System (INIS)

    Garrido, E.; Caballero, J.A.; Moya de Guerra, E.; Sarriguren, P.; Udias, J.M.

    1995-01-01

    We present results for response functions and asymmetries in the nuclear reactions 37 vector Ar( vector e, e' n) 36 Ar and 37 vector K( vector e,e' p) 36 Ar at quasifree kinematics. We compare PWIA results obtained using deformed HF wave functions with PWIA and DWIA results obtained assuming a spherical mean field. We show that the complex structure of the deformed orbitals can be probed by coincidence measurements with polarized beam and targets. ((orig.))

  10. Field trial of a fast single-pass transmit-receive probe during Gentilly II steam generator tube inspection

    International Nuclear Information System (INIS)

    Obrutsky, L.; Cantin, M.; Renaud, J.; Cecco, V.; Lakhan, R.; Sullivan, S.

    2000-01-01

    A new generation of transmit-receive single-pass probes, denoted as C6 or X probe, was field tested during the Gentilly II, 2000 steam generator tube inspection. This probe has a performance equivalent to rotating probes and can be used for tubesheet and full-length inspection at an inspection speed equivalent to that of bobbin probes. Existing C3 transmit-receive probes have been demonstrated to be effective in detecting circumferential cracks. The C5 probe can detect both circumferential and axial cracks and volumetric defects but cannot discriminate between them. The C6 probe expands on the capabilities of both probes in a single probe head. It can simultaneously detect and discriminate between circumferential and axial cracks to satisfy different plugging criteria. It has excellent coverage, good defect detectability, and improved sizing and characterization. Probe data is displayed in C-scan format so that the amount of data to be analyzed is similar to rotating probes. The C6 probe will significantly decrease inspection time and the need for re-inspection and tube pulling. This paper describes the advantages of the probe and demonstrates its capabilities employing signals from tube samples with calibration flaws and laboratory induced cracks. It shows the results from the field trial of the probe at Gentilly II and describes the instrumentation, hardware and software used for the inspection. (author)

  11. Field trial of a fast single-pass transmit-receive probe during Gentilly II steam generator tube inspection

    International Nuclear Information System (INIS)

    Obrutsky, L.; Cantin, M.; Renaud, J.; Cecco, V.; Lakhan, R.; Sullivan, S.

    2000-01-01

    A new generation of transmit-receive single-pass probes, denoted as C6 or X probe, was field-tested during the Gentilly II, 2000 steam generator tube inspection. This probe has a performance equivalent to rotating probes and can be used for tubesheet and full-length inspection at an inspection speed equivalent to that of bobbin probes. Existing C3 transmit-receive probes have been demonstrated to be effective in detecting circumferential cracks. The C5 probe can detect both circumferential and axial cracks and volumetric defects but cannot discriminate between them. The C6 probe expands on the capabilities of both probes in a single probe head. It can simultaneously detect and discriminate between circumferential and axial cracks to satisfy different plugging criteria. It has excellent coverage, good defect detectability, and improved sizing and characterization. Probe data is displayed in C-scan format so that the amount of data to be analyzed is similar to rotating probes. The C6 probe will significantly decrease inspection time and the need for re-inspection and tube pulling. This paper describes the advantages of the probe and demonstrates its capabilities employing signals from tube samples with calibration flaws and laboratory induced cracks. It shows the results from the field trial of the probe at Gentilly II and describes the instrumentation, hardware and software used for the inspection. (author)

  12. Removing Eddy-current probe wobble noise from steam generator tubes testing using wavelet transform

    International Nuclear Information System (INIS)

    Lopez, Luiz Antonio Negro Martin; Ting, Daniel Kao Sun; Upadhyaya, Belle R.

    2005-01-01

    One of the most import nondestructive evaluation (NDE) applied to steam generator tubes inspection is the electromagnetic Eddy-Current testing (ECT). The signals generated in this NDE, in general, contain many noises which make difficult the interpretation and analysis of ECT signals. One of the noises present in the signals is the probe wobble noise, which is caused by the existing slack between the probe and the tube. In this work, Wavelet Transform (WT) is used in the probe wobble de-noising. WT is a relatively recent mathematical tool, which allows local analysis of non stationary signals such as ECT signals. This is a great advantage of WT when compared with other analysis tools such as Fourier Transform. However, using WT involves wavelets and coefficients selection as well as choosing the number of decomposition level needed. This work presents a probe wobble de-noising method when used in conjunction with the traditional ECT evaluation. Comparative results using several WT applied do Eddy-Current signals are presented in a reliable way, in other words, without loss of inherent defect information. A stainless steel tube, with 2 artificial defects generated by electro-erosion, was inspected by a ZETEC MIZ-17ET ECT equipment. The signals were de-noised through several different WT and the results are presented. The method offer good results and is a promising method because allows for the removal of Eddy-Current signals probe wobble effect without loss of essential signal information. (author)

  13. Time-resolved imaging of purely valence-electron dynamics during a chemical reaction

    DEFF Research Database (Denmark)

    Hockett, Paul; Bisgaard, Christer Z.; Clarkin, Owen J.

    2011-01-01

    Chemical reactions are manifestations of the dynamics of molecular valence electrons and their couplings to atomic motions. Emerging methods in attosecond science can probe purely electronic dynamics in atomic and molecular systems(1-6). By contrast, time-resolved structural-dynamics methods...... such as electron(7-10) or X-ray diffraction(11) and X-ray absorption(12) yield complementary information about the atomic motions. Time-resolved methods that are directly sensitive to both valence-electron dynamics and atomic motions include photoelectron spectroscopy(13-15) and high-harmonic generation(16......,17): in both cases, this sensitivity derives from the ionization-matrix element(18,19). Here we demonstrate a time-resolved molecular-frame photoelectron-angular-distribution (TRMFPAD) method for imaging the purely valence-electron dynamics during a chemical reaction. Specifically, the TRMFPADs measured during...

  14. Qualification of the testing process by a new rotating probe for the 900 MW PWR steam generators tubes

    International Nuclear Information System (INIS)

    Caston, D.

    2001-01-01

    In 1997, EDF invites bids for the development of eddy current probes, in order to better control the steam generator tubes rolling zone of the PWR. After examination of the response, EDF accepted a prototype of a rotating probe. The EDF specifications of the new steam generators contract, fix the inspection performance and rhythm of the rotating probe, which implements two different technic: the STL (long rotating prob)e for the detection and characterization of longitudinal defects; the STT (transverse rotating probe) for the detection and characterization of circumferential defects. The new rotating probe should not increase the control time. Two new equipments have been developed to implement this new probe: a new support and a software of online inspection with data processing and analyzing. Abstract only. (A.L.B.)

  15. Benzothiadiazole Derivatives as Fluorescence Imaging Probes: Beyond Classical Scaffolds.

    Science.gov (United States)

    Neto, Brenno A D; Carvalho, Pedro H P R; Correa, Jose R

    2015-06-16

    This Account describes the origins, features, importance, and trends of the use of fluorescent small-molecule 2,1,3-benzothiadiazole (BTD) derivatives as a new class of bioprobes applied to bioimaging analyses of several (live and fixed) cell types. BTDs have been successfully used as probes for a plethora of biological analyses for only a few years, and the impressive responses obtained by using this important class of heterocycle are fostering the development of new fluorescent BTDs and expanding the biological applications of such derivatives. The first use of a fluorescent small-molecule BTD derivative as a selective cellular probe dates back to 2010, and since then impressive advances have been described by us and others. The well-known limitations of classical scaffolds urged the development of new classes of bioprobes. Although great developments have been achieved by using classical scaffolds such as coumarins, BODIPYs, fluoresceins, rhodamines, cyanines, and phenoxazines, there is still much to be done, and BTDs aim to succeed where these dyes have shown their limitations. Important organelles and cell components such as nuclear DNA, mitochondria, lipid droplets, and others have already been successfully labeled by fluorescent small-molecule BTD derivatives. New technological systems that use BTDs as the fluorophores for bioimaging experiments have been described in recent scientific literature. The successful application of BTDs as selective bioprobes has led some groups to explore their potential for use in studying membrane pores or tumor cells under hypoxic conditions. Finally, BTDs have also been used as fluorescent tags to investigate the action mechanism of some antitumor compounds. The attractive photophysical data typically observed for π-extended BTD derivatives is fostering interest in the use of this new class of bioprobes. Large Stokes shifts, large molar extinction coefficients, high quantum yields, high stability when stored in solution or

  16. A novel thiamine-derived pigment, pyrizepine, formed by the Maillard reaction.

    Science.gov (United States)

    Igoshi, Asuka; Noda, Kyoko; Murata, Masatsune

    2018-04-26

    To find a Maillard pigment derived from thiamine, a solution containing glucose and thiamine was heated and analyzed with high-performance liquid chromatography equipped with diode-array detection. As a result, a unique peak showing an absorption maximum at 380 nm was detected. This peak was then isolated from a reaction solution containing glucose, lysine and thiamine, and was identified as 1-(2-methyl-6,9-dihydro-5H-pyrimido[4,5-e][1,4]diazepin-7-yl)ethan-1-one using instrumental analyses. This compound, named pyrizepine, was a novel yellow pigment having a fused ring consisting of pyrimidine and diazepine. Pyrizepine was a major low-molecular-weight pigment in the reaction solution. The structure suggests that pyrizepine is formed by condensation reaction between a degradation product of thiamine and a tetrosone derivative formed from glucose by the Maillard reaction.

  17. Isotope yield ratios as a probe of the reaction dynamics

    International Nuclear Information System (INIS)

    Trautmann, W.; Hildenbrand, K.D.; Lynen, U.; Mueller, W.F.J.; Rabe, H.J.; Sann, H.; Stelzer, H.; Trockel, R.; Wada, R.; Brummund, N.; Glasow, R.; Kampert, K.H.; Santo, R.; Eckert, E.M.; Pochodzalla, J.; Bock, I.; Pelte, D.

    1987-04-01

    Isotopically resolved yields of particles and complex fragments from 12 C and 18 O induced reactions on 53 Ni, 54 Ni, Ag, and 197 Au in the intermediate range of bombarding energies 30 MeV ≤ E/A ≤ 84 MeV were measured. The systematic variation of the deduced isotope yield ratios with projectile and target is used to determine the degree of N/Z equilibration achieved and to establish time scales for the reaction process. A quantum statistical model is employed in order to derive entropies of the emitting systems from the measured isotope yield ratios. (orig.)

  18. Bis-pyridinium quadrupolar derivatives. High Stokes shift selective probes for bio-imaging

    Science.gov (United States)

    Salice, Patrizio; Versari, Silvia; Bradamante, Silvia; Meinardi, Francesco; Macchi, Giorgio; Pagani, Giorgio A.; Beverina, Luca

    2013-11-01

    We describe the design, synthesis and characterization of five high Stokes shift quadrupolar heteroaryl compounds suitable as fluorescent probes in bio-imaging. In particular, we characterize the photophysical properties and the intracellular localization in Human Umbilical Vein Endothelial Cells (HUVEC) and Human Mesenchymal Stem Cells (HMSCs) for each dye. We show that, amongst all of the investigated derivatives, the 2,5-bis[1-(4-N-methylpyridinium)ethen-2-yl)]- N-methylpyrrole salt is the best candidates as selective mitochondrial tracker. Finally, we recorded the full emission spectrum of the most performing - exclusively mitochondrial selective - fluorescent probe directly from HUVEC stained cells. The emission spectrum collected from the stained mitochondria shows a remarkably more pronounced vibronic structure with respect to the emission of the free fluorophore in solution.

  19. Improving the psychometric properties of dot-probe attention measures using response-based computation.

    Science.gov (United States)

    Evans, Travis C; Britton, Jennifer C

    2018-09-01

    Abnormal threat-related attention in anxiety disorders is most commonly assessed and modified using the dot-probe paradigm; however, poor psychometric properties of reaction-time measures may contribute to inconsistencies across studies. Typically, standard attention measures are derived using average reaction-times obtained in experimentally-defined conditions. However, current approaches based on experimentally-defined conditions are limited. In this study, the psychometric properties of a novel response-based computation approach to analyze dot-probe data are compared to standard measures of attention. 148 adults (19.19 ± 1.42 years, 84 women) completed a standardized dot-probe task including threatening and neutral faces. We generated both standard and response-based measures of attention bias, attentional orientation, and attentional disengagement. We compared overall internal consistency, number of trials necessary to reach internal consistency, test-retest reliability (n = 72), and criterion validity obtained using each approach. Compared to standard attention measures, response-based measures demonstrated uniformly high levels of internal consistency with relatively few trials and varying improvements in test-retest reliability. Additionally, response-based measures demonstrated specific evidence of anxiety-related associations above and beyond both standard attention measures and other confounds. Future studies are necessary to validate this approach in clinical samples. Response-based attention measures demonstrate superior psychometric properties compared to standard attention measures, which may improve the detection of anxiety-related associations and treatment-related changes in clinical samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Quantitative in situ monitoring of an elevated temperature reaction using a water-cooled mid-infrared fiber-optic probe.

    Science.gov (United States)

    Maclaurin, P; Crabb, N C; Wells, I; Worsfold, P J; Coombs, D

    1996-04-01

    A novel water-cooled mid-infrared fiber-optic probe is described which is heatable to 230 °C. The probe has chalcogenide fibers and a ZnSe internal reflection element and is compact and fully flexible, allowing access to a wide range of standard laboratory reaction vessels and fume cupboard arrangements. Performance is demonstrated via the in situ analysis of an acid-catalyzed esterification reaction in toluene at 110 °C, and the results are compared with those from a conventional extractive sampling loop flow cell arrangement. Particular emphasis is given to the quantitative interpretation of the spectroscopic data, using gas chromatographic reference data. Calibration data are presented for univariate and partial least squares models, with an emphasis on procedures for improving the quality of interpreparation calibration and prediction through the use of focused reference analysis regimes. Subset univariate procedures are presented that yield relative errors of spectroscopy combined with bias correction partial least squares procedures for the efficient in situ quantitative analysis of laboratory scale reactions.

  1. Single-particle states in ^112Cd probed with the ^111Cd(d,p) reaction

    Science.gov (United States)

    Garrett, P. E.; Jamieson, D.; Demand, G. A.; Finlay, P.; Green, K. L.; Leach, K. G.; Phillips, A. A.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wong, J.; Ball, G. C.; Hertenberger, R.; Wirth, H.-F.; Kr"Ucken, R.; Faestermann, T.

    2009-10-01

    As part of a program of detailed spectroscopy of the Cd isotopes, the single-particle neutron states in ^112Cd have been probed with the ^111Cd(d,p) reaction. Beams of polarized 22 MeV deuterons, obtained from the LMU/TUM Tandem Accelerator, bombarded a target of ^111Cd. The protons from the reaction, corresponding to excitation energies up to 3 MeV in ^112Cd, were momentum analyzed with the Q3D spectrograph. Cross sections and analyzing powers were fit to results of DWBA calculations, and spectroscopic factors were determined. The results from the experiment, and implications for the structure of ^112Cd, will be presented.

  2. Asymmetric Benzylic Allylic Alkylation Reaction of 3-Furfural Derivatives by Dearomatizative Dienamine Activation.

    Science.gov (United States)

    He, Xiao-Long; Zhao, Hui-Ru; Duan, Chuan-Qi; Han, Xu; Du, Wei; Chen, Ying-Chun

    2018-04-20

    The dearomatizative dienamine-type ortho-quinodimethane species are smoothly generated between 2-alkyl-3-furfurals and chiral secondary amine catalysts, which undergo asymmetric benzylic allylic alkylation reactions with 2-nitroallylic acetates efficiently. A spectrum of densely functionalized 3-furfural derivatives are delivered in moderate to high yields with good to excellent diastereo- and enantioselectivity (up to 98 % yield, >19:1 d.r., >99 % ee). The latent transformations allow the facile production of some enantioenriched architectures, such as 1,1,2,2-tetraarylethanes and triarylmethanes, which are not easily available from other protocols. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. An Efficient Solid-phase Parallel Synthesis of 2-Amino and 2-Amidobenzo[d]oxazole Derivatives via Cyclization Reactions of 2-Hydroxyphenylthiourea Resin

    International Nuclear Information System (INIS)

    Jung, Selin; Kim, Seulgi; Lee, Geehyung; Gong, Youngdae

    2012-01-01

    An efficient solid-phase methodology has been developed for the synthesis of 2-amino and 2-amidobenzo[d]-oxazole derivatives. The key step in this procedure involves the preparation of polymer-bound 2-aminobenzo-[d]oxazole resins 4 by cyclization reaction of 2-hydroxyphenylthiourea resin 3. The resin-bound 2-hydroxy-phenylthiourea 3 is produced by the addition of 2-aminophenol to the isothiocyanate-terminated resin 2 and serve as a key intermediate for the linker resin. This core skeleton 2-aminobenzo[d]oxazole resin 4 undergoes functionalization reaction with various electrophiles, such as alkylhalides and acid chlorides to generate 2-amino and 2-amidobenzo[d]oxazole resins 5 and 6 respectively. Finally, 2-amino and 2-amidobenzo[d]oxazole derivatives 7 and 8 are then generated in good yields and purities by cleavage of the respective resins 5 and 6 under trifluoroacetic acid (TFA) in dichloromethane (CH 2 Cl 2 )

  4. Cut-off effect of radical TEMPO derivatives in olive oil-in-water emulsions.

    Science.gov (United States)

    Lopez de Arbina, Amaia; Rezende, Marcos Caroli; Aliaga, Carolina

    2017-06-01

    Three oil-in-water emulsions were prepared from mixtures of olive oil and Tween 20 in water. The effectiveness of a series of radical 2,2,6,6-tetramethylpiperidinoxyl (TEMPO) derivatives of variable lipophilicity in reactions with antioxidant Trolox, and as pyrene-fluorescence quenchers, was compared in the three emulsions. A "cut-off" effect was observed for the pyrene quenching by the probes, but not for their reaction with Trolox. The results were rationalized in terms of the amphiphobic nature of the probes, and the different locations of probe, pyrene and Trolox in the three-phase microheterogeneous systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The transient reaction characteristic of piperonal and anthraquinone derivative: a pulse radiolytic study

    International Nuclear Information System (INIS)

    Ma Jianhua; Lin Weizhen; Wang Wenfeng; Yao Side

    2006-01-01

    Piperonal belongs to naturally organic compound and anthraquinone-2-sulfate is a important anthraquinone derivative. In this work, the transient reaction characteristic of piperonal and anthraquinone derivative has been investigated. The transient absorption spectra of the product from electron transfer reaction between piperonal and anthraquinone-2-sulfate was obtained, the electron transfer between electron donor and acceptor was observed directly. (authors)

  6. Development and evaluation of a panel of filovirus sequence capture probes for pathogen detection by next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Koehler

    Full Text Available A detailed understanding of the circulating pathogens in a particular geographic location aids in effectively utilizing targeted, rapid diagnostic assays, thus allowing for appropriate therapeutic and containment procedures. This is especially important in regions prevalent for highly pathogenic viruses co-circulating with other endemic pathogens such as the malaria parasite. The importance of biosurveillance is highlighted by the ongoing Ebola virus disease outbreak in West Africa. For example, a more comprehensive assessment of the regional pathogens could have identified the risk of a filovirus disease outbreak earlier and led to an improved diagnostic and response capacity in the region. In this context, being able to rapidly screen a single sample for multiple pathogens in a single tube reaction could improve both diagnostics as well as pathogen surveillance. Here, probes were designed to capture identifying filovirus sequence for the ebolaviruses Sudan, Ebola, Reston, Taï Forest, and Bundibugyo and the Marburg virus variants Musoke, Ci67, and Angola. These probes were combined into a single probe panel, and the captured filovirus sequence was successfully identified using the MiSeq next-generation sequencing platform. This panel was then used to identify the specific filovirus from nonhuman primates experimentally infected with Ebola virus as well as Bundibugyo virus in human sera samples from the Democratic Republic of the Congo, thus demonstrating the utility for pathogen detection using clinical samples. While not as sensitive and rapid as real-time PCR, this panel, along with incorporating additional sequence capture probe panels, could be used for broad pathogen screening and biosurveillance.

  7. Sodium-Water Reaction approach and mastering for ASTRID Steam Generator design

    International Nuclear Information System (INIS)

    Saez, Manuel; Allou, Alexandre; Beauchamp, François; Bertrand, Carole; Rodriguez, Gilles; Menou, Sylvain; Prele, Gérard

    2013-01-01

    Conclusions: • Modular Steam Generator concept selected for ASTRID: → Brings flexibility for the expertise of failed modules after their removal; → Intrinsically limit the mechanical consequences of a postulated large Sodium-Water Reaction. • Sodium-Water-Air Reaction studies include both prevention and mitigation aspects, with dedicated tools to be developed through R&D. • Regarding Safety analysis, the possibility to move from the scenario of instantaneous failure of the whole Steam Generator tube bundle toward a scenario with sequenced failure needs to be investigated. • The Steam Generator is one of the key components in the Sodium-cooled Fast Reactor system for it provides an interface between sodium and water. The design objective for the Steam Generator is related to the improvement of mastering of Sodium-Water Reaction. • Potential Sodium-Water Reactions can be eliminated by adopting a Gas based Power Conversion System

  8. Non-Covalent Fluorescent Labeling of Hairpin DNA Probe Coupled with Hybridization Chain Reaction for Sensitive DNA Detection.

    Science.gov (United States)

    Song, Luna; Zhang, Yonghua; Li, Junling; Gao, Qiang; Qi, Honglan; Zhang, Chengxiao

    2016-04-01

    An enzyme-free signal amplification-based assay for DNA detection was developed using fluorescent hairpin DNA probes coupled with hybridization chain reaction (HCR). The hairpin DNAs were designed to contain abasic sites in the stem moiety. Non-covalent labeling of the hairpin DNAs was achieved when a fluorescent ligand was bound to the abasic sites through hydrogen bonding with the orphan cytosine present on the complementary strand, accompanied by quench of ligand fluorescence. As a result, the resultant probes, the complex formed between the hairpin DNA and ligand, showed almost no fluorescence. Upon hybridization with target DNA, the probe underwent a dehybridization of the stem moiety containing an abasic site. The release of ligand from the abasic site to the solution resulted in an effective fluorescent enhancement, which can be used as a signal. Compared with a sensing system without HCR, a 20-fold increase in the sensitivity was achieved using the sensing system with HCR. The fluorescent intensity of the sensing system increased with the increase in target DNA concentration from 0.5 nM to 100 nM. A single mismatched target ss-DNA could be effectively discriminated from complementary target DNA. Genotyping of a G/C single-nucleotide polymorphism of polymerase chain reaction (PCR) products was successfully demonstrated with the sensing system. Therefore, integrating HCR strategy with non-covalent labeling of fluorescent hairpin DNA probes provides a sensitive and cost-effective DNA assay. © The Author(s) 2016.

  9. Influence of probe geometry on the response of an electrostatic probe

    DEFF Research Database (Denmark)

    Johansson, Torben; Crichton, George C; McAllister, Iain Wilson

    1999-01-01

    The response of an electrostatic probe is examined with reference to the probe geometry. The study involves the evaluation of the probe lambda function, from which response-related characteristic parameters can be derived. These parameters enable the probe detection sensitivity Se and spatial...

  10. Photochemical primary process of photo-Fries rearrangement reaction of 1-naphthyl acetate as studied by MFE probe.

    Science.gov (United States)

    Gohdo, Masao; Takamasu, Tadashi; Wakasa, Masanobu

    2011-01-14

    Photo-Fries rearrangement reactions of 1-naphthyl acetate (NA) in n-hexane and in cyclohexane were studied by the magnetic field effect probe (MFE probe) under magnetic fields (B) of 0 to 7 T. Transient absorptions of the 1-naphthoxyl radical, T-T absorption of NA, and a short-lifetime intermediate (τ = 24 ns) were observed by a nanosecond laser flash photolysis technique. In n-hexane, the yield of escaped 1-naphthoxyl radicals dropped dramatically upon application of a 3 mT field, but then the yield increased with increasing B for 3 mT < B≤ 7 T. These observed MFEs can be explained by the hyperfine coupling and the Δg mechanisms through the singlet radical pair. The fact that MFEs were observed for the present photo-Fries rearrangement reaction indicates the presence of a singlet radical pair intermediate with a lifetime as long as several tens of nanoseconds.

  11. All-oxide Raman-active traps for light and matter: probing redox homeostasis model reactions in aqueous environment.

    Science.gov (United States)

    Alessandri, Ivano; Depero, L E

    2014-04-09

    Core-shell colloidal crystals can act as very efficient traps for light and analytes. Here it is shown that Raman-active probes can be achieved using SiO2-TiO2 core-shell beads. These systems are successfully tested in monitoring of glutathione redox cycle at physiological concentration in aqueous environment, without need of any interfering enhancers. These materials represent a promising alternative to conventional, metal-based SERS probes for investigating chemical and biochemical reactions under real working conditions. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Molecular Imaging Probe Development using Microfluidics

    Science.gov (United States)

    Liu, Kan; Wang, Ming-Wei; Lin, Wei-Yu; Phung, Duy Linh; Girgis, Mark D.; Wu, Anna M.; Tomlinson, James S.; Shen, Clifton K.-F.

    2012-01-01

    In this manuscript, we review the latest advancement of microfluidics in molecular imaging probe development. Due to increasing needs for medical imaging, high demand for many types of molecular imaging probes will have to be met by exploiting novel chemistry/radiochemistry and engineering technologies to improve the production and development of suitable probes. The microfluidic-based probe synthesis is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional systems. Numerous chemical reactions have been successfully performed in micro-reactors and the results convincingly demonstrate with great benefits to aid synthetic procedures, such as purer products, higher yields, shorter reaction times compared to the corresponding batch/macroscale reactions, and more benign reaction conditions. Several ‘proof-of-principle’ examples of molecular imaging probe syntheses using microfluidics, along with basics of device architecture and operation, and their potential limitations are discussed here. PMID:22977436

  13. Deep brain stimulation: custom-made silicone-coated pulse-generator implantation after allergic reaction to generator compounds.

    Science.gov (United States)

    Anthofer, Judith; Herbst, Andreas; Janzen, Annettte; Lange, Max; Brawanski, Alexander; Schlaier, Juergen

    2018-02-01

    Deep brain stimulation for Parkinson's disease has become an established treatment option in recent years. The method and its application in clinical practice has proved to be safe and effective. Nevertheless, procedure-related and hardware-related complications occur. We present a rare case of a patient with an allergic reaction to the impulse generator. The patient suffered from delayed wound-healing deficits with several wound revisions and generator repositionings. After diagnosis of an allergic reaction to components of the generator, a custom-made silicon-coated model was implanted. Hereafter, no wound healing-deficit occurred throughout long-term follow-up. Allergic reaction to hardware components may lead to wound-healing deficits. In such cases, custom-made silicon-coated models may be an effective treatment option.

  14. Rf probe technology for the next generation of technological plasmas

    International Nuclear Information System (INIS)

    Law, V.J.; Kenyon, A.J.; Thornhill, N.F.; Seeds, A.J.; Batty, I.

    2001-01-01

    We describe radio frequency (rf) analysis of technological plasmas at the 13.56 MHz fundamental drive frequency and integer narrow-band harmonics up to n = 9. In particular, we demonstrate the use of harmonic amplitude information as a process end-point diagnostic. Using very high frequency (vhf) techniques, we construct non-invasive ex situ remote-coupled probes: a diplexer, an equal-ratio-arm bridge, and a dual directional coupler used as a single directional device. These probes bolt into the plasma-tool 50 Ω transmission-line between the rf generator and matching network, and hence do not require modification of the plasma tool. The 50 Ω probe environment produces repeatable measurements of the chamber capacitance and narrow-band harmonic amplitude with an end-point detection sensitivity corresponding to a 2 dB change in the harmonic amplitude with the removal of 1 cm 2 of photoresist. The methodology and design of an instrument for the measurement of the plasma-tool frequency response, and the plasma harmonic amplitude and phase response are examined. The instrument allows the monitoring of the plasma phase delay, plasma-tool short- and long-term ageing, and process end-point prediction. (author)

  15. Qualification of the Improved rotating probe process for steam generator tubes inspection

    International Nuclear Information System (INIS)

    Caston, D.

    2002-01-01

    In 1997, EDF called for bids to Eddy Current (EC) probes manufacturers to supply rotating probes in order to improve the inspection of the Roll Transition Zone of Steam Generator tubes. Several probes met EDF requirements, and after full assessment, EDF chose one between several EC rotating probe prototypes. For the state of its technical study, EDF chose CEGELEC NDTs services among French ISI SG NDT providers, to inspect a limited number of tubes on two French NPP in 2000 with this prototype. Improved Rotating Probe process technical requirements were provided by EDF with the SG contract specifications in June 2000. They dictate technique performances level and acquisition rate of this new process using two techniques at the same time: - STL classic technique applied for detection and sizing of axial cracks; - STT technique, applied for detection and Sizing of circumferential cracks and wear. It has to be used, instead of classic STL process, without increasing inspection duration and SG occupancy. In competition for the qualification, CEGELEC NDT decided to design a new probe with its providers, including the two EC sensors and meeting EDF's requirements. Two another new equipment, designed in CEGELEC NDT laboratories, have been integrated into Improved Rotating Probe Process: - 'STL Lift', new rotating probe push-puller for Roll Transition Zone inspection; - 'ANASTL', on-line STL and STT data quality check, on-line data processing and analysis software. Without talking about performances of the technique and results obtained on site, this paper presents the new equipment, the different phases of the qualification conducted according to RSE-M rules, the first field experiences in August 2001 and the feedback experience of following site inspections. (author)

  16. Synthesis, Crystal Structures and Properties of Ferrocenyl Bis-Amide Derivatives Yielded via the Ugi Four-Component Reaction.

    Science.gov (United States)

    Zhao, Mei; Shao, Guang-Kui; Huang, Dan-Dan; Lv, Xue-Xin; Guo, Dian-Shun

    2017-05-04

    Ten ferrocenyl bis-amide derivatives were successfully synthesized via the Ugi four-component reaction by treating ferrocenecarboxylic acid with diverse aldehydes, amines, and isocyanides in methanol solution. Their chemical structures were fully characterized by IR, NMR, HR-MS, and X-ray diffraction analyses. They feature unique molecular morphologies and create a 14-membered ring motif in the centro-symmetric dimers generated in the solid state. Moreover, the electrochemical behavior of these ferrocenyl bis-amides was assessed by cyclic voltammetry.

  17. Asymmetric Alkylation and Aldol Reactions of D-Mannitol-Derived Chiral Oxazolidin-2-one Derivatives

    International Nuclear Information System (INIS)

    Maeng, Yun Hee; Jun, Jong Gab

    2004-01-01

    In the preceding article, we have introduced a new chiral oxazolidin-2-one auxiliary (1) derived from a cheap Dmannitol, and demonstrated the chiral selectivity in alkylation, aldol reaction and β-lactam synthesis.1 The present work began with a search for useful chiral directing groups with which to control the chiral selectivity. Because the rigidity of cyclic structures contributes significantly to control of chirality,2 the 1,2:5,6-di-O-cyclohexylidene-Dmannitol (2) was used for the synthesis of oxazolidin-2-one chiral auxiliary (3) comparing the selectivity with the auxiliary (1) in alkylation and aldol reactions.

  18. Probing non nucleonic degrees of freedom with strong and electromagnetic interactions

    International Nuclear Information System (INIS)

    Frois, B.

    1985-10-01

    In this talk, I would like to examine our present view on non-nucleonic degrees of freedom with a few typical experimental results obtained recently both with hadronic and electromagnetic probes at intermediate energies. It is the first generation of experimental data which has probed mesonic degrees of freedom with a spatial resolution of the order of 0.5 fm. This has made possible for example the measurement of the size of the pion-nucleon interaction region. This is very stimulating progress and we begin to have a coherent overview on the various reaction mechanisms which are induced by hadronic and electromagnetic probes

  19. Large-leak sodium-water reaction analysis for steam generators

    International Nuclear Information System (INIS)

    Sakano, K.; Shindo, Y.; Hori, M.

    1975-01-01

    The guillotine rupture of 4 tubes is assumed as a design basis regarding the large-leak sodium-water reaction in the system of the MONJU steam generator. Three kinds of analyses were performed with the view to showing the integrity of the steam generator system on the reaction. The first one is the analysis of the initial pressure spike, assuming the initial guillotine rupture of 1 tube. The analysis was performed by utilizing one-dimensional sphere-cylinder model code SWAC-7 and two-dimensional axisymmetric code PISCES 2DL. The second one is the analysis of the secondary peak pressure and its propagation in the system, assuming the instantaneous guillotine rupture of 4 tubes. The third one is the analysis of the dynamic deformation of the steam generator shell. The integrity of the steam generator system was shown by the analyses. (author)

  20. Large-leak sodium-water reaction analysis for steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Sakano, K; Shindo, Y; Hori, M

    1975-07-01

    The guillotine rupture of 4 tubes is assumed as a design basis regarding the large-leak sodium-water reaction in the system of the MONJU steam generator. Three kinds of analyses were performed with the view to showing the integrity of the steam generator system on the reaction. The first one is the analysis of the initial pressure spike, assuming the initial guillotine rupture of 1 tube. The analysis was performed by utilizing one-dimensional sphere-cylinder model code SWAC-7 and two-dimensional axisymmetric code PISCES 2DL. The second one is the analysis of the secondary peak pressure and its propagation in the system, assuming the instantaneous guillotine rupture of 4 tubes. The third one is the analysis of the dynamic deformation of the steam generator shell. The integrity of the steam generator system was shown by the analyses. (author)

  1. Microfluidic technology platforms for synthesizing, labeling and measuring the kinetics of transport and biochemical reactions for developing molecular imaging probes

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, Michael E. [Univ. of California, Los Angeles, CA (United States)

    2009-09-01

    Radiotracer techniques are used in environmental sciences, geology, biology and medicine. Radiotracers with Positron Emission Tomography (PET) provided biological examinations of ~3 million patients 2008. Despite the success of positron labeled tracers in many sciences, there is limited access in an affordable and convenient manner to develop and use new tracers. Integrated microfluidic chips are a new technology well matched to the concentrations of tracers. Our goal is to develop microfluidic chips and new synthesis approaches to enable wide dissemination of diverse types of tracers at low cost, and to produce new generations of radiochemists for which there are many unfilled jobs. The program objectives are to: 1. Develop an integrated microfluidic platform technology for synthesizing and 18F-labeling diverse arrays of different classes of molecules. 2. Incorporate microfluidic chips into small PC controlled devices (“Synthesizer”) with a platform interfaced to PC for electronic and fluid input/out control. 3. Establish a de-centralized model with Synthesizers for discovering and producing molecular imaging probes, only requiring delivery of inexpensive [18F]fluoride ion from commercial PET radiopharmacies vs the centralized approach of cyclotron facilities synthesizing and shipping a few different types of 18F-probes. 4. Develop a position sensitive avalanche photo diode (PSAPD) camera for beta particles embedded in a microfluidic chip for imaging and measuring transport and biochemical reaction rates to valid new 18F-labeled probes in an array of cell cultures. These objectives are met within a research and educational program integrating radio-chemistry, synthetic chemistry, biochemistry, engineering and biology in the Crump Institute for Molecular Imaging. The Radiochemistry Training Program exposes PhD and post doctoral students to molecular imaging in vitro in cells and microorganisms in microfluidic chips and in vivo with PET, from new technologies

  2. The Seismo-Generated Electric Field Probed by the Ionospheric Ion Velocity

    Science.gov (United States)

    (Tiger) Liu, Jann-Yenq

    2017-04-01

    The ion density, ion temperature, and the ion velocity probed by IPEI (ionospheric Plasma and Electrodynamics Instrument) onboard ROCSAT (i.e. FORMOSAT-1), and the global ionospheric map (GIM) of the total electron content (TEC) derived from measurements of ground-based GPS receivers are employed to study seismo-ionospheric precursors (SIPs) of the 31 March 2002 M6.8 Earthquake in Taiwan. The GIM TEC and ROCSAT/IPEI ion density significantly decrease specifically over the epicenter area 1-5 days before the earthquake, which suggests that the associated SIPs have observed. The ROCSAT/IPEI ion temperature reveals no significant changes before and after the earthquake, while the latitude-time-TEC plots extracted from the GIMs along the Taiwan longitude illustrate that the equatorial ionization anomaly significantly weakens and moves equatorward, which indicates that the daily dynamo electric field has been disturbed and cancelled by possible seismo-generated electric field on 2 days before (29 March) the earthquake. Here, for the first time a vector parameter of ion velocity is employed to study SIPs. It is found that ROCSAT/IPEI ion velocity becomes significantly downward, which confirms that a westward electric field of about 0.91mV/m generated during the earthquake preparation period being essential 1-5 days before the earthquake. Liu, J. Y., and C. K. Chao (2016), An observing system simulation experiment for FORMOSAT-5/AIP detecting seismo-ionospheric precursors, Terrestrial Atmospheric and Oceanic Sciences, DOI: 10.3319/TAO.2016.07.18.01(EOF5).

  3. High yield neutron generators using the DD reaction

    Energy Technology Data Exchange (ETDEWEB)

    Vainionpaa, J. H.; Harris, J. L.; Piestrup, M. A.; Gary, C. K.; Williams, D. L.; Apodaca, M. D.; Cremer, J. T. [Adelphi technology, 2003 E. Bayshore Rd. 94061, Redwood City, CA (United States); Ji, Qing; Ludewigt, B. A. [Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Jones, G. [G and J Enterprise, 1258 Quary Ln, Suite F, Pleasanton California 94566 (United States)

    2013-04-19

    A product line of high yield neutron generators has been developed at Adelphi technology inc. The generators use the D-D fusion reaction and are driven by an ion beam supplied by a microwave ion source. Yields of up to 5 Multiplication-Sign 10{sup 9} n/s have been achieved, which are comparable to those obtained using the more efficient D-T reaction. The microwave-driven plasma uses the electron cyclotron resonance (ECR) to produce a high plasma density for high current and high atomic ion species. These generators have an actively pumped vacuum system that allows operation at reduced pressure in the target chamber, increasing the overall system reliability. Since no radioactive tritium is used, the generators can be easily serviced, and components can be easily replaced, providing essentially an unlimited lifetime. Fast neutron source size can be adjusted by selecting the aperture and target geometries according to customer specifications. Pulsed and continuous operation has been demonstrated. Minimum pulse lengths of 50 {mu}s have been achieved. Since the generators are easily serviceable, they offer a long lifetime neutron generator for laboratories and commercial systems requiring continuous operation. Several of the generators have been enclosed in radiation shielding/moderator structures designed for customer specifications. These generators have been proven to be useful for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA) and fast neutron radiography. Thus these generators make excellent fast, epithermal and thermal neutron sources for laboratories and industrial applications that require neutrons with safe operation, small footprint, low cost and small regulatory burden.

  4. Atomic quantum superposition state generation via optical probing

    DEFF Research Database (Denmark)

    Nielsen, Anne E. B.; Poulsen, Uffe Vestergaard; Negretti, Antonio

    2009-01-01

    investigate cavity enhanced probing with continuous beams of both coherent and squeezed light. The stochastic master equations used in the analysis are expressed in terms of the Hamiltonian of the probed system and the interaction between the probed system and the probe field and are thus quite generally...

  5. Validating eddy current array probes for inspecting steam generator tubes

    International Nuclear Information System (INIS)

    Sullivan, S.P.; Cecco, V.S.; Obrutsky, L.S.

    1997-01-01

    A CANDU nuclear reactor was shut down for over one year because steam generator (SG) tubes had failed with outer diameter stress-corrosion cracking (ODSCC) in the U-bend section. Novel, single-pass eddy current transmit-receive probes, denoted as C3, were successful in detecting all significant cracks so that the cracked tubes could be plugged and the unit restarted. Significant numbers of tubes with SCC were removed from a SG in order to validate the results of the new probe. Results from metallurgical examinations were used to obtain probability-of-detection (POD) and sizing accuracy plots to quantify the performance of this new inspection technique. Though effective, the above approach of relying on tubes removed from a reactor is expensive, in terms of both economic and radiation-exposure costs. This led to a search for more affordable methods to validate inspection techniques and procedures. Methods are presented for calculating POD curves based on signal-to-noise studies using field data. Results of eddy current scans of tubes with laboratory-induced ODSCC are presented with associated POD curves. These studies appear promising in predicting realistic POD curves for new inspection technologies. They are being used to qualify an improved eddy current array probe in preparation for field use. (author)

  6. Second derivative Langmuir probe diagnostics of gas discharge plasma at intermediate pressures (review article)

    International Nuclear Information System (INIS)

    Popov, Tsv K; Dimitrova, M; Dias, F M; Tsaneva, V N; Stelmashenko, N A; Blamire, M G; Barber, Z H

    2006-01-01

    The second-derivative Langmuir probe method for precise determination of the plasma potential, the electron energy distribution function (respectively the electron temperature,) and the electron density of gas discharge plasma at intermediate pressures (100-1000 Pa) is reviewed. Results of applying the procedure proposed to different kinds of gas discharges are presented. Factors affecting the accuracy of the plasma characteristics evaluated are discussed

  7. Design and application of natural product derived probes for activity based protein profiling

    OpenAIRE

    Battenberg, Oliver Alexander

    2015-01-01

    The identification of new antibacterial protein targets by activity based protein profiling (ABPP) is an important approach to face the increasing emergence of resistant bacteria. The scope of this work focuses on three new strategies for the labeling of antibacterial protein-targets with natural product derived ABPP-probes: A.) Evaluation of the intrinsic photo-reactivity of α-pyrones and pyrimidones for use as photo-crosslinkers. B.) Synthesis of a benzophenone-tag that combines photo-cross...

  8. Toehold-mediated strand displacement reaction-dependent fluorescent strategy for sensitive detection of uracil-DNA glycosylase activity.

    Science.gov (United States)

    Wu, Yushu; Wang, Lei; Jiang, Wei

    2017-03-15

    Sensitive detection of uracil-DNA glycosylase (UDG) activity is beneficial for evaluating the repairing process of DNA lesions. Here, toehold-mediated strand displacement reaction (TSDR)-dependent fluorescent strategy was constructed for sensitive detection of UDG activity. A single-stranded DNA (ssDNA) probe with two uracil bases and a trigger sequence were designed. A hairpin probe with toehold domain was designed, and a reporter probe was also designed. Under the action of UDG, two uracil bases were removed from ssDNA probe, generating apurinic/apyrimidinic (AP) sites. Then, the AP sites could inhibit the TSDR between ssDNA probe and hairpin probe, leaving the trigger sequence in ssDNA probe still free. Subsequently, the trigger sequence was annealed with the reporter probe, initiating the polymerization and nicking amplification reaction. As a result, numerous G-quadruplex (G4) structures were formed, which could bind with N-methyl-mesoporphyrin IX (NMM) to generate enhanced fluorescent signal. In the absence of UDG, the ssDNA probe could hybridize with the toehold domain of the hairpin probe to initiate TSDR, blocking the trigger sequence, and then the subsequent amplification reaction would not occur. The proposed strategy was successfully implemented for detecting UDG activity with a detection limit of 2.7×10 -5 U/mL. Moreover, the strategy could distinguish UDG well from other interference enzymes. Furthermore, the strategy was also applied for detecting UDG activity in HeLa cells lysate with low effect of cellular components. These results indicated that the proposed strategy offered a promising tool for sensitive quantification of UDG activity in UDG-related function study and disease prognosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Multi-probe ionization chamber system for nuclear-generated plasma diagnostics

    International Nuclear Information System (INIS)

    Choi, W.Y.; Ellis, W.H.

    1990-01-01

    This paper reports on the pulsed ionization chamber (PIC) plasma diagnostic system used in studies of nuclear seeded plasma kinetics upgraded to increase the capabilities and extend the range of plasma parameter measurements to higher densities and temperatures. The PIC plasma diagnostic chamber has been provided with additional measurement features in the form of conductivity and Langmuir probes, while the overall experimental system has been fully automated, with computerized control, measurement, data acquisition and analysis by means of IEEE-488 (GPIB) bus control and data transfer protocols using a Macintosh series microcomputer. The design and use of a simple TTL switching system enables remote switching among the various GPIB instruments comprising the multi-probe plasma diagnostic system using software, without the need for a microprocessor. The new system will be used to extend the present study of nuclear generated plasma in He, Ar, Xe, fissionable UF 6 and other fluorine containing gases

  10. Fractal sets generated by chemical reactions discrete chaotic dynamics

    International Nuclear Information System (INIS)

    Gontar, V.; Grechko, O.

    2007-01-01

    Fractal sets composed by the parameters values of difference equations derived from chemical reactions discrete chaotic dynamics (DCD) and corresponding to the sequences of symmetrical patterns were obtained in this work. Examples of fractal sets with the corresponding symmetrical patterns have been presented

  11. Tandem Aldol-Michael Reactions in Aqueous Diethylamine Medium: A Greener and Efficient Approach to Bis-Pyrimidine Derivatives

    Directory of Open Access Journals (Sweden)

    Abdullah M. Al-Majid

    2013-12-01

    Full Text Available A simple protocol, involving the green synthesis for the construction of novel bis-pyrimidine derivatives, 3a–i and 4a–e are accomplished by the aqueous diethylamine media promoted tandem Aldol-Michael reaction between two molecules of barbituric acid derivatives 1a,b with various aldehydes. This efficient synthetic protocol using an economic and environmentally friendly reaction media with versatility and shorter reaction time provides bis-pyrimidine derivatives with high yields (88%–99%.

  12. Sodium/water reactions in steam generators of liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    Hori, M.

    1980-01-01

    The status of the research and development on sodium/water reactions resulting from the leakage of water into sodium in LMFBR steam generators is reviewed. The importance of sodium/water reaction phenomena in the design and operation of steam generators is discussed. The effects of sodium/water reactions are evaluated and methods of protection against these phenomena are surveyed. The products of chemical reactions between sodium and water under steam generator conditions are H 2 , NaOH, Na 2 O and NaH. Together with the temperature rise due to the associated exothermic reaction, these reaction products cause effects such as self-wastage, single- and multi-target wastage, and rapid pressure increase, depending on the size of the leak hole or the magnitude of leak rate. As for the wastage phenomena of small leaks, the effects of various factors have been studied and experimental correlations, as well as some theoretical work, have been performed. To investigate the pressure phenomena of a large leak, large-scale tests have been conducted by various organizations, and the computer codes to analyse these phenomena have been developed and verified by experiments. In the design of steam generators, an initial failure up to a hypothetical double-ended guillotine rupture of a single heat transfer tube is widely used as the design basis leak. Protection systems for LMFBR plants consist of leak detection devices, leak termination devices, and reaction pressure relief devices. From analyses based on research and development activities, as well as from experience with leaks in steam generator test loops and reactor plants, it has been confirmed that protection systems can satisfactorily be designed to accommodate leak incidents in LMFBR plants. (author)

  13. Implications of small water leak reactions on sodium heated steam generator design

    Energy Technology Data Exchange (ETDEWEB)

    Smedley, J A

    1975-07-01

    Various types of sodium water reactions have been looked on as possibly causing hazard conditions in sodium heated steam generator units ranging from the very improbable boiler tube double ended guillotine fracture to the almost certain occurrence of micro-leaks. Within this range small water leaks reactions have attracted particular interest and the present paper looks at the principles of associating the reactions with detection and protection systems for Commercial Fast Reactors. A method is developed for assessing whether adequate protection has been provided against the effects of small water leak reactions in a steam generator unit. (author)

  14. Generation of semicarbazide from natural azine development in foods, followed by reaction with urea compounds.

    Science.gov (United States)

    Abernethy, Grant A

    2015-01-01

    This paper proposes a mechanism to explain the trace levels of natural semicarbazide occasionally observed in foods. The analytical derivative of semicarbazide, 2-nitrobenzaldehyde semicarbazone, is often measured as a metabolite marker to detect the widely banned antibiotic nitrofurazone. However, this marker is not specific as semicarbazide may be present in foods for several reasons other than exposure to nitrofurazone. In some cases, an entirely natural origin of semicarbazide is suspected, although up until now there was no explanation about how semicarbazide could occur naturally. In this work, semicarbazide is proposed as being generated from natural food compounds via an azine intermediate. Hydrazine, in the form of azines or hydrazones, may be generated in dilute aqueous solution from the natural food compounds ammonia, hydrogen peroxide and acetone, following known oxidation chemistry. When this mixture was prepared in the presence of ureas such as allantoin, urea, biuret or hydroxyurea, and then analysed by the standard method for the determination of semicarbazide, 2-nitrobenzaldehyde semicarbazone was detected. 2-Nitrobenzaldehyde aldazine was also found, and it may be a general marker for azines in foods. This proposal, that azine formation is central to semicarbazide development, provides a convergence of the published mechanisms for semicarbazide. The reaction starts with hydrogen peroxide, peracetic acid, atmospheric oxygen or hypochlorite; generates hydrazine either by an oxaziridine intermediate or via the chlorination of ammonia; and then either route may converge on azine formation, followed by reaction with a urea compound. Additionally, carbamate ion may speculatively generate semicarbazide by reaction with hydrazine, which might be a significant route in the case of the hypochlorite treatment of foods or food contact surfaces. Significantly, detection of 2-nitrobenzaldehyde semicarbazone may be somewhat artefactual because semicarbazide can

  15. [Development of a Fluorescence Probe for Live Cell Imaging].

    Science.gov (United States)

    Shibata, Aya

    2017-01-01

    Probes that detect specific biological materials are indispensable tools for deepening our understanding of various cellular phenomena. In live cell imaging, the probe must emit fluorescence only when a specific substance is detected. In this paper, we introduce a new probe we developed for live cell imaging. Glutathione S-transferase (GST) activity is higher in tumor cells than in normal cells and is involved in the development of resistance to various anticancer drugs. We previously reported the development of a general strategy for the synthesis of probes for detection of GST enzymes, including fluorogenic, bioluminogenic, and 19 F-NMR probes. Arylsulfonyl groups were used as caging groups during probe design. The fluorogenic probes were successfully used to quantitate very low levels of GST activity in cell extracts and were also successfully applied to the imaging of microsomal MGST1 activity in living cells. The bioluminogenic and 19 F-NMR probes were able to detect GST activity in Escherichia coli cells. Oligonucleotide-templated reactions are powerful tools for nucleic acid sensing. This strategy exploits the target strand as a template for two functionalized probes and provides a simple molecular mechanism for multiple turnover reactions. We developed a nucleophilic aromatic substitution reaction-triggered fluorescent probe. The probe completed its reaction within 30 s of initiation and amplified the fluorescence signal from 0.5 pM target oligonucleotide by 1500 fold under isothermal conditions. Additionally, we applied the oligonucleotide-templated reaction for molecular releasing and peptide detection.

  16. Synthesis of Imidazopyridines via Copper-Catalyzed, Formal Aza-[3 + 2] Cycloaddition Reaction of Pyridine Derivatives with α-Diazo Oxime Ethers.

    Science.gov (United States)

    Park, Sangjune; Kim, Hyunseok; Son, Jeong-Yu; Um, Kyusik; Lee, Sooho; Baek, Yonghyeon; Seo, Boram; Lee, Phil Ho

    2017-10-06

    The Cu-catalyzed, formal aza-[3 + 2] cycloaddition reaction of pyridine derivatives with α-diazo oxime ethers in trifluoroethanol was used to synthesize imidazopyridines via the release of molecular nitrogen and elimination of alcohol. These methods enabled modular synthesis of a wide range of N-heterobicyclic compounds such as imidazopyridazines, imidazopyrimidines, and imidazopyrazines with an α-imino Cu-carbenoid generated from the α-diazo oxime ethers and copper.

  17. Miniature probe for the delivery and monitoring of a photopolymerizable material

    Science.gov (United States)

    Schmocker, Andreas; Khoushabi, Azadeh; Schizas, Constantin; Bourban, Pierre-Etienne; Pioletti, Dominique P.; Moser, Christophe

    2015-12-01

    Photopolymerization is a common method to cure materials initially in a liquid state, such as dental implants or bone or tissue fillers. Recent advances in the development of biocompatible gel- and cement-systems open up an avenue for in situ photopolymerization. For minimally invasive surgery, such procedures require miniaturized surgical endoscopic probes to activate and control photopolymerization in situ. We present a miniaturized light probe in which a photoactive material can be (1) mixed, pressurized, and injected, (2) photopolymerized/photoactivated, and (3) monitored during the chemical reaction. The device is used to implant and cure poly(ethylene glycol) dimethacrylate-hydrogel-precursor in situ with ultraviolet A (UVA) light (365 nm) while the polymerization reaction is monitored in real time by collecting the fluorescence and Raman signals generated by the 532-nm excitation light source. Hydrogels could be delivered, photopolymerized, and monitored by the probe up to a curing depth of 4 cm. The size of the photopolymerized samples could be correlated to the fluorescent signal collected by the probe, and the reproducibility of the procedure could be demonstrated. The position of the probe tip inside a bovine caudal intervertebral disc could be estimated in vitro based on the collected fluorescence and Raman signal.

  18. Probing the Surface of Platinum during the Hydrogen Evolution Reaction in Alkaline Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Stoerzinger, Kelsey A. [Physical; Favaro, Marco [Advanced; Joint; Chemical; Ross, Philip N. [Materials; Yano, Junko [Joint; Molecular; Liu, Zhi [State; Division; Hussain, Zahid [Advanced; Crumlin, Ethan J. [Advanced; Joint Center

    2017-11-02

    Understanding the surface chemistry of electrocatalysts in operando can bring insight into the reaction mechanism, and ultimately the design of more efficient materials for sustainable energy storage and conversion. Recent progress in synchrotron based X-ray spectroscopies for in operando characterization allows us to probe the solid/liquid interface directly while applying an external potential, applied here to the model system of Pt in alkaline electrolyte for the hydrogen evolution reaction (HER). We employ ambient pressure X-ray photoelectron spectroscopy (AP-XPS) to identify the oxidation and reduction of Pt-oxides and hydroxides on the surface as a function of applied potential, and further assess the potential for hydrogen adsorption and absorption (hydride formation) during and after the HER. This new window into the surface chemistry of Pt in alkaline brings insight into the nature of the rate limiting step, the extent of H ad/absorption and it’s persistence at more anodic potentials.

  19. Hematin-derived anticoagulant. Generation in vitro and in vivo

    OpenAIRE

    1986-01-01

    Prolongation of clotting times produced by hematin was investigated both in vitro and in vivo. Hematin-derived anticoagulant (HDA) was found to be due to a degradative product or derivative of hematin, and was generated in vitro in standing (aging) aqueous solutions of the parent compound. Generation of HDA in vitro was inhibited by antioxidants. The anticoagulant effect of HDA was inhibited by freshly prepared hematin, fresh Sn-protoporphyrin, imidazole, or the iron chelator desferrioxamine....

  20. Transient porosity pulses and microfracturing during a stress-generating retrograde metamorphic reaction

    Science.gov (United States)

    Renard, F.; Zheng, X.; Cordonnier, B.; Zhu, W.; Jamtveit, B.

    2017-12-01

    Several geological processes involve mineral transformations where nominally dry rocks transform into hydrated ones when left in contact with water (i.e. eclogitization, serpentinization). In these systems, the transformation induces stress if the rock is confined, and the new minerals create a so-called force of crystallization. Here, we study a model retrograde metamorphic reaction, the hydration of periclase, MgO, into brucite, Mg(OH)2, to quantify the coupling between reaction, stress generation, porosity evolution and fracturing. This hydration reaction generates a volume increase of 110%, and a density decrease of 33.8% of the solid. Samples of a microporous MgO ceramics were reacted at 170-211°C, 5-80 MPa confining pressure, 6-95 MPa differential stress and 5 MPa pore fluid pressure. They were installed into an X-ray transparent triaxial deformation rig, called Hades, and mounted on a synchrotron microtomography stage. Each experiment lasted between 2 and 5 hours, during which between 35 and 130 three-dimensional images were acquired, allowing to follow the chemical transformation and the deformation of the sample. Below 30 MPa mean pressure, the hydration reaction was coupled to fracturing of the MgO ceramics, and the transformation rate followed a sigmoidal kinetics curve with a slow initiation, a fast reaction coupled to fracturing and the generation of a transient porosity pulse, and a slow-down until an almost complete transformation of periclase into brucite.. Conversely, above 30 MPa, the reaction kinetics was very slow, without fracturing over the time scale of the experiment. When considering the driving force of the hydration reaction, stress generation should be several hundreds MPa, whereas the present experiments show that fracturing occurred only below 30 MPa. This indicates that the potential energy due to phase transformation generates much lower stress than what is estimated from non-equilibrium thermodynamics. A possible interpretation of

  1. New L-Serine Derivative Ligands as Cocatalysts for Diels-Alder Reaction

    Science.gov (United States)

    Sousa, Carlos A. D.; Rodríguez-Borges, José E.; Freire, Cristina

    2013-01-01

    New L-serine derivative ligands were prepared and tested as cocatalyst in the Diels-Alder reactions between cyclopentadiene (CPD) and methyl acrylate, in the presence of several Lewis acids. The catalytic potential of the in situ formed complexes was evaluated based on the reaction yield. Bidentate serine ligands showed good ability to coordinate medium strength Lewis acids, thus boosting their catalytic activity. The synthesis of the L-serine ligands proved to be highly efficient and straightforward. PMID:24383009

  2. Characteristics Testing of the ECT Bobbin Probe for Steam Generator Tube Inspection of Nuclear Power Plant

    International Nuclear Information System (INIS)

    Nam, Min Woo; Lee, Hee Jong; Cho, Chan hee; Yoo, Hyun Joo

    2010-01-01

    The steam generator management program(SGMP) has recently defined the procedures for the qualification of eddy current hardware and technique. These procedures provide two basic methods for qualification. The first way is to qualify the equipment or the probe by using the flaw mechanism and method of the pulled tubes from the heat exchangers or the artificial flawed tubes. The second way is to verify the equivalency with the characteristics of the qualified equipment or probe. In this case, the qualified equipment or probe may be modified to substitute or replace instruments or probes without re-qualification provided that the range of essential variables defined in the examination technique specification sheet are met. This study is to describe the result of the comparative performance evaluation of bobbin coil eddy current probes manufactured by KEPCO Research Institute and probes manufactured by a foreign manufacturer. As a result of this study, although there were minor differences between the two kinds of probes, it was evaluated that the two kinds of probes were almost identical in the significant performance characteristics described in the KEPCO Research Institute guideline

  3. Characteristics Testing of the ECT Bobbin Probe for Steam Generator Tube Inspection of Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Min Woo; Lee, Hee Jong; Cho, Chan hee; Yoo, Hyun Joo [KEPCO, Daejeon (Korea, Republic of)

    2010-08-15

    The steam generator management program(SGMP) has recently defined the procedures for the qualification of eddy current hardware and technique. These procedures provide two basic methods for qualification. The first way is to qualify the equipment or the probe by using the flaw mechanism and method of the pulled tubes from the heat exchangers or the artificial flawed tubes. The second way is to verify the equivalency with the characteristics of the qualified equipment or probe. In this case, the qualified equipment or probe may be modified to substitute or replace instruments or probes without re-qualification provided that the range of essential variables defined in the examination technique specification sheet are met. This study is to describe the result of the comparative performance evaluation of bobbin coil eddy current probes manufactured by KEPCO Research Institute and probes manufactured by a foreign manufacturer. As a result of this study, although there were minor differences between the two kinds of probes, it was evaluated that the two kinds of probes were almost identical in the significant performance characteristics described in the KEPCO Research Institute guideline

  4. BIG-10 fission product generation and reaction rates

    International Nuclear Information System (INIS)

    Rogers, J.W.

    1976-01-01

    Fission product generation rates for high quality fission foils and reaction rates of nonfission foils have been measured by gamma ray activation analyses. These foils were irradiated in the BIG-10 facility and the activities were measured by NaI counting techniques

  5. Application of advanced optical probe instrumentation in steam generator tube bundles

    International Nuclear Information System (INIS)

    Bouchter, J.C.; Gouirand, J.M.; Haquet, J.F.; Ivars, J.F.

    1990-01-01

    The Department of Energy Transfer (DTE) of the French CEA has been developing for about 15 years optical probe techniques in order to better understand and predict nuclear components dealing with two-phase flows. More recently, in the scope of an International Program, the CEA has made an intensive use of bi-optical probes in order to very precisely investigate the distributions of void fraction and gas velocity in the secondary side of a Steam-generator mock-up operating with Freon 114 (80 degrees C, 9 x 10 5 Pa at nominal conditions). At the present time, the success of this program and the recent progress achieved in the technology of the probe, in particular to withstand higher pressures and temperatures allow us to reasonably think that this device will be soon available for industrial uses. So, this paper deals with the present state of the art of the technique within CEA and in particular it successively describes: what is required of a practical point of view when it comes to perform local measurements within tube bundles and what have been the technical choices to meet these requirements; how the bi-optical probe does operate with an emphasis on the signal processing description; how the whole device accuracy, i.e., the bi-optical probe plus its complete acquisition and signal processing chain, is determined by a calibration procedure comparing first separately then all together the different components to independent numerical and physical reference methods; typical examples of measurements of the emulsion fine structure within tube bundle subchannels as regards with void fraction, gas velocity and bubble granulometries; finally, the recent progress accomplished in terms of, higher reliability, resolution, pressure and temperature resistance

  6. Thermonuclear reaction generation method and device

    International Nuclear Information System (INIS)

    Imazaki, Kazuo

    1998-01-01

    The present invention provides a method of and a device for causing thermonuclear reaction capable of obtaining extremely high profits (about 1000 times), capable of forming a target which is strong against instability upon implosion as a problem of an inertia process and capable of realizing utilization of nuclear fusion. Namely, elementary particles such as pion, muon and K particles are deposited a portion or some portion of thermonuclear fuel materials by using high energy ions and highly brilliant γ rays generated from a high energy accelerator. The thermonuclear fuel materials are compressed to high density. The nuclear fusion reaction is promoted to ignite and burn thermonuclear fuels. A portion of nuclear fuels is ignited selectively by the means. High profits can be obtained. Since there is no need to attain implosion rate required for self ignition of nuclear fuels, a target of low aspect ratio can be used. (I.S.)

  7. Recent developments in Cope-type hydroamination reactions of hydroxylamine and hydrazine derivatives.

    Science.gov (United States)

    Beauchemin, André M

    2013-11-07

    Cope-type hydroaminations are versatile for the direct amination of alkenes, alkynes and allenes using hydroxylamines and hydrazine derivatives. These reactions occur via a concerted, 5-membered cyclic transition state that is the microscopic reverse of the Cope elimination. This article focuses on recent developments, including intermolecular variants, directed reactions, and asymmetric variants using aldehydes as tethering catalysts, and their applications in target-oriented synthesis.

  8. Ramp generator circuit for probe diagnostics using microcontroller for LHCD system

    International Nuclear Information System (INIS)

    Virani, C G; Sharma, P K

    2010-01-01

    It is well known that in LHCD system, the rf power coupling between antenna and plasma strongly depends on the edge plasma parameter. Thus it is mandatory to monitor edge plasma parameter to establish proper impedance matching condition when LHCD power is launched into the plasma. For SST1 LHCD system, we intend to monitor the edge plasma parameter employing electric probes, connected to the grill antenna sides for the said purpose. In SST1, initially LHCD system would couple rf power to plasmas lasting for small durations. Gradually the power and pulse length would be increased to eventually get 1000 seconds plasma. To monitor the edge plasma parameter, over such a wide spectrum (say few millisecond to seconds) during the above campaign, a flexible measurement scheme is desired which would cater to entire spectrum of operation. Normally a ramp is utilized to bias the electric probe, which yields various plasma parameters. To cater our requirement, the ramp generator must have facility to change ramp-up rate to meet our pulse length requirement. Further during SST operation, the human access near the machine would not be permitted and ramp circuit might not be accessible for manual settings. Thus remote setting facility to change ramp-up rate is also desired. Keeping these constraints in mind, a ramp circuit has been designed using Analog Device micro-controller ADuC842. The circuit has both manual and remote setting facility. Ramp generator parameters like Ramp-up rate, Trigger mode, number of cycles, etc. can be set from PC through RS-485 serial link. Initially low voltage (0-5V) ramp signal is generated using micro-controller and inbuilt DAC. This low voltage ramp is then amplified with PA-85 op-amp to get desired probe biasing voltage (-110V to +110V). The ramp period can be change form (1ms to 1000 ms) to cater to different plasma pulse length. Programming for micro-controller is done in structured language-C with the help of ''Keil'' IDE. In this paper, a

  9. Ramp generator circuit for probe diagnostics using microcontroller for LHCD system

    Energy Technology Data Exchange (ETDEWEB)

    Virani, C G; Sharma, P K, E-mail: cgvirani@ipr.res.i [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2010-02-01

    It is well known that in LHCD system, the rf power coupling between antenna and plasma strongly depends on the edge plasma parameter. Thus it is mandatory to monitor edge plasma parameter to establish proper impedance matching condition when LHCD power is launched into the plasma. For SST1 LHCD system, we intend to monitor the edge plasma parameter employing electric probes, connected to the grill antenna sides for the said purpose. In SST1, initially LHCD system would couple rf power to plasmas lasting for small durations. Gradually the power and pulse length would be increased to eventually get 1000 seconds plasma. To monitor the edge plasma parameter, over such a wide spectrum (say few millisecond to seconds) during the above campaign, a flexible measurement scheme is desired which would cater to entire spectrum of operation. Normally a ramp is utilized to bias the electric probe, which yields various plasma parameters. To cater our requirement, the ramp generator must have facility to change ramp-up rate to meet our pulse length requirement. Further during SST operation, the human access near the machine would not be permitted and ramp circuit might not be accessible for manual settings. Thus remote setting facility to change ramp-up rate is also desired. Keeping these constraints in mind, a ramp circuit has been designed using Analog Device micro-controller ADuC842. The circuit has both manual and remote setting facility. Ramp generator parameters like Ramp-up rate, Trigger mode, number of cycles, etc. can be set from PC through RS-485 serial link. Initially low voltage (0-5V) ramp signal is generated using micro-controller and inbuilt DAC. This low voltage ramp is then amplified with PA-85 op-amp to get desired probe biasing voltage (-110V to +110V). The ramp period can be change form (1ms to 1000 ms) to cater to different plasma pulse length. Programming for micro-controller is done in structured language-C with the help of ''Keil'' IDE

  10. Synthesis of 2-vinylic indoles and derivatives via a Pd-catalyzed tandem coupling reaction.

    Science.gov (United States)

    Fayol, Aude; Fang, Yuan-Qing; Lautens, Mark

    2006-09-14

    A novel one-step synthesis of valuable 2-vinylic indoles and their tricycle derivatives is described. This reaction, which utilizes a gem-dibromovinyl unit as a readily available starting material, occurs via an efficient Pd-catalyzed tandem Buchwald-Hartwig/Heck reaction.

  11. Spectroscopy and reaction kinetics of HCO

    International Nuclear Information System (INIS)

    Guo, Yili.

    1989-01-01

    The high-resolution infrared spectrum of the C-H stretching fundamental of HCO has been studied by means of infrared flash kinetic spectroscopy. HCO was generated by flash photolysis of acetaldehyde or formaldehyde using a 308 nm (XeCl) excimer laser. The transient absorption was probed with an infrared difference frequency laser system. The high resolution spectra obtained were assigned and fitted with rotational, spin-rotational, and centrifugal distortion constants. The ν 1 band origin is 2434.48 cm/sup /minus/1/. New ground state constants have been derived from a least-squares fit combining the ν 1 data with previous microwave and FIR LMR measurements. A new set of spectroscopic constants for the (1, 0, 0) state, the equilibrium rotational constants, and the orientation of the transition dipole moment are also reported. The kinetics and product branching ratios of the HCO + NO 2 reaction have been studied using visible and infrared laser flash kinetic spectroscopy. The rate constant for the disappearance of HCO radical at 296 K is (5.7 +- 0.9) /times/ 10/sup /minus/11/ cm 3 molec/sup /minus/1/ sec/sup /minus/1/, and it is independent of the pressure of SF 6 buffer gas up to 700 torr. Less than 10% of the reaction goes through the most exothermic product channel, HNO + CO 2 . The product channel, H + CO 2 + NO, is responsible for 52% of the reaction. HONO has been observed, though not quantitatively, as a reaction product corresponding to the HONO + CO channel. 51 refs., 21 figs., 8 tabs

  12. Ultrasound-guided probe-generated artifacts stimulating ventricular tachycardia: A rare phenomenon

    Directory of Open Access Journals (Sweden)

    Rafat Shamim

    2017-01-01

    Full Text Available Electrocardiographic (ECG artifacts may arise due to interference, faulty earthing, and current leakages in biomedical equipment which might create clinical dilemmas in the perioperative settings. Piezoelectric signals generated by ultrasonography probe are another uncommon source which might be sensed by the ECG electrodes and produce tracings similar to pathological arrhythmias triggering false alarms and avoidable therapies. Anesthesiologists should be familiar with these uncommon sources which might produce these artifacts and they should be identified swiftly.

  13. Competitive reaction in hydrodenitrogenation and hydrodeoxygenation of coal-derived naphtha

    Energy Technology Data Exchange (ETDEWEB)

    Machida, M. (Idemitsu Kosan Co. Ltd., Tokyo (Japan). Central Research Lab.); Sakao, Y.; Ono, S. (Idemitsu Kosan Co. Ltd., Tokyo (Japan))

    1994-03-01

    The naphtha fraction derived from coal is expected to be one of the most suitable blending stocks for motor gasoline because of its high contents of cyclic hydrocarbons. However, since the contents of nitrogen and oxygen are high in the coal naphtha, the amounts of these elements must be reduced to acceptable levels. In this study, aiming to clarify the hydrodenitrogenation (HDN) and hydrodeoxygenation (HDO) performances of practical feed stocks, HDN and HDO of coal-derived naphtha and its model compounds were examined by using a catalyst Ni-Mo/Al2O3 group. There are tree types of nitrogen compounds, pyridine, pyrrole and aniline, in the coal-derived naphtha. Aniline type nitrogen compounds in the coal-derived naphtha are more resistant to HDN than pyridine type compounds, though aniline is more reactive than pyridine when the reaction is carried out individually. 14 refs., 7 figs., 3 tabs.

  14. Antibacterial Characteristics and Activity of Water-Soluble Chitosan Derivatives Prepared by the Maillard Reaction

    Directory of Open Access Journals (Sweden)

    Ying-Chien Chung

    2011-10-01

    Full Text Available The antibacterial activity of water-soluble chitosan derivatives prepared by Maillard reactions against Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Escherichia coli, Shigella dysenteriae, and Salmonella typhimurium was examined. Relatively high antibacterial activity against various microorganisms was noted for the chitosan-glucosamine derivative as compared to the acid-soluble chitosan. In addition, it was found that the susceptibility of the test organisms to the water-soluble chitosan derivative was higher in deionized water than in saline solution. Metal ions were also found to reduce the antibacterial activity of the water-soluble chitosan derivative on S. aureus. The marked increase in glucose level, protein content and lactate dehydrogenase (LDH activity was observed in the cell supernatant of S. aureus exposed to the water-soluble chitosan derivative in deionized water. The results suggest that the water-soluble chitosan produced by Maillard reaction may be a promising commercial substitute for acid-soluble chitosan.

  15. Ultraselective electrochemiluminescence biosensor based on locked nucleic acid modified toehold-mediated strand displacement reaction and junction-probe.

    Science.gov (United States)

    Zhang, Xi; Zhang, Jing; Wu, Dongzhi; Liu, Zhijing; Cai, Shuxian; Chen, Mei; Zhao, Yanping; Li, Chunyan; Yang, Huanghao; Chen, Jinghua

    2014-12-07

    Locked nucleic acid (LNA) is applied in toehold-mediated strand displacement reaction (TMSDR) to develop a junction-probe electrochemiluminescence (ECL) biosensor for single-nucleotide polymorphism (SNP) detection in the BRCA1 gene related to breast cancer. More than 65-fold signal difference can be observed with perfectly matched target sequence to single-base mismatched sequence under the same conditions, indicating good selectivity of the ECL biosensor.

  16. Multi-nucleon transfer: a probe to investigate the reaction mechanism around the barrier

    International Nuclear Information System (INIS)

    Mandal, Samit K.

    2014-01-01

    The investigation of multi-nucleon transfer mechanism offers valuable information on the pairing interactions that enhance the transfer of nucleon pairs across heavy ions involved in the reaction. These reactions are also a useful tool to study exotic nuclei far from the stability line, which can be explored with the new generation radioactive beam facility. In this talk, multi-nucleon transfer reaction mechanisms between heavy ions and their effect on the reaction dynamics around the coulomb barrier energies have been discussed. Experimental results will be presented with a semi classical description of multi nucleon transfer reaction calculation. One and two nucleon transfer cross sections reproduced using a quantum mechanical coupled channel calculations will also be discussed. A feasibility of investigation of multi-nucleon transfer mechanism to explore the pairing correlation at moderate spin states with radioactive beams will be discussed. (author)

  17. Stable hydrogen production from ethanol through steam reforming reaction over nickel-containing smectite-derived catalyst.

    Science.gov (United States)

    Yoshida, Hiroshi; Yamaoka, Ryohei; Arai, Masahiko

    2014-12-25

    Hydrogen production through steam reforming of ethanol was investigated with conventional supported nickel catalysts and a Ni-containing smectite-derived catalyst. The former is initially active, but significant catalyst deactivation occurs during the reaction due to carbon deposition. Side reactions of the decomposition of CO and CH4 are the main reason for the catalyst deactivation, and these reactions can relatively be suppressed by the use of the Ni-containing smectite. The Ni-containing smectite-derived catalyst contains, after H2 reduction, stable and active Ni nanocrystallites, and as a result, it shows a stable and high catalytic performance for the steam reforming of ethanol, producing H2.

  18. Probing the 8He ground state via the 8He(p,t)6He reaction

    International Nuclear Information System (INIS)

    Keeley, N.; Skaza, F.; Lapoux, V.; Alamanos, N.; Auger, F.; Beaumel, D.; Becheva, E.; Blumenfeld, Y.; Delaunay, F.; Drouart, A.; Gillibert, A.; Giot, L.; Kemper, K.W.; Nalpas, L.; Pakou, A.; Pollacco, E.C.; Raabe, R.; Roussel-Chomaz, P.; Rusek, K.; Scarpaci, J.-A.; Sida, J.-L.; Stepantsov, S.; Wolski, R.

    2007-01-01

    The weakly-bound 8 He nucleus exhibits a neutron halo or thick neutron skin and is generally considered to have an α+4n structure in its ground state, with the four valence neutrons each occupying 1p 3/2 states outside the α core. The 8 He(p,t) 6 He reaction is a sensitive probe of the ground state structure of 8 He, and we present a consistent analysis of new and existing data for this reaction at incident energies of 15.7 and 61.3A MeV, respectively. Our results are incompatible with the usual assumption of a pure (1p 3/2 ) 4 structure and suggest that other configurations such as (1p 3/2 ) 2 (1p 1/2 ) 2 may be present with significant probability in the ground state wave function of 8 He

  19. Modeling the Insertion Mechanics of Flexible Neural Probes Coated with Sacrificial Polymers for Optimizing Probe Design

    Directory of Open Access Journals (Sweden)

    Sagar Singh

    2016-03-01

    should be over-designed to ensure successful insertion. Probability color maps were generated to visually compare the influence of design parameters. Statistical metrics derived from the color maps and multi-variable regression analysis confirmed that coating thickness and probe length were the most important features in influencing insertion potential. The model also revealed the effects of manufacturing flaws on insertion potential.

  20. Probing α-particle wave functions using (rvec d,α) reactions

    International Nuclear Information System (INIS)

    Crosson, E.R.; Lemieux, S.K.; Ludwig, E.J.; Thompson, W.J.; Bisenberger, M.; Hertenberger, R.; Hofer, D.; Kader, H.; Schiemenz, P.; Graw, G.; Eiro, A.M.; Santos, F.D.

    1993-01-01

    Wave functions of the α particle corresponding to different S- and D-state deuteron-deuteron overlaps, left-angle dd|α right-angle, were investigated using exact finite-range distorted-wave Born-approximation (DWBA) analyses of (rvec d,α) reactions. Cross sections, vector, and tensor-analyzing powers were measured for (rvec d,α) reactions populating the lowest J π =7 + state in 56 Co at bombarding energies E d of 16 and 22 MeV, the lowest 7 + state in 48 Sc at E d =16 MeV, and the lowest 7 + state in 46 Sc at E d =22 MeV. We find that DWBA analyses of tensor-analyzing powers produce satisfactory agreement with the data and that A xx is especially sensitive to the D-state component of α-particle wave functions generated by different realistic nucleon-nucleon interactions

  1. Soft X-Ray Second Harmonic Generation as an Interfacial Probe

    Energy Technology Data Exchange (ETDEWEB)

    Lam, R. K.; Raj, S. L.; Pascal, T. A.; Pemmaraju, C. D.; Foglia, L.; Simoncig, A.; Fabris, N.; Miotti, P.; Hull, C. J.; Rizzuto, A. M.; Smith, J. W.; Mincigrucci, R.; Masciovecchio, C.; Gessini, A.; Allaria, E.; De Ninno, G.; Diviacco, B.; Roussel, E.; Spampinati, S.; Penco, G.; Di Mitri, S.; Trovò, M.; Danailov, M.; Christensen, S. T.; Sokaras, D.; Weng, T. -C.; Coreno, M.; Poletto, L.; Drisdell, W. S.; Prendergast, D.; Giannessi, L.; Principi, E.; Nordlund, D.; Saykally, R. J.; Schwartz, C. P.

    2018-01-01

    Nonlinear optical processes at soft x-ray wavelengths have remained largely unexplored due to the lack of available light sources with the requisite intensity and coherence. Here we report the observation of soft x-ray second harmonic generation near the carbon K edge (~284 eV) in graphite thin films generated by high intensity, coherent soft x-ray pulses at the FERMI free electron laser. Our experimental results and accompanying first-principles theoretical analysis highlight the effect of resonant enhancement above the carbon K edge and show the technique to be interfacially sensitive in a centrosymmetric sample with second harmonic intensity arising primarily from the first atomic layer at the open surface. This technique and the associated theoretical framework demonstrate the ability to selectively probe interfaces, including those that are buried, with elemental specificity, providing a new tool for a range of scientific problems.

  2. Fluorescent Protein Voltage Probes Derived from ArcLight that Respond to Membrane Voltage Changes with Fast Kinetics

    Science.gov (United States)

    Han, Zhou; Jin, Lei; Platisa, Jelena; Cohen, Lawrence B.; Baker, Bradley J.; Pieribone, Vincent A.

    2013-01-01

    We previously reported the discovery of a fluorescent protein voltage probe, ArcLight, and its derivatives that exhibit large changes in fluorescence intensity in response to changes of plasma membrane voltage. ArcLight allows the reliable detection of single action potentials and sub-threshold activities in individual neurons and dendrites. The response kinetics of ArcLight (τ1-on ~10 ms, τ2-on ~ 50 ms) are comparable with most published genetically-encoded voltage probes. However, probes using voltage-sensing domains other than that from the Ciona intestinalis voltage sensitive phosphatase exhibit faster kinetics. Here we report new versions of ArcLight, in which the Ciona voltage-sensing domain was replaced with those from chicken, zebrafish, frog, mouse or human. We found that the chicken and zebrafish-based ArcLight exhibit faster kinetics, with a time constant (τ) less than 6ms for a 100 mV depolarization. Although the response amplitude of these two probes (8-9%) is not as large as the Ciona-based ArcLight (~35%), they are better at reporting action potentials from cultured neurons at higher frequency. In contrast, probes based on frog, mouse and human voltage sensing domains were either slower than the Ciona-based ArcLight or had very small signals. PMID:24312287

  3. Fluorescent protein voltage probes derived from ArcLight that respond to membrane voltage changes with fast kinetics.

    Directory of Open Access Journals (Sweden)

    Zhou Han

    Full Text Available We previously reported the discovery of a fluorescent protein voltage probe, ArcLight, and its derivatives that exhibit large changes in fluorescence intensity in response to changes of plasma membrane voltage. ArcLight allows the reliable detection of single action potentials and sub-threshold activities in individual neurons and dendrites. The response kinetics of ArcLight (τ1-on ~10 ms, τ2-on ~ 50 ms are comparable with most published genetically-encoded voltage probes. However, probes using voltage-sensing domains other than that from the Ciona intestinalis voltage sensitive phosphatase exhibit faster kinetics. Here we report new versions of ArcLight, in which the Ciona voltage-sensing domain was replaced with those from chicken, zebrafish, frog, mouse or human. We found that the chicken and zebrafish-based ArcLight exhibit faster kinetics, with a time constant (τ less than 6 ms for a 100 mV depolarization. Although the response amplitude of these two probes (8-9% is not as large as the Ciona-based ArcLight (~35%, they are better at reporting action potentials from cultured neurons at higher frequency. In contrast, probes based on frog, mouse and human voltage sensing domains were either slower than the Ciona-based ArcLight or had very small signals.

  4. Generation of Stoichiometric Ethylene and Isotopic Derivatives and Application in Transition Metal-Catalyzed Vinylation and Enyne Metathesis

    DEFF Research Database (Denmark)

    Min, Geanna; Bjerglund, Klaus Meier; Kramer, Søren

    2013-01-01

    Ethylene is one of the most important building blocks in industry for the production of polymers and commodity chemicals. 13C- and D-isotope-labeled ethylenes are also valuable reagents with applications ranging from polymer-structure determination, reaction-mechanism elucidation to the preparation...... of more complex isotopically labeled compounds. However, these isotopic derivatives are expensive, and are flammable gases, which are difficult to handle. We have developed a method for the controlled generation of ethylene and its isotopic variants including, for the first time, fully isotopically...... labeled ethylene, from simple alkene precursors by using Ru catalysis. Applying a two-chamber reactor allows both the synthesis of ethylene and its immediate consumption in a chemical transformation permitting reactions to be performed with only stoichiometric amounts of this two carbon olefin...

  5. A dansyl-rhodamine ratiometric fluorescent probe for Hg2+ based on FRET mechanism.

    Science.gov (United States)

    Xie, Puhui; Guo, Fengqi; Wang, Lingyu; Yang, Sen; Yao, Denghui; Yang, Guoyu

    2015-03-01

    Based on resonance energy transfer (FRET) from dansyl to rhodamine 101, a new fluorescent probe (compound 1) containing rhodamine 101 and a dansyl unit was synthesized for detecting Hg(2+) through ratiometric sensing in DMSO aqueous solutions. This probe shows a fast, reversible and selective response toward Hg(2+) in a wide pH range. Hg(2+) induced ring-opening reactions of the spirolactam rhodamine moiety of 1, leading to the formation of fluorescent derivatives that can serve as the FRET acceptors. Very large stokes shift (220 nm) was observed in this case. About 97-fold increase in fluorescence intensity ratio was observed upon its binding with Hg(2+).

  6. Probing cooperative force generation in collective cancer invasion

    Science.gov (United States)

    Alobaidi, Amani A.; Xu, Yaopengxiao; Chen, Shaohua; Jiao, Yang; Sun, Bo

    2017-08-01

    Collective cellular dynamics in the three-dimensional extracellular matrix (ECM) plays a crucial role in many physiological processes such as cancer invasion. Both chemical and mechanical signaling support cell-cell communications on a variety of length scales, leading to collective migratory behaviors. Here we conduct experiments using 3D in vitro tumor models and develop a phenomenological model in order to probe the cooperativity of force generation in the collective invasion of breast cancer cells. In our model, cell-cell communication is characterized by a single parameter that quantifies the correlation length of cellular migration cycles. We devise a stochastic reconstruction method to generate realizations of cell colonies with specific contraction phase correlation functions and correlation length a. We find that as a increases, the characteristic size of regions containing cells with similar contraction phases grows. For small a values, the large fluctuations in individual cell contraction phases smooth out the temporal fluctuations in the time-dependent deformation field in the ECM. For large a values, the periodicity of an individual cell contraction cycle is clearly manifested in the temporal variation of the overall deformation field in the ECM. Through quantitative comparisons of the simulated and experimentally measured deformation fields, we find that the correlation length for collective force generation in the breast cancer diskoid in geometrically micropatterned ECM (DIGME) system is a≈ 25~μ \\text{m} , which is roughly twice the linear size of a single cell. One possible mechanism for this intermediate cell correlation length is the fiber-mediated stress propagation in the 3D ECM network in the DIGME system.

  7. Neutron-proton bremsstrahlung from intermediate energy heavy-ion reactions as a probe of the nuclear symmetry energy?

    International Nuclear Information System (INIS)

    Yong, G.-C.; Li Baoan; Chen Liewen

    2008-01-01

    Hard photons from neutron-proton bremsstrahlung in intermediate energy heavy-ion reactions are examined as a potential probe of the nuclear symmetry energy within a transport model. Effects of the symmetry energy on the yields and spectra of hard photons are found to be generally smaller than those due to the currently existing uncertainties of both the in-medium nucleon-nucleon cross sections and the photon production probability in the elementary process pn→pnγ. Very interestingly, nevertheless, the ratio of hard photon spectra R 1/2 (γ) from two reactions using isotopes of the same element is not only approximately independent of these uncertainties but also quite sensitive to the symmetry energy. For the head-on reactions of 132 Sn + 124 Sn and 112 Sn + 112 Sn at E beam /A=50 MeV, for example, the R 1/2 (γ) displays a rise up to 15% when the symmetry energy is reduced by about 20% at ρ=1.3ρ 0 which is the maximum density reached in these reactions

  8. GENERATION OF CYTOTOXIC LYMPHOCYTES IN MIXED LYMPHOCYTE REACTIONS

    Science.gov (United States)

    Forman, James; Möller, Göran

    1973-01-01

    Generation of cytotoxic effector cells by a unidirectional mixed lymphocyte reaction (MLR) in the mouse H-2 system was studied using labeled YAC (H-2a) leukemia cells as targets. The responding effector cell displayed a specific cytotoxic effect against target cells of the same H-2 genotype as the stimulating cell population. Killing of syngeneic H-2 cells was not observed, even when the labeled target cells were "innocent bystanders" in cultures where specific target cells were reintroduced. Similar results were found with spleen cells taken from mice sensitized in vivo 7 days earlier. The effector cell was not an adherent cell and was not activated by supernatants from MLR. The supernatants were not cytotoxic by themselves. When concanavalin A or phytohemagglutinin was added to the cytotoxic test system, target and effector cells were agglutinated. Under these conditions, killing of H-2a target cells was observed in mixed cultures where H-2a lymphocytes were also the effector cells. These findings indicate that specifically activated, probably thymus-derived lymphocytes, can kill nonspecifically once they have been activated and providing there is close contact between effector and target cells. Thus, specificity of T cell killing appears to be restricted to recognition and subsequent binding to the targets, the actual effector phase being nonspecific. PMID:4269560

  9. Probing surface sites of TiO2: reactions with [HRe(CO)5] and [CH3Re(CO)5].

    Science.gov (United States)

    Lobo-Lapidus, Rodrigo J; Gates, Bruce C

    2010-10-04

    Two carbonyl complexes of rhenium, [HRe(CO)(5)] and [CH(3)Re(CO)(5)], were used to probe surface sites of TiO(2) (anatase). These complexes were adsorbed from the gas phase onto anatase powder that had been treated in flowing O(2) or under vacuum to vary the density of surface OH sites. Infrared (IR) spectra demonstrate the variation in the number of sites, including Ti(+3)-OH and Ti(+4)-OH. IR and extended X-ray absorption fine structure (EXAFS) spectra show that chemisorption of the rhenium complexes led to their decarbonylation, with formation of surface-bound rhenium tricarbonyls, when [HRe(CO)(5)] was adsorbed, or rhenium tetracarbonyls, when [CH(3)Re(CO)(5)] was adsorbed. These reactions were accompanied by the formation of water and surface carbonates and removal of terminal hydroxyl groups associated with Ti(+3) and Ti(+4) ions on the anatase. Data characterizing the samples after adsorption of [HRe(CO)(5)] or [CH(3)Re(CO)(5)] determined a ranking of the reactivity of the surface OH sites, with the Ti(+3)-OH groups being the more reactive towards the rhenium complexes but the less likely to be dehydroxylated. The two rhenium pentacarbonyl probes provided complementary information, suggesting that the carbonate species originate from carbonyl ligands initially bonded to the rhenium and from hydroxyl groups of the titania surface, with the reaction leading to the formation of water and bridging hydroxyl groups on the titania. The results illustrate the value of using a family of organometallic complexes as probes of oxide surface sites.

  10. Probing short-range correlations in asymmetric nuclei with quasi-free pair knockout reactions

    Science.gov (United States)

    Stevens, Sam; Ryckebusch, Jan; Cosyn, Wim; Waets, Andreas

    2018-02-01

    Short-range correlations (SRC) in asymmetric nuclei with an unusual neutron-to-proton ratio can be studied with quasi-free two-nucleon knockout processes following the collision between accelerated ions and a proton target. We derive an approximate factorized cross section for those SRC-driven p (A ,p‧N1N2) reactions. Our reaction model hinges on the factorization properties of SRC-driven A (e ,e‧N1N2) reactions for which strong indications are found in theory-experiment comparisons. In order to put our model to the test we compare its predictions with results of 12C (p ,p‧ pn) measurements conducted at Brookhaven National Laboratory (BNL) and find a fair agreement. The model can also reproduce characteristic features of SRC-driven two-nucleon knockout reactions, like back-to-back emission of the correlated nucleons. We study the asymmetry dependence of nuclear SRC by providing predictions for the ratio of proton-proton to proton-neutron knockout cross sections for the carbon isotopes 9-15C thereby covering neutron excess values (N - Z) / Z between -0.5 and +0.5.

  11. Investigations of reactions between pure refractory metals and light gases with the field ion microscope and atom probe

    International Nuclear Information System (INIS)

    Krautz, E.; Haiml, G.

    1989-01-01

    The initial stages of selected reactions of the refractory metals tungsten, niobium and tantalum with hydrogen, oxygen, nitrogen and methane have been studied with the field ion microscope in atomic resolution whereby the composition of single net planes converages and surface zones could absolutely be analyzed with the atom probe by using field desorption under defined conditions at low temperatures. 14 refs., 9 figs. (Author)

  12. Detecting order and lateral pressure at biomimetic interfaces using a mechanosensitive second-harmonic-generation probe.

    Science.gov (United States)

    Licari, Giuseppe; Beckwith, Joseph S; Soleimanpour, Saeideh; Matile, Stefan; Vauthey, Eric

    2018-04-04

    A planarizable push-pull molecular probe with mechanosensitive properties was investigated at several biomimetic interfaces, consisting of different phospholipid monolayers located between dodecane and an aqueous buffer solution, using the interface-specific surface-second-harmonic-generation (SSHG) technique. Whereas the SSHG spectra recorded at liquid-disordered interfaces were similar to the absorption spectra in bulk solutions, those measured at liquid-ordered phases exhibited a remarkable shift towards lower energies to an extent depending on the surface pressure of the phospholipid monolayer. On the basis of quantum-chemical calculations, this effect was accounted for by the planarization of the mechanosensitive probe. Polarization-resolved SSHG measurements revealed that the average orientation of the probe at the interface is an even more sensitive reporter of lateral pressure and order than the spectral shape. Additionally, time-resolved SSHG measurements pointed to slower dynamics upon intercalation inside the phospholipid monolayer, most likely due to the more constrained environment. This study demonstrates that the concept of mechanosensitive optical probes can be further exploited when combined with a surface-selective nonlinear optical technique.

  13. Oxidation of tertiary amines by cytochrome p450-kinetic isotope effect as a spin-state reactivity probe.

    Science.gov (United States)

    Li, Chunsen; Wu, Wei; Cho, Kyung-Bin; Shaik, Sason

    2009-08-24

    Two types of tertiary amine oxidation processes, namely, N-dealkylation and N-oxygenation, by compound I (Cpd I) of cytochrome P450 are studied theoretically using hybrid DFT calculations. All the calculations show that both N-dealkylation and N-oxygenation of trimethylamine (TMA) proceed preferentially from the low-spin (LS) state of Cpd I. Indeed, the computed kinetic isotope effects (KIEs) for the rate-controlling hydrogen abstraction step of dealkylation show that only the KIE(LS) fits the experimental datum, whereas the corresponding value for the high-spin (HS) process is much higher. These results second those published before for N,N-dimethylaniline (DMA), and as such, they further confirm the conclusion drawn then that KIEs can be a sensitive probe of spin state reactivity. The ferric-carbinolamine of TMA decomposes most likely in a non-enzymatic reaction since the Fe-O bond dissociation energy (BDE) is negative. The computational results reveal that in the reverse reaction of N-oxygenation, the N-oxide of aromatic amine can serve as a better oxygen donor than that of aliphatic amine to generate Cpd I. This capability of the N-oxo derivatives of aromatic amines to transfer oxygen to the heme, and thereby generate Cpd I, is in good accord with experimental data previously reported.

  14. Synthesis and characterization of arylamine derivatives of rauwolscine as molecular probes for alpha 2-adrenergic receptors

    International Nuclear Information System (INIS)

    Lanier, S.M.; Graham, R.M.; Hess, H.J.; Grodski, A.; Repaske, M.G.; Nunnari, J.M.; Limbird, L.E.; Homcy, C.J.

    1987-01-01

    The selective alpha 2-adrenergic receptor antagonist rauwolscine was structurally modified to yield a series of arylamine carboxamide derivatives, which were investigated as potential molecular probes for the localization and structural characterization of alpha 2-adrenergic receptors. The arylamine carboxamides differ in the number of carbon atoms separating the reactive phenyl moiety from the fused ring structure of the parent compound, rauwolscine carboxylate. Competitive inhibition studies with [ 3 H]rauwolscine in rat kidney membranes indicate that the affinity for the carboxamide derivatives is inversely related to the length of the carbon spacer arm with rauwolscine 4-aminophenyl carboxamide exhibiting the highest affinity (Kd = 2.3 +/- 0.2 nM). Radioiodination of rau-AMPC yields a ligand, 125 I-rau-AMPC, which binds to rat kidney alpha 2-adrenergic receptors with high affinity, as determined by both kinetic analysis (Kd = k2/k1 = 0.016 min-1/2.1 X 10(7) M-1 min-1 = 0.76 nM) and equilibrium binding studies (Kd = 0.78 +/- 0.16 nM). 125 I-rau-AMPC was quantitatively converted to the photolabile arylazide derivative 17 alpha-hydroxy-20 alpha-yohimban-16 beta-(N-4-azido-3-[ 125 I]iodophenyl) carboxamide ( 125 I-rau-AZPC). In a partially purified receptor preparation from porcine brain, this compound photolabels a major (Mr = 62,000) peptide. The labeling of this peptide is inhibited by adrenergic agonists and antagonists with a rank order of potency consistent with an alpha 2-adrenergic receptor binding site. Both 125 I-rau-AMPC and the photolabile arylazide derivative, 125 I-rau-AZPC, should prove useful as molecular probes for the structural and biochemical characterization of alpha 2-adrenergic receptors

  15. Reaction pathways of model compounds of biomass-derived oxygenates on Fe/Ni bimetallic surfaces

    Science.gov (United States)

    Yu, Weiting; Chen, Jingguang G.

    2015-10-01

    Controlling the activity and selectivity of converting biomass-derivatives to fuels and valuable chemicals is critical for the utilization of biomass feedstocks. There are primarily three classes of non-food competing biomass, cellulose, hemicellulose and lignin. In the current work, glycolaldehyde, furfural and acetaldehyde are studied as model compounds of the three classes of biomass-derivatives. Monometallic Ni(111) and monolayer (ML) Fe/Ni(111) bimetallic surfaces are studied for the reaction pathways of the three biomass surrogates. The ML Fe/Ni(111) surface is identified as an efficient surface for the conversion of biomass-derivatives from the combined results of density functional theory (DFT) calculations and temperature programmed desorption (TPD) experiments. A correlation is also established between the optimized adsorption geometry and experimental reaction pathways. These results should provide helpful insights in catalyst design for the upgrading and conversion of biomass.

  16. Evaluation of heat transfer tube failure propagation due to sodium-water reaction in steam generator

    International Nuclear Information System (INIS)

    Nei, Hiromichi

    1978-01-01

    An evaluation was made of heat transfer tube failure propagation due to sodium-water reaction wastage in a sodium heated steam generator, by comparing an empirically derived wastage equation with leak detector responses. The experimental data agreed well with the wastage equation even for different values of distance-to-nozzle diameter ratio, though the formula had been based on wastage data obtained for only one given distance. The time taken for failure propagation was estimated for a prototype steam generator, and compared with the responses characteristics of acoustic detectors and level gages. It was found that there exists a range of leak rate between 0.5 and 100 g/sec, where the level gage can play a useful role in leak detection. The acoustic detector can be expected to respond more rapidly than the cover gas pressure gage, if noise is kept below ten times the value observed in an experimental facility, SWAT-2. (auth.)

  17. Mobile Game Probes

    DEFF Research Database (Denmark)

    Borup Lynggaard, Aviaja

    2006-01-01

    This paper will examine how probes can be useful for game designers in the preliminary phases of a design process. The work is based upon a case study concerning pervasive mobile phone games where Mobile Game Probes have emerged from the project. The new probes are aimed towards a specific target...... group and the goal is to specify the probes so they will cover the most relevant areas for our project. The Mobile Game Probes generated many interesting results and new issues occurred, since the probes came to be dynamic and favorable for the process in new ways....

  18. Theory of Langmuir probes in anisotropic plasmas

    International Nuclear Information System (INIS)

    Sudit, I.D.; Woods, R.C.

    1994-01-01

    A theory has been developed for electron retardation by Langmuir probes of several geometries in a general anisotropic plasma with arbitrary probe orientation and valid for any sheath thickness. Electron densities and electron velocity distribution functions (EVDFs) are obtained from the second derivative of probe I-V curves, as in Druyvesteyn's original method, which was developed for isotropic plasmas. Fedorov had extended the latter method in the context of a thin sheath approximation, to axisymmetric plasmas, in which the EVDF is expanded in a series of Legendary polynomials. In the present work an expansion in a series of spherical harmonics is employed, and the coordinate transformations are handled using the irreducible representation of the three dimensional rotation group. It is shown that the Volterra integral equations that must be solved to obtain the expansion coefficients of the EVDF from the second derivative data are no more complicated in the general case that hose for the axisymmetric plasma. Furthermore in the latter case the results can be shown to be equivalent to Fedrov's thin sheath expression. For the case of planar probes a formulation based on first derivatives of the I-V curves has been obtained. If data is obtained at enough different probe orientation of a one sided planar disc probe, any number of spherical harmonic coefficient functions may be obtained by inverting a set of linear equations and the complete EVDF deduced. For a cylindrical probe or a two-sided planar disc probe the integration of the second derivative of the probe current gives the exact electron density with any arbitrary probe orientation and any degree of plasma anisotropy

  19. Karyotypic relationships among Equus grevyi, Equus burchelli and domestic horse defined using horse chromosome arm-specific probes.

    Science.gov (United States)

    Musilova, P; Kubickova, S; Zrnova, E; Horin, P; Vahala, J; Rubes, J

    2007-01-01

    Using laser microdissection we prepared a set of horse chromosome arm-specific probes. Most of the probes were generated from horse chromosomes, some of them were derived from Equus zebra hartmannae. The set of probes were hybridized onto E. grevyi chromosomes in order to establish a genome-wide chromosomal correspondence between this zebra and horse. The use of arm-specific probes provided us with more information on the mutual arrangement of the genomes than we could obtain by means of whole-chromosome paints generated by flow sorting, even if we used reciprocal painting with probe sets from both species. By comparison of our results and results of comparative mapping in E. burchelli, we also established the chromosomal correspondence between E. grevyi and E. burchelli, providing evidence for a very close karyotypic relationship between these two zebra species. Establishment of the comparative map for E. grevyi contributes to the knowledge of the karyotypic phylogeny in the Equidae family.

  20. Deuteron-induced reactions generated by intense lasers for PET isotope production

    Science.gov (United States)

    Kimura, Sachie; Bonasera, Aldo

    2011-05-01

    We investigate the feasibility of using laser accelerated protons/deuterons for positron emission tomography (PET) isotope production by means of the nuclear reactions 11B(p, n) 11C and 10B(d, n) 11C. The second reaction has a positive Q-value and no energy threshold. One can, therefore, make use of the lower energy part of the laser-generated deuterons, which includes the majority of the accelerated deuterons. By assuming that the deuteron spectra are similar to the proton spectra, the 11C produced from the reaction 10B(d, n) 11C is estimated to be 7.4×10 9 per laser-shot at the Titan laser at Lawrence Livermore National Laboratory. Meanwhile a high-repetition table-top laser irradiation is estimated to generate 3.5×10 711C per shot from the same reaction. In terms of the 11C activity, it is about 2×10 4 Bq per shot. If this laser delivers kHz, the activity is integrated to 1 GBq after 3 min. The number is sufficient for the practical application in medical imaging for PET.

  1. Derivation of capture and reaction cross sections from experimental quasi-elastic and elastic backscattering probabilities

    International Nuclear Information System (INIS)

    Sargsyan, V.V.; Adamian, G.G.; Antonenko, N.V.; Gomes, P.R.S.

    2014-01-01

    We suggest simple and useful methods to extract reaction and capture (fusion) cross sections from the experimental elastic and quasi-elastic backscattering data.The direct measurement of the reaction or capture (fusion) cross section is a difficult task since it would require the measurement of individual cross sections of many reaction channels, and most of them could be reached only by specific experiments. This would require different experimental setups not always available at the same laboratory and, consequently, such direct measurements would demand a large amount of beam time and would take probably some years to be reached. Because of that, the measurements of elastic scattering angular distributions that cover full angular ranges and optical model analysis have been used for the determination of reaction cross sections. This traditional method consists in deriving the parameters of the complex optical potentials which fit the experimental elastic scattering angular distributions and then of deriving the reaction cross sections predicted by these potentials. Even so, both the experimental part and the analysis of this latter method are not so simple. In the present work we present a much simpler method to determine reaction and capture (fusion) cross sections. It consists of measuring only elastic or quasi-elastic scattering at one backward angle, and from that, the extraction of the reaction or capture cross sections can easily be performed. (author)

  2. DNA probes

    International Nuclear Information System (INIS)

    Castelino, J.

    1992-01-01

    The creation of DNA probes for detection of specific nucleotide segments differs from ligand detection in that it is a chemical rather than an immunological reaction. Complementary DNA or RNA is used in place of the antibody and is labelled with 32 P. So far, DNA probes have been successfully employed in the diagnosis of inherited disorders, infectious diseases, and for identification of human oncogenes. The latest approach to the diagnosis of communicable and parasitic infections is based on the use of deoxyribonucleic acid (DNA) probes. The genetic information of all cells is encoded by DNA and DNA probe approach to identification of pathogens is unique because the focus of the method is the nucleic acid content of the organism rather than the products that the nucleic acid encodes. Since every properly classified species has some unique nucleotide sequences that distinguish it from every other species, each organism's genetic composition is in essence a finger print that can be used for its identification. In addition to this specificity, DNA probes offer other advantages in that pathogens may be identified directly in clinical specimens

  3. A vacuum--generated inertia reaction force

    International Nuclear Information System (INIS)

    Rueda, Alfonso; Haisch, Bernard

    2001-01-01

    A clear and succinct covariant approach shows that, in principle, there must be a contribution to the inertia reaction force on an accelerated object by the surrounding vacuum electromagnetic field in which the object is embedded. No details of the vacuum to object electromagnetic interaction need to be specified other than the fact that the object is made of electromagnetically interacting particles. Some interesting consequences of this feature are discussed. This analysis strongly supports the concept that inertia is indeed an opposition of the vacuum fields to any attempt to change the uniform state of motion of material bodies. This also definitely shows that inertia should be viewed as extrinsic to mass and that causing agents and/or mechanisms responsible for the inertia reaction force are neither intrinsic to the notion of mass nor to the entities responsible for the existence of mass in elementary particles (as, e.g., the Higgs field). In other words the mechanism that produces the inertia-reaction-force requires an explicit explanation. This explicit explanation is that inertia is an opposition of the vacuum fields to the accelerated motion of any material entities, i.e., of entities that possess mass. It is briefly commented why the existence of a Higgs field responsible for the generation of mass in elementary particles does not contradict the view presented here. It is also briefly discussed why a strict version of Mach's Principle does really contradict this view, though a broad sense version of Mach's Principle may be in agreement

  4. Reaction of single-standard DNA with hydroxyl radical generated by iron(II)-ethylenediaminetetraacetic acid

    International Nuclear Information System (INIS)

    Prigodich, R.V.; Martin, C.T.

    1990-01-01

    This study demonstrates that the reaction of Fe(II)-EDTA and hydrogen peroxide with the single-stranded nucleic acids d(pT) 70 and a 29-base sequence containing a mixture of bases results in substantial damage which is not directly detected by gel electrophoresis. Cleavage of the DNA sugar backbone is enhanced significantly after the samples are incubated at 90 degree C in the presence of piperidine. The latter reaction is used in traditional Maxam-Gilbert DNA sequencing to detect base damage, and the current results are consistent with reaction of the hydroxyl radical with the bases in single-stranded DNA (although reaction with sugar may also produce adducts that are uncleaved but labile to cleavage by piperidine). We the authors propose that hydroxyl radicals may react preferentially with the nucleic acid bases in ssDNA and that reaction of the sugars in dsDNA is dominant because the bases are sequestered within the double helix. These results have implications both for the study of single-stranded DNA binding protein binding sites and for the interpretation of experiments using the hydroxyl radical to probe DNA structure or to footprint double-stranded DNA binding protein binding sites

  5. SIG XX - A generation of intelligent gamma ray probes

    International Nuclear Information System (INIS)

    Rusu, Al.; Bartos, D.; Constantin, F.; Caragheopol, Gh.; Cruceru, I.; Lupu, A.; Serbina, L.

    2003-01-01

    Nowadays, the radioprotection activities are governed by the ALARA principle. To comply with, we have decided to use scintillators, due to their high efficiency. The surface mounted devices allow the design of the entire gross gamma ray measuring system into a volume of about 0.5 liters. The microcontrollers having an EPROM of 4k bytes offer the opportunity to run resident programmes dedicated to: data acquisition, local processing, data transmission, and system supervising. Such an intelligence is embedded into SIG XX probes. By designing an array of such probes, one can easily obtain a portal monitor, an area monitor and so on, each of them under the the control of a PC. A few modifications may transform an intelligent probe into a portable instrument for radioprotection. In such a case, to make the probe shorter, replacing the photomultiplier by a photodiode, is an attractive goal. To reach it, a dedicated charge preamplifier has to be developed. The works and results on SIG XX probes and charge preamplifier are reported. (authors)

  6. SIG XX - a generation of intelligent gamma ray probes

    International Nuclear Information System (INIS)

    Rusu, Al.; Bartos, D.; Constantin, F.; Caragheopol, Gh; Cruceru, I.; Lupu, A.; Serbina, L.

    2005-01-01

    Full text: Nowadays, the radioprotection activities are governed by the ALARA principle. To comply with, we have decided to use scintillators, due to their large efficiency. The surface mounted devices allow the design of the entire gross gamma ray measuring system into a volume of about 0.5 liters. The microcontrollers having an EPROM of 4k bytes offer the opportunity to run resident programmes dedicated to data acquisition, local processing, data communication, system supervising. Such an intelligence is embedded into SIG XX probes. By designing an array of such probes, one can easily obtain a portal monitor, an area monitor and so on, each of them under the the control of a PC. A few modifications may transform an intelligent probe into a portable instrument for radioprotection. In such a case, to make the probe shorter, replacing the photomultiplier by a photodiode, is an attractive goal. To reach it, a dedicated charge preamplifier has to be developed. The works and results on SIG XX probes and charge preamplifier are reported. (author)

  7. Probing two-centre interference in molecular high harmonic generation

    International Nuclear Information System (INIS)

    Vozzi, C; Calegari, F; Benedetti, E; Berlasso, R; Sansone, G; Stagira, S; Nisoli, M; Altucci, C; Velotta, R; Torres, R; Heesel, E; Kajumba, N; Marangos, J P

    2006-01-01

    Two-centre interference in the recombination step of molecular high harmonic generation (HHG) has been probed in CO 2 and O 2 . We report the order dependence of characteristic enhancements or suppressions of high harmonic production in aligned samples of both molecules. In CO 2 , a robust destructive interference was seen consistent with the known separation of the oxygen atoms that are active in HHG. In O 2 , a harmonic enhancement was found indicating constructive interference. A good agreement was found with a simple two-centre interference model that includes the angular distribution function of the sample. The effective momentum of the electron wave was determined from the spectral position of these interferences. Ellipticity-dependent studies in CO 2 clearly show how the destructive interference can be 'switched off' by increasing the degree of ellipticity and thus shifting the effective resonance condition

  8. Efficient Diels-Alder reaction of 1,2-benzoquinones with arynes and its utility in one-pot reactions.

    Science.gov (United States)

    Kaicharla, Trinadh; Bhojgude, Sachin Suresh; Biju, Akkattu T

    2012-12-21

    A new protocol for the efficient Diels-Alder reaction of 1,2-benzoquinones with arynes is reported. The aryne generated by the fluoride-induced 1,2-elimination of 2-(trimethylsilyl)aryl triflates undergoes a facile Diels-Alder reaction with 1,2-benzoquinones, affording the dioxobenzobicyclooctadienes in moderate to excellent yields. In addition, this methodology has been applied to the one-pot synthesis of benzoquinoxalinobarrelene and naphthalene derivatives.

  9. An analysis of signal characteristics due to coil-gap variation of ECT bobbin probe for steam generation tube

    International Nuclear Information System (INIS)

    Nam, Min Woo; Cho, Chan Hee; Jee, Dong Hyun; Jung, Jee Hong; Lee, Hee Jong

    2006-01-01

    The bobbin probe technique is basically one of the important ECT methods for the steam generator tube integrity assesment that is practiced during each plant outage. The bobbin probe is one of the essential components which consist of the whole ECT examination system, and provides us a decisive data for the evaluation of tube integrity in compliance with acceptance criteria described in specific procedures. The selection of examination probe is especially important because the quality of acquired ECT data is determined by the probe design characteristics, geometry and operation frequencies, and has an important effect on examination results. In this study, the relationship between electric characteristic changes and differential coil gap variation has been investigated to optimize the ECT signal characteristics of the bobbin probe. With the results from this study, we have elucidated that the optimum coil gap is 1.2 - 1.6 mm that give the best result for O.D. volumetric defects in ASME calibration standards.

  10. The Knoevenagel-Doebner Reaction on 1,2-O-(2,2,2-Trichloroethylidene Derivatives of D-Gluco- and D-Manno- furanose

    Directory of Open Access Journals (Sweden)

    Gökhan Kök

    2010-10-01

    Full Text Available The synthesis of new α,β-unsaturated furanuronic acid derivatives of α-gluco- (3, β-gluco- (6 and β-manno-chloraloses (9 via a convenient one pot procedure using the Knoevenagel-Doebner reaction approach are described. The dialdofuranose derivatives were reacted with malonic acid under Knoevenagel-Doebner reaction conditions and (E-α,β-unsaturated furanuronic acid derivatives were obtained.

  11. Development of conductivity probe and temperature probe for in-situ measurements in hydrological studies

    International Nuclear Information System (INIS)

    Chandra, U.; Galindo, B.J.; Castagnet, A.C.G.

    1981-05-01

    A conductivity probe and a temperature probe have been developed for in-situ measurements in various hydrological field studies. The conductivity probe has platinum electrodes and is powered with two 12 volt batteries. The sensing element of the temperature probe consists of a resistor of high coefficient of temperature. Response of the conductivity probe is measured in a milliampere mater while the resistance of the thermistor is read by a digital meter. The values of conductivity and temperature are derived from respective calibration. The probes are prototype and their range of measurement can be improved depending upon the requirement of the field problem. (Author) [pt

  12. Power generation from refuse derived fuel

    International Nuclear Information System (INIS)

    Surroop, Dinesh; Mohee, Romeela

    2010-01-01

    Full text: The beginning of the third millennium has been characterized by a progressive increase in the demand for fossil fuels, which has caused a steep rise in oil price. At the same time, several environmental disasters have increased the sensitivity of world-wide public opinion towards the effect that environmental pollution has on human health and climate change. These conditions have fostered a renewed interest in renewable energy like solar energy, wind energy, biomass and solid wastes. In addition, the disposal of municipal solid waste (MSW) has become a critical and costly problem. The traditional landfill method requires large amounts of land and contaminates air, water and soil. The increase in socio-economic condition during the past ten years has also significantly increased the amount of solid waste generated. There are around 1200 tons of municipal solid waste (MSW) generated daily, of which the combustibles namely plastics, paper and textile waste represent 28%, and with the present generation rate, the landfill will be filled by 2012. The study was, therefore, initiated to assess the potential of power generation from refused derived fuels (RDF) from municipal solid waste (MSW) in order to reduce the dependency on fossil fuels. There are 336 tons which is equivalent to 12 tons/ h of RDF that can be generated daily from the MSW and this would generate 19.2 MW power. There will be 312 kg/ h of ash that would be generated and the NO x and SO 2 concentration were found to be 395.5 and 43.3 mg/ Nm 3 respectively. It was also found that the amount of non-biogenic CO 2 produced was 471 g/ kWhe. (author)

  13. Probe for detection of denting in PWR steam generator tubes; Sonde de detection du denting des tubes de generateurs de vapeur REP

    Energy Technology Data Exchange (ETDEWEB)

    Gerardin, J P; Germain, J L; Nio, J C

    1994-07-01

    In certain types of PWR steam generator, oxide deposits can lead to embedding, and subsequently to deformation of a tube (the phenomenon of ``denting``). Such embedding changes the vibratory behavior of the tubes and can result in fatigue cracking. This type of cracking can also be worsened in the event of improper assembly of the anti-vibration spacer bars supporting the U-bends. To prevent such incidents and provide for effective preventive condition-directed maintenance of its PWR steam generators, EDF has undertaken the study and development of a probe to detect this type of phenomenon. The studies began in 1990 and led to the building of an initial prototype probe. The principle behind the probe consists in inducing vibration in the U-bend and determining the main resonance modes of the tube. Measurements of frequency and amplitude and calculation of damping enable characterization of the mechanical behavior of the U-bend. The most important parameter is damping, for which the value must be sufficiently high to ensure that the tube is not subjected to major vibratory amplitudes during operation. Numerous tests have been performed with the first prototype version of the probe, on a mock-up in the test area and on one of the demounted steam generators on the Dampierre site. These different tests have enabled validation of the operating principle, fine-tuning the process, pinpointing certain mechanical problems in the probe design, and obtaining the first indications as to the real vibratory behavior of U-bends on a steam generator. On the basis of these preliminary tests, the specifications were drawn up for an industrial version of the probe. Following a call for bids and the choice of a manufacturer, work began on fabrication of a new probe model in 1993. This version was delivered at the end of 1993 and testing began in 1994. (authors). 5 figs., 2 tabs.

  14. Constructing New Bioorthogonal Reagents and Reactions.

    Science.gov (United States)

    Row, R David; Prescher, Jennifer A

    2018-05-15

    Chemical tools are transforming our understanding of biomolecules and living systems. Included in this group are bioorthogonal reagents-functional groups that are inert to most biological species, but can be selectively ligated with complementary probes, even in live cells and whole organisms. Applications of these tools have revealed fundamental new insights into biomolecule structure and function-information often beyond the reach of genetic approaches. In many cases, the knowledge gained from bioorthogonal probes has enabled new questions to be asked and innovative research to be pursued. Thus, the continued development and application of these tools promises to both refine our view of biological systems and facilitate new discoveries. Despite decades of achievements in bioorthogonal chemistry, limitations remain. Several reagents are too large or insufficiently stable for use in cellular environments. Many bioorthogonal groups also cross-react with one another, restricting them to singular tasks. In this Account, we describe our work to address some of the voids in the bioorthogonal toolbox. Our efforts to date have focused on small reagents with a high degree of tunability: cyclopropenes, triazines, and cyclopropenones. These motifs react selectively with complementary reagents, and their unique features are enabling new pursuits in biology. The Account is organized by common themes that emerged in our development of novel bioorthogonal reagents and reactions. First, natural product structures can serve as valuable starting points for probe design. Cyclopropene, triazine, and cyclopropenone motifs are all found in natural products, suggesting that they would be metabolically stable and compatible with a variety of living systems. Second, fine-tuning bioorthogonal reagents is essential for their successful translation to biological systems. Different applications demand different types of probes; thus, generating a collection of tools that span a continuum of

  15. Volatile emission in dry seeds as a way to probe chemical reactions during initial asymptomatic deterioration.

    Science.gov (United States)

    Mira, Sara; Hill, Lisa M; González-Benito, M Elena; Ibáñez, Miguel Angel; Walters, Christina

    2016-03-01

    The nature and kinetics of reactions in dry seeds determines how long the seeds survive. We used gas chromatography to assay volatile organic compounds (VOCs) emitted from seeds of three unrelated species as a means to non-invasively probe chemical changes during very dry, dry, and humid storage (seeds were dried to 5.5, 33, and 75% relative humidity at room temperature). VOCs emitted from seeds stored in humid conditions reflected fermentation-type reactions, with methanol and ethanol being predominant in Lactuca sativa and Carum carvi, and acetaldehyde and acetone being predominant in Eruca vesicaria. Dried C. carvi seeds continued to emit fermentation-type products, although at slower rates than the seeds stored in humid conditions. In contrast, drying caused a switch in VOC emission in L. sativa and E. vesicaria seeds towards higher emission of pentane and hexanal, molecules considered to be byproducts from the peroxidation of polyunsaturated fatty acids. Longevity correlated best with the rate of fermentation-type reactions and appeared unrelated to the rate of lipid peroxidation. Emission of VOCs decreased when seed species were mixed together, indicating that seeds adsorbed VOCs. Adsorption of VOCs did not appear to damage seeds, as longevity was not affected in seed mixtures. Collectively, the study shows similarity among species in the types of reactions that occur in dry seeds, but high diversity in the substrates, and hence the byproducts, of the reactions. Moreover, the study suggests that the most abundant VOCs arise from degradation of storage reserves within seed cells, and that these reactions and their byproducts are not, in themselves, damaging. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. DNA probes

    Energy Technology Data Exchange (ETDEWEB)

    Castelino, J

    1993-12-31

    The creation of DNA probes for detection of specific nucleotide segments differs from ligand detection in that it is a chemical rather than an immunological reaction. Complementary DNA or RNA is used in place of the antibody and is labelled with {sup 32}P. So far, DNA probes have been successfully employed in the diagnosis of inherited disorders, infectious diseases, and for identification of human oncogenes. The latest approach to the diagnosis of communicable and parasitic infections is based on the use of deoxyribonucleic acid (DNA) probes. The genetic information of all cells is encoded by DNA and DNA probe approach to identification of pathogens is unique because the focus of the method is the nucleic acid content of the organism rather than the products that the nucleic acid encodes. Since every properly classified species has some unique nucleotide sequences that distinguish it from every other species, each organism`s genetic composition is in essence a finger print that can be used for its identification. In addition to this specificity, DNA probes offer other advantages in that pathogens may be identified directly in clinical specimens 10 figs, 2 tabs

  17. Carbonylative Heck Reactions Using CO Generated ex Situ in a Two-Chamber System

    DEFF Research Database (Denmark)

    Hermange, Philippe; Gøgsig, Thomas; Lindhardt, Anders Thyboe

    2011-01-01

    A carbonylative Heck reaction of aryl iodides and styrene derivatives employing a two-chamber system using a stable, crystalline, and nontransition metal based carbon monoxide source is reported. By applying near-stoichiometric amounts of the carbon monoxide precursor, an effective exploitation o...... of the hazardous CO gas is obtained affording chalcone derivatives in good yields. Application to isotope labeling, incorporating 13CO, was further established....

  18. [Oligonucleotide derivatives in the nucleic acid hybridization analysis. I. Covalent immobilization of oligonucleotide probes onto the nylon].

    Science.gov (United States)

    Dmitrienko, E V; Pyshnaia, I A; Pyshnyĭ, D V

    2010-01-01

    The features of UV-induced immobilization of oligonucleotides on a nylon membranes and the effectiveness of enzymatic labeling of immobilized probes at heterophase detection of nucleic acids are studied. Short terminal oligothymidilate (up to 10 nt) sequences are suggested to attach to the probe via a flexible ethylene glycol based linker. The presence of such fragment enhances the intensity of immobilization and reduces UV-dependent degradation of the targeted (sequence-specific) part of the probe by reducing the dose needed for the immobilization of DNA. The optimum dose of UV-irradiation is determined to be ~0.4 J/cm(2) at the wavelength 254 nm. This dose provides high level of hybridization signal for immobilized probes with various nucleotide composition of the sequence specific moiety. The amide groups of the polyamide are shown to play the key role in the photoinduced immobilization of nucleic acids, whereas the primary amino groups in the structure of PA is not the center responsible for the covalent binding of DNA by UV-irradiation, as previously believed. Various additives in the soaking solution during the membrane of UV-dependent immobilization of probes are shown to influence its effectiveness. The use of alternative to UV-irradiation system of radical generation are shown to provide the immobilization of oligonucleotides onto the nylon membrane.

  19. Relating Derived Relations as a Model of Analogical Reasoning: Reaction Times and Event-Related Potentials

    Science.gov (United States)

    Barnes-Holmes, Dermot; Regan, Donal; Barnes-Holmes, Yvonne; Commins, Sean; Walsh, Derek; Stewart, Ian; Smeets, Paul M.; Whelan, Robert; Dymond, Simon

    2005-01-01

    The current study aimed to test a Relational Frame Theory (RFT) model of analogical reasoning based on the relating of derived same and derived difference relations. Experiment 1 recorded reaction time measures of similar-similar (e.g., "apple is to orange as dog is to cat") versus different-different (e.g., "he is to his brother as…

  20. Hemoglobin detection using carbon dots as a fluorescence probe.

    Science.gov (United States)

    Barati, Ali; Shamsipur, Mojtaba; Abdollahi, Hamid

    2015-09-15

    Herein, we have described the application of high fluorescent carbon dots (CDs) without any surface modification as a simple and fast responding fluorescence probe for sensitive and selective determination of hemoglobin (Hb) in the presence of H2O2. Although Hb itself was able to quench the fluorescence of CDs, based on the inner filter effect (IFE) of the protein that affects both excitation and emission spectra of CDs, the presence of H2O2 resulted in further improvement of the sensitivity of Hb detection. The assay is based on the reaction of Hb with H2O2 that generates reactive oxygen species including hydroxyl (OH•) and superoxide (O2(•-)) radicals under heme degradation and/or iron release from Hb and the subsequent reaction of hydroxyl radicals, as strong oxidizing agents, with CDs resulting in high fluorescence quenching. The proposed probe was used for determination of Hb in concentration range of 1-100 nM with a detection limit of 0.4 nM. The method was successfully applied to the determination of Hb in human blood samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Thermal analysis experiment for elucidating sodium-water chemical reaction mechanism in steam generator of sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki

    2012-01-01

    For the purpose of elucidating the mechanism of the sodium-water surface reaction in a steam generator of sodium-cooled fast reactors, kinetic study of the sodium (Na)-sodium hydroxide (NaOH) reaction has been carried out by using Differential Thermal Analysis (DTA) technique. The parameters, including melting points of Na and NaOH, phase transition temperature of NaOH, Na-NaOH reaction temperature, and decomposition temperature of sodium hydride (NaH) have been identified from DTA curves. Based on the measured reaction temperature, rate constant of sodium monoxide (Na 2 O) generation was obtained. Thermal analysis results indicated that Na 2 O generation at the secondary overall reaction should be considered during the sodium-water reaction. (author)

  2. Generation and purification of human stem cell-derived cardiomyocytes

    NARCIS (Netherlands)

    Schwach, Verena; Passier, Robert

    2016-01-01

    © 2016 International Society of Differentiation Efficient and reproducible generation and purification of human stem cell-derived cardiomyocytes (CMs) is crucial for regenerative medicine, disease modeling, drug screening and study of developmental events during cardiac specification. Established

  3. One-Pot Synthesis of Novel Chiral β-Amino Acid Derivatives by Enantioselective Mannich Reactions Catalyzed by Squaramide Cinchona Alkaloids

    Directory of Open Access Journals (Sweden)

    Kankan Zhang

    2013-05-01

    Full Text Available An efficient one-pot synthesis of novel β-amino acid derivatives containing a thiadiazole moiety was developed using a chiral squaramide cinchona alkaloid as organocatalyst. The reactions afforded chiral β-amino acid derivatives in moderate yields and with moderate to excellent enantioselectivities. The present study demonstrated for the first time the use of a Mannich reaction catalyzed by a chiral bifunctional organocatalyst for the one-pot synthesis of novel β-amino acid derivatives bearing a 1,3,4-thiadiazole moiety on nitrogen.

  4. Plasmid-derived DNA Strand Displacement Gates for Implementing Chemical Reaction Networks.

    Science.gov (United States)

    Chen, Yuan-Jyue; Rao, Sundipta D; Seelig, Georg

    2015-11-25

    DNA nanotechnology requires large amounts of highly pure DNA as an engineering material. Plasmid DNA could meet this need since it is replicated with high fidelity, is readily amplified through bacterial culture and can be stored indefinitely in the form of bacterial glycerol stocks. However, the double-stranded nature of plasmid DNA has so far hindered its efficient use for construction of DNA nanostructures or devices that typically contain single-stranded or branched domains. In recent work, it was found that nicked double stranded DNA (ndsDNA) strand displacement gates could be sourced from plasmid DNA. The following is a protocol that details how these ndsDNA gates can be efficiently encoded in plasmids and can be derived from the plasmids through a small number of enzymatic processing steps. Also given is a protocol for testing ndsDNA gates using fluorescence kinetics measurements. NdsDNA gates can be used to implement arbitrary chemical reaction networks (CRNs) and thus provide a pathway towards the use of the CRN formalism as a prescriptive molecular programming language. To demonstrate this technology, a multi-step reaction cascade with catalytic kinetics is constructed. Further it is shown that plasmid-derived components perform better than identical components assembled from synthetic DNA.

  5. Probing plasma wakefields using electron bunches generated from a laser wakefield accelerator

    Science.gov (United States)

    Zhang, C. J.; Wan, Y.; Guo, B.; Hua, J. F.; Pai, C.-H.; Li, F.; Zhang, J.; Ma, Y.; Wu, Y. P.; Xu, X. L.; Mori, W. B.; Chu, H.-H.; Wang, J.; Lu, W.; Joshi, C.

    2018-04-01

    We show experimental results of probing the electric field structure of plasma wakes by using femtosecond relativistic electron bunches generated from a laser wakefield accelerator. Snapshots of laser-driven linear wakes in plasmas with different densities and density gradients are captured. The spatiotemporal evolution of the wake in a plasma density up-ramp is recorded. Two parallel wakes driven by a laser with a main spot and sidelobes are identified in the experiment and reproduced in simulations. The capability of this new method for capturing the electron- and positron-driven wakes is also shown via 3D particle-in-cell simulations.

  6. Reaction-based small-molecule fluorescent probes for dynamic detection of ROS and transient redox changes in living cells and small animals.

    Science.gov (United States)

    Lü, Rui

    2017-09-01

    Dynamic detection of transient redox changes in living cells and animals has broad implications for human health and disease diagnosis, because intracellular redox homeostasis regulated by reactive oxygen species (ROS) plays important role in cell functions, normal physiological functions and some serious human diseases (e.g., cancer, Alzheimer's disease, diabetes, etc.) usually have close relationship with the intracellular redox status. Small-molecule ROS-responsive fluorescent probes can act as powerful tools for dynamic detection of ROS and redox changes in living cells and animals through fluorescence imaging techniques; and great advances have been achieved recently in the design and synthesis of small-molecule ROS-responsive fluorescent probes. This article highlights up-to-date achievements in designing and using the reaction-based small-molecule fluorescent probes (with high sensitivity and selectivity to ROS and redox cycles) in the dynamic detection of ROS and transient redox changes in living cells and animals through fluorescence imaging. Copyright © 2017. Published by Elsevier Ltd.

  7. A touch-probe path generation method through similarity analysis between the feature vectors in new and old models

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Hye Sung; Lee, Jin Won; Yang, Jeong Sam [Dept. of Industrial Engineering, Ajou University, Suwon (Korea, Republic of)

    2016-10-15

    The On-machine measurement (OMM), which measures a work piece during or after the machining process in the machining center, has the advantage of measuring the work piece directly within the work space without moving it. However, the path generation procedure used to determine the measuring sequence and variables for the complex features of a target work piece has the limitation of requiring time-consuming tasks to generate the measuring points and mostly relies on the proficiency of the on-site engineer. In this study, we propose a touch-probe path generation method using similarity analysis between the feature vectors of three-dimensional (3-D) shapes for the OMM. For the similarity analysis between a new 3-D model and existing 3-D models, we extracted the feature vectors from models that can describe the characteristics of a geometric shape model; then, we applied those feature vectors to a geometric histogram that displays a probability distribution obtained by the similarity analysis algorithm. In addition, we developed a computer-aided inspection planning system that corrects non-applied measuring points that are caused by minute geometry differences between the two models and generates the final touch-probe path.

  8. Correlating enzymatic browning inhibition and antioxidant ability of Maillard reaction products derived from different amino acids.

    Science.gov (United States)

    Xu, Haining; Zhang, Xiaoming; Karangwa, Eric; Xia, Shuqin

    2017-09-01

    Up to now, only limited research on enzymatic browning inhibition capacity (BIC) of Maillard reaction products (MRPs) has been reported and there are still no overall and systematic researches on MRPs derived from different amino acids. In the present study, BIC and antioxidant capacity, including 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and Fe 2+ reducing power activity, of the MRPs derived from 12 different amino acids and three reducing sugars were investigated. The MRPs of cysteine (Cys), cystine, arginine (Arg) and histidine (His) showed higher BIC compared to other amino acids. Lysine (Lys)-MRPs showed the highest absorbance value at 420 nm (A 420 ) but very limited BIC, whereas Cys-MRPs, showed the highest BIC and the lowest A 420 . The A 420 can roughly reflect the trend of BIC of MRPs from different amino acids, except Cys and Lys. MRPs from tyrosine (Tyr) showed the most potent antioxidant capacity but very limited BIC, whereas Cys-MRPs showed both higher antioxidant capacity and BIC compared to other amino acids. Partial least squares regression analysis showed positive and significant correlation between BIC and Fe 2+ reducing power of MRPs from 12 amino acids with glucose or fructose, except Lys, Cys and Tyr. The suitable pH for generating efficient browning inhibition compounds varies depending on different amino acids: acidic pH was favorable for Cys, whereas neutral and alkaline pH were suitable for His and Arg, respectively. Increasing both heating temperature and time over a certain range could improve the BIC of MRPs of Cys, His and Arg, whereas any further increase deteriorates their browning inhibition efficiencies. The types of amino acid, initial pH, temperature and time of the Maillard reaction were found to greatly influence the BIC and antioxidant capacity of the resulting MRPs. There is no clear relationship between BIC and the antioxidant capacity of MRPs when reactant type and processing parameters of the Maillard

  9. Synthesis, optimization and structural characterization of a chitosan-glucose derivative obtained by the Maillard reaction.

    Science.gov (United States)

    Gullón, Beatriz; Montenegro, María I; Ruiz-Matute, Ana I; Cardelle-Cobas, Alejandra; Corzo, Nieves; Pintado, Manuela E

    2016-02-10

    Chitosan (Chit) was submitted to the Maillard reaction (MR) by co-heating a solution with glucose (Glc). Different reaction conditions as temperature (40, 60 and 80 °C), Glc concentration (0.5%, 1%, and 2%, w/v), and reaction time (72, 52 and 24h) were evaluated. Assessment of the reaction extent was monitored by measuring changes in UV absorbance, browning and fluorescence. Under the best conditions, 2% (w/v) of Chit, 2% (w/v) of Glc at 60°C and 32 h of reaction time, a chitosan-glucose (Chit-Glc) derivative was purified and submitted to structural characterization to confirm its formation. Analysis of its molecular weight (MW) and the degree of substitution (DS) was carried out by HPLC-Size Exclusion Chromatography (SEC) and a colloid titration method, respectively. FT-IR and (1)H NMR were also used to analyze the functional groups and evaluate the introduction of Glc into the Chit molecule. According to our objectives, the results obtained in this work allowed to better understand the key parameters influencing the MR with Chit as well as to confirm the successful introduction of Glc into the Chit molecule obtaining a Chit-Glc derivative with a DS of 64.76 ± 4.40% and a MW of 210.37 kDa. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Ratiometric Time-Gated Luminescence Probe for Nitric Oxide Based on an Apoferritin-Assembled Lanthanide Complex-Rhodamine Luminescence Resonance Energy Transfer System.

    Science.gov (United States)

    Tian, Lu; Dai, Zhichao; Liu, Xiangli; Song, Bo; Ye, Zhiqiang; Yuan, Jingli

    2015-11-03

    Using apoferritin (AFt) as a carrier, a novel ratiometric luminescence probe based on luminescence resonance energy transfer (LRET) between a Tb(3+) complex (PTTA-Tb(3+)) and a rhodamine derivative (Rh-NO), PTTA-Tb(3+)@AFt-Rh-NO, has been designed and prepared for the specific recognition and time-gated luminescence detection of nitric oxide (NO) in living samples. In this LRET probe, PTTA-Tb(3+) encapsulated in the core of AFt is the energy donor, and Rh-NO, a NO-responsive rhodamine derivative, bound on the surface of AFt is the energy acceptor. The probe only emits strong Tb(3+) luminescence because the emission of rhodamine is switched off in the absence of NO. Upon reaction with NO, accompanied by the turn-on of rhodamine emission, the LRET from Tb(3+) complex to rhodamine occurs, which results in the remarkable increase and decrease of the long-lived emissions of rhodamine and PTTA-Tb(3+), respectively. After the reaction, the intensity ratio of rhodamine emission to Tb(3+) emission, I565/I539, is ∼24.5-fold increased, and the dose-dependent enhancement of I565/I539 shows a good linearity in a wide concentration range of NO. This unique luminescence response allowed PTTA-Tb(3+)@AFt-Rh-NO to be conveniently used as a ratiometric probe for the time-gated luminescence detection of NO with I565/I539 as a signal. Taking advantages of high specificity and sensitivity of the probe as well as its good water-solubility, biocompatibility, and cell membrane permeability, PTTA-Tb(3+)@AFt-Rh-NO was successfully used for the luminescent imaging of NO in living cells and Daphnia magna. The results demonstrated the efficacy of the probe and highlighted it's advantages for the ratiometric time-gated luminescence bioimaging application.

  11. Generation of N-Heterocycles via Tandem Reactions of N '-(2-Alkynylbenzylidene)hydrazides.

    Science.gov (United States)

    Qiu, Guanyinsheng; Wu, Jie

    2016-02-01

    As a powerful synthon, N '-(2-alkynylbenzylidene)hydrazides have been utilized efficiently for the construction of N-heterocycles. Since N '-(2-alkynylbenzylidene)hydrazides can easily undergo intramolecular 6-endo cyclization promoted by silver triflate or electrophiles, the resulting isoquinolinium-2-yl amides can proceed through subsequent transformations including [3 + 2] cycloaddition, nucleophilic addition, and [3 + 3] cycloaddition. Several unexpected rearrangements via radical processes were observed in some cases, which afforded nitrogen-containing heterocycles with molecular complexity. Reactive partners including internal alkynes, arynes, ketenimines, ketenes, allenoates, and activated alkenes reacted through [3 + 2] cycloaddition and subsequent aromatization, leading to diverse H-pyrazolo[5,1-a]isoquinolines with high efficiency. Nucleophilic addition to the in situ generated isoquinolinium-2-yl amide followed by aromatization also produced H-pyrazolo[5,1-a]isoquinoline derivatives when terminal alkynes, carbonyls, enamines, and activated methylene compounds were used as nucleophiles. Isoquinoline derivatives were obtained when indoles or phosphites were employed as nucleophiles in the reactions of N '-(2-alkynylbenzylidene)hydrazides. A tandem 6-endo cyclization and [3 + 3] cycloaddition of cyclopropane-1,1-dicarboxylates with N '-(2-alkynylbenzylidene)hydrazides was observed as well. Small libraries of these compounds were constructed. Biological evaluation suggested that some compounds showed promising activities for inhibition of CDC25B, TC-PTP, HCT-116, and PTP1B. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Low energy probes of PeV scale sfermions

    Energy Technology Data Exchange (ETDEWEB)

    Altmannshofer, Wolfgang; Harnik, Roni; Zupan, Jure

    2013-11-27

    We derive bounds on squark and slepton masses in mini-split supersymmetry scenario using low energy experiments. In this setup gauginos are at the TeV scale, while sfermions are heavier by a loop factor. We cover the most sensitive low energy probes including electric dipole moments (EDMs), meson oscillations and charged lepton flavor violation (LFV) transitions. A leading log resummation of the large logs of gluino to sfermion mass ratio is performed. A sensitivity to PeV squark masses is obtained at present from kaon mixing measurements. A number of observables, including neutron EDMs, mu->e transitions and charmed meson mixing, will start probing sfermion masses in the 100 TeV-1000 TeV range with the projected improvements in the experimental sensitivities. We also discuss the implications of our results for a variety of models that address the flavor hierarchy of quarks and leptons. We find that EDM searches will be a robust probe of models in which fermion masses are generated radiatively, while LFV searches remain sensitive to simple-texture based flavor models.

  13. A Fluorescent Molecular Probe for the Detection of Hydrogen Based on Oxidative Addition Reactions with Crabtree-Type Hydrogenation Catalysts.

    Science.gov (United States)

    Kos, Pavlo; Plenio, Herbert

    2015-11-02

    A Crabtree-type Ir(I) complex tagged with a fluorescent dye (bodipy) was synthesized. The oxidative addition of H2 converts the weakly fluorescent Ir(I) complex (Φ=0.038) into a highly fluorescent Ir(III) species (Φ=0.51). This fluorogenic reaction can be utilized for the detection of H2 and to probe the oxidative addition step in the catalytic hydrogenation of olefins. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Small Molecules and Sum Frequency Generation Probes of Nanoparticulate TiO2

    Science.gov (United States)

    Shultz, Mary Jane

    2006-03-01

    Anatase TiO2 is known to photo catalytically mineralize a wide variety of pollutants and pathogens, both airborne and in aqueous solution. One of the major benefits of basing water treatment systems on TiO2 is that it is environmentally benign and so non toxic that it is used as a colorant in creamy salad dressing. The primary impediment to wide spread implementation of a TiO2 based system for water decontamination is that the quantum efficiency in contact with condense phase water is less than 5%. Since the quantum efficiency for destruction of airborne materials is greater than 80%, the potential for increased efficiency is very real. To convert the potential to practice, the oxidation mechanism needs to be more fully understood. We will report on the results of using a nonlinear optical spectroscopy, sum frequency generation (SFG) as an in situ probe of interactions at the TiO2 surface. Results suggest that the dominant oxidation mechanism converts from a direct to an indirect mechanism as the water content (vapor pressure) increases. This presentation will discuss the probe technique as well as the results.

  15. Angular distributions as lifetime probes

    Energy Technology Data Exchange (ETDEWEB)

    Dror, Jeff Asaf; Grossman, Yuval [Department of Physics, LEPP, Cornell University,Ithaca, NY 14853 (United States)

    2014-06-27

    If new TeV scale particles are discovered, it will be important to determine their width. There is, however, a problematic region, where the width is too small to be determined directly, and too large to generate a secondary vertex. For a collection of colored, spin polarized particles, hadronization depolarizes the particles prior to their decay. The amount of depolarization can be used to probe the lifetime in the problematic region. In this paper we apply this method to a realistic scenario of a top-like particle that can be produced at the LHC. We study how depolarization affects the angular distributions of the decay products and derive an equation for the distributions that is sensitive to the lifetime.

  16. Continuous-flow retro-Diels-Alder reaction: an efficient method for the preparation of pyrimidinone derivatives.

    Science.gov (United States)

    Nekkaa, Imane; Palkó, Márta; Mándity, István M; Fülöp, Ferenc

    2018-01-01

    The syntheses of various pyrimidinones as potentially bioactive products by means of the highly controlled continuous-flow retro-Diels-Alder reaction of condensed pyrimidinone derivatives are presented. Noteworthy, the use of this approach allowed us to rapidly screen a selection of conditions and quickly confirm the viability of preparing the desired pyrimidinones in short reaction times. Yields typically higher than those published earlier using conventional batch or microwave processes were achieved.

  17. Multipartite entanglement detection with nonsymmetric probing

    DEFF Research Database (Denmark)

    Dellantonio, Luca; Das, Sumanta; Appel, Jürgen

    2017-01-01

    We show that spin-squeezing criteria commonly used for entanglement detection can be erroneous if the probe is not symmetric. We then derive a lower bound on squeezing for separable states in spin systems probed asymmetrically. Using this we further develop a procedure that allows us to verify th...... the degree of entanglement of a quantum state in the spin system. Finally, we apply our method for entanglement verification to existing experimental data, and use it to prove the existence of tripartite entanglement in a spin-squeezed atomic ensemble.......We show that spin-squeezing criteria commonly used for entanglement detection can be erroneous if the probe is not symmetric. We then derive a lower bound on squeezing for separable states in spin systems probed asymmetrically. Using this we further develop a procedure that allows us to verify...

  18. A chiral Brønsted acid-catalyzed highly enantioselective Mannich-type reaction of α-diazo esters with in situ generated N-acyl ketimines.

    Science.gov (United States)

    Unhale, Rajshekhar A; Sadhu, Milon M; Ray, Sumit K; Biswas, Rayhan G; Singh, Vinod K

    2018-04-03

    A chiral phosphoric acid-catalyzed asymmetric Mannich-type reaction of α-diazo esters with in situ generated N-acyl ketimines, derived from 3-hydroxyisoindolinones has been demonstrated in this communication. A variety of isoindolinone-based α-amino diazo esters bearing a quaternary stereogenic center were afforded in high yields (up to 99%) with excellent enantioselectivities (up to 99% ee). Furthermore, the synthetic utility of the products has been depicted by the hydrogenation of the diazo moiety of adducts.

  19. Probing chirality with a femtosecond reaction microscope

    Directory of Open Access Journals (Sweden)

    Janssen M. H. M.

    2013-03-01

    Full Text Available Detection of molecular chirality with high sensitivity and selectivity is important for many analytical and practical applications. Photoionization has emerged as a very sensitive probe of chirality in molecules. We show here that a table top setup with a femtosecond laser and a single imaging detector for both photoelectrons and photoions enables detection of chirality up to 3 orders of magnitude better than the existing conventional absorption based techniques.

  20. Free radical reactions of isoxazole and pyrazole derivatives of hispolon: kinetics correlated with molecular descriptors.

    Science.gov (United States)

    Shaikh, Shaukat Ali M; Barik, Atanu; Singh, Beena G; Modukuri, Ramani V; Balaji, Neduri V; Subbaraju, Gottumukkala V; Naik, Devidas B; Priyadarsini, K Indira

    2016-12-01

    Hispolon (HS), a natural polyphenol found in medicinal mushrooms, and its isoxazole (HI) and pyrazole (HP) derivatives have been examined for free radical reactions and in vitro antioxidant activity. Reaction of these compounds with one-electron oxidant, azide radicals ([Formula: see text]) and trichloromethyl peroxyl radicals ([Formula: see text]), model peroxyl radicals, studied by nanosecond pulse radiolysis technique, indicated formation of phenoxyl radicals absorbing at 420 nm with half life of few hundred microseconds (μs). The formation of phenoxyl radicals confirmed that the phenolic OH is the active centre for free radical reactions. Rate constant for the reaction of these radicals with these compounds were in the order k HI ≅ k HP  >   k HS . Further the compounds were examined for their ability to inhibit lipid peroxidation in model membranes and also for the scavenging of 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical and superoxide ([Formula: see text]) radicals. The results suggested that HP and HI are less efficient than HS towards these radical reactions. Quantum chemical calculations were performed on these compounds to understand the mechanism of reaction with different radicals. Lower values of adiabatic ionization potential (AIP) and elevated highest occupied molecular orbital (HOMO) for HI and HP compared with HS controlled their activity towards [Formula: see text] and [Formula: see text] radicals, whereas the contribution of overall anion concentration was responsible for higher activity of HS for DPPH, [Formula: see text], and lipid peroxyl radical. The results confirm the role of different structural moieties on the antioxidant activity of hispolon derivatives.

  1. Kinetics of intercalation of fluorescent probes in magnesium-aluminium layered double hydroxide within a multiscale reaction-diffusion framework

    Science.gov (United States)

    Saliba, Daniel; Al-Ghoul, Mazen

    2016-11-01

    We report the synthesis of magnesium-aluminium layered double hydroxide (LDH) using a reaction-diffusion framework (RDF) that exploits the multiscale coupling of molecular diffusion with chemical reactions, nucleation and growth of crystals. In an RDF, the hydroxide anions are allowed to diffuse into an organic gel matrix containing the salt mixture needed for the precipitation of the LDH. The chemical structure and composition of the synthesized magnesium-aluminium LDHs are determined using powder X-ray diffraction (PXRD), thermo-gravimetric analysis, differential scanning calorimetry, solid-state nuclear magnetic resonance (SSNMR), Fourier transform infrared and energy dispersive X-ray spectroscopy. This novel technique also allows the investigation of the mechanism of intercalation of some fluorescent probes, such as the neutral three-dimensional rhodamine B (RhB) and the negatively charged two-dimensional 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS), using in situ steady-state fluorescence spectroscopy. The incorporation of these organic dyes inside the interlayer region of the LDH is confirmed via fluorescence microscopy, solid-state lifetime, SSNMR and PXRD. The activation energies of intercalation of the corresponding molecules (RhB and HPTS) are computed and exhibit dependence on the geometry of the involved probe (two or three dimensions), the charge of the fluorescent molecule (anionic, cationic or neutral) and the cationic ratio of the corresponding LDH. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  2. A potential fluorescent probe: Maillard reaction product from glutathione and ascorbic acid for rapid and label-free dual detection of Hg(2+) and biothiols.

    Science.gov (United States)

    Dong, Jiang Xue; Song, Xiao Fang; Shi, Yan; Gao, Zhong Feng; Li, Bang Lin; Li, Nian Bing; Luo, Hong Qun

    2016-07-15

    Maillard reactions and their fluorescent products have drawn much attention in the fields of food and life science, however, the application of fluorescent products separated from the reaction as an indicator for detection of certain substances in sensor field has not been mentioned. In this article, we report on an easy-to-synthesize and water-soluble fluorescent probe separated from the typical Maillard reaction products of glutathione and ascorbic acid, with excellent stability and high quantum yield (18.2%). The further application of the probe has been explored for dual detection of Hg(2+) and biothiols including cysteine, homocysteine, and glutathione, which is based on Hg(2+)-induced fluorescence quenching of the Maillard reaction fluorescent products (MRFPs) and the fluorescence recovery as the introduction of biothiols. This sensing system exhibits a good selectivity and sensitivity, and the linear ranges for Hg(2+), cysteine, homocysteine, and glutathione are 0.05-12, 0.5-10, 0.3-20, and 0.3-20μM, respectively. The detection limits for Hg(2+), cysteine, homocysteine, and glutathione are 22, 47, 96, and 30nM at a signal-to-noise ratio of 3, respectively. Furthermore, the practical applications of this sensor for Hg(2+) and biothiols determination in water samples and human plasma sample have been demonstrated with satisfactory results. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Generation of EMIC Waves Observed by Van Allen Probes at Low L-shells of Earth's Magnetosphere

    Science.gov (United States)

    Gamayunov, K. V.; Zhang, J.; Saikin, A.; Rassoul, H.

    2017-12-01

    In a multi-ion magnetospheric plasma, where the major species are H+, He+, and O+, the He-band of electromagnetic ion cyclotron (EMIC) waves is the dominant band observed in the inner magnetosphere, and waves are generally quasi-field-aligned inside the geostationary orbit. Almost all the satellite-based studies of EMIC waves before Van Allen Probes, however, have not reported waves below L 3.5. There is probably only one exception from the Akebono satellite where both the H-band and He-band EMIC waves were observed at L 2. The situation has changed dramatically after two Van Allen Probes spacecraft were launched on 30 August, 2012, and many EMIC wave events have been observed below L=4. The Van Allen Probes observations confirm that the He-band of EMIC waves is a dominant band in the inner magnetosphere, but the observation of the He-band waves below L=4 is a new and quite unexpected result compared to our knowledge about EMIC waves before the Van Allen Probes era. In addition, observations show that almost all the He-band EMIC waves are linearly polarized in the region L field, and energetic ion distribution functions will be taken from the Van Allen Probes observations during the EMIC wave event to calculate growth rates of EMIC waves. We will then identify the energetic ions responsible for instability, frequencies and normals generated, and physical mechanism of instability.

  4. Cantilevered probe detector with piezoelectric element

    Science.gov (United States)

    Adams, Jesse D; Sulchek, Todd A; Feigin, Stuart C

    2013-04-30

    A disclosed chemical detection system for detecting a target material, such as an explosive material, can include a cantilevered probe, a probe heater coupled to the cantilevered probe, and a piezoelectric element disposed on the cantilevered probe. The piezoelectric element can be configured as a detector and/or an actuator. Detection can include, for example, detecting a movement of the cantilevered probe or a property of the cantilevered probe. The movement or a change in the property of the cantilevered probe can occur, for example, by adsorption of the target material, desorption of the target material, reaction of the target material and/or phase change of the target material. Examples of detectable movements and properties include temperature shifts, impedance shifts, and resonant frequency shifts of the cantilevered probe. The overall chemical detection system can be incorporated, for example, into a handheld explosive material detection system.

  5. Original Synthesis of Fluorenyl Alcohol Derivatives by Reductive Dehalogenation Initiated by TDAE.

    Science.gov (United States)

    Giuglio-Tonolo, Alain Gamal; Terme, Thierry; Vanelle, Patrice

    2016-10-24

    We report here a novel and easy-to-handle reductive dehalogenation of 9-bromofluorene in the presence of arylaldehydes and dicarbonyl derivatives to give the corresponding fluorenyl alcohol derivatives and Darzens epoxides as by-products in tetrakis(dimethylamino)ethylene (TDAE) reaction conditions. The reaction is believed to proceed via two successive single electron transfers to generate the fluorenyl anion which was able to react with different electrophiles. A mechanistic study was conducted to understand the formation of the epoxide derivatives.

  6. Original Synthesis of Fluorenyl Alcohol Derivatives by Reductive Dehalogenation Initiated by TDAE

    Directory of Open Access Journals (Sweden)

    Alain Gamal Giuglio-Tonolo

    2016-10-01

    Full Text Available We report here a novel and easy-to-handle reductive dehalogenation of 9-bromofluorene in the presence of arylaldehydes and dicarbonyl derivatives to give the corresponding fluorenyl alcohol derivatives and Darzens epoxides as by-products in tetrakis(dimethylaminoethylene (TDAE reaction conditions. The reaction is believed to proceed via two successive single electron transfers to generate the fluorenyl anion which was able to react with different electrophiles. A mechanistic study was conducted to understand the formation of the epoxide derivatives.

  7. Reactions on catalytic probe surface during oxygen plasma treatment of polyether sulphone: Reakcije na površini katalitične sonde med plazemsko obdelavo polieter sulfona:

    OpenAIRE

    Mozetič, Miran

    1998-01-01

    Experiments on the behavior of a nickel catalytic probe during activation of the surface of polyether sulphone in oxygen plasma are described. The temperature of the probe mounted 30 cm apart from inductively coupled RF oxygen plasma was measured for the case of empty dischaarge vessel and the case a sample with the dimensions of 8 cm x 1.2 cm x 0.4 cm was mounted in the middle of the discharge coil. It was found that both the maximum temperature and the first time derivative of the probe was...

  8. Development and cytotoxicity of Schiff base derivative as a fluorescence probe for the detection of L-Arginine

    Science.gov (United States)

    Shang, Xuefang; Li, Jie; Guo, Kerong; Ti, Tongyu; Wang, Tianyun; Zhang, Jinlian

    2017-04-01

    Inspired from biological counter parts, chemical modification of Schiff base derivatives with function groups may provide a highly efficient method to detect amino acids. Therefore, a fluorescent probe involving Schiff base and hydroxyl group has been designed and prepared, which showed high response and specificity for Arginine (Arg) among normal eighteen standard kinds of amino acids (Alanine, Valine, Leucine, Isoleucine, Methionine, Asparticacid, Glutamicacid, Arginine, Glycine, Serine, Threonine, Asparagine, Phenylalanine, Histidine, Tryptophan, Proline, Lysine, Glutamine, Tyrosine and Cysteine). Furthermore, theoretical investigation further illustrated the possible binding mode in the host-guest interaction and the roles of molecular frontier orbitals in molecular interplay. In addition, the synthesized fluorescent probe exhibited high binding ability for Arg and low cytotoxicity to MCF-7 cells over a concentration range of 0-200 μg mL-1 which can be also used as a biosensor for the Arg detection in vivo.

  9. Double displacement: An improved bioorthogonal reaction strategy for templated nucleic acid detection.

    Science.gov (United States)

    Kleinbaum, Daniel J; Miller, Gregory P; Kool, Eric T

    2010-06-16

    Quenched autoligation probes have been employed previously in a target-templated nonenzymatic ligation strategy for detecting nucleic acids in cells by fluorescence. A common source of background signal in such probes is the undesired reaction with water and other cellular nucleophiles. Here, we describe a new class of self-ligating probes, double displacement (DD) probes, that rely on two displacement reactions to fully unquench a nearby fluorophore. Three potential double displacement architectures, all possessing two fluorescence quencher/leaving groups (dabsylate groups), were synthesized and evaluated for templated reaction with nucleophile (phosphorothioate) probes both in vitro and in intact bacterial cells. All three DD probe designs provided substantially better initial quenching than a single-Dabsyl control. In isothermal templated reactions in vitro, double displacement probes yielded considerably lower background signal than previous single displacement probes; investigation into the mechanism revealed that one dabsylate acts as a sacrificial leaving group, reacting nonspecifically with water, but yielding little signal because another quencher group remains. Templated reaction with the specific nucleophile probe is required to activate a signal. The double displacement probes provided a ca. 80-fold turn-on signal and yielded a 2-4-fold improvement in signal/background over single Dabsyl probes. The best-performing probe architecture was demonstrated in a two-color, FRET-based two-allele discrimination system in vitro and was shown to be capable of discriminating between two closely related species of bacteria differing by a single nucleotide at an rRNA target site.

  10. International Conference on Spin Observables of Nuclear Probes

    CERN Document Server

    Goodman, Charles; Walker, George; Spin Observables of Nuclear Probes

    1988-01-01

    The proceedings of the "International Conference on Spin Observables of Nuclear Probes" are presented in this volume. This conference was held in Telluride, Colorado, March 14 -17, 1988, and was the fourth in the Telluride series of nuclear physics conferences. A continuing theme in the Telluride conference series has been the complementarity of various intermediate-energy projectiles for elucidating the nucleon-nucleon interaction and nuclear structure. Earlier conferences have contributed significantly to an understanding of spin currents in nuclei, in particular the distribution of Gamow-Teller strength using charge-exchange reactions. The previous conference on "Antinucleon and Nucleon Nucleus Interactions" compared nuclear information from tra­ tional probes to recent results from antinucleon reactions. The 1988 conference on Spin Observables of Nuclear Probes, put special emphasis on spin observables and brought together experts using spin information to probe nuclear structure. Spin observabl...

  11. Large-scale generation of cell-derived nanovesicles

    Science.gov (United States)

    Jo, W.; Kim, J.; Yoon, J.; Jeong, D.; Cho, S.; Jeong, H.; Yoon, Y. J.; Kim, S. C.; Gho, Y. S.; Park, J.

    2014-09-01

    Exosomes are enclosed compartments that are released from cells and that can transport biological contents for the purpose of intercellular communications. Research into exosomes is hindered by their rarity. In this article, we introduce a device that uses centrifugal force and a filter with micro-sized pores to generate a large quantity of cell-derived nanovesicles. The device has a simple polycarbonate structure to hold the filter, and operates in a common centrifuge. Nanovesicles are similar in size and membrane structure to exosomes. Nanovesicles contain intracellular RNAs ranging from microRNA to mRNA, intracellular proteins, and plasma membrane proteins. The quantity of nanovesicles produced using the device is 250 times the quantity of naturally secreted exosomes. Also, the quantity of intracellular contents in nanovesicles is twice that in exosomes. Nanovesicles generated from murine embryonic stem cells can transfer RNAs to target cells. Therefore, this novel device and the nanovesicles that it generates are expected to be used in exosome-related research, and can be applied in various applications such as drug delivery and cell-based therapy.

  12. Acoustic sodium-water reaction detection of the Phenix steam generators

    International Nuclear Information System (INIS)

    Carminati, M.; Martin, L.; Sauzaret, A.

    1990-01-01

    The systems for acoustic sodium-water reaction detection and hydrogen detection of the Phenix steam generators as well as systems for monitoring signals analysis and processing are described. It is reported that the results obtained during operation and calibration phases are very encouraging and that industrial equipment showing the same performance are being examined. 6 figs

  13. Gas-phase reactions of glycine, alanine, valine and their N-methyl derivatives with the nitrosonium ion, NO+.

    Science.gov (United States)

    Freitas, M A; O'Hair, R A; Schmidt, J A; Tichy, S E; Plashko, B E; Williams, T D

    1996-10-01

    The gas-phase reactions of the nitrosonium ion, NO+ with the amino acids glycine, alanine and valine and their N-methyl derivatives were investigated under chemical ionization mass spectrometric (CIMS) conditions. Two products were observed in all cases: the formation of the iminium ion and the formation of an [M-H]+ ion. The latter product is consistent with a reaction channel involving hydride abstraction by NO+, and was confirmed by (i) examining the Ar+CI mass spectra of the same amino acids under similar source conditions and (ii) examining the unimolecular fragmentation reactions of the [M + H]+ ions of the N-nitroso-N-methyl derivatives of each of the amino acids in a tandem mass spectrometer. Further insights into the reaction of glycine with NO+ were obtained by performing ab initio calculations (at the MP2/6-31G* parallel HF/6-31G* level). These results indicate that four reactions are thermodynamically viable for glycine: (i) hydride abstraction; (ii) iminium ion formation (with concomitant loss of HONO and CO); (iii) diazonium ion formation; and (iv) diazonium ion formation followed by loss of N2. Possible reasons why reactions (iii) and (iv) are not observed are discussed, and comparisons with solution reactivity and the gas-phase reactivity of NO+ are also made.

  14. An abnormally slow proton transfer reaction in a simple HBO derivative due to ultrafast intramolecular-charge transfer events.

    Science.gov (United States)

    Alarcos, Noemí; Gutierrez, Mario; Liras, Marta; Sánchez, Félix; Douhal, Abderrazzak

    2015-07-07

    We report on the steady-state, picosecond and femtosecond time-resolved studies of a charge and proton transfer dye 6-amino-2-(2'-hydroxyphenyl)benzoxazole (6A-HBO) and its methylated derivative 6-amino-2-(2'-methoxyphenyl)benzoxazole (6A-MBO), in different solvents. With femtosecond resolution and comparison with the photobehaviour of 6A-MBO, we demonstrate for 6A-HBO in solution, the photoproduction of an intramolecular charge-transfer (ICT) process at S1 taking place in ∼140 fs or shorter, followed by solvent relaxation in the charge transferred species. The generated structure (syn-enol charge transfer conformer) experiences an excited-state intramolecular proton-transfer (ESIPT) reaction to produce a keto-type tautomer. This subsequent proton motion occurs in 1.2 ps (n-heptane), 14 ps (DCM) and 35 ps (MeOH). In MeOH, it is assisted by the solvent molecules and occurs through tunneling for which we got a large kinetic isotope effect (KIE) of about 13. For the 6A-DBO (deuterated sample in CD3OD) the global proton-transfer reaction takes place in 200 ps, showing a remarkable slow KIE regime. The slow ESIPT reaction in DCM (14 ps), not through tunnelling as it is not sensitive to OH/OD exchange, has however to overcome an energy barrier using intramolecular as well as solvent coordinates. The rich ESIPT dynamics of 6A-HBO in the used solutions is governed by an ICT reaction, triggered by the amino group, and it is solvent dependent. Thus, the charge injection to a 6A-HBO molecular frame makes the ICT species more stable, and the phenol group less acidic, slowing down the subsequent ESIPT reaction. Our findings bring new insights into the coupling between ICT and ESIPT reactions on the potential-energy surfaces of several barriers.

  15. Wastage of Steam Generator Tubes by Sodium-Water Reaction

    International Nuclear Information System (INIS)

    Jeong, Ji Young; Kim, Jong Man; Kim, Tae Joon; Choi, Jong Hyeun; Kim, Byung Ho; Lee, Yong Bum; Park, Nam Cook

    2010-01-01

    The Korea Advanced LIquid MEtal Reactor (KALIMER) steam generator is a helical coil, vertically oriented, shell-and-tube type heat exchanger with fixed tube-sheet. The conceptual design and outline drawing of the steam generator are shown in Figure 1. Flow is counter-current, with sodium on the shell side and water/steam on the tube side. Sodium flow enters the steam generator through the upper inlet nozzles and then flows down through the tube bundle. Feedwater enters the steam generator through the feedwater nozzles at the bottom of steam generator. Therefore, if there is a hole or a crack in a heat transfer tube, a leakage of water/steam into the sodium may occur, resulting in a sodium-water reaction. When such a leak occurs, so-called 'wastage' is the result which may cause damage to or a failure of the adjacent tubes. If a steam generator is operated for some time in this condition, it is possible that it might create an intermediate leak state which would then give rise to the problems of a multi-target wastage in a very short time. Therefore, it is very important to predict these phenomena quantitatively from the view of designing a steam generator and its leak detection systems. For this, multi-target wastage tests for modified 9Cr-1Mo steel tube bundle by intermediate leaks are being prepared

  16. Data analysis algorithms for flaw sizing based on eddy current rotating probe examination of steam generator tubes

    International Nuclear Information System (INIS)

    Bakhtiari, S.; Elmer, T.W.

    2009-01-01

    Computer-aided data analysis tools can help improve the efficiency and reliability of flaw sizing based on nondestructive examination data. They can further help produce more consistent results, which is important for both in-service inspection applications and for engineering assessments associated with steam generator tube integrity. Results of recent investigations at Argonne on the development of various algorithms for sizing of flaws in steam generator tubes based on eddy current rotating probe data are presented. The research was carried out as part of the activities under the International Steam Generator Tube Integrity Program (ISG-TIP) sponsored by the U.S. Nuclear Regulatory Commission. A computer-aided data analysis tool has been developed for off-line processing of eddy current inspection data. The main objectives of the work have been to a) allow all data processing stages to be performed under the same user interface, b) simplify modification and testing of signal processing and data analysis scripts, and c) allow independent evaluation of viable flaw sizing algorithms. The focus of most recent studies at Argonne has been on the processing of data acquired with the +Point probe, which is one of the more widely used eddy current rotating probes for steam generator tube examinations in the U.S. The probe employs a directional surface riding differential coil, which helps reduce the influence of tubing artifacts and in turn helps improve the signal-to-noise ratio. Various algorithms developed under the MATLAB environment for the conversion, segmentation, calibration, and analysis of data have been consolidated within a single user interface. Data acquired with a number of standard eddy current test equipment are automatically recognized and converted to a standard format for further processing. Because of its modular structure, the graphical user interface allows user-developed routines to be easily incorporated, modified, and tested independent of the

  17. Reevaluation of the O+(2P) reaction rate coefficients derived from atmosphere explorer C observations

    International Nuclear Information System (INIS)

    Chang, T.; Torr, D.G.; Richards, P.G.; Solomon, S.C.

    1993-01-01

    O + ( 2 P) is an important species for studies of the ionosphere and thermosphere: its emission at 7320 angstrom can be used as a diagnostic of the thermospheric atomic oxygen density. Unfortunately, there are no laboratory measurements of the O and N 2 reaction rates which are needed to determine the major sinks of O + ( 2 P). The reaction rates that are generally used were determined from aeronomic data by Rusch et al. but there is evidence that several important inputs that they used should be changed. The authors have recalculated the O and N 2 reaction rates for O + ( 2 P) using recent improvements in the solar EUV flux, cross sections, and photoelectron fluxes. For the standard solar EUV flux, the new N 2 reaction rate of 3.4 ± 1.5 x 10 -10 cm 3 s -1 is close to the value obtained by Rusch et al., but the new O reaction rate of 4.0 ± 1.9 x 10 -10 cm 3 s -1 is about 8 times larger. These new reaction rates are derived using neutral densities, electron density, and solar EUV fluxes measured by Atmosphere Explorer C in 1974 during solar minimum. The new theoretical emission rates are in good agreement with the data for the two orbits studied by Rusch et al. and they are in reasonable agreement with data from five additional orbits that are used in this study. The authors have also examined the effect of uncertainties in the solar EUV flux on the derived reaction rates and found that 15% uncertainties in the solar flux could cause additional uncertainties of up to a factor of 1.5 in the O quenching rate. 19 refs., 4 figs., 8 tabs

  18. Microwave-Assisted Synthesis of 5-Phenyl-2-Hydroxyacetophenone Derivatives by a Green Suzuki Coupling Reaction

    Science.gov (United States)

    Soares, Pedro; Fernandes, Carlos; Chavarria, Daniel; Borges, Fernanda

    2015-01-01

    In recent years, the use of boron-containing reagents in palladium-assisted C-C coupling reactions (the Suzuki reaction) has gained prominence due to the vast array of reagents commercially available. Consequently, the generation of carbon-carbon bonds, namely of functionalized biphenyl systems, is at present considered the backbone of organic…

  19. Highly selective reactions of C(60)Cl(6) with thiols for the synthesis of functionalized [60]fullerene derivatives

    OpenAIRE

    Khakina, Ekaterina A; Yurkova, Anastasiya A; Peregudov, Alexander S; Troyanov, Sergey I; Trush, Vyacheslav V; Vovk, Andrey I; Mumyatov, Alexander V; Martynenko, Vyacheslav M; Balzarini, Jan; Troshin, Pavel A

    2012-01-01

    Chlorofullerene C(60)Cl(6) undergoes highly selective reactions with thiols forming compounds C(60)[SR](5)H with high yields. These reactions open up straightforward synthetic routes to many functionalized fullerene derivatives, e.g. water-soluble compounds showing interesting biological activities.

  20. Calculation of nuclear reaction parameters with the generator co-ordinate method and their interpretation

    International Nuclear Information System (INIS)

    Beck, R.; Mihailovic, M.V.; Poljsak, M.

    1980-05-01

    Collisions between complex nuclei are described variationally in terms of the GCM with the aim to provide an evidence that it is a manageable calculational procedure. The variational principle of Kohn and Kato is used to derive the expression for the K matrix. The space of scattering states is spanned entirely by antisymmetrized products of shell model wave functions describing separate clusters; the generator coordinate is the separation between the two shell model potentials. Scattering boundary conditions are enforced by solving an integral equation for the channel GC amplitude in each open channel separately. The main part of evaluation of collision parameters is performed by calculating double integrals of a form factor between channel GC amplitudes. A theorem about a property of the form factors is proved which allows reduction of the amount of work needed to calculate double integrals. The application of the method to the elastic 3 H to 4 He scattering has shown the feasibility of the calculation. It is shown how an analysis of calculated scattering parameters and corresponding scattering states in terms of quasibound states enables one to make a consistent comparison with experiment and to extract some knowledge of the reaction mechanism. Finally a comparative list of the calculational procedures of the GCM and RGM for reactions is made. (author)

  1. Response of electrostatic probes to eccentric charge distributions

    DEFF Research Database (Denmark)

    Johansson, Torben; McAllister, Iain Wilson

    2001-01-01

    The response of an electrostatic probe mounted in an electrode is examined with reference to eccentric charge distributions. The study involves using the probe λ function to derive a characteristic parameter. This parameter enables the response of the probe to different degrees of eccentricity...

  2. Evaluation of a polymerase chain reaction reverse hybridization line probe assay for the detection and identification of medically important fungi in bronchoalveolar lavage fluids.

    NARCIS (Netherlands)

    Meletiadis, J.; Melchers, W.J.G.; Meis, J.F.G.M.; Hurk, P.J.J.C. van den; Jannes, G.; Verweij, P.E.

    2003-01-01

    An assay system in which polymerase chain reaction (PCR) amplification of the ITS-1 region of ribosomal DNA (rDNA) is combined with a reverse-hybridization line probe assay (LiPA) was used for the identification of six Candida species and four Aspergillus species in pure cultures of clinical

  3. A novel fluorescent probe based on rhodamine hydrazone derivatives bearing a thiophene group for Al³⁺.

    Science.gov (United States)

    Li, Meng-xiao; Zhang, Xia; Fan, Yu-hua; Bi, Cai-feng

    2016-05-01

    In the present work, a novel 5-methyl-thiophene-carbaldehyde-functionalized rhodamine 6G Schiff base (RA) was designed and easily prepared as an Al(3+) fluorescent and colorimetric probe, which could selectively and sensitively detect Al(3+) by showing enhanced fluorescence emission. Meanwhile distinct color variation from colorless to pink also provided 'naked eye' detection of Al(3+), due to the ring spirolactam opening of the rhodamine derivative. Other metal ions (including K(+), Mg(2+), Na(+), Ba(2+), Mn(2+), Cd(2+), Fe(2+), Ni(2+), Pb(2+), Zn(2+), Hg(2+), Co(2+), Li(+), Sr(2+) and Cu(2+)) could only induce limited interference. The detection limit of the fluorescent probe was estimated to be 4.17 × 10(-6) M, the binding constant of the RA-Al(3+) complex was 1.4 × 10(6)  M(-1). Moreover, this fluorescent probe RA possessed high reversibility. As aluminum is a ubiquitous metal in nature and plays vital roles in many biological processes, this chemosensor could be explored for biological study applications. Copyright © 2015 John Wiley & Sons, Ltd.

  4. New fluorescent probes of the hydroxyl radical: characterisation and modelization of the reactivity of coumarin derivatives with HO

    International Nuclear Information System (INIS)

    Louit, G.

    2005-10-01

    The hydroxyl radical is involved in a wide range of different fields, from oxidative stress to atmospheric chemistry. In addition to the study of oxidative damage in biological media, the hydroxyl radical detection allows to perform a dosimetry when it is produced by ionising radiation. The aims of this work have been double: - to improve the detection of the hydroxyl radical by the design of new probes - to improve knowledge on the reactive pathways in which the hydroxyl radical is involved. We have studied the coumarin molecule, as well as 6 derivatives that we have synthesised, as fluorescent probes of the hydroxyl radical. Firstly, fluorescence spectroscopy and HPLC chromatography have allowed the evaluation of the sensibility and selectivity of detection of the probes. Consequently to this study, two applications have been developed, concerning the determination of rate constants by competition kinetics and bidimensional dosimetry. Secondly, we have studied the reactivity of the hydroxyl radical through the regioselectivity of its addition on the aromatic cycle. This problem was addressed by the combined use of experimental methods such as time resolved kinetics and HPLC along with interpretation from classical and ab initio modelization. (author)

  5. Modified beacon probe assisted dual signal amplification for visual detection of microRNA.

    Science.gov (United States)

    Sun, Xiuwei; Ying, Na; Ju, Chuanjing; Li, Zhongyi; Xu, Na; Qu, Guijuan; Liu, Wensen; Wan, Jiayu

    2018-04-21

    In a recent study, we reported a novel assay for the detection of microRNA-21 based on duplex-specific nuclease (DSN)-assisted isothermal cleavage and hybridization chain reaction (HCR) dual signal amplification. The Fam modified double-stranded DNA products were generated after the HCR, another biotin modified probe was digested by DSN and released from the magnetic beads after the addition of the target miRNA. The released sequence was then combined with HCR products to form a double-tagging dsDNA, which can be recognized by the lateral flow strips. In this study, we introduced a 2-OMethyl-RNA modified beacon probe (2-OMe-MB) to make some improvements based on the previous study. Firstly, the substitution of modified probe combined on magnetic beads avoids the fussy washing steps for the separation of un-reacted probes. Furthermore, the modification of 2-OMe on the stem of the probe avoided the unnecessary cleavage by DSN, which greatly reduce the background signal. Compared to the previous work, these improvements save us a lot of steps but possess the comparable sensitivity and selectivity. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. FeCl3- and GaCl3-Catalyzed Dehydrative Coupling Reaction of Chromone-Derived Morita-Baylis-Hillman Alcohols with Terminal Alkynes%FeCl3- and GaCl3-Catalyzed Dehydrative Coupling Reaction of Chromone-Derived Morita-Baylis-Hillman Alcohols with Terminal Alkynes

    Institute of Scientific and Technical Information of China (English)

    武陈; 曾皓; 刘哲; 刘利; 王东; 陈拥军

    2011-01-01

    FeCl3- and GaCl3-catalyzed dehydrative coupling reactions of chromone-derived Morita-Baylis-Hillman (MBH) alcohols with terminal alkynes were developed. The reactions provided exclusively a-regioselective and acetylene-substituted products in good yields.

  7. Caspase-1 Specific Light-Up Probe with Aggregation-Induced Emission Characteristics for Inhibitor Screening of Coumarin-Originated Natural Products.

    Science.gov (United States)

    Lin, Hao; Yang, Haitao; Huang, Shuai; Wang, Fujia; Wang, Dong-Mei; Liu, Bin; Tang, Yi-Da; Zhang, Chong-Jing

    2018-04-18

    Caspase-1 is a key player in pyroptosis and inflammation. Caspase-1 inhibition is found to be beneficial to various diseases. Coumarin-originated natural products have an anti-inflammation function, but their direct inhibition effect to caspase-1 remains unexplored. To evaluate their interactions, the widely used commercial coumarin-based probe (Ac-YVAD-AMC) is not suitable, as the background signal from coumarin-originated natural products could interfere with the screening results. Therefore, fluorescent probes using a large Stokes shift could help solve this problem. In this work, we chose the fluorophore of tetraphenylethylene-thiophene (TPETH) with aggregation-induced emission characteristics and a large Stokes shift of about 200 nm to develop a molecular probe. Bioconjugation between TPETH and hydrophilic peptides (DDYVADC) through a thiol-ene reaction generated a light-up probe, C1-P3. The probe has little background signal in aqueous media and exerts a fluorescent turn-on effect in the presence of caspase-1. Moreover, when evaluating the inhibition potency of coumarin-originated natural products, the new probe could generate a true and objective result but not for the commercial probe (Ac-YVAD-AMC), which is evidenced by HPLC analysis. The quick light-up response and accurate screening results make C1-P3 very useful in fundamental study and inhibitior screening toward caspase-1.

  8. Lifting Term Rewriting Derivations in Constructor Systems by Using Generators

    Directory of Open Access Journals (Sweden)

    Adrián Riesco

    2015-01-01

    Full Text Available Narrowing is a procedure that was first studied in the context of equational E-unification and that has been used in a wide range of applications. The classic completeness result due to Hullot states that any term rewriting derivation starting from an instance of an expression can be "lifted" to a narrowing derivation, whenever the substitution employed is normalized. In this paper we adapt the generator- based extra-variables-elimination transformation used in functional-logic programming to overcome that limitation, so we are able to lift term rewriting derivations starting from arbitrary instances of expressions. The proposed technique is limited to left-linear constructor systems and to derivations reaching a ground expression. We also present a Maude-based implementation of the technique, using natural rewriting for the on-demand evaluation strategy.

  9. Ultrasonic inspection for wastage in the LMFBR steam generator due to sodium--water reactions

    International Nuclear Information System (INIS)

    Neely, H.H.; Renger, L.

    1977-01-01

    As part of a program to study the results of large sodium-water reactions in the LMFBR Steam Generator, a boreside ultrasonic inspection device was developed to measure the wall thickness and diameter of the 2- 1 / 4 Cr-1 Mo, 0.397 in. I.D. steam tubes. The reaction was created in a near prototype steam generator by guillotine-type rupture of a steam tube, while the generator was at operating conditions. Wastage occurred on the surrounding tubes due to the high temperature reaction. The UT test instrument was designed to operate with a 15 MHz transducer in the pulse-echo shear-wave mode, with a sampling rate of 10 4 /sec. System outputs are diameter, wall thickness, attitude and axial position of the transducer. All are displayed digitally and may be recorded. Measurements are fed into a computer for later retrieval, and/or cascaded outputs into an x-y recorded displaying either out-of-limit or thickness data. The UT data taken in this experiment were consistent with physical measurements on a tube which was removed from the generator after the test. A machined flat 1 / 8 -inch long and 0.002-inch deep could readily be detected

  10. Detection and Identification of Bursaphelenchus Species with DNA Fingerprinting and Polymerase Chain Reaction

    OpenAIRE

    Harmey, Judith H.; Harmey, Matthew A.

    1993-01-01

    We have evaluated the potential of DNA-based methods to identify and differentiate Bursaphelenchus spp. and isolates. The isolation of a DNA probe, designated X14, and development of a DNA fingerprinting method for the identification and differentiation of Bursaphelenchus species and strains is described. Polymerase chain reaction (PCR) amplification of DNA isolated from Bursaphelenchus species using two primers derived from the sequence of the cloned repetitive DNA fragment X14 resulted in m...

  11. Whole genomic DNA probe for detection of Porphyromonas endodontalis.

    Science.gov (United States)

    Nissan, R; Makkar, S R; Sela, M N; Stevens, R

    2000-04-01

    The purpose of the present study was to develop a DNA probe for Porphyromonas endodontalis. Pure cultures of P. endodontalis were grown in TYP medium, in an anaerobic chamber. DNA was extracted from the P. endodontalis and labeled using the Genius System by Boehringer Mannheim. The labeled P. endodontalis DNA was used in dot-blot hybridization reactions with homologous (P. endodontalis) and unrelated bacterial samples. To determine specificity, strains of 40 other oral bacterial species (e.g. Porphyromonas gingivalis, Porphyromonas asaccharolytica, and Prevotella intermedia) were spotted and reacted with the P. endodontalis DNA probe. None of the panel of 40 oral bacteria hybridized with the P. endodontalis probe, whereas the blot of the homologous organism showed a strong positive reaction. To determine the sensitivity of the probe, dilutions of a P. endodontalis suspension of known concentration were blotted onto a nylon membrane and reacted with the probe. The results of our investigation indicate that the DNA probe that we have prepared specifically detects only P. endodontalis and can detect at least 3 x 10(4) cells.

  12. Synchronization System for Next Generation Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Zavriyev, Anton [MagiQ Technologies, Inc., Somerville, MA (United States)

    2014-03-27

    An alternative synchronization technique – one that would allow explicit control of the pulse train including its repetition rate and delay is clearly desired. We propose such a scheme. Our method is based on optical interferometry and permits synchronization of the pulse trains generated by two independent mode-locked lasers. As the next generation x-ray sources will be driven by a clock signal derived from a mode-locked optical source, our technique will provide a way to synchronize x-ray probe with the optical pump pulses.

  13. Effects of odor generated from the glycine/glucose Maillard reaction on human mood and brainwaves.

    Science.gov (United States)

    Zhou, Lanxi; Ohata, Motoko; Arihara, Keizo

    2016-06-15

    Effects of the odor generated from the glycine/glucose Maillard reaction on human mood and brainwaves were investigated in the present study. Equimolar solutions of glucose and glycine were adjusted to pH 7 and pH 9 and heated at 90 °C for 30 min. The odor generated from the glycine/glucose Maillard reaction significantly decreased negative moods. Its effects on brainwaves differed according to pH; alpha brainwave distribution was increased after inhalation of the odor generated at pH 7, whereas it was decreased by the odor generated at pH 9. The effects on mood and brainwaves were also measured after inhalation of model solutions, which comprised of potent odorants determined by aroma extract dilution analysis (AEDA), and the results were similar to those obtained with the Maillard reaction samples. Therefore, odors constructed by potent odorants could influence human mood and brainwaves. Among all potent odorants, 2,3-dimethylpyrazine and 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF) were identified as the strongest, and high pH values resulted in higher yields of these odorants. Furthermore, DMHF was identified as the putative agent responsible for the decrease in alpha brainwave distribution after smelling the pH-9 Maillard reaction sample since higher concentrations of DMHF resulted in a similar effect.

  14. Catalytic Upgrading of Biomass-Derived Compounds via C-C Coupling Reactions. Computational and Experimental Studies of Acetaldehyde and Furan Reactions in HZSM-5

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cong [Argonne National Lab. (ANL), Argonne, IL (United States); Evans, Tabitha J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cheng, Lei [Argonne National Lab. (ANL), Argonne, IL (United States); Nimlos, Mark R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mukarakate, Calvin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Robichaud, David J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Assary, Rajeev S. [Argonne National Lab. (ANL), Argonne, IL (United States); Curtiss, Larry A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-10-02

    These catalytic C–C coupling and deoxygenation reactions are essential for upgrading of biomass-derived oxygenates to fuel-range hydrocarbons. Detailed understanding of mechanistic and energetic aspects of these reactions is crucial to enabling and improving the catalytic upgrading of small oxygenates to useful chemicals and fuels. Using periodic density functional theory (DFT) calculations, we have investigated the reactions of furan and acetaldehyde in an HZSM-5 zeolite catalyst, a representative system associated with the catalytic upgrading of pyrolysis vapors. Comprehensive energy profiles were computed for self-reactions (i.e., acetaldehyde coupling and furan coupling) and cross-reactions (i.e., acetaldehyde + furan) of this representative mixture. Major products proposed from the computations are further confirmed using temperature controlled mass spectra measurements. Moreover, the computational results show that furan interacts with acetaldehyde in HZSM-5 via an alkylation mechanism, which is more favorable than the self-reactions, indicating that mixing furans with aldehydes could be a promising approach to maximize effective C–C coupling and dehydration while reducing the catalyst deactivation (e.g., coke formation) from aldehyde condensation.

  15. Synthesis and reactions of triphenylphosphine-O-benzophenonimine and derivatives

    International Nuclear Information System (INIS)

    Elamin, Manahil Babiker

    1999-08-01

    O-Amino benzophenone and its para and meta isomers were prepared using Friedl-Craft benzoylation. Their azides were also prepared via their diazonium salts. The azide of o-amino benzophenone in its reduced form (o-benzylaniline) and its cyclic ketal were synthesised. All azides thus formed were reacted separately with triphenylphosphine to give the corresponding phosphinimines, the Wittig reagents nitrogen analog. The reactivity of the phosphorous bond. (P=N) in the different phosphoranes were studied by two types of reactions: (1) the Wittig type of reaction using benzaldehyde and its into derivatives with each of the above prepared phosphinimines. While triphenylphosphine-m-benzophenonimine (ii) and the triphenylphosphine benzophenonimine ethylene acetal (v) and it's reduced form triphenylphosphine-o-benzophenonimine (iv) react giving the corresponding schiffis bases. However, the ortho (i) and the para (iii) isomers failed to react. This lack of reactivity is presumably due to their great stability which came about through the extensive resonance that reduced the nucleophilicity of the nitrogen nucleophiles. (2) The phophinimines each was irradiated using Hanovia medium pressure UV lamp. Also the ortho and para isomers were not affected while others reacted giving the corresponding azo-compound and triphenylphosphine. they were separated and detected by chromatography.(Author)

  16. A spirobifluorene-based two-photon fluorescence probe for mercury ions and its applications in living cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Haibo, E-mail: xiaohb@shnu.edu.cn; Zhang, Yanzhen; Zhang, Wu; Li, Shaozhi; Tan, Jingjing; Han, Zhongying

    2017-05-01

    A novel spirobifluorene derivative SPF-TMS, which containing dithioacetal groups and triphenylamine units, was synthesized. The probing behaviors toward various metal ions were investigated via UV/Vis absorption spectra as well as one-photon fluorescence changes. The results indicated that SPF-TMS exhibits high sensitivity and selectivity for mercury ions. The detection limit was at least 8.6 × 10{sup −8}M, which is excellent comparing with other optical sensors for Hg{sup 2+}. When measured by two-photon excited fluorescence technique in THF at 800 nm, the two-photon cross-section of SPF-TMS is 272 GM. Especially, upon reaction with mercury species, SPF-TMS yielded another two-photon dye SPF-DA. Both SPF-TMS and SPF-DA emit strong two-photon induced fluorescence and can be applied in cell imaging by two-photon microscopy. - Highlights: • We report a spirobifluorene-based molecule as two-photon fluorescent probe with large two-photon cross-section. • The molecule has exclusive selectivity and sensitivity for mercury species. • The molecule has large two-photon emission changes before and after addition of Hg{sup 2+}. • Both the probe and the mercury ion-promoted reaction product can be applied in cell imaging by two-photon microscopy.

  17. Spinal Hb9::Cre-derived excitatory interneurons contribute to rhythm generation in the mouse.

    Science.gov (United States)

    Caldeira, Vanessa; Dougherty, Kimberly J; Borgius, Lotta; Kiehn, Ole

    2017-01-27

    Rhythm generating neurons are thought to be ipsilaterally-projecting excitatory neurons in the thoracolumbar mammalian spinal cord. Recently, a subset of Shox2 interneurons (Shox2 non-V2a INs) was found to fulfill these criteria and make up a fraction of the rhythm-generating population. Here we use Hb9::Cre mice to genetically manipulate Hb9::Cre-derived excitatory interneurons (INs) in order to determine the role of these INs in rhythm generation. We demonstrate that this line captures a consistent population of spinal INs which is mixed with respect to neurotransmitter phenotype and progenitor domain, but does not overlap with the Shox2 non-V2a population. We also show that Hb9::Cre-derived INs include the comparatively small medial population of INs which continues to express Hb9 postnatally. When excitatory neurotransmission is selectively blocked by deleting Vglut2 from Hb9::Cre-derived INs, there is no difference in left-right and/or flexor-extensor phasing between these cords and controls, suggesting that excitatory Hb9::Cre-derived INs do not affect pattern generation. In contrast, the frequencies of locomotor activity are significantly lower in cords from Hb9::Cre-Vglut2 Δ/Δ mice than in cords from controls. Collectively, our findings indicate that excitatory Hb9::Cre-derived INs constitute a distinct population of neurons that participates in the rhythm generating kernel for spinal locomotion.

  18. Influence of probe motion on laser probe temperature in circulating blood.

    Science.gov (United States)

    Hehrlein, C; Splinter, R; Littmann, L; Tuntelder, J R; Tatsis, G P; Svenson, R H

    1991-01-01

    The purpose of this study was to evaluate the effect of probe motion on laser probe temperature in various blood flow conditions. Laser probe temperatures were measured in an in vitro blood circulation model consisting of 3.2 nm-diameter plastic tubes. A 2.0 mm-diameter metal probe attached to a 300 microns optical quartz fiber was coupled to an argon laser. Continuous wave 4 watts and 8 watts of laser power were delivered to the fiber tip corresponding to a 6.7 +/- 0.5 and 13.2 +/- 0.7 watts power setting at the laser generator. The laser probe was either moved with constant velocity or kept stationary. A thermocouple inserted in the lateral portion of the probe was used to record probe temperatures. Probe temperature changes were found with the variation of laser power, probe velocity, blood flow, and duration of laser exposure. Probe motion significantly reduced probe temperatures. After 10 seconds of 4 watts laser power the probe temperature in stagnant blood decreased from 303 +/- 18 degrees C to 113 +/- 17 degrees C (63%) by moving the probe with a velocity of 5 cm/sec. Blood flow rates of 170 ml/min further decreased the probe temperature from 113 +/- 17 degrees C to 50 +/- 8 degrees C (56%). At 8 watts of laser power a probe temperature reduction from 591 +/- 25 degrees C to 534 +/- 36 degrees C (10%) due to 5 cm/sec probe velocity was noted. Probe temperatures were reduced to 130 +/- 30 degrees C (78%) under the combined influence of 5 cm/sec probe velocity and 170 ml/min blood flow.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Synthesis and Regioselective Reaction of Some Unsymmetrical Heterocyclic Chalcone Derivatives and Spiro Heterocyclic Compounds as Antibacterial Agents.

    Science.gov (United States)

    El-Hashash, Maher A; Rizk, Sameh A; Atta-Allah, Saad R

    2015-12-10

    A number of novel heterocyclic chalcone derivatives can be synthesized by thermal and microwave tools. Treatment of 4-(4-Acetylamino- and/or 4-bromo-phenyl)-4-oxobut-2-enoic acids with hydrogen peroxide in alkaline medium were afforded oxirane derivatives 2. Reaction of the epoxide 2 with 2-amino-5-aryl-1,3,4-thiadiazole derivatives yielded chalcone of imidazo[2,1-b]thiadiazole derivative 4 via two thermal routes. In one pot reaction of 4-bromoacetophenone, diethyloxalate, and 2-amino-5-aryl-1,3,4-thiadiazole derivatives in MW irradiation (W 250 and T 150 °C) under eco-friendly conditions afforded an unsuitable yield of the desired chalcone 4d. The chalcone derivatives 4 were used as a key starting material to synthesize some new spiroheterocyclic compounds via Michael and aza-Michael adducts. The chalcone 4f was similar to the aryl-oxo-vinylamide derivatives for the inhibition of tyrosine kinase and cancer cell growth. The electron-withdrawing substituents, such as halogens, and 2-amino-1,3,4-thiadiazole moeity decreasing the electron density, thereby decreasing the energy of HOMO, and the presence of imidazothiadiazole moiety should improve the antibacterial activity. Thus, the newly synthesized compounds were evaluated for their anti-bacterial activity against (ATCC 25923), (ATCC 10987), (ATCC 274,) and (SM514). The structure of the newly synthesized compounds was confirmed by elemental analysis and spectroscopic data.

  20. SNR-steam generator design with respect to large sodium water reactions

    International Nuclear Information System (INIS)

    Jong, J.J. de; Kellner, A.; Florie, C.J.L.

    1984-01-01

    This paper deals with the experiences gained during the licensing procedure for the steam generators for the SNR 300 LMFBR regarding large sodium-water reactions. A description is given of the different calculations executed to investigate the effects of large leaks on the 85 MW helical coiled and straight tube steam generators. The investigations on the helical coiled steam generators are divided in the formulations of fluid behaviour, dynamic force calculations, dynamic response calculation and finally stress analyses. Several results are shown. The investigations on the straight tube steam generators are performed using models describing fluid-structure interaction, coupled with stress analyses. Several results are presented. A description is given of the problems and necessary construction changes during the licensing process. Advises are given for future analyses and design concepts for second generation commercial size LMFBR steam generators with respect to large leaks; based on the experience, gained with SNR 300, and using some new calculations for SNR 2. (author)

  1. Probing cluster structures through sub-barrier transfer reactions

    Directory of Open Access Journals (Sweden)

    Rafferty D. C.

    2016-01-01

    Full Text Available Multinucleon transfer probabilities and excitation energy distributions have been measured in 16,18O, 19F + 208Pb at energies between 90% - 100% of the Coulomb barrier. A strong 2p2n enhancement is observed for all reactions, though most spectacularly in the 18O induced reaction. Results are interpreted in terms of the Semiclassical model, which seems to suggest α-cluster transfer in all studied systems. The relation to cluster-states in the projectile is discussed, with the experimental results consistent with previous structure studies. Dissipation of energy in the collisions of 18O is compared between different reaction modes, with cluster transfer associated with dissipation over a large number of internal states. Cluster transfer is shown to be a long range dissipation mechanism, which will inform the development of future models to treat these dynamic processes in reactions.

  2. Optimised padlock probe ligation and microarray detection of multiple (non-authorised GMOs in a single reaction

    Directory of Open Access Journals (Sweden)

    Schoen Cor D

    2008-12-01

    Full Text Available Abstract Background To maintain EU GMO regulations, producers of new GM crop varieties need to supply an event-specific method for the new variety. As a result methods are nowadays available for EU-authorised genetically modified organisms (GMOs, but only to a limited extent for EU-non-authorised GMOs (NAGs. In the last decade the diversity of genetically modified (GM ingredients in food and feed has increased significantly. As a result of this increase GMO laboratories currently need to apply many different methods to establish to potential presence of NAGs in raw materials and complex derived products. Results In this paper we present an innovative method for detecting (approved GMOs as well as the potential presence of NAGs in complex DNA samples containing different crop species. An optimised protocol has been developed for padlock probe ligation in combination with microarray detection (PPLMD that can easily be scaled up. Linear padlock probes targeted against GMO-events, -elements and -species have been developed that can hybridise to their genomic target DNA and are visualised using microarray hybridisation. In a tenplex PPLMD experiment, different genomic targets in Roundup-Ready soya, MON1445 cotton and Bt176 maize were detected down to at least 1%. In single experiments, the targets were detected down to 0.1%, i.e. comparable to standard qPCR. Conclusion Compared to currently available methods this is a significant step forward towards multiplex detection in complex raw materials and derived products. It is shown that the PPLMD approach is suitable for large-scale detection of GMOs in real-life samples and provides the possibility to detect and/or identify NAGs that would otherwise remain undetected.

  3. Optimised padlock probe ligation and microarray detection of multiple (non-authorised) GMOs in a single reaction.

    Science.gov (United States)

    Prins, Theo W; van Dijk, Jeroen P; Beenen, Henriek G; Van Hoef, Am Angeline; Voorhuijzen, Marleen M; Schoen, Cor D; Aarts, Henk J M; Kok, Esther J

    2008-12-04

    To maintain EU GMO regulations, producers of new GM crop varieties need to supply an event-specific method for the new variety. As a result methods are nowadays available for EU-authorised genetically modified organisms (GMOs), but only to a limited extent for EU-non-authorised GMOs (NAGs). In the last decade the diversity of genetically modified (GM) ingredients in food and feed has increased significantly. As a result of this increase GMO laboratories currently need to apply many different methods to establish to potential presence of NAGs in raw materials and complex derived products. In this paper we present an innovative method for detecting (approved) GMOs as well as the potential presence of NAGs in complex DNA samples containing different crop species. An optimised protocol has been developed for padlock probe ligation in combination with microarray detection (PPLMD) that can easily be scaled up. Linear padlock probes targeted against GMO-events, -elements and -species have been developed that can hybridise to their genomic target DNA and are visualised using microarray hybridisation.In a tenplex PPLMD experiment, different genomic targets in Roundup-Ready soya, MON1445 cotton and Bt176 maize were detected down to at least 1%. In single experiments, the targets were detected down to 0.1%, i.e. comparable to standard qPCR. Compared to currently available methods this is a significant step forward towards multiplex detection in complex raw materials and derived products. It is shown that the PPLMD approach is suitable for large-scale detection of GMOs in real-life samples and provides the possibility to detect and/or identify NAGs that would otherwise remain undetected.

  4. 3D CMM Strain-Gauge Triggering Probe Error Characteristics Modeling

    DEFF Research Database (Denmark)

    Achiche, Sofiane; Wozniak, Adam; Fan, Zhun

    2008-01-01

    FKBs based on two optimization paradigms are used for the reconstruction of the directiondependent probe error w. The angles β and γ are used as input variables of the FKBs; they describe the spatial direction of probe triggering. The learning algorithm used to generate the FKBs is a real/ binary like......The error values of CMMs depends on the probing direction; hence its spatial variation is a key part of the probe inaccuracy. This paper presents genetically-generated fuzzy knowledge bases (FKBs) to model the spatial error characteristics of a CMM module-changing probe. Two automatically generated...

  5. Hydrogen bonds in the vicinity of the special pair of the bacterial reaction center probed by hydrostatic high-pressure absorption spectroscopy.

    Science.gov (United States)

    Kangur, Liina; Jones, Michael R; Freiberg, Arvi

    2017-12-01

    Using the native bacteriochlorophyll a pigment cofactors as local probes, we investigated the response to external hydrostatic high pressure of reaction center membrane protein complexes from the photosynthetic bacterium Rhodobacter sphaeroides. Wild-type and engineered complexes were used with a varied number (0, 1 or 2) of hydrogen bonds that bind the reaction center primary donor bacteriochlorophyll cofactors to the surrounding protein scaffold. A pressure-induced breakage of hydrogen bonds was established for both detergent-purified and membrane-embedded reaction centers, but at rather different pressures: between 0.2 and 0.3GPa and at about 0.55GPa, respectively. The free energy change associated with the rupture of the single hydrogen bond present in wild-type reaction centers was estimated to be equal to 13-14kJ/mol. In the mutant with two symmetrical hydrogen bonds (FM197H) a single cooperative rupture of the two bonds was observed corresponding to an about twice stronger bond, rather than a sequential rupture of two individual bonds. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Contribution of Histidine and Lysine to the Generation of Volatile Compounds in Jinhua Ham Exposed to Ripening Conditions Via Maillard Reaction.

    Science.gov (United States)

    Zhu, Chao-Zhi; Zhao, Jing-Li; Tian, Wei; Liu, Yan-Xia; Li, Miao-Yun; Zhao, Gai-Ming

    2018-01-01

    To evaluate the role of Maillard reactions in the generation of flavor compounds in Jinhua ham, the reactions of glucose and ethanal with histidine and lysine, respectively, were studied by simulating the ripening conditions of Jinhua ham. The volatile products produced were analyzed using solid phase microextraction-gas chromatography/mass spectrometry. The results showed that 8 volatile compounds were generated by the reaction of glucose and histidine and 10 volatile compounds were generated by the reaction of glucose and lysine. Reactions of ethanal with lysine and with histidine both generated 31 volatile compounds that contributed to the flavor of Jinhua ham. This indicates that histidine and lysine related to Maillard reactions possibly play important roles in the generation of the unique flavor compounds in Jinhua ham. This research demonstrates that free amino acids participate in the generation of volatile compounds from Jinhua ham via the Maillard reaction and provides a basic mechanism to explain flavor formation in Jinhua ham. Jinhua ham is a well-known traditional Chinese dry-cured meat product. However, the formation of the compounds comprising its special flavor is not well understood. Our results indicate that Maillard reactions occur in Jinhua ham under ripening conditions. This work illustrates the contribution of Maillard reactions to the flavor of Jinhua ham. © 2017 Institute of Food Technologists®.

  7. Genotypic characterization of Rickettsiae by DNA probes generated from Rickettsia Prowazekii DNA

    International Nuclear Information System (INIS)

    Demkin, V.V.; Rydkina, E.B.; Likhoded, L.Ya.; Ignatovich, V.F.; Genig, V.A.; Balayeva, N.M.

    1994-01-01

    Southern blot analysis of HindIII-cleaved rickettsial DNA was used for genotypic characterization of the typhus group (TG) species (R. prowazekii, R. typhi, R. canada) and a few species were of the spotted fever group (SFG)rickettsiae (R. sibirica, R. conorii, R. akari). Four different DNA probes were employed. PBH11 and PBH13 probes were morphospecific HindIII fragment of R prowazekii DNA. MW218 probe contained the gene for 51 K antigen and MW264 probe contained the citrate synthase gene of R. prowazekii. All the probes hybridized with the tested TG and SFG rickettsial DNAs, forming from 1 to 5 bands, but they did not with R. tsutsudamushi or C. burnetii DNAs. All the probes demonstrated specific hybridization pattern with TG species and R. akari. PBH11. PBH13 and MW264 probes clearly distinguished R. sibirica and R. conorii from the other tested rickettsiae, but not from each other. However, these two species differed slightly with MW218 probe. Several strains of each species were analyzed in this way and except for strains of R. conorii identical intra-species pattern were obtained. These data lead us to consider the obtained hybridization patterns as criteria for genotypic identification. (author)

  8. Polymerase chain reaction for detection of invasive Shigella flexneri in food.

    Science.gov (United States)

    Lampel, K A; Jagow, J A; Trucksess, M; Hill, W E

    1990-06-01

    The polymerase chain reaction (PCR) was used to amplify a 760-base-pair (bp) fragment with the 220-kbp invasive plasmids of enteroinvasive Escherichia coli, Shigella flexneri, Shigella dysenteriae, Shigella boydii, and Shigella sonnei as templates. This PCR product was easily detected by agarose gel electrophoresis. A 210-bp AccI-PstI fragment lying within the amplified region was used as a probe in Southern hybridization blots and showed that the PCR-generated product was derived from the invasive plasmid. The application of PCR as a rapid method to detect enteroinvasive bacteria in foods was tested by inoculating lettuce with 10(4) S. flexneri cells per g in shigella broth base. Plasmid DNA was isolated from cultures of inoculated and uninoculated lettuce in broth after 0, 4, and 24 h of incubation. With the PCR, the 760-bp fragment was generated only from lettuce inoculated with S. flexneri, as shown by gel electrophoresis and confirmed both by Southern blotting and by nucleotide sequencing of the amplified region. Because the isolation of plasmid DNA, the performance of PCR, and gel electrophoresis all can be completed in 6 to 7 h, invasive enteric bacteria can be detected in less than 1 day.

  9. Application of Molecular Topology for the Prediction of Reaction Yields and Anti-Inflammatory Activity of Heterocyclic Amidine Derivatives

    Directory of Open Access Journals (Sweden)

    Ramón García-Domenech

    2011-02-01

    Full Text Available Topological-mathematical models based on multiple linear regression analyses have been built to predict the reaction yields and the anti-inflammatory activity of a set of heterocylic amidine derivatives, synthesized under environmental friendly conditions, using microwave irradiation. Two models with three variables each were selected. The models were validated by cross-validation and randomization tests. The final outcome demonstrates a good agreement between the predicted and experimental results, confirming the robustness of the method. These models also enabled the screening of virtual libraries for new amidine derivatives predicted to show higher values of reaction yields and anti-inflammatory activity.

  10. Determination of self generated magnetic field and the plasma density using Cotton Mouton polarimetry with two color probes

    Directory of Open Access Journals (Sweden)

    Joshi A.S.

    2013-11-01

    Full Text Available Self generated magnetic fields (SGMF in laser produced plasmas are conventionally determined by measuring the Faraday rotation angle of a linearly polarized laser probe beam passing through the plasma along with the interferogram for obtaining plasma density. In this paper, we propose a new method to obtain the plasma density and the SGMF distribution from two simultaneous measurements of Cotton Mouton polarimetry of two linearly polarized probe beams of different colors that pass through plasma in a direction normal to the planar target. It is shown that this technique allows us to determine the distribution of SGMF and the plasma density without doing interferometry of laser produced plasmas.

  11. The response of electrostatic probes via the λ-function

    DEFF Research Database (Denmark)

    Rerup, T.O.; Crichton, George C; McAllister, Iain Wilson

    1994-01-01

    The response of an electrostatic probe is examined with reference to a planar spacer. The study involves the numerical calculation of the probe λ-function, from which response-related characteristic parameters can be derived. These parameters enable the probe detection sensitivity and spatial...

  12. New data on the reaction of 1,4-bifunctional derivatives of hydrazine with 1,3-diketones

    International Nuclear Information System (INIS)

    Zelenin, K.N.; Solod, O.V.; Tomchin, A.B.

    1987-01-01

    As a function of the conditions of the reaction and the structure of the reagents, mono- and bis-adducts of different structure - 5-hydroxy- and 5-hydrazino-2-pyrazolines, mono- and bis(hydrazones), and the corresponding pyrazoles - are formed in the reaction of hydrazine derivatives - aminoguanidine nitrate, 4-phenylsemicarbazide, amidrazonium iodides, and some thiosemicarbazides - with acetylacetone and dibenzoylmethane. The conditions of the formation of these products and the features of their structure were examined

  13. Determination of Plasma Screening Effects for Thermonuclear Reactions in Laser-generated Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yuanbin; Pálffy, Adriana, E-mail: yuanbin.wu@mpi-hd.mpg.de, E-mail: Palffy@mpi-hd.mpg.de [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)

    2017-03-20

    Due to screening effects, nuclear reactions in astrophysical plasmas may behave differently than in the laboratory. The possibility to determine the magnitude of these screening effects in colliding laser-generated plasmas is investigated theoretically, having as a starting point a proposed experimental setup with two laser beams at the Extreme Light Infrastructure facility. A laser pulse interacting with a solid target produces a plasma through the Target Normal Sheath Acceleration scheme, and this rapidly streaming plasma (ion flow) impacts a secondary plasma created by the interaction of a second laser pulse on a gas jet target. We model this scenario here and calculate the reaction events for the astrophysically relevant reaction {sup 13}C({sup 4}He, n ){sup 16}O. We find that it should be experimentally possible to determine the plasma screening enhancement factor for fusion reactions by detecting the difference in reaction events between two scenarios of ion flow interacting with the plasma target and a simple gas target. This provides a way to evaluate nuclear reaction cross-sections in stellar environments and can significantly advance the field of nuclear astrophysics.

  14. Reaction of urea thiourea and their derivatives with tertiary phosphine transition metal halides

    International Nuclear Information System (INIS)

    Adam, Eltayeb Mahala

    2000-03-01

    This thesis describes preparation characterization and some properties of a number of new compounds such as (ph 3 p)2 ML where M= cobalt (11), nickel (11), and copper (11), and L= urea, thiourea, phenylthiourea, sym diphenylurea and sym diphenylthiourea.These compounds have been prepared according according to the reaction of dichloro bis (triphenylphosphine) transition metal with urea, thiourea or some of their derivative ligands in 1:1 molar ratio.The work in this thesis is divided into three section firstly:- In the introduction chapter part one includes general definitions of coordination chemistry and related compounds and abroad definition of transition elements.Part two includes the theoretical back ground about transition metal complexes having urea, thiourea or some of their substituted derivative ligands.Part two also discusses the type of bonding between these ligands and the transition metal atom.Secondly: Chapter two describes the general techniques followed in this work such as purification of solvents recrystallization, preparation of starting materials and also gives full detailed procedures of the preparation of a number of new compounds.Thirdly: Discussion with detailed in chapter three, the results of the research are presented the preparation and characterization of a number of new compounds isolated from reaction between urea, thiourea or some of their substituted derivatives and dichloro bis (triphenyl phosphine) transition metal complex giving a general formula (ph 3 )2ML where M=cobalt, nickel, and copper, and urea, thiourea or some of their substituted derivatives ligands. The products of these experiments have been identified using infrared spectra, melting points and molar conductance. The results obtained indicated that all the compounds forming the nitrogen to metal bonds leading to the formation of a four- membered chelate ring, they are relatively thermally stable compounds, and also these compounds are non-electrolytes.(Author)

  15. Synthesis and application of a highly selective copper ions fluorescent probe based on the coumarin group

    Science.gov (United States)

    He, Guangjie; Liu, Xiangli; Xu, Jinhe; Ji, Liguo; Yang, Linlin; Fan, Aiying; Wang, Songjun; Wang, Qingzhi

    2018-02-01

    A highly selective copper ions fluorescent probe based on the coumarin-type Schiff base derivative 1 (probe) was produced by condensation reaction between coumarin carbohydrazide and 1H-indazole-3-carbaldehyde. The UV-vis spectroscopy showed that the maximum absorption peak of compound 1 appeared at 439 nm. In the presence of Cu2 + ions, the maximum peak decreased remarkably compared with other physiological important metal ions and a new absorption peak at 500 nm appeared. The job's plot experiments showed that complexes of 1:2 binding mode were formed in CH3CN:HEPES (3:2, v/v) solution. Compound 1 exhibited a strong blue fluorescence. Upon addition of copper ions, the fluorescence gradually decreased and reached a plateau with the fluorescence quenching rate up to 98.73%. The detection limit for Cu2 + ions was estimated to 0.384 ppm. Fluorescent microscopy experiments demonstrated that probe 1 had potential to be used to investigate biological processes involving Cu2 + ions within living cells.

  16. A lysosome-targetable turn-on fluorescent probe for the detection of thiols in living cells based on a 1,8-naphthalimide derivative

    Science.gov (United States)

    Liang, Beibei; Wang, Baiyan; Ma, Qiujuan; Xie, Caixia; Li, Xian; Wang, Suiping

    2018-03-01

    Biological thiols, like cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), play crucial roles in biological systems and in lysosomal processes. Highly selective probes for detecting biological thiols in lysomes of living cells are rare. In this work, a lysosome-targetable turn-on fluorescent probe for the detection of thiols in living cells was designed and synthesized based on a 1,8-naphthalimide derivative. The probe has a 4-(2-aminoethyl)morpholine unit as a lysosome-targetable group and an acrylate group as the thiol recognition unit as well as a fluorescence quencher. In the absence of biothiols, the probe displayed weak fluorescence due to the photoinduced electron transfer (PET) process. Upon the addition of biothiols, the probe exhibited an enhanced fluorescence emission centered at 550 nm due to cleavage of the acrylate moiety. The probe had high selectivity toward biothiols. Moreover, the probe features fast response time, excitation in the visible region and ability of working in a wide pH range. The linear response range covers a concentration range of Cys from 1.5 × 10- 7 to 1.0 × 10- 5 mol·L- 1 and the detection limit is 6.9 × 10- 8 mol·L- 1 for Cys. The probe has been successfully applied to the confocal imaging of biothiols in lysosomes of A549 cells with low cell toxicity. Furthermore, the method was successfully applied to the determination of thiols in a complex multicomponent mixture such as human serum, which suggests our proposed method has great potential for diagnostic purposes. All of such good properties prove it can be used to monitor biothiols in lysosomes of living cells and to be a good fluorescent probe for the selective detection of thiols.

  17. Biogenic Methane Generation Potential in the Eastern Nankai Trough, Japan: Effect of Reaction Temperature and Total Organic Carbon

    Science.gov (United States)

    Aung, T. T.; Fujii, T.; Amo, M.; Suzuki, K.

    2017-12-01

    Understanding potential of methane flux from the Pleistocene fore-arc basin filled turbiditic sedimentary formation along the eastern Nankai Trough is important in the quantitative assessment of gas hydrate resources. We considered generated methane could exist in sedimentary basin in the forms of three major components, and those are methane in methane hydrate, free gas and methane dissolved in water. Generation of biomethane strongly depends on microbe activity and microbes in turn survive in diverse range of temperature, salinity and pH. This study aims to understand effect of reaction temperature and total organic carbon on generation of biomethane and its components. Biomarker analysis and cultural experiment results of the core samples from the eastern Nankai Trough reveal that methane generation rate gets peak at various temperature ranging12.5°to 35°. Simulation study of biomethane generation was made using commercial basin scale simulator, PetroMod, with different reaction temperature and total organic carbon to predict how these effect on generation of biomethane. Reaction model is set by Gaussian distribution with constant hydrogen index and standard deviation of 1. Series of simulation cases with peak reaction temperature ranging 12.5°to 35° and total organic carbon of 0.6% to 3% were conducted and analyzed. Simulation results show that linear decrease in generation potential while increasing reaction temperature. But decreasing amount becomes larger in the model with higher total organic carbon. At higher reaction temperatures, >30°, extremely low generation potential was found. This is due to the fact that the source formation modeled is less than 1 km in thickness and most of formation do not reach temperature more than 30°. In terms of the components, methane in methane hydrate and free methane increase with increasing TOC. Drastic increase in free methane was observed in the model with 3% of TOC. Methane amount dissolved in water shows almost

  18. Estimating Highway Volumes Using Vehicle Probe Data - Proof of Concept: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Yi [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Young, Stanley E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sadabadi, Kaveh [University of Maryland; SekuBa, PrzemysBaw [University of Maryland; Markow, Denise [I95 Corridor Coalition

    2018-03-13

    This paper examines the feasibility of using sampled commercial probe data in combination with validated continuous counter data to accurately estimate vehicle volume across the entire roadway network, for any hour during the year. Currently either real time or archived volume data for roadways at specific times are extremely sparse. Most volume data are average annual daily traffic (AADT) measures derived from the Highway Performance Monitoring System (HPMS). Although methods to factor the AADT to hourly averages for typical day of week exist, actual volume data is limited to a sparse collection of locations in which volumes are continuously recorded. This paper explores the use of commercial probe data to generate accurate volume measures that span the highway network providing ubiquitous coverage in space, and specific point-in-time measures for a specific date and time. The paper examines the need for the data, fundamental accuracy limitations based on a basic statistical model that take into account the sampling nature of probe data, and early results from a proof of concept exercise revealing the potential of probe type data calibrated with public continuous count data to meet end user expectations in terms of accuracy of volume estimates.

  19. Double Displacement: an Improved Bioorthogonal Reaction Strategy for Templated Nucleic Acid Detection

    OpenAIRE

    Kleinbaum, Daniel J.; Miller, Gregory P.; Kool, Eric T.

    2010-01-01

    Quenched autoligation probes have been employed previously in a target-templated nonenzymatic ligation strategy for detecting nucleic acids in cells by fluorescence. A common source of background signal in such probes is undesired reaction with water and other cellular nucleophiles. Here we describe a new class of self-ligating probes, double displacement (DD) probes, that rely on two displacement reactions to fully unquench a nearby fluorophore. Three potential double displacement architectu...

  20. N-particle effective generators of the Poincare group derived from a field theory

    International Nuclear Information System (INIS)

    Krueger, A.; Gloeckle, W.

    1999-01-01

    In quantum mechanics the principle of relativity is guaranteed by unitary operators being associated with inhomogeneous Lorentz transformations ensuring that quantum mechanical expectation values remain unchanged. In field theory the ten generators of inhomogeneous Lorentz transformations can be derived from a scalar Lagrangian density describing the physical system of interest. They obey the well known Poincare Lie algebra. For interacting systems some of the generators become operators allowing for particle production or annihilation so that the generators act on the full Fock space. However, given a field theory on the whole Fock space we prove that it is possible to construct generators acting on a subspace with a finite number of particles by one and the same unitary transformation of all generators leaving the Poincare algebra valid. In this manner it is in principle possible to derive a relativistically invariant theory of interacting particles on a Hilbert space with a finite number of particles from a field theoretical Lagrangian. Refs. 3 (author)

  1. Photoinduced electron transfer in singly labeled thiouredopyrenetrisulfonate azurin derivatives

    DEFF Research Database (Denmark)

    Borovok, N; Kotlyar, A B; Pecht, I

    1999-01-01

    efficiency. TUPS derivatives of azurin, singly labeled at specific lysine residues, were prepared and purified to homogeneity by ion exchange HPLC. Transient absorption spectroscopy was used to directly monitor the rates of the electron transfer reaction from the photoexcited triplet state of TUPS to Cu......A novel method for the initiation of intramolecular electron transfer reactions in azurin is reported. The method is based on laser photoexcitation of covalently attached thiouredopyrenetrisulfonate (TUPS), the reaction that generates the low potential triplet state of the dye with high quantum......(II) and the back reaction from Cu(I) to the oxidized dye. For all singly labeled derivatives, the rate constants of copper ion reduction were one or two orders of magnitude larger than for its reoxidation, consistent with the larger thermodynamic driving force for the former process. Using 3-D coordinates...

  2. Enzyme-free electrochemical detection of microRNA-21 using immobilized hairpin probes and a target-triggered hybridization chain reaction amplification strategy

    International Nuclear Information System (INIS)

    Liu, Hongying; Bei, Xiaoqiong; Xia, Qiuting; Fu, Yan; Zhang, Shi; Liu, Maochuan; Fan, Kai; Zhang, Mingzhen; Yang, Yong

    2016-01-01

    We describe a sensitive enzyme-free bioassay for the determination of microRNA-21. It is based on a combination of target-triggered hybridization chain reaction, tagging with CdTe quantum dots (QDs), and anodic stripping voltammetry. Firstly, a thiolated capture hairpin probe SH-HP1 was immobilized on the surface of a gold electrode. HP1 unfolds in the presence of microRNA-21. If hairpin probe 2 (HP2) is present, a HP1-HP2 complex will be formed which possesses an exposed stem of HP2, and microRNA is released in parallel. The released microRNA-21 triggers a hybridization chain reaction and this leads to form an exposed DNA segment of HP2 and cycle use microRNA-21. With the aid of assistant DNA A1 and A2, the exposed DNA segment of HP2 progressed to a long double strand. The strand is rich in CdTe QDs with the help of QDs-A1. Then, the attached QDs were dissolved with HNO 3 to give dissolved Cd(II) ions. Finally, the corresponding electrochemical current response of Cd(II) is monitored by anodic stripping voltammetry and used to quantify the concentration of microRNA-21. More microRNA-21 participated in this reaction increases the number of CdTe QDs, which results in increased electrochemical current. Thus, an ultrasensitive detection of microRNA-21 is accomplished by anodic stripping voltammetry. This gene assay displays a detection limit as low as 33 aM. It can discriminate between complementary DNA sequence and single-base mismatched DNA, indicating its high specificity. (author)

  3. Band excitation method applicable to scanning probe microscopy

    Science.gov (United States)

    Jesse, Stephen [Knoxville, TN; Kalinin, Sergei V [Knoxville, TN

    2010-08-17

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  4. Reaction time for trimolecular reactions in compartment-based reaction-diffusion models

    Science.gov (United States)

    Li, Fei; Chen, Minghan; Erban, Radek; Cao, Yang

    2018-05-01

    Trimolecular reaction models are investigated in the compartment-based (lattice-based) framework for stochastic reaction-diffusion modeling. The formulae for the first collision time and the mean reaction time are derived for the case where three molecules are present in the solution under periodic boundary conditions. For the case of reflecting boundary conditions, similar formulae are obtained using a computer-assisted approach. The accuracy of these formulae is further verified through comparison with numerical results. The presented derivation is based on the first passage time analysis of Montroll [J. Math. Phys. 10, 753 (1969)]. Montroll's results for two-dimensional lattice-based random walks are adapted and applied to compartment-based models of trimolecular reactions, which are studied in one-dimensional or pseudo one-dimensional domains.

  5. Detection of the Light Organ Symbiont, Vibrio fischeri, in Hawaiian Seawater by Using lux Gene Probes.

    Science.gov (United States)

    Lee, K H; Ruby, E G

    1992-03-01

    Symbiotic bacteria that inhabit the light-emitting organ of the Hawaiian squid Euprymna scolopes are distinctive from typical Vibrio fischeri organisms in that they are not visibly luminous when grown in laboratory culture. Therefore, the abundance of these bacteria in seawater samples cannot be estimated simply by identifying them among luminous colonies that arise on nutrient agar plates. Instead, we have used luxR and polymerase chain reaction generated luxA gene probes to identify both luminous and non-visibly luminous V. fischeri colonies by DNA-DNA hybridization. The probes were specific, hybridizing at least 50 to 100 times more strongly to immobilized DNAs from V. fischeri strains than to those of pure cultures of other related species. Thus, even non-visibly luminous V. fischeri colonies could be identified among colonies obtained from natural seawater samples by their probe-positive reaction. Bacteria in seawater samples, obtained either within or distant from squid habitats, were collected on membrane filters and incubated until colonies appeared. The filters were then observed for visibly luminous V. fischeri colonies and hybridized with the lux gene probes to determine the number of total V. fischeri colonies (both luminous and non-visibly luminous). We detected no significant differences in the abundance of luminous V. fischeri CFU in any of the water samples observed (probe-positive colonies of V. fischeri (up to 900 CFU/100 ml) were found only in seawater collected from within the natural habitats of the squids. A number of criteria were used to confirm that these probe-positive strains were indistinguishable from symbiotic V. fischeri. Therefore, the luxA and luxR gene probes were species specific and gave a reliable estimate of the number of culturable V. fischeri colonies in natural water samples.

  6. A tandem cross-metathesis/semipinacol rearrangement reaction.

    Science.gov (United States)

    Plummer, Christopher W; Soheili, Arash; Leighton, James L

    2012-05-18

    An efficient and (E)-selective synthesis of a 6-alkylidenebicyclo[3.2.1]octan-8-one has been developed. The key step is a tandem cross-metathesis/semipinacol rearrangement reaction, wherein the Hoveyda-Grubbs II catalyst, or more likely a derivative thereof, serves as the Lewis acid for the rearrangement. Despite the fact that both the starting alkene and the cross-metathesis product are viable rearrangement substrates, only the latter rearranges, suggesting that the Lewis acidic species is generated only after the cross-metathesis reaction is complete.

  7. Sensitive electrochemical monitoring of nucleic acids coupling DNA nanostructures with hybridization chain reaction

    International Nuclear Information System (INIS)

    Zhuang, Junyang; Fu, Libing; Xu, Mingdi; Yang, Huanghao; Chen, Guonan; Tang, Dianping

    2013-01-01

    Graphical abstract: -- Highlights: •A new signal-on metallobioassay was developed for detection of nucleic acids. •Target-triggered long-range self-assembled DNA nanostructures are used for amplification of electronic signal. •Hybridization chain reaction is utilized for construction of long-range DNA nanostructures. -- Abstract: Methods based on metal nanotags have been developed for metallobioassay of nucleic acids, but most involve complicated labeling or stripping procedures and are unsuitable for routine use. Herein, we report the proof-of-concept of a novel and label-free metallobioassay for ultrasensitive electronic determination of human immunodeficiency virus (HIV)-related gene fragments at an ultralow concentration based on target-triggered long-range self-assembled DNA nanostructures and DNA-based hybridization chain reaction (HCR). The signal is amplified by silver nanotags on the DNA duplex. The assay mainly consists of capture probe, detection probe, and two different DNA hairpins. In the presence of target DNA, the capture probe immobilized on the sensor sandwiches target DNA with the 3′ end of detection probe. Another exposed part of detection probe at the 5′ end opens two alternating DNA hairpins in turn, and propagates a chain reaction of hybridization events to form a nicked double-helix. Finally, numerous silver nanotags are immobilized onto the long-range DNA nanostructures, each of which produces a strong electronic signal within the applied potentials. Under optimal conditions, the target-triggered long-range DNA nanostructures present good electrochemical behaviors for the detection of HIV DNA at a concentration as low as 0.5 fM. Importantly, the outstanding sensitivity can make this approach a promising scheme for development of next-generation DNA sensors without the need of enzyme labeling or fluorophore labeling

  8. Correction: Synthesis of pyrrolidine-3-carboxylic acid derivatives via asymmetric Michael addition reactions of carboxylate-substituted enones.

    Science.gov (United States)

    Yin, Feng; Garifullina, Ainash; Tanaka, Fujie

    2018-04-25

    Correction for 'Synthesis of pyrrolidine-3-carboxylic acid derivatives via asymmetric Michael addition reactions of carboxylate-substituted enones' by Feng Yin et al., Org. Biomol. Chem., 2017, 15, 6089-6092.

  9. Combining gene expression data from different generations of oligonucleotide arrays

    Directory of Open Access Journals (Sweden)

    Kong Sek

    2004-10-01

    Full Text Available Abstract Background One of the important challenges in microarray analysis is to take full advantage of previously accumulated data, both from one's own laboratory and from public repositories. Through a comparative analysis on a variety of datasets, a more comprehensive view of the underlying mechanism or structure can be obtained. However, as we discover in this work, continual changes in genomic sequence annotations and probe design criteria make it difficult to compare gene expression data even from different generations of the same microarray platform. Results We first describe the extent of discordance between the results derived from two generations of Affymetrix oligonucleotide arrays, as revealed in cluster analysis and in identification of differentially expressed genes. We then propose a method for increasing comparability. The dataset we use consists of a set of 14 human muscle biopsy samples from patients with inflammatory myopathies that were hybridized on both HG-U95Av2 and HG-U133A human arrays. We find that the use of the probe set matching table for comparative analysis provided by Affymetrix produces better results than matching by UniGene or LocusLink identifiers but still remains inadequate. Rescaling of expression values for each gene across samples and data filtering by expression values enhance comparability but only for few specific analyses. As a generic method for improving comparability, we select a subset of probes with overlapping sequence segments in the two array types and recalculate expression values based only on the selected probes. We show that this filtering of probes significantly improves the comparability while retaining a sufficient number of probe sets for further analysis. Conclusions Compatibility between high-density oligonucleotide arrays is significantly affected by probe-level sequence information. With a careful filtering of the probes based on their sequence overlaps, data from different

  10. Revival structures of linear molecules in a field-free alignment condition as probed by high-order harmonic generation

    International Nuclear Information System (INIS)

    Lee, G. H.; Kim, H. T.; Park, J. Y.; Nam, C. H.; Kim, T. K.; Lee, J. H.; Ihee, H.

    2006-01-01

    Revival structures (rotational coherence) of three linear molecules (N 2 , O 2 , and CO 2 ) in a field free alignment condition have been investigated using high-order harmonic generation. The harmonic yields of these molecules were measured in a pump-probe manner by using a weak femtosecond (fs) laser pulse for field-free alignment of molecules and another intense fs laser pulse for harmonic generation. The harmonic intensities from 23rd to 29th order with respect to the time delay between the pump and the probe pulses showed revival structures in the condition of a field-free alignment of molecules. While the revival structure of a N 2 molecule had one-fourth the period of the full revival time and different degrees of modulation among different fractional revival times, the revival structures of O 2 and CO 2 molecules showed one-eighth the periods of the full revival time and similar degrees of modulation among all fractional revival times. The revival structures could be interpreted in terms of the nature of the highest occupied molecular orbital and the total nuclear spin.

  11. Synthesis and evaluation of [{sup 14}C]-Labelled and fluorescent-Tagged paclitaxel derivatives as new biological probes

    Energy Technology Data Exchange (ETDEWEB)

    Rao, C.S.; Chu, J.-J.; Lai, Y.-K. [Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan (China); Liu, R.-S. [Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan (China)

    1998-11-01

    Our present report deals with the preparation of hitherto unreported 7-([carbonyl-{sup 14}C]-acetyl)paclitaxel 4 and two new bioactive 7-substituted fluorescent taxoids (FITC 9 and rhodamine 11), as well as evaluation towards their applications as biological probes. The results in this report demonstrate that (a) the new paclitaxel derivatives 4, 9, 11 could be prepared with good yields starting from paclitaxel; (b) the [{sup 14}C]acetylation step was found to be better by using [{sup 14}C]acetic anhydride rather than [{sup 14}C]sodium acetate; (c) the radiochemical purity of 4 was 96% and its specific activity was 48 mCi/mmol; (d) the cytotoxicity of 4 was close to that of paclitaxel whereas 9, 11 were far less active than paclitaxel, but these cytotoxic levels were good enough for their biological applications; (e) the drug-quantitation by flow cytometric analysis using 9 and 11 was proved to be equally efficient with respect to the radioactivity-based determination employing 4; (f) the intracellular fluorescence mapping by 9 and 11 was found to be effective and the microtubule network pattern was visible in both the cases; (g) the overall fluorescence imaging efficiency was better with 11 while the intensity of fluorescence was higher with 9; (h) staining of nucleolus was observed in fluorescence studies of both 9 and 11. Based on these results, the newly prepared paclitaxel derivatives can be considered as efficient biological probes and should find further use in relevant applications. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  12. Quasielastic reactions

    International Nuclear Information System (INIS)

    Henning, W.

    1979-01-01

    Quasielastic reaction studies, because of their capability to microscopically probe nuclear structure, are still of considerable interest in heavy-ion reactions. The recent progress in understanding various aspects of the reaction mechanism make this aim appear closer. The relation between microscopic and macroscopic behavior, as suggested, for example, by the single proton transfer data to individual final states or averaged excitation energy intervals, needs to be explored. It seems particularly useful to extend measurements to higher incident energies, to explore and understand nuclear structure aspects up to the limit of the energy range where they are important

  13. [A novel TaqMan® MGB probe for specifically detecting Streptococcus mutans].

    Science.gov (United States)

    Zheng, Hui; Lin, Jiu-Xiang; DU, Ning; Chen, Feng

    2013-10-18

    To design a new TaqMan® MGB probe for improving the specificity of Streptococcus mutans's detection. We extracted six DNA samples from different streptococcal strains for PCR reaction. Conventional nested PCR and TaqMan® MGB real-time PCR were applied independently. The first round of nested PCR was carried out with the bacterial universal primers, while a second PCR was conducted by using primers specific for the 16S rRNA gene of Streptococcus mutans. The TaqMan® MGB probe for Streptococcus mutans was designed from sequence analyses, and the primers were the same as nested PCR. Streptococcus mutans DNA with 2.5 mg/L was sequentially diluted at 5-fold intervals to 0.16 μg/L. Standard DNA samples were used to generate standard curves by TaqMan® MGB real-time PCR. In the nested PCR, the primers specific for Streptococcus mutans also detected Streptococcus gordonii with visible band of 282 bp, giving false-positive results. In the TaqMan® MGB real-time PCR reaction, only Streptococcus mutans was detected. The detection limitation of TaqMan® MGB real-time PCR for Streptococcus mutans 16S rRNA gene was 20 μg/L. We designed a new TaqMan® MGB probe, and successfully set up a PCR based method for detecting oral Streptococcus mutans. TaqMan® MGB real-time PCR is a both specific and sensitive bacterial detection method.

  14. Real-time polymerase chain reaction assay for endogenous reference gene for specific detection and quantification of common wheat-derived DNA (Triticum aestivum L.).

    Science.gov (United States)

    Vautrin, Sonia; Zhang, David

    2007-01-01

    A species-specific endogenous reference gene system was developed for polymerase chain reaction (PCR)-based analysis in common wheat (Triticum aestivum L.) by targeting the ALMT1 gene, an aluminium-activated malate transporter. The primers and probe were elaborated for real-time PCR-based qualitative and quantitative assay. The size of amplified product is 95 base pairs. The specificity was assessed on 17 monocot and dicot plant species. The established real-time PCR assay amplified only T. aestivum-derived DNA; no amplification occurred on other phylogenetically related species, including durum wheat (T. durum). The robustness of the system was tested on the DNA of 15 common wheat cultivars using 20 000 genomic copies per PCR the mean cycle threshold (Ct) values of 24.02 +/- 0.251 were obtained. The absolute limits of detection and quantification of the real-time PCR assay were estimated to 2 and 20 haploid genome copies of common wheat, respectively. The linearity was experimentally validated on 2-fold serial dilutions of DNA from 650 to 20 000 haploid genome copies. All these results show that the real-time PCR assay developed on the ALMT1 gene is suitable to be used as an endogenous reference gene for PCR-based specific detection and quantification of T. aestivum-derived DNA in various applications, in particular for the detection and quantification of genetically modified materials in common wheat.

  15. TaqMan probe real-time polymerase chain reaction assay for the quantification of canine DNA in chicken nugget.

    Science.gov (United States)

    Rahman, Md Mahfujur; Hamid, Sharifah Bee Abd; Basirun, Wan Jefrey; Bhassu, Subha; Rashid, Nur Raifana Abdul; Mustafa, Shuhaimi; Mohd Desa, Mohd Nasir; Ali, Md Eaqub

    2016-01-01

    This paper describes a short-amplicon-based TaqMan probe quantitative real-time PCR (qPCR) assay for the quantitative detection of canine meat in chicken nuggets, which are very popular across the world, including Malaysia. The assay targeted a 100-bp fragment of canine cytb gene using a canine-specific primer and TaqMan probe. Specificity against 10 different animals and plants species demonstrated threshold cycles (Ct) of 16.13 ± 0.12 to 16.25 ± 0.23 for canine DNA and negative results for the others in a 40-cycle reaction. The assay was tested for the quantification of up to 0.01% canine meat in deliberately spiked chicken nuggets with 99.7% PCR efficiency and 0.995 correlation coefficient. The analysis of the actual and qPCR predicted values showed a high recovery rate (from 87% ± 28% to 112% ± 19%) with a linear regression close to unity (R(2) = 0.999). Finally, samples of three halal-branded commercial chicken nuggets collected from different Malaysian outlets were screened for canine meat, but no contamination was demonstrated.

  16. A fluorescent glycolipid-binding peptide probe traces cholesterol dependent microdomain-derived trafficking pathways.

    Directory of Open Access Journals (Sweden)

    Steffen Steinert

    Full Text Available BACKGROUND: The uptake and intracellular trafficking of sphingolipids, which self-associate into plasma membrane microdomains, is associated with many pathological conditions, including viral and toxin infection, lipid storage disease, and neurodegenerative disease. However, the means available to label the trafficking pathways of sphingolipids in live cells are extremely limited. In order to address this problem, we have developed an exogenous, non-toxic probe consisting of a 25-amino acid sphingolipid binding domain, the SBD, derived from the amyloid peptide Abeta, and conjugated by a neutral linker with an organic fluorophore. The current work presents the characterization of the sphingolipid binding and live cell trafficking of this novel probe, the SBD peptide. SBD was the name given to a motif originally recognized by Fantini et al in a number of glycolipid-associated proteins, and was proposed to interact with sphingolipids in membrane microdomains. METHODOLOGY/PRINCIPAL FINDINGS: In accordance with Fantini's model, optimal SBD binding to membranes depends on the presence of sphingolipids and cholesterol. In synthetic membrane binding assays, SBD interacts preferentially with raft-like lipid mixtures containing sphingomyelin, cholesterol, and complex gangliosides in a pH-dependent manner, but is less glycolipid-specific than Cholera toxin B (CtxB. Using quantitative time-course colocalization in live cells, we show that the uptake and intracellular trafficking route of SBD is unlike that of either the non-raft marker Transferrin or the raft markers CtxB and Flotillin2-GFP. However, SBD traverses an endolysosomal route that partially intersects with raft-associated pathways, with a major portion being diverted at a late time point to rab11-positive recycling endosomes. Trafficking of SBD to acidified compartments is strongly disrupted by cholesterol perturbations, consistent with the regulation of sphingolipid trafficking by cholesterol

  17. Generation of blood-derived dendritic cells in dogs with oral malignant melanoma.

    Science.gov (United States)

    Catchpole, B; Stell, A J; Dobson, J M

    2002-01-01

    Advances in treatment of human melanoma indicate that immunotherapy, particularly dendritic cell (DC) immunization, may prove useful. The aim of this study was to investigate whether blood-derived DCs could be generated from canine melanoma patients. Peripheral blood mononuclear cells were isolated from three such dogs and cultured with recombinant canine granulocyte-macrophage colony stimulating factor (GM-CSF), canine interleukin 4 and human Flt3-ligand for 7 days. The resulting cells demonstrated a typical dendritic morphology, and were enriched for cells expressing CD1a, CD11c and MHC II by flow cytometric analysis. Thus, canine blood-derived DCs can be generated in vitro and DC immunization should be feasible in dogs. Copyright Harcourt Publishers Ltd.

  18. lumpGEM: Systematic generation of subnetworks and elementally balanced lumped reactions for the biosynthesis of target metabolites.

    Directory of Open Access Journals (Sweden)

    Meric Ataman

    2017-07-01

    Full Text Available In the post-genomic era, Genome-scale metabolic networks (GEMs have emerged as invaluable tools to understand metabolic capabilities of organisms. Different parts of these metabolic networks are defined as subsystems/pathways, which are sets of functional roles to implement a specific biological process or structural complex, such as glycolysis and TCA cycle. Subsystem/pathway definition is also employed to delineate the biosynthetic routes that produce biomass building blocks. In databases, such as MetaCyc and SEED, these representations are composed of linear routes from precursors to target biomass building blocks. However, this approach cannot capture the nested, complex nature of GEMs. Here we implemented an algorithm, lumpGEM, which generates biosynthetic subnetworks composed of reactions that can synthesize a target metabolite from a set of defined core precursor metabolites. lumpGEM captures balanced subnetworks, which account for the fate of all metabolites along the synthesis routes, thus encapsulating reactions from various subsystems/pathways to balance these metabolites in the metabolic network. Moreover, lumpGEM collapses these subnetworks into elementally balanced lumped reactions that specify the cost of all precursor metabolites and cofactors. It also generates alternative subnetworks and lumped reactions for the same metabolite, accounting for the flexibility of organisms. lumpGEM is applicable to any GEM and any target metabolite defined in the network. Lumped reactions generated by lumpGEM can be also used to generate properly balanced reduced core metabolic models.

  19. Reaction probability derived from an interpolation formula for diffusion processes with an absorptive boundary condition

    International Nuclear Information System (INIS)

    Misawa, T.; Itakura, H.

    1995-01-01

    The present article focuses on a dynamical simulation of molecular motion in liquids. In the simulation involving diffusion-controlled reaction with discrete time steps, lack of information regarding the trajectory within the time step may result in a failure to count the number of reactions of the particles within the step. In order to rectify this, an interpolated diffusion process is used. The process is derived from a stochastic interpolation formula recently developed by the first author [J. Math. Phys. 34, 775 (1993)]. In this method, the probability that reaction has occurred during the time step given the initial and final positions of the particles is calculated. Some numerical examples confirm that the theoretical result corresponds to an improvement over the Clifford-Green work [Mol. Phys. 57, 123 (1986)] on the same matter

  20. Controlling the photochemical reaction of an azastilbene derivative in water using a water-soluble pillar[6]arene.

    Science.gov (United States)

    Xia, Danyu; Wang, Pi; Shi, Bingbing

    2017-09-20

    Photochemistry plays an important role in our lives. It has also been a common tool in the laboratory to construct complicated systems from small molecules. Supramolecular chemistry provides an opportunity to solve some of the problems in controlling photochemical reactions via non-covalent interactions. By using confining media and weak interactions between the medium and the reactant molecule, the excited state behavior of molecules has been successfully manipulated. Pillararenes, a new class of macrocyclic hosts, have rarely been used in the field of photochemical investigations, such as the controlling of photo-induced reactions. Herein, we explore a synthetic macrocyclic host, a water-soluble pillar[6]arene, as a controlling tool to manipulate the photo-induced reactions (hydration) in water. A host-guest system in water based on a water-soluble pillar[6]arene and an azastilbene derivative, (E)-4,4'-dimethyl-4,4'-diazoniastilbene diiodide, has been constructed. Then this water-soluble pillar[6]arene was successfully employed to control the photohydration of the azastilbene derivative in water as a "protective agent".

  1. A novel single fluorophore-labeled double-stranded oligonucleotide probe for fluorescence-enhanced nucleic acid detection based on the inherent quenching ability of deoxyguanosine bases and competitive strand-displacement reaction.

    Science.gov (United States)

    Zhang, Yingwei; Tian, Jingqi; Li, Hailong; Wang, Lei; Sun, Xuping

    2012-01-01

    We develop a novel single fluorophore-labeled double-stranded oligonucleotide (OND) probe for rapid, nanostructure-free, fluorescence-enhanced nucleic acid detection for the first time. We further demonstrate such probe is able to well discriminate single-base mutation in nucleic acid. The design takes advantage of an inherent quenching ability of guanine bases. The short strand of the probe is designed with an end-labeled fluorophore that is placed adjacent to two guanines as the quencher located on the long opposite strand, resulting in great quenching of dye fluorescence. In the presence of a target complementary to the long strand of the probe, a competitive strand-displacement reaction occurs and the long strand forms a more stable duplex with the target, resulting in the two strands of the probe being separated from each other. As a consequence of this displacement, the fluorophore and the quencher are no longer in close proximity and dye fluorescence increases, signaling the presence of target.

  2. Tunable third-harmonic probe for non-degenerate ultrafast pump ...

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... In this article, we report a method to achieve a precisely tunable highly stable probe beam generation for performing pump–probe experiment around a given wavelength by tilting a sum frequency generation (SFG) crystal angle. The width of the generated third-harmonic beam is of the order of 2 nm ...

  3. Detection of the Light Organ Symbiont, Vibrio fischeri, in Hawaiian Seawater by Using lux Gene Probes

    Science.gov (United States)

    Lee, Kyu-Ho; Ruby, Edward G.

    1992-01-01

    Symbiotic bacteria that inhabit the light-emitting organ of the Hawaiian squid Euprymna scolopes are distinctive from typical Vibrio fischeri organisms in that they are not visibly luminous when grown in laboratory culture. Therefore, the abundance of these bacteria in seawater samples cannot be estimated simply by identifying them among luminous colonies that arise on nutrient agar plates. Instead, we have used luxR and polymerase chain reaction generated luxA gene probes to identify both luminous and non-visibly luminous V. fischeri colonies by DNA-DNA hybridization. The probes were specific, hybridizing at least 50 to 100 times more strongly to immobilized DNAs from V. fischeri strains than to those of pure cultures of other related species. Thus, even non-visibly luminous V. fischeri colonies could be identified among colonies obtained from natural seawater samples by their probe-positive reaction. Bacteria in seawater samples, obtained either within or distant from squid habitats, were collected on membrane filters and incubated until colonies appeared. The filters were then observed for visibly luminous V. fischeri colonies and hybridized with the lux gene probes to determine the number of total V. fischeri colonies (both luminous and non-visibly luminous). We detected no significant differences in the abundance of luminous V. fischeri CFU in any of the water samples observed (≤1 to 3 CFU/100 ml). However, probe-positive colonies of V. fischeri (up to 900 CFU/100 ml) were found only in seawater collected from within the natural habitats of the squids. A number of criteria were used to confirm that these probe-positive strains were indistinguishable from symbiotic V. fischeri. Therefore, the luxA and luxR gene probes were species specific and gave a reliable estimate of the number of culturable V. fischeri colonies in natural water samples. Images PMID:16348678

  4. Efficient generation of dopamine neuron-like cells from skin-derived precursors with a synthetic peptide derived from von Hippel-Lindau protein.

    Science.gov (United States)

    Kubo, Atsuhiko; Yoshida, Tetsuhiko; Kobayashi, Nahoko; Yokoyama, Takaakira; Mimura, Toshiro; Nishiguchi, Takao; Higashida, Tetsuhiro; Yamamoto, Isao; Kanno, Hiroshi

    2009-12-01

    Skin-derived precursors (SKPs) from mammalian dermis represent neural crest-related stem cells capable of differentiating into both neural and mesodermal progency. SKPs are of clinical interest because they serve as accessible autologous donor cells for neuronal repair for neuronal intractable diseases. However, little is known about the efficient generation of neurons from SKPs, and phenotypes of neurons generated from SKPs have been restricted. In addition, the neuronal repair using their generated neurons as donor cells has not been achieved. The von Hippel-Lindau protein (pVHL) is one of the proteins that play an important role during neuronal differentiation, and recently neuronal differentiation of neural progenitor cells by intracellular delivery of a synthetic VHL peptide derived from elongin BC-binding site has been demonstrated. In the present study, a synthetic VHL peptide derived from elongin BC-binding site was conjugated to the protein transduction domain (PTD) of HIV-TAT protein (TATVHL peptide) to facilitate entry into cells, and we demonstrate the efficient generation of cells with dopaminergic phenotype from SKPs with the intracellular delivery of TATVHL peptide, and characterized the generated cells. The TATVHL peptide-treated SKPs expressed neuronal marker proteins, particularly dopamine neuron markers, and also up-regulated mRNA levels of proneural basic helix-loop-helix factors. After the TATVHL peptide treatment, transplanted SKPs into Parkinson's disease (PD) model rats sufficiently differentiated into dopamine neuron-like cells in PD model rats, and partially but significantly corrected behavior of PD model rats. The generated dopamine neuron-like cells are expected to serve as donor cells for neuronal repair for PD.

  5. $\\beta$- decay of $^{58}$Zn. A critical test for the charge-exchange reaction as a probe for the $\\beta$- decay strength distribution

    CERN Multimedia

    2002-01-01

    % IS353 \\\\ \\\\ Due to its importance in fundamental physics and astrophysics, a great effort both theoretically and experimentally is devoted to study Gamow Teller (GT)-strength. The GT-strength and its distribution play a key role in late stellar evolution. During the pre-supernova core-collapse of massive stars, the electron capture and nuclear $\\beta$ -decay determine the electron-to-baryon ratio, which influences the infall dynamics and the mass of the final core. The cross-section of the charge-exchange reaction at forward angles with energies above 100~MeV is expected to be proportional to the squares of Fermi and GT matrix elements. This proportionality should provide a Q-value free method to probe the weak interaction strength and renormalization effects in nuclei. Thus charge-exchange reactions are often used to determine the experimental GT-strength. However, the connection between the GT-strength and the cross-section of the charge-exchange reaction is partially model-dependent and the question aris...

  6. A unique dual recognition hairpin probe mediated fluorescence amplification method for sensitive detection of uracil-DNA glycosylase and endonuclease IV activities.

    Science.gov (United States)

    Wu, Yushu; Yan, Ping; Xu, Xiaowen; Jiang, Wei

    2016-03-07

    Uracil-DNA glycosylase (UDG) and endonuclease IV (Endo IV) play cooperative roles in uracil base-excision repair (UBER) and inactivity of either will interrupt the UBER to cause disease. Detection of UDG and Endo IV activities is crucial to evaluate the UBER process in fundamental research and diagnostic application. Here, a unique dual recognition hairpin probe mediated fluorescence amplification method was developed for sensitively and selectively detecting UDG and Endo IV activities. For detecting UDG activity, the uracil base in the probe was excised by the target enzyme to generate an apurinic/apyrimidinic (AP) site, achieving the UDG recognition. Then, the AP site was cleaved by a tool enzyme Endo IV, releasing a primer to trigger rolling circle amplification (RCA) reaction. Finally, the RCA reaction produced numerous repeated G-quadruplex sequences, which interacted with N-methyl-mesoporphyrin IX to generate an enhanced fluorescence signal. Alternatively, for detecting Endo IV activity, the uracil base in the probe was first converted into an AP site by a tool enzyme UDG. Next, the AP site was cleaved by the target enzyme, achieving the Endo IV recognition. The signal was then generated and amplified in the same way as those in the UDG activity assay. The detection limits were as low as 0.00017 U mL(-1) for UDG and 0.11 U mL(-1) for Endo IV, respectively. Moreover, UDG and Endo IV can be well distinguished from their analogs. This method is beneficial for properly evaluating the UBER process in function studies and disease prognoses.

  7. A Novel Computational Method to Reduce Leaky Reaction in DNA Strand Displacement

    Directory of Open Access Journals (Sweden)

    Xin Li

    2015-01-01

    Full Text Available DNA strand displacement technique is widely used in DNA programming, DNA biosensors, and gene analysis. In DNA strand displacement, leaky reactions can cause DNA signals decay and detecting DNA signals fails. The mostly used method to avoid leakage is cleaning up after upstream leaky reactions, and it remains a challenge to develop reliable DNA strand displacement technique with low leakage. In this work, we address the challenge by experimentally evaluating the basic factors, including reaction time, ratio of reactants, and ion concentration to the leakage in DNA strand displacement. Specifically, fluorescent probes and a hairpin structure reporting DNA strand are designed to detect the output of DNA strand displacement, and thus can evaluate the leakage of DNA strand displacement reactions with different reaction time, ratios of reactants, and ion concentrations. From the obtained data, mathematical models for evaluating leakage are achieved by curve derivation. As a result, it is obtained that long time incubation, high concentration of fuel strand, and inappropriate amount of ion concentration can weaken leaky reactions. This contributes to a method to set proper reaction conditions to reduce leakage in DNA strand displacement.

  8. Spinal Hb9::Cre-derived excitatory interneurons contribute to rhythm generation in the mouse

    DEFF Research Database (Denmark)

    Caldeira, Vanessa; Dougherty, Kimberly J.; Borgius, Lotta

    2017-01-01

    Rhythm generating neurons are thought to be ipsilaterally-projecting excitatory neurons in the thoracolumbar mammalian spinal cord. Recently, a subset of Shox2 interneurons (Shox2 non-V2a INs) was found to fulfill these criteria and make up a fraction of the rhythm-generating population. Here we...... than in cords from controls. Collectively, our findings indicate that excitatory Hb9::Cre-derived INs constitute a distinct population of neurons that participates in the rhythm generating kernel for spinal locomotion....... use Hb9::Cre mice to genetically manipulate Hb9::Cre-derived excitatory interneurons (INs) in order to determine the role of these INs in rhythm generation. We demonstrate that this line captures a consistent population of spinal INs which is mixed with respect to neurotransmitter phenotype...

  9. Structure and reactions of quantum halos

    International Nuclear Information System (INIS)

    Jensen, A.S.; Riisager, K.; Fedorov, D.V.; Garrido, E.

    2004-01-01

    This article provides an overview of the basic principles of the physics of quantum halo systems, defined as bound states of clusters of particles with a radius extending well into classically forbidden regions. Exploiting the consequences of this definition, the authors derive the conditions for occurrence in terms of the number of clusters, binding energy, angular momentum, cluster charges, and excitation energy. All these quantities must be small. The article discusses the transitions between different cluster divisions and the importance of thresholds for cluster or particle decay, with particular attention to the Efimov effect and the related exotic states. The pertinent properties can be described by the use of dimensionless variables. Then universal and specific properties can be distinguished, as shown in a series of examples selected from nuclear, atomic, and molecular systems. The neutron dripline is especially interesting for nuclei and negative ions for atoms. For molecules, in which the cluster division comes naturally, a wider range of possibilities exists. Halos in two dimensions have very different properties, and their states are easily spatially extended, whereas Borromean systems are unlikely and spatially confined. The Efimov effect and the Thomas collapse occur only for dimensions between 2.3 and 3.8 and thus not for 2. High-energy reactions directly probe the halo structure. The authors discuss the reaction mechanisms for high-energy nuclear few-body halo breakup on light, intermediate, and heavy nuclear targets. For light targets, the strong interaction dominates, while for heavy targets, the Coulomb interaction dominates. For intermediate targets these processes are of comparable magnitude. As in atomic and molecular physics, a geometric impact-parameter picture is very appropriate. Finally, the authors briefly consider the complementary processes involving electroweak probes available through beta decay, electromagnetic transitions, and

  10. Development of Bioorthogonal Reactions and Their Applications in Bioconjugation

    Directory of Open Access Journals (Sweden)

    Mengmeng Zheng

    2015-02-01

    Full Text Available Biomolecule labeling using chemical probes with specific biological activities has played important roles for the elucidation of complicated biological processes. Selective bioconjugation strategies are highly-demanded in the construction of various small-molecule probes to explore complex biological systems. Bioorthogonal reactions that undergo fast and selective ligation under bio-compatible conditions have found diverse applications in the development of new bioconjugation strategies. The development of new bioorthogonal reactions in the past decade has been summarized with comments on their potentials as bioconjugation method in the construction of various biological probes for investigating their target biomolecules. For the applications of bioorthogonal reactions in the site-selective biomolecule conjugation, examples have been presented on the bioconjugation of protein, glycan, nucleic acids and lipids.

  11. Azobenzene-caged sulforhodamine dyes: a novel class of ‘turn-on’ reactive probes for hypoxic tumor cell imaging

    Science.gov (United States)

    Chevalier, Arnaud; Piao, Wen; Hanaoka, Kenjiro; Nagano, Tetsuo; Renard, Pierre-Yves; Romieu, Anthony

    2015-12-01

    New sulforhodamine-based fluorescent ‘turn-on’ probes have been developed for the direct imaging of cellular hypoxia. Rapid access to this novel class of water-soluble ‘azobenzene-caged’ fluorophores was made possible through an easily-implementable azo-coupling reaction between a fluorescent primary arylamine derived from a sulforhodamine 101 scaffold (named SR101-NaphtNH 2 ) and a tertiary aniline whose N-substituents are neutral, cationic, or zwitterionic. The detection mechanism is based on the bioreductive cleavage of the azo bond that restores strong far-red fluorescence (emission maximum at 625 nm) by regenerating the original sulforhodamine SR101-NaphtNH 2 . This valuable fluorogenic response was obtained for the three ‘smart’ probes studied in this work, as shown by an in vitro assay using rat liver microsomes placed under aerobic and then under hypoxic conditions. Most importantly, the probe namely SR101-NaphtNH 2 -Hyp-diMe was successfully applied for imaging the hypoxic status of tumor cells (A549 cells).

  12. Hyperpolarized NMR Probes for Biological Assays

    Directory of Open Access Journals (Sweden)

    Sebastian Meier

    2014-01-01

    Full Text Available During the last decade, the development of nuclear spin polarization enhanced (hyperpolarized molecular probes has opened up new opportunities for studying the inner workings of living cells in real time. The hyperpolarized probes are produced ex situ, introduced into biological systems and detected with high sensitivity and contrast against background signals using high resolution NMR spectroscopy. A variety of natural, derivatized and designed hyperpolarized probes has emerged for diverse biological studies including assays of intracellular reaction progression, pathway kinetics, probe uptake and export, pH, redox state, reactive oxygen species, ion concentrations, drug efficacy or oncogenic signaling. These probes are readily used directly under natural conditions in biofluids and are often directly developed and optimized for cellular assays, thus leaving little doubt about their specificity and utility under biologically relevant conditions. Hyperpolarized molecular probes for biological NMR spectroscopy enable the unbiased detection of complex processes by virtue of the high spectral resolution, structural specificity and quantifiability of NMR signals. Here, we provide a survey of strategies used for the selection, design and use of hyperpolarized NMR probes in biological assays, and describe current limitations and developments.

  13. Erythrocyte-derived nano-probes functionalized with antibodies for targeted near infrared fluorescence imaging of cancer cells

    OpenAIRE

    Anvari, Bahman; Mac, Jenny T.; Nunez, Vicente; Burns, Joshua M.; Guerrero, Yadir A.

    2016-01-01

    Constructs derived from mammalian cells are emerging as a new generation of nano-scale platforms for clinical imaging applications. Herein, we report successful engineering of hybrid nano-structures composed of erythrocyte-derived membranes doped with FDA-approved near infrared (NIR) chromophore, indocyanine green (ICG), and surface-functionalized with antibodies to achieve molecular targeting. We demonstrate that these constructs can be used for targeted imaging of cancer cells in vitro. The...

  14. Generation and characterisation of human umbilical cord derived mesenchymal stem cells by explant method.

    Science.gov (United States)

    Yusoff, Z; Maqbool, M; George, E; Hassan, R; Ramasamy, R

    2016-06-01

    Mesenchymal stem cells (MSCs) derived from human umbilical cord (UC) have been considered as an important tool for treating various malignancies, tissue repair and organ regeneration. Umbilical cord-derived mesenchymal stem cells (UC-MSCs) are better alternative to MSCs that derived from bone marrow (BM-MSCs) as they are regarded as medical waste with little ethical concern for research and easily culture-expanded. In this present study, the foetal distal end of human UC was utilised to generate MSC by explant method. Upon in vitro culture, adherent cells with fibroblastic morphology were generated with rapid growth kinetics. Under the respective inductive conditions, these cells were capable of differentiating into adipocytes and osteocytes; express an array of standard MSC's surface markers CD29, CD73, CD90, CD106 and MHC-class I. Further assessment of immunosuppression activity revealed that MSCs generated from UC had profoundly inhibited the proliferation of mitogen-activated T lymphocytes in a dosedependent manner. The current laboratory findings have reinforced the application of explant method to generate UCMSCs thus, exploring an ideal platform to fulfil the increasing demand of MSCs for research and potential clinical use.

  15. Reevaluation of the O(+)(2P) reaction rate coefficients derived from Atmosphere Explorer C observations

    Science.gov (United States)

    Chang, T.; Torr, D. G.; Richards, P. G.; Solomon, S. C.

    1993-01-01

    O(+)(2P) is an important species for studies of the ionosphere and thermosphere: its emission at 7320 A can be used as a diagnostic of the thermospheric atomic oxygen density. Unfortunately, there are no laboratory measurements of the O and N2 reaction rates which are needed to determine the major sinks of (O+)(2p). We have recalculated the O and N2 reaction rates for O(+) (2P) using recent improvements in the solar EUV flux, cross sections, and photoelectron fluxes. For the standard solar EUV flux, the new N2 reaction rate of 3.4 +/- 1.5 x 10 exp -10 cu cm/s is close to the value obtained by Rusch et al. (1977), but the new O reaction rate of 4.0 +/- 1.9 x 10 exp -10 cu cm/sec is about 8 times larger. These new reaction rates are derived using neutral densities, electron density, and solar EUV fluxes measured by Atmosphere Explorer C in 1974 during solar minimum. The new theoretical emission rates are in good agreement with the data for the two orbits studied by Rusch et al.

  16. A pulsed eddy current probe for inspection of support plates from within Alloy-800 steam generator tubes

    International Nuclear Information System (INIS)

    Krause, T. W.; Babbar, V. K.; Underhill, P. R.

    2014-01-01

    Support plate degradation and fouling in nuclear steam generators (SGs) can lead to SG tube corrosion and loss of efficiency. Inspection and monitoring of these conditions can be integrated with preventive maintenance programs, thereby advancing station-life management processes. A prototype pulsed eddy current (PEC) probe, targeting inspection issues associated with SG tubes in SS410 tube support plate structures, has been developed using commercial finite element (FE) software. FE modeling was used to identify appropriate driver and pickup coil configurations for optimum sensitivity to changes in gap and offset for Alloy-800 SG tubes passing through 25 mm thick SS410 support plates. Experimental measurements using a probe that was manufactured based on the modeled configuration, were used to confirm the sensitivity of differential PEC signals to changes in relative position of the tube within the tube support plate holes. Models investigated the effect of shift and tilt of tube with respect to hole centers. Near hole centers and for small shifts, modeled signal amplitudes from the differentially connected coil pairs were observed to change linearly with tube shift. This was in agreement with experimentally measured TEC coil response. The work paves the way for development of a system targeting the inspection and evaluation of support plate structures in steam generators

  17. A pulsed eddy current probe for inspection of support plates from within Alloy-800 steam generator tubes

    Science.gov (United States)

    Krause, T. W.; Babbar, V. K.; Underhill, P. R.

    2014-02-01

    Support plate degradation and fouling in nuclear steam generators (SGs) can lead to SG tube corrosion and loss of efficiency. Inspection and monitoring of these conditions can be integrated with preventive maintenance programs, thereby advancing station-life management processes. A prototype pulsed eddy current (PEC) probe, targeting inspection issues associated with SG tubes in SS410 tube support plate structures, has been developed using commercial finite element (FE) software. FE modeling was used to identify appropriate driver and pickup coil configurations for optimum sensitivity to changes in gap and offset for Alloy-800 SG tubes passing through 25 mm thick SS410 support plates. Experimental measurements using a probe that was manufactured based on the modeled configuration, were used to confirm the sensitivity of differential PEC signals to changes in relative position of the tube within the tube support plate holes. Models investigated the effect of shift and tilt of tube with respect to hole centers. Near hole centers and for small shifts, modeled signal amplitudes from the differentially connected coil pairs were observed to change linearly with tube shift. This was in agreement with experimentally measured TEC coil response. The work paves the way for development of a system targeting the inspection and evaluation of support plate structures in steam generators.

  18. Using (n,xnγ) reactions to probe collective nuclear structure

    International Nuclear Information System (INIS)

    Yates, S.W.; Brown, T.B.; Warr, N.; Hannant, C.D.

    2000-01-01

    Complete text of publication follows. The (n,n'γ) reaction has been utilized at the University of Kentucky accelerator laboratory for many years to study the structure of stable nuclei (1,2). Through the use of γ-ray excitation function and angular distribution measurements, detailed level schemes of stable nuclei can be established. In recent years, the Doppler-shift attenuation method (DSAM) has been applied following the inelastic neutron scattering reaction to determine the lifetimes of nuclear states (3), and collimated neutron 'beams' have been employed in γ-γ coincidence measurements with an array of HPGe detectors in a close geometry (4,5). Recently, γ-ray detection facilities (6,7) for reactions induced by spallation neutrons, with energies of several hundred MeV, have become available at the Los Alamos Neutron Science Center (LANSCE), and initial measurements indicate that a large variety of reactions are possible. Evidence has been obtained for reactions with as many as 27 particles emitted (7). While the mechanisms of such reactions may be of interest, the primary spectroscopic advantage of utilizing higher-energy neutrons appears to be that neutron-rich nuclei which are not normally available for study with fusion-evaporation reactions can be accessed. As a complement to these measurements with very energetic neutrons, (n2nγ) and (n,3nγ) reaction studies have been explored with neutrons from the 2 H(d,n) and 3 H(d,n) reactions and the facilities at the University of Kentucky. Neutron energies as high as 22 MeV have been employed. Initial evaluations have focussed on data from the 186 W(n,2nγ) 185 W and 186 W(n,3nγ) 184 W reactions and indicate that a great deal of information can be obtained. The advantages of these measurements, as well as comparisons with data from reactions with spallation neutrons, will be presented. This work was supported under grant PHY-9803784 from the U.S. National Science Foundation. (author)

  19. Computational methodology of sodium-water reaction phenomenon in steam generator of sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Takata, Takashi; Yamaguchi, Akira; Uchibori, Akihiro; Ohshima, Hiroyuki

    2009-01-01

    A new computational methodology of sodium-water reaction (SWR), which occurs in a steam generator of a liquid-sodium-cooled fast reactor when a heat transfer tube in the steam generator fails, has been developed considering multidimensional and multiphysics thermal hydraulics. Two kinds of reaction models are proposed in accordance with a phase of sodium as a reactant. One is the surface reaction model in which water vapor reacts directly with liquid sodium at the interface between the liquid sodium and the water vapor. The reaction heat will lead to a vigorous evaporation of liquid sodium, resulting in a reaction of gas-phase sodium. This is designated as the gas-phase reaction model. These two models are coupled with a multidimensional, multicomponent gas, and multiphase thermal hydraulics simulation method with compressibility (named the 'SERAPHIM' code). Using the present methodology, a numerical investigation of the SWR under a pin-bundle configuration (a benchmark analysis of the SWAT-1R experiment) has been carried out. As a result, the maximum gas temperature of approximately 1,300degC is predicted stably, which lies within the range of previous experimental observations. It is also demonstrated that the maximum temperature of the mass weighted average in the analysis agrees reasonably well with the experimental result measured by thermocouples. The present methodology will be promising to establish a theoretical and mechanical modeling of secondary failure propagation of heat transfer tubes due to such as an overheating rupture and a wastage. (author)

  20. Leak detection in Phenix and Super Phenix steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Cambillard, E [Centre d' Etudes Nucleaires de Saclay, Gif-sur-Yvette (France)

    1978-10-01

    Water leak detection Phenix and Super Phenix steam generators is based on measurement of the hydrogen produced by the reaction of sodium with water. The hydrogen evolves in the sodium in which the steam generator tubes are completely immersed. Depending on service conditions, however (sodium temperature and flow velocity), the hydrogen may appear in the argon existing above the free levels. This is why, although the Phenix steam generators do not feature free levels, measurement systems were added to measure the hydrogen concentration in the argon in the expansion tanks. Super Phenix steam generators are fitted at their outlet with systems for measuring hydrogen in the sodium, and above their free level with a system for measuring hydrogen in the argon. The measurement systems have nickel tube probes connected to circuits kept under vacuum by an ion pump. The hydrogen partial pressure is measured by a mass spectrometer. Super Phenix measurement systems differ from Phenix systems essentially in the temperature regulation of the sodium reaching the nickel tube probes, and in the centralization of the supply and measurement systems of the ion pumps and mass spectrometers. This paper deals with description, calibration and operating conditions of the hydrogen detection systems in sodium and argon in Phenix and Super Phenix steam generators. (author)

  1. Effects of furan derivatives and phenolic compounds on electricity generation in microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Catal, Tunc [Department of Biological and Ecological Engineering, Oregon State University, 116 Gilmore Hall, Corvallis, OR 97331 (United States); Department of Wood Science and Engineering, Oregon State University, 102 97331, Corvallis, OR (United States); Department of Molecular Biology and Genetics, Istanbul Technical University, 34469-Maslak, Istanbul (Turkey); Fan, Yanzhen; Liu, Hong [Department of Biological and Ecological Engineering, Oregon State University, 116 Gilmore Hall, Corvallis, OR 97331 (United States); Li, Kaichang [Department of Wood Science and Engineering, Oregon State University, 102 97331, Corvallis, OR (United States); Bermek, Hakan [Department of Molecular Biology and Genetics, Istanbul Technical University, 34469-Maslak, Istanbul (Turkey)

    2008-05-15

    Lignocellulosic biomass is an attractive fuel source for MFCs due to its renewable nature and ready availability. Furan derivatives and phenolic compounds could be potentially formed during the pre-treatment process of lignocellulosic biomass. In this study, voltage generation from these compounds and the effects of these compounds on voltage generation from glucose in air-cathode microbial fuel cells (MFCs) were examined. Except for 5-hydroxymethyl furfural (5-HMF), all the other compounds tested were unable to be utilized directly for electricity production in MFCs in the absence of other electron donors. One furan derivate, 5-HMF and two phenolic compounds, trans-cinnamic acid and 3,5-dimethoxy-4-hydroxy-cinnamic acid did not affect electricity generation from glucose at a concentration up to 10 mM. Four phenolic compounds, including syringaldeyhde, vanillin, trans-4-hydroxy-3-methoxy, and 4-hydroxy cinnamic acids inhibited electricity generation at concentrations above 5 mM. Other compounds, including 2-furaldehyde, benzyl alcohol and acetophenone, inhibited the electricity generation even at concentrations less than 0.2 mM. This study suggests that effective electricity generation from the hydrolysates of lignocellulosic biomass in MFCs may require the employment of the hydrolysis methods with low furan derivatives and phenolic compounds production, or the removal of some strong inhibitors prior to the MFC operation, or the improvement of bacterial tolerance against these compounds through the enrichment of new bacterial cultures or genetic modification of the bacterial strains. (author)

  2. Effects of furan derivatives and phenolic compounds on electricity generation in microbial fuel cells

    Science.gov (United States)

    Catal, Tunc; Fan, Yanzhen; Li, Kaichang; Bermek, Hakan; Liu, Hong

    Lignocellulosic biomass is an attractive fuel source for MFCs due to its renewable nature and ready availability. Furan derivatives and phenolic compounds could be potentially formed during the pre-treatment process of lignocellulosic biomass. In this study, voltage generation from these compounds and the effects of these compounds on voltage generation from glucose in air-cathode microbial fuel cells (MFCs) were examined. Except for 5-hydroxymethyl furfural (5-HMF), all the other compounds tested were unable to be utilized directly for electricity production in MFCs in the absence of other electron donors. One furan derivate, 5-HMF and two phenolic compounds, trans-cinnamic acid and 3,5-dimethoxy-4-hydroxy-cinnamic acid did not affect electricity generation from glucose at a concentration up to 10 mM. Four phenolic compounds, including syringaldeyhde, vanillin, trans-4-hydroxy-3-methoxy, and 4-hydroxy cinnamic acids inhibited electricity generation at concentrations above 5 mM. Other compounds, including 2-furaldehyde, benzyl alcohol and acetophenone, inhibited the electricity generation even at concentrations less than 0.2 mM. This study suggests that effective electricity generation from the hydrolysates of lignocellulosic biomass in MFCs may require the employment of the hydrolysis methods with low furan derivatives and phenolic compounds production, or the removal of some strong inhibitors prior to the MFC operation, or the improvement of bacterial tolerance against these compounds through the enrichment of new bacterial cultures or genetic modification of the bacterial strains.

  3. Palladium-catalyzed cyclization reactions of 2-vinylthiiranes with heterocumulenes. Regioselective and enantioselective formation of thiazolidine, oxathiolane, and dithiolane derivatives.

    Science.gov (United States)

    Larksarp, C; Sellier, O; Alper, H

    2001-05-18

    The first palladium-catalyzed ring-expansion reaction of 2-vinylthiiranes with heterocumulenes to form sulfur-containing five-membered-ring heterocycles is described. This regioselective reaction requires 5 mol % of Pd(2)(dba)(3).CHCl(3) and 10 mol % of bidendate phosphine ligand (dppp, BINAP), at 50-80 degrees C, in THF. The reaction of 2-vinylthiiranes with carbodiimides, isocyanates, and ketenimines affords 1,3-thiazolidine derivatives, whereas the reaction with diphenylketene or isothiocyanates results in the formation of 1,3-oxathiolane or 1,3-dithiolane compounds in good to excellent isolated yields and in up to 78% ee.

  4. Intramolecular carbenoid ylide forming reactions of 2-diazo-3-keto-4-phthalimidocarboxylic esters derived from methionine and cysteine

    Directory of Open Access Journals (Sweden)

    Marc Enßle

    2012-03-01

    Full Text Available Methionine, S-benzylcysteine and S-allylcysteine were converted into 2-diazo-3-oxo-4-phthalimidocarboxylic esters 8a–c in three steps. Upon rhodium-catalysed dediazoniation, two intramolecular carbenoid reactions competed, namely the formation of a cyclic sulfonium ylide and that of a six-ring carbonyl ylide. The S-methyl and S-benzyl ylides 12a and b could be isolated, while S-allyl ylide 12c underwent a [2,3]-sigmatropic rearrangement. The short-lived carbonyl ylides derived from methionine and S-benzylcysteine formed head-to-tail dimers by a [3 + 3]-cycloaddition and could be trapped with external dipolarophiles, while the S-allyl derivative 14c yielded the pentacyclic compound 17 by an intramolecular [3 + 2]-cycloaddition reaction.

  5. Large scale sodium-water reaction tests for Monju steam generators

    International Nuclear Information System (INIS)

    Sato, M.; Hiroi, H.; Hori, M.

    1976-01-01

    To demonstrate the safe design of the steam generator system of the prototype fast reactor Monju against the postulated large leak sodium-water reaction, a large scale test facility SWAT-3 was constructed. SWAT-3 is a 1/2.5 scale model of the Monju secondary loop on the basis of the iso-velocity modeling. Two tests have been conducted in SWAT-3 since its construction. The test items using SWAT-3 are discussed, and the description of the facility and the test results are presented

  6. Copper-free click reactions with polar bicyclononyne derivatives for modulation of cellular imaging.

    Science.gov (United States)

    Leunissen, E H P; Meuleners, M H L; Verkade, J M M; Dommerholt, J; Hoenderop, J G J; van Delft, F L

    2014-07-07

    The ability of cells to incorporate azidosugars metabolically is a useful tool for extracellular glycan labelling. The exposed azide moiety can covalently react with alkynes, such as bicyclo[6.1.0]nonyne (BCN), by strain-promoted alkyne-azide cycloaddition (SPAAC). However, the use of SPAAC can be hampered by low specificity of the cycloalkyne. In this article we describe the synthesis of more polar BCN derivatives and their properties for selective cellular glycan labelling. The new polar derivatives [amino-BCN, glutarylamino-BCN and bis(hydroxymethyl)-BCN] display reaction rates similar to those of BCN and are less cell-permeable. The labelling specificity in HEK293 cells is greater than that of BCN, as determined by confocal microscopy and flow cytometry. Interestingly, amino-BCN appears to be highly specific for the Golgi apparatus. In addition, the polar BCN derivatives label the N-glycan of the membrane calcium channel TRPV5 in HEK293 cells with significantly enhanced signal-to-noise ratios. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems

    International Nuclear Information System (INIS)

    Miccoli, I; Edler, F; Pfnür, H; Tegenkamp, C

    2015-01-01

    The electrical conductivity of solid-state matter is a fundamental physical property and can be precisely derived from the resistance measured via the four-point probe technique excluding contributions from parasitic contact resistances. Over time, this method has become an interdisciplinary characterization tool in materials science, semiconductor industries, geology, physics, etc, and is employed for both fundamental and application-driven research. However, the correct derivation of the conductivity is a demanding task which faces several difficulties, e.g. the homogeneity of the sample or the isotropy of the phases. In addition, these sample-specific characteristics are intimately related to technical constraints such as the probe geometry and size of the sample. In particular, the latter is of importance for nanostructures which can now be probed technically on very small length scales. On the occasion of the 100th anniversary of the four-point probe technique, introduced by Frank Wenner, in this review we revisit and discuss various correction factors which are mandatory for an accurate derivation of the resistivity from the measured resistance. Among others, sample thickness, dimensionality, anisotropy, and the relative size and geometry of the sample with respect to the contact assembly are considered. We are also able to derive the correction factors for 2D anisotropic systems on circular finite areas with variable probe spacings. All these aspects are illustrated by state-of-the-art experiments carried out using a four-tip STM/SEM system. We are aware that this review article can only cover some of the most important topics. Regarding further aspects, e.g. technical realizations, the influence of inhomogeneities or different transport regimes, etc, we refer to other review articles in this field. (topical review)

  8. Solid-Phase Reactions of Iminium Ions: Cyclized Peptide Derivatives

    DEFF Research Database (Denmark)

    Wang, Yuanyuan

    formation of N,N’-aminals by nucleophilic attack of the peptide backbone is reversible under strongly acidic conditions and the N,N’-aminal is likely to be the kinetic product of many INCIC reactions. In addition, the N,N’-aminals are stable in the absence of acid but could be converted to the THIQ...... derivatives in solution phase under acid conditions in the presence of an active C-nucleophile in the side chain. The high yielding nature of the aminal formation is confirmed by solution phase synthesis. The introduced azide and alkyne residues in the side chain of N,N’-aminal products were further......BB may undergo auto-oxidation to quinazoline-2,4-diones in the absence of a suitable nucleophile on the side chain or backbone of the peptide (Chapter 4). The structure is confirmed by comparison with products obtained from solution-phase synthesis under the same conditions, one of which was confirmed...

  9. Ultrasound-mediated drug delivery by gas bubbles generated from a chemical reaction.

    Science.gov (United States)

    Lee, Sungmun; Al-Kaabi, Leena; Mawart, Aurélie; Khandoker, Ahsan; Alsafar, Habiba; Jelinek, Herbert F; Khalaf, Kinda; Park, Ji-Ho; Kim, Yeu-Chun

    2018-02-01

    Highly echogenic and ultrasound-responsive microbubbles such as nitrogen and perfluorocarbons have been exploited as ultrasound-mediated drug carriers. Here, we propose an innovative method for drug delivery using microbubbles generated from a chemical reaction. In a novel drug delivery system, luminol encapsulated in folate-conjugated bovine serum albumin nanoparticles (Fol-BSAN) can generate nitrogen gas (N 2 ) by chemical reaction when it reacts with hydrogen peroxide (H 2 O 2 ), one of reactive oxygen species (ROS). ROS plays an important role in the initiation and progression of cancer and elevated ROS have been observed in cancer cells both in vitro and in vivo. High-intensity focussed ultrasound (HIFU) is used to burst the N 2 microbubbles, causing site-specific delivery of anticancer drugs such as methotrexate. In this research, the drug delivery system was optimised by using water-soluble luminol and Mobil Composition of Matter-41 (MCM-41), a mesoporous material, so that the delivery system was sensitive to micromolar concentrations of H 2 O 2 . HIFU increased the drug release from Fol-BSAN by 52.9 ± 2.9% in 10 minutes. The cytotoxicity of methotrexate was enhanced when methotrexate is delivered to MDA-MB-231, a metastatic human breast cancer cell line, using Fol-BSAN with HIFU. We anticipate numerous applications of chemically generated microbubbles for ultrasound-mediated drug delivery.

  10. Muons as hyperfine interaction probes in chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ghandi, Khashayar, E-mail: kghandi@triumf.ca; MacLean, Amy [Mount Allison University, Department of Chemistry & Biochemistry (Canada)

    2015-04-15

    Spin polarized positive muons injected in matter serve as magnetic probes for the investigation of physical and chemical properties of free radicals, mechanisms of free radical reactions and their formations, and radiation effects. All muon techniques rely on the evolution of spin polarization (of the muon) and in that respect are similar to conventional magnetic resonance techniques. The applications of the muon as a hyperfine probe in several fields in chemistry are described.

  11. Muons as hyperfine interaction probes in chemistry

    International Nuclear Information System (INIS)

    Ghandi, Khashayar; MacLean, Amy

    2015-01-01

    Spin polarized positive muons injected in matter serve as magnetic probes for the investigation of physical and chemical properties of free radicals, mechanisms of free radical reactions and their formations, and radiation effects. All muon techniques rely on the evolution of spin polarization (of the muon) and in that respect are similar to conventional magnetic resonance techniques. The applications of the muon as a hyperfine probe in several fields in chemistry are described

  12. Turn-on fluorescence probes based on pyranine/viologen charge-transfer complexes for the determination of nucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Schäferling, Michael, E-mail: Michael.schaeferling@utu.fi; Lang, Thomas; Schnettelker, Annette

    2014-10-15

    The formation of ground state charge-transfer complexes between pyranine (8-hydroxypyrene-1,3,6-trisulfonic acid) and viologen (paraquat) derivatives is utilized for the design of novel fluoroionophores for the determination of phosphate species, particularly of nucleotides. The strong quenching of the pyranine fluorescence by viologen-type charge transfer acceptors can be countermanded if these are functionalized with triethylammonium groups that serve as recognition elements for phosphate anions. We report on the fluorogenic responses of these water-soluble molecular probes in presence of different phosphates. Absorbance measurements give additional information on the charge transfer complex formation and the interaction with nucleotides. The experimental data show that these aggregates form attractive, simple and versatile fluorescence turn-on probes for nucleoside triphosphates. The reversibility of the fluorescence response is demonstrated by means of an enzymatic model assay using ATPase for the decomposition of adenosine triphosphate. - Highlights: • Pyranine/viologen charge-transfer complexes as molecular probe for ATP recognition. • Fluorescence turn on mechanism. • Selective compared to other nucleotides and phosphate anions. • Fast and reversible response applicable to monitor enzymatic reactions.

  13. Structural parameter identifiability analysis for dynamic reaction networks

    DEFF Research Database (Denmark)

    Davidescu, Florin Paul; Jørgensen, Sten Bay

    2008-01-01

    method based on Lie derivatives. The proposed systematic two phase methodology is illustrated on a mass action based model for an enzymatically catalyzed reaction pathway network where only a limited set of variables is measured. The methodology clearly pinpoints the structurally identifiable parameters...... where for a given set of measured variables it is desirable to investigate which parameters may be estimated prior to spending computational effort on the actual estimation. This contribution addresses the structural parameter identifiability problem for the typical case of reaction network models....... The proposed analysis is performed in two phases. The first phase determines the structurally identifiable reaction rates based on reaction network stoichiometry. The second phase assesses the structural parameter identifiability of the specific kinetic rate expressions using a generating series expansion...

  14. Studies of Heterogeneously Catalyzed Liquid-Phase Alcohol Oxidation on Platinum bySum-frequency Generation Vibrational Spectroscopy and Reaction Rate Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Christopher [Univ. of California, Berkeley, CA (United States)

    2014-05-15

    Compared to many branches of chemistry, the molecular level study of catalytically active surfaces is young. Only with the invention of ultrahigh vacuum technology in the past half century has it been possible to carry out experiments that yield useful molecular information about the reactive occurrences at a surface. The reason is two-fold: low pressure is necessary to keep a surface clean for an amount of time long enough to perform an experiment, and most atomic scale techniques that are surface speci c (x-ray photoelectron spectroscopy, electron energy loss spectroscopy, Auger electron spectroscopy, etc.) cannot be used at ambient pressures, because electrons, which act as chemical probes in these techniques, are easily scattered by molecules. Sum-frequency generation (SFG) vibrational spectroscopy is one technique that can provide molecular level information from the surface without the necessity for high vacuum. Since the advent of SFG as a surface spectroscopic tool it has proved its worth in the studies of surface catalyzed reactions in the gas phase, with numerous reactions in the gas phase having been investigated on a multitude of surfaces. However, in situ SFG characterization of catalysis at the solid-liquid interface has yet to be thoroughly pursued despite the broad interest in the use of heterogeneous catalysts in the liquid phase as replacements for homogeneous counterparts. This work describes an attempt to move in that direction, applying SFG to study the solid-liquid interface under conditions of catalytic alcohol oxidation on platinum.

  15. Diversity-Oriented Syntheses by Combining CuAAC and Stereoselective INCIC Reactions with Peptides

    DEFF Research Database (Denmark)

    Wang, Yuanyuan; Madsen, Anders; Diness, Frederik

    2017-01-01

    Cascade reactions proceeding through peptide-derived N-carbamoyl iminium ions are reported. Two new reactions of N-carbamoyl iminium ions are described, including a stereoselective double cyclization generating N,N′-aminals and an acid-promoted auto-oxidation. Mechanistic investigations revealed...... that the N,N′-aminal formation is reversible under strongly acidic conditions. Both of these new reactions proved to be completely orthogonal to subsequent CuAAC chemistry. The reactions were performed in solution and on solid support. The robustness and high stereoselectivity of the methodology holds great...

  16. Data Mining Empowers the Generation of a Novel Class of Chromosome-specific DNA Probes

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Hui; Weier, Heinz-Ulrich G.; Kwan, Johnson; Wang, Mei; O' Brien, Benjamin

    2011-03-08

    Probes that allow accurate delineation of chromosome-specific DNA sequences in interphase or metaphase cell nuclei have become important clinical tools that deliver life-saving information about the gender or chromosomal make-up of a product of conception or the probability of an embryo to implant, as well as the definition of tumor-specific genetic signatures. Often such highly specific DNA probes are proprietary in nature and have been the result of extensive probe selection and optimization procedures. We describe a novel approach that eliminates costly and time consuming probe selection and testing by applying data mining and common bioinformatics tools. Similar to a rational drug design process in which drug-protein interactions are modeled in the computer, the rational probe design described here uses a set of criteria and publicly available bioinformatics software to select the desired probe molecules from libraries comprised of hundreds of thousands of probe molecules. Examples describe the selection of DNA probes for the human X and Y chromosomes, both with unprecedented performance, but in a similar fashion, this approach can be applied to other chromosomes or species.

  17. Helium generation reaction rates for 6Li and 10B in benchmark facilities

    International Nuclear Information System (INIS)

    Farrar, Harry IV; Oliver, B.M.; Lippincott, E.P.

    1980-01-01

    The helium generation rates for 10 B and 6 Li have been measured in two benchmark reactor facilities having neutron spectra similar to those found in a breeder reactor. The irradiations took place in the Coupled Fast Reactivity Measurements Facility (CFRMF) and in the 10% enriched 235 U critical assembly, BIG-10. The helium reaction rates were obtained by precise high-sensitivity gas mass spectrometric analyses of the helium content of numerous small samples. Comparison of these reaction rates with other reaction rates measured in the same facilities, and with rates calculated from published cross sections and from best estimates of the neutron spectral shapes, indicate significant discrepancies in the calculated values. Additional irradiations in other benchmark facilities have been undertaken to better determine the energy ranges where the discrepancies lie

  18. Generation and characterization of human iPSC line generated from mesenchymal stem cells derived from adipose tissue.

    Science.gov (United States)

    Zapata-Linares, Natalia; Rodriguez, Saray; Mazo, Manuel; Abizanda, Gloria; Andreu, Enrique J; Barajas, Miguel; Prosper, Felipe; Rodriguez-Madoz, Juan R

    2016-01-01

    In this work, mesenchymal stem cells derived from adipose tissue (ADSCs) were used for the generation of the human-induced pluripotent stem cell line G15.AO. Cell reprogramming was performed using retroviral vectors containing the Yamanaka factors, and the generated G15.AO hiPSC line showed normal karyotype, silencing of the exogenous reprogramming factors, induction of the typical pluripotency-associated markers, alkaline phosphatase enzymatic activity, and in vivo and in vitro differentiation ability to the three germ layers. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Response of an annular electrostatic probe for a right cylindrical spacer

    DEFF Research Database (Denmark)

    Johansson, Torben; MacAllister, I. W.

    2002-01-01

    The response of an annular electrostatic probe mounted in an electrode is examined with reference to a right cylindrical spacer. The study involves using the probe λ function to derive characteristic parameters. These parameters enable the response of the probe to different charge distributions...

  20. Tube tightness survey during Phenix steam generator operation

    International Nuclear Information System (INIS)

    Cambillard, E.

    1976-01-01

    Phenix steam generators are once-through vessels with single-wall heat-exchange tubes. This design means that any leakage of water into the sodium must be detected as quickly as possible so that the installation can be shut down before extensive damage occurs. The detection of water leaks in Phenix steam generators is based on measurement of the concentration in the sodium, of hydrogen produced by the sodium-water reaction. Since the various modules--evaporators, superheaters, and reheaters--have no free sodium surfaces, detection of hydrogen in argon is not used in Phenix steam generators. The measurement systems employ a probe made of nickel tubes 0.3 mm thick. Hydrogen in the sodium diffuses into a chamber kept under vacuum by an ion pump. The hydrogen pressure in the chamber is measured by a quadrupole mass spectrometer. The nine measurement systems (three per steam generator) are calibrated by injecting hydrogen into the sodium of the secondary circuits. The data-processing computer calculates the hydrogen concentration in the sodium from the spectrometer signals and the probe temperatures, which are not regulated in Phenix; it generates instructions that enable the operator to act if a leak appears. So far, no leaks have been detected. These systems also make it possible to determine rates of hydrogen diffusion caused by corrosion of the steel walls on the water side

  1. Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge

    International Nuclear Information System (INIS)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2010-01-01

    Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen

  2. Mitigation of Hydrogen Gas Generation from the Reaction of Water with Uranium Metal in K Basins Sludge

    Energy Technology Data Exchange (ETDEWEB)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2010-01-29

    Means to decrease the rate of hydrogen gas generation from the chemical reaction of uranium metal with water were identified by surveying the technical literature. The underlying chemistry and potential side reactions were explored by conducting 61 principal experiments. Several methods achieved significant hydrogen gas generation rate mitigation. Gas-generating side reactions from interactions of organics or sludge constituents with mitigating agents were observed. Further testing is recommended to develop deeper knowledge of the underlying chemistry and to advance the technology aturation level. Uranium metal reacts with water in K Basin sludge to form uranium hydride (UH3), uranium dioxide or uraninite (UO2), and diatomic hydrogen (H2). Mechanistic studies show that hydrogen radicals (H·) and UH3 serve as intermediates in the reaction of uranium metal with water to produce H2 and UO2. Because H2 is flammable, its release into the gas phase above K Basin sludge during sludge storage, processing, immobilization, shipment, and disposal is a concern to the safety of those operations. Findings from the technical literature and from experimental investigations with simple chemical systems (including uranium metal in water), in the presence of individual sludge simulant components, with complete sludge simulants, and with actual K Basin sludge are presented in this report. Based on the literature review and intermediate lab test results, sodium nitrate, sodium nitrite, Nochar Acid Bond N960, disodium hydrogen phosphate, and hexavalent uranium [U(VI)] were tested for their effects in decreasing the rate of hydrogen generation from the reaction of uranium metal with water. Nitrate and nitrite each were effective, decreasing hydrogen generation rates in actual sludge by factors of about 100 to 1000 when used at 0.5 molar (M) concentrations. Higher attenuation factors were achieved in tests with aqueous solutions alone. Nochar N960, a water sorbent, decreased hydrogen

  3. Effects of hydroxylated benzaldehyde derivatives on radiation-induced reactions involving various organic radicals

    Science.gov (United States)

    Ksendzova, G. A.; Samovich, S. N.; Sorokin, V. L.; Shadyro, O. I.

    2018-05-01

    In the present paper, the effects of hydroxylated benzaldehyde derivatives and gossypol - the known natural occurring compound - on formation of decomposition products resulting from radiolysis of ethanol and hexane in deaerated and oxygenated solutions were studied. The obtained data enabled the authors to make conclusions about the effects produced by the structure of the compounds under study on their reactivity towards oxygen- and carbon-centered radicals. It has been found that 2,3-dihydroxybenzaldehyde, 4,6-di-tert-butyl-2,3-dihydroxybenzaldehyde and 4,6-di-tert-butyl-3-(1,3-dioxane-2-yl)-1,2-dihydroxybenzene are not inferior in efficiency to butylated hydroxytoluene - the industrial antioxidant - as regards suppression of the radiation-induced oxidation processes occurring in hexane. The derivatives of hydroxylated benzaldehydes were shown to have a significant influence on radiation-induced reactions involving α-hydroxyalkyl radicals.

  4. Reactions of carbon radicals generated by 1,5-transposition of reactive centers

    Directory of Open Access Journals (Sweden)

    ZIVORAD CEKOVIC

    2005-03-01

    Full Text Available Radical intermediates can undergo specific reactions, such as intramolecular rearrangements, i.e., the transpositions of radical centers, which are not known in classical ionic organic reactions. 1,5-Transposition of a radical center to a non-activated carbon atom are of great synthetic importance. It can be successfully applied for the introduction of different functional groups (oxygen, nitrogen, sulfur, halogens onto a carbon atom remote from the present functional group. In addition to functionalization of a remote non-activated carbon atom, the formation of new C-C bonds on the d-carbon atom have also been achieved. 1,5-Transposition of the radical centers takes place from alkoxyl, aminyl and carbon radicals to a remote carbon atom. Relocation of the radical centers preferentially involves 1,5-transfer of a hydrogen atom, although migrations of some other groups are known. The reactions of the carbon radical generated by 1,5-relocation of the radical center are presented and their synthetic applications are reviewed.

  5. Evaluation of hematopoietic potential generated by transplantation of muscle-derived stem cells in mice.

    Science.gov (United States)

    Farace, Francoise; Prestoz, Laetitita; Badaoui, Sabrina; Guillier, Martine; Haond, Celine; Opolon, Paule; Thomas, Jean-Leon; Zalc, Bernard; Vainchenker, William; Turhan, Ali G

    2004-02-01

    Muscle tissue of adult mice has been shown to contain stem cells with hematopoietic repopulation ability in vivo. To determine the functional characteristics of stem cells giving rise to this hematopoietic activity, we have performed hematopoietic reconstitution experiments by the use of muscle versus marrow transplantation in lethally irradiated mice and followed the fate of transplanted cells by Y-chimerism using PCR and fluorescence in situ hybridization (FISH) analysis. We report here that transplantation of murine muscle generate a major hematopoietic chimerism at the level of CFU-C, CFU-S, and terminally-differentiated cells in three generations of lethally irradiated mice followed up to 1 year after transplantation. This potential is totally abolished when muscle grafts were performed by the use of muscle from previously irradiated mice. As compared to marrow transplantation, muscle transplants were able to generate similar potencies to give rise to myeloid, T, B, and natural killer (NK) cells. Interestingly, marrow stem cells that have been generated in primary and then in secondary recipients were able to contribute efficiently to myofibers in the muscle tissue of tertiary recipients. Altogether, our data demonstrate that muscle-derived stem cells present a major hematopoietic repopulating ability with evidence of self-replication in vivo. They are radiation-sensitive and similar to marrow-derived stem cells in terms of their ability to generate multilineage hematopoiesis. Finally, our data demonstrate that muscle-derived hematopoietic stem cells do not lose their ability to contribute to myofiber generation after at least two rounds of serial transplantation, suggesting a potential that is probably equivalent to that generated by marrow transplantation.

  6. Detection of the Light Organ Symbiont, Vibrio fischeri, in Hawaiian Seawater by Using lux Gene Probes

    OpenAIRE

    Lee, Kyu-Ho; Ruby, Edward G.

    1992-01-01

    Symbiotic bacteria that inhabit the light-emitting organ of the Hawaiian squid Euprymna scolopes are distinctive from typical Vibrio fischeri organisms in that they are not visibly luminous when grown in laboratory culture. Therefore, the abundance of these bacteria in seawater samples cannot be estimated simply by identifying them among luminous colonies that arise on nutrient agar plates. Instead, we have used luxR and polymerase chain reaction generated luxA gene probes to identify both lu...

  7. A Facial Protocol for the Synthesis of Benzofuran Derivatives by the Reaction of o-Hydroxy Aryl Ketone, Amine and Chloroacetyl Chloride

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Shuai; Wang, Xiuhua; Liu, Jiqiang; Liu, Chang; Chen, Jianbin; Zuo, Hua [Southwest Univ., Chongqing (China); Xie, Yongsheng; Dong, Wenliang; Shin, Dongsoo [Changwon National Univ., Changwon (Korea, Republic of)

    2014-06-15

    A facile and effective method has been developed for the synthesis of a novel series of benzofuran derivatives via N-acylation, O-alkylation and intramolecular condensation reactions, starting from readily available substituted o-hydroxy aryl ketone, and chloroacetyl arylamides. This metal-free transition process is characterized by mild reaction conditions, atom economy, short reaction time and a high yield with a decreased amount of by-products.

  8. Kinetic Isotope Effect Determination Probes the Spin of the Transition State, Its Stereochemistry, and Its Ligand Sphere in Hydrogen Abstraction Reactions of Oxoiron(IV) Complexes.

    Science.gov (United States)

    Mandal, Debasish; Mallick, Dibyendu; Shaik, Sason

    2018-01-16

    This Account outlines interplay of theory and experiment in the quest to identify the reactive-spin-state in chemical reactions that possess a few spin-dependent routes. Metalloenzymes and synthetic models have forged in recent decades an area of increasing appeal, in which oxometal species bring about functionalization of hydrocarbons under mild conditions and via intriguing mechanisms that provide a glimpse of Nature's designs to harness these reactions. Prominent among these are oxoiron(IV) complexes, which are potent H-abstractors. One of the key properties of oxoirons is the presence of close-lying spin-states, which can mediate H-abstractions. As such, these complexes form a fascinating chapter of spin-state chemistry, in which chemical reactivity involves spin-state interchange, so-called two-state reactivity (TSR) and multistate reactivity (MSR). TSR and MSR pose mechanistic challenges. How can one determine the structure of the reactive transition state (TS) and its spin state for these mechanisms? Calculations can do it for us, but the challenge is to find experimental probes. There are, however, no clear kinetic signatures for the reactive-spin-state in such reactions. This is the paucity that our group has been trying to fill for sometime. Hence, it is timely to demonstrate how theory joins experiment in realizing this quest. This Account uses a set of the H-abstraction reactions of 24 synthetic oxoiron(IV) complexes and 11 hydrocarbons, together undergoing H-abstraction reactions with TSR/MSR options, which provide experimentally determined kinetic isotope effect (KIE exp ) data. For this set, we demonstrate that comparing KIE exp results with calculated tunneling-augmented KIE (KIE TC ) data leads to a clear identification of the reactive spin-state during H-abstraction reactions. In addition, generating KIE exp data for a reaction of interest, and comparing these to KIE TC values, provides the mechanistic chemist with a powerful capability to

  9. Probing the electronic structure of redox species and direct determination of intrinsic reorganization energies of electron transfer reactions

    International Nuclear Information System (INIS)

    Wang, Xue-Bin; Wang, Lai-Sheng

    2000-01-01

    An experimental technique capable of directly determining the intrinsic reorganization energies of bimolecular electron transfer reactions is described. Appropriate solution phase redox species are prepared in the gas phase using electrospray ionization and probed using photodetachment spectroscopy. Five metal complex anions involved in the Fe 2+ -Fe 3+ redox couple are investigated and the intramolecular reorganization energies are measured directly from spectral features due to removing the most loosely bound 3d electron from the Fe(II)-complexes. The photodetachment spectra also yield electronic structure information about the Fe 2+ -Fe 3+ redox couple and provide a common electronic structure origin for the reducing capability of the Fe(II)-complexes, the most common redox reagents. (c) 2000 American Institute of Physics

  10. Salience Is Only Briefly Represented: Evidence from Probe-Detection Performance

    Science.gov (United States)

    Donk, Mieke; Soesman, Leroy

    2010-01-01

    Salient objects in the visual field tend to capture attention. The present study aimed to examine the time-course of salience effects using a probe-detection task. Eight experiments investigated how the salience of different orientation singletons affected probe reaction time as a function of stimulus onset asynchrony (SOA) between the…

  11. 3D CMM strain-gauge triggering probe error characteristics modeling using fuzzy logic

    DEFF Research Database (Denmark)

    Achiche, Sofiane; Wozniak, A; Fan, Zhun

    2008-01-01

    FKBs based on two optimization paradigms are used for the reconstruction of the direction- dependent probe error w. The angles beta and gamma are used as input variables of the FKBs; they describe the spatial direction of probe triggering. The learning algorithm used to generate the FKBs is a real......The error values of CMMs depends on the probing direction; hence its spatial variation is a key part of the probe inaccuracy. This paper presents genetically-generated fuzzy knowledge bases (FKBs) to model the spatial error characteristics of a CMM module-changing probe. Two automatically generated...

  12. Differentiating inflamed and normal lungs by the apparent reaction rate constants of lactate dehydrogenase probed by hyperpolarized (13)C labeled pyruvate.

    Science.gov (United States)

    Xu, He N; Kadlececk, Stephen; Shaghaghi, Hoora; Zhao, Huaqing; Profka, Harilla; Pourfathi, Mehrdad; Rizi, Rahim; Li, Lin Z

    2016-02-01

    Clinically translatable hyperpolarized (HP) (13)C-NMR can probe in vivo enzymatic reactions, e.g., lactate dehydrogenase (LDH)-catalyzed reaction by injecting HP (13)C-pyruvate into the subject, which is converted to (13)C labeled lactate by the enzyme. Parameters such as (13)C-lactate signals and lactate-to-pyruvate signal ratio are commonly used for analyzing the HP (13)C-NMR data. However, the biochemical/biological meaning of these parameters remains either unclear or dependent on experimental settings. It is preferable to quantify the reaction rate constants with a clearer physical meaning. Here we report the extraction of the kinetic parameters of the LDH reaction from HP (13)C-NMR data and investigate if they can be potential predictors of lung inflammation. Male Sprague-Dawley rats (12 controls, 14 treated) were used. One dose of bleomycin (2.5 U/kg) was administered intratracheally to the treatment group. The lungs were removed, perfused, and observed by the HP-NMR technique, where a HyperSense dynamic nuclear polarization system was used to generate the HP (13)C-pyruvate for injecting into the lungs. A 20 mm (1)H/(13)C dual-tuned coil in a 9.4-T Varian vertical bore NMR spectrometer was employed to acquire the (13)C spectral data every 1 s over a time period of 300 s using a non-selective, 15-degree radiofrequency pulse. The apparent rate constants of the LDH reaction and their ratio were quantified by applying ratiometric fitting analysis to the time series data of (13)C labeled pyruvate and lactate. The apparent forward rate constant kp =(3.67±3.31)×10(-4) s(-1), reverse rate constant kl =(4.95±2.90)×10(-2) s(-1), rate constant ratio kp /kl =(7.53±5.75)×10(-3) for the control lungs; kp =(11.71±4.35)×10(-4) s(-1), kl =(9.89±3.89)×10(-2) s(-1), and kp /kl =(12.39±4.18)×10(-3) for the inflamed lungs at the 7(th) day post treatment. Wilcoxon rank-sum test showed that the medians of these kinetic parameters of the 7-day cohort were significantly

  13. Reaction pathways of photoexcited retinal in proteorhodopsin studied by pump-dump-probe spectroscopy.

    Science.gov (United States)

    Rupenyan, Alisa; van Stokkum, Ivo H M; Arents, Jos C; van Grondelle, Rienk; Hellingwerf, Klaas J; Groot, Marie Louise

    2009-12-17

    Proteorhodopsin (pR) is a membrane-embedded proton pump from the microbial rhodopsin family. Light absorption by its retinal chromophore initiates a photocycle, driven by trans/cis isomerization on the femtosecond to picosecond time scales. Here, we report a study on the photoisomerization dynamics of the retinal chromophore of pR, using dispersed ultrafast pump-dump-probe spectroscopy. The application of a pump pulse initiates the photocycle, and with an appropriately tuned dump pulse applied at a time delay after the dump, the molecules in the initial stages of the photochemical process can be de-excited and driven back to the ground state. In this way, we were able to resolve an intermediate on the electronic ground state that represents chromophores that are unsuccessful in isomerization. In particular, the fractions of molecules that undergo slow isomerization (20 ps) have a high probability to enter this state rather than the isomerized K-state. On the ground state reaction surface, return to the stable ground state conformation via a structural or vibrational relaxation occurs in 2-3 ps. Inclusion of this intermediate in the kinetic scheme led to more consistent spectra of the retinal-excited state, and to a more accurate estimation of the quantum yield of isomerization (Phi = 0.4 at pH 6).

  14. Increased detectability of somatic changes in the DNA from human tumours after probing with "synthetic" and "genome-derived" hypervariable multilocus probes

    DEFF Research Database (Denmark)

    Lagoda, P J; Seitz, G; Epplen, J T

    1989-01-01

    intensities were observed. Together the probes 33.15 and (CAC)5/(GTG)5 detected deviating fingerprint patterns in 63% of the colorectal carcinomas investigated. In mammary and stomach carcinomas, only 1/11 and 2/11 tumours, respectively, showed differences with either of the three probes, 33.15, (GACA)4...

  15. The direct asymmetric vinylogous aldol reaction of furanones with α-ketoesters: Access to chiral γ-Butenolides and glycerol derivatives

    KAUST Repository

    Luo, Jie; Wang, Haifei; Han, Xiao; Xu, Liwen; Kwiatkowski, Jacek; Huang, Kuo-Wei; Lu, Yixin

    2011-01-01

    Twice as good: The title reaction using the tryptophan-derived bifunctional organic catalyst 1 has been developed. The reported method led to the synthesis of chiral γ-substituted butenolides in excellent yields, with high diastereo- and enantioselectivities. Facile synthesis of chiral glycerol derivatives containing a tertiary hydroxy group has also been demonstrated. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The direct asymmetric vinylogous aldol reaction of furanones with α-ketoesters: Access to chiral γ-Butenolides and glycerol derivatives

    KAUST Repository

    Luo, Jie

    2011-01-11

    Twice as good: The title reaction using the tryptophan-derived bifunctional organic catalyst 1 has been developed. The reported method led to the synthesis of chiral γ-substituted butenolides in excellent yields, with high diastereo- and enantioselectivities. Facile synthesis of chiral glycerol derivatives containing a tertiary hydroxy group has also been demonstrated. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Direct reactions and nuclear spectroscopy; forward into the 21st century

    International Nuclear Information System (INIS)

    Keeley, N.

    2006-01-01

    The use of direct reactions of the (d,p) (3He,d) etc. type in nuclear spectroscopy has a long history. The availability of beams of exotic nuclei has seen a resurgence of interest in the technique as a means of probing the structure of nuclei close to, or even beyond, the driplines. Analysis of these reactions to extract spectroscopic information has usually been performed with standard DWBA. However, while the DWBA is still useful, as it is based on first-order perturbation theory it should only be used where couplings are weak and proceed predominantly in a single step. Examples where either or both of these conditions are violated, with important consequences for the spectroscopic information extracted, are presented. Some of the sources of uncertainty that remain in the derived quantities are also discussed, along with possible means of reducing them

  18. Reaction between phenyl derivatives of lanthanides and carbonyl compounds

    International Nuclear Information System (INIS)

    Sigalov, A.B.; Petrov, Eh.S.; Rybakova, L.F.; Beletskaya, I.P.

    1983-01-01

    Reactions of PhLnI (Ln=Yb, Eu, Sm, Ce) with α, β-unsaturated ketons (trans-chalcone and benzalacetone) are considered as well as with 9-fluorene and benzophenone. The regioselectivity of the reaction of PhLnI addition to enones is compared with similar reactions of PhMgX and PhLi. The reaction between PhLnI and trans-chalcone proceeds regiospecifically as 1, 2-addition in contrast with reactions of PhMgI and PhLi. A new reaction of lanthanide carbinolate deoxygenation under the effect of reducers was found. The reaction product yields are presented

  19. Capacitance and effective area of flush monopole probes.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Johnson, William Arthur; Morris, Marvin E.; Basilio, Lorena I.; Lehr, Jane Marie; Higgins, Matthew B.

    2004-08-01

    Approximate formulas are constructed and numerical simulations are carried out for electric field derivative probes that have the form of flush mounted monopoles. Effects such as rounded edges are included. A method is introduced to make results from two-dimensional conformal mapping analyses accurately apply to the three-dimensional axisymmetric probe geometry

  20. Synthesis of sp3-rich scaffolds for molecular libraries through complexity-generating cascade reactions

    DEFF Research Database (Denmark)

    Flagstad, Thomas; Min, Geanna; Bonnet, K.

    2016-01-01

    An efficient strategy for the synthesis of complex small molecules from simple building blocks is presented. Key steps of the strategy include tandem Petasis and Diels–Alder reactions, and divergent complexity-generating cyclization cascades from a key dialdehyde intermediate. The methodology...

  1. Human atopic dermatitis skin-derived T cells can induce a reaction in mouse keratinocytes in vivo

    DEFF Research Database (Denmark)

    Martel, Britta C; Blom, Lars; Dyring-Andersen, Beatrice

    2015-01-01

    . In comparison, blood -derived in vitro differentiated Th2 cells only induced a weak response in a few of the mice. Thus, we conclude that human AD skin-derived T cells can induce a reaction in mouse skin through induction of a proliferative response in the mouse keratinocytes. This article is protected......In atopic dermatitis (AD), the inflammatory response between skin infiltrating T cells and keratinocytes is fundamental to the development of chronic lesional eczema. The aim of this study was to investigate whether skin-derived T cells from AD patients could induce an inflammatory response in mice...... through keratinocyte activation and consequently cause development of eczematous lesions. Punch biopsies of lesional skin from AD patients were used to establish skin-derived T cell cultures and which were transferred into NOD.Cg-Prkd(scid) Il2rg(tm1Sug) /JicTac (NOG) mice. We found that subcutaneous...

  2. Identifying members of the domain Archaea with rRNA-targeted oligonucleotide probes.

    OpenAIRE

    Burggraf, S; Mayer, T; Amann, R; Schadhauser, S; Woese, C R; Stetter, K O

    1994-01-01

    Two 16S rRNA-targeted oligonucleotide probes were designed for the archaeal kingdoms Euryachaeota and Crenarchaeota. Probe specificities were evaluated by nonradioactive dot blot hybridization against selected reference organisms. The successful application of fluorescent-probe derivatives for whole-cell hybridization required organism-specific optimizations of fixation and hybridization conditions to assure probe penetration and morphological integrity of the cells. The probes allowed prelim...

  3. Second-generation nanofiltered plasma-derived mannan-binding lectin product

    DEFF Research Database (Denmark)

    Laursen, I.; Houen, G.; Højrup, P.

    2007-01-01

    infections. Substitution therapy with plasma-derived MBL is a promising treatment of diseases associated with MBL deficiency. A first-generation MBL product has been shown to be safe and well tolerated, and patients have benefited from MBL treatment. Following is a description of the development...... of a nanofiltered second-generation MBL product from Cohn fraction III, with the use of a new affinity matrix for MBL purification and the characteristics of this improved product. MATERIALS AND METHODS: Carbohydrate-based gels were comparatively screened as affinity matrices. MBL was extracted from fraction III......, and affinity purified on a Superdex 200 pg column. The eluted material underwent two virus reduction steps: filtration through Planova 20N and solvent/detergent treatment. It was further purified by anion-exchange and gel-filtration chromatography. The affinity eluate and the final MBL fraction were...

  4. MOF-derived Cu/nanoporous carbon composite and its application for electro-catalysis of hydrogen evolution reaction

    International Nuclear Information System (INIS)

    Raoof, Jahan-Bakhsh; Hosseini, Sayed Reza; Ojani, Reza; Mandegarzad, Sakineh

    2015-01-01

    In this work, metal-organic framework Cu_3(BTC)_2 [BTC = 1,3,5-benzenetricarboxylate] (commonly known as MOF-199 or HKUST-1), is used as porous template for preparation of a Cu/nanoporous carbon composite. The MOF-derived Cu/nanoporous carbon composite (Cu/NPC composite) is synthesized by direct carbonization of the MOF-199 without any carbon precursor additive. The physical characterization of the solid catalyst is achieved by using a variety of different techniques, including XRD (X-ray powder diffraction), scanning electron microscopy, thermo-gravimetric analysis, and nitrogen physisorption measurements. The electrochemical results have shown that the Cu/NPC composite modified glassy carbon electrode (Cu/NPC/GCE) as a non-platinum electrocatalyst exhibited favorable catalytic activity for hydrogen evolution reaction, in spite of high resistance to faradic process. This behavior can be attributed to existence of Cu metal confirmed by XRD and/or high effective pore surface area (1025 m"2 g"−"1) in the Cu/NPC composite. The electron transfer coefficient and exchange current density for the Cu/NPC/GCE is calculated by Tafel plot at about 0.34 and 1.2 × 0"−"3 mAcm"−"2, respectively. - Graphical abstract: Metal organic framework-derived Cu/nanoporous carbon composite (Cu/NPC composite) was prepared by direct carbonization of MOF-199 without addition of any carbon source at 900 °C. The Cu/NPC/GCE demonstrated an excellent electrocatalytic activity towards hydrogen evolution reaction compared with bare GCE. - Highlights: • MDNPC (MOF-199 derived nanoporous carbon) is prepared by direct carbonization. • MOF-199 is utilized as a template without addition of carbon resource. • The MDNPC has a good electrocatalytic activity in hydrogen evolution reaction. • High BET surface area and hydrogen adsorption property improved catalyst activity.

  5. L-Threonine-derived novel bifunctional phosphine-sulfonamide catalyst-promoted enantioselective aza-morita-Baylis-Hillman reaction

    KAUST Repository

    Zhong, Fangrui

    2011-03-18

    A series of novel bifunctional phosphine-sulfonamide organic catalysts were designed and readily prepared from natural amino acids, and they were utilized to promote enantioselective aza-Morita-Baylis-Hillman (MBH) reactions. l-Threonine-derived phosphine-sulfonamide 9b was found to be the most efficient catalyst, affording the desired aza-MBH adducts in high yields and with excellent enantioselectivities. © 2011 American Chemical Society.

  6. “Turn-on” fluorescence probe integrated polymer nanoparticles for sensing biological thiol molecules

    Science.gov (United States)

    Ang, Chung Yen; Tan, Si Yu; Lu, Yunpeng; Bai, Linyi; Li, Menghuan; Li, Peizhou; Zhang, Quan; Selvan, Subramanian Tamil; Zhao, Yanli

    2014-11-01

    A ``turn-on'' thiol-responsive fluorescence probe was synthesized and integrated into polymeric nanoparticles for sensing intracellular thiols. There is a photo-induced electron transfer process in the off state of the probe, and this process is terminated upon the reaction with thiol compounds. Configuration interaction singles (CIS) calculation was performed to confirm the mechanism of this process. A series of sensing studies were carried out, showing that the probe-integrated nanoparticles were highly selective towards biological thiol compounds over non-thiolated amino acids. Kinetic studies were also performed to investigate the relative reaction rate between the probe and the thiolated amino acids. Subsequently, the Gibbs free energy of the reactions was explored by means of the electrochemical method. Finally, the detection system was employed for sensing intracellular thiols in cancer cells, and the sensing selectivity could be further enhanced with the use of a cancer cell-targeting ligand in the nanoparticles. This development paves a path for the sensing and detection of biological thiols, serving as a potential diagnostic tool in the future.

  7. Direct probe of dark energy through gravitational lensing effect

    Energy Technology Data Exchange (ETDEWEB)

    He, Hong-Jian [T. D. Lee Institute, and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang, Zhen, E-mail: hjhe@tsinghua.edu.cn, E-mail: zh.zhang@pku.edu.cn [Center for High Energy Physics, Peking University, Beijing 100871 (China)

    2017-08-01

    We show that gravitational lensing can provide a direct method to probe the nature of dark energy at astrophysical scales. For lensing system as an isolated astrophysical object, we derive the dark energy contribution to gravitational potential as a repulsive power-law term, containing a generic equation of state parameter w . We find that it generates w -dependent and position-dependent modification to the conventional light orbital equation of w =−1. With post-Newtonian approximation, we compute its direct effect for an isolated lensing system at astrophysical scales and find that the dark energy force can deflect the path of incident light rays. We demonstrate that the dark-energy-induced deflection angle Δα{sub DE}∝ M {sup (1+1/3} {sup w} {sup )} (with 1+1/3 w > 0), which increases with the lensing mass M and consistently approaches zero in the limit M → 0. This effect is distinctive because dark energy tends to diffuse the rays and generates concave lensing effect . This is in contrast to the conventional convex lensing effect caused by both visible and dark matter. Measuring such concave lensing effect can directly probe the existence and nature of dark energy. We estimate this effect and show that the current gravitational lensing experiments are sensitive to the direct probe of dark energy at astrophysical scales. For the special case w =−1, our independent study favors the previous works that the cosmological constant can affect light bending, but our prediction qualitatively and quantitatively differ from the literature, including our consistent realization of Δα{sub DE} → 0 (under 0 M → ) at the leading order.

  8. Metal phosphonate coordination networks and frameworks as precursors of electrocatalysts for the hydrogen and oxygen evolution reactions

    Science.gov (United States)

    Zhang, Rui; El-Refaei, Sayed M.; Russo, Patrícia A.; Pinna, Nicola

    2018-05-01

    The hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) play key roles in the conversion of energy derived from renewable energy sources into chemical energy. Efficient, robust, and inexpensive electrocatalysts are necessary for driving these reactions at high rates at low overpotentials and minimize energetic losses. Recently, electrocatalysts derived from hybrid metal phosphonate compounds have shown high activity for the HER or OER. We review here the utilization of metal phosphonate coordination networks and metal-organic frameworks as precursors/templates for transition-metal phosphides, phosphates, or oxyhydroxides generated in situ in alkaline solutions, and their electrocatalytic performance in HER or OER.

  9. Leishmania diagnostic and identification py using 32P labelled DNA probes

    International Nuclear Information System (INIS)

    Andrade, Antero Silva Ribeiro de; Melo, Maria Norma de

    1999-10-01

    P 32 labelled DNA probes are valious instruments for the parasitic diseases by using hybridization reaction. In this paper we describe the methodology and present the foundations for the radioactive probes production, based on the kinetoplast DNA (kDNA), for the Leishmania diagnostic an identification. We also describe the kDNA purification protocol from Leishmania reference cepa, the process of P 32 labelling of the kDNA by using the nick translation method, gathering, sample preparation and treatment, the optimum conditions for the hybridization reaction and the procedures for the autoradiography

  10. Reaction kinetics of resveratrol with thiyl and alkoxyl radicals

    International Nuclear Information System (INIS)

    Dzeba, I.; Mihaljevic, B.

    2011-01-01

    Complete text of publication follows. Plant derived resveratrol (trans-3,5,4'-trihydroxystilbene) possesses a broad spectrum of biological activities, one of them are very well known its antioxidative properties. Our work aims to provide kinetic data with regard to the reactivity of resveratrol with uninvestigated short-lived bioradicals, identified as mediators in oxidative lipid degradation processes. Radicals of our interest are alkoxyl radicals, well known propagators of the chain free radical reactions in lipids, and thiyl radicals which protect lipids from their degradation pathway, but at the same time cause the isomerization of the double bonds. In order to investigate these reactions of resveratrol laser flash photolysis was used. On the basis of competitive kinetics the rate constants were determined under pseudo-first order conditions in acetonitrile solutions at room temperature. Thiyl radicals were generated indirectly in solution containing 1-octadecanthiol and photosensitive benzophenone in acetonitrile using the light pulses at 347 nm from ruby laser. Tert-butoxyl radicals were generated directly by peroxide bond cleavage from di-tert-butyl peroxide in acetonitrile by light pulses of Nd:YAG at 355 nm, and ruby at 347 nm. Obtained rate constants for the reactions of resveratrol and radicals generated by laser flash photolysis will be summarized and compared with rare literature data for the rate constants of investigated reactions of resveratrol and other radicals generated by pulse radiolysis.

  11. Polymer-Derived Silicon Oxycarbide Ceramics as Promising Next-Generation Sustainable Thermoelectrics.

    Science.gov (United States)

    Kousaalya, Adhimoolam Bakthavachalam; Zeng, Xiaoyu; Karakaya, Mehmet; Tritt, Terry; Pilla, Srikanth; Rao, Apparao M

    2018-01-24

    We demonstrate the potential of polymer-derived ceramics (PDC) as next-generation sustainable thermoelectrics. Thermoelectric behavior of polymer-derived silicon oxycarbide (SiOC) ceramics (containing hexagonal boron nitride (h-BN) as filler) was studied as a function of measurement temperature. SiOC, sintered at 1300 °C exhibited invariant low thermal conductivity (∼1.5 W/(m·K)) over 30-600 °C, coupled with a small increase in both Seebeck coefficient and electrical conductivity, with increase in measurement temperature (30-150 °C). SiOC ceramics containing 1 wt % h-BN showed the highest Seebeck coefficient (-33 μV/K) for any PDC thus far.

  12. Synthesis of novel chromeno-annulated cis-fused pyrano[3,4-c]benzopyran and naphtho pyran derivatives via domino aldol-type/hetero Diels-Alder reaction and their cytotoxicity evaluation.

    Science.gov (United States)

    Madda, Jyothi; Venkatesham, Akkaladevi; Naveen Kumar, Bejjanki; Nagaiah, Kommu; Sujitha, Pombala; Ganesh Kumar, C; Rao, Tadikamalla Prabhakar; Jagadeesh Babu, Nanubolu

    2014-09-15

    New chromeno-annulated cis-fused pyrano[3,4-c]benzopyran and naphtho pyran derivatives have been synthesized by domino aldol-type reaction/hetero Diels-Alder reaction generated from o-quinone methide in situ from 7-O-prenyl derivatives of 8-formyl-2,3-disubstituted chromenones with resorcinols/naphthols in the presence of 20 mol% ethylenediamine diacetate (EDDA), triethylamine (2 mL) as co-catalyst in CH3CN under reflux conditions in good yields. The structures were established based on spectroscopic data, and further confirmed by X-ray diffraction analysis. The results showed that compounds 4h and 4j exhibited very potent cytotoxicity against human cervical cancer cell line (HeLa). Compound 4h displayed good inhibitory activity against both breast cancer cell lines, MDA-MB-231 and MCF-7. Further, the compound 4i exhibited good cytotoxicity against only MDA-MB-231, and compound 4j showed promising activity against human lung cancer cell line, A549 with IC50 value of 2.53±0.07 μM, which was comparable to the standard doxorubicin (IC50=1.21±0.1 μM). Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Use of a GDMS for high-energy reaction data

    International Nuclear Information System (INIS)

    Moorhead, W.G.

    1978-01-01

    At CERN, data on high-energy reactions is being compiled using a Generalized Data Management System. The GDMS is a stand-alone system designed for administrative and engineering applications. The Data Base at present contains about 20,000 cross-section values, each linked to a description of the corresponding reaction, and the publication from which the value was derived. The immediate objective is to produce the widely circulated Compilation Reports, and the standard Report Generator of the GDMS is being used for this. Direct retrieval is also possible

  14. All-fiber Raman Probe using Higher Order Modes

    DEFF Research Database (Denmark)

    Larsen, Stine Højer Møller; Rishøj, Lars Søgaard; Rottwitt, Karsten

    2013-01-01

    We demonstrate the first all-fiber Raman probe utilizing higher order modes for the excitation. The spectrum of cyclohexane is measured using both the fundamental mode as well as in-fiber-generated Bessel-like modes.......We demonstrate the first all-fiber Raman probe utilizing higher order modes for the excitation. The spectrum of cyclohexane is measured using both the fundamental mode as well as in-fiber-generated Bessel-like modes....

  15. Second-harmonic and sum-frequency generation for surface studies

    International Nuclear Information System (INIS)

    Hunt, J.H.; Guyot-Sionnest, P.; Shen, Y.R.

    1987-07-01

    Second harmonic generation (SHG) has now been well established as a versatile surface-sensitive probe. It has been used to study electrochemical processes at electrode surfaces, molecular adsorption and desorption at metal and semiconductor surfaces, orientational phase transition of molecular monolayers on water, surface reconstruction and epitaxial growth, and so on. More recently, it has been employed as a tool to monitor monolayer polymerization and other surface reactions, to probe polar order of molecules at interfaces, and to measure molecular nonlinearity. While most surface techniques are restricted to the solid/vacuum environment, SHG is applicable to nearly all interfaces as long as the interfaces are accessible by light. In addition, SHG has the advantages of being capable of in-situ measurements with high temporal, spatial, and spectral resolutions

  16. Increase of rutin antioxidant activity by generating Maillard reaction products with lysine.

    Science.gov (United States)

    Zhang, Ru; Zhang, Bian-Ling; He, Ting; Yi, Ting; Yang, Ji-Ping; He, Bin

    2016-06-01

    Rutin exists in medicinal herbs, fruits, vegetables, and a number of plant-derived sources. Dietary sources containing rutin are considered beneficial because of their potential protective roles in multiple diseases related to oxidative stresses. In the present study, the change and antioxidation activity of rutin in Maillard reaction with lysine through a heating process were investigated. There is release of glucose and rhamnose that interact with lysine to give Maillard reaction products (MRPs), while rutin is converted to less-polar quercetin and a small quantity of isoquercitrin. Because of their high cell-membrane permeability, the rutin-lysine MRPs increase the free radical-scavenging activity in HepG2 cells, showing cellular antioxidant activity against Cu(2+)-induced oxidative stress higher than that of rutin. Furthermore, the MRPs significantly increased the Cu/Zn SOD (superoxide dismutase) activity and Cu/Zn SOD gene expression of HepG2 cells, consequently enhancing antioxidation activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Palladium-Catalyzed Carbenylative Cross-Coupling and Carbenylative Amination Utilizing Vinylcarbenes

    OpenAIRE

    Agee, Christopher

    2017-01-01

    This work focuses on the use of N-tosylhydrazones derived from α,β-unsaturated aldehydes – precursors to vinylcarbene ligands – in palladium-catalyzed carbenylative cross-coupling and carbenylative amination reactions. These carbenylative reactions were used to form η3-allylpalladium intermediates that generate stereogenic centers at the carbene center. An initial acyclic model system was used to intercept a well-known prochiral 1,3-diphenylallyl intermediate to probe the feasibility of enant...

  18. Transmit-receive eddy current probes

    International Nuclear Information System (INIS)

    Obrutsky, L.S.; Sullivan, S.P.; Cecco, V.S.

    1997-01-01

    In the last two decades, due to increased inspection demands, eddy current instrumentation has advanced from single-frequency, single-output instruments to multifrequency, computer-aided systems. This has significantly increased the scope of eddy current testing, but, unfortunately, it has also increased the cost and complexity of inspections. In addition, this approach has not always improved defect detectability or signal-to-noise. Most eddy current testing applications are still performed with impedance probes, which have well known limitations. However, recent research at AECL has led to improved eddy current inspections through the design and development of transmit-receive (T/R) probes. T/R eddy current probes, with laterally displaced transmit and receive coils, present a number of advantages over impedance probes. They have improved signal-to-noise ratio in the presence of variable lift-off compared to impedance probes. They have strong directional properties, permitting probe optimization for circumferential or axial crack detection, and possess good phase discrimination to surface defects. They can significantly increase the scope of eddy current testing permitting reliable detection and sizing of cracks in heat exchanger tubing as well as in welded areas of both ferritic and non-ferromagnetic components. This presentation will describe the operating principles of T/R probes with the help of computer-derived normalized voltage diagrams. We will discuss their directional properties and analyze the advantages of using single and multiple T/R probes over impedance probes for specific inspection cases. Current applications to surface and tube testing and some typical inspection results will be described. (author)

  19. Standard Gibbs free energies of reactions of ozone with free radicals in aqueous solution: quantum-chemical calculations.

    Science.gov (United States)

    Naumov, Sergej; von Sonntag, Clemens

    2011-11-01

    Free radicals are common intermediates in the chemistry of ozone in aqueous solution. Their reactions with ozone have been probed by calculating the standard Gibbs free energies of such reactions using density functional theory (Jaguar 7.6 program). O(2) reacts fast and irreversibly only with simple carbon-centered radicals. In contrast, ozone also reacts irreversibly with conjugated carbon-centered radicals such as bisallylic (hydroxycylohexadienyl) radicals, with conjugated carbon/oxygen-centered radicals such as phenoxyl radicals, and even with nitrogen- oxygen-, sulfur-, and halogen-centered radicals. In these reactions, further ozone-reactive radicals are generated. Chain reactions may destroy ozone without giving rise to products other than O(2). This may be of importance when ozonation is used in pollution control, and reactions of free radicals with ozone have to be taken into account in modeling such processes.

  20. Scanning probes for new energy materials: probing local structure and function

    NARCIS (Netherlands)

    Balke, N.; Bonnell, D.; Ginger, D.S.; Kemerink, M.

    2012-01-01

    The design and control of materials properties, often at the nanoscale, are the foundation of many new strategies for energy generation, storage, and efficiency. Scanning probe microscopy (SPM) has evolved into a very large toolbox for the characterization of properties spanning size scales from

  1. A flavone-based turn-on fluorescent probe for intracellular cysteine/homocysteine sensing with high selectivity.

    Science.gov (United States)

    Zhang, Jian; Lv, Yanlin; Zhang, Wei; Ding, Hui; Liu, Rongji; Zhao, Yongsheng; Zhang, Guangjin; Tian, Zhiyuan

    2016-01-01

    A new type of flavone-based fluorescent probe (DMAF) capable of cysteine (Cys)/homocysteine (Hcy) sensing with high selectivity over other amino acids was developed. Such type of probe undergoes Cys/Hcy-mediated cyclization reaction with the involvement of its aldehyde group, which suppresses of the photoinduced electron transfer (PET) process of the probe molecule and consequently leads to the enhancement of fluorescence emission upon excitation using visible light. The formation of product of the Cys/Hcy-mediated cyclization reaction was confirmed and the preliminary fluorescence imaging experiments revealed the biocompatibility of the as-prepared probe and validated its practicability for intracellular Cys/Hcy sensing. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Qualification Practices in Nuclear Industry: Steam Generator Eddy Current Probe Qualification

    International Nuclear Information System (INIS)

    Vavrous, M.; Gracin, R.

    2010-01-01

    Through history of nuclear power plant operation, a large number of nuclear power plant forced outages related to tube failures occurred. It resulted with large amount of repair and outage costs, what initiated implementation of regulated practice of periodical tube examination and tube condition monitoring. Purpose of examinations is to detect existing or potential tube degradations that could affect tube integrity and therefore result in forced outages and unwanted costs related to emergency repair activities and loss of ability for electrical power production. With increased examination activities, additional information about steam generator tube condition became available and additional methods for ensuring tube integrity became available. As the number of examination solutions increased, need for validation and assessment of examination methods occurred. For that purpose, a large number of standards and guidelines with its requirements were implemented in nuclear industry regulatory requirements to ensure that adequately validated examinations are applied. With this purpose, qualification requirements for inspection activities were implemented with other requirements. With progress of technology, progress was also achieved in examination methods and more advanced examination methods and advanced inspection systems were developed. This advancement is accompanied by advancement in regulatory requirements regarding inspection and monitoring of tube integrity and condition. Ultimate goal of implementation of qualification processes and its requirements in all aspects of nuclear industry is to achieve minimal rate of forced outages, which would ensure maximum electrical power production capabilities and maximum optimization of operational costs while maintaining safe operation in accordance with environmental policies. This article will focus on qualification of steam generator eddy current bobbin probe.(author).

  3. A review on mechanical considerations for chronically-implanted neural probes

    Science.gov (United States)

    Lecomte, Aziliz; Descamps, Emeline; Bergaud, Christian

    2018-06-01

    This review intends to present a comprehensive analysis of the mechanical considerations for chronically-implanted neural probes. Failure of neural electrical recordings or stimulation over time has shown to arise from foreign body reaction and device material stability. It seems that devices that match most closely with the mechanical properties of the brain would be more likely to reduce the mechanical stress at the probe/tissue interface, thus improving body acceptance. The use of low Young’s modulus polymers instead of hard substrates is one way to enhance this mechanical mimetism, though compliance can be achieved through a variety of means. The reduction of probe width and thickness in comparison to a designated length, the use of soft hydrogel coatings and the release in device tethering to the skull, can also improve device compliance. Paradoxically, the more compliant the device, the more likely it will fail during the insertion process in the brain. Strategies have multiplied this past decade to offer partial or temporary stiffness to the device to overcome this buckling effect. A detailed description of the probe insertion mechanisms is provided to analyze potential sources of implantation failure and the need for a mechanically-enhancing structure. This leads us to present an overview of the strategies that have been put in place over the last ten years to overcome buckling issues. Particularly, great emphasis is put on bioresorbable polymers and their assessment for neural applications. Finally, a discussion is provided on some of the key features for the design of mechanically-reliable, polymer-based next generation of chronic neuroprosthetic devices.

  4. Generation of a transplantable erythropoietin-producer derived from human mesenchymal stem cells.

    Science.gov (United States)

    Yokoo, Takashi; Fukui, Akira; Matsumoto, Kei; Ohashi, Toya; Sado, Yoshikazu; Suzuki, Hideaki; Kawamura, Tetsuya; Okabe, Masataka; Hosoya, Tatsuo; Kobayashi, Eiji

    2008-06-15

    Differentiation of autologous stem cells into functional transplantable tissue for organ regeneration is a promising regenerative therapeutic approach for cancer, diabetes, and many human diseases. Yet to be established, however, is differentiation into tissue capable of producing erythropoietin (EPO), which has a critical function in anemia. We report a novel EPO-producing organ-like structure (organoid) derived from human mesenchymal stem cells. Using our previously established relay culture system, a human mesenchymal stem cell-derived, human EPO-competent organoid was established in rat omentum. The organoid-derived levels of human EPO increased in response to anemia induced by rapid blood withdrawal. In addition, the presence of an organoid in rats suppressed for native (rat) EPO production enhanced recovery from anemia when compared with control animals lacking the organoid. Together these results confirmed the generation of a stem cell-derived organoid that is capable of producing EPO and sensitive to physiological regulation.

  5. Schreibersite: an effective catalyst in the formose reaction network

    Science.gov (United States)

    Pallmann, S.; Šteflová (neé Svobodová, J.; Haas, M.; Lamour, S.; Henß, A.; Trapp, O.

    2018-05-01

    We report on the ability of the meteoritic material schreibersite to catalyze the generation of higher sugars from simple carbohydrates in the formose reaction network. Since the analysis of carbonaceous meteorites like the Murchison meteorite it has become generally accepted that a substantial amount of organic material has been delivered to the early earth and, therefore, ought to be considered in scenarios for the origin(s) of life. Also for the open question of accessible phosphorus sources, an extraterrestrial material called schreibersite has been identified that is capable of releasing soluble and reactive phosphorus oxyanions that would react with organics to form for instance nucleotides and membrane associated molecules. We have reinvestigated this material using capillary electrophoresis to monitor its corrosion process in water and probed its ability to phosphorylate a wide range of organics. Although showing a poor reactivity of schreibersite, we have found that the material catalyzes the aldol reaction of small carbohydrates forming larger sugar molecules. This reaction in the formose reaction network is a prebiotically likely route to biologically relevant sugars. The results of our study present one of the first instances of connecting extraterrestrial material to prebiotic chemistry on the early earth.

  6. Test results of sodium-water reaction testing in near prototypical LMR steam generator

    International Nuclear Information System (INIS)

    Boardman, C.E.; Hui, M.; Neely, H.H.

    1990-01-01

    An extensive test program has been performed in the United States to investigate the effects of large sodium-water reaction events in LMFBR steam generators. Tests were conducted in the Large Leak Test Rig (LLTR) located at the Energy Technology Engineering Center (ETEC). The program was divided into two phases, Series I and Series II, for the purpose of satisfying near-term and long-term needs. Series II was further subdivided into large and intermediate leak tests. This paper will emphasize the Series II intermediate leak tests and resulting conclusions for steam generator design and operation. 11 figs, 2 tabs

  7. Laser wakefield generated X-ray probe for femtosecond time-resolved measurements of ionization states of warm dense aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Mo, M. Z.; Chen, Z.; Tsui, Y. Y.; Fedosejevs, R. [Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada); Fourmaux, S.; Saraf, A.; Otani, K.; Kieffer, J. C. [INRS-EMT, Université du Québec, 1650 Lionel Boulet, Varennes, Québec J3X 1S2 (Canada); Ng, A. [Department of Physics and Astronomy, University of British Columbia, British Columbia V6T 1Z1 (Canada)

    2013-12-15

    We have developed a laser wakefield generated X-ray probe to directly measure the temporal evolution of the ionization states in warm dense aluminum by means of absorption spectroscopy. As a promising alternative to the free electron excited X-ray sources, Betatron X-ray radiation, with femtosecond pulse duration, provides a new technique to diagnose femtosecond to picosecond transitions in the atomic structure. The X-ray probe system consists of an adjustable Kirkpatrick-Baez (KB) microscope for focusing the Betatron emission to a small probe spot on the sample being measured, and a flat Potassium Acid Phthalate Bragg crystal spectrometer to measure the transmitted X-ray spectrum in the region of the aluminum K-edge absorption lines. An X-ray focal spot size of around 50 μm was achieved after reflection from the platinum-coated 10-cm-long KB microscope mirrors. Shot to shot positioning stability of the Betatron radiation was measured resulting in an rms shot to shot variation in spatial pointing on the sample of 16 μm. The entire probe setup had a spectral resolution of ∼1.5 eV, a detection bandwidth of ∼24 eV, and an overall photon throughput efficiency of the order of 10{sup −5}. Approximately 10 photons were detected by the X-ray CCD per laser shot within the spectrally resolved detection band. Thus, it is expected that hundreds of shots will be required per absorption spectrum to clearly observe the K-shell absorption features expected from the ionization states of the warm dense aluminum.

  8. Ground Reaction Forces Generated During Rhythmical Squats as a Dynamic Loads of the Structure

    Science.gov (United States)

    Pantak, Marek

    2017-10-01

    Dynamic forces generated by moving persons can lead to excessive vibration of the long span, slender and lightweight structure such as floors, stairs, stadium stands and footbridges. These dynamic forces are generated during walking, running, jumping and rhythmical body swaying in vertical or horizontal direction etc. In the paper the mathematical models of the Ground Reaction Forces (GRFs) generated during squats have been presented. Elaborated models was compared to the GRFs measured during laboratory tests carried out by author in wide range of frequency using force platform. Moreover, the GRFs models were evaluated during dynamic numerical analyses and dynamic field tests of the exemplary structure (steel footbridge).

  9. Reaction pathways of biomass-derived oxygenates on noble metal surfaces

    Science.gov (United States)

    McManus, Jesse R.

    As the global demand for energy continues to rise, the environmental concerns associated with increased fossil fuel consumption have motivated the use of biomass as an alternative, carbon-renewable energy feedstock. Controlling reactive chemistry of the sugars that comprise biomass through the use of catalysis becomes essential in effectively producing green fuels and value-added chemicals. Recent work on biomass conversion catalysts have demonstrated the efficacy of noble metal catalyst systems for the reforming of biomass to hydrogen fuel, and the hydrodeoxygenation of biomass-derived compounds to value-added chemicals. In particular, Pt and Pd surfaces have shown considerable promise as reforming catalysts in preliminary aqueous phase reforming studies. It becomes important to understand the mechanisms by which these molecules react on the catalyst surfaces in order to determine structure-activity relationships and bond scission energetics as to provide a framework for engineering more active and selective catalysts. Fundamental surface science techniques provide the tools to do this; however, work in this field has been so far limited to simple model molecules like ethanol and ethylene glycol. Herein, temperature programmed desorption and high resolution electron energy loss spectroscopy are utilized in an ultra-high vacuum surface science study of the biomass-derived sugar glucose on Pt and Pd single crystal catalysts. Overall, it was determined that the aldehyde function of a ring-open glucose molecule plays an integral part in the initial bonding and reforming reaction pathway, pointing to the use of aldoses glycolaldehyde and glyceraldehyde as the most appropriate model compounds for future studies. Furthermore, the addition of adatom Zn to a Pt(111) surface was found to significantly decrease the C-H and C-C bond scission activity in aldehyde containing compounds, resulting in a preferred deoxygenation pathway in opposition to the decarbonylation pathway

  10. MCR III. Multicomponent reactions and their libraries, a new type of organic chemistry of the isocyanides and phosphorus derivatives

    NARCIS (Netherlands)

    Chattopadhyaya, J.; Domling, A.; Lorenz, K.; Richter, W.; Ugi, I.; Werner, B.

    1997-01-01

    Various new one-pot multicomponent reactions (MCRs) of C(II) and P(III) derivatives and their libraries are described here. The preparation of some nucleobase- and phospholipid compound libraries by MCRs have been carried out.

  11. ZIF-67 incorporated with carbon derived from pomelo peels: A highly efficient bifunctional catalyst for oxygen reduction/evolution reactions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao; Yin, Feng-Xiang; Chen, Biao-Hua; He, Xiao-Bo; Lv, Peng-Liang; Ye, Cai-Yun; Liu, Di-Jia

    2017-05-01

    Developing carbon catalyst materials using natural, abundant and renewable resources as precursors plays an increasingly important role in clean energy generation and environmental protection. In this work, N-doped pomelo-peel-derived carbon (NPC) materials were prepared using a widely available food waste-pomelo peels and melamine. The synthetic NPC exhibits well-defined porosities and a highly doped-N content (e.g. 6.38 at% for NPC-2), therefore affords excellent oxygen reduction reaction (ORR) catalytic activities in alkaline electrolytes. NPC was further integrated with ZIF-67 to form ZIF-67@NPC hybrids through solvothermal reactions. The hybrid catalysts show substantially enhanced ORR catalytic activities comparable to that of commercial 20 wa Pt/C. Furthermore, the catalysts also exhibit excellent oxygen evolution reaction (OER) catalytic activities. Among all prepared ZIF-67@NPC hybrids, the optimal composition with ZIF-67 to NPC ratio of 2:1 exhibits the best ORR and OER bifunctional catalytic performance and the smallest Delta E (E-OER@10 mA cm(-2)-E-ORR@-1 mA cm(-2)) value of 0.79 V. The catalyst also demonstrated desirable 4-electron transfer pathways and superior catalytic stabilities. The Co-N-4 in ZIF-67, electrochemical active surface area, and the strong interactions between ZIF-67 and NPC are attributed as the main contributors to the bifunctional catalytic activities. These factors act synergistically, resulting in substantially enhanced bifunctional catalytic activities and stabilities; consequently, this hybrid catalyst is among the best of the reported bifunctional electrocatalysts and is promising for use in metal-air batteries and fuel cells. (C) 2016 Elsevier B.V. All rights reserved.

  12. Probe molecule studies: Active species in alcohol synthesis. Final report, July 1993--July 1994

    Energy Technology Data Exchange (ETDEWEB)

    Blackmond, D.G.; Wender, I.; Oukaci, R.; Wang, Jian

    1994-07-01

    The objectives of this project are to investigate the role(s) of cobalt and copper in constructing the active sites for the formation of higher alcohols from CO/H{sub 2} over the Co-Cu based catalysts by using different reduction treatments and applying selected characterization tools such as TPR, TPD, XRD and XPS as well as to generate mechanistic information on the reaction pathway(s) and key intermediate(s) of higher alcohol synthesis from CO/H{sub 2} over Co-Cu/ZnO catalysts by the approach of in-situ addition of a probe molecule (nitromethane).

  13. Probing nuclei with high-energy hadronic reactions

    International Nuclear Information System (INIS)

    Moss, J.M.

    1995-01-01

    I review the subject of hadron-nucleus collisions at energies where peturbative theory is applicable. Reactions studied experimentally at the Fermilab Tevatron and CERN's Super Proton Synchrotron include the Drell-Yan Process, direct photon production, quarkonium production, and open charm production. I conclude with an observation about a new era of proton-nucleus and nucleus-nucleus experiments which will be carried out at the hadron colliders, RHIC and LHC

  14. A straightforward approach towards combined α-amino and α-hydroxy acids based on Passerini reactions

    Directory of Open Access Journals (Sweden)

    Ameer F. Zahoor

    2011-09-01

    Full Text Available Complex amino acids with an α-acyloxycarbonyl functionality in the side chain are easily available through epoxide opening by chelated enolates and subsequent oxidation/Passerini reaction. This protocol works with both, aldehyde and ketone intermediates, as long as the ketones are activated by electron-withdrawing groups. In principle Ugi reactions are also possible, allowing the generation of diamino acid derivatives.

  15. Investigations of Probe Induced Perturbations in a Hall Thruster

    International Nuclear Information System (INIS)

    D. Staack; Y. Raitses; N.J. Fisch

    2002-01-01

    An electrostatic probe used to measure spatial plasma parameters in a Hall thruster generates perturbations of the plasma. These perturbations are examined by varying the probe material, penetration distance, residence time, and the nominal thruster conditions. The study leads us to recommendations for probe design and thruster operating conditions to reduce discharge perturbations, including metal shielding of the probe insulator and operation of the thruster at lower densities

  16. Probing the Energy Transfer Dynamics of Photosynthetic Reaction Center Complexes Through Hole-Burning and Single-Complex Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Kerry Joseph [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Photosynthesis is the process by which light energy is used to drive reactions that generate sugars to supply energy for cellular processes. It is one of the most important fundamental biological reactions and occurs in both prokaryotic (e.g. bacteria) and eukaryotic (e.g. plants and algae) organisms. Photosynthesis is also remarkably intricate, requiring the coordination of many different steps and reactions in order to successfully transform absorbed solar energy into a biochemical usable form of energy. However, the net reaction for all photosynthetic organisms can be reduced to the following, deceptively general, equation developed by Van Niel[1] H2 - D + Aimplieshv A - H2 + D where H2-D is the electron donor, e.g. H2O, H2S. A is the electron acceptor, e.g. CO2, and A-H2 is the synthesized sugar. Amazingly, this simple net equation is responsible for creating the oxidizing atmosphere of Earth and the recycling of CO2, both of which are necessary for the sustainment of the global ecosystem.

  17. Self-Plasticization of PVC via click reaction of a monooctyl phthalate derivative

    Directory of Open Access Journals (Sweden)

    Jia Puyou

    2017-09-01

    Full Text Available Modified PVC (M-PVC material with suppressed migration and low glass transition temperature was prepared via click reaction of a monooctyl phthalate derivative. Chemical structure and composition of M-PVC were characterized by FT-IR, 1H NMR and element analysis. Thermal stability, glass transition temperature and migration stability of M-PVC were studied with TGA, DSC and migration tests, respectively. The study showed that M-PVC exhibited poor thermal stability, and low glass transition temperature of 66.0°C. No migration was found in distilled water, 10% (v/v ethanol, 30% (w/vacetic acid and petroleum ether. The PVC material is expected to preparing PVC products in the areas with high migration resistance requirement.

  18. Analysis of reaction schemes using maximum rates of constituent steps

    Science.gov (United States)

    Motagamwala, Ali Hussain; Dumesic, James A.

    2016-01-01

    We show that the steady-state kinetics of a chemical reaction can be analyzed analytically in terms of proposed reaction schemes composed of series of steps with stoichiometric numbers equal to unity by calculating the maximum rates of the constituent steps, rmax,i, assuming that all of the remaining steps are quasi-equilibrated. Analytical expressions can be derived in terms of rmax,i to calculate degrees of rate control for each step to determine the extent to which each step controls the rate of the overall stoichiometric reaction. The values of rmax,i can be used to predict the rate of the overall stoichiometric reaction, making it possible to estimate the observed reaction kinetics. This approach can be used for catalytic reactions to identify transition states and adsorbed species that are important in controlling catalyst performance, such that detailed calculations using electronic structure calculations (e.g., density functional theory) can be carried out for these species, whereas more approximate methods (e.g., scaling relations) are used for the remaining species. This approach to assess the feasibility of proposed reaction schemes is exact for reaction schemes where the stoichiometric coefficients of the constituent steps are equal to unity and the most abundant adsorbed species are in quasi-equilibrium with the gas phase and can be used in an approximate manner to probe the performance of more general reaction schemes, followed by more detailed analyses using full microkinetic models to determine the surface coverages by adsorbed species and the degrees of rate control of the elementary steps. PMID:27162366

  19. Micropipette force probe to quantify single-cell force generation: application to T-cell activation.

    Science.gov (United States)

    Sawicka, Anna; Babataheri, Avin; Dogniaux, Stéphanie; Barakat, Abdul I; Gonzalez-Rodriguez, David; Hivroz, Claire; Husson, Julien

    2017-11-07

    In response to engagement of surface molecules, cells generate active forces that regulate many cellular processes. Developing tools that permit gathering mechanical and morphological information on these forces is of the utmost importance. Here we describe a new technique, the micropipette force probe, that uses a micropipette as a flexible cantilever that can aspirate at its tip a bead that is coated with molecules of interest and is brought in contact with the cell. This technique simultaneously allows tracking the resulting changes in cell morphology and mechanics as well as measuring the forces generated by the cell. To illustrate the power of this technique, we applied it to the study of human primary T lymphocytes (T-cells). It allowed the fine monitoring of pushing and pulling forces generated by T-cells in response to various activating antibodies and bending stiffness of the micropipette. We further dissected the sequence of mechanical and morphological events occurring during T-cell activation to model force generation and to reveal heterogeneity in the cell population studied. We also report the first measurement of the changes in Young's modulus of T-cells during their activation, showing that T-cells stiffen within the first minutes of the activation process. © 2017 Sawicka et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. Effective nucleus-nucleus potentials derived from the generator coordinate method

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, H; Canto, L F [Oxford Univ. (UK). Dept. of Theoretical Physics

    1977-11-07

    The equivalence of the generator coordinate method (GCM) and the resonating group method (RGM) and the formal equivalence of the RGM and the orthogonality condition model (OCM) lead to a relation connecting the effective nucleus-nucleus potentials of the OCM with matrix elements of the GCM. This relation may be used to derive effective nucleus-nucleus potentials directly from GCM matrix elements without explicit reference to the potentials of the RGM. In a first application local and l-independent effective potentials are derived from diagonal GCM matrix elements which represent the energy surfaces of a two-centre shell model. Using these potentials the OCM can reproduce the results of a full RGM calculation very well for the elastic scattering of two ..cap alpha..-particles and fairly well for elastic /sup 16/O-/sup 16/O scattering.

  1. Cheap but accurate calculation of chemical reaction rate constants from ab initio data, via system-specific, black-box force fields.

    Science.gov (United States)

    Steffen, Julien; Hartke, Bernd

    2017-10-28

    Building on the recently published quantum-mechanically derived force field (QMDFF) and its empirical valence bond extension, EVB-QMDFF, it is now possible to generate a reliable potential energy surface for any given elementary reaction step in an essentially black box manner. This requires a limited and pre-defined set of reference data near the reaction path and generates an accurate approximation of the reference potential energy surface, on and off the reaction path. This intermediate representation can be used to generate reaction rate data, with far better accuracy and reliability than with traditional approaches based on transition state theory (TST) or variational extensions thereof (VTST), even if those include sophisticated tunneling corrections. However, the additional expense at the reference level remains very modest. We demonstrate all this for three arbitrarily chosen example reactions.

  2. Evaluation of next generation biomass derived fuels for the transport sector

    International Nuclear Information System (INIS)

    Tsita, Katerina G.; Pilavachi, Petros A.

    2013-01-01

    This paper evaluates next generation biomass derived fuels for the transport sector, employing the Analytic Hierarchy Process. Eight different alternatives of fuels are considered in this paper: bio-hydrogen, bio-synthetic natural gas, bio-dimethyl ether, bio-methanol, hydro thermal upgrading diesel, bio-ethanol, algal biofuel and electricity from biomass incineration. The evaluation of alternative fuels is performed according to various criteria that include economic, technical, social and policy aspects. In order to evaluate each alternative fuel, one base scenario and five alternative scenarios with different weight factors selection per criterion are presented. After deciding the alternative fuels’ scoring against each criterion and the criteria weights, their synthesis gives the overall score and ranking for all alternative scenarios. It is concluded that synthetic natural gas and electricity from biomass incineration are the most suitable next generation biomass derived fuels for the transport sector. -- Highlights: •Eight alternative fuels for the transport sector have been evaluated. •The method of the AHP was used. •The evaluation is performed according to economic, technical, social and policy criteria. •Bio-SNG and electricity from biomass incineration are the most suitable fuels

  3. DNA damage and radical reactions: Mechanistic aspects, formation in cells and repair studies

    International Nuclear Information System (INIS)

    Cadet, J.; Ravanat, J.L.; Carell, T.; Cellai, L.; Chatgilialoglu, Ch.; Gimisis, Th.; Miranda, M.; O'Neill, P.; Robert, M.

    2008-01-01

    Several examples of oxidative and reductive reactions of DNA components that lead to single and tandem modifications are discussed in this review. These include nucleophilic addition reactions of the one-electron oxidation-mediated guanine radical cation and the one-electron reduced intermediate of 8-bromo-purine 2'-de-oxy-ribo-nucleosides that give rise to either an oxidizing guanine radical or related 5',8-cyclo-purine nucleosides. In addition, mechanistic insights into the reductive pathways involved in the photolyase induced reversal of cyclo-buta-cli-pyrimidine and pyrimidine (6-4) pyrimidone photoproducts are provided. Evidence for the occurrence and validation in cellular DNA of (OH) · radical degradation pathways of guanine that have been established in model systems has been gained from the accurate measurement of degradation products. Relevant information on biochemical aspects of the repair of single and clustered oxidatively generated damage to DNA has been gained from detailed investigations that rely on the synthesis of suitable modified probes. Thus the preparation of stable carbocyclic derivatives of purine nucleoside containing defined sequence oligonucleotides has allowed detailed crystallographic studies of the recognition step of the base damage by enzymes implicated in the base excision repair (BER) pathway. Detailed insights are provided on the BER processing of non-double strand break bi-stranded clustered damage that may consist of base lesions, a single strand break or abasic sites and represent one of the main deleterious classes of radiation-induced DNA damage. (authors)

  4. Probing properties of neutron stars with terrestrial nuclear reactions

    International Nuclear Information System (INIS)

    Li Baoan; Chen Liewen; Ko, C.M.; Steiner, Andrew W.; Yong Gaochan

    2006-01-01

    Heavy-ion reactions induced by neutron-rich nuclei provide the unique opportunity in terrestrial laboratories to constrain the nuclear symmetry energy Esym in a broad density range. A conservative constraint, 32(ρ/ρ0)0.7 < Esym(ρ) < 32(ρ/ρ0)1.1, around the nuclear matter saturation density ρ0 has recently been obtained from analyzing the isospin diffusion data within a transport model for intermediate energy heavy-ion reactions. This subsequently puts a stringent constraint on properties of neutron stars, especially their radii and cooling mechanisms

  5. Angular response of hot wire probes

    International Nuclear Information System (INIS)

    Di Mare, L; Jelly, T O; Day, I J

    2017-01-01

    A new equation for the convective heat loss from the sensor of a hot-wire probe is derived which accounts for both the potential and the viscous parts of the flow past the prongs. The convective heat loss from the sensor is related to the far-field velocity by an expression containing a term representing the potential flow around the prongs, and a term representing their viscous effect. This latter term is absent in the response equations available in the literature but is essential in representing some features of the observed response of miniature hot-wire probes. The response equation contains only four parameters but it can reproduce, with great accuracy, the behaviour of commonly used single-wire probes. The response equation simplifies the calibration the angular response of rotated slanted hot-wire probes: only standard King’s law parameters and a Reynolds-dependent drag coefficient need to be determined. (paper)

  6. Experimental and theoretical investigations on safety of the SNR - straight-tube design steam generator with sodium-water reactions

    International Nuclear Information System (INIS)

    Dumm, K.; Sauermann, F.; Schnitker, W.; Welter, A.

    A number of large sodium-water reaction tests has been performed in a steam generator model in order to verify the layout criteria of the SNR straight-tube design steam generators under accident conditions. The experimental setup is described. The test results and their applicability to the SNR steam generators are given and discussed. (U.S.)

  7. MOF derived Ni/Co/NC catalysts with enhanced properties for oxygen evolution reaction

    Science.gov (United States)

    Hu, Jiapeng; Chen, Juan; Lin, Hao; Liu, Ruilai; Yang, Xiaobing

    2018-03-01

    Designing efficient electrocatalysts for oxygen evolution reaction (OER) is very important for renewable energy storage and conversion devices. In this paper, we introduced a new strategy to synthesize Ni doped Co/NC catalysts (NC is the abbreviation of nitrogen-doped graphitic carbon), which were derived from ZIF-67. All catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and oxygen evolution reaction (OER). The results show that Ni was well doped in the Ni/Co/NC catalysts and the doping of Ni has great influence on the OER activity of Ni/Co/NC catalysts. Among these catalysts, 0.50Ni/Co/NC exhibits the highest OER activity. The onset potential of 0.50Ni/Co/NC is 1.47 V, which is superior than the onset potential of Co/NC (1.54 V), 0.25Ni/Co/NC (1.48 V), 1.00Ni/Co/NC (1.53 V). The excellent OER activity of 0.50Ni/Co/NC catalyst makes its potential to be used on renewable energy storage.

  8. Second harmonic generation and sum frequency generation

    International Nuclear Information System (INIS)

    Pellin, M.J.; Biwer, B.M.; Schauer, M.W.; Frye, J.M.; Gruen, D.M.

    1990-01-01

    Second harmonic generation and sum frequency generation are increasingly being used as in situ surface probes. These techniques are coherent and inherently surface sensitive by the nature of the mediums response to intense laser light. Here we will review these two techniques using aqueous corrosion as an example problem. Aqueous corrosion of technologically important materials such as Fe, Ni and Cr proceeds from a reduced metal surface with layer by layer growth of oxide films mitigated by compositional changes in the chemical makeup of the growing film. Passivation of the metal surface is achieved after growth of only a few tens of atomic layers of metal oxide. Surface Second Harmonic Generation and a related nonlinear laser technique, Sum Frequency Generation have demonstrated an ability to probe the surface composition of growing films even in the presence of aqueous solutions. 96 refs., 4 figs

  9. Identifying members of the domain Archaea with rRNA-targeted oligonucleotide probes.

    Science.gov (United States)

    Burggraf, S; Mayer, T; Amann, R; Schadhauser, S; Woese, C R; Stetter, K O

    1994-09-01

    Two 16S rRNA-targeted oligonucleotide probes were designed for the archaeal kingdoms Euryachaeota and Crenarchaeota. Probe specificities were evaluated by nonradioactive dot blot hybridization against selected reference organisms. The successful application of fluorescent-probe derivatives for whole-cell hybridization required organism-specific optimizations of fixation and hybridization conditions to assure probe penetration and morphological integrity of the cells. The probes allowed preliminary grouping of three new hyperthermophilic isolates. Together with other group-specific rRNA-targeted oligonucleotide probes, these probes will facilitate rapid in situ monitoring of the populations present in hydrothermal systems and support cultivation attempts.

  10. Human MLPA Probe Design (H-MAPD: a probe design tool for both electrophoresis-based and bead-coupled human multiplex ligation-dependent probe amplification assays

    Directory of Open Access Journals (Sweden)

    Hatchwell Eli

    2008-09-01

    Full Text Available Abstract Background Multiplex ligation-dependent probe amplification (MLPA is an efficient and reliable technique for gene dosage analysis. Currently MLPA can be conducted on two platforms: traditional electrophoresis-based, and FlexMAP bead-coupled. Since its introduction in 2002, MLPA has been rapidly adopted in both clinical and research situations. However, MLPA probe design is a time consuming process requiring many steps that address multiple criteria. There exist only one or two commercial software packages for traditional electrophoresis-based MLPA probe design. To our knowledge, no software is yet available that performs bead-coupled MLPA probe design. Results We have developed H-MAPD, a web-based tool that automates the generation and selection of probes for human genomic MLPA. The software performs physical-chemical property tests using UNAFold software, and uniqueness tests using the UCSC genome browser. H-MAPD supports both traditional electrophoresis-based assays, as well as FlexMAP bead-coupled MLPA. Conclusion H-MAPD greatly reduces the efforts for human genomic MLPA probe design. The software is written in Perl-CGI, hosted on a Linux server, and is freely available to non-commercial users.

  11. Initial dynamics of the Norrish Type I reaction in acetone: probing wave packet motion.

    Science.gov (United States)

    Brogaard, Rasmus Y; Sølling, Theis I; Møller, Klaus B

    2011-02-10

    The Norrish Type I reaction in the S(1) (nπ*) state of acetone is a prototype case of ketone photochemistry. On the basis of results from time-resolved mass spectrometry (TRMS) and photoelectron spectroscopy (TRPES) experiments, it was recently suggested that after excitation the wave packet travels toward the S(1) minimum in less than 30 fs and stays there for more than 100 picoseconds [Chem. Phys. Lett.2008, 461, 193]. In this work we present simulated TRMS and TRPES signals based on ab initio multiple spawning simulations of the dynamics during the first 200 fs after excitation, getting quite good agreement with the experimental signals. We can explain the ultrafast decay of the experimental signals in the following manner: the wave packet simply travels, mainly along the deplanarization coordinate, out of the detection window of the ionizing probe. This window is so narrow that subsequent revival of the signal due to the coherent deplanarization vibration is not observed, meaning that from the point of view of the experiment the wave packets travels directly to the S(1) minimum. This result stresses the importance of pursuing a closer link to the experimental signal when using molecular dynamics simulations in interpreting experimental results.

  12. Effect of addition of water-soluble salts on the hydrogen generation of aluminum in reaction with hot water

    International Nuclear Information System (INIS)

    Razavi-Tousi, S.S.; Szpunar, J.A.

    2016-01-01

    Aluminum powder was ball milled for different durations of time with different weight percentages of water-soluble salts (NaCl and KCl). The hydrogen generation of each mixture in reaction with hot water was measured. A scanning electron microscope (SEM) as well as energy-dispersive spectroscopy (EDS) were used to investigate the morphology, surfaces and cross sections of the produced particles. The results show that the presence of salts in the microstructure of the aluminum considerably increases the hydrogen generation rate. At shorter milling times, the salt covers the aluminum particles and becomes embedded in layers within the aluminum matrix. At higher milling durations, salt and aluminum phases form composite particles. A higher percentage of the second phase significantly decreases the milling time needed for activation of the aluminum particles. Based on the EDS results from cross sections of the milled particles, a mechanism for improvement of the hydrogen generation rate in the presence of salts is suggested. - Highlights: • Milling and water soluble salts have a synergic effect on hydrogen generation. • Salt and aluminum form composite particles by milling. • Salt is dissolved in water leaving aluminum with much fresh surfaces for the reaction. • The chemical effect of salt on the reaction is negligible compared to its structural effect.

  13. Low-Energy Nuclear Reactions of Protons in Host Metals at Picometre Distance

    International Nuclear Information System (INIS)

    Heinrich Hora; George H. Miley; Jak C. Kelly

    2000-01-01

    A review is given for the explanation of the measurements of Miley (et al.) of a fully reproducible generation of nuclei of the whole periodic table by protons in host metals during a several-weeks reaction. Similar low-energy nuclear reactions (LENR) were observed by other groups. The fact that the heavy nuclides are not due to pollution can be seen from the fact that such very rare elements as thulium and terbium were detected by unique K-shell X-ray spectra. The nuclear reaction energy goes into the heavy nuclei as measured from much bigger traces in CR39 than from alphas. The fact that any reaction of the protons results in stable daughter nuclei is confirmed by the fact that the highest energy gain is resulting with stable reaction products. This has been explained in Ref. 2, and the energy gain for the heavy element generation by a compound reaction was discussed. The explanation is based on the model of the authors from 1989 to assume free motion of the protons contrary to localized crystalline states. A relation of the reaction time U on distance d of the reacting nuclei by a power law with an exponent 34.8 was derived. Based on few reproducible D-D reactions, a reaction time near the range of megaseconds and a reaction distance of nanometers was concluded. A splendid confirmation of the picometre-megasecond reactions was achieved by Li (et al.) from his direct quantum mechanical calculations of the hot fusion D-T reactions based on a one-step selective resonance tunneling model. Li (et al.) were able for the first time to derive the cross sections of the hot fusion. Li's application to picometre distance showed megasecond reaction times with no neutron or gamma emission. Because of the imaginary part in the Schroedinger potential, the problem of the level width is reduced by damping

  14. Wake of a blunt planetary probe model under hypervelocity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kastell, D.; Hannemann, D.; Eitelberg, G. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Goettingen (Germany). Inst. fuer Stroemungsmechanik

    1998-12-31

    The flow in the wake of a planetary probe under hypervelocity re-entry conditions has two idiosyncrasies not present in the conventional (cold) hypersonic flows: the strong dissociation reaction occurring behind the bow shock wave, and the freezing of the chemical reactions of the flow by the rapid expansion at the shoulder of the probe. The aim of the present study was to both understand the relative importance of the two phenomena upon the total heat and pressure loads on a planetary probe and its possible payload as well as to provide experimental validation data for those developing numerical codes for planetary probe design and analysis. For the experimental study an instrumented blunted 140 cone was tested in the High Enthalpy Shock Tunnel in Goettingen (HEG). The numerical calculations were performed with a Thin-Layer Navier-Stokes code which is capable of simulating chemical and thermal nonequilibrium flows. For the forebody loads the prediction methods were very reliable and capable of accounting for the kinetic effects caused by the high specific enthalpy of the flow. On the other side considerable discrepancies between experimental and numerical results for the wake of the model have been observed. (orig.)

  15. Wake of a blunt planetary probe model under hypervelocity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kastell, D.; Hannemann, D.; Eitelberg, G. (DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Goettingen (Germany). Inst. fuer Stroemungsmechanik)

    1998-01-01

    The flow in the wake of a planetary probe under hypervelocity re-entry conditions has two idiosyncrasies not present in the conventional (cold) hypersonic flows: the strong dissociation reaction occurring behind the bow shock wave, and the freezing of the chemical reactions of the flow by the rapid expansion at the shoulder of the probe. The aim of the present study was to both understand the relative importance of the two phenomena upon the total heat and pressure loads on a planetary probe and its possible payload as well as to provide experimental validation data for those developing numerical codes for planetary probe design and analysis. For the experimental study an instrumented blunted 140 cone was tested in the High Enthalpy Shock Tunnel in Goettingen (HEG). The numerical calculations were performed with a Thin-Layer Navier-Stokes code which is capable of simulating chemical and thermal nonequilibrium flows. For the forebody loads the prediction methods were very reliable and capable of accounting for the kinetic effects caused by the high specific enthalpy of the flow. On the other side considerable discrepancies between experimental and numerical results for the wake of the model have been observed. (orig.)

  16. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations

    Science.gov (United States)

    Kalyanaraman, Balaraman; Darley-Usmar, Victor; Davies, Kelvin J.A.; Dennery, Phyllis A.; Forman, Henry Jay; Grisham, Matthew B.; Mann, Giovanni E.; Moore, Kevin; Roberts, L. Jackson; Ischiropoulos, Harry

    2013-01-01

    The purpose of this position paper is to present a critical analysis of the challenges and limitations of the most widely used fluorescent probes for detecting and measuring reactive oxygen and nitrogen species. Where feasible, we have made recommendations for the use of alternate probes and appropriate analytical techniques that measure the specific products formed from the reactions between fluorescent probes and reactive oxygen and nitrogen species. We have proposed guidelines that will help present and future researchers with regard to the optimal use of selected fluorescent probes and interpretation of results. PMID:22027063

  17. Development of DNA probes for Candida albicans

    International Nuclear Information System (INIS)

    Cheung, L.L.; Hudson, J.B.

    1988-01-01

    An attempt was made to produce DNA probes that could be used as a rapid and efficient means of detecting candidiasis (invasive Candida infection) in immunocompromised patients. Whole DNA from Candida albicans was digested with restriction endonuclease, and the resulting fragments were randomly cloned into a plasmid vector. Several recombinant plasmids were evaluated for cross-hybridization to various other Candida species, other fungal DNAs, and to nonfungal DNAs. Cross reactions were observed between the probes and different yeasts, but none with unrelated DNAs. Some recombinants were genus-specific, and two of these were applied to the analysis of C. albicans growth curves. It became evident that, although both 32 P- and biotin-labelled probes could be made quite sensitive, a possible limitation in their diagnostic potential was the poor liberation of Candida DNA from cells. Thus, better methods of treatment of clinical specimens will be required before such probes will be useful in routine diagnosis

  18. Development of DNA probes for Candida albicans

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, L.L.; Hudson, J.B.

    1988-07-01

    An attempt was made to produce DNA probes that could be used as a rapid and efficient means of detecting candidiasis (invasive Candida infection) in immunocompromised patients. Whole DNA from Candida albicans was digested with restriction endonuclease, and the resulting fragments were randomly cloned into a plasmid vector. Several recombinant plasmids were evaluated for cross-hybridization to various other Candida species, other fungal DNAs, and to nonfungal DNAs. Cross reactions were observed between the probes and different yeasts, but none with unrelated DNAs. Some recombinants were genus-specific, and two of these were applied to the analysis of C. albicans growth curves. It became evident that, although both /sup 32/P- and biotin-labelled probes could be made quite sensitive, a possible limitation in their diagnostic potential was the poor liberation of Candida DNA from cells. Thus, better methods of treatment of clinical specimens will be required before such probes will be useful in routine diagnosis.

  19. Asymmetric actuating structure generates negligible influence on the supporting base for high performance scanning probe microscopies

    Science.gov (United States)

    Yi Yan, Gang; Bin Liu, Yong; Hua Feng, Zhi

    2014-02-01

    An asymmetric actuating structure generating negligible influence on the supporting base for high performance scanning probe microscopies is proposed in this paper. The actuator structure consists of two piezostacks, one is used for actuating while the other is for counterbalancing. In contrast with balanced structure, the two piezostacks are installed at the same side of the supporting base. The effectiveness of the structure is proved by some experiments with the actuators fixed to the free end of a cantilever. Experimental results show that almost all of the vibration modes of the cantilever are suppressed effectively at a wide frequency range of 90 Hz-10 kHz.

  20. Synthesis and Reactions of Acenaphthenequinones-Part-2. The Reactions of Acenaphthenequinones

    Directory of Open Access Journals (Sweden)

    Mahmoud Shoukry

    2002-02-01

    Full Text Available The reactions of acenaphthenequinone and its derivatives with different nucleophiles, organic and inorganic reagents are reviewed. This survey also covers their oxidation and reduction reactions, in addition to many known reactions such as Friedel Crafts, Diels-Alder, bromination and thiolation.

  1. Empirical rate equation model and rate calculations of hydrogen generation for Hanford tank waste

    International Nuclear Information System (INIS)

    HU, T.A.

    1999-01-01

    Empirical rate equations are derived to estimate hydrogen generation based on chemical reactions, radiolysis of water and organic compounds, and corrosion processes. A comparison of the generation rates observed in the field with the rates calculated for twenty eight tanks shows agreement within a factor of two to three

  2. Anodic Cyclization Reactions and the Mechanistic Strategies That Enable Optimization.

    Science.gov (United States)

    Feng, Ruozhu; Smith, Jake A; Moeller, Kevin D

    2017-09-19

    Oxidation reactions are powerful tools for synthesis because they allow us to reverse the polarity of electron-rich functional groups, generate highly reactive intermediates, and increase the functionality of molecules. For this reason, oxidation reactions have been and continue to be the subject of intense study. Central to these efforts is the development of mechanism-based strategies that allow us to think about the reactive intermediates that are frequently central to the success of the reactions and the mechanistic pathways that those intermediates trigger. For example, consider oxidative cyclization reactions that are triggered by the removal of an electron from an electron-rich olefin and lead to cyclic products that are functionalized for further elaboration. For these reactions to be successful, the radical cation intermediate must first be generated using conditions that limit its polymerization and then channeled down a productive desired pathway. Following the cyclization, a second oxidation step is necessary for product formation, after which the resulting cation must be quenched in a controlled fashion to avoid undesired elimination reactions. Problems can arise at any one or all of these steps, a fact that frequently complicates reaction optimization and can discourage the development of new transformations. Fortunately, anodic electrochemistry offers an outstanding opportunity to systematically probe the mechanism of oxidative cyclization reactions. The use of electrochemical methods allows for the generation of radical cations under neutral conditions in an environment that helps prevent polymerization of the intermediate. Once the intermediates have been generated, a series of "telltale indicators" can be used to diagnose which step in an oxidative cyclization is problematic for less successful transformation. A set of potential solutions to address each type of problem encountered has been developed. For example, problems with the initial

  3. Polymer Derived Yttrium Silicate Ablative TPS Materials for Next-Generation Exploration Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Through the proposed NASA SBIR program, NanoSonic will optimize its HybridSil® derived yttrium silicates to serve as next-generation reinforcement for carbon and...

  4. Novel magnetic heating probe for multimodal cancer treatment.

    Science.gov (United States)

    Kan-Dapaah, Kwabena; Rahbar, Nima; Soboyejo, Wole

    2015-05-01

    Multifunctional materials consisting of polymers and magnetic nanoparticles (MNPs) are highly sought after in the field of biomedical engineering. These materials offer new opportunities for the development of novel cancer treatment modalities that can increase the efficacy of cancer therapy. In this paper, a novel probe for multimodal cancer treatment is proposed and analyzed. The probe is essentially a cannula with two main parts: a distal heat generating tip made of a magnetic nanocomposite and a proximal insulated shaft. A description of the concept and functional operations of the probe is presented. In an effort to assess its feasibility, the authors evaluated the ability of probe tip (made of PMMA-Fe3O4 nanocomposite) to generate heat in biological tissue using alternating magnetic field (AMF) parameters (field strength and frequency) that are acceptable for human use. Heat generation by MNPs was determined using the linear response theory. The effects of Fe3O4 volume fraction on heat generation as well as treatment time on the thermal dose were studied. The finite element method model was tested for its validity using an analytical model. Lesions were revealed to have an ellipsoidal shape and their sizes were affected by treatment time. However, their shapes remained unchanged. The comparison with the analytical model showed reasonably a good agreement to within 2%. Furthermore, the authors' numerical predictions also showed reasonable agreement with the experimental results previously reported in the literature. The authors' predictions demonstrate the feasibility of their novel probe to achieve reasonable lesion sizes, during hyperthermic or ablative heating using AMF parameters (field strength and frequency) that are acceptable for human use.

  5. Flexible poly(methyl methacrylate)-based neural probe: An affordable implementation

    Science.gov (United States)

    Gasemi, Pejman; Veladi, Hadi; Shahabi, Parviz; Khalilzadeh, Emad

    2018-03-01

    This research presents a novel technique used to fabricate a deep brain stimulation probe based on a commercial poly(methyl methacrylate) (PMMA) polymer. This technique is developed to overcome the high cost of available probes crucial for chronic stimulation and recording in neural disorders such as Parkinson’s disease and epilepsy. The probe is made of PMMA and its mechanical properties have been customized by controlling the reaction conditions. The polymer is adjusted to be stiff enough to be easily inserted and, on the other hand, soft enough to perform required movements. As cost is one of the issues in the use of neural probes, a simple process is proposed for the production of PMMA neural probes without using expensive equipment and operations, and without compromising performance and quality. An in vivo animal test was conducted to observe the recording capability of a PMMA probe.

  6. Langmuir probe evaluation of the plasma potential in tokamak edge plasma for non-Maxwellian EEDF

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Ts.K. [Faculty of Physics, St. Kliment Ohridski University (Bulgaria); Dimitrova, M. [Institute of Plasma Physics, Academy of Sciences of the Czech Republic v.v.i., Prague (Czech Republic); Institute of Electronics, Bulgarian Academy of Sciences, Sofia (Bulgaria); Ivanova, P. [Institute of Electronics, Bulgarian Academy of Sciences, Sofia (Bulgaria); Hasan, E. [Faculty of Physics, St. Kliment Ohridski University (Bulgaria); Institute of Electronics, Bulgarian Academy of Sciences, Sofia (Bulgaria); Horacek, J.; Dejarnac, R.; Stoeckel, J.; Weinzettl, V. [Institute of Plasma Physics, Academy of Sciences of the Czech Republic v.v.i., Prague (Czech Republic); Kovacic, J. [Jozef Stefan Institute, Ljubljana (Slovenia)

    2014-04-15

    The First derivative probe technique for a correct evaluation of the plasma potential in the case of non-Maxwellian EEDF is presented and used to process experimental data from COMPASS tokamak. Results obtained from classical and first derivative techniques are compared and discussed. The first derivative probe technique provides values for the plasma potential in the scrape-off layer of tokamak plasmas with an accuracy of about ±10%. Classical probe technique can provide values of the plasma potential only, if the electron and ion temperatures are known as well as the coefficient of secondary electron emission. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Enhanced biocompatibility of neural probes by integrating microstructures and delivering anti-inflammatory agents via microfluidic channels

    Science.gov (United States)

    Liu, Bin; Kim, Eric; Meggo, Anika; Gandhi, Sachin; Luo, Hao; Kallakuri, Srinivas; Xu, Yong; Zhang, Jinsheng

    2017-04-01

    Objective. Biocompatibility is a major issue for chronic neural implants, involving inflammatory and wound healing responses of neurons and glial cells. To enhance biocompatibility, we developed silicon-parylene hybrid neural probes with open architecture electrodes, microfluidic channels and a reservoir for drug delivery to suppress tissue responses. Approach. We chronically implanted our neural probes in the rat auditory cortex and investigated (1) whether open architecture electrode reduces inflammatory reaction by measuring glial responses; and (2) whether delivery of antibiotic minocycline reduces inflammatory and tissue reaction. Four weeks after implantation, immunostaining for glial fibrillary acid protein (astrocyte marker) and ionizing calcium-binding adaptor molecule 1 (macrophages/microglia cell marker) were conducted to identify immunoreactive astrocyte and microglial cells, and to determine the extent of astrocytes and microglial cell reaction/activation. A comparison was made between using traditional solid-surface electrodes and newly-designed electrodes with open architecture, as well as between deliveries of minocycline and artificial cerebral-spinal fluid diffused through microfluidic channels. Main results. The new probes with integrated micro-structures induced minimal tissue reaction compared to traditional electrodes at 4 weeks after implantation. Microcycline delivered through integrated microfluidic channels reduced tissue response as indicated by decreased microglial reaction around the neural probes implanted. Significance. The new design will help enhance the long-term stability of the implantable devices.

  8. STED Imaging of Golgi Dynamics with Cer-SiR: A Two-Component, Photostable, High-Density Lipid Probe for Live Cells.

    Science.gov (United States)

    Erdmann, Roman S; Toomre, Derek; Schepartz, Alanna

    2017-01-01

    Long time-lapse super-resolution imaging in live cells requires a labeling strategy that combines a bright, photostable fluorophore with a high-density localization probe. Lipids are ideal high-density localization probes, as they are >100 times more abundant than most membrane-bound proteins and simultaneously demark the boundaries of cellular organelles. Here, we describe Cer-SiR, a two-component, high-density lipid probe that is exceptionally photostable. Cer-SiR is generated in cells via a bioorthogonal reaction of two components: a ceramide lipid tagged with trans-cyclooctene (Cer-TCO) and a reactive, photostable Si-rhodamine dye (SiR-Tz). These components assemble within the Golgi apparatus of live cells to form Cer-SiR. Cer-SiR is benign to cellular function, localizes within the Golgi at a high density, and is sufficiently photostable to enable visualization of Golgi structure and dynamics by 3D confocal or long time-lapse STED microscopy.

  9. Probing functional groups at the gas-aerosol interface using heterogeneous titration reactions: a tool for predicting aerosol health effects?

    Science.gov (United States)

    Setyan, Ari; Sauvain, Jean-Jacques; Guillemin, Michel; Riediker, Michael; Demirdjian, Benjamin; Rossi, Michel J

    2010-12-17

    The complex chemical and physical nature of combustion and secondary organic aerosols (SOAs) in general precludes the complete characterization of both bulk and interfacial components. The bulk composition reveals the history of the growth process and therefore the source region, whereas the interface controls--to a large extent--the interaction with gases, biological membranes, and solid supports. We summarize the development of a soft interrogation technique, using heterogeneous chemistry, for the interfacial functional groups of selected probe gases [N(CH(3))(3), NH(2)OH, CF(3)COOH, HCl, O(3), NO(2)] of different reactivity. The technique reveals the identity and density of surface functional groups. Examples include acidic and basic sites, olefinic and polycyclic aromatic hydrocarbon (PAH) sites, and partially and completely oxidized surface sites. We report on the surface composition and oxidation states of laboratory-generated aerosols and of aerosols sampled in several bus depots. In the latter case, the biomarker 8-hydroxy-2'-deoxyguanosine, signaling oxidative stress caused by aerosol exposure, was isolated. The increase in biomarker levels over a working day is correlated with the surface density N(i)(O3) of olefinic and/or PAH sites obtained from O(3) uptakes as well as with the initial uptake coefficient, γ(0), of five probe gases used in the field. This correlation with γ(0) suggests the idea of competing pathways occurring at the interface of the aerosol particles between the generation of reactive oxygen species (ROS) responsible for oxidative stress and cellular antioxidants.

  10. [Involvement of carbonate/bicarbonate ions in the superoxide-generating reaction of adrenaline autoxidation].

    Science.gov (United States)

    Sirota, T V

    2015-01-01

    An important role of carbonate/bicarbonate ions has been recognized in the superoxide generating reaction of adrenaline autooxidation in an alkaline buffer (a model of quinoid adrenaline oxidation in the body). It is suggested that these ions are directly involved not only in formation of superoxide anion radical (О(2)(-)) but also other radicals derived from the carbonate/bicarbonate buffer. Using various buffers it was shown that the rate of accumulation of adrenochrome, the end product of adrenaline oxidation, and the rate of О(2)(-)· formation depend on concentration of carbonate/bicarbonate ions in the buffer and that these ions significantly accelerate adrenaline autooxidation thus demonstrating prooxidant properties. The detectable amount of diformazan, the product of nitro blue tetrazolium (NBT) reduction, was significantly higher than the amount of adrenochrome formed; taking into consideration the literature data on О(2)(-)· detection by NBT it is suggested that adrenaline autooxidation is accompanied by one-electron reduction not only of oxygen dissolved in the buffer and responsible for superoxide formation but possible carbon dioxide also dissolved in the buffer as well as carbonate/bicarbonate buffer components leading to formation of corresponding radicals. The plots of the dependence of the inhibition of adrenochrome and diformazan formation on the superoxide dismutase concentration have shown that not only superoxide radicals are formed during adrenaline autooxidation. Since carbonate/bicarbonate ions are known to be universally present in the living nature, their involvement in free radical processes proceeding in the organism is discussed.

  11. Nine New Fluorescent Probes

    Science.gov (United States)

    Lin, Tsung-I.; Jovanovic, Misa V.; Dowben, Robert M.

    1989-06-01

    Absorption and fluorescence spectroscopic studies are reported here for nine new fluorescent probes recently synthesized in our laboratories: four pyrene derivatives with substituents of (i) 1,3-diacetoxy-6,8-dichlorosulfonyl, (ii) 1,3-dihydroxy-6,8-disodiumsulfonate, (iii) 1,3-disodiumsulfonate, and (iv) l-ethoxy-3,6,8-trisodiumsulfonate groups, and five [7-julolidino] coumarin derivatives with substituents of (v) 3-carboxylate-4-methyl, (vi) 3- methylcarboxylate, (vii) 3-acetate-4-methyl, (viii) 3-propionate-4-methyl, and (ix) 3-sulfonate-4-methyl groups. Pyrene compounds i and ii and coumarin compounds v and vi exhibit interesting absorbance and fluorescence properties: their absorption maxima are red shifted compared to the parent compound to the blue-green region, and the band width broadens considerably. All four blue-absorbing dyes fluoresce intensely in the green region, and the two pyrene compounds emit at such long wavelengths without formation of excimers. The fluorescence properties of these compounds are quite environment-sensitive: considerable spectral shifts and fluorescence intensity changes have been observed in the pH range from 3 to 10 and in a wide variety of polar and hydrophobic solvents with vastly different dielectric constants. The high extinction and fluorescence quantum yield of these probes make them ideal fluorescent labeling reagents for proteins, antibodies, nucleic acids, and cellular organelles. The pH and hydrophobicity-dependent fluorescence changes can be utilized as optical pH and/or hydrophobicity indicators for mapping environmental difference in various cellular components in a single cell. Since all nine probes absorb in the UV, but emit at different wavelengths in the visible, these two groups of compounds offer an advantage of utilizing a single monochromatic light source (e.g., a nitrogen laser) to achieve multi-wavelength detection for flow cytometry application. As a first step to explore potential application in

  12. Kinetics of Bio-Reactions

    DEFF Research Database (Denmark)

    Villadsen, John

    2015-01-01

    his chapter predicts the specific rates of reaction by means of a mathematical expression, the kinetics of the reaction. This expression can be derived through a mechanistic interpretation of an enzymatically catalyzed reaction, but it is essentially of empirical nature for cell reactions. The mo...

  13. Platinum(II) complexes as spectroscopic probes for biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Ratilla, E.

    1990-09-21

    The use of platinum(II) complexes as tags and probes for biomolecules is indeed advantageous for their reactivities can be selective for certain purposes through an interplay of mild reaction conditions and of the ligands bound to the platinum. The use of {sup 195}Pt NMR as a method of detecting platinum and its interactions with biomolecules was carried out with the simplest model of platinum(II) tagging to proteins. Variable-temperature {sup 195}Pt NMR spectroscopy proved useful in studying the stereodynamics of complex thioethers like methionine. The complex, Pt(trpy)Cl{sup +}, with its chromophore has a greater potential for probing proteins. It is a noninvasive and selective tag for histidine and cysteine residues on the surface of cytochrome c at pH 5. The protein derivatives obtained are separable, and the tags are easily quantitated and differentiated through the metal-to-ligand charge transfer bands which are sensitive to the environment of the tag. Increasing the pH to 7.0 led to the modification by Pt(trpy)Cl{sup +}of Arg 91 in cytochrome c. Further studies with guanidine-containing ligands as models for arginine modification by Pt(trpy)Cl{sup +} showed that guanidine can act as a terminal ligand and as a bridging ligand. Owing to the potential utility of Pt(trpy)L{sup n+} as electron dense probes of nucleic acid structure, interactions of this bis-Pt(trpy){sup 2+} complex with nucleic acids was evaluated. Indeed, the complex interacts non-covalently with nucleic acids. Its interactions with DNA are not exactly the same as those of its precedents. Most striking is its ability to form highly immobile bands of DNA upon gel electrophoresis. 232 refs.

  14. Mutagenicity in Salmonella of a Simulated Urban-Smog Atmosphere Generated Using a Mobile Reaction Chamber

    Science.gov (United States)

    The EPA Mobile Reaction Chamber (MRC) is a 24-foot trailer containing a 14.3-m3 Teflon lined photochemical chamber used to generate simulated urban atmospheres. Photochemistry in the MRC is catalyzed by 120 fluorescent bulbs evenly mixed with black light bulbs and UV bulbs (300 &...

  15. Synthesis and Biological Activity of Some 3, 5-Diarylisoxazoline Derivatives: Reaction of Substituted Chalcones with Hydroxylamine Hydrochloride

    Directory of Open Access Journals (Sweden)

    Vandana Sharma

    2010-01-01

    Full Text Available A series of 3-aryl-5-styrylisoxazoline/ 3,5-diarylisoxazoline derivatives were synthesized by the reaction of appropriately substituted chalcones and hydroxylamine hydrochloride in presence of alkali in ethanol. The synthesized heterocycles have been characterized on the basis of their chemical properties and spectroscopic data. These compounds were tested for biological activity against a variety of test organisms

  16. First results on a laser-heated emissive probe

    International Nuclear Information System (INIS)

    Madani, R.; Klinger, T.; Ionita, C.; Schrittwieser, R.

    2004-01-01

    The floating potential V(fl,em) of a probe, emitting a sufficiently high electron current, yields a fairly accurate approximation of Φ(pl). This is an advantage in comparison to the conventional Langmuir probe where, after determination of the electron temperature T e , the plasma potential can only be derived indirectly from the formula Φ(pl) = V(fl) + α*T e , where α is a function of the ratio of the electron to the ion saturation currents (α is around 2.4 in a magnetized hydrogen plasma). In addition, an emissive probe also works if there are electron drifts or beams in the plasma. Emissive probes are usually realised by small directly heated loops of W-wire. Drawbacks of this design are the limited lifetime, the low electron emissivity of W and the voltage drop across the wire. We have developed a new type of emissive probe, which is heated by an infrared high-power diode laser with a maximum output power of 50 W. The probe consists of a small cylinder of LaB 6 . The probe was inserted into the edge region of the VINETA helicon discharge plasma. Basic features of emissive probes were checked. (authors)

  17. Unified Quantum Model of Work Generation in Thermoelectric Generators, Solar and Fuel Cells

    Directory of Open Access Journals (Sweden)

    Robert Alicki

    2016-05-01

    Full Text Available In the previous papers, the idea of “hidden oscillations” has been applied to explain work generation in semiconductor photovoltaic cells and thermoelectric generators. The aim of this paper is firstly to extend this approach to fuel cells and, secondly, to create a unified quantum model for all types of such devices. They are treated as electron pumps powered by heat or chemical engines. The working fluid is electron gas and the necessary oscillating element (“piston” is provided by plasma oscillation. Those oscillations are localized around the junction that also serves as a diode rectifying fast electric charge oscillations and yielding a final output direct current (DC. The dynamics of the devices are governed by the Markovian master equations that can be derived in a rigorous way from the underlying Hamiltonian models and are consistent with the laws of thermodynamics. The new ingredient is the derivation of master equations for systems driven by chemical reactions.

  18. Relating derived relations as a model of analogical reasoning: reaction times and event-related potentials.

    Science.gov (United States)

    Barnes-Holmes, Dermot; Regan, Donal; Barnes-Holmes, Yvonne; Commins, Sean; Walsh, Derek; Stewart, Ian; Smeets, Paul M; Whelan, Robert; Dymond, Simon

    2005-11-01

    The current study aimed to test a Relational Frame Theory (RFT) model of analogical reasoning based on the relating of derived same and derived difference relations. Experiment 1 recorded reaction time measures of similar-similar (e.g., "apple is to orange as dog is to cat") versus different-different (e.g., "he is to his brother as chalk is to cheese") derived relational responding, in both speed-contingent and speed-noncontingent conditions. Experiment 2 examined the event-related potentials (ERPs) associated with these two response patterns. Both experiments showed similar-similar responding to be significantly faster than different-different responding. Experiment 2 revealed significant differences between the waveforms of the two response patterns in the left-hemispheric prefrontal regions; different-different waveforms were significantly more negative than similar-similar waveforms. The behavioral and neurophysiological data support the RFT prediction that, all things being equal, similar-similar responding is relationally "simpler" than, and functionally distinct from, different-different analogical responding. The ERP data were fully consistent with findings in the neurocognitive literature on analogy. These findings strengthen the validity of the RFT model of analogical reasoning and supplement the behavior-analytic approach to analogy based on the relating of derived relations.

  19. Electrochemiluminescence polymerase chain reaction detection of genetically modified organisms

    International Nuclear Information System (INIS)

    Liu Jinfeng; Xing Da; Shen Xingyan; Zhu Debin

    2005-01-01

    With the development of biotechnology, more and more genetically modified organisms (GMOs) have entered commercial market. Because of the safety concerns, detection and characterization of GMOs have attracted much attention recently. Electrochemiluminescence (ECL) method is a chemiluminescent (CL) reaction of species generated electrochemically on an electrode surface. It is a highly efficient and accurate detection method. In this paper, ECL polymerase chain reaction (PCR) combined with two types of nucleic acid probes hybridization was applied to detect GMOs for the first time. Whether the organisms contain GM components was discriminated by detecting the cauliflower mosaic virus 35S (CaMV35S) promoter and nopaline synthase (NOS) terminator. The experiment results show that the detection limit is 100 fmol of PCR products. The promoter and the terminator can be clearly detected in GMOs. The method may provide a new means for the detection of GMOs due to its simplicity and high efficiency

  20. Langmuir probe on ISX-B

    International Nuclear Information System (INIS)

    Wootton, A.J.; Yokoyama, K.E.; Edmonds, P.H.

    1985-05-01

    The procedures used to derive temperature and density with a floating probe are documented. The accuracy of a Fourier analysis with restricted terms and the importance of various correction terms in calculating the density from the saturation current are discussed. Methods of reducing errors introduced by circuit resistance and fluctuations are presented

  1. GAS-PHASE SYNTHESIS OF PRECURSORS OF INTERSTELLAR GLYCINE: A COMPUTATIONAL STUDY OF THE REACTIONS OF ACETIC ACID WITH HYDROXYLAMINE AND ITS IONIZED AND PROTONATED DERIVATIVES

    Energy Technology Data Exchange (ETDEWEB)

    Barrientos, Carmen; Redondo, Pilar; Largo, Laura; Rayon, Victor M.; Largo, Antonio, E-mail: alargo@qf.uva.es [Departamento de Quimica Fisica y Quimica Inorganica, Facultad de Ciencias, Universidad de Valladolid, 47005 Valladolid (Spain)

    2012-04-01

    A computational study of the reactions of hydroxylamine and its ionized and protonated derivatives with acetic acid is provided. The reaction of neutral hydroxylamine with acetic acid, despite being clearly exothermic, involves a very large energy barrier. The reaction of ionized hydroxylamine with acetic acid is also clearly exothermic, but again a significant energy barrier is found (around 24 kcal mol{sup -1} at the CCSD(T) level). The reaction of the most stable protonated isomer of hydroxylamine, NH{sub 3}OH{sup +}, with acetic acid also involves a high barrier (more than 27 kcal mol{sup -1} at the CCSD(T) level). Only the higher energy isomer, NH{sub 2}OH{sup +}{sub 2}, leads to a sensibly lower energy barrier (about 2.3 kcal mol{sup -1} at the CCSD(T) level). Nevertheless, an estimate of the reaction coefficient at low temperatures such as those reigning in the interstellar medium gives very low values. Therefore, it seems that precursors of interstellar glycine could not be efficiently produced from the reactions of hydroxylamine-derived ions with acetic acid.

  2. GAS-PHASE SYNTHESIS OF PRECURSORS OF INTERSTELLAR GLYCINE: A COMPUTATIONAL STUDY OF THE REACTIONS OF ACETIC ACID WITH HYDROXYLAMINE AND ITS IONIZED AND PROTONATED DERIVATIVES

    International Nuclear Information System (INIS)

    Barrientos, Carmen; Redondo, Pilar; Largo, Laura; Rayón, Víctor M.; Largo, Antonio

    2012-01-01

    A computational study of the reactions of hydroxylamine and its ionized and protonated derivatives with acetic acid is provided. The reaction of neutral hydroxylamine with acetic acid, despite being clearly exothermic, involves a very large energy barrier. The reaction of ionized hydroxylamine with acetic acid is also clearly exothermic, but again a significant energy barrier is found (around 24 kcal mol –1 at the CCSD(T) level). The reaction of the most stable protonated isomer of hydroxylamine, NH 3 OH + , with acetic acid also involves a high barrier (more than 27 kcal mol –1 at the CCSD(T) level). Only the higher energy isomer, NH 2 OH + 2 , leads to a sensibly lower energy barrier (about 2.3 kcal mol –1 at the CCSD(T) level). Nevertheless, an estimate of the reaction coefficient at low temperatures such as those reigning in the interstellar medium gives very low values. Therefore, it seems that precursors of interstellar glycine could not be efficiently produced from the reactions of hydroxylamine-derived ions with acetic acid.

  3. Modeling of Syngas Reactions and Hydrogen Generation Over Sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Kamil Klier; Jeffery A. Spirko; Michael L. Neiman

    2002-09-17

    The objective of the research is to analyze pathways of reactions of hydrogen with oxides of carbon over sulfides, and to predict which characteristics of the sulfide catalyst (nature of metal, defect structure) give rise to the lowest barriers toward oxygenated hydrocarbon product. Reversal of these pathways entails the generation of hydrogen, which is also proposed for study. In this first year of study, adsorption reactions of H atoms and H{sub 2} molecules with MoS{sub 2}, both in molecular and solid form, have been modeled using high-level density functional theory. The geometries and strengths of the adsorption sites are described and the methods used in the study are described. An exposed MO{sup IV} species modeled as a bent MoS{sub 2} molecule is capable of homopolar dissociative chemisorption of H{sub 2} into a dihydride S{sub 2}MoH{sub 2}. Among the periodic edge structures of hexagonal MoS{sub 2}, the (1{bar 2}11) edge is most stable but still capable of dissociating H{sub 2}, while the basal plane (0001) is not. A challenging task of theoretically accounting for weak bonding of MoS{sub 2} sheets across the Van der Waals gap has been addressed, resulting in a weak attraction of 0.028 eV/MoS{sub 2} unit, compared to the experimental value of 0.013 eV/MoS{sub 2} unit.

  4. Mechanisms of chemical vapor generation by aqueous tetrahydridoborate. Recent developments toward the definition of a more general reaction model

    Science.gov (United States)

    D'Ulivo, Alessandro

    2016-05-01

    A reaction model describing the reactivity of metal and semimetal species with aqueous tetrahydridoborate (THB) has been drawn taking into account the mechanism of chemical vapor generation (CVG) of hydrides, recent evidences on the mechanism of interference and formation of byproducts in arsane generation, and other evidences in the field of the synthesis of nanoparticles and catalytic hydrolysis of THB by metal nanoparticles. The new "non-analytical" reaction model is of more general validity than the previously described "analytical" reaction model for CVG. The non-analytical model is valid for reaction of a single analyte with THB and for conditions approaching those typically encountered in the synthesis of nanoparticles and macroprecipitates. It reduces to the previously proposed analytical model under conditions typically employed in CVG for trace analysis (analyte below the μM level, borane/analyte ≫ 103 mol/mol, no interference). The non-analytical reaction model is not able to explain all the interference effects observed in CVG, which can be achieved only by assuming the interaction among the species of reaction pathways of different analytical substrates. The reunification of CVG, the synthesis of nanoparticles by aqueous THB and the catalytic hydrolysis of THB inside a common frame contribute to rationalization of the complex reactivity of aqueous THB with metal and semimetal species.

  5. Modeling of uncertainties in biochemical reactions.

    Science.gov (United States)

    Mišković, Ljubiša; Hatzimanikatis, Vassily

    2011-02-01

    Mathematical modeling is an indispensable tool for research and development in biotechnology and bioengineering. The formulation of kinetic models of biochemical networks depends on knowledge of the kinetic properties of the enzymes of the individual reactions. However, kinetic data acquired from experimental observations bring along uncertainties due to various experimental conditions and measurement methods. In this contribution, we propose a novel way to model the uncertainty in the enzyme kinetics and to predict quantitatively the responses of metabolic reactions to the changes in enzyme activities under uncertainty. The proposed methodology accounts explicitly for mechanistic properties of enzymes and physico-chemical and thermodynamic constraints, and is based on formalism from systems theory and metabolic control analysis. We achieve this by observing that kinetic responses of metabolic reactions depend: (i) on the distribution of the enzymes among their free form and all reactive states; (ii) on the equilibrium displacements of the overall reaction and that of the individual enzymatic steps; and (iii) on the net fluxes through the enzyme. Relying on this observation, we develop a novel, efficient Monte Carlo sampling procedure to generate all states within a metabolic reaction that satisfy imposed constrains. Thus, we derive the statistics of the expected responses of the metabolic reactions to changes in enzyme levels and activities, in the levels of metabolites, and in the values of the kinetic parameters. We present aspects of the proposed framework through an example of the fundamental three-step reversible enzymatic reaction mechanism. We demonstrate that the equilibrium displacements of the individual enzymatic steps have an important influence on kinetic responses of the enzyme. Furthermore, we derive the conditions that must be satisfied by a reversible three-step enzymatic reaction operating far away from the equilibrium in order to respond to

  6. Synthesis of New Cytotoxic Aminoanthraquinone Derivatives via Nucleophilic Substitution Reactions

    Directory of Open Access Journals (Sweden)

    Hasimah Alimon

    2013-07-01

    Full Text Available Aminoanthraquinones were successfully synthesized via two reaction steps. 1,4-Dihydroxyanthraquinone (1 was first subjected to methylation, reduction and acylation to give an excellent yield of anthracene-1,4-dione (3, 1,4-dimethoxyanthracene-9,10-dione (5 and 9,10-dioxo-9,10-dihydroanthracene-1,4-diyl diacetate (7. Treatment of 1, 3, 5 and 7 with BuNH2 in the presence of PhI(OAc2 as catalyst produced seven aminoanthraquinone derivatives 1a, b, 3a, and 5a–d. Amination of 3 and 5 afforded three new aminoanthraquinones, namely 2-(butylaminoanthracene-1,4-dione (3a, 2-(butylaminoanthracene-9,10-dione (5a and 2,3-(dibutylaminoanthracene-9,10-dione (5b. All newly synthesised aminoanthraquinones were examined for their cytotoxic activity against MCF-7 (estrogen receptor positive human breast and Hep-G2 (human hepatocellular liver carcinoma cancer cells using MTT assay. Aminoanthraquinones 3a, 5a and 5b exhibited strong cytotoxicity towards both cancer cell lines (IC50 1.1–13.0 µg/mL.

  7. Probing the nuclear structure with heavy-ion reactions

    International Nuclear Information System (INIS)

    Broglia, R.A.

    1982-01-01

    Nuclei display distortions in both ordinary space and in gauge space. It is suggested that it is possible to learn about the spatial distribution of the Nilsson orbitals and about the change of the pairing gap with the rotational frequency through the analysis of one- and two-nucleon transfer reactions induced in heavy-ion collisions

  8. Labelling of HBV-DNA probe using reagent made in China

    International Nuclear Information System (INIS)

    Wang Quanshi

    1991-01-01

    The labelling hepatitis Bvirus DNA (HBV-DNA) probe was studied by using reagent made in China. The results showed that: (1) The dNTPs with high specific activity was necessary for the labelling of nigh specific activity HBV-DNA probe; (2) reaction of labelling HBV-DNA probe was completed in a few minutes; (3) 0.37 MBq 3 H dTTP (specific activity 1.554TBq/mmol) was enough to label 1 μg HBV-DNA and the specific activity of probe reached 3.4 x 10 cpm/μg; (4) 7 MBqα- 32 P dATP (specific activity > 111 TBq/mmol) can label HBV-DNA probe to specific activity 1.35 x 10 cpm/μg. It was concluded that the reagent made in China can be used for the study in molecular biology

  9. Donated chemical probes for open science.

    Science.gov (United States)

    Müller, Susanne; Ackloo, Suzanne; Arrowsmith, Cheryl H; Bauser, Marcus; Baryza, Jeremy L; Blagg, Julian; Böttcher, Jark; Bountra, Chas; Brown, Peter J; Bunnage, Mark E; Carter, Adrian J; Damerell, David; Dötsch, Volker; Drewry, David H; Edwards, Aled M; Edwards, James; Elkins, Jon M; Fischer, Christian; Frye, Stephen V; Gollner, Andreas; Grimshaw, Charles E; IJzerman, Adriaan; Hanke, Thomas; Hartung, Ingo V; Hitchcock, Steve; Howe, Trevor; Hughes, Terry V; Laufer, Stefan; Li, Volkhart Mj; Liras, Spiros; Marsden, Brian D; Matsui, Hisanori; Mathias, John; O'Hagan, Ronan C; Owen, Dafydd R; Pande, Vineet; Rauh, Daniel; Rosenberg, Saul H; Roth, Bryan L; Schneider, Natalie S; Scholten, Cora; Singh Saikatendu, Kumar; Simeonov, Anton; Takizawa, Masayuki; Tse, Chris; Thompson, Paul R; Treiber, Daniel K; Viana, Amélia Yi; Wells, Carrow I; Willson, Timothy M; Zuercher, William J; Knapp, Stefan; Mueller-Fahrnow, Anke

    2018-04-20

    Potent, selective and broadly characterized small molecule modulators of protein function (chemical probes) are powerful research reagents. The pharmaceutical industry has generated many high-quality chemical probes and several of these have been made available to academia. However, probe-associated data and control compounds, such as inactive structurally related molecules and their associated data, are generally not accessible. The lack of data and guidance makes it difficult for researchers to decide which chemical tools to choose. Several pharmaceutical companies (AbbVie, Bayer, Boehringer Ingelheim, Janssen, MSD, Pfizer, and Takeda) have therefore entered into a pre-competitive collaboration to make available a large number of innovative high-quality probes, including all probe-associated data, control compounds and recommendations on use (https://openscienceprobes.sgc-frankfurt.de">https://openscienceprobes.sgc-frankfurt.dehttps://openscienceprobes.sgc-frankfurt.de/">/). Here we describe the chemical tools and target-related knowledge that have been made available, and encourage others to join the project. © 2018, Müller et al.

  10. Digitally controlled analog proportional-integral-derivative (PID) controller for high-speed scanning probe microscopy

    Science.gov (United States)

    Dukic, Maja; Todorov, Vencislav; Andany, Santiago; Nievergelt, Adrian P.; Yang, Chen; Hosseini, Nahid; Fantner, Georg E.

    2017-12-01

    Nearly all scanning probe microscopes (SPMs) contain a feedback controller, which is used to move the scanner in the direction of the z-axis in order to maintain a constant setpoint based on the tip-sample interaction. The most frequently used feedback controller in SPMs is the proportional-integral (PI) controller. The bandwidth of the PI controller presents one of the speed limiting factors in high-speed SPMs, where higher bandwidths enable faster scanning speeds and higher imaging resolution. Most SPM systems use digital signal processor-based PI feedback controllers, which require analog-to-digital and digital-to-analog converters. These converters introduce additional feedback delays which limit the achievable imaging speed and resolution. In this paper, we present a digitally controlled analog proportional-integral-derivative (PID) controller. The controller implementation allows tunability of the PID gains over a large amplification and frequency range, while also providing precise control of the system and reproducibility of the gain parameters. By using the analog PID controller, we were able to perform successful atomic force microscopy imaging of a standard silicon calibration grating at line rates up to several kHz.

  11. Analysis of conditional gene deletion using probe based Real-Time PCR

    Directory of Open Access Journals (Sweden)

    Lyko Frank

    2010-12-01

    Full Text Available Abstract Following publication of this article 1 the authors noticed that an incorrect probe reference was cited on page 3, 4, 5 and 6 ("UP #69, Roche Applied Science". The correct probe that was used for the 1lox/2lox allele ratio analysis in the paper is as follows Probe for 1lox/2lox allele quantification: 5'-6-FAM-atAaCtTCgtatagCATaCattatac-BHQ-1 -3' (uppercase letters = LNA bases Manufacturer: EUROGENTEC, Seraing, Belgium All other information and reaction conditions in the paper are correct as stated.

  12. Organocatalytic aza-Michael/retro-aza-Michael reaction: pronounced chirality amplification in aza-Michael reaction and racemization via retro-aza-Michael reaction.

    Science.gov (United States)

    Cai, Yong-Feng; Li, Li; Luo, Meng-Xian; Yang, Ke-Fang; Lai, Guo-Qiao; Jiang, Jian-Xiong; Xu, Li-Wen

    2011-05-01

    A detailed experimental investigation of an aza-Michael reaction of aniline and chalcone is presented. A series of Cinchona alkaloid-derived organocatalysts with different functional groups were prepared and used in the aza-Michael and retro-aza-Michael reaction. There was an interesting finding that a complete reversal of stereoselectivity when a benzoyl group was introduced to the cinchonine and cinchonidine. The chirality amplification vs. time proceeds in the quinine-derived organocatalyst containing silicon-based bulky group, QN-TBS, -catalyzed aza-Michael reaction under solvent-free conditions. In addition, we have demonstrated for the first time that racemization was occurred in suitable solvents under mild conditions due to retro-aza-Michael reaction of the Michael adduct of aniline with chalcone. These indicate the equilibrium of retro-aza-Michael reaction and aza-Michael reaction produce the happening of chirality amplification in aza-Michael reaction and racemization via retro-aza-Michael reaction under different conditions, which would be beneficial to the development of novel chiral catalysts for the aza-Michael reactions. Copyright © 2011 Wiley-Liss, Inc.

  13. Synthesis and Biological Activity of Some 3,5-Diaryl-1-Benzothiazolopyrazoline Derivatives: Reaction of Chalcones with 2-Hyrazinobenzothiazoles

    Directory of Open Access Journals (Sweden)

    Vandana Sharma

    2009-01-01

    Full Text Available A series of 3,5-diaryl-1-benzothiazolopyrazoline derivatives were synthesized by the reaction of appropriately substituted chalcones and 2-hydrazinobenzothiazole in ethanol. The synthesized heterocycles have been characterized on the basis of their chemical properties and spectroscopic data. These compounds were tested for biological activity against a variety of test organisms.

  14. An Application of Equivalence Transformations to Reaction Diffusion Equations

    Directory of Open Access Journals (Sweden)

    Mariano Torrisi

    2015-10-01

    Full Text Available In this paper, we consider a quite general class of advection reaction diffusion systems. By using an equivalence generator, derived in a previous paper, the authors apply a projection theorem to determine some special forms of the constitutive functions that allow the extension by one of the two-dimensional principal Lie algebra. As an example, a special case is discussed at the end of the paper.

  15. A comprehensive survey of nuclear reactions; Panorama des reactions nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Cugnon, J. [Liege Univ., IFPA, AGO Dept. (Belgium)

    2007-07-01

    The various mechanisms of nuclear reactions are surveyed and classified in different regimes, based on the notions of coherent mechanisms and hard versus soft processes. The emphasis is put on the concepts at the basis of the understanding of these regimes and on the elements of nuclear structure which are involved in these different regimes, as well as the on the possibility of extracting this information. Due to lack of space and for pedagogical reasons, the discussion is limited to nucleon-induced and light-ion-induced reactions. However, a few remarks are given concerning some specific probes, such as weakly bound projectiles or neutron-rich nuclei. (author)

  16. Charged-particle thermonuclear reaction rates: II. Tables and graphs of reaction rates and probability density functions

    International Nuclear Information System (INIS)

    Iliadis, C.; Longland, R.; Champagne, A.E.; Coc, A.; Fitzgerald, R.

    2010-01-01

    Numerical values of charged-particle thermonuclear reaction rates for nuclei in the A=14 to 40 region are tabulated. The results are obtained using a method, based on Monte Carlo techniques, that has been described in the preceding paper of this issue (Paper I). We present a low rate, median rate and high rate which correspond to the 0.16, 0.50 and 0.84 quantiles, respectively, of the cumulative reaction rate distribution. The meaning of these quantities is in general different from the commonly reported, but statistically meaningless expressions, 'lower limit', 'nominal value' and 'upper limit' of the total reaction rate. In addition, we approximate the Monte Carlo probability density function of the total reaction rate by a lognormal distribution and tabulate the lognormal parameters μ and σ at each temperature. We also provide a quantitative measure (Anderson-Darling test statistic) for the reliability of the lognormal approximation. The user can implement the approximate lognormal reaction rate probability density functions directly in a stellar model code for studies of stellar energy generation and nucleosynthesis. For each reaction, the Monte Carlo reaction rate probability density functions, together with their lognormal approximations, are displayed graphically for selected temperatures in order to provide a visual impression. Our new reaction rates are appropriate for bare nuclei in the laboratory. The nuclear physics input used to derive our reaction rates is presented in the subsequent paper of this issue (Paper III). In the fourth paper of this issue (Paper IV) we compare our new reaction rates to previous results.

  17. Continuous waves probing in dynamic acoustoelastic testing

    Science.gov (United States)

    Scalerandi, M.; Gliozzi, A. S.; Ait Ouarabi, M.; Boubenider, F.

    2016-05-01

    Consolidated granular media display a peculiar nonlinear elastic behavior, which is normally analysed with dynamic ultrasonic testing exploiting the dependence on amplitude of different measurable quantities, such as the resonance frequency shift, the amount of harmonics generation, or the break of the superposition principle. However, dynamic testing allows measuring effects which are averaged over one (or more) cycles of the exciting perturbation. Dynamic acoustoelastic testing has been proposed to overcome this limitation and allow the determination of the real amplitude dependence of the modulus of the material. Here, we propose an implementation of the approach, in which the pulse probing waves are substituted by continuous waves. As a result, instead of measuring a time-of-flight as a function of the pump strain, we study the dependence of the resonance frequency on the strain amplitude, allowing to derive the same conclusions but with an easier to implement procedure.

  18. Prediction of biomass-generated syngas using extents of major reactions in a continuous stirred-tank reactor

    International Nuclear Information System (INIS)

    Sharma, Ashokkumar M.; Kumar, Ajay; Madihally, Sundararajan; Whiteley, James R.; Huhnke, Raymond L.

    2014-01-01

    Syngas, the main gasification product, is a well-known intermediate for making fuels, chemicals and power. The objective of this study was to develop and validate reaction kinetics-based gasification model using extents of major reactions in a CSTR (continuous stirred-tank reactor) to predict syngas composition and yield. The model was studied by varying biomass and air flowrates from 2.9 to 4.2 dry kg/h and 4.5–10 kg/h, respectively, with temperature from 801 to 907 °C. Results showed significant improvement in the predictions of syngas composition and yield, and gasification efficiency. The extents of gasification reactions indicated that at ERs (equivalence ratios) below 0.32, the water gas reaction contributed the most to the syngas CO and H 2 yields. The char oxidation reaction was also the dominating reaction contributing to CO yield at ERs below 0.40. At ERs above 0.29, the Boudouard and methane oxidation reactions were the most dominating reactions contributing to the CO yield while the water gas shift reaction contributed to the H 2 yield. The developed model corrected one of the key underlying assumptions that biomass decomposes into elemental forms (C, H, O, N and S), however, gasification temperature, carbon conversion efficiency and tar yield were assumed to be given. - Highlights: • Modeled gasification using extent of reaction in a continuous stirred-tank reactor. • Extents of major reactions during gasification were predicted. • Model greatly improved prediction of biomass-generated gas composition and yield. • Water gas, Boudouard and methane oxidation reactions contributed to CO production. • Water gas and water gas shift were the dominating reactions for H 2 production

  19. Buffering dissociation/formation reaction of biogenic calcium carbonate.

    Science.gov (United States)

    Ichikawa, Kazuhiko

    2007-01-01

    The oscillating stability of coral reef seawater pH has been maintained at around physiological pH values over the past 300 years (Pelejero et al., 2005). The stability mechanism of its pH has been interpreted in terms of the buffering dissolution/formation reaction of CaCO(3) as well as the proton consumption/generation reaction in CaCO(3)-saturated water. Here the pH-dependent solubility product [HCO(3)(-)][Ca(2+)] has been derived on the basis of the actual pH-dependent reactions for the atmospheric CO(2)/CO(2 (aq.))/HCO(3)(-)/CO(3)(2-)/Ca(2+)/CaCO(3) system. Overbasic pH peaks appeared between pH approximately 8 and approximately 9.5 during sodium hydroxide titration, as a result of simultaneous CaCO(3) formation and proton generation. The spontaneous and prompt water pH recovery from the acidic to the physiological range has been confirmed by the observation of acid/base time evolution, because of simultaneous CaCO(3) dissolution and proton consumption. The dissolution/formation of CaCO(3) in water at pH 7.5-9 does not take place without a proton consumption/generation reaction, or a buffering chemical reaction of HCO(3)(-)+Ca(2+)right arrow over left arrowCaCO(3)+H(+). SEM images of the CaCO(3) fragments showed that the acid water ate away at the CaCO(3) formed at physiological pH values. Natural coral reefs can thus recover the physiological pH levels of seawater from the acidic range through partial dissolution of their own skeletons.

  20. SYNTHESIS OF FLAVANONE-6-CARBOXYLIC ACID DERIVATIVES FROM SALICYLIC ACID DERIVATIVE

    Directory of Open Access Journals (Sweden)

    Muhammad Idham Darussalam Mardjan

    2012-02-01

    Full Text Available Synthesis of flavanone-6-carboxylic acid derivatives had been conducted via the route of chalcone. The synthesis was carried out from salicylic acid derivative, i.e. 4-hydroxybenzoic acid, via esterification, Fries rearrangement, Claisen-Schmidt condensation and 1,4-nucleophilic addition reactions. Structure elucidation of products was performed using FT-IR, 1H-NMR, GC-MS and UV-Vis spectrometers. Reaction of 4-hydroxybenzoic acid with methanol catalyzed with sulfuric acid produced methyl 4-hydroxybenzoate in 87% yield. The acid-catalyzed-acetylation of the product using acetic anhydride gave methyl 4-acetoxybenzoate in 75% yield. Furthermore, solvent-free Fries rearrangement of methyl 4-acetoxybenzoate in the presence of AlCl3 produced 3-acetyl-4-hydroxybenzoic acid as the acetophenone derivatives in 67% yield. Then, Claisen-Schmidt condensation of the acetophenone and benzaldehyde derivatives of p-anisaldehyde and veratraldehyde in basic condition gave 2'-hydroxychalcone-5'-carboxylic acid derivatives  in 81 and 71 % yield, respectively. Finally, the ring closure reaction of the chalcone yielded the corresponding flavanone-6-carboxylic acids in 67 and 59% yield, respectively.

  1. Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Deepak A Lamba

    2010-01-01

    Full Text Available Inherited and acquired retinal degenerations are frequent causes of visual impairment and photoreceptor cell replacement therapy may restore visual function to these individuals. To provide a source of new retinal neurons for cell based therapies, we developed methods to derive retinal progenitors from human ES cells.In this report we have used a similar method to direct induced pluripotent stem cells (iPS from human fibroblasts to a retinal progenitor fate, competent to generate photoreceptors. We also found we could purify the photoreceptors derived from the iPS cells using fluorescence activated cell sorting (FACS after labeling photoreceptors with a lentivirus driving GFP from the IRBP cis-regulatory sequences. Moreover, we found that when we transplanted the FACS purified iPSC derived photoreceptors, they were able to integrate into a normal mouse retina and express photoreceptor markers.This report provides evidence that enriched populations of human photoreceptors can be derived from iPS cells.

  2. Evaluation of a sodium-water reaction event caused by steam generator tubes break in the prototype generation IV sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sang June; Ha, Kwi Seok; Chang, Won Pyo; Kang, Seok Hun; Lee, Kwi Lim; Choi, Chi Woong; Lee, Seung Won; Yoo, Jin; Jeong, Jae Ho; Jeong, Tae Kyeong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-08-15

    The prototype generation IV sodium-cooled fast reactor (PGSFR) has been developed by the Korea Atomic Energy Research Institute. This reactor uses sodium as a reactor coolant to transfer the core heat energy to the turbine. Sodium has chemical characteristics that allow it to violently react with materials such as a water or steam. When a sodium–water reaction (SWR) occurs due to leakage or breakage of steam generator tubes, high-pressure waves and corrosive reaction products are produced, which threaten the structural integrity of the components of the intermediate heat-transfer system (IHTS) and the safety of the primary heat-transfer system (PHTS). In the PGSFR, SWR events are included in the design-basis event. This event should be analyzed from the viewpoint of the integrities of the IHTS and fuel rods. To evaluate the integrity of the IHTS based on the consequences of the SWR, the behaviors of the generated high-pressure waves are analyzed at the major positions of a failed IHTS loop using a sodium–water advanced analysis method-II code. The integrity of the fuel rods must be consistently maintained below the safety acceptance criteria to avoid the consequences of the SWR. The integrity of the PHTS is evaluated using the multidimensional analysis of reactor safety-liquid metal reactor code to model the whole plant.

  3. Evaluation of a Sodium–Water Reaction Event Caused by Steam Generator Tubes Break in the Prototype Generation IV Sodium-cooled Fast Reactor

    Directory of Open Access Journals (Sweden)

    Sang June Ahn

    2016-08-01

    Full Text Available The prototype generation IV sodium-cooled fast reactor (PGSFR has been developed by the Korea Atomic Energy Research Institute. This reactor uses sodium as a reactor coolant to transfer the core heat energy to the turbine. Sodium has chemical characteristics that allow it to violently react with materials such as a water or steam. When a sodium–water reaction (SWR occurs due to leakage or breakage of steam generator tubes, high-pressure waves and corrosive reaction products are produced, which threaten the structural integrity of the components of the intermediate heat-transfer system (IHTS and the safety of the primary heat-transfer system (PHTS. In the PGSFR, SWR events are included in the design-basis event. This event should be analyzed from the viewpoint of the integrities of the IHTS and fuel rods. To evaluate the integrity of the IHTS based on the consequences of the SWR, the behaviors of the generated high-pressure waves are analyzed at the major positions of a failed IHTS loop using a sodium–water advanced analysis method-II code. The integrity of the fuel rods must be consistently maintained below the safety acceptance criteria to avoid the consequences of the SWR. The integrity of the PHTS is evaluated using the multidimensional analysis of reactor safety-liquid metal reactor code to model the whole plant.

  4. Thermal Bremsstrahlung probing nuclear multifragmentation in nucleus-nucleus collisions around the Fermi energy

    International Nuclear Information System (INIS)

    D'Enterria, D.G.

    2000-05-01

    The thermodynamical properties of nuclear matter at moderate temperatures and densities, in the vicinity of the predicted nuclear liquid-gas phase transition, are studied using as experimental probe the hard-photons (E γ > 30 MeV) emitted in nucleus-nucleus collisions. Photon and charged-particle production in four different heavy-ion reactions (Ar 36 + Au 197 , Ag 107 , Ni 58 , C 12 at 60 A*MeV) is measured exclusively and inclusively coupling the TAPS photon spectrometer with two charged-particle and intermediate-mass-fragment detectors covering nearly 4π. We confirm that Bremsstrahlung emission in first-chance (off-equilibrium) proton-neutron collisions (pnγ) is the dominant origin of hard photons. We also firmly establish the existence of a thermal radiation component emitted in second-chance proton-neutron collisions. This thermal Bremsstrahlung emission takes place in semi-central and central nucleus-nucleus reactions involving heavy targets. We exploit this observation i) to demonstrate that thermal equilibrium is reached during the reaction, ii) to establish a new thermometer of nuclear matter based on Bremsstrahlung photons, iii) to derive the thermodynamical properties of the excited nuclear sources and, in particular, to establish a 'caloric curve' (temperature versus excitation energy), and iv) to assess the time-scales of the nuclear break-up process. (author)

  5. Combining the catalytic enantioselective reaction of visible-light-generated radicals with a by-product utilization system.

    Science.gov (United States)

    Huang, Xiaoqiang; Luo, Shipeng; Burghaus, Olaf; Webster, Richard D; Harms, Klaus; Meggers, Eric

    2017-10-01

    We report an unusual reaction design in which a chiral bis-cyclometalated rhodium(iii) complex enables the stereocontrolled chemistry of photo-generated carbon-centered radicals and at the same time catalyzes an enantioselective sulfonyl radical addition to an alkene. Specifically, employing inexpensive and readily available Hantzsch esters as the photoredox mediator, Rh-coordinated prochiral radicals generated by a selective photoinduced single electron reduction are trapped by allyl sulfones in a highly stereocontrolled fashion, providing radical allylation products with up to 97% ee. The hereby formed fragmented sulfonyl radicals are utilized via an enantioselective radical addition to form chiral sulfones, which minimizes waste generation.

  6. Polyethylene Glycol (PEG-400: An Efficient and Recyclable Reaction Medium for the Synthesis of Pyrazolo[3,4-b]pyridin-6(7H-one Derivatives

    Directory of Open Access Journals (Sweden)

    Deming Wang

    2013-10-01

    Full Text Available A mild and efficient synthesis of pyrazolo[3,4-b]pyridine-6(7H-one derivatives via a three-component reaction of an aldehyde, Meldrum’s acid and 3-methyl-1H-pyrazol-5-amine using recyclable polyethylene glycol (PEG-400 as a reaction medium is described. This method has the advantages of accessible starting materials, good yields, mild reaction conditions and begin environmentally friendly.

  7. Theoretical investigation of the hydrogen shift reactions in peroxy radicals derived from the atmospheric decomposition of 3-methyl-3-buten-1-ol (MBO331)

    DEFF Research Database (Denmark)

    Knap, Hasse Christian; Jørgensen, Solvejg; Kjærgaard, Henrik Grum

    2015-01-01

    The hydroxy peroxy radical derived from the oxidation of 3-methyl-3-buten-1-ol (MBO331), can undergo four different hydrogen shift (H-shift) reactions. We have compared optimized geometries, barrier heights and reaction rate constants obtained with five different DFT functionals (BLYP, B3LYP, BHand...

  8. Solar-wind predictions for the Parker Solar Probe orbit. Near-Sun extrapolations derived from an empirical solar-wind model based on Helios and OMNI observations

    Science.gov (United States)

    Venzmer, M. S.; Bothmer, V.

    2018-03-01

    Context. The Parker Solar Probe (PSP; formerly Solar Probe Plus) mission will be humanitys first in situ exploration of the solar corona with closest perihelia at 9.86 solar radii (R⊙) distance to the Sun. It will help answer hitherto unresolved questions on the heating of the solar corona and the source and acceleration of the solar wind and solar energetic particles. The scope of this study is to model the solar-wind environment for PSPs unprecedented distances in its prime mission phase during the years 2018 to 2025. The study is performed within the Coronagraphic German And US SolarProbePlus Survey (CGAUSS) which is the German contribution to the PSP mission as part of the Wide-field Imager for Solar PRobe. Aim. We present an empirical solar-wind model for the inner heliosphere which is derived from OMNI and Helios data. The German-US space probes Helios 1 and Helios 2 flew in the 1970s and observed solar wind in the ecliptic within heliocentric distances of 0.29 au to 0.98 au. The OMNI database consists of multi-spacecraft intercalibrated in situ data obtained near 1 au over more than five solar cycles. The international sunspot number (SSN) and its predictions are used to derive dependencies of the major solar-wind parameters on solar activity and to forecast their properties for the PSP mission. Methods: The frequency distributions for the solar-wind key parameters, magnetic field strength, proton velocity, density, and temperature, are represented by lognormal functions. In addition, we consider the velocity distributions bi-componental shape, consisting of a slower and a faster part. Functional relations to solar activity are compiled with use of the OMNI data by correlating and fitting the frequency distributions with the SSN. Further, based on the combined data set from both Helios probes, the parameters frequency distributions are fitted with respect to solar distance to obtain power law dependencies. Thus an empirical solar-wind model for the inner

  9. Plasma potential and electron temperature evaluated by ball-pen and Langmuir probes in the COMPASS tokamak

    Science.gov (United States)

    Dimitrova, M.; Popov, Tsv K.; Adamek, J.; Kovačič, J.; Ivanova, P.; Hasan, E.; López-Bruna, D.; Seidl, J.; Vondráček, P.; Dejarnac, R.; Stöckel, J.; Imríšek, M.; Panek, R.; the COMPASS Team

    2017-12-01

    The radial distributions of the main plasma parameters in the scrape-off-layer of the COMPASS tokamak are measured during L-mode and H-mode regimes by using both Langmuir and ball-pen probes mounted on a horizontal reciprocating manipulator. The radial profile of the plasma potential derived previously from Langmuir probes data by using the first derivative probe technique is compared with data derived using ball-pen probes. A good agreement can be seen between the data acquired by the two techniques during the L-mode discharge and during the H-mode regime within the inter-ELM periods. In contrast with the first derivative probe technique, the ball-pen probe technique does not require a swept voltage and, therefore, the temporal resolution is only limited by the data acquisition system. In the electron temperature evaluation, in the far scrape-off layer and in the limiter shadow, where the electron energy distribution is Maxwellian, the results from both techniques match well. In the vicinity of the last closed flux surface, where the electron energy distribution function is bi-Maxwellian, the ball-pen probe technique results are in agreement with the high-temperature components of the electron distribution only. We also discuss the application of relatively large Langmuir probes placed in parallel and perpendicularly to the magnetic field lines to studying the main plasma parameters. The results obtained by the two types of the large probes agree well. They are compared with Thomson scattering data for electron temperatures and densities. The results for the electron densities are compared also with the results from ASTRA code calculation of the electron source due to the ionization of the neutrals by fast electrons and the origin of the bi-Maxwellian electron energy distribution function is briefly discussed.

  10. Pulsed neutron generator for logging

    International Nuclear Information System (INIS)

    Thibideau, F.D.

    1977-01-01

    A pulsed neutron generator for uranium logging is described. This generator is one component of a prototype uranium logging probe which is being developed by SLA to detect, and assay, uranium by borehole logging. The logging method is based on the measurement of epithermal neutrons resulting from the prompt fissioning of uranium from a pulsed source of 17.6 MeV neutrons. An objective of the prototype probe was that its diameter not exceed 2.75 inches, which would allow its use in conventional rotary drill holes of 4.75-inch diameter. This restriction limited the generator to a maximum 2.375-inch diameter. The performance requirements for the neutron generator specified that it operate with a nominal output of 5 x 10 6 neutrons/pulse at up to 100 pulses/second for a one-hour period. The development of a neutron generator meeting the preliminary design goals was completed and two prototype models were delivered to SLA. These two generators have been used by SLA to log a number of boreholes in field evaluation of the probe. The results of the field evaluations have led to the recommendation of several changes to improve the probe's operation. Some of these changes will require additional development effort on the neutron generator. It is expected that this work will be performed during 1977. The design and operation of the first prototype neutron generators is described

  11. Nitrogen Detection in Bulk Samples Using a D-D Reaction-Based Portable Neutron Generator

    Directory of Open Access Journals (Sweden)

    A. A. Naqvi

    2013-01-01

    Full Text Available Nitrogen concentration was measured via 2.52 MeV nitrogen gamma ray from melamine, caffeine, urea, and disperse orange bulk samples using a newly designed D-D portable neutron generator-based prompt gamma ray setup. Inspite of low flux of thermal neutrons produced by D-D reaction-based portable neutron generator and interference of 2.52 MeV gamma rays from nitrogen in bulk samples with 2.50 MeV gamma ray from bismuth in BGO detector material, an excellent agreement between the experimental and calculated yields of nitrogen gamma rays indicates satisfactory performance of the setup for detection of nitrogen in bulk samples.

  12. Hydrogen Generation from Sugars via Aqueous-Phase Reforming

    International Nuclear Information System (INIS)

    Randy D Cortright

    2006-01-01

    Virent Energy Systems, Inc. is commercializing the Aqueous Phase Reforming (APR) process that allows the generation of hydrogen-rich gas streams from biomass-derived compounds such as glycerol, sugars, and sugar alcohols. The APR process is a unique method that generates hydrogen from aqueous solutions of these oxygenated compounds in a single step reactor process compared to the three or more reaction steps required for hydrogen generation via conventional processes that utilize non-renewable fossil fuels. The key breakthrough of the APR process is that the reforming of these aqueous solutions is done in the liquid phase. The patented APR process occurs at temperatures (150 C to 270 C) where the water-gas shift reaction is favorable, making it possible to generate hydrogen with low amounts of CO in a single chemical reactor. Furthermore, the APR process occurs at pressures (typically 15 to 50 bar) where the hydrogen-rich effluent can be effectively purified using either membrane technology or pressure swing adsorption technology. The utilization of biomass-based compounds allows the APR process to be a carbon neutral method to generate hydrogen. In the near term, the feed-stock of interest is waste glycerol that is being generated in large quantities as a byproduct in the production of bio-diesel. Virent has developed the APR system for on-demand generation of hydrogen-rich fuel gas from either glycerol or sorbitol (the sugar alcohol formed by hydrogenation of glucose) to fuel a stationary internal combustion engine driven generator (10 kW). Under a USDOE funded project, Virent is currently developing the APR process to generate high yields of hydrogen from corn-derived glucose. This project objective is to achieve the DOE 2010 cost target for distributed production from renewable liquid fuels of 3.60 dollars/gge (gasoline gallon equivalent) delivered. (authors)

  13. Development and field practical performance of smart array probe

    International Nuclear Information System (INIS)

    Maeda, Kotaro; Shimone, Junri; Akagawa, Junichi; Nagata, Yasuyuki; Harada, Yutaka; Sera, Takehiko; Hirano, Shinro

    2011-01-01

    In 1999, NEL developed the transmit-receive type ECT array probe for steam generator (SG) tubing, called 'X-probe', in cooperation with foreign firms. Recently NEL has developed the advanced ECT array probe, 'Smart Array Probe', characterized with a significantly improved resolution for circumferential cracks. The doubled channels in the circumferential mode have greatly improved the circumferential resolution of Smart Array Probe. With all the circumferential mode channels on the same circle, there is no need for axial position correction of inspection data. This report describes both the field practical performance and the compliance assessment to a Japanese SG-ECT guideline 'JEAG4208' of Smart Array ECT System, composed of Smart Array Probe, pusher-in-tester 'OMNI-200', and NEL's ECT Analysis System. (author)

  14. The derivation of the conventional basis for the classical Lie algebra generators

    International Nuclear Information System (INIS)

    Karadayi, H.R.

    1982-01-01

    The explicit construction of the classical Lie algebra generators in the conventional Gell-Mann basis is derived for all irreducible unitary representations of all classical groups. The main framework is based on a description of the simple roots of the classical Lie algebras such that the inter-relations implied by the Cartan matrix of the group among these simple roots are explicit within this description. (author)

  15. General conditions for the generation of long-distance entanglement

    International Nuclear Information System (INIS)

    Kuwahara, Tomotaka

    2012-01-01

    We generally investigate necessary conditions for the generation of long-distance entanglement. We consider a quantum system in which a system mediates the indirect interaction between two spins, which we refer to as probe spins. Firstly, we weaken the coupling between each probe spin and the mediator system to the infinitesimal strength in order to generate the long-distance entanglement. We give two necessary conditions for the mediator system to generate the long-distance entanglement. We prove that indirect interaction cannot generate the entanglement if it is ‘classical’. We also give a necessary condition for the effective fields on the probe spins to satisfy. Secondly, we generate the long-distance entanglement by the use of only external fields. We show that external fields on the adjacent spins to the probes are necessary in addition to external fields on the probe spins. Finally, we consider the cases where the coupling strength between each probe spin and the mediator system is finite. In particular, we show two examples where the external fields on the mediator system highly enhance the long-distance entanglement. (paper)

  16. Probing the pomeron structure with quasi-real photons

    International Nuclear Information System (INIS)

    Arteaga-Romero, N.; Kessler, P.

    1986-03-01

    Following a recent suggestion of Ingelman and Schlein, we here consider the possibility of probing the gluonic structure of the pomeron with quasi-real photons, i.e. in reactions e p → e p + 2 jets + X taking place at an ep collider such as HERA

  17. A repetitive probe for FISH analysis of bovine interphase nuclei

    Directory of Open Access Journals (Sweden)

    Cribiu Edmond

    2000-03-01

    Full Text Available Abstract The purpose of this study was to generate repetitive DNA sequence probes for the analysis of interphase nuclei by fluorescent in situ hybridisation (FISH. Such probes are useful for the diagnosis of chromosomal abnormalities in bovine preimplanted embryos. Of the seven probes (E1A, E4A, Ba, H1A, W18, W22, W5 that were generated and partially sequenced, five corresponded to previously described Bos taurus repetitive DNA (E1A, E4A, Ba, W18, W5, one probe (W22 shared no homology with other DNA sequences and one (H1A displayed a significant homology with Rattus norvegicus mRNA for secretin receptor transmembrane domain 3. Fluorescent in situ hybridisation was performed on metaphase bovine fibroblast cells and showed that five of the seven probes hybridised most centromeres (E1A, E4A, Ba, W18, W22, one labelled the arms of all chromosomes (W5 and the H1A probe was specific to three chromosomes (ch14, ch20, and ch25. Moreover, FISH with H1A resulted in interpretable signals on interphase nuclei in 88% of the cases, while the other probes yielded only dispersed overlapping signals.

  18. A Combined Probe-Molecule, Mössbauer, Nuclear Resonance Vibrational Spectroscopy, and Density Functional Theory Approach for Evaluation of Potential Iron Active Sites in an Oxygen Reduction Reaction Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kneebone, Jared L. [Univ. of Rochester, Rochester, NY (United States); Daifuku, Stephanie L. [Univ. of Rochester, Rochester, NY (United States); Kehl, Jeffrey A. [Univ. of Rochester, Rochester, NY (United States); Wu, Gang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chung, Hoon T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hu, Michael Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Alp, E. Ercan [Argonne National Lab. (ANL), Argonne, IL (United States); More, Karren L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zelenay, Piotr [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holby, Edward F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Neidig, Michael L. [Univ. of Rochester, Rochester, NY (United States)

    2017-07-06

    While non-precious metal M-N-C (M = Fe or Co) catalysts have been developed that are effective for the oxygen reduction reaction in polymer electrolyte fuel cells, no consensus has yet been reached regarding the nature of the M sites in these heterogeneous catalysts that are responsible for reaction with dioxygen (O2). While multiple studies have developed correlations between Fe distributions in as-prepared catalysts and ORR activity, the direct identification of sites reactive towards O2 or O2-analog molecules remains a significant challenge. In the present study, we demonstrate a new approach to identifying and characterizing potential Fe active sites in complex ORR catalysts that combines an effective probe molecule (NO(g)) Mössbauer spectroscopy and nuclear resonance vibrational spectroscopy (NRVS) with density functional theory (DFT) calculations. Mössbauer spectroscopic studies demonstrate that NO(g) treatment of electrochemically reduced PANI-57Fe-C leads to selective reaction with only a sub-set of the Fe species present. Nuclear resonance vibrational spectroscopic studies identified new Fe-ligand vibrations associated with the site reactive towards NO(g). DFT calculations of vibrational properties of a small selection of previously proposed active site structures suggest that graphene zig-zag edge hosted Fe-N structures may be responsible for the observed vibrational behavior with NO(g) probe molecules. Moreover, such sites are likely also reactive to O2, possibly serving as the ORR active sites in the synthesized materials.

  19. Gamma rays as probe of fission and quasi-fission dynamics in the reaction 32S + 197Au near the Coulomb barrier

    Science.gov (United States)

    Pulcini, A.; Vardaci, E.; Kozulin, E.; Ashaduzzaman, M.; Borcea, C.; Bracco, A.; Brambilla, S.; Calinescu, S.; Camera, F.; Ciemala, M.; de Canditiis, B.; Dorvaux, O.; Harca, I. M.; Itkis, I.; Kirakosyan, V. V.; Knyazheva, G.; Kozulina, N.; Kolesov, I. V.; La Rana, G.; Maj, A.; Matea, I.; Novikov, K.; Petrone, C.; Quero, D.; Rath, P.; Saveleva, E.; Schmitt, C.; Sposito, G.; Stezowski, O.; Trzaska, W. H.; Wilson, J.

    2018-05-01

    Compound nucleus fission and quasi-fission are both binary decay channels whose common properties make the experimental separation between them difficult. A way to achieve this separation could be to probe the angular momentum of the binary fragments. This can be done detecting gamma rays in coincidence with the two fragments. As a case study, the reaction 32S + 197Au near the Coulomb barrier has been performed at the Tandem ALTO facility at IPN ORSAY. ORGAM and PARIS, two different gamma detectors arrays, are coupled with the CORSET detector, a two-arm time-of-flight spectrometer. TOF-TOF data were analyzed to reconstruct the mass-energy distribution of the primary fragments coupled with gamma multiplicity and spectroscopic analysis. Preliminary results of will be shown.

  20. The reactions of anthronylidene carbene with some heterocyclic compounds

    International Nuclear Information System (INIS)

    Divisia, Bernadette

    1970-01-01

    The action of the anthronylidene carbene, generated by photochemical decomposition of 9-diazo 10-anthron, on four heterocyclic compounds (furan, thiophene, 1-methyl-pyrrole and 2,5-dihydrofuran) has been examined. Two classical carbene reactions have been observed: the addition on double bond (furan, thiophene, 1-methylpyrrole) and hydrogen atom abstraction of the heterocyclic compound (2,5-dihydrofuran). In the case of furan and thiophene, the cyclo-propanic compound resulting from the addition is spontaneously transformed into an ethylenic derivative by valence isomerization. The furan derivative undergoes a cis-trans isomerization, while the thiophene one undergoes an extra carbene attack. In the case of 1-methylpyrrole, the corresponding cyclo-propanic compound undergoes a ring cleavage, followed by a hydrogen atom migration leading to the formation of a substituted anthron. Only an allylic hydrogen atom selective abstraction of heterocyclic compound takes place in the reaction of anthronylidene carbene with 2,5-dihydrofuran. The asymmetrical coupling of radicals so obtained yields the corresponding substituted anthron. (author) [fr

  1. Non extensive corrections to stellar nuclear reactions rate

    Energy Technology Data Exchange (ETDEWEB)

    Assuncao, M. [Universidade Federal de Sao Paulo (DCET/UNIFESP), Diadema, SP (Brazil). Dept. de Ciencias Exatas e da Terra; Silveira, F.E.M. [Universidade Federal do ABC, Santo Andre, SP (Brazil). Centro de Ciencias Naturais e Humanas; Lima, J.A.S. [Universidade de Sao Paulo (IAG/USP), SP (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas

    2010-07-01

    Full text: Stellar nucleosynthesis is widely accepted as the basic mechanism for creation of chemical elements in the Universe. In particular, nuclear reactions occurring in the Sun are recognized as responsible for its energy generation. The problem of to determine the energy generation mechanism in stars was firstly attacked by Gamow in the framework of his quantum mechanical theory of potential barrier penetration. According to that approach, the reactions rate is calculated by averaging the penetration factor over the velocity distribution of the plasma particles. A randomization of that distribution is expected as a consequence of the reactions. However, diffusion processes in the macroscopic environment should balance the resulting particles number depletion. Therefore, matter, energy, and momentum might steadily flow. In other words, a quasi-stationary equilibrium state must be attained. In this work, the potential barrier penetration approach to stellar nuclear reactions rate has been rediscussed with basis on Tsallis nonextensive statistics. The investigation has been restricted to non-resonant reactions, for which the S-factor can be regarded as a constant. It has been found that, within the extended formulation, the nonextensive q-parameter is constrained to a maximum value. Accordingly, the q-energy has been shown to exhibit a minimum. The q-Gamow peak has been derived and, in connection with the usual Gaussian approximation, the corresponding half q-width has been also estimated. Plots of the q-energy, q-Gamow peak and half q-width for some reactions with stellar physics interest have been produced. (author)

  2. Modeling the reaction kinetics of a hydrogen generator onboard a fuel cell -- Electric hybrid motorcycle

    Science.gov (United States)

    Ganesh, Karthik

    Owing to the perceived decline of the fossil fuel reserves in the world and environmental issues like pollution, conventional fuels may be replaced by cleaner alternative fuels. The potential of hydrogen as a fuel in vehicular applications is being explored. Hydrogen as an energy carrier potentially finds applications in internal combustion engines and fuel cells because it is considered a clean fuel and has high specific energy. However, at 6 to 8 per kilogram, not only is hydrogen produced from conventional methods like steam reforming expensive, but also there are storage and handling issues, safety concerns and lack of hydrogen refilling stations across the country. The purpose of this research is to suggest a cheap and viable system that generates hydrogen on demand through a chemical reaction between an aluminum-water slurry and an aqueous sodium hydroxide solution to power a 2 kW fuel cell on a fuel cell hybrid motorcycle. This reaction is essentially an aluminum-water reaction where sodium hydroxide acts as a reaction promoter or catalyst. The Horizon 2000 fuel cell used for this purpose has a maximum hydrogen intake rate of 28 lpm. The study focuses on studying the exothermic reaction between the reactants and proposes a rate law that best describes the rate of generation of hydrogen in connection to the surface area of aluminum available for the certain reaction and the concentration of the sodium hydroxide solution. Further, the proposed rate law is used in the simulation model of the chemical reactor onboard the hybrid motorcycle to determine the hydrogen flow rate to the fuel cell with time. Based on the simulated rate of production of hydrogen from the chemical system, its feasibility of use on different drive cycles is analyzed. The rate of production of hydrogen with a higher concentration of sodium hydroxide and smaller aluminum powder size was found to enable the installation of the chemical reactor on urban cycles with frequent stops and starts

  3. Synthesis and stability of strongly acidic benzamide derivatives

    DEFF Research Database (Denmark)

    Diness, Frederik; Bjerrum, Niels J.; Begtrup, Mikael

    2018-01-01

    Reactivity studies of strong organic acids based on the replacement of one or both of the oxygens in benzoic acids with the trifluoromethanesulfonamide group are reported. Novel derivatives of these types of acids were synthesized in good yields. The generated N-triflylbenzamides were further...... functionalized through cross-coupling and nucleophilic aromatic substitution reactions. All compounds were stable in dilute aqueous solutions. Studies of stability under acidic and basic conditions are also reported....

  4. Biotinylated human. beta. -endorphins as probes for the opioid receptor

    Energy Technology Data Exchange (ETDEWEB)

    Hochhaus, G.; Gibson, B.W.; Sadee, W.

    1988-01-05

    The reaction of human ..beta..-endorphin and biotinyl N-hydroxysuccinimide with or without spacer arm, afforded a series of products that were separated by high performance liquid chromatography (HPLC). Liquid secondary ion mass spectrometry of the biotinylated products and their tryptic digests produced abundant protonated molecular ions (MH/sup +/), which specified the number and location of biotinylation. Between 1 and 4 biotinyl residues were incorporated per human ..beta..-endorphin molecule, at Lys-9, -19, -24, -28, and -29, but not at the amino-terminal Try-1. Three HPLC fractions were isolated for receptor binding studies monobiotinylation of Lys-9, Lys-19, and a mixture of Lys-24, Lys-28, and Lys-29 derivatives. IC/sub 50/ values for binding to ..mu.. and delta opioid receptor sites were 3-8 times higher for monobiotinylated derivatives than for the parent human ..beta..-endorphin. Association with avidin decreased opioid receptor affinities for the C/sub 6/ spacer derivative biotinylated at position Lys-9, which is close to the (1-5) enkephalin receptor region. In contrast, avidin did not affect or even increased apparent affinities to ..mu.. and delta sites for derivatives biotinylated at the ..cap alpha..-helical part of the molecule (Lys-19, -24, -28, and -29). Biotinylated human ..beta..-endorphins also bound to low affinity nonopioid binding sites on NG-108-15 cells; however, affinities to these sites were considerably reduced when derivatives were bound to avidin. The ability of biotinylated human ..beta..-endorphin to cross-link the ..mu.. and delta opioid receptors to avidin allows application of the biotin-avidin system as a molecular probe of the opioid receptor.

  5. Hypochlorous acid turn-on boron dipyrromethene probe based on oxidation of methyl phenyl sulfide

    International Nuclear Information System (INIS)

    Liu, Shi-Rong; Vedamalai, Mani; Wu, Shu-Pao

    2013-01-01

    Graphical abstract: -- Highlights: •A BODIPY-based green fluorescent probe for sensing HOCl was developed. •The probe utilizes HOCl-promoted oxidation of methyl phenyl sulfide to produce a proportional fluorescence response to the concentration of HOCl. •Confocal fluorescence microscopy imaging of RAW264.7 cells demonstrated that the HCS probe might have application in the investigation of HOCl roles in biological systems. -- Abstract: A boron dipyrromethene (BODIPY)-based fluorometric probe, HCS, has been successfully developed for the highly sensitive and selective detection of hypochlorous acid (HOCl). The probe is based on the specific HOCl-promoted oxidation of methyl phenyl sulfide. The reaction is accompanied by a 160-fold increase in the fluorescent quantum yield (from 0.003 to 0.480). The fluorescent turn-on mechanism is accomplished by suppression of photoinduced electron transfer (PET) from the methyl phenyl sulfide group to BODIPY. The fluorescence intensity of the reaction between HOCl and HCS shows a good linearity in the HOCl concentration range 1–10 μM. The detection limit is 23.7 nM (S/N = 3). In addition, confocal fluorescence microscopy imaging using RAW264.7 macrophages demonstrates that the HCS probe could be an efficient fluorescent detector for HOCl in living cells

  6. Hypochlorous acid turn-on boron dipyrromethene probe based on oxidation of methyl phenyl sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shi-Rong; Vedamalai, Mani; Wu, Shu-Pao, E-mail: spwu@mail.nctu.edu.tw

    2013-10-24

    Graphical abstract: -- Highlights: •A BODIPY-based green fluorescent probe for sensing HOCl was developed. •The probe utilizes HOCl-promoted oxidation of methyl phenyl sulfide to produce a proportional fluorescence response to the concentration of HOCl. •Confocal fluorescence microscopy imaging of RAW264.7 cells demonstrated that the HCS probe might have application in the investigation of HOCl roles in biological systems. -- Abstract: A boron dipyrromethene (BODIPY)-based fluorometric probe, HCS, has been successfully developed for the highly sensitive and selective detection of hypochlorous acid (HOCl). The probe is based on the specific HOCl-promoted oxidation of methyl phenyl sulfide. The reaction is accompanied by a 160-fold increase in the fluorescent quantum yield (from 0.003 to 0.480). The fluorescent turn-on mechanism is accomplished by suppression of photoinduced electron transfer (PET) from the methyl phenyl sulfide group to BODIPY. The fluorescence intensity of the reaction between HOCl and HCS shows a good linearity in the HOCl concentration range 1–10 μM. The detection limit is 23.7 nM (S/N = 3). In addition, confocal fluorescence microscopy imaging using RAW264.7 macrophages demonstrates that the HCS probe could be an efficient fluorescent detector for HOCl in living cells.

  7. Initial pressure spike and its propagation phenomena in sodium-water reaction tests for MONJU steam generators

    International Nuclear Information System (INIS)

    Sato, M.; Hiroi, H.; Tanaka, N.; Hori, M.

    1977-01-01

    With the objective of demonstrating the safe design of steam generators for prototype LMFBR MONJU against the postulated large-leak accident, a number of large-leak sodium-water reaction tests have been conducted using the SWAT-1 and SWAT-3 rigs. Investigation of the potential effects of pressure load on the system is one of the major concerns in these tests. This paper reports the behavior of initial pressure spike in the reaction vessel, its propagation phenomena to the simulated secondary cooling system, and the comparisons with the computer code for one-dimensional pressure wave propagation problems. Both rigs used are the scaled-down models of the helically coiled steam generators of MONJU. The SWAT-1 rig is a simplified model and consists of a reaction vessel (1/8 scale of MONJU evaporator with 0.4 m dia. and 2.5 m height) and a pressure relief system i.e., a pressure relief line and a reaction products tank. On the other hand, the SWAT-3 rig is a 1/2.5 scale of MONJU SG system and consists of an evaporator (reaction vessel with 1.3 m dia. and 6.35 m height), a superheater, an intermediate heat exchanger (IHX), a piping system simulating the secondary cooling circuit and a pressure relief system. The both water injection systems consist of a water injection line with a rupture disk installed in front of injection hole and an electrically heated water tank. Choice of water injection rates in the scaled-down models is made based on the method of iso-velocity modeling. Test results indicated that the characteristics of the initial pressure spike are dominated by those of initial water injection which are controlled by the conditions of water heater and the size of water injection hole, etc

  8. Power generator system for HCL reaction

    International Nuclear Information System (INIS)

    Scragg, R. L.; Parker, A. B.

    1984-01-01

    A power generation system includes a nuclear reactor having a core which in addition to generating heat generates a high frequency electromagnetic radiation. An electromagnetic radiation chamber is positioned to receive at least a portion of the radiation generated by the reactor core. Hydrogen and chlorine are connected into the electromagnetic reactor chamber and react with controlled explosive violence when exposed to the radiation from the nuclear reactor. Oxygen is fed into the reactor chamber as a control medium. The resulting gases under high pressure and temperature are utilized to drive a gas turbine generators. In an alternative embodiment the highly ionized gases, hydrogen and chlorine are utilized as a fluid medium for use in magnetohydrodynamic generators which are attached to the electromagnetic reactor chambers

  9. Detection of Helicobacter Pylori Genome with an Optical Biosensor Based on Hybridization of Urease Gene with a Gold Nanoparticles-Labeled Probe

    Science.gov (United States)

    Shahrashoob, M.; Mohsenifar, A.; Tabatabaei, M.; Rahmani-Cherati, T.; Mobaraki, M.; Mota, A.; Shojaei, T. R.

    2016-05-01

    A novel optics-based nanobiosensor for sensitive determination of the Helicobacter pylori genome using a gold nanoparticles (AuNPs)-labeled probe is reported. Two specific thiol-modified capture and signal probes were designed based on a single-stranded complementary DNA (cDNA) region of the urease gene. The capture probe was immobilized on AuNPs, which were previously immobilized on an APTES-activated glass, and the signal probe was conjugated to different AuNPs as well. The presence of the cDNA in the reaction mixture led to the hybridization of the AuNPs-labeled capture probe and the signal probe with the cDNA, and consequently the optical density of the reaction mixture (AuNPs) was reduced proportionally to the cDNA concentration. The limit of detection was measured at 0.5 nM.

  10. Newly synthesized benzanthrone derivatives as prospective fluorescent membrane probes

    International Nuclear Information System (INIS)

    Zhytniakivska, Olga; Trusova, Valeriya; Gorbenko, Galyna; Kirilova, Elena; Kalnina, Inta; Kirilov, Georgiy; Kinnunen, Paavo

    2014-01-01

    Fluorescence spectral properties of a series of novel benzanthrone derivatives have been explored in lipid bilayers composed of zwitterionic lipid phosphatidylcholine (PC) and its mixtures with cholesterol (Chol) and anionic phospholipid cardiolipin (CL). Analysis of partition coefficients showed that all the examined compounds possess rather high lipid-associating ability, with the amidino derivatives exhibiting stronger membrane partitioning compared with the aminobenzanthrones. To understand how benzanthrone partition properties correlate with their structure, quantitative structure property relationship (QSPR) analysis was performed involving a range of quantum chemical molecular descriptors. -- Highlights: • Benzanthrone partitioning into lipid bilayer correlates with lipophilicity of the dyes. • Partition properties of benzanthrones depend on the dye dipole moment. • Amidino derivatives exhibit higher membrane affinity than aminobenzanthrones

  11. Detection of short repeated genomic sequences on metaphase chromosomes using padlock probes and target primed rolling circle DNA synthesis

    Directory of Open Access Journals (Sweden)

    Stougaard Magnus

    2007-11-01

    Full Text Available Abstract Background In situ detection of short sequence elements in genomic DNA requires short probes with high molecular resolution and powerful specific signal amplification. Padlock probes can differentiate single base variations. Ligated padlock probes can be amplified in situ by rolling circle DNA synthesis and detected by fluorescence microscopy, thus enhancing PRINS type reactions, where localized DNA synthesis reports on the position of hybridization targets, to potentially reveal the binding of single oligonucleotide-size probe molecules. Such a system has been presented for the detection of mitochondrial DNA in fixed cells, whereas attempts to apply rolling circle detection to metaphase chromosomes have previously failed, according to the literature. Methods Synchronized cultured cells were fixed with methanol/acetic acid to prepare chromosome spreads in teflon-coated diagnostic well-slides. Apart from the slide format and the chromosome spreading everything was done essentially according to standard protocols. Hybridization targets were detected in situ with padlock probes, which were ligated and amplified using target primed rolling circle DNA synthesis, and detected by fluorescence labeling. Results An optimized protocol for the spreading of condensed metaphase chromosomes in teflon-coated diagnostic well-slides was developed. Applying this protocol we generated specimens for target primed rolling circle DNA synthesis of padlock probes recognizing a 40 nucleotide sequence in the male specific repetitive satellite I sequence (DYZ1 on the Y-chromosome and a 32 nucleotide sequence in the repetitive kringle IV domain in the apolipoprotein(a gene positioned on the long arm of chromosome 6. These targets were detected with good efficiency, but the efficiency on other target sites was unsatisfactory. Conclusion Our aim was to test the applicability of the method used on mitochondrial DNA to the analysis of nuclear genomes, in particular as

  12. Synthesis and detection of 3'-OH terminal biotin-labeled DNA probes

    International Nuclear Information System (INIS)

    Brakel, C.L.; Engelhardt, D.L.

    1985-01-01

    Nick translation has been used to prepare biotin-dUTP-containing DNA probes. These stable DNA probes have been identified, following hybridization to target DNA, by fluorescence using antibiotin antibodies or by enzyme reactions in which the enzyme has been linked to avidin or streptavidin. It is probable that this technology will be applicable to certain diagnostic determinations and that, with sufficient sensitivity, this technology might provide a system for obtaining rapid and specific diagnoses in situations presently requiring time-consuming growth assays. The sensitivity of this assay can be increased in two ways: (1) by increasing the amount of biotin contained in the DNA probes, and (2) by increasing the response to individual biotin molecules in the DNA probes. This report demonstrates that terminal deoxynucleotide transferase can be employed to increase the biotin content of DNA probes. We also introduce a new streptavidin-linked enzyme system that produces a greater response to biotinylated DNA probes than does streptavidin-linked horseradish peroxidase

  13. CONFAC Decomposition Approach to Blind Identification of Underdetermined Mixtures Based on Generating Function Derivatives

    NARCIS (Netherlands)

    de Almeida, Andre L. F.; Luciani, Xavier; Stegeman, Alwin; Comon, Pierre

    This work proposes a new tensor-based approach to solve the problem of blind identification of underdetermined mixtures of complex-valued sources exploiting the cumulant generating function (CGF) of the observations. We show that a collection of second-order derivatives of the CGF of the

  14. A method for generation of bone marrow-derived macrophages from cryopreserved mouse bone marrow cells.

    Directory of Open Access Journals (Sweden)

    Fernanda M Marim

    Full Text Available The broad use of transgenic and gene-targeted mice has established bone marrow-derived macrophages (BMDM as important mammalian host cells for investigation of the macrophages biology. Over the last decade, extensive research has been done to determine how to freeze and store viable hematopoietic human cells; however, there is no information regarding generation of BMDM from frozen murine bone marrow (BM cells. Here, we establish a highly efficient protocol to freeze murine BM cells and further generate BMDM. Cryopreserved murine BM cells maintain their potential for BMDM differentiation for more than 6 years. We compared BMDM obtained from fresh and frozen BM cells and found that both are similarly able to trigger the expression of CD80 and CD86 in response to LPS or infection with the intracellular bacteria Legionella pneumophila. Additionally, BMDM obtained from fresh or frozen BM cells equally restrict or support the intracellular multiplication of pathogens such as L. pneumophila and the protozoan parasite Leishmania (L. amazonensis. Although further investigation are required to support the use of the method for generation of dendritic cells, preliminary experiments indicate that bone marrow-derived dendritic cells can also be generated from cryopreserved BM cells. Overall, the method described and validated herein represents a technical advance as it allows ready and easy generation of BMDM from a stock of frozen BM cells.

  15. Offspring reaction norms shaped by parental environment: interaction between within- and trans-generational plasticity of inducible defenses.

    Science.gov (United States)

    Luquet, Emilien; Tariel, Juliette

    2016-10-12

    Within-generational plasticity (WGP) and transgenerational plasticity (TGP) are mechanisms allowing rapid adaptive responses to fluctuating environments without genetic change. These forms of plasticity have often been viewed as independent processes. Recent evidence suggests that WGP is altered by the environmental conditions experienced by previous generations (i.e., TGP). In the context of inducible defenses, one of the most studied cases of plasticity, the WGP x TGP interaction has been poorly investigated. We provide evidence that TGP can alter the reaction norms of inducible defenses in a freshwater snail. The WGP x TGP interaction patterns are trait-specific and lead to decreased slope of reaction norms (behaviour and shell thickness). Offspring from induced parents showed a higher predator avoidance behaviour and a thicker shell than snails from non-induced parents in no predator-cue environment while they reached similar defenses in predator-cue environment. The WGP x TGP interaction further lead to a switch from a plastic towards a constitutive expression of defenses for shell dimensions (flat reaction norm). WGP-alteration by TGP may shape the adaptive responses to environmental change and then has a substantial importance to understand the evolution of plasticity.

  16. Limitations of turbidity process probes and formazine as their calibration standard.

    Science.gov (United States)

    Münzberg, Marvin; Hass, Roland; Dinh Duc Khanh, Ninh; Reich, Oliver

    2017-01-01

    Turbidity measurements are frequently implemented for the monitoring of heterogeneous chemical, physical, or biotechnological processes. However, for quantitative measurements, turbidity probes need calibration, as is requested and regulated by the ISO 7027:1999. Accordingly, a formazine suspension has to be produced. Despite this regulatory demand, no scientific publication on the stability and reproducibility of this polymerization process is available. In addition, no characterization of the optical properties of this calibration material with other optical methods had been achieved so far. Thus, in this contribution, process conditions such as temperature and concentration have been systematically investigated by turbidity probe measurements and Photon Density Wave (PDW) spectroscopy, revealing an influence on the temporal formazine formation onset. In contrast, different reaction temperatures do not lead to different scattering properties for the final formazine suspensions, but give an access to the activation energy for this condensation reaction. Based on PDW spectroscopy data, the synthesis of formazine is reproducible. However, very strong influences of the ambient conditions on the measurements of the turbidity probe have been observed, limiting its applicability. The restrictions of the turbidity probe with respect to scatterer concentration are examined on the basis of formazine and polystyrene suspensions. Compared to PDW spectroscopy data, signal saturation is observed at already low reduced scattering coefficients.

  17. KF/Al2O3 as a Recyclable Basic Catalyst for 1,3-Dipolar Cycloaddition Reaction: Synthesis of Indolizine-1-Carbonitrile Derivatives

    Directory of Open Access Journals (Sweden)

    Abaszadeh Mehdi

    2017-07-01

    Full Text Available KF/Al2O3 as a green and efficient catalyst has been used for synthesis of indolizine-1-carbonitrile derivatives. It can be proceeded by using 1,3-dipolar cycloaddition reaction of 1-alkyl-2-chloropyridinium bromides, malononitrile and benzaldehyde in ethanol, at reflux. The great advantage of this catalyst is the ease of handling. KF/Al2O3 can be used and removed by filtration, avoiding cumbersome aqueous workups and decreasing solvent waste handling issues. High conversions, short reaction times and a cleaner reaction profiles are some of the outstanding advantages of this method.

  18. A D-D/D-T fusion reaction based neutron generator system for liver tumor BNCT

    International Nuclear Information System (INIS)

    Koivunoro, H.; Lou, T.P.; Leung, K. N.; Reijonen, J.

    2003-01-01

    Boron-neutron capture therapy (BNCT) is an experimental radiation treatment modality used for highly malignant tumor treatments. Prior to irradiation with low energetic neutrons, a 10B compound is located selectively in the tumor cells. The effect of the treatment is based on the high LET radiation released in the 10 B(n,α) 7 Li reaction with thermal neutrons. BNCT has been used experimentally for brain tumor and melanoma treatments. Lately applications of other severe tumor type treatments have been introduced. Results have shown that liver tumors can also be treated by BNCT. At Lawrence Berkeley National Laboratory, various compact neutron generators based on D-D or D-T fusion reactions are being developed. The earlier theoretical studies of the D-D or D-T fusion reaction based neutron generators have shown that the optimal moderator and reflector configuration for brain tumor BNCT can be created. In this work, the applicability of 2.5 MeV neutrons for liver tumor BNCT application was studied. The optimal neutron energy for external liver treatments is not known. Neutron beams of different energies (1eV < E < 100 keV) were simulated and the dose distribution in the liver was calculated with the MCNP simulation code. In order to obtain the optimal neutron energy spectrum with the D-D neutrons, various moderator designs were performed using MCNP simulations. In this article the neutron spectrum and the optimized beam shaping assembly for liver tumor treatments is presented

  19. Design and operation of a button-probe, beam-position measurements

    International Nuclear Information System (INIS)

    Gilpatrick, J.D.; Power, J.F.; Meyer, R.E.; Rose, C.R.

    1993-01-01

    Beam position measurement systems have been installed on the Advanced Free Electron Laser (AFEL) facility at Los Alamos National Laboratory. The position measurement uses a capacitive- or button-style probe that differentiates the beam-bunch charge distribution induced on each of the four probe lobes. These induced signals are fed to amplitude-to-phase processing electronics that provide output signals proportional to the arc tangent of the probe's opposite-lobe, signal-voltage ratios. An associated computer system then digitizes and linearizes these processed signals based on theoretical models and measured responses. This paper will review the processing electronics and capacitive probe responses by deriving simple theoretical models and comparing these models to actual measured responses

  20. Einstein Inflationary Probe (EIP)

    Science.gov (United States)

    Hinshaw, Gary

    2004-01-01

    I will discuss plans to develop a concept for the Einstein Inflation Probe: a mission to detect gravity waves from inflation via the unique signature they impart to the cosmic microwave background (CMB) polarization. A sensitive CMB polarization satellite may be the only way to probe physics at the grand-unified theory (GUT) scale, exceeding by 12 orders of magnitude the energies studied at the Large Hadron Collider. A detection of gravity waves would represent a remarkable confirmation of the inflationary paradigm and set the energy scale at which inflation occurred when the universe was a fraction of a second old. Even a strong upper limit to the gravity wave amplitude would be significant, ruling out many common models of inflation, and pointing to inflation occurring at much lower energy, if at all. Measuring gravity waves via the CMB polarization will be challenging. We will undertake a comprehensive study to identify the critical scientific requirements for the mission and their derived instrumental performance requirements. At the core of the study will be an assessment of what is scientifically and experimentally optimal within the scope and purpose of the Einstein Inflation Probe.

  1. 14 MeV neutron reactions producing gamma-ray emitting nuclides with half-lives below 3 seconds

    International Nuclear Information System (INIS)

    Pepelnik, R.; Fanger, H.U.

    1981-01-01

    Fast neutron activation analysis (FNAA) experiments were performed using a Cockroft-Walton neutron generator and a fast pneumatic rabbit system with a sample transport time of 120 ms. With this facility cyclic activations of 18 O, Zr, Pb leading to the short-lived reaction products 15 C, 90 sup(m)Zr, 136 sup(m)Ba and 207 Pb were investigated. Derived from these measurements the analytical sensitivities of the involved reactions will be discussed. (orig.)

  2. Monitoring of an esterification reaction by on-line direct liquid sampling mass spectrometry and in-line mid infrared spectrometry with an attenuated total reflectance probe

    International Nuclear Information System (INIS)

    Owen, Andrew W.; McAulay, Edith A.J.; Nordon, Alison; Littlejohn, David; Lynch, Thomas P.; Lancaster, J. Steven; Wright, Robert G.

    2014-01-01

    Highlights: • High efficiency thermal vaporiser designed and used for on-line reaction monitoring. • Concentration profiles of all reactants and products obtained from mass spectra. • By-product formed from the presence of an impurity detected by MS but not MIR. • Mass spectrometry can detect trace and bulk components unlike molecular spectrometry. - Abstract: A specially designed thermal vaporiser was used with a process mass spectrometer designed for gas analysis to monitor the esterification of butan-1-ol and acetic anhydride. The reaction was conducted at two scales: in a 150 mL flask and a 1 L jacketed batch reactor, with liquid delivery flow rates to the vaporiser of 0.1 and 1.0 mL min −1 , respectively. Mass spectrometry measurements were made at selected ion masses, and classical least squares multivariate linear regression was used to produce concentration profiles for the reactants, products and catalyst. The extent of reaction was obtained from the butyl acetate profile and found to be 83% and 76% at 40 °C and 20 °C, respectively, at the 1 L scale. Reactions in the 1 L reactor were also monitored by in-line mid-infrared (MIR) spectrometry; off-line gas chromatography (GC) was used as a reference technique when building partial least squares (PLS) multivariate calibration models for prediction of butyl acetate concentrations from the MIR spectra. In validation experiments, good agreement was achieved between the concentration of butyl acetate obtained from in-line MIR spectra and off-line GC. In the initial few minutes of the reaction the profiles for butyl acetate derived from on-line direct liquid sampling mass spectrometry (DLSMS) differed from those of in-line MIR spectrometry owing to the 2 min transfer time between the reactor and mass spectrometer. As the reaction proceeded, however, the difference between the concentration profiles became less noticeable. DLSMS had advantages over in-line MIR spectrometry as it was easier to generate

  3. Quantum state-resolved gas/surface reaction dynamics probed by reflection absorption infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chen Li [Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen (Germany); Ueta, Hirokazu; Beck, Rainer D. [Laboratoire de Chimie Physique Moleculaire, Ecole Polytechnique Federale de Lausanne (Switzerland); Bisson, Regis [Aix-Marseille Universite, PIIM, CNRS, UMR 7345, 13397 Marseille (France)

    2013-05-15

    We report the design and characterization of a new molecular-beam/surface-science apparatus for quantum state-resolved studies of gas/surface reaction dynamics combining optical state-specific reactant preparation in a molecular beam by rapid adiabatic passage with detection of surface-bound reaction products by reflection absorption infrared spectroscopy (RAIRS). RAIRS is a non-invasive infrared spectroscopic detection technique that enables online monitoring of the buildup of reaction products on the target surface during reactant deposition by a molecular beam. The product uptake rate obtained by calibrated RAIRS detection yields the coverage dependent state-resolved reaction probability S({theta}). Furthermore, the infrared absorption spectra of the adsorbed products obtained by the RAIRS technique provide structural information, which help to identify nascent reaction products, investigate reaction pathways, and determine branching ratios for different pathways of a chemisorption reaction. Measurements of the dissociative chemisorption of methane on Pt(111) with this new apparatus are presented to illustrate the utility of RAIRS detection for highly detailed studies of chemical reactions at the gas/surface interface.

  4. Liquid metal fast breeder reactor steam generator survey of the consequences of large scale sodium water reaction

    International Nuclear Information System (INIS)

    Vambenepe, G.

    1978-01-01

    The ''Retona'' three-dimensional hydrodynamic computing code is being developed by Electricity de France to survey the consequences, on the very plant, of a large scale sodium water reaction in liquid metal steam generators. In this communication, the heat-exchanger geometry is schematized and the problem solving process briefly described under assumed simplifying hypotheses. The application of the results to the Creusot-Loire steam generator selected for Super-Phenix are given as an example. (author)

  5. Direct Reactions for Nuclear Structure and Nuclear Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Katherine Louise [Univ. of Tennessee, Knoxville, TN (United States). Experimental Low-Energy Nuclear Physics Group

    2014-12-18

    Direct reactions are powerful probes for studying the atomic nucleus. Modern direct reaction studies are illuminating both the fundamental nature of the nucleus and its role in nucleosynthetic processes occurring in the cosmos. This report covers experiments using knockout reactions on neutron-deficient fragmentation beams, transfer reactions on fission fragment beams, and theoretical sensitivity studies relating to the astrophysical r-process. Results from experiments on 108,106Sn at the NSCL, and on 131Sn at HRIBF are presented as well as the results from the nucleosynthesis study.

  6. Direct reactions for nuclear structure and nuclear astrophysics

    International Nuclear Information System (INIS)

    Jones, Katherine Louise

    2014-01-01

    Direct reactions are powerful probes for studying the atomic nucleus. Modern direct reaction studies are illuminating both the fundamental nature of the nucleus and its role in nucleosynthetic processes occurring in the cosmos. This report covers experiments using knockout reactions on neutron-deficient fragmentation beams, transfer reactions on fission fragment beams, and theoretical sensitivity studies relating to the astrophysical r-process. Results from experiments on 108,106 Sn at the NSCL, and on 131 Sn at HRIBF are presented as well as the results from the nucleosynthesis study.

  7. Kinetics of the reaction between H· and superheated water probed with muonium

    International Nuclear Information System (INIS)

    Alcorn, C.; Brodovitch, J.-C.; Ghandi, K.; Kennedy, A.; Percival, P.W.; Smith, M.

    2011-01-01

    Safe operation of a supercritical water cooled reactor requires knowledge of the reaction kinetics of transient species formed by the radiolysis of water in the temperature range 300-650"oC. By using a light isotope of the H·atom, it is possible to study its chemistry in water over this range of temperatures. Arguably, the most important reaction to study is that of the H·atom with the bulk solvent. This reaction could provide an in situ source of H_2 gas, which is added to CANDU reactors to suppress oxidative corrosion. The work described here concerns studies of the reaction of muonium with H_2O and D_2O at temperatures up to 450"oC.

  8. In vitro antibacterial analysis of phenoloxidase reaction products from the sea cucumber Apostichopus japonicus.

    Science.gov (United States)

    Jiang, Jingwei; Zhou, Zunchun; Dong, Ying; Cong, Cong; Guan, Xiaoyan; Wang, Bai; Chen, Zhong; Jiang, Bei; Yang, Aifu; Gao, Shan; Sun, Hongjuan

    2014-08-01

    Three phenoloxidases (POs) of Apostichopus japonicus, AjPOs (AjPO1, AjPO2 and AjPO3), were partially purified from the coelomocytes with an electrophoretic method, and then employed for the in vitro antibacterial analysis. Using L-3,4-dihydroxyphenylalanine (L-DOPA) as a substrate, AjPO1 and AjPO2-derived compounds inhibited the growth of Vibrio splendidus and Staphylococcus aureus, while AjPO3-derived compounds only inhibited the growth of V. splendidus. When dopamine was used as a substrate, AjPO1 and AjPO3-derived compounds inhibited the growth of V. splendidus and Vibrio harveyi, while AjPO2-derived compounds only inhibited the growth of V. splendidus. Moreover, AjPO1-derived compounds showed stronger inhibition in V. harveyi than AjPO3-derived compounds did. However, all of the three AjPO reaction products showed no inhibitions on the growth of Pseudoalteromonas nigrifaciens, Shewanella baltica, Micrococcus lysodeikticus, Streptococcus dysgalactiae and Nocardiopsis sp. with L-DOPA or dopamine as a substrate. Scanning electron microscope (SEM) observation of V. harveyi treated by AjPOs and dopamine showed that AjPO1-derived compounds resulted in massive bacteriolysis, AjPO2-derived compounds caused no obvious alteration on bacterial morphology, and AjPO3-derived compounds increased the ratio of spheroidal bacteria. All these results suggested that AjPO reaction products derived by L-DOPA and dopamine had different but limited antibacterial spectrum, and the different antibacterial effects observed among three AjPOs resulted from the different reaction products generated by AjPOs with the same substrate. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Scavenging of free-radical metabolites of aniline xenobiotics and drugs by amino acid derivatives: toxicological implications of radical-transfer reactions.

    Science.gov (United States)

    Michail, Karim; Baghdasarian, Argishti; Narwaley, Malyaj; Aljuhani, Naif; Siraki, Arno G

    2013-12-16

    We investigated a novel scavenging mechanism of arylamine free radicals by poly- and monoaminocarboxylates. Free radicals of arylamine xenobiotics and drugs did not react with oxygen in peroxidase-catalyzed reactions; however, they showed marked oxygen uptake in the presence of an aminocarboxylate. These free-radical intermediates were identified using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and electron paramagnetic resonance (EPR) spectrometry. Diethylenetriaminepentaacetic acid (DTPA), a polyaminocarboxylate, caused a concentration-dependent attenuation of N-centered radicals produced by the peroxidative metabolism of arylamines with the subsequent formation of secondary aliphatic carbon-centered radicals stemming from the cosubstrate molecule. Analogously, N,N-dimethylglycine (DMG) and N-methyliminodiacetate (MIDA), but not iminodiacetic acid (IDA), demonstrated a similar scavenging effect of arylamine-derived free radicals in a horseradish peroxidase/H2O2 system. Using human promyelocytic leukemia (HL-60) cell lysate as a model of human neutrophils, DTPA, MIDA, and DMG readily reduced anilinium cation radicals derived from the arylamines and gave rise to the corresponding carbon radicals. The rate of peroxidase-triggered polymerization of aniline was studied as a measure of nitrogen-radical scavenging. Although, IDA had no effect on the rate of aniline polymerization, this was almost nullified in the presence of DTPA and MIDA at half of the molar concentration of the aniline substrate, whereas a 20 molar excess of DMPO caused only a partial inhibition. Furthermore, the yield of formaldehyde, a specific reaction endproduct of the oxidation of aminocarboxylates by aniline free-radical metabolites, was quantitatively determined. Azobenzene, a specific reaction product of peroxidase-catalyzed free-radical dimerization of aniline, was fully abrogated in the presence of DTPA, as confirmed by GC/MS. Under aerobic conditions, a radical-transfer reaction

  10. Constructive nanolithography and nanochemistry : local probe oxidation and chemical modification

    NARCIS (Netherlands)

    Wouters, D.; Schubert, U.S.

    2003-01-01

    The possibility to prepare and use submicrometer-sized patterns in successive functionalization reactions with quaternary ammonium salts and (functional) chlorosilanes, as well as cationic gold nanoparticles, is presented. Submicrometer-sized structures were prepared by local probe oxidation of

  11. Polymerase chain reaction and conventional DNA tests in detection of HPV DNA in cytologically normal and abnormal cervical scrapes

    DEFF Research Database (Denmark)

    Kalia, A.; Jalava, T.; Nieminen, P.

    1992-01-01

    Med.mikrobiologi, polymerase chain reaction, DNA tests, human papillomavirus (HPV), cervical smear, hybridisation, cytologi, affiProbe HPV test, ViraType test......Med.mikrobiologi, polymerase chain reaction, DNA tests, human papillomavirus (HPV), cervical smear, hybridisation, cytologi, affiProbe HPV test, ViraType test...

  12. An effective colorimetric and ratiometric fluorescent probe for bisulfite in aqueous solution

    International Nuclear Information System (INIS)

    Dai, Xi; Zhang, Tao; Du, Zhi-Fang; Cao, Xiang-Jian; Chen, Ming-Yu; Hu, Sheng-Wen; Miao, Jun-Ying; Zhao, Bao-Xiang

    2015-01-01

    We have developed the first two-photon colorimetric and ratiometric fluorescent probe, BICO, for the detection of bisulfite (HSO 3 − ) in aqueous solution. The probe contains coumarin and benzimidazole moieties and can detect HSO 3 − based on the Michael addition reaction with a limit of detection 5.3 × 10 −8  M in phosphate-buffered saline solution. The probe was used to detect bisulfite in tap water, sugar and dry white wine. Moreover, test strips were made and used easily. We successfully applied the probe to image living cells, using one-photon fluorescence imaging. BICO overcomes the limitations in sensitivity of previously reported probes and the solvation effect of bisulfite, which demonstrates its excellent value in practical application. - Highlights: • A colorimetric and ratiometric fluorescent probe was developed. • The probe could detect bisulfite in PBS buffer solution and real samples. • Bisulfite test paper was made to naked-eye detect bisulfite. • This probe successfully used to living cell imaging in ratiometric manner

  13. An effective colorimetric and ratiometric fluorescent probe for bisulfite in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Xi [Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Zhang, Tao [Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100 (China); Du, Zhi-Fang; Cao, Xiang-Jian; Chen, Ming-Yu [Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Taishan College, Shandong University, Jinan 250100 (China); Hu, Sheng-Wen [Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Miao, Jun-Ying, E-mail: miaojy@sdu.edu.cn [Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100 (China); Zhao, Bao-Xiang, E-mail: bxzhao@sdu.edu.cn [Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2015-08-12

    We have developed the first two-photon colorimetric and ratiometric fluorescent probe, BICO, for the detection of bisulfite (HSO{sub 3}{sup −}) in aqueous solution. The probe contains coumarin and benzimidazole moieties and can detect HSO{sub 3}{sup −} based on the Michael addition reaction with a limit of detection 5.3 × 10{sup −8} M in phosphate-buffered saline solution. The probe was used to detect bisulfite in tap water, sugar and dry white wine. Moreover, test strips were made and used easily. We successfully applied the probe to image living cells, using one-photon fluorescence imaging. BICO overcomes the limitations in sensitivity of previously reported probes and the solvation effect of bisulfite, which demonstrates its excellent value in practical application. - Highlights: • A colorimetric and ratiometric fluorescent probe was developed. • The probe could detect bisulfite in PBS buffer solution and real samples. • Bisulfite test paper was made to naked-eye detect bisulfite. • This probe successfully used to living cell imaging in ratiometric manner.

  14. Nuclear critical opalescence and electromagnetic probes

    International Nuclear Information System (INIS)

    Delorme, J.

    1980-01-01

    A description of nuclear critical opalescence is presented with emphasis on the information which can be gained from electromagnetic probes. The connection with standard nuclear physics treatments is given. Experimental possibilities are reviewed. Present information from electron scattering is shown to be unconclusive. The maximum sensitivity to critical phenomena would be attained by measurements of longitudinal spin form factors. Photopion reactions are analyzed in this spirit and found to be promising

  15. Electron transfer reactions to probe the electrode/solution interface

    Energy Technology Data Exchange (ETDEWEB)

    Capitanio, F.; Guerrini, E.; Colombo, A.; Trasatti, S. [Milan Univ., Milan (Italy). Dept. of Physical Chemistry and Electrochemistry

    2008-07-01

    The reactions that occur at the interface between an electrode and an electrolyte were examined with particular reference to the interaction of different electrode surfaces with redox couples. A semi-integration or convolution technique was used to study the kinetics of electron transfer on different electrode materials with different hydrophilic behaviour, such as Boron-Doped-Diamond (BDD), Au and Pt. Standard reversible redox couples were also investigated, including (Fe3+/2+, Fe(CN)63-/4-, Ru(NH3)63+/2+, Co(NH3)63+/2+, Ir4+/3+, V4+/5+ and V3+/2+). The proposed method proved to be simple, straightforward and reliable since the obtained kinetic information was in good agreement with data in the literature. It was concluded that the kinetics of the electrode transfer reactions depend on the chemical nature of the redox couple and electrode material. The method should be further extended to irreversible couples and other electrode materials such as mixed oxide electrodes. 3 refs., 2 figs.

  16. Generation and periodontal differentiation of human gingival fibroblasts-derived integration-free induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xiaohui [Department of Periodontology, School and Hospital of Stomatology, Peking University, 22 South Avenue Zhong-Guan-Cun, Beijing 100081 (China); Peking University Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Li, Yang [Peking University Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Li, Jingwen [Department of Periodontology, School and Hospital of Stomatology, Peking University, 22 South Avenue Zhong-Guan-Cun, Beijing 100081 (China); Li, Peng [Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong SAR (China); Liu, Yinan [Peking University Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Wen, Jinhua, E-mail: jhwen@bjmu.edu.cn [Peking University Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Luan, Qingxian, E-mail: kqluanqx@126.com [Department of Periodontology, School and Hospital of Stomatology, Peking University, 22 South Avenue Zhong-Guan-Cun, Beijing 100081 (China)

    2016-05-06

    Induced pluripotent stem cells (iPSCs) have been recognized as a promising cell source for periodontal tissue regeneration. However, the conventional virus-based reprogramming approach is associated with a high risk of genetic mutation and limits their therapeutic utility. Here, we successfully generated iPSCs from readily accessible human gingival fibroblasts (hGFs) through an integration-free and feeder-free approach via delivery of reprogramming factors of Oct4, Sox2, Klf4, L-myc, Lin28 and TP53 shRNA with episomal plasmid vectors. The iPSCs presented similar morphology and proliferation characteristics as embryonic stem cells (ESCs), and expressed pluripotent markers including Oct4, Tra181, Nanog and SSEA-4. Additionally, these cells maintained a normal karyotype and showed decreased CpG methylation ratio in the promoter regions of Oct4 and Nanog. In vivo teratoma formation assay revealed the development of tissues representative of three germ layers, confirming the acquisition of pluripotency. Furthermore, treatment of the iPSCs in vitro with enamel matrix derivative (EMD) or growth/differentiation factor-5 (GDF-5) significantly up-regulated the expression of periodontal tissue markers associated with bone, periodontal ligament and cementum respectively. Taken together, our data demonstrate that hGFs are a valuable cell source for generating integration-free iPSCs, which could be sequentially induced toward periodontal cells under the treatment of EMD and GDF-5. - Highlights: • Integration-free iPSCs are successfully generated from hGFs via an episomal approach. • EMD promotes differentiation of the hGFs-derived iPSCs toward periodontal cells. • GDF-5 promotes differentiation of the hGFs-derived iPSCs toward periodontal cells. • hGFs-derived iPSCs could be a promising cell source for periodontal regeneration.

  17. Generation and periodontal differentiation of human gingival fibroblasts-derived integration-free induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Yin, Xiaohui; Li, Yang; Li, Jingwen; Li, Peng; Liu, Yinan; Wen, Jinhua; Luan, Qingxian

    2016-01-01

    Induced pluripotent stem cells (iPSCs) have been recognized as a promising cell source for periodontal tissue regeneration. However, the conventional virus-based reprogramming approach is associated with a high risk of genetic mutation and limits their therapeutic utility. Here, we successfully generated iPSCs from readily accessible human gingival fibroblasts (hGFs) through an integration-free and feeder-free approach via delivery of reprogramming factors of Oct4, Sox2, Klf4, L-myc, Lin28 and TP53 shRNA with episomal plasmid vectors. The iPSCs presented similar morphology and proliferation characteristics as embryonic stem cells (ESCs), and expressed pluripotent markers including Oct4, Tra181, Nanog and SSEA-4. Additionally, these cells maintained a normal karyotype and showed decreased CpG methylation ratio in the promoter regions of Oct4 and Nanog. In vivo teratoma formation assay revealed the development of tissues representative of three germ layers, confirming the acquisition of pluripotency. Furthermore, treatment of the iPSCs in vitro with enamel matrix derivative (EMD) or growth/differentiation factor-5 (GDF-5) significantly up-regulated the expression of periodontal tissue markers associated with bone, periodontal ligament and cementum respectively. Taken together, our data demonstrate that hGFs are a valuable cell source for generating integration-free iPSCs, which could be sequentially induced toward periodontal cells under the treatment of EMD and GDF-5. - Highlights: • Integration-free iPSCs are successfully generated from hGFs via an episomal approach. • EMD promotes differentiation of the hGFs-derived iPSCs toward periodontal cells. • GDF-5 promotes differentiation of the hGFs-derived iPSCs toward periodontal cells. • hGFs-derived iPSCs could be a promising cell source for periodontal regeneration.

  18. Kinetics of the reaction between H· and superheated water probed with muonium

    Energy Technology Data Exchange (ETDEWEB)

    Alcorn, C. [Mount Allison Univ., Sackville, NB (Canada); Brodovitch, J.-C. [Simon Fraser Univ., Burnaby, BC (Canada); Ghandi, K.; Kennedy, A. [Mount Allison Univ., Sackville, NB (Canada); Percival, P.W. [Simon Fraser Univ., Burnaby, BC (Canada); TRIUMF, Vancouver, BC (Canada); Smith, M. [Mount Allison Univ., Sackville, NB (Canada)

    2011-07-01

    Safe operation of a supercritical water cooled reactor requires knowledge of the reaction kinetics of transient species formed by the radiolysis of water in the temperature range 300-650{sup o}C. By using a light isotope of the H·atom, it is possible to study its chemistry in water over this range of temperatures. Arguably, the most important reaction to study is that of the H·atom with the bulk solvent. This reaction could provide an in situ source of H{sub 2} gas, which is added to CANDU reactors to suppress oxidative corrosion. The work described here concerns studies of the reaction of muonium with H{sub 2}O and D{sub 2}O at temperatures up to 450{sup o}C.

  19. Multifunctional gadolinium-based dendritic macromolecules as liver targeting imaging probes.

    Science.gov (United States)

    Luo, Kui; Liu, Gang; He, Bin; Wu, Yao; Gong, Qingyong; Song, Bin; Ai, Hua; Gu, Zhongwei

    2011-04-01

    The quest for highly efficient and safe contrast agents has become the key factor for successful application of magnetic resonance imaging (MRI). The gadolinium (Gd) based dendritic macromolecules, with precise and tunable nanoscopic sizes, are excellent candidates as multivalent MRI probes. In this paper, a novel series of Gd-based multifunctional peptide dendritic probes (generation 2, 3, and 4) possessing highly controlled structures and single molecular weight were designed and prepared as liver MRI probes. These macromolecular Gd-ligand agents exhibited up to 3-fold increase in T(1) relaxivity comparing to Gd-DTPA complexes. No obvious in vitro cytotoxicity was observed from the measured concentrations. These dendritic probes were further functionalized with multiple galactosyl moieties and led to much higher cell uptake in vitro as demonstrated in T(1)-weighted scans. During in vivo animal studies, the probes provided better signal intensity (SI) enhancement in mouse liver, especially at 60 min post-injection, with the most efficient enhancement from the galactosyl moiety decorated third generation dendrimer. The imaging results were verified with analysis of Gd content in liver tissues. The design strategy of multifunctional Gd-ligand peptide dendritic macromolecules in this study may be used for developing other sensitive MRI probes with targeting capability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. ASDB: a resource for probing protein functions with small molecules.

    Science.gov (United States)

    Liu, Zhihong; Ding, Peng; Yan, Xin; Zheng, Minghao; Zhou, Huihao; Xu, Yuehua; Du, Yunfei; Gu, Qiong; Xu, Jun

    2016-06-01

    : Identifying chemical probes or seeking scaffolds for a specific biological target is important for protein function studies. Therefore, we create the Annotated Scaffold Database (ASDB), a computer-readable and systematic target-annotated scaffold database, to serve such needs. The scaffolds in ASDB were derived from public databases including ChEMBL, DrugBank and TCMSP, with a scaffold-based classification approach. Each scaffold was assigned with an InChIKey as its unique identifier, energy-minimized 3D conformations, and other calculated properties. A scaffold is also associated with drugs, natural products, drug targets and medical indications. The database can be retrieved through text or structure query tools. ASDB collects 333 601 scaffolds, which are associated with 4368 targets. The scaffolds consist of 3032 scaffolds derived from drugs and 5163 scaffolds derived from natural products. For given scaffolds, scaffold-target networks can be generated from the database to demonstrate the relations of scaffolds and targets. ASDB is freely available at http://www.rcdd.org.cn/asdb/with the major web browsers. junxu@biochemomes.com or xujun9@mail.sysu.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.