WorldWideScience

Sample records for reaction-diffusion lattice model

  1. Reaction-diffusion pulses: a combustion model

    International Nuclear Information System (INIS)

    Campos, Daniel; Llebot, Josep Enric; Fort, Joaquim

    2004-01-01

    We focus on a reaction-diffusion approach proposed recently for experiments on combustion processes, where the heat released by combustion follows first-order reaction kinetics. This case allows us to perform an exhaustive analytical study. Specifically, we obtain the exact expressions for the speed of the thermal pulses, their maximum temperature and the condition of self-sustenance. Finally, we propose two generalizations of the model, namely, the case of several reactants burning together, and that of time-delayed heat conduction. We find an excellent agreement between our analytical results and simulations

  2. Reaction-diffusion pulses: a combustion model

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Daniel [Grup de FIsica EstadIstica, Dept. de FIsica, Universitat Autonoma de Barcelona, E-08193 Bellaterrra (Spain); Llebot, Josep Enric [Grup de FIsica EstadIstica, Dept. de FIsica, Universitat Autonoma de Barcelona, E-08193 Bellaterrra (Spain); Fort, Joaquim [Dept. de FIsica, Univ. de Girona, Campus de Montilivi, 17071 Girona, Catalonia (Spain)

    2004-07-02

    We focus on a reaction-diffusion approach proposed recently for experiments on combustion processes, where the heat released by combustion follows first-order reaction kinetics. This case allows us to perform an exhaustive analytical study. Specifically, we obtain the exact expressions for the speed of the thermal pulses, their maximum temperature and the condition of self-sustenance. Finally, we propose two generalizations of the model, namely, the case of several reactants burning together, and that of time-delayed heat conduction. We find an excellent agreement between our analytical results and simulations.

  3. A discrete model to study reaction-diffusion-mechanics systems.

    Science.gov (United States)

    Weise, Louis D; Nash, Martyn P; Panfilov, Alexander V

    2011-01-01

    This article introduces a discrete reaction-diffusion-mechanics (dRDM) model to study the effects of deformation on reaction-diffusion (RD) processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material). Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects.

  4. A discrete model to study reaction-diffusion-mechanics systems.

    Directory of Open Access Journals (Sweden)

    Louis D Weise

    Full Text Available This article introduces a discrete reaction-diffusion-mechanics (dRDM model to study the effects of deformation on reaction-diffusion (RD processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material. Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects.

  5. Analytically solvable models of reaction-diffusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Zemskov, E P; Kassner, K [Institut fuer Theoretische Physik, Otto-von-Guericke-Universitaet, Universitaetsplatz 2, 39106 Magdeburg (Germany)

    2004-05-01

    We consider a class of analytically solvable models of reaction-diffusion systems. An analytical treatment is possible because the nonlinear reaction term is approximated by a piecewise linear function. As particular examples we choose front and pulse solutions to illustrate the matching procedure in the one-dimensional case.

  6. Reaction-diffusion modeling of hydrogen in beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Wensing, Mirko; Matveev, Dmitry; Linsmeier, Christian [Forschungszentrum Juelich GmbH, Institut fuer Energie- und Klimaforschung - Plasmaphysik (Germany)

    2016-07-01

    Beryllium will be used as first-wall material for the future fusion reactor ITER as well as in the breeding blanket of DEMO. In both cases it is important to understand the mechanisms of hydrogen retention in beryllium. In earlier experiments with beryllium low-energy binding states of hydrogen were observed by thermal desorption spectroscopy (TDS) which are not yet well understood. Two candidates for these states are considered: beryllium-hydride phases within the bulk and surface effects. The retention of deuterium in beryllium is studied by a reaction rate approach using a coupled reaction diffusion system (CRDS)-model relying on ab initio data from density functional theory calculations (DFT). In this contribution we try to assess the influence of surface recombination.

  7. Reaction time for trimolecular reactions in compartment-based reaction-diffusion models

    Science.gov (United States)

    Li, Fei; Chen, Minghan; Erban, Radek; Cao, Yang

    2018-05-01

    Trimolecular reaction models are investigated in the compartment-based (lattice-based) framework for stochastic reaction-diffusion modeling. The formulae for the first collision time and the mean reaction time are derived for the case where three molecules are present in the solution under periodic boundary conditions. For the case of reflecting boundary conditions, similar formulae are obtained using a computer-assisted approach. The accuracy of these formulae is further verified through comparison with numerical results. The presented derivation is based on the first passage time analysis of Montroll [J. Math. Phys. 10, 753 (1969)]. Montroll's results for two-dimensional lattice-based random walks are adapted and applied to compartment-based models of trimolecular reactions, which are studied in one-dimensional or pseudo one-dimensional domains.

  8. Hybrid approaches for multiple-species stochastic reaction-diffusion models

    Science.gov (United States)

    Spill, Fabian; Guerrero, Pilar; Alarcon, Tomas; Maini, Philip K.; Byrne, Helen

    2015-10-01

    Reaction-diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction-diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model.

  9. Hybrid approaches for multiple-species stochastic reaction-diffusion models.

    KAUST Repository

    Spill, Fabian

    2015-10-01

    Reaction-diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction-diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model.

  10. Hybrid approaches for multiple-species stochastic reaction-diffusion models.

    KAUST Repository

    Spill, Fabian; Guerrero, Pilar; Alarcon, Tomas; Maini, Philip K; Byrne, Helen

    2015-01-01

    Reaction-diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction-diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model.

  11. Hopf bifurcation in a delayed reaction-diffusion-advection population model

    Science.gov (United States)

    Chen, Shanshan; Lou, Yuan; Wei, Junjie

    2018-04-01

    In this paper, we investigate a reaction-diffusion-advection model with time delay effect. The stability/instability of the spatially nonhomogeneous positive steady state and the associated Hopf bifurcation are investigated when the given parameter of the model is near the principle eigenvalue of an elliptic operator. Our results imply that time delay can make the spatially nonhomogeneous positive steady state unstable for a reaction-diffusion-advection model, and the model can exhibit oscillatory pattern through Hopf bifurcation. The effect of advection on Hopf bifurcation values is also considered, and our results suggest that Hopf bifurcation is more likely to occur when the advection rate increases.

  12. Reaction-diffusion on the fully-connected lattice: A+A\\rightarrow A

    Science.gov (United States)

    Turban, Loïc; Fortin, Jean-Yves

    2018-04-01

    Diffusion-coagulation can be simply described by a dynamic where particles perform a random walk on a lattice and coalesce with probability unity when meeting on the same site. Such processes display non-equilibrium properties with strong fluctuations in low dimensions. In this work we study this problem on the fully-connected lattice, an infinite-dimensional system in the thermodynamic limit, for which mean-field behaviour is expected. Exact expressions for the particle density distribution at a given time and survival time distribution for a given number of particles are obtained. In particular, we show that the time needed to reach a finite number of surviving particles (vanishing density in the scaling limit) displays strong fluctuations and extreme value statistics, characterized by a universal class of non-Gaussian distributions with singular behaviour.

  13. Stochastic modeling and simulation of reaction-diffusion system with Hill function dynamics.

    Science.gov (United States)

    Chen, Minghan; Li, Fei; Wang, Shuo; Cao, Young

    2017-03-14

    Stochastic simulation of reaction-diffusion systems presents great challenges for spatiotemporal biological modeling and simulation. One widely used framework for stochastic simulation of reaction-diffusion systems is reaction diffusion master equation (RDME). Previous studies have discovered that for the RDME, when discretization size approaches zero, reaction time for bimolecular reactions in high dimensional domains tends to infinity. In this paper, we demonstrate that in the 1D domain, highly nonlinear reaction dynamics given by Hill function may also have dramatic change when discretization size is smaller than a critical value. Moreover, we discuss methods to avoid this problem: smoothing over space, fixed length smoothing over space and a hybrid method. Our analysis reveals that the switch-like Hill dynamics reduces to a linear function of discretization size when the discretization size is small enough. The three proposed methods could correctly (under certain precision) simulate Hill function dynamics in the microscopic RDME system.

  14. Bifurcation Analysis of Gene Propagation Model Governed by Reaction-Diffusion Equations

    Directory of Open Access Journals (Sweden)

    Guichen Lu

    2016-01-01

    Full Text Available We present a theoretical analysis of the attractor bifurcation for gene propagation model governed by reaction-diffusion equations. We investigate the dynamical transition problems of the model under the homogeneous boundary conditions. By using the dynamical transition theory, we give a complete characterization of the bifurcated objects in terms of the biological parameters of the problem.

  15. Stability Analysis of a Reaction-Diffusion System Modeling Atherogenesis

    KAUST Repository

    Ibragimov, Akif; Ritter, Laura; Walton, Jay R.

    2010-01-01

    This paper presents a linear, asymptotic stability analysis for a reaction-diffusionconvection system modeling atherogenesis, the initiation of atherosclerosis, as an inflammatory instability. Motivated by the disease paradigm articulated by Ross

  16. Soft tissue deformation modelling through neural dynamics-based reaction-diffusion mechanics.

    Science.gov (United States)

    Zhang, Jinao; Zhong, Yongmin; Gu, Chengfan

    2018-05-30

    Soft tissue deformation modelling forms the basis of development of surgical simulation, surgical planning and robotic-assisted minimally invasive surgery. This paper presents a new methodology for modelling of soft tissue deformation based on reaction-diffusion mechanics via neural dynamics. The potential energy stored in soft tissues due to a mechanical load to deform tissues away from their rest state is treated as the equivalent transmembrane potential energy, and it is distributed in the tissue masses in the manner of reaction-diffusion propagation of nonlinear electrical waves. The reaction-diffusion propagation of mechanical potential energy and nonrigid mechanics of motion are combined to model soft tissue deformation and its dynamics, both of which are further formulated as the dynamics of cellular neural networks to achieve real-time computational performance. The proposed methodology is implemented with a haptic device for interactive soft tissue deformation with force feedback. Experimental results demonstrate that the proposed methodology exhibits nonlinear force-displacement relationship for nonlinear soft tissue deformation. Homogeneous, anisotropic and heterogeneous soft tissue material properties can be modelled through the inherent physical properties of mass points. Graphical abstract Soft tissue deformation modelling with haptic feedback via neural dynamics-based reaction-diffusion mechanics.

  17. Stability Analysis of a Reaction-Diffusion System Modeling Atherogenesis

    KAUST Repository

    Ibragimov, Akif

    2010-01-01

    This paper presents a linear, asymptotic stability analysis for a reaction-diffusionconvection system modeling atherogenesis, the initiation of atherosclerosis, as an inflammatory instability. Motivated by the disease paradigm articulated by Ross, atherogenesis is viewed as an inflammatory spiral with a positive feedback loop involving key cellular and chemical species interacting and reacting within the intimal layer of muscular arteries. The inflammatory spiral is initiated as an instability from a healthy state which is defined to be an equilibrium state devoid of certain key inflammatory markers. Disease initiation is studied through a linear, asymptotic stability analysis of a healthy equilibrium state. Various theorems are proved, giving conditions on system parameters guaranteeing stability of the health state, and a general framework is developed for constructing perturbations from a healthy state that exhibit blow-up, which are interpreted as corresponding to disease initiation. The analysis reveals key features that arterial geometry, antioxidant levels, and the source of inflammatory components (through coupled third-kind boundary conditions or through body sources) play in disease initiation. © 2010 Society for Industrial and Applied Mathematics.

  18. Dynamic Analysis of a Reaction-Diffusion Rumor Propagation Model

    Science.gov (United States)

    Zhao, Hongyong; Zhu, Linhe

    2016-06-01

    The rapid development of the Internet, especially the emergence of the social networks, leads rumor propagation into a new media era. Rumor propagation in social networks has brought new challenges to network security and social stability. This paper, based on partial differential equations (PDEs), proposes a new SIS rumor propagation model by considering the effect of the communication between the different rumor infected users on rumor propagation. The stabilities of a nonrumor equilibrium point and a rumor-spreading equilibrium point are discussed by linearization technique and the upper and lower solutions method, and the existence of a traveling wave solution is established by the cross-iteration scheme accompanied by the technique of upper and lower solutions and Schauder’s fixed point theorem. Furthermore, we add the time delay to rumor propagation and deduce the conditions of Hopf bifurcation and stability switches for the rumor-spreading equilibrium point by taking the time delay as the bifurcation parameter. Finally, numerical simulations are performed to illustrate the theoretical results.

  19. Reaction-diffusion processes in zero transverse dimensions as toy models for high-energy QCD

    International Nuclear Information System (INIS)

    Armesto, Nestor; Bondarenko, Sergey; Quiroga-Arias, Paloma; Milhano, Jose Guilherme

    2008-01-01

    We examine numerically different zero-dimensional reaction-diffusion processes as candidate toy models for high-energy QCD evolution. Of the models examined-Reggeon Field Theory, Directed Percolation and Reversible Processes-only the latter shows the behaviour commonly expected, namely an increase of the scattering amplitude with increasing rapidity. Further, we find that increasing recombination terms, quantum loops and the heuristic inclusion of a running of the couplings, generically slow down the evolution.

  20. Traveling Wave Solutions of Reaction-Diffusion Equations Arising in Atherosclerosis Models

    Directory of Open Access Journals (Sweden)

    Narcisa Apreutesei

    2014-05-01

    Full Text Available In this short review article, two atherosclerosis models are presented, one as a scalar equation and the other one as a system of two equations. They are given in terms of reaction-diffusion equations in an infinite strip with nonlinear boundary conditions. The existence of traveling wave solutions is studied for these models. The monostable and bistable cases are introduced and analyzed.

  1. A minimally-resolved immersed boundary model for reaction-diffusion problems

    OpenAIRE

    Pal Singh Bhalla, A; Griffith, BE; Patankar, NA; Donev, A

    2013-01-01

    We develop an immersed boundary approach to modeling reaction-diffusion processes in dispersions of reactive spherical particles, from the diffusion-limited to the reaction-limited setting. We represent each reactive particle with a minimally-resolved "blob" using many fewer degrees of freedom per particle than standard discretization approaches. More complicated or more highly resolved particle shapes can be built out of a collection of reactive blobs. We demonstrate numerically that the blo...

  2. Stochastic reaction-diffusion algorithms for macromolecular crowding

    Science.gov (United States)

    Sturrock, Marc

    2016-06-01

    Compartment-based (lattice-based) reaction-diffusion algorithms are often used for studying complex stochastic spatio-temporal processes inside cells. In this paper the influence of macromolecular crowding on stochastic reaction-diffusion simulations is investigated. Reaction-diffusion processes are considered on two different kinds of compartmental lattice, a cubic lattice and a hexagonal close packed lattice, and solved using two different algorithms, the stochastic simulation algorithm and the spatiocyte algorithm (Arjunan and Tomita 2010 Syst. Synth. Biol. 4, 35-53). Obstacles (modelling macromolecular crowding) are shown to have substantial effects on the mean squared displacement and average number of molecules in the domain but the nature of these effects is dependent on the choice of lattice, with the cubic lattice being more susceptible to the effects of the obstacles. Finally, improvements for both algorithms are presented.

  3. A reaction-diffusion model of ROS-induced ROS release in a mitochondrial network.

    Directory of Open Access Journals (Sweden)

    Lufang Zhou

    2010-01-01

    Full Text Available Loss of mitochondrial function is a fundamental determinant of cell injury and death. In heart cells under metabolic stress, we have previously described how the abrupt collapse or oscillation of the mitochondrial energy state is synchronized across the mitochondrial network by local interactions dependent upon reactive oxygen species (ROS. Here, we develop a mathematical model of ROS-induced ROS release (RIRR based on reaction-diffusion (RD-RIRR in one- and two-dimensional mitochondrial networks. The nodes of the RD-RIRR network are comprised of models of individual mitochondria that include a mechanism of ROS-dependent oscillation based on the interplay between ROS production, transport, and scavenging; and incorporating the tricarboxylic acid (TCA cycle, oxidative phosphorylation, and Ca(2+ handling. Local mitochondrial interaction is mediated by superoxide (O2.- diffusion and the O2.(--dependent activation of an inner membrane anion channel (IMAC. In a 2D network composed of 500 mitochondria, model simulations reveal DeltaPsi(m depolarization waves similar to those observed when isolated guinea pig cardiomyocytes are subjected to a localized laser-flash or antioxidant depletion. The sensitivity of the propagation rate of the depolarization wave to O(2.- diffusion, production, and scavenging in the reaction-diffusion model is similar to that observed experimentally. In addition, we present novel experimental evidence, obtained in permeabilized cardiomyocytes, confirming that DeltaPsi(m depolarization is mediated specifically by O2.-. The present work demonstrates that the observed emergent macroscopic properties of the mitochondrial network can be reproduced in a reaction-diffusion model of RIRR. Moreover, the findings have uncovered a novel aspect of the synchronization mechanism, which is that clusters of mitochondria that are oscillating can entrain mitochondria that would otherwise display stable dynamics. The work identifies the

  4. On one model problem for the reaction-diffusion-advection equation

    Science.gov (United States)

    Davydova, M. A.; Zakharova, S. A.; Levashova, N. T.

    2017-09-01

    The asymptotic behavior of the solution with boundary layers in the time-independent mathematical model of reaction-diffusion-advection arising when describing the distribution of greenhouse gases in the surface atmospheric layer is studied. On the basis of the asymptotic method of differential inequalities, the existence of a boundary-layer solution and its asymptotic Lyapunov stability as a steady-state solution of the corresponding parabolic problem is proven. One of the results of this work is the determination of the local domain of the attraction of a boundary-layer solution.

  5. Continuous Dependence in Front Propagation for Convective Reaction-Diffusion Models with Aggregative Movements

    Directory of Open Access Journals (Sweden)

    Luisa Malaguti

    2011-01-01

    Full Text Available The paper deals with a degenerate reaction-diffusion equation, including aggregative movements and convective terms. The model also incorporates a real parameter causing the change from a purely diffusive to a diffusive-aggregative and to a purely aggregative regime. Existence and qualitative properties of traveling wave solutions are investigated, and estimates of their threshold speeds are furnished. Further, the continuous dependence of the threshold wave speed and of the wave profiles on a real parameter is studied, both when the process maintains its diffusion-aggregation nature and when it switches from it to another regime.

  6. A reaction-diffusion model for market fluctuations - A relation between price change and traded volumes

    Science.gov (United States)

    Yuvan, Steven; Bier, Martin

    2018-02-01

    Two decades ago Bak et al. (1997) [3] proposed a reaction-diffusion model to describe market fluctuations. In the model buyers and sellers diffuse from opposite ends of a 1D interval that represents a price range. Trades occur when buyers and sellers meet. We show analytically and numerically that the model well reproduces the square-root relation between traded volumes and price changes that is observed in real-life markets. The result is remarkable as this relation has commonly been explained in terms of more elaborate trader strategies. We furthermore explain why the square-root relation is robust under model modifications and we show how real-life bond market data exhibit the square-root relation.

  7. Travelling wave and convergence in stage-structured reaction-diffusion competitive models with nonlocal delays

    International Nuclear Information System (INIS)

    Xu Rui; Chaplain, M.A.J.; Davidson, F.A.

    2006-01-01

    In this paper, we first investigate a stage-structured competitive model with time delays, harvesting, and nonlocal spatial effect. By using an iterative technique recently developed by Wu and Zou (Wu J, Zou X. Travelling wave fronts of reaction-diffusion systems with delay. J Dynam Differen Equat 2001;13:651-87), sufficient conditions are established for the existence of travelling front solution connecting the two boundary equilibria in the case when there is no positive equilibrium. The travelling wave front corresponds to an invasion by a stronger species which drives the weaker species to extinction. Secondly, we consider a stage-structured competitive model with time delays and nonlocal spatial effect when the domain is finite. We prove the global stability of each of the nonnegative equilibria and demonstrate that the more complex model studied here admits three possible long term behaviors: coexistence, bistability and dominance as is the case for the standard Lotka-Voltera competitive model

  8. Semi-analytical solutions of the Schnakenberg model of a reaction-diffusion cell with feedback

    Science.gov (United States)

    Al Noufaey, K. S.

    2018-06-01

    This paper considers the application of a semi-analytical method to the Schnakenberg model of a reaction-diffusion cell. The semi-analytical method is based on the Galerkin method which approximates the original governing partial differential equations as a system of ordinary differential equations. Steady-state curves, bifurcation diagrams and the region of parameter space in which Hopf bifurcations occur are presented for semi-analytical solutions and the numerical solution. The effect of feedback control, via altering various concentrations in the boundary reservoirs in response to concentrations in the cell centre, is examined. It is shown that increasing the magnitude of feedback leads to destabilization of the system, whereas decreasing this parameter to negative values of large magnitude stabilizes the system. The semi-analytical solutions agree well with numerical solutions of the governing equations.

  9. Spatiotemporal Patterns in a Ratio-Dependent Food Chain Model with Reaction-Diffusion

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2014-01-01

    Full Text Available Predator-prey models describe biological phenomena of pursuit-evasion interaction. And this interaction exists widely in the world for the necessary energy supplement of species. In this paper, we have investigated a ratio-dependent spatially extended food chain model. Based on the bifurcation analysis (Hopf and Turing, we give the spatial pattern formation via numerical simulation, that is, the evolution process of the system near the coexistence equilibrium point (u2*,v2*,w2*, and find that the model dynamics exhibits complex pattern replication. For fixed parameters, on increasing the control parameter c1, the sequence “holes → holes-stripe mixtures → stripes → spots-stripe mixtures → spots” pattern is observed. And in the case of pure Hopf instability, the model exhibits chaotic wave pattern replication. Furthermore, we consider the pattern formation in the case of which the top predator is extinct, that is, the evolution process of the system near the equilibrium point (u1*,v1*,0, and find that the model dynamics exhibits stripes-spots pattern replication. Our results show that reaction-diffusion model is an appropriate tool for investigating fundamental mechanism of complex spatiotemporal dynamics. It will be useful for studying the dynamic complexity of ecosystems.

  10. A nonlocal and periodic reaction-diffusion-advection model of a single phytoplankton species.

    Science.gov (United States)

    Peng, Rui; Zhao, Xiao-Qiang

    2016-02-01

    In this article, we are concerned with a nonlocal reaction-diffusion-advection model which describes the evolution of a single phytoplankton species in a eutrophic vertical water column where the species relies solely on light for its metabolism. The new feature of our modeling equation lies in that the incident light intensity and the death rate are assumed to be time periodic with a common period. We first establish a threshold type result on the global dynamics of this model in terms of the basic reproduction number R0. Then we derive various characterizations of R0 with respect to the vertical turbulent diffusion rate, the sinking or buoyant rate and the water column depth, respectively, which in turn give rather precise conditions to determine whether the phytoplankton persist or become extinct. Our theoretical results not only extend the existing ones for the time-independent case, but also reveal new interesting effects of the modeling parameters and the time-periodic heterogeneous environment on persistence and extinction of the phytoplankton species, and thereby suggest important implications for phytoplankton growth control.

  11. Bifurcation analysis of a delay reaction-diffusion malware propagation model with feedback control

    Science.gov (United States)

    Zhu, Linhe; Zhao, Hongyong; Wang, Xiaoming

    2015-05-01

    With the rapid development of network information technology, information networks security has become a very critical issue in our work and daily life. This paper attempts to develop a delay reaction-diffusion model with a state feedback controller to describe the process of malware propagation in mobile wireless sensor networks (MWSNs). By analyzing the stability and Hopf bifurcation, we show that the state feedback method can successfully be used to control unstable steady states or periodic oscillations. Moreover, formulas for determining the properties of the bifurcating periodic oscillations are derived by applying the normal form method and center manifold theorem. Finally, we conduct extensive simulations on large-scale MWSNs to evaluate the proposed model. Numerical evidences show that the linear term of the controller is enough to delay the onset of the Hopf bifurcation and the properties of the bifurcation can be regulated to achieve some desirable behaviors by choosing the appropriate higher terms of the controller. Furthermore, we obtain that the spatial-temporal dynamic characteristics of malware propagation are closely related to the rate constant for nodes leaving the infective class for recovered class and the mobile behavior of nodes.

  12. A reaction-diffusion model for radiation-induced bystander effects.

    Science.gov (United States)

    Olobatuyi, Oluwole; de Vries, Gerda; Hillen, Thomas

    2017-08-01

    We develop and analyze a reaction-diffusion model to investigate the dynamics of the lifespan of a bystander signal emitted when cells are exposed to radiation. Experimental studies by Mothersill and Seymour 1997, using malignant epithelial cell lines, found that an emitted bystander signal can still cause bystander effects in cells even 60 h after its emission. Several other experiments have also shown that the signal can persist for months and even years. Also, bystander effects have been hypothesized as one of the factors responsible for the phenomenon of low-dose hyper-radiosensitivity and increased radioresistance (HRS/IRR). Here, we confirm this hypothesis with a mathematical model, which we fit to Joiner's data on HRS/IRR in a T98G glioma cell line. Furthermore, we use phase plane analysis to understand the full dynamics of the signal's lifespan. We find that both single and multiple radiation exposure can lead to bystander signals that either persist temporarily or permanently. We also found that, in an heterogeneous environment, the size of the domain exposed to radiation and the number of radiation exposures can determine whether a signal will persist temporarily or permanently. Finally, we use sensitivity analysis to identify those cell parameters that affect the signal's lifespan and the signal-induced cell death the most.

  13. A Reaction-Diffusion Model for Synapse Growth and Long-Term Memory

    Science.gov (United States)

    Liu, Kang; Lisman, John; Hagan, Michael

    Memory storage involves strengthening of synaptic transmission known as long-term potentiation (LTP). The late phase of LTP is associated with structural processes that enlarge the synapse. Yet, synapses must be stable, despite continual subunit turnover, over the lifetime of an encoded memory. These considerations suggest that synapses are variable-size stable structure (VSSS), meaning they can switch between multiple metastable structures with different sizes. The mechanisms underlying VSSS are poorly understood. While experiments and theory have suggested that the interplay between diffusion and receptor-scaffold interactions can lead to a preferred stable size for synaptic domains, such a mechanism cannot explain how synapses adopt widely different sizes. Here we develop a minimal reaction-diffusion model of VSSS for synapse growth, incorporating the recent observation from super-resolution microscopy that neural activity can build compositional heterogeneities within synaptic domains. We find that introducing such heterogeneities can change the stable domain size in a controlled manner. We discuss a potential connection between this model and experimental data on synapse sizes, and how it provides a possible mechanism to structurally encode graded long-term memory. We acknowledge the support from NSF INSPIRE Award number IOS-1526941 (KL, MFH, JL) and the Brandeis Center for Bioinspired Soft Materials, an NSF MRSEC, DMR- 1420382 (MFH).

  14. Quantitative modeling of the reaction/diffusion kinetics of two-chemistry photopolymers

    Science.gov (United States)

    Kowalski, Benjamin Andrew

    Optically driven diffusion in photopolymers is an appealing material platform for a broad range of applications, in which the recorded refractive index patterns serve either as images (e.g. data storage, display holography) or as optical elements (e.g. custom GRIN components, integrated optical devices). A quantitative understanding of the reaction/diffusion kinetics is difficult to obtain directly, but is nevertheless necessary in order to fully exploit the wide array of design freedoms in these materials. A general strategy for characterizing these kinetics is proposed, in which key processes are decoupled and independently measured. This strategy enables prediction of a material's potential refractive index change, solely on the basis of its chemical components. The degree to which a material does not reach this potential reveals the fraction of monomer that has participated in unwanted reactions, reducing spatial resolution and dynamic range. This approach is demonstrated for a model material similar to commercial media, achieving quantitative predictions of index response over three orders of exposure dose (~1 to ~103 mJ cm-2) and three orders of feature size (0.35 to 500 microns). The resulting insights enable guided, rational design of new material formulations with demonstrated performance improvement.

  15. Modeling Studies of Inhomogeneity Effects during Laser Flash Photolysis Experiments: A Reaction-Diffusion Approach.

    Science.gov (United States)

    Dóka, Éva; Lente, Gábor

    2017-04-13

    This work presents a rigorous mathematical study of the effect of unavoidable inhomogeneities in laser flash photolysis experiments. There are two different kinds of inhomegenities: the first arises from diffusion, whereas the second one has geometric origins (the shapes of the excitation and detection light beams). Both of these are taken into account in our reported model, which gives rise to a set of reaction-diffusion type partial differential equations. These equations are solved by a specially developed finite volume method. As an example, the aqueous reaction between the sulfate ion radical and iodide ion is used, for which sufficiently detailed experimental data are available from an earlier publication. The results showed that diffusion itself is in general too slow to influence the kinetic curves on the usual time scales of laser flash photolysis experiments. However, the use of the absorbances measured (e.g., to calculate the molar absorption coefficients of transient species) requires very detailed mathematical consideration and full knowledge of the geometrical shapes of the excitation laser beam and the separate detection light beam. It is also noted that the usual pseudo-first-order approach to evaluating the kinetic traces can be used successfully even if the usual large excess condition is not rigorously met in the reaction cell locally.

  16. A reaction-diffusion model to capture disparity selectivity in primary visual cortex.

    Directory of Open Access Journals (Sweden)

    Mohammed Sultan Mohiuddin Siddiqui

    Full Text Available Decades of experimental studies are available on disparity selective cells in visual cortex of macaque and cat. Recently, local disparity map for iso-orientation sites for near-vertical edge preference is reported in area 18 of cat visual cortex. No experiment is yet reported on complete disparity map in V1. Disparity map for layer IV in V1 can provide insight into how disparity selective complex cell receptive field is organized from simple cell subunits. Though substantial amounts of experimental data on disparity selective cells is available, no model on receptive field development of such cells or disparity map development exists in literature. We model disparity selectivity in layer IV of cat V1 using a reaction-diffusion two-eye paradigm. In this model, the wiring between LGN and cortical layer IV is determined by resource an LGN cell has for supporting connections to cortical cells and competition for target space in layer IV. While competing for target space, the same type of LGN cells, irrespective of whether it belongs to left-eye-specific or right-eye-specific LGN layer, cooperate with each other while trying to push off the other type. Our model captures realistic 2D disparity selective simple cell receptive fields, their response properties and disparity map along with orientation and ocular dominance maps. There is lack of correlation between ocular dominance and disparity selectivity at the cell population level. At the map level, disparity selectivity topography is not random but weakly clustered for similar preferred disparities. This is similar to the experimental result reported for macaque. The details of weakly clustered disparity selectivity map in V1 indicate two types of complex cell receptive field organization.

  17. A reaction-diffusion model of CO2 influx into an oocyte

    Science.gov (United States)

    Somersalo, Erkki; Occhipinti, Rossana; Boron, Walter F.; Calvetti, Daniela

    2012-01-01

    We have developed and implemented a novel mathematical model for simulating transients in surface pH (pHS) and intracellular pH (pHi) caused by the influx of carbon dioxide (CO2) into a Xenopus oocyte. These transients are important tools for studying gas channels. We assume that the oocyte is a sphere surrounded by a thin layer of unstirred fluid, the extracellular unconvected fluid (EUF), which is in turn surrounded by the well-stirred bulk extracellular fluid (BECF) that represents an infinite reservoir for all solutes. Here, we assume that the oocyte plasma membrane is permeable only to CO2. In both the EUF and intracellular space, solute concentrations can change because of diffusion and reactions. The reactions are the slow equilibration of the CO2 hydration-dehydration reactions and competing equilibria among carbonic acid (H2CO3)/bicarbonate ( HCO3-) and a multitude of non-CO2/HCO3- buffers. Mathematically, the model is described by a coupled system of reaction-diffusion equations that—assuming spherical radial symmetry—we solved using the method of lines with appropriate stiff solvers. In agreement with experimental data (Musa-Aziz et al, PNAS 2009, 106:5406–5411), the model predicts that exposing the cell to extracellular 1.5% CO2/10 mM HCO3- (pH 7.50) causes pHi to fall and pHS to rise rapidly to a peak and then decay. Moreover, the model provides insights into the competition between diffusion and reaction processes when we change the width of the EUF, membrane permeability to CO2, native extra-and intracellular carbonic anhydrase-like activities, the non-CO2/HCO3- (intrinsic) intracellular buffering power, or mobility of intrinsic intracellular buffers. PMID:22728674

  18. Characteristics of the probability function for three random-walk models of reaction--diffusion processes

    International Nuclear Information System (INIS)

    Musho, M.K.; Kozak, J.J.

    1984-01-01

    A method is presented for calculating exactly the relative width (sigma 2 )/sup 1/2// , the skewness γ 1 , and the kurtosis γ 2 characterizing the probability distribution function for three random-walk models of diffusion-controlled processes. For processes in which a diffusing coreactant A reacts irreversibly with a target molecule B situated at a reaction center, three models are considered. The first is the traditional one of an unbiased, nearest-neighbor random walk on a d-dimensional periodic/confining lattice with traps; the second involves the consideration of unbiased, non-nearest-neigh bor (i.e., variable-step length) walks on the same d-dimensional lattice; and, the third deals with the case of a biased, nearest-neighbor walk on a d-dimensional lattice (wherein a walker experiences a potential centered at the deep trap site of the lattice). Our method, which has been described in detail elsewhere [P.A. Politowicz and J. J. Kozak, Phys. Rev. B 28, 5549 (1983)] is based on the use of group theoretic arguments within the framework of the theory of finite Markov processes

  19. Optimal control of an invasive species using a reaction-diffusion model and linear programming

    Science.gov (United States)

    Bonneau, Mathieu; Johnson, Fred A.; Smith, Brian J.; Romagosa, Christina M.; Martin, Julien; Mazzotti, Frank J.

    2017-01-01

    Managing an invasive species is particularly challenging as little is generally known about the species’ biological characteristics in its new habitat. In practice, removal of individuals often starts before the species is studied to provide the information that will later improve control. Therefore, the locations and the amount of control have to be determined in the face of great uncertainty about the species characteristics and with a limited amount of resources. We propose framing spatial control as a linear programming optimization problem. This formulation, paired with a discrete reaction-diffusion model, permits calculation of an optimal control strategy that minimizes the remaining number of invaders for a fixed cost or that minimizes the control cost for containment or protecting specific areas from invasion. We propose computing the optimal strategy for a range of possible model parameters, representing current uncertainty on the possible invasion scenarios. Then, a best strategy can be identified depending on the risk attitude of the decision-maker. We use this framework to study the spatial control of the Argentine black and white tegus (Salvator merianae) in South Florida. There is uncertainty about tegu demography and we considered several combinations of model parameters, exhibiting various dynamics of invasion. For a fixed one-year budget, we show that the risk-averse strategy, which optimizes the worst-case scenario of tegus’ dynamics, and the risk-neutral strategy, which optimizes the expected scenario, both concentrated control close to the point of introduction. A risk-seeking strategy, which optimizes the best-case scenario, focuses more on models where eradication of the species in a cell is possible and consists of spreading control as much as possible. For the establishment of a containment area, assuming an exponential growth we show that with current control methods it might not be possible to implement such a strategy for some of the

  20. Hopf bifurcation in a reaction-diffusive two-species model with nonlocal delay effect and general functional response

    International Nuclear Information System (INIS)

    Han, Renji; Dai, Binxiang

    2017-01-01

    Highlights: • We model general two-dimensional reaction-diffusion with nonlocal delay. • The existence of unique positive steady state is studied. • The bilinear form for the proposed system is given. • The existence, direction of Hopf bifurcation are given by symmetry method. - Abstract: A nonlocal delayed reaction-diffusive two-species model with Dirichlet boundary condition and general functional response is investigated in this paper. Based on the Lyapunov–Schmidt reduction, the existence, bifurcation direction and stability of Hopf bifurcating periodic orbits near the positive spatially nonhomogeneous steady-state solution are obtained, where the time delay is taken as the bifurcation parameter. Moreover, the general results are applied to a diffusive Lotka–Volterra type food-limited population model with nonlocal delay effect, and it is found that diffusion and nonlocal delay can also affect the other dynamic behavior of the system by numerical experiments.

  1. Global asymptotic stability of bistable traveling fronts in reaction-diffusion systems and their applications to biological models

    International Nuclear Information System (INIS)

    Wu Shiliang; Li Wantong

    2009-01-01

    This paper deals with the global asymptotic stability and uniqueness (up to translation) of bistable traveling fronts in a class of reaction-diffusion systems. The known results do not apply in solving these problems because the reaction terms do not satisfy the required monotone condition. To overcome the difficulty, a weak monotone condition is proposed for the reaction terms, which is called interval monotone condition. Under such a weak monotone condition, the existence and comparison theorem of solutions is first established for reaction-diffusion systems on R by appealing to the theory of abstract differential equations. The global asymptotic stability and uniqueness (up to translation) of bistable traveling fronts are then proved by the elementary super- and sub-solution comparison and squeezing methods for nonlinear evolution equations. Finally, these abstract results are applied to a two species competition-diffusion model and a system modeling man-environment-man epidemics.

  2. Coupled reaction-diffusion equations to model the fission gas release in the irradiation of the uranium dioxide

    International Nuclear Information System (INIS)

    Moyano, Edgardo A.; Scarpettini, Alberto F.

    2003-01-01

    A semi linear model of weakly coupled parabolic p.d.e. with reaction-diffusion is investigated. The system describes fission gas transfer from grain interior of UO 2 to grain boundaries. The problem is studied in a bounded domain. Using the upper-lower solutions method, two monotone sequences for the finite differences equations are constructed. Reasons are mentioned that allow to affirm that in the proposed functional sector the algorithm converges to the unique solution of the differential system. (author)

  3. Localization of (photorespiration and CO2 re-assimilation in tomato leaves investigated with a reaction-diffusion model.

    Directory of Open Access Journals (Sweden)

    Herman N C Berghuijs

    Full Text Available The rate of photosynthesis depends on the CO2 partial pressure near Rubisco, Cc, which is commonly calculated by models using the overall mesophyll resistance. Such models do not explain the difference between the CO2 level in the intercellular air space and Cc mechanistically. This problem can be overcome by reaction-diffusion models for CO2 transport, production and fixation in leaves. However, most reaction-diffusion models are complex and unattractive for procedures that require a large number of runs, like parameter optimisation. This study provides a simpler reaction-diffusion model. It is parameterized by both leaf physiological and leaf anatomical data. The anatomical data consisted of the thickness of the cell wall, cytosol and stroma, and the area ratios of mesophyll exposed to the intercellular air space to leaf surfaces and exposed chloroplast to exposed mesophyll surfaces. The model was used directly to estimate photosynthetic parameters from a subset of the measured light and CO2 response curves; the remaining data were used for validation. The model predicted light and CO2 response curves reasonably well for 15 days old tomato (cv. Admiro leaves, if (photorespiratory CO2 release was assumed to take place in the inner cytosol or in the gaps between the chloroplasts. The model was also used to calculate the fraction of CO2 produced by (photorespiration that is re-assimilated in the stroma, and this fraction ranged from 56 to 76%. In future research, the model should be further validated to better understand how the re-assimilation of (photorespired CO2 is affected by environmental conditions and physiological parameters.

  4. A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation.

    Science.gov (United States)

    Arjunan, Satya Nanda Vel; Tomita, Masaru

    2010-03-01

    Many important cellular processes are regulated by reaction-diffusion (RD) of molecules that takes place both in the cytoplasm and on the membrane. To model and analyze such multicompartmental processes, we developed a lattice-based Monte Carlo method, Spatiocyte that supports RD in volume and surface compartments at single molecule resolution. Stochasticity in RD and the excluded volume effect brought by intracellular molecular crowding, both of which can significantly affect RD and thus, cellular processes, are also supported. We verified the method by comparing simulation results of diffusion, irreversible and reversible reactions with the predicted analytical and best available numerical solutions. Moreover, to directly compare the localization patterns of molecules in fluorescence microscopy images with simulation, we devised a visualization method that mimics the microphotography process by showing the trajectory of simulated molecules averaged according to the camera exposure time. In the rod-shaped bacterium Escherichia coli, the division site is suppressed at the cell poles by periodic pole-to-pole oscillations of the Min proteins (MinC, MinD and MinE) arising from carefully orchestrated RD in both cytoplasm and membrane compartments. Using Spatiocyte we could model and reproduce the in vivo MinDE localization dynamics by accounting for the previously reported properties of MinE. Our results suggest that the MinE ring, which is essential in preventing polar septation, is largely composed of MinE that is transiently attached to the membrane independently after recruited by MinD. Overall, Spatiocyte allows simulation and visualization of complex spatial and reaction-diffusion mediated cellular processes in volumes and surfaces. As we showed, it can potentially provide mechanistic insights otherwise difficult to obtain experimentally. The online version of this article (doi:10.1007/s11693-009-9047-2) contains supplementary material, which is available to

  5. Real-time nonlinear feedback control of pattern formation in (bio)chemical reaction-diffusion processes: a model study.

    Science.gov (United States)

    Brandt-Pollmann, U; Lebiedz, D; Diehl, M; Sager, S; Schlöder, J

    2005-09-01

    Theoretical and experimental studies related to manipulation of pattern formation in self-organizing reaction-diffusion processes by appropriate control stimuli become increasingly important both in chemical engineering and cellular biochemistry. In a model study, we demonstrate here exemplarily the application of an efficient nonlinear model predictive control (NMPC) algorithm to real-time optimal feedback control of pattern formation in a bacterial chemotaxis system modeled by nonlinear partial differential equations. The corresponding drift-diffusion model type is representative for many (bio)chemical systems involving nonlinear reaction dynamics and nonlinear diffusion. We show how the computed optimal feedback control strategy exploits the system inherent physical property of wave propagation to achieve desired control aims. We discuss various applications of our approach to optimal control of spatiotemporal dynamics.

  6. Delay-induced Turing-like waves for one-species reaction-diffusion model on a network

    Science.gov (United States)

    Petit, Julien; Carletti, Timoteo; Asllani, Malbor; Fanelli, Duccio

    2015-09-01

    A one-species time-delay reaction-diffusion system defined on a complex network is studied. Traveling waves are predicted to occur following a symmetry-breaking instability of a homogeneous stationary stable solution, subject to an external nonhomogeneous perturbation. These are generalized Turing-like waves that materialize in a single-species populations dynamics model, as the unexpected byproduct of the imposed delay in the diffusion part. Sufficient conditions for the onset of the instability are mathematically provided by performing a linear stability analysis adapted to time-delayed differential equations. The method here developed exploits the properties of the Lambert W-function. The prediction of the theory are confirmed by direct numerical simulation carried out for a modified version of the classical Fisher model, defined on a Watts-Strogatz network and with the inclusion of the delay.

  7. A strongly nonlinear reaction-diffusion model for a deterministic diffusive epidemic

    International Nuclear Information System (INIS)

    Kirane, M.; Kouachi, S.

    1992-10-01

    In the present paper the mathematical validity of a model on the spread of an infectious disease is proved. This model was proposed by Bailey. The mathematical validity is proved by means of a positivity, uniqueness and existence theorem. In spite of the apparent simplicity of the problem, the solution requires a delicate set of techniques. It seems very difficult to extend these techniques to a model in more than one dimension without imposing conditions on the diffusivities. (author). 7 refs

  8. A strongly nonlinear reaction diffusion model for a deterministic diffusive epidemic

    International Nuclear Information System (INIS)

    Kirane, M.; Kouachi, S.

    1993-04-01

    In the present paper the mathematical validity of a model on the spread of an infectious disease is proved. This model was proposed by Bailey. The mathematical validity is proved by means of a positivity, uniqueness and existence theorem. Moreover the large time behaviour of the global solutions is analyzed. In spite of the apparent simplicity of the problem, the solution requires a delicate set of techniques. It seems very difficult to extend these techniques to a model in more than one dimension without imposing conditions on the data. (author). 9 refs

  9. Rigorous Multicomponent Reactive Separations Modelling: Complete Consideration of Reaction-Diffusion Phenomena

    International Nuclear Information System (INIS)

    Ahmadi, A.; Meyer, M.; Rouzineau, D.; Prevost, M.; Alix, P.; Laloue, N.

    2010-01-01

    This paper gives the first step of the development of a rigorous multicomponent reactive separation model. Such a model is highly essential to further the optimization of acid gases removal plants (CO 2 capture, gas treating, etc.) in terms of size and energy consumption, since chemical solvents are conventionally used. Firstly, two main modelling approaches are presented: the equilibrium-based and the rate-based approaches. Secondly, an extended rate-based model with rigorous modelling methodology for diffusion-reaction phenomena is proposed. The film theory and the generalized Maxwell-Stefan equations are used in order to characterize multicomponent interactions. The complete chain of chemical reactions is taken into account. The reactions can be kinetically controlled or at chemical equilibrium, and they are considered for both liquid film and liquid bulk. Thirdly, the method of numerical resolution is described. Coupling the generalized Maxwell-Stefan equations with chemical equilibrium equations leads to a highly non-linear Differential-Algebraic Equations system known as DAE index 3. The set of equations is discretized with finite-differences as its integration by Gear method is complex. The resulting algebraic system is resolved by the Newton- Raphson method. Finally, the present model and the associated methods of numerical resolution are validated for the example of esterification of methanol. This archetype non-electrolytic system permits an interesting analysis of reaction impact on mass transfer, especially near the phase interface. The numerical resolution of the model by Newton-Raphson method gives good results in terms of calculation time and convergence. The simulations show that the impact of reactions at chemical equilibrium and that of kinetically controlled reactions with high kinetics on mass transfer is relatively similar. Moreover, the Fick's law is less adapted for multicomponent mixtures where some abnormalities such as counter

  10. Effect of noise on defect chaos in a reaction-diffusion model.

    Science.gov (United States)

    Wang, Hongli; Ouyang, Qi

    2005-06-01

    The influence of noise on defect chaos due to breakup of spiral waves through Doppler and Eckhaus instabilities is investigated numerically with a modified Fitzhugh-Nagumo model. By numerical simulations we show that the noise can drastically enhance the creation and annihilation rates of topological defects. The noise-free probability distribution function for defects in this model is found not to fit with the previously reported squared-Poisson distribution. Under the influence of noise, the distributions are flattened, and can fit with the squared-Poisson or the modified-Poisson distribution. The defect lifetime and diffusive property of defects under the influence of noise are also checked in this model.

  11. Lattice Higgs models

    International Nuclear Information System (INIS)

    Jersak, J.

    1986-01-01

    This year has brought a sudden interest in lattice Higgs models. After five years of only modest activity we now have many new results obtained both by analytic and Monte Carlo methods. This talk is a review of the present state of lattice Higgs models with particular emphasis on the recent development

  12. Maximum Principles for Discrete and Semidiscrete Reaction-Diffusion Equation

    Directory of Open Access Journals (Sweden)

    Petr Stehlík

    2015-01-01

    Full Text Available We study reaction-diffusion equations with a general reaction function f on one-dimensional lattices with continuous or discrete time ux′  (or  Δtux=k(ux-1-2ux+ux+1+f(ux, x∈Z. We prove weak and strong maximum and minimum principles for corresponding initial-boundary value problems. Whereas the maximum principles in the semidiscrete case (continuous time exhibit similar features to those of fully continuous reaction-diffusion model, in the discrete case the weak maximum principle holds for a smaller class of functions and the strong maximum principle is valid in a weaker sense. We describe in detail how the validity of maximum principles depends on the nonlinearity and the time step. We illustrate our results on the Nagumo equation with the bistable nonlinearity.

  13. Passive sampling of DDT, DDE and DDD in sediments: accounting for degradation processes with reaction-diffusion modeling.

    Science.gov (United States)

    Tcaciuc, A Patricia; Borrelli, Raffaella; Zaninetta, Luciano M; Gschwend, Philip M

    2018-01-24

    Passive sampling is becoming a widely used tool for assessing freely dissolved concentrations of hydrophobic organic contaminants in environmental media. For certain media and target analytes, the time to reach equilibrium exceeds the deployment time, and in such cases, the loss of performance reference compounds (PRCs), loaded in the sampler before deployment, is one of the common ways used to assess the fractional equilibration of target analytes. The key assumption behind the use of PRCs is that their release is solely diffusion driven. But in this work, we show that PRC transformations in the sediment can have a measurable impact on the PRC releases and even allow estimation of that compound's transformation rate in the environment of interest. We found that in both field and lab incubations, the loss of the 13 C 2,4'-DDT PRC from a polyethylene (PE) passive sampler deployed at the sediment-water interface was accelerated compared to the loss of other PRCs ( 13 C-labeled PCBs, 13 C-labeled DDE and DDD). The DDT PRC loss was also accompanied by accumulation in the PE of its degradation product, 13 C 2,4'-DDD. Using a 1D reaction-diffusion model, we deduced the in situ degradation rates of DDT from the measured PRC loss. The in situ degradation rates increased with depth into the sediment bed (0.14 d -1 at 0-10 cm and 1.4 d -1 at 30-40 cm) and although they could not be independently validated, these rates compared favorably with literature values. This work shows that passive sampling users should be cautious when choosing PRCs, as degradation processes can affect some PRC's releases from the passive sampler. More importantly, this work opens up the opportunity for novel applications of passive samplers, particularly with regard to investigating in situ degradation rates, pathways, and products for both legacy and emerging contaminants. However, further work is needed to confirm that the rates deduced from model fitting of PRC loss are a true reflection of DDT

  14. Pattern formation in three-dimensional reaction-diffusion systems

    Science.gov (United States)

    Callahan, T. K.; Knobloch, E.

    1999-08-01

    Existing group theoretic analysis of pattern formation in three dimensions [T.K. Callahan, E. Knobloch, Symmetry-breaking bifurcations on cubic lattices, Nonlinearity 10 (1997) 1179-1216] is used to make specific predictions about the formation of three-dimensional patterns in two models of the Turing instability, the Brusselator model and the Lengyel-Epstein model. Spatially periodic patterns having the periodicity of the simple cubic (SC), face-centered cubic (FCC) or body-centered cubic (BCC) lattices are considered. An efficient center manifold reduction is described and used to identify parameter regimes permitting stable lamellæ, SC, FCC, double-diamond, hexagonal prism, BCC and BCCI states. Both models possess a special wavenumber k* at which the normal form coefficients take on fixed model-independent ratios and both are described by identical bifurcation diagrams. This property is generic for two-species chemical reaction-diffusion models with a single activator and inhibitor.

  15. Laser spot detection based on reaction diffusion

    Czech Academy of Sciences Publication Activity Database

    Vázquez-Otero, Alejandro; Khikhlukha, Danila; Solano-Altamirano, J. M.; Dormido, R.; Duro, N.

    2016-01-01

    Roč. 16, č. 3 (2016), s. 1-11, č. článku 315. ISSN 1424-8220 R&D Projects: GA MŠk EF15_008/0000162 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : laser spot detection * laser beam detection * reaction diffusion models * Fitzhugh-Nagumo model * reaction diffusion computation * Turing patterns Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.677, year: 2016

  16. Reaction-Diffusion Automata Phenomenology, Localisations, Computation

    CERN Document Server

    Adamatzky, Andrew

    2013-01-01

    Reaction-diffusion and excitable media are amongst most intriguing substrates. Despite apparent simplicity of the physical processes involved the media exhibit a wide range of amazing patterns: from target and spiral waves to travelling localisations and stationary breathing patterns. These media are at the heart of most natural processes, including morphogenesis of living beings, geological formations, nervous and muscular activity, and socio-economic developments.   This book explores a minimalist paradigm of studying reaction-diffusion and excitable media using locally-connected networks of finite-state machines: cellular automata and automata on proximity graphs. Cellular automata are marvellous objects per se because they show us how to generate and manage complexity using very simple rules of dynamical transitions. When combined with the reaction-diffusion paradigm the cellular automata become an essential user-friendly tool for modelling natural systems and designing future and emergent computing arch...

  17. Modelling non-homogeneous stochastic reaction-diffusion systems: the case study of gemcitabine-treated non-small cell lung cancer growth.

    Science.gov (United States)

    Lecca, Paola; Morpurgo, Daniele

    2012-01-01

    Reaction-diffusion based models have been widely used in the literature for modeling the growth of solid tumors. Many of the current models treat both diffusion/consumption of nutrients and cell proliferation. The majority of these models use classical transport/mass conservation equations for describing the distribution of molecular species in tumor spheroids, and the Fick's law for describing the flux of uncharged molecules (i.e oxygen, glucose). Commonly, the equations for the cell movement and proliferation are first order differential equations describing the rate of change of the velocity of the cells with respect to the spatial coordinates as a function of the nutrient's gradient. Several modifications of these equations have been developed in the last decade to explicitly indicate that the tumor includes cells, interstitial fluids and extracellular matrix: these variants provided a model of tumor as a multiphase material with these as the different phases. Most of the current reaction-diffusion tumor models are deterministic and do not model the diffusion as a local state-dependent process in a non-homogeneous medium at the micro- and meso-scale of the intra- and inter-cellular processes, respectively. Furthermore, a stochastic reaction-diffusion model in which diffusive transport of the molecular species of nutrients and chemotherapy drugs as well as the interactions of the tumor cells with these species is a novel approach. The application of this approach to he scase of non-small cell lung cancer treated with gemcitabine is also novel. We present a stochastic reaction-diffusion model of non-small cell lung cancer growth in the specification formalism of the tool Redi, we recently developed for simulating reaction-diffusion systems. We also describe how a spatial gradient of nutrients and oncological drugs affects the tumor progression. Our model is based on a generalization of the Fick's first diffusion law that allows to model diffusive transport in non

  18. Matching the reaction-diffusion simulation to dynamic [18F]FMISO PET measurements in tumors: extension to a flow-limited oxygen-dependent model.

    Science.gov (United States)

    Shi, Kuangyu; Bayer, Christine; Gaertner, Florian C; Astner, Sabrina T; Wilkens, Jan J; Nüsslin, Fridtjof; Vaupel, Peter; Ziegler, Sibylle I

    2017-02-01

    Positron-emission tomography (PET) with hypoxia specific tracers provides a noninvasive method to assess the tumor oxygenation status. Reaction-diffusion models have advantages in revealing the quantitative relation between in vivo imaging and the tumor microenvironment. However, there is no quantitative comparison of the simulation results with the real PET measurements yet. The lack of experimental support hampers further applications of computational simulation models. This study aims to compare the simulation results with a preclinical [ 18 F]FMISO PET study and to optimize the reaction-diffusion model accordingly. Nude mice with xenografted human squamous cell carcinomas (CAL33) were investigated with a 2 h dynamic [ 18 F]FMISO PET followed by immunofluorescence staining using the hypoxia marker pimonidazole and the endothelium marker CD 31. A large data pool of tumor time-activity curves (TAC) was simulated for each mouse by feeding the arterial input function (AIF) extracted from experiments into the model with different configurations of the tumor microenvironment. A measured TAC was considered to match a simulated TAC when the difference metric was below a certain, noise-dependent threshold. As an extension to the well-established Kelly model, a flow-limited oxygen-dependent (FLOD) model was developed to improve the matching between measurements and simulations. The matching rate between the simulated TACs of the Kelly model and the mouse PET data ranged from 0 to 28.1% (on average 9.8%). By modifying the Kelly model to an FLOD model, the matching rate between the simulation and the PET measurements could be improved to 41.2-84.8% (on average 64.4%). Using a simulation data pool and a matching strategy, we were able to compare the simulated temporal course of dynamic PET with in vivo measurements. By modifying the Kelly model to a FLOD model, the computational simulation was able to approach the dynamic [ 18 F]FMISO measurements in the investigated

  19. Speed ot travelling waves in reaction-diffusion equations

    International Nuclear Information System (INIS)

    Benguria, R.D.; Depassier, M.C.; Mendez, V.

    2002-01-01

    Reaction diffusion equations arise in several problems of population dynamics, flame propagation and others. In one dimensional cases the systems may evolve into travelling fronts. Here we concentrate on a reaction diffusion equation which arises as a simple model for chemotaxis and present results for the speed of the travelling fronts. (Author)

  20. A computational method for the coupled solution of reaction-diffusion equations on evolving domains and manifolds: Application to a model of cell migration and chemotaxis.

    Science.gov (United States)

    MacDonald, G; Mackenzie, J A; Nolan, M; Insall, R H

    2016-03-15

    In this paper, we devise a moving mesh finite element method for the approximate solution of coupled bulk-surface reaction-diffusion equations on an evolving two dimensional domain. Fundamental to the success of the method is the robust generation of bulk and surface meshes. For this purpose, we use a novel moving mesh partial differential equation (MMPDE) approach. The developed method is applied to model problems with known analytical solutions; these experiments indicate second-order spatial and temporal accuracy. Coupled bulk-surface problems occur frequently in many areas; in particular, in the modelling of eukaryotic cell migration and chemotaxis. We apply the method to a model of the two-way interaction of a migrating cell in a chemotactic field, where the bulk region corresponds to the extracellular region and the surface to the cell membrane.

  1. Aberrant Behaviours of Reaction Diffusion Self-organisation Models on Growing Domains in the Presence of Gene Expression Time Delays

    KAUST Repository

    Seirin Lee, S.

    2010-03-23

    Turing\\'s pattern formation mechanism exhibits sensitivity to the details of the initial conditions suggesting that, in isolation, it cannot robustly generate pattern within noisy biological environments. Nonetheless, secondary aspects of developmental self-organisation, such as a growing domain, have been shown to ameliorate this aberrant model behaviour. Furthermore, while in-situ hybridisation reveals the presence of gene expression in developmental processes, the influence of such dynamics on Turing\\'s model has received limited attention. Here, we novelly focus on the Gierer-Meinhardt reaction diffusion system considering delays due the time taken for gene expression, while incorporating a number of different domain growth profiles to further explore the influence and interplay of domain growth and gene expression on Turing\\'s mechanism. We find extensive pathological model behaviour, exhibiting one or more of the following: temporal oscillations with no spatial structure, a failure of the Turing instability and an extreme sensitivity to the initial conditions, the growth profile and the duration of gene expression. This deviant behaviour is even more severe than observed in previous studies of Schnakenberg kinetics on exponentially growing domains in the presence of gene expression (Gaffney and Monk in Bull. Math. Biol. 68:99-130, 2006). Our results emphasise that gene expression dynamics induce unrealistic behaviour in Turing\\'s model for multiple choices of kinetics and thus such aberrant modelling predictions are likely to be generic. They also highlight that domain growth can no longer ameliorate the excessive sensitivity of Turing\\'s mechanism in the presence of gene expression time delays. The above, extensive, pathologies suggest that, in the presence of gene expression, Turing\\'s mechanism would generally require a novel and extensive secondary mechanism to control reaction diffusion patterning. © 2010 Society for Mathematical Biology.

  2. Remarks on lattice gauge models

    International Nuclear Information System (INIS)

    Grosse, H.

    1981-01-01

    The author reports a study of the phase structure of lattice gauge models where one takes as a gauge group a non-abelian discrete subgroup of SU(3). In addition he comments on a lattice action proposed recently by Manton and observes that it violates a positivity property. (Auth.)

  3. Remarks on lattice gauge models

    International Nuclear Information System (INIS)

    Grosse, H.

    1981-01-01

    The author reports on a study of the phase structure of lattice gauge models where one takes as a gauge group a non-abelian discrete subgroup of SU(3). In addition he comments on a lattice action proposed recently by Manton (1980) and observes that it violates a positivity property. (Auth.)

  4. Lattice Multiverse Models

    OpenAIRE

    Williamson, S. Gill

    2010-01-01

    Will the cosmological multiverse, when described mathematically, have easily stated properties that are impossible to prove or disprove using mathematical physics? We explore this question by constructing lattice multiverses which exhibit such behavior even though they are much simpler mathematically than any likely cosmological multiverse.

  5. Geometric and mechanical properties evaluation of scaffolds for bone tissue applications designing by a reaction-diffusion models and manufactured with a material jetting system

    Directory of Open Access Journals (Sweden)

    Marco A. Velasco

    2016-10-01

    Full Text Available Scaffolds are essential in bone tissue engineering, as they provide support to cells and growth factors necessary to regenerate tissue. In addition, they meet the mechanical function of the bone while it regenerates. Currently, the multiple methods for designing and manufacturing scaffolds are based on regular structures from a unit cell that repeats in a given domain. However, these methods do not resemble the actual structure of the trabecular bone which may work against osseous tissue regeneration. To explore the design of porous structures with similar mechanical properties to native bone, a geometric generation scheme from a reaction-diffusion model and its manufacturing via a material jetting system is proposed. This article presents the methodology used, the geometric characteristics and the modulus of elasticity of the scaffolds designed and manufactured. The method proposed shows its potential to generate structures that allow to control the basic scaffold properties for bone tissue engineering such as the width of the channels and porosity. The mechanical properties of our scaffolds are similar to trabecular tissue present in vertebrae and tibia bones. Tests on the manufactured scaffolds show that it is necessary to consider the orientation of the object relative to the printing system because the channel geometry, mechanical properties and roughness are heavily influenced by the position of the surface analyzed with respect to the printing axis. A possible line for future work may be the establishment of a set of guidelines to consider the effects of manufacturing processes in designing stages.

  6. Quantum lattice model solver HΦ

    Science.gov (United States)

    Kawamura, Mitsuaki; Yoshimi, Kazuyoshi; Misawa, Takahiro; Yamaji, Youhei; Todo, Synge; Kawashima, Naoki

    2017-08-01

    HΦ [aitch-phi ] is a program package based on the Lanczos-type eigenvalue solution applicable to a broad range of quantum lattice models, i.e., arbitrary quantum lattice models with two-body interactions, including the Heisenberg model, the Kitaev model, the Hubbard model and the Kondo-lattice model. While it works well on PCs and PC-clusters, HΦ also runs efficiently on massively parallel computers, which considerably extends the tractable range of the system size. In addition, unlike most existing packages, HΦ supports finite-temperature calculations through the method of thermal pure quantum (TPQ) states. In this paper, we explain theoretical background and user-interface of HΦ. We also show the benchmark results of HΦ on supercomputers such as the K computer at RIKEN Advanced Institute for Computational Science (AICS) and SGI ICE XA (Sekirei) at the Institute for the Solid State Physics (ISSP).

  7. Stochastic lattice model of synaptic membrane protein domains.

    Science.gov (United States)

    Li, Yiwei; Kahraman, Osman; Haselwandter, Christoph A

    2017-05-01

    Neurotransmitter receptor molecules, concentrated in synaptic membrane domains along with scaffolds and other kinds of proteins, are crucial for signal transmission across chemical synapses. In common with other membrane protein domains, synaptic domains are characterized by low protein copy numbers and protein crowding, with rapid stochastic turnover of individual molecules. We study here in detail a stochastic lattice model of the receptor-scaffold reaction-diffusion dynamics at synaptic domains that was found previously to capture, at the mean-field level, the self-assembly, stability, and characteristic size of synaptic domains observed in experiments. We show that our stochastic lattice model yields quantitative agreement with mean-field models of nonlinear diffusion in crowded membranes. Through a combination of analytic and numerical solutions of the master equation governing the reaction dynamics at synaptic domains, together with kinetic Monte Carlo simulations, we find substantial discrepancies between mean-field and stochastic models for the reaction dynamics at synaptic domains. Based on the reaction and diffusion properties of synaptic receptors and scaffolds suggested by previous experiments and mean-field calculations, we show that the stochastic reaction-diffusion dynamics of synaptic receptors and scaffolds provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the observed single-molecule trajectories, and spatial heterogeneity in the effective rates at which receptors and scaffolds are recycled at the cell membrane. Our work sheds light on the physical mechanisms and principles linking the collective properties of membrane protein domains to the stochastic dynamics that rule their molecular components.

  8. Lattice gas cellular automata and lattice Boltzmann models an introduction

    CERN Document Server

    Wolf-Gladrow, Dieter A

    2000-01-01

    Lattice-gas cellular automata (LGCA) and lattice Boltzmann models (LBM) are relatively new and promising methods for the numerical solution of nonlinear partial differential equations. The book provides an introduction for graduate students and researchers. Working knowledge of calculus is required and experience in PDEs and fluid dynamics is recommended. Some peculiarities of cellular automata are outlined in Chapter 2. The properties of various LGCA and special coding techniques are discussed in Chapter 3. Concepts from statistical mechanics (Chapter 4) provide the necessary theoretical background for LGCA and LBM. The properties of lattice Boltzmann models and a method for their construction are presented in Chapter 5.

  9. Reaction Diffusion and Chemotaxis for Decentralized Gathering on FPGAs

    Directory of Open Access Journals (Sweden)

    Bernard Girau

    2009-01-01

    and rapid simulations of the complex dynamics of this reaction-diffusion model. Then we describe the FPGA implementation of the environment together with the agents, to study the major challenges that must be solved when designing a fast embedded implementation of the decentralized gathering model. We analyze the results according to the different goals of these hardware implementations.

  10. Turing instability in reaction-diffusion systems with nonlinear diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Zemskov, E. P., E-mail: zemskov@ccas.ru [Russian Academy of Sciences, Dorodnicyn Computing Center (Russian Federation)

    2013-10-15

    The Turing instability is studied in two-component reaction-diffusion systems with nonlinear diffusion terms, and the regions in parametric space where Turing patterns can form are determined. The boundaries between super- and subcritical bifurcations are found. Calculations are performed for one-dimensional brusselator and oregonator models.

  11. Stochastic flows, reaction-diffusion processes, and morphogenesis

    International Nuclear Information System (INIS)

    Kozak, J.J.; Hatlee, M.D.; Musho, M.K.; Politowicz, P.A.; Walsh, C.A.

    1983-01-01

    Recently, an exact procedure has been introduced [C. A. Walsh and J. J. Kozak, Phys. Rev. Lett.. 47: 1500 (1981)] for calculating the expected walk length for a walker undergoing random displacements on a finite or infinite (periodic) d-dimensional lattice with traps (reactive sites). The method (which is based on a classification of the symmetry of the sites surrounding the central deep trap and a coding of the fate of the random walker as it encounters a site of given symmetry) is applied here to several problems in lattice statistics for each of which exact results are presented. First, we assess the importance of lattice geometry in influencing the efficiency of reaction-diffusion processs in simple and multiple trap systems by reporting values of for square (cubic) versus hexagonal lattices in d = 2,3. We then show how the method may be applied to variable-step (distance-dependent) walks for a single walker on a given lattice and also demonstrate the calculation of the expected walk length for the case of multiple walkers. Finally, we make contact with recent discussions of ''mixing'' by showing that the degree of chaos associated with flows in certain lattice-systems can be calibrated by monitoring the lattice walks induced by the Poincare map of a certain parabolic function

  12. Aliasing modes in the lattice Schwinger model

    International Nuclear Information System (INIS)

    Campos, Rafael G.; Tututi, Eduardo S.

    2007-01-01

    We study the Schwinger model on a lattice consisting of zeros of the Hermite polynomials that incorporates a lattice derivative and a discrete Fourier transform with many properties. Such a lattice produces a Klein-Gordon equation for the boson field and the exact value of the mass in the asymptotic limit if the boundaries are not taken into account. On the contrary, if the lattice is considered with boundaries new modes appear due to aliasing effects. In the continuum limit, however, this lattice yields also a Klein-Gordon equation with a reduced mass

  13. Numerical solution of a reaction-diffusion equation

    International Nuclear Information System (INIS)

    Moyano, Edgardo A.; Scarpettini, Alberto F.

    2000-01-01

    The purpose of the present work to continue the observations and the numerical experiences on a reaction-diffusion model, that is a simplified form of the neutronic flux equation. The model is parabolic, nonlinear, with Dirichlet boundary conditions. The purpose is to approximate non trivial solutions, asymptotically stables for t → ∞, that is solutions that tend to the elliptic problem, in the Lyapunov sense. It belongs to the so-called reaction-diffusion equations of semi linear kind, that is, linear equations in the heat operator and they have a nonlinear reaction function, in this case f (u, a, b) = u (a - b u), being u concentration, a and b parameters. The study of the incidence of these parameters take an interest to the neutronic flux physics. So that we search non trivial, positive and bounded solutions. The used algorithm is based on the concept of monotone and ordered sequences, and on the existence theorem of Amann and Sattinger. (author)

  14. Parametric spatiotemporal oscillation in reaction-diffusion systems.

    Science.gov (United States)

    Ghosh, Shyamolina; Ray, Deb Shankar

    2016-03-01

    We consider a reaction-diffusion system in a homogeneous stable steady state. On perturbation by a time-dependent sinusoidal forcing of a suitable scaling parameter the system exhibits parametric spatiotemporal instability beyond a critical threshold frequency. We have formulated a general scheme to calculate the threshold condition for oscillation and the range of unstable spatial modes lying within a V-shaped region reminiscent of Arnold's tongue. Full numerical simulations show that depending on the specificity of nonlinearity of the models, the instability may result in time-periodic stationary patterns in the form of standing clusters or spatially localized breathing patterns with characteristic wavelengths. Our theoretical analysis of the parametric oscillation in reaction-diffusion system is corroborated by full numerical simulation of two well-known chemical dynamical models: chlorite-iodine-malonic acid and Briggs-Rauscher reactions.

  15. Turing Patterns in a Reaction-Diffusion System

    International Nuclear Information System (INIS)

    Wu Yanning; Wang Pingjian; Hou Chunju; Liu Changsong; Zhu Zhengang

    2006-01-01

    We have further investigated Turing patterns in a reaction-diffusion system by theoretical analysis and numerical simulations. Simple Turing patterns and complex superlattice structures are observed. We find that the shape and type of Turing patterns depend on dynamical parameters and external periodic forcing, and is independent of effective diffusivity rate σ in the Lengyel-Epstein model. Our numerical results provide additional insight into understanding the mechanism of development of Turing patterns and predicting new pattern formations.

  16. Essentially Entropic Lattice Boltzmann Model

    Science.gov (United States)

    Atif, Mohammad; Kolluru, Praveen Kumar; Thantanapally, Chakradhar; Ansumali, Santosh

    2017-12-01

    The entropic lattice Boltzmann model (ELBM), a discrete space-time kinetic theory for hydrodynamics, ensures nonlinear stability via the discrete time version of the second law of thermodynamics (the H theorem). Compliance with the H theorem is numerically enforced in this methodology and involves a search for the maximal discrete path length corresponding to the zero dissipation state by iteratively solving a nonlinear equation. We demonstrate that an exact solution for the path length can be obtained by assuming a natural criterion of negative entropy change, thereby reducing the problem to solving an inequality. This inequality is solved by creating a new framework for construction of Padé approximants via quadrature on appropriate convex function. This exact solution also resolves the issue of indeterminacy in case of nonexistence of the entropic involution step. Since our formulation is devoid of complex mathematical library functions, the computational cost is drastically reduced. To illustrate this, we have simulated a model setup of flow over the NACA-0012 airfoil at a Reynolds number of 2.88 ×106.

  17. Glider-based computing in reaction-diffusion hexagonal cellular automata

    International Nuclear Information System (INIS)

    Adamatzky, Andrew; Wuensche, Andrew; De Lacy Costello, Benjamin

    2006-01-01

    A three-state hexagonal cellular automaton, discovered in [Wuensche A. Glider dynamics in 3-value hexagonal cellular automata: the beehive rule. Int J Unconvention Comput, in press], presents a conceptual discrete model of a reaction-diffusion system with inhibitor and activator reagents. The automaton model of reaction-diffusion exhibits mobile localized patterns (gliders) in its space-time dynamics. We show how to implement the basic computational operations with these mobile localizations, and thus demonstrate collision-based logical universality of the hexagonal reaction-diffusion cellular automaton

  18. Laser Spot Detection Based on Reaction Diffusion

    OpenAIRE

    Alejandro Vázquez-Otero; Danila Khikhlukha; J. M. Solano-Altamirano; Raquel Dormido; Natividad Duro

    2016-01-01

    Center-location of a laser spot is a problem of interest when the laser is used for processing and performing measurements. Measurement quality depends on correctly determining the location of the laser spot. Hence, improving and proposing algorithms for the correct location of the spots are fundamental issues in laser-based measurements. In this paper we introduce a Reaction Diffusion (RD) system as the main computational framework for robustly finding laser spot centers. The method presente...

  19. Reaction diffusion equations with boundary degeneracy

    Directory of Open Access Journals (Sweden)

    Huashui Zhan

    2016-03-01

    Full Text Available In this article, we consider the reaction diffusion equation $$ \\frac{\\partial u}{\\partial t} = \\Delta A(u,\\quad (x,t\\in \\Omega \\times (0,T, $$ with the homogeneous boundary condition. Inspired by the Fichera-Oleinik theory, if the equation is not only strongly degenerate in the interior of $\\Omega$, but also degenerate on the boundary, we show that the solution of the equation is free from any limitation of the boundary condition.

  20. Lattice models and conformal field theories

    International Nuclear Information System (INIS)

    Saleur, H.

    1988-01-01

    Theoretical studies concerning the connection between critical physical systems and the conformal theories are reviewed. The conformal theory associated to a critical (integrable) lattice model is derived. The obtention of the central charge, critical exponents and torus partition function, using renormalization group arguments, is shown. The quantum group structure, in the integrable lattice models, and the theory of Visaro algebra representations are discussed. The relations between off-critical integrable models and conformal theories, in finite geometries, are studied

  1. Chiral Schwinger model and lattice fermionic regularizations

    International Nuclear Information System (INIS)

    Kieu, T.D.; Sen, D.; Xue, S.

    1988-01-01

    The chiral Schwinger model is studied on the lattice with use of Wilson fermions. The arbitrary mass term for the gauge boson is shown to originate from the arbitrariness of the Wilson parameter, which is required to avoid the doubling phenomenon on the lattice. The necessity for such a term is thus demonstrated in contrast to the mere admissibility as indicated by previous continuum calculations

  2. Cross-diffusional effect in a telegraph reaction diffusion Lotka-Volterra two competitive system

    International Nuclear Information System (INIS)

    Abdusalam, H.A; Fahmy, E.S.

    2003-01-01

    It is known now that, telegraph equation is more suitable than ordinary diffusion equation in modelling reaction diffusion in several branches of sciences. Telegraph reaction diffusion Lotka-Volterra two competitive system is considered. We observed that this system can give rise to diffusive instability only in the presence of cross-diffusion. Local and global stability analysis in the cross-diffusional effect are studied by considering suitable Lyapunov functional

  3. A Weak Comparison Principle for Reaction-Diffusion Systems

    Directory of Open Access Journals (Sweden)

    José Valero

    2012-01-01

    Full Text Available We prove a weak comparison principle for a reaction-diffusion system without uniqueness of solutions. We apply the abstract results to the Lotka-Volterra system with diffusion, a generalized logistic equation, and to a model of fractional-order chemical autocatalysis with decay. Moreover, in the case of the Lotka-Volterra system a weak maximum principle is given, and a suitable estimate in the space of essentially bounded functions L∞ is proved for at least one solution of the problem.

  4. Aberrant Behaviours of Reaction Diffusion Self-organisation Models on Growing Domains in the Presence of Gene Expression Time Delays

    KAUST Repository

    Seirin  Lee, S.; Gaffney, E. A.

    2010-01-01

    domains in the presence of gene expression (Gaffney and Monk in Bull. Math. Biol. 68:99-130, 2006). Our results emphasise that gene expression dynamics induce unrealistic behaviour in Turing's model for multiple choices of kinetics and thus such aberrant

  5. Lattice sigma models with exact supersymmetry

    International Nuclear Information System (INIS)

    Simon Catterall; Sofiane Ghadab

    2004-01-01

    We show how to construct lattice sigma models in one, two and four dimensions which exhibit an exact fermionic symmetry. These models are discretized and twisted versions of conventional supersymmetric sigma models with N=2 supersymmetry. The fermionic symmetry corresponds to a scalar BRST charge built from the original supercharges. The lattice theories possess local actions and exhibit no fermion doubling. In the two and four dimensional theories we show that these lattice theories are invariant under additional discrete symmetries. We argue that the presence of these exact symmetries ensures that no fine tuning is required to achieve N=2 supersymmetry in the continuum limit. As a concrete example we show preliminary numerical results from a simulation of the O(3) supersymmetric sigma model in two dimensions. (author)

  6. Laser Spot Detection Based on Reaction Diffusion.

    Science.gov (United States)

    Vázquez-Otero, Alejandro; Khikhlukha, Danila; Solano-Altamirano, J M; Dormido, Raquel; Duro, Natividad

    2016-03-01

    Center-location of a laser spot is a problem of interest when the laser is used for processing and performing measurements. Measurement quality depends on correctly determining the location of the laser spot. Hence, improving and proposing algorithms for the correct location of the spots are fundamental issues in laser-based measurements. In this paper we introduce a Reaction Diffusion (RD) system as the main computational framework for robustly finding laser spot centers. The method presented is compared with a conventional approach for locating laser spots, and the experimental results indicate that RD-based computation generates reliable and precise solutions. These results confirm the flexibility of the new computational paradigm based on RD systems for addressing problems that can be reduced to a set of geometric operations.

  7. Laser Spot Detection Based on Reaction Diffusion

    Directory of Open Access Journals (Sweden)

    Alejandro Vázquez-Otero

    2016-03-01

    Full Text Available Center-location of a laser spot is a problem of interest when the laser is used for processing and performing measurements. Measurement quality depends on correctly determining the location of the laser spot. Hence, improving and proposing algorithms for the correct location of the spots are fundamental issues in laser-based measurements. In this paper we introduce a Reaction Diffusion (RD system as the main computational framework for robustly finding laser spot centers. The method presented is compared with a conventional approach for locating laser spots, and the experimental results indicate that RD-based computation generates reliable and precise solutions. These results confirm the flexibility of the new computational paradigm based on RD systems for addressing problems that can be reduced to a set of geometric operations.

  8. Integrable lattice models and quantum groups

    International Nuclear Information System (INIS)

    Saleur, H.; Zuber, J.B.

    1990-01-01

    These lectures aim at introducing some basic algebraic concepts on lattice integrable models, in particular quantum groups, and to discuss some connections with knot theory and conformal field theories. The list of contents is: Vertex models and Yang-Baxter equation; Quantum sl(2) algebra and the Yang-Baxter equation; U q sl(2) as a symmetry of statistical mechanical models; Face models; Face models attached to graphs; Yang-Baxter equation, braid group and link polynomials

  9. Multisite Interactions in Lattice-Gas Models

    Science.gov (United States)

    Einstein, T. L.; Sathiyanarayanan, R.

    For detailed applications of lattice-gas models to surface systems, multisite interactions often play at least as significant a role as interactions between pairs of adatoms that are separated by a few lattice spacings. We recall that trio (3-adatom, non-pairwise) interactions do not inevitably create phase boundary asymmetries about half coverage. We discuss a sophisticated application to an experimental system and describe refinements in extracting lattice-gas energies from calculations of total energies of several different ordered overlayers. We describe how lateral relaxations complicate matters when there is direct interaction between the adatoms, an issue that is important when examining the angular dependence of step line tensions. We discuss the connector model as an alternative viewpoint and close with a brief account of recent work on organic molecule overlayers.

  10. Lattice Boltzmann model for numerical relativity.

    Science.gov (United States)

    Ilseven, E; Mendoza, M

    2016-02-01

    In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.

  11. Reaction-diffusion models of decontamination

    DEFF Research Database (Denmark)

    Hjorth, Poul G.

    A contaminant, which also contains a polymer is in the form of droplets on a solid surface. It is to be removed by the action of a decontaminant, which is applied in aqueous solution. The contaminant is only sparingly soluble in water, so the reaction mechanism is that it slowly dissolves...

  12. A lattice model for influenza spreading.

    Directory of Open Access Journals (Sweden)

    Antonella Liccardo

    Full Text Available We construct a stochastic SIR model for influenza spreading on a D-dimensional lattice, which represents the dynamic contact network of individuals. An age distributed population is placed on the lattice and moves on it. The displacement from a site to a nearest neighbor empty site, allows individuals to change the number and identities of their contacts. The dynamics on the lattice is governed by an attractive interaction between individuals belonging to the same age-class. The parameters, which regulate the pattern dynamics, are fixed fitting the data on the age-dependent daily contact numbers, furnished by the Polymod survey. A simple SIR transmission model with a nearest neighbors interaction and some very basic adaptive mobility restrictions complete the model. The model is validated against the age-distributed Italian epidemiological data for the influenza A(H1N1 during the [Formula: see text] season, with sensible predictions for the epidemiological parameters. For an appropriate topology of the lattice, we find that, whenever the accordance between the contact patterns of the model and the Polymod data is satisfactory, there is a good agreement between the numerical and the experimental epidemiological data. This result shows how rich is the information encoded in the average contact patterns of individuals, with respect to the analysis of the epidemic spreading of an infectious disease.

  13. London limit for lattice model of superconductor

    International Nuclear Information System (INIS)

    Ktitorov, S.A.

    2004-01-01

    The phenomenological approach to the strong-bond superconductor, which is based on the Ginzburg-Landau equation in the London limit, is considered. The effect of the crystalline lattice discreteness on the superconductors electromagnetic properties is studied. The classic problems on the critical current and magnetic field penetration are studied within the frames of the lattice model for thin superconducting films. The dependence of the superconducting current on the thin film order parameter is obtained. The critical current dependence on the degree of deviation from the continual approximation is calculated [ru

  14. Lattice Model for Production of Gas

    KAUST Repository

    Marder, M.; Eftekhari, Behzad; Patzek, Tadeusz

    2017-01-01

    We define a lattice model for rock, absorbers, and gas that makes it possible to examine the flow of gas to a complicated absorbing boundary over long periods of time. The motivation is to deduce the geometry of the boundary from the time history

  15. Incorporating drug delivery into an imaging-driven, mechanics-coupled reaction diffusion model for predicting the response of breast cancer to neoadjuvant chemotherapy: theory and preliminary clinical results

    Science.gov (United States)

    Jarrett, Angela M.; Hormuth, David A.; Barnes, Stephanie L.; Feng, Xinzeng; Huang, Wei; Yankeelov, Thomas E.

    2018-05-01

    Clinical methods for assessing tumor response to therapy are largely rudimentary, monitoring only temporal changes in tumor size. Our goal is to predict the response of breast tumors to therapy using a mathematical model that utilizes magnetic resonance imaging (MRI) data obtained non-invasively from individual patients. We extended a previously established, mechanically coupled, reaction-diffusion model for predicting tumor response initialized with patient-specific diffusion weighted MRI (DW-MRI) data by including the effects of chemotherapy drug delivery, which is estimated using dynamic contrast-enhanced (DCE-) MRI data. The extended, drug incorporated, model is initialized using patient-specific DW-MRI and DCE-MRI data. Data sets from five breast cancer patients were used—obtained before, after one cycle, and at mid-point of neoadjuvant chemotherapy. The DCE-MRI data was used to estimate spatiotemporal variations in tumor perfusion with the extended Kety–Tofts model. The physiological parameters derived from DCE-MRI were used to model changes in delivery of therapy drugs within the tumor for incorporation in the extended model. We simulated the original model and the extended model in both 2D and 3D and compare the results for this five-patient cohort. Preliminary results show reductions in the error of model predicted tumor cellularity and size compared to the experimentally-measured results for the third MRI scan when therapy was incorporated. Comparing the two models for agreement between the predicted total cellularity and the calculated total cellularity (from the DW-MRI data) reveals an increased concordance correlation coefficient from 0.81 to 0.98 for the 2D analysis and 0.85 to 0.99 for the 3D analysis (p  <  0.01 for each) when the extended model was used in place of the original model. This study demonstrates the plausibility of using DCE-MRI data as a means to estimate drug delivery on a patient-specific basis in predictive models and

  16. Quiver gauge theories and integrable lattice models

    International Nuclear Information System (INIS)

    Yagi, Junya

    2015-01-01

    We discuss connections between certain classes of supersymmetric quiver gauge theories and integrable lattice models from the point of view of topological quantum field theories (TQFTs). The relevant classes include 4d N=1 theories known as brane box and brane tilling models, 3d N=2 and 2d N=(2,2) theories obtained from them by compactification, and 2d N=(0,2) theories closely related to these theories. We argue that their supersymmetric indices carry structures of TQFTs equipped with line operators, and as a consequence, are equal to the partition functions of lattice models. The integrability of these models follows from the existence of extra dimension in the TQFTs, which emerges after the theories are embedded in M-theory. The Yang-Baxter equation expresses the invariance of supersymmetric indices under Seiberg duality and its lower-dimensional analogs.

  17. Improved models of dense anharmonic lattices

    Energy Technology Data Exchange (ETDEWEB)

    Rosenau, P., E-mail: rosenau@post.tau.ac.il; Zilburg, A.

    2017-01-15

    We present two improved quasi-continuous models of dense, strictly anharmonic chains. The direct expansion which includes the leading effect due to lattice dispersion, results in a Boussinesq-type PDE with a compacton as its basic solitary mode. Without increasing its complexity we improve the model by including additional terms in the expanded interparticle potential with the resulting compacton having a milder singularity at its edges. A particular care is applied to the Hertz potential due to its non-analyticity. Since, however, the PDEs of both the basic and the improved model are ill posed, they are unsuitable for a study of chains dynamics. Using the bond length as a state variable we manipulate its dispersion and derive a well posed fourth order PDE. - Highlights: • An improved PDE model of a Newtonian lattice renders compacton solutions. • Compactons are classical solutions of the improved model and hence amenable to standard analysis. • An alternative well posed model enables to study head on interactions of lattices' solitary waves. • Well posed modeling of Hertz potential.

  18. Lattice Model for Production of Gas

    KAUST Repository

    Marder, M.

    2017-12-01

    We define a lattice model for rock, absorbers, and gas that makes it possible to examine the flow of gas to a complicated absorbing boundary over long periods of time. The motivation is to deduce the geometry of the boundary from the time history of gas absorption. We find a solution to this model using Green\\'s function techniques, and apply the solution to three absorbing networks of increasing complexity.

  19. Lattice Model for Production of Gas

    OpenAIRE

    Marder, M.; Eftekhari, Behzad; Patzek, Tadeusz W

    2017-01-01

    We define a lattice model for rock, absorbers, and gas that makes it possible to examine the flow of gas to a complicated absorbing boundary over long periods of time. The motivation is to deduce the geometry of the boundary from the time history of gas absorption. We find a solution to this model using Green's function techniques, and apply the solution to three absorbing networks of increasing complexity.

  20. Hyper-lattice algebraic model for data warehousing

    CERN Document Server

    Sen, Soumya; Chaki, Nabendu

    2016-01-01

    This book presents Hyper-lattice, a new algebraic model for partially ordered sets, and an alternative to lattice. The authors analyze some of the shortcomings of conventional lattice structure and propose a novel algebraic structure in the form of Hyper-lattice to overcome problems with lattice. They establish how Hyper-lattice supports dynamic insertion of elements in a partial order set with a partial hierarchy between the set members. The authors present the characteristics and the different properties, showing how propositions and lemmas formalize Hyper-lattice as a new algebraic structure.

  1. Exact analytical solutions for nonlinear reaction-diffusion equations

    International Nuclear Information System (INIS)

    Liu Chunping

    2003-01-01

    By using a direct method via the computer algebraic system of Mathematica, some exact analytical solutions to a class of nonlinear reaction-diffusion equations are presented in closed form. Subsequently, the hyperbolic function solutions and the triangular function solutions of the coupled nonlinear reaction-diffusion equations are obtained in a unified way

  2. Nonlinear analysis of a reaction-diffusion system: Amplitude equations

    Energy Technology Data Exchange (ETDEWEB)

    Zemskov, E. P., E-mail: zemskov@ccas.ru [Russian Academy of Sciences, Dorodnicyn Computing Center (Russian Federation)

    2012-10-15

    A reaction-diffusion system with a nonlinear diffusion term is considered. Based on nonlinear analysis, the amplitude equations are obtained in the cases of the Hopf and Turing instabilities in the system. Turing pattern-forming regions in the parameter space are determined for supercritical and subcritical instabilities in a two-component reaction-diffusion system.

  3. Immiscible multicomponent lattice Boltzmann model for fluids with ...

    Indian Academy of Sciences (India)

    College of Mechanical Engineering, Tongji University, 4800# Cao'an Road, ... was developed from a discretized fluid model known as the lattice gas automata ... of two immiscible fluids, several lattice Boltzmann (LB) models have been ...

  4. Gauge theories and integrable lattice models

    International Nuclear Information System (INIS)

    Witten, E.

    1989-01-01

    Investigations of new knot polynomials discovered in the last few years have shown them to be intimately connected with soluble models of two dimensional lattice statistical mechanics. In this paper, these results, which in time may illuminate the whole question of why integrable lattice models exist, are reconsidered from the point of view of three dimensional gauge theory. Expectation values of Wilson lines in three dimensional Chern-Simons gauge theories can be computed by evaluating the partition functions of certain lattice models on finite graphs obtained by projecting the Wilson lines to the plane. The models in question - previously considered in both the knot theory and statistical mechanics literature - are IRF models in which the local Boltzmann weights are the matrix elements of braiding matrices in rational conformal field theories. These matrix elements, in turn, can be represented in three dimensional gauge theory in terms of the expectation value of a certain tetrahedral configuration of Wilson lines. This representation makes manifest a surprising symmetry of the braiding matrix elements in conformal field theory. (orig.)

  5. Control of transversal instabilities in reaction-diffusion systems

    Science.gov (United States)

    Totz, Sonja; Löber, Jakob; Totz, Jan Frederik; Engel, Harald

    2018-05-01

    In two-dimensional reaction-diffusion systems, local curvature perturbations on traveling waves are typically damped out and vanish. However, if the inhibitor diffuses much faster than the activator, transversal instabilities can arise, leading from flat to folded, spatio-temporally modulated waves and to spreading spiral turbulence. Here, we propose a scheme to induce or inhibit these instabilities via a spatio-temporal feedback loop. In a piecewise-linear version of the FitzHugh–Nagumo model, transversal instabilities and spiral turbulence in the uncontrolled system are shown to be suppressed in the presence of control, thereby stabilizing plane wave propagation. Conversely, in numerical simulations with the modified Oregonator model for the photosensitive Belousov–Zhabotinsky reaction, which does not exhibit transversal instabilities on its own, we demonstrate the feasibility of inducing transversal instabilities and study the emerging wave patterns in a well-controlled manner.

  6. Guiding brine shrimp through mazes by solving reaction diffusion equations

    Science.gov (United States)

    Singal, Krishma; Fenton, Flavio

    Excitable systems driven by reaction diffusion equations have been shown to not only find solutions to mazes but to also to find the shortest path between the beginning and the end of the maze. In this talk we describe how we can use the Fitzhugh-Nagumo model, a generic model for excitable media, to solve a maze by varying the basin of attraction of its two fixed points. We demonstrate how two dimensional mazes are solved numerically using a Java Applet and then accelerated to run in real time by using graphic processors (GPUs). An application of this work is shown by guiding phototactic brine shrimp through a maze solved by the algorithm. Once the path is obtained, an Arduino directs the shrimp through the maze using lights from LEDs placed at the floor of the Maze. This method running in real time could be eventually used for guiding robots and cars through traffic.

  7. WNT and DKK Determine Hair Follicle Spacing Through a Reaction-Diffusion Mechanism

    Science.gov (United States)

    Sick, Stefanie; Reinker, Stefan; Timmer, Jens; Schlake, Thomas

    2006-12-01

    Mathematical reaction-diffusion models have been suggested to describe formation of animal pigmentation patterns and distribution of epidermal appendages. However, the crucial signals and in vivo mechanisms are still elusive. Here we identify WNT and its inhibitor DKK as primary determinants of murine hair follicle spacing, using a combined experimental and computational modeling approach. Transgenic DKK overexpression reduces overall appendage density. Moderate suppression of endogenous WNT signaling forces follicles to form clusters during an otherwise normal morphogenetic program. These results confirm predictions of a WNT/DKK-specific mathematical model and provide in vivo corroboration of the reaction-diffusion mechanism for epidermal appendage formation.

  8. A S=1 underscreened Kondo lattice model

    International Nuclear Information System (INIS)

    Perkins, N.B.; Nunez-Regueiro, M.D.; Iglesias, J.R.; Coqblin, B.

    2006-01-01

    The underscreened Kondo lattice model presented here includes both an intra-site Kondo exchange interaction J K between the conduction band and localized 5f electrons described by S=1 spins, and an inter-site exchange f-f interaction J H . We write both localized and itinerant spins in a Fermionic representation, and then use a mean-field approximation. We obtain a coexistence of Kondo effect and magnetism which can account for the behavior of some Uranium compounds

  9. Nonlinear reaction-diffusion systems conditional symmetry, exact solutions and their applications in biology

    CERN Document Server

    Cherniha, Roman

    2017-01-01

    This book presents several fundamental results in solving nonlinear reaction-diffusion equations and systems using symmetry-based methods. Reaction-diffusion systems are fundamental modeling tools for mathematical biology with applications to ecology, population dynamics, pattern formation, morphogenesis, enzymatic reactions and chemotaxis. The book discusses the properties of nonlinear reaction-diffusion systems, which are relevant for biological applications, from the symmetry point of view, providing rigorous definitions and constructive algorithms to search for conditional symmetry (a nontrivial generalization of the well-known Lie symmetry) of nonlinear reaction-diffusion systems. In order to present applications to population dynamics, it focuses mainly on two- and three-component diffusive Lotka-Volterra systems. While it is primarily a valuable guide for researchers working with reaction-diffusion systems  and those developing the theoretical aspects of conditional symmetry conception,...

  10. The Bond Fluctuation Model and Other Lattice Models

    Science.gov (United States)

    Müller, Marcus

    Lattice models constitute a class of coarse-grained representations of polymeric materials. They have enjoyed a longstanding tradition for investigating the universal behavior of long chain molecules by computer simulations and enumeration techniques. A coarse-grained representation is often necessary to investigate properties on large time- and length scales. First, some justification for using lattice models will be given and the benefits and limitations will be discussed. Then, the bond fluctuation model by Carmesin and Kremer [1] is placed into the context of other lattice models and compared to continuum models. Some specific techniques for measuring the pressure in lattice models will be described. The bond fluctuation model has been employed in more than 100 simulation studies in the last decade and only few selected applications can be mentioned.

  11. Pattern dynamics of the reaction-diffusion immune system.

    Science.gov (United States)

    Zheng, Qianqian; Shen, Jianwei; Wang, Zhijie

    2018-01-01

    In this paper, we will investigate the effect of diffusion, which is ubiquitous in nature, on the immune system using a reaction-diffusion model in order to understand the dynamical behavior of complex patterns and control the dynamics of different patterns. Through control theory and linear stability analysis of local equilibrium, we obtain the optimal condition under which the system loses stability and a Turing pattern occurs. By combining mathematical analysis and numerical simulation, we show the possible patterns and how these patterns evolve. In addition, we establish a bridge between the complex patterns and the biological mechanism using the results from a previous study in Nature Cell Biology. The results in this paper can help us better understand the biological significance of the immune system.

  12. Reaction diffusion in chromium-zircaloy-2 system

    International Nuclear Information System (INIS)

    Xiang Wenxin; Ying Shihao

    2001-01-01

    Reaction diffusion in the chromium-zircaloy-2 diffusion couples is investigated in the temperature range of 1023 - 1123 K. Scanning electron microscope (SEM) and energy dispersive spectrum (EDS) were used to measure the thickness of the reaction layer and to determine the Zr, Fe and Cr concentration penetrate profile in reaction layer, respectively. The growth kinetics of reaction layer has been studied and the results show that the growth of intermetallic compound is controlled by the process of volume diffusion as the layer growth approximately obeys the parabolic law. Interdiffusion coefficients were calculated using Boltzmann-Matano-Heumann model. Calculated interdiffusion coefficients were compared with those obtained on the condition that Cr dissolves in Zr and merely forms dilute solid solution. The comparison indicates that Cr diffuses in dilute solid solution is five orders of magnitude faster than in Zr(Fe, Cr) 2 intermetallic compound

  13. Flocking regimes in a simple lattice model.

    Science.gov (United States)

    Raymond, J R; Evans, M R

    2006-03-01

    We study a one-dimensional lattice flocking model incorporating all three of the flocking criteria proposed by Reynolds [Computer Graphics 21, 4 (1987)]: alignment, centering, and separation. The model generalizes that introduced by O. J. O'Loan and M. R. Evans [J. Phys. A. 32, L99 (1999)]. We motivate the dynamical rules by microscopic sampling considerations. The model exhibits various flocking regimes: the alternating flock, the homogeneous flock, and dipole structures. We investigate these regimes numerically and within a continuum mean-field theory.

  14. Synchronization criteria for generalized reaction-diffusion neural networks via periodically intermittent control.

    Science.gov (United States)

    Gan, Qintao; Lv, Tianshi; Fu, Zhenhua

    2016-04-01

    In this paper, the synchronization problem for a class of generalized neural networks with time-varying delays and reaction-diffusion terms is investigated concerning Neumann boundary conditions in terms of p-norm. The proposed generalized neural networks model includes reaction-diffusion local field neural networks and reaction-diffusion static neural networks as its special cases. By establishing a new inequality, some simple and useful conditions are obtained analytically to guarantee the global exponential synchronization of the addressed neural networks under the periodically intermittent control. According to the theoretical results, the influences of diffusion coefficients, diffusion space, and control rate on synchronization are analyzed. Finally, the feasibility and effectiveness of the proposed methods are shown by simulation examples, and by choosing different diffusion coefficients, diffusion spaces, and control rates, different controlled synchronization states can be obtained.

  15. (Non-) Gibbsianness and Phase Transitions in Random Lattice Spin Models

    NARCIS (Netherlands)

    Külske, C.

    1999-01-01

    We consider disordered lattice spin models with finite-volume Gibbs measures µΛ[η](dσ). Here σ denotes a lattice spin variable and η a lattice random variable with product distribution P describing the quenched disorder of the model. We ask: when will the joint measures limΛ↑Zd P(dη)µΛ[η](dσ) be

  16. Anomalous dimensions from boson lattice models

    Science.gov (United States)

    de Carvalho, Shaun; de Mello Koch, Robert; Larweh Mahu, Augustine

    2018-06-01

    Operators dual to strings attached to giant graviton branes in AdS5×S5 can be described rather explicitly in the dual N =4 super-Yang-Mills theory. They have a bare dimension of order N so that for these operators the large N limit and the planar limit are distinct; summing only the planar diagrams will not capture the large N dynamics. Focusing on the one-loop S U (3 ) sector of the theory, we consider operators that are a small deformation of a 1/2 -Bogomol'nyi-Prasad-Sommerfield (BPS) multigiant graviton state. The diagonalization of the dilatation operator at one loop has been carried out in previous studies, but explicit formulas for the operators of a good scaling dimension are only known when certain terms which were argued to be small are neglected. In this article, we include the terms which were neglected. The diagonalization is achieved by a novel mapping which replaces the problem of diagonalizing the dilatation operator with a system of bosons hopping on a lattice. The giant gravitons define the sites of this lattice, and the open strings stretching between distinct giant gravitons define the hopping terms of the Hamiltonian. Using the lattice boson model, we argue that the lowest energy giant graviton states are obtained by distributing the momenta carried by the X and Y fields evenly between the giants with the condition that any particular giant carries only X or Y momenta, but not both.

  17. An Active Lattice Model in a Bayesian Framework

    DEFF Research Database (Denmark)

    Carstensen, Jens Michael

    1996-01-01

    A Markov Random Field is used as a structural model of a deformable rectangular lattice. When used as a template prior in a Bayesian framework this model is powerful for making inferences about lattice structures in images. The model assigns maximum probability to the perfect regular lattice...... by penalizing deviations in alignment and lattice node distance. The Markov random field represents prior knowledge about the lattice structure, and through an observation model that incorporates the visual appearance of the nodes, we can simulate realizations from the posterior distribution. A maximum...... a posteriori (MAP) estimate, found by simulated annealing, is used as the reconstructed lattice. The model was developed as a central part of an algorithm for automatic analylsis of genetic experiments, positioned in a lattice structure by a robot. The algorithm has been successfully applied to many images...

  18. Mixed, Nonsplit, Extended Stability, Stiff Integration of Reaction Diffusion Equations

    KAUST Repository

    Alzahrani, Hasnaa H.

    2016-01-01

    A tailored integration scheme is developed to treat stiff reaction-diffusion prob- lems. The construction adapts a stiff solver, namely VODE, to treat reaction im- plicitly together with explicit treatment of diffusion. The second-order Runge

  19. Multispeed models in off-lattice Boltzmann simulations

    NARCIS (Netherlands)

    Bardow, A.; Karlin, I.V.; Gusev, A.A.

    2008-01-01

    The lattice Boltzmann method is a highly promising approach to the simulation of complex flows. Here, we realize recently proposed multispeed lattice Boltzmann models [S. Chikatamarla et al., Phys. Rev. Lett. 97 190601 (2006)] by exploiting the flexibility offered by off-lattice Boltzmann methods.

  20. Bayesian Analysis of Geostatistical Models With an Auxiliary Lattice

    KAUST Repository

    Park, Jincheol; Liang, Faming

    2012-01-01

    of observations is large. In this article, we propose an auxiliary lattice-based approach for tackling this difficulty. By introducing an auxiliary lattice to the space of observations and defining a Gaussian Markov random field on the auxiliary lattice, our model

  1. Field theory of propagating reaction-diffusion fronts

    International Nuclear Information System (INIS)

    Escudero, C.

    2004-01-01

    The problem of velocity selection of reaction-diffusion fronts has been widely investigated. While the mean-field limit results are well known theoretically, there is a lack of analytic progress in those cases in which fluctuations are to be taken into account. Here, we construct an analytic theory connecting the first principles of the reaction-diffusion process to an effective equation of motion via field-theoretic arguments, and we arrive at results already confirmed by numerical simulations

  2. Study of ODE limit problems for reaction-diffusion equations

    Directory of Open Access Journals (Sweden)

    Jacson Simsen

    2018-01-01

    Full Text Available In this work we study ODE limit problems for reaction-diffusion equations for large diffusion and we study the sensitivity of nonlinear ODEs with respect to initial conditions and exponent parameters. Moreover, we prove continuity of the flow and weak upper semicontinuity of a family of global attractors for reaction-diffusion equations with spatially variable exponents when the exponents go to 2 in \\(L^{\\infty}(\\Omega\\ and the diffusion coefficients go to infinity.

  3. Large-time behavior of solutions to a reaction-diffusion system with distributed microstructure

    NARCIS (Netherlands)

    Muntean, A.

    2009-01-01

    Abstract We study the large-time behavior of a class of reaction-diffusion systems with constant distributed microstructure arising when modeling diffusion and reaction in structured porous media. The main result of this Note is the following: As t ¿ 8 the macroscopic concentration vanishes, while

  4. Boundedness for a system of reaction-diffusion equations with more general Arrhenius term. Pt. 1

    International Nuclear Information System (INIS)

    Okoya, S.S.

    1992-11-01

    In this paper, we consider an extended model of a coupled nonlinear reaction-diffusion equation with Neumann-Neumann boundary conditions. We obtain upper linear growth bound for one of the components. We also find the corresponding bound for the case of Dirichlet-Dirichlet boundary conditions. (author). 12 refs

  5. Equilibrium statistical mechanics of lattice models

    CERN Document Server

    Lavis, David A

    2015-01-01

    Most interesting and difficult problems in equilibrium statistical mechanics concern models which exhibit phase transitions. For graduate students and more experienced researchers this book provides an invaluable reference source of approximate and exact solutions for a comprehensive range of such models. Part I contains background material on classical thermodynamics and statistical mechanics, together with a classification and survey of lattice models. The geometry of phase transitions is described and scaling theory is used to introduce critical exponents and scaling laws. An introduction is given to finite-size scaling, conformal invariance and Schramm—Loewner evolution. Part II contains accounts of classical mean-field methods. The parallels between Landau expansions and catastrophe theory are discussed and Ginzburg—Landau theory is introduced. The extension of mean-field theory to higher-orders is explored using the Kikuchi—Hijmans—De Boer hierarchy of approximations. In Part III the use of alge...

  6. Reaction Diffusion Voronoi Diagrams: From Sensors Data to Computing

    Directory of Open Access Journals (Sweden)

    Alejandro Vázquez-Otero

    2015-05-01

    Full Text Available In this paper, a new method to solve computational problems using reaction diffusion (RD systems is presented. The novelty relies on the use of a model configuration that tailors its spatiotemporal dynamics to develop Voronoi diagrams (VD as a part of the system’s natural evolution. The proposed framework is deployed in a solution of related robotic problems, where the generalized VD are used to identify topological places in a grid map of the environment that is created from sensor measurements. The ability of the RD-based computation to integrate external information, like a grid map representing the environment in the model computational grid, permits a direct integration of sensor data into the model dynamics. The experimental results indicate that this method exhibits significantly less sensitivity to noisy data than the standard algorithms for determining VD in a grid. In addition, previous drawbacks of the computational algorithms based on RD models, like the generation of volatile solutions by means of excitable waves, are now overcome by final stable states.

  7. A fractional reaction-diffusion description of supply and demand

    Science.gov (United States)

    Benzaquen, Michael; Bouchaud, Jean-Philippe

    2018-02-01

    We suggest that the broad distribution of time scales in financial markets could be a crucial ingredient to reproduce realistic price dynamics in stylised Agent-Based Models. We propose a fractional reaction-diffusion model for the dynamics of latent liquidity in financial markets, where agents are very heterogeneous in terms of their characteristic frequencies. Several features of our model are amenable to an exact analytical treatment. We find in particular that the impact is a concave function of the transacted volume (aka the "square-root impact law"), as in the normal diffusion limit. However, the impact kernel decays as t-β with β = 1/2 in the diffusive case, which is inconsistent with market efficiency. In the sub-diffusive case the decay exponent β takes any value in [0, 1/2], and can be tuned to match the empirical value β ≈ 1/4. Numerical simulations confirm our theoretical results. Several extensions of the model are suggested. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.

  8. Phase transitions in a lattice population model

    International Nuclear Information System (INIS)

    Windus, Alastair; Jensen, Henrik J

    2007-01-01

    We introduce a model for a population on a lattice with diffusion and birth/death according to 2A→3A and A→Φ for a particle A. We find that the model displays a phase transition from an active to an absorbing state which is continuous in 1 + 1 dimensions and of first-order in higher dimensions in agreement with the mean field equation. For the (1 + 1)-dimensional case, we examine the critical exponents and a scaling function for the survival probability and show that it belongs to the universality class of directed percolation. In higher dimensions, we look at the first-order phase transition by plotting a histogram of the population density and use the presence of phase coexistence to find an accurate value for the critical point in 2 + 1 dimensions

  9. Evans functions and bifurcations of nonlinear waves of some nonlinear reaction diffusion equations

    Science.gov (United States)

    Zhang, Linghai

    2017-10-01

    The main purposes of this paper are to accomplish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear system of reaction diffusion equations ut =uxx + α [ βH (u - θ) - u ] - w, wt = ε (u - γw) and to establish the existence, stability, instability and bifurcation of the nonlinear waves of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ], under different conditions on the model constants. To establish the bifurcation for the system, we will study the existence and instability of a standing pulse solution if 0 1; the existence and instability of two standing wave fronts if 2 (1 + αγ) θ = αβγ and 0 traveling wave front as well as the existence and instability of a standing pulse solution if 0 traveling wave front as well as the existence and instability of an upside down standing pulse solution if 0 traveling wave back of the nonlinear scalar reaction diffusion equation ut =uxx + α [ βH (u - θ) - u ] -w0, where w0 = α (β - 2 θ) > 0 is a positive constant, if 0 motivation to study the existence, stability, instability and bifurcations of the nonlinear waves is to study the existence and stability/instability of infinitely many fast/slow multiple traveling pulse solutions of the nonlinear system of reaction diffusion equations. The existence and stability of infinitely many fast multiple traveling pulse solutions are of great interests in mathematical neuroscience.

  10. A transverse lattice QCD model for mesons

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Apoorva D.; Ratabole, Raghunath

    2004-03-01

    QCD is analysed with two light-front continuum dimensions and two transverse lattice dimensions. In the limit of large number of colours and strong transverse gauge coupling, the contributions of light-front and transverse directions factorise in the dynamics, and the theory can be analytically solved in a closed form. An integral equation is obtained, describing the properties of mesons, which generalises the 't Hooft equation by including spin degrees of freedom. The meson spectrum, light-front wavefunctions and form factors can be obtained by solving this equation numerically. These results would be a good starting point to model QCD observables which only weakly depend on transverse directions, e.g. deep inelastic scattering structure functions.

  11. A lattice-model representation of continuous-time random walks

    International Nuclear Information System (INIS)

    Campos, Daniel; Mendez, Vicenc

    2008-01-01

    We report some ideas for constructing lattice models (LMs) as a discrete approach to the reaction-dispersal (RD) or reaction-random walks (RRW) models. The analysis of a rather general class of Markovian and non-Markovian processes, from the point of view of their wavefront solutions, let us show that in some regimes their macroscopic dynamics (front speed) turns out to be different from that by classical reaction-diffusion equations, which are often used as a mean-field approximation to the problem. So, the convenience of a more general framework as that given by the continuous-time random walks (CTRW) is claimed. Here we use LMs as a numerical approach in order to support that idea, while in previous works our discussion was restricted to analytical models. For the two specific cases studied here, we derive and analyze the mean-field expressions for our LMs. As a result, we are able to provide some links between the numerical and analytical approaches studied

  12. A lattice-model representation of continuous-time random walks

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Daniel [School of Mathematics, Department of Applied Mathematics, University of Manchester, Manchester M60 1QD (United Kingdom); Mendez, Vicenc [Grup de Fisica Estadistica, Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain)], E-mail: daniel.campos@uab.es, E-mail: vicenc.mendez@uab.es

    2008-02-29

    We report some ideas for constructing lattice models (LMs) as a discrete approach to the reaction-dispersal (RD) or reaction-random walks (RRW) models. The analysis of a rather general class of Markovian and non-Markovian processes, from the point of view of their wavefront solutions, let us show that in some regimes their macroscopic dynamics (front speed) turns out to be different from that by classical reaction-diffusion equations, which are often used as a mean-field approximation to the problem. So, the convenience of a more general framework as that given by the continuous-time random walks (CTRW) is claimed. Here we use LMs as a numerical approach in order to support that idea, while in previous works our discussion was restricted to analytical models. For the two specific cases studied here, we derive and analyze the mean-field expressions for our LMs. As a result, we are able to provide some links between the numerical and analytical approaches studied.

  13. Rethinking pattern formation in reaction-diffusion systems

    Science.gov (United States)

    Halatek, J.; Frey, E.

    2018-05-01

    The present theoretical framework for the analysis of pattern formation in complex systems is mostly limited to the vicinity of fixed (global) equilibria. Here we present a new theoretical approach to characterize dynamical states arbitrarily far from (global) equilibrium. We show that reaction-diffusion systems that are driven by locally mass-conserving interactions can be understood in terms of local equilibria of diffusively coupled compartments. Diffusive coupling generically induces lateral redistribution of the globally conserved quantities, and the variable local amounts of these quantities determine the local equilibria in each compartment. We find that, even far from global equilibrium, the system is well characterized by its moving local equilibria. We apply this framework to in vitro Min protein pattern formation, a paradigmatic model for biological pattern formation. Within our framework we can predict and explain transitions between chemical turbulence and order arbitrarily far from global equilibrium. Our results reveal conceptually new principles of self-organized pattern formation that may well govern diverse dynamical systems.

  14. Decay to Equilibrium for Energy-Reaction-Diffusion Systems

    KAUST Repository

    Haskovec, Jan

    2018-02-06

    We derive thermodynamically consistent models of reaction-diffusion equations coupled to a heat equation. While the total energy is conserved, the total entropy serves as a driving functional such that the full coupled system is a gradient flow. The novelty of the approach is the Onsager structure, which is the dual form of a gradient system, and the formulation in terms of the densities and the internal energy. In these variables it is possible to assume that the entropy density is strictly concave such that there is a unique maximizer (thermodynamical equilibrium) given linear constraints on the total energy and suitable density constraints. We consider two particular systems of this type, namely, a diffusion-reaction bipolar energy transport system, and a drift-diffusion-reaction energy transport system with confining potential. We prove corresponding entropy-entropy production inequalities with explicitly calculable constants and establish the convergence to thermodynamical equilibrium, first in entropy and later in L norm using Cziszár–Kullback–Pinsker type inequalities.

  15. Decay to Equilibrium for Energy-Reaction-Diffusion Systems

    KAUST Repository

    Haskovec, Jan; Hittmeir, Sabine; Markowich, Peter A.; Mielke, Alexander

    2018-01-01

    We derive thermodynamically consistent models of reaction-diffusion equations coupled to a heat equation. While the total energy is conserved, the total entropy serves as a driving functional such that the full coupled system is a gradient flow. The novelty of the approach is the Onsager structure, which is the dual form of a gradient system, and the formulation in terms of the densities and the internal energy. In these variables it is possible to assume that the entropy density is strictly concave such that there is a unique maximizer (thermodynamical equilibrium) given linear constraints on the total energy and suitable density constraints. We consider two particular systems of this type, namely, a diffusion-reaction bipolar energy transport system, and a drift-diffusion-reaction energy transport system with confining potential. We prove corresponding entropy-entropy production inequalities with explicitly calculable constants and establish the convergence to thermodynamical equilibrium, first in entropy and later in L norm using Cziszár–Kullback–Pinsker type inequalities.

  16. Diffusive instabilities in hyperbolic reaction-diffusion equations

    Science.gov (United States)

    Zemskov, Evgeny P.; Horsthemke, Werner

    2016-03-01

    We investigate two-variable reaction-diffusion systems of the hyperbolic type. A linear stability analysis is performed, and the conditions for diffusion-driven instabilities are derived. Two basic types of eigenvalues, real and complex, are described. Dispersion curves for both types of eigenvalues are plotted and their behavior is analyzed. The real case is related to the Turing instability, and the complex one corresponds to the wave instability. We emphasize the interesting feature that the wave instability in the hyperbolic equations occurs in two-variable systems, whereas in the parabolic case one needs three reaction-diffusion equations.

  17. Model for lattice dynamics of hexagonal close packed metals

    Energy Technology Data Exchange (ETDEWEB)

    Singh, R K [Tata Inst. of Fundamental Research, Bombay (India); Kumar, S [Meerut Coll. (India). Dept. of Physics

    1977-11-19

    A lattice dynamical model, which satisfies the requirements of translational invariance as well as the static equilibrium of hexagonal close packed lattice, has been proposed and applied to study the phonon dispersion relations in magnesium. The results revealed by this model have been claimed to be better than earlier ones.

  18. An analytic algorithm for the space-time fractional reaction-diffusion equation

    Directory of Open Access Journals (Sweden)

    M. G. Brikaa

    2015-11-01

    Full Text Available In this paper, we solve the space-time fractional reaction-diffusion equation by the fractional homotopy analysis method. Solutions of different examples of the reaction term will be computed and investigated. The approximation solutions of the studied models will be put in the form of convergent series to be easily computed and simulated. Comparison with the approximation solution of the classical case of the studied modeled with their approximation errors will also be studied.

  19. Investigating the thermal dissociation of viral capsid by lattice model

    Science.gov (United States)

    Chen, Jingzhi; Chevreuil, Maelenn; Combet, Sophie; Lansac, Yves; Tresset, Guillaume

    2017-11-01

    The dissociation of icosahedral viral capsids was investigated by a homogeneous and a heterogeneous lattice model. In thermal dissociation experiments with cowpea chlorotic mottle virus and probed by small-angle neutron scattering, we observed a slight shrinkage of viral capsids, which can be related to the strengthening of the hydrophobic interaction between subunits at increasing temperature. By considering the temperature dependence of hydrophobic interaction in the homogeneous lattice model, we were able to give a better estimate of the effective charge. In the heterogeneous lattice model, two sets of lattice sites represented different capsid subunits with asymmetric interaction strengths. In that case, the dissociation of capsids was found to shift from a sharp one-step transition to a gradual two-step transition by weakening the hydrophobic interaction between AB and CC subunits. We anticipate that such lattice models will shed further light on the statistical mechanics underlying virus assembly and disassembly.

  20. Pattern formation in reaction diffusion systems with finite geometry

    International Nuclear Information System (INIS)

    Borzi, C.; Wio, H.

    1990-04-01

    We analyze the one-component, one-dimensional, reaction-diffusion equation through a simple inverse method. We confine the system and fix the boundary conditions as to induce pattern formation. We analyze the stability of those patterns. Our goal is to get information about the reaction term out of the preknowledgment of the pattern. (author). 5 refs

  1. Multi-scale simulation of reaction-diffusion systems

    NARCIS (Netherlands)

    Vijaykumar, A.

    2017-01-01

    In many reaction-diffusion processes, ranging from biochemical networks, catalysis, to complex self-assembly, the spatial distribution of the reactants and the stochastic character of their interactions are crucial for the macroscopic behavior. The recently developed mesoscopic Green’s Function

  2. Multispeed Lattice Boltzmann Model with Space-Filling Lattice for Transcritical Shallow Water Flows

    Directory of Open Access Journals (Sweden)

    Y. Peng

    2017-01-01

    Full Text Available Inspired by the recent success of applying multispeed lattice Boltzmann models with a non-space-filling lattice for simulating transcritical shallow water flows, the capabilities of their space-filling counterpart are investigated in this work. Firstly, two lattice models with five integer discrete velocities are derived by using the method of matching hydrodynamics moments and then tested with two typical 1D problems including the dam-break flow over flat bed and the steady flow over bump. In simulations, the derived space-filling multispeed models, together with the stream-collision scheme, demonstrate better capability in simulating flows with finite Froude number. However, the performance is worse than the non-space-filling model solved by finite difference scheme. The stream-collision scheme with second-order accuracy may be the reason since a numerical scheme with second-order accuracy is prone to numerical oscillations at discontinuities, which is worthwhile for further study.

  3. Hamiltonian approach to the lattice massive Schwinger model

    International Nuclear Information System (INIS)

    Sidorov, A.V.; Zastavenko, L.G.

    1996-01-01

    The authors consider the limit e 2 /m 2 much-lt 1 of the lattice massive Schwinger model, i.e., the lattice massive QED in two space-time dimensions, up to lowest order in the effective coupling constant e 2 /m 2 . Here, m is the fermion mass parameter and e is the electron charge. They compare their lattice QED model with the analogous continuous space and lattice space models, (CSM and LSM), which do not take account of the zero momentum mode, z.m.m., of the vector potential. The difference is that (due to extra z.m.m. degree of freedom) to every eigenstate of the CSM and LSM there corresponds a family of eigenstates of the authors lattice QED with the parameter λ. They restrict their consideration to small values of the parameter λ. Then, the energies of the particle states of their lattice QED and LSM do coincide (in their approximation). In the infinite periodicity length limit the Hamiltonian of the authors lattice QED (as well as the Hamiltonian of the LSM) possesses two different Hilbert spaces of eigenfunctions. Thus, in this limit the authors lattice QED model (as well as LSM) describes something like two connected, but different, worlds

  4. Model of pair aggregation on the Bethe lattice

    DEFF Research Database (Denmark)

    Baillet, M.V.-P.; Pacheco, A.F.; Gómez, J.B.

    1997-01-01

    We extend a recent model of aggregation of pairs of particles, analyzing the case in which the supporting framework is a Bethe lattice. The model exhibits a critical behavior of the percolation theory type....

  5. Numerical simulation of reaction-diffusion systems by modified cubic B-spline differential quadrature method

    International Nuclear Information System (INIS)

    Mittal, R.C.; Rohila, Rajni

    2016-01-01

    In this paper, we have applied modified cubic B-spline based differential quadrature method to get numerical solutions of one dimensional reaction-diffusion systems such as linear reaction-diffusion system, Brusselator system, Isothermal system and Gray-Scott system. The models represented by these systems have important applications in different areas of science and engineering. The most striking and interesting part of the work is the solution patterns obtained for Gray Scott model, reminiscent of which are often seen in nature. We have used cubic B-spline functions for space discretization to get a system of ordinary differential equations. This system of ODE’s is solved by highly stable SSP-RK43 method to get solution at the knots. The computed results are very accurate and shown to be better than those available in the literature. Method is easy and simple to apply and gives solutions with less computational efforts.

  6. Numerical Solutions of Singularly Perturbed Reaction Diffusion Equation with Sobolev Gradients

    Directory of Open Access Journals (Sweden)

    Nauman Raza

    2013-01-01

    Full Text Available Critical points related to the singular perturbed reaction diffusion models are calculated using weighted Sobolev gradient method in finite element setting. Performance of different Sobolev gradients has been discussed for varying diffusion coefficient values. A comparison is shown between the weighted and unweighted Sobolev gradients in two and three dimensions. The superiority of the method is also demonstrated by showing comparison with Newton's method.

  7. Heterogeneity induces spatiotemporal oscillations in reaction-diffusion systems

    Science.gov (United States)

    Krause, Andrew L.; Klika, Václav; Woolley, Thomas E.; Gaffney, Eamonn A.

    2018-05-01

    We report on an instability arising in activator-inhibitor reaction-diffusion (RD) systems with a simple spatial heterogeneity. This instability gives rise to periodic creation, translation, and destruction of spike solutions that are commonly formed due to Turing instabilities. While this behavior is oscillatory in nature, it occurs purely within the Turing space such that no region of the domain would give rise to a Hopf bifurcation for the homogeneous equilibrium. We use the shadow limit of the Gierer-Meinhardt system to show that the speed of spike movement can be predicted from well-known asymptotic theory, but that this theory is unable to explain the emergence of these spatiotemporal oscillations. Instead, we numerically explore this system and show that the oscillatory behavior is caused by the destabilization of a steady spike pattern due to the creation of a new spike arising from endogeneous activator production. We demonstrate that on the edge of this instability, the period of the oscillations goes to infinity, although it does not fit the profile of any well-known bifurcation of a limit cycle. We show that nearby stationary states are either Turing unstable or undergo saddle-node bifurcations near the onset of the oscillatory instability, suggesting that the periodic motion does not emerge from a local equilibrium. We demonstrate the robustness of this spatiotemporal oscillation by exploring small localized heterogeneity and showing that this behavior also occurs in the Schnakenberg RD model. Our results suggest that this phenomenon is ubiquitous in spatially heterogeneous RD systems, but that current tools, such as stability of spike solutions and shadow-limit asymptotics, do not elucidate understanding. This opens several avenues for further mathematical analysis and highlights difficulties in explaining how robust patterning emerges from Turing's mechanism in the presence of even small spatial heterogeneity.

  8. Lattice Entertain You: Paper Modeling of the 14 Bravais Lattices on Youtube

    Science.gov (United States)

    Sein, Lawrence T., Jr.; Sein, Sarajane E.

    2015-01-01

    A system for the construction of double-sided paper models of the 14 Bravais lattices, and important crystal structures derived from them, is described. The system allows the combination of multiple unit cells, so as to better represent the overall three-dimensional structure. Students and instructors can view the models in use on the popular…

  9. An Efficient Implicit FEM Scheme for Fractional-in-Space Reaction-Diffusion Equations

    KAUST Repository

    Burrage, Kevin

    2012-01-01

    Fractional differential equations are becoming increasingly used as a modelling tool for processes associated with anomalous diffusion or spatial heterogeneity. However, the presence of a fractional differential operator causes memory (time fractional) or nonlocality (space fractional) issues that impose a number of computational constraints. In this paper we develop efficient, scalable techniques for solving fractional-in-space reaction diffusion equations using the finite element method on both structured and unstructured grids via robust techniques for computing the fractional power of a matrix times a vector. Our approach is show-cased by solving the fractional Fisher and fractional Allen-Cahn reaction-diffusion equations in two and three spatial dimensions, and analyzing the speed of the traveling wave and size of the interface in terms of the fractional power of the underlying Laplacian operator. © 2012 Society for Industrial and Applied Mathematics.

  10. Distributed order reaction-diffusion systems associated with Caputo derivatives

    Science.gov (United States)

    Saxena, R. K.; Mathai, A. M.; Haubold, H. J.

    2014-08-01

    This paper deals with the investigation of the solution of an unified fractional reaction-diffusion equation of distributed order associated with the Caputo derivatives as the time-derivative and Riesz-Feller fractional derivative as the space-derivative. The solution is derived by the application of the joint Laplace and Fourier transforms in compact and closed form in terms of the H-function. The results derived are of general nature and include the results investigated earlier by other authors, notably by Mainardi et al. ["The fundamental solution of the space-time fractional diffusion equation," Fractional Calculus Appl. Anal. 4, 153-202 (2001); Mainardi et al. "Fox H-functions in fractional diffusion," J. Comput. Appl. Math. 178, 321-331 (2005)] for the fundamental solution of the space-time fractional equation, including Haubold et al. ["Solutions of reaction-diffusion equations in terms of the H-function," Bull. Astron. Soc. India 35, 681-689 (2007)] and Saxena et al. ["Fractional reaction-diffusion equations," Astrophys. Space Sci. 305, 289-296 (2006a)] for fractional reaction-diffusion equations. The advantage of using the Riesz-Feller derivative lies in the fact that the solution of the fractional reaction-diffusion equation, containing this derivative, includes the fundamental solution for space-time fractional diffusion, which itself is a generalization of fractional diffusion, space-time fraction diffusion, and time-fractional diffusion, see Schneider and Wyss ["Fractional diffusion and wave equations," J. Math. Phys. 30, 134-144 (1989)]. These specialized types of diffusion can be interpreted as spatial probability density functions evolving in time and are expressible in terms of the H-function in compact forms. The convergence conditions for the double series occurring in the solutions are investigated. It is interesting to observe that the double series comes out to be a special case of the Srivastava-Daoust hypergeometric function of two variables

  11. Extracting physics from the lattice higgs model

    International Nuclear Information System (INIS)

    Neuberger, H.

    1988-05-01

    The relevance and usefulness of lattice /phi/ 4 for particle physics is discussed from older and newer points of view. The talk will start with a review of the main ideas and suggestions in my work in the past with Dashen and will proceed to present newer developments both on the conceptual and the practical level. 12 refs

  12. Contribution to an effective design method for stationary reaction-diffusion patterns

    Energy Technology Data Exchange (ETDEWEB)

    Szalai, István; Horváth, Judit [Laboratory of Nonlinear Chemical Dynamics, Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest 112 (Hungary); De Kepper, Patrick [Centre de Recherche Paul Pascal, CNRS, University of Bordeaux, 115, Avenue Schweitzer, F-33600 Pessac (France)

    2015-06-15

    The British mathematician Alan Turing predicted, in his seminal 1952 publication, that stationary reaction-diffusion patterns could spontaneously develop in reacting chemical or biochemical solutions. The first two clear experimental demonstrations of such a phenomenon were not made before the early 1990s when the design of new chemical oscillatory reactions and appropriate open spatial chemical reactors had been invented. Yet, the number of pattern producing reactions had not grown until 2009 when we developed an operational design method, which takes into account the feeding conditions and other specificities of real open spatial reactors. Since then, on the basis of this method, five additional reactions were shown to produce stationary reaction-diffusion patterns. To gain a clearer view on where our methodical approach on the patterning capacity of a reaction stands, numerical studies in conditions that mimic true open spatial reactors were made. In these numerical experiments, we explored the patterning capacity of Rabai's model for pH driven Landolt type reactions as a function of experimentally attainable parameters that control the main time and length scales. Because of the straightforward reversible binding of protons to carboxylate carrying polymer chains, this class of reaction is at the base of the chemistry leading to most of the stationary reaction-diffusion patterns presently observed. We compare our model predictions with experimental observations and comment on agreements and differences.

  13. Contribution to an effective design method for stationary reaction-diffusion patterns

    International Nuclear Information System (INIS)

    Szalai, István; Horváth, Judit; De Kepper, Patrick

    2015-01-01

    The British mathematician Alan Turing predicted, in his seminal 1952 publication, that stationary reaction-diffusion patterns could spontaneously develop in reacting chemical or biochemical solutions. The first two clear experimental demonstrations of such a phenomenon were not made before the early 1990s when the design of new chemical oscillatory reactions and appropriate open spatial chemical reactors had been invented. Yet, the number of pattern producing reactions had not grown until 2009 when we developed an operational design method, which takes into account the feeding conditions and other specificities of real open spatial reactors. Since then, on the basis of this method, five additional reactions were shown to produce stationary reaction-diffusion patterns. To gain a clearer view on where our methodical approach on the patterning capacity of a reaction stands, numerical studies in conditions that mimic true open spatial reactors were made. In these numerical experiments, we explored the patterning capacity of Rabai's model for pH driven Landolt type reactions as a function of experimentally attainable parameters that control the main time and length scales. Because of the straightforward reversible binding of protons to carboxylate carrying polymer chains, this class of reaction is at the base of the chemistry leading to most of the stationary reaction-diffusion patterns presently observed. We compare our model predictions with experimental observations and comment on agreements and differences

  14. Quantum Lattice-Gas Model for the Diffusion Equation

    National Research Council Canada - National Science Library

    Yepez, J

    2001-01-01

    .... It is a minimal model with two qubits per node of a one-dimensional lattice and it is suitable for implementation on a large array of small quantum computers interconnected by nearest-neighbor...

  15. Galilean-Invariant Lattice-Boltzmann Models with H Theorem

    National Research Council Canada - National Science Library

    Boghosian, Bruce

    2003-01-01

    The authors demonstrate that the requirement of Galilean invariance determines the choice of H function for a wide class of entropic lattice-Boltzmann models for the incompressible Navier-Stokes equations...

  16. On the equivalence of continuum and lattice models for fluids

    International Nuclear Information System (INIS)

    Panagiotopoulos, Athanassios Z.

    2000-01-01

    It was demonstrated that finely discretized lattice models for fluids with particles interacting via Lennard-Jones or exponential-6 potentials have essentially identical thermodynamic and structural properties to their continuum counterparts. Grand canonical histogram reweighting Monte Carlo calculations were performed for systems with repulsion exponents between 11 and 22. Critical parameters were determined from mixed-field finite-size scaling methods. Numerical equivalence of lattice and continuous space models, within simulation uncertainties, was observed for lattices with ratio of particle diameter σ to grid spacing of 10. The lattice model calculations were more efficient computationally by factors between 10 and 20. It was also shown that Lennard-Jones and exponential-6 based models with identical critical properties can be constructed by appropriate choice of the repulsion exponent. (c) 2000 American Institute of Physics

  17. Kazama-Suzuki models as shifted bosonic lattices

    International Nuclear Information System (INIS)

    Buturovic, E.

    1992-01-01

    Some Kazama-Suzuki models admit a realization in terms of free bosons defined on a lattice. A criterion for such a realization and its construction are presented. Some examples are worked out. (orig.)

  18. Finite-lattice form factors in free-fermion models

    International Nuclear Information System (INIS)

    Iorgov, N; Lisovyy, O

    2011-01-01

    We consider the general Z 2 -symmetric free-fermion model on the finite periodic lattice, which includes as special cases the Ising model on the square and triangular lattices and the Z n -symmetric BBS τ (2) -model with n = 2. Translating Kaufman's fermionic approach to diagonalization of Ising-like transfer matrices into the language of Grassmann integrals, we determine the transfer matrix eigenvectors and observe that they coincide with the eigenvectors of a square lattice Ising transfer matrix. This allows us to find exact finite-lattice form factors of spin operators for the statistical model and the associated finite-length quantum chains, of which the most general is equivalent to the XY chain in a transverse field

  19. Reaction-diffusion systems in intracellular molecular transport and control.

    Science.gov (United States)

    Soh, Siowling; Byrska, Marta; Kandere-Grzybowska, Kristiana; Grzybowski, Bartosz A

    2010-06-07

    Chemical reactions make cells work only if the participating chemicals are delivered to desired locations in a timely and precise fashion. Most research to date has focused on active-transport mechanisms, although passive diffusion is often equally rapid and energetically less costly. Capitalizing on these advantages, cells have developed sophisticated reaction-diffusion (RD) systems that control a wide range of cellular functions-from chemotaxis and cell division, through signaling cascades and oscillations, to cell motility. These apparently diverse systems share many common features and are "wired" according to "generic" motifs such as nonlinear kinetics, autocatalysis, and feedback loops. Understanding the operation of these complex (bio)chemical systems requires the analysis of pertinent transport-kinetic equations or, at least on a qualitative level, of the characteristic times of the constituent subprocesses. Therefore, in reviewing the manifestations of cellular RD, we also describe basic theory of reaction-diffusion phenomena.

  20. Kinetic models for irreversible processes on a lattice

    International Nuclear Information System (INIS)

    Wolf, N.O.

    1979-04-01

    The development and application of kinetic lattice models are considered. For the most part, the discussions are restricted to lattices in one-dimension. In Chapter 1, a brief overview of kinetic lattice model formalisms and an extensive literature survey are presented. A review of the kinetic models for non-cooperative lattice events is presented in Chapter 2. The development of cooperative lattice models and solution of the resulting kinetic equations for an infinite and a semi-infinite lattice are thoroughly discussed in Chapters 3 and 4. The cooperative models are then applied to the problem of theoretically dtermining the sticking coefficient for molecular chemisorption in Chapter 5. In Chapter 6, other possible applications of these models and several model generalizations are considered. Finally, in Chapter 7, an experimental study directed toward elucidating the mechanistic factors influencing the chemisorption of methane on single crystal tungsten is reported. In this it differs from the rest of the thesis which deals with the statistical distributions resulting from a given mechanism

  1. Kinetic models for irreversible processes on a lattice

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, N.O.

    1979-04-01

    The development and application of kinetic lattice models are considered. For the most part, the discussions are restricted to lattices in one-dimension. In Chapter 1, a brief overview of kinetic lattice model formalisms and an extensive literature survey are presented. A review of the kinetic models for non-cooperative lattice events is presented in Chapter 2. The development of cooperative lattice models and solution of the resulting kinetic equations for an infinite and a semi-infinite lattice are thoroughly discussed in Chapters 3 and 4. The cooperative models are then applied to the problem of theoretically dtermining the sticking coefficient for molecular chemisorption in Chapter 5. In Chapter 6, other possible applications of these models and several model generalizations are considered. Finally, in Chapter 7, an experimental study directed toward elucidating the mechanistic factors influencing the chemisorption of methane on single crystal tungsten is reported. In this it differs from the rest of the thesis which deals with the statistical distributions resulting from a given mechanism.

  2. An Application of Equivalence Transformations to Reaction Diffusion Equations

    Directory of Open Access Journals (Sweden)

    Mariano Torrisi

    2015-10-01

    Full Text Available In this paper, we consider a quite general class of advection reaction diffusion systems. By using an equivalence generator, derived in a previous paper, the authors apply a projection theorem to determine some special forms of the constitutive functions that allow the extension by one of the two-dimensional principal Lie algebra. As an example, a special case is discussed at the end of the paper.

  3. Attractor of reaction-diffusion equations in Banach spaces

    Directory of Open Access Journals (Sweden)

    José Valero

    2001-04-01

    Full Text Available In this paper we prove first some abstract theorems on existence of global attractors for differential inclusions generated by w-dissipative operators. Then these results are applied to reaction-diffusion equations in which the Babach space Lp is used as phase space. Finally, new results concerning the fractal dimension of the global attractor in the space L2 are obtained.

  4. Multiple Scale Reaction-Diffusion-Advection Problems with Moving Fronts

    Science.gov (United States)

    Nefedov, Nikolay

    2016-06-01

    In this work we discuss the further development of the general scheme of the asymptotic method of differential inequalities to investigate stability and motion of sharp internal layers (fronts) for nonlinear singularly perturbed parabolic equations, which are called in applications reaction-diffusion-advection equations. Our approach is illustrated for some new important cases of initial boundary value problems. We present results on stability and on the motion of the fronts.

  5. Reaction diffusion voronoi diagrams: from sensors data to computing

    Czech Academy of Sciences Publication Activity Database

    Vázquez-Otero, Alejandro (ed.); Faigl, J.; Dormido, R.; Duro, N.

    2015-01-01

    Roč. 15, č. 6 (2015), s. 12736-12764 ISSN 1424-8220 R&D Projects: GA MŠk ED1.1.00/02.0061 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061 Institutional support: RVO:68378271 Keywords : reaction diffusion * FitzHugh–Nagumo * path planning * navigation * exploration Subject RIV: BD - Theory of Information Impact factor: 2.033, year: 2015

  6. Lattice Modeling of Early-Age Behavior of Structural Concrete

    OpenAIRE

    Pan, Yaming; Prado, Armando; Porras, Roc?o; Hafez, Omar M.; Bolander, John E.

    2017-01-01

    The susceptibility of structural concrete to early-age cracking depends on material composition, methods of processing, structural boundary conditions, and a variety of environmental factors. Computational modeling offers a means for identifying primary factors and strategies for reducing cracking potential. Herein, lattice models are shown to be adept at simulating the thermal-hygral-mechanical phenomena that influence early-age cracking. In particular, this paper presents a lattice-based ap...

  7. Quantifying the levitation picture of extended states in lattice models

    OpenAIRE

    Pereira, Ana. L. C.; Schulz, P. A.

    2002-01-01

    The behavior of extended states is quantitatively analyzed for two-dimensional lattice models. A levitation picture is established for both white-noise and correlated disorder potentials. In a continuum limit window of the lattice models we find simple quantitative expressions for the extended states levitation, suggesting an underlying universal behavior. On the other hand, these results point out that the quantum Hall phase diagrams may be disorder dependent.

  8. Towards the simplest hydrodynamic lattice-gas model.

    Science.gov (United States)

    Boghosian, Bruce M; Love, Peter J; Meyer, David A

    2002-03-15

    It has been known since 1986 that it is possible to construct simple lattice-gas cellular automata whose hydrodynamics are governed by the Navier-Stokes equations in two dimensions. The simplest such model heretofore known has six bits of state per site on a triangular lattice. In this work, we demonstrate that it is possible to construct a model with only five bits of state per site on a Kagome lattice. Moreover, the model has a simple, deterministic set of collision rules and is easily implemented on a computer. In this work, we derive the equilibrium distribution function for this lattice-gas automaton and carry out the Chapman-Enskog analysis to determine the form of the Navier-Stokes equations.

  9. Extended Hubbard models for ultracold atoms in optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Juergensen, Ole

    2015-06-05

    In this thesis, the phase diagrams and dynamics of various extended Hubbard models for ultracold atoms in optical lattices are studied. Hubbard models are the primary description for many interacting particles in periodic potentials with the paramount example of the electrons in solids. The very same models describe the behavior of ultracold quantum gases trapped in the periodic potentials generated by interfering beams of laser light. These optical lattices provide an unprecedented access to the fundamentals of the many-particle physics that govern the properties of solid-state materials. They can be used to simulate solid-state systems and validate the approximations and simplifications made in theoretical models. This thesis revisits the numerous approximations underlying the standard Hubbard models with special regard to optical lattice experiments. The incorporation of the interaction between particles on adjacent lattice sites leads to extended Hubbard models. Offsite interactions have a strong influence on the phase boundaries and can give rise to novel correlated quantum phases. The extended models are studied with the numerical methods of exact diagonalization and time evolution, a cluster Gutzwiller approximation, as well as with the strong-coupling expansion approach. In total, this thesis demonstrates the high relevance of beyond-Hubbard processes for ultracold atoms in optical lattices. Extended Hubbard models can be employed to tackle unexplained problems of solid-state physics as well as enter previously inaccessible regimes.

  10. Extended Hubbard models for ultracold atoms in optical lattices

    International Nuclear Information System (INIS)

    Juergensen, Ole

    2015-01-01

    In this thesis, the phase diagrams and dynamics of various extended Hubbard models for ultracold atoms in optical lattices are studied. Hubbard models are the primary description for many interacting particles in periodic potentials with the paramount example of the electrons in solids. The very same models describe the behavior of ultracold quantum gases trapped in the periodic potentials generated by interfering beams of laser light. These optical lattices provide an unprecedented access to the fundamentals of the many-particle physics that govern the properties of solid-state materials. They can be used to simulate solid-state systems and validate the approximations and simplifications made in theoretical models. This thesis revisits the numerous approximations underlying the standard Hubbard models with special regard to optical lattice experiments. The incorporation of the interaction between particles on adjacent lattice sites leads to extended Hubbard models. Offsite interactions have a strong influence on the phase boundaries and can give rise to novel correlated quantum phases. The extended models are studied with the numerical methods of exact diagonalization and time evolution, a cluster Gutzwiller approximation, as well as with the strong-coupling expansion approach. In total, this thesis demonstrates the high relevance of beyond-Hubbard processes for ultracold atoms in optical lattices. Extended Hubbard models can be employed to tackle unexplained problems of solid-state physics as well as enter previously inaccessible regimes.

  11. Testing the standard model of particle physics using lattice QCD

    International Nuclear Information System (INIS)

    Water, Ruth S van de

    2007-01-01

    Recent advances in both computers and algorithms now allow realistic calculations of Quantum Chromodynamics (QCD) interactions using the numerical technique of lattice QCD. The methods used in so-called '2+1 flavor' lattice calculations have been verified both by post-dictions of quantities that were already experimentally well-known and by predictions that occurred before the relevant experimental determinations were sufficiently precise. This suggests that the sources of systematic error in lattice calculations are under control, and that lattice QCD can now be reliably used to calculate those weak matrix elements that cannot be measured experimentally but are necessary to interpret the results of many high-energy physics experiments. These same calculations also allow stringent tests of the Standard Model of particle physics, and may therefore lead to the discovery of new physics in the future

  12. Representations of the Virasoro algebra from lattice models

    International Nuclear Information System (INIS)

    Koo, W.M.; Saleur, H.

    1994-01-01

    We investigate in detail how the Virasoro algebra appears in the scaling limit of the simplest lattice models of XXZ or RSOS type. Our approach is straightforward but to our knowledge had never been tried so far. We simply formulate a conjecture for the lattice stress-energy tensor motivated by the exact derivation of lattice global Ward identities. We then check that the proper algebraic relations are obeyed in the scaling limit. The latter is under reasonable control thanks to the Bethe-ansatz solution. The results, which are mostly numerical for technical reasons, are remarkably precise. They are also corroborated by exact pieces of information from various sources, in particular Temperley-Lieb algebra representation theory. Most features of the Virasoro algebra (like central term, null vectors, metric properties, etc.) can thus be observed using the lattice models. This seems of general interest for lattice field theory, and also more specifically for finding relations between conformal invariance and lattice integrability, since a basis for the irreducible representations of the Virasoro algebra should now follow (at least in principle) from Bethe-ansatz computations. ((orig.))

  13. Lattice chiral symmetry and the Wess-Zumino model

    International Nuclear Information System (INIS)

    Fujikawa, Kazuo; Ishibashi, Masato

    2002-01-01

    A lattice regularization of the supersymmetric Wess-Zumino model is studied by using Ginsparg-Wilson operators. We recognize a certain conflict between the lattice chiral symmetry and the Majorana condition for Yukawa couplings, or in Weyl representation a conflict between the lattice chiral symmetry and Yukawa couplings. This conflict is also related, though not directly, to the fact that the kinetic (Kaehler) term and the superpotential term are clearly distinguished in the continuum Wess-Zumino model, whereas these two terms are mixed in the Ginsparg-Wilson operators. We illustrate a case where lattice chiral symmetry together with naive Bose-Fermi symmetry is imposed by preserving a SUSY-like symmetry in the free part of the Lagrangian; one-loop level non-renormalization of the superpotential is then maintained for finite lattice spacing, though the finite parts of wave function renormalization deviate from the supersymmetric value. All these properties hold for the general Ginsparg-Wilson algebra independently of the detailed construction of lattice Dirac operators

  14. A lattice gas model on a tangled chain

    International Nuclear Information System (INIS)

    Mejdani, R.

    1993-04-01

    We have used a model of a lattice gas defined on a tangled chain to study the enzyme kinetics by a modified transfer matrix method. By using a simple iterative algorithm we have obtained different kinds of saturation curves for different configurations of the tangled chain and different types of the additional interactions. In some special cases of configurations and interactions we have found the same equations for the saturation curves, which we have obtained before studying the lattice gas model with nearest neighbor interactions or the lattice gas model with alternate nearest neighbor interactions, using different techniques as the correlated walks' theory, the partition point technique or the transfer matrix model. This more general model and the new results could be useful for the experimental investigations. (author). 20 refs, 6 figs

  15. Modeling of Triangular Lattice Space Structures with Curved Battens

    Science.gov (United States)

    Chen, Tzikang; Wang, John T.

    2005-01-01

    Techniques for simulating an assembly process of lattice structures with curved battens were developed. The shape of the curved battens, the tension in the diagonals, and the compression in the battens were predicted for the assembled model. To be able to perform the assembly simulation, a cable-pulley element was implemented, and geometrically nonlinear finite element analyses were performed. Three types of finite element models were created from assembled lattice structures for studying the effects of design and modeling variations on the load carrying capability. Discrepancies in the predictions from these models were discussed. The effects of diagonal constraint failure were also studied.

  16. Reaction-diffusion fronts with inhomogeneous initial conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bena, I [Departement de Physique Theorique, Universite de Geneve, CH-1211 Geneva 4 (Switzerland); Droz, M [Departement de Physique Theorique, Universite de Geneve, CH-1211 Geneva 4 (Switzerland); Martens, K [Departement de Physique Theorique, Universite de Geneve, CH-1211 Geneva 4 (Switzerland); Racz, Z [Institute for Theoretical Physics, Eoetvoes University, 1117 Budapest (Hungary)

    2007-02-14

    Properties of reaction zones resulting from A+B {yields} C type reaction-diffusion processes are investigated by analytical and numerical methods. The reagents A and B are separated initially and, in addition, there is an initial macroscopic inhomogeneity in the distribution of the B species. For simple two-dimensional geometries, exact analytical results are presented for the time evolution of the geometric shape of the front. We also show using cellular automata simulations that the fluctuations can be neglected both in the shape and in the width of the front.

  17. Reaction diffusion and solid state chemical kinetics handbook

    CERN Document Server

    Dybkov, V I

    2010-01-01

    This monograph deals with a physico-chemical approach to the problem of the solid-state growth of chemical compound layers and reaction-diffusion in binary heterogeneous systems formed by two solids; as well as a solid with a liquid or a gas. It is explained why the number of compound layers growing at the interface between the original phases is usually much lower than the number of chemical compounds in the phase diagram of a given binary system. For example, of the eight intermetallic compounds which exist in the aluminium-zirconium binary system, only ZrAl3 was found to grow as a separate

  18. Global dynamics of a reaction-diffusion system

    Directory of Open Access Journals (Sweden)

    Yuncheng You

    2011-02-01

    Full Text Available In this work the existence of a global attractor for the semiflow of weak solutions of a two-cell Brusselator system is proved. The method of grouping estimation is exploited to deal with the challenge in proving the absorbing property and the asymptotic compactness of this type of coupled reaction-diffusion systems with cubic autocatalytic nonlinearity and linear coupling. It is proved that the Hausdorff dimension and the fractal dimension of the global attractor are finite. Moreover, the existence of an exponential attractor for this solution semiflow is shown.

  19. On the solutions of fractional reaction-diffusion equations

    Directory of Open Access Journals (Sweden)

    Jagdev Singh

    2013-05-01

    Full Text Available In this paper, we obtain the solution of a fractional reaction-diffusion equation associated with the generalized Riemann-Liouville fractional derivative as the time derivative and Riesz-Feller fractional derivative as the space-derivative. The results are derived by the application of the Laplace and Fourier transforms in compact and elegant form in terms of Mittag-Leffler function and H-function. The results obtained here are of general nature and include the results investigated earlier by many authors.

  20. Explosive instabilities of reaction-diffusion equations including pinch effects

    International Nuclear Information System (INIS)

    Wilhelmsson, H.

    1992-01-01

    Particular solutions of reaction-diffusion equations for temperature are obtained for explosively unstable situations. As a result of the interplay between inertial, diffusion, pinch and source processes certain 'bell-shaped' distributions may grow explosively in time with preserved shape of the spatial distribution. The effect of the pinch, which requires a density inhomogeneity, is found to diminish the effect of diffusion, or inversely to support the inertial and source processes in creating the explosion. The results may be described in terms of elliptic integrals or. more simply, by means of expansions in the spatial coordinate. An application is the temperature evolution of a burning fusion plasma. (au) (18 refs.)

  1. The Influence of Receptor-Mediated Interactions on Reaction-Diffusion Mechanisms of Cellular Self-organisation

    Czech Academy of Sciences Publication Activity Database

    Klika, Václav; Baker, R. E.; Headon, D.; Gaffney, E. A.

    2012-01-01

    Roč. 74, č. 4 (2012), s. 935-957 ISSN 0092-8240 Institutional research plan: CEZ:AV0Z20760514 Keywords : reaction-diffusion * receptor-mediated patterning * turing models Subject RIV: BO - Biophysics Impact factor: 2.023, year: 2012 http://www.springerlink.com/content/9713544x6871w4n6/?MUD=MP

  2. Pressure induced valence transitions in the Anderson lattice model

    International Nuclear Information System (INIS)

    Bernhard, B.H.; Coqblin, B.

    2009-01-01

    We apply the equation of motion method to the Anderson lattice model, which describes the physical properties of heavy fermion compounds. In particular, we focus here on the variation of the number of f electrons with pressure, associated to the crossover from the Kondo regime to the intermediate valence regime. We treat here the non-magnetic case and introduce an improved approximation, which consists of an alloy analogy based decoupling for the Anderson lattice model. It is implemented by partial incorporation of the spatial correlations contained in higher-order Green's functions involved in the problem that have been formerly neglected. As it has been verified in the framework of the Hubbard model, the alloy analogy avoids the breakdown of sum rules and is more appropriate to explore the asymmetric case of the periodic Anderson Hamiltonian. The densities of states for a simple cubic lattice are calculated for various values of the model parameters V, t, E f , and U.

  3. Reaction-diffusion controlled growth of complex structures

    Science.gov (United States)

    Noorduin, Willem; Mahadevan, L.; Aizenberg, Joanna

    2013-03-01

    Understanding how the emergence of complex forms and shapes in biominerals came about is both of fundamental and practical interest. Although biomineralization processes and organization strategies to give higher order architectures have been studied extensively, synthetic approaches to mimic these self-assembled structures are highly complex and have been difficult to emulate, let alone replicate. The emergence of solution patterns has been found in reaction-diffusion systems such as Turing patterns and the BZ reaction. Intrigued by this spontaneous formation of complexity we explored if similar processes can lead to patterns in the solid state. We here identify a reaction-diffusion system in which the shape of the solidified products is a direct readout of the environmental conditions. Based on insights in the underlying mechanism, we developed a toolbox of engineering strategies to deterministically sculpt patterns and shapes, and combine different morphologies to create a landscape of hierarchical multi scale-complex tectonic architectures with unprecedented levels of complexity. These findings may hold profound implications for understanding, mimicking and ultimately expanding upon nature's morphogenesis strategies, allowing the synthesis of advanced highly complex microscale materials and devices. WLN acknowledges the Netherlands Organization for Scientific Research for financial support

  4. Dark matter, constrained minimal supersymmetric standard model, and lattice QCD.

    Science.gov (United States)

    Giedt, Joel; Thomas, Anthony W; Young, Ross D

    2009-11-13

    Recent lattice measurements have given accurate estimates of the quark condensates in the proton. We use these results to significantly improve the dark matter predictions in benchmark models within the constrained minimal supersymmetric standard model. The predicted spin-independent cross sections are at least an order of magnitude smaller than previously suggested and our results have significant consequences for dark matter searches.

  5. Efficient Lattice-Based Signcryption in Standard Model

    Directory of Open Access Journals (Sweden)

    Jianhua Yan

    2013-01-01

    Full Text Available Signcryption is a cryptographic primitive that can perform digital signature and public encryption simultaneously at a significantly reduced cost. This advantage makes it highly useful in many applications. However, most existing signcryption schemes are seriously challenged by the booming of quantum computations. As an interesting stepping stone in the post-quantum cryptographic community, two lattice-based signcryption schemes were proposed recently. But both of them were merely proved to be secure in the random oracle models. Therefore, the main contribution of this paper is to propose a new lattice-based signcryption scheme that can be proved to be secure in the standard model.

  6. Square Turing patterns in reaction-diffusion systems with coupled layers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing [State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871 (China); Wang, Hongli, E-mail: hlwang@pku.edu.cn, E-mail: qi@pku.edu.cn [State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871 (China); Center for Quantitative Biology, Peking University, Beijing 100871 (China); Ouyang, Qi, E-mail: hlwang@pku.edu.cn, E-mail: qi@pku.edu.cn [State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871 (China); Center for Quantitative Biology, Peking University, Beijing 100871 (China); The Peking-Tsinghua Center for Life Sciences, Beijing 100871 (China)

    2014-06-15

    Square Turing patterns are usually unstable in reaction-diffusion systems and are rarely observed in corresponding experiments and simulations. We report here an example of spontaneous formation of square Turing patterns with the Lengyel-Epstein model of two coupled layers. The squares are found to be a result of the resonance between two supercritical Turing modes with an appropriate ratio. Besides, the spatiotemporal resonance of Turing modes resembles to the mode-locking phenomenon. Analysis of the general amplitude equations for square patterns reveals that the fixed point corresponding to square Turing patterns is stationary when the parameters adopt appropriate values.

  7. Spatiotemporal chaos of self-replicating spots in reaction-diffusion systems.

    Science.gov (United States)

    Wang, Hongli; Ouyang, Qi

    2007-11-23

    The statistical properties of self-replicating spots in the reaction-diffusion Gray-Scott model are analyzed. In the chaotic regime of the system, the spots that dominate the spatiotemporal chaos grow and divide in two or decay into the background randomly and continuously. The rates at which the spots are created and decay are observed to be linearly dependent on the number of spots in the system. We derive a probabilistic description of the spot dynamics based on the statistical independence of spots and thus propose a characterization of the spatiotemporal chaos dominated by replicating spots.

  8. Analysis of discrete reaction-diffusion equations for autocatalysis and continuum diffusion equations for transport

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chi-Jen [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    In this thesis, we analyze both the spatiotemporal behavior of: (A) non-linear “reaction” models utilizing (discrete) reaction-diffusion equations; and (B) spatial transport problems on surfaces and in nanopores utilizing the relevant (continuum) diffusion or Fokker-Planck equations. Thus, there are some common themes in these studies, as they all involve partial differential equations or their discrete analogues which incorporate a description of diffusion-type processes. However, there are also some qualitative differences, as shall be discussed below.

  9. Externally controlled anisotropy in pattern-forming reaction-diffusion systems.

    Science.gov (United States)

    Escala, Dario M; Guiu-Souto, Jacobo; Muñuzuri, Alberto P

    2015-06-01

    The effect of centrifugal forces is analyzed in a pattern-forming reaction-diffusion system. Numerical simulations conducted on the appropriate extension of the Oregonator model for the Belousov-Zhabotinsky reaction show a great variety of dynamical behaviors in such a system. In general, the system exhibits an anisotropy that results in new types of patterns or in a global displacement of the previous one. We consider the effect of both constant and periodically modulated centrifugal forces on the different types of patterns that the system may exhibit. A detailed analysis of the patterns and behaviors observed for the different parameter values considered is presented here.

  10. Lattice gas simulations of replicating domains

    International Nuclear Information System (INIS)

    Dawson, S.P.; Hasslacher, B.; Pearson, J.E.

    1993-01-01

    We use the lattice gas cellular automation (LGCA) developed to simulate a process of pattern-formation recently observed in reaction-diffusion systems. We study the reaction mechanism, which is an extension of the Selkov model for glycolytic oscillations. We are able to reproduce the self-replicating domains observed in this work. We use the LGCA simulation to estimate the smallest length-scale on which this process can occur under conditions encountered in the cell. These estimates are similar to those obtained for Turing patterns in the same setting

  11. Lattice gas simulations of replicating domains

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, S.P.; Hasslacher, B.; Pearson, J.E.

    1993-12-31

    We use the lattice gas cellular automation (LGCA) developed to simulate a process of pattern-formation recently observed in reaction-diffusion systems. We study the reaction mechanism, which is an extension of the Selkov model for glycolytic oscillations. We are able to reproduce the self-replicating domains observed in this work. We use the LGCA simulation to estimate the smallest length-scale on which this process can occur under conditions encountered in the cell. These estimates are similar to those obtained for Turing patterns in the same setting.

  12. Simulations of pattern dynamics for reaction-diffusion systems via SIMULINK.

    Science.gov (United States)

    Wang, Kaier; Steyn-Ross, Moira L; Steyn-Ross, D Alistair; Wilson, Marcus T; Sleigh, Jamie W; Shiraishi, Yoichi

    2014-04-11

    Investigation of the nonlinear pattern dynamics of a reaction-diffusion system almost always requires numerical solution of the system's set of defining differential equations. Traditionally, this would be done by selecting an appropriate differential equation solver from a library of such solvers, then writing computer codes (in a programming language such as C or Matlab) to access the selected solver and display the integrated results as a function of space and time. This "code-based" approach is flexible and powerful, but requires a certain level of programming sophistication. A modern alternative is to use a graphical programming interface such as Simulink to construct a data-flow diagram by assembling and linking appropriate code blocks drawn from a library. The result is a visual representation of the inter-relationships between the state variables whose output can be made completely equivalent to the code-based solution. As a tutorial introduction, we first demonstrate application of the Simulink data-flow technique to the classical van der Pol nonlinear oscillator, and compare Matlab and Simulink coding approaches to solving the van der Pol ordinary differential equations. We then show how to introduce space (in one and two dimensions) by solving numerically the partial differential equations for two different reaction-diffusion systems: the well-known Brusselator chemical reactor, and a continuum model for a two-dimensional sheet of human cortex whose neurons are linked by both chemical and electrical (diffusive) synapses. We compare the relative performances of the Matlab and Simulink implementations. The pattern simulations by Simulink are in good agreement with theoretical predictions. Compared with traditional coding approaches, the Simulink block-diagram paradigm reduces the time and programming burden required to implement a solution for reaction-diffusion systems of equations. Construction of the block-diagram does not require high-level programming

  13. Lattice vortices in the two-dimensional Abelian Higgs model

    International Nuclear Information System (INIS)

    Grunewald, S.; Ilgenfritz, E.-M.; Mueller-Preussker, M.

    1986-01-01

    Multi-vortices of the 2D Abelian Higgs model on a finite lattice by relaxation of Monte-Carlo equilibrium configurations are generated and identified. The lattice vortices have action and a uniquely defined topological charge corresponding to the continuum ones. They exhibit the expected exponential decay behaviour and satisfy approximately the classical equations of motion. Vortex-antivortex superpositions are seen as well, supporting the dilute gas picture. Single vortices finally relax into ''dislocations'' and dissapear. A background charge construction turns out nearly insensitive with respect to dislocations

  14. Superconducting instabilities in the finite U Anderson lattice model

    International Nuclear Information System (INIS)

    Karbowski, J.

    1995-01-01

    We have investigated superconducting instabilities in the finite U Anderson lattice model within the Zou-Anderson slave boson representation in the Kondo lattice limit appropriate for heavy fermion systems. We found Cooper instability in the p channel and a repulsion in both the s and d channels. Based on the above mechanism of pairing, we have derived a ratio of the Gruneisen parameters Γ(T c )/Γ(T K ) which can be negative or positive, consistent with the experimental data. This result cannot be achieved in the U=∞ limit, which gives only positive values for this ratio. ((orig.))

  15. Quantum Monte Carlo Simulation of Frustrated Kondo Lattice Models

    Science.gov (United States)

    Sato, Toshihiro; Assaad, Fakher F.; Grover, Tarun

    2018-03-01

    The absence of the negative sign problem in quantum Monte Carlo simulations of spin and fermion systems has different origins. World-line based algorithms for spins require positivity of matrix elements whereas auxiliary field approaches for fermions depend on symmetries such as particle-hole symmetry. For negative-sign-free spin and fermionic systems, we show that one can formulate a negative-sign-free auxiliary field quantum Monte Carlo algorithm that allows Kondo coupling of fermions with the spins. Using this general approach, we study a half-filled Kondo lattice model on the honeycomb lattice with geometric frustration. In addition to the conventional Kondo insulator and antiferromagnetically ordered phases, we find a partial Kondo screened state where spins are selectively screened so as to alleviate frustration, and the lattice rotation symmetry is broken nematically.

  16. Modelling heterogeneity of concrete using 2D lattice network for ...

    Indian Academy of Sciences (India)

    present work brings out certain finer details which are not available explicitly in the earlier works. Keywords. Concrete fracture; lattice model; Fuller distribution; ... examples are cement mortar and concrete in civil engineering. ..... Although acoustic emission technique is a well established non destructive testing (NDT).

  17. Analysis and reconstruction of stochastic coupled map lattice models

    International Nuclear Information System (INIS)

    Coca, Daniel; Billings, Stephen A.

    2003-01-01

    The Letter introduces a general stochastic coupled lattice map model together with an algorithm to estimate the nodal equations involved based only on a small set of observable variables and in the presence of stochastic perturbations. More general forms of the Frobenius-Perron and the transfer operators, which describe the evolution of densities under the action of the CML transformation, are derived

  18. Lattice simulation of 2d Gross-Neveu-type models

    International Nuclear Information System (INIS)

    Limmer, M.; Gattringer, C.; Hermann, V.

    2006-01-01

    Full text: We discuss a Monte Carlo simulation of 2d Gross-Neveu-type models on the lattice. The four-Fermi interaction is written as a Gaussian integral with an auxiliary field and the fermion determinant is included by reweighting. We present results for bulk quantities and correlators and compare them to a simulation using a fermion-loop representation. (author)

  19. Traveling wavefront solutions to nonlinear reaction-diffusion-convection equations

    International Nuclear Information System (INIS)

    Indekeu, Joseph O; Smets, Ruben

    2017-01-01

    Physically motivated modified Fisher equations are studied in which nonlinear convection and nonlinear diffusion is allowed for besides the usual growth and spread of a population. It is pointed out that in a large variety of cases separable functions in the form of exponentially decaying sharp wavefronts solve the differential equation exactly provided a co-moving point source or sink is active at the wavefront. The velocity dispersion and front steepness may differ from those of some previously studied exact smooth traveling wave solutions. For an extension of the reaction-diffusion-convection equation, featuring a memory effect in the form of a maturity delay for growth and spread, also smooth exact wavefront solutions are obtained. The stability of the solutions is verified analytically and numerically. (paper)

  20. Traveling wavefront solutions to nonlinear reaction-diffusion-convection equations

    Science.gov (United States)

    Indekeu, Joseph O.; Smets, Ruben

    2017-08-01

    Physically motivated modified Fisher equations are studied in which nonlinear convection and nonlinear diffusion is allowed for besides the usual growth and spread of a population. It is pointed out that in a large variety of cases separable functions in the form of exponentially decaying sharp wavefronts solve the differential equation exactly provided a co-moving point source or sink is active at the wavefront. The velocity dispersion and front steepness may differ from those of some previously studied exact smooth traveling wave solutions. For an extension of the reaction-diffusion-convection equation, featuring a memory effect in the form of a maturity delay for growth and spread, also smooth exact wavefront solutions are obtained. The stability of the solutions is verified analytically and numerically.

  1. Multiscale Reaction-Diffusion Algorithms: PDE-Assisted Brownian Dynamics

    KAUST Repository

    Franz, Benjamin

    2013-06-19

    Two algorithms that combine Brownian dynami cs (BD) simulations with mean-field partial differential equations (PDEs) are presented. This PDE-assisted Brownian dynamics (PBD) methodology provides exact particle tracking data in parts of the domain, whilst making use of a mean-field reaction-diffusion PDE description elsewhere. The first PBD algorithm couples BD simulations with PDEs by randomly creating new particles close to the interface, which partitions the domain, and by reincorporating particles into the continuum PDE-description when they cross the interface. The second PBD algorithm introduces an overlap region, where both descriptions exist in parallel. It is shown that the overlap region is required to accurately compute variances using PBD simulations. Advantages of both PBD approaches are discussed and illustrative numerical examples are presented. © 2013 Society for Industrial and Applied Mathematics.

  2. Mixed, Nonsplit, Extended Stability, Stiff Integration of Reaction Diffusion Equations

    KAUST Repository

    Alzahrani, Hasnaa H.

    2016-07-26

    A tailored integration scheme is developed to treat stiff reaction-diffusion prob- lems. The construction adapts a stiff solver, namely VODE, to treat reaction im- plicitly together with explicit treatment of diffusion. The second-order Runge-Kutta- Chebyshev (RKC) scheme is adjusted to integrate diffusion. Spatial operator is de- scretised by second-order finite differences on a uniform grid. The overall solution is advanced over S fractional stiff integrations, where S corresponds to the number of RKC stages. The behavior of the scheme is analyzed by applying it to three simple problems. The results show that it achieves second-order accuracy, thus, preserving the formal accuracy of the original RKC. The presented development sets the stage for future extensions, particularly, to multidimensional reacting flows with detailed chemistry.

  3. New series of 3 D lattice integrable models

    International Nuclear Information System (INIS)

    Mangazeev, V.V.; Sergeev, S.M.; Stroganov, Yu.G.

    1993-01-01

    In this paper we present a new series of 3-dimensional integrable lattice models with N colors. The weight functions of the models satisfy modified tetrahedron equations with N states and give a commuting family of two-layer transfer-matrices. The dependence on the spectral parameters corresponds to the static limit of the modified tetrahedron equations and weights are parameterized in terms of elliptic functions. The models contain two free parameters: elliptic modulus and additional parameter η. 12 refs

  4. Beam Diagnosis and Lattice Modeling of the Fermilab Booster

    International Nuclear Information System (INIS)

    Huang, Xiaobiao

    2005-01-01

    A realistic lattice model is a fundamental basis for the operation of a synchrotron. In this study various beam-based measurements, including orbit response matrix (ORM) and BPM turn-by-turn data are used to verify and calibrate the lattice model of the Fermilab Booster. In the ORM study, despite the strong correlation between the gradient parameters of adjacent magnets which prevents a full determination of the model parameters, an equivalent lattice model is obtained by imposing appropriate constraints. The fitted gradient errors of the focusing magnets are within the design tolerance and the results point to the orbit offsets in the sextupole field as the source of gradient errors. A new method, the independent component analysis (ICA) is introduced to analyze multiple BPM turn-by-turn data taken simultaneously around a synchrotron. This method makes use of the redundancy of the data and the time correlation of the source signals to isolate various components, such as betatron motion and synchrotron motion, from raw BPM data. By extracting clean coherent betatron motion from noisy data and separates out the betatron normal modes when there is linear coupling, the ICA method provides a convenient means to measure the beta functions and betatron phase advances. It also separates synchrotron motion from the BPM samples for dispersion function measurement. The ICA method has the capability to separate other perturbation signals and is robust over the contamination of bad BPMs. The application of the ICA method to the Booster has enabled the measurement of the linear lattice functions which are used to verify the existing lattice model. The transverse impedance and chromaticity are measured from turn-by-turn data using high precision tune measurements. Synchrotron motion is also observed in the BPM data. The emittance growth of the Booster is also studied by data taken with ion profile monitor (IPM). Sources of emittance growth are examined and an approach to cure

  5. Critical, statistical, and thermodynamical properties of lattice models

    Energy Technology Data Exchange (ETDEWEB)

    Varma, Vipin Kerala

    2013-10-15

    In this thesis we investigate zero temperature and low temperature properties - critical, statistical and thermodynamical - of lattice models in the contexts of bosonic cold atom systems, magnetic materials, and non-interacting particles on various lattice geometries. We study quantum phase transitions in the Bose-Hubbard model with higher body interactions, as relevant for optical lattice experiments of strongly interacting bosons, in one and two dimensions; the universality of the Mott insulator to superfluid transition is found to remain unchanged for even large three body interaction strengths. A systematic renormalization procedure is formulated to fully re-sum these higher (three and four) body interactions into the two body terms. In the strongly repulsive limit, we analyse the zero and low temperature physics of interacting hard-core bosons on the kagome lattice at various fillings. Evidence for a disordered phase in the Ising limit of the model is presented; in the strong coupling limit, the transition between the valence bond solid and the superfluid is argued to be first order at the tip of the solid lobe.

  6. Critical, statistical, and thermodynamical properties of lattice models

    International Nuclear Information System (INIS)

    Varma, Vipin Kerala

    2013-10-01

    In this thesis we investigate zero temperature and low temperature properties - critical, statistical and thermodynamical - of lattice models in the contexts of bosonic cold atom systems, magnetic materials, and non-interacting particles on various lattice geometries. We study quantum phase transitions in the Bose-Hubbard model with higher body interactions, as relevant for optical lattice experiments of strongly interacting bosons, in one and two dimensions; the universality of the Mott insulator to superfluid transition is found to remain unchanged for even large three body interaction strengths. A systematic renormalization procedure is formulated to fully re-sum these higher (three and four) body interactions into the two body terms. In the strongly repulsive limit, we analyse the zero and low temperature physics of interacting hard-core bosons on the kagome lattice at various fillings. Evidence for a disordered phase in the Ising limit of the model is presented; in the strong coupling limit, the transition between the valence bond solid and the superfluid is argued to be first order at the tip of the solid lobe.

  7. Entropic multirelaxation lattice Boltzmann models for turbulent flows

    Science.gov (United States)

    Bösch, Fabian; Chikatamarla, Shyam S.; Karlin, Ilya V.

    2015-10-01

    We present three-dimensional realizations of a class of lattice Boltzmann models introduced recently by the authors [I. V. Karlin, F. Bösch, and S. S. Chikatamarla, Phys. Rev. E 90, 031302(R) (2014), 10.1103/PhysRevE.90.031302] and review the role of the entropic stabilizer. Both coarse- and fine-grid simulations are addressed for the Kida vortex flow benchmark. We show that the outstanding numerical stability and performance is independent of a particular choice of the moment representation for high-Reynolds-number flows. We report accurate results for low-order moments for homogeneous isotropic decaying turbulence and second-order grid convergence for most assessed statistical quantities. It is demonstrated that all the three-dimensional lattice Boltzmann realizations considered herein converge to the familiar lattice Bhatnagar-Gross-Krook model when the resolution is increased. Moreover, thanks to the dynamic nature of the entropic stabilizer, the present model features less compressibility effects and maintains correct energy and enstrophy dissipation. The explicit and efficient nature of the present lattice Boltzmann method renders it a promising candidate for both engineering and scientific purposes for highly turbulent flows.

  8. Equivalence of interest rate models and lattice gases.

    Science.gov (United States)

    Pirjol, Dan

    2012-04-01

    We consider the class of short rate interest rate models for which the short rate is proportional to the exponential of a Gaussian Markov process x(t) in the terminal measure r(t)=a(t)exp[x(t)]. These models include the Black-Derman-Toy and Black-Karasinski models in the terminal measure. We show that such interest rate models are equivalent to lattice gases with attractive two-body interaction, V(t(1),t(2))=-Cov[x(t(1)),x(t(2))]. We consider in some detail the Black-Karasinski model with x(t) as an Ornstein-Uhlenbeck process, and show that it is similar to a lattice gas model considered by Kac and Helfand, with attractive long-range two-body interactions, V(x,y)=-α(e(-γ|x-y|)-e(-γ(x+y))). An explicit solution for the model is given as a sum over the states of the lattice gas, which is used to show that the model has a phase transition similar to that found previously in the Black-Derman-Toy model in the terminal measure.

  9. Critical manifold of the kagome-lattice Potts model

    International Nuclear Information System (INIS)

    Jacobsen, Jesper Lykke; Scullard, Christian R

    2012-01-01

    Any two-dimensional infinite regular lattice G can be produced by tiling the plane with a finite subgraph B⊆G; we call B a basis of G. We introduce a two-parameter graph polynomial P B (q, v) that depends on B and its embedding in G. The algebraic curve P B (q, v) = 0 is shown to provide an approximation to the critical manifold of the q-state Potts model, with coupling v = e K − 1, defined on G. This curve predicts the phase diagram not only in the physical ferromagnetic regime (v > 0), but also in the antiferromagnetic (v B (q, v) = 0 provides the exact critical manifold in the limit of infinite B. Furthermore, for some lattices G—or for the Ising model (q = 2) on any G—the polynomial P B (q, v) factorizes for any choice of B: the zero set of the recurrent factor then provides the exact critical manifold. In this sense, the computation of P B (q, v) can be used to detect exact solvability of the Potts model on G. We illustrate the method for two choices of G: the square lattice, where the Potts model has been exactly solved, and the kagome lattice, where it has not. For the square lattice we correctly reproduce the known phase diagram, including the antiferromagnetic transition and the singularities in the Berker–Kadanoff phase at certain Beraha numbers. For the kagome lattice, taking the smallest basis with six edges we recover a well-known (but now refuted) conjecture of F Y Wu. Larger bases provide successive improvements on this formula, giving a natural extension of Wu’s approach. We perform large-scale numerical computations for comparison and find excellent agreement with the polynomial predictions. For v > 0 the accuracy of the predicted critical coupling v c is of the order 10 −4 or 10 −5 for the six-edge basis, and improves to 10 −6 or 10 −7 for the largest basis studied (with 36 edges). This article is part of ‘Lattice models and integrability’, a special issue of Journal of Physics A: Mathematical and Theoretical in honour of

  10. Three-dimensional lattice Boltzmann model for compressible flows.

    Science.gov (United States)

    Sun, Chenghai; Hsu, Andrew T

    2003-07-01

    A three-dimensional compressible lattice Boltzmann model is formulated on a cubic lattice. A very large particle-velocity set is incorporated in order to enable a greater variation in the mean velocity. Meanwhile, the support set of the equilibrium distribution has only six directions. Therefore, this model can efficiently handle flows over a wide range of Mach numbers and capture shock waves. Due to the simple form of the equilibrium distribution, the fourth-order velocity tensors are not involved in the formulation. Unlike the standard lattice Boltzmann model, no special treatment is required for the homogeneity of fourth-order velocity tensors on square lattices. The Navier-Stokes equations were recovered, using the Chapman-Enskog method from the Bhatnagar-Gross-Krook (BGK) lattice Boltzmann equation. The second-order discretization error of the fluctuation velocity in the macroscopic conservation equation was eliminated by means of a modified collision invariant. The model is suitable for both viscous and inviscid compressible flows with or without shocks. Since the present scheme deals only with the equilibrium distribution that depends only on fluid density, velocity, and internal energy, boundary conditions on curved wall are easily implemented by an extrapolation of macroscopic variables. To verify the scheme for inviscid flows, we have successfully simulated a three-dimensional shock-wave propagation in a box and a normal shock of Mach number 10 over a wedge. As an application to viscous flows, we have simulated a flat plate boundary layer flow, flow over a cylinder, and a transonic flow over a NACA0012 airfoil cascade.

  11. Meredys, a multi-compartment reaction-diffusion simulator using multistate realistic molecular complexes

    Directory of Open Access Journals (Sweden)

    Le Novère Nicolas

    2010-03-01

    Full Text Available Abstract Background Most cellular signal transduction mechanisms depend on a few molecular partners whose roles depend on their position and movement in relation to the input signal. This movement can follow various rules and take place in different compartments. Additionally, the molecules can form transient complexes. Complexation and signal transduction depend on the specific states partners and complexes adopt. Several spatial simulator have been developed to date, but none are able to model reaction-diffusion of realistic multi-state transient complexes. Results Meredys allows for the simulation of multi-component, multi-feature state molecular species in two and three dimensions. Several compartments can be defined with different diffusion and boundary properties. The software employs a Brownian dynamics engine to simulate reaction-diffusion systems at the reactive particle level, based on compartment properties, complex structure, and hydro-dynamic radii. Zeroth-, first-, and second order reactions are supported. The molecular complexes have realistic geometries. Reactive species can contain user-defined feature states which can modify reaction rates and outcome. Models are defined in a versatile NeuroML input file. The simulation volume can be split in subvolumes to speed up run-time. Conclusions Meredys provides a powerful and versatile way to run accurate simulations of molecular and sub-cellular systems, that complement existing multi-agent simulation systems. Meredys is a Free Software and the source code is available at http://meredys.sourceforge.net/.

  12. Four-dimensional CP2 model on a lattice

    International Nuclear Information System (INIS)

    Bitar, K.M.; Raja, R.

    1983-01-01

    We investigate the phenomenon of dynamical generation of gauge interactions from CP/sup N/-1 models in four dimensions. We do this for the CP 2 model on a lattice. The phase diagram of a model that interpolates between CP 2 and U(1) gauge theory on a lattice is first mapped out. The potential between static charges in various regions of this diagram is also measured. Contrary to hopes based on the large-N behavior of similar models in two dimensions and on our phase diagram, we find that the potentials generated by CP 2 do not bear any resemblance to those of U(1). They are rather similar to the Higgs phase of an Abelian gauge theory in both phases displayed by CP 2

  13. Bayesian Analysis of Geostatistical Models With an Auxiliary Lattice

    KAUST Repository

    Park, Jincheol

    2012-04-01

    The Gaussian geostatistical model has been widely used for modeling spatial data. However, this model suffers from a severe difficulty in computation: it requires users to invert a large covariance matrix. This is infeasible when the number of observations is large. In this article, we propose an auxiliary lattice-based approach for tackling this difficulty. By introducing an auxiliary lattice to the space of observations and defining a Gaussian Markov random field on the auxiliary lattice, our model completely avoids the requirement of matrix inversion. It is remarkable that the computational complexity of our method is only O(n), where n is the number of observations. Hence, our method can be applied to very large datasets with reasonable computational (CPU) times. The numerical results indicate that our model can approximate Gaussian random fields very well in terms of predictions, even for those with long correlation lengths. For real data examples, our model can generally outperform conventional Gaussian random field models in both prediction errors and CPU times. Supplemental materials for the article are available online. © 2012 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America.

  14. Abelian tensor models on the lattice

    Science.gov (United States)

    Chaudhuri, Soumyadeep; Giraldo-Rivera, Victor I.; Joseph, Anosh; Loganayagam, R.; Yoon, Junggi

    2018-04-01

    We consider a chain of Abelian Klebanov-Tarnopolsky fermionic tensor models coupled through quartic nearest-neighbor interactions. We characterize the gauge-singlet spectrum for small chains (L =2 ,3 ,4 ,5 ) and observe that the spectral statistics exhibits strong evidence in favor of quasi-many-body localization.

  15. Automatic simplification of systems of reaction-diffusion equations by a posteriori analysis.

    Science.gov (United States)

    Maybank, Philip J; Whiteley, Jonathan P

    2014-02-01

    Many mathematical models in biology and physiology are represented by systems of nonlinear differential equations. In recent years these models have become increasingly complex in order to explain the enormous volume of data now available. A key role of modellers is to determine which components of the model have the greatest effect on a given observed behaviour. An approach for automatically fulfilling this role, based on a posteriori analysis, has recently been developed for nonlinear initial value ordinary differential equations [J.P. Whiteley, Model reduction using a posteriori analysis, Math. Biosci. 225 (2010) 44-52]. In this paper we extend this model reduction technique for application to both steady-state and time-dependent nonlinear reaction-diffusion systems. Exemplar problems drawn from biology are used to demonstrate the applicability of the technique. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Vortex Lattice UXO Mobility Model Integration

    Science.gov (United States)

    2015-03-01

    law , no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB...predictions of the fate and transport of a broad-field UXO population are extremely sensitive to the initial state of that population, specifically: the...limit the model’s computational domain. This revised model software was built on the concept of interconnected geomorphic control cells consisting of

  17. Mathematical analysis and numerical simulation of patterns in fractional and classical reaction-diffusion systems

    International Nuclear Information System (INIS)

    Owolabi, Kolade M.

    2016-01-01

    The aim of this paper is to examine pattern formation in the sub— and super-diffusive scenarios and compare it with that of classical or standard diffusive processes in two-component fractional reaction-diffusion systems that modeled a predator-prey dynamics. The focus of the work concentrates on the use of two separate mathematical techniques, we formulate a Fourier spectral discretization method as an efficient alternative technique to solve fractional reaction-diffusion problems in higher-dimensional space, and later advance the resulting systems of ODEs in time with the adaptive exponential time-differencing solver. Obviously, the fractional Fourier approach is able to achieve spectral convergence up to machine precision regardless of the fractional order α, owing to the fact that our approach is able to give full diagonal representation of the fractional operator. The complexity of the dynamics in this system is theoretically discussed and graphically displayed with some examples and numerical simulations in one, two and three dimensions.

  18. The entropy dissipation method for spatially inhomogeneous reaction-diffusion-type systems

    KAUST Repository

    Di Francesco, M.

    2008-12-08

    We study the long-time asymptotics of reaction-diffusion-type systems that feature a monotone decaying entropy (Lyapunov, free energy) functional. We consider both bounded domains and confining potentials on the whole space for arbitrary space dimensions. Our aim is to derive quantitative expressions for (or estimates of) the rates of convergence towards an (entropy minimizing) equilibrium state in terms of the constants of diffusion and reaction and with respect to conserved quantities. Our method, the so-called entropy approach, seeks to quantify convergence to equilibrium by using functional inequalities, which relate quantitatively the entropy and its dissipation in time. The entropy approach is well suited to nonlinear problems and known to be quite robust with respect to model variations. It has already been widely applied to scalar diffusion-convection equations, and the main goal of this paper is to study its generalization to systems of partial differential equations that contain diffusion and reaction terms and admit fewer conservation laws than the size of the system. In particular, we successfully apply the entropy approach to general linear systems and to a nonlinear example of a reaction-diffusion-convection system arising in solid-state physics as a paradigm for general nonlinear systems. © 2008 The Royal Society.

  19. Lattice Gauge Theories Within and Beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Gelzer, Zechariah John [Iowa U.

    2017-01-01

    The Standard Model of particle physics has been very successful in describing fundamental interactions up to the highest energies currently probed in particle accelerator experiments. However, the Standard Model is incomplete and currently exhibits tension with experimental data for interactions involving $B$~mesons. Consequently, $B$-meson physics is of great interest to both experimentalists and theorists. Experimentalists worldwide are studying the decay and mixing processes of $B$~mesons in particle accelerators. Theorists are working to understand the data by employing lattice gauge theories within and beyond the Standard Model. This work addresses the theoretical effort and is divided into two main parts. In the first part, I present a lattice-QCD calculation of form factors for exclusive semileptonic decays of $B$~mesons that are mediated by both charged currents ($B \\to \\pi \\ell \

  20. Excitation spectrum and staggering transformations in lattice quantum models.

    Science.gov (United States)

    Faria da Veiga, Paulo A; O'Carroll, Michael; Schor, Ricardo

    2002-08-01

    We consider the energy-momentum excitation spectrum of diverse lattice Hamiltonian operators: the generator of the Markov semigroup of Ginzburg-Landau models with Langevin stochastic dynamics, the Hamiltonian of a scalar quantum field theory, and the Hamiltonian associated with the transfer matrix of a classical ferromagnetic spin system at high temperature. The low-lying spectrum consists of a one-particle state and a two-particle band. The two-particle spectrum is determined using a lattice version of the Bethe-Salpeter equation. In addition to the two-particle band, depending on the lattice dimension and on the attractive or repulsive character of the interaction between the particles of the system, there is, respectively, a bound state below or above the two-particle band. We show how the existence or nonexistence of these bound states can be understood in terms of a nonrelativistic single-particle lattice Schrödinger Hamiltonian with a delta potential. A staggering transformation relates the spectra of the attractive and the repulsive cases.

  1. Lattice Boltzmann model capable of mesoscopic vorticity computation

    Science.gov (United States)

    Peng, Cheng; Guo, Zhaoli; Wang, Lian-Ping

    2017-11-01

    It is well known that standard lattice Boltzmann (LB) models allow the strain-rate components to be computed mesoscopically (i.e., through the local particle distributions) and as such possess a second-order accuracy in strain rate. This is one of the appealing features of the lattice Boltzmann method (LBM) which is of only second-order accuracy in hydrodynamic velocity itself. However, no known LB model can provide the same quality for vorticity and pressure gradients. In this paper, we design a multiple-relaxation time LB model on a three-dimensional 27-discrete-velocity (D3Q27) lattice. A detailed Chapman-Enskog analysis is presented to illustrate all the necessary constraints in reproducing the isothermal Navier-Stokes equations. The remaining degrees of freedom are carefully analyzed to derive a model that accommodates mesoscopic computation of all the velocity and pressure gradients from the nonequilibrium moments. This way of vorticity calculation naturally ensures a second-order accuracy, which is also proven through an asymptotic analysis. We thus show, with enough degrees of freedom and appropriate modifications, the mesoscopic vorticity computation can be achieved in LBM. The resulting model is then validated in simulations of a three-dimensional decaying Taylor-Green flow, a lid-driven cavity flow, and a uniform flow passing a fixed sphere. Furthermore, it is shown that the mesoscopic vorticity computation can be realized even with single relaxation parameter.

  2. Accurate reaction-diffusion operator splitting on tetrahedral meshes for parallel stochastic molecular simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hepburn, I.; De Schutter, E., E-mail: erik@oist.jp [Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495 (Japan); Theoretical Neurobiology & Neuroengineering, University of Antwerp, Antwerp 2610 (Belgium); Chen, W. [Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495 (Japan)

    2016-08-07

    Spatial stochastic molecular simulations in biology are limited by the intense computation required to track molecules in space either in a discrete time or discrete space framework, which has led to the development of parallel methods that can take advantage of the power of modern supercomputers in recent years. We systematically test suggested components of stochastic reaction-diffusion operator splitting in the literature and discuss their effects on accuracy. We introduce an operator splitting implementation for irregular meshes that enhances accuracy with minimal performance cost. We test a range of models in small-scale MPI simulations from simple diffusion models to realistic biological models and find that multi-dimensional geometry partitioning is an important consideration for optimum performance. We demonstrate performance gains of 1-3 orders of magnitude in the parallel implementation, with peak performance strongly dependent on model specification.

  3. Corner-transport-upwind lattice Boltzmann model for bubble cavitation

    Science.gov (United States)

    Sofonea, V.; Biciuşcǎ, T.; Busuioc, S.; Ambruş, Victor E.; Gonnella, G.; Lamura, A.

    2018-02-01

    Aiming to study the bubble cavitation problem in quiescent and sheared liquids, a third-order isothermal lattice Boltzmann model that describes a two-dimensional (2D) fluid obeying the van der Waals equation of state, is introduced. The evolution equations for the distribution functions in this off-lattice model with 16 velocities are solved using the corner-transport-upwind (CTU) numerical scheme on large square lattices (up to 6144 ×6144 nodes). The numerical viscosity and the regularization of the model are discussed for first- and second-order CTU schemes finding that the latter choice allows to obtain a very accurate phase diagram of a nonideal fluid. In a quiescent liquid, the present model allows us to recover the solution of the 2D Rayleigh-Plesset equation for a growing vapor bubble. In a sheared liquid, we investigated the evolution of the total bubble area, the bubble deformation, and the bubble tilt angle, for various values of the shear rate. A linear relation between the dimensionless deformation coefficient D and the capillary number Ca is found at small Ca but with a different factor than in equilibrium liquids. A nonlinear regime is observed for Ca≳0.2 .

  4. Monte Carlo simulations of lattice models for single polymer systems

    Science.gov (United States)

    Hsu, Hsiao-Ping

    2014-10-01

    Single linear polymer chains in dilute solutions under good solvent conditions are studied by Monte Carlo simulations with the pruned-enriched Rosenbluth method up to the chain length N ˜ O(10^4). Based on the standard simple cubic lattice model (SCLM) with fixed bond length and the bond fluctuation model (BFM) with bond lengths in a range between 2 and sqrt{10}, we investigate the conformations of polymer chains described by self-avoiding walks on the simple cubic lattice, and by random walks and non-reversible random walks in the absence of excluded volume interactions. In addition to flexible chains, we also extend our study to semiflexible chains for different stiffness controlled by a bending potential. The persistence lengths of chains extracted from the orientational correlations are estimated for all cases. We show that chains based on the BFM are more flexible than those based on the SCLM for a fixed bending energy. The microscopic differences between these two lattice models are discussed and the theoretical predictions of scaling laws given in the literature are checked and verified. Our simulations clarify that a different mapping ratio between the coarse-grained models and the atomistically realistic description of polymers is required in a coarse-graining approach due to the different crossovers to the asymptotic behavior.

  5. Monte Carlo simulations of lattice models for single polymer systems

    International Nuclear Information System (INIS)

    Hsu, Hsiao-Ping

    2014-01-01

    Single linear polymer chains in dilute solutions under good solvent conditions are studied by Monte Carlo simulations with the pruned-enriched Rosenbluth method up to the chain length N∼O(10 4 ). Based on the standard simple cubic lattice model (SCLM) with fixed bond length and the bond fluctuation model (BFM) with bond lengths in a range between 2 and √(10), we investigate the conformations of polymer chains described by self-avoiding walks on the simple cubic lattice, and by random walks and non-reversible random walks in the absence of excluded volume interactions. In addition to flexible chains, we also extend our study to semiflexible chains for different stiffness controlled by a bending potential. The persistence lengths of chains extracted from the orientational correlations are estimated for all cases. We show that chains based on the BFM are more flexible than those based on the SCLM for a fixed bending energy. The microscopic differences between these two lattice models are discussed and the theoretical predictions of scaling laws given in the literature are checked and verified. Our simulations clarify that a different mapping ratio between the coarse-grained models and the atomistically realistic description of polymers is required in a coarse-graining approach due to the different crossovers to the asymptotic behavior

  6. Polar Coordinate Lattice Boltzmann Kinetic Modeling of Detonation Phenomena

    International Nuclear Information System (INIS)

    Lin Chuan-Dong; Li Ying-Jun; Xu Ai-Guo; Zhang Guang-Cai

    2014-01-01

    A novel polar coordinate lattice Boltzmann kinetic model for detonation phenomena is presented and applied to investigate typical implosion and explosion processes. In this model, the change of discrete distribution function due to local chemical reaction is dynamically coupled into the modified lattice Boltzmann equation which could recover the Navier—Stokes equations, including contribution of chemical reaction, via the Chapman—Enskog expansion. For the numerical investigations, the main focuses are the nonequilibrium behaviors in these processes. The system at the disc center is always in its thermodynamic equilibrium in the highly symmetric case. The internal kinetic energies in different degrees of freedom around the detonation front do not coincide. The dependence of the reaction rate on the pressure, influences of the shock strength and reaction rate on the departure amplitude of the system from its local thermodynamic equilibrium are probed. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  7. Antiferromagnetic order in the Hubbard model on the Penrose lattice

    Science.gov (United States)

    Koga, Akihisa; Tsunetsugu, Hirokazu

    2017-12-01

    We study an antiferromagnetic order in the ground state of the half-filled Hubbard model on the Penrose lattice and investigate the effects of quasiperiodic lattice structure. In the limit of infinitesimal Coulomb repulsion U →+0 , the staggered magnetizations persist to be finite, and their values are determined by confined states, which are strictly localized with thermodynamics degeneracy. The magnetizations exhibit an exotic spatial pattern, and have the same sign in each of cluster regions, the size of which ranges from 31 sites to infinity. With increasing U , they continuously evolve to those of the corresponding spin model in the U =∞ limit. In both limits of U , local magnetizations exhibit a fairly intricate spatial pattern that reflects the quasiperiodic structure, but the pattern differs between the two limits. We have analyzed this pattern change by a mode analysis by the singular value decomposition method for the fractal-like magnetization pattern projected into the perpendicular space.

  8. Lattice Boltzmann model for three-phase viscoelastic fluid flow

    Science.gov (United States)

    Xie, Chiyu; Lei, Wenhai; Wang, Moran

    2018-02-01

    A lattice Boltzmann (LB) framework is developed for simulation of three-phase viscoelastic fluid flows in complex geometries. This model is based on a Rothman-Keller type model for immiscible multiphase flows which ensures mass conservation of each component in porous media even for a high density ratio. To account for the viscoelastic effects, the Maxwell constitutive relation is correctly introduced into the momentum equation, which leads to a modified lattice Boltzmann evolution equation for Maxwell fluids by removing the normal but excess viscous term. Our simulation tests indicate that this excess viscous term may induce significant errors. After three benchmark cases, the displacement processes of oil by dispersed polymer are studied as a typical example of three-phase viscoelastic fluid flow. The results show that increasing either the polymer intrinsic viscosity or the elastic modulus will enhance the oil recovery.

  9. Analyses of Lattice Traffic Flow Model on a Gradient Highway

    International Nuclear Information System (INIS)

    Gupta Arvind Kumar; Redhu Poonam; Sharma Sapna

    2014-01-01

    The optimal current difference lattice hydrodynamic model is extended to investigate the traffic flow dynamics on a unidirectional single lane gradient highway. The effect of slope on uphill/downhill highway is examined through linear stability analysis and shown that the slope significantly affects the stability region on the phase diagram. Using nonlinear stability analysis, the Burgers, Korteweg-deVries (KdV) and modified Korteweg-deVries (mKdV) equations are derived in stable, metastable and unstable region, respectively. The effect of reaction coefficient is examined and concluded that it plays an important role in suppressing the traffic jams on a gradient highway. The theoretical findings have been verified through numerical simulation which confirm that the slope on a gradient highway significantly influence the traffic dynamics and traffic jam can be suppressed efficiently by considering the optimal current difference effect in the new lattice model. (nuclear physics)

  10. Numerical Analysis of Moisture Flow and Concrete Cracking by means of Lattice Type Models

    NARCIS (Netherlands)

    Jankovic, D.; Küntz, M.; Van Mier, J.G.M.

    2001-01-01

    Modelling of fluid-flow and the resulting effects on shrinkage and microcracking by means of a combination of two lattice models are presented. For the moisture transport, a Lattice Gas Automaton (LGA) is adopted since it can effectively model moisture loss, whereas for cracking simulation a Lattice

  11. Local lattice-gas model for immiscible fluids

    International Nuclear Information System (INIS)

    Chen, S.; Doolen, G.D.; Eggert, K.; Grunau, D.; Loh, E.Y.

    1991-01-01

    We present a lattice-gas model for two-dimensional immiscible fluid flows with surface tension that uses strictly local collision rules. Instead of using a local total color flux as Somers and Rem [Physica D 47, 39 (1991)], we use local colored holes to be the memory of particles of the same color. Interactions between walls and fluids are included that produce arbitrary contact angles

  12. Observation of the Meissner effect in a lattice Higgs model

    Science.gov (United States)

    Damgaard, Poul H.; Heller, Urs M.

    1988-01-01

    The lattice-regularized U(1) Higgs model in an external electromagnetic field is studied by Monte Carlo techniques. In the Coulomb phase, magnetic flux can flow through uniformly. The Higgs phase splits into a region where magnetic flux can penetrate only in the form of vortices and a region where the magnetic flux is completely expelled, the relativistic analog of the Meissner effect in superconductivity. Evidence is presented for symmetry restoration in strong external fields.

  13. Continuum symmetry restoration in lattice models with staggered fermions

    International Nuclear Information System (INIS)

    Morel, A.

    1986-09-01

    This talk is a report on results obtained by T. Jolicoeur, R. Lacaze, B. Petersson and the author: staggered fermions can be consistently interpreted as flavoured quarks in the continuum limit of asymptotically free theories on the lattice. This statement is supported by analytical results for the Gross-Neveu model at large N and for a QCD two point function, and by a numerical simulation of SU(2) quenched QCD

  14. Hadron spectrum in quenched lattice QCD and quark potential models

    International Nuclear Information System (INIS)

    Iwasaki, Y.; Yoshie, T.

    1989-01-01

    We show that the quenched lattice QCD gives a hadron spectrum which remarkably agrees with that of quark potential models for quark mass m q ≥ m strange , even when one uses the standard one-plaquette gauge action. This is contrary to what is stated in the literature. We clarify the reason of the discrepancy, paying close attention to systematic errors in numerical calculations. (orig.)

  15. Evolution of density profiles for reaction-diffusion processes

    International Nuclear Information System (INIS)

    Ondarza-Rovira, R.

    1990-01-01

    The purpose of this work is to study the reaction diffusion equations for the concentration of one species in one spatial dimension. Nonlinear diffusion equations paly an important role in several fields: Physics, Kinetic Chemistry, Poblational Biology, Neurophysics, etc. The study of the behavior of solutions, with nonlinear diffusion coefficient, and monomial creation and annihilation terms, is considered. It is found, that when the exponent of the annihilation term is smaller than the one of the creation term, unstable equilibrium solutions may exist, for which solutions above it explode in finite time, but solutions below it decay exponentially. By means of the reduction to quadratures technique, it is found that is possible to obtain travelling wave solution in those cases when the annihilation term is greater than the creation term. This method of solution always permits to know the propagation velocity of the front, even if the concentration cannot be written in closed form. The portraits of the solutions in phase space show the existence of solutions which velocities may be smaller or greater than the ones found analytically. Linear and nonlinear diffusion equations, differ significantly in that the former are of change of solutions are considered. This is reminiscent of the fact that linear diffusion yields infinite propagation speed, even though the speed of the front is finite. When the strength of the annihilation term increases, as compared with that of the creation term, arbitrary initial conditions (studied numerically) relax to stable platforms that move indefinitly with constant speed. (Author)

  16. A heterogeneous lattice gas model for simulating pedestrian evacuation

    Science.gov (United States)

    Guo, Xiwei; Chen, Jianqiao; Zheng, Yaochen; Wei, Junhong

    2012-02-01

    Based on the cellular automata method (CA model) and the mobile lattice gas model (MLG model), we have developed a heterogeneous lattice gas model for simulating pedestrian evacuation processes in an emergency. A local population density concept is introduced first. The update rule in the new model depends on the local population density and the exit crowded degree factor. The drift D, which is one of the key parameters influencing the evacuation process, is allowed to change according to the local population density of the pedestrians. Interactions including attraction, repulsion, and friction between every two pedestrians and those between a pedestrian and the building wall are described by a nonlinear function of the corresponding distance, and the repulsion forces increase sharply as the distances get small. A critical force of injury is introduced into the model, and its effects on the evacuation process are investigated. The model proposed has heterogeneous features as compared to the MLG model or the basic CA model. Numerical examples show that the model proposed can capture the basic features of pedestrian evacuation, such as clogging and arching phenomena.

  17. Traveling and Pinned Fronts in Bistable Reaction-Diffusion Systems on Networks

    Science.gov (United States)

    Kouvaris, Nikos E.; Kori, Hiroshi; Mikhailov, Alexander S.

    2012-01-01

    Traveling fronts and stationary localized patterns in bistable reaction-diffusion systems have been broadly studied for classical continuous media and regular lattices. Analogs of such non-equilibrium patterns are also possible in networks. Here, we consider traveling and stationary patterns in bistable one-component systems on random Erdös-Rényi, scale-free and hierarchical tree networks. As revealed through numerical simulations, traveling fronts exist in network-organized systems. They represent waves of transition from one stable state into another, spreading over the entire network. The fronts can furthermore be pinned, thus forming stationary structures. While pinning of fronts has previously been considered for chains of diffusively coupled bistable elements, the network architecture brings about significant differences. An important role is played by the degree (the number of connections) of a node. For regular trees with a fixed branching factor, the pinning conditions are analytically determined. For large Erdös-Rényi and scale-free networks, the mean-field theory for stationary patterns is constructed. PMID:23028746

  18. Cluster geometry and survival probability in systems driven by reaction-diffusion dynamics

    International Nuclear Information System (INIS)

    Windus, Alastair; Jensen, Henrik J

    2008-01-01

    We consider a reaction-diffusion model incorporating the reactions A→φ, A→2A and 2A→3A. Depending on the relative rates for sexual and asexual reproduction of the quantity A, the model exhibits either a continuous or first-order absorbing phase transition to an extinct state. A tricritical point separates the two phase lines. While we comment on this critical behaviour, the main focus of the paper is on the geometry of the population clusters that form. We observe the different cluster structures that arise at criticality for the three different types of critical behaviour and show that there exists a linear relationship for the survival probability against initial cluster size at the tricritical point only.

  19. Vorticity field, helicity integral and persistence of entanglement in reaction-diffusion systems

    International Nuclear Information System (INIS)

    Trueba, J L; Arrayas, M

    2009-01-01

    We show that a global description of the stability of entangled structures in reaction-diffusion systems can be made by means of a helicity integral. A vorticity vector field is defined for these systems, as in electromagnetism or fluid dynamics. We have found under which conditions the helicity is conserved or lost through the boundaries of the medium, so the entanglement of structures observed is preserved or disappears during time evolution. We illustrate the theory with an example of knotted entanglement in a FitzHugh-Nagumo model. For this model, we introduce new non-trivial initial conditions using the Hopf fibration and follow the time evolution of the entanglement. (fast track communication)

  20. Vorticity field, helicity integral and persistence of entanglement in reaction-diffusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Trueba, J L; Arrayas, M [Area de Electromagnetismo, Universidad Rey Juan Carlos, Camino del Molino s/n, 28943 Fuenlabrada, Madrid (Spain)

    2009-07-17

    We show that a global description of the stability of entangled structures in reaction-diffusion systems can be made by means of a helicity integral. A vorticity vector field is defined for these systems, as in electromagnetism or fluid dynamics. We have found under which conditions the helicity is conserved or lost through the boundaries of the medium, so the entanglement of structures observed is preserved or disappears during time evolution. We illustrate the theory with an example of knotted entanglement in a FitzHugh-Nagumo model. For this model, we introduce new non-trivial initial conditions using the Hopf fibration and follow the time evolution of the entanglement. (fast track communication)

  1. Cluster geometry and survival probability in systems driven by reaction-diffusion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Windus, Alastair; Jensen, Henrik J [The Institute for Mathematical Sciences, 53 Prince' s Gate, South Kensington, London SW7 2PG (United Kingdom)], E-mail: h.jensen@imperial.ac.uk

    2008-11-15

    We consider a reaction-diffusion model incorporating the reactions A{yields}{phi}, A{yields}2A and 2A{yields}3A. Depending on the relative rates for sexual and asexual reproduction of the quantity A, the model exhibits either a continuous or first-order absorbing phase transition to an extinct state. A tricritical point separates the two phase lines. While we comment on this critical behaviour, the main focus of the paper is on the geometry of the population clusters that form. We observe the different cluster structures that arise at criticality for the three different types of critical behaviour and show that there exists a linear relationship for the survival probability against initial cluster size at the tricritical point only.

  2. A Reaction-Diffusion-Based Coding Rate Control Mechanism for Camera Sensor Networks

    Directory of Open Access Journals (Sweden)

    Naoki Wakamiya

    2010-08-01

    Full Text Available A wireless camera sensor network is useful for surveillance and monitoring for its visibility and easy deployment. However, it suffers from the limited capacity of wireless communication and a network is easily overflown with a considerable amount of video traffic. In this paper, we propose an autonomous video coding rate control mechanism where each camera sensor node can autonomously determine its coding rate in accordance with the location and velocity of target objects. For this purpose, we adopted a biological model, i.e., reaction-diffusion model, inspired by the similarity of biological spatial patterns and the spatial distribution of video coding rate. Through simulation and practical experiments, we verify the effectiveness of our proposal.

  3. A reaction-diffusion-based coding rate control mechanism for camera sensor networks.

    Science.gov (United States)

    Yamamoto, Hiroshi; Hyodo, Katsuya; Wakamiya, Naoki; Murata, Masayuki

    2010-01-01

    A wireless camera sensor network is useful for surveillance and monitoring for its visibility and easy deployment. However, it suffers from the limited capacity of wireless communication and a network is easily overflown with a considerable amount of video traffic. In this paper, we propose an autonomous video coding rate control mechanism where each camera sensor node can autonomously determine its coding rate in accordance with the location and velocity of target objects. For this purpose, we adopted a biological model, i.e., reaction-diffusion model, inspired by the similarity of biological spatial patterns and the spatial distribution of video coding rate. Through simulation and practical experiments, we verify the effectiveness of our proposal.

  4. Oscillatory pulses and wave trains in a bistable reaction-diffusion system with cross diffusion.

    Science.gov (United States)

    Zemskov, Evgeny P; Tsyganov, Mikhail A; Horsthemke, Werner

    2017-01-01

    We study waves with exponentially decaying oscillatory tails in a reaction-diffusion system with linear cross diffusion. To be specific, we consider a piecewise linear approximation of the FitzHugh-Nagumo model, also known as the Bonhoeffer-van der Pol model. We focus on two types of traveling waves, namely solitary pulses that correspond to a homoclinic solution, and sequences of pulses or wave trains, i.e., a periodic solution. The effect of cross diffusion on wave profiles and speed of propagation is analyzed. We find the intriguing result that both pulses and wave trains occur in the bistable cross-diffusive FitzHugh-Nagumo system, whereas only fronts exist in the standard bistable system without cross diffusion.

  5. Monostable traveling waves for a time-periodic and delayed nonlocal reaction-diffusion equation

    Science.gov (United States)

    Li, Panxiao; Wu, Shi-Liang

    2018-04-01

    This paper is concerned with a time-periodic and delayed nonlocal reaction-diffusion population model with monostable nonlinearity. Under quasi-monotone or non-quasi-monotone assumptions, it is known that there exists a critical wave speed c_*>0 such that a periodic traveling wave exists if and only if the wave speed is above c_*. In this paper, we first prove the uniqueness of non-critical periodic traveling waves regardless of whether the model is quasi-monotone or not. Further, in the quasi-monotone case, we establish the exponential stability of non-critical periodic traveling fronts. Finally, we illustrate the main results by discussing two types of death and birth functions arising from population biology.

  6. Exact solutions of linear reaction-diffusion processes on a uniformly growing domain: criteria for successful colonization.

    Directory of Open Access Journals (Sweden)

    Matthew J Simpson

    Full Text Available Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction-diffusion process on 0

  7. Exact solutions of linear reaction-diffusion processes on a uniformly growing domain: criteria for successful colonization.

    Science.gov (United States)

    Simpson, Matthew J

    2015-01-01

    Many processes during embryonic development involve transport and reaction of molecules, or transport and proliferation of cells, within growing tissues. Mathematical models of such processes usually take the form of a reaction-diffusion partial differential equation (PDE) on a growing domain. Previous analyses of such models have mainly involved solving the PDEs numerically. Here, we present a framework for calculating the exact solution of a linear reaction-diffusion PDE on a growing domain. We derive an exact solution for a general class of one-dimensional linear reaction-diffusion process on 0exact solutions with numerical approximations confirms the veracity of the method. Furthermore, our examples illustrate a delicate interplay between: (i) the rate at which the domain elongates, (ii) the diffusivity associated with the spreading density profile, (iii) the reaction rate, and (iv) the initial condition. Altering the balance between these four features leads to different outcomes in terms of whether an initial profile, located near x = 0, eventually overcomes the domain growth and colonizes the entire length of the domain by reaching the boundary where x = L(t).

  8. Green function simulation of Hamiltonian lattice models with stochastic reconfiguration

    International Nuclear Information System (INIS)

    Beccaria, M.

    2000-01-01

    We apply a recently proposed Green function Monte Carlo procedure to the study of Hamiltonian lattice gauge theories. This class of algorithms computes quantum vacuum expectation values by averaging over a set of suitable weighted random walkers. By means of a procedure called stochastic reconfiguration the long standing problem of keeping fixed the walker population without a priori knowledge of the ground state is completely solved. In the U(1) 2 model, which we choose as our theoretical laboratory, we evaluate the mean plaquette and the vacuum energy per plaquette. We find good agreement with previous works using model-dependent guiding functions for the random walkers. (orig.)

  9. Modelling viscoacoustic wave propagation with the lattice Boltzmann method.

    Science.gov (United States)

    Xia, Muming; Wang, Shucheng; Zhou, Hui; Shan, Xiaowen; Chen, Hanming; Li, Qingqing; Zhang, Qingchen

    2017-08-31

    In this paper, the lattice Boltzmann method (LBM) is employed to simulate wave propagation in viscous media. LBM is a kind of microscopic method for modelling waves through tracking the evolution states of a large number of discrete particles. By choosing different relaxation times in LBM experiments and using spectrum ratio method, we can reveal the relationship between the quality factor Q and the parameter τ in LBM. A two-dimensional (2D) homogeneous model and a two-layered model are tested in the numerical experiments, and the LBM results are compared against the reference solution of the viscoacoustic equations based on the Kelvin-Voigt model calculated by finite difference method (FDM). The wavefields and amplitude spectra obtained by LBM coincide with those by FDM, which demonstrates the capability of the LBM with one relaxation time. The new scheme is relatively simple and efficient to implement compared with the traditional lattice methods. In addition, through a mass of experiments, we find that the relaxation time of LBM has a quantitative relationship with Q. Such a novel scheme offers an alternative forward modelling kernel for seismic inversion and a new model to describe the underground media.

  10. Accurate numerical simulation of reaction-diffusion processes for heavy oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Govind, P.A.; Srinivasan, S. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Texas Univ., Austin, TX (United States)

    2008-10-15

    This study evaluated a reaction-diffusion simulation tool designed to analyze the displacement of carbon dioxide (CO{sub 2}) in a simultaneous injection of carbon dioxide and elemental sodium in a heavy oil reservoir. Sodium was used due to the exothermic reaction of sodium with in situ that occurs when heat is used to reduce oil viscosity. The process also results in the formation of sodium hydroxide that reduces interfacial tension at the bitumen interface. A commercial simulation tool was used to model the sodium transport mechanism to the reaction interface through diffusion as well as the reaction zone's subsequent displacement. The aim of the study was to verify if the in situ reaction was able to generate sufficient heat to reduce oil viscosity and improve the displacement of the heavy oil. The study also assessed the accuracy of the reaction front simulation tool, in which an alternate method was used to model the propagation front as a moving heat source. The sensitivity of the simulation results were then evaluated in relation to the diffusion coefficient in order to understand the scaling characteristics of the reaction-diffusion zone. A pore-scale simulation was then up-scaled to grid blocks. Results of the study showed that when sodium suspended in liquid CO{sub 2} is injected into reservoirs, it diffuses through the carrier phase and interacts with water. A random walk diffusion algorithm with reactive dissipation was implemented to more accurately characterize reaction and diffusion processes. It was concluded that the algorithm modelled physical dispersion while neglecting the effect of numerical dispersion. 10 refs., 3 tabs., 24 figs.

  11. Critical behavior in reaction-diffusion systems exhibiting absorbing phase transition

    CERN Document Server

    Ódor, G

    2003-01-01

    Phase transitions of reaction-diffusion systems with site occupation restriction and with particle creation that requires n>1 parents and where explicit diffusion of single particles (A) exists are reviewed. Arguments based on mean-field approximation and simulations are given which support novel kind of non-equilibrium criticality. These are in contradiction with the implications of a suggested phenomenological, multiplicative noise Langevin equation approach and with some of recent numerical analysis. Simulation results for the one and two dimensional binary spreading 2A -> 4A, 4A -> 2A model display a new type of mean-field criticality characterized by alpha=1/3 and beta=1/2 critical exponents suggested in cond-mat/0210615.

  12. Reaction-diffusion-like formalism for plastic neural networks reveals dissipative solitons at criticality

    Science.gov (United States)

    Grytskyy, Dmytro; Diesmann, Markus; Helias, Moritz

    2016-06-01

    Self-organized structures in networks with spike-timing dependent synaptic plasticity (STDP) are likely to play a central role for information processing in the brain. In the present study we derive a reaction-diffusion-like formalism for plastic feed-forward networks of nonlinear rate-based model neurons with a correlation sensitive learning rule inspired by and being qualitatively similar to STDP. After obtaining equations that describe the change of the spatial shape of the signal from layer to layer, we derive a criterion for the nonlinearity necessary to obtain stable dynamics for arbitrary input. We classify the possible scenarios of signal evolution and find that close to the transition to the unstable regime metastable solutions appear. The form of these dissipative solitons is determined analytically and the evolution and interaction of several such coexistent objects is investigated.

  13. Existence of weak solutions to a nonlinear reaction-diffusion system with singular sources

    Directory of Open Access Journals (Sweden)

    Ida de Bonis

    2017-09-01

    Full Text Available We discuss the existence of a class of weak solutions to a nonlinear parabolic system of reaction-diffusion type endowed with singular production terms by reaction. The singularity is due to a potential occurrence of quenching localized to the domain boundary. The kind of quenching we have in mind is due to a twofold contribution: (i the choice of boundary conditions, modeling in our case the contact with an infinite reservoir filled with ready-to-react chemicals and (ii the use of a particular nonlinear, non-Lipschitz structure of the reaction kinetics. Our working techniques use fine energy estimates for approximating non-singular problems and uniform control on the set where singularities are localizing.

  14. Lattice Boltzmann model for simulating immiscible two-phase flows

    International Nuclear Information System (INIS)

    Reis, T; Phillips, T N

    2007-01-01

    The lattice Boltzmann equation is often promoted as a numerical simulation tool that is particularly suitable for predicting the flow of complex fluids. This paper develops a two-dimensional 9-velocity (D2Q9) lattice Boltzmann model for immiscible binary fluids with variable viscosities and density ratio using a single relaxation time for each fluid. In the macroscopic limit, this model is shown to recover the Navier-Stokes equations for two-phase flows. This is achieved by constructing a two-phase component of the collision operator that induces the appropriate surface tension term in the macroscopic equations. A theoretical expression for surface tension is determined. The validity of this analysis is confirmed by comparing numerical and theoretical predictions of surface tension as a function of density. The model is also shown to predict Laplace's law for surface tension and Poiseuille flow of layered immiscible binary fluids. The spinodal decomposition of two fluids of equal density but different viscosity is then studied. At equilibrium, the system comprises one large low viscosity bubble enclosed by the more viscous fluid in agreement with theoretical arguments of Renardy and Joseph (1993 Fundamentals of Two-Fluid Dynamics (New York: Springer)). Two other simulations, namely the non-equilibrium rod rest and the coalescence of two bubbles, are performed to show that this model can be used to simulate two fluids with a large density ratio

  15. The 1D Kondo lattice model at criticality

    International Nuclear Information System (INIS)

    Gulacsi, M.

    1998-01-01

    The transition from a ferromagnetic phase, to a disordered paramagnetic phase, which occurs in one-dimensional Kondo lattice models is described. The transition is the quantum order-disorder transition of the transverse-field Ising chain type, and reflects ferromagnetically ordered regions of localized spins being gradually destroyed as the coupling to the conduction electrons is reduced. For incommensurate conduction band fillings, the low-energy properties of the localized spins near the transition are dominated by anomalous ordered (disordered) regions of localized spins which survive into the ferromagnetic (paramagnetic) phase. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  16. Intersite electron correlations in a Hubbard model on inhomogeneous lattices

    International Nuclear Information System (INIS)

    Takemori, Nayuta; Koga, Akihisa; Hafermann, Hartmut

    2016-01-01

    We study intersite electron correlations in the half-filled Hubbard model on square lattices with periodic and open boundary conditions by means of a real-space dual fermion approach. By calculating renormalization factors, we clarify that nearest-neighbor intersite correlations already significantly reduce the critical interaction. The Mott transition occurs at U/t ∼ 6.4, where U is the interaction strength and t is the hopping integral. This value is consistent with quantum Monte Carlo results. It shows the importance of short-range intersite correlations, which are taken into account in the framework of the real-space dual fermion approach. (paper)

  17. Lattice Boltzmann modeling an introduction for geoscientists and engineers

    CERN Document Server

    Sukop, Michael C

    2005-01-01

    Lattice Boltzmann models have a remarkable ability to simulate single- and multi-phase fluids and transport processes within them. A rich variety of behaviors, including higher Reynolds numbers flows, phase separation, evaporation, condensation, cavitation, buoyancy, and interactions with surfaces can readily be simulated. This book provides a basic introduction that emphasizes intuition and simplistic conceptualization of processes. It avoids the more difficult mathematics that underlies LB models. The model is viewed from a particle perspective where collisions, streaming, and particle-particle/particle-surface interactions constitute the entire conceptual framework. Beginners and those with more interest in model application than detailed mathematical foundations will find this a powerful "quick start" guide. Example simulations, exercises, and computer codes are included. Working code is provided on the Internet.

  18. Synchronization of Reaction-Diffusion Neural Networks With Dirichlet Boundary Conditions and Infinite Delays.

    Science.gov (United States)

    Sheng, Yin; Zhang, Hao; Zeng, Zhigang

    2017-10-01

    This paper is concerned with synchronization for a class of reaction-diffusion neural networks with Dirichlet boundary conditions and infinite discrete time-varying delays. By utilizing theories of partial differential equations, Green's formula, inequality techniques, and the concept of comparison, algebraic criteria are presented to guarantee master-slave synchronization of the underlying reaction-diffusion neural networks via a designed controller. Additionally, sufficient conditions on exponential synchronization of reaction-diffusion neural networks with finite time-varying delays are established. The proposed criteria herein enhance and generalize some published ones. Three numerical examples are presented to substantiate the validity and merits of the obtained theoretical results.

  19. Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains

    Science.gov (United States)

    Wang, Xiaohu; Lu, Kening; Wang, Bixiang

    2018-01-01

    In this paper, we study the Wong-Zakai approximations given by a stationary process via the Wiener shift and their associated long term behavior of the stochastic reaction-diffusion equation driven by a white noise. We first prove the existence and uniqueness of tempered pullback attractors for the Wong-Zakai approximations of stochastic reaction-diffusion equation. Then, we show that the attractors of Wong-Zakai approximations converges to the attractor of the stochastic reaction-diffusion equation for both additive and multiplicative noise.

  20. Cluster evolution and critical cluster sizes for the square and triangular lattice Ising models using lattice animals and Monte Carlo simulations

    NARCIS (Netherlands)

    Eising, G.; Kooi, B. J.

    2012-01-01

    Growth and decay of clusters at temperatures below T-c have been studied for a two-dimensional Ising model for both square and triangular lattices using Monte Carlo (MC) simulations and the enumeration of lattice animals. For the lattice animals, all unique cluster configurations with their internal

  1. Statistical mechanics of directed models of polymers in the square lattice

    CERN Document Server

    Rensburg, J V

    2003-01-01

    Directed square lattice models of polymers and vesicles have received considerable attention in the recent mathematical and physical sciences literature. These are idealized geometric directed lattice models introduced to study phase behaviour in polymers, and include Dyck paths, partially directed paths, directed trees and directed vesicles models. Directed models are closely related to models studied in the combinatorics literature (and are often exactly solvable). They are also simplified versions of a number of statistical mechanics models, including the self-avoiding walk, lattice animals and lattice vesicles. The exchange of approaches and ideas between statistical mechanics and combinatorics have considerably advanced the description and understanding of directed lattice models, and this will be explored in this review. The combinatorial nature of directed lattice path models makes a study using generating function approaches most natural. In contrast, the statistical mechanics approach would introduce...

  2. Overview: Understanding nucleation phenomena from simulations of lattice gas models

    International Nuclear Information System (INIS)

    Binder, Kurt; Virnau, Peter

    2016-01-01

    Monte Carlo simulations of homogeneous and heterogeneous nucleation in Ising/lattice gas models are reviewed with an emphasis on the general insight gained on the mechanisms by which metastable states decay. Attention is paid to the proper distinction of particles that belong to a cluster (droplet), that may trigger a nucleation event, from particles in its environment, a problem crucial near the critical point. Well below the critical point, the lattice structure causes an anisotropy of the interface tension, and hence nonspherical droplet shapes result, making the treatment nontrivial even within the conventional classical theory of homogeneous nucleation. For temperatures below the roughening transition temperature facetted crystals rather than spherical droplets result. The possibility to find nucleation barriers from a thermodynamic analysis avoiding a cluster identification on the particle level is discussed, as well as the question of curvature corrections to the interfacial tension. For the interpretation of heterogeneous nucleation at planar walls, knowledge of contact angles and line tensions is desirable, and methods to extract these quantities from simulations will be mentioned. Finally, also the problem of nucleation near the stability limit of metastable states and the significance of the spinodal curve will be discussed, in the light of simulations of Ising models with medium range interactions.

  3. Lattice model of ionic liquid confined by metal electrodes

    Science.gov (United States)

    Girotto, Matheus; Malossi, Rodrigo M.; dos Santos, Alexandre P.; Levin, Yan

    2018-05-01

    We study, using Monte Carlo simulations, the density profiles and differential capacitance of ionic liquids confined by metal electrodes. To compute the electrostatic energy, we use the recently developed approach based on periodic Green's functions. The method also allows us to easily calculate the induced charge on the electrodes permitting an efficient implementation of simulations in a constant electrostatic potential ensemble. To speed up the simulations further, we model the ionic liquid as a lattice Coulomb gas and precalculate the interaction potential between the ions. We show that the lattice model captures the transition between camel-shaped and bell-shaped capacitance curves—the latter characteristic of ionic liquids (strong coupling limit) and the former of electrolytes (weak coupling). We observe the appearance of a second peak in the differential capacitance at ≈0.5 V for 2:1 ionic liquids, as the packing fraction is increased. Finally, we show that ionic size asymmetry decreases substantially the capacitance maximum, when all other parameters are kept fixed.

  4. Dynamic structure factor for liquid He4 and quantum lattice model

    International Nuclear Information System (INIS)

    Lee, M.H.

    1975-01-01

    It has been realized for some time now that the quantum lattice model (or the anisotropic Heisenberg antiferromagnetic model) is a useful model for studying the properties of quantum liquids especially near the lambda transition. The static critical values calculated from the quantum lattice model are in good agreement with the observed values. Furthermore, it was shown recently that there are collective modes in the quantum lattice model which are equivalent to the plasmons. Hence, it would seem to be interesting to study the dynamic structure factor for the quantum lattice model and to make a comparison with experiment. Work on the dynamic structure factor is reported here. (Auth.)

  5. A Unified Theory of Non-Ideal Gas Lattice Boltzmann Models

    Science.gov (United States)

    Luo, Li-Shi

    1998-01-01

    A non-ideal gas lattice Boltzmann model is directly derived, in an a priori fashion, from the Enskog equation for dense gases. The model is rigorously obtained by a systematic procedure to discretize the Enskog equation (in the presence of an external force) in both phase space and time. The lattice Boltzmann model derived here is thermodynamically consistent and is free of the defects which exist in previous lattice Boltzmann models for non-ideal gases. The existing lattice Boltzmann models for non-ideal gases are analyzed and compared with the model derived here.

  6. Towards quantum simulation of the Kondo-Lattice-Model

    Energy Technology Data Exchange (ETDEWEB)

    Kochanke, Andre

    2017-04-25

    Ultracold quantum gases of alkaline-earth-like metals are a versatile tool to investigate interacting many-body physics by realizing clean and controllable experimental model systems. Their intriguing properties range from energetically low-lying clock transitions, which allow for high-resolution spectroscopy, over meta-stable states, which can be regarded as a second species with orbital degree of freedom, to SU(N) symmetry, allowing novel magnetic phases. These open up new possibilities for quantum simulators. Using them in combination with optical lattices dissipative Fermi-Hubbard models and the Kondo-lattice-model can be realized, two promising examples for probing strongly correlated systems. This thesis presents an experimental apparatus for producing ultracold samples of fermionic {sup 173}Yb (N≤6). A new bicolor dipole trap was implemented with a final, average trap frequency of anti ω=36 Hz. Using optical, resonant pumping and an Optical-Stern-Gerlach scheme, the spin mixture can arbitrarily be changed from a six- to a one-component gas. Typically the degenerate Fermi gases consist of 87000 atoms at 17.5% T{sub F} (N=6) and of 47000 atoms at 19.4% T{sub F} (N=1). The lowest lying meta-stable state {sup 3}P{sub 0} (578 nm) is coherently controlled using a clock-laser setup with a linewidth of FWHM=1 Hz by means of Rabi oscillations or rapid adiabatic passage. By conducting spectroscopic measurements in a 3D magic lattice (759 nm) we demonstrate inter band transitions and observe the {sup 1}S{sub 0}<=>{sup 3}P{sub 0} excitation with a resolution of FWHM=50(2) Hz. Applying these techniques to a two-component spin mixture reveals a shift of the clock-transition caused by spin-exchange interaction between the orbital symmetric vertical stroke eg right angle {sup +} vertical stroke ↑↓ right angle {sup -} and the orbital antisymmetric vertical stroke eg right angle {sup -} vertical stroke ↑↓ right angle {sup +} state. Using the inelastic properties of

  7. Amplitude equations for a sub-diffusive reaction-diffusion system

    International Nuclear Information System (INIS)

    Nec, Y; Nepomnyashchy, A A

    2008-01-01

    A sub-diffusive reaction-diffusion system with a positive definite memory operator and a nonlinear reaction term is analysed. Amplitude equations (Ginzburg-Landau type) are derived for short wave (Turing) and long wave (Hopf) bifurcation points

  8. Study on monostable and bistable reaction-diffusion equations by iteration of travelling wave maps

    Science.gov (United States)

    Yi, Taishan; Chen, Yuming

    2017-12-01

    In this paper, based on the iterative properties of travelling wave maps, we develop a new method to obtain spreading speeds and asymptotic propagation for monostable and bistable reaction-diffusion equations. Precisely, for Dirichlet problems of monostable reaction-diffusion equations on the half line, by making links between travelling wave maps and integral operators associated with the Dirichlet diffusion kernel (the latter is NOT invariant under translation), we obtain some iteration properties of the Dirichlet diffusion and some a priori estimates on nontrivial solutions of Dirichlet problems under travelling wave transformation. We then provide the asymptotic behavior of nontrivial solutions in the space-time region for Dirichlet problems. These enable us to develop a unified method to obtain results on heterogeneous steady states, travelling waves, spreading speeds, and asymptotic spreading behavior for Dirichlet problem of monostable reaction-diffusion equations on R+ as well as of monostable/bistable reaction-diffusion equations on R.

  9. Slow dynamics in translation-invariant quantum lattice models

    Science.gov (United States)

    Michailidis, Alexios A.; Žnidarič, Marko; Medvedyeva, Mariya; Abanin, Dmitry A.; Prosen, Tomaž; Papić, Z.

    2018-03-01

    Many-body quantum systems typically display fast dynamics and ballistic spreading of information. Here we address the open problem of how slow the dynamics can be after a generic breaking of integrability by local interactions. We develop a method based on degenerate perturbation theory that reveals slow dynamical regimes and delocalization processes in general translation invariant models, along with accurate estimates of their delocalization time scales. Our results shed light on the fundamental questions of the robustness of quantum integrable systems and the possibility of many-body localization without disorder. As an example, we construct a large class of one-dimensional lattice models where, despite the absence of asymptotic localization, the transient dynamics is exceptionally slow, i.e., the dynamics is indistinguishable from that of many-body localized systems for the system sizes and time scales accessible in experiments and numerical simulations.

  10. A lattice Boltzmann model for the Burgers-Fisher equation.

    Science.gov (United States)

    Zhang, Jianying; Yan, Guangwu

    2010-06-01

    A lattice Boltzmann model is developed for the one- and two-dimensional Burgers-Fisher equation based on the method of the higher-order moment of equilibrium distribution functions and a series of partial differential equations in different time scales. In order to obtain the two-dimensional Burgers-Fisher equation, vector sigma(j) has been used. And in order to overcome the drawbacks of "error rebound," a new assumption of additional distribution is presented, where two additional terms, in first order and second order separately, are used. Comparisons with the results obtained by other methods reveal that the numerical solutions obtained by the proposed method converge to exact solutions. The model under new assumption gives better results than that with second order assumption. (c) 2010 American Institute of Physics.

  11. Dimers and the Critical Ising Model on lattices of genus >1

    International Nuclear Information System (INIS)

    Costa-Santos, Ruben; McCoy, B.M.

    2002-01-01

    We study the partition function of both Close-Packed Dimers and the Critical Ising Model on a square lattice embedded on a genus two surface. Using numerical and analytical methods we show that the determinants of the Kasteleyn adjacency matrices have a dependence on the boundary conditions that, for large lattice size, can be expressed in terms of genus two theta functions. The period matrix characterizing the continuum limit of the lattice is computed using a discrete holomorphic structure. These results relate in a direct way the lattice combinatorics with conformal field theory, providing new insight to the lattice regularization of conformal field theories on higher genus Riemann surfaces

  12. Global exponential stability of reaction-diffusion recurrent neural networks with time-varying delays

    International Nuclear Information System (INIS)

    Liang Jinling; Cao Jinde

    2003-01-01

    Employing general Halanay inequality, we analyze the global exponential stability of a class of reaction-diffusion recurrent neural networks with time-varying delays. Several new sufficient conditions are obtained to ensure existence, uniqueness and global exponential stability of the equilibrium point of delayed reaction-diffusion recurrent neural networks. The results extend and improve the earlier publications. In addition, an example is given to show the effectiveness of the obtained result

  13. Entropy, free energy and phase transitions in the lattice Lotka-Volterra model

    International Nuclear Information System (INIS)

    Chichigina, O. A.; Tsekouras, G. A.; Provata, A.

    2006-01-01

    A thermodynamic approach is developed for reactive dynamic models restricted to substrates of arbitrary dimensions, including fractal substrates. The thermodynamic formalism is successfully applied to the lattice Lotka-Volterra (LLV) model of autocatalytic reactions on various lattice substrates. Different regimes of reactions described as phases, and phase transitions, are obtained using this approach. The predictions of thermodynamic theory confirm extensive numerical kinetic Monte Carlo simulations on square and fractal lattices. Extensions of the formalism to multispecies LLV models are also presented

  14. Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows.

    Science.gov (United States)

    Li, Q; Luo, K H; Li, X J

    2012-07-01

    The pseudopotential lattice Boltzmann (LB) model is a widely used multiphase model in the LB community. In this model, an interaction force, which is usually implemented via a forcing scheme, is employed to mimic the molecular interactions that cause phase segregation. The forcing scheme is therefore expected to play an important role in the pseudoepotential LB model. In this paper, we aim to address some key issues about forcing schemes in the pseudopotential LB model. First, theoretical and numerical analyses will be made for Shan-Chen's forcing scheme [Shan and Chen, Phys. Rev. E 47, 1815 (1993)] and the exact-difference-method forcing scheme [Kupershtokh et al., Comput. Math. Appl. 58, 965 (2009)]. The nature of these two schemes and their recovered macroscopic equations will be shown. Second, through a theoretical analysis, we will reveal the physics behind the phenomenon that different forcing schemes exhibit different performances in the pseudopotential LB model. Moreover, based on the analysis, we will present an improved forcing scheme and numerically demonstrate that the improved scheme can be treated as an alternative approach to achieving thermodynamic consistency in the pseudopotential LB model.

  15. Exact diagonalization of quantum lattice models on coprocessors

    Science.gov (United States)

    Siro, T.; Harju, A.

    2016-10-01

    We implement the Lanczos algorithm on an Intel Xeon Phi coprocessor and compare its performance to a multi-core Intel Xeon CPU and an NVIDIA graphics processor. The Xeon and the Xeon Phi are parallelized with OpenMP and the graphics processor is programmed with CUDA. The performance is evaluated by measuring the execution time of a single step in the Lanczos algorithm. We study two quantum lattice models with different particle numbers, and conclude that for small systems, the multi-core CPU is the fastest platform, while for large systems, the graphics processor is the clear winner, reaching speedups of up to 7.6 compared to the CPU. The Xeon Phi outperforms the CPU with sufficiently large particle number, reaching a speedup of 2.5.

  16. Lattice models of directed and semiflexible polymers in anisotropic environment

    International Nuclear Information System (INIS)

    Haydukivska, K; Blavatska, V

    2015-01-01

    We study the conformational properties of polymers in presence of extended columnar defects of parallel orientation. Two classes of macromolecules are considered: the so-called partially directed polymers with preferred orientation along direction of the external stretching field and semiflexible polymers. We are working within the frames of lattice models: partially directed self-avoiding walks (PDSAWs) and biased self-avoiding walks (BSAWs). Our numerical analysis of PDSAWs reveals, that competition between the stretching field and anisotropy caused by presence of extended defects leads to existing of three characteristic length scales in the system. At each fixed concentration of disorder we found a transition point, where the influence of extended defects is exactly counterbalanced by the stretching field. Numerical simulations of BSAWs in anisotropic environment reveal an increase of polymer stiffness. In particular, the persistence length of semiflexible polymers increases in presence of disorder. (paper)

  17. Lattice Boltzmann model for melting with natural convection

    International Nuclear Information System (INIS)

    Huber, Christian; Parmigiani, Andrea; Chopard, Bastien; Manga, Michael; Bachmann, Olivier

    2008-01-01

    We develop a lattice Boltzmann method to couple thermal convection and pure-substance melting. The transition from conduction-dominated heat transfer to fully-developed convection is analyzed and scaling laws and previous numerical results are reproduced by our numerical method. We also investigate the limit in which thermal inertia (high Stefan number) cannot be neglected. We use our results to extend the scaling relations obtained at low Stefan number and establish the correlation between the melting front propagation and the Stefan number for fully-developed convection. We conclude by showing that the model presented here is particularly well-suited to study convection melting in geometrically complex media with many applications in geosciences

  18. Multiscale Modeling of Point and Line Defects in Cubic Lattices

    National Research Council Canada - National Science Library

    Chung, P. W; Clayton, J. D

    2007-01-01

    .... This multiscale theory explicitly captures heterogeneity in microscopic atomic motion in crystalline materials, attributed, for example, to the presence of various point and line lattice defects...

  19. Implementing the lattice Boltzmann model on commodity graphics hardware

    International Nuclear Information System (INIS)

    Kaufman, Arie; Fan, Zhe; Petkov, Kaloian

    2009-01-01

    Modern graphics processing units (GPUs) can perform general-purpose computations in addition to the native specialized graphics operations. Due to the highly parallel nature of graphics processing, the GPU has evolved into a many-core coprocessor that supports high data parallelism. Its performance has been growing at a rate of squared Moore's law, and its peak floating point performance exceeds that of the CPU by an order of magnitude. Therefore, it is a viable platform for time-sensitive and computationally intensive applications. The lattice Boltzmann model (LBM) computations are carried out via linear operations at discrete lattice sites, which can be implemented efficiently using a GPU-based architecture. Our simulations produce results comparable to the CPU version while improving performance by an order of magnitude. We have demonstrated that the GPU is well suited for interactive simulations in many applications, including simulating fire, smoke, lightweight objects in wind, jellyfish swimming in water, and heat shimmering and mirage (using the hybrid thermal LBM). We further advocate the use of a GPU cluster for large scale LBM simulations and for high performance computing. The Stony Brook Visual Computing Cluster has been the platform for several applications, including simulations of real-time plume dispersion in complex urban environments and thermal fluid dynamics in a pressurized water reactor. Major GPU vendors have been targeting the high performance computing market with GPU hardware implementations. Software toolkits such as NVIDIA CUDA provide a convenient development platform that abstracts the GPU and allows access to its underlying stream computing architecture. However, software programming for a GPU cluster remains a challenging task. We have therefore developed the Zippy framework to simplify GPU cluster programming. Zippy is based on global arrays combined with the stream programming model and it hides the low-level details of the

  20. Multiple-relaxation-time lattice Boltzmann model for compressible fluids

    International Nuclear Information System (INIS)

    Chen Feng; Xu Aiguo; Zhang Guangcai; Li Yingjun

    2011-01-01

    We present an energy-conserving multiple-relaxation-time finite difference lattice Boltzmann model for compressible flows. The collision step is first calculated in the moment space and then mapped back to the velocity space. The moment space and corresponding transformation matrix are constructed according to the group representation theory. Equilibria of the nonconserved moments are chosen according to the need of recovering compressible Navier-Stokes equations through the Chapman-Enskog expansion. Numerical experiments showed that compressible flows with strong shocks can be well simulated by the present model. The new model works for both low and high speeds compressible flows. It contains more physical information and has better numerical stability and accuracy than its single-relaxation-time version. - Highlights: → We present an energy-conserving MRT finite-difference LB model. → The moment space is constructed according to the group representation theory. → The new model works for both low and high speeds compressible flows. → It has better numerical stability and wider applicable range than its SRT version.

  1. A free wake vortex lattice model for vertical axis wind turbines: Modeling, verification and validation

    International Nuclear Information System (INIS)

    Meng, Fanzhong; Schwarze, Holger; Vorpahl, Fabian; Strobel, Michael

    2014-01-01

    Since the 1970s several research activities had been carried out on developing aerodynamic models for Vertical Axis Wind Turbines (VAWTs). In order to design large VAWTs of MW scale, more accurate aerodynamic calculation is required to predict their aero-elastic behaviours. In this paper, a 3D free wake vortex lattice model for VAWTs is developed, verified and validated. Comparisons to the experimental results show that the 3D free wake vortex lattice model developed is capable of making an accurate prediction of the general performance and the instantaneous aerodynamic forces on the blades. The comparison between momentum method and the vortex lattice model shows that free wake vortex models are needed for detailed loads calculation and for calculating highly loaded rotors

  2. Classical Logic and Quantum Logic with Multiple and Common Lattice Models

    Directory of Open Access Journals (Sweden)

    Mladen Pavičić

    2016-01-01

    Full Text Available We consider a proper propositional quantum logic and show that it has multiple disjoint lattice models, only one of which is an orthomodular lattice (algebra underlying Hilbert (quantum space. We give an equivalent proof for the classical logic which turns out to have disjoint distributive and nondistributive ortholattices. In particular, we prove that both classical logic and quantum logic are sound and complete with respect to each of these lattices. We also show that there is one common nonorthomodular lattice that is a model of both quantum and classical logic. In technical terms, that enables us to run the same classical logic on both a digital (standard, two-subset, 0-1-bit computer and a nondigital (say, a six-subset computer (with appropriate chips and circuits. With quantum logic, the same six-element common lattice can serve us as a benchmark for an efficient evaluation of equations of bigger lattice models or theorems of the logic.

  3. Application to supersymmetric models of Dirac-kaehler formalism on the lattice

    International Nuclear Information System (INIS)

    Zimerman, A.H.

    1987-01-01

    Using Dirac-Kaehler techniques we formulate some supersymmetric models on the lattice. Specifically we consider the Wess-Zumino model with N=2 in two dimensions which is formulated on a space lattice in its Hamiltonian version (continuous time) as well as on the space-time lattice in its Lagrangean version (euclidean space). On the space lattice (Hamiltonian formulation) we study also the supersymmetric Yanh-Mills model with N=4 in four dimensions. After the introduction of lattice covariant derivatives for fields in the adjoint representation of a compact group we write down some new relations which we have obtained and which constitute generalizations on the lattice of those which are known in the continuous case. (author) [pt

  4. Stable lattice Boltzmann model for Maxwell equations in media

    Science.gov (United States)

    Hauser, A.; Verhey, J. L.

    2017-12-01

    The present work shows a method for stable simulations via the lattice Boltzmann (LB) model for electromagnetic waves (EM) transiting homogeneous media. LB models for such media were already presented in the literature, but they suffer from numerical instability when the media transitions are sharp. We use one of these models in the limit of pure vacuum derived from Liu and Yan [Appl. Math. Model. 38, 1710 (2014), 10.1016/j.apm.2013.09.009] and apply an extension that treats the effects of polarization and magnetization separately. We show simulations of simple examples in which EM waves travel into media to quantify error scaling, stability, accuracy, and time scaling. For conductive media, we use the Strang splitting and check the simulations accuracy at the example of the skin effect. Like pure EM propagation, the error for the static limits, which are constructed with a current density added in a first-order scheme, can be less than 1 % . The presented method is an easily implemented alternative for the stabilization of simulation for EM waves propagating in spatially complex structured media properties and arbitrary transitions.

  5. A Lattice Model for Bidirectional Pedestrian Flow on Gradient Road

    International Nuclear Information System (INIS)

    Ge Hong-Xia; Cheng Rong-Jun; Lo Siu-Ming

    2014-01-01

    Ramps and sloping roads appear everywhere in the built environment. It is obvious that the movement pattern of people in the sloping path may be different as compared with the pattern on level roads. Previously, most of the studies, especially the mathematical and simulation models, on pedestrian movement consider the flow at level routes. This study proposes a new lattice model for bidirectional pedestrian flow on gradient road. The stability condition is obtained by using linear stability theory. The nonlinear analysis method is employed to derive the modified Korteweg-de Vries (mKdV) equation, and the space of pedestrian flow is divided into three regions: the stable region, the metastable region, and the unstable region respectively. Furthermore, the time-dependent Ginzburg—Landan (TDGL) equation is deduced and solved through the reductive perturbation method. Finally, we present detailed results obtained from the model, and it is found that the stability of the model is enhanced in uphill situation while reduced in downhill situation with increasing slope. (general)

  6. Exponential Stability for Impulsive BAM Neural Networks with Time-Varying Delays and Reaction-Diffusion Terms

    Directory of Open Access Journals (Sweden)

    Qiankun Song

    2007-06-01

    Full Text Available Impulsive bidirectional associative memory neural network model with time-varying delays and reaction-diffusion terms is considered. Several sufficient conditions ensuring the existence, uniqueness, and global exponential stability of equilibrium point for the addressed neural network are derived by M-matrix theory, analytic methods, and inequality techniques. Moreover, the exponential convergence rate index is estimated, which depends on the system parameters. The obtained results in this paper are less restrictive than previously known criteria. Two examples are given to show the effectiveness of the obtained results.

  7. Exponential Stability for Impulsive BAM Neural Networks with Time-Varying Delays and Reaction-Diffusion Terms

    Directory of Open Access Journals (Sweden)

    Cao Jinde

    2007-01-01

    Full Text Available Impulsive bidirectional associative memory neural network model with time-varying delays and reaction-diffusion terms is considered. Several sufficient conditions ensuring the existence, uniqueness, and global exponential stability of equilibrium point for the addressed neural network are derived by M-matrix theory, analytic methods, and inequality techniques. Moreover, the exponential convergence rate index is estimated, which depends on the system parameters. The obtained results in this paper are less restrictive than previously known criteria. Two examples are given to show the effectiveness of the obtained results.

  8. Fourier spectral methods for fractional-in-space reaction-diffusion equations

    KAUST Repository

    Bueno-Orovio, Alfonso

    2014-04-01

    © 2014, Springer Science+Business Media Dordrecht. Fractional differential equations are becoming increasingly used as a powerful modelling approach for understanding the many aspects of nonlocality and spatial heterogeneity. However, the numerical approximation of these models is demanding and imposes a number of computational constraints. In this paper, we introduce Fourier spectral methods as an attractive and easy-to-code alternative for the integration of fractional-in-space reaction-diffusion equations described by the fractional Laplacian in bounded rectangular domains of ℝ. The main advantages of the proposed schemes is that they yield a fully diagonal representation of the fractional operator, with increased accuracy and efficiency when compared to low-order counterparts, and a completely straightforward extension to two and three spatial dimensions. Our approach is illustrated by solving several problems of practical interest, including the fractional Allen–Cahn, FitzHugh–Nagumo and Gray–Scott models, together with an analysis of the properties of these systems in terms of the fractional power of the underlying Laplacian operator.

  9. The two-regime method for optimizing stochastic reaction-diffusion simulations

    KAUST Repository

    Flegg, M. B.

    2011-10-19

    Spatial organization and noise play an important role in molecular systems biology. In recent years, a number of software packages have been developed for stochastic spatio-temporal simulation, ranging from detailed molecular-based approaches to less detailed compartment-based simulations. Compartment-based approaches yield quick and accurate mesoscopic results, but lack the level of detail that is characteristic of the computationally intensive molecular-based models. Often microscopic detail is only required in a small region (e.g. close to the cell membrane). Currently, the best way to achieve microscopic detail is to use a resource-intensive simulation over the whole domain. We develop the two-regime method (TRM) in which a molecular-based algorithm is used where desired and a compartment-based approach is used elsewhere. We present easy-to-implement coupling conditions which ensure that the TRM results have the same accuracy as a detailed molecular-based model in the whole simulation domain. Therefore, the TRM combines strengths of previously developed stochastic reaction-diffusion software to efficiently explore the behaviour of biological models. Illustrative examples and the mathematical justification of the TRM are also presented.

  10. Axisymmetric Lattice Boltzmann Model of Droplet Impact on Solid Surfaces

    Science.gov (United States)

    Dalgamoni, Hussein; Yong, Xin

    2017-11-01

    Droplet impact is a ubiquitous fluid phenomena encountered in scientific and engineering applications such as ink-jet printing, coating, electronics manufacturing, and many others. It is of great technological importance to understand the detailed dynamics of drop impact on various surfaces. The lattice Boltzmann method (LBM) emerges as an efficient method for modeling complex fluid systems involving rapidly evolving fluid-fluid and fluid-solid interfaces with complex geometries. In this work, we model droplet impact on flat solid substrates with well-defined wetting behavior using a two-phase axisymmetric LBM with high density and viscosity contrasts. We extend the two-dimensional Lee and Liu model to capture axisymmetric effect in the normal impact. First we compare the 2D axisymmetric results with the 2D and 3D results reported by Lee and Liu to probe the effect of axisymmetric terms. Then, we explore the effects of Weber number, Ohnesorge number, and droplet-surface equilibrium contact angle on the impact. The dynamic contact angle and spreading factor of the droplet during impact are investigated to qualitatively characterize the impact dynamics.

  11. On the characterization and software implementation of general protein lattice models.

    Directory of Open Access Journals (Sweden)

    Alessio Bechini

    Full Text Available models of proteins have been widely used as a practical means to computationally investigate general properties of the system. In lattice models any sterically feasible conformation is represented as a self-avoiding walk on a lattice, and residue types are limited in number. So far, only two- or three-dimensional lattices have been used. The inspection of the neighborhood of alpha carbons in the core of real proteins reveals that also lattices with higher coordination numbers, possibly in higher dimensional spaces, can be adopted. In this paper, a new general parametric lattice model for simplified protein conformations is proposed and investigated. It is shown how the supporting software can be consistently designed to let algorithms that operate on protein structures be implemented in a lattice-agnostic way. The necessary theoretical foundations are developed and organically presented, pinpointing the role of the concept of main directions in lattice-agnostic model handling. Subsequently, the model features across dimensions and lattice types are explored in tests performed on benchmark protein sequences, using a Python implementation. Simulations give insights on the use of square and triangular lattices in a range of dimensions. The trend of potential minimum for sequences of different lengths, varying the lattice dimension, is uncovered. Moreover, an extensive quantitative characterization of the usage of the so-called "move types" is reported for the first time. The proposed general framework for the development of lattice models is simple yet complete, and an object-oriented architecture can be proficiently employed for the supporting software, by designing ad-hoc classes. The proposed framework represents a new general viewpoint that potentially subsumes a number of solutions previously studied. The adoption of the described model pushes to look at protein structure issues from a more general and essential perspective, making

  12. An incomplete assembly with thresholding algorithm for systems of reaction-diffusion equations in three space dimensions IAT for reaction-diffusion systems

    International Nuclear Information System (INIS)

    Moore, Peter K.

    2003-01-01

    Solving systems of reaction-diffusion equations in three space dimensions can be prohibitively expensive both in terms of storage and CPU time. Herein, I present a new incomplete assembly procedure that is designed to reduce storage requirements. Incomplete assembly is analogous to incomplete factorization in that only a fixed number of nonzero entries are stored per row and a drop tolerance is used to discard small values. The algorithm is incorporated in a finite element method-of-lines code and tested on a set of reaction-diffusion systems. The effect of incomplete assembly on CPU time and storage and on the performance of the temporal integrator DASPK, algebraic solver GMRES and preconditioner ILUT is studied

  13. Lattice Boltzmann heat transfer model for permeable voxels

    Science.gov (United States)

    Pereira, Gerald G.; Wu, Bisheng; Ahmed, Shakil

    2017-12-01

    We develop a gray-scale lattice Boltzmann (LB) model to study fluid flow combined with heat transfer for flow through porous media where voxels may be partially solid (or void). Heat transfer in rocks may lead to deformation, which in turn can modulate the fluid flow and so has significant contribution to rock permeability. The LB temperature field is compared to a finite difference solution of the continuum partial differential equations for fluid flow in a channel. Excellent quantitative agreement is found for both Poiseuille channel flow and Brinkman flow. The LB model is then applied to sample porous media such as packed beds and also more realistic sandstone rock sample, and both the convective and diffusive regimes are recovered when varying the thermal diffusivity. It is found that while the rock permeability can be comparatively small (order milli-Darcy), the temperature field can show significant variation depending on the thermal convection of the fluid. This LB method has significant advantages over other numerical methods such as finite and boundary element methods in dealing with coupled fluid flow and heat transfer in rocks which have irregular and nonsmooth pore spaces.

  14. Lattice model for influenza spreading with spontaneous behavioral changes.

    Science.gov (United States)

    Fierro, Annalisa; Liccardo, Antonella

    2013-01-01

    Individual behavioral response to the spreading of an epidemic plays a crucial role in the progression of the epidemic itself. The risk perception induces individuals to adopt a protective behavior, as for instance reducing their social contacts, adopting more restrictive hygienic measures or undergoing prophylaxis procedures. In this paper, starting with a previously developed lattice-gas SIR model, we construct a coupled behavior-disease model for influenza spreading with spontaneous behavioral changes. The focus is on self-initiated behavioral changes that alter the susceptibility to the disease, without altering the contact patterns among individuals. Three different mechanisms of awareness spreading are analyzed: the local spreading due to the presence in the neighborhood of infective individuals; the global spreading due to the news published by the mass media and to educational campaigns implemented at institutional level; the local spreading occurring through the "thought contagion" among aware and unaware individuals. The peculiarity of the present approach is that the awareness spreading model is calibrated on available data on awareness and concern of the population about the risk of contagion. In particular, the model is validated against the A(H1N1) epidemic outbreak in Italy during the 2009/2010 season, by making use of the awareness data gathered by the behavioral risk factor surveillance system (PASSI). We find that, increasing the accordance between the simulated awareness spreading and the PASSI data on risk perception, the agreement between simulated and experimental epidemiological data improves as well. Furthermore, we show that, within our model, the primary mechanism to reproduce a realistic evolution of the awareness during an epidemic, is the one due to globally available information. This result highlights how crucial is the role of mass media and educational campaigns in influencing the epidemic spreading of infectious diseases.

  15. Lattice model for influenza spreading with spontaneous behavioral changes.

    Directory of Open Access Journals (Sweden)

    Annalisa Fierro

    Full Text Available Individual behavioral response to the spreading of an epidemic plays a crucial role in the progression of the epidemic itself. The risk perception induces individuals to adopt a protective behavior, as for instance reducing their social contacts, adopting more restrictive hygienic measures or undergoing prophylaxis procedures. In this paper, starting with a previously developed lattice-gas SIR model, we construct a coupled behavior-disease model for influenza spreading with spontaneous behavioral changes. The focus is on self-initiated behavioral changes that alter the susceptibility to the disease, without altering the contact patterns among individuals. Three different mechanisms of awareness spreading are analyzed: the local spreading due to the presence in the neighborhood of infective individuals; the global spreading due to the news published by the mass media and to educational campaigns implemented at institutional level; the local spreading occurring through the "thought contagion" among aware and unaware individuals. The peculiarity of the present approach is that the awareness spreading model is calibrated on available data on awareness and concern of the population about the risk of contagion. In particular, the model is validated against the A(H1N1 epidemic outbreak in Italy during the 2009/2010 season, by making use of the awareness data gathered by the behavioral risk factor surveillance system (PASSI. We find that, increasing the accordance between the simulated awareness spreading and the PASSI data on risk perception, the agreement between simulated and experimental epidemiological data improves as well. Furthermore, we show that, within our model, the primary mechanism to reproduce a realistic evolution of the awareness during an epidemic, is the one due to globally available information. This result highlights how crucial is the role of mass media and educational campaigns in influencing the epidemic spreading of infectious

  16. Polar-coordinate lattice Boltzmann modeling of compressible flows

    Science.gov (United States)

    Lin, Chuandong; Xu, Aiguo; Zhang, Guangcai; Li, Yingjun; Succi, Sauro

    2014-01-01

    We present a polar coordinate lattice Boltzmann kinetic model for compressible flows. A method to recover the continuum distribution function from the discrete distribution function is indicated. Within the model, a hybrid scheme being similar to, but different from, the operator splitting is proposed. The temporal evolution is calculated analytically, and the convection term is solved via a modified Warming-Beam (MWB) scheme. Within the MWB scheme a suitable switch function is introduced. The current model works not only for subsonic flows but also for supersonic flows. It is validated and verified via the following well-known benchmark tests: (i) the rotational flow, (ii) the stable shock tube problem, (iii) the Richtmyer-Meshkov (RM) instability, and (iv) the Kelvin-Helmholtz instability. As an original application, we studied the nonequilibrium characteristics of the system around three kinds of interfaces, the shock wave, the rarefaction wave, and the material interface, for two specific cases. In one of the two cases, the material interface is initially perturbed, and consequently the RM instability occurs. It is found that the macroscopic effects due to deviating from thermodynamic equilibrium around the material interface differ significantly from those around the mechanical interfaces. The initial perturbation at the material interface enhances the coupling of molecular motions in different degrees of freedom. The amplitude of deviation from thermodynamic equilibrium around the shock wave is much higher than those around the rarefaction wave and material interface. By comparing each component of the high-order moments and its value in equilibrium, we can draw qualitatively the main behavior of the actual distribution function. These results deepen our understanding of the mechanical and material interfaces from a more fundamental level, which is indicative for constructing macroscopic models and other kinds of kinetic models.

  17. Standard model and chiral gauge theories on the lattice

    International Nuclear Information System (INIS)

    Smit, J.

    1990-01-01

    A review is given of developments in lattice formulations of chiral gauge theories. There is now evidence that the unwanted fermion doublers can be decoupled satisfactorily by giving them masses of the order of the cutoff. (orig.)

  18. Stability of void lattices under irradiation: a kinetic model

    International Nuclear Information System (INIS)

    Benoist, P.; Martin, G.

    1975-01-01

    Voids are imbedded in a homogeneous medium where point defects are uniformly created and annihilated. As shown by a perturbation calculation, the proportion of the defects which are lost on the cavities goes through a maximum, when the voids are arranged on a translation lattice. If a void is displaced from its lattice site, its growth rate becomes anisotropic and is larger in the direction of the vacant site. The relative efficiency of BCC versus FCC void lattices for the capture of point defects is shown to depend on the relaxation length of the point defects in the surrounding medium. It is shown that the rate of energy dissipation in the crystal under irradiation is maximum when the voids are ordered on the appropriate lattice

  19. Stability of void lattices under irradiation: a kinetic model

    International Nuclear Information System (INIS)

    Benoist, P.; Martin, G.

    1975-01-01

    Voids are imbedded in a homogeneous medium where point defects are uniformly created and annihilated. As shown by a perturbation calculation, the proportion of the defects which are lost on the cavities goes through a maximum, when the voids are arranged on a translation lattice. If a void is displaced from its lattice site, its growth the rate becomes anisotropic and is larger in the direction of the vacant site. The relative efficiency of BCC versus FCC void lattices for the capture of point defects is shown to depend on the relaxation length of the point defects in the surrounding medium. It is shown that the rate of energy dissipation in the crystal under irradiation is maximum when the voids are ordered on the appropriate lattice [fr

  20. Superconductivity in the Penson-Kolb Model on a Triangular Lattice

    Science.gov (United States)

    Ptok, A.; Mierzejewski, M.

    2008-07-01

    We investigate properties of the two-dimensional Penson-Kolb model with repulsive pair hopping interaction. In the case of a bipartite square lattice this interaction may lead to the η-type pairing, when the phase of superconducting order parameter changes from one lattice site to the neighboring one. We show that this interaction may be responsible for the onset of superconductivity also for a triangular lattice. We discuss the spatial dependence of the superconducting order parameter and demonstrate that the total momentum of the paired electrons is determined by the lattice geometry.

  1. Stability analysis of impulsive fuzzy cellular neural networks with distributed delays and reaction-diffusion terms

    International Nuclear Information System (INIS)

    Li Zuoan; Li Kelin

    2009-01-01

    In this paper, we investigate a class of impulsive fuzzy cellular neural networks with distributed delays and reaction-diffusion terms. By employing the delay differential inequality with impulsive initial conditions and M-matrix theory, we find some sufficient conditions ensuring the existence, uniqueness and global exponential stability of equilibrium point for impulsive fuzzy cellular neural networks with distributed delays and reaction-diffusion terms. In particular, the estimate of the exponential converging index is also provided, which depends on the system parameters. An example is given to show the effectiveness of the results obtained here.

  2. Global exponential stability of fuzzy cellular neural networks with delays and reaction-diffusion terms

    International Nuclear Information System (INIS)

    Wang Jian; Lu Junguo

    2008-01-01

    In this paper, we study the global exponential stability of fuzzy cellular neural networks with delays and reaction-diffusion terms. By constructing a suitable Lyapunov functional and utilizing some inequality techniques, we obtain a sufficient condition for the uniqueness and global exponential stability of the equilibrium solution for a class of fuzzy cellular neural networks with delays and reaction-diffusion terms. The result imposes constraint conditions on the network parameters independently of the delay parameter. The result is also easy to check and plays an important role in the design and application of globally exponentially stable fuzzy neural circuits

  3. Nonlinear reaction-diffusion equations with delay: some theorems, test problems, exact and numerical solutions

    Science.gov (United States)

    Polyanin, A. D.; Sorokin, V. G.

    2017-12-01

    The paper deals with nonlinear reaction-diffusion equations with one or several delays. We formulate theorems that allow constructing exact solutions for some classes of these equations, which depend on several arbitrary functions. Examples of application of these theorems for obtaining new exact solutions in elementary functions are provided. We state basic principles of construction, selection, and use of test problems for nonlinear partial differential equations with delay. Some test problems which can be suitable for estimating accuracy of approximate analytical and numerical methods of solving reaction-diffusion equations with delay are presented. Some examples of numerical solutions of nonlinear test problems with delay are considered.

  4. A new electron gas model for lattice vibrations in metals I : development of the model

    International Nuclear Information System (INIS)

    Ramamurthy, V.; Neelkandan, K.

    1978-01-01

    The theoretical study of the lattice dynamics of metals is generally based on either the phenomenological force constant method or the pseudopotential method. However, it has been found that all the existing phenomenological models are inconsistent. Hence a new model based on the deformation potential approximation has been developed. By comparing this model with the existing models, its salient features and limitations are discussed. (author)

  5. Grid refinement model in lattice Boltzmann method for stream function-vorticity formulations

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Myung Seob [Dept. of Mechanical Engineering, Dongyang Mirae University, Seoul (Korea, Republic of)

    2015-03-15

    In this study, we present a grid refinement model in the lattice Boltzmann method (LBM) for two-dimensional incompressible fluid flow. That is, the model combines the desirable features of the lattice Boltzmann method and stream function-vorticity formulations. In order to obtain an accurate result, very fine grid (or lattice) is required near the solid boundary. Therefore, the grid refinement model is used in the lattice Boltzmann method for stream function-vorticity formulation. This approach is more efficient in that it can obtain the same accurate solution as that in single-block approach even if few lattices are used for computation. In order to validate the grid refinement approach for the stream function-vorticity formulation, the numerical simulations of lid-driven cavity flows were performed and good results were obtained.

  6. Hamiltonian Monte Carlo study of (1+1)-dimensional models with restricted supersymmetry on the lattice

    International Nuclear Information System (INIS)

    Ranft, J.; Schiller, A.

    1984-01-01

    Lattice versions with restricted suppersymmetry of simple (1+1)-dimensional supersymmetric models are numerically studied using a local hamiltonian Monte Carlo method. The pattern of supersymmetry breaking closely follows the expectations of Bartels and Bronzan obtain in an alternative lattice formulation. (orig.)

  7. Wave Propagation in Finite Element and Mass-Spring-Dashpot Lattice Models

    National Research Council Canada - National Science Library

    Holt-Phoenix, Marianne S

    2006-01-01

    ...), and a mass-spring-dashpot lattice model (MSDLM) are investigated. Specifically, the error in the ultrasonic phase speed with variations in Poisson's ratio and angle of incidence is evaluated in each model of an isotropic elastic solid...

  8. Z2 monopoles in the standard SU(2) lattice gauge theory model

    International Nuclear Information System (INIS)

    Mack, G.; Petkova, V.B.

    1979-04-01

    The standard SU(2) lattice gauge theory model without fermions may be considered as a Z 2 model with monopoles and fluctuating coupling constants. At low temperatures β -1 (= small bare coupling constant) the monopoles are confined. (orig.) [de

  9. Study of possible energy upgrade for the ALS and modeling of the ''Real Lattice'' for the diagnosis of lattice problems

    International Nuclear Information System (INIS)

    Meddahi, M.; Bengtsson, J.

    1993-05-01

    We have studied change of expected performance of the Advanced Light Source storage ring at LBL for the (design) nominal and maximum energy of 1.5 and 1.9 GeV respectively. Furthermore, we have also studied a possible increase to 2.3 GeV by modeling the change of dynamical aperture caused by saturation of the magnets. Independently, we have also modeled the beam's trajectory at injection. Comparison with bpm data from early storage ring commissioning led to the diagnosis of a major lattice error due to a short in a quadrupole, which was rectified leading to stored beam of 60 turns

  10. Exact lattice supersymmetry: The two-dimensional N=2 Wess-Zumino model

    International Nuclear Information System (INIS)

    Catterall, Simon; Karamov, Sergey

    2002-01-01

    We study the two-dimensional Wess-Zumino model with extended N=2 supersymmetry on the lattice. The lattice prescription we choose has the merit of preserving exactly a single supersymmetric invariance at finite lattice spacing a. Furthermore, we construct three other transformations of the lattice fields under which the variation of the lattice action vanishes to O(ga 2 ) where g is a typical interaction coupling. These four transformations correspond to the two Majorana supercharges of the continuum theory. We also derive lattice Ward identities corresponding to these exact and approximate symmetries. We use dynamical fermion simulations to check the equality of the mass gaps in the boson and fermion sectors and to check the lattice Ward identities. At least for weak coupling we see no problems associated with a lack of reflection positivity in the lattice action and find good agreement with theory. At strong coupling we provide evidence that problems associated with a lack of reflection positivity are evaded for small enough lattice spacing

  11. Visualization of protein folding funnels in lattice models.

    Directory of Open Access Journals (Sweden)

    Antonio B Oliveira

    Full Text Available Protein folding occurs in a very high dimensional phase space with an exponentially large number of states, and according to the energy landscape theory it exhibits a topology resembling a funnel. In this statistical approach, the folding mechanism is unveiled by describing the local minima in an effective one-dimensional representation. Other approaches based on potential energy landscapes address the hierarchical structure of local energy minima through disconnectivity graphs. In this paper, we introduce a metric to describe the distance between any two conformations, which also allows us to go beyond the one-dimensional representation and visualize the folding funnel in 2D and 3D. In this way it is possible to assess the folding process in detail, e.g., by identifying the connectivity between conformations and establishing the paths to reach the native state, in addition to regions where trapping may occur. Unlike the disconnectivity maps method, which is based on the kinetic connections between states, our methodology is based on structural similarities inferred from the new metric. The method was developed in a 27-mer protein lattice model, folded into a 3×3×3 cube. Five sequences were studied and distinct funnels were generated in an analysis restricted to conformations from the transition-state to the native configuration. Consistent with the expected results from the energy landscape theory, folding routes can be visualized to probe different regions of the phase space, as well as determine the difficulty in folding of the distinct sequences. Changes in the landscape due to mutations were visualized, with the comparison between wild and mutated local minima in a single map, which serves to identify different trapping regions. The extension of this approach to more realistic models and its use in combination with other approaches are discussed.

  12. New mechanism of spiral wave initiation in a reaction-diffusion-mechanics system.

    Directory of Open Access Journals (Sweden)

    Louis D Weise

    Full Text Available Spiral wave initiation in the heart muscle is a mechanism for the onset of dangerous cardiac arrhythmias. A standard protocol for spiral wave initiation is the application of a stimulus in the refractory tail of a propagating excitation wave, a region that we call the "classical vulnerable zone." Previous studies of vulnerability to spiral wave initiation did not take the influence of deformation into account, which has been shown to have a substantial effect on the excitation process of cardiomyocytes via the mechano-electrical feedback phenomenon. In this work we study the effect of deformation on the vulnerability of excitable media in a discrete reaction-diffusion-mechanics (dRDM model. The dRDM model combines FitzHugh-Nagumo type equations for cardiac excitation with a discrete mechanical description of a finite-elastic isotropic material (Seth material to model cardiac excitation-contraction coupling and stretch activated depolarizing current. We show that deformation alters the "classical," and forms a new vulnerable zone at longer coupling intervals. This mechanically caused vulnerable zone results in a new mechanism of spiral wave initiation, where unidirectional conduction block and rotation directions of the consequently initiated spiral waves are opposite compared to the mechanism of spiral wave initiation due to the "classical vulnerable zone." We show that this new mechanism of spiral wave initiation can naturally occur in situations that involve wave fronts with curvature, and discuss its relation to supernormal excitability of cardiac tissue. The concept of mechanically induced vulnerability may lead to a better understanding about the onset of dangerous heart arrhythmias via mechano-electrical feedback.

  13. New mechanism of spiral wave initiation in a reaction-diffusion-mechanics system.

    Science.gov (United States)

    Weise, Louis D; Panfilov, Alexander V

    2011-01-01

    Spiral wave initiation in the heart muscle is a mechanism for the onset of dangerous cardiac arrhythmias. A standard protocol for spiral wave initiation is the application of a stimulus in the refractory tail of a propagating excitation wave, a region that we call the "classical vulnerable zone." Previous studies of vulnerability to spiral wave initiation did not take the influence of deformation into account, which has been shown to have a substantial effect on the excitation process of cardiomyocytes via the mechano-electrical feedback phenomenon. In this work we study the effect of deformation on the vulnerability of excitable media in a discrete reaction-diffusion-mechanics (dRDM) model. The dRDM model combines FitzHugh-Nagumo type equations for cardiac excitation with a discrete mechanical description of a finite-elastic isotropic material (Seth material) to model cardiac excitation-contraction coupling and stretch activated depolarizing current. We show that deformation alters the "classical," and forms a new vulnerable zone at longer coupling intervals. This mechanically caused vulnerable zone results in a new mechanism of spiral wave initiation, where unidirectional conduction block and rotation directions of the consequently initiated spiral waves are opposite compared to the mechanism of spiral wave initiation due to the "classical vulnerable zone." We show that this new mechanism of spiral wave initiation can naturally occur in situations that involve wave fronts with curvature, and discuss its relation to supernormal excitability of cardiac tissue. The concept of mechanically induced vulnerability may lead to a better understanding about the onset of dangerous heart arrhythmias via mechano-electrical feedback.

  14. Discrete-to-continuum modelling of weakly interacting incommensurate two-dimensional lattices.

    Science.gov (United States)

    Español, Malena I; Golovaty, Dmitry; Wilber, J Patrick

    2018-01-01

    In this paper, we derive a continuum variational model for a two-dimensional deformable lattice of atoms interacting with a two-dimensional rigid lattice. The starting point is a discrete atomistic model for the two lattices which are assumed to have slightly different lattice parameters and, possibly, a small relative rotation. This is a prototypical example of a three-dimensional system consisting of a graphene sheet suspended over a substrate. We use a discrete-to-continuum procedure to obtain the continuum model which recovers both qualitatively and quantitatively the behaviour observed in the corresponding discrete model. The continuum model predicts that the deformable lattice develops a network of domain walls characterized by large shearing, stretching and bending deformation that accommodates the misalignment and/or mismatch between the deformable and rigid lattices. Two integer-valued parameters, which can be identified with the components of a Burgers vector, describe the mismatch between the lattices and determine the geometry and the details of the deformation associated with the domain walls.

  15. Existence of global solutions to reaction-diffusion systems via a Lyapunov functional

    Directory of Open Access Journals (Sweden)

    Said Kouachi

    2001-10-01

    Full Text Available The purpose of this paper is to construct polynomial functionals (according to solutions of the coupled reaction-diffusion equations which give $L^{p}$-bounds for solutions. When the reaction terms are sufficiently regular, using the well known regularizing effect, we deduce the existence of global solutions. These functionals are obtained independently of work done by Malham and Xin [11].

  16. Degree, instability and bifurcation of reaction-diffusion systems with obstacles near certain hyperbolas

    Czech Academy of Sciences Publication Activity Database

    Eisner, J.; Väth, Martin

    2016-01-01

    Roč. 135, April (2016), s. 158-193 ISSN 0362-546X Institutional support: RVO:67985840 Keywords : reaction-diffusion system * turing instability * global bifurcation Subject RIV: BA - General Mathematics Impact factor: 1.192, year: 2016 http://www.sciencedirect.com/science/article/pii/S0362546X16000146

  17. Dynamical Behaviors of Stochastic Reaction-Diffusion Cohen-Grossberg Neural Networks with Delays

    Directory of Open Access Journals (Sweden)

    Li Wan

    2012-01-01

    Full Text Available This paper investigates dynamical behaviors of stochastic Cohen-Grossberg neural network with delays and reaction diffusion. By employing Lyapunov method, Poincaré inequality and matrix technique, some sufficient criteria on ultimate boundedness, weak attractor, and asymptotic stability are obtained. Finally, a numerical example is given to illustrate the correctness and effectiveness of our theoretical results.

  18. Concentration fluctuations in non-isothermal reaction-diffusion systems. II. The nonlinear case

    NARCIS (Netherlands)

    Bedeaux, D.; Ortiz de Zárate, J.M.; Pagonabarraga, I.; Sengers, J.V.; Kjelstrup, S.

    2011-01-01

    In this paper, we consider a simple reaction-diffusion system, namely, a binary fluid mixture with an association-dissociation reaction between two species. We study fluctuations at hydrodynamic spatiotemporal scales when this mixture is driven out of equilibrium by the presence of a temperature

  19. The entropy dissipation method for spatially inhomogeneous reaction-diffusion-type systems

    KAUST Repository

    Di Francesco, M.; Fellner, K.; Markowich, P. A

    2008-01-01

    and reaction terms and admit fewer conservation laws than the size of the system. In particular, we successfully apply the entropy approach to general linear systems and to a nonlinear example of a reaction-diffusion-convection system arising in solid

  20. Flexible single molecule simulation of reaction-diffusion processes

    International Nuclear Information System (INIS)

    Hellander, Stefan; Loetstedt, Per

    2011-01-01

    An algorithm is developed for simulation of the motion and reactions of single molecules at a microscopic level. The molecules diffuse in a solvent and react with each other or a polymer and molecules can dissociate. Such simulations are of interest e.g. in molecular biology. The algorithm is similar to the Green's function reaction dynamics (GFRD) algorithm by van Zon and ten Wolde where longer time steps can be taken by computing the probability density functions (PDFs) and then sample from the distribution functions. Our computation of the PDFs is much less complicated than GFRD and more flexible. The solution of the partial differential equation for the PDF is split into two steps to simplify the calculations. The sampling is without splitting error in two of the coordinate directions for a pair of molecules and a molecule-polymer interaction and is approximate in the third direction. The PDF is obtained either from an analytical solution or a numerical discretization. The errors due to the operator splitting, the partitioning of the system, and the numerical approximations are analyzed. The method is applied to three different systems involving up to four reactions. Comparisons with other mesoscopic and macroscopic models show excellent agreement.

  1. Magnetic fluctuations in the quantized vacuum of the Georgi-Glashow model on the lattice

    International Nuclear Information System (INIS)

    Mitryushkin, V.K.; Zadorozhnyj, A.M.

    1987-01-01

    Influence of (electro)magnetic fluctuations on the phase structure of the 4D-Georgi-Glashow model on the lattice. The distributions of (electro)magnetic fluxes and different correlations were measured using the Monte-Carlo method

  2. Fitted Fourier-pseudospectral methods for solving a delayed reaction-diffusion partial differential equation in biology

    Science.gov (United States)

    Adam, A. M. A.; Bashier, E. B. M.; Hashim, M. H. A.; Patidar, K. C.

    2017-07-01

    In this work, we design and analyze a fitted numerical method to solve a reaction-diffusion model with time delay, namely, a delayed version of a population model which is an extension of the logistic growth (LG) equation for a food-limited population proposed by Smith [F.E. Smith, Population dynamics in Daphnia magna and a new model for population growth, Ecology 44 (1963) 651-663]. Seeing that the analytical solution (in closed form) is hard to obtain, we seek for a robust numerical method. The method consists of a Fourier-pseudospectral semi-discretization in space and a fitted operator implicit-explicit scheme in temporal direction. The proposed method is analyzed for convergence and we found that it is unconditionally stable. Illustrative numerical results will be presented at the conference.

  3. Simulation of reaction diffusion processes over biologically relevant size and time scales using multi-GPU workstations.

    Science.gov (United States)

    Hallock, Michael J; Stone, John E; Roberts, Elijah; Fry, Corey; Luthey-Schulten, Zaida

    2014-05-01

    Simulation of in vivo cellular processes with the reaction-diffusion master equation (RDME) is a computationally expensive task. Our previous software enabled simulation of inhomogeneous biochemical systems for small bacteria over long time scales using the MPD-RDME method on a single GPU. Simulations of larger eukaryotic systems exceed the on-board memory capacity of individual GPUs, and long time simulations of modest-sized cells such as yeast are impractical on a single GPU. We present a new multi-GPU parallel implementation of the MPD-RDME method based on a spatial decomposition approach that supports dynamic load balancing for workstations containing GPUs of varying performance and memory capacity. We take advantage of high-performance features of CUDA for peer-to-peer GPU memory transfers and evaluate the performance of our algorithms on state-of-the-art GPU devices. We present parallel e ciency and performance results for simulations using multiple GPUs as system size, particle counts, and number of reactions grow. We also demonstrate multi-GPU performance in simulations of the Min protein system in E. coli . Moreover, our multi-GPU decomposition and load balancing approach can be generalized to other lattice-based problems.

  4. Verify Super Double-Heterogeneous Spherical Lattice Model for Equilibrium Fuel Cycle Analysis AND HTR Spherical Super Lattice Model for Equilibrium Fuel Cycle Analysis

    International Nuclear Information System (INIS)

    Gray S. Chang

    2005-01-01

    The currently being developed advanced High Temperature gas-cooled Reactors (HTR) is able to achieve a simplification of safety through reliance on innovative features and passive systems. One of the innovative features in these HTRs is reliance on ceramic-coated fuel particles to retain the fission products even under extreme accident conditions. Traditionally, the effect of the random fuel kernel distribution in the fuel pebble/block is addressed through the use of the Dancoff correction factor in the resonance treatment. However, the Dancoff correction factor is a function of burnup and fuel kernel packing factor, which requires that the Dancoff correction factor be updated during Equilibrium Fuel Cycle (EqFC) analysis. An advanced KbK-sph model and whole pebble super lattice model (PSLM), which can address and update the burnup dependent Dancoff effect during the EqFC analysis. The pebble homogeneous lattice model (HLM) is verified by the burnup characteristics with the double-heterogeneous KbK-sph lattice model results. This study summarizes and compares the KbK-sph lattice model and HLM burnup analyzed results. Finally, we discuss the Monte-Carlo coupling with a fuel depletion and buildup code--ORIGEN-2 as a fuel burnup analysis tool and its PSLM calculated results for the HTR EqFC burnup analysis

  5. Block spins and chirality in Heisenberg model on Kagome and triangular lattices

    International Nuclear Information System (INIS)

    Subrahmanyam, V.

    1994-01-01

    The spin-1/2 Heisenberg model (HM) is investigated using a block-spin renormalization approach on Kagome and triangular lattices. In both cases, after coarse graining the triangles on original lattice and truncation of the Hilbert space to the triangular ground state subspace, HM reduces to an effective model on a triangular lattice in terms of the triangular-block degrees of freedom viz. the spin and the chirality quantum numbers. The chirality part of the effective Hamiltonian captures the essential difference between the two lattices. It is seen that simple eigenstates can be constructed for the effective model whose energies serve as upper bounds on the exact ground state energy of HM, and chiral ordered variational states have high energies compared to the other variational states. (author). 12 refs, 2 figs

  6. Efficient numerical simulation of non-integer-order space-fractional reaction-diffusion equation via the Riemann-Liouville operator

    Science.gov (United States)

    Owolabi, Kolade M.

    2018-03-01

    In this work, we are concerned with the solution of non-integer space-fractional reaction-diffusion equations with the Riemann-Liouville space-fractional derivative in high dimensions. We approximate the Riemann-Liouville derivative with the Fourier transform method and advance the resulting system in time with any time-stepping solver. In the numerical experiments, we expect the travelling wave to arise from the given initial condition on the computational domain (-∞, ∞), which we terminate in the numerical experiments with a large but truncated value of L. It is necessary to choose L large enough to allow the waves to have enough space to distribute. Experimental results in high dimensions on the space-fractional reaction-diffusion models with applications to biological models (Fisher and Allen-Cahn equations) are considered. Simulation results reveal that fractional reaction-diffusion equations can give rise to a range of physical phenomena when compared to non-integer-order cases. As a result, most meaningful and practical situations are found to be modelled with the concept of fractional calculus.

  7. Volumetric formulation of lattice Boltzmann models with energy conservation

    OpenAIRE

    Sbragaglia, M.; Sugiyama, K.

    2010-01-01

    We analyze a volumetric formulation of lattice Boltzmann for compressible thermal fluid flows. The velocity set is chosen with the desired accuracy, based on the Gauss-Hermite quadrature procedure, and tested against controlled problems in bounded and unbounded fluids. The method allows the simulation of thermohydrodyamical problems without the need to preserve the exact space-filling nature of the velocity set, but still ensuring the exact conservation laws for density, momentum and energy. ...

  8. Lattice dynamics of silver and gold on Krebs's model

    International Nuclear Information System (INIS)

    Bertolo, L.A.; Shukla, M.M.

    1975-01-01

    Phonon dispersion relations along the principal symmetry directions of gold and silver have been calculated for phonons propagating at room temperature. The calculated curves are compared with the recent experimental findings. Also calculated are the lattice heat capacities of these metals at absolute zero temperature. Computed(theta - T) curves of them show good agreements with experimental results. The effect of various forms of the dielectric screening functions on the calculated phonon spectrum of gold and silver has also been investigated

  9. ReaDDy--a software for particle-based reaction-diffusion dynamics in crowded cellular environments.

    Directory of Open Access Journals (Sweden)

    Johannes Schöneberg

    Full Text Available We introduce the software package ReaDDy for simulation of detailed spatiotemporal mechanisms of dynamical processes in the cell, based on reaction-diffusion dynamics with particle resolution. In contrast to other particle-based reaction kinetics programs, ReaDDy supports particle interaction potentials. This permits effects such as space exclusion, molecular crowding and aggregation to be modeled. The biomolecules simulated can be represented as a sphere, or as a more complex geometry such as a domain structure or polymer chain. ReaDDy bridges the gap between small-scale but highly detailed molecular dynamics or Brownian dynamics simulations and large-scale but little-detailed reaction kinetics simulations. ReaDDy has a modular design that enables the exchange of the computing core by efficient platform-specific implementations or dynamical models that are different from Brownian dynamics.

  10. Mittag-Leffler synchronization of fractional neural networks with time-varying delays and reaction-diffusion terms using impulsive and linear controllers.

    Science.gov (United States)

    Stamova, Ivanka; Stamov, Gani

    2017-12-01

    In this paper, we propose a fractional-order neural network system with time-varying delays and reaction-diffusion terms. We first develop a new Mittag-Leffler synchronization strategy for the controlled nodes via impulsive controllers. Using the fractional Lyapunov method sufficient conditions are given. We also study the global Mittag-Leffler synchronization of two identical fractional impulsive reaction-diffusion neural networks using linear controllers, which was an open problem even for integer-order models. Since the Mittag-Leffler stability notion is a generalization of the exponential stability concept for fractional-order systems, our results extend and improve the exponential impulsive control theory of neural network system with time-varying delays and reaction-diffusion terms to the fractional-order case. The fractional-order derivatives allow us to model the long-term memory in the neural networks, and thus the present research provides with a conceptually straightforward mathematical representation of rather complex processes. Illustrative examples are presented to show the validity of the obtained results. We show that by means of appropriate impulsive controllers we can realize the stability goal and to control the qualitative behavior of the states. An image encryption scheme is extended using fractional derivatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Strength analysis and modeling of cellular lattice structures manufactured using selective laser melting for tooling applications

    DEFF Research Database (Denmark)

    Mahshid, Rasoul; Hansen, Hans Nørgaard; Loft Højbjerre, Klaus

    2016-01-01

    Additive manufacturing is rapidly developing and gaining popularity for direct metal fabrication systems like selective laser melting (SLM). The technology has shown significant improvement for high-quality fabrication of lightweight design-efficient structures such as conformal cooling channels...... in injection molding tools and lattice structures. This research examines the effect of cellular lattice structures on the strength of workpieces additively manufactured from ultra high-strength steel powder. Two commercial SLM machines are used to fabricate cellular samples based on four architectures— solid......, hollow, lattice structure and rotated lattice structure. Compression test is applied to the specimens while they are deformed. The analytical approach includes finite element (FE), geometrical and mathematical models for prediction of collapse strength. The results from the the models are verified...

  12. Mutual information as a two-point correlation function in stochastic lattice models

    International Nuclear Information System (INIS)

    Müller, Ulrich; Hinrichsen, Haye

    2013-01-01

    In statistical physics entropy is usually introduced as a global quantity which expresses the amount of information that would be needed to specify the microscopic configuration of a system. However, for lattice models with infinitely many possible configurations per lattice site it is also meaningful to introduce entropy as a local observable that describes the information content of a single lattice site. Likewise, the mutual information between two sites can be interpreted as a two-point correlation function which quantifies how much information a lattice site has about the state of another one and vice versa. Studying a particular growth model we demonstrate that the mutual information exhibits scaling properties that are consistent with the established phenomenological scaling picture. (paper)

  13. Extended Bose Hubbard model of interacting bosonic atoms in optical lattices: From superfluidity to density waves

    International Nuclear Information System (INIS)

    Mazzarella, G.; Giampaolo, S. M.; Illuminati, F.

    2006-01-01

    For systems of interacting, ultracold spin-zero neutral bosonic atoms, harmonically trapped and subject to an optical lattice potential, we derive an Extended Bose Hubbard (EBH) model by developing a systematic expansion for the Hamiltonian of the system in powers of the lattice parameters and of a scale parameter, the lattice attenuation factor. We identify the dominant terms that need to be retained in realistic experimental conditions, up to nearest-neighbor interactions and nearest-neighbor hoppings conditioned by the on-site occupation numbers. In the mean field approximation, we determine the free energy of the system and study the phase diagram both at zero and at finite temperature. At variance with the standard on site Bose Hubbard model, the zero-temperature phase diagram of the EBH model possesses a dual structure in the Mott insulating regime. Namely, for specific ranges of the lattice parameters, a density wave phase characterizes the system at integer fillings, with domains of alternating mean occupation numbers that are the atomic counterparts of the domains of staggered magnetizations in an antiferromagnetic phase. We show as well that in the EBH model, a zero-temperature quantum phase transition to pair superfluidity is, in principle, possible, but completely suppressed at the lowest order in the lattice attenuation factor. Finally, we determine the possible occurrence of the different phases as a function of the experimentally controllable lattice parameters

  14. Lattice strings

    International Nuclear Information System (INIS)

    Thorn, C.B.

    1988-01-01

    The possibility of studying non-perturbative effects in string theory using a world sheet lattice is discussed. The light-cone lattice string model of Giles and Thorn is studied numerically to assess the accuracy of ''coarse lattice'' approximations. For free strings a 5 by 15 lattice seems sufficient to obtain better than 10% accuracy for the bosonic string tachyon mass squared. In addition a crude lattice model simulating string like interactions is studied to find out how easily a coarse lattice calculation can pick out effects such as bound states which would qualitatively alter the spectrum of the free theory. The role of the critical dimension in obtaining a finite continuum limit is discussed. Instead of the ''gaussian'' lattice model one could use one of the vertex models, whose continuum limit is the same as a gaussian model on a torus of any radius. Indeed, any critical 2 dimensional statistical system will have a stringy continuum limit in the absence of string interactions. 8 refs., 1 fig. , 9 tabs

  15. Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains

    KAUST Repository

    Madzvamuse, Anotida; Gaffney, Eamonn A.; Maini, Philip K.

    2009-01-01

    By using asymptotic theory, we generalise the Turing diffusively-driven instability conditions for reaction-diffusion systems with slow, isotropic domain growth. There are two fundamental biological differences between the Turing conditions on fixed and growing domains, namely: (i) we need not enforce cross nor pure kinetic conditions and (ii) the restriction to activator-inhibitor kinetics to induce pattern formation on a growing biological system is no longer a requirement. Our theoretical findings are confirmed and reinforced by numerical simulations for the special cases of isotropic linear, exponential and logistic growth profiles. In particular we illustrate an example of a reaction-diffusion system which cannot exhibit a diffusively-driven instability on a fixed domain but is unstable in the presence of slow growth. © Springer-Verlag 2009.

  16. Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains

    KAUST Repository

    Madzvamuse, Anotida

    2009-08-29

    By using asymptotic theory, we generalise the Turing diffusively-driven instability conditions for reaction-diffusion systems with slow, isotropic domain growth. There are two fundamental biological differences between the Turing conditions on fixed and growing domains, namely: (i) we need not enforce cross nor pure kinetic conditions and (ii) the restriction to activator-inhibitor kinetics to induce pattern formation on a growing biological system is no longer a requirement. Our theoretical findings are confirmed and reinforced by numerical simulations for the special cases of isotropic linear, exponential and logistic growth profiles. In particular we illustrate an example of a reaction-diffusion system which cannot exhibit a diffusively-driven instability on a fixed domain but is unstable in the presence of slow growth. © Springer-Verlag 2009.

  17. Event-triggered synchronization for reaction-diffusion complex networks via random sampling

    Science.gov (United States)

    Dong, Tao; Wang, Aijuan; Zhu, Huiyun; Liao, Xiaofeng

    2018-04-01

    In this paper, the synchronization problem of the reaction-diffusion complex networks (RDCNs) with Dirichlet boundary conditions is considered, where the data is sampled randomly. An event-triggered controller based on the sampled data is proposed, which can reduce the number of controller and the communication load. Under this strategy, the synchronization problem of the diffusion complex network is equivalently converted to the stability of a of reaction-diffusion complex dynamical systems with time delay. By using the matrix inequality technique and Lyapunov method, the synchronization conditions of the RDCNs are derived, which are dependent on the diffusion term. Moreover, it is found the proposed control strategy can get rid of the Zeno behavior naturally. Finally, a numerical example is given to verify the obtained results.

  18. Entropy methods for reaction-diffusion equations: slowly growing a-priori bounds

    KAUST Repository

    Desvillettes, Laurent; Fellner, Klemens

    2008-01-01

    In the continuation of [Desvillettes, L., Fellner, K.: Exponential Decay toward Equilibrium via Entropy Methods for Reaction-Diffusion Equations. J. Math. Anal. Appl. 319 (2006), no. 1, 157-176], we study reversible reaction-diffusion equations via entropy methods (based on the free energy functional) for a 1D system of four species. We improve the existing theory by getting 1) almost exponential convergence in L1 to the steady state via a precise entropy-entropy dissipation estimate, 2) an explicit global L∞ bound via interpolation of a polynomially growing H1 bound with the almost exponential L1 convergence, and 3), finally, explicit exponential convergence to the steady state in all Sobolev norms.

  19. Dichotomous-noise-induced pattern formation in a reaction-diffusion system

    Science.gov (United States)

    Das, Debojyoti; Ray, Deb Shankar

    2013-06-01

    We consider a generic reaction-diffusion system in which one of the parameters is subjected to dichotomous noise by controlling the flow of one of the reacting species in a continuous-flow-stirred-tank reactor (CSTR) -membrane reactor. The linear stability analysis in an extended phase space is carried out by invoking Furutzu-Novikov procedure for exponentially correlated multiplicative noise to derive the instability condition in the plane of the noise parameters (correlation time and strength of the noise). We demonstrate that depending on the correlation time an optimal strength of noise governs the self-organization. Our theoretical analysis is corroborated by numerical simulations on pattern formation in a chlorine-dioxide-iodine-malonic acid reaction-diffusion system.

  20. Square-lattice random Potts model: criticality and pitchfork bifurcation

    International Nuclear Information System (INIS)

    Costa, U.M.S.; Tsallis, C.

    1983-01-01

    Within a real space renormalization group framework based on self-dual clusters, the criticality of the quenched bond-mixed q-state Potts ferromagnet on square lattice is discussed. On qualitative grounds it is exhibited that the crossover from the pure fixed point to the random one occurs, while q increases, through a pitchfork bifurcation; the relationship with Harris criterion is analyzed. On quantitative grounds high precision numerical values are presented for the critical temperatures corresponding to various concentrations of the coupling constants J 1 and J 2 , and various ratios J 1 /J 2 . The pure, random and crossover critical exponents are discussed as well. (Author) [pt

  1. Asymptotic properties of blow-up solutions in reaction-diffusion equations with nonlocal boundary flux

    Science.gov (United States)

    Liu, Bingchen; Dong, Mengzhen; Li, Fengjie

    2018-04-01

    This paper deals with a reaction-diffusion problem with coupled nonlinear inner sources and nonlocal boundary flux. Firstly, we propose the critical exponents on nonsimultaneous blow-up under some conditions on the initial data. Secondly, we combine the scaling technique and the Green's identity method to determine four kinds of simultaneous blow-up rates. Thirdly, the lower and the upper bounds of blow-up time are derived by using Sobolev-type differential inequalities.

  2. Conditional symmetries for systems of PDEs: new definitions and their application for reaction-diffusion systems

    International Nuclear Information System (INIS)

    Cherniha, Roman

    2010-01-01

    New definitions of Q-conditional symmetry for systems of PDEs are presented, which generalize the standard notation of non-classical (conditional) symmetry. It is shown that different types of Q-conditional symmetry of a system generate a hierarchy of conditional symmetry operators. A class of two-component nonlinear reaction-diffusion systems is examined to demonstrate the applicability of the definitions proposed and it is shown when different definitions of Q-conditional symmetry lead to the same operators.

  3. Bifurcation of positive solutions to scalar reaction-diffusion equations with nonlinear boundary condition

    Science.gov (United States)

    Liu, Ping; Shi, Junping

    2018-01-01

    The bifurcation of non-trivial steady state solutions of a scalar reaction-diffusion equation with nonlinear boundary conditions is considered using several new abstract bifurcation theorems. The existence and stability of positive steady state solutions are proved using a unified approach. The general results are applied to a Laplace equation with nonlinear boundary condition and bistable nonlinearity, and an elliptic equation with superlinear nonlinearity and sublinear boundary conditions.

  4. Passivity analysis for uncertain BAM neural networks with time delays and reaction-diffusions

    Science.gov (United States)

    Zhou, Jianping; Xu, Shengyuan; Shen, Hao; Zhang, Baoyong

    2013-08-01

    This article deals with the problem of passivity analysis for delayed reaction-diffusion bidirectional associative memory (BAM) neural networks with weight uncertainties. By using a new integral inequality, we first present a passivity condition for the nominal networks, and then extend the result to the case with linear fractional weight uncertainties. The proposed conditions are expressed in terms of linear matrix inequalities, and thus can be checked easily. Examples are provided to demonstrate the effectiveness of the proposed results.

  5. Global exponential stability for reaction-diffusion recurrent neural networks with multiple time varying delays

    International Nuclear Information System (INIS)

    Lou, X.; Cui, B.

    2008-01-01

    In this paper we consider the problem of exponential stability for recurrent neural networks with multiple time varying delays and reaction-diffusion terms. The activation functions are supposed to be bounded and globally Lipschitz continuous. By means of Lyapunov functional, sufficient conditions are derived, which guarantee global exponential stability of the delayed neural network. Finally, a numerical example is given to show the correctness of our analysis. (author)

  6. X-cube model on generic lattices: Fracton phases and geometric order

    Science.gov (United States)

    Slagle, Kevin; Kim, Yong Baek

    2018-04-01

    Fracton order is a new kind of quantum order characterized by topological excitations that exhibit remarkable mobility restrictions and a robust ground-state degeneracy (GSD) which can increase exponentially with system size. In this paper, we present a generic lattice construction (in three dimensions) for a generalized X-cube model of fracton order, where the mobility restrictions of the subdimensional particles inherit the geometry of the lattice. This helps explain a previous result that lattice curvature can produce a robust GSD, even on a manifold with trivial topology. We provide explicit examples to show that the (zero-temperature) phase of matter is sensitive to the lattice geometry. In one example, the lattice geometry confines the dimension-1 particles to small loops, which allows the fractons to be fully mobile charges, and the resulting phase is equivalent to (3+1)-dimensional toric code. However, the phase is sensitive to more than just lattice curvature; different lattices without curvature (e.g., cubic or stacked kagome lattices) also result in different phases of matter, which are separated by phase transitions. Unintuitively, however, according to a previous definition of phase [X. Chen et al., Phys. Rev. B 82, 155138 (2010), 10.1103/PhysRevB.82.155138], even just a rotated or rescaled cubic results in different phases of matter, which motivates us to propose a coarser definition of phase for gapped ground states and fracton order. This equivalence relation between ground states is given by the composition of a local unitary transformation and a quasi-isometry (which can rotate and rescale the lattice); equivalently, ground states are in the same phase if they can be adiabatically connected by varying both the Hamiltonian and the positions of the degrees of freedom (via a quasi-isometry). In light of the importance of geometry, we further propose that fracton orders should be regarded as a geometric order.

  7. Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials

    Energy Technology Data Exchange (ETDEWEB)

    Omar, M.S., E-mail: dr_m_s_omar@yahoo.com [Department of Physics, College of Science, University of Salahaddin-Erbil, Arbil, Kurdistan (Iraq)

    2012-11-15

    Graphical abstract: Three models are derived to explain the nanoparticles size dependence of mean bonding length, melting temperature and lattice thermal expansion applied on Sn, Si and Au. The following figures are shown as an example for Sn nanoparticles indicates hilly applicable models for nanoparticles radius larger than 3 nm. Highlights: ► A model for a size dependent mean bonding length is derived. ► The size dependent melting point of nanoparticles is modified. ► The bulk model for lattice thermal expansion is successfully used on nanoparticles. -- Abstract: A model, based on the ratio number of surface atoms to that of its internal, is derived to calculate the size dependence of lattice volume of nanoscaled materials. The model is applied to Si, Sn and Au nanoparticles. For Si, that the lattice volume is increases from 20 Å{sup 3} for bulk to 57 Å{sup 3} for a 2 nm size nanocrystals. A model, for calculating melting point of nanoscaled materials, is modified by considering the effect of lattice volume. A good approach of calculating size-dependent melting point begins from the bulk state down to about 2 nm diameter nanoparticle. Both values of lattice volume and melting point obtained for nanosized materials are used to calculate lattice thermal expansion by using a formula applicable for tetrahedral semiconductors. Results for Si, change from 3.7 × 10{sup −6} K{sup −1} for a bulk crystal down to a minimum value of 0.1 × 10{sup −6} K{sup −1} for a 6 nm diameter nanoparticle.

  8. Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials

    International Nuclear Information System (INIS)

    Omar, M.S.

    2012-01-01

    Graphical abstract: Three models are derived to explain the nanoparticles size dependence of mean bonding length, melting temperature and lattice thermal expansion applied on Sn, Si and Au. The following figures are shown as an example for Sn nanoparticles indicates hilly applicable models for nanoparticles radius larger than 3 nm. Highlights: ► A model for a size dependent mean bonding length is derived. ► The size dependent melting point of nanoparticles is modified. ► The bulk model for lattice thermal expansion is successfully used on nanoparticles. -- Abstract: A model, based on the ratio number of surface atoms to that of its internal, is derived to calculate the size dependence of lattice volume of nanoscaled materials. The model is applied to Si, Sn and Au nanoparticles. For Si, that the lattice volume is increases from 20 Å 3 for bulk to 57 Å 3 for a 2 nm size nanocrystals. A model, for calculating melting point of nanoscaled materials, is modified by considering the effect of lattice volume. A good approach of calculating size-dependent melting point begins from the bulk state down to about 2 nm diameter nanoparticle. Both values of lattice volume and melting point obtained for nanosized materials are used to calculate lattice thermal expansion by using a formula applicable for tetrahedral semiconductors. Results for Si, change from 3.7 × 10 −6 K −1 for a bulk crystal down to a minimum value of 0.1 × 10 −6 K −1 for a 6 nm diameter nanoparticle.

  9. Delay-induced wave instabilities in single-species reaction-diffusion systems

    Science.gov (United States)

    Otto, Andereas; Wang, Jian; Radons, Günter

    2017-11-01

    The Turing (wave) instability is only possible in reaction-diffusion systems with more than one (two) components. Motivated by the fact that a time delay increases the dimension of a system, we investigate the presence of diffusion-driven instabilities in single-species reaction-diffusion systems with delay. The stability of arbitrary one-component systems with a single discrete delay, with distributed delay, or with a variable delay is systematically analyzed. We show that a wave instability can appear from an equilibrium of single-species reaction-diffusion systems with fluctuating or distributed delay, which is not possible in similar systems with constant discrete delay or without delay. More precisely, we show by basic analytic arguments and by numerical simulations that fast asymmetric delay fluctuations or asymmetrically distributed delays can lead to wave instabilities in these systems. Examples, for the resulting traveling waves are shown for a Fisher-KPP equation with distributed delay in the reaction term. In addition, we have studied diffusion-induced instabilities from homogeneous periodic orbits in the same systems with variable delay, where the homogeneous periodic orbits are attracting resonant periodic solutions of the system without diffusion, i.e., periodic orbits of the Hutchinson equation with time-varying delay. If diffusion is introduced, standing waves can emerge whose temporal period is equal to the period of the variable delay.

  10. Existence and Stability of Traveling Waves for Degenerate Reaction-Diffusion Equation with Time Delay

    Science.gov (United States)

    Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue

    2018-01-01

    This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0 . Furthermore, we prove the global existence and uniqueness of C^{α ,β } -solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1 -space. The exponential convergence rate is also derived.

  11. Existence and Stability of Traveling Waves for Degenerate Reaction-Diffusion Equation with Time Delay

    Science.gov (United States)

    Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue

    2018-06-01

    This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0. Furthermore, we prove the global existence and uniqueness of C^{α ,β }-solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1-space. The exponential convergence rate is also derived.

  12. A lattice Boltzmann model for solute transport in open channel flow

    Science.gov (United States)

    Wang, Hongda; Cater, John; Liu, Haifei; Ding, Xiangyi; Huang, Wei

    2018-01-01

    A lattice Boltzmann model of advection-dispersion problems in one-dimensional (1D) open channel flows is developed for simulation of solute transport and pollutant concentration. The hydrodynamics are calculated based on a previous lattice Boltzmann approach to solving the 1D Saint-Venant equations (LABSVE). The advection-dispersion model is coupled with the LABSVE using the lattice Boltzmann method. Our research recovers the advection-dispersion equations through the Chapman-Enskog expansion of the lattice Boltzmann equation. The model differs from the existing schemes in two points: (1) the lattice Boltzmann numerical method is adopted to solve the advection-dispersion problem by meso-scopic particle distribution; (2) and the model describes the relation between discharge, cross section area and solute concentration, which increases the applicability of the water quality model in practical engineering. The model is verified using three benchmark tests: (1) instantaneous solute transport within a short distance; (2) 1D point source pollution with constant velocity; (3) 1D point source pollution in a dam break flow. The model is then applied to a 50-year flood point source pollution accident on the Yongding River, which showed good agreement with a MIKE 11 solution and gauging data.

  13. Statistical mechanics of directed models of polymers in the square lattice

    International Nuclear Information System (INIS)

    Rensburg, E J Janse van

    2003-01-01

    Directed square lattice models of polymers and vesicles have received considerable attention in the recent mathematical and physical sciences literature. These are idealized geometric directed lattice models introduced to study phase behaviour in polymers, and include Dyck paths, partially directed paths, directed trees and directed vesicles models. Directed models are closely related to models studied in the combinatorics literature (and are often exactly solvable). They are also simplified versions of a number of statistical mechanics models, including the self-avoiding walk, lattice animals and lattice vesicles. The exchange of approaches and ideas between statistical mechanics and combinatorics have considerably advanced the description and understanding of directed lattice models, and this will be explored in this review. The combinatorial nature of directed lattice path models makes a study using generating function approaches most natural. In contrast, the statistical mechanics approach would introduce partition functions and free energies, and then investigate these using the general framework of critical phenomena. Generating function and statistical mechanics approaches are closely related. For example, questions regarding the limiting free energy may be approached by considering the radius of convergence of a generating function, and the scaling properties of thermodynamic quantities are related to the asymptotic properties of the generating function. In this review the methods for obtaining generating functions and determining free energies in directed lattice path models of linear polymers is presented. These methods include decomposition methods leading to functional recursions, as well as the Temperley method (that is implemented by creating a combinatorial object, one slice at a time). A constant term formulation of the generating function will also be reviewed. The thermodynamic features and critical behaviour in models of directed paths may be

  14. Detailed analysis of the continuum limit of a supersymmetric lattice model in 1D

    International Nuclear Information System (INIS)

    Huijse, L

    2011-01-01

    We present a full identification of lattice model properties with their field theoretical counterparts in the continuum limit for a supersymmetric model for itinerant spinless fermions on a one-dimensional chain. The continuum limit of this model is described by an N=(2,2) superconformal field theory (SCFT) with central charge c = 1. We identify states and operators in the lattice model with fields in the SCFT and we relate boundary conditions on the lattice to sectors in the field theory. We use the dictionary we develop in this paper to give a pedagogical explanation of a powerful tool to study supersymmetric models based on spectral flow (Huijse 2008 Phys. Rev. Lett. 101 146406). Finally, we employ the developed machinery to explain numerically observed properties of the particle density on the open chain presented in Beccaria and De Angelis (2005 Phys. Rev. Lett. 94 100401)

  15. Hamiltonian Monte Carlo study of the N=1 Wess-Zumino model on the lattice in 1+1 dimensions

    International Nuclear Information System (INIS)

    Schiller, A.

    1984-01-01

    1+1 dimensional models with restricted supersymmetry are studied. The problems of formulating supersymmetric models on the lattice are overcome by working in the Hamiltonian lattice formulation and using restricted supersymmetry algebra involving only the Hamiltonian. For the two-dimensional Wess-Zumino model a lattice Hamiltonian suitable for the local Hamiltonian method is obtained. Using this method field theoretical models with fermions and scalar Higgs fields are investigated. Emphasis is laid on supersymmetry breaking and soliton formation

  16. A Worm Algorithm for the Lattice CP(N-1) Model arXiv

    CERN Document Server

    Rindlisbacher, Tobias

    The CP(N-1) model in 2D is an interesting toy model for 4D QCD as it possesses confinement, asymptotic freedom and a non-trivial vacuum structure. Due to the lower dimensionality and the absence of fermions, the computational cost for simulating 2D CP(N-1) on the lattice is much lower than the one for simulating 4D QCD. However to our knowledge, no efficient algorithm for simulating the lattice CP(N-1) model has been tested so far, which also works at finite density. To this end we propose and test a new type of worm algorithm which is appropriate to simulate the lattice CP(N-1) model in a dual, flux-variables based representation, in which the introduction of a chemical potential does not give rise to any complications.

  17. Invasion percolation of single component, multiphase fluids with lattice Boltzmann models

    International Nuclear Information System (INIS)

    Sukop, M.C.; Or, Dani

    2003-01-01

    Application of the lattice Boltzmann method (LBM) to invasion percolation of single component multiphase fluids in porous media offers an opportunity for more realistic modeling of the configurations and dynamics of liquid/vapor and liquid/solid interfaces. The complex geometry of connected paths in standard invasion percolation models arises solely from the spatial arrangement of simple elements on a lattice. In reality, fluid interfaces and connectivity in porous media are naturally controlled by the details of the pore geometry, its dynamic interaction with the fluid, and the ambient fluid potential. The multiphase LBM approach admits realistic pore geometry derived from imaging techniques and incorporation of realistic hydrodynamics into invasion percolation models

  18. Density waves in a lattice hydrodynamic traffic flow model with the anticipation effect

    International Nuclear Information System (INIS)

    Zhao Min; Sun Di-Hua; Tian Chuan

    2012-01-01

    By introducing the traffic anticipation effect in the real world into the original lattice hydrodynamic model, we present a new anticipation effect lattice hydrodynamic (AELH) model, and obtain the linear stability condition of the model by applying the linear stability theory. Through nonlinear analysis, we derive the Burgers equation and Korteweg-de Vries (KdV) equation, to describe the propagating behaviour of traffic density waves in the stable and the metastable regions, respectively. The good agreement between simulation results and analytical results shows that the stability of traffic flow can be enhanced when the anticipation effect is considered. (interdisciplinary physics and related areas of science and technology)

  19. Anomalous diffusion in a lattice-gas wind-tree model

    International Nuclear Information System (INIS)

    Kong, X.P.; Cohen, E.G.D.

    1989-01-01

    Two new strictly deterministic lattice-gas automata derived from Ehrenfest's wind-tree model are studied. While in one model normal diffusion occurs, the other model exhibits abnormal diffusion in that the distribution function of the displacements of the wind particle is non-Gaussian, but its second moment, the mean-square displacement, is proportional to the time, so that a diffusion coefficient can be defined. A connection with the percolation problem and a self-avoiding random walk for the case in which the lattice is completely covered with trees is discussed

  20. A lattice-valued linguistic decision model for nuclear safeguards applications

    International Nuclear Information System (INIS)

    Ruan, D.; Liu, J.; Carchon, R.

    2001-01-01

    In this study, we focus our attention on decision making models to process uncertainty-based information directly without transforming them into any particular membership function, i.e., directly using linguistic information (linguistic values) instead of numbers (numerical values). By analyzing the feature of linguistic values ordered by their means of common usage, we argue that the set of linguistic values should be characterized by a lattice structure. We propose the lattice structure based on a logical algebraic structure i.e., lattice implication algebra. Finally, we obtain a multi-objective decision-making model by extending Yager's multi-objective model from the following aspects: (1) extension of linguistic information: from a set of linear ordered linguistic labels (values) to that of lattice-valued linguistic labels; (2) extension of the combination function M, which is used to combine the individual ratings with the weights of criteria. We propose an implication operation form of M. The implication operation can be drawn from lattice implication algebra. As an illustration, we will finally apply this decision model to the evaluation problem in safeguard relevant information. (orig.)

  1. Tri-critical behavior of the Blume Capel model on a diamond lattice

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Jander P., E-mail: jander@ufsj.edu.br [Departamento de Ciências Naturais, Universidade Federal de São João del Rei, C.P. 110, CEP 36301-160 São João del Rei, MG (Brazil); Departamento de Matemática, Universidade Federal de São João del Rei, C.P. 110, CEP 36301-160 São João del Rei, MG (Brazil); Sá Barreto, F.C., E-mail: fcsabarreto@gmail.com [Departamento de Ciências Naturais, Universidade Federal de São João del Rei, C.P. 110, CEP 36301-160 São João del Rei, MG (Brazil); Emeritus Professor, Departamento de Física, Universidade Federal de Minas Gerais, C.P. 110, CEP 31270-901 Belo Horizonte, MG (Brazil); Rosa, D.S., E-mail: derick@ift.unesp.br [Instituto de Física Teórica, Universidade Estadual Paulista, C.P. 110, CEP 01140-070 São Paulo, SP (Brazil)

    2017-02-01

    The mean field approximation results are obtained in a five-site cluster on the diamond lattice from the Bogoliubov inequality. Spin correlation identities for the Blume-Capel model on diamond lattice are derived from a five-site cluster and used to obtain an effective field approximation. The free-energy, magnetization, critical frontiers and tricritical points are obtained from the mean field approximation and the effective field approximation and are compared to those obtained by other methods. From the mean-field approximation, we also studied the unstable and metastable states besides the stable states present in the model. - Highlights: • From the Bogoliubov inequality the mean field approximation is applied. • Correlation identities for the Blume-Capel model on a diamond lattice are obtained. • From the spin correlation identities the effective-field theory is applied. • Lines of phase transitions of first order and continuous are obtained. • Multicritical points are obtained according to this procedure.

  2. Decorated tensor network renormalization for lattice gauge theories and spin foam models

    International Nuclear Information System (INIS)

    Dittrich, Bianca; Mizera, Sebastian; Steinhaus, Sebastian

    2016-01-01

    Tensor network techniques have proved to be powerful tools that can be employed to explore the large scale dynamics of lattice systems. Nonetheless, the redundancy of degrees of freedom in lattice gauge theories (and related models) poses a challenge for standard tensor network algorithms. We accommodate for such systems by introducing an additional structure decorating the tensor network. This allows to explicitly preserve the gauge symmetry of the system under coarse graining and straightforwardly interpret the fixed point tensors. We propose and test (for models with finite Abelian groups) a coarse graining algorithm for lattice gauge theories based on decorated tensor networks. We also point out that decorated tensor networks are applicable to other models as well, where they provide the advantage to give immediate access to certain expectation values and correlation functions. (paper)

  3. Decorated tensor network renormalization for lattice gauge theories and spin foam models

    Science.gov (United States)

    Dittrich, Bianca; Mizera, Sebastian; Steinhaus, Sebastian

    2016-05-01

    Tensor network techniques have proved to be powerful tools that can be employed to explore the large scale dynamics of lattice systems. Nonetheless, the redundancy of degrees of freedom in lattice gauge theories (and related models) poses a challenge for standard tensor network algorithms. We accommodate for such systems by introducing an additional structure decorating the tensor network. This allows to explicitly preserve the gauge symmetry of the system under coarse graining and straightforwardly interpret the fixed point tensors. We propose and test (for models with finite Abelian groups) a coarse graining algorithm for lattice gauge theories based on decorated tensor networks. We also point out that decorated tensor networks are applicable to other models as well, where they provide the advantage to give immediate access to certain expectation values and correlation functions.

  4. Statistical-mechanical lattice models for protein-DNA binding in chromatin

    International Nuclear Information System (INIS)

    Teif, Vladimir B; Rippe, Karsten

    2010-01-01

    Statistical-mechanical lattice models for protein-DNA binding are well established as a method to describe complex ligand binding equilibria measured in vitro with purified DNA and protein components. Recently, a new field of applications has opened up for this approach since it has become possible to experimentally quantify genome-wide protein occupancies in relation to the DNA sequence. In particular, the organization of the eukaryotic genome by histone proteins into a nucleoprotein complex termed chromatin has been recognized as a key parameter that controls the access of transcription factors to the DNA sequence. New approaches have to be developed to derive statistical-mechanical lattice descriptions of chromatin-associated protein-DNA interactions. Here, we present the theoretical framework for lattice models of histone-DNA interactions in chromatin and investigate the (competitive) DNA binding of other chromosomal proteins and transcription factors. The results have a number of applications for quantitative models for the regulation of gene expression.

  5. Modeling stress wave propagation in rocks by distinct lattice spring model

    Directory of Open Access Journals (Sweden)

    Gaofeng Zhao

    2014-08-01

    Full Text Available In this paper, the ability of the distinct lattice spring model (DLSM for modeling stress wave propagation in rocks was fully investigated. The influence of particle size on simulation of different types of stress waves (e.g. one-dimensional (1D P-wave, 1D S-wave and two-dimensional (2D cylindrical wave was studied through comparing results predicted by the DLSM with different mesh ratios (lr and those obtained from the corresponding analytical solutions. Suggested values of lr were obtained for modeling these stress waves accurately. Moreover, the weak material layer method and virtual joint plane method were used to model P-wave and S-wave propagating through a single discontinuity. The results were compared with the classical analytical solutions, indicating that the virtual joint plane method can give better results and is recommended. Finally, some remarks of the DLSM on modeling of stress wave propagation in rocks were provided.

  6. Correspondence between spanning trees and the Ising model on a square lattice

    Science.gov (United States)

    Viswanathan, G. M.

    2017-06-01

    An important problem in statistical physics concerns the fascinating connections between partition functions of lattice models studied in equilibrium statistical mechanics on the one hand and graph theoretical enumeration problems on the other hand. We investigate the nature of the relationship between the number of spanning trees and the partition function of the Ising model on the square lattice. The spanning tree generating function T (z ) gives the spanning tree constant when evaluated at z =1 , while giving the lattice green function when differentiated. It is known that for the infinite square lattice the partition function Z (K ) of the Ising model evaluated at the critical temperature K =Kc is related to T (1 ) . Here we show that this idea in fact generalizes to all real temperatures. We prove that [Z(K ) s e c h 2 K ] 2=k exp[T (k )] , where k =2 tanh(2 K )s e c h (2 K ) . The identical Mahler measure connects the two seemingly disparate quantities T (z ) and Z (K ) . In turn, the Mahler measure is determined by the random walk structure function. Finally, we show that the the above correspondence does not generalize in a straightforward manner to nonplanar lattices.

  7. Modeling of flow of particles in a non-Newtonian fluid using lattice Boltzmann method

    DEFF Research Database (Denmark)

    Skocek, Jan; Svec, Oldrich; Spangenberg, Jon

    2011-01-01

    is necessary. In this contribution, the model at the scale of aggregates is introduced. The conventional lattice Boltzmann method for fluid flow is enriched with the immersed boundary method with direct forcing to simulate the flow of rigid particles in a non- Newtonian liquid. Basic ingredients of the model...

  8. Monte Carlo simulation of diblock copolymer microphases by means of a 'fast' off-lattice model

    DEFF Research Database (Denmark)

    Besold, Gerhard; Hassager, O.; Mouritsen, Ole G.

    1999-01-01

    We present a mesoscopic off-lattice model for the simulation of diblock copolymer melts by Monte Carlo techniques. A single copolymer molecule is modeled as a discrete Edwards chain consisting of two blocks with vertices of type A and B, respectively. The volume interaction is formulated in terms...

  9. Lattice Boltzmann based multicomponent reactive transport model coupled with geochemical solver for scale simulations

    NARCIS (Netherlands)

    Patel, R.A.; Perko, J.; Jaques, D.; De Schutter, G.; Ye, G.; Van Breugel, K.

    2013-01-01

    A Lattice Boltzmann (LB) based reactive transport model intended to capture reactions and solid phase changes occurring at the pore scale is presented. The proposed approach uses LB method to compute multi component mass transport. The LB multi-component transport model is then coupled with the

  10. Solvable lattice models with minimal and nonunitary critical behaviour in two dimensions

    International Nuclear Information System (INIS)

    Riggs, H.; Chicago Univ., IL

    1989-01-01

    The exact local height probabilities found by Forrester and Baxter for a series of solvable lattice models in two dimensions are written in terms of nonunitary Virasoro characters and modifications of unitary A 1 (1) affine Lie algebra characters directly related to nonunitary but rational-level A 1 (1) characters. The relation between these results and a rational-level GKO decomposition is given. The off-critical lattice origin of the Virasoro characters and the role of the embedding diagram null vectors in the CTM eigenspace is described. Suggestions for the definition of rational and nonunitary models corresponding to arbitrary G/H cosets are given. (orig.)

  11. Upper Higgs boson mass bounds from a chirally invariant lattice Higgs-Yukawa Model

    Energy Technology Data Exchange (ETDEWEB)

    Gerhold, P. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; John von Neumann-Institut fuer Computing NIC/DESY, Zeuthen (Germany); Jansen, K. [John von Neumann-Institut fuer Computing NIC/DESY, Zeuthen (Germany)

    2010-02-15

    We establish the cutoff-dependent upper Higgs boson mass bound by means of direct lattice computations in the framework of a chirally invariant lattice Higgs-Yukawa model emulating the same chiral Yukawa coupling structure as in the Higgs-fermion sector of the Standard Model. As expected from the triviality picture of the Higgs sector, we observe the upper mass bound to decrease with rising cutoff parameter {lambda}. Moreover, the strength of the fermionic contribution to the upper mass bound is explored by comparing to the corresponding analysis in the pure {phi}{sup 4}-theory. (orig.)

  12. Local lattice relaxations in random metallic alloys: Effective tetrahedron model and supercell approach

    DEFF Research Database (Denmark)

    Ruban, Andrei; Simak, S.I.; Shallcross, S.

    2003-01-01

    We present a simple effective tetrahedron model for local lattice relaxation effects in random metallic alloys on simple primitive lattices. A comparison with direct ab initio calculations for supercells representing random Ni0.50Pt0.50 and Cu0.25Au0.75 alloys as well as the dilute limit of Au-ri......-rich CuAu alloys shows that the model yields a quantitatively accurate description of the relaxtion energies in these systems. Finally, we discuss the bond length distribution in random alloys....

  13. Levitation of current carrying states in the lattice model for the integer quantum Hall effect.

    Science.gov (United States)

    Koschny, T; Potempa, H; Schweitzer, L

    2001-04-23

    The disorder driven quantum Hall to insulator transition is investigated for a two-dimensional lattice model. The Hall conductivity and the localization length are calculated numerically near the transition. For uncorrelated and weakly correlated disorder potentials the current carrying states are annihilated by the negative Chern states originating from the band center. In the presence of correlated disorder potentials with correlation length larger than approximately half the lattice constant the floating up of the critical states in energy without merging is observed. This behavior is similar to the levitation scenario proposed for the continuum model.

  14. Continuous time modelling of dynamical spatial lattice data observed at sparsely distributed times

    DEFF Research Database (Denmark)

    Rasmussen, Jakob Gulddahl; Møller, Jesper

    2007-01-01

    Summary. We consider statistical and computational aspects of simulation-based Bayesian inference for a spatial-temporal model based on a multivariate point process which is only observed at sparsely distributed times. The point processes are indexed by the sites of a spatial lattice......, and they exhibit spatial interaction. For specificity we consider a particular dynamical spatial lattice data set which has previously been analysed by a discrete time model involving unknown normalizing constants. We discuss the advantages and disadvantages of using continuous time processes compared...... with discrete time processes in the setting of the present paper as well as other spatial-temporal situations....

  15. Lattice gauge theory

    International Nuclear Information System (INIS)

    Mack, G.

    1982-01-01

    After a description of a pure Yang-Mills theory on a lattice, the author considers a three-dimensional pure U(1) lattice gauge theory. Thereafter he discusses the exact relation between lattice gauge theories with the gauge groups SU(2) and SO(3). Finally he presents Monte Carlo data on phase transitions in SU(2) and SO(3) lattice gauge models. (HSI)

  16. Free-energy analysis of spin models on hyperbolic lattice geometries.

    Science.gov (United States)

    Serina, Marcel; Genzor, Jozef; Lee, Yoju; Gendiar, Andrej

    2016-04-01

    We investigate relations between spatial properties of the free energy and the radius of Gaussian curvature of the underlying curved lattice geometries. For this purpose we derive recurrence relations for the analysis of the free energy normalized per lattice site of various multistate spin models in the thermal equilibrium on distinct non-Euclidean surface lattices of the infinite sizes. Whereas the free energy is calculated numerically by means of the corner transfer matrix renormalization group algorithm, the radius of curvature has an analytic expression. Two tasks are considered in this work. First, we search for such a lattice geometry, which minimizes the free energy per site. We conjecture that the only Euclidean flat geometry results in the minimal free energy per site regardless of the spin model. Second, the relations among the free energy, the radius of curvature, and the phase transition temperatures are analyzed. We found out that both the free energy and the phase transition temperature inherit the structure of the lattice geometry and asymptotically approach the profile of the Gaussian radius of curvature. This achievement opens new perspectives in the AdS-CFT correspondence theories.

  17. Convergence to Equilibrium in Energy-Reaction-Diffusion Systems Using Vector-Valued Functional Inequalities

    Science.gov (United States)

    Mielke, Alexander; Mittnenzweig, Markus

    2018-04-01

    We discuss how the recently developed energy dissipation methods for reaction diffusion systems can be generalized to the non-isothermal case. For this, we use concave entropies in terms of the densities of the species and the internal energy, where the importance is that the equilibrium densities may depend on the internal energy. Using the log-Sobolev estimate and variants for lower-order entropies as well as estimates for the entropy production of the nonlinear reactions, we give two methods to estimate the relative entropy by the total entropy production, namely a somewhat restrictive convexity method, which provides explicit decay rates, and a very general, but weaker compactness method.

  18. Nonlinear waves in reaction-diffusion systems: The effect of transport memory

    International Nuclear Information System (INIS)

    Manne, K. K.; Hurd, A. J.; Kenkre, V. M.

    2000-01-01

    Motivated by the problem of determining stress distributions in granular materials, we study the effect of finite transport correlation times on the propagation of nonlinear wave fronts in reaction-diffusion systems. We obtain results such as the possibility of spatial oscillations in the wave-front shape for certain values of the system parameters and high enough wave-front speeds. We also generalize earlier known results concerning the minimum wave-front speed and shape-speed relationships stemming from the finiteness of the correlation times. Analytic investigations are made possible by a piecewise linear representation of the nonlinearity. (c) 2000 The American Physical Society

  19. Asymptotic analysis of reaction-diffusion-advection problems: Fronts with periodic motion and blow-up

    Science.gov (United States)

    Nefedov, Nikolay

    2017-02-01

    This is an extended variant of the paper presented at MURPHYS-HSFS 2016 conference in Barcelona. We discuss further development of the asymptotic method of differential inequalities to investigate existence and stability of sharp internal layers (fronts) for nonlinear singularly perturbed periodic parabolic problems and initial boundary value problems with blow-up of fronts for reaction-diffusion-advection equations. In particular, we consider periodic solutions with internal layer in the case of balanced reaction. For the initial boundary value problems we prove the existence of fronts and give their asymptotic approximation including the new case of blowing-up fronts. This case we illustrate by the generalised Burgers equation.

  20. Existence and exponential stability of traveling waves for delayed reaction-diffusion systems

    Science.gov (United States)

    Hsu, Cheng-Hsiung; Yang, Tzi-Sheng; Yu, Zhixian

    2018-03-01

    The purpose of this work is to investigate the existence and exponential stability of traveling wave solutions for general delayed multi-component reaction-diffusion systems. Following the monotone iteration scheme via an explicit construction of a pair of upper and lower solutions, we first obtain the existence of monostable traveling wave solutions connecting two different equilibria. Then, applying the techniques of weighted energy method and comparison principle, we show that all solutions of the Cauchy problem for the considered systems converge exponentially to traveling wave solutions provided that the initial perturbations around the traveling wave fronts belong to a suitable weighted Sobolev space.

  1. Stochastic exponential stability of the delayed reaction-diffusion recurrent neural networks with Markovian jumping parameters

    International Nuclear Information System (INIS)

    Wang Linshan; Zhang Zhe; Wang Yangfan

    2008-01-01

    Some criteria for the global stochastic exponential stability of the delayed reaction-diffusion recurrent neural networks with Markovian jumping parameters are presented. The jumping parameters considered here are generated from a continuous-time discrete-state homogeneous Markov process, which are governed by a Markov process with discrete and finite state space. By employing a new Lyapunov-Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish some easy-to-test criteria of global exponential stability in the mean square for the stochastic neural networks. The criteria are computationally efficient, since they are in the forms of some linear matrix inequalities

  2. Nonlinear waves in reaction-diffusion systems: The effect of transport memory

    Science.gov (United States)

    Manne, K. K.; Hurd, A. J.; Kenkre, V. M.

    2000-04-01

    Motivated by the problem of determining stress distributions in granular materials, we study the effect of finite transport correlation times on the propagation of nonlinear wave fronts in reaction-diffusion systems. We obtain results such as the possibility of spatial oscillations in the wave-front shape for certain values of the system parameters and high enough wave-front speeds. We also generalize earlier known results concerning the minimum wave-front speed and shape-speed relationships stemming from the finiteness of the correlation times. Analytic investigations are made possible by a piecewise linear representation of the nonlinearity.

  3. Adaptive exponential synchronization of delayed neural networks with reaction-diffusion terms

    International Nuclear Information System (INIS)

    Sheng Li; Yang Huizhong; Lou Xuyang

    2009-01-01

    This paper presents an exponential synchronization scheme for a class of neural networks with time-varying and distributed delays and reaction-diffusion terms. An adaptive synchronization controller is derived to achieve the exponential synchronization of the drive-response structure of neural networks by using the Lyapunov stability theory. At the same time, the update laws of parameters are proposed to guarantee the synchronization of delayed neural networks with all parameters unknown. It is shown that the approaches developed here extend and improve the ideas presented in recent literatures.

  4. Pseudopotential multi-relaxation-time lattice Boltzmann model for cavitation bubble collapse with high density ratio

    International Nuclear Information System (INIS)

    Shan Ming-Lei; Zhu Chang-Ping; Yao Cheng; Yin Cheng; Jiang Xiao-Yan

    2016-01-01

    The dynamics of the cavitation bubble collapse is a fundamental issue for the bubble collapse application and prevention. In the present work, the modified forcing scheme for the pseudopotential multi-relaxation-time lattice Boltzmann model developed by Li Q et al. [Li Q, Luo K H and Li X J 2013 Phys. Rev. E 87 053301] is adopted to develop a cavitation bubble collapse model. In the respects of coexistence curves and Laplace law verification, the improved pseudopotential multi-relaxation-time lattice Boltzmann model is investigated. It is found that the thermodynamic consistency and surface tension are independent of kinematic viscosity. By homogeneous and heterogeneous cavitation simulation, the ability of the present model to describe the cavitation bubble development as well as the cavitation inception is verified. The bubble collapse between two parallel walls is simulated. The dynamic process of a collapsing bubble is consistent with the results from experiments and simulations by other numerical methods. It is demonstrated that the present pseudopotential multi-relaxation-time lattice Boltzmann model is applicable and efficient, and the lattice Boltzmann method is an alternative tool for collapsing bubble modeling. (paper)

  5. Self-duality for coupled Potts models on the triangular lattice

    International Nuclear Information System (INIS)

    Richard, Jean-Francois; Jacobsen, Jesper Lykke; Picco, Marco

    2004-01-01

    We present self-dual manifolds for coupled Potts models on the triangular lattice. We exploit two different techniques: duality followed by decimation, and mapping to a related loop model. The latter technique is found to be superior, and it allows us to include three-spin couplings. Starting from three coupled models, such couplings are necessary for generating self-dual solutions. A numerical study of the case of two coupled models leads to the identification of novel critical points

  6. Large-n limit of the Heisenberg model: The decorated lattice and the disordered chain

    International Nuclear Information System (INIS)

    Khoruzhenko, B.A.; Pastur, L.A.; Shcherbina, M.V.

    1989-01-01

    The critical temperature of the generalized spherical model (large-component limit of the classical Heisenberg model) on a cubic lattice, whose every bond is decorated by L spins, is found. When L → ∞, the asymptotics of the temperature is T c ∼ aL -1 . The reduction of the number of spherical constraints for the model is found to be fairly large. The free energy of the one-dimensional generalized spherical model with random nearest neighbor interaction is calculated

  7. How to approach continuum physics in the lattice Weinberg-Salam model

    International Nuclear Information System (INIS)

    Zubkov, M. A.

    2010-01-01

    We investigate the lattice Weinberg-Salam model without fermions numerically for the realistic choice of coupling constants correspondent to the value of the Weinberg angle θ W ∼30 deg., and bare fine structure constant around α∼(1/150). We consider the values of the scalar self-coupling corresponding to Higgs mass M H ∼100, 150, 270 GeV. It has been found that nonperturbative effects become important while approaching continuum physics within the lattice model. When the ultraviolet cutoff Λ=(π/a) (where a is the lattice spacing) is increased and achieves the value around 1 TeV, one encounters the fluctuational region (on the phase diagram of the lattice model), where the fluctuations of the scalar field become strong. The classical Nambu monopole can be considered as an embryo of the unphysical symmetric phase within the physical phase. In the fluctuational region quantum Nambu monopoles are dense, and therefore, the use of the perturbation expansion around the trivial vacuum in this region is limited. Further increase of the cutoff is accompanied by a transition to the region of the phase diagram, where the scalar field is not condensed (this happens at the value of Λ around 1.4 TeV for the considered lattice sizes). Within this region further increase of the cutoff is possible, although we do not observe this in detail due to the strong fluctuations of the gauge boson correlator. Both above mentioned regions look unphysical. Therefore we come to the conclusion that the maximal value of the cutoff admitted within lattice electroweak theory cannot exceed the value of the order of 1 TeV.

  8. A Lattice-Based Identity-Based Proxy Blind Signature Scheme in the Standard Model

    Directory of Open Access Journals (Sweden)

    Lili Zhang

    2014-01-01

    Full Text Available A proxy blind signature scheme is a special form of blind signature which allowed a designated person called proxy signer to sign on behalf of original signers without knowing the content of the message. It combines the advantages of proxy signature and blind signature. Up to date, most proxy blind signature schemes rely on hard number theory problems, discrete logarithm, and bilinear pairings. Unfortunately, the above underlying number theory problems will be solvable in the postquantum era. Lattice-based cryptography is enjoying great interest these days, due to implementation simplicity and provable security reductions. Moreover, lattice-based cryptography is believed to be hard even for quantum computers. In this paper, we present a new identity-based proxy blind signature scheme from lattices without random oracles. The new scheme is proven to be strongly unforgeable under the standard hardness assumption of the short integer solution problem (SIS and the inhomogeneous small integer solution problem (ISIS. Furthermore, the secret key size and the signature length of our scheme are invariant and much shorter than those of the previous lattice-based proxy blind signature schemes. To the best of our knowledge, our construction is the first short lattice-based identity-based proxy blind signature scheme in the standard model.

  9. Height probabilities in the Abelian sandpile model on the generalized finite Bethe lattice

    Science.gov (United States)

    Chen, Haiyan; Zhang, Fuji

    2013-08-01

    In this paper, we study the sandpile model on the generalized finite Bethe lattice with a particular boundary condition. Using a combinatorial method, we give the exact expressions for all single-site probabilities and some two-site joint probabilities. As a by-product, we prove that the height probabilities of bulk vertices are all the same for the Bethe lattice with certain given boundary condition, which was found from numerical evidence by Grassberger and Manna ["Some more sandpiles," J. Phys. (France) 51, 1077-1098 (1990)], 10.1051/jphys:0199000510110107700 but without a proof.

  10. Accelerated lattice Boltzmann model for colloidal suspensions rheology and interface morphology

    CERN Document Server

    Farhat, Hassan; Kondaraju, Sasidhar

    2014-01-01

    Colloids are ubiquitous in the food, medical, cosmetics, polymers, water purification, and pharmaceutical industries. The thermal, mechanical, and storage properties of colloids are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a convenient and reliable tool for the study of colloids. Accelerated Lattice Boltzmann Model for Colloidal Suspensions introduce the main building-blocks for an improved lattice Boltzmann–based numerical tool designed for the study of colloidal rheology and interface morphology. This book also covers the migrating multi-block used to simulate single component, multi-component, multiphase, and single component multiphase flows and their validation by experimental, numerical, and analytical solutions.   Among other topics discussed are the hybrid lattice Boltzmann method (LBM) for surfactant-covered droplets; biological suspensions such as blood; used in conjunction with the suppression of coalescence for investigating the...

  11. Apparently noninvariant terms of nonlinear sigma models in lattice perturbation theory

    International Nuclear Information System (INIS)

    Harada, Koji; Hattori, Nozomu; Kubo, Hirofumi; Yamamoto, Yuki

    2009-01-01

    Apparently noninvariant terms (ANTs) that appear in loop diagrams for nonlinear sigma models are revisited in lattice perturbation theory. The calculations have been done mostly with dimensional regularization so far. In order to establish that the existence of ANTs is independent of the regularization scheme, and of the potential ambiguities in the definition of the Jacobian of the change of integration variables from group elements to 'pion' fields, we employ lattice regularization, in which everything (including the Jacobian) is well defined. We show explicitly that lattice perturbation theory produces ANTs in the four-point functions of the pion fields at one-loop and the Jacobian does not play an important role in generating ANTs.

  12. Lattice Supersymmetry and Order-Disorder Coexistence in the Tricritical Ising Model

    Science.gov (United States)

    O'Brien, Edward; Fendley, Paul

    2018-05-01

    We introduce and analyze a quantum spin or Majorana chain with a tricritical Ising point separating a critical phase from a gapped phase with order-disorder coexistence. We show that supersymmetry is not only an emergent property of the scaling limit but also manifests itself on the lattice. Namely, we find explicit lattice expressions for the supersymmetry generators and currents. Writing the Hamiltonian in terms of these generators allows us to find the ground states exactly at a frustration-free coupling. These confirm the coexistence between two (topologically) ordered ground states and a disordered one in the gapped phase. Deforming the model by including explicit chiral symmetry breaking, we find the phases persist up to an unusual chiral phase transition where the supersymmetry becomes exact even on the lattice.

  13. A Novel Model for Lattice-Based Authorized Searchable Encryption with Special Keyword

    Directory of Open Access Journals (Sweden)

    Fugeng Zeng

    2015-01-01

    Full Text Available Data stored in the cloud servers, keyword search, and access controls are two important capabilities which should be supported. Public-keyword encryption with keyword search (PEKS and attribute based encryption (ABE are corresponding solutions. Meanwhile, as we step into postquantum era, pairing related assumption is fragile. Lattice is an ideal choice for building secure encryption scheme against quantum attack. Based on this, we propose the first mathematical model for lattice-based authorized searchable encryption. Data owners can sort the ciphertext by specific keywords such as time; data users satisfying the access control hand the trapdoor generated with the keyword to the cloud sever; the cloud sever sends back the corresponding ciphertext. The security of our schemes is based on the worst-case hardness on lattices, called learning with errors (LWE assumption. In addition, our scheme achieves attribute-hiding, which could protect the sensitive information of data user.

  14. Layer features of the lattice gas model for self-organized criticality

    International Nuclear Information System (INIS)

    Pesheva, N.C.; Brankov, J.G.

    1995-06-01

    A layer-by-layer description of the asymmetric lattice gas model for 1/f-noise suggested by Jensen [Phys. Rev. Lett. 64, 3103 (1990)] is presented. The power spectra of the lattice layers in the direction perpendicular to the particle flux is studied in order to understand how the white noise at the input boundary evolves, on the average, into 1/f-noise for the system. The effects of high boundary drive and uniform driving force on the power spectrum of the total number of diffusing particles are considered. In the case of nearest-neighbor particle interactions, high statistics simulation results show that the power spectra of single lattice layers are characterized by different β x exponents such that β x → 1.9 as one approaches the outer boundary. (author). 10 refs, 6 figs

  15. Electrostatic instability of some jellium model lattices of high symmetry to their plane cleavage

    International Nuclear Information System (INIS)

    Kholopov, Eugene V; Kalashnikova, Vita V

    2007-01-01

    Jellium model structures composed of regular lattices of equal point charges immersed in a neutralizing uniform background are considered. The symmetric description eliminating the effect of potentials without transverse structural modulation is extended to the events specified by alternating distances between point-charge planes. Based on modulated potentials typical of plane-wise lattice summation, the energy of interaction between two semi-infinite hemi-crystals divided by a plane is obtained for cubic and hexagonal crystals, where all the characteristic orientations of the cleavage plane are taken into account. We found that simple cubic and hexagonal lattices, as well as cubic and hexagonal diamond structures, turn out to be unstable for certain cleavage planes. The most favourable cleavage planes for the bcc, fcc and hcp structures are also emphasized

  16. Compacton solutions and multiple compacton solutions for a continuum Toda lattice model

    International Nuclear Information System (INIS)

    Fan Xinghua; Tian Lixin

    2006-01-01

    Some special solutions of the Toda lattice model with a transversal degree of freedom are obtained. With the aid of Mathematica and Wu elimination method, more explicit solitary wave solutions, including compacton solutions, multiple compacton solutions, peakon solutions, as well as periodic solutions are found in this paper

  17. Calibrating the Shan-Chen lattice Boltzmann model for immiscible displacement in porous media

    DEFF Research Database (Denmark)

    Christensen, Britt Stenhøj Baun; Schaap, M.G.; Wildenschild, D.

    2006-01-01

    The lattice Boltzmann (LB) modeling technique is increasingly being applied in a variety of fields where computational fluid dynamics are investigated. In our field of interest, environmentally related flow processes in porous media, the use of the LB method is still not common. For the LB...

  18. Evolution of a neutral-ion 2 fluid system using thermal lattice Boltzmann model

    International Nuclear Information System (INIS)

    Vahala, L.; Vahala, G.; Carter, J.; Pavlo, P.

    2000-01-01

    The 2D evolution of a 2-species system is examined using the thermal lattice Boltzmann model (TLBM). The effects of velocity shear layers on sharp heat fronts are considered for a neutral-ion system in the case where both species are turbulent. The rate at which the species velocities and temperatures equilibrate no longer follow the Morse estimate. (author)

  19. Fracture analysis of cement treated demolition waste using a lattice model

    NARCIS (Netherlands)

    Xuan, D.; Schlangen, H.E.J.G.; Molenaar, A.A.A.; Houben, L.J.M.

    2013-01-01

    Fracture properties of cement treated demolition waste were investigated using a lattice model. In practice the investigated material is applied as a cement treated road base/subbase course. The granular aggregates used in this material were crushed recycled concrete and masonry. This results in six

  20. Extending the reach of strong-coupling: an iterative technique for Hamiltonian lattice models

    International Nuclear Information System (INIS)

    Alberty, J.; Greensite, J.; Patkos, A.

    1983-12-01

    The authors propose an iterative method for doing lattice strong-coupling-like calculations in a range of medium to weak couplings. The method is a modified Lanczos scheme, with greatly improved convergence properties. The technique is tested on the Mathieu equation and on a Hamiltonian finite-chain XY model, with excellent results. (Auth.)

  1. An equivalence between the discrete Gaussian model and a generalized Sine Gordon theory on a lattice

    International Nuclear Information System (INIS)

    Baskaran, G.; Gupte, N.

    1983-11-01

    We demonstrate an equivalence between the statistical mechanics of the discrete Gaussian model and a generalized Sine-Gordon theory on an Euclidean lattice in arbitrary dimensions. The connection is obtained by a simple transformation of the partition function and is non perturbative in nature. (author)

  2. Lattice dynamics of aluminium, lead and thorium on modified Bhatia's model

    International Nuclear Information System (INIS)

    Bertolo, L.A.; Shukla, M.M.

    1975-01-01

    Phonon dispersion relations along the three principal symmetry directions as well as lattice heat capacities of aluminium, lead and thorium have been calculated on the basis of modified Bathia's model. The calculated results are found to show reasonable agreements with the experimental observations

  3. Lattice location of dopant atoms: An N-body model calculation

    Indian Academy of Sciences (India)

    Here we applied the superior -body model to study the yield from bismuth in silicon. The finding that bismuth atom occupies a position close to the silicon substitutional site is new. The transverse displacement of the suggested lattice site from the channelling direction is consistent with the experimental results. The above ...

  4. Progress in the improved lattice calculation of direct CP-violation in the Standard Model

    Science.gov (United States)

    Kelly, Christopher

    2018-03-01

    We discuss the ongoing effort by the RBC & UKQCD collaborations to improve our lattice calculation of the measure of Standard Model direct CP violation, ɛ', with physical kinematics. We present our progress in decreasing the (dominant) statistical error and discuss other related activities aimed at reducing the systematic errors.

  5. On a two-relaxation-time D2Q9 lattice Boltzmann model for the Navier-Stokes equations

    Science.gov (United States)

    Zhao, Weifeng; Wang, Liang; Yong, Wen-An

    2018-02-01

    In this paper, we are concerned with the stability of some lattice kinetic schemes. First, we show that a recently proposed lattice kinetic scheme is a two-relaxation-time model different from those in the literature. Second, we analyze the stability of the model by verifying the Onsager-like relation. In addition, a necessary stability criterion for hyperbolic relaxation systems is adapted to the lattice Boltzmann method. As an application of this criterion, we find some necessary stability conditions for a previously proposed lattice kinetic scheme. Numerical experiments are conducted to validate the necessary stability conditions.

  6. Modeling and simulation of ocean wave propagation using lattice Boltzmann method

    Science.gov (United States)

    Nuraiman, Dian

    2017-10-01

    In this paper, we present on modeling and simulation of ocean wave propagation from the deep sea to the shoreline. This requires high computational cost for simulation with large domain. We propose to couple a 1D shallow water equations (SWE) model with a 2D incompressible Navier-Stokes equations (NSE) model in order to reduce the computational cost. The coupled model is solved using the lattice Boltzmann method (LBM) with the lattice Bhatnagar-Gross-Krook (BGK) scheme. Additionally, a special method is implemented to treat the complex behavior of free surface close to the shoreline. The result shows the coupled model can reduce computational cost significantly compared to the full NSE model.

  7. Lattice Three-Species Models of the Spatial Spread of Rabies among FOXES

    Science.gov (United States)

    Benyoussef, A.; Boccara, N.; Chakib, H.; Ez-Zahraouy, H.

    Lattice models describing the spatial spread of rabies among foxes are studied. In these models, the fox population is divided into three-species: susceptible (S), infected or incubating (I), and infectious or rabid (R). They are based on the fact that susceptible and incubating foxes are territorial while rabid foxes have lost their sense of direction and move erratically. Two different models are investigated: a one-dimensional coupled-map lattice model, and a two-dimensional automata network model. Both models take into account the short-range character of the infection process and the diffusive motion of rabid foxes. Numerical simulations show how the spatial distribution of rabies, and the speed of propagation of the epizootic front depend upon the carrying capacity of the environment and diffusion of rabid foxes out of their territory.

  8. A Dirac-Kaehler approach to the two dimensional Wess-Zumino N=2 model on the lattice

    International Nuclear Information System (INIS)

    Zimerman, A.H.; Aratyn, H.

    1983-08-01

    We introduce a Dirac-Kaehler model for the two dimensional Wess-Zumino N=2 Lagrangean. We can show that in the model, when we go to the euclidean space-time lattive, we have no energy doubling, the action has no lattice surface terms (contrary to other authors), while the Hamiltonians (when time is continuous) present lattice surface terms. (orig.)

  9. SU (N) lattice integrable models and modular invariance

    International Nuclear Information System (INIS)

    Zuber, J.B.; Di Francesco, P.

    1989-01-01

    We first review some recent work on the construction of RSOS SU (N) critical integrable models. The models may be regarded as associated with a graph, extending from SU (2) to SU (N) an idea of Pasquier, or alternatively, with a representation of the fusion algebra over non-negative integer valued matrices. Some consistency conditions that the Boltzmann weights of these models must satisfy are then pointed out. Finally, the algebraic connections between (a subclass of) the admissible graphs and (a subclass of) modular invariants are discussed, based on the theory of C-algebras. The case of G 2 is also treated

  10. Particles and scaling for lattice fields and Ising models

    International Nuclear Information System (INIS)

    Glimm, J.; Jaffe, A.

    1976-01-01

    The conjectured inequality GAMMA 6 4 -fields and the scaling limit for d-dimensional Ising models. Assuming GAMMA 6 = 6 these phi 4 fields are free fields unless the field strength renormalization Z -1 diverges. (orig./BJ) [de

  11. Simulation of the catalyst layer in PEMFC based on a novel two-phase lattice model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jiejing; Yang Wei; Xu Li [School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072 (China); Wang Yuxin, E-mail: yxwang@tju.edu.cn [School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072 (China)

    2011-08-01

    Highlights: > We propose a novel two phase lattice model of catalyst layer in PEMFC. > The model features a catalyst phase and a mixed ionomer and pores phase. > Transport and electrochemical reaction in the lattice are simulated. > The model enables more accurate results than pore-solid two phase model. > Profiles of oxygen level and reaction rate across catalyst layer vary with cell current. - Abstract: A lattice model of catalyst layer in proton exchange membrane fuel cells (PEMFCs), consisting of randomly distributed catalyst phase (C phase) and mixed ionomer-pore phase (IP phase), was established by means of Monte Carlo method. Transport and electrochemical reactions in the model catalyst layer were calculated. The newly proposed C-IP model was compared with previously established pore-solid two phase model. The variation of oxygen level and reaction rate along the thickness of catalyst layer with cell current was discussed. The effect of ionomer distribution across catalyst layer was studied by comparing profiles of oxygen level, reaction rate and overpotential, as well as corresponding polarization curves.

  12. High dimensions - a new approach to fermionic lattice models

    International Nuclear Information System (INIS)

    Vollhardt, D.

    1991-01-01

    The limit of high spatial dimensions d, which is well-established in the theory of classical and localized spin models, is shown to be a fruitful approach also to itinerant fermion systems, such as the Hubbard model and the periodic Anderson model. Many investigations which are probability difficult in finite dimensions, become tractable in d=∞. At the same time essential features of systems in d=3 and even lower dimensions are very well described by the results obtained in d=∞. A wide range of applications of this new concept (e.g., in perturbation theory, Fermi liquid theory, variational approaches, exact results, etc.) is discussed and the state-of-the-art is reviewed. (orig.)

  13. Thermo-magnetic effects in quark matter: Nambu-Jona-Lasinio model constrained by lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Ricardo L.S. [Universidade Federal de Santa Maria, Departamento de Fisica, Santa Maria, RS (Brazil); Kent State University, Physics Department, Kent, OH (United States); Timoteo, Varese S. [Universidade Estadual de Campinas (UNICAMP), Grupo de Optica e Modelagem Numerica (GOMNI), Faculdade de Tecnologia, Limeira, SP (Brazil); Avancini, Sidney S.; Pinto, Marcus B. [Universidade Federal de Santa Catarina, Departamento de Fisica, Florianopolis, Santa Catarina (Brazil); Krein, Gastao [Universidade Estadual Paulista, Instituto de Fisica Teorica, Sao Paulo, SP (Brazil)

    2017-05-15

    The phenomenon of inverse magnetic catalysis of chiral symmetry in QCD predicted by lattice simulations can be reproduced within the Nambu-Jona-Lasinio model if the coupling G of the model decreases with the strength B of the magnetic field and temperature T. The thermo-magnetic dependence of G(B, T) is obtained by fitting recent lattice QCD predictions for the chiral transition order parameter. Different thermodynamic quantities of magnetized quark matter evaluated with G(B, T) are compared with the ones obtained at constant coupling, G. The model with G(B, T) predicts a more dramatic chiral transition as the field intensity increases. In addition, the pressure and magnetization always increase with B for a given temperature. Being parametrized by four magnetic-field-dependent coefficients and having a rather simple exponential thermal dependence our accurate ansatz for the coupling constant can be easily implemented to improve typical model applications to magnetized quark matter. (orig.)

  14. Application of Transfer Matrix Approach to Modeling and Decentralized Control of Lattice-Based Structures

    Science.gov (United States)

    Cramer, Nick; Swei, Sean Shan-Min; Cheung, Kenny; Teodorescu, Mircea

    2015-01-01

    This paper presents a modeling and control of aerostructure developed by lattice-based cellular materials/components. The proposed aerostructure concept leverages a building block strategy for lattice-based components which provide great adaptability to varying ight scenarios, the needs of which are essential for in- ight wing shaping control. A decentralized structural control design is proposed that utilizes discrete-time lumped mass transfer matrix method (DT-LM-TMM). The objective is to develop an e ective reduced order model through DT-LM-TMM that can be used to design a decentralized controller for the structural control of a wing. The proposed approach developed in this paper shows that, as far as the performance of overall structural system is concerned, the reduced order model can be as e ective as the full order model in designing an optimal stabilizing controller.

  15. Lattice Boltzmann simulations of the permeability and capillary adsorption of cement model microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Zalzale, M. [Laboratory of Construction Materials, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); McDonald, P.J., E-mail: p.mcdonald@surrey.ac.uk [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2012-12-15

    The lattice Boltzmann method is used to investigate the permeability of microstructures of cement pastes generated using the numerical models CEMHYD3D (Bentz, 1997) and {mu}IC (Bishnoi and Scrivener, 2009). Results are reported as a function of paste water-to-cement ratio and degree of hydration. The permeability decreases with increasing hydration and decreasing water-to-cement ratio in agreement with experiment. However the permeability is larger than the experimental data recorded using beam bending methods (Vichit-Vadakan and Scherer, 2002). Notwithstanding, the lattice Boltzmann results compare favourably with alternate numerical methods of permeability calculation for cement model microstructures. In addition, we show early results for the liquid/vapour capillary adsorption and desorption isotherms in the same model {mu}IC structures. The broad features of the experimental capillary porosity isotherm are reproduced, although further work is required to adequately parameterise the model.

  16. The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings: Models and Experiments

    Science.gov (United States)

    Zhu, Dongming; Spuckler, Charles M.

    2010-01-01

    The lattice and radiation conductivity of ZrO2-Y2O3 thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the coating apparent thermal conductivity to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature, coating material scattering, and absorption properties. High temperature scattering and absorption of the coating systems can be also derived based on the testing results using the modeling approach. A comparison has been made for the gray and nongray coating models in the plasma-sprayed thermal barrier coatings. The model prediction is found to have a good agreement with experimental observations.

  17. Fused integrable lattice models with quantum impurities and open boundaries

    International Nuclear Information System (INIS)

    Doikou, Anastasia

    2003-01-01

    The alternating integrable spin chain and the RSOS(q 1 ,q 2 ;p) model in the presence of a quantum impurity are investigated. The boundary free energy due to the impurity is derived, the ratios of the corresponding g functions at low and high temperature are specified and their relevance to boundary flows in unitary minimal and generalized coset models is discussed. Finally, the alternating spin chain with diagonal and non-diagonal integrable boundaries is studied, and the corresponding boundary free energy and g functions are derived

  18. A mass-conserving multiphase lattice Boltzmann model for simulation of multiphase flows

    Science.gov (United States)

    Niu, Xiao-Dong; Li, You; Ma, Yi-Ren; Chen, Mu-Feng; Li, Xiang; Li, Qiao-Zhong

    2018-01-01

    In this study, a mass-conserving multiphase lattice Boltzmann (LB) model is proposed for simulating the multiphase flows. The proposed model developed in the present study is to improve the model of Shao et al. ["Free-energy-based lattice Boltzmann model for simulation of multiphase flows with density contrast," Phys. Rev. E 89, 033309 (2014)] by introducing a mass correction term in the lattice Boltzmann model for the interface. The model of Shao et al. [(the improved Zheng-Shu-Chew (Z-S-C model)] correctly considers the effect of the local density variation in momentum equation and has an obvious improvement over the Zheng-Shu-Chew (Z-S-C) model ["A lattice Boltzmann model for multiphase flows with large density ratio," J. Comput. Phys. 218(1), 353-371 (2006)] in terms of solution accuracy. However, due to the physical diffusion and numerical dissipation, the total mass of each fluid phase cannot be conserved correctly. To solve this problem, a mass correction term, which is similar to the one proposed by Wang et al. ["A mass-conserved diffuse interface method and its application for incompressible multiphase flows with large density ratio," J. Comput. Phys. 290, 336-351 (2015)], is introduced into the lattice Boltzmann equation for the interface to compensate the mass losses or offset the mass increase. Meanwhile, to implement the wetting boundary condition and the contact angle, a geometric formulation and a local force are incorporated into the present mass-conserving LB model. The proposed model is validated by verifying the Laplace law, simulating both one and two aligned droplets splashing onto a liquid film, droplets standing on an ideal wall, droplets with different wettability splashing onto smooth wax, and bubbles rising under buoyancy. Numerical results show that the proposed model can correctly simulate multiphase flows. It was found that the mass is well-conserved in all cases considered by the model developed in the present study. The developed

  19. Line and lattice networks under deterministic interference models

    NARCIS (Netherlands)

    Goseling, Jasper; Gastpar, Michael; Weber, Jos H.

    Capacity bounds are compared for four different deterministic models of wireless networks, representing four different ways of handling broadcast and superposition in the physical layer. In particular, the transport capacity under a multiple unicast traffic pattern is studied for a 1-D network of

  20. The standard Higgs-model on the lattice

    International Nuclear Information System (INIS)

    Montvay, I.

    1985-06-01

    Some recent Monte Carlo calcuations in the SU(2) Higgs-model with a scalar doublet field are reviewed. Questions about the dependence on the scalar self-coupling are discussed in the framework of a strong self-coupling expansion. The numerical results are consistent with an asymptotically free continuum limit at vanishing bare gauge coupling. (orig.)

  1. Higgs-Yukawa model in chirally-invariant lattice field theory

    CERN Document Server

    Bulava, John; Jansen, Karl; Kallarackal, Jim; Knippschild, Bastian; Lin, C.-J.David; Nagai, Kei-Ichi; Nagy, Attila; Ogawa, Kenji

    2013-01-01

    Non-perturbative numerical lattice studies of the Higgs-Yukawa sector of the standard model with exact chiral symmetry are reviewed. In particular, we discuss bounds on the Higgs boson mass at the standard model top quark mass, and in the presence of heavy fermions. We present a comprehensive study of the phase structure of the theory at weak and very strong values of the Yukawa coupling as well as at non-zero temperature.

  2. Entropic lattice Boltzmann model for charged leaky dielectric multiphase fluids in electrified jets.

    Science.gov (United States)

    Lauricella, Marco; Melchionna, Simone; Montessori, Andrea; Pisignano, Dario; Pontrelli, Giuseppe; Succi, Sauro

    2018-03-01

    We present a lattice Boltzmann model for charged leaky dielectric multiphase fluids in the context of electrified jet simulations, which are of interest for a number of production technologies including electrospinning. The role of nonlinear rheology on the dynamics of electrified jets is considered by exploiting the Carreau model for pseudoplastic fluids. We report exploratory simulations of charged droplets at rest and under a constant electric field, and we provide results for charged jet formation under electrospinning conditions.

  3. Higgs mass bounds from a chirally invariant lattice Higgs-Yukawa model with overlap fermions

    International Nuclear Information System (INIS)

    Gerhold, Philipp; Kallarackal, Jim

    2008-10-01

    We study the parameter dependence of the Higgs mass in a chirally invariant lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model. Eventually, the aim is to establish upper and lower Higgs mass bounds. Here we present our preliminary results on the lower Higgs mass bound at several selected values for the cutoff and give a brief outlook towards the upper Higgs mass bound. (orig.)

  4. Higgs-Yukawa model in chirally-invariant lattice field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bulava, John [CERN, Geneva (Switzerland). Physics Department; Gerhold, Philipp; Kallarackal, Jim; Nagy, Attila [Humboldt Univ. Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Knippschild, Bastian [National Taiwan Univ., Taipei (China). Dept. of Physics; Lin, C.J. David [National Chiao-Tung Univ., Hsinchu (China). Inst. of Physics; National Centre for Theoretical Sciences, Hsinchu (China). Div. of Physics; Nagai, Kei-Ichi [Nagoya Univ., Nagoya, Aichi (Japan). Kobayashi-Maskawa Institute; Ogawa, Kenji [Chung-Yuan Christian Univ., Chung-Li (China). Dept. of Physics

    2012-10-15

    Non-perturbative numerical lattice studies of the Higgs-Yukawa sector of the standard model with exact chiral symmetry are reviewed. In particular, we discuss bounds on the Higgs boson mass at the standard model top quark mass, and in the presence of heavy fermions. We present a comprehensive study of the phase structure of the theory at weak and very strong values of the Yukawa coupling as well as at non-zero temperature.

  5. Traveling waves and spreading speed on a lattice model with age structure

    Directory of Open Access Journals (Sweden)

    Zongyi Wang

    2012-09-01

    Full Text Available In this article, we study a lattice differential model for a single species with distributed age-structure in an infinite patchy environment. Using method of approaches by Diekmann and Thieme, we develop a comparison principle and construct a suitable sub-solution to the given model, and show that there exists a spreading speed of the system which in fact coincides with the minimal wave speed.

  6. N = 2 two dimensional Wess-Zumino model on the lattice

    International Nuclear Information System (INIS)

    Elitzur, S.; Schwimmer, A.

    1983-04-01

    A lattice version of the N = 2 SUSY two dimensional Wess-Zumino model was constructed and studied. The correct continuum limit is checked in perturbation theory. The strong coupling limit is defined and investigated. We find that the ground state of the model has zero energy and infinite degeneracy. The connection between this degeneracy and the properties of the Nicolai-Parisi-Sourlas transformation is discussed. (author)

  7. Global exponential stability and periodicity of reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions

    International Nuclear Information System (INIS)

    Lu Junguo

    2008-01-01

    In this paper, the global exponential stability and periodicity for a class of reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions are addressed by constructing suitable Lyapunov functionals and utilizing some inequality techniques. We first prove global exponential converge to 0 of the difference between any two solutions of the original reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions, the existence and uniqueness of equilibrium is the direct results of this procedure. This approach is different from the usually used one where the existence, uniqueness of equilibrium and stability are proved in two separate steps. Furthermore, we prove periodicity of the reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions. Sufficient conditions ensuring the global exponential stability and the existence of periodic oscillatory solutions for the reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions are given. These conditions are easy to check and have important leading significance in the design and application of reaction-diffusion recurrent neural networks with delays. Finally, two numerical examples are given to show the effectiveness of the obtained results

  8. Properties of lattice gauge theory models at low temperatures

    International Nuclear Information System (INIS)

    Mack, G.

    1980-01-01

    The Z(N) theory of quark confinement is discussed and how fluctuations of Z(N) gauge fields may continue to be important in the continuum limit. Existence of a model in four dimensions is pointed out in which confinement of (scalar) quarks can be shown to persist in the continuum limit. This article is based on the author's Cargese lectures 1979. Some of its results are published here for the first time. (orig.) 891 HSI/orig. 892 MKO

  9. Stochastic quantization of field theories on the lattice and supersymmetrical models

    International Nuclear Information System (INIS)

    Aldazabal, Gerardo.

    1984-01-01

    Several aspects of the stochastic quantization method are considered. Specifically, field theories on the lattice and supersymmetrical models are studied. A non-linear sigma model is studied firstly, and it is shown that it is possible to obtain evolution equations written directly for invariant quantities. These ideas are generalized to obtain Langevin equations for the Wilson loops of non-abelian lattice gauge theories U (N) and SU (N). In order to write these equations, some different ways of introducing the constraints which the fields must satisfy are discussed. It is natural to have a strong coupling expansion in these equations. The correspondence with quantum field theory is established, and it is noticed that at all orders in the perturbation theory, Langevin equations reduce to Schwinger-Dyson equations. From another point of view, stochastic quantization is applied to large N matrix models on the lattice. As a result, a simple and systematic way of building reduced models is found. Referring to stochastic quantization in supersymmetric theories, a simple supersymmetric model is studied. It is shown that it is possible to write an evolution equation for the superfield wich leads to quantum field theory results in equilibrium. As the Langevin equation preserves supersymmetry, the property of dimensional reduction known for the quantum model is shown to be valid at all times. (M.E.L.) [es

  10. Critical regimes driven by recurrent mobility patterns of reaction-diffusion processes in networks

    Science.gov (United States)

    Gómez-Gardeñes, J.; Soriano-Paños, D.; Arenas, A.

    2018-04-01

    Reaction-diffusion processes1 have been widely used to study dynamical processes in epidemics2-4 and ecology5 in networked metapopulations. In the context of epidemics6, reaction processes are understood as contagions within each subpopulation (patch), while diffusion represents the mobility of individuals between patches. Recently, the characteristics of human mobility7, such as its recurrent nature, have been proven crucial to understand the phase transition to endemic epidemic states8,9. Here, by developing a framework able to cope with the elementary epidemic processes, the spatial distribution of populations and the commuting mobility patterns, we discover three different critical regimes of the epidemic incidence as a function of these parameters. Interestingly, we reveal a regime of the reaction-diffussion process in which, counter-intuitively, mobility is detrimental to the spread of disease. We analytically determine the precise conditions for the emergence of any of the three possible critical regimes in real and synthetic networks.

  11. An adaptive algorithm for simulation of stochastic reaction-diffusion processes

    International Nuclear Information System (INIS)

    Ferm, Lars; Hellander, Andreas; Loetstedt, Per

    2010-01-01

    We propose an adaptive hybrid method suitable for stochastic simulation of diffusion dominated reaction-diffusion processes. For such systems, simulation of the diffusion requires the predominant part of the computing time. In order to reduce the computational work, the diffusion in parts of the domain is treated macroscopically, in other parts with the tau-leap method and in the remaining parts with Gillespie's stochastic simulation algorithm (SSA) as implemented in the next subvolume method (NSM). The chemical reactions are handled by SSA everywhere in the computational domain. A trajectory of the process is advanced in time by an operator splitting technique and the timesteps are chosen adaptively. The spatial adaptation is based on estimates of the errors in the tau-leap method and the macroscopic diffusion. The accuracy and efficiency of the method are demonstrated in examples from molecular biology where the domain is discretized by unstructured meshes.

  12. Regularity of random attractors for fractional stochastic reaction-diffusion equations on Rn

    Science.gov (United States)

    Gu, Anhui; Li, Dingshi; Wang, Bixiang; Yang, Han

    2018-06-01

    We investigate the regularity of random attractors for the non-autonomous non-local fractional stochastic reaction-diffusion equations in Hs (Rn) with s ∈ (0 , 1). We prove the existence and uniqueness of the tempered random attractor that is compact in Hs (Rn) and attracts all tempered random subsets of L2 (Rn) with respect to the norm of Hs (Rn). The main difficulty is to show the pullback asymptotic compactness of solutions in Hs (Rn) due to the noncompactness of Sobolev embeddings on unbounded domains and the almost sure nondifferentiability of the sample paths of the Wiener process. We establish such compactness by the ideas of uniform tail-estimates and the spectral decomposition of solutions in bounded domains.

  13. Stability and Hopf Bifurcation of a Reaction-Diffusion Neutral Neuron System with Time Delay

    Science.gov (United States)

    Dong, Tao; Xia, Linmao

    2017-12-01

    In this paper, a type of reaction-diffusion neutral neuron system with time delay under homogeneous Neumann boundary conditions is considered. By constructing a basis of phase space based on the eigenvectors of the corresponding Laplace operator, the characteristic equation of this system is obtained. Then, by selecting time delay and self-feedback strength as the bifurcating parameters respectively, the dynamic behaviors including local stability and Hopf bifurcation near the zero equilibrium point are investigated when the time delay and self-feedback strength vary. Furthermore, the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions are obtained by using the normal form and the center manifold theorem for the corresponding partial differential equation. Finally, two simulation examples are given to verify the theory.

  14. Efficient kinetic Monte Carlo method for reaction-diffusion problems with spatially varying annihilation rates

    Science.gov (United States)

    Schwarz, Karsten; Rieger, Heiko

    2013-03-01

    We present an efficient Monte Carlo method to simulate reaction-diffusion processes with spatially varying particle annihilation or transformation rates as it occurs for instance in the context of motor-driven intracellular transport. Like Green's function reaction dynamics and first-passage time methods, our algorithm avoids small diffusive hops by propagating sufficiently distant particles in large hops to the boundaries of protective domains. Since for spatially varying annihilation or transformation rates the single particle diffusion propagator is not known analytically, we present an algorithm that generates efficiently either particle displacements or annihilations with the correct statistics, as we prove rigorously. The numerical efficiency of the algorithm is demonstrated with an illustrative example.

  15. Global dynamics of a nonlocal delayed reaction-diffusion equation on a half plane

    Science.gov (United States)

    Hu, Wenjie; Duan, Yueliang

    2018-04-01

    We consider a delayed reaction-diffusion equation with spatial nonlocality on a half plane that describes population dynamics of a two-stage species living in a semi-infinite environment. A Neumann boundary condition is imposed accounting for an isolated domain. To describe the global dynamics, we first establish some a priori estimate for nontrivial solutions after investigating asymptotic properties of the nonlocal delayed effect and the diffusion operator, which enables us to show the permanence of the equation with respect to the compact open topology. We then employ standard dynamical system arguments to establish the global attractivity of the nontrivial equilibrium. The main results are illustrated by the diffusive Nicholson's blowfly equation and the diffusive Mackey-Glass equation.

  16. Anomalous dimension in a two-species reaction-diffusion system

    Science.gov (United States)

    Vollmayr-Lee, Benjamin; Hanson, Jack; McIsaac, R. Scott; Hellerick, Joshua D.

    2018-01-01

    We study a two-species reaction-diffusion system with the reactions A+A\\to (0, A) and A+B\\to A , with general diffusion constants D A and D B . Previous studies showed that for dimensions d≤slant 2 the B particle density decays with a nontrivial, universal exponent that includes an anomalous dimension resulting from field renormalization. We demonstrate via renormalization group methods that the scaled B particle correlation function has a distinct anomalous dimension resulting in the asymptotic scaling \\tilde CBB(r, t) ˜ tφf(r/\\sqrt{t}) , where the exponent ϕ results from the renormalization of the square of the field associated with the B particles. We compute this exponent to first order in \

  17. Asymptotic behavior of equilibrium states of reaction-diffusion systems with mass conservation

    Science.gov (United States)

    Chern, Jann-Long; Morita, Yoshihisa; Shieh, Tien-Tsan

    2018-01-01

    We deal with a stationary problem of a reaction-diffusion system with a conservation law under the Neumann boundary condition. It is shown that the stationary problem turns to be the Euler-Lagrange equation of an energy functional with a mass constraint. When the domain is the finite interval (0 , 1), we investigate the asymptotic profile of a strictly monotone minimizer of the energy as d, the ratio of the diffusion coefficient of the system, tends to zero. In view of a logarithmic function in the leading term of the potential, we get to a scaling parameter κ satisfying the relation ε : =√{ d } =√{ log ⁡ κ } /κ2. The main result shows that a sequence of minimizers converges to a Dirac mass multiplied by the total mass and that by a scaling with κ the asymptotic profile exhibits a parabola in the nonvanishing region. We also prove the existence of an unstable monotone solution when the mass is small.

  18. Mode-locking in advection-reaction-diffusion systems: An invariant manifold perspective

    Science.gov (United States)

    Locke, Rory A.; Mahoney, John R.; Mitchell, Kevin A.

    2018-01-01

    Fronts propagating in two-dimensional advection-reaction-diffusion systems exhibit a rich topological structure. When the underlying fluid flow is periodic in space and time, the reaction front can lock to the driving frequency. We explain this mode-locking phenomenon using the so-called burning invariant manifolds (BIMs). In fact, the mode-locked profile is delineated by a BIM attached to a relative periodic orbit (RPO) of the front element dynamics. Changes in the type (and loss) of mode-locking can be understood in terms of local and global bifurcations of the RPOs and their BIMs. We illustrate these concepts numerically using a chain of alternating vortices in a channel geometry.

  19. Dynamics of interface in three-dimensional anisotropic bistable reaction-diffusion system

    International Nuclear Information System (INIS)

    He Zhizhu; Liu, Jing

    2010-01-01

    This paper presents a theoretical investigation of dynamics of interface (wave front) in three-dimensional (3D) reaction-diffusion (RD) system for bistable media with anisotropy constructed by means of anisotropic surface tension. An equation of motion for the wave front is derived to carry out stability analysis of transverse perturbations, which discloses mechanism of pattern formation such as labyrinthine in 3D bistable media. Particularly, the effects of anisotropy on wave propagation are studied. It was found that, sufficiently strong anisotropy can induce dynamical instabilities and lead to breakup of the wave front. With the fast-inhibitor limit, the bistable system can further be described by a variational dynamics so that the boundary integral method is adopted to study the dynamics of wave fronts.

  20. Scalable implicit methods for reaction-diffusion equations in two and three space dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Veronese, S.V.; Othmer, H.G. [Univ. of Utah, Salt Lake City, UT (United States)

    1996-12-31

    This paper describes the implementation of a solver for systems of semi-linear parabolic partial differential equations in two and three space dimensions. The solver is based on a parallel implementation of a non-linear Alternating Direction Implicit (ADI) scheme which uses a Cartesian grid in space and an implicit time-stepping algorithm. Various reordering strategies for the linearized equations are used to reduce the stride and improve the overall effectiveness of the parallel implementation. We have successfully used this solver for large-scale reaction-diffusion problems in computational biology and medicine in which the desired solution is a traveling wave that may contain rapid transitions. A number of examples that illustrate the efficiency and accuracy of the method are given here; the theoretical analysis will be presented.

  1. Focusing behavior of the fractal vector optical fields designed by fractal lattice growth model.

    Science.gov (United States)

    Gao, Xu-Zhen; Pan, Yue; Zhao, Meng-Dan; Zhang, Guan-Lin; Zhang, Yu; Tu, Chenghou; Li, Yongnan; Wang, Hui-Tian

    2018-01-22

    We introduce a general fractal lattice growth model, significantly expanding the application scope of the fractal in the realm of optics. This model can be applied to construct various kinds of fractal "lattices" and then to achieve the design of a great diversity of fractal vector optical fields (F-VOFs) combinating with various "bases". We also experimentally generate the F-VOFs and explore their universal focusing behaviors. Multiple focal spots can be flexibly enginnered, and the optical tweezers experiment validates the simulated tight focusing fields, which means that this model allows the diversity of the focal patterns to flexibly trap and manipulate micrometer-sized particles. Furthermore, the recovery performance of the F-VOFs is also studied when the input fields and spatial frequency spectrum are obstructed, and the results confirm the robustness of the F-VOFs in both focusing and imaging processes, which is very useful in information transmission.

  2. Phase structure of the O(n) model on a random lattice for n > 2

    DEFF Research Database (Denmark)

    Durhuus, B.; Kristjansen, C.

    1997-01-01

    We show that coarse graining arguments invented for the analysis of multi-spin systems on a randomly triangulated surface apply also to the O(n) model on a random lattice. These arguments imply that if the model has a critical point with diverging string susceptibility, then either γ = +1....../2 or there exists a dual critical point with negative string susceptibility exponent, γ̃, related to γ by γ = γ̃/γ̃-1. Exploiting the exact solution of the O(n) model on a random lattice we show that both situations are realized for n > 2 and that the possible dual pairs of string susceptibility exponents are given...... by (γ̃, γ) = (-1/m, 1/m+1), m = 2, 3, . . . We also show that at the critical points with positive string susceptibility exponent the average number of loops on the surface diverges while the average length of a single loop stays finite....

  3. Fission product model for lattice calculation of high conversion boiling water reactor

    International Nuclear Information System (INIS)

    Iijima, S.; Yoshida, T.; Yamamoto, T.

    1988-01-01

    A high precision fission product model for boiling water reactor (BWR) lattice calculation was developed, which consists of 45 nuclides to be treated explicitly and one nonsaturating pseudo nuclide. This model is applied to a high conversion BWR lattice calculation code. From a study based on a three-energy-group calculation of fission product poisoning due to full fission products and explicitly treated nuclides, the multigroup capture cross sections and the effective fission yields of the pseudo nuclide are determined, which do not depend on fuel types or reactor operating conditions for a good approximation. Apart from nuclear data uncertainties, the model and the derived pseudo nuclide constants would predict the fission product reactivity within an error of 0.1% Δk at high burnup

  4. Loop algorithms for quantum simulations of fermion models on lattices

    International Nuclear Information System (INIS)

    Kawashima, N.; Gubernatis, J.E.; Evertz, H.G.

    1994-01-01

    Two cluster algorithms, based on constructing and flipping loops, are presented for world-line quantum Monte Carlo simulations of fermions and are tested on the one-dimensional repulsive Hubbard model. We call these algorithms the loop-flip and loop-exchange algorithms. For these two algorithms and the standard world-line algorithm, we calculated the autocorrelation times for various physical quantities and found that the ordinary world-line algorithm, which uses only local moves, suffers from very long correlation times that makes not only the estimate of the error difficult but also the estimate of the average values themselves difficult. These difficulties are especially severe in the low-temperature, large-U regime. In contrast, we find that new algorithms, when used alone or in combinations with themselves and the standard algorithm, can have significantly smaller autocorrelation times, in some cases being smaller by three orders of magnitude. The new algorithms, which use nonlocal moves, are discussed from the point of view of a general prescription for developing cluster algorithms. The loop-flip algorithm is also shown to be ergodic and to belong to the grand canonical ensemble. Extensions to other models and higher dimensions are briefly discussed

  5. Monte Carlo study of the double and super-exchange model with lattice distortion

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, J R; Vallejo, E; Navarro, O [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-360, 04510 Mexico D. F. (Mexico); Avignon, M, E-mail: jrsuarez@iim.unam.m [Institut Neel, Centre National de la Recherche Scientifique (CNRS) and Universite Joseph Fourier, BP 166, 38042 Grenoble Cedex 9 (France)

    2009-05-01

    In this work a magneto-elastic phase transition was obtained in a linear chain due to the interplay between magnetism and lattice distortion in a double and super-exchange model. It is considered a linear chain consisting of localized classical spins interacting with itinerant electrons. Due to the double exchange interaction, localized spins tend to align ferromagnetically. This ferromagnetic tendency is expected to be frustrated by anti-ferromagnetic super-exchange interactions between neighbor localized spins. Additionally, lattice parameter is allowed to have small changes, which contributes harmonically to the energy of the system. Phase diagram is obtained as a function of the electron density and the super-exchange interaction using a Monte Carlo minimization. At low super-exchange interaction energy phase transition between electron-full ferromagnetic distorted and electron-empty anti-ferromagnetic undistorted phases occurs. In this case all electrons and lattice distortions were found within the ferromagnetic domain. For high super-exchange interaction energy, phase transition between two site distorted periodic arrangement of independent magnetic polarons ordered anti-ferromagnetically and the electron-empty anti-ferromagnetic undistorted phase was found. For this high interaction energy, Wigner crystallization, lattice distortion and charge distribution inside two-site polarons were obtained.

  6. Time-dependent perturbation theory for nonequilibrium lattice models

    International Nuclear Information System (INIS)

    Jensen, I.; Dickman, R.

    1993-01-01

    The authors develop a time-dependent perturbation theory for nonequilibrium interacting particle systems. They focus on models such as the contact process which evolve via destruction and autocatalytic creation of particles. At a critical value of the destruction rate there is a continuous phase transition between an active steady state and the vacuum state, which is absorbing. They present several methods for deriving series for the evolution starting from a single seed particle, including expansions for the ultimate survival probability in the super- and subcritical regions, expansions for the average number of particles in the subcritical region, and short-time expansions. Algorithms for computer generation of the various expansions are presented. Rather long series (24 terms or more) and precise estimates of critical parameters are presented. 45 refs., 4 figs., 9 tabs

  7. Convergence to a pulsating travelling wave for an epidemic reaction-diffusion system with non-diffusive susceptible population.

    Science.gov (United States)

    Ducrot, Arnaud; Giletti, Thomas

    2014-09-01

    In this work we study the asymptotic behaviour of the Kermack-McKendrick reaction-diffusion system in a periodic environment with non-diffusive susceptible population. This problem was proposed by Kallen et al. as a model for the spatial spread for epidemics, where it can be reasonable to assume that the susceptible population is motionless. For arbitrary dimensional space we prove that large classes of solutions of such a system have an asymptotic spreading speed in large time, and that the infected population has some pulse-like asymptotic shape. The analysis of the one-dimensional problem is more developed, as we are able to uncover a much more accurate description of the profile of solutions. Indeed, we will see that, for some initially compactly supported infected population, the profile of the solution converges to some pulsating travelling wave with minimal speed, that is to some entire solution moving at a constant positive speed and whose profile's shape is periodic in time.

  8. 4D Biofabrication of Branching Multicellular Structures: A Morphogenesis Simulation Based on Turing’s Reaction-Diffusion Dynamics

    Science.gov (United States)

    Zhu, Xiaolu; Yang, Hao

    2017-12-01

    The recently emerged four-dimensional (4D) biofabrication technique aims to create dynamic three-dimensional (3D) biological structures that can transform their shapes or functionalities with time when an external stimulus is imposed or when cell postprinting self-assembly occurs. The evolution of 3D pattern of branching geometry via self-assembly of cells is critical for 4D biofabrication of artificial organs or tissues with branched geometry. However, it is still unclear that how the formation and evolution of these branching pattern are biologically encoded. We study the 4D fabrication of lung branching structures utilizing a simulation model on the reaction-diffusion mechanism, which is established using partial differential equations of four variables, describing the reaction and diffusion process of morphogens with time during the development process of lung branching. The simulation results present the forming process of 3D branching pattern, and also interpret the behaviors of side branching and tip splitting as the stalk growing, through 3D visualization of numerical simulation.

  9. Kinetics of intercalation of fluorescent probes in magnesium-aluminium layered double hydroxide within a multiscale reaction-diffusion framework

    Science.gov (United States)

    Saliba, Daniel; Al-Ghoul, Mazen

    2016-11-01

    We report the synthesis of magnesium-aluminium layered double hydroxide (LDH) using a reaction-diffusion framework (RDF) that exploits the multiscale coupling of molecular diffusion with chemical reactions, nucleation and growth of crystals. In an RDF, the hydroxide anions are allowed to diffuse into an organic gel matrix containing the salt mixture needed for the precipitation of the LDH. The chemical structure and composition of the synthesized magnesium-aluminium LDHs are determined using powder X-ray diffraction (PXRD), thermo-gravimetric analysis, differential scanning calorimetry, solid-state nuclear magnetic resonance (SSNMR), Fourier transform infrared and energy dispersive X-ray spectroscopy. This novel technique also allows the investigation of the mechanism of intercalation of some fluorescent probes, such as the neutral three-dimensional rhodamine B (RhB) and the negatively charged two-dimensional 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS), using in situ steady-state fluorescence spectroscopy. The incorporation of these organic dyes inside the interlayer region of the LDH is confirmed via fluorescence microscopy, solid-state lifetime, SSNMR and PXRD. The activation energies of intercalation of the corresponding molecules (RhB and HPTS) are computed and exhibit dependence on the geometry of the involved probe (two or three dimensions), the charge of the fluorescent molecule (anionic, cationic or neutral) and the cationic ratio of the corresponding LDH. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  10. Dynamically Adapted Mesh Construction for the Efficient Numerical Solution of a Singular Perturbed Reaction-diffusion-advection Equation

    Directory of Open Access Journals (Sweden)

    Dmitry V. Lukyanenko

    2017-01-01

    Full Text Available This  work develops  a theory  of the  asymptotic-numerical investigation of the  moving fronts  in reaction-diffusion-advection models.  By considering  the  numerical  solution  of the  singularly perturbed Burgers’s  equation  we discuss a method  of dynamically  adapted mesh  construction that is able to significantly  improve  the  numerical  solution  of this  type of equations.  For  the  construction we use a priori information that is based  on the  asymptotic analysis  of the  problem.  In  particular, we take  into account the information about  the speed of the transition layer, its width  and structure. Our algorithms  are able to reduce significantly complexity and enhance stability of the numerical  calculations in comparison  with classical approaches for solving this class of problems.  The numerical  experiment is presented to demonstrate the effectiveness of the proposed  method.The article  is published  in the authors’  wording. 

  11. Fourth order Douglas implicit scheme for solving three dimension reaction diffusion equation with non-linear source term

    Directory of Open Access Journals (Sweden)

    Shahid Hasnain

    2017-07-01

    Full Text Available This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.

  12. Fourth order Douglas implicit scheme for solving three dimension reaction diffusion equation with non-linear source term

    Science.gov (United States)

    Hasnain, Shahid; Saqib, Muhammad; Mashat, Daoud Suleiman

    2017-07-01

    This research paper represents a numerical approximation to non-linear three dimension reaction diffusion equation with non-linear source term from population genetics. Since various initial and boundary value problems exist in three dimension reaction diffusion phenomena, which are studied numerically by different numerical methods, here we use finite difference schemes (Alternating Direction Implicit and Fourth Order Douglas Implicit) to approximate the solution. Accuracy is studied in term of L2, L∞ and relative error norms by random selected grids along time levels for comparison with analytical results. The test example demonstrates the accuracy, efficiency and versatility of the proposed schemes. Numerical results showed that Fourth Order Douglas Implicit scheme is very efficient and reliable for solving 3-D non-linear reaction diffusion equation.

  13. Lattice overview

    International Nuclear Information System (INIS)

    Creutz, M.

    1984-01-01

    After reviewing some recent developments in supercomputer access, the author discusses a few areas where perturbation theory and lattice gauge simulations make contact. The author concludes with a brief discussion of a deterministic dynamics for the Ising model. This may be useful for numerical studies of nonequilibrium phenomena. 13 references

  14. Simulations and measurements of adiabatic annular flows in triangular, tight lattice nuclear fuel bundle model

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Abhishek, E-mail: asaxena@lke.mavt.ethz.ch [ETH Zurich, Laboratory for Nuclear Energy Systems, Department of Mechanical and Process Engineering, Sonneggstrasse 3, 8092 Zürich (Switzerland); Zboray, Robert [Laboratory for Thermal-hydraulics, Nuclear Energy and Safety Department, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Prasser, Horst-Michael [ETH Zurich, Laboratory for Nuclear Energy Systems, Department of Mechanical and Process Engineering, Sonneggstrasse 3, 8092 Zürich (Switzerland); Laboratory for Thermal-hydraulics, Nuclear Energy and Safety Department, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)

    2016-04-01

    High conversion light water reactors (HCLWR) having triangular, tight-lattice fuels bundles could enable improved fuel utilization compared to present day LWRs. However, the efficient cooling of a tight lattice bundle has to be still proven. Major concern is the avoidance of high-quality boiling crisis (film dry-out) by the use of efficient functional spacers. For this reason, we have carried out experiments on adiabatic, air-water annular two-phase flows in a tight-lattice, triangular fuel bundle model using generic spacers. A high-spatial-resolution, non-intrusive measurement technology, cold neutron tomography, has been utilized to resolve the distribution of the liquid film thickness on the virtual fuel pin surfaces. Unsteady CFD simulations have also been performed to replicate and compare with the experiments using the commercial code STAR-CCM+. Large eddies have been resolved on the grid level to capture the dominant unsteady flow features expected to drive the liquid film thickness distribution downstream of a spacer while the subgrid scales have been modeled using the Wall Adapting Local Eddy (WALE) subgrid model. A Volume of Fluid (VOF) method, which directly tracks the interface and does away with closure relationship models for interfacial exchange terms, has also been employed. The present paper shows first comparison of the measurement with the simulation results.

  15. The lattice Boltzmann model for the second-order Benjamin–Ono equations

    International Nuclear Information System (INIS)

    Lai, Huilin; Ma, Changfeng

    2010-01-01

    In this paper, in order to extend the lattice Boltzmann method to deal with more complicated nonlinear equations, we propose a 1D lattice Boltzmann scheme with an amending function for the second-order (1 + 1)-dimensional Benjamin–Ono equation. With the Taylor expansion and the Chapman–Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The equilibrium distribution function and the amending function are obtained. Numerical simulations are carried out for the 'good' Boussinesq equation and the 'bad' one to validate the proposed model. It is found that the numerical results agree well with the analytical solutions. The present model can be used to solve more kinds of nonlinear partial differential equations

  16. Minkowski space pion model inspired by lattice QCD running quark mass

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Clayton S. [Instituto Tecnológico de Aeronáutica, DCTA, 12.228-900 São José dos Campos, SP (Brazil); Melo, J.P.B.C. de [Laboratório de Física Teórica e Computacional – LFTC, Universidade Cruzeiro do Sul, 01506-000 São Paulo, SP (Brazil); Frederico, T., E-mail: tobias@ita.br [Instituto Tecnológico de Aeronáutica, DCTA, 12.228-900 São José dos Campos, SP (Brazil)

    2017-03-10

    The pion structure in Minkowski space is described in terms of an analytic model of the Bethe–Salpeter amplitude combined with Euclidean Lattice QCD results. The model is physically motivated to take into account the running quark mass, which is fitted to Lattice QCD data. The pion pseudoscalar vertex is associated to the quark mass function, as dictated by dynamical chiral symmetry breaking requirements in the limit of vanishing current quark mass. The quark propagator is analyzed in terms of a spectral representation, and it shows a violation of the positivity constraints. The integral representation of the pion Bethe–Salpeter amplitude is also built. The pion space-like electromagnetic form factor is calculated with a quark electromagnetic current, which satisfies the Ward–Takahashi identity to ensure current conservation. The results for the form factor and weak decay constant are found to be consistent with the experimental data.

  17. Minkowski space pion model inspired by lattice QCD running quark mass

    Directory of Open Access Journals (Sweden)

    Clayton S. Mello

    2017-03-01

    Full Text Available The pion structure in Minkowski space is described in terms of an analytic model of the Bethe–Salpeter amplitude combined with Euclidean Lattice QCD results. The model is physically motivated to take into account the running quark mass, which is fitted to Lattice QCD data. The pion pseudoscalar vertex is associated to the quark mass function, as dictated by dynamical chiral symmetry breaking requirements in the limit of vanishing current quark mass. The quark propagator is analyzed in terms of a spectral representation, and it shows a violation of the positivity constraints. The integral representation of the pion Bethe–Salpeter amplitude is also built. The pion space-like electromagnetic form factor is calculated with a quark electromagnetic current, which satisfies the Ward–Takahashi identity to ensure current conservation. The results for the form factor and weak decay constant are found to be consistent with the experimental data.

  18. Non-perturbative effects in two-dimensional lattice O(N) models

    International Nuclear Information System (INIS)

    Ogilvie, M.C.; Maryland Univ., College Park

    1981-01-01

    Non-abelian analogues of Kosterlitz-Thouless vortices may have important effects in two-dimensional lattice spin systems with O(N) symmetries. Renormalization group equations which include these effects are developed in two ways. The first set of equations extends the renormalization group equations of Kosterlitz to 0(N) spin systems, in a form suggested by Cardy and Hamber. The second is derived from a Villain-type 0(N) model using Migdal's recursion relations. Using these equations, the part played by topological excitations int he crossover from weak to strong coupling behavior is studied. Another effect which influences crossover behavior is also discussed; irrelevant operators which occur naturally in lattice theories can make important contributions to the renormalization group flow in the crossover region. When combined with conventional perturbative results, these two effects may explain the observed crossover behavior of these models. (orig.)

  19. Global exponential stability of impulsive fuzzy cellular neural networks with mixed delays and reaction-diffusion terms

    International Nuclear Information System (INIS)

    Wang Xiaohu; Xu Daoyi

    2009-01-01

    In this paper, the global exponential stability of impulsive fuzzy cellular neural networks with mixed delays and reaction-diffusion terms is considered. By establishing an integro-differential inequality with impulsive initial condition and using the properties of M-cone and eigenspace of the spectral radius of nonnegative matrices, several new sufficient conditions are obtained to ensure the global exponential stability of the equilibrium point for fuzzy cellular neural networks with delays and reaction-diffusion terms. These results extend and improve the earlier publications. Two examples are given to illustrate the efficiency of the obtained results.

  20. An improved lattice hydrodynamic model considering the influence of optimal flux for forward looking sites

    Science.gov (United States)

    Wang, Yunong; Ge, Hongxia; Cheng, Rongjun

    2017-11-01

    In this paper, a lattice hydrodynamic model is derived considering the delayed-feedback control influence of optimal flux for forward looking sites on a single-lane road which includes more comprehensive information. The control method is used to analyze the stability of the model. The critical condition for the linear steady traffic flow is deduced and the numerical simulation is carried out to investigate the advantage of the proposed model with and without the effect of optimal flux for forward looking sites. Moreover it indicates that the characteristic of the model can lead to a lower energy consumption in traffic system. The results are consistent with the theoretical analysis correspondingly.

  1. Some application of the model of partition points on a one-dimensional lattice

    International Nuclear Information System (INIS)

    Mejdani, R.

    1991-07-01

    We have shown that by using a model of the gas of partition points on one-dimensional lattice, we can find some results about the enzyme kinetics or the average domain-size, which we have obtained before by using a correlated Walks' theory or a probabilistic (combinatoric) way. We have discussed also the problem related with the spread of an infection of disease and the stochastic model of partition points. We think that this model, as a very simple model and mathematically transparent, can be advantageous for other theoretical investigations in chemistry or modern biology. (author). 14 refs, 6 figs, 1 tab

  2. Ordering phenomena and non-equilibrium properties of lattice gas models

    International Nuclear Information System (INIS)

    Fiig, T.

    1994-03-01

    This report falls within the general field of ordering processes and non-equilibrium properties of lattice gas models. The theory of diffuse scattering of lattice gas models originating from a random distribution of clusters is considered. We obtain relations between the diffuse part of the structure factor S dif (q), the correlation function C(r), and the size distribution of clusters D(n). For a number of distributions we calculate S dif (q) exactly in one dimension, and discuss the possibility for a Lorentzian and a Lorentzian square lineshape to arise. We discuss the two- and three-dimensional oxygen ordering processes in the high T c superconductor YBa 2 Cu 3 O 6+x based on a simple anisotropic lattice gas model. We calculate the structural phase diagram by Monte Carlo simulation and compared the results with experimental data. The structure factor of the oxygen ordering properties has been calculated in both two and three dimensions by Monte Carlo simulation. We report on results obtained from large scale computations on the Connection Machine, which are in excellent agreement with recent neutron diffraction data. In addition we consider the effect of the diffusive motion of metal-ion dopants on the oxygen ordering properties on YBa 2 Cu 3 O 6+x . The stationary properties of metastability in long-range interaction models are studied by application of a constrained transfer matrix (CTM) formalism. The model considered, which exhibits several metastable states, is an extension of the Blume Capel model to include weak long-range interactions. We show, that the decay rate of the metastable states is closely related to the imaginary part of the equilibrium free-energy density obtained from the CTM formalism. We discuss a class of lattice gas model for dissipative transport in the framework of a Langevin description, which is capable of producing power law spectra for the density fluctuations. We compare with numerical results obtained from simulations of a

  3. Lattice Boltzmann model for three-dimensional decaying homogeneous isotropic turbulence

    International Nuclear Information System (INIS)

    Xu Hui; Tao Wenquan; Zhang Yan

    2009-01-01

    We implement a lattice Boltzmann method (LBM) for decaying homogeneous isotropic turbulence based on an analogous Galerkin filter and focus on the fundamental statistical isotropic property. This regularized method is constructed based on orthogonal Hermite polynomial space. For decaying homogeneous isotropic turbulence, this regularized method can simulate the isotropic property very well. Numerical studies demonstrate that the novel regularized LBM is a promising approximation of turbulent fluid flows, which paves the way for coupling various turbulent models with LBM

  4. Critical phase for the antiferromagnetic Z(5) model on a square lattice

    International Nuclear Information System (INIS)

    Baltar, V.L.; Carneiro, G.M.; Pol, M.E.; Zagury, N.

    1983-04-01

    The existence of a critical phase for the antiferromagnetic Z(5) model on a square lattice is suggested based on results of Monte Carlo (MC) simulations and of Migdal Kadanoff Renormalization Group calculations (MKRG). The MKRG simulates a line of fixed points which it is interpreted as the locus of attraction of a critical phase. The MC simulations are compatible with this interpretation. (Author) [pt

  5. Investigation of the vacuum structure of the Georgi-Glashow model on the lattice

    International Nuclear Information System (INIS)

    Bornyakov, V.G.; Ilgenfritz, E.M.; Mitrjushkin, V.K.; Zadorozhny, A.M.; Mueller-Preussker, M.

    1988-08-01

    Distributions and correlations of magnetic fluxes as well as correlations between magnetic fluxes and other local observables are calculated numerically in order to explain the phase structure of the 4D Georgi-Glashow model on the lattice. We use and compare different definitions of magnetic fluxes. The data suggest a simple picture characterizing typical magnetic fluctuations in different regions of the phase space. A relaxation procedure exposes Abelian monopole-loop configurations in one of the phases. (author). 21 refs, 12 figs

  6. Color Dielectric Models from the Lattice SU(N)c Gauge Theory

    International Nuclear Information System (INIS)

    Arodz, H.; Pirner, H.J.

    1999-01-01

    The idea of coarse-grained gluon field is discussed. We recall motivation for introducing such a field. Next, we outline the approach to small momenta limit of lattice coarse-grained gluon field presented in our paper hep-ph/9803392. This limit points to color dielectric type models with a number of scalar and tensor fields instead of single scalar dielectric field. (author)

  7. Hamiltonian and potentials in derivative pricing models: exact results and lattice simulations

    Science.gov (United States)

    Baaquie, Belal E.; Corianò, Claudio; Srikant, Marakani

    2004-03-01

    The pricing of options, warrants and other derivative securities is one of the great success of financial economics. These financial products can be modeled and simulated using quantum mechanical instruments based on a Hamiltonian formulation. We show here some applications of these methods for various potentials, which we have simulated via lattice Langevin and Monte Carlo algorithms, to the pricing of options. We focus on barrier or path dependent options, showing in some detail the computational strategies involved.

  8. Model for a Ferromagnetic Quantum Critical Point in a 1D Kondo Lattice

    Science.gov (United States)

    Komijani, Yashar; Coleman, Piers

    2018-04-01

    Motivated by recent experiments, we study a quasi-one-dimensional model of a Kondo lattice with ferromagnetic coupling between the spins. Using bosonization and dynamical large-N techniques, we establish the presence of a Fermi liquid and a magnetic phase separated by a local quantum critical point, governed by the Kondo breakdown picture. Thermodynamic properties are studied and a gapless charged mode at the quantum critical point is highlighted.

  9. Magnetic properties of S=l/2 antiferromagnetic XXZ model on the Shastry-Sutherland lattices

    International Nuclear Information System (INIS)

    Suzuki, Takafumi; Tomita, Yusuke; Kawashima, Naoki

    2010-01-01

    We study magnetic properties of the S=l/2 Ising-like XXZ model on the Shastry-Sutherland lattices considering the effect of long range interactions. By performing quantum Monte Carlo simulations, we find that magnetization plateau phases appear at one-half and one-third of the saturation magnetization. We also study the finite temperature transition to the magnetic plateau phases and discuss the universality class of the transition.

  10. Analysing the origin of long-range interactions in proteins using lattice models

    Directory of Open Access Journals (Sweden)

    Unger Ron

    2009-01-01

    Full Text Available Abstract Background Long-range communication is very common in proteins but the physical basis of this phenomenon remains unclear. In order to gain insight into this problem, we decided to explore whether long-range interactions exist in lattice models of proteins. Lattice models of proteins have proven to capture some of the basic properties of real proteins and, thus, can be used for elucidating general principles of protein stability and folding. Results Using a computational version of double-mutant cycle analysis, we show that long-range interactions emerge in lattice models even though they are not an input feature of them. The coupling energy of both short- and long-range pairwise interactions is found to become more positive (destabilizing in a linear fashion with increasing 'contact-frequency', an entropic term that corresponds to the fraction of states in the conformational ensemble of the sequence in which the pair of residues is in contact. A mathematical derivation of the linear dependence of the coupling energy on 'contact-frequency' is provided. Conclusion Our work shows how 'contact-frequency' should be taken into account in attempts to stabilize proteins by introducing (or stabilizing contacts in the native state and/or through 'negative design' of non-native contacts.

  11. Realistic multisite lattice-gas modeling and KMC simulation of catalytic surface reactions: Kinetics and multiscale spatial behavior for CO-oxidation on metal (1 0 0) surfaces

    Science.gov (United States)

    Liu, Da-Jiang; Evans, James W.

    2013-12-01

    data. Furthermore, we discuss the possible transition from traditional mean-field-type bistability and reaction kinetics for lower-pressure to multistability and enhanced fluctuation effects for moderate- or higher-pressure. Behavior in the latter regime reflects a stronger influence of adspecies interactions and also lower diffusivity in the higher-coverage mixed adlayer. We also analyze mesoscale spatiotemporal behavior including the propagation of reaction-diffusion fronts between bistable reactive and inactive states, and associated nucleation-mediated transitions between these states. This behavior is controlled by complex surface mass transport processes, specifically chemical diffusion in mixed reactant adlayers for which we provide a precise theoretical formulation. The msLG models together with an appropriate treatment of chemical diffusivity enable equation-free heterogeneous coupled lattice-gas (HCLG) simulations of spatiotemporal behavior. In addition, msLG + HCLG modeling can describe coverage variations across polycrystalline catalysts surfaces, pressure variations across catalyst surfaces in microreactors, and could be incorporated into a multiphysics framework to describe mass and heat transfer limitations for high-pressure catalysis.

  12. Exactly solvable models of growing interfaces and lattice gases: the Arcetri models, ageing and logarithmic sub-ageing

    Science.gov (United States)

    Durang, Xavier; Henkel, Malte

    2017-12-01

    Motivated by an analogy with the spherical model of a ferromagnet, the three Arcetri models are defined. They present new universality classes, either for the growth of interfaces, or else for lattice gases. They are distinct from the common Edwards-Wilkinson and Kardar-Parisi-Zhang universality classes. Their non-equilibrium evolution can be studied by the exact computation of their two-time correlators and responses. In both interpretations, the first model has a critical point in any dimension and shows simple ageing at and below criticality. The exact universal exponents are found. The second and third model are solved at zero temperature, in one dimension, where both show logarithmic sub-ageing, of which several distinct types are identified. Physically, the second model describes a lattice gas and the third model describes interface growth. A clear physical picture on the subsequent time and length scales of the sub-ageing process emerges.

  13. The Kadanoff lower-bound variational renormalization group applied to an SU(2) lattice spin model

    International Nuclear Information System (INIS)

    Thorleifsson, G.; Damgaard, P.H.

    1990-07-01

    We apply the variational lower-bound Renormalization Group transformation of Kadanoff to an SU(2) lattice spin model in 2 and 3 dimensions. Even in the one-hypercube framework of this renormalization group transformation the present model is characterised by having an infinite basis of fundamental operators. We investigate whether the lower-bound variational renormalization group transformation yields results stable under truncations of this operator basis. Our results show that for this particular spin model this is not the case. (orig.)

  14. Chiral helimagnetic state in a Kondo lattice model with the Dzyaloshinskii-Moriya interaction

    Science.gov (United States)

    Okumura, Shun; Kato, Yasuyuki; Motome, Yukitoshi

    2018-05-01

    Monoaxial chiral magnets can form a noncollinear twisted spin structure called the chiral helimagnetic state. We study magnetic properties of such a chiral helimagnetic state, with emphasis on the effect of itinerant electrons. Modeling a monoaxial chiral helimagnet by a one-dimensional Kondo lattice model with the Dzyaloshinskii-Moriya interaction, we perform a variational calculation to elucidate the stable spin configuration in the ground state. We obtain a chiral helimagnetic state as a candidate for the ground state, whose helical pitch is modulated by the model parameters: the Kondo coupling, the Dzyaloshinski-Moriya interaction, and electron filling.

  15. A lattice Boltzmann model with an amending function for simulating nonlinear partial differential equations

    International Nuclear Information System (INIS)

    Lin-Jie, Chen; Chang-Feng, Ma

    2010-01-01

    This paper proposes a lattice Boltzmann model with an amending function for one-dimensional nonlinear partial differential equations (NPDEs) in the form u t + αuu x + βu n u x + γu xx + δu xxx + ζu xxxx = 0. This model is different from existing models because it lets the time step be equivalent to the square of the space step and derives higher accuracy and nonlinear terms in NPDEs. With the Chapman–Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The numerical results agree well with the analytical solutions. (general)

  16. A lattice hydrodynamic model based on delayed feedback control considering the effect of flow rate difference

    Science.gov (United States)

    Wang, Yunong; Cheng, Rongjun; Ge, Hongxia

    2017-08-01

    In this paper, a lattice hydrodynamic model is derived considering not only the effect of flow rate difference but also the delayed feedback control signal which including more comprehensive information. The control method is used to analyze the stability of the model. Furthermore, the critical condition for the linear steady traffic flow is deduced and the numerical simulation is carried out to investigate the advantage of the proposed model with and without the effect of flow rate difference and the control signal. The results are consistent with the theoretical analysis correspondingly.

  17. DNA denaturation through a model of the partition points on a one-dimensional lattice

    International Nuclear Information System (INIS)

    Mejdani, R.; Huseini, H.

    1994-08-01

    We have shown that by using a model of the partition points gas on a one-dimensional lattice, we can study, besides the saturation curves obtained before for the enzyme kinetics, also the denaturation process, i.e. the breaking of the hydrogen bonds connecting the two strands, under treatment by heat of DNA. We think that this model, as a very simple model and mathematically transparent, can be advantageous for pedagogic goals or other theoretical investigations in chemistry or modern biology. (author). 29 refs, 4 figs

  18. Modeling of Dipole and Quadrupole Fringe-Field Effects for the Advanced Photon Source Upgrade Lattice

    Energy Technology Data Exchange (ETDEWEB)

    Borland, M.; Lindberg, R.

    2017-06-01

    The proposed upgrade of the Advanced Photon Source (APS) to a multibend-achromat lattice requires shorter and much stronger quadrupole magnets than are present in the existing ring. This results in longitudinal gradient profiles that differ significantly from a hard-edge model. Additionally, the lattice assumes the use of five-segment longitudinal gradient dipoles. Under these circumstances, the effects of fringe fields and detailed field distributions are of interest. We evaluated the effect of soft-edge fringe fields on the linear optics and chromaticity, finding that compensation for these effects is readily accomplished. In addition, we evaluated the reliability of standard methods of simulating hardedge nonlinear fringe effects in quadrupoles.

  19. Origami rules for the construction of localized eigenstates of the Hubbard model in decorated lattices

    Science.gov (United States)

    Dias, R. G.; Gouveia, J. D.

    2015-11-01

    We present a method of construction of exact localized many-body eigenstates of the Hubbard model in decorated lattices, both for U = 0 and U → ∞. These states are localized in what concerns both hole and particle movement. The starting point of the method is the construction of a plaquette or a set of plaquettes with a higher symmetry than that of the whole lattice. Using a simple set of rules, the tight-binding localized state in such a plaquette can be divided, folded and unfolded to new plaquette geometries. This set of rules is also valid for the construction of a localized state for one hole in the U → ∞ limit of the same plaquette, assuming a spin configuration which is a uniform linear combination of all possible permutations of the set of spins in the plaquette.

  20. Berezinskii-Kosterlitz-Thouless transition in lattice Schwinger model with one flavor of Wilson fermion

    Science.gov (United States)

    Shimizu, Yuya; Kuramashi, Yoshinobu

    2018-02-01

    We have made a detailed study of the phase structure for the lattice Schwinger model with one flavor of Wilson fermion on the (m ,g ) plane. For numerical investigation, we develop a decorated tensor renormalization method for lattice gauge theories with fermions incorporating the Grassmann tensor renormalization. Our algorithm manifestly preserves rotation and reflection symmetries. We find not only a parity-broken phase but also a Berezinskii-Kosterlitz-Thouless (BKT) transition by evaluating the central charge and an expectation value of a projection operator into the parity-odd subspace. The BKT phase boundaries converge into the degenerated doubler pole (m ,g )=(-2 ,0 ), while the parity-breaking transition line ends at the physical pole (m ,g )=(0 ,0 ). In addition, our analysis of scaling dimensions indicates that a conformal field theory with SU(2) symmetry arises on the line of m =-2 .

  1. Failure detection by adaptive lattice modelling using Kalman filtering methodology : application to NPP

    International Nuclear Information System (INIS)

    Ciftcioglu, O.

    1991-03-01

    Detection of failure in the operational status of a NPP is described. The method uses lattice form of the signal modelling established by means of Kalman filtering methodology. In this approach each lattice parameter is considered to be a state and the minimum variance estimate of the states is performed adaptively by optimal parameter estimation together with fast convergence and favourable statistical properties. In particular, the state covariance is also the covariance of the error committed by that estimate of the state value and the Mahalanobis distance formed for pattern comparison takes x 2 distribution for normally distributed signals. The failure detection is performed after a decision making process by probabilistic assessments based on the statistical information provided. The failure detection system is implemented in multi-channel signal environment of Borssele NPP and its favourable features are demonstrated. (author). 29 refs.; 7 figs

  2. Fermi hyper-netted chain theory on a lattice: The Hubbard model

    International Nuclear Information System (INIS)

    Wang, X.Q.; Wang, X.Q.G.; Fantoni, S.; Tosatti, E.; Yu Lu.

    1990-02-01

    We review a new lattice version of Fermi Hyper-Netted Chain method for the study of strongly interacting electrons. The ordinary paramagnetic and the spin density wave functions have been correlated with Jastrow-type and e-d correlations, and the corresponding FHNC equations for the pair distribution function, the one body density matrix and the staggered magnetization are discussed. Results for the 1D chain and 2D square lattice models are presented and compared with the available results obtained within Quantum Monte Carlo, variational Monte Carlo and exact diagonalization of a 4x4 Hubbard cluster. Particularly interesting are the strong effects of e-d correlations on E/Nt and on the momentum distribution as well as antiferromagnetic behavior away from half filling found in our FHNC calculations in agreement with other studies. (author). 35 refs, 8 figs, 2 tabs

  3. The equivalent thermal conductivity of lattice core sandwich structure: A predictive model

    International Nuclear Information System (INIS)

    Cheng, Xiangmeng; Wei, Kai; He, Rujie; Pei, Yongmao; Fang, Daining

    2016-01-01

    Highlights: • A predictive model of the equivalent thermal conductivity was established. • Both the heat conduction and radiation were considered. • The predictive results were in good agreement with experiment and FEM. • Some methods for improving the thermal protection performance were proposed. - Abstract: The equivalent thermal conductivity of lattice core sandwich structure was predicted using a novel model. The predictive results were in good agreement with experimental and Finite Element Method results. The thermal conductivity of the lattice core sandwich structure was attributed to both core conduction and radiation. The core conduction caused thermal conductivity only relied on the relative density of the structure. And the radiation caused thermal conductivity increased linearly with the thickness of the core. It was found that the equivalent thermal conductivity of the lattice core sandwich structure showed a highly dependent relationship on temperature. At low temperatures, the structure exhibited a nearly thermal insulated behavior. With the temperature increasing, the thermal conductivity of the structure increased owing to radiation. Therefore, some attempts, such as reducing the emissivity of the core or designing multilayered structure, are believe to be of benefit for improving the thermal protection performance of the structure at high temperatures.

  4. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion

    Directory of Open Access Journals (Sweden)

    Martin Gregory T

    2004-11-01

    Full Text Available Abstract Background Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. Methods We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1 surface contact heating and (2 spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42°C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. Results The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45°C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. Conclusions The heat transport system model of the

  5. Comprehensive modeling of solid phase epitaxial growth using Lattice Kinetic Monte Carlo

    International Nuclear Information System (INIS)

    Martin-Bragado, Ignacio

    2013-01-01

    Damage evolution of irradiated silicon is, and has been, a topic of interest for the last decades for its applications to the semiconductor industry. In particular, sometimes, the damage is heavy enough to collapse the lattice and to locally amorphize the silicon, while in other cases amorphization is introduced explicitly to improve other implanted profiles. Subsequent annealing of the implanted samples heals the amorphized regions through Solid Phase Epitaxial Regrowth (SPER). SPER is a complicated process. It is anisotropic, it generates defects in the recrystallized silicon, it has a different amorphous/crystalline (A/C) roughness for each orientation, leaving pits in Si(1 1 0), and in Si(1 1 1) it produces two modes of recrystallization with different rates. The recently developed code MMonCa has been used to introduce a physically-based comprehensive model using Lattice Kinetic Monte Carlo that explains all the above singularities of silicon SPER. The model operates by having, as building blocks, the silicon lattice microconfigurations and their four twins. It detects the local configurations, assigns microscopical growth rates, and reconstructs the positions of the lattice locally with one of those building blocks. The overall results reproduce the (a) anisotropy as a result of the different growth rates, (b) localization of SPER induced defects, (c) roughness trends of the A/C interface, (d) pits on Si(1 1 0) regrown surfaces, and (e) bimodal Si(1 1 1) growth. It also provides physical insights of the nature and shape of deposited defects and how they assist in the occurrence of all the above effects

  6. A renormalized -group attempt to obtain the exact transition line of the square - lattice bond - dilute Ising model

    International Nuclear Information System (INIS)

    Tsallis, C.; Levy, S.V.F.

    1979-05-01

    Two different renormalization-group approaches are used to determine approximate solutions for the paramagnetic-ferromagnetic transition line of the square-lattice bond-dilute first-neighbour-interaction Ising model. (Author) [pt

  7. On some limitations of reaction-diffusion chemical computers in relation to Voronoi diagram and its inversion

    International Nuclear Information System (INIS)

    Adamatzky, Andrew; Lacy Costello, Benjamin de

    2003-01-01

    A reaction-diffusion chemical computer in this context is a planar uniform chemical reactor, where data and results of a computation are represented by concentration profiles of reactants and the computation itself is implemented via the spreading and interaction of diffusive and phase waves. This class of chemical computers are efficient at solving problems with a 'natural' parallelism where data sets are decomposable onto a large number of geographically neighboring domains which are then processed in parallel. Typical problems of this type include image processing, geometrical transformations and optimisation. When chemical based devices are used to solve such problems questions regarding their reproducible, efficiency and the accuracy of their computations arise. In addition to these questions what are the limitations of reaction-diffusion chemical processors--what type of problems cannot currently and are unlikely ever to be solved? To answer the questions we study how a Voronoi diagram is constructed and how it is inverted in a planar chemical processor. We demonstrate that a Voronoi diagram is computed only partially in the chemical processor. We also prove that given a specific Voronoi diagram it is impossible to reconstruct the planar set (from which diagram was computed) in the reaction-diffusion chemical processor. In the Letter we open the first ever line of enquiry into the computational inability of reaction-diffusion chemical computers

  8. A variational approach to bifurcation points of a reaction-diffusion system with obstacles and neumann boundary conditions

    Czech Academy of Sciences Publication Activity Database

    Eisner, Jan; Kučera, Milan; Väth, Martin

    2016-01-01

    Roč. 61, č. 1 (2016), s. 1-25 ISSN 0862-7940 R&D Projects: GA ČR GA13-12580S Institutional support: RVO:67985904 ; RVO:67985840 Keywords : reaction-diffusion system * unlateral condition * variational inequality Subject RIV: EG - Zoology; BA - General Mathematics (MU-W) Impact factor: 0.618, year: 2016

  9. A model for one-dimensional morphoelasticity and its application to fibroblast-populated collagen lattices.

    Science.gov (United States)

    Menon, Shakti N; Hall, Cameron L; McCue, Scott W; McElwain, D L Sean

    2017-10-01

    The mechanical behaviour of solid biological tissues has long been described using models based on classical continuum mechanics. However, the classical continuum theories of elasticity and viscoelasticity cannot easily capture the continual remodelling and associated structural changes in biological tissues. Furthermore, models drawn from plasticity theory are difficult to apply and interpret in this context, where there is no equivalent of a yield stress or flow rule. In this work, we describe a novel one-dimensional mathematical model of tissue remodelling based on the multiplicative decomposition of the deformation gradient. We express the mechanical effects of remodelling as an evolution equation for the effective strain, a measure of the difference between the current state and a hypothetical mechanically relaxed state of the tissue. This morphoelastic model combines the simplicity and interpretability of classical viscoelastic models with the versatility of plasticity theory. A novel feature of our model is that while most models describe growth as a continuous quantity, here we begin with discrete cells and develop a continuum representation of lattice remodelling based on an appropriate limit of the behaviour of discrete cells. To demonstrate the utility of our approach, we use this framework to capture qualitative aspects of the continual remodelling observed in fibroblast-populated collagen lattices, in particular its contraction and its subsequent sudden re-expansion when remodelling is interrupted.

  10. Supporting the search for the CEP location with nonlocal PNJL models constrained by lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Contrera, Gustavo A. [IFLP, UNLP, CONICET, Facultad de Ciencias Exactas, La Plata (Argentina); Gravitation, Astrophysics and Cosmology Group, FCAyG, UNLP, La Plata (Argentina); CONICET, Buenos Aires (Argentina); Grunfeld, A.G. [CONICET, Buenos Aires (Argentina); Comision Nacional de Energia Atomica, Departamento de Fisica, Buenos Aires (Argentina); Blaschke, David [University of Wroclaw, Institute of Theoretical Physics, Wroclaw (Poland); Joint Institute for Nuclear Research, Moscow Region (Russian Federation); National Research Nuclear University (MEPhI), Moscow (Russian Federation)

    2016-08-15

    We investigate the possible location of the critical endpoint in the QCD phase diagram based on nonlocal covariant PNJL models including a vector interaction channel. The form factors of the covariant interaction are constrained by lattice QCD data for the quark propagator. The comparison of our results for the pressure including the pion contribution and the scaled pressure shift Δ P/T {sup 4} vs. T/T{sub c} with lattice QCD results shows a better agreement when Lorentzian form factors for the nonlocal interactions and the wave function renormalization are considered. The strength of the vector coupling is used as a free parameter which influences results at finite baryochemical potential. It is used to adjust the slope of the pseudocritical temperature of the chiral phase transition at low baryochemical potential and the scaled pressure shift accessible in lattice QCD simulations. Our study, albeit presently performed at the mean-field level, supports the very existence of a critical point and favors its location within a region that is accessible in experiments at the NICA accelerator complex. (orig.)

  11. A new lattice hydrodynamic traffic flow model with a consideration of multi-anticipation effect

    International Nuclear Information System (INIS)

    Tian Chuan; Sun Di-Hua; Yang Shu-Hong

    2011-01-01

    We present a new multi-anticipation lattice hydrodynamic model based on the traffic anticipation effect in the real world. Applying the linear stability theory, we obtain the linear stability condition of the model. Through nonlinear analysis, we derive the modified Korteweg-de Vries equation to describe the propagating behaviour of a traffic density wave near the critical point. The good agreement between the simulation results and the analytical results shows that the stability of traffic flow can be enhanced when the multi-anticipation effect is considered. (interdisciplinary physics and related areas of science and technology)

  12. Lattice QCD and physics beyond the Standar Model: an experimentalist perspective

    Science.gov (United States)

    Artuso, Marina

    2017-01-01

    The new frontier in elementary particle physics is to find evidence for new physics that may lead to a deeper understanding of observations such as the baryon-antibaryon asymmetry of the universe, mass hierarchy, dark matter, or dark energy to name a few. Flavor physics provides a wealth of opportunities to find such signatures, and a vast body of data taken at e+e- b-factories and at hadron machines has provided valuable information, and a few tantalizing ``tensions'' with respect to the Standard Model predictions. While the window for new physics is still open, the chance that its manifestations will be subtle is very real. A vibrant experimental program is ongoing, and significant upgrades, such as the upgraded LHCb experiment at LHC and Belle 2 at KEKb, are imminent. One of the challenges in extracting new physics from flavor physics data is the need to relate observed hadron decays to fundamental particles and interactions. The continuous improvement of Lattice QCD predictions is a key element to achieve success in this quest. Improvements in algorithms and hardware have led to predictions of increasing precision on several fundamental matrix elements, and the continuous breaking of new grounds, thus allowing a broader spectrum of measurements to become relevant to this quest. An important aspect of the experiment-lattice synergy is a comparison between lattice predictions with experiment for a variety of hadronic quantities. This talk summarizes current synergies between lattice QCD theory and flavor physics experiments, and gives some highlights of expectations from future upgrades. this work was supported by NSF.

  13. Image-Based Measurement of H2O2 Reaction-Diffusion in Wounded Zebrafish Larvae.

    Science.gov (United States)

    Jelcic, Mark; Enyedi, Balázs; Xavier, João B; Niethammer, Philipp

    2017-05-09

    Epithelial injury induces rapid recruitment of antimicrobial leukocytes to the wound site. In zebrafish larvae, activation of the epithelial NADPH oxidase Duox at the wound margin is required early during this response. Before injury, leukocytes are near the vascular region, that is, ∼100-300 μm away from the injury site. How Duox establishes long-range signaling to leukocytes is unclear. We conceived that extracellular hydrogen peroxide (H 2 O 2 ) generated by Duox diffuses through the tissue to directly regulate chemotactic signaling in these cells. But before it can oxidize cellular proteins, H 2 O 2 must get past the antioxidant barriers that protect the cellular proteome. To test whether, or on which length scales this occurs during physiological wound signaling, we developed a computational method based on reaction-diffusion principles that infers H 2 O 2 degradation rates from intravital H 2 O 2 -biosensor imaging data. Our results indicate that at high tissue H 2 O 2 levels the peroxiredoxin-thioredoxin antioxidant chain becomes overwhelmed, and H 2 O 2 degradation stalls or ceases. Although the wound H 2 O 2 gradient reaches deep into the tissue, it likely overcomes antioxidant barriers only within ∼30 μm of the wound margin. Thus, Duox-mediated long-range signaling may require other spatial relay mechanisms besides extracellular H 2 O 2 diffusion. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Mean field effects for counterpropagating traveling wave solutions of reaction-diffusion systems

    International Nuclear Information System (INIS)

    Bernoff, A.J.; Kuske, R.; Matkowsky, B.J.; Volpert, V.

    1995-01-01

    In many problems, one observes traveling waves that propagate with constant velocity and shape in the χ direction, say, are independent of y, and z and describe transitions between two equilibrium states. As parameters of the system are varied, these traveling waves can become unstable and give rise to waves having additional structure, such as traveling waves in the y and z directions, which can themselves be subject to instabilities as parameters are further varied. To investigate this scenario the authors consider a system of reaction-diffusion equations with a traveling wave solution as a basic state. They determine solutions bifurcating from the basic state that describe counterpropagating traveling wave in directions orthogonal to the direction of propagation of the basic state and determine their stability. Specifically, they derive long wave modulation equations for the amplitudes of the counterpropagating traveling waves that are coupled to an equation for a mean field, generated by the translation of the basic state in the direction of its propagation. The modulation equations are then employed to determine stability boundaries to long wave perturbations for both unidirectional and counterpropagating traveling waves. The stability analysis is delicate because the results depend on the order in which transverse and longitudinal perturbation wavenumbers are taken to zero. For the unidirectional wave they demonstrate that it is sufficient to consider the cases of (1) purely transverse perturbations, (2) purely longitudinal perturbations, and (3) longitudinal perturbations with a small transverse component. These yield Eckhaus type, zigzag type, and skew type instabilities, respectively

  15. A New Approach and Solution Technique to Solve Time Fractional Nonlinear Reaction-Diffusion Equations

    Directory of Open Access Journals (Sweden)

    Inci Cilingir Sungu

    2015-01-01

    Full Text Available A new application of the hybrid generalized differential transform and finite difference method is proposed by solving time fractional nonlinear reaction-diffusion equations. This method is a combination of the multi-time-stepping temporal generalized differential transform and the spatial finite difference methods. The procedure first converts the time-evolutionary equations into Poisson equations which are then solved using the central difference method. The temporal differential transform method as used in the paper takes care of stability and the finite difference method on the resulting equation results in a system of diagonally dominant linear algebraic equations. The Gauss-Seidel iterative procedure then used to solve the linear system thus has assured convergence. To have optimized convergence rate, numerical experiments were done by using a combination of factors involving multi-time-stepping, spatial step size, and degree of the polynomial fit in time. It is shown that the hybrid technique is reliable, accurate, and easy to apply.

  16. Towards reaction-diffusion computing devices based on minority-carrier transport in semiconductors

    International Nuclear Information System (INIS)

    Asai, Tetsuya; Adamatzky, Andrew; Amemiya, Yoshihito

    2004-01-01

    Reaction-diffusion (RD) chemical systems are known to realize sensible computation when both data and results of the computation are encoded in concentration profiles of chemical species; the computation is implemented via spreading and interaction of either diffusive or phase waves. Thin-layer chemical systems are thought of therefore as massively-parallel locally-connected computing devices, where micro-volume of the medium is analogous to an elementary processor. Practical applications of the RD chemical systems are reduced however due to very low speed of traveling waves which makes real-time computation senseless. To overcome the speed-limitations while preserving unique features of RD computers we propose a semiconductor RD computing device where minority carriers diffuse as chemical species and reaction elements are represented by p-n-p-n diodes. We offer blue-prints of the RD semiconductor devices, and study in computer simulation propagation phenomena of the density wave of minority carriers. We then demonstrate what computational problems can be solved in RD semiconductor devices and evaluate space-time complexity of computation in the devices

  17. Transition point prediction in a multicomponent lattice Boltzmann model: Forcing scheme dependencies

    Science.gov (United States)

    Küllmer, Knut; Krämer, Andreas; Joppich, Wolfgang; Reith, Dirk; Foysi, Holger

    2018-02-01

    Pseudopotential-based lattice Boltzmann models are widely used for numerical simulations of multiphase flows. In the special case of multicomponent systems, the overall dynamics are characterized by the conservation equations for mass and momentum as well as an additional advection diffusion equation for each component. In the present study, we investigate how the latter is affected by the forcing scheme, i.e., by the way the underlying interparticle forces are incorporated into the lattice Boltzmann equation. By comparing two model formulations for pure multicomponent systems, namely the standard model [X. Shan and G. D. Doolen, J. Stat. Phys. 81, 379 (1995), 10.1007/BF02179985] and the explicit forcing model [M. L. Porter et al., Phys. Rev. E 86, 036701 (2012), 10.1103/PhysRevE.86.036701], we reveal that the diffusion characteristics drastically change. We derive a generalized, potential function-dependent expression for the transition point from the miscible to the immiscible regime and demonstrate that it is shifted between the models. The theoretical predictions for both the transition point and the mutual diffusion coefficient are validated in simulations of static droplets and decaying sinusoidal concentration waves, respectively. To show the universality of our analysis, two common and one new potential function are investigated. As the shift in the diffusion characteristics directly affects the interfacial properties, we additionally show that phenomena related to the interfacial tension such as the modeling of contact angles are influenced as well.

  18. Transition point prediction in a multicomponent lattice Boltzmann model: Forcing scheme dependencies.

    Science.gov (United States)

    Küllmer, Knut; Krämer, Andreas; Joppich, Wolfgang; Reith, Dirk; Foysi, Holger

    2018-02-01

    Pseudopotential-based lattice Boltzmann models are widely used for numerical simulations of multiphase flows. In the special case of multicomponent systems, the overall dynamics are characterized by the conservation equations for mass and momentum as well as an additional advection diffusion equation for each component. In the present study, we investigate how the latter is affected by the forcing scheme, i.e., by the way the underlying interparticle forces are incorporated into the lattice Boltzmann equation. By comparing two model formulations for pure multicomponent systems, namely the standard model [X. Shan and G. D. Doolen, J. Stat. Phys. 81, 379 (1995)JSTPBS0022-471510.1007/BF02179985] and the explicit forcing model [M. L. Porter et al., Phys. Rev. E 86, 036701 (2012)PLEEE81539-375510.1103/PhysRevE.86.036701], we reveal that the diffusion characteristics drastically change. We derive a generalized, potential function-dependent expression for the transition point from the miscible to the immiscible regime and demonstrate that it is shifted between the models. The theoretical predictions for both the transition point and the mutual diffusion coefficient are validated in simulations of static droplets and decaying sinusoidal concentration waves, respectively. To show the universality of our analysis, two common and one new potential function are investigated. As the shift in the diffusion characteristics directly affects the interfacial properties, we additionally show that phenomena related to the interfacial tension such as the modeling of contact angles are influenced as well.

  19. A Lattice-Misfit-Dependent Damage Model for Non-linear Damage Accumulations Under Monotonous Creep in Single Crystal Superalloys

    Science.gov (United States)

    le Graverend, J.-B.

    2018-05-01

    A lattice-misfit-dependent damage density function is developed to predict the non-linear accumulation of damage when a thermal jump from 1050 °C to 1200 °C is introduced somewhere in the creep life. Furthermore, a phenomenological model aimed at describing the evolution of the constrained lattice misfit during monotonous creep load is also formulated. The response of the lattice-misfit-dependent plasticity-coupled damage model is compared with the experimental results obtained at 140 and 160 MPa on the first generation Ni-based single crystal superalloy MC2. The comparison reveals that the damage model is well suited at 160 MPa and less at 140 MPa because the transfer of stress to the γ' phase occurs for stresses above 150 MPa which leads to larger variations and, therefore, larger effects of the constrained lattice misfit on the lifetime during thermo-mechanical loading.

  20. IAEA CRP on HTGR Uncertainties in Modeling: Assessment of Phase I Lattice to Core Model Uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Rouxelin, Pascal Nicolas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    Best-estimate plus uncertainty analysis of reactors is replacing the traditional conservative (stacked uncertainty) method for safety and licensing analysis. To facilitate uncertainty analysis applications, a comprehensive approach and methodology must be developed and applied. High temperature gas cooled reactors (HTGRs) have several features that require techniques not used in light-water reactor analysis (e.g., coated-particle design and large graphite quantities at high temperatures). The International Atomic Energy Agency has therefore launched the Coordinated Research Project on HTGR Uncertainty Analysis in Modeling to study uncertainty propagation in the HTGR analysis chain. The benchmark problem defined for the prismatic design is represented by the General Atomics Modular HTGR 350. The main focus of this report is the compilation and discussion of the results obtained for various permutations of Exercise I 2c and the use of the cross section data in Exercise II 1a of the prismatic benchmark, which is defined as the last and first steps of the lattice and core simulation phases, respectively. The report summarizes the Idaho National Laboratory (INL) best estimate results obtained for Exercise I 2a (fresh single-fuel block), Exercise I 2b (depleted single-fuel block), and Exercise I 2c (super cell) in addition to the first results of an investigation into the cross section generation effects for the super-cell problem. The two dimensional deterministic code known as the New ESC based Weighting Transport (NEWT) included in the Standardized Computer Analyses for Licensing Evaluation (SCALE) 6.1.2 package was used for the cross section evaluation, and the results obtained were compared to the three dimensional stochastic SCALE module KENO VI. The NEWT cross section libraries were generated for several permutations of the current benchmark super-cell geometry and were then provided as input to the Phase II core calculation of the stand alone neutronics Exercise