Reaction path of energetic materials using THOR code
Durães, L.; Campos, J.; Portugal, A.
1998-07-01
The method of predicting reaction path, using THOR code, allows for isobar and isochor adiabatic combustion and CJ detonation regimes, the calculation of the composition and thermodynamic properties of reaction products of energetic materials. THOR code assumes the thermodynamic equilibria of all possible products, for the minimum Gibbs free energy, using HL EoS. The code allows the possibility of estimating various sets of reaction products, obtained successively by the decomposition of the original reacting compound, as a function of the released energy. Two case studies of thermal decomposition procedure were selected, calculated and discussed—pure Ammonium Nitrate and its based explosive ANFO, and Nitromethane—because their equivalence ratio is respectively lower, near and greater than the stoicheiometry. Predictions of reaction path are in good correlation with experimental values, proving the validity of proposed method.
PP: A graphics post-processor for the EQ6 reaction path code
International Nuclear Information System (INIS)
Stockman, H.W.
1994-09-01
The PP code is a graphics post-processor and plotting program for EQ6, a popular reaction-path code. PP runs on personal computers, allocates memory dynamically, and can handle very large reaction path runs. Plots of simple variable groups, such as fluid and solid phase composition, can be obtained with as few as two keystrokes. Navigation through the list of reaction path variables is simple and efficient. Graphics files can be exported for inclusion in word processing documents and spreadsheets, and experimental data may be imported and superposed on the reaction path runs. The EQ6 thermodynamic database can be searched from within PP, to simplify interpretation of complex plots
CERN. Geneva
2017-01-01
Join the path of code linting and discover how it can help you reach higher levels of programming enlightenment. Today we will cover how to embrace code linters to offload cognitive strain on preserving style standards in your code base as well as avoiding error-prone constructs. Additionally, I will show you the journey ahead for integrating several code linters in the programming tools your already use with very little effort.
Energy Technology Data Exchange (ETDEWEB)
Delany, J.M.
1985-11-25
EQ3/6 geochemical modeling code package was used to investigate the interaction of the Topopah Spring Tuff and J-13 water at high temperatures. EQ3/6 input parameters were obtained from the results of laboratory experiments using USW G-1 core and J-13 water. Laboratory experiments were run at 150 and 250{sup 0}C for 66 days using both wafer-size and crushed tuff. EQ3/6 modeling reproduced results of the 150{sup 0}C experiments except for a small increase in the concentration of potassium that occurs in the first few days of the experiments. At 250{sup 0}C, the EQ3/6 modeling reproduced the major water/rock reactions except for a small increase in potassium, similar to that noted above, and an overall increase in aluminum. The increase in potassium concentration cannot be explained at this time, but the increase in A1 concentration is believed to be caused by the lack of thermodynamic data in the EQ3/6 data base for dachiardite, a zeolite observed as a run product at 250{sup 0}C. The ability to reproduce the majority of the experimental rock/water interactions at 150{sup 0}C validates the use of EQ3/6 as a geochemical modeling tool that can be used to theoretically investigate physical/chemical environments in support of the Waste Package Task of NNWSI.
International Nuclear Information System (INIS)
Delany, J.M.
1985-01-01
EQ3/6 geochemical modeling code package was used to investigate the interaction of the Topopah Spring Tuff and J-13 water at high temperatures. EQ3/6 input parameters were obtained from the results of laboratory experiments using USW G-1 core and J-13 water. Laboratory experiments were run at 150 and 250 0 C for 66 days using both wafer-size and crushed tuff. EQ3/6 modeling reproduced results of the 150 0 C experiments except for a small increase in the concentration of potassium that occurs in the first few days of the experiments. At 250 0 C, the EQ3/6 modeling reproduced the major water/rock reactions except for a small increase in potassium, similar to that noted above, and an overall increase in aluminum. The increase in potassium concentration cannot be explained at this time, but the increase in A1 concentration is believed to be caused by the lack of thermodynamic data in the EQ3/6 data base for dachiardite, a zeolite observed as a run product at 250 0 C. The ability to reproduce the majority of the experimental rock/water interactions at 150 0 C validates the use of EQ3/6 as a geochemical modeling tool that can be used to theoretically investigate physical/chemical environments in support of the Waste Package Task of NNWSI
Insights into the mechanisms on chemical reactions: reaction paths for chemical reactions
International Nuclear Information System (INIS)
Dunning, T.H. Jr.; Rosen, E.; Eades, R.A.
1987-01-01
We report reaction paths for two prototypical chemical reactions: Li + HF, an electron transfer reaction, and OH + H 2 , an abstraction reaction. In the first reaction we consider the connection between the energetic terms in the reaction path Hamiltonian and the electronic changes which occur upon reaction. In the second reaction we consider the treatment of vibrational effects in chemical reactions in the reaction path formalism. 30 refs., 9 figs
Reaction path simulations in multicomponent materials
International Nuclear Information System (INIS)
Seifert, H.J.
1999-01-01
The CALPHAD (calculation of phase diagrams) method is used in combination with selected experimental investigations to derive reaction paths in multicomponent systems. The method is illustrated by applying computerized thermodynamic databases and suitable software to explain quantitatively the thermal degradation of precursor-derived Si-C-N ceramics and the nitridation of titanium carbide. Reaction sequences in the Si 3 N 4 -SiC-TiC x N l-x -C-N system are illustrated by graphical representation of compatibility regions and indicated reaction paths. From these results the experimentally known microstructure development of TiC reinforced Si 3 N 4 ceramics is explained and quantitative information is provided to optimize the microstructure of such materials. The concept of reaction paths for the understanding of rapid solidification processes is shown by the example of AZ type Mg casting alloys. (orig.)
A taxonomy of integral reaction path analysis
Energy Technology Data Exchange (ETDEWEB)
Grcar, Joseph F.; Day, Marcus S.; Bell, John B.
2004-12-23
W. C. Gardiner observed that achieving understanding through combustion modeling is limited by the ability to recognize the implications of what has been computed and to draw conclusions about the elementary steps underlying the reaction mechanism. This difficulty can be overcome in part by making better use of reaction path analysis in the context of multidimensional flame simulations. Following a survey of current practice, an integral reaction flux is formulated in terms of conserved scalars that can be calculated in a fully automated way. Conditional analyses are then introduced, and a taxonomy for bidirectional path analysis is explored. Many examples illustrate the resulting path analysis and uncover some new results about nonpremixed methane-air laminar jets.
Meisner, Jan; Markmeyer, Max N; Bohner, Matthias U; Kästner, Johannes
2017-08-30
Atom tunneling in the hydrogen atom transfer reaction of the 2,4,6-tri-tert-butylphenyl radical to 3,5-di-tert-butylneophyl, which has a short but strongly curved reaction path, was investigated using instanton theory. We found the tunneling path to deviate qualitatively from the classical intrinsic reaction coordinate, the steepest-descent path in mass-weighted Cartesian coordinates. To perform that comparison, we implemented a new variant of the predictor-corrector algorithm for the calculation of the intrinsic reaction coordinate. We used the reaction force analysis method as a means to decompose the reaction barrier into structural and electronic components. Due to the narrow energy barrier, atom tunneling is important in the abovementioned reaction, even above room temperature. Our calculated rate constants between 350 K and 100 K agree well with experimental values. We found a H/D kinetic isotope effect of almost 10 6 at 100 K. Tunneling dominates the protium transfer below 400 K and the deuterium transfer below 300 K. We compared the lengths of the tunneling path and the classical path for the hydrogen atom transfer in the reaction HCl + Cl and quantified the corner cutting in this reaction. At low temperature, the tunneling path is about 40% shorter than the classical path.
The nuclear reaction model code MEDICUS
International Nuclear Information System (INIS)
Ibishia, A.I.
2008-01-01
The new computer code MEDICUS has been used to calculate cross sections of nuclear reactions. The code, implemented in MATLAB 6.5, Mathematica 5, and Fortran 95 programming languages, can be run in graphical and command line mode. Graphical User Interface (GUI) has been built that allows the user to perform calculations and to plot results just by mouse clicking. The MS Windows XP and Red Hat Linux platforms are supported. MEDICUS is a modern nuclear reaction code that can compute charged particle-, photon-, and neutron-induced reactions in the energy range from thresholds to about 200 MeV. The calculation of the cross sections of nuclear reactions are done in the framework of the Exact Many-Body Nuclear Cluster Model (EMBNCM), Direct Nuclear Reactions, Pre-equilibrium Reactions, Optical Model, DWBA, and Exciton Model with Cluster Emission. The code can be used also for the calculation of nuclear cluster structure of nuclei. We have calculated nuclear cluster models for some nuclei such as 177 Lu, 90 Y, and 27 Al. It has been found that nucleus 27 Al can be represented through the two different nuclear cluster models: 25 Mg + d and 24 Na + 3 He. Cross sections in function of energy for the reaction 27 Al( 3 He,x) 22 Na, established as a production method of 22 Na, are calculated by the code MEDICUS. Theoretical calculations of cross sections are in good agreement with experimental results. Reaction mechanisms are taken into account. (author)
Reaction paths based on mean first-passage times
International Nuclear Information System (INIS)
Park, Sanghyun; Sener, Melih K.; Lu Deyu; Schulten, Klaus
2003-01-01
Finding representative reaction pathways is important for understanding the mechanism of molecular processes. We propose a new approach for constructing reaction paths based on mean first-passage times. This approach incorporates information about all possible reaction events as well as the effect of temperature. As an application of this method, we study representative pathways of excitation migration in a photosynthetic light-harvesting complex, photosystem I. The paths thus computed provide a complete, yet distilled, representation of the kinetic flow of excitation toward the reaction center, thereby succinctly characterizing the function of the system
Variational nature, integration, and properties of Newton reaction path.
Bofill, Josep Maria; Quapp, Wolfgang
2011-02-21
The distinguished coordinate path and the reduced gradient following path or its equivalent formulation, the Newton trajectory, are analyzed and unified using the theory of calculus of variations. It is shown that their minimum character is related to the fact that the curve is located in a valley region. In this case, we say that the Newton trajectory is a reaction path with the category of minimum energy path. In addition to these findings a Runge-Kutta-Fehlberg algorithm to integrate these curves is also proposed.
Variational nature, integration, and properties of Newton reaction path
Bofill, Josep Maria; Quapp, Wolfgang
2011-02-01
The distinguished coordinate path and the reduced gradient following path or its equivalent formulation, the Newton trajectory, are analyzed and unified using the theory of calculus of variations. It is shown that their minimum character is related to the fact that the curve is located in a valley region. In this case, we say that the Newton trajectory is a reaction path with the category of minimum energy path. In addition to these findings a Runge-Kutta-Fehlberg algorithm to integrate these curves is also proposed.
Exploring chemical reaction mechanisms through harmonic Fourier beads path optimization.
Khavrutskii, Ilja V; Smith, Jason B; Wallqvist, Anders
2013-10-28
Here, we apply the harmonic Fourier beads (HFB) path optimization method to study chemical reactions involving covalent bond breaking and forming on quantum mechanical (QM) and hybrid QM∕molecular mechanical (QM∕MM) potential energy surfaces. To improve efficiency of the path optimization on such computationally demanding potentials, we combined HFB with conjugate gradient (CG) optimization. The combined CG-HFB method was used to study two biologically relevant reactions, namely, L- to D-alanine amino acid inversion and alcohol acylation by amides. The optimized paths revealed several unexpected reaction steps in the gas phase. For example, on the B3LYP∕6-31G(d,p) potential, we found that alanine inversion proceeded via previously unknown intermediates, 2-iminopropane-1,1-diol and 3-amino-3-methyloxiran-2-ol. The CG-HFB method accurately located transition states, aiding in the interpretation of complex reaction mechanisms. Thus, on the B3LYP∕6-31G(d,p) potential, the gas phase activation barriers for the inversion and acylation reactions were 50.5 and 39.9 kcal∕mol, respectively. These barriers determine the spontaneous loss of amino acid chirality and cleavage of peptide bonds in proteins. We conclude that the combined CG-HFB method further advances QM and QM∕MM studies of reaction mechanisms.
International Nuclear Information System (INIS)
Kikuchi, Shin; Ohshima, Hiroyuki; Hashimoto, Kenro
2011-01-01
Computational study of the sodium-water reaction at the gas (water) - liquid (sodium) interface has been carried out using ab initio (first-principle) method. A possible reaction channel has been identified for the stepwise OH bond dissociations of a single water molecule. The energetics including the binding energy of a water molecule to the sodium surface, the activation energies of the bond cleavages, and the reaction energies, have been evaluated, and the rate constants of the first and second OH bond-breakings have been compared. The results are used as the basis for constructing the chemical reaction model used in a multi-dimensional sodium-water reaction code, SERAPHIM, being developed by JAEA toward the safety assessment of the steam generator (SG) in a sodium-cooled fast reactor (SFR). (author)
Four new topological indices based on the molecular path code.
Balaban, Alexandru T; Beteringhe, Adrian; Constantinescu, Titus; Filip, Petru A; Ivanciuc, Ovidiu
2007-01-01
The sequence of all paths pi of lengths i = 1 to the maximum possible length in a hydrogen-depleted molecular graph (which sequence is also called the molecular path code) contains significant information on the molecular topology, and as such it is a reasonable choice to be selected as the basis of topological indices (TIs). Four new (or five partly new) TIs with progressively improved performance (judged by correctly reflecting branching, centricity, and cyclicity of graphs, ordering of alkanes, and low degeneracy) have been explored. (i) By summing the squares of all numbers in the sequence one obtains Sigmaipi(2), and by dividing this sum by one plus the cyclomatic number, a Quadratic TI is obtained: Q = Sigmaipi(2)/(mu+1). (ii) On summing the Square roots of all numbers in the sequence one obtains Sigmaipi(1/2), and by dividing this sum by one plus the cyclomatic number, the TI denoted by S is obtained: S = Sigmaipi(1/2)/(mu+1). (iii) On dividing terms in this sum by the corresponding topological distances, one obtains the Distance-reduced index D = Sigmai{pi(1/2)/[i(mu+1)]}. Two similar formulas define the next two indices, the first one with no square roots: (iv) distance-Attenuated index: A = Sigmai{pi/[i(mu + 1)]}; and (v) the last TI with two square roots: Path-count index: P = Sigmai{pi(1/2)/[i(1/2)(mu + 1)]}. These five TIs are compared for their degeneracy, ordering of alkanes, and performance in QSPR (for all alkanes with 3-12 carbon atoms and for all possible chemical cyclic or acyclic graphs with 4-6 carbon atoms) in correlations with six physical properties and one chemical property.
Nuclear reactions in Monte Carlo codes
Ferrari, Alfredo
2002-01-01
The physics foundations of hadronic interactions as implemented in most Monte Carlo codes are presented together with a few practical examples. The description of the relevant physics is presented schematically split into the major steps in order to stress the different approaches required for the full understanding of nuclear reactions at intermediate and high energies. Due to the complexity of the problem, only a few semi-qualitative arguments are developed in this paper. The description will be necessarily schematic and somewhat incomplete, but hopefully it will be useful for a first introduction into this topic. Examples are shown mostly for the high energy regime, where all mechanisms mentioned in the paper are at work and to which perhaps most of the readers are less accustomed. Examples for lower energies can be found in the references. (43 refs) .
Compliance Verification Paths for Residential and Commercial Energy Codes
Energy Technology Data Exchange (ETDEWEB)
Conover, David R.; Makela, Eric J.; Fannin, Jerica D.; Sullivan, Robin S.
2011-10-10
This report looks at different ways to verify energy code compliance and to ensure that the energy efficiency goals of an adopted document are achieved. Conformity assessment is the body of work that ensures compliance, including activities that can ensure residential and commercial buildings satisfy energy codes and standards. This report identifies and discusses conformity-assessment activities and provides guidance for conducting assessments.
Geochemical controls on shale groundwaters: Results of reaction path modeling
International Nuclear Information System (INIS)
Von Damm, K.L.; VandenBrook, A.J.
1989-03-01
The EQ3NR/EQ6 geochemical modeling code was used to simulate the reaction of several shale mineralogies with different groundwater compositions in order to elucidate changes that may occur in both the groundwater compositions, and rock mineralogies and compositions under conditions which may be encountered in a high-level radioactive waste repository. Shales with primarily illitic or smectitic compositions were the focus of this study. The reactions were run at the ambient temperatures of the groundwaters and to temperatures as high as 250/degree/C, the approximate temperature maximum expected in a repository. All modeling assumed that equilibrium was achieved and treated the rock and water assemblage as a closed system. Graphite was used as a proxy mineral for organic matter in the shales. The results show that the presence of even a very small amount of reducing mineral has a large influence on the redox state of the groundwaters, and that either pyrite or graphite provides essentially the same results, with slight differences in dissolved C, Fe and S concentrations. The thermodynamic data base is inadequate at the present time to fully evaluate the speciation of dissolved carbon, due to the paucity of thermodynamic data for organic compounds. In the illitic cases the groundwaters resulting from interaction at elevated temperatures are acid, while the smectitic cases remain alkaline, although the final equilibrium mineral assemblages are quite similar. 10 refs., 8 figs., 15 tabs
Improving performance of single-path code through a time-predictable memory hierarchy
DEFF Research Database (Denmark)
Cilku, Bekim; Puffitsch, Wolfgang; Prokesch, Daniel
2017-01-01
-predictable memory hierarchy with a prefetcher that exploits the predictability of execution traces in single-path code to speed up code execution. The new memory hierarchy reduces both the cache-miss penalty time and the cache-miss rate on the instruction cache. The benefit of the approach is demonstrated through...
Rare events via multiple reaction channels sampled by path replica exchange
Bolhuis, P.G.
2008-01-01
Transition path sampling (TPS) was developed for studying activated processes in complex systems with unknown reaction coordinate. Transition interface sampling (TIS) allows efficient evaluation of the rate constants. However, when the transition can occur via more than one reaction channel
Rare events in many-body systems: reactive paths and reaction constants for structural transitions
International Nuclear Information System (INIS)
Picciani, M.
2012-01-01
This PhD thesis deals with the study of fundamental physics phenomena, with applications to nuclear materials of interest. We have developed methods for the study of rare events related to thermally activated structural transitions in many body systems. The first method involves the numerical simulation of the probability current associated with reactive paths. After deriving the evolution equations for the probability current, a Diffusion Monte Carlo algorithm is implemented in order to sample this current. This technique, called Transition Current Sampling was applied to the study of structural transitions in a cluster of 38 atoms with Lennard-Jones potential (LJ-38). A second algorithm, called Transition Path Sampling with local Lyapunov bias (LyTPS), was then developed. LyTPS calculates reaction rates at finite temperature by following the transition state theory. A statistical bias based on the maximum local Lyapunov exponents is introduced to accelerate the sampling of reactive trajectories. To extract the value of the equilibrium reaction constants obtained from LyTPS, we use the Multistate Bennett Acceptance Ratio. We again validate this method on the LJ-38 cluster. LyTPS is then used to calculate migration constants for vacancies and divacancies in the α-Iron, and the associated migration entropy. These constants are used as input parameter for codes modeling the kinetic evolution after irradiation (First Passage Kinetic Monte Carlo) to reproduce numerically resistivity recovery experiments in α-Iron. (author) [fr
The nonelastic reaction code BRIEFF and its intranuclear cascade BRIC
International Nuclear Information System (INIS)
Duarte, H.
2008-01-01
The intranuclear cascade (INC) code of Bruyeres-le-Chatel named BRIC is the first part of the nonelastic reaction code BRIEFF. Recent changes in our INC are presented. They were done for nucleon induced reaction to improve results below 100 MeV, and to calculate cross sections of compound nucleus formation. These cross sections are used in the evaporation component of our reaction code. BRIEFF is included in the Bruyeres-le-Chatel version of HETC (High Energy Transport Code) to perform thick targets calculations. BRIC has recently been incorporated into MCNPX 2.4.0 to verify thick target results of neutron yields and to do some comparisons with other nuclear models or libraries. Good agreement with data is obtained on average. (author)
The path to improved reaction rates for astrophysics
International Nuclear Information System (INIS)
Rauscher, T.
2011-01-01
This review focuses on nuclear reactions in astrophysics and, more specifically, on reactions with light ions (nucleons and α particles) proceeding via the strong interaction. It is intended to present the basic definitions essential for studies in nuclear astrophysics, to point out the differences between nuclear reactions taking place in stars and in a terrestrial laboratory, and to illustrate some of the challenges to be faced in theoretical and experimental studies of those reactions. The discussion revolves around the relevant quantities for astrophysics, which are the astrophysical reaction rates. The sensitivity of the reaction rates to the uncertainties in the prediction of various nuclear properties is explored and some guidelines for experimentalists are also provided. (author)
International Nuclear Information System (INIS)
Goriely, S.; Hilaire, S.; Koning, A.J
2008-01-01
Context. Nuclear reaction rates of astrophysical applications are traditionally determined on the basis of Hauser-Feshbach reaction codes. These codes adopt a number of approximations that have never been tested, such as a simplified width fluctuation correction, the neglect of delayed or multiple-particle emission during the electromagnetic decay cascade, or the absence of the pre-equilibrium contribution at increasing incident energies. Aims. The reaction code TALYS has been recently updated to estimate the Maxwellian-averaged reaction rates that are of astrophysical relevance. These new developments enable the reaction rates to be calculated with increased accuracy and reliability and the approximations of previous codes to be investigated. Methods. The TALYS predictions for the thermonuclear rates of relevance to astrophysics are detailed and compared with those derived by widely-used codes for the same nuclear ingredients. Results. It is shown that TALYS predictions may differ significantly from those of previous codes, in particular for nuclei for which no or little nuclear data is available. The pre-equilibrium process is shown to influence the astrophysics rates of exotic neutron-rich nuclei significantly. For the first time, the Maxwellian- averaged (n, 2n) reaction rate is calculated for all nuclei and its competition with the radiative capture rate is discussed. Conclusions. The TALYS code provides a new tool to estimate all nuclear reaction rates of relevance to astrophysics with improved accuracy and reliability. (authors)
FPFPspace2: A code for following airborne fission products in generic nuclear plant flow paths
International Nuclear Information System (INIS)
Owcarski, P.C.; Burk, K.W.; Ramsdell, J.V.; Yasuda, D.D.
1991-03-01
In order to assure that a nuclear power plant control room remains habitable during certain types of postulated accidents, Pacific Northwest Laboratory (PNL) has undertaken a special study for the US Nuclear Regulatory Commission. This purpose of this study is to develop software that can aid in the analyses of control room habitability during accidents in which airborne fission products could challenge internal air pathways to the control room. PNL has completed an initial version (FPFP) and final version (FPFP 2) of a software package that can estimate the unsteady-state invasion of quantities of fission products into the control room or any other destination within the nuclear plant via generic internal flow paths. This report consists of three parts: Section 2.0, Technical Bases, describes the flow path components and mechanisms of natural fission product deposition; Section 3.0, FPFP 2 Code Description, describes code organization and the functions of the subroutines; and Section 4.0, Code Operation, discusses details of input requirements, code output, and a sample case demonstration. The appendices consist of an FPFP 2 Fortran code listing, a listing of a code for building input files, forms for building input files, and the sample case input and output files. 7 refs., 3 figs
Results of the Nonelastic Reaction Code Brieff for Nuclear Data
International Nuclear Information System (INIS)
Duarte, H.
2009-01-01
We present recent changes in our nonelastic reaction code BRIEFF and especially in the fast stage of reaction described by the intranuclear cascade (INC) code BRIC. Distributions and excitation functions of residual nuclei production cross sections are shown for proton-induced reaction on target nuclei. Slight improvements are seen in the proton-induced reaction on light nuclei with a closed shell when the energy levels are taken into account in the INC stage. On the other hand, fission gives poor results in the current version. To compare to other nuclear models and LA150 libraries, BRIEFF has been incorporated into MCNPX 2.5.0. Examples of neutron production from thick target irradiation by proton beams between 30 and 350 MeV are presented. Except for some discrepancies, a good agreement with data is obtained on average. (authors)
The research of the supply chain path coding based on prime encoding techonology
Directory of Open Access Journals (Sweden)
CHEN Xiong
2012-10-01
Full Text Available Radio Frequency Identification (RFID technology has been applied to many different fields.Especially,it is very useful in the monitoring and management of the supply chain.However,in such an environment,enormous RFID path information data will be generated,from which it therefore takes a long time to extract valuable information.In this paper,the path of items in the supply chain is effectively encoded by use of the prime number encoding which is currently a widely used coding technique and can not only compress the data volume but also is convenient to retrieve path information.A storage scheme is devised to support efficient query processing on an RDBMS .Finally,a method by which query templates are converted to SQL queries is proposed.
Plumlee, G. S.; Ridley, W. I.; Debraal, J. D.; Reed, M. H.
1993-01-01
Chemical reaction path calculations were used to model the minerals that might have formed at or near the Martian surface as a result of volcano or meteorite impact driven hydrothermal systems; weathering at the Martian surface during an early warm, wet climate; and near-zero or sub-zero C brine-regolith reactions in the current cold climate. Although the chemical reaction path calculations carried out do not define the exact mineralogical evolution of the Martian surface over time, they do place valuable geochemical constraints on the types of minerals that formed from an aqueous phase under various surficial and geochemically complex conditions.
EMPIRE-II statistical model code for nuclear reaction calculations
Energy Technology Data Exchange (ETDEWEB)
Herman, M [International Atomic Energy Agency, Vienna (Austria)
2001-12-15
EMPIRE II is a nuclear reaction code, comprising various nuclear models, and designed for calculations in the broad range of energies and incident particles. A projectile can be any nucleon or Heavy Ion. The energy range starts just above the resonance region, in the case of neutron projectile, and extends up to few hundreds of MeV for Heavy Ion induced reactions. The code accounts for the major nuclear reaction mechanisms, such as optical model (SCATB), Multistep Direct (ORION + TRISTAN), NVWY Multistep Compound, and the full featured Hauser-Feshbach model. Heavy Ion fusion cross section can be calculated within the simplified coupled channels approach (CCFUS). A comprehensive library of input parameters covers nuclear masses, optical model parameters, ground state deformations, discrete levels and decay schemes, level densities, fission barriers (BARFIT), moments of inertia (MOMFIT), and {gamma}-ray strength functions. Effects of the dynamic deformation of a fast rotating nucleus can be taken into account in the calculations. The results can be converted into the ENDF-VI format using the accompanying code EMPEND. The package contains the full EXFOR library of experimental data. Relevant EXFOR entries are automatically retrieved during the calculations. Plots comparing experimental results with the calculated ones can be produced using X4TOC4 and PLOTC4 codes linked to the rest of the system through bash-shell (UNIX) scripts. The graphic user interface written in Tcl/Tk is provided. (author)
Improvement on reaction model for sodium-water reaction jet code and application analysis
International Nuclear Information System (INIS)
Itooka, Satoshi; Saito, Yoshinori; Okabe, Ayao; Fujimata, Kazuhiro; Murata, Shuuichi
2000-03-01
In selecting the reasonable DBL on steam generator (SG), it is necessary to improve analytical method for estimating the sodium temperature on failure propagation due to overheating. Improvement on sodium-water reaction (SWR) jet code (LEAP-JET ver.1.30) and application analysis to the water injection tests for confirmation of code propriety were performed. On the improvement of the code, a gas-liquid interface area density model was introduced to develop a chemical reaction model with a little dependence on calculation mesh size. The test calculation using the improved code (LEAP-JET ver.1.40) were carried out with conditions of the SWAT-3·Run-19 test and an actual scale SG. It is confirmed that the SWR jet behavior on the results and the influence to analysis result of a model are reasonable. For the application analysis to the water injection tests, water injection behavior and SWR jet behavior analyses on the new SWAT-1 (SWAT-1R) and SWAT-3 (SWAT-3R) tests were performed using the LEAP-BLOW code and the LEAP-JET code. In the application analysis of the LEAP-BLOW code, parameter survey study was performed. As the results, the condition of the injection nozzle diameter needed to simulate the water leak rate was confirmed. In the application analysis of the LEAP-JET code, temperature behavior of the SWR jet was investigated. (author)
Molecular codes in biological and chemical reaction networks.
Directory of Open Access Journals (Sweden)
Dennis Görlich
Full Text Available Shannon's theory of communication has been very successfully applied for the analysis of biological information. However, the theory neglects semantic and pragmatic aspects and thus cannot directly be applied to distinguish between (bio- chemical systems able to process "meaningful" information from those that do not. Here, we present a formal method to assess a system's semantic capacity by analyzing a reaction network's capability to implement molecular codes. We analyzed models of chemical systems (martian atmosphere chemistry and various combustion chemistries, biochemical systems (gene expression, gene translation, and phosphorylation signaling cascades, an artificial chemistry, and random reaction networks. Our study suggests that different chemical systems possess different semantic capacities. No semantic capacity was found in the model of the martian atmosphere chemistry, the studied combustion chemistries, and highly connected random networks, i.e. with these chemistries molecular codes cannot be implemented. High semantic capacity was found in the studied biochemical systems and in random reaction networks where the number of second order reactions is twice the number of species. We conclude that our approach can be applied to evaluate the information processing capabilities of a chemical system and may thus be a useful tool to understand the origin and evolution of meaningful information, e.g. in the context of the origin of life.
Application of path integral method to heavy ion reactions, 1. General formalism
Energy Technology Data Exchange (ETDEWEB)
Fujita, J; Negishi, T [Tokyo Univ. of Education (Japan). Dept. of Physics
1976-03-01
The semiclassical approach for heavy ion reactions has become more and more important in analyzing rapidly accumulating data. The purpose of this paper is to lay a quantum-mechanical foundation of the conventional semiclassical treatments in heavy ion physics by using Feynman's path integral method on the basis of the second paper of Pechukas, and discuss simple consequences of the formalism.
Software news and update PyFrag - Streamlining your reaction path analysis
van Zeist, W.-J.; Fonseca Guerra, C.; Bickelhaupt, F.M.
2008-01-01
The PyFrag program (released as PyFrag2007.01) is a "wrap-around" for the Amsterdam Density Functional (ADF) package and facilitates the extension of the fragment analysis method implemented in ADF along an entire potential energy surface. The purpose is to make analyses of reaction paths and other
Energy Technology Data Exchange (ETDEWEB)
Wolery, T.J.; Daveler, S.A.
1992-10-09
EQ6 is a FORTRAN computer program in the EQ3/6 software package (Wolery, 1979). It calculates reaction paths (chemical evolution) in reacting water-rock and water-rock-waste systems. Speciation in aqueous solution is an integral part of these calculations. EQ6 computes models of titration processes (including fluid mixing), irreversible reaction in closed systems, irreversible reaction in some simple kinds of open systems, and heating or cooling processes, as well as solve ``single-point`` thermodynamic equilibrium problems. A reaction path calculation normally involves a sequence of thermodynamic equilibrium calculations. Chemical evolution is driven by a set of irreversible reactions (i.e., reactions out of equilibrium) and/or changes in temperature and/or pressure. These irreversible reactions usually represent the dissolution or precipitation of minerals or other solids. The code computes the appearance and disappearance of phases in solubility equilibrium with the water. It finds the identities of these phases automatically. The user may specify which potential phases are allowed to form and which are not. There is an option to fix the fugacities of specified gas species, simulating contact with a large external reservoir. Rate laws for irreversible reactions may be either relative rates or actual rates. If any actual rates are used, the calculation has a time frame. Several forms for actual rate laws are programmed into the code. EQ6 is presently able to model both mineral dissolution and growth kinetics.
International Nuclear Information System (INIS)
Wolery, T.J.; Daveler, S.A.
1992-01-01
EQ6 is a FORTRAN computer program in the EQ3/6 software package (Wolery, 1979). It calculates reaction paths (chemical evolution) in reacting water-rock and water-rock-waste systems. Speciation in aqueous solution is an integral part of these calculations. EQ6 computes models of titration processes (including fluid mixing), irreversible reaction in closed systems, irreversible reaction in some simple kinds of open systems, and heating or cooling processes, as well as solve ''single-point'' thermodynamic equilibrium problems. A reaction path calculation normally involves a sequence of thermodynamic equilibrium calculations. Chemical evolution is driven by a set of irreversible reactions (i.e., reactions out of equilibrium) and/or changes in temperature and/or pressure. These irreversible reactions usually represent the dissolution or precipitation of minerals or other solids. The code computes the appearance and disappearance of phases in solubility equilibrium with the water. It finds the identities of these phases automatically. The user may specify which potential phases are allowed to form and which are not. There is an option to fix the fugacities of specified gas species, simulating contact with a large external reservoir. Rate laws for irreversible reactions may be either relative rates or actual rates. If any actual rates are used, the calculation has a time frame. Several forms for actual rate laws are programmed into the code. EQ6 is presently able to model both mineral dissolution and growth kinetics
International Nuclear Information System (INIS)
Goriely, S.; Hilaire, S.; Koning, A.J.
2008-01-01
Nuclear reaction rates for astrophysics applications are traditionally determined on the basis of Hauser-Feshbach reaction codes, like MOST. These codes use simplified schemes to calculate the capture reaction cross section on a given target nucleus, not only in its ground state but also on the different thermally populated states of the stellar plasma at a given temperature. Such schemes include a number of approximations that have never been tested, such as an approximate width fluctuation correction, the neglect of delayed particle emission during the electromagnetic decay cascade or the absence of the pre-equilibrium contribution at increasing incident energies. New developments have been brought to the reaction code TALYS to estimate the Maxwellian-averaged reaction rates of astrophysics relevance. These new developments give us the possibility to calculate with an improved accuracy the reaction cross sections and the corresponding astrophysics rates. The TALYS predictions for the thermonuclear rates of astrophysics relevance are presented and compared with those obtained with the MOST code on the basis of the same nuclear ingredients for nuclear structure properties, optical model potential, nuclear level densities and γ-ray strength. It is shown that, in particular, the pre-equilibrium process significantly influences the astrophysics rates of exotic neutron-rich nuclei. The reciprocity theorem traditionally used in astrophysics to determine photo-rates is also shown no to be valid for exotic nuclei. The predictions obtained with different nuclear inputs are also analyzed to provide an estimate of the theoretical uncertainties still affecting the reaction rate prediction far away from the experimentally known regions. (authors)
MODLIB, library of Fortran modules for nuclear reaction codes
International Nuclear Information System (INIS)
Talou, Patrick
2006-01-01
1 - Description of program or function: ModLib is a library of Fortran (90-compatible) modules to be used in existing and future nuclear reaction codes. The development of the library is an international effort being undertaken under the auspices of the long-term Subgroup A of the OECD/NEA Working Party on Evaluation and Cooperation. The aim is to constitute a library of well-tested and well-documented pieces of codes that can be used with confidence in all our coding efforts. This effort will undoubtedly help avoid the duplication of work, and most certainly facilitate the very important inter-comparisons between existing codes. 2 - Methods: - Width f luctuations [Talou, Chadwick]: calculates width fluctuation correction factors (output) for a set of transmission coefficients (input). Three methods are available: HRTW, Moldauer, and Verbaarschot (also called GOE approach). So far, no distinction is made according to the type of the coefficients channels (particle emission, gamma-ray emission, fission). - Gamma s trength [Herman]: calculates gamma-ray transmission coefficients using a Giant Resonance formalism. - Level d ensity [Koning]: computes the Gilbert-Cameron-Ignatyuk formalism for the continuum nuclear level density. - CHECKR, FIZCON, INTER, PSYCHE, STANEF [Dunford]: these modules are used in the MODLIB project but are not included in this package. They are available from the NEA Data Bank Computer Program Service under Package Ids: CHECKR (USCD1208), FIZCON (USCD1209), INTER (USCD1212), PSYCHE (USCD1216), STANEF (USCD1218)
Coding the Assembly of Polyoxotungstates with a Programmable Reaction System.
Ruiz de la Oliva, Andreu; Sans, Victor; Miras, Haralampos N; Long, De-Liang; Cronin, Leroy
2017-05-01
Chemical transformations are normally conducted in batch or flow mode, thereby allowing the chemistry to be temporally or spatially controlled, but these approaches are not normally combined dynamically. However, the investigation of the underlying chemistry masked by the self-assembly processes that often occur in one-pot reactions and exploitation of the potential of complex chemical systems requires control in both time and space. Additionally, maintaining the intermediate constituents of a self-assembled system "off equilibrium" and utilizing them dynamically at specific time intervals provide access to building blocks that cannot coexist under one-pot conditions and ultimately to the formation of new clusters. Herein, we implement the concept of a programmable networked reaction system, allowing us to connect discrete "one-pot" reactions that produce the building block{W 11 O 38 } ≡ {W 11 } under different conditions and control, in real time, the assembly of a series of polyoxometalate clusters {W 12 O 42 } ≡ {W 12 }, {W 22 O 74 } ≡ {W 22 } 1a, {W 34 O 116 } ≡ {W 34 } 2a, and {W 36 O 120 } ≡ {W 36 } 3a, using pH and ultraviolet-visible monitoring. The programmable networked reaction system reveals that is possible to assemble a range of different clusters using {W 11 }-based building blocks, demonstrating the relationship between the clusters within the family of iso-polyoxotungstates, with the final structural motif being entirely dependent on the building block libraries generated in each separate reaction space within the network. In total, this approach led to the isolation of five distinct inorganic clusters using a "fixed" set of reagents and using a fully automated sequence code, rather than five entirely different reaction protocols. As such, this approach allows us to discover, record, and implement complex one-pot reaction syntheses in a more general way, increasing the yield and reproducibility and potentially giving access to
Unified path integral approach to theories of diffusion-influenced reactions
Prüstel, Thorsten; Meier-Schellersheim, Martin
2017-08-01
Building on mathematical similarities between quantum mechanics and theories of diffusion-influenced reactions, we develop a general approach for computational modeling of diffusion-influenced reactions that is capable of capturing not only the classical Smoluchowski picture but also alternative theories, as is here exemplified by a volume reactivity model. In particular, we prove the path decomposition expansion of various Green's functions describing the irreversible and reversible reaction of an isolated pair of molecules. To this end, we exploit a connection between boundary value and interaction potential problems with δ - and δ'-function perturbation. We employ a known path-integral-based summation of a perturbation series to derive a number of exact identities relating propagators and survival probabilities satisfying different boundary conditions in a unified and systematic manner. Furthermore, we show how the path decomposition expansion represents the propagator as a product of three factors in the Laplace domain that correspond to quantities figuring prominently in stochastic spatially resolved simulation algorithms. This analysis will thus be useful for the interpretation of current and the design of future algorithms. Finally, we discuss the relation between the general approach and the theory of Brownian functionals and calculate the mean residence time for the case of irreversible and reversible reactions.
A quantum generalization of intrinsic reaction coordinate using path integral centroid coordinates
International Nuclear Information System (INIS)
Shiga, Motoyuki; Fujisaki, Hiroshi
2012-01-01
We propose a generalization of the intrinsic reaction coordinate (IRC) for quantum many-body systems described in terms of the mass-weighted ring polymer centroids in the imaginary-time path integral theory. This novel kind of reaction coordinate, which may be called the ''centroid IRC,'' corresponds to the minimum free energy path connecting reactant and product states with a least amount of reversible work applied to the center of masses of the quantum nuclei, i.e., the centroids. We provide a numerical procedure to obtain the centroid IRC based on first principles by combining ab initio path integral simulation with the string method. This approach is applied to NH 3 molecule and N 2 H 5 - ion as well as their deuterated isotopomers to study the importance of nuclear quantum effects in the intramolecular and intermolecular proton transfer reactions. We find that, in the intramolecular proton transfer (inversion) of NH 3 , the free energy barrier for the centroid variables decreases with an amount of about 20% compared to the classical one at the room temperature. In the intermolecular proton transfer of N 2 H 5 - , the centroid IRC is largely deviated from the ''classical'' IRC, and the free energy barrier is reduced by the quantum effects even more drastically.
Reaction path sampling of the reaction between iron(II) and hydrogen peroxide in aqueous solution
Ensing, B.; Baerends, E.J.
2002-01-01
Previously, we have studied the coordination and dissociation of hydrogen peroxide with iron(II) in aqueous solution by Car-Parrinello molecular dynamics at room temperature. We presented a few illustrative reaction events, in which the ferryl ion ([Fe(IV)O
Milesi, V.; Shock, E.
2018-05-01
Thermodynamic modeling is performed to investigate the possible reaction paths of sea water throughout the Lo'ihi seamount and the associated geochemical supplies of energy that can support autotrophic microbial communities.
Automated Prediction of Catalytic Mechanism and Rate Law Using Graph-Based Reaction Path Sampling.
Habershon, Scott
2016-04-12
In a recent article [ J. Chem. Phys. 2015 , 143 , 094106 ], we introduced a novel graph-based sampling scheme which can be used to generate chemical reaction paths in many-atom systems in an efficient and highly automated manner. The main goal of this work is to demonstrate how this approach, when combined with direct kinetic modeling, can be used to determine the mechanism and phenomenological rate law of a complex catalytic cycle, namely cobalt-catalyzed hydroformylation of ethene. Our graph-based sampling scheme generates 31 unique chemical products and 32 unique chemical reaction pathways; these sampled structures and reaction paths enable automated construction of a kinetic network model of the catalytic system when combined with density functional theory (DFT) calculations of free energies and resultant transition-state theory rate constants. Direct simulations of this kinetic network across a range of initial reactant concentrations enables determination of both the reaction mechanism and the associated rate law in an automated fashion, without the need for either presupposing a mechanism or making steady-state approximations in kinetic analysis. Most importantly, we find that the reaction mechanism which emerges from these simulations is exactly that originally proposed by Heck and Breslow; furthermore, the simulated rate law is also consistent with previous experimental and computational studies, exhibiting a complex dependence on carbon monoxide pressure. While the inherent errors of using DFT simulations to model chemical reactivity limit the quantitative accuracy of our calculated rates, this work confirms that our automated simulation strategy enables direct analysis of catalytic mechanisms from first principles.
Bolhuis, Peter
Important reaction-diffusion processes, such as biochemical networks in living cells, or self-assembling soft matter, span many orders in length and time scales. In these systems, the reactants' spatial dynamics at mesoscopic length and time scales of microns and seconds is coupled to the reactions between the molecules at microscopic length and time scales of nanometers and milliseconds. This wide range of length and time scales makes these systems notoriously difficult to simulate. While mean-field rate equations cannot describe such processes, the mesoscopic Green's Function Reaction Dynamics (GFRD) method enables efficient simulation at the particle level provided the microscopic dynamics can be integrated out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively change the macroscopic behavior, calling for an atomistic, microscopic description. The recently developed multiscale Molecular Dynamics Green's Function Reaction Dynamics (MD-GFRD) approach combines GFRD for simulating the system at the mesocopic scale where particles are far apart, with microscopic Molecular (or Brownian) Dynamics, for simulating the system at the microscopic scale where reactants are in close proximity. The association and dissociation of particles are treated with rare event path sampling techniques. I will illustrate the efficiency of this method for patchy particle systems. Replacing the microscopic regime with a Markov State Model avoids the microscopic regime completely. The MSM is then pre-computed using advanced path-sampling techniques such as multistate transition interface sampling. I illustrate this approach on patchy particle systems that show multiple modes of binding. MD-GFRD is generic, and can be used to efficiently simulate reaction-diffusion systems at the particle level, including the orientational dynamics, opening up the possibility for large-scale simulations of e.g. protein signaling networks.
Ultrafast electron crystallography of the cooperative reaction path in vanadium dioxide
Directory of Open Access Journals (Sweden)
Ding-Shyue Yang
2016-05-01
Full Text Available Time-resolved electron diffraction with atomic-scale spatial and temporal resolution was used to unravel the transformation pathway in the photoinduced structural phase transition of vanadium dioxide. Results from bulk crystals and single-crystalline thin-films reveal a common, stepwise mechanism: First, there is a femtosecond V−V bond dilation within 300 fs, second, an intracell adjustment in picoseconds and, third, a nanoscale shear motion within tens of picoseconds. Experiments at different ambient temperatures and pump laser fluences reveal a temperature-dependent excitation threshold required to trigger the transitional reaction path of the atomic motions.
International Nuclear Information System (INIS)
Yamamoto, K.; Hashizume, K.; Wada, T.; Ohta, M.; Suda, T.; Nishimura, T.; Fujimoto, M. Y.; Kato, K.; Aikawa, M.
2006-01-01
We propose a Monte Carlo method to study the reaction paths in nucleosynthesis during stellar evolution. Determination of reaction paths is important to obtain the physical picture of stellar evolution. The combination of network calculation and our method gives us a better understanding of physical picture. We apply our method to the case of the helium shell flash model in the extremely metal poor star
Word meaning in the ventral visual path: a perceptual to conceptual gradient of semantic coding.
Borghesani, Valentina; Pedregosa, Fabian; Buiatti, Marco; Amadon, Alexis; Eger, Evelyn; Piazza, Manuela
2016-12-01
The meaning of words referring to concrete items is thought of as a multidimensional representation that includes both perceptual (e.g., average size, prototypical color) and conceptual (e.g., taxonomic class) dimensions. Are these different dimensions coded in different brain regions? In healthy human subjects, we tested the presence of a mapping between the implied real object size (a perceptual dimension) and the taxonomic categories at different levels of specificity (conceptual dimensions) of a series of words, and the patterns of brain activity recorded with functional magnetic resonance imaging in six areas along the ventral occipito-temporal cortical path. Combining multivariate pattern classification and representational similarity analysis, we found that the real object size implied by a word appears to be primarily encoded in early visual regions, while the taxonomic category and sub-categorical cluster in more anterior temporal regions. This anteroposterior gradient of information content indicates that different areas along the ventral stream encode complementary dimensions of the semantic space. Copyright Â© 2016 Elsevier Inc. All rights reserved.
Kudi: A free open-source python library for the analysis of properties along reaction paths.
Vogt-Geisse, Stefan
2016-05-01
With increasing computational capabilities, an ever growing amount of data is generated in computational chemistry that contains a vast amount of chemically relevant information. It is therefore imperative to create new computational tools in order to process and extract this data in a sensible way. Kudi is an open source library that aids in the extraction of chemical properties from reaction paths. The straightforward structure of Kudi makes it easy to use for users and allows for effortless implementation of new capabilities, and extension to any quantum chemistry package. A use case for Kudi is shown for the tautomerization reaction of formic acid. Kudi is available free of charge at www.github.com/stvogt/kudi.
Two-scale large deviations for chemical reaction kinetics through second quantization path integral
International Nuclear Information System (INIS)
Li, Tiejun; Lin, Feng
2016-01-01
Motivated by the study of rare events for a typical genetic switching model in systems biology, in this paper we aim to establish the general two-scale large deviations for chemical reaction systems. We build a formal approach to explicitly obtain the large deviation rate functionals for the considered two-scale processes based upon the second quantization path integral technique. We get three important types of large deviation results when the underlying two timescales are in three different regimes. This is realized by singular perturbation analysis to the rate functionals obtained by the path integral. We find that the three regimes possess the same deterministic mean-field limit but completely different chemical Langevin approximations. The obtained results are natural extensions of the classical large volume limit for chemical reactions. We also discuss its implication on the single-molecule Michaelis–Menten kinetics. Our framework and results can be applied to understand general multi-scale systems including diffusion processes. (paper)
Chen, Huifang; Fan, Guangyu; Xie, Lei; Cui, Jun-Hong
2013-11-04
Due to the characteristics of underwater acoustic channel, media access control (MAC) protocols designed for underwater acoustic sensor networks (UWASNs) are quite different from those for terrestrial wireless sensor networks. Moreover, in a sink-oriented network with event information generation in a sensor field and message forwarding to the sink hop-by-hop, the sensors near the sink have to transmit more packets than those far from the sink, and then a funneling effect occurs, which leads to packet congestion, collisions and losses, especially in UWASNs with long propagation delays. An improved CDMA-based MAC protocol, named path-oriented code assignment (POCA) CDMA MAC (POCA-CDMA-MAC), is proposed for UWASNs in this paper. In the proposed MAC protocol, both the round-robin method and CDMA technology are adopted to make the sink receive packets from multiple paths simultaneously. Since the number of paths for information gathering is much less than that of nodes, the length of the spreading code used in the POCA-CDMA-MAC protocol is shorter greatly than that used in the CDMA-based protocols with transmitter-oriented code assignment (TOCA) or receiver-oriented code assignment (ROCA). Simulation results show that the proposed POCA-CDMA-MAC protocol achieves a higher network throughput and a lower end-to-end delay compared to other CDMA-based MAC protocols.
Directory of Open Access Journals (Sweden)
Huifang Chen
2013-11-01
Full Text Available Due to the characteristics of underwater acoustic channel, media access control (MAC protocols designed for underwater acoustic sensor networks (UWASNs are quite different from those for terrestrial wireless sensor networks. Moreover, in a sink-oriented network with event information generation in a sensor field and message forwarding to the sink hop-by-hop, the sensors near the sink have to transmit more packets than those far from the sink, and then a funneling effect occurs, which leads to packet congestion, collisions and losses, especially in UWASNs with long propagation delays. An improved CDMA-based MAC protocol, named path-oriented code assignment (POCA CDMA MAC (POCA-CDMA-MAC, is proposed for UWASNs in this paper. In the proposed MAC protocol, both the round-robin method and CDMA technology are adopted to make the sink receive packets from multiple paths simultaneously. Since the number of paths for information gathering is much less than that of nodes, the length of the spreading code used in the POCA-CDMA-MAC protocol is shorter greatly than that used in the CDMA-based protocols with transmitter-oriented code assignment (TOCA or receiver-oriented code assignment (ROCA. Simulation results show that the proposed POCA-CDMA-MAC protocol achieves a higher network throughput and a lower end-to-end delay compared to other CDMA-based MAC protocols.
International Nuclear Information System (INIS)
Calzetta, E.; Hu, B.L.
1987-01-01
We discuss the generalization to curved spacetime of a path-integral formalism of quantum field theory based on the sum over paths first going forward in time in the presence of one external source from an in vacuum to a state defined on a hypersurface of constant time in the future, and then backwards in time in the presence of a different source to the same in vacuum. This closed-time-path formalism which generalizes the conventional method based on in-out vacuum persistence amplitudes yields real and causal effective actions, field equations, and expectation values. We apply this method to two problems in semiclassical cosmology. First we study the back reaction of particle production in a radiation-filled Bianchi type-I universe with a conformal scalar field. Unlike the in-out formalism which yields complex geometries the real and causal effective action here yields equations for real effective geometries, with more readily interpretable results. It also provides a clear identification of particle production as a dissipative process in semiclassical theories. In the second problem we calculate the vacuum expectation value of the stress-energy tensor for a nonconformal massive λphi 4 theory in a Robertson-Walker universe. This study serves to illustrate the use of Feynman diagrams and higher-loop calculations in this formalism. It also demonstrates the economy of this method in the calculation of expectation values over the mode-sum Bogolubov transformation methods ordinarily applied to matrix elements calculated in the conventional in-out approach
Chemical reaction path modeling of hydrothermal processes on Mars: Preliminary results
Plumlee, Geoffrey S.; Ridley, W. Ian
1992-01-01
Hydrothermal processes are thought to have had significant roles in the development of surficial mineralogies and morphological features on Mars. For example, a significant proportion of the Martian soil could consist of the erosional products of hydrothermally altered impact melt sheets. In this model, impact-driven, vapor-dominated hydrothermal systems hydrothermally altered the surrounding rocks and transported volatiles such as S and Cl to the surface. Further support for impact-driven hydrothermal alteration on Mars was provided by studies of the Ries crater, Germany, where suevite deposits were extensively altered to montmorillonite clays by inferred low-temperature (100-130 C) hydrothermal fluids. It was also suggested that surface outflow from both impact-driven and volcano-driven hydrothermal systems could generate the valley networks, thereby eliminating the need for an early warm wet climate. We use computer-driven chemical reaction path calculation to model chemical processes which were likely associated with postulated Martian hydrothermal systems.
SWAAM-LT: The long-term, sodium/water reaction analysis method computer code
International Nuclear Information System (INIS)
Shin, Y.W.; Chung, H.H.; Wiedermann, A.H.; Tanabe, H.
1993-01-01
The SWAAM-LT Code, developed for analysis of long-term effects of sodium/water reactions, is discussed. The theoretical formulation of the code is described, including the introduction of system matrices for ease of computer programming as a general system code. Also, some typical results of the code predictions for available large scale tests are presented. Test data for the steam generator design with the cover-gas feature and without the cover-gas feature are available and analyzed. The capabilities and limitations of the code are then discussed in light of the comparison between the code prediction and the test data
The CCONE Code System and its Application to Nuclear Data Evaluation for Fission and Other Reactions
Iwamoto, O.; Iwamoto, N.; Kunieda, S.; Minato, F.; Shibata, K.
2016-01-01
A computer code system, CCONE, was developed for nuclear data evaluation within the JENDL project. The CCONE code system integrates various nuclear reaction models needed to describe nucleon, light charged nuclei up to alpha-particle and photon induced reactions. The code is written in the C++ programming language using an object-oriented technology. At first, it was applied to neutron-induced reaction data on actinides, which were compiled into JENDL Actinide File 2008 and JENDL-4.0. It has been extensively used in various nuclear data evaluations for both actinide and non-actinide nuclei. The CCONE code has been upgraded to nuclear data evaluation at higher incident energies for neutron-, proton-, and photon-induced reactions. It was also used for estimating β-delayed neutron emission. This paper describes the CCONE code system indicating the concept and design of coding and inputs. Details of the formulation for modelings of the direct, pre-equilibrium and compound reactions are presented. Applications to the nuclear data evaluations such as neutron-induced reactions on actinides and medium-heavy nuclei, high-energy nucleon-induced reactions, photonuclear reaction and β-delayed neutron emission are mentioned.
The CCONE Code System and its Application to Nuclear Data Evaluation for Fission and Other Reactions
Energy Technology Data Exchange (ETDEWEB)
Iwamoto, O., E-mail: iwamoto.osamu@jaea.go.jp; Iwamoto, N.; Kunieda, S.; Minato, F.; Shibata, K.
2016-01-15
A computer code system, CCONE, was developed for nuclear data evaluation within the JENDL project. The CCONE code system integrates various nuclear reaction models needed to describe nucleon, light charged nuclei up to alpha-particle and photon induced reactions. The code is written in the C++ programming language using an object-oriented technology. At first, it was applied to neutron-induced reaction data on actinides, which were compiled into JENDL Actinide File 2008 and JENDL-4.0. It has been extensively used in various nuclear data evaluations for both actinide and non-actinide nuclei. The CCONE code has been upgraded to nuclear data evaluation at higher incident energies for neutron-, proton-, and photon-induced reactions. It was also used for estimating β-delayed neutron emission. This paper describes the CCONE code system indicating the concept and design of coding and inputs. Details of the formulation for modelings of the direct, pre-equilibrium and compound reactions are presented. Applications to the nuclear data evaluations such as neutron-induced reactions on actinides and medium-heavy nuclei, high-energy nucleon-induced reactions, photonuclear reaction and β-delayed neutron emission are mentioned.
Implementation of the chemical PbLi/water reaction in the SIMMER code
Energy Technology Data Exchange (ETDEWEB)
Eboli, Marica, E-mail: marica.eboli@for.unipi.it [DICI—University of Pisa, Largo Lucio Lazzarino 2, 56122 Pisa (Italy); Forgione, Nicola [DICI—University of Pisa, Largo Lucio Lazzarino 2, 56122 Pisa (Italy); Del Nevo, Alessandro [ENEA FSN-ING-PAN, CR Brasimone, 40032 Camugnano, BO (Italy)
2016-11-01
Highlights: • Updated predictive capabilities of SIMMER-III code. • Verification of the implemented PbLi/Water chemical reactions. • Identification of code capabilities in modelling phenomena relevant to safety. • Validation against BLAST Test No. 5 experimental data successfully completed. • Need for new experimental campaign in support of code validation on LIFUS5/Mod3. - Abstract: The availability of a qualified system code for the deterministic safety analysis of the in-box LOCA postulated accident is of primary importance. Considering the renewed interest for the WCLL breeding blanket, such code shall be multi-phase, shall manage the thermodynamic interaction among the fluids, and shall include the exothermic chemical reaction between lithium-lead and water, generating oxides and hydrogen. The paper presents the implementation of the chemical correlations in SIMMER-III code, the verification of the code model in simple geometries and the first validation activity based on BLAST Test N°5 experimental data.
Dual level reaction-path dynamics calculations on the C2H6 + OH → C2H5 + H2O reaction
International Nuclear Information System (INIS)
Coitino, E.L.; Truhlar, D.G.
1996-01-01
Interpolated Variational Transition State Theory with Multidimensional Tunneling contributions (IVTST/MT) has been applied to the reaction of C 2 H 6 + OH, and it yields rate constants that agree well with the available experimental information. The main disadvantage of this method is the difficulty of interpolating all required information from a few points along the reaction path. A more recent alternative is Variational Transition State Theory with Multidimensional Tunneling and Interpolated Corrections (VTST/MT-IC, also called dual-level direct dynamics), in which the reaction-path properties are first determined at an economical (lower) level of theory and then open-quotes correctedclose quotes using more accurate information obtained at a higher level for a selected number of points on the reaction path. The VTST/MT-IC method also allows for interpolation through die wider reaction swath when large-curvature tunneling occurs. In the present work we examine the affordability/accuracy tradeoff for several combinations of higher and lower levels for VTST/MT-IC reaction rate calculations on the C 2 H 6 + OH process. Various levels of theory (including NDDO-SRP and ab initio ROMP2, UQCISD, UQCISD(T), and UCCSD) have been employed for the electronic structure calculations. We also compare several semiclassical approaches implemented in the POLYRATE and MORATE programs for taking tunneling effects into account
TRAWA, a transient analysis code for water reactions
International Nuclear Information System (INIS)
Rajamaeki, M.
1976-06-01
TRAWA is a transient analysis code for water reactors. It solves the two-group neutron diffusion equations simultaneously with the heat conduction equations and the two-phase hydraulic equations for one or more channels. At most one-dimensional submodels are used. Neither thermal nor hydraulic mixing appear between channels. Doppler, coolant density, coolant temperature, and soluble poison density feedbacks due to the thermohydraulics of the channels are described by using polynomial expansions for the group constants. The hydraulic circuit outside the reactor core consists of by-pass channel and risers with two-phase flow and of pump lines with incompressible flow. Nontrivial implicit methods are employed in the discretization of the equations to allow for sparse spatial mesh and flexible choice of time steps. Various transients can be calculated by applying external disturbances. The code is extensively supplied by input and output capabilities. TRAWA is written in FORTRAN V for UNIVAC 1108 computer. (author)
Resonant elastic scattering of 15O and a new reaction path in the CNO cycle
International Nuclear Information System (INIS)
Stefan, Gheorghe Iulian
2006-12-01
the reaction products from beam particles. The separation is based on the magnetic rigidity values different for the nuclei composing the beam from the ones of the reaction products under study. The new results obtained were confronted with the computed rate of the reaction 15 O(p,β + ) 16 O in comparison with the rate estimations for 15 O(α,γ) 19 Ne. For the first time one underlines the significance of the low energy tail of a resonance in an unbound nucleus. The effect would be an enhancement of the beta decay of 16 F. The consequences for astrophysical processes are underlined. New sequential reactions are suggested and two new reaction cycles from 15 O trough again 15 O are described on this basis. These newly suggested cycles can enhance the energy generation in an explosive environment. To study thoroughly their influence these two new cycles should be introduced in advanced simulation astrophysical codes particularly into those simulating the X bursts
U.S. Sodium Fast Reactor Codes and Methods: Current Capabilities and Path Forward
Energy Technology Data Exchange (ETDEWEB)
Brunett, A. J.; Fanning, T. H.
2017-06-26
The United States has extensive experience with the design, construction, and operation of sodium cooled fast reactors (SFRs) over the last six decades. Despite the closure of various facilities, the U.S. continues to dedicate research and development (R&D) efforts to the design of innovative experimental, prototype, and commercial facilities. Accordingly, in support of the rich operating history and ongoing design efforts, the U.S. has been developing and maintaining a series of tools with capabilities that envelope all facets of SFR design and safety analyses. This paper provides an overview of the current U.S. SFR analysis toolset, including codes such as SAS4A/SASSYS-1, MC2-3, SE2-ANL, PERSENT, NUBOW-3D, and LIFE-METAL, as well as the higher-fidelity tools (e.g. PROTEUS) being integrated into the toolset. Current capabilities of the codes are described and key ongoing development efforts are highlighted for some codes.
Reaction paths and equilibrium end-points in solid-solution aqueous-solution systems
Glynn, P.D.; Reardon, E.J.; Plummer, Niel; Busenberg, E.
1990-01-01
Equations are presented describing equilibrium in binary solid-solution aqueous-solution (SSAS) systems after a dissolution, precipitation, or recrystallization process, as a function of the composition and relative proportion of the initial phases. Equilibrium phase diagrams incorporating the concept of stoichiometric saturation are used to interpret possible reaction paths and to demonstrate relations between stoichiometric saturation, primary saturation, and thermodynamic equilibrium states. The concept of stoichiometric saturation is found useful in interpreting and putting limits on dissolution pathways, but there currently is no basis for possible application of this concept to the prediction and/ or understanding of precipitation processes. Previously published dissolution experiments for (Ba, Sr)SO4 and (Sr, Ca)C??O3orth. solids are interpreted using equilibrium phase diagrams. These studies show that stoichiometric saturation can control, or at least influence, initial congruent dissolution pathways. The results for (Sr, Ca)CO3orth. solids reveal that stoichiometric saturation can also control the initial stages of incongruent dissolution, despite the intrinsic instability of some of the initial solids. In contrast, recrystallisation experiments in the highly soluble KCl-KBr-H2O system demonstrate equilibrium. The excess free energy of mixing calculated for K(Cl, Br) solids is closely modeled by the relation GE = ??KBr??KClRT[a0 + a1(2??KBr-1)], where a0 is 1.40 ?? 0.02, a1, is -0.08 ?? 0.03 at 25??C, and ??KBr and ??KCl are the mole fractions of KBr and KCl in the solids. The phase diagram constructed using this fit reveals an alyotropic maximum located at ??KBr = 0.676 and at a total solubility product, ???? = [K+]([Cl-] + [Br-]) = 15.35. ?? 1990.
Energy Technology Data Exchange (ETDEWEB)
Cotter, Simon L., E-mail: simon.cotter@manchester.ac.uk
2016-10-15
Efficient analysis and simulation of multiscale stochastic systems of chemical kinetics is an ongoing area for research, and is the source of many theoretical and computational challenges. In this paper, we present a significant improvement to the constrained approach, which is a method for computing effective dynamics of slowly changing quantities in these systems, but which does not rely on the quasi-steady-state assumption (QSSA). The QSSA can cause errors in the estimation of effective dynamics for systems where the difference in timescales between the “fast” and “slow” variables is not so pronounced. This new application of the constrained approach allows us to compute the effective generator of the slow variables, without the need for expensive stochastic simulations. This is achieved by finding the null space of the generator of the constrained system. For complex systems where this is not possible, or where the constrained subsystem is itself multiscale, the constrained approach can then be applied iteratively. This results in breaking the problem down into finding the solutions to many small eigenvalue problems, which can be efficiently solved using standard methods. Since this methodology does not rely on the quasi steady-state assumption, the effective dynamics that are approximated are highly accurate, and in the case of systems with only monomolecular reactions, are exact. We will demonstrate this with some numerics, and also use the effective generators to sample paths of the slow variables which are conditioned on their endpoints, a task which would be computationally intractable for the generator of the full system.
Sodium-concrete reactions experiments and code development
International Nuclear Information System (INIS)
Casselman, C.; Malet, J.C.; Dufresne, J.; Bolvin, M.
1988-01-01
Hypothesis of hot sodium leak in a fast breeder reactor implies, for the safety organism to consider spillage of sodium on concrete. This safety analysis involves the understanding of sodium-concrete reactions, the knowledge of their consequences and to test the choiced preventive solutions. In association with EDF, the nuclear safety department had carried out an extensive experimental program, the different parts of which are connected with each aspect of this problem: - firstly, interaction between sodium and bare surface of usual concrete; - secondly, the case of a sodium spillage on a concrete surface covered with a defected liner; - thirdly, special concrete tests for a comparison with usual concrete behavior, in direct contact with hot sodium; - at last, a test which concerns a new design with a layer of the selected concrete protected with a defected liner. On the same time, theoretical work leads to elaborate a physical model to describe temporal evolution of thermal and chemical decomposition of a concrete slab under hot sodium action. SORBET-REBUS system will use quoted above test results to its validation
Bellis, Jennifer R; Kirkham, Jamie J; Nunn, Anthony J; Pirmohamed, Munir
2014-12-17
National Health Service (NHS) hospitals in the UK use a system of coding for patient episodes. The coding system used is the International Classification of Disease (ICD-10). There are ICD-10 codes which may be associated with adverse drug reactions (ADRs) and there is a possibility of using these codes for ADR surveillance. This study aimed to determine whether ADRs prospectively identified in children admitted to a paediatric hospital were coded appropriately using ICD-10. The electronic admission abstract for each patient with at least one ADR was reviewed. A record was made of whether the ADR(s) had been coded using ICD-10. Of 241 ADRs, 76 (31.5%) were coded using at least one ICD-10 ADR code. Of the oncology ADRs, 70/115 (61%) were coded using an ICD-10 ADR code compared with 6/126 (4.8%) non-oncology ADRs (difference in proportions 56%, 95% CI 46.2% to 65.8%; p codes as a single means of detection. Data derived from administrative healthcare databases are not reliable for identifying ADRs by themselves, but may complement other methods of detection.
Energy Technology Data Exchange (ETDEWEB)
Mattson, Earl [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fujita, Yoshiko [Idaho National Lab. (INL), Idaho Falls, ID (United States); McLing, Travis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Neupane, Ghanashyam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Palmer, Carl [Idaho National Lab. (INL), Idaho Falls, ID (United States); Reed, David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thompson, Vicki [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-03-01
The project was aimed at demonstrating that the geothermometric predictions can be improved through the application of multi-element reaction path modeling that accounts for lithologic and tectonic settings, while also accounting for biological influences on geochemical temperature indicators. The limited utilization of chemical signatures by individual traditional geothermometer in the development of reservoir temperature estimates may have been constraining their reliability for evaluation of potential geothermal resources. This project, however, was intended to build a geothermometry tool which can integrate multi-component reaction path modeling with process-optimization capability that can be applied to dilute, low-temperature water samples to consistently predict reservoir temperature within ±30 °C. The project was also intended to evaluate the extent to which microbiological processes can modulate the geochemical signals in some thermal waters and influence the geothermometric predictions.
Analyses for experiment on sodium-water reaction temperature by the CHAMPAGNE code
International Nuclear Information System (INIS)
Yoshioka, Naoki; Kishida, Masako; Yamada, Yumi
2000-03-01
In this work, analyses on sodium-water reaction temperature in the new SWAT-1(SWAT-1R) test were completed by the CHAMPAGNE code in order to understand void and velocity distribution in sodium system, which was difficult to be measured in experiments. The application method of the RELAP5/Mod2 code was investigated to LMFBR steam generator (SG) blow down analysis, too. The following results were obtained. (1) Analyses on sodium-water reaction temperature in the SWAT-1R test. 1) Analyses were carried out for the SWAT-1R test under the condition water leak rate 600 g/s by treating the pressure loss coefficient, the interface friction coefficient and the coefficient related to reaction rate as parameters. The effect and mechanism of each parameter on the shape of reaction zone were well understood by these analyses. 2) The void and velocity distribution in sodium system were estimated by use of the most suitable parameters. These analytical results are expected to be useful for planning of the SWAT-1R test and evaluation of test result. (2) Investigation of the RELAP5/Mod2 code. 1) The items to be improved in the RELAP5/Mod2 code were clarified to apply this code to the FBR SG blow down analysis. 2) One of these items was an addition of the shell-side (sodium-side) model. A sodium-side model was designed and added to the RELAP5/Mod2 code. Test calculations were carried out by this improved code and the basic function of this code was confirmed. (author)
International Nuclear Information System (INIS)
Chadwick, M.B.; Young, P.G.
1994-08-01
The authors have developed the GNASH code to include photonuclear reactions for incident energies up to 140 MeV. Photoabsorption is modeled through the giant resonance at the lower energies, and the quasideuteron mechanism at the higher energies, and the angular momentum coupling of the incident photon to the target is properly accounted for. After the initial interaction, primary and multiple preequilibrium emission of fast particles can occur before compound nucleus decay from the equilibrated compound nucleus. The angular distributions from compound nucleus decay are taken as isotropic, and those from preequilibrium emission (which they obtain from a phase-space model which conserves momentum) are forward-peaked. To test the new modeling they apply the code to calculate photonuclear reactions on 208 Pb for incident energies up to 140 MeV
SurfKin: an ab initio kinetic code for modeling surface reactions.
Le, Thong Nguyen-Minh; Liu, Bin; Huynh, Lam K
2014-10-05
In this article, we describe a C/C++ program called SurfKin (Surface Kinetics) to construct microkinetic mechanisms for modeling gas-surface reactions. Thermodynamic properties of reaction species are estimated based on density functional theory calculations and statistical mechanics. Rate constants for elementary steps (including adsorption, desorption, and chemical reactions on surfaces) are calculated using the classical collision theory and transition state theory. Methane decomposition and water-gas shift reaction on Ni(111) surface were chosen as test cases to validate the code implementations. The good agreement with literature data suggests this is a powerful tool to facilitate the analysis of complex reactions on surfaces, and thus it helps to effectively construct detailed microkinetic mechanisms for such surface reactions. SurfKin also opens a possibility for designing nanoscale model catalysts. Copyright © 2014 Wiley Periodicals, Inc.
1975-06-01
Traditionally, synchronization of concurrent processes is coded in line by operations on semaphores or similar objects. Path expressions move the...discussion about a variety of synchronization primitives . An analysis of their relative power is found in [3]. Path expressions do not introduce yet...another synchronization primitive . A path expression relates to such primitives as a for- or while-statement of an ALGOL-like language relates to a JUMP
Asres, Yihunie Hibstie; Mathuthu, Manny; Birhane, Marelgn Derso
2018-04-22
This study provides current evidence about cross-section production processes in the theoretical and experimental results of neutron induced reaction of uranium isotope on projectile energy range of 1-100 MeV in order to improve the reliability of nuclear stimulation. In such fission reactions of 235 U within nuclear reactors, much amount of energy would be released as a product that able to satisfy the needs of energy to the world wide without polluting processes as compared to other sources. The main objective of this work is to transform a related knowledge in the neutron-induced fission reactions on 235 U through describing, analyzing and interpreting the theoretical results of the cross sections obtained from computer code COMPLET by comparing with the experimental data obtained from EXFOR. The cross section value of 235 U(n,2n) 234 U, 235 U(n,3n) 233 U, 235 U(n,γ) 236 U, 235 U(n,f) are obtained using computer code COMPLET and the corresponding experimental values were browsed by EXFOR, IAEA. The theoretical results are compared with the experimental data taken from EXFOR Data Bank. Computer code COMPLET has been used for the analysis with the same set of input parameters and the graphs were plotted by the help of spreadsheet & Origin-8 software. The quantification of uncertainties stemming from both experimental data and computer code calculation plays a significant role in the final evaluated results. The calculated results for total cross sections were compared with the experimental data taken from EXFOR in the literature, and good agreement was found between the experimental and theoretical data. This comparison of the calculated data was analyzed and interpreted with tabulation and graphical descriptions, and the results were briefly discussed within the text of this research work. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Development of computer code on sodium-water reaction products transport
International Nuclear Information System (INIS)
Arikawa, H.; Yoshioka, N.; Suemori, M.; Nishida, K.
1988-01-01
The LMFBR concept eliminating the secondary sodium system has been considered to be one of the most promissing concepts for offering cost reductions. In this reactor concept, the evaluation of effects on reactor core by the sodium-water reaction products (SWRPs) during sodium-water reaction at primary steam generator becomes one of the major safety issues. In this study, the calculation code was developed as the first step of the processes of establishing the evaluation method for SWRP effects. The calculation code, called SPROUT, simulates the SWRPs transport and distribution in primary sodium system using the system geometry, thermal hydraulic data and sodium-water reacting conditions as input. This code principally models SWRPs behavior. The paper contain the modelings for SWRPs behaviors, with solution, precipation, deposition and so on, and the results and discussions of the demonstration calculation for a typical FBR plant eliminating the secondary sodium system
International Nuclear Information System (INIS)
Hiroshi Seino; Akikazu Kurihara; Isao Ono; Koji Jitsu
2005-01-01
Blow down analysis code (LEAP-BLOW) and sodium-water reaction jet analysis code (LEAP-JET) have been developed in order to improve the evaluation method on sodium-water reaction event in the steam generator (SG) of a sodium cooled fast breeder reactor (FBR). The validation analyses by these two codes were carried out using the data of Sodium-Water Reaction Test (SWAT-1R). The following main results have been obtained through this validation: (1) The calculational results by LEAP-BLOW such as internal pressure and water flow rate show good agreement with the results of the SWAT- 1R test. (2) The LEAP-JET code can qualitatively simulate the behavior of sodium-water reaction. However, it is found that the code has tendency to overestimate the maximum temperature of the reaction jet. (authors)
International Nuclear Information System (INIS)
Leonard, C.; Wahner, A.; Zetzsch, C.
1987-01-01
The uv-laser absorption technique in a multipath cell (with excimer-laser photolysis for radical production) is used to investigate the rate constants of the reaction of OH with carbon monoxide. The pressure dependence and the influence of collision partners (measurements in pure oxygen up to one atmosphere) of this important atmospheric chemical reaction are determined. In the kinetic measurements detection limits of 10 7 OH cm -3 are reached with millisecond time resolution. Furthermore the application of the cw-Laser for stationary OH measurements (for example in smog chambers or the free troposphere) is described. The possibilities and limits of different detection methods are discussed with respect to of noise spectra. Modifications of the apparatus with a frequency modulation technique are presented, with an extrapolated detection limit of 10 5 OH cm -3 . (orig.) With 43 refs., 16 figs [de
The improvement of the heat transfer model for sodium-water reaction jet code
International Nuclear Information System (INIS)
Hashiguchi, Yoshirou; Yamamoto, Hajime; Kamoshida, Norio; Murata, Shuuichi
2001-02-01
For confirming the reasonable DBL (Design Base Leak) on steam generator (SG), it is necessary to evaluate phenomena of sodium-water reaction (SWR) in an actual steam generator realistically. The improvement of a heat transfer model on sodium-water reaction (SWR) jet code (LEAP-JET ver.1.40) and application analysis to the water injection tests for confirmation of propriety for the code were performed. On the improvement of the code, the heat transfer model between a inside fluid and a tube wall was introduced instead of the prior model which was heat capacity model including both heat capacity of the tube wall and inside fluid. And it was considered that the fluid of inside the heat exchange tube was able to treat as water or sodium and typical heat transfer equations used in SG design were also introduced in the new heat transfer model. Further additional work was carried out in order to improve the stability of the calculation for long calculation time. The test calculation using the improved code (LEAP-JET ver.1.50) were carried out with conditions of the SWAT-IR·Run-HT-2 test. It was confirmed that the SWR jet behavior on the result and the influence to the result of the heat transfer model were reasonable. And also on the improved code (LEAP-JET ver.1.50), user's manual was revised with additional I/O manual and explanation of the heat transfer model and new variable name. (author)
Modification of EXIFON code and analysis of O16+n reactions in En=20-50 MeV
Energy Technology Data Exchange (ETDEWEB)
Murata, Toru [Nippon Nuclear Fuel Development Co. Ltd., Oarai, Ibaraki (Japan)
1997-03-01
To evaluate the nuclear data concerning neutron induced reactions of O-16 and N-14 in the incident energy range of 20-50 MeV, the statistical multistep reaction code EXIFON was modified to include the outgoing channels of deuteron, triton and He-3. The calculated double differential cross sections (DDXs) with the modified code are compared with experimental DDXs. (author)
Reaction-diffusion path planning in a hybrid chemical and cellular-automaton processor
International Nuclear Information System (INIS)
Adamatzky, Andrew; Lacy Costello, Benjamin de
2003-01-01
To find the shortest collision-free path in a room containing obstacles we designed a chemical processor and coupled it with a cellular-automaton processor. In the chemical processor obstacles are represented by sites of high concentration of potassium iodide and a planar substrate is saturated with palladium chloride. Potassium iodide diffuses into the substrate and reacts with palladium chloride. A dark coloured precipitate of palladium iodide is formed almost everywhere except sites where two or more diffusion wavefronts collide. The less coloured sites are situated at the furthest distance from obstacles. Thus, the chemical processor develops a repulsive field, generated by obstacles. A snapshot of the chemical processor is inputted to a cellular automaton. The automaton behaves like a discrete excitable media; also, every cell of the automaton is supplied with a pointer that shows an origin of the cell's excitation. The excitation spreads along the cells corresponding to precipitate depleted sites of the chemical processor. When the destination-site is excited, waves travel on the lattice and update the orientations of the pointers. Thus, the automaton constructs a spanning tree, made of pointers, that guides a traveler towards the destination point. Thus, the automaton medium generates an attractive field and combination of this attractive field with the repulsive field, generated by the chemical processor, provides us with a solution of the collision-free path problem
International Nuclear Information System (INIS)
Chenel, A.; Meier, C.; Dive, G.; Desouter-Lecomte, M.
2015-01-01
We compare the strategy found by the optimal control theory in a complex molecular system according to the active subspace coupled to the field. The model is the isomerization during a Cope rearrangement of Thiele’s ester that is the most stable dimer obtained by the dimerization of methyl-cyclopentadienenylcarboxylate. The crudest partitioning consists in retaining in the active space only the reaction coordinate, coupled to a dissipative bath of harmonic oscillators which are not coupled to the field. The control then fights against dissipation by accelerating the passage across the transition region which is very wide and flat in a Cope reaction. This mechanism has been observed in our previous simulations [Chenel et al., J. Phys. Chem. A 116, 11273 (2012)]. We compare here, the response of the control field when the reaction path is coupled to a second active mode. Constraints on the integrated intensity and on the maximum amplitude of the fields are imposed limiting the control landscape. Then, optimum field from one-dimensional simulation cannot provide a very high yield. Better guess fields based on the two-dimensional model allow the control to exploit different mechanisms providing a high control yield. By coupling the reaction surface to a bath, we confirm the link between the robustness of the field against dissipation and the time spent in the delocalized states above the transition barrier
Development of the SPIKE code for analysis of the sodium-water reaction
Energy Technology Data Exchange (ETDEWEB)
Hwang, Sung Tai; Park, Jin Ho; Choi, Jong Hyeun; Kim, Tae Joon [Korea Atomic Energy Research Institute, Taejon (Korea)
1998-08-01
In the secondary loop of liquid metal reactors, including SG, water leak into sodium causes the sudden increase of pressure by the H{sub 2} and heat generated from reaction. At few miliseconds after leak, a sharp and short-lived increase of pressure is generated and its propagation depends on the acoustic constraint characteristics of secondary loop. As increasing leak amount of water, another pressure increase is caused by H{sub 2} and its transients depends on the resistance of pressure opening system, such as rupture disc. For prediction of the transients of initial spike pressure, a code of SPIKE was developed. The code was based on the following simplifications and assumptions: combination of total and half release of H{sub 2} rate, spherical shape of H{sub 2} bubble, compressible and Newtonian fluid for sodium. The program was built in FOTRAN language and consisted of 5 modules. Several sample calculations were performed to test the code and to determine the scale down factor of experimental facilities for experimental verification of the code: parameter study of the variables in chemical reaction model, comparison study with results calculated by superposition methods for simple piping structures, comparison study with results calculated by previous researchers, and calculation for KALIMER models of various size. With these calculation results, the generally predicted phenomena of sodium water reaction can be explained and the calculated ones by SPIKE code were well agreed with the previous study. And the scale down factor can be determined. (author). 88 refs., 99 figs., 39 tabs.
SGV: a code to evaluate plasma reaction rates to a specified accuracy
Energy Technology Data Exchange (ETDEWEB)
Devoto, R.S.; Hanson, J.D.
1978-09-22
A FORTRAN code to evaluate binary reaction rates (sigmav) for a plasma to a specified accuracy is described. Distribution functions permitted are (1) two Maxwellian species at different temperatures, (2) beam-Maxwellian, (3) cold gas with Maxwellian, and (4) beam-plasma with mirror distribution of the form f(v) varies as f(v) M (cos theta). Several functional forms are permitted for f(v) and M(cos theta). Cross-section subroutines for a number of interactions involving hydrogen, helium, and electrons are included, as is a routine allowing input of numerical data. The code is written as a subroutine to allow ready incorporation into larger plasma codes.
A Reaction-Diffusion-Based Coding Rate Control Mechanism for Camera Sensor Networks
Directory of Open Access Journals (Sweden)
Naoki Wakamiya
2010-08-01
Full Text Available A wireless camera sensor network is useful for surveillance and monitoring for its visibility and easy deployment. However, it suffers from the limited capacity of wireless communication and a network is easily overflown with a considerable amount of video traffic. In this paper, we propose an autonomous video coding rate control mechanism where each camera sensor node can autonomously determine its coding rate in accordance with the location and velocity of target objects. For this purpose, we adopted a biological model, i.e., reaction-diffusion model, inspired by the similarity of biological spatial patterns and the spatial distribution of video coding rate. Through simulation and practical experiments, we verify the effectiveness of our proposal.
A reaction-diffusion-based coding rate control mechanism for camera sensor networks.
Yamamoto, Hiroshi; Hyodo, Katsuya; Wakamiya, Naoki; Murata, Masayuki
2010-01-01
A wireless camera sensor network is useful for surveillance and monitoring for its visibility and easy deployment. However, it suffers from the limited capacity of wireless communication and a network is easily overflown with a considerable amount of video traffic. In this paper, we propose an autonomous video coding rate control mechanism where each camera sensor node can autonomously determine its coding rate in accordance with the location and velocity of target objects. For this purpose, we adopted a biological model, i.e., reaction-diffusion model, inspired by the similarity of biological spatial patterns and the spatial distribution of video coding rate. Through simulation and practical experiments, we verify the effectiveness of our proposal.
Moving Towards a State of the Art Charge-Exchange Reaction Code
Poxon-Pearson, Terri; Nunes, Filomena; Potel, Gregory
2017-09-01
Charge-exchange reactions have a wide range of applications, including late stellar evolution, constraining the matrix elements for neutrinoless double β-decay, and exploring symmetry energy and other aspects of exotic nuclear matter. Still, much of the reaction theory needed to describe these transitions is underdeveloped and relies on assumptions and simplifications that are often extended outside of their region of validity. In this work, we have begun to move towards a state of the art charge-exchange reaction code. As a first step, we focus on Fermi transitions using a Lane potential in a few body, Distorted Wave Born Approximation (DWBA) framework. We have focused on maintaining a modular structure for the code so we can later incorporate complications such as nonlocality, breakup, and microscopic inputs. Results using this new charge-exchange code will be shown compared to the analysis in for the case of 48Ca(p,n)48Sc. This work was supported in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through the U.S. DOE Cooperative Agreement No. DE- FG52-08NA2855.
Nonelastic nuclear reactions induced by light ions with the BRIEFF code
Duarte, H
2010-01-01
The intranuclear cascade (INC) code BRIC has been extended to compute nonelastic reactions induced by light ions on target nuclei. In our approach the nucleons of the incident light ion move freely inside the mean potential of the ion in its center-of-mass frame while the center-of-mass of the ion obeys to equations of motion dependant on the mean nuclear+Coulomb potential of the target nucleus. After transformation of the positions and momenta of the nucleons of the ion into the target nucleus frame, the collision term between the nucleons of the target and of the ion is computed taking into account the partial or total breakup of the ion. For reactions induced by low binding energy systems like deuteron, the Coulomb breakup of the ion at the surface of the target nucleus is an important feature. Preliminary results of nucleon production in light ion induced reactions are presented and discussed.
International Nuclear Information System (INIS)
Kawasaki, Hiromitu; Maki, Koichi; Seki, Yasushi.
1991-03-01
A code APPLE was produced in 1976 for calculating and plotting tritium breeding ratio and tritium production rate distributions. That code was improved as 'APPLE-2' in 1982, to calculate and plot not only tritium breeding ratio but also distributions of neutron and gamma-ray fluxes, their spectra, nuclear heating rates and other reaction rates, and dose rate distributions during operation and after shutdown in 1982. The code APPLE-2 can calculate and plot these nuclear properties derived from neutron and gamma-ray fluxes by ANISN (one dimensional transport code), DOT3.5 (two dimensional transport code) and MORSE (three dimensional Monte Carlo code). We revised the code APPLE-2 as 'APPLE-3' by adding many functions to the APPLE-2 code in accordance with users' requirements proposed in recent progress of fusion reaction nuclear design. With minor modification of APPLE-2, a number of inconsistencies have been found between the code manual and the input data in the code. In the present report, the new functions added to APPLE-2 and improved users' manual are explained. (author)
Perceived Insider Status and Feedback Reactions: A Dual Path of Feedback Motivation Attribution
Directory of Open Access Journals (Sweden)
Weijiong Wu
2017-05-01
Full Text Available Many studies have evaluated how the characteristics of feedback receiver, feedback deliverer and feedback information influence psychological feedback reactions of the feedback receiver while largely neglecting that feedback intervention is a kind of social interaction process. To address this issue, this study proposes that employees’ perceived insider status (PIS, as a kind of employee-organization relationship, could also influence employees’ reactions to supervisory feedback. In particular, this study investigates the influence of PIS focusing on affective and cognitive feedback reactions, namely feedback satisfaction and feedback utility. Surveys were conducted in a machinery manufacturing company in the Guangdong province of China. Samples were collected from 192 employees. Data analysis demonstrated that PIS and feedback utility possessed a U-shaped relationship, whereas PIS and feedback satisfaction exhibited positively linear relationships. The analysis identified two kinds of mediating mechanisms related to feedback satisfaction and feedback utility. Internal feedback motivation attribution partially mediated the relationship between PIS and feedback satisfaction but failed to do the same with respect to the relationship between PIS and feedback utility. In contrast, external feedback motivation attribution partially mediated the relationship between PIS and feedback utility while failing to mediate the relationship between PIS and feedback satisfaction. Theoretical contributions and practical implications of the findings are discussed at the end of the paper.
Results and code prediction comparisons of lithium-air reaction and aerosol behavior tests
International Nuclear Information System (INIS)
Jeppson, D.W.
1986-03-01
The Hanford Engineering Development Laboratory (HEDL) Fusion Safety Support Studies include evaluation of potential safety and environmental concerns associated with the use of liquid lithium as a breeder and coolant for fusion reactors. Potential mechanisms for volatilization and transport of radioactive metallic species associated with breeder materials are of particular interest. Liquid lithium pool-air reaction and aerosol behavior tests were conducted with lithium masses up to 100 kg within the 850-m 3 containment vessel in the Containment Systems Test Facility. Lithium-air reaction rates, aerosol generation rates, aerosol behavior and characterization, as well as containment atmosphere temperature and pressure responses were determined. Pool-air reaction and aerosol behavior test results were compared with computer code calculations for reaction rates, containment atmosphere response, and aerosol behavior. The volatility of potentially radioactive metallic species from a lithium pool-air reaction was measured. The response of various aerosol detectors to the aerosol generated was determined. Liquid lithium spray tests in air and in nitrogen atmospheres were conducted with lithium temperatures of about 427 0 and 650 0 C. Lithium reaction rates, containment atmosphere response, and aerosol generation and characterization were determined for these spray tests
Joint ICTP-IAEA advanced workshop on model codes for spallation reactions
International Nuclear Information System (INIS)
Filges, D.; Leray, S.; Yariv, Y.; Mengoni, A.; Stanculescu, A.; Mank, G.
2008-08-01
The International Atomic Energy Agency (IAEA) and the Abdus Salam International Centre for Theoretical Physics (ICTP) organised an expert meeting at the ICTP from 4 to 8 February 2008 to discuss model codes for spallation reactions. These nuclear reactions play an important role in a wide domain of applications ranging from neutron sources for condensed matter and material studies, transmutation of nuclear waste and rare isotope production to astrophysics, simulation of detector set-ups in nuclear and particle physics experiments, and radiation protection near accelerators or in space. The simulation tools developed for these domains use nuclear model codes to compute the production yields and characteristics of all the particles and nuclei generated in these reactions. These codes are generally Monte-Carlo implementations of Intra-Nuclear Cascade (INC) or Quantum Molecular Dynamics (QMD) models, followed by de-excitation (principally evaporation/fission) models. Experts have discussed in depth the physics contained within the different models in order to understand their strengths and weaknesses. Such codes need to be validated against experimental data in order to determine their accuracy and reliability with respect to all forms of application. Agreement was reached during the course of the workshop to organise an international benchmark of the different models developed by different groups around the world. The specifications of the benchmark, including the set of selected experimental data to be compared to the models, were also defined during the workshop. The benchmark will be organised under the auspices of the IAEA in 2008, and the first results will be discussed at the next Accelerator Applications Conference (AccApp'09) to be held in Vienna in May 2009. (author)
Reaction phases and diffusion paths in SiC/metal systems
Energy Technology Data Exchange (ETDEWEB)
Naka, M.; Fukai, T. [Osaka Univ., Osaka (Japan); Schuster, J.C. [Vienna Univ., Vienna (Austria)
2004-07-01
The interface structures between SiC and metal are reviewed at SiC/metal systems. Metal groups are divided to carbide forming metals and non-carbide forming metals. Carbide forming metals form metal carbide granular or zone at metal side, and metal silicide zone at SiC side. The further diffusion of Si and C from SiC causes the formation of T ternary phase depending metal. Non-carbide forming metals form silicide zone containing graphite or the layered structure of metal silicide and metal silicide containing graphite. The diffusion path between SiC and metal are formed along tie-lines connecting SiC and metal on the corresponding ternary Si-C-M system. The reactivity of metals is dominated by the forming ability of carbide or silicide. Te reactivity tendency of elements are discussed on the periodical table of elements, and Ti among elements shows the highest reactivity among carbide forming metals. For non-carbide forming metals the reactivity sequence of metals is Fe>Ni>Co. (orig.)
Kuesters, Tim; Mueller, Thomas; Renner, Joerg
2016-04-01
different grain sizes (<120 μm and 120 - 180 μm), (II) cubes of the intact rock (˜ 1 cm3) and (III) thermally cracked rock cubes. Run durations were up to 60 days and the bulk fluid reservoir was regularly sampled to monitor the compositional evolution (Na, K, Ca, Si, Al, Fe, and Mg) and pH. The temporal evolution of the fluid was compared to a numerical simulation which combines the iPhreeqC application library (thermodynamic calculations) with a self-coded FORTRAN program (dissolution / growth kinetic, mineral nucleation, crystal size distribution and reactive surface area). Experimental and modelling results both indicate a fast increase of Na, Ca, K and Si related to kinetically controlled dissolution of plg, Kfs and qtz. The concentrations of Al, Mg, and Fe reach a maximum in the first two days followed by a rapid decrease caused by clay mineral precipitation. Measured rates depend on the properties of the starting material controlling the effective element flux. The reaction path modelling based on new kinetic data constrained by our experiments provides a quantitative basis for a model of polycrystalline rocks that exhibits the potential for upscaling and thus an improved prediction of large scale reactive transport for EGS.
International Nuclear Information System (INIS)
Tel, E.; Kisoglu, H. F.; Topaksu, A. K.; Aydin, A.; Kaplan, A.
2007-01-01
There are several new technological application fields of fast neutrons such as accelerator-driven incineration/ transmutation of the long-lived radioactive nuclear wastes (in particular transuranium nuclides) to short-lived or stable isotopes by secondary spallation neutrons produced by high-intensity, intermediate-energy, charged-particle beams, prolonged planetary space missions, shielding for particle accelerators. Especially, accelerator driven subcritical systems (ADS) can be used for fission energy production and /or nuclear waste transmutation as well as in the intermediate-energy accelerator driven neutron sources, ions and neutrons with energies beyond 20 MeV, the upper limit of exiting data files that produced for fusion and fission applications. In these systems, the neutron scattering cross sections and emission differential data are very important for reactor neutronics calculations. The transition rate calculation involves the introduction of the parameter of mean free path determines the mean free path of the nucleon in the nuclear matter. This parameter allows an increase in mean free path, with simulation of effect, which is not considered in the calculations, such as conservation of parity and angular momentum in intra nuclear transitions. In this study, we have investigated the multiple preequilibrium matrix element constant from internal transition for Uranium, Thorium, (n,xn) neutron emission spectra. The neutron-emission spectra produced by (n,xn) reactions on nuclei of some target (for spallation) have been calculated. In the calculations, we have used the geometry dependent hybrid model and the cascade exciton model including the effects of the preequilibrium. The pre-equilibrium direct effects have been examined by using full exciton model. All calculated results have been compared with the experimental data. The obtained results have been discussed and compared with the available experimental data and found agreement with each other
STEEP4 code for computation of specific thermonuclear reaction rates from pointwise cross sections
International Nuclear Information System (INIS)
Harris, D.R.; Dei, D.E.; Husseiny, A.A.; Sabri, Z.A.; Hale, G.M.
1976-05-01
A code module, STEEP4, is developed to calculate the fusion reaction rates in terms of the specific reactivity [sigma v] which is the product of cross section and relative velocity averaged over the actual ion distributions of the interacting particles in the plasma. The module is structured in a way suitable for incorporation in thermonuclear burn codes to provide rapid and yet relatively accurate on-line computation of [sigma v] as a function of plasma parameters. Ion distributions are modified to include slowing-down contributions which are characterized in terms of plasma parameters. Rapid and accurate algorithms are used for integrating [sigma v] from cross sections and spectra. The main program solves for [sigma v] by the method of steepest descent. However, options are provided to use Gauss-Hermite and dense trapezoidal quadrature integration techniques. Options are also provided for rapid calculation of screening effects on specific reaction rates. Although such effects are not significant in cases of plasmas of laboratory interest, the options are included to increase the range of applicability of the code. Gamow penetration form, log-log interpolation, and cubic interpolation routines are included to provide the interpolated values of cross sections
Energy Technology Data Exchange (ETDEWEB)
Pfingsten, W.; Carnahan, C.L. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1995-05-01
Two simulators of reactive chemical transport are applied to a set of problems involving heterogeneous reactions of uranium species. The simulators use similar algorithms to compute the heterogeneous chemical equilibria, but they use different approaches to the computation of solute transport and to the coupling of transport with chemical reactions. One simulator (MCOTAC) sequentially couples calculations of static chemical equilibria to a random-walk simulation of solute advection and dispersion. The other simulator (THCC) directly couples mass action relations for chemical equilibria to finite-difference representations of the solute transport equations. The aim of the comparison was to demonstrate the applicability of the newly developed code MCOTAC to redox problems, and to identify and investigate general differences between the two types of codes within these applications. The chosen heterogeneous redox systems are hypothetically generate systems which provide numerical difficulties within the coupled code calculation. Uranium, an important component of heterogeneous redox systems consisting of uraniferous solids and natural groundwaters, was chosen as a main component in the example redox systems because of practical interest for performance assessment of geological repositories for nuclear wastes. The calculations show reasonable agreement, in general, between the two computational approaches. Specific areas of disagreement arise from numerical difficulties to each approach. Such `benchmarking` can enhance confidence in the overall performance of individual simulators while identifying aspects that may require further investigations and possible modifications. (author) figs., tabs., 7 refs.
Improvement and test calculation on basic code or sodium-water reaction jet
Energy Technology Data Exchange (ETDEWEB)
Saito, Yoshinori; Itooka, Satoshi [Advanced Reactor Engineering Center, Hitachi Works, Hitachi Ltd., Hitachi, Ibaraki (Japan); Okabe, Ayao; Fujimata, Kazuhiro; Sakurai, Tomoo [Consulting Engineering Dept., Hitachi Engineering Co., Ltd., Hitachi, Ibaraki (Japan)
1999-03-01
In selecting the reasonable DBL (design basis water leak rate) on steam generator (SG), it is necessary to improve analytical method for estimating the sodium temperature on failure propagation due to overheating. Improvement on the basic code for sodium-water reaction (SWR) jet was performed for an actual scale SG. The improvement points of the code are as follows; (1) introduction of advanced model such as heat transfer between the jet and structure (tube array), cooling effect of the structure, heat transfer between analytic cells, and (2) model improvement for heat transfer between two-phase flow and porous-media. The test calculation using the improved code (LEAP-JET ver.1.30) were carried out with conditions of the SWAT-3{center_dot}Run-19 test and an actual scale SG. It is confirmed that the SWR jet behavior on the results is reasonable and Influence to analysis result of a model. Code integration with the blow down analytic code (LEAP-BLOW) was also studied. It is suitable that LEAP-JET was improved as one of the LEAP-BLOW's models, and it was integrated into this. In addition to above, the improvement for setting of boundary condition and the development of the interface program to transfer the analytical results of LEAP-BLOW have been performed in order to consider the cooling effect of coolant in the tube simply. However, verification of the code by new SWAT-1 and SWAT-3 test data planned in future is necessary because LEAP-JET is under development. And furthermore advancement needs to be planned. (author)
Improvement and test calculation on basic code or sodium-water reaction jet
International Nuclear Information System (INIS)
Saito, Yoshinori; Itooka, Satoshi; Okabe, Ayao; Fujimata, Kazuhiro; Sakurai, Tomoo
1999-03-01
In selecting the reasonable DBL (design basis water leak rate) on steam generator (SG), it is necessary to improve analytical method for estimating the sodium temperature on failure propagation due to overheating. Improvement on the basic code for sodium-water reaction (SWR) jet was performed for an actual scale SG. The improvement points of the code are as follows; (1) introduction of advanced model such as heat transfer between the jet and structure (tube array), cooling effect of the structure, heat transfer between analytic cells, and (2) model improvement for heat transfer between two-phase flow and porous-media. The test calculation using the improved code (LEAP-JET ver.1.30) were carried out with conditions of the SWAT-3·Run-19 test and an actual scale SG. It is confirmed that the SWR jet behavior on the results is reasonable and Influence to analysis result of a model. Code integration with the blow down analytic code (LEAP-BLOW) was also studied. It is suitable that LEAP-JET was improved as one of the LEAP-BLOW's models, and it was integrated into this. In addition to above, the improvement for setting of boundary condition and the development of the interface program to transfer the analytical results of LEAP-BLOW have been performed in order to consider the cooling effect of coolant in the tube simply. However, verification of the code by new SWAT-1 and SWAT-3 test data planned in future is necessary because LEAP-JET is under development. And furthermore advancement needs to be planned. (author)
The GRAPE code system for the calculation of precompound and compound nuclear reactions
International Nuclear Information System (INIS)
Gruppelaar, H.; Akkermans, J.M.
1985-02-01
The statistical exciton model following the master-equation approach has been improved and extended for application as an evaluation tool of double-differential reaction cross sections at incident nucleon energies of 5 to 50 MeV. For this purpose the code system GRAPE has been developed. An important characteristic of the proposed model is that consistency with equilibrium models has been demanded for the summed exciton-state densities as well as for the particle and γ-ray emission cross sections. Consistency with the adopted state densities has also been imposed upon the internal transition rates. A survey of the theory is given and the structure of the GRYPHON code is described. This report also contains a users' manual for GRYPHON
DFT analysis of the reaction paths of formaldehyde decomposition on silver.
Montoya, Alejandro; Haynes, Brian S
2009-07-16
Periodic density functional theory is used to study the dehydrogenation of formaldehyde (CH(2)O) on the Ag(111) surface and in the presence of adsorbed oxygen or hydroxyl species. Thermodynamic and kinetic parameters of elementary surface reactions have been determined. The dehydrogenation of CH(2)O on clean Ag(111) is thermodynamically and kinetically unfavorable. In particular, the activation energy for the first C-H bond scission of adsorbed CH(2)O (25.8 kcal mol(-1)) greatly exceeds the desorption energy for molecular CH(2)O (2.5 kcal mol(-1)). Surface oxygen promotes the destruction of CH(2)O through the formation of CH(2)O(2), which readily decomposes to CHO(2) and then in turn to CO(2) and adsorbed hydrogen. Analysis of site selectivity shows that CH(2)O(2), CHO(2), and CHO are strongly bound to the surface through the bridge sites, whereas CO and CO(2) are weakly adsorbed with no strong preference for a particular surface site. Dissociation of CO and CO(2) on the Ag(111) surface is highly activated and therefore unfavorable with respect to their molecular desorption.
Energy Technology Data Exchange (ETDEWEB)
Nguyen, Trong-Nghia [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Department of Physical Chemistry, Hanoi University of Science and Technology, Hanoi (Viet Nam); Putikam, Raghunath; Lin, M. C., E-mail: chemmcl@emory.edu [Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, Hsinchu 30010, Taiwan (China)
2015-03-28
We have discovered a new and highly competitive product channel in the unimolecular decay process for small Criegee intermediates, CH{sub 2}OO and anti/syn-CH{sub 3}C(H)OO, occurring by intramolecular insertion reactions via a roaming-like transition state (TS) based on quantum-chemical calculations. Our results show that in the decomposition of CH{sub 2}OO and anti-CH{sub 3}C(H)OO, the predominant paths directly produce cis-HC(O)OH and syn-CH{sub 3}C(O)OH acids with >110 kcal/mol exothermicities via loose roaming-like insertion TSs involving the terminal O atom and the neighboring C–H bonds. For syn-CH{sub 3}C(H)OO, the major decomposition channel occurs by abstraction of a H atom from the CH{sub 3} group by the terminal O atom producing CH{sub 2}C(H)O–OH. At 298 K, the intramolecular insertion process in CH{sub 2}OO was found to be 600 times faster than the commonly assumed ring-closing reaction.
International Nuclear Information System (INIS)
Nguyen, Trong-Nghia; Putikam, Raghunath; Lin, M. C.
2015-01-01
We have discovered a new and highly competitive product channel in the unimolecular decay process for small Criegee intermediates, CH 2 OO and anti/syn-CH 3 C(H)OO, occurring by intramolecular insertion reactions via a roaming-like transition state (TS) based on quantum-chemical calculations. Our results show that in the decomposition of CH 2 OO and anti-CH 3 C(H)OO, the predominant paths directly produce cis-HC(O)OH and syn-CH 3 C(O)OH acids with >110 kcal/mol exothermicities via loose roaming-like insertion TSs involving the terminal O atom and the neighboring C–H bonds. For syn-CH 3 C(H)OO, the major decomposition channel occurs by abstraction of a H atom from the CH 3 group by the terminal O atom producing CH 2 C(H)O–OH. At 298 K, the intramolecular insertion process in CH 2 OO was found to be 600 times faster than the commonly assumed ring-closing reaction
Effect of low and high heating rates on reaction path of Ni(V)/Al multilayer
Energy Technology Data Exchange (ETDEWEB)
Maj, Łukasz, E-mail: l.maj@imim.pl [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Kraków (Poland); Morgiel, Jerzy; Szlezynger, Maciej [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Kraków (Poland); Bała, Piotr; Cios, Grzegorz [AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, 30 Kawiory St., 30-055 Kraków (Poland)
2017-06-01
The effect of heating rates of Ni(V)/Al NanoFoils{sup ®} was investigated with transmission electron microscopy (TEM). The Ni(V)/Al were subjected to heating by using differential scanning calorimetry (DSC), in-situ TEM or electric pulse. Local chemical analysis was carried out using energy dispersive X-ray spectroscopy (EDS). Phase analysis was done with X-ray diffractions (XRD) and selected area electron diffractions (SAED). The experiments showed that slow heating in DSC results in development of separate exothermic effects at ∼230 °C, ∼280 °C and ∼390 °C, corresponding to precipitation of Al{sub 3}Ni, Al{sub 3}Ni{sub 2} and NiAl phases, respectively, i.e. like in vanadium free Ni/Al multilayers. Further heating to 700 °C allowed to obtain a single phase NiAl foil. The average grain size (g.s.) of NiAl phase produced in the DSC heat treated foil was comparable with the Ni(V)/Al multilayer period (∼50 nm), whereas in the case of reaction initiated with electric pulse the g.s. was in the micrometer range. Upon slow heating vanadium tends to segregate to zones parallel to the original multilayer internal interfaces, while in SHS process vanadium-rich phases precipitates at grain boundaries of the NiAl phase. - Highlights: • Peaks in DSC heating of Ni(V)/Al were explained by in-situ TEM observations. • Nucleation of Al{sub 3}Ni, Al{sub 3}Ni{sub 2} and NiAl at slow heating of Ni(V)/Al was documented. • Near surface NiAl obtained from NanoFoil show Ag precipitates at grain boundaries.
Assari, Amin; Mohammadi, Zargham
2017-09-01
Karst systems show high spatial variability of hydraulic parameters over small distances and this makes their modeling a difficult task with several uncertainties. Interconnections of fractures have a major role on the transport of groundwater, but many of the stochastic methods in use do not have the capability to reproduce these complex structures. A methodology is presented for the quantification of tortuosity using the single normal equation simulation (SNESIM) algorithm and a groundwater flow model. A training image was produced based on the statistical parameters of fractures and then used in the simulation process. The SNESIM algorithm was used to generate 75 realizations of the four classes of fractures in a karst aquifer in Iran. The results from six dye tracing tests were used to assign hydraulic conductivity values to each class of fractures. In the next step, the MODFLOW-CFP and MODPATH codes were consecutively implemented to compute the groundwater flow paths. The 9,000 flow paths obtained from the MODPATH code were further analyzed to calculate the tortuosity factor. Finally, the hydraulic conductivity values calculated from the dye tracing experiments were refined using the actual flow paths of groundwater. The key outcomes of this research are: (1) a methodology for the quantification of tortuosity; (2) hydraulic conductivities, that are incorrectly estimated (biased low) with empirical equations that assume Darcian (laminar) flow with parallel rather than tortuous streamlines; and (3) an understanding of the scale-dependence and non-normal distributions of tortuosity.
International Nuclear Information System (INIS)
Lee, Suk Ho; You, Sung Chang; Kim, Han Gon
2011-01-01
The SBLOCA (Small Break Loss-of-Coolant Accident) evaluation methodology for the APR1400 (Advanced Power Reactor 1400) is under development using the SPACE code. The goal of the development of this methodology is to set up a conservative evaluation methodology in accordance with Appendix K of 10CFR50 by the end of 2012. In order to develop the Appendix K version of the SPACE code, the code modification is considered through implementation of the code on the required evaluation models. For the conservative models required in the SPACE code, the metal-water reaction (MWR) model, the critical flow model, the Critical Heat Flux (CHF) model and the post-CHF model must be implemented in the code. At present, the integration of the model to generate the Appendix K version of SPACE is in its preliminary stage. Among them, the conservative MWR model and its code applicability are introduced in this paper
de Obeso, J. C.; Kelemen, P. B.; Manning, C. E.; Michibayashi, K.; Harris, M.
2017-12-01
Oman Drilling Project hole BT1B drilled 300 meters through the basal thrust of the Samail ophiolite. The first 200 meters of this hole are dominated by listvenites (completely carbonated peridotites) and serpentinites. Below 200 meters the hole is mainly composed of metasediments and metavolcanics. This core provides a unique record of interaction between (a) mantle peridotite in the leading edge of the mantle wedge and (b) hydrous, CO2 rich fluids derived from subducting lithologies similar to those in the metamorphic sole. We used EQ3/6 to simulate a reaction path in which hydrous fluid in equilibrium with qtz + calcite + feldspar + chlorite or smectite reacts with initially fresh peridotite at 100°C (the estimated temperature of alteration, Falk & Kelemen GCA 2015) and 5 kb. Water was first equilibrated with minerals observed during core description in the metamorphic sole at 100°C and 5kb. This fluid is then reacted with olivine enstatite and diopside (Mg#90) approximating the average composition of residual mantle peridotite (harzburgite) in Oman. Secondary minerals resulting from complete reaction are then reacted again with the initial fluid in an iterative process, up to water/rock > 1000. Water/rock close to 1 results in complete serpentinization of the peridotite, with chrysotile, brucite and magnetite as the only minerals. Water/rock >10 produces carbonates, chlorite and talc. Further increasing water/rock to > 100 produces assemblages dominated by carbonates and quartz with minor muscovite, similar to listvenites of hole BT1B that contain qtz + carbonates + Fe-oxyhydroxides + relict spinel ± chromian muscovite and fuchsite. The results of this preliminary model are consistent with the complex veining history of core from BT1B, with carbonate/iron oxide veins in both listvenites and serpentinites interpreted to be the earliest record of peridotite carbonation after initial serpentinization.
Applications of Transport/Reaction Codes to Problems in Cell Modeling; TOPICAL
International Nuclear Information System (INIS)
MEANS, SHAWN A.; RINTOUL, MARK DANIEL; SHADID, JOHN N.
2001-01-01
We demonstrate two specific examples that show how our exiting capabilities in solving large systems of partial differential equations associated with transport/reaction systems can be easily applied to outstanding problems in computational biology. First, we examine a three-dimensional model for calcium wave propagation in a Xenopus Laevis frog egg and verify that a proposed model for the distribution of calcium release sites agrees with experimental results as a function of both space and time. Next, we create a model of the neuron's terminus based on experimental observations and show that the sodium-calcium exchanger is not the route of sodium's modulation of neurotransmitter release. These state-of-the-art simulations were performed on massively parallel platforms and required almost no modification of existing Sandia codes
International Nuclear Information System (INIS)
Alharbi, A.A.; Azzam, A.
2012-01-01
A theoretical study of the nuclear-reaction cross sections for proton-induced reactions on 63 Cu and 65 Cu was performed in the proton energy range from threshold values up to 50 MeV. The produced nuclei were different isotopes of Zn, Cu, Ni, Co and Mn, some of which have important applications. The reaction cross-section calculations were performed using the ALICE-IPPE code, which depends on the pre-equilibrium compound nucleus model. This code is suitable for the studied energy and isotopic mass ranges. Approximately 14 excitation functions for the different reactions have been constructed from the calculated cross-section values. The excitation function curves for the proton reactions with natural copper targets have been constructed from those for enriched targets using the natural abundance of the copper isotopes. Comparisons between the calculated excitation functions with those previously experimentally measured are given whenever the experimental values were available. Some statistical parameters were introduced to control the quality of the fitting between both the experimental and the theoretical calculated cross-section values. - Highlights: ► We performed reaction cross section calculations using ALICE-IPPE code. ► We constructed 14 excitation functions for nat Cu(p,xn)Zn,Cu,Ni,Co,Mn reactions. ► The available experimental data were fitted to the performed ALICE-IPPE calculations. ► Statistical parameters were introduced to control the quality of the fitting. ► The code failed to fit the experimental data for reactions with large nucleon emissions.
International Nuclear Information System (INIS)
Kawaguchi, Munemichi; Doi, Daisuke; Seino, Hiroshi; Miyahara, Shinya
2015-01-01
A computer code, CONTAIN-LMR, is an integrated analysis tool to predict the consequence of severe accident in a liquid metal fast reactor. Because a sodium-concrete reaction behavior is one of the most important phenomena in the accident, a Sodium-Limestone Concrete Ablation Model (SLAM) has been developed and installed into the original CONTAIN code at Sandia National Laboratories (SNL) in the U.S. The SLAM treats chemical reaction kinetics between the sodium and the concrete compositions mechanistically using a three-region model, containing a pool (sodium and reaction debris) region, a dry (boundary layer (B/L) and dehydrated concrete) region, and a wet (hydrated concrete) region, the application is limited to the reaction between sodium and limestone concrete. In order to apply SLAM to the reaction between sodium and siliceous concrete which is an ordinary structural concrete in Japan, the chemical reaction kinetics model has been improved to consider the new chemical reactions between sodium and silicon dioxide. The improved model was validated to analyze a series of sodium-concrete experiments which were conducted in Japan Atomic Energy Agency (JAEA). It has been found that relatively good agreement between calculation and experimental results is obtained and the CONTAIN-LMR code has been validated with regard to the sodium-concrete reaction phenomena. (author)
International Nuclear Information System (INIS)
Niita, Koji; Nara, Yasushi; Takada, Hiroshi; Nakashima, Hiroshi; Chiba, Satoshi; Ikeda, Yujiro
1999-09-01
We are developing a nucleon-meson transport code NMTC/JAM, which is an upgraded version of NMTC/JAERI. NMTC/JAM implements the high energy nuclear reaction code JAM for the infra-nuclear cascade part. By using JAM, the upper limits of the incident energies in NMTC/JAERI, 3.5 GeV for nucleons and 2.5 GeV for mesons, are increased drastically up to several hundreds GeV. We have modified the original JAM code in order to estimate the residual nucleus and its excitation energy for nucleon or pion induced reactions by assuming a simple model for target nucleus. As a result, we have succeeded in lowering the applicable energies of JAM down to about 150 MeV. In this report, we describe the main components of JAM code, which should be implemented in NMTC/JAM, and compare the results calculated by JAM code with the experimental data and with those by LAHET2.7 code for proton induced reactions from 150 MeV to several 10 GeV. It has been found that the results of JAM can reproduce quite well the experimental double differential cross sections of neutrons and pions emitted from the proton induced reactions from 150 MeV to several 10 GeV. On the other hand, the results of LAHET2.7 show the strange behavior of the angular distribution of nucleons and pions from the reactions above 4 GeV. (author)
Computer code PRECIP-II for the calculation of Zr-steam reaction
International Nuclear Information System (INIS)
Suzuki, Motoye; Kawasaki, Satoru; Furuta, Teruo
1978-06-01
The computer code PRECIP-II developed, a modification of S.Malang's SIMTRAN-I, is to calculate Zr-Steam reaction under LOCA conditions. Improved are the following: 1. treatment of boundary conditions at alpha/beta phase interface during temperature decrease. 2. method of time-mesh control. 3. number of input-controllable parameters, and output format. These improvements made possible physically reasonable calculations for an increased number of temperature history patterns, including the cladding temperature excursion assumed during LOCA. Calculations were made along various transient temperature histories, with the parameters so modified as to enable fitting of numerical results of weight gain, oxide thickness and alpha phase thickness in isothermal reactions to the experimental data. Then the computed results were compared with the corresponding experimental values, which revealed that most of the differences lie within +-10%. Slow cooling effect on ductility change of Zircaloy-4 was investigated with some of the oxidized specimens by a ring compression test; the effect is only slight. (auth.)
International Nuclear Information System (INIS)
Seino, Hiroshi; Hamada, Hirotsugu
2004-03-01
The sodium-water reaction event in an FBR steam generator (SG) has influence on the safety, economical efficiency, etc. of the plant, so that the selection of design base leak (DBL) of the SG is considered as one of the important matters. The clarification of the sodium-water reaction phenomenon and the development of an analysis model are necessary to estimate the sodium-water reaction event with high accuracy and rationality in selecting the DBL. The reaction jet model is pointed out as a part of the necessary improvements to evaluate the overheating tube rupture of large SGs, since the behavior of overheating tube rupture is largely affected by the reaction jet conditions outside the tube. Therefore, LEAP-JET has been developed as an analysis code for the simulation of sodium-water reactions. This document shows the validation of the LEAP-JET code by the Sodium-Water Reaction Test (SWAT-1R). The following results have been obtained: (1) The reaction rate constant, K, is estimated at between 0.001≤K≤0.1 from the LEAP-JET analysis of the SWAT-1R data. (2) The analytical results on the high-temperature region and the behaviors of reaction consumption (Na, H 2 O) and products (H 2 , NaOH, Na 2 O) are considered to be physically reasonable. (3) The LEAP-JET analysis shows the tendency of overestimation in the maximum temperature and temperature distribution of the reaction jet. (4) In the LEAP-JET analysis, the numerical calculation becomes unstably, especially in the mesh containing quite small sodium mass. Therefore, it is necessary to modify the computational algorism to stabilize it and obtain the optimum value of K in sodium-water reactions. (author)
International Nuclear Information System (INIS)
Kawasaki, Hiromitsu; Seki, Yasushi.
1982-07-01
A computer code APPLE-2 which plots the spatial distribution of energy spectra of multi-group neutron and/or gamma ray fluxes, and reaction rates has been developed. This code is an improved version of the previously developed APPLE code and has the following features: (1) It plots energy spectra of neutron and/or gamma ray fluxes calculated by ANISN, DOT and MORSE. (2) It calculates and plots the spatial distribution of neutron and gamma ray fluxes and various types of reaction rates such as nuclear heating rates, operational dose rates, displacement damage rates. (3) Input data specification is greatly simplified by the use of standard, response libraries and by close coupling with radiation transport calculation codes. (4) Plotting outputs are given in camera ready form. (author)
Improvement of spallation reaction simulation codes NMTC/JAERI and NUCLEUS
International Nuclear Information System (INIS)
Nishida, T.; Takada, H.; Kanno, I.; Nakahara, Y.
1990-01-01
To make evaluations of theoretical models for nuclear spallation reaction, simulation codes are modified and a new mass formula is used to improve the accuracy of Monte Carlo calculations. The following conclusions are made from analyses of calculated distributions of nuclear spallation products. A difference is found between the Cameron's old and the Uno and Yamada's new mass formula, which is due to the difference in the method used to fit their shell energy terms to measured data for selected nuclei and in data themselves. For nuclides with an atomic number larger than 70, mass excesses calculated by the Camerons's mass formula are greater than those by the Uno and Yamada's one, whereas the reverse tendency is seen for ones with atomic numbers smaller than 70. Analysis shows that the distributions of produced nuclei have patterns that appear natural from a physical point of view when artificial restrictions are removed in counting the nuclide production events. The new mass formula can reproduce fairly well the experimental product yield distributions, especially in the neutron excess side. It is also found that the old mass formula gives lower estimations for the number of produced nuclei than the new one, especially in the nuclide region far from the beta stable line. (N.K.)
Energy Technology Data Exchange (ETDEWEB)
Mokhtari Oranj, Leila; Kakavand, Tayeb [Physics Faculty, Zanjan University, P.O. Box 451-313, Zanjan (Iran, Islamic Republic of); Sadeghi, Mahdi, E-mail: msadeghi@nrcam.org [Agricultural, Medical and Industrial Research School, Nuclear Science and Technology Research Institute, P.O. Box 31485-498, Karaj (Iran, Islamic Republic of); Aboudzadeh Rovias, Mohammadreza [Agricultural, Medical and Industrial Research School, Nuclear Science and Technology Research Institute, P.O. Box 31485-498, Karaj (Iran, Islamic Republic of)
2012-06-11
{sup 68}Ga is an important radionuclide for positron emission tomography. {sup 68}Ga can be produced by the {sup 68}Zn(p,n){sup 68}Ga reaction in a common biomedical cyclotrons. To facilitate optimization of target design and study activation of materials, Monte Carlo code can be used to simulate the irradiation of the target materials with charged hadrons. In this paper, FLUKA code simulation was employed to prototype a Zn target for the production of {sup 68}Ga by proton irradiation. Furthermore, the experimental data were compared with the estimated values for the thick target yield produced in the irradiation time according to FLUKA code. In conclusion, FLUKA code can be used for estimation of the production yield.
International Nuclear Information System (INIS)
Woosley, S.; Fowler, W.A.
1977-09-01
CRSEC is a FORTRAN IV computer code designed for the efficient calculation of average nuclear cross sections in situations where a statistical theory of nuclear reactions is applicable and where compound nuclear formation is the dominant reaction mechanism. This code generates cross sections of roughly factor of 2 accuracy for incident particle energies in the range of 10 keV to 10 MeV for most target nuclei from magnesium to bismuth. Exceptions usually involve reactions that enter the compound nucleus at such a low energy that fewer than 10 levels are present in the ''energy window of interest.'' The incident particle must be a neutron, proton, or alpha particle, and only binary reactions resulting in the emission of a single n, p, α, or γ (cascade) are calculated. CRSEC is quite fast, a complete calculation of 12 different reactions over a grid of roughly 150 energy points and the generation of Maxwellian averaged rates taking about 30 seconds of CDC7600 time. Also the semi-empirical parameterization of nuclear properties contained in CRSEC is very general. Greater accuracy may be obtained, however, by furnishing specific low-lying excited states, level density parameterization, and nuclear strength functions. A more general version of CRSEC, called CRSECI, is available that conserves isospin properly in all reactions and allows the user to specify a given degree of isospin mixing in the highly excited states of the compound nucleus. Besides the cross section as a function of center-of-mass energy, CRSEC also generates the Maxwell--Boltzmann averaged thermonuclear reaction rate and temperature dependent nuclear partition function for a grid of temperatures from 10 8 to 10 10 0 K. Sections of this report describe in greater detail the physics employed in CRSEC and how to use the code. 2 tables
International Nuclear Information System (INIS)
Biring, Shyamal Kumar; Chaudhury, Pinaki
2012-01-01
Highlights: ► Estimation of critical points in Noble-gas clusters. ► Evaluation of first order saddle point or transition states. ► Construction of reaction path for structural change in clusters. ► Use of Monte-Carlo Simulated Annealing to study structural changes. - Abstract: This paper proposes Simulated Annealing based search to locate critical points in mixed noble gas clusters where Ne and Xe are individually doped in Ar-clusters. Using Lennard–Jones (LJ) atomic interaction we try to explore the search process of transformation through Minimum Energy Path (MEP) from one minimum energy geometry to another via first order saddle point on the potential energy surface of the clusters. Here we compare the results based on diagonalization of the full Hessian all through the search and quasi-gradient only technique to search saddle points and construction of reaction path (RP) for three sizes of doped Ar-clusters, (Ar) 19 Ne/Xe,(Ar) 24 Ne/Xe and (Ar) 29 Ne/Xe.
Gysi, Alexander P.; Williams-Jones, Anthony E.
2013-12-01
Petrological and geochemical observations of pegmatites in the Strange Lake pluton, Canada, have been combined with numerical simulations to improve our understanding of fluid-rock interaction in peralkaline granitic systems. In particular, they have made it possible to evaluate reaction paths responsible for hydrothermal mobilization and mineralization of rare earth elements (REE) and Zr. The focus of the study was the B-Zone in the northwest of the pluton, which contains a pegmatite swarm and is the target of exploration for an economically exploitable REE deposit. Many of the pegmatites are mineralogically zoned into a border consisting of variably altered primary K-feldspar, arfvedsonite, quartz, and zirconosilicates, and a core rich in quartz, fluorite and exotic REE minerals. Textural relationships indicate that the primary silicate minerals in the pegmatites were leached and/or replaced during acidic alteration by K-, Fe- and Al-phyllosilicates, aegirine, hematite, fluorite and/or quartz, and that primary zirconosilicates (e.g., elpidite) were replaced by gittinsite and/or zircon. Reaction textures recording coupled dissolution of silicate minerals and crystallization of secondary REE-silicates indicate hydrothermal mobilization of the REE. The mobility of the light (L)REE was limited by the stability of REE-F-(CO2)-minerals (basnäsite-(Ce) and fluocerite-(Ce)), whereas zirconosilicates and secondary gadolinite-group minerals controlled the mobility of Zr and the heavy (H)REE. Hydrothermal fluorite and fluorite-fluocerite-(Ce) solid solutions are interpreted to indicate the former presence of F-bearing saline fluids in the pegmatites. Numerical simulations show that the mobilization of REE and Zr in saline HCl-HF-bearing fluids is controlled by pH, ligand activity and temperature. Mobilization of Zr is significant in both saline HF- and HCl-HF-bearing fluids at low temperature (250 °C). In contrast, the REE are mobilized by saline HCl-bearing fluids
Maraschek, M.; Gude, A.; Igochine, V.; Zohm, H.; Alessi, E.; Bernert, M.; Cianfarani, C.; Coda, S.; Duval, B.; Esposito, B.; Fietz, S.; Fontana, M.; Galperti, C.; Giannone, L.; Goodman, T.; Granucci, G.; Marelli, L.; Novak, S.; Paccagnella, R.; Pautasso, G.; Piovesan, P.; Porte, L.; Potzel, S.; Rapson, C.; Reich, M.; Sauter, O.; Sheikh, U.; Sozzi, C.; Spizzo, G.; Stober, J.; Treutterer, W.; ZancaP; ASDEX Upgrade Team; TCV Team; the EUROfusion MST1 Team
2018-01-01
Routine reaction to approaching disruptions in tokamaks is currently largely limited to machine protection by mitigating an ongoing disruption, which remains a basic requirement for ITER and DEMO [1]. Nevertheless, a mitigated disruption still generates stress to the device. Additionally, in future fusion devices, high-performance discharge time itself will be very valuable. Instead of reacting only on generic features, occurring shortly before the disruption, the ultimate goal is to actively avoid approaching disruptions at an early stage, sustain the discharges whenever possible and restrict mitigated disruptions to major failures. Knowledge of the most relevant root causes and the corresponding chain of events leading to disruption, the disruption path, is a prerequisite. For each disruption path, physics-based sensors and adequate actuators must be defined and their limitations considered. Early reaction facilitates the efficiency of the actuators and enhances the probability of a full recovery. Thus, sensors that detect potential disruptions in time are to be identified. Once the entrance into a disruption path is detected, we propose a hierarchy of actions consisting of (I) recovery of the discharge to full performance or at least continuation with a less disruption-prone backup scenario, (II) complete avoidance of disruption to sustain the discharge or at least delay it for a controlled termination and, (III), only as last resort, a disruption mitigation. Based on the understanding of disruption paths, a hierarchical and path-specific handling strategy must be developed. Such schemes, testable in present devices, could serve as guidelines for ITER and DEMO operation. For some disruption paths, experiments have been performed at ASDEX Upgrade and TCV. Disruptions were provoked in TCV by impurity injection into ELMy H-mode discharges and in ASDEX Upgrade by forcing a density limit in H-mode discharges. The new approach proposed in this paper is discussed for
Energy Technology Data Exchange (ETDEWEB)
Chi, Jung Sik [The Institute of Machinery and Electronic Technology, Mokpo National Maritime University, Mokpo (Korea, Republic of); Shin, Young Joon; Lee, Ki Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Choi, Jae Hyuk [Division of Marine Engineering System, Korea Maritime and Ocean University, Busan (Korea, Republic of)
2015-06-15
The operating characteristics of hydrogen iodide (HI) decomposition for hydrogen production were investigated using the commercial computational fluid dynamics code, and various factors, such as hydrogen production, heat of reaction, and temperature distribution, were studied to compare device performance with that expected for device development. Hydrogen production increased with an increase of the surface-to-volume (STV) ratio. With an increase of hydrogen production, the reaction heat increased. The internal pressure and velocity of the HI decomposer were estimated through pressure drop and reducing velocity from the preheating zone. The mass of H2O was independent of the STV ratio, whereas that of HI decreased with increasing STV ratio.
International Nuclear Information System (INIS)
Young, P.G.; Chadwick, M.B.
1994-01-01
A number of modifications have been made to the reaction theory code GNASH in order the accuracy of calculations at incident particle energies up to 200 MeV. Direct reaction a level density models appropriate for higher energy calculations are now used in the code, and most importantly, improved preequilibrium models have been incorporated into the code system. The code has been used to calculate proton-induced reactions on 90 Zr and 208 Pb for the International Code and Model Intercomparison for Intermediate Energy Reactions organized by the NEA. Calculations were performed with GNASH at incident proton energies of 25, 45, 80, and 160 mev using both the exciton model and Feshbach-Kerman-Koonin theory for the preequilibrium component. The models and procedures used in the GNASH calculations with the exciton model are described here. The results are compared to experimental data and to results from the GNASH calculations with Feshbach-Kerman-Koonin preequilibrium theory
Crucial steps to life: From chemical reactions to code using agents.
Witzany, Guenther
2016-02-01
The concepts of the origin of the genetic code and the definitions of life changed dramatically after the RNA world hypothesis. Main narratives in molecular biology and genetics such as the "central dogma," "one gene one protein" and "non-coding DNA is junk" were falsified meanwhile. RNA moved from the transition intermediate molecule into centre stage. Additionally the abundance of empirical data concerning non-random genetic change operators such as the variety of mobile genetic elements, persistent viruses and defectives do not fit with the dominant narrative of error replication events (mutations) as being the main driving forces creating genetic novelty and diversity. The reductionistic and mechanistic views on physico-chemical properties of the genetic code are no longer convincing as appropriate descriptions of the abundance of non-random genetic content operators which are active in natural genetic engineering and natural genome editing. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Large leak sodium-water reaction code SWACS and its validation
International Nuclear Information System (INIS)
Miyake, O.; Shindo, Y.; Hiroi, H.; Tanabe, H.; Sato, M.
1982-01-01
A computer code SWACS for analyzing the large leak accident of an LMFBR steam generators has been developed and validated. Five tests data obtained by SWAT-3 test facility were compared with code results. In each of SWAT-3 tests, a double-ended guillotine rupture of one tube was simulated in a helical coil steam generator model with 1/2.5 scaled test vessel to the prototype SG. The analytical results, including an initial pressure spike, a propagated pressure in a secondary system, and a quasi-steady pressure, indicate that the overall large-leak event could be predicted in reasonably good agreement
Data Evaluation Acquired Talys 1.0 Code to Produce 111In from Various Accelerator-Based Reactions
Alipoor, Zahra; Gholamzadeh, Zohreh; Sadeghi, Mahdi; Seyyedi, Solaleh; Aref, Morteza
The Indium-111 physical-decay parameters as a β-emitter radionuclide show some potential for radiodiagnostic and radiotherapeutic purposes. Medical investigators have shown that 111In is an important radionuclide for locating and imaging certain tumors, visualization of the lymphatic system and thousands of labeling reactions have been suggested. The TALYS 1.0 code was used here to calculate excitation functions of 112/114-118Sn+p, 110Cd+3He, 109Ag+3He, 111-114Cd+p, 110/111Cd+d, 109Ag+α to produce 111In using low and medium energy accelerators. Calculations were performed up to 200 MeV. Appropriate target thicknesses have been assumed based on energy loss calculations with the SRIM code. Theoretical integral yields for all the latter reactions were calculated. The TALYS 1.0 code predicts that the production of a few curies of 111In is feasible using a target of isotopically highly enriched 112Cd and a proton energy between 12 and 25 MeV with a production rate as 248.97 MBq·μA-1 · h-1. Minimum impurities shall be produced during the proton irradiation of an enriched 111Cd target yielding a production rate for 111In of 67.52 MBq· μA-1 · h-1.
Pijnappels, M.A.G.M.; Delbaere, K.; Sturnieks, D.L.; Lord, S.R.
2010-01-01
Background: choice stepping reaction time (CSRT) is a functional measure that has been shown to significantly discriminate older fallers from non-fallers. Objective: to investigate how physiological and cognitive factors mediate the association between CSRT performance and multiple falls by use of
Czech Academy of Sciences Publication Activity Database
Jandová, V.; Pokorná, D.; Kupčík, Jaroslav; Bezdička, Petr; Křenek, T.; Netrvalová, M.; Cuřínová, P.; Pola, J.
2018-01-01
Roč. 44, č. 1 (2018), s. 503-516 ISSN 0922-6168 Institutional support: RVO:61388980 Keywords : Silicon monoxide * Titanium monoxide * High-temperature * Oxygen-transfer reactions * Titanium suboxides * Titanium silicide * Methylene blue depletion Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 1.369, year: 2016
International Nuclear Information System (INIS)
Plante, Ianik; Devroye, Luc
2015-01-01
Several computer codes simulating chemical reactions in particles systems are based on the Green's functions of the diffusion equation (GFDE). Indeed, many types of chemical systems have been simulated using the exact GFDE, which has also become the gold standard for validating other theoretical models. In this work, a simulation algorithm is presented to sample the interparticle distance for partially diffusion-controlled reversible ABCD reaction. This algorithm is considered exact for 2-particles systems, is faster than conventional look-up tables and uses only a few kilobytes of memory. The simulation results obtained with this method are compared with those obtained with the independent reaction times (IRT) method. This work is part of our effort in developing models to understand the role of chemical reactions in the radiation effects on cells and tissues and may eventually be included in event-based models of space radiation risks. However, as many reactions are of this type in biological systems, this algorithm might play a pivotal role in future simulation programs not only in radiation chemistry, but also in the simulation of biochemical networks in time and space as well
Energy Technology Data Exchange (ETDEWEB)
Plante, Ianik, E-mail: ianik.plante-1@nasa.gov [Wyle Science, Technology & Engineering, 1290 Hercules, Houston, TX 77058 (United States); Devroye, Luc, E-mail: lucdevroye@gmail.com [School of Computer Science, McGill University, 3480 University Street, Montreal H3A 0E9 (Canada)
2015-09-15
Several computer codes simulating chemical reactions in particles systems are based on the Green's functions of the diffusion equation (GFDE). Indeed, many types of chemical systems have been simulated using the exact GFDE, which has also become the gold standard for validating other theoretical models. In this work, a simulation algorithm is presented to sample the interparticle distance for partially diffusion-controlled reversible ABCD reaction. This algorithm is considered exact for 2-particles systems, is faster than conventional look-up tables and uses only a few kilobytes of memory. The simulation results obtained with this method are compared with those obtained with the independent reaction times (IRT) method. This work is part of our effort in developing models to understand the role of chemical reactions in the radiation effects on cells and tissues and may eventually be included in event-based models of space radiation risks. However, as many reactions are of this type in biological systems, this algorithm might play a pivotal role in future simulation programs not only in radiation chemistry, but also in the simulation of biochemical networks in time and space as well.
Pawlowski, Jake W; Carrick, Ian; Kaltashov, Igor A
2018-01-16
Profiling of complex proteins by means of mass spectrometry (MS) frequently requires that certain chemical modifications of their covalent structure (e.g., reduction of disulfide bonds), be carried out prior to the MS or MS/MS analysis. Traditionally, these chemical reactions take place in the off-line mode to allow the excess reagents (the majority of which interfere with the MS measurements and degrade the analytical signal) to be removed from the protein solution prior to MS measurements. In addition to a significant increase in the analysis time, chemical reactions may result in a partial or full loss of the protein if the modifications adversely affect its stability, e.g,, making it prone to aggregation. In this work we present a new approach to solving this problem by carrying out the chemical reactions online using the reactive chromatography scheme on a size exclusion chromatography (SEC) platform with MS detection. This is achieved by using a cross-path reaction scheme, i.e., by delaying the protein injection onto the SEC column (with respect to the injection of the reagent plug containing a disulfide-reducing agent), which allows the chemical reactions to be carried out inside the column for a limited (and precisely controlled) period of time, while the two plugs overlap inside the column. The reduced protein elutes separately from the unconsumed reagents, allowing the signal suppression in ESI to be avoided and enabling sensitive MS detection. The new method is used to measure fucosylation levels of a plasma protein haptoglobin at the whole protein level following online reduction of disulfide-linked tetrameric species to monomeric units. The feasibility of top-down fragmentation of disulfide-containing proteins is also demonstrated using β 2 -microglobulin and a monoclonal antibody (mAb). The new online technique is both robust and versatile, as the cross-path scheme can be readily expanded to include multiple reactions in a single experiment (as
International Nuclear Information System (INIS)
Manahan, M.P.
1983-01-01
An improved Zircaloy-steam oxidation reaction model has been incorporated into the MARCH 2 code which includes: (1) improved physical modeling for solid-state process oxidation, (2) improved geometric modeling for gaseous diffusion oxidation, (3) chemisorption/dissociation retardation due to high hydrogen partial pressures, and (4) laminar and turbulent flow conditions. Several accident sequences have been analyzed using the model, and for the sequences considered, the results indicate that the integrated and averaged variables are not significantly altered for the current level of fuel modeling, however, the localized variables such as nodal temperature and oxide thickness are affected
International Nuclear Information System (INIS)
Robinson, G.S.
1986-03-01
The EDITAR module of the AUS neutronics code system edits one and two-dimensional flux data pools produced by other AUS modules to form reaction rates for materials and their constituent nuclides, and to average cross sections over space and energy. The module includes a Bsub(L) flux calculation for application to cell leakage. The STATUS data pool of the AUS system is used to enable the 'unsmearing' of fluxes and nuclide editing with minimal user input. The module distinguishes between neutron and photon groups, and printed reaction rates are formed accordingly. Bilinear weighting may be used to obtain material reactivity worths and to average cross sections. Bilinear weighting is at present restricted to diffusion theory leakage estimates made using mesh-average fluxes
International Nuclear Information System (INIS)
Mastromatteo, Michael; Jackson, Bret
2013-01-01
Electronic structure methods based on density functional theory are used to construct a reaction path Hamiltonian for CH 4 dissociation on the Ni(100) and Ni(111) surfaces. Both quantum and quasi-classical trajectory approaches are used to compute dissociative sticking probabilities, including all molecular degrees of freedom and the effects of lattice motion. Both approaches show a large enhancement in sticking when the incident molecule is vibrationally excited, and both can reproduce the mode specificity observed in experiments. However, the quasi-classical calculations significantly overestimate the ground state dissociative sticking at all energies, and the magnitude of the enhancement in sticking with vibrational excitation is much smaller than that computed using the quantum approach or observed in the experiments. The origin of this behavior is an unphysical flow of zero point energy from the nine normal vibrational modes into the reaction coordinate, giving large values for reaction at energies below the activation energy. Perturbative assumptions made in the quantum studies are shown to be accurate at all energies studied
International Nuclear Information System (INIS)
Yamauchi, Michinori; Sato, Satoshi; Nishitani, Takeo; Konno, Chikara; Hori, Jun-ichi; Kawasaki, Hiromitsu
2007-09-01
The ACT-XN is a revised version of the ACT4 code, which was developed in the Japan Atomic Energy Research Institute (JAERI) to calculate the transmutation, induced activity, decay heat, delayed gamma-ray source etc. for fusion devices. The ACT4 code cannot deal with the sequential reactions of charged particles generated by primary neutron reactions. In the design of present experimental reactors, the activation due to sequential reactions may not be of great concern as it is usually buried under the activity by primary neutron reactions. However, low activation material is one of the important factors for constructing high power fusion reactors in future, and unexpected activation may be produced through sequential reactions. Therefore, in the present work, the ACT4 code was newly supplemented with the calculation functions for the sequential reactions and renamed the ACT-XN. The ACT-XN code is equipped with functions to calculate effective cross sections for sequential reactions and input them in transmutation matrix. The FISPACT data were adopted for (x,n) reaction cross sections, charged particles emission spectra and stopping powers. The nuclear reaction chain data library were revised to cope with the (x,n) reactions. The charged particles are specified as p, d, t, 3 He(h) and α. The code was applied to the analysis of FNS experiment for LiF and Demo-reactor design with FLiBe, and confirmed that it reproduce the experimental values within 15-30% discrepancies. In addition, a notice was presented that the dose rate due to sequential reaction cannot always be neglected after a certain period cooling for some of the low activation material. (author)
Mark Setterfield
2015-01-01
Path dependency is defined, and three different specific concepts of path dependency – cumulative causation, lock in, and hysteresis – are analyzed. The relationships between path dependency and equilibrium, and path dependency and fundamental uncertainty are also discussed. Finally, a typology of dynamical systems is developed to clarify these relationships.
Schulte, E.; Belletti, G.; Arce, M.; Quaino, P.
2018-05-01
The seek for materials to enhance the oxygen reduction reaction (orr) rate is a highly relevant topic due to its implication in fuel cell devices. Herein, the orr on bimetallic electrocatalysts based on Au-M (M = Pt, Pd) has been studied computationally, by performing density functional theory calculations. Bimetallic (1 0 0) electrode surfaces with two different Au:M ratios were proposed, and two possible pathways, associative and dissociative, were considered for the orr. Changes in the electronic properties of these materials with respect to the pure metals were acknowledged to gain understanding in the overall reactivity trend. The effect of the bimetallic junction on the stability of the intermediates O2 and OOH was also evaluated by means of geometrical and energetic parameters; being the intermediates preferably adsorbed on Pt/Pd atoms, but presenting in some cases higher adsorption energies compared with bare metals. Finally, the kinetics of the Osbnd O bond breaking in O2∗ and OOH∗ adsorbed intermediates in the bimetallic materials and the influence of the Au-M junction were studied by means of the nudge elastic-band method. A barrierless process for the scission of O2∗ was found in Au-M for the higher M ratios. Surprisingly, for Au-M with lower M ratios, the barriers were much lower than for pure Au surfaces, suggesting a highly reactive surface towards the orr. The Osbnd O scission of the OOH∗ was found to be a barrierless process in Ausbnd Pt systems and nearly barrierless in all Ausbnd Pd systems, implying that the reduction ofO2 in these systems proceeds via the full reduction of O2 to H2O , avoiding H2O2 formation.
International Nuclear Information System (INIS)
Cerjan, C.J.; Shi, S.; Miller, W.H.
1982-01-01
A simple but often reasonably accurate dynamical model--a synthesis of the semiclassical perturbation (SCP) approximation of Miller and Smith and the infinite order sudden (IOS) approximation--has been shown previously to take an exceptionally simple form when applied to the reaction path Hamiltonian derived by Miller, Handy, and Adams. This paper shows how this combined SCP-IOS reaction path model can be used to provide a simple but comprehensive description of a variety of phenomena in the dynamics of polyatomic molecules
Directory of Open Access Journals (Sweden)
Wei Du
2017-04-01
Full Text Available Objectives: External cause International Classification of Diseases (ICD codes are commonly used to ascertain adverse drug reactions (ADRs related to hospitalisation. We quantified ascertainment of ADR-related hospitalisation using external cause codes and additional ICD-based hospital diagnosis codes. Methods: We reviewed the scientific literature to identify different ICD-based criteria for ADR-related hospitalisations, developed algorithms to capture ADRs based on candidate hospital ICD-10 diagnoses and external cause codes (Y40–Y59, and incorporated previously published causality ratings estimating the probability that a specific diagnosis was ADR related. We applied the algorithms to the NSW Admitted Patient Data Collection records of 45 and Up Study participants (2011–2013. Results: Of 493 442 hospitalisations among 267 153 study participants during 2011–2013, 18.8% (n = 92 953 had hospital diagnosis codes that were potentially ADR related; 1.1% (n = 5305 had high/very high–probability ADR-related diagnosis codes (causality ratings: A1 and A2; and 2.0% (n = 10 039 had ADR-related external cause codes. Overall, 2.2% (n = 11 082 of cases were classified as including an ADR-based hospitalisation on either external cause codes or high/very high–probability ADR-related diagnosis codes. Hence, adding high/very high–probability ADR-related hospitalisation codes to standard external cause codes alone (Y40–Y59 increased the number of hospitalisations classified as having an ADR-related diagnosis by 10.4%. Only 6.7% of cases with high-probability ADR-related mental symptoms were captured by external cause codes. Conclusion: Selective use of high-probability ADR-related hospital diagnosis codes in addition to external cause codes yielded a modest increase in hospitalised ADR incidence, which is of potential clinical significance. Clinically validated combinations of diagnosis codes could potentially further enhance capture.
Energy Technology Data Exchange (ETDEWEB)
Thomas, James M.; Hershey, Ronald L. [Desert Research Institute, 2215 Raggio Pwky, Reno, NV, USA 89512 (United States); Moser, Duane P.; Fisher, Jenny C.; Reihle, Jessica; Wheatley, Alexandra [Desert Research Institute, 755 E. Flamingo Rd, Las Vegas, NV, USA 89130 (United States); Baldino, Cristi; Weissenfluh, Darrick [US Fish and Wildlife Service, Ash Meadows NWR, Amargosa Valley, NV, USA 89020 (United States)
2013-07-01
Springs of Ash Meadows and Furnace Creek (near or in Death Valley, CA) have nearly constant flow, temperature, chemistry, and similar δ{sup 2}H and δ{sup 18}O signatures. These factors indicate shared water sources and/or analogous geochemical reactions along similar flow paths. DNA-based (16S rRNA gene) microbial diversity assessments further illuminate these relationships. Whereas, all Ash Meadows springs share related archaea populations, variations in carbon-14 (Crystal Spring) and strontium isotopes, Na{sup +}, SO{sub 4}{sup 2-}, and methane concentrations (Big Spring), correspond with microbial differences within and between the two discharge areas. Similar geochemical signatures linking Ash Meadows and Furnace Creek springs appear to support a distinct end member at Big Spring in Ash Meadows, which is also supported by coincident enrichment in microbial methanogens and methanotrophs. Conversely, DNA libraries from a deep carbonate well (878 m) located between Ash Meadows and Furnace Creek (BLM-1), indicate no shared microbial diversity between Ash Meadows or Furnace Creek springs. (authors)
Energy Technology Data Exchange (ETDEWEB)
Machrafi, Hatim; Cavadias, Simeon; Amouroux, Jacques [UPMC Universite Paris 06, LGPPTS, Ecole Nationale Superieure de Chimie de Paris, 11, rue de Pierre et Marie Curie, 75005 Paris (France)
2009-02-15
To acquire a high amount of information of the behaviour of the Homogeneous Charge Compression Ignition (HCCI) auto-ignition process, a reduced surrogate mechanism has been composed out of reduced n-heptane, iso-octane and toluene mechanisms, containing 62 reactions and 49 species. This mechanism has been validated numerically in a 0D HCCI engine code against more detailed mechanisms (inlet temperature varying from 290 to 500 K, the equivalence ratio from 0.2 to 0.7 and the compression ratio from 8 to 18) and experimentally against experimental shock tube and rapid compression machine data from the literature at pressures between 9 and 55 bar and temperatures between 700 and 1400 K for several fuels: the pure compounds n-heptane, iso-octane and toluene as well as binary and ternary mixtures of these compounds. For this validation, stoichiometric mixtures and mixtures with an equivalence ratio of 0.5 are used. The experimental validation is extended by comparing the surrogate mechanism to experimental data from an HCCI engine. A global reaction pathway is proposed for the auto-ignition of a surrogate gasoline, using the surrogate mechanism, in order to show the interactions that the three compounds can have with one another during the auto-ignition of a ternary mixture. (author)
Ng, Maggie; Mok, Daniel K W; Lee, Edmond P F; Dyke, John M
2013-03-15
The minimum energy path (MEP) of the reaction, CF(3)CHFCF(3) + H → transition state (TS) → CF(3)CFCF(3) + H(2), has been computed at different ab initio levels and with density functional theory (DFT) using different functionals. The computed B3LYP/6-31++G**, BH&HLYP/cc-pVDZ, BMK/6-31++G**, M05/6-31+G**, M05-2X/6-31+G**, UMP2/6-31++G**, PUMP2/6-31++G**//UMP2/6-31++G**, RCCSD(T)/aug-cc-pVDZ//UMP2/6-31++G**, RCCSD(T)/aug-cc-pVTZ(spd,sp)//UMP2//6-31++G**, RCCSD(T)/CBS//M05/6-31+G**, and RCCSD(T)/CBS//UMP2/6-31++G** MEPs, and associated gradients and Hessians, were used in reaction rate coefficient calculations based on the transition state theory (TST). Reaction rate coefficients were computed between 300 and 1500 K at various levels of TST, which include conventional TST, canonical variational TST (CVT) and improved CVT (ICVT), and with different tunneling corrections, namely, Wigner, zero-curvature, and small-curvature (SCT). The computed rate coefficients obtained at different ab initio, DFT and TST levels are compared with experimental values available in the 1000-1200 K temperature range. Based on the rate coefficients computed at the ICVT/SCT level, the highest TST level used in this study, the BH&HLYP functional performs best among all the functionals used, while the RCCSD(T)/CBS//MP2/6-31++G** level is the best among all the ab initio levels used. Comparing computed reaction rate coefficients obtained at different levels of theory shows that, the computed barrier height has the strongest effect on the computed reaction rate coefficients as expected. Variational effects on the computed rate coefficients are found to be negligibly small. Although tunneling effects are relatively small at high temperatures (~1500 K), SCT corrections are significant at low temperatures (~300 K), and both barrier heights and the magnitudes of the imaginary frequencies affect SCT corrections. Copyright © 2012 Wiley Periodicals, Inc.
Chernia, Zelig; Tsori, Yoav
2018-03-01
Phase separation in substituted pyridines in water is usually described as an interplay between temperature-driven breakage of hydrogen bonds and the associating interaction of the van der Waals force. In previous quantum-chemical studies, the strength of hydrogen bonding between one water and one pyridine molecules (the 1:1 complex) was assigned a pivotal role. It was accepted that the disassembly of the 1:1 complex at a critical temperature leads to phase separation and formation of the miscibility gap. Yet, for over two decades, notable empirical data and theoretical arguments were presented against that view, thus revealing the need in a revised quantum-mechanical description. In the present study, pyridine-water and 2,6-dimethylpyridine-water systems at different complexation stages are calculated using high level Kohn-Sham theory. The hydrophobic-hydrophilic properties are accounted for by the polarizable continuum solvation model. Inclusion of solvation in free energy of formation calculations reveals that 1:1 complexes are abundant in the organically rich solvents but higher level oligomers (i.e., 2:1 dimers with two pyridines and one water molecule) are the only feasible stable products in the more polar media. At the critical temperature, the dissolution of the external hydrogen bonds between the 2:1 dimer and the surrounding water molecules induces the demixing process. The 1:1 complex acts as a precursor in the formation of the dimers but is not directly involved in the demixing mechanism. The existence of the miscibility gap in one pyridine-water system and the lack of it in another is explained by the ability of the former to maintain stable dimerization. Free energy of formation of several reaction paths producing the 2:1 dimers is calculated and critically analyzed.
African Journals Online (AJOL)
abp
19 oct. 2017 ... Reaction to Mohamed Said Nakhli et al. concerning the article: "When the axillary block remains the only alternative in a 5 year old child". .... Bertini L1, Savoia G, De Nicola A, Ivani G, Gravino E, Albani A et al ... 2010;7(2):101-.
Energy Technology Data Exchange (ETDEWEB)
Stefan, Gheorghe Iulian [Ecole doctorale SIMEM, U.F.R. Sciences, Universite de Caen Basse-Normandie, 14032 Caen Cedex (France)
2006-12-15
direction. There are stressed the advantages of this approach and one gives details concerning the method of separation of the reaction products from beam particles. The separation is based on the magnetic rigidity values different for the nuclei composing the beam from the ones of the reaction products under study. The new results obtained were confronted with the computed rate of the reaction {sup 15}O(p,{beta}{sup +}){sup 16}O in comparison with the rate estimations for {sup 15}O({alpha},{gamma}){sup 19}Ne. For the first time one underlines the significance of the low energy tail of a resonance in an unbound nucleus. The effect would be an enhancement of the beta decay of {sup 16}F. The consequences for astrophysical processes are underlined. New sequential reactions are suggested and two new reaction cycles from {sup 15}O trough again {sup 15}O are described on this basis. These newly suggested cycles can enhance the energy generation in an explosive environment. To study thoroughly their influence these two new cycles should be introduced in advanced simulation astrophysical codes particularly into those simulating the X bursts.
Souvignet, Julien; Declerck, Gunnar; Asfari, Hadyl; Jaulent, Marie-Christine; Bousquet, Cédric
2016-10-01
Efficient searching and coding in databases that use terminological resources requires that they support efficient data retrieval. The Medical Dictionary for Regulatory Activities (MedDRA) is a reference terminology for several countries and organizations to code adverse drug reactions (ADRs) for pharmacovigilance. Ontologies that are available in the medical domain provide several advantages such as reasoning to improve data retrieval. The field of pharmacovigilance does not yet benefit from a fully operational ontology to formally represent the MedDRA terms. Our objective was to build a semantic resource based on formal description logic to improve MedDRA term retrieval and aid the generation of on-demand custom groupings by appropriately and efficiently selecting terms: OntoADR. The method consists of the following steps: (1) mapping between MedDRA terms and SNOMED-CT, (2) generation of semantic definitions using semi-automatic methods, (3) storage of the resource and (4) manual curation by pharmacovigilance experts. We built a semantic resource for ADRs enabling a new type of semantics-based term search. OntoADR adds new search capabilities relative to previous approaches, overcoming the usual limitations of computation using lightweight description logic, such as the intractability of unions or negation queries, bringing it closer to user needs. Our automated approach for defining MedDRA terms enabled the association of at least one defining relationship with 67% of preferred terms. The curation work performed on our sample showed an error level of 14% for this automated approach. We tested OntoADR in practice, which allowed us to build custom groupings for several medical topics of interest. The methods we describe in this article could be adapted and extended to other terminologies which do not benefit from a formal semantic representation, thus enabling better data retrieval performance. Our custom groupings of MedDRA terms were used while performing signal
Technology Paths in Energy-Efficient and Sustainable Construction
DEFF Research Database (Denmark)
Holm, Jesper; Lund Sørensen, Runa Cecilie
2015-01-01
Various tehcnology paths and regimes, Building codes and standards in energy, eco and sustainable housing......Various tehcnology paths and regimes, Building codes and standards in energy, eco and sustainable housing...
Kirischuk, V I; Khomenkov, V P; Strilchuk, N V; Zheltonozhskij, V A
2004-01-01
/sup 178m2/Hf isomer production in different spallation reactions with protons, alpha particles and neutrons at projectile energies up to 100 MeV has been analyzed using both STAPRE and ALICE code simulations. The STAPRE code was used to calculate the isomeric ratios, while the ALICE code was used to simulate the excitation functions of the respective ground states. A number of spallation reactions have been compared taking into account not only /sup 178m2 /Hf isomer productivity but also, first, the isomeric ratios calculated by the STAPRE code; second, the accumulation of the most undesirable Hf isotopes and isomers, such as /sup 172/Hf, /sup 175 /Hf, and /sup 179m/Hf; and, third, the production of other admixtures and by-products that could degrade the quality of the produced /sup 178m2/Hf isomer sources, including all stable Hf isotopes as well. Possibilities and ways of optimizing /sup 178m2/Hf isomer production in spallation reactions at projectile energies up to 100 MeV are discussed. This can be consi...
Portnoy, Sigal; Hersch, Ayelet; Sofer, Tal; Tresser, Sarit
2017-06-01
To test whether paired-play will induce longer path length and ranges of movement of the center of pressure (COP), which reflects on balance performance and stability, compared to solo-play and to test the difference in the path length and ranges of movement of the COP while playing the virtual reality (VR) game with the dominant hand compared to playing it with the nondominant hand. In this cross-sectional study 20 children (age 6.1 ± 0.7 years old) played an arm movement controlled VR game alone and with a peer while each of them stood on a pressure measuring pad to track the path length and ranges of movement of the COP. The total COP path was significantly higher during the paired-play (median 295.8 cm) compared to the COP path during the solo-play (median 189.2 cm). No significant differences were found in the reaction time and the mediolateral and anterior-posterior COP ranges between solo-play and paired-play. No significant differences were found between the parameters extracted during paired-play with the dominant or nondominant hand. Our findings imply that the paired-play is advantageous compared to solo-play since it induces a greater movement for the child, during which, higher COP velocities are reached that may contribute to improving the balance control of the child. Apart from the positive social benefits of paired-play, this positive effect on the COP path length is a noteworthy added value in the clinical setting when treating children with balance disorder.
Directory of Open Access Journals (Sweden)
Leandro André Francisco Lima
2016-06-01
Full Text Available This study addresses the use of Alternative Dispute Resolution (ADR’s methods, owing to the new Civil Law Procedure Code, having as it’s theoretical framework the concept of access to justice as a Right to a fair Law system. It’s asked about the possibilities of using the alternative Online Dispute Resolution (ODR's tools by jurisdiction, provided by the information technology, in order to maximize the effects relating to that Right. The pertinence of this question is glimpsed in view of the broad society accession to the virtual life. It is used the hypothetical-deductive method. The research is theoretical, bibliographical and documentary.
Radhakrishnan, Krishnan
1994-01-01
LSENS, the Lewis General Chemical Kinetics and Sensitivity Analysis Code, has been developed for solving complex, homogeneous, gas-phase chemical kinetics problems and contains sensitivity analysis for a variety of problems, including nonisothermal situations. This report is part 1 of a series of three reference publications that describe LENS, provide a detailed guide to its usage, and present many example problems. Part 1 derives the governing equations and describes the numerical solution procedures for the types of problems that can be solved. The accuracy and efficiency of LSENS are examined by means of various test problems, and comparisons with other methods and codes are presented. LSENS is a flexible, convenient, accurate, and efficient solver for chemical reaction problems such as static system; steady, one-dimensional, inviscid flow; reaction behind incident shock wave, including boundary layer correction; and perfectly stirred (highly backmixed) reactor. In addition, the chemical equilibrium state can be computed for the following assigned states: temperature and pressure, enthalpy and pressure, temperature and volume, and internal energy and volume. For static problems the code computes the sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of the dependent variables and/or the three rate coefficient parameters of the chemical reactions.
DEFF Research Database (Denmark)
Madsen, Mogens Ove
Begrebet Path Dependence blev oprindelig udviklet inden for New Institutionel Economics af bl.a. David, Arthur og North. Begrebet har spredt sig vidt i samfundsvidenskaberne og undergået en udvikling. Dette paper propagerer for at der er sket så en så omfattende udvikling af begrebet, at man nu kan...... tale om 1. og 2. generation af Path Dependence begrebet. Den nyeste udvikling af begrebet har relevans for metodologi-diskusionerne i relation til Keynes...
Energy Technology Data Exchange (ETDEWEB)
Isegawa, Miho; Liu, Fengyi [Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Kyoto 606-8103 (Japan); Maeda, Satoshi [Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Morokuma, Keiji, E-mail: morokuma@fukui.kyoto-u.ac.jp [Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Kyoto 606-8103 (Japan); Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322 (United States)
2014-10-21
We report reaction paths starting from N({sup 2}D) + H{sub 2}O for doublet spin states, D{sub 0} and D{sub 1}. The potential energy surfaces are explored in an automated fashion using the global reaction route mapping strategy. The critical points and reaction paths have been fully optimized at the complete active space second order perturbation theory level taking all valence electrons in the active space. In addition to direct dissociation pathways that would be dominant, three roaming processes, two roaming dissociation, and one roaming isomerization: (1) H{sub 2}ON → H–O(H)N → H–HON → NO({sup 2}Π) + H{sub 2}, (2) cis-HNOH → HNO–H → H–HNO → NO + H{sub 2}, (3) H{sub 2}NO → H–HNO → HNO–H → trans-HNOH, are confirmed on the D{sub 0} surface.
DEFF Research Database (Denmark)
Karnøe, Peter; Garud, Raghu
2012-01-01
This paper employs path creation as a lens to follow the emergence of the Danish wind turbine cluster. Supplier competencies, regulations, user preferences and a market for wind power did not pre-exist; all had to emerge in a tranformative manner involving multiple actors and artefacts. Competenc......This paper employs path creation as a lens to follow the emergence of the Danish wind turbine cluster. Supplier competencies, regulations, user preferences and a market for wind power did not pre-exist; all had to emerge in a tranformative manner involving multiple actors and artefacts....... Competencies emerged through processes and mechanisms such as co-creation that implicated multiple learning processes. The process was not an orderly linear one as emergent contingencies influenced the learning processes. An implication is that public policy to catalyse clusters cannot be based...
PICA95: An intranuclear-cascade code for 25-MeV to 3.5-GeV photon-induced nuclear reactions
International Nuclear Information System (INIS)
Fu, C.Y.; Gabriel, T.A.; Lillie, R.A.
1997-01-01
PICA95, an intranuclear-cascade code for calculating photon-induced nuclear reactions for incident photon energies up to 3.5 GeV, is an extension of the original PICA code package that works for incident photon energies up to 400 MeV. The original code includes the quasi-deuteron breakup and single-pion production channels. The extension to an incident photon energy of 3.5 GeV requires the addition of multiple-pion production channels capable of emitting up to five pions. Relativistic phase-space relations are used to conserve energy and momentum in multi-body breakups. Fermi motion of the struck nucleon is included in the phase-space calculations as well as secondary nuclear collisions of the produced particles. Calculated doubly differential cross sections for the productions of protons, neutrons, π + , π 0 , and π - for incident photon energies of 500 MeV, 1 GeV, and 2 GeV are compared with predictions by other codes. Due to the sparsity of experimental data, more experiments are needed in order to refine the gamma nuclear collision model
Contribution of 194.1 keV Resonance to 17O(p, alpha) 14N Reaction Rate using R Matrix Code
International Nuclear Information System (INIS)
Chafa, A.; Messili, F.Z.; Barhoumi, S.
2009-01-01
Knowledge of the 17 O(p, alpha ) 14 N reaction rates is required for evaluating elemental abundances in a number of hydrogen - burning stellar sites. This reaction is specifically very important for nucleosynthesis of the rare oxygen isotope 17 O. Classical novae are thought to be a major source of 17 O in the Galaxy and produce the short-live radioisotope 18 F whose + decay is followed by a gamma ray emission which could be observed with satellites such as the Integral observatory. As the 17 O(p, alpha) 14 N and 17 O(p, alpha ) 18 F reactions govern the destruction of 17 O and the formation of 1 '8F, their rates are decisive in determining the final abundances of these isotopes. Stellar temperatures of primary importance for nucleosynthesis are typically in the ranges T = 0.01-0.1 GK for red giant, AGB, and massive stars, and T 0.01-0.4 GK for classical nova explosions In recent work, we observed, for the first time, a resonance a 183.3 keV corresponding to level in 18 F at Ex 5789.8 ± 0.3 keV. A new astrophysical parameters of this resonance are found. In this work we study this reaction using numerical code based on R matrix method including the new values of level energy and parameters of 183.3 keV resonance in order to show his contribution to 17 O(p, alpha) 14 N reaction rates. We also use old parameters values of this resonance given in Keiser work for comparison. We show that this resonance predominate the reaction rates in all range of stellar temperature for classical nova explosions. This is in good agreement with our work with experimental method. We also study cross section and differential cross section 17 O(p, alpha ) 14 N reaction with R matrix method
International Nuclear Information System (INIS)
Jonah, S.A.
2013-01-01
The EXIFON code version 2.0 is a calculational tool, which is based on both many-body theory and random matrix physics. In this work, it has been used to calculate neutron induced reaction cross section data from 0 to 20 MeV on an even-even, magic number nuclide 52 Cr with neutron number, N=28. Specifically, the (n,p), (n,α) and (n,2n) reaction cross section data were calculated as functions of incident energy of neutrons. Data obtained from the experimental data in the IAEA, EXFOR data Library and recommended data libraries around the globe, JENDL, ENDF and JEFF were used to validate the calculated data. The data indicate that the calculated data without shell corrections are in good agreement with experimental data as well as the recommended data from the evaluated data libraries. The calculated results could provide useful insight into the choice of some input parameters near closed shells using the EXIFON code.
Roos, J.A.; Korf, S.J.; Veehof, R.H.J.; van Ommen, J.G.; Ross, J.R.H.
1989-01-01
Experiments using gas mixtures of O2, C2H6 or C2H4 and CH4 or He have been carried out with a Li/MgO catalyst using a well-mixed reaction system which show that the total oxidation products, CO and CO2, are formed predominantly from ethylene, formed in the oxidative coupling of methane. It is
International Nuclear Information System (INIS)
Land, R.H.; Maroni, V.A.; Minkoff, M.
1979-01-01
A computer code has been developed which permits the determination of tritium reaction (T 2 to HTO)/adsorption/release and instrument correction parameters from enclosure (building) - detritiation test data. The code is based on a simplified model which treats each parameter as a normalized time-independent constant throughout the data-unfolding steps. Because of the complicated four-dimensional mathematical surface generated by the resulting differential equation system, occasional local-minima effects are observed, but these effects can be overcome in most instances by selecting a series of trial guesses for the initial parameter values and observing the reproducibility of final parameter values for cases where the best overall fit to experimental data is achieved. The code was then used to analyze existing small-cubicle test data with good success, and the resulting normalized parameters were employed to evaluate hypothetical reactor-building detritiation scenarios. It was concluded from the latter evaluation that the complications associated with moisture formation, adsorption, and release, particularly in terms of extended cleanup times, may not be as great as was previously thought. It is recommended that the validity of the TSOAK-M1 model be tested using data from detritiation tests conducted on large experimental enclosures (5 to 10 cm 3 ) and, if possible, actual facility buildings
Inácio, Pedro; Airaksinen, Marja; Cavaco, Afonso
2015-01-01
The description of adverse drug reactions (ADRs) by health care professionals (HCPs) can be highly variable. This variation can affect the coding of a reaction with the Medical Dictionary for Regulatory Activities (MedDRA(®)), the gold standard for pharmacovigilance database entries. Ultimately, the strength of a safety signal can be compromised. The objective of this study was to assess: 1) participation of different HCPs in ADR reporting, and 2) variation of language used by HCPs when describing ADRs, and to compare it with the corresponding MedDRA(®) codes. A retrospective content analysis was performed, using the database of spontaneous reports submitted by HCPs in the region of the Southern Pharmacovigilance Unit, Portugal. Data retrieved consisted of the idiomatic description of all ADRs occurring in 2004 (first year of the Unit activity, n = 53) and in 2012 (n = 350). The agreement between the language used by HCPs and the MedDRA(®) dictionary codes was quantitatively assessed. From a total of 403 spontaneous reports received in the two years, 896 words describing ADRs were collected. HCPs presented different levels of pharmacovigilance participation and ADR idiomatic descriptions, with pharmacists providing the greatest overall contribution. The agreement between the language used in spontaneous reports and the corresponding MedDRA(®) terms varied by HCP background, with nurses presenting the poorer results than medical doctors and pharmacists when considering the dictionary as the gold standard in ADRs' language. Lexical accuracy and semantic variations exist between different HCP groups. These differences may interfere with the strength of a generated safety signal. Clinical and MedDRA(®) terminology training should be targeted to increase not only the frequency, but also the quality of spontaneous reports, in accordance with HCPs' experience and background. Copyright © 2015 Elsevier Inc. All rights reserved.
Nonadiabatic transition path sampling
International Nuclear Information System (INIS)
Sherman, M. C.; Corcelli, S. A.
2016-01-01
Fewest-switches surface hopping (FSSH) is combined with transition path sampling (TPS) to produce a new method called nonadiabatic path sampling (NAPS). The NAPS method is validated on a model electron transfer system coupled to a Langevin bath. Numerically exact rate constants are computed using the reactive flux (RF) method over a broad range of solvent frictions that span from the energy diffusion (low friction) regime to the spatial diffusion (high friction) regime. The NAPS method is shown to quantitatively reproduce the RF benchmark rate constants over the full range of solvent friction. Integrating FSSH within the TPS framework expands the applicability of both approaches and creates a new method that will be helpful in determining detailed mechanisms for nonadiabatic reactions in the condensed-phase.
Driscoll, J. M.; Meixner, T.; Molotch, N. P.; Sickman, J. O.; Williams, M. W.; McIntosh, J. C.; Brooks, P. D.
2011-12-01
Snowmelt from alpine catchments provides 70-80% of the American Southwest's water resources. Climate change threatens to alter the timing and duration of snowmelt in high elevation catchments, which may also impact the quantity and the quality of these water resources. Modelling of these systems provides a robust theoretical framework to process the information extracted from the sparse physical measurement available in these sites due to their remote locations. Mass-balance inverse geochemical models (via PHREEQC, developed by the USGS) were applied to two snowmelt-dominated catchments; Green Lake 4 (GL4) in the Rockies and Emerald Lake (EMD) in the Sierra Nevada. Both catchments primarily consist of granite and granodiorite with a similar bulk geochemistry. The inputs for the models were the initial (snowpack) and final (catchment output) hydrochemistry and a catchment-specific suite of mineral weathering reactions. Models were run for wet and dry snow years, for early and late time periods (defined hydrologically as 1/2 of the total volume for the year). Multiple model solutions were reduced to a representative suite of reactions by choosing the model solution with the fewest phases and least overall phase change. The dominant weathering reactions (those which contributed the most solutes) were plagioclase for GL4 and albite for EMD. Results for GL4 show overall more plagioclase weathering during the dry year (214.2g) than wet year (89.9g). Both wet and dry years show more weathering in the early time periods (63% and 56%, respectively). These results show that the snowpack and outlet are chemically more similar during wet years than dry years. A possible hypothesis to explain this difference is a change in contribution from subsurface storage; during the wet year the saturated catchment reduces contact with surface materials that would result in mineral weathering reactions by some combination of reduced infiltration and decreased subsurface transit time. By
Directory of Open Access Journals (Sweden)
Nussinov Ruth
2006-03-01
Full Text Available Abstract Background While the premise that lateral gene transfer (LGT is a dominant evolutionary force is still in considerable dispute, the case for widespread LGT in the family of aminoacyl-tRNA synthetases (aaRS is no longer contentious. aaRSs are ancient enzymes, guarding the fidelity of the genetic code. They are clustered in two structurally unrelated classes. Only lysine aminoacyl-tRNA synthetase (LysRS is found both as a class 1 and a class 2 enzyme (LysRS1-2. Remarkably, in several extant prokaryotes both classes of the enzyme coexist, a unique phenomenon that has yet to receive its due attention. Results We applied a phylogenetic approach for determining the extent and origin of LGT in prokaryotic LysRS. Reconstructing species trees for Archaea and Bacteria, and inferring that their last common ancestors encoded LysRS1 and LysRS2, respectively, we studied the gains and losses of both classes. A complex pattern of LGT events emerged. In specific groups of organisms LysRS1 was replaced by LysRS2 (and vice versa. In one occasion, within the alpha proteobacteria, a LysRS2 to LysRS1 LGT was followed by reversal to LysRS2. After establishing the most likely LGT paths, we studied the possible origins of the laterally transferred genes. To this end, we reconstructed LysRS gene trees and evaluated the likely origins of the laterally transferred genes. While the sources of LysRS1 LGTs were readily identified, those for LysRS2 remain, for now, uncertain. The replacement of one LysRS by another apparently transits through a stage simultaneously coding for both synthetases, probably conferring a selective advantage to the affected organisms. Conclusion The family of LysRSs features complex LGT events. The currently available data were sufficient for identifying unambiguously the origins of LysRS1 but not of LysRS2 gene transfers. A selective advantage is suggested to organisms encoding simultaneously LysRS1-2.
International Nuclear Information System (INIS)
Parkhust, David L.
2005-01-01
Description of program or function: PHREEQC is a computer program written in the C programming language that is designed to perform a wide variety of aqueous geochemical calculations. PHREEQC is based on an ion-association aqueous model and has capabilities for (1) speciation and saturation-index calculations, (2) reaction-path and advective-transport calculations involving specified irreversible reactions, mixing of solutions, mineral and gas equilibria, surface- complexation reactions, and ion-exchange reactions, and (3) inverse modeling, which finds sets of mineral and gas mole transfers that account for composition differences between waters, within specified compositional uncertainties. PHREEQC is derived from the Fortran program PHREEQE, but it has been completely rewritten in C with the addition of many new capabilities. New features include the capabilities to use redox couples to distribute redox elements among their valence states in speciation calculations; to model ion-exchange and surface-complexation reactions; to model reactions with a fixed-pressure, multicomponent gas phase (that is, a gas bubble); to calculate the mass of water in the aqueous phase during reaction and transport calculations; to keep track of the moles of minerals present in the solid phases and determine automatically the thermodynamically stable phase assemblage; to simulate advective transport in combination with PHREEQC's reaction-modeling capability; and to make inverse modeling calculations that allow for uncertainties in the analytical data. The user interface is improved through the use of a simplified approach to redox reactions, which includes explicit mole-balance equations for hydrogen and oxygen; the use of a revised input that is modular and completely free format; and the use of mineral names and standard chemical symbolism rather than index numbers. The use of C eliminates nearly all limitations on array sizes, including numbers of elements, aqueous species
Directory of Open Access Journals (Sweden)
Qingwen Wang
2013-03-01
Full Text Available Catalytic refining of bio-oil by reacting with olefin/alcohol over solid acids can convert bio-oil to oxygen-containing fuels. Reactivities of groups of compounds typically present in bio-oil with 1-octene (or 1-butanol were studied at 120 °C/3 h over Dowex50WX2, Amberlyst15, Amberlyst36, silica sulfuric acid (SSA and Cs2.5H0.5PW12O40 supported on K10 clay (Cs2.5/K10, 30 wt. %. These compounds include phenol, water, acetic acid, acetaldehyde, hydroxyacetone, d-glucose and 2-hydroxymethylfuran. Mechanisms for the overall conversions were proposed. Other olefins (1,7-octadiene, cyclohexene, and 2,4,4-trimethylpentene and alcohols (iso-butanol with different activities were also investigated. All the olefins and alcohols used were effective but produced varying product selectivities. A complex model bio-oil, synthesized by mixing all the above-stated model compounds, was refined under similar conditions to test the catalyst’s activity. SSA shows the highest hydrothermal stability. Cs2.5/K10 lost most of its activity. A global reaction pathway is outlined. Simultaneous and competing esterification, etherfication, acetal formation, hydration, isomerization and other equilibria were involved. Synergistic interactions among reactants and products were determined. Acid-catalyzed olefin hydration removed water and drove the esterification and acetal formation equilibria toward ester and acetal products.
Energy Technology Data Exchange (ETDEWEB)
Caruso, A.; Cherubini, S.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Rapisarda, G.; Romano, S.; Sergi, ML. [Dipartimento di Fisica e Astronomia, Catania, Italy and INFN-Laboratori Nazionali del Sud, Catania (Italy); Crucillà, V. [INFN-Laboratori Nazionali del Sud, Catania (Italy); Gulino, M. [Universitá di Enna KORE, Enna, Italy and INFN-Laboratori Nazionali del Sud, Catania (Italy); Kubono, S. [Riken, Wako, Tokyo, Japan and Center for Nuclear Study, The University of Tokyo (Japan); Yamaguchi, H.; Hayakawa, S.; Wakabayashi, Y. [Center for Nuclear Study, The University of Tokyo (Japan); Iwasa, N. [Department of Physics, Tohoku University, Sendai (Japan); Kato, S. [Department of Physics, Yamagata University, Yamagata (Japan); Komatsubara, T. [Rare Isotope Science Project, Institute for Basic Science, Yuseong-daero, Yuseong-gu, Daejeon 305-811 (Korea, Republic of); Teranishi, T. [Department of Physics, Kyushu University, Fukuoka (Japan); Coc, A. [Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, Orsay (France); Hammache, F. [Institut de Physique Nucléaire, IN2P3, Orsay (France); and others
2015-02-24
Novae are astrophysical events (violent explosion) occurring in close binary systems consisting of a white dwarf and a main-sequence star or a star in a more advanced stage of evolution. They are called 'narrow systems' because the two components interact with each other: there is a process of mass exchange with resulting in the transfer of matter from the companion star to the white dwarf, leading to the formation of this last of the so-called accretion disk, rich mainly of hydrogen. Over time, more and more material accumulates until the pressure and the temperature reached are sufficient to trigger nuclear fusion reactions, rapidly converting a large part of the hydrogen into heavier elements. The products of 'hot hydrogen burning' are then placed in the interstellar medium as a result of violent explosions. Studies on the element abundances observed in these events can provide important information about the stages of evolution stellar. During the outbursts of novae some radioactive isotopes are synthesized: in particular, the decay of short-lived nuclei such as {sup 13}N and {sup 18}F with subsequent emission of gamma radiation energy below 511 keV. The gamma rays from products electron-positron annihilation of positrons emitted in the decay of {sup 18}F are the most abundant and the first observable as soon as the atmosphere of the nova starts to become transparent to gamma radiation. Hence the importance of the study of nuclear reactions that lead both to the formation and to the destruction of {sup 18}F. Among these, the {sup 18}F(p,α){sup 15}O reaction is one of the main channels of destruction. This reaction was then studied at energies of astrophysical interest. The experiment done at Riken, Japan, has as its objective the study of the {sup 18}F(p,α){sup 15}O reaction, using a beam of {sup 18}F produced at CRIB, to derive important information about the phenomenon of novae. In this paper we present the experimental technique and the
Seyfried, W. E.; Pester, Nicholas J.; Tutolo, Benjamin M.; Ding, Kang
2015-08-01
Since the first reported discovery of the Lost City hydrothermal system in 2001, it was recognized that seawater alteration of ultramafic rocks plays a key role in the composition of the coexisting vent fluids. The unusually high pH and high concentrations of H2 and CH4 provide compelling evidence for this. Here we report the chemistry of hydrothermal fluids sampled from two vent structures (Beehive: ∼90-116 °C, and M6: ∼75 °C) at Lost City in 2008 during cruise KNOX18RR using ROV Jason 2 and R/V Revelle assets. The vent fluid chemistry at both sites reveals considerable overlap in concentrations of dissolved gases (H2, CH4), trace elements (Cs, Rb, Li, B and Sr), and major elements (SO4, Ca, K, Na, Cl), including a surprising decrease in dissolved Cl, suggesting a common source fluid is feeding both sites. The absence of Mg and relatively high concentrations of Ca and sulfate suggest solubility control by serpentine-diopside-anhydrite, while trace alkali concentrations, especially Rb and Cs, are high, assuming a depleted mantle protolith. In both cases, but especially for Beehive vent fluid, the silica concentrations are well in excess of those expected for peridotite alteration and the coexistence of serpentine-brucite at all reasonable temperatures. However, both the measured pH and silica values are in better agreement with serpentine-diopside-tremolite-equilibria. Geochemical modeling demonstrates that reaction of plagioclase with serpentinized peridotite can shift the chemical system away from brucite and into the tremolite stability field. This is consistent with the complex intermingling of peridotite and gabbroic bodies commonly observed within the Atlantis Massif. We speculate the existence of such plagioclase bearing peridotite may also account for the highly enriched trace alkali (Cs, Rb) concentrations in the Lost City vent fluids. Additionally, reactive transport modeling taking explicit account of temperature dependent rates of mineral
Path Creation, Path Dependence and Breaking Away from the Path
Wang, Jens; Hedman, Jonas; Tuunainen, Virpi Kristiina
2016-01-01
The explanation of how and why firms succeed or fail is a recurrent research challenge. This is particularly important in the context of technological innovations. We focus on the role of historical events and decisions in explaining such success and failure. Using a case study of Nokia, we develop and extend a multi-layer path dependence framework. We identify four layers of path dependence: technical, strategic and leadership, organizational, and external collaboration. We show how path dep...
Feynman's path integrals and Bohm's particle paths
International Nuclear Information System (INIS)
Tumulka, Roderich
2005-01-01
Both Bohmian mechanics, a version of quantum mechanics with trajectories, and Feynman's path integral formalism have something to do with particle paths in space and time. The question thus arises how the two ideas relate to each other. In short, the answer is, path integrals provide a re-formulation of Schroedinger's equation, which is half of the defining equations of Bohmian mechanics. I try to give a clear and concise description of the various aspects of the situation. (letters and comments)
Path coupling and aggregate path coupling
Kovchegov, Yevgeniy
2018-01-01
This book describes and characterizes an extension to the classical path coupling method applied to statistical mechanical models, referred to as aggregate path coupling. In conjunction with large deviations estimates, the aggregate path coupling method is used to prove rapid mixing of Glauber dynamics for a large class of statistical mechanical models, including models that exhibit discontinuous phase transitions which have traditionally been more difficult to analyze rigorously. The book shows how the parameter regions for rapid mixing for several classes of statistical mechanical models are derived using the aggregate path coupling method.
Construction of new quantum MDS codes derived from constacyclic codes
Taneja, Divya; Gupta, Manish; Narula, Rajesh; Bhullar, Jaskaran
Obtaining quantum maximum distance separable (MDS) codes from dual containing classical constacyclic codes using Hermitian construction have paved a path to undertake the challenges related to such constructions. Using the same technique, some new parameters of quantum MDS codes have been constructed here. One set of parameters obtained in this paper has achieved much larger distance than work done earlier. The remaining constructed parameters of quantum MDS codes have large minimum distance and were not explored yet.
Fractional path planning and path tracking
International Nuclear Information System (INIS)
Melchior, P.; Jallouli-Khlif, R.; Metoui, B.
2011-01-01
This paper presents the main results of the application of fractional approach in path planning and path tracking. A new robust path planning design for mobile robot was studied in dynamic environment. The normalized attractive force applied to the robot is based on a fictitious fractional attractive potential. This method allows to obtain robust path planning despite robot mass variation. The danger level of each obstacles is characterized by the fractional order of the repulsive potential of the obstacles. Under these conditions, the robot dynamic behavior was studied by analyzing its X - Y path planning with dynamic target or dynamic obstacles. The case of simultaneously mobile obstacles and target is also considered. The influence of the robot mass variation is studied and the robustness analysis of the obtained path shows the robustness improvement due to the non integer order properties. Pre shaping approach is used to reduce system vibration in motion control. Desired systems inputs are altered so that the system finishes the requested move without residual vibration. This technique, developed by N.C. Singer and W.P.Seering, is used for flexible structure control, particularly in the aerospace field. In a previous work, this method was extended for explicit fractional derivative systems and applied to second generation CRONE control, the robustness was also studied. CRONE (the French acronym of C ommande Robuste d'Ordre Non Entier ) control system design is a frequency-domain based methodology using complex fractional integration.
Energy Technology Data Exchange (ETDEWEB)
Fajeau, M; Nguyen, L T; Saunier, J [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)
1966-09-01
This code handles the following problems: -1) Analysis of thermal experiments on a water loop at high or low pressure; steady state or transient behavior; -2) Analysis of thermal and hydrodynamic behavior of water-cooled and moderated reactors, at either high or low pressure, with boiling permitted; fuel elements are assumed to be flat plates: - Flowrate in parallel channels coupled or not by conduction across plates, with conditions of pressure drops or flowrate, variable or not with respect to time is given; the power can be coupled to reactor kinetics calculation or supplied by the code user. The code, containing a schematic representation of safety rod behavior, is a one dimensional, multi-channel code, and has as its complement (FLID), a one-channel, two-dimensional code. (authors) [French] Ce code permet de traiter les problemes ci-dessous: 1. Depouillement d'essais thermiques sur boucle a eau, haute ou basse pression, en regime permanent ou transitoire; 2. Etudes thermiques et hydrauliques de reacteurs a eau, a plaques, a haute ou basse pression, ebullition permise: - repartition entre canaux paralleles, couples on non par conduction a travers plaques, pour des conditions de debit ou de pertes de charge imposees, variables ou non dans le temps; - la puissance peut etre couplee a la neutronique et une representation schematique des actions de securite est prevue. Ce code (Cactus) a une dimension d'espace et plusieurs canaux, a pour complement Flid qui traite l'etude d'un seul canal a deux dimensions. (auteurs)
International Nuclear Information System (INIS)
Wald, H.B.
1990-01-01
The 'PATH' codes are used to design magnetic optics subsystems for neutral particle beam systems. They include a 2-1/2D and three 3-D space charge models, two of which have recently been added. This paper describes the 3-D models and reports on preliminary benchmark studies in which these models are checked for stability as the cloud size is varied and for consistency with each other. Differences between the models are investigated and the computer time requirements for running these models are established
International Nuclear Information System (INIS)
Khrapko, R.I.
1985-01-01
A uniform description of various path-dependent functions is presented with the help of expansion of the type of the Taylor series. So called ''path-integrals'' and ''path-tensor'' are introduced which are systems of many-component quantities whose values are defined for arbitrary paths in coordinated region of space in such a way that they contain a complete information on the path. These constructions are considered as elementary path-dependent functions and are used instead of power monomials in the usual Taylor series. Coefficients of such an expansion are interpreted as partial derivatives dependent on the order of the differentiations or else as nonstandard cavariant derivatives called two-point derivatives. Some examples of pathdependent functions are presented.Space curvature tensor is considered whose geometrica properties are determined by the (non-transitive) translator of parallel transport of a general type. Covariant operation leading to the ''extension'' of tensor fiels is pointed out
Iterated Leavitt Path Algebras
International Nuclear Information System (INIS)
Hazrat, R.
2009-11-01
Leavitt path algebras associate to directed graphs a Z-graded algebra and in their simplest form recover the Leavitt algebras L(1,k). In this note, we introduce iterated Leavitt path algebras associated to directed weighted graphs which have natural ± Z grading and in their simplest form recover the Leavitt algebras L(n,k). We also characterize Leavitt path algebras which are strongly graded. (author)
Energy Technology Data Exchange (ETDEWEB)
Janse van Rensburg, E J, E-mail: rensburg@yorku.c [Department of Mathematics and Statistics, York University, Toronto, ON, M3J 1P3 (Canada)
2010-08-20
In this paper the models of pulled Dyck paths in Janse van Rensburg (2010 J. Phys. A: Math. Theor. 43 215001) are generalized to pulled Motzkin path models. The generating functions of pulled Motzkin paths are determined in terms of series over trinomial coefficients and the elastic response of a Motzkin path pulled at its endpoint (see Orlandini and Whittington (2004 J. Phys. A: Math. Gen. 37 5305-14)) is shown to be R(f) = 0 for forces pushing the endpoint toward the adsorbing line and R(f) = f(1 + 2cosh f))/(2sinh f) {yields} f as f {yields} {infinity}, for forces pulling the path away from the X-axis. In addition, the elastic response of a Motzkin path pulled at its midpoint is shown to be R(f) = 0 for forces pushing the midpoint toward the adsorbing line and R(f) = f(1 + 2cosh (f/2))/sinh (f/2) {yields} 2f as f {yields} {infinity}, for forces pulling the path away from the X-axis. Formal combinatorial identities arising from pulled Motzkin path models are also presented. These identities are the generalization of combinatorial identities obtained in directed paths models to their natural trinomial counterparts.
Janse van Rensburg, E. J.
2010-08-01
In this paper the models of pulled Dyck paths in Janse van Rensburg (2010 J. Phys. A: Math. Theor. 43 215001) are generalized to pulled Motzkin path models. The generating functions of pulled Motzkin paths are determined in terms of series over trinomial coefficients and the elastic response of a Motzkin path pulled at its endpoint (see Orlandini and Whittington (2004 J. Phys. A: Math. Gen. 37 5305-14)) is shown to be R(f) = 0 for forces pushing the endpoint toward the adsorbing line and R(f) = f(1 + 2cosh f))/(2sinh f) → f as f → ∞, for forces pulling the path away from the X-axis. In addition, the elastic response of a Motzkin path pulled at its midpoint is shown to be R(f) = 0 for forces pushing the midpoint toward the adsorbing line and R(f) = f(1 + 2cosh (f/2))/sinh (f/2) → 2f as f → ∞, for forces pulling the path away from the X-axis. Formal combinatorial identities arising from pulled Motzkin path models are also presented. These identities are the generalization of combinatorial identities obtained in directed paths models to their natural trinomial counterparts.
International Nuclear Information System (INIS)
Janse van Rensburg, E J
2010-01-01
In this paper the models of pulled Dyck paths in Janse van Rensburg (2010 J. Phys. A: Math. Theor. 43 215001) are generalized to pulled Motzkin path models. The generating functions of pulled Motzkin paths are determined in terms of series over trinomial coefficients and the elastic response of a Motzkin path pulled at its endpoint (see Orlandini and Whittington (2004 J. Phys. A: Math. Gen. 37 5305-14)) is shown to be R(f) = 0 for forces pushing the endpoint toward the adsorbing line and R(f) = f(1 + 2cosh f))/(2sinh f) → f as f → ∞, for forces pulling the path away from the X-axis. In addition, the elastic response of a Motzkin path pulled at its midpoint is shown to be R(f) = 0 for forces pushing the midpoint toward the adsorbing line and R(f) = f(1 + 2cosh (f/2))/sinh (f/2) → 2f as f → ∞, for forces pulling the path away from the X-axis. Formal combinatorial identities arising from pulled Motzkin path models are also presented. These identities are the generalization of combinatorial identities obtained in directed paths models to their natural trinomial counterparts.
MM98.36 Strain Paths in Extrusion
DEFF Research Database (Denmark)
Lindegren, Maria; Wiwe, Birgitte; Wanheim, Tarras
1998-01-01
The extrusion process has been investigated for different geometries, in order to study the strain path of different material elements during their movements through the plastic zone. This is done by using the FEM code DEFORM and physical simulation with wax togehter with the coefficient method. ....... Calculations of strain paths have also been performed by ABAQUS....
Multi-Dimensional Path Queries
DEFF Research Database (Denmark)
Bækgaard, Lars
1998-01-01
to create nested path structures. We present an SQL-like query language that is based on path expressions and we show how to use it to express multi-dimensional path queries that are suited for advanced data analysis in decision support environments like data warehousing environments......We present the path-relationship model that supports multi-dimensional data modeling and querying. A path-relationship database is composed of sets of paths and sets of relationships. A path is a sequence of related elements (atoms, paths, and sets of paths). A relationship is a binary path...
DEFF Research Database (Denmark)
Bessenrodt, Christine; Olsson, Jørn Børling; Sellers, James A.
2013-01-01
We give a complete classification of the unique path partitions and study congruence properties of the function which enumerates such partitions.......We give a complete classification of the unique path partitions and study congruence properties of the function which enumerates such partitions....
International Nuclear Information System (INIS)
Prokhorov, L.V.
1982-01-01
The properties of path integrals associated with the allowance for nonstandard terms reflecting the operator nature of the canonical variables are considered. Rules for treating such terms (''equivalence rules'') are formulated. Problems with a boundary, the behavior of path integrals under canonical transformations, and the problem of quantization of dynamical systems with constraints are considered in the framework of the method
Code Disentanglement: Initial Plan
Energy Technology Data Exchange (ETDEWEB)
Wohlbier, John Greaton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kelley, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rockefeller, Gabriel M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Calef, Matthew Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-01-27
The first step to making more ambitious changes in the EAP code base is to disentangle the code into a set of independent, levelized packages. We define a package as a collection of code, most often across a set of files, that provides a defined set of functionality; a package a) can be built and tested as an entity and b) fits within an overall levelization design. Each package contributes one or more libraries, or an application that uses the other libraries. A package set is levelized if the relationships between packages form a directed, acyclic graph and each package uses only packages at lower levels of the diagram (in Fortran this relationship is often describable by the use relationship between modules). Independent packages permit independent- and therefore parallel|development. The packages form separable units for the purposes of development and testing. This is a proven path for enabling finer-grained changes to a complex code.
Spallation reactions - physics and applications
International Nuclear Information System (INIS)
Kelic, A.; Ricciardi, M.; Schmidt, K-H.
2009-01-01
-nucleon collisions with an intra-nuclear-cascade code. Most of the a lient features observed in the residual nuclide distributions are determined by the later de-excitation stage of the reaction due to the different possible de-excitation paths like evaporation of nucleons, light charged particles and intermediate mass fragments, fission and multi-fragmentation
DEFF Research Database (Denmark)
Høgdall, Estrid; Vuust, Jens; Lind, Peter
2000-01-01
of using TGR gene variants as markers to distinguish among T. gondii isolates from different animals and different geographical sources. Based on the band patterns obtained by restriction fragment length polymorphism (RFLP) analysis of the polymerase chain reaction (PCR) amplified TGR sequences, the T...
International Nuclear Information System (INIS)
DeWitt-Morette, C.
1983-01-01
Much is expected of path integration as a quantization procedure. Much more is possible if one recognizes that path integration is at the crossroad of stochastic and differential calculus and uses the full power of both stochastic and differential calculus in setting up and computing path integrals. In contrast to differential calculus, stochastic calculus has only comparatively recently become an instrument of thought. It has nevertheless already been used in a variety of challenging problems, for instance in the quantization problem. The author presents some applications of the stochastic scheme. (Auth.)
Two dimensional simplicial paths
International Nuclear Information System (INIS)
Piso, M.I.
1994-07-01
Paths on the R 3 real Euclidean manifold are defined as 2-dimensional simplicial strips which are orbits of the action of a discrete one-parameter group. It is proven that there exists at least one embedding of R 3 in the free Z-module generated by S 2 (x 0 ). The speed is defined as the simplicial derivative of the path. If mass is attached to the simplex, the free Lagrangian is proportional to the width of the path. In the continuum limit, the relativistic form of the Lagrangian is recovered. (author). 7 refs
Simons, Jacob V., Jr.
2017-01-01
The critical path method/program evaluation and review technique method of project scheduling is based on the importance of managing a project's critical path(s). Although a critical path is the longest path through a network, its location in large projects is facilitated by the computation of activity slack. However, logical fallacies in…
Leamer, Micah J.
2004-01-01
Let K be a field and Q a finite directed multi-graph. In this paper I classify all path algebras KQ and admissible orders with the property that all of their finitely generated ideals have finite Groebner bases. MS
Path planning in changeable environments
Nieuwenhuisen, D.
2007-01-01
This thesis addresses path planning in changeable environments. In contrast to traditional path planning that deals with static environments, in changeable environments objects are allowed to change their configurations over time. In many cases, path planning algorithms must facilitate quick
International Nuclear Information System (INIS)
Ishibashi, K.; Miura, Y.; Sakae, T.
1990-01-01
In the present study, intranuclear nucleons with a high momentum are introduced into intranuclear cascade calculation, and the preequilibrium effects are considered at the end of the cascade process. The improvements made in the HETC (High Energy Transport Code) are outlined, focusing on intranuclear nucleons with a high momentum, and termination of the intranuclear cascade process. Discussion is made of the cutoff energy, and Monte Carlo calculations based on an excitation model are presented and analyzed. The experimental high energy neutrons in the backward direction are successfully reproduced. The preequilibrium effect is considered in a local manner, and this is introduced as a simple probability density function for terminating the intranuclear cascade process. The resultant neutron spectra reproduce the shoulders of the experimental data in the region of 20 to 50 MeV. The exciton model is coded with a Monte Carlo algorithm. The results of the exciton model calculation is not so appreciable except for intermediate energy neutrons in the backward direction. (N.K.)
Quivers of Bound Path Algebras and Bound Path Coalgebras
Directory of Open Access Journals (Sweden)
Dr. Intan Muchtadi
2010-09-01
Full Text Available bras and coalgebras can be represented as quiver (directed graph, and from quiver we can construct algebras and coalgebras called path algebras and path coalgebras. In this paper we show that the quiver of a bound path coalgebra (resp. algebra is the dual quiver of its bound path algebra (resp. coalgebra.
Eklund, Kerri
2016-01-01
The Guide to the Code of Ethics for Nurses is an excellent guideline for all nurses regardless of their area of practice. I greatly enjoyed reading the revisions in place within the 2015 edition and refreshing my nursing conscience. I plan to always keep my Guide to the Code of Ethics for Nurses near in order to keep my moral compass from veering off the path of quality care.
Qian, Weixian; Zhou, Xiaojun; Lu, Yingcheng; Xu, Jiang
2015-09-15
Both the Jones and Mueller matrices encounter difficulties when physically modeling mixed materials or rough surfaces due to the complexity of light-matter interactions. To address these issues, we derived a matrix called the paths correlation matrix (PCM), which is a probabilistic mixture of Jones matrices of every light propagation path. Because PCM is related to actual light propagation paths, it is well suited for physical modeling. Experiments were performed, and the reflection PCM of a mixture of polypropylene and graphite was measured. The PCM of the mixed sample was accurately decomposed into pure polypropylene's single reflection, pure graphite's single reflection, and depolarization caused by multiple reflections, which is consistent with the theoretical derivation. Reflection parameters of rough surface can be calculated from PCM decomposition, and the results fit well with the theoretical calculations provided by the Fresnel equations. These theoretical and experimental analyses verify that PCM is an efficient way to physically model light-matter interactions.
Abrams, Gene; Siles Molina, Mercedes
2017-01-01
This book offers a comprehensive introduction by three of the leading experts in the field, collecting fundamental results and open problems in a single volume. Since Leavitt path algebras were first defined in 2005, interest in these algebras has grown substantially, with ring theorists as well as researchers working in graph C*-algebras, group theory and symbolic dynamics attracted to the topic. Providing a historical perspective on the subject, the authors review existing arguments, establish new results, and outline the major themes and ring-theoretic concepts, such as the ideal structure, Z-grading and the close link between Leavitt path algebras and graph C*-algebras. The book also presents key lines of current research, including the Algebraic Kirchberg Phillips Question, various additional classification questions, and connections to noncommutative algebraic geometry. Leavitt Path Algebras will appeal to graduate students and researchers working in the field and related areas, such as C*-algebras and...
2016-07-22
be reduced to TP in -D UDH for any . We then show that the 2-D disk hypergraph constructed in the proof of Theorem 1 can be modified to an exposed...transmission range that induces hy- peredge , i.e., (3) GAO et al.: THINNEST PATH PROBLEM 1181 Theorem 5 shows that the covered area of the path...representation of (the two hyperedges rooted at from the example given in Fig. 6 are illustrated in green and blue, respectively). step, we show in this
DEFF Research Database (Denmark)
Garud, Raghu; Karnøe, Peter
This edited volume stems from a conference held in Copenhagen that the authors ran in August of 1997. The authors, aware of the recent work in evolutionary theory and the science of chaos and complexity, challenge the sometimes deterministic flavour of this work. They are interested in uncovering...... the place of agency in these theories that take history so seriously. In the end, they are as interested in path creation and destruction as they are in path dependence. This book is compiled of both theoretical and empirical writing. It shows relatively well-known industries such as the automobile...
Self-complementary circular codes in coding theory.
Fimmel, Elena; Michel, Christian J; Starman, Martin; Strüngmann, Lutz
2018-04-01
Self-complementary circular codes are involved in pairing genetic processes. A maximal [Formula: see text] self-complementary circular code X of trinucleotides was identified in genes of bacteria, archaea, eukaryotes, plasmids and viruses (Michel in Life 7(20):1-16 2017, J Theor Biol 380:156-177, 2015; Arquès and Michel in J Theor Biol 182:45-58 1996). In this paper, self-complementary circular codes are investigated using the graph theory approach recently formulated in Fimmel et al. (Philos Trans R Soc A 374:20150058, 2016). A directed graph [Formula: see text] associated with any code X mirrors the properties of the code. In the present paper, we demonstrate a necessary condition for the self-complementarity of an arbitrary code X in terms of the graph theory. The same condition has been proven to be sufficient for codes which are circular and of large size [Formula: see text] trinucleotides, in particular for maximal circular codes ([Formula: see text] trinucleotides). For codes of small-size [Formula: see text] trinucleotides, some very rare counterexamples have been constructed. Furthermore, the length and the structure of the longest paths in the graphs associated with the self-complementary circular codes are investigated. It has been proven that the longest paths in such graphs determine the reading frame for the self-complementary circular codes. By applying this result, the reading frame in any arbitrary sequence of trinucleotides is retrieved after at most 15 nucleotides, i.e., 5 consecutive trinucleotides, from the circular code X identified in genes. Thus, an X motif of a length of at least 15 nucleotides in an arbitrary sequence of trinucleotides (not necessarily all of them belonging to X) uniquely defines the reading (correct) frame, an important criterion for analyzing the X motifs in genes in the future.
Reparametrization in the path integral
International Nuclear Information System (INIS)
Storchak, S.N.
1983-01-01
The question of the invariance of a measure in the n-dimensional path integral under the path reparametrization is considered. The non-invariance of the measure through the jacobian is suggeste. After the path integral reparametrization the representatioq for the Green's function of the Hamilton operator in terms of the path integral with the classical Hamiltonian has been obtained
Directory of Open Access Journals (Sweden)
Fabio Burderi
2007-05-01
Full Text Available Motivated by the study of decipherability conditions for codes weaker than Unique Decipherability (UD, we introduce the notion of coding partition. Such a notion generalizes that of UD code and, for codes that are not UD, allows to recover the ``unique decipherability" at the level of the classes of the partition. By tacking into account the natural order between the partitions, we define the characteristic partition of a code X as the finest coding partition of X. This leads to introduce the canonical decomposition of a code in at most one unambiguouscomponent and other (if any totally ambiguouscomponents. In the case the code is finite, we give an algorithm for computing its canonical partition. This, in particular, allows to decide whether a given partition of a finite code X is a coding partition. This last problem is then approached in the case the code is a rational set. We prove its decidability under the hypothesis that the partition contains a finite number of classes and each class is a rational set. Moreover we conjecture that the canonical partition satisfies such a hypothesis. Finally we consider also some relationships between coding partitions and varieties of codes.
Truncation Depth Rule-of-Thumb for Convolutional Codes
Moision, Bruce
2009-01-01
In this innovation, it is shown that a commonly used rule of thumb (that the truncation depth of a convolutional code should be five times the memory length, m, of the code) is accurate only for rate 1/2 codes. In fact, the truncation depth should be 2.5 m/(1 - r), where r is the code rate. The accuracy of this new rule is demonstrated by tabulating the distance properties of a large set of known codes. This new rule was derived by bounding the losses due to truncation as a function of the code rate. With regard to particular codes, a good indicator of the required truncation depth is the path length at which all paths that diverge from a particular path have accumulated the minimum distance of the code. It is shown that the new rule of thumb provides an accurate prediction of this depth for codes of varying rates.
Directory of Open Access Journals (Sweden)
Peter Juhasz
2017-03-01
Full Text Available While risk management gained popularity during the last decades even some of the basic risk types are still far out of focus. One of these is path dependency that refers to the uncertainty of how we reach a certain level of total performance over time. While decision makers are careful in accessing how their position will look like the end of certain periods, little attention is given how they will get there through the period. The uncertainty of how a process will develop across a shorter period of time is often “eliminated” by simply choosing a longer planning time interval, what makes path dependency is one of the most often overlooked business risk types. After reviewing the origin of the problem we propose and compare seven risk measures to access path. Traditional risk measures like standard deviation of sub period cash flows fail to capture this risk type. We conclude that in most cases considering the distribution of the expected cash flow effect caused by the path dependency may offer the best method, but we may need to use several measures at the same time to include all the optimisation limits of the given firm
Applications guide to the MORSE Monte Carlo code
International Nuclear Information System (INIS)
Cramer, S.N.
1985-08-01
A practical guide for the implementation of the MORESE-CG Monte Carlo radiation transport computer code system is presented. The various versions of the MORSE code are compared and contrasted, and the many references dealing explicitly with the MORSE-CG code are reviewed. The treatment of angular scattering is discussed, and procedures for obtaining increased differentiality of results in terms of reaction types and nuclides from a multigroup Monte Carlo code are explained in terms of cross-section and geometry data manipulation. Examples of standard cross-section data input and output are shown. Many other features of the code system are also reviewed, including (1) the concept of primary and secondary particles, (2) fission neutron generation, (3) albedo data capability, (4) DOMINO coupling, (5) history file use for post-processing of results, (6) adjoint mode operation, (7) variance reduction, and (8) input/output. In addition, examples of the combinatorial geometry are given, and the new array of arrays geometry feature (MARS) and its three-dimensional plotting code (JUNEBUG) are presented. Realistic examples of user routines for source, estimation, path-length stretching, and cross-section data manipulation are given. A deatiled explanation of the coupling between the random walk and estimation procedure is given in terms of both code parameters and physical analogies. The operation of the code in the adjoint mode is covered extensively. The basic concepts of adjoint theory and dimensionality are discussed and examples of adjoint source and estimator user routines are given for all common situations. Adjoint source normalization is explained, a few sample problems are given, and the concept of obtaining forward differential results from adjoint calculations is covered. Finally, the documentation of the standard MORSE-CG sample problem package is reviewed and on-going and future work is discussed
Premar-2: a Monte Carlo code for radiative transport simulation in atmospheric environments
International Nuclear Information System (INIS)
Cupini, E.
1999-01-01
The peculiarities of the PREMAR-2 code, aimed at radiation transport Monte Carlo simulation in atmospheric environments in the infrared-ultraviolet frequency range, are described. With respect to the previously developed PREMAR code, besides plane multilayers, spherical multilayers and finite sequences of vertical layers, each one with its own atmospheric behaviour, are foreseen in the new code, together with the refraction phenomenon, so that long range, highly slanted paths can now be more faithfully taken into account. A zenithal angular dependence of the albedo coefficient has moreover been introduced. Lidar systems, with spatially independent source and telescope, are allowed again to be simulated, and, in this latest version of the code, sensitivity analyses to be performed. According to this last feasibility, consequences on radiation transport of small perturbations in physical components of the atmospheric environment may be analyze and the related effects on searched results estimated. The availability of a library of physical data (reaction coefficients, phase functions and refraction indexes) is required by the code, providing the essential features of the environment of interest needed of the Monte Carlo simulation. Variance reducing techniques have been enhanced in the Premar-2 code, by introducing, for instance, a local forced collision technique, especially apt to be used in Lidar system simulations. Encouraging comparisons between code and experimental results carried out at the Brasimone Centre of ENEA, have so far been obtained, even if further checks of the code are to be performed [it
Jha, Sanjiv; Brown, Katie; Subramanian, Gopinath
We apply a recent formulation for searching minimum energy reaction path (MERP) and saddle point to atomic systems subjected to an external force. We demonstrate the effect of a loading modality resembling hydrostatic pressure on the trans to cis conformational change of 1,3-butadiene, and the simplest Diels-Alder reaction between ethylene and 1,3-butadiene. The calculated MERP and saddle points on the generalized force modified potential energy surface (G-FMPES) are compared with the corresponding quantities on an unmodified potential energy surface. Our study is performed using electronic structure calculations at the HF/6-31G** level as implemented in the AIMS-MOLPRO code. Our calculations suggest that the added compressive pressure lowers the energy of cis butadiene. The activation energy barrier for the concerted Diels-Alder reaction is found to decrease progressively with increasing compressive pressure.
PATHS groundwater hydrologic model
Energy Technology Data Exchange (ETDEWEB)
Nelson, R.W.; Schur, J.A.
1980-04-01
A preliminary evaluation capability for two-dimensional groundwater pollution problems was developed as part of the Transport Modeling Task for the Waste Isolation Safety Assessment Program (WISAP). Our approach was to use the data limitations as a guide in setting the level of modeling detail. PATHS Groundwater Hydrologic Model is the first level (simplest) idealized hybrid analytical/numerical model for two-dimensional, saturated groundwater flow and single component transport; homogeneous geology. This document consists of the description of the PATHS groundwater hydrologic model. The preliminary evaluation capability prepared for WISAP, including the enhancements that were made because of the authors' experience using the earlier capability is described. Appendixes A through D supplement the report as follows: complete derivations of the background equations are provided in Appendix A. Appendix B is a comprehensive set of instructions for users of PATHS. It is written for users who have little or no experience with computers. Appendix C is for the programmer. It contains information on how input parameters are passed between programs in the system. It also contains program listings and test case listing. Appendix D is a definition of terms.
Shortest Paths and Vehicle Routing
DEFF Research Database (Denmark)
Petersen, Bjørn
This thesis presents how to parallelize a shortest path labeling algorithm. It is shown how to handle Chvátal-Gomory rank-1 cuts in a column generation context. A Branch-and-Cut algorithm is given for the Elementary Shortest Paths Problem with Capacity Constraint. A reformulation of the Vehicle...... Routing Problem based on partial paths is presented. Finally, a practical application of finding shortest paths in the telecommunication industry is shown....
DEFF Research Database (Denmark)
Cox, Geoff
Speaking Code begins by invoking the “Hello World” convention used by programmers when learning a new language, helping to establish the interplay of text and code that runs through the book. Interweaving the voice of critical writing from the humanities with the tradition of computing and software...
Wen, Dong-Yue; Lin, Peng; Pang, Yu-Yan; Chen, Gang; He, Yun; Dang, Yi-Wu; Yang, Hong
2018-05-05
BACKGROUND Long non-coding RNAs (lncRNAs) have a role in physiological and pathological processes, including cancer. The aim of this study was to investigate the expression of the long intergenic non-protein coding RNA 665 (LINC00665) gene and the cell cycle in hepatocellular carcinoma (HCC) using database analysis including The Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO), and quantitative real-time polymerase chain reaction (qPCR). MATERIAL AND METHODS Expression levels of LINC00665 were compared between human tissue samples of HCC and adjacent normal liver, clinicopathological correlations were made using TCGA and the GEO, and qPCR was performed to validate the findings. Other public databases were searched for other genes associated with LINC00665 expression, including The Atlas of Noncoding RNAs in Cancer (TANRIC), the Multi Experiment Matrix (MEM), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction (PPI) networks. RESULTS Overexpression of LINC00665 in patients with HCC was significantly associated with gender, tumor grade, stage, and tumor cell type. Overexpression of LINC00665 in patients with HCC was significantly associated with overall survival (OS) (HR=1.47795%; CI: 1.046-2.086). Bioinformatics analysis identified 469 related genes and further analysis supported a hypothesis that LINC00665 regulates pathways in the cell cycle to facilitate the development and progression of HCC through ten identified core genes: CDK1, BUB1B, BUB1, PLK1, CCNB2, CCNB1, CDC20, ESPL1, MAD2L1, and CCNA2. CONCLUSIONS Overexpression of the lncRNA, LINC00665 may be involved in the regulation of cell cycle pathways in HCC through ten identified hub genes.
Directory of Open Access Journals (Sweden)
Jamie Waters
2014-09-01
Full Text Available This project uses Newton’s Second Law of Motion, Euler’s method, basic physics, and basic calculus to model the flight path of a rocket. From this, one can find the height and velocity at any point from launch to the maximum altitude, or apogee. This can then be compared to the actual values to see if the method of estimation is a plausible. The rocket used for this project is modeled after Bullistic-1 which was launched by the Society of Aeronautics and Rocketry at the University of South Florida.
Mehhtz, Peter
2005-01-01
JPF is an explicit state software model checker for Java bytecode. Today, JPF is a swiss army knife for all sort of runtime based verification purposes. This basically means JPF is a Java virtual machine that executes your program not just once (like a normal VM), but theoretically in all possible ways, checking for property violations like deadlocks or unhandled exceptions along all potential execution paths. If it finds an error, JPF reports the whole execution that leads to it. Unlike a normal debugger, JPF keeps track of every step how it got to the defect.
International Nuclear Information System (INIS)
Prokhorov, L.V.
1982-01-01
Problems related to consideration of operator nonpermutability in Hamiltonian path integral (HPI) are considered in the review. Integrals are investigated using trajectories in configuration space (nonrelativistic quantum mechanics). Problems related to trajectory integrals in HPI phase space are discussed: the problem of operator nonpermutability consideration (extra terms problem) and corresponding equivalence rules; ambiguity of HPI usual recording; transition to curvilinear coordinates. Problem of quantization of dynamical systems with couplings has been studied. As in the case of canonical transformations, quantization of the systems with couplings of the first kind requires the consideration of extra terms
Wolfowitz,Paul
2006-01-01
Paul Wolfowitz, President of the World Bank, discussed Singapore's remarkable progress along the road from poverty to prosperity which has also been discovered by many other countries in East Asia and around the world. He spoke of how each country must find its own path for people to pursue the same dreams of the chance to go to school, the security of a good job, and the ability to provide a better future for their children. Throughout the world, and importantly in the developing world, ther...
Reaction Mechanism Generator: Automatic construction of chemical kinetic mechanisms
Gao, Connie W.; Allen, Joshua W.; Green, William H.; West, Richard H.
2016-06-01
Reaction Mechanism Generator (RMG) constructs kinetic models composed of elementary chemical reaction steps using a general understanding of how molecules react. Species thermochemistry is estimated through Benson group additivity and reaction rate coefficients are estimated using a database of known rate rules and reaction templates. At its core, RMG relies on two fundamental data structures: graphs and trees. Graphs are used to represent chemical structures, and trees are used to represent thermodynamic and kinetic data. Models are generated using a rate-based algorithm which excludes species from the model based on reaction fluxes. RMG can generate reaction mechanisms for species involving carbon, hydrogen, oxygen, sulfur, and nitrogen. It also has capabilities for estimating transport and solvation properties, and it automatically computes pressure-dependent rate coefficients and identifies chemically-activated reaction paths. RMG is an object-oriented program written in Python, which provides a stable, robust programming architecture for developing an extensible and modular code base with a large suite of unit tests. Computationally intensive functions are cythonized for speed improvements.
QUIL: a chemical equilibrium code
International Nuclear Information System (INIS)
Lunsford, J.L.
1977-02-01
A chemical equilibrium code QUIL is described, along with two support codes FENG and SURF. QUIL is designed to allow calculations on a wide range of chemical environments, which may include surface phases. QUIL was written specifically to calculate distributions associated with complex equilibria involving fission products in the primary coolant loop of the high-temperature gas-cooled reactor. QUIL depends upon an energy-data library called ELIB. This library is maintained by FENG and SURF. FENG enters into the library all reactions having standard free energies of reaction that are independent of concentration. SURF enters all surface reactions into ELIB. All three codes are interactive codes written to be used from a remote terminal, with paging control provided. Plotted output is also available
Cannon, R D
2013-01-01
Electron Transfer Reactions deals with the mechanisms of electron transfer reactions between metal ions in solution, as well as the electron exchange between atoms or molecules in either the gaseous or solid state. The book is divided into three parts. Part 1 covers the electron transfer between atoms and molecules in the gas state. Part 2 tackles the reaction paths of oxidation states and binuclear intermediates, as well as the mechanisms of electron transfer. Part 3 discusses the theories and models of the electron transfer process; theories and experiments involving bridged electron transfe
International Nuclear Information System (INIS)
Connolly, T.J.; Hansen, U.; Jaek, W.; Beckurts, K.H.
1979-01-01
In examing the world nuclear energy paths, the following assumptions were adopted: the world economy will grow somewhat more slowly than in the past, leading to reductions in electricity demand growth rates; national and international political impediments to the deployment of nuclear power will gradually disappear over the next few years; further development of nuclear power will proceed steadily, without serious interruption but with realistic lead times for the introduction of advanced technologies. Given these assumptions, this paper attempts a study of possible world nuclear energy developments, disaggregated on a regional and national basis. The scenario technique was used and a few alternative fuel-cycle scenarios were developed. Each is an internally consistent model of technically and economically feasible paths to the further development of nuclear power in an aggregate of individual countries and regions of the world. The main purpose of this modeling exercise was to gain some insight into the probable international locations of reactors and other nuclear facilities, the future requirements for uranium and for fuel-cycle services, and the problems of spent-fuel storage and waste management. The study also presents an assessment of the role that nuclear power might actually play in meeting future world energy demand
Control of the tritium path in process heat HTR's
International Nuclear Information System (INIS)
Kirch, N.; Scheidler, G.
1985-01-01
Nuclear Process Heat plant converting fossil fuels into liquid or gaseous secondary energy carriers generate tritium by several nuclear reactions. Control of the tritium path through the walls of the heat exchanger is highly important to meet regulatory requirements on the acceptable contamination in the product gas or liquid. Therefore, significant effort in the project 'Prototypanlage Nukleare Prozesswaerme' was put not only into generating a data base, but also into means of reducing tritium generation and permeation. Clean graphites with lithium impurities in the ppb level provide a low tritium source term. Realistic modeling of graphite retention and special helium purification systems are essentials. The main barrier to tritium permeation are heat exchanger walls requiring detailed characterization of in-situ surface layers. Studies to optimize the water/steam mass flow in the conversion process offer possibilities for further tritium retention. Progress can be demonstrated as follows: In 1980, between 2 and 8 Bq tritium per gram of product were predicted based on available data and even higher concentrations during startup. However, present day validated code predictions are below required 0.5 Bq/g equilibrium concentration level. During transients - particularly startup - this limit cannot be guaranteed as yet, but further retention potential is being offered by tritium gettering or filtering. An expected increase of the German regulatory requirement to 5 Bq/g will easily be met by present plant design under all operational conditions. (author)
International Nuclear Information System (INIS)
Zhang Jingshang
2001-01-01
The UNF code (2001 version) written in FORTRAN-90 is developed for calculating fast neutron reaction data of structure materials with incident energies from about 1 Kev up to 20 Mev. The code consists of the spherical optical model, the unified Hauser-Feshbach and exciton model. The man nal of the UNF code is available for users. The format of the input parameter files and the output files, as well as the functions of flag used in UNF code, are introduced in detail, and the examples of the format of input parameters files are given
Solidification paths of multicomponent monotectic aluminum alloys
Energy Technology Data Exchange (ETDEWEB)
Mirkovic, Djordje; Groebner, Joachim [Clausthal University of Technology, Institute of Metallurgy, Robert-Koch-Street 42, D-38678 Clausthal-Zellerfeld (Germany); Schmid-Fetzer, Rainer [Clausthal University of Technology, Institute of Metallurgy, Robert-Koch-Street 42, D-38678 Clausthal-Zellerfeld (Germany)], E-mail: schmid-fetzer@tu-clausthal.de
2008-10-15
Solidification paths of three ternary monotectic alloy systems, Al-Bi-Zn, Al-Sn-Cu and Al-Bi-Cu, are studied using thermodynamic calculations, both for the pertinent phase diagrams and also for specific details concerning the solidification of selected alloy compositions. The coupled composition variation in two different liquids is quantitatively given. Various ternary monotectic four-phase reactions are encountered during solidification, as opposed to the simple binary monotectic, L' {yields} L'' + solid. These intricacies are reflected in the solidification microstructures, as demonstrated for these three aluminum alloy systems, selected in view of their distinctive features. This examination of solidification paths and microstructure formation may be relevant for advanced solidification processing of multicomponent monotectic alloys.
Directory of Open Access Journals (Sweden)
Anthony McCosker
2014-03-01
Full Text Available As well as introducing the Coding Labour section, the authors explore the diffusion of code across the material contexts of everyday life, through the objects and tools of mediation, the systems and practices of cultural production and organisational management, and in the material conditions of labour. Taking code beyond computation and software, their specific focus is on the increasingly familiar connections between code and labour with a focus on the codification and modulation of affect through technologies and practices of management within the contemporary work organisation. In the grey literature of spreadsheets, minutes, workload models, email and the like they identify a violence of forms through which workplace affect, in its constant flux of crisis and ‘prodromal’ modes, is regulated and governed.
Adaptive decoding of convolutional codes
Directory of Open Access Journals (Sweden)
K. Hueske
2007-06-01
Full Text Available Convolutional codes, which are frequently used as error correction codes in digital transmission systems, are generally decoded using the Viterbi Decoder. On the one hand the Viterbi Decoder is an optimum maximum likelihood decoder, i.e. the most probable transmitted code sequence is obtained. On the other hand the mathematical complexity of the algorithm only depends on the used code, not on the number of transmission errors. To reduce the complexity of the decoding process for good transmission conditions, an alternative syndrome based decoder is presented. The reduction of complexity is realized by two different approaches, the syndrome zero sequence deactivation and the path metric equalization. The two approaches enable an easy adaptation of the decoding complexity for different transmission conditions, which results in a trade-off between decoding complexity and error correction performance.
Adaptive decoding of convolutional codes
Hueske, K.; Geldmacher, J.; Götze, J.
2007-06-01
Convolutional codes, which are frequently used as error correction codes in digital transmission systems, are generally decoded using the Viterbi Decoder. On the one hand the Viterbi Decoder is an optimum maximum likelihood decoder, i.e. the most probable transmitted code sequence is obtained. On the other hand the mathematical complexity of the algorithm only depends on the used code, not on the number of transmission errors. To reduce the complexity of the decoding process for good transmission conditions, an alternative syndrome based decoder is presented. The reduction of complexity is realized by two different approaches, the syndrome zero sequence deactivation and the path metric equalization. The two approaches enable an easy adaptation of the decoding complexity for different transmission conditions, which results in a trade-off between decoding complexity and error correction performance.
Directory of Open Access Journals (Sweden)
Paul Ballonoff
2017-12-01
Full Text Available A theory of cultural structures predicts the objects observed by anthropologists. We here define those which use kinship relationships to define systems. A finite structure we call a partially defined quasigroup (or pdq, as stated by Definition 1 below on a dictionary (called a natural language allows prediction of certain anthropological descriptions, using homomorphisms of pdqs onto finite groups. A viable history (defined using pdqs states how an individual in a population following such history may perform culturally allowed associations, which allows a viable history to continue to survive. The vector states on sets of viable histories identify demographic observables on descent sequences. Paths of vector states on sets of viable histories may determine which histories can exist empirically.
Propagators and path integrals
Energy Technology Data Exchange (ETDEWEB)
Holten, J.W. van
1995-08-22
Path-integral expressions for one-particle propagators in scalar and fermionic field theories are derived, for arbitrary mass. This establishes a direct connection between field theory and specific classical point-particle models. The role of world-line reparametrization invariance of the classical action and the implementation of the corresponding BRST-symmetry in the quantum theory are discussed. The presence of classical world-line supersymmetry is shown to lead to an unwanted doubling of states for massive spin-1/2 particles. The origin of this phenomenon is traced to a `hidden` topological fermionic excitation. A different formulation of the pseudo-classical mechanics using a bosonic representation of {gamma}{sub 5} is shown to remove these extra states at the expense of losing manifest supersymmetry. (orig.).
Directory of Open Access Journals (Sweden)
Li Jian
2016-01-01
Full Text Available The world has entered the information age, all kinds of information technologies such as cloud technology, big data technology are in rapid development, and the “Internet plus” appeared. The main purpose of “Internet plus” is to provide an opportunity for the further development of the enterprise, the enterprise technology, business and other aspects of factors combine. For enterprises, grasp the “Internet plus” the impact of the market economy will undoubtedly pave the way for the future development of enterprises. This paper will be on the innovation path of the enterprise management “Internet plus” era tied you study, hope to be able to put forward some opinions and suggestions.
Fast exploration of an optimal path on the multidimensional free energy surface
Chen, Changjun
2017-01-01
In a reaction, determination of an optimal path with a high reaction rate (or a low free energy barrier) is important for the study of the reaction mechanism. This is a complicated problem that involves lots of degrees of freedom. For simple models, one can build an initial path in the collective variable space by the interpolation method first and then update the whole path constantly in the optimization. However, such interpolation method could be risky in the high dimensional space for large molecules. On the path, steric clashes between neighboring atoms could cause extremely high energy barriers and thus fail the optimization. Moreover, performing simulations for all the snapshots on the path is also time-consuming. In this paper, we build and optimize the path by a growing method on the free energy surface. The method grows a path from the reactant and extends its length in the collective variable space step by step. The growing direction is determined by both the free energy gradient at the end of the path and the direction vector pointing at the product. With fewer snapshots on the path, this strategy can let the path avoid the high energy states in the growing process and save the precious simulation time at each iteration step. Applications show that the presented method is efficient enough to produce optimal paths on either the two-dimensional or the twelve-dimensional free energy surfaces of different small molecules. PMID:28542475
Timm, Matthew J; Matta, Chérif F
2014-12-01
Argon tetroxide (ArO4) is the last member of the N=50 e(-) isoelectronic and isosteric series of ions: SiO4(4-), PO4(3-), SO4(2-), and ClO4(-). A high level computational study demonstrated that while ArO4 is kinetically stable it has a considerable positive enthalpy of formation (of ~298kcal/mol) (Lindh et al., 1999. J. Phys. Chem. A 103, pp. 8295-8302) confirming earlier predictions by Pyykkö (1990. Phys. Scr. 33, pp. 52-53). ArO4 can be expected to be difficult to synthesize by traditional chemistry due to its metastability and has not yet been synthesized at the time of writing. A computational investigation of the changes in the chemical bonding of chlorate (ClO4(-)) when the central chlorine atom undergoes a nuclear transmutation from the unstable artificial chlorine isotope (38)Cl to the stable rare argon isotope (38)Ar through β-decay, hence potentially leading to the formation of ArO4, is reported. A mathematical model is presented that allows for the prediction of yields following the recoil of a nucleus upon ejecting a β-electron. It is demonstrated that below a critical angle between the ejected β-electron and that of the accompanying antineutrino their respective linear momentums can cancel to such an extent as imparting a recoil to the daughter atom insufficient for breaking the Ar-O bond. As a result, a primary retention yield of ~1% of ArO4 is predicted following the nuclear disintegration. The study is conducted at the quadratic configuration interaction with single and double excitations [QCISD/6-311+G(3df)] level of theory followed by an analysis of the electron density by the quantum theory of atoms in molecules (QTAIM). Crossed potential energy surfaces (PES) were used to construct a PES from the metastable ArO4 ground singlet state to the Ar-O bond dissociation product ArO3+O((3)P) from which the predicted barrier to dissociation is ca. 22kcal/mol and the exothermic reaction energy is ca. 28kcal/mol [(U)MP2/6-311+G(d)]. Copyright © 2014
Effects of reaction-kinetic parameters on modeling reaction pathways in GaN MOVPE growth
Zhang, Hong; Zuo, Ran; Zhang, Guoyi
2017-11-01
In the modeling of the reaction-transport process in GaN MOVPE growth, the selections of kinetic parameters (activation energy Ea and pre-exponential factor A) for gas reactions are quite uncertain, which cause uncertainties in both gas reaction path and growth rate. In this study, numerical modeling of the reaction-transport process for GaN MOVPE growth in a vertical rotating disk reactor is conducted with varying kinetic parameters for main reaction paths. By comparisons of the molar concentrations of major Ga-containing species and the growth rates, the effects of kinetic parameters on gas reaction paths are determined. The results show that, depending on the values of the kinetic parameters, the gas reaction path may be dominated either by adduct/amide formation path, or by TMG pyrolysis path, or by both. Although the reaction path varies with different kinetic parameters, the predicted growth rates change only slightly because the total transport rate of Ga-containing species to the substrate changes slightly with reaction paths. This explains why previous authors using different chemical models predicted growth rates close to the experiment values. By varying the pre-exponential factor for the amide trimerization, it is found that the more trimers are formed, the lower the growth rates are than the experimental value, which indicates that trimers are poor growth precursors, because of thermal diffusion effect caused by high temperature gradient. The effective order for the contribution of major species to growth rate is found as: pyrolysis species > amides > trimers. The study also shows that radical reactions have little effect on gas reaction path because of the generation and depletion of H radicals in the chain reactions when NH2 is considered as the end species.
Energy Technology Data Exchange (ETDEWEB)
Mignemi, S., E-mail: smignemi@unica.it [Dipartimento di Matematica e Informatica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy); Štrajn, R. [Dipartimento di Matematica e Informatica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy)
2016-04-29
The definition of path integrals in one- and two-dimensional Snyder space is discussed in detail both in the traditional setting and in the first-order formalism of Faddeev and Jackiw. - Highlights: • The definition of the path integral in Snyder space is discussed using phase space methods. • The same result is obtained in the first-order formalism of Faddeev and Jackiw. • The path integral formulation of the two-dimensional Snyder harmonic oscillator is outlined.
International Nuclear Information System (INIS)
Mignemi, S.; Štrajn, R.
2016-01-01
The definition of path integrals in one- and two-dimensional Snyder space is discussed in detail both in the traditional setting and in the first-order formalism of Faddeev and Jackiw. - Highlights: • The definition of the path integral in Snyder space is discussed using phase space methods. • The same result is obtained in the first-order formalism of Faddeev and Jackiw. • The path integral formulation of the two-dimensional Snyder harmonic oscillator is outlined.
Energy Technology Data Exchange (ETDEWEB)
Ravishankar, C., Hughes Network Systems, Germantown, MD
1998-05-08
Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the
Optimal codes as Tanner codes with cyclic component codes
DEFF Research Database (Denmark)
Høholdt, Tom; Pinero, Fernando; Zeng, Peng
2014-01-01
In this article we study a class of graph codes with cyclic code component codes as affine variety codes. Within this class of Tanner codes we find some optimal binary codes. We use a particular subgraph of the point-line incidence plane of A(2,q) as the Tanner graph, and we are able to describe ...
International Nuclear Information System (INIS)
Quezada G, S.; Espinosa P, G.; Centeno P, J.; Sanchez M, H.
2017-09-01
This paper presents the Aztheca code, which is formed by the mathematical models of neutron kinetics, power generation, heat transfer, core thermo-hydraulics, recirculation systems, dynamic pressure and level models and control system. The Aztheca code is validated with plant data, as well as with predictions from the manufacturer when the reactor operates in a stationary state. On the other hand, to demonstrate that the model is applicable during a transient, an event occurred in a nuclear power plant with a BWR reactor is selected. The plant data are compared with the results obtained with RELAP-5 and the Aztheca model. The results show that both RELAP-5 and the Aztheca code have the ability to adequately predict the behavior of the reactor. (Author)
An Application of Multi-Criteria Shortest Path to a Customizable Hex-Map Environment
2015-03-26
47 Appendix A. Shortest Path Code ( VBA ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Appendix B. Quad Chart...efficient shortest path algorithm into the modeling environment, namely Excel VBA . While various algorithms offer the potential for more efficiency in...graphical interface is extremely intuitive and easily accessible to a user with no prior knowledge of the system. Since the Metz model is based on the
DEFF Research Database (Denmark)
Soon, Winnie; Cox, Geoff
2018-01-01
a computational and poetic composition for two screens: on one of these, texts and voices are repeated and disrupted by mathematical chaos, together exploring the performativity of code and language; on the other, is a mix of a computer programming syntax and human language. In this sense queer code can...... be understood as both an object and subject of study that intervenes in the world’s ‘becoming' and how material bodies are produced via human and nonhuman practices. Through mixing the natural and computer language, this article presents a script in six parts from a performative lecture for two persons...
International Nuclear Information System (INIS)
Rattan, D.S.
1993-11-01
NSURE stands for Near-Surface Repository code. NSURE is a performance assessment code. developed for the safety assessment of near-surface disposal facilities for low-level radioactive waste (LLRW). Part one of this report documents the NSURE model, governing equations and formulation of the mathematical models, and their implementation under the SYVAC3 executive. The NSURE model simulates the release of nuclides from an engineered vault, their subsequent transport via the groundwater and surface water pathways tot he biosphere, and predicts the resulting dose rate to a critical individual. Part two of this report consists of a User's manual, describing simulation procedures, input data preparation, output and example test cases
(U) Ristra Next Generation Code Report
Energy Technology Data Exchange (ETDEWEB)
Hungerford, Aimee L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Daniel, David John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-09-22
LANL’s Weapons Physics management (ADX) and ASC program office have defined a strategy for exascale-class application codes that follows two supportive, and mutually risk-mitigating paths: evolution for established codes (with a strong pedigree within the user community) based upon existing programming paradigms (MPI+X); and Ristra (formerly known as NGC), a high-risk/high-reward push for a next-generation multi-physics, multi-scale simulation toolkit based on emerging advanced programming systems (with an initial focus on data-flow task-based models exemplified by Legion [5]). Development along these paths is supported by the ATDM, IC, and CSSE elements of the ASC program, with the resulting codes forming a common ecosystem, and with algorithm and code exchange between them anticipated. Furthermore, solution of some of the more challenging problems of the future will require a federation of codes working together, using established-pedigree codes in partnership with new capabilities as they come on line. The role of Ristra as the high-risk/high-reward path for LANL’s codes is fully consistent with its role in the Advanced Technology Development and Mitigation (ATDM) sub-program of ASC (see Appendix C), in particular its emphasis on evolving ASC capabilities through novel programming models and data management technologies.
Energy Technology Data Exchange (ETDEWEB)
Delbecq, J.M
1999-07-01
The Aster code is a 2D or 3D finite-element calculation code for structures developed by the R and D direction of Electricite de France (EdF). This dossier presents a complete overview of the characteristics and uses of the Aster code: introduction of version 4; the context of Aster (organisation of the code development, versions, systems and interfaces, development tools, quality assurance, independent validation); static mechanics (linear thermo-elasticity, Euler buckling, cables, Zarka-Casier method); non-linear mechanics (materials behaviour, big deformations, specific loads, unloading and loss of load proportionality indicators, global algorithm, contact and friction); rupture mechanics (G energy restitution level, restitution level in thermo-elasto-plasticity, 3D local energy restitution level, KI and KII stress intensity factors, calculation of limit loads for structures), specific treatments (fatigue, rupture, wear, error estimation); meshes and models (mesh generation, modeling, loads and boundary conditions, links between different modeling processes, resolution of linear systems, display of results etc..); vibration mechanics (modal and harmonic analysis, dynamics with shocks, direct transient dynamics, seismic analysis and aleatory dynamics, non-linear dynamics, dynamical sub-structuring); fluid-structure interactions (internal acoustics, mass, rigidity and damping); linear and non-linear thermal analysis; steels and metal industry (structure transformations); coupled problems (internal chaining, internal thermo-hydro-mechanical coupling, chaining with other codes); products and services. (J.S.)
Two Generations of Path Dependence
DEFF Research Database (Denmark)
Madsen, Mogens Ove
Even if there is no fully articulated and generally accepted theory of Path Dependence it has eagerly been taken up across a wide range of social sciences - primarily coming from economics. Path Dependence is most of all a metaphor that offers reason to believe, that some political, social...
Chromatic roots and hamiltonian paths
DEFF Research Database (Denmark)
Thomassen, Carsten
2000-01-01
We present a new connection between colorings and hamiltonian paths: If the chromatic polynomial of a graph has a noninteger root less than or equal to t(n) = 2/3 + 1/3 (3)root (26 + 6 root (33)) + 1/3 (3)root (26 - 6 root (33)) = 1.29559.... then the graph has no hamiltonian path. This result...
International Nuclear Information System (INIS)
Exner, P.; Kolerov, G.I.
1980-01-01
A Hilbert space of paths, the elements of which are determined by trigonometric series, was proposed and used recently by Truman. This space is shown to consist precisely of all absolutely continuous paths ending in the origin with square-integrable derivatives
DEFF Research Database (Denmark)
Ejsing-Duun, Stine; Hansbøl, Mikala
Denne rapport rummer evaluering og dokumentation af Coding Class projektet1. Coding Class projektet blev igangsat i skoleåret 2016/2017 af IT-Branchen i samarbejde med en række medlemsvirksomheder, Københavns kommune, Vejle Kommune, Styrelsen for IT- og Læring (STIL) og den frivillige forening...... Coding Pirates2. Rapporten er forfattet af Docent i digitale læringsressourcer og forskningskoordinator for forsknings- og udviklingsmiljøet Digitalisering i Skolen (DiS), Mikala Hansbøl, fra Institut for Skole og Læring ved Professionshøjskolen Metropol; og Lektor i læringsteknologi, interaktionsdesign......, design tænkning og design-pædagogik, Stine Ejsing-Duun fra Forskningslab: It og Læringsdesign (ILD-LAB) ved Institut for kommunikation og psykologi, Aalborg Universitet i København. Vi har fulgt og gennemført evaluering og dokumentation af Coding Class projektet i perioden november 2016 til maj 2017...
Andrews, Ken; Divsalar, Dariush; Dolinar, Sam; Moision, Bruce; Hamkins, Jon; Pollara, Fabrizio
2007-01-01
This slide presentation reviews the objectives, meeting goals and overall NASA goals for the NASA Data Standards Working Group. The presentation includes information on the technical progress surrounding the objective, short LDPC codes, and the general results on the Pu-Pw tradeoff.
International Nuclear Information System (INIS)
Lindemuth, I.R.
1979-01-01
This report describes ANIMAL, a two-dimensional Eulerian magnetohydrodynamic computer code. ANIMAL's physical model also appears. Formulated are temporal and spatial finite-difference equations in a manner that facilitates implementation of the algorithm. Outlined are the functions of the algorithm's FORTRAN subroutines and variables
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 7. Network Coding. K V Rashmi Nihar B Shah P Vijay Kumar. General Article Volume 15 Issue 7 July 2010 pp 604-621. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/015/07/0604-0621 ...
International Nuclear Information System (INIS)
Cramer, S.N.
1984-01-01
The MCNP code is the major Monte Carlo coupled neutron-photon transport research tool at the Los Alamos National Laboratory, and it represents the most extensive Monte Carlo development program in the United States which is available in the public domain. The present code is the direct descendent of the original Monte Carlo work of Fermi, von Neumaum, and Ulam at Los Alamos in the 1940s. Development has continued uninterrupted since that time, and the current version of MCNP (or its predecessors) has always included state-of-the-art methods in the Monte Carlo simulation of radiation transport, basic cross section data, geometry capability, variance reduction, and estimation procedures. The authors of the present code have oriented its development toward general user application. The documentation, though extensive, is presented in a clear and simple manner with many examples, illustrations, and sample problems. In addition to providing the desired results, the output listings give a a wealth of detailed information (some optional) concerning each state of the calculation. The code system is continually updated to take advantage of advances in computer hardware and software, including interactive modes of operation, diagnostic interrupts and restarts, and a variety of graphical and video aids
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 1. Expander Codes - The Sipser–Spielman Construction. Priti Shankar. General Article Volume 10 ... Author Affiliations. Priti Shankar1. Department of Computer Science and Automation, Indian Institute of Science Bangalore 560 012, India.
Hard paths, soft paths or no paths? Cross-cultural perceptions of water solutions
Wutich, A.; White, A. C.; White, D. D.; Larson, K. L.; Brewis, A.; Roberts, C.
2014-01-01
In this study, we examine how development status and water scarcity shape people's perceptions of "hard path" and "soft path" water solutions. Based on ethnographic research conducted in four semi-rural/peri-urban sites (in Bolivia, Fiji, New Zealand, and the US), we use content analysis to conduct statistical and thematic comparisons of interview data. Our results indicate clear differences associated with development status and, to a lesser extent, water scarcity. People in the two less developed sites were more likely to suggest hard path solutions, less likely to suggest soft path solutions, and more likely to see no path to solutions than people in the more developed sites. Thematically, people in the two less developed sites envisioned solutions that involve small-scale water infrastructure and decentralized, community-based solutions, while people in the more developed sites envisioned solutions that involve large-scale infrastructure and centralized, regulatory water solutions. People in the two water-scarce sites were less likely to suggest soft path solutions and more likely to see no path to solutions (but no more likely to suggest hard path solutions) than people in the water-rich sites. Thematically, people in the two water-rich sites seemed to perceive a wider array of unrealized potential soft path solutions than those in the water-scarce sites. On balance, our findings are encouraging in that they indicate that people are receptive to soft path solutions in a range of sites, even those with limited financial or water resources. Our research points to the need for more studies that investigate the social feasibility of soft path water solutions, particularly in sites with significant financial and natural resource constraints.
International Nuclear Information System (INIS)
Altomare, S.; Minton, G.
1975-02-01
PANDA is a new two-group one-dimensional (slab/cylinder) neutron diffusion code designed to replace and extend the FAB series. PANDA allows for the nonlinear effects of xenon, enthalpy and Doppler. Fuel depletion is allowed. PANDA has a completely general search facility which will seek criticality, maximize reactivity, or minimize peaking. Any single parameter may be varied in a search. PANDA is written in FORTRAN IV, and as such is nearly machine independent. However, PANDA has been written with the present limitations of the Westinghouse CDC-6600 system in mind. Most computation loops are very short, and the code is less than half the useful 6600 memory size so that two jobs can reside in the core at once. (auth)
Reaction paths of phosphine dissociation on silicon (001)
Energy Technology Data Exchange (ETDEWEB)
Warschkow, O.; McKenzie, D. R. [Centre for Quantum Computation and Communication Technology, School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia); Curson, N. J. [Centre for Quantum Computation and Communication Technology, School of Physics, The University of New South Wales, Sydney, NSW 2052 (Australia); London Centre for Nanotechnology and Department of Electronic and Electrical Engineering, University College London, 17-19 Gordon Street, London WC1H 0AH (United Kingdom); Schofield, S. R. [Centre for Quantum Computation and Communication Technology, School of Physics, The University of New South Wales, Sydney, NSW 2052 (Australia); London Centre for Nanotechnology and Department of Physics and Astronomy, University College, 17-19 Gordon Street, London WC1H 0AH (United Kingdom); Marks, N. A. [Centre for Quantum Computation and Communication Technology, School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia); Discipline of Physics & Astronomy, Curtin University, GPO Box U1987, Perth, WA (Australia); Wilson, H. F. [Centre for Quantum Computation and Communication Technology, School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia); CSIRO Virtual Nanoscience Laboratory, Parkville, VIC 3052 (Australia); School of Applied Sciences, RMIT University, Melbourne, VIC 3000 (Australia); Radny, M. W.; Smith, P. V. [School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia); Reusch, T. C. G.; Simmons, M. Y. [Centre for Quantum Computation and Communication Technology, School of Physics, The University of New South Wales, Sydney, NSW 2052 (Australia)
2016-01-07
Using density functional theory and guided by extensive scanning tunneling microscopy (STM) image data, we formulate a detailed mechanism for the dissociation of phosphine (PH{sub 3}) molecules on the Si(001) surface at room temperature. We distinguish between a main sequence of dissociation that involves PH{sub 2}+H, PH+2H, and P+3H as observable intermediates, and a secondary sequence that gives rise to PH+H, P+2H, and isolated phosphorus adatoms. The latter sequence arises because PH{sub 2} fragments are surprisingly mobile on Si(001) and can diffuse away from the third hydrogen atom that makes up the PH{sub 3} stoichiometry. Our calculated activation energies describe the competition between diffusion and dissociation pathways and hence provide a comprehensive model for the numerous adsorbate species observed in STM experiments.
Reaction paths of phosphine dissociation on silicon (001)
International Nuclear Information System (INIS)
Warschkow, O.; McKenzie, D. R.; Curson, N. J.; Schofield, S. R.; Marks, N. A.; Wilson, H. F.; Radny, M. W.; Smith, P. V.; Reusch, T. C. G.; Simmons, M. Y.
2016-01-01
Using density functional theory and guided by extensive scanning tunneling microscopy (STM) image data, we formulate a detailed mechanism for the dissociation of phosphine (PH 3 ) molecules on the Si(001) surface at room temperature. We distinguish between a main sequence of dissociation that involves PH 2 +H, PH+2H, and P+3H as observable intermediates, and a secondary sequence that gives rise to PH+H, P+2H, and isolated phosphorus adatoms. The latter sequence arises because PH 2 fragments are surprisingly mobile on Si(001) and can diffuse away from the third hydrogen atom that makes up the PH 3 stoichiometry. Our calculated activation energies describe the competition between diffusion and dissociation pathways and hence provide a comprehensive model for the numerous adsorbate species observed in STM experiments
Optimal Paths in Gliding Flight
Wolek, Artur
Underwater gliders are robust and long endurance ocean sampling platforms that are increasingly being deployed in coastal regions. This new environment is characterized by shallow waters and significant currents that can challenge the mobility of these efficient (but traditionally slow moving) vehicles. This dissertation aims to improve the performance of shallow water underwater gliders through path planning. The path planning problem is formulated for a dynamic particle (or "kinematic car") model. The objective is to identify the path which satisfies specified boundary conditions and minimizes a particular cost. Several cost functions are considered. The problem is addressed using optimal control theory. The length scales of interest for path planning are within a few turn radii. First, an approach is developed for planning minimum-time paths, for a fixed speed glider, that are sub-optimal but are guaranteed to be feasible in the presence of unknown time-varying currents. Next the minimum-time problem for a glider with speed controls, that may vary between the stall speed and the maximum speed, is solved. Last, optimal paths that minimize change in depth (equivalently, maximize range) are investigated. Recognizing that path planning alone cannot overcome all of the challenges associated with significant currents and shallow waters, the design of a novel underwater glider with improved capabilities is explored. A glider with a pneumatic buoyancy engine (allowing large, rapid buoyancy changes) and a cylindrical moving mass mechanism (generating large pitch and roll moments) is designed, manufactured, and tested to demonstrate potential improvements in speed and maneuverability.
International Nuclear Information System (INIS)
Gara, P.; Martin, E.
1983-01-01
The CANAL code presented here optimizes a realistic iron free extraction channel which has to provide a given transversal magnetic field law in the median plane: the current bars may be curved, have finite lengths and cooling ducts and move in a restricted transversal area; terminal connectors may be added, images of the bars in pole pieces may be included. A special option optimizes a real set of circular coils [fr
Perfect discretization of path integrals
International Nuclear Information System (INIS)
Steinhaus, Sebastian
2012-01-01
In order to obtain a well-defined path integral one often employs discretizations. In the case of General Relativity these generically break diffeomorphism symmetry, which has severe consequences since these symmetries determine the dynamics of the corresponding system. In this article we consider the path integral of reparametrization invariant systems as a toy example and present an improvement procedure for the discretized propagator. Fixed points and convergence of the procedure are discussed. Furthermore we show that a reparametrization invariant path integral implies discretization independence and acts as a projector onto physical states.
Perfect discretization of path integrals
Steinhaus, Sebastian
2012-05-01
In order to obtain a well-defined path integral one often employs discretizations. In the case of General Relativity these generically break diffeomorphism symmetry, which has severe consequences since these symmetries determine the dynamics of the corresponding system. In this article we consider the path integral of reparametrization invariant systems as a toy example and present an improvement procedure for the discretized propagator. Fixed points and convergence of the procedure are discussed. Furthermore we show that a reparametrization invariant path integral implies discretization independence and acts as a projector onto physical states.
The mean free path of protons in nuclei and the nuclear radius
International Nuclear Information System (INIS)
Dymarz, R.; Kohmura, T.
1983-01-01
We determine the mean free path of protons in nuclei in the energy range 40-1000 MeV. We find that it is necessary to use in the calculation of the mean free path the nuclear radius R which reproduces the reaction and total cross sections consistently and that this radius leads to a rather small mean free path which is comparable with the value obtained in the microscopic calculation in the whole energy region. (orig.)
An Introduction to Path Analysis
Wolfe, Lee M.
1977-01-01
The analytical procedure of path analysis is described in terms of its use in nonexperimental settings in the social sciences. The description assumes a moderate statistical background on the part of the reader. (JKS)
Probabilistic simulation of fermion paths
International Nuclear Information System (INIS)
Zhirov, O.V.
1989-01-01
Permutation symmetry of fermion path integral allows (while spin degrees of freedom are ignored) to use in its simulation any probabilistic algorithm, like Metropolis one, heat bath, etc. 6 refs., 2 tabs
Formal language constrained path problems
Energy Technology Data Exchange (ETDEWEB)
Barrett, C.; Jacob, R.; Marathe, M.
1997-07-08
In many path finding problems arising in practice, certain patterns of edge/vertex labels in the labeled graph being traversed are allowed/preferred, while others are disallowed. Motivated by such applications as intermodal transportation planning, the authors investigate the complexity of finding feasible paths in a labeled network, where the mode choice for each traveler is specified by a formal language. The main contributions of this paper include the following: (1) the authors show that the problem of finding a shortest path between a source and destination for a traveler whose mode choice is specified as a context free language is solvable efficiently in polynomial time, when the mode choice is specified as a regular language they provide algorithms with improved space and time bounds; (2) in contrast, they show that the problem of finding simple paths between a source and a given destination is NP-hard, even when restricted to very simple regular expressions and/or very simple graphs; (3) for the class of treewidth bounded graphs, they show that (i) the problem of finding a regular language constrained simple path between source and a destination is solvable in polynomial time and (ii) the extension to finding context free language constrained simple paths is NP-complete. Several extensions of these results are presented in the context of finding shortest paths with additional constraints. These results significantly extend the results in [MW95]. As a corollary of the results, they obtain a polynomial time algorithm for the BEST k-SIMILAR PATH problem studied in [SJB97]. The previous best algorithm was given by [SJB97] and takes exponential time in the worst case.
Perfect discretization of path integrals
Steinhaus, Sebastian
2011-01-01
In order to obtain a well-defined path integral one often employs discretizations. In the case of General Relativity these generically break diffeomorphism symmetry, which has severe consequences since these symmetries determine the dynamics of the corresponding system. In this article we consider the path integral of reparametrization invariant systems as a toy example and present an improvement procedure for the discretized propagator. Fixed points and convergence of the procedure are discu...
Path integration in conical space
International Nuclear Information System (INIS)
Inomata, Akira; Junker, Georg
2012-01-01
Quantum mechanics in conical space is studied by the path integral method. It is shown that the curvature effect gives rise to an effective potential in the radial path integral. It is further shown that the radial path integral in conical space can be reduced to a form identical with that in flat space when the discrete angular momentum of each partial wave is replaced by a specific non-integral angular momentum. The effective potential is found proportional to the squared mean curvature of the conical surface embedded in Euclidean space. The path integral calculation is compatible with the Schrödinger equation modified with the Gaussian and the mean curvature. -- Highlights: ► We study quantum mechanics on a cone by the path integral approach. ► The path integral depends only on the metric and the curvature effect is built in. ► The approach is consistent with the Schrödinger equation modified by an effective potential. ► The effective potential is found to be of the “Jensen–Koppe” and “da Costa” type.
Path integrals on curved manifolds
International Nuclear Information System (INIS)
Grosche, C.; Steiner, F.
1987-01-01
A general framework for treating path integrals on curved manifolds is presented. We also show how to perform general coordinate and space-time transformations in path integrals. The main result is that one has to subtract a quantum correction ΔV ∝ ℎ 2 from the classical Lagrangian L, i.e. the correct effective Lagrangian to be used in the path integral is L eff = L-ΔV. A general prescription for calculating the quantum correction ΔV is given. It is based on a canonical approach using Weyl-ordering and the Hamiltonian path integral defined by the midpoint prescription. The general framework is illustrated by several examples: The d-dimensional rotator, i.e. the motion on the sphere S d-1 , the path integral in d-dimensional polar coordinates, the exact treatment of the hydrogen atom in R 2 and R 3 by performing a Kustaanheimo-Stiefel transformation, the Langer transformation and the path integral for the Morse potential. (orig.)
Path-based Queries on Trajectory Data
DEFF Research Database (Denmark)
Krogh, Benjamin Bjerre; Pelekis, Nikos; Theodoridis, Yannis
2014-01-01
In traffic research, management, and planning a number of path-based analyses are heavily used, e.g., for computing turn-times, evaluating green waves, or studying traffic flow. These analyses require retrieving the trajectories that follow the full path being analyzed. Existing path queries cannot...... sufficiently support such path-based analyses because they retrieve all trajectories that touch any edge in the path. In this paper, we define and formalize the strict path query. This is a novel query type tailored to support path-based analysis, where trajectories must follow all edges in the path...... a specific path by only retrieving data from the first and last edge in the path. To correctly answer strict path queries existing network-constrained trajectory indexes must retrieve data from all edges in the path. An extensive performance study of NETTRA using a very large real-world trajectory data set...
Global optimal path planning of an autonomous vehicle for overtaking a moving obstacle
Directory of Open Access Journals (Sweden)
B. Mashadi
Full Text Available In this paper, the global optimal path planning of an autonomous vehicle for overtaking a moving obstacle is proposed. In this study, the autonomous vehicle overtakes a moving vehicle by performing a double lane-change maneuver after detecting it in a proper distance ahead. The optimal path of vehicle for performing the lane-change maneuver is generated by a path planning program in which the sum of lateral deviation of the vehicle from a reference path and the rate of steering angle become minimum while the lateral acceleration of vehicle does not exceed a safe limit value. A nonlinear optimal control theory with the lateral vehicle dynamics equations and inequality constraint of lateral acceleration are used to generate the path. The indirect approach for solving the optimal control problem is used by applying the calculus of variation and the Pontryagin's Minimum Principle to obtain first-order necessary conditions for optimality. The optimal path is generated as a global optimal solution and can be used as the benchmark of the path generated by the local motion planning of autonomous vehicles. A full nonlinear vehicle model in CarSim software is used for path following simulation by importing path data from the MATLAB code. The simulation results show that the generated path for the autonomous vehicle satisfies all vehicle dynamics constraints and hence is a suitable overtaking path for the following vehicle.
From concatenated codes to graph codes
DEFF Research Database (Denmark)
Justesen, Jørn; Høholdt, Tom
2004-01-01
We consider codes based on simple bipartite expander graphs. These codes may be seen as the first step leading from product type concatenated codes to more complex graph codes. We emphasize constructions of specific codes of realistic lengths, and study the details of decoding by message passing...
A path flux analysis method for the reduction of detailed chemical kinetic mechanisms
Energy Technology Data Exchange (ETDEWEB)
Sun, Wenting; Ju, Yiguang [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Chen, Zheng [State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871 (China); Gou, Xiaolong [School of Power Engineering, Chongqing University, Chongqing 400044 (China)
2010-07-15
A direct path flux analysis (PFA) method for kinetic mechanism reduction is proposed and validated by using high temperature ignition, perfect stirred reactors, and steady and unsteady flame propagations of n-heptane and n-decane/air mixtures. The formation and consumption fluxes of each species at multiple reaction path generations are analyzed and used to identify the important reaction pathways and the associated species. The formation and consumption path fluxes used in this method retain flux conservation information and are used to define the path indexes for the first and the second generation reaction paths related to a targeted species. Based on the indexes of each reaction path for the first and second generations, different sized reduced chemical mechanisms which contain different number of species are generated. The reduced mechanisms of n-heptane and n-decane obtained by using the present method are compared to those generated by the direct relation graph (DRG) method. The reaction path analysis for n-decane is conducted to demonstrate the validity of the present method. The comparisons of the ignition delay times, flame propagation speeds, flame structures, and unsteady spherical flame propagation processes showed that with either the same or significantly less number of species, the reduced mechanisms generated by the present PFA are more accurate than that of DRG in a broad range of initial pressures and temperatures. The method is also integrated with the dynamic multi-timescale method and a further increase of computation efficiency is achieved. (author)
Path integration on hyperbolic spaces
Energy Technology Data Exchange (ETDEWEB)
Grosche, C [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
1991-11-01
Quantum mechanics on the hyperbolic spaces of rank one is discussed by path integration technique. Hyperbolic spaces are multi-dimensional generalisation of the hyperbolic plane, i.e. the Poincare upper half-plane endowed with a hyperbolic geometry. We evalute the path integral on S{sub 1} {approx equal} SO (n,1)/SO(n) and S{sub 2} {approx equal} SU(n,1)/S(U(1) x U(n)) in a particular coordinate system, yielding explicitly the wave-functions and the energy spectrum. Futhermore we can exploit a general property of all these spaces, namely that they can be parametrized by a pseudopolar coordinate system. This allows a separation in path integration over spheres and an additional path integration over the remaining hyperbolic coordinate, yielding effectively a path integral for a modified Poeschl-Teller potential. Only continuous spectra can exist in all the cases. For all the hyperbolic spaces of rank one we find a general formula for the largest lower bound (zero-point energy) of the spectrum which is given by E{sub O} = h{sup 2} /8m(m{sub {alpha}} +2m{sub 2} {alpha}){sup 2} (m {alpha} and m{sub 2}{alpha} denote the dimension of the root subspace corresponding to the roots {alpha} and 2{alpha}, respectively). I also discuss the case, where a constant magnetic field on H{sup n} is incorporated. (orig.).
Path integration on hyperbolic spaces
International Nuclear Information System (INIS)
Grosche, C.
1991-11-01
Quantum mechanics on the hyperbolic spaces of rank one is discussed by path integration technique. Hyperbolic spaces are multi-dimensional generalisation of the hyperbolic plane, i.e. the Poincare upper half-plane endowed with a hyperbolic geometry. We evalute the path integral on S 1 ≅ SO (n,1)/SO(n) and S 2 ≅ SU(n,1)/S[U(1) x U(n)] in a particular coordinate system, yielding explicitly the wave-functions and the energy spectrum. Futhermore we can exploit a general property of all these spaces, namely that they can be parametrized by a pseudopolar coordinate system. This allows a separation in path integration over spheres and an additional path integration over the remaining hyperbolic coordinate, yielding effectively a path integral for a modified Poeschl-Teller potential. Only continuous spectra can exist in all the cases. For all the hyperbolic spaces of rank one we find a general formula for the largest lower bound (zero-point energy) of the spectrum which is given by E O = h 2 /8m(m α +2m 2 α) 2 (m α and m 2 α denote the dimension of the root subspace corresponding to the roots α and 2α, respectively). I also discuss the case, where a constant magnetic field on H n is incorporated. (orig.)
[The impact of the code of ethics on training].
Tirand-Martin, Catherine
2017-09-01
The publication of the French code of ethics for nurses, in November 2016, has had an impact on the training of student nurses. In this context, appropriation of the code is clearly facilitated by the form and definition of the text which immediately reinforces students' commitment on the path to professionalization. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Path Integrals in Quantum Mechanics
International Nuclear Information System (INIS)
Louko, J
2005-01-01
Jean Zinn-Justin's textbook Path Integrals in Quantum Mechanics aims to familiarize the reader with the path integral as a calculational tool in quantum mechanics and field theory. The emphasis is on quantum statistical mechanics, starting with the partition function Tr exp(-β H) and proceeding through the diffusion equation to barrier penetration problems and their semiclassical limit. The 'real time' path integral is defined via analytic continuation and used for the path-integral representation of the nonrelativistic S-matrix and its perturbative expansion. Holomorphic and Grassmannian path integrals are introduced and applied to nonrelativistic quantum field theory. There is also a brief discussion of path integrals in phase space. The introduction includes a brief historical review of path integrals, supported by a bibliography with some 40 entries. As emphasized in the introduction, mathematical rigour is not a central issue in the book. This allows the text to present the calculational techniques in a very readable manner: much of the text consists of worked-out examples, such as the quartic anharmonic oscillator in the barrier penetration chapter. At the end of each chapter there are exercises, some of which are of elementary coursework type, but the majority are more in the style of extended examples. Most of the exercises indeed include the solution or a sketch thereof. The book assumes minimal previous knowledge of quantum mechanics, and some basic quantum mechanical notation is collected in an appendix. The material has a large overlap with selected chapters in the author's thousand-page textbook Quantum Field Theory and Critical Phenomena (2002 Oxford: Clarendon). The stand-alone scope of the present work has, however, allowed a more focussed organization of this material, especially in the chapters on, respectively, holomorphic and Grassmannian path integrals. In my view the book accomplishes its aim admirably and is eminently usable as a textbook
International Nuclear Information System (INIS)
Canright, G.S.
1992-01-01
I offer a pedagogical review of the homotopy arguments for fractional statistics in two dimensions. These arguments arise naturally in path-integral language since they necessarily consider the properties of paths rather than simply permutations. The braid group replaces the permutation group as the basic structure for quantum statistics; hence properties of the braid group on several surfaces are briefly discussed. Finally, the question of multiple (real-space) occupancy is addressed; I suggest that the ''traditional'' treatment of this question (ie, an assumption that many-anyon wavefunctions necessarily vanish for multiple occupancy) needs reexamination
Isomorphisms and traversability of directed path graphs
Broersma, Haitze J.; Li, Xueliang; Li, X.
1998-01-01
The concept of a line digraph is generalized to that of a directed path graph. The directed path graph $\\forw P_k(D)$ of a digraph $D$ is obtained by representing the directed paths on $k$ vertices of $D$ by vertices. Two vertices are joined by an arc whenever the corresponding directed paths in $D$
Limits for Stochastic Reaction Networks
DEFF Research Database (Denmark)
Cappelletti, Daniele
Reaction systems have been introduced in the 70s to model biochemical systems. Nowadays their range of applications has increased and they are fruitfully used in dierent elds. The concept is simple: some chemical species react, the set of chemical reactions form a graph and a rate function...... is associated with each reaction. Such functions describe the speed of the dierent reactions, or their propensities. Two modelling regimes are then available: the evolution of the dierent species concentrations can be deterministically modelled through a system of ODE, while the counts of the dierent species...... at a certain time are stochastically modelled by means of a continuous-time Markov chain. Our work concerns primarily stochastic reaction systems, and their asymptotic properties. In Paper I, we consider a reaction system with intermediate species, i.e. species that are produced and fast degraded along a path...
Automatic coding method of the ACR Code
International Nuclear Information System (INIS)
Park, Kwi Ae; Ihm, Jong Sool; Ahn, Woo Hyun; Baik, Seung Kook; Choi, Han Yong; Kim, Bong Gi
1993-01-01
The authors developed a computer program for automatic coding of ACR(American College of Radiology) code. The automatic coding of the ACR code is essential for computerization of the data in the department of radiology. This program was written in foxbase language and has been used for automatic coding of diagnosis in the Department of Radiology, Wallace Memorial Baptist since May 1992. The ACR dictionary files consisted of 11 files, one for the organ code and the others for the pathology code. The organ code was obtained by typing organ name or code number itself among the upper and lower level codes of the selected one that were simultaneous displayed on the screen. According to the first number of the selected organ code, the corresponding pathology code file was chosen automatically. By the similar fashion of organ code selection, the proper pathologic dode was obtained. An example of obtained ACR code is '131.3661'. This procedure was reproducible regardless of the number of fields of data. Because this program was written in 'User's Defined Function' from, decoding of the stored ACR code was achieved by this same program and incorporation of this program into program in to another data processing was possible. This program had merits of simple operation, accurate and detail coding, and easy adjustment for another program. Therefore, this program can be used for automation of routine work in the department of radiology
Hinds, Erold W. (Principal Investigator)
1996-01-01
This report describes the progress made towards the completion of a specific task on error-correcting coding. The proposed research consisted of investigating the use of modulation block codes as the inner code of a concatenated coding system in order to improve the overall space link communications performance. The study proposed to identify and analyze candidate codes that will complement the performance of the overall coding system which uses the interleaved RS (255,223) code as the outer code.
Energy Technology Data Exchange (ETDEWEB)
Leeb, Helmut [Technische Univ. Wien, Vienna (Austria); Dimitriou, Paraskevi [Intl Atomic Energy Agency (IAEA), Vienna (Austria); Thompson, Ian [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-10-23
A Consultants Meeting was held at the IAEA Headquarters, from 28 to 30 June 2017, to discuss the results of a test exercise that had been defined and assigned to all participants of the previous meeting held in December 2016. Five codes were used in this exercise: AMUR, AZURE2, RAC, SFRESCO and SAMMY. The results obtained from these codes were compared and further actions were proposed. Participants’ presentations and technical discussions, as well as proposed additional actions have been summarized in this report.
Gagie, Travis
2005-01-01
We present a new algorithm for dynamic prefix-free coding, based on Shannon coding. We give a simple analysis and prove a better upper bound on the length of the encoding produced than the corresponding bound for dynamic Huffman coding. We show how our algorithm can be modified for efficient length-restricted coding, alphabetic coding and coding with unequal letter costs.
Fundamentals of convolutional coding
Johannesson, Rolf
2015-01-01
Fundamentals of Convolutional Coding, Second Edition, regarded as a bible of convolutional coding brings you a clear and comprehensive discussion of the basic principles of this field * Two new chapters on low-density parity-check (LDPC) convolutional codes and iterative coding * Viterbi, BCJR, BEAST, list, and sequential decoding of convolutional codes * Distance properties of convolutional codes * Includes a downloadable solutions manual
Directory of Open Access Journals (Sweden)
Atamewoue Surdive
2017-12-01
Full Text Available In this paper, we define linear codes and cyclic codes over a finite Krasner hyperfield and we characterize these codes by their generator matrices and parity check matrices. We also demonstrate that codes over finite Krasner hyperfields are more interesting for code theory than codes over classical finite fields.
Gravitational radiation reaction
International Nuclear Information System (INIS)
Tanaka, Takahiro
2006-01-01
We give a short personally-biased review on the recent progress in our understanding of gravitational radiation reaction acting on a point particle orbiting a black hole. The main motivation of this study is to obtain sufficiently precise gravitational waveforms from inspiraling binary compact starts with a large mass ratio. For this purpose, various new concepts and techniques have been developed to compute the orbital evolution taking into account the gravitational self-force. Combining these ideas with a few supplementary new ideas, we try to outline a path to our goal here. (author)
Isotopes in oxidation reactions
International Nuclear Information System (INIS)
Stewart, R.
1976-01-01
The use of isotopes in the study of organic oxidation mechanisms is discussed. The help provided by tracer studies to demonstrate the two-equivalent path - hydride transfer, is illustrated by the examples of carbonium oxidants and the Wacker reaction. The role of kinetic isotope effects in the study of the scission of carbon-hydrogen bonds is illustrated by hydride abstraction, hydrogen atom abstraction, proton abstraction and quantum mechanical tunnelling. Isotopic studies on the oxidation of alcohols, carbonyl compounds, amines and hydrocarbons are discussed. The role of isotopes in the study of biochemical oxidation is illustrated with a discussion on nicotinamide and flavin coenzymes. (B.R.H.)
DiversePathsJ: diverse shortest paths for bioimage analysis.
Uhlmann, Virginie; Haubold, Carsten; Hamprecht, Fred A; Unser, Michael
2018-02-01
We introduce a formulation for the general task of finding diverse shortest paths between two end-points. Our approach is not linked to a specific biological problem and can be applied to a large variety of images thanks to its generic implementation as a user-friendly ImageJ/Fiji plugin. It relies on the introduction of additional layers in a Viterbi path graph, which requires slight modifications to the standard Viterbi algorithm rules. This layered graph construction allows for the specification of various constraints imposing diversity between solutions. The software allows obtaining a collection of diverse shortest paths under some user-defined constraints through a convenient and user-friendly interface. It can be used alone or be integrated into larger image analysis pipelines. http://bigwww.epfl.ch/algorithms/diversepathsj. michael.unser@epfl.ch or fred.hamprecht@iwr.uni-heidelberg.de. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
Spreading paths in partially observed social networks
Onnela, Jukka-Pekka; Christakis, Nicholas A.
2012-03-01
Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using static, structurally realistic social networks as platforms for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is.
Spreading paths in partially observed social networks.
Onnela, Jukka-Pekka; Christakis, Nicholas A
2012-03-01
Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however, two main challenges for inferring spreading paths in real-world networks. One is the practical difficulty of observing a dynamic process on a network, and the other is the typical constraint of only partially observing a network. Using static, structurally realistic social networks as platforms for simulations, we juxtapose three distinct paths: (1) the stochastic path taken by a simulated spreading process from source to target; (2) the topologically shortest path in the fully observed network, and hence the single most likely stochastic path, between the two nodes; and (3) the topologically shortest path in a partially observed network. In a sampled network, how closely does the partially observed shortest path (3) emulate the unobserved spreading path (1)? Although partial observation inflates the length of the shortest path, the stochastic nature of the spreading process also frequently derails the dynamic path from the shortest path. We find that the partially observed shortest path does not necessarily give an inflated estimate of the length of the process path; in fact, partial observation may, counterintuitively, make the path seem shorter than it actually is.
Vector Network Coding Algorithms
Ebrahimi, Javad; Fragouli, Christina
2010-01-01
We develop new algebraic algorithms for scalar and vector network coding. In vector network coding, the source multicasts information by transmitting vectors of length L, while intermediate nodes process and combine their incoming packets by multiplying them with L x L coding matrices that play a similar role as coding c in scalar coding. Our algorithms for scalar network jointly optimize the employed field size while selecting the coding coefficients. Similarly, for vector coding, our algori...
Energy Technology Data Exchange (ETDEWEB)
Anderson, Jonas T., E-mail: jonastyleranderson@gmail.com
2013-03-15
In this paper we define homological stabilizer codes on qubits which encompass codes such as Kitaev's toric code and the topological color codes. These codes are defined solely by the graphs they reside on. This feature allows us to use properties of topological graph theory to determine the graphs which are suitable as homological stabilizer codes. We then show that all toric codes are equivalent to homological stabilizer codes on 4-valent graphs. We show that the topological color codes and toric codes correspond to two distinct classes of graphs. We define the notion of label set equivalencies and show that under a small set of constraints the only homological stabilizer codes without local logical operators are equivalent to Kitaev's toric code or to the topological color codes. - Highlights: Black-Right-Pointing-Pointer We show that Kitaev's toric codes are equivalent to homological stabilizer codes on 4-valent graphs. Black-Right-Pointing-Pointer We show that toric codes and color codes correspond to homological stabilizer codes on distinct graphs. Black-Right-Pointing-Pointer We find and classify all 2D homological stabilizer codes. Black-Right-Pointing-Pointer We find optimal codes among the homological stabilizer codes.
Stochastic control with rough paths
International Nuclear Information System (INIS)
Diehl, Joscha; Friz, Peter K.; Gassiat, Paul
2017-01-01
We study a class of controlled differential equations driven by rough paths (or rough path realizations of Brownian motion) in the sense of Lyons. It is shown that the value function satisfies a HJB type equation; we also establish a form of the Pontryagin maximum principle. Deterministic problems of this type arise in the duality theory for controlled diffusion processes and typically involve anticipating stochastic analysis. We make the link to old work of Davis and Burstein (Stoch Stoch Rep 40:203–256, 1992) and then prove a continuous-time generalization of Roger’s duality formula [SIAM J Control Optim 46:1116–1132, 2007]. The generic case of controlled volatility is seen to give trivial duality bounds, and explains the focus in Burstein–Davis’ (and this) work on controlled drift. Our study of controlled rough differential equations also relates to work of Mazliak and Nourdin (Stoch Dyn 08:23, 2008).
Stochastic control with rough paths
Energy Technology Data Exchange (ETDEWEB)
Diehl, Joscha [University of California San Diego (United States); Friz, Peter K., E-mail: friz@math.tu-berlin.de [TU & WIAS Berlin (Germany); Gassiat, Paul [CEREMADE, Université Paris-Dauphine, PSL Research University (France)
2017-04-15
We study a class of controlled differential equations driven by rough paths (or rough path realizations of Brownian motion) in the sense of Lyons. It is shown that the value function satisfies a HJB type equation; we also establish a form of the Pontryagin maximum principle. Deterministic problems of this type arise in the duality theory for controlled diffusion processes and typically involve anticipating stochastic analysis. We make the link to old work of Davis and Burstein (Stoch Stoch Rep 40:203–256, 1992) and then prove a continuous-time generalization of Roger’s duality formula [SIAM J Control Optim 46:1116–1132, 2007]. The generic case of controlled volatility is seen to give trivial duality bounds, and explains the focus in Burstein–Davis’ (and this) work on controlled drift. Our study of controlled rough differential equations also relates to work of Mazliak and Nourdin (Stoch Dyn 08:23, 2008).
Path modeling and process control
DEFF Research Database (Denmark)
Høskuldsson, Agnar; Rodionova, O.; Pomerantsev, A.
2007-01-01
and having three or more stages. The methods are applied to a process control of a multi-stage production process having 25 variables and one output variable. When moving along the process, variables change their roles. It is shown how the methods of path modeling can be applied to estimate variables...... be performed regarding the foreseeable output property y, and with respect to an admissible range of correcting actions for the parameters of the next stage. In this paper the basic principles of path modeling is presented. The mathematics is presented for processes having only one stage, having two stages...... of the next stage with the purpose of obtaining optimal or almost optimal quality of the output variable. An important aspect of the methods presented is the possibility of extensive graphic analysis of data that can provide the engineer with a detailed view of the multi-variate variation in data....
Factorization-algebraization-path integration
International Nuclear Information System (INIS)
Inomata, A.; Wilson, R.
1986-01-01
The authors review the method of factorization proposed by Schroedinger of a quantum mechanical second-order linear differential equation into a product of two first-order differential operators, often referred to as ladder operators, as well as the modifications made to Schroedinger's method by Infeld and Hull. They then review the group theoretical treatments proposed by Miller of the Schroedinger-Infeld-Hull factorizations and go on to demonstrate the application of dynamical symmetry to path integral calculations. 30 references
Career path for operations personnel
International Nuclear Information System (INIS)
Asher, J.A.
1985-01-01
This paper explains how selected personnel can now obtain a Bachelor of Science degree in Physics with a Nuclear Power Operations option. The program went into effect the Fall of 1984. Another program was worked out in 1982 whereby students attending the Nuclear Operators Training Program could obtain an Associates of Science degree in Mechanical Engineering Technology at the end of two years of study. This paper presents tables and charts which describe these programs and outline the career path for operators
Conditionally solvable path integral problems
International Nuclear Information System (INIS)
Grosche, C.
1995-05-01
Some specific conditionally exactly solvable potentials are discussed within the path integral formalism. They generalize the usually known potentials by the incorporation of a fractional power behaviour and strongly anharmonic terms. We find four different kinds of such potentials, the first is related to the Coulomb potential, the second is an anharmonic confinement potential, and the third and the fourth are related to the Manning-Rosen potential. (orig.)
Path integrals in curvilinear coordinates
International Nuclear Information System (INIS)
Prokhorov, L.V.
1984-01-01
Integration limits are studied for presenting the path integral curvilinear coordinates. For spherical (and topoloqically equivalent) coordinates it is shown that in formulas involving classical action in the exponent integration over all variables should be carried out within infinite limits. Another peculiarity is associated with appearance of the operator q which provides a complete definition of the wave functions out of the physical region. arguments are given upporting the validity of the cited statament in the general case
International Nuclear Information System (INIS)
Exner, P.; Kolerov, G.I.
1981-01-01
Properties of the subset of polygonal paths in the Hilbert space H of paths referring to a d-dimensional quantum-mechanical system are examined. Using the reproduction kernel technique we prove that each element of H is approximated by polygonal paths uniformly with respect to the ''norm'' of time-interval partitions. This result will be applied in the second part of the present paper to prove consistency of the uniform polygonal-path extension of the Feynman maps [ru
International Nuclear Information System (INIS)
Lane, A.M.
1980-01-01
In reviewing work at Harwell over the past 25 years on nuclear reactions it is stated that a balance has to be struck in both experiment and theory between work on cross-sections of direct practical relevance to reactors and on those relevant to an overall understanding of reaction processes. The compound nucleus and direct process reactions are described. Having listed the contributions from AERE, Harwell to developments in nuclear reaction research in the period, work on the optical model, neutron capture theory, reactions at doorway states with fine structure, and sum-rules for spectroscopic factors are considered in more detail. (UK)
Path Integrals in Quantum Mechanics
International Nuclear Information System (INIS)
Chetouani, L
2005-01-01
By treating path integrals the author, in this book, places at the disposal of the reader a modern tool for the comprehension of standard quantum mechanics. Thus the most important applications, such as the tunnel effect, the diffusion matrix, etc, are presented from an original point of view on the action S of classical mechanics while having it play a central role in quantum mechanics. What also emerges is that the path integral describes these applications more richly than are described traditionally by differential equations, and consequently explains them more fully. The book is certainly of high quality in all aspects: original in presentation, rigorous in the demonstrations, judicious in the choice of exercises and, finally, modern, for example in the treatment of the tunnel effect by the method of instantons. Moreover, the correspondence that exists between classical and quantum mechanics is well underlined. I thus highly recommend this book (the French version being already available) to those who wish to familiarize themselves with formulation by path integrals. They will find, in addition, interesting topics suitable for exploring further. (book review)
Nonperturbative path integral expansion II
International Nuclear Information System (INIS)
Kaiser, H.J.
1976-05-01
The Feynman path integral representation of the 2-point function for a self-interacting Bose field is investigated using an expansion ('Path Integral Expansion', PIE) of the exponential of the kinetic term of the Lagrangian. This leads to a series - illustrated by a graph scheme - involving successively a coupling of more and more points of the lattice space commonly employed in the evaluation of path integrals. The values of the individual PIE graphs depend of course on the lattice constant. Two methods - Pade approximation and Borel-type extrapolation - are proposed to extract information about the continuum limit from a finite-order PIE. A more flexible PIE is possible by expanding besides the kinetic term a suitably chosen part of the interaction term too. In particular, if the co-expanded part is a mass term the calculation becomes only slightly more complicated than in the original formulation and the appearance of the graph scheme is unchanged. A significant reduction of the number of graphs and an improvement of the convergence of the PIE can be achieved by performing certain sums over an infinity of graph elements. (author)
Distribution definition of path integrals
International Nuclear Information System (INIS)
Kerler, W.
1979-01-01
By starting from quantum mechanics it turns out that a rather general definition of quantum functional integrals can be given which is based on distribution theory. It applies also to curved space and provides clear rules for non-linear transformations. The refinements necessary in usual definitions of path integrals are pointed out. Since the quantum nature requires special care with time sequences, it is not the classical phase space which occurs in the phase-space form of the path integral. Feynman's configuration-space form only applies to a highly specialized situation, and therefore is not a very advantageous starting point for general investigations. It is shown that the commonly used substitutions of variables do not properly account for quantum effects. The relation to the traditional ordering problem is clarified. The distribution formulation has allowed to treat constrained systems directly at the quantum level, to complete the path integral formulation of the equivalence theorem, and to define functional integrals also for space translation after the transition to fields. (orig.)
Diagnostic Coding for Epilepsy.
Williams, Korwyn; Nuwer, Marc R; Buchhalter, Jeffrey R
2016-02-01
Accurate coding is an important function of neurologic practice. This contribution to Continuum is part of an ongoing series that presents helpful coding information along with examples related to the issue topic. Tips for diagnosis coding, Evaluation and Management coding, procedure coding, or a combination are presented, depending on which is most applicable to the subject area of the issue.
Coding of Neuroinfectious Diseases.
Barkley, Gregory L
2015-12-01
Accurate coding is an important function of neurologic practice. This contribution to Continuum is part of an ongoing series that presents helpful coding information along with examples related to the issue topic. Tips for diagnosis coding, Evaluation and Management coding, procedure coding, or a combination are presented, depending on which is most applicable to the subject area of the issue.
Optimal path-finding through mental exploration based on neural energy field gradients.
Wang, Yihong; Wang, Rubin; Zhu, Yating
2017-02-01
Rodent animal can accomplish self-locating and path-finding task by forming a cognitive map in the hippocampus representing the environment. In the classical model of the cognitive map, the system (artificial animal) needs large amounts of physical exploration to study spatial environment to solve path-finding problems, which costs too much time and energy. Although Hopfield's mental exploration model makes up for the deficiency mentioned above, the path is still not efficient enough. Moreover, his model mainly focused on the artificial neural network, and clear physiological meanings has not been addressed. In this work, based on the concept of mental exploration, neural energy coding theory has been applied to the novel calculation model to solve the path-finding problem. Energy field is constructed on the basis of the firing power of place cell clusters, and the energy field gradient can be used in mental exploration to solve path-finding problems. The study shows that the new mental exploration model can efficiently find the optimal path, and present the learning process with biophysical meaning as well. We also analyzed the parameters of the model which affect the path efficiency. This new idea verifies the importance of place cell and synapse in spatial memory and proves that energy coding is effective to study cognitive activities. This may provide the theoretical basis for the neural dynamics mechanism of spatial memory.
FY16 ASME High Temperature Code Activities
Energy Technology Data Exchange (ETDEWEB)
Swindeman, M. J. [Chromtech Inc., Oak Ridge, TN (United States); Jetter, R. I. [R. I Jetter Consulting, Pebble Beach, CA (United States); Sham, T. -L. [Argonne National Lab. (ANL), Argonne, IL (United States)
2016-09-01
One of the objectives of the ASME high temperature Code activities is to develop and validate both improvements and the basic features of Section III, Division 5, Subsection HB, Subpart B (HBB). The overall scope of this task is to develop a computer program to be used to assess whether or not a specific component under specified loading conditions will satisfy the elevated temperature design requirements for Class A components in Section III, Division 5, Subsection HB, Subpart B (HBB). There are many features and alternative paths of varying complexity in HBB. The initial focus of this task is a basic path through the various options for a single reference material, 316H stainless steel. However, the program will be structured for eventual incorporation all the features and permitted materials of HBB. Since this task has recently been initiated, this report focuses on the description of the initial path forward and an overall description of the approach to computer program development.
Developing improved MD codes for understanding processive cellulases
International Nuclear Information System (INIS)
Crowley, M F; Nimlos, M R; Himmel, M E; Uberbacher, E C; Iii, C L Brooks; Walker, R C
2008-01-01
The mechanism of action of cellulose-degrading enzymes is illuminated through a multidisciplinary collaboration that uses molecular dynamics (MD) simulations and expands the capabilities of MD codes to allow simulations of enzymes and substrates on petascale computational facilities. There is a class of glycoside hydrolase enzymes called cellulases that are thought to decrystallize and processively depolymerize cellulose using biochemical processes that are largely not understood. Understanding the mechanisms involved and improving the efficiency of this hydrolysis process through computational models and protein engineering presents a compelling grand challenge. A detailed understanding of cellulose structure, dynamics and enzyme function at the molecular level is required to direct protein engineers to the right modifications or to understand if natural thermodynamic or kinetic limits are in play. Much can be learned about processivity by conducting carefully designed molecular dynamics (MD) simulations of the binding and catalytic domains of cellulases with various substrate configurations, solvation models and thermodynamic protocols. Most of these numerical experiments, however, will require significant modification of existing code and algorithms in order to efficiently use current (terascale) and future (petascale) hardware to the degree of parallelism necessary to simulate a system of the size proposed here. This work will develop MD codes that can efficiently use terascale and petascale systems, not just for simple classical MD simulations, but also for more advanced methods, including umbrella sampling with complex restraints and reaction coordinates, transition path sampling, steered molecular dynamics, and quantum mechanical/molecular mechanical simulations of systems the size of cellulose degrading enzymes acting on cellulose
Cooperative path planning of unmanned aerial vehicles
Tsourdos, Antonios; Shanmugavel, Madhavan
2010-01-01
An invaluable addition to the literature on UAV guidance and cooperative control, Cooperative Path Planning of Unmanned Aerial Vehicles is a dedicated, practical guide to computational path planning for UAVs. One of the key issues facing future development of UAVs is path planning: it is vital that swarm UAVs/ MAVs can cooperate together in a coordinated manner, obeying a pre-planned course but able to react to their environment by communicating and cooperating. An optimized path is necessary in order to ensure a UAV completes its mission efficiently, safely, and successfully. Focussing on the path planning of multiple UAVs for simultaneous arrival on target, Cooperative Path Planning of Unmanned Aerial Vehicles also offers coverage of path planners that are applicable to land, sea, or space-borne vehicles. Cooperative Path Planning of Unmanned Aerial Vehicles is authored by leading researchers from Cranfield University and provides an authoritative resource for researchers, academics and engineers working in...
Electron Inelastic-Mean-Free-Path Database
SRD 71 NIST Electron Inelastic-Mean-Free-Path Database (PC database, no charge) This database provides values of electron inelastic mean free paths (IMFPs) for use in quantitative surface analyses by AES and XPS.
Time optimal paths for high speed maneuvering
Energy Technology Data Exchange (ETDEWEB)
Reister, D.B.; Lenhart, S.M.
1993-01-01
Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature of the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.
A Network Coding Approach to Loss Tomography
DEFF Research Database (Denmark)
Sattari, Pegah; Markopoulou, Athina; Fragouli, Christina
2013-01-01
network coding capabilities. We design a framework for estimating link loss rates, which leverages network coding capabilities and we show that it improves several aspects of tomography, including the identifiability of links, the tradeoff between estimation accuracy and bandwidth efficiency......, and the complexity of probe path selection. We discuss the cases of inferring the loss rates of links in a tree topology or in a general topology. In the latter case, the benefits of our approach are even more pronounced compared to standard techniques but we also face novel challenges, such as dealing with cycles...
Capture reactions on C-14 in nonstandard big bang nucleosynthesis
Wiescher, Michael; Gorres, Joachim; Thielemann, Friedrich-Karl
1990-01-01
Nonstandard big bang nucleosynthesis leads to the production of C-14. The further reaction path depends on the depletion of C-14 by either photon, alpha, or neutron capture reactions. The nucleus C-14 is of particular importance in these scenarios because it forms a bottleneck for the production of heavier nuclei A greater than 14. The reaction rates of all three capture reactions at big bang conditions are discussed, and it is shown that the resulting reaction path, leading to the production of heavier elements, is dominated by the (p, gamma) and (n, gamma) rates, contrary to earlier suggestions.
Classical and quantum dynamics from classical paths to path integrals
Dittrich, Walter
2016-01-01
Graduate students who want to become familiar with advanced computational strategies in classical and quantum dynamics will find here both the fundamentals of a standard course and a detailed treatment of the time-dependent oscillator, Chern-Simons mechanics, the Maslov anomaly and the Berry phase, to name a few. Well-chosen and detailed examples illustrate the perturbation theory, canonical transformations, the action principle and demonstrate the usage of path integrals. This new edition has been revised and enlarged with chapters on quantum electrodynamics, high energy physics, Green’s functions and strong interaction.
Path Integral Formulation of Anomalous Diffusion Processes
Friedrich, Rudolf; Eule, Stephan
2011-01-01
We present the path integral formulation of a broad class of generalized diffusion processes. Employing the path integral we derive exact expressions for the path probability densities and joint probability distributions for the class of processes under consideration. We show that Continuous Time Random Walks (CTRWs) are included in our framework. A closed expression for the path probability distribution of CTRWs is found in terms of their waiting time distribution as the solution of a Dyson ...
Choosing the Path of Leadership in Occupational Therapy
Directory of Open Access Journals (Sweden)
Clark Patrick Heard D.OT Reg. (Ont.
2014-01-01
Full Text Available Leadership is vital to the success and sustainability of any group, organization, or profession. Using a qualitative phenomenological methodology, consistent with interpretative phenomenological analysis, this study examines why occupational therapists choose the path of leadership. Data was collected through the completion of semistructured interviews with 10 occupational therapy leaders in Ontario, Canada. This collected data was transcribed verbatim and coded for themes by multiple coders. Several methods were employed to establish trustworthiness. Results identify that a desire to influence the profession or care delivery, a need for personal or career development, and a need for change motivate those occupational therapists who might choose the path of leadership. Recommendations for supporting new or developing leaders include a focus on linking occupational therapy practice and leadership theory at the curriculum and professional levels. Moreover, application of novel approaches to mentorship for new and developing leaders, such as supportive communities of practice, are also considered.
Ebrahimi, Javad; Fragouli, Christina
2010-01-01
We develop new algebraic algorithms for scalar and vector network coding. In vector network coding, the source multicasts information by transmitting vectors of length L, while intermediate nodes process and combine their incoming packets by multiplying them with L X L coding matrices that play a similar role as coding coefficients in scalar coding. Our algorithms for scalar network jointly optimize the employed field size while selecting the coding coefficients. Similarly, for vector co...
Sze, Vivienne; Marpe, Detlev
2014-01-01
Context-Based Adaptive Binary Arithmetic Coding (CABAC) is a method of entropy coding first introduced in H.264/AVC and now used in the latest High Efficiency Video Coding (HEVC) standard. While it provides high coding efficiency, the data dependencies in H.264/AVC CABAC make it challenging to parallelize and thus limit its throughput. Accordingly, during the standardization of entropy coding for HEVC, both aspects of coding efficiency and throughput were considered. This chapter describes th...
Generalized concatenated quantum codes
International Nuclear Information System (INIS)
Grassl, Markus; Shor, Peter; Smith, Graeme; Smolin, John; Zeng Bei
2009-01-01
We discuss the concept of generalized concatenated quantum codes. This generalized concatenation method provides a systematical way for constructing good quantum codes, both stabilizer codes and nonadditive codes. Using this method, we construct families of single-error-correcting nonadditive quantum codes, in both binary and nonbinary cases, which not only outperform any stabilizer codes for finite block length but also asymptotically meet the quantum Hamming bound for large block length.
DEFF Research Database (Denmark)
Sørensen, Jesper Hemming; Koike-Akino, Toshiaki; Orlik, Philip
2012-01-01
This paper proposes a concept called rateless feedback coding. We redesign the existing LT and Raptor codes, by introducing new degree distributions for the case when a few feedback opportunities are available. We show that incorporating feedback to LT codes can significantly decrease both...... the coding overhead and the encoding/decoding complexity. Moreover, we show that, at the price of a slight increase in the coding overhead, linear complexity is achieved with Raptor feedback coding....
Partial Path Column Generation for the ESPPRC
DEFF Research Database (Denmark)
Jepsen, Mads Kehlet; Petersen, Bjørn
This talk introduces a decomposition of the Elementary Shortest Path Problem with Resource Constraints(ESPPRC), where the path is combined by smaller sub paths. We show computational result by comparing different approaches for the decomposition and compare the best of these with existing algorit...
Strain path dependency in metal plasticity
Viatkina, E.M.; Brekelmans, W.A.M.; Geers, M.G.D.
2003-01-01
A change in strain path has a significant effect on the mechanical response of metals. Strain path change effects physically originate from a complex microstructure evolution. This paper deals with the contribution of cell structure evolution to the strain path change effect. The material with cells
Gao, Wen
2015-01-01
This comprehensive and accessible text/reference presents an overview of the state of the art in video coding technology. Specifically, the book introduces the tools of the AVS2 standard, describing how AVS2 can help to achieve a significant improvement in coding efficiency for future video networks and applications by incorporating smarter coding tools such as scene video coding. Topics and features: introduces the basic concepts in video coding, and presents a short history of video coding technology and standards; reviews the coding framework, main coding tools, and syntax structure of AV
Abraham, Nikhil
2015-01-01
Hands-on exercises help you learn to code like a pro No coding experience is required for Coding For Dummies,your one-stop guide to building a foundation of knowledge inwriting computer code for web, application, and softwaredevelopment. It doesn't matter if you've dabbled in coding or neverwritten a line of code, this book guides you through the basics.Using foundational web development languages like HTML, CSS, andJavaScript, it explains in plain English how coding works and whyit's needed. Online exercises developed by Codecademy, a leading online codetraining site, help hone coding skill
NSRD-10: Leak Path Factor Guidance Using MELCOR
Energy Technology Data Exchange (ETDEWEB)
Louie, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Humphries, Larry L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-03-01
Estimates of the source term from a U.S. Department of Energy (DOE) nuclear facility requires that the analysts know how to apply the simulation tools used, such as the MELCOR code, particularly for a complicated facility that may include an air ventilation system and other active systems that can influence the environmental pathway of the materials released. DOE has designated MELCOR 1.8.5, an unsupported version, as a DOE ToolBox code in its Central Registry, which includes a leak-path-factor guidance report written in 2004 that did not include experimental validation data. To continue to use this MELCOR version requires additional verification and validations, which may not be feasible from a project cost standpoint. Instead, the recent MELCOR should be used. Without any developer support and lack of experimental data validation, it is difficult to convince regulators that the calculated source term from the DOE facility is accurate and defensible. This research replaces the obsolete version in the 2004 DOE leak path factor guidance report by using MELCOR 2.1 (the latest version of MELCOR with continuing modeling development and user support) and by including applicable experimental data from the reactor safety arena and from applicable experimental data used in the DOE-HDBK-3010. This research provides best practice values used in MELCOR 2.1 specifically for the leak path determination. With these enhancements, the revised leak-path-guidance report should provide confidence to the DOE safety analyst who would be using MELCOR as a source-term determination tool for mitigated accident evaluations.
Innovation paths in wind power
DEFF Research Database (Denmark)
Lema, Rasmus; Nordensvärd, Johan; Urban, Frauke
Denmark and Germany both make substantial investments in low carbon innovation, not least in the wind power sector. These investments in wind energy are driven by the twin objectives of reducing carbon emissions and building up international competitive advantage. Support for wind power dates back....... The ‘Danish Design’ remains the global standard. The direct drive design, while uncommon in Denmark, dominates the German installation base. Direct drive technology has thus emerged as a distinctly German design and sub-trajectory within the overall technological innovation path. When it comes to organising...... global interconnectedness of wind technology markets and the role of emerging new players, such as China and India....
Uncommon paths in quantum physics
Kazakov, Konstantin V
2014-01-01
Quantum mechanics is one of the most fascinating, and at the same time most controversial, branches of contemporary science. Disputes have accompanied this science since its birth and have not ceased to this day. Uncommon Paths in Quantum Physics allows the reader to contemplate deeply some ideas and methods that are seldom met in the contemporary literature. Instead of widespread recipes of mathematical physics, based on the solutions of integro-differential equations, the book follows logical and partly intuitional derivations of non-commutative algebra. Readers can directly penetrate the
International Nuclear Information System (INIS)
Pal, Krishnendu; Das, Biswajit; Banerjee, Kinshuk; Gangopadhyay, Gautam
2015-01-01
We have introduced an approach to nonequilibrium thermodynamics of an open chemical reaction network in terms of the propensities of the individual elementary reactions and the corresponding reverse reactions. The method is a microscopic formulation of the dissipation function in terms of the relative entropy or Kullback-Leibler distance which is based on the analogy of phase space trajectory with the path of elementary reactions in a network of chemical process. We have introduced here a fluctuation theorem valid for each opposite pair of elementary reactions which is useful in determining the contribution of each sub-reaction on the nonequilibrium thermodynamics of overall reaction. The methodology is applied to an oligomeric enzyme kinetics at a chemiostatic condition that leads the reaction to a nonequilibrium steady state for which we have estimated how each step of the reaction is energy driven or entropy driven to contribute to the overall reaction. (paper)
A Consistent System for Coding Laboratory Samples
Sih, John C.
1996-07-01
A formal laboratory coding system is presented to keep track of laboratory samples. Preliminary useful information regarding the sample (origin and history) is gained without consulting a research notebook. Since this system uses and retains the same research notebook page number for each new experiment (reaction), finding and distinguishing products (samples) of the same or different reactions becomes an easy task. Using this system multiple products generated from a single reaction can be identified and classified in a uniform fashion. Samples can be stored and filed according to stage and degree of purification, e.g. crude reaction mixtures, recrystallized samples, chromatographed or distilled products.
International Nuclear Information System (INIS)
Cristea, G.
1975-01-01
The neutron problems are discussed of the thermonuclear reactor controlled by the rate of the fission reactions. The results obtained by rolling the DTF-4 program in a spherical geometry in the case of an ''external source'' problem permit to draw conclusions concerning the problems of the neutronics system of this thermonuclear reactor type. A relation is deduced for estimating the coefficient of back-reflection of the neutrons within the thermonuclear plasma and the focussion system is discussed of the neutronics of this reactor type
All-optical network coding for DPSK signals
DEFF Research Database (Denmark)
An, Yi; Da Ros, Francesco; Peucheret, Christophe
2013-01-01
All-optical network coding for path protection is experimentally demonstrated using four-wave mixing in SOAs for10 Gbit/s NRZ-DPSK signals with error free performance. The total power penalty after two cascaded XOR stage is only 2 dB.......All-optical network coding for path protection is experimentally demonstrated using four-wave mixing in SOAs for10 Gbit/s NRZ-DPSK signals with error free performance. The total power penalty after two cascaded XOR stage is only 2 dB....
Welding Robot Collision-Free Path Optimization
Directory of Open Access Journals (Sweden)
Xuewu Wang
2017-02-01
Full Text Available Reasonable welding path has a significant impact on welding efficiency, and a collision-free path should be considered first in the process of welding robot path planning. The shortest path length is considered as an optimization objective, and obstacle avoidance is considered as the constraint condition in this paper. First, a grid method is used as a modeling method after the optimization objective is analyzed. For local collision-free path planning, an ant colony algorithm is selected as the search strategy. Then, to overcome the shortcomings of the ant colony algorithm, a secondary optimization is presented to improve the optimization performance. Finally, the particle swarm optimization algorithm is used to realize global path planning. Simulation results show that the desired welding path can be obtained based on the optimization strategy.
Compact wireless control network protocol with fast path switching
Directory of Open Access Journals (Sweden)
Yasutaka Kawamoto
2017-08-01
Full Text Available Sensor network protocol stacks require the addition or adjustment of functions based on customer requirements. Sensor network protocols that require low delay and low packet error rate (PER, such as wireless control networks, often adopt time division multiple access (TDMA. However, it is difficult to add or adjust functions in protocol stacks that use TDMA methods. Therefore, to add or adjust functions easily, we propose NES-SOURCE, a compact wireless control network protocol with a fast path-switching function. NES-SOURCE is implemented using carrier sense multiple access/collision avoidance (CSMA/CA rather than TDMA. Wireless control networks that use TDMA prevent communication failure by duplicating the communication path. If CSMA/CA networks use duplicate paths, collisions occur frequently, and communication will fail. NES-SOURCE switches paths quickly when communication fails, which reduces the effect of communication failures. Since NES-SOURCE is implemented using CSMA/CA rather than TDMA, the implementation scale is less than one-half that of existing network stacks. Furthermore, since NES-SOURCE’s code complexity is low, functions can be added or adjusted easily and quickly. Communication failures occur owing to changes in the communication environment and collisions. Experimental results demonstrate that the proposed NES-SOURCE’s path-switching function reduces the amount of communication failures when the communication environment changes owing to human movement and others. Furthermore, we clarify the relationships among the probability of a changing communication environment, the collision occurrence rate, and the PER of NES-SOURCE.
Adaptive format conversion for scalable video coding
Wan, Wade K.; Lim, Jae S.
2001-12-01
The enhancement layer in many scalable coding algorithms is composed of residual coding information. There is another type of information that can be transmitted instead of (or in addition to) residual coding. Since the encoder has access to the original sequence, it can utilize adaptive format conversion (AFC) to generate the enhancement layer and transmit the different format conversion methods as enhancement data. This paper investigates the use of adaptive format conversion information as enhancement data in scalable video coding. Experimental results are shown for a wide range of base layer qualities and enhancement bitrates to determine when AFC can improve video scalability. Since the parameters needed for AFC are small compared to residual coding, AFC can provide video scalability at low enhancement layer bitrates that are not possible with residual coding. In addition, AFC can also be used in addition to residual coding to improve video scalability at higher enhancement layer bitrates. Adaptive format conversion has not been studied in detail, but many scalable applications may benefit from it. An example of an application that AFC is well-suited for is the migration path for digital television where AFC can provide immediate video scalability as well as assist future migrations.
Experimental Study of Serpentinization Reactions
Cohen, B. A.; Brearley, A. J.; Ganguly, J.; Liermann, H.-P.; Keil, K.
2004-01-01
Current carbonaceous chondrite parent-body thermal models [1-3] produce scenarios that are inconsistent with constraints on aqueous alteration conditions based on meteorite mineralogical evidence, such as phase stability relationships within the meteorite matrix minerals [4] and isotope equilibration arguments [5, 6]. This discrepancy arises principally because of the thermal runaway effect produced by silicate hydration reactions (here loosely called serpentinization, as the principal products are serpentine minerals), which are so exothermic as to produce more than enough heat to melt more ice and provide a self-sustaining chain reaction. One possible way to dissipate the heat of reaction is to use a very small parent body [e.g., 2] or possibly a rubble pile model. Another possibility is to release this heat more slowly, which depends on the alteration reaction path and kinetics.
Path of Carbon in Photosynthesis III.
Benson, A. A.; Calvin, M.
1948-06-01
Although the overall reaction of photosynthesis can be specified with some degree of certainty (CO{sub 2} + H{sub 2}O + light {yields} sugars + possibly other reduced substances), the intermediates through which the carbon passes during the course of this reduction have, until now, been largely a matter of conjecture. The availability of isotopic carbon, that is, a method of labeling the carbon dioxide, provides the possibility of some very direct experiments designed to recognize these intermediates and, perhaps, help to understand the complex sequence and interplay of reactions which must constitute the photochemical process itself. The general design of such experiments is an obvious one, namely the exposure of the green plant to radioactive carbon dioxide and light under a variety of conditions and for continually decreasing lengths of time, followed by the identification of the compounds into which the radioactive carbon is incorporated under each condition and time period. From such data it is clear that in principle, at least, it should be possible to establish the sequence of compounds in time through which the carbon passes on its path from carbon dioxide to the final products. In the course of shortening the photosynthetic times, one times, one ultimately arrives at the condition of exposing the plants to the radioactive carbon dioxide with a zero illumination time, that is, in the dark. Actually, in the work the systematic order of events was reversed, and they have begun by studying first the dark fixation and then the shorter photosynthetic times. The results of the beginnings of this sort of a systematic investigation are given in Table I which includes three sets of experiments, namely a dark fixation experiment and two photosynthetic experiments, one of 30 seconds duration and the other of 60 seconds duration.
Discussion on LDPC Codes and Uplink Coding
Andrews, Ken; Divsalar, Dariush; Dolinar, Sam; Moision, Bruce; Hamkins, Jon; Pollara, Fabrizio
2007-01-01
This slide presentation reviews the progress that the workgroup on Low-Density Parity-Check (LDPC) for space link coding. The workgroup is tasked with developing and recommending new error correcting codes for near-Earth, Lunar, and deep space applications. Included in the presentation is a summary of the technical progress of the workgroup. Charts that show the LDPC decoder sensitivity to symbol scaling errors are reviewed, as well as a chart showing the performance of several frame synchronizer algorithms compared to that of some good codes and LDPC decoder tests at ESTL. Also reviewed is a study on Coding, Modulation, and Link Protocol (CMLP), and the recommended codes. A design for the Pseudo-Randomizer with LDPC Decoder and CRC is also reviewed. A chart that summarizes the three proposed coding systems is also presented.
Edwards, James P.; Gerber, Urs; Schubert, Christian; Trejo, Maria Anabel; Weber, Axel
2018-04-01
We introduce two integral transforms of the quantum mechanical transition kernel that represent physical information about the path integral. These transforms can be interpreted as probability distributions on particle trajectories measuring respectively the relative contribution to the path integral from paths crossing a given spatial point (the hit function) and the likelihood of values of the line integral of the potential along a path in the ensemble (the path-averaged potential).
Classical and quantum dynamics from classical paths to path integrals
Dittrich, Walter
2017-01-01
Graduate students who wish to become familiar with advanced computational strategies in classical and quantum dynamics will find in this book both the fundamentals of a standard course and a detailed treatment of the time-dependent oscillator, Chern-Simons mechanics, the Maslov anomaly and the Berry phase, to name just a few topics. Well-chosen and detailed examples illustrate perturbation theory, canonical transformations and the action principle, and demonstrate the usage of path integrals. The fifth edition has been revised and enlarged to include chapters on quantum electrodynamics, in particular, Schwinger’s proper time method and the treatment of classical and quantum mechanics with Lie brackets and pseudocanonical transformations. It is shown that operator quantum electrodynamics can be equivalently described with c-numbers, as demonstrated by calculating the propagation function for an electron in a prescribed classical electromagnetic field.
Locally orderless registration code
DEFF Research Database (Denmark)
2012-01-01
This is code for the TPAMI paper "Locally Orderless Registration". The code requires intel threadding building blocks installed and is provided for 64 bit on mac, linux and windows.......This is code for the TPAMI paper "Locally Orderless Registration". The code requires intel threadding building blocks installed and is provided for 64 bit on mac, linux and windows....
Indian Academy of Sciences (India)
Shannon limit of the channel. Among the earliest discovered codes that approach the. Shannon limit were the low density parity check (LDPC) codes. The term low density arises from the property of the parity check matrix defining the code. We will now define this matrix and the role that it plays in decoding. 2. Linear Codes.
Manually operated coded switch
International Nuclear Information System (INIS)
Barnette, J.H.
1978-01-01
The disclosure related to a manually operated recodable coded switch in which a code may be inserted, tried and used to actuate a lever controlling an external device. After attempting a code, the switch's code wheels must be returned to their zero positions before another try is made
An Outline of the New Norwegian Criminal Code
Directory of Open Access Journals (Sweden)
Jørn Jacobsen
2015-12-01
Full Text Available This article gives an overview of the new criminal code, its background and content. It maps out the code’s background, the legislative process and central ideas. Furthermore, the article gives an outline of the general criteria for criminal responsibility according to the code, the offences and forms of punishment and other reactions. The article emphasises the most important changes from the previous code of 1902. To some degree, strengths and weaknesses of the new code are addressed.
Jones, Lyell K; Ney, John P
2016-12-01
Accurate coding is critically important for clinical practice and research. Ongoing changes to diagnostic and billing codes require the clinician to stay abreast of coding updates. Payment for health care services, data sets for health services research, and reporting for medical quality improvement all require accurate administrative coding. This article provides an overview of administrative coding for patients with muscle disease and includes a case-based review of diagnostic and Evaluation and Management (E/M) coding principles in patients with myopathy. Procedural coding for electrodiagnostic studies and neuromuscular ultrasound is also reviewed.
Master equations and the theory of stochastic path integrals
Weber, Markus F.; Frey, Erwin
2017-04-01
This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. Since the 1930s, master equations have served as a fundamental tool to understand the role of fluctuations in complex biological, chemical, and physical systems. Despite their simple appearance, analyses of master equations most often rely on low-noise approximations such as the Kramers-Moyal or the system size expansion, or require ad-hoc closure schemes for the derivation of low-order moment equations. We focus on numerical and analytical methods going beyond the low-noise limit and provide a unified framework for the study of master equations. After deriving the forward and backward master equations from the Chapman-Kolmogorov equation, we show how the two master equations can be cast into either of four linear partial differential equations (PDEs). Three of these PDEs are discussed in detail. The first PDE governs the time evolution of a generalized probability generating function whose basis depends on the stochastic process under consideration. Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE. The second PDE is novel and is obeyed by a distribution that is marginalized over an initial state. It proves useful for the computation of mean extinction times. The third PDE describes the time evolution of a ‘generating functional’, which generalizes the so-called Poisson representation. Subsequently, the solutions of the PDEs are expressed in terms of two path integrals: a ‘forward’ and a ‘backward’ path integral. Combined with inverse transformations, one obtains two distinct path integral representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Moreover, we show how a well-known path integral representation of averaged observables can be recovered from
Master equations and the theory of stochastic path integrals.
Weber, Markus F; Frey, Erwin
2017-04-01
This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. Since the 1930s, master equations have served as a fundamental tool to understand the role of fluctuations in complex biological, chemical, and physical systems. Despite their simple appearance, analyses of master equations most often rely on low-noise approximations such as the Kramers-Moyal or the system size expansion, or require ad-hoc closure schemes for the derivation of low-order moment equations. We focus on numerical and analytical methods going beyond the low-noise limit and provide a unified framework for the study of master equations. After deriving the forward and backward master equations from the Chapman-Kolmogorov equation, we show how the two master equations can be cast into either of four linear partial differential equations (PDEs). Three of these PDEs are discussed in detail. The first PDE governs the time evolution of a generalized probability generating function whose basis depends on the stochastic process under consideration. Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE. The second PDE is novel and is obeyed by a distribution that is marginalized over an initial state. It proves useful for the computation of mean extinction times. The third PDE describes the time evolution of a 'generating functional', which generalizes the so-called Poisson representation. Subsequently, the solutions of the PDEs are expressed in terms of two path integrals: a 'forward' and a 'backward' path integral. Combined with inverse transformations, one obtains two distinct path integral representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Moreover, we show how a well-known path integral representation of averaged observables can be recovered from them. Upon
International Nuclear Information System (INIS)
Dell'Orco, P.; Luan, L.; Proesmans, P.; Wilmanns, E.
1995-01-01
Results are presented from hydrothermal reaction systems containing organic components, nitrogen components, and an oxidant. Reaction chemistry observed in simple systems and in simple waste simulants is used to develop a model which presents global nitrogen chemistry in these reactive systems. The global reaction path suggested is then compared with results obtained for the treatment of an actual waste stream containing only C-N-0-H species
ASTEC—the Aarhus STellar Evolution Code
Christensen-Dalsgaard, Jørgen
2008-08-01
The Aarhus code is the result of a long development, starting in 1974, and still ongoing. A novel feature is the integration of the computation of adiabatic oscillations for specified models as part of the code. It offers substantial flexibility in terms of microphysics and has been carefully tested for the computation of solar models. However, considerable development is still required in the treatment of nuclear reactions, diffusion and convective mixing.
Crompton, Helen; LaFrance, Jason; van 't Hooft, Mark
2012-01-01
A QR (quick-response) code is a two-dimensional scannable code, similar in function to a traditional bar code that one might find on a product at the supermarket. The main difference between the two is that, while a traditional bar code can hold a maximum of only 20 digits, a QR code can hold up to 7,089 characters, so it can contain much more…
Integrated assignment and path planning
Murphey, Robert A.
2005-11-01
A surge of interest in unmanned systems has exposed many new and challenging research problems across many fields of engineering and mathematics. These systems have the potential of transforming our society by replacing dangerous and dirty jobs with networks of moving machines. This vision is fundamentally separate from the modern view of robotics in that sophisticated behavior is realizable not by increasing individual vehicle complexity, but instead through collaborative teaming that relies on collective perception, abstraction, decision making, and manipulation. Obvious examples where collective robotics will make an impact include planetary exploration, space structure assembly, remote and undersea mining, hazardous material handling and clean-up, and search and rescue. Nonetheless, the phenomenon driving this technology trend is the increasing reliance of the US military on unmanned vehicles, specifically, aircraft. Only a few years ago, following years of resistance to the use of unmanned systems, the military and civilian leadership in the United States reversed itself and have recently demonstrated surprisingly broad acceptance of increasingly pervasive use of unmanned platforms in defense surveillance, and even attack. However, as rapidly as unmanned systems have gained acceptance, the defense research community has discovered the technical pitfalls that lie ahead, especially for operating collective groups of unmanned platforms. A great deal of talent and energy has been devoted to solving these technical problems, which tend to fall into two categories: resource allocation of vehicles to objectives, and path planning of vehicle trajectories. An extensive amount of research has been conducted in each direction, yet, surprisingly, very little work has considered the integrated problem of assignment and path planning. This dissertation presents a framework for studying integrated assignment and path planning and then moves on to suggest an exact
QUIC: a chemical kinetics code for use with the chemical equilibrium code QUIL
International Nuclear Information System (INIS)
Lunsford, J.L.
1977-10-01
A chemical rate kinetics code QUIC is described, along with a support code RATE. QUIC is designed to allow chemical kinetics calculations on a wide variety of chemical environments while operating in the overlay environment of the chemical equilibrium code QUIL. QUIC depends upon a rate-data library called LIBR. This library is maintained by RATE. RATE enters into the library all reactions in a standardized format. The code QUIC, operating in conjunction with QUIL, is interactive and written to be used from a remote terminal, with paging control provided. Plotted output is also available
Directory of Open Access Journals (Sweden)
Clement A.
2006-11-01
processes are usually very complex which is the reason why geochemical models have been developed to understand and simulate the reactions occurring between a set of minerals constituting a rock and an aqueous solution at thermodynamic disequilibrium. An important theoretical work (Helgeson, 1968, based on the pioneering achievements by Garrels and Thompson (1962, made it possible, during the 1970's, to develop numerical models. The primary aim of these computer codes was to calculate the speciation of aqueous solutions and their equilibrium in relation to a mineral paragenesis: SOLMNEQ (Kharaka and Barnes, 1973, WATEQ (Truesdell and Jones, 1974; Plummer et al, 1976, EQUIL (Fritz, 1975, MINEQL (Westall et al. , 1976, EQ3NR (Wolery and Walters, 1975; Wolery, 1979, are all examples of this first generation of models. Starting with these geochemical models, which were based on purely thermodynamic laws and therefore did not consider the rate of chemical reactions, others were developed that charted the way in which a water/rock system evolved through a succession of states of equilibrium. The driving force of the reaction is the progressive variation of one constraint in the system, either through irreversible dissolution of reactants, e. g. the models PATH1 (Helgeson et al. , 1969, 1970, DISSOL (Fritz, 1975, 1981, PHREEQE (Parkhurst et al. , 1980, EQ3/6 (Wolery, 1983; Devaler and Wolery, 1989, SOLMINEQ88 (Perkins et aL, 1990 or through temperature variation, e. g. THERMAL (Fritz, 1981, PHRQINPT (Flemming and Plummer, 1983 or yet, through evaporation of the aqueous solution as in EVAPOR (Fritz, 1981. Thus, the first models were based on thermodynamic equations where the evolution of the system was mapped as a function of the degree of progress of the reaction noted dzeta. More recently, new models have appeared that take into account kinetic laws, thus making it possible to estimate the time of the water/rock interactions and of their return to equilibrium, e. g. EQ6 (Helgeson
Plummer, Niel; Parkhurst, D.L.; Fleming, G.W.; Dunkle, S.A.
1988-01-01
The program named PHRQPITZ is a computer code capable of making geochemical calculations in brines and other electrolyte solutions to high concentrations using the Pitzer virial-coefficient approach for activity-coefficient corrections. Reaction-modeling capabilities include calculation of (1) aqueous speciation and mineral-saturation index, (2) mineral solubility, (3) mixing and titration of aqueous solutions, (4) irreversible reactions and mineral water mass transfer, and (5) reaction path. The computed results for each aqueous solution include the osmotic coefficient, water activity , mineral saturation indices, mean activity coefficients, total activity coefficients, and scale-dependent values of pH, individual-ion activities and individual-ion activity coeffients , and scale-dependent values of pH, individual-ion activities and individual-ion activity coefficients. A data base of Pitzer interaction parameters is provided at 25 C for the system: Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O, and extended to include largely untested literature data for Fe(II), Mn(II), Sr, Ba, Li, and Br with provision for calculations at temperatures other than 25C. An extensive literature review of published Pitzer interaction parameters for many inorganic salts is given. Also described is an interactive input code for PHRQPITZ called PITZINPT. (USGS)
International Nuclear Information System (INIS)
Henning, W.
1979-01-01
Quasielastic reaction studies, because of their capability to microscopically probe nuclear structure, are still of considerable interest in heavy-ion reactions. The recent progress in understanding various aspects of the reaction mechanism make this aim appear closer. The relation between microscopic and macroscopic behavior, as suggested, for example, by the single proton transfer data to individual final states or averaged excitation energy intervals, needs to be explored. It seems particularly useful to extend measurements to higher incident energies, to explore and understand nuclear structure aspects up to the limit of the energy range where they are important
Path Creation, Path Dependence and Breaking Away from the Path: Re-Examining the Case of Nokia
Wang, Jens; Hedman, Jonas; Tuunainen, Virpi Kristiina
2016-01-01
The explanation of how and why firms succeed or fail is a recurrent research challenge. This is particularly important in the context of technological innovations. We focus on the role of historical events and decisions in explaining such success and failure. Using a case study of Nokia, we develop and extend a multi-layer path dependence framework. We identify four layers of path dependence: technical, strategic and leadership, organizational, and external collaboration. We show how path dep...
International Nuclear Information System (INIS)
Sihver, L.; Kanai, T.
1992-07-01
We have developed a computer code for calculations of energy loss (dE/dx) and range distributions for heavy ions in any media. The results from our calculations are in very good agreement with previous calculations. We have developed semiempirical total reaction cross section formulae for proton-nucleus (with Z p ≤26) and nucleus-nucleus (with Z p and Z t ≤26) reactions. These formulae apply for incident energies above 15 MeV and 100 MeV/nucleon respectively. From the total reaction cross sections, we can calculate the mean free paths and the fluence distributions of protons and heavy ions in any media. We have compared all the calculated reaction cross sections and the mean free paths with experimental data, and the agreement is good. We have also constructed a procedure for calculating projectile fragment production cross sections, by scaling semiempirical proton-nucleus partial cross section systematics. The scaling is performed using a scaling parameter deduced from our reaction cross sections formulae, and additional enhancements factors. All products with atomic number ranging from that of the projectile (Z p ) down to Z=2 can be calculated. The agreement between the calculated cross sections and the experimental data is better than earlier published results. (author)
Rainbow paths with prescribed ends
DEFF Research Database (Denmark)
Alishahi, Meysam; Taherkhani, Ali; Thomassen, Carsten
2011-01-01
vertices. We also prove that every connected graph with atleast one edge has a proper k-coloring (for some k) such that every vertex of color i has a neighbor of color i + 1 (mod k). C-5 shows that k may have to be greater than the chromatic number. However, if the graph is connected, infinite and locally...... finite, and has finite chromatic number, then the k-coloring exists for every k >= chi(G). In fact, the k-coloring can be chosen such that every vertex is a starting vertex of an infinite path such that the color increases by 1 (mod k) along each edge. The method is based on the circular chromatic number...... chi(c)(G). In particular, we verify the above conjecture for all connected graphs whose circular chromatic number equals the chromatic number....
Counting paths with Schur transitions
Energy Technology Data Exchange (ETDEWEB)
Díaz, Pablo [Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta, T1K 3M4 (Canada); Kemp, Garreth [Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006 (South Africa); Véliz-Osorio, Alvaro, E-mail: aveliz@gmail.com [Mandelstam Institute for Theoretical Physics, University of the Witwatersrand, WITS 2050, Johannesburg (South Africa); School of Physics and Astronomy, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom)
2016-10-15
In this work we explore the structure of the branching graph of the unitary group using Schur transitions. We find that these transitions suggest a new combinatorial expression for counting paths in the branching graph. This formula, which is valid for any rank of the unitary group, reproduces known asymptotic results. We proceed to establish the general validity of this expression by a formal proof. The form of this equation strongly hints towards a quantum generalization. Thus, we introduce a notion of quantum relative dimension and subject it to the appropriate consistency tests. This new quantity finds its natural environment in the context of RCFTs and fractional statistics; where the already established notion of quantum dimension has proven to be of great physical importance.
Implementing a modular system of computer codes
International Nuclear Information System (INIS)
Vondy, D.R.; Fowler, T.B.
1983-07-01
A modular computation system has been developed for nuclear reactor core analysis. The codes can be applied repeatedly in blocks without extensive user input data, as needed for reactor history calculations. The primary control options over the calculational paths and task assignments within the codes are blocked separately from other instructions, admitting ready access by user input instruction or directions from automated procedures and promoting flexible and diverse applications at minimum application cost. Data interfacing is done under formal specifications with data files manipulated by an informed manager. This report emphasizes the system aspects and the development of useful capability, hopefully informative and useful to anyone developing a modular code system of much sophistication. Overall, this report in a general way summarizes the many factors and difficulties that are faced in making reactor core calculations, based on the experience of the authors. It provides the background on which work on HTGR reactor physics is being carried out
Indian Academy of Sciences (India)
Unknown
Molecular Modeling Group, Organic Chemical Sciences, Indian Institute of Chemical Technology,. Hyderabad ... thus obtained are helpful to model the regioselectivity ... compromise to model Diels–Alder reactions involving ...... acceptance.
MORSE - E. A new version of the MORSE code
International Nuclear Information System (INIS)
Ponti, C.; Heusden, R. van.
1974-12-01
This report describes a version of the MORSE code which has been written to facilitate the practical use of this programme. MORSE-E is a ready-to-use version that does not require particular programming efforts to adapt the code to the problem to be solved. It treats source volumes of different geometrical shapes. MORSE-E calculates the flux of particles as the sum of the paths travelled within a given volume; the corresponding relative errors are also provided
Walker, Judy L
2000-01-01
When information is transmitted, errors are likely to occur. Coding theory examines efficient ways of packaging data so that these errors can be detected, or even corrected. The traditional tools of coding theory have come from combinatorics and group theory. Lately, however, coding theorists have added techniques from algebraic geometry to their toolboxes. In particular, by re-interpreting the Reed-Solomon codes, one can see how to define new codes based on divisors on algebraic curves. For instance, using modular curves over finite fields, Tsfasman, Vladut, and Zink showed that one can define a sequence of codes with asymptotically better parameters than any previously known codes. This monograph is based on a series of lectures the author gave as part of the IAS/PCMI program on arithmetic algebraic geometry. Here, the reader is introduced to the exciting field of algebraic geometric coding theory. Presenting the material in the same conversational tone of the lectures, the author covers linear codes, inclu...
Strategic Team AI Path Plans: Probabilistic Pathfinding
Directory of Open Access Journals (Sweden)
Tng C. H. John
2008-01-01
Full Text Available This paper proposes a novel method to generate strategic team AI pathfinding plans for computer games and simulations using probabilistic pathfinding. This method is inspired by genetic algorithms (Russell and Norvig, 2002, in that, a fitness function is used to test the quality of the path plans. The method generates high-quality path plans by eliminating the low-quality ones. The path plans are generated by probabilistic pathfinding, and the elimination is done by a fitness test of the path plans. This path plan generation method has the ability to generate variation or different high-quality paths, which is desired for games to increase replay values. This work is an extension of our earlier work on team AI: probabilistic pathfinding (John et al., 2006. We explore ways to combine probabilistic pathfinding and genetic algorithm to create a new method to generate strategic team AI pathfinding plans.
Tool path in torus tool CNC machining
Directory of Open Access Journals (Sweden)
XU Ying
2016-10-01
Full Text Available This paper is about tool path in torus tool CNC machining.The mathematical model of torus tool is established.The tool path planning algorithm is determined through calculation of the cutter location,boundary discretization,calculation of adjacent tool path and so on,according to the conversion formula,the cutter contact point will be converted to the cutter location point and then these points fit a toolpath.Lastly,the path planning algorithm is implemented by using Matlab programming.The cutter location points for torus tool are calculated by Matlab,and then fit these points to a toolpath.While using UG software,another tool path of free surface is simulated of the same data.It is drew compared the two tool paths that using torus tool is more efficient.
Low Complexity List Decoding for Polar Codes with Multiple CRC Codes
Directory of Open Access Journals (Sweden)
Jong-Hwan Kim
2017-04-01
Full Text Available Polar codes are the first family of error correcting codes that provably achieve the capacity of symmetric binary-input discrete memoryless channels with low complexity. Since the development of polar codes, there have been many studies to improve their finite-length performance. As a result, polar codes are now adopted as a channel code for the control channel of 5G new radio of the 3rd generation partnership project. However, the decoder implementation is one of the big practical problems and low complexity decoding has been studied. This paper addresses a low complexity successive cancellation list decoding for polar codes utilizing multiple cyclic redundancy check (CRC codes. While some research uses multiple CRC codes to reduce memory and time complexity, we consider the operational complexity of decoding, and reduce it by optimizing CRC positions in combination with a modified decoding operation. Resultingly, the proposed scheme obtains not only complexity reduction from early stopping of decoding, but also additional reduction from the reduced number of decoding paths.
NASA space radiation transport code development consortium
International Nuclear Information System (INIS)
Townsend, L. W.
2005-01-01
Recently, NASA established a consortium involving the Univ. of Tennessee (lead institution), the Univ. of Houston, Roanoke College and various government and national laboratories, to accelerate the development of a standard set of radiation transport computer codes for NASA human exploration applications. This effort involves further improvements of the Monte Carlo codes HETC and FLUKA and the deterministic code HZETRN, including developing nuclear reaction databases necessary to extend the Monte Carlo codes to carry out heavy ion transport, and extending HZETRN to three dimensions. The improved codes will be validated by comparing predictions with measured laboratory transport data, provided by an experimental measurements consortium, and measurements in the upper atmosphere on the balloon-borne Deep Space Test Bed (DSTB). In this paper, we present an overview of the consortium members and the current status and future plans of consortium efforts to meet the research goals and objectives of this extensive undertaking. (authors)
Design of Active N-path Filters
Darvishi, M.; van der Zee, Ronan A.R.; Nauta, Bram
2013-01-01
A design methodology for synthesis of active N-path bandpass filters is introduced. Based on this methodology, a 0.1-to-1.2 GHz tunable 6th-order N-path channel-select filter in 65 nm LP CMOS is introduced. It is based on coupling N-path filters with gyrators, achieving a “flat‿ passband shape and
Energy Technology Data Exchange (ETDEWEB)
Nourtier-Mazauric, E.
2003-03-15
This thesis presents a thermodynamic and kinetic model of interactions between a fluid and ideal solid solutions represented by several end-members. The reaction between a solid solution and the aqueous solution results from the competition between the stoichiometric dissolution of the initial solid solution and the co-precipitation of the least soluble solid solution in the fluid at considered time. This model was implemented in ARCHIMEDE, a computer code of reactive transport in porous media, then applied to various examples. In the case of binary solid solutions, a graphical method allowed to determine the compositions of the precipitating solid solutions, with the aid of the end-member chemical potentials. The obtained program could be used to notably model the diagenesis of clayey or carbonated oil reservoirs, or the ground pollutant dispersion. (author)
A Networks Approach to Modeling Enzymatic Reactions.
Imhof, P
2016-01-01
Modeling enzymatic reactions is a demanding task due to the complexity of the system, the many degrees of freedom involved and the complex, chemical, and conformational transitions associated with the reaction. Consequently, enzymatic reactions are not determined by precisely one reaction pathway. Hence, it is beneficial to obtain a comprehensive picture of possible reaction paths and competing mechanisms. By combining individually generated intermediate states and chemical transition steps a network of such pathways can be constructed. Transition networks are a discretized representation of a potential energy landscape consisting of a multitude of reaction pathways connecting the end states of the reaction. The graph structure of the network allows an easy identification of the energetically most favorable pathways as well as a number of alternative routes. © 2016 Elsevier Inc. All rights reserved.
Path integrals and geometry of trajectories
International Nuclear Information System (INIS)
Blau, M.; Keski-Vakkuri, E.; Niemi, A.J.
1990-01-01
A geometrical interpretation of path integrals is developed in the space of trajectories. This yields a supersymmetric formulation of a generic path integral, with the supersymmetry resembling the BRST supersymmetry of a first class constrained system. If the classical equation of motion is a Killing vector field in the space of trajectories, the supersymmetry localizes the path integral to classical trajectories and the WKB approximation becomes exact. This can be viewed as a path integral generalization of the Duistermaat-Heckman theorem, which states the conditions for the exactness of the WKB approximation for integrals in a compact phase space. (orig.)
Path integrals for arbitrary canonical transformations
International Nuclear Information System (INIS)
Oliveira, L.A.R. de.
1980-01-01
Some aspects of the path integral formulation of quantum mechanics are studied. This formalism is generalized to arbitrary canonical transformations, by means of an association between path integral probalility amplitudes and classical generators of transformations, analogous to the usual Hamiltonian time development phase space expression. Such association turns out to be equivalent to the Weyl quantization rule, and it is also shown that this formalism furnishes a path integral representation for a Lie algebra of a given set of classical generators. Some physical considerations about the path integral quantization procedure and about the relationship between classical and quantum dynamical structures are also discussed. (Author) [pt
Techniques and applications of path integration
Schulman, L S
2005-01-01
A book of techniques and applications, this text defines the path integral and illustrates its uses by example. It is suitable for advanced undergraduates and graduate students in physics; its sole prerequisite is a first course in quantum mechanics. For applications requiring specialized knowledge, the author supplies background material.The first part of the book develops the techniques of path integration. Topics include probability amplitudes for paths and the correspondence limit for the path integral; vector potentials; the Ito integral and gauge transformations; free particle and quadra
DEFF Research Database (Denmark)
Luckow, Kasper Søe; Păsăreanu, Corina
2014-01-01
We describe Symbolic PathFinder v7 in terms of its updated design addressing the changes of Java PathFinder v7 and of its new optimization when computing path conditions. Furthermore, we describe the Symbolic Execution Tree Extension; a newly added feature that allows for outputting the symbolic...... execution tree that characterizes the execution paths covered during symbolic execution. The new extension can be tailored to the needs of subsequent analyses/processing facilities, and we demonstrate this by presenting SPF-Visualizer, which is a tool for customizable visualization of the symbolic execution...
BNL325 - Nuclear reaction data display program
International Nuclear Information System (INIS)
Dunford, C.L.
1994-01-01
A computer code for the graphical display of nuclear reaction data is described. The code, which works on a computer with VMS operating system, can overlay experimental data from an EXFOR/CSISRS table-computation format with evaluated data from ENDF formatted data libraries. Originally, this code has been used at the U.S. National Nuclear Data Center to produce the well-known neutron cross-section atlas published as report BNL-325. (author). 3 tabs
BNL325 - Nuclear reaction data display program
Energy Technology Data Exchange (ETDEWEB)
Dunford, C L
1994-11-27
A computer code for the graphical display of nuclear reaction data is described. The code, which works on a computer with VMS operating system, can overlay experimental data from an EXFOR/CSISRS table-computation format with evaluated data from ENDF formatted data libraries. Originally, this code has been used at the U.S. National Nuclear Data Center to produce the well-known neutron cross-section atlas published as report BNL-325. (author). 3 tabs.
Current status of high energy nucleon-meson transport code
Energy Technology Data Exchange (ETDEWEB)
Takada, Hiroshi; Sasa, Toshinobu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1998-03-01
Current status of design code of accelerator (NMTC/JAERI code), outline of physical model and evaluation of accuracy of code were reported. To evaluate the nuclear performance of accelerator and strong spallation neutron origin, the nuclear reaction between high energy proton and target nuclide and behaviors of various produced particles are necessary. The nuclear design of spallation neutron system used a calculation code system connected the high energy nucleon{center_dot}meson transport code and the neutron{center_dot}photon transport code. NMTC/JAERI is described by the particle evaporation process under consideration of competition reaction of intranuclear cascade and fission process. Particle transport calculation was carried out for proton, neutron, {pi}- and {mu}-meson. To verify and improve accuracy of high energy nucleon-meson transport code, data of spallation and spallation neutron fragment by the integral experiment were collected. (S.Y.)
Directory of Open Access Journals (Sweden)
P.O. Judt
2015-10-01
Full Text Available In many engineering applications special requirements are directed to a material's fracture behavior and the prediction of crack paths. Especially if the material exhibits anisotropic elastic properties or fracture toughnesses, e.g. in textured or composite materials, the simulation of crack paths is challenging. Here, the application of path independent interaction integrals (I-integrals, J-, L- and M-integrals is beneficial for an accurate crack tip loading analysis. Numerical tools for the calculation of loading quantities using these path-invariant integrals are implemented into the commercial finite element (FE-code ABAQUS. Global approaches of the integrals are convenient considering crack tips approaching other crack faces, internal boundaries or material interfaces. Curved crack faces require special treatment with respect to integration contours. Numerical crack paths are predicted based on FE calculations of the boundary value problem in connection with an intelligent adaptive re-meshing algorithm. Considering fracture toughness anisotropy and accounting for inelastic effects due to small plastic zones in the crack tip region, the numerically predicted crack paths of different types of specimens with material interfaces and internal boundaries are compared to subcritically grown paths obtained from experiments.
User manual for the KfK code PCROSS
International Nuclear Information System (INIS)
Ravndal, S.; Oblozinsky, P.; Kelzenberg, S.; Cierjacks, S.
1991-08-01
The PCROSS code calculates the so-called 'pseudo' cross sections for sequential (x,n) reactions and merges them together with 'collapsed' cross sections for neutron induced reactions into one file of cross sections. The file is tailored to provide an input for the FISPACT inventory code that calculates the activation and related radiological quantities of material irradiated in a neutron flux. The present report describes the structure of the KfK code PCROSS, outlines the role of subroutines, and provides necessary information for a practical user of the code. (orig.) [de
Education - path towards solution regarding disposal of spent nuclear fuel
International Nuclear Information System (INIS)
Klein, D.E.
1991-01-01
Education, not emotional reaction, is the path to take in the safe disposal of spent nuclear fuel. Education is needed at all levels: Elementary schools, secondary schools, two-year colleges, four-year colleges, graduate schools, and adult education. The Office of Civilian Radioactive Waste Management (OCRWM) should not be expected to tackle this problem alone. Assistance is needed from local communities, schools, and state and federal governments. However, OCRWM can lay the foundation for a comprehensive educational plan directed specifically at educating the public on the spent nuclear fuel issue and OCRWM can begin the implementation of this plan
Energy Technology Data Exchange (ETDEWEB)
Austern, N. [University of Pittsburgh, Pittsburgh, PA (United States)
1963-01-15
In order to give a unified presentation of one point of view, these lectures are devoted only to a detailed development of the standard theories of direct reactions, starting from basic principles. Discussion is given of the present status of the theories, of the techniques used for practical calculation, and of possible future developments. The direct interaction (DI) aspects of a reaction are those which involve only a few of the many degrees of freedom of a nucleus. In fact the minimum number of degrees of freedom which must be involved in a reaction are those required to describe the initial and final channels, and DI studies typically consider these degrees of freedom and no others. Because of this simplicity DI theories may be worked out in painstaking detail. DI processes concern only part of the wave function for a problem. The other part involves complicated excitations of many degrees of freedom, and gives the compound nucleus (CN) effects. While it is extremely interesting to learn how to separate DI and CN effects in an orderly manner, if they are both present in a reaction, no suitable method has yet been found. Instead, current work stresses the kinds of reactions and the kinds of final states in which DI effects dominate and in which CN effects may almost be forgotten. The DI cross-sections which are studied are often extremely large, comparable to elastic scattering cross-sections. (author)
DEFF Research Database (Denmark)
Soon, Winnie
2014-01-01
This essay studies the source code of an artwork from a software studies perspective. By examining code that come close to the approach of critical code studies (Marino, 2006), I trace the network artwork, Pupufu (Lin, 2009) to understand various real-time approaches to social media platforms (MSN......, Twitter and Facebook). The focus is not to investigate the functionalities and efficiencies of the code, but to study and interpret the program level of code in order to trace the use of various technological methods such as third-party libraries and platforms’ interfaces. These are important...... to understand the socio-technical side of a changing network environment. Through the study of code, including but not limited to source code, technical specifications and other materials in relation to the artwork production, I would like to explore the materiality of code that goes beyond technical...
Djordjevic, Ivan; Vasic, Bane
2010-01-01
This unique book provides a coherent and comprehensive introduction to the fundamentals of optical communications, signal processing and coding for optical channels. It is the first to integrate the fundamentals of coding theory and optical communication.
International Nuclear Information System (INIS)
Sacramento, A.M. do.
1989-01-01
This user's manual contains all the necessary information concerning the use of SEVERO code. This computer code is related to the statistics of extremes = extreme winds, extreme precipitation and flooding hazard risk analysis. (A.C.A.S.)
An Optical Multicast Routing with Minimal Network Coding Operations in WDM Networks
Directory of Open Access Journals (Sweden)
Huanlin Liu
2014-01-01
Full Text Available Network coding can improve the optical multicast routing performance in terms of network throughput, bandwidth utilization, and traffic load balance. But network coding needs high encoding operations costs in all-optical WDM networks due to shortage of optical RAM. In the paper, the network coding operation is defined to evaluate the number of network coding operation cost in the paper. An optical multicast routing algorithm based on minimal number of network coding operations is proposed to improve the multicast capacity. Two heuristic criteria are designed to establish the multicast routing with low network coding cost and high multicast capacity. One is to select one path from the former K shortest paths with the least probability of dropping the multicast maximal capacity. The other is to select the path with lowest potential coding operations with the highest link shared degree among the multiple wavelength disjoint paths cluster from source to each destination. Comparing with the other multicast routing based on network coding, simulation results show that the proposed multicast routing algorithm can effectively reduce the times of network coding operations, can improve the probability of reaching multicast maximal capacity, and can keep the less multicast routing link cost for optical WDM networks.
Energy Efficient Error-Correcting Coding for Wireless Systems
Shao, X.
2010-01-01
The wireless channel is a hostile environment. The transmitted signal does not only suffers multi-path fading but also noise and interference from other users of the wireless channel. That causes unreliable communications. To achieve high-quality communications, error correcting coding is required
Whalen, Michael; Schumann, Johann; Fischer, Bernd
2002-01-01
Code certification is a lightweight approach for formally demonstrating software quality. Its basic idea is to require code producers to provide formal proofs that their code satisfies certain quality properties. These proofs serve as certificates that can be checked independently. Since code certification uses the same underlying technology as program verification, it requires detailed annotations (e.g., loop invariants) to make the proofs possible. However, manually adding annotations to th...
International Nuclear Information System (INIS)
Schmittroth, F.
1979-09-01
A documentation of the FERRET data analysis code is given. The code provides a way to combine related measurements and calculations in a consistent evaluation. Basically a very general least-squares code, it is oriented towards problems frequently encountered in nuclear data and reactor physics. A strong emphasis is on the proper treatment of uncertainties and correlations and in providing quantitative uncertainty estimates. Documentation includes a review of the method, structure of the code, input formats, and examples
Xu, Mingliang; Su, Hao; Li, Yafei; Li, Xi; Liao, Jing; Niu, Jianwei; Lv, Pei; Zhou, Bing
2018-01-01
With the continued proliferation of smart mobile devices, Quick Response (QR) code has become one of the most-used types of two-dimensional code in the world. Aiming at beautifying the appearance of QR codes, existing works have developed a series of techniques to make the QR code more visual-pleasant. However, these works still leave much to be desired, such as visual diversity, aesthetic quality, flexibility, universal property, and robustness. To address these issues, in this paper, we pro...
Zhang, Linfan; Zheng, Shuang
2015-01-01
Quick Response code opens possibility to convey data in a unique way yet insufficient prevention and protection might lead into QR code being exploited on behalf of attackers. This thesis starts by presenting a general introduction of background and stating two problems regarding QR code security, which followed by a comprehensive research on both QR code itself and related issues. From the research a solution taking advantages of cloud and cryptography together with an implementation come af...
DEFF Research Database (Denmark)
Kaplan, Sigal; Prato, Carlo Giacomo
2010-01-01
A behavioural and a modelling framework are proposed for representing route choice from a path set that satisfies travellers’ spatiotemporal constraints. Within the proposed framework, travellers’ master sets are constructed by path generation, consideration sets are delimited according to spatio...
Decision paths in complex tasks
Galanter, Eugene
1991-01-01
Complex real world action and its prediction and control has escaped analysis by the classical methods of psychological research. The reason is that psychologists have no procedures to parse complex tasks into their constituents. Where such a division can be made, based say on expert judgment, there is no natural scale to measure the positive or negative values of the components. Even if we could assign numbers to task parts, we lack rules i.e., a theory, to combine them into a total task representation. We compare here two plausible theories for the amalgamation of the value of task components. Both of these theories require a numerical representation of motivation, for motivation is the primary variable that guides choice and action in well-learned tasks. We address this problem of motivational quantification and performance prediction by developing psychophysical scales of the desireability or aversiveness of task components based on utility scaling methods (Galanter 1990). We modify methods used originally to scale sensory magnitudes (Stevens and Galanter 1957), and that have been applied recently to the measure of task 'workload' by Gopher and Braune (1984). Our modification uses utility comparison scaling techniques which avoid the unnecessary assumptions made by Gopher and Braune. Formula for the utility of complex tasks based on the theoretical models are used to predict decision and choice of alternate paths to the same goal.
Practicality of diversion path analysis
International Nuclear Information System (INIS)
Murphey, W.M.; Schleter, J.C.
1974-07-01
One can define the safeguards system for nuclear material as the set of all protective actions taken to prevent or to deter attempts to divert nuclear material to unauthorized use. Maintenance of effective safeguards requires a program for routine assessment of plant safeguards systems in terms of their capabilities to satisfy safeguards aims. Plant internal control systems provide capabilities for detection of unprevented diversion and can provide assurance that diversion has not occurred. A procedure called Diversion Path Analysis (DPA) enables routine assessment of the capabilities of internal control systems in this regard and identification of safeguards problem areas in a plant. A framework for safeguards system design is also provided which will allow flexibility to accommodate individual plant circumstances while maintaining acceptable diversion detection capability. The steps of the procedure are described and the practicality of the analytical method is shown by referring to a demonstration test for a high throughput process where plant personnel were major participants. The boundary conditions for the demonstration case are given, along with some conclusions about the general procedure. (U.S.)
Inked Careers: Tattooing Professional Paths
Directory of Open Access Journals (Sweden)
Gabriela DeLuca
2016-12-01
Full Text Available The concept of career has an interdisciplinary and historical constitution, which includes persons, groups, organizations and society. Given that, we aim to deepen the interactionist notion of career from the understanding of a deviant path, supported by a theory and a method appropriated to the cited call for interdisciplinary approaches. Dilemmas (Hughes, 1958 and conflicts (Hughes, 1937 emerged as important analytical categories. Although necessary, these two concepts were not sufficient to contemplate analyses in their entirety. For this reason we conceptualized a third possibility of controversy during a career: the inquiries. The study followed the Narrative method to analyze objective and subjective changes during a tattoo artist’s career through interviews and informal conversations carried out over 22 months. The discussion presents three main contributions. Theoretically, a new understanding of the concept of careers, linking past, present and future and the idea of non-linearity of experienced and envisioned careers. Methodologically, suggesting orientations for future career studies such as the use of turning points as a methodological tool and the investigation of deviant fields. Finally, our defense of the interactionist perspective as suitable for career studies, since it allows the investigation of deviant elements.
Kinetic modeling of reactions in Foods
Boekel, van M.A.J.S.
2008-01-01
The level of quality that food maintains as it travels down the production-to-consumption path is largely determined by the chemical, biochemical, physical, and microbiological changes that take place during its processing and storage. Kinetic Modeling of Reactions in Foods demonstrates how to
Further results on binary convolutional codes with an optimum distance profile
DEFF Research Database (Denmark)
Johannesson, Rolf; Paaske, Erik
1978-01-01
Fixed binary convolutional codes are considered which are simultaneously optimal or near-optimal according to three criteria: namely, distance profiled, free distanced_{ infty}, and minimum number of weightd_{infty}paths. It is shown how the optimum distance profile criterion can be used to limit...... codes. As a counterpart to quick-look-in (QLI) codes which are not "transparent," we introduce rateR = 1/2easy-look-in-transparent (ELIT) codes with a feedforward inverse(1 + D,D). In general, ELIT codes haved_{infty}superior to that of QLI codes....
DEFF Research Database (Denmark)
Steensig, Jakob; Heinemann, Trine
2015-01-01
doing formal coding and when doing more “traditional” conversation analysis research based on collections. We are more wary, however, of the implication that coding-based research is the end result of a process that starts with qualitative investigations and ends with categories that can be coded...
DEFF Research Database (Denmark)
Bombin Palomo, Hector
2015-01-01
Color codes are topological stabilizer codes with unusual transversality properties. Here I show that their group of transversal gates is optimal and only depends on the spatial dimension, not the local geometry. I also introduce a generalized, subsystem version of color codes. In 3D they allow...
A. van Deursen (Arie); L.M.F. Moonen (Leon); A. van den Bergh; G. Kok
2001-01-01
textabstractTwo key aspects of extreme programming (XP) are unit testing and merciless refactoring. Given the fact that the ideal test code / production code ratio approaches 1:1, it is not surprising that unit tests are being refactored. We found that refactoring test code is different from
International Nuclear Information System (INIS)
Nguyen Trong Anh
1988-01-01
The 1988 progress report of the Reaction Mechanisms laboratory (Polytechnic School, France), is presented. The research topics are: the valence bond methods, the radical chemistry, the modelling of the transition states by applying geometric constraints, the long range interactions (ion - molecule) in gaseous phase, the reaction sites in gaseous phase and the mass spectroscopy applications. The points of convergence between the investigations of the mass spectroscopy and the theoretical chemistry teams, as well as the purposes guiding the research programs, are discussed. The published papers, the conferences, the congress communications and the thesis, are also reported [fr
Software Certification - Coding, Code, and Coders
Havelund, Klaus; Holzmann, Gerard J.
2011-01-01
We describe a certification approach for software development that has been adopted at our organization. JPL develops robotic spacecraft for the exploration of the solar system. The flight software that controls these spacecraft is considered to be mission critical. We argue that the goal of a software certification process cannot be the development of "perfect" software, i.e., software that can be formally proven to be correct under all imaginable and unimaginable circumstances. More realistically, the goal is to guarantee a software development process that is conducted by knowledgeable engineers, who follow generally accepted procedures to control known risks, while meeting agreed upon standards of workmanship. We target three specific issues that must be addressed in such a certification procedure: the coding process, the code that is developed, and the skills of the coders. The coding process is driven by standards (e.g., a coding standard) and tools. The code is mechanically checked against the standard with the help of state-of-the-art static source code analyzers. The coders, finally, are certified in on-site training courses that include formal exams.
Two Generations of Path Dependence in Economics?
DEFF Research Database (Denmark)
Madsen, Mogens Ove
2010-01-01
Even if there is no fully articulated and generally accepted theory of Path Dependence it has eagerly been taken up across a wide range of social sciences – primarily coming from economics. Path Dependence is most of all a metaphor that offers reason to believe, that some political, social...
Cooperative organic mine avoidance path planning
McCubbin, Christopher B.; Piatko, Christine D.; Peterson, Adam V.; Donnald, Creighton R.; Cohen, David
2005-06-01
The JHU/APL Path Planning team has developed path planning techniques to look for paths that balance the utility and risk associated with different routes through a minefield. Extending on previous years' efforts, we investigated real-world Naval mine avoidance requirements and developed a tactical decision aid (TDA) that satisfies those requirements. APL has developed new mine path planning techniques using graph based and genetic algorithms which quickly produce near-minimum risk paths for complicated fitness functions incorporating risk, path length, ship kinematics, and naval doctrine. The TDA user interface, a Java Swing application that obtains data via Corba interfaces to path planning databases, allows the operator to explore a fusion of historic and in situ mine field data, control the path planner, and display the planning results. To provide a context for the minefield data, the user interface also renders data from the Digital Nautical Chart database, a database created by the National Geospatial-Intelligence Agency containing charts of the world's ports and coastal regions. This TDA has been developed in conjunction with the COMID (Cooperative Organic Mine Defense) system. This paper presents a description of the algorithms, architecture, and application produced.
Evaluation of Calcine Disposition Path Forward
International Nuclear Information System (INIS)
Birrer, S.A.; Heiser, M.B.
2003-01-01
This document describes an evaluation of the baseline and two alternative disposition paths for the final disposition of the calcine wastes stored at the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory. The pathways are evaluated against a prescribed set of criteria and a recommendation is made for the path forward
Generalized measures and the Feynman path integral
International Nuclear Information System (INIS)
Maslov, V.P.; Chebotarev, A.M.
1976-01-01
Generalizations are obtained for the earlier results by the authors concerning the inclusion of the Feynmann path integral in the momentum representation into the general integration theory. Feynmann path integrals are considered which do not represent T-products. Generalized Feynmann measure in the configuration representation is introduced
Approximate Shortest Homotopic Paths in Weighted Regions
Cheng, Siu-Wing; Jin, Jiongxin; Vigneron, Antoine; Wang, Yajun
2010-01-01
Let P be a path between two points s and t in a polygonal subdivision T with obstacles and weighted regions. Given a relative error tolerance ε ∈(0,1), we present the first algorithm to compute a path between s and t that can be deformed to P
Paths and cycles in colored graphs
Li, Xueliang; Zhang, Shenggui; Hurink, Johann L.; Pickl, Stefan; Broersma, Haitze J.; Faigle, U.
2001-01-01
Let G be an (edge-)colored graph. A path (cycle) is called monochromatic if all the edges of it have the same color, and is called heterochromatic if all the edges of it have different colors. In this note, some sufficient conditions for the existence of monochromatic and heterochromatic paths and
Path Minima Queries in Dynamic Weighted Trees
DEFF Research Database (Denmark)
Davoodi, Pooya; Brodal, Gerth Stølting; Satti, Srinivasa Rao
2011-01-01
In the path minima problem on a tree, each edge is assigned a weight and a query asks for the edge with minimum weight on a path between two nodes. For the dynamic version of the problem, where the edge weights can be updated, we give data structures that achieve optimal query time\\todo{what about...
Approximate shortest homotopic paths in weighted regions
Cheng, Siuwing; Jin, Jiongxin; Vigneron, Antoine E.; Wang, Yajun
2012-01-01
A path P between two points s and t in a polygonal subdivision T with obstacles and weighted regions defines a class of paths that can be deformed to P without passing over any obstacle. We present the first algorithm that, given P and a relative
from synchronic variation to a grammaticalization path
African Journals Online (AJOL)
Kate H
Abstract. The authors argue that the synchronic variation of cognate objects of weather verbs exhibited in six African languages of South Africa (Sepedi, Sesotho, Tshivenda, isiXhosa, Xitsonga, and. isiZulu) has a diachronic explanation, and may be represented as a grammaticalization path. This path gradually leads from ...
Development of a detailed core flow analysis code for prismatic fuel reactors
International Nuclear Information System (INIS)
Bennett, R.G.
1990-01-01
The development of a computer code for the analysis of the detailed flow of helium in prismatic fuel reactors is reported. The code, called BYPASS, solves, a finite difference control volume formulation of the compressible, steady state fluid flow in highly cross-connected flow paths typical of the Modular High-Temperature Gas Cooled Reactor (MHTGR). The discretization of the flow in a core region typically considers the main coolant flow paths, the bypass gap flow paths, and the crossflow connections between them. 16 refs., 5 figs
Optimization of educational paths for higher education
Tarasyev, Alexandr A.; Agarkov, Gavriil; Medvedev, Aleksandr
2017-11-01
In our research, we combine the theory of economic behavior and the methodology of increasing efficiency of the human capital to estimate the optimal educational paths. We provide an optimization model for higher education process to analyze possible educational paths for each rational individual. The preferences of each rational individual are compared to the best economically possible educational path. The main factor of the individual choice, which is formed by the formation of optimal educational path, deals with higher salaries level in the chosen economic sector after graduation. Another factor that influences on the economic profit is the reduction of educational costs or the possibility of the budget support for the student. The main outcome of this research consists in correction of the governmental policy of investment in human capital based on the results of educational paths optimal control.
International Nuclear Information System (INIS)
1997-01-01
The Network Code defines the rights and responsibilities of all users of the natural gas transportation system in the liberalised gas industry in the United Kingdom. This report describes the operation of the Code, what it means, how it works and its implications for the various participants in the industry. The topics covered are: development of the competitive gas market in the UK; key points in the Code; gas transportation charging; impact of the Code on producers upstream; impact on shippers; gas storage; supply point administration; impact of the Code on end users; the future. (20 tables; 33 figures) (UK)
Rice, R. F.; Lee, J. J.
1986-01-01
Scheme for coding facsimile messages promises to reduce data transmission requirements to one-tenth current level. Coding scheme paves way for true electronic mail in which handwritten, typed, or printed messages or diagrams sent virtually instantaneously - between buildings or between continents. Scheme, called Universal System for Efficient Electronic Mail (USEEM), uses unsupervised character recognition and adaptive noiseless coding of text. Image quality of resulting delivered messages improved over messages transmitted by conventional coding. Coding scheme compatible with direct-entry electronic mail as well as facsimile reproduction. Text transmitted in this scheme automatically translated to word-processor form.
Li, Wenjin
2018-02-01
Transition path ensemble consists of reactive trajectories and possesses all the information necessary for the understanding of the mechanism and dynamics of important condensed phase processes. However, quantitative description of the properties of the transition path ensemble is far from being established. Here, with numerical calculations on a model system, the equipartition terms defined in thermal equilibrium were for the first time estimated in the transition path ensemble. It was not surprising to observe that the energy was not equally distributed among all the coordinates. However, the energies distributed on a pair of conjugated coordinates remained equal. Higher energies were observed to be distributed on several coordinates, which are highly coupled to the reaction coordinate, while the rest were almost equally distributed. In addition, the ensemble-averaged energy on each coordinate as a function of time was also quantified. These quantitative analyses on energy distributions provided new insights into the transition path ensemble.
... that don't bother most people (such as venom from bee stings and certain foods, medicines, and pollens) can ... person. If the allergic reaction is from a bee sting, scrape the ... more venom. If the person has emergency allergy medicine on ...
LAPU2: a laser pulse propagation code with diffraction
International Nuclear Information System (INIS)
Goldstein, J.C.; Dickman, D.O.
1978-03-01
Complete descriptions of the mathematical models and numerical methods used in the code LAPU2 are presented. This code can be used to study the propagation with diffraction of a temporally finite pulse through a sequence of resonant media and simple optical components. The treatment assumes cylindrical symmetry and allows nonlinear refractive indices. An unlimited number of different media can be distributed along the propagation path of the pulse. A complete users guide to input data is given as well as a FORTRAN listing of the code
International Nuclear Information System (INIS)
Mueller, W.H.; Schneider, B.; Staeuble, J.
1984-01-01
This reference manual provides users of the NAGRADATA system with comprehensive keys to the coding/decoding of geological and technical information to be stored in or retreaved from the databank. Emphasis has been placed on input data coding. When data is retreaved the translation into plain language of stored coded information is done automatically by computer. Three keys each, list the complete set of currently defined codes for the NAGRADATA system, namely codes with appropriate definitions, arranged: 1. according to subject matter (thematically) 2. the codes listed alphabetically and 3. the definitions listed alphabetically. Additional explanation is provided for the proper application of the codes and the logic behind the creation of new codes to be used within the NAGRADATA system. NAGRADATA makes use of codes instead of plain language for data storage; this offers the following advantages: speed of data processing, mainly data retrieval, economies of storage memory requirements, the standardisation of terminology. The nature of this thesaurian type 'key to codes' makes it impossible to either establish a final form or to cover the entire spectrum of requirements. Therefore, this first issue of codes to NAGRADATA must be considered to represent the current state of progress of a living system and future editions will be issued in a loose leave ringbook system which can be updated by an organised (updating) service. (author)
International Nuclear Information System (INIS)
Jow, Hong-Nian; Murfin, W.B.; Johnson, J.D.
1993-11-01
This report describes the source term estimation codes, XSORs. The codes are written for three pressurized water reactors (Surry, Sequoyah, and Zion) and two boiling water reactors (Peach Bottom and Grand Gulf). The ensemble of codes has been named ''XSOR''. The purpose of XSOR codes is to estimate the source terms which would be released to the atmosphere in severe accidents. A source term includes the release fractions of several radionuclide groups, the timing and duration of releases, the rates of energy release, and the elevation of releases. The codes have been developed by Sandia National Laboratories for the US Nuclear Regulatory Commission (NRC) in support of the NUREG-1150 program. The XSOR codes are fast running parametric codes and are used as surrogates for detailed mechanistic codes. The XSOR codes also provide the capability to explore the phenomena and their uncertainty which are not currently modeled by the mechanistic codes. The uncertainty distributions of input parameters may be used by an. XSOR code to estimate the uncertainty of source terms
Coupled geochemical and solute transport code development
International Nuclear Information System (INIS)
Morrey, J.R.; Hostetler, C.J.
1985-01-01
A number of coupled geochemical hydrologic codes have been reported in the literature. Some of these codes have directly coupled the source-sink term to the solute transport equation. The current consensus seems to be that directly coupling hydrologic transport and chemical models through a series of interdependent differential equations is not feasible for multicomponent problems with complex geochemical processes (e.g., precipitation/dissolution reactions). A two-step process appears to be the required method of coupling codes for problems where a large suite of chemical reactions must be monitored. Two-step structure requires that the source-sink term in the transport equation is supplied by a geochemical code rather than by an analytical expression. We have developed a one-dimensional two-step coupled model designed to calculate relatively complex geochemical equilibria (CTM1D). Our geochemical module implements a Newton-Raphson algorithm to solve heterogeneous geochemical equilibria, involving up to 40 chemical components and 400 aqueous species. The geochemical module was designed to be efficient and compact. A revised version of the MINTEQ Code is used as a parent geochemical code
A fast tomographic method for searching the minimum free energy path
International Nuclear Information System (INIS)
Chen, Changjun; Huang, Yanzhao; Xiao, Yi; Jiang, Xuewei
2014-01-01
Minimum Free Energy Path (MFEP) provides a lot of important information about the chemical reactions, like the free energy barrier, the location of the transition state, and the relative stability between reactant and product. With MFEP, one can study the mechanisms of the reaction in an efficient way. Due to a large number of degrees of freedom, searching the MFEP is a very time-consuming process. Here, we present a fast tomographic method to perform the search. Our approach first calculates the free energy surfaces in a sequence of hyperplanes perpendicular to a transition path. Based on an objective function and the free energy gradient, the transition path is optimized in the collective variable space iteratively. Applications of the present method to model systems show that our method is practical. It can be an alternative approach for finding the state-to-state MFEP
International Nuclear Information System (INIS)
Kulikowska, T.
1999-01-01
The present lecture has a main goal to show how the transport lattice calculations are realised in a standard computer code. This is illustrated on the example of the WIMSD code, belonging to the most popular tools for reactor calculations. Most of the approaches discussed here can be easily modified to any other lattice code. The description of the code assumes the basic knowledge of reactor lattice, on the level given in the lecture on 'Reactor lattice transport calculations'. For more advanced explanation of the WIMSD code the reader is directed to the detailed descriptions of the code cited in References. The discussion of the methods and models included in the code is followed by the generally used homogenisation procedure and several numerical examples of discrepancies in calculated multiplication factors based on different sources of library data. (author)
Energy Technology Data Exchange (ETDEWEB)
2014-05-14
DLLExternalCode is the a general dynamic-link library (DLL) interface for linking GoldSim (www.goldsim.com) with external codes. The overall concept is to use GoldSim as top level modeling software with interfaces to external codes for specific calculations. The DLLExternalCode DLL that performs the linking function is designed to take a list of code inputs from GoldSim, create an input file for the external application, run the external code, and return a list of outputs, read from files created by the external application, back to GoldSim. Instructions for creating the input file, running the external code, and reading the output are contained in an instructions file that is read and interpreted by the DLL.
SWAAM code development, verification and application to steam generator design
International Nuclear Information System (INIS)
Shin, Y.W.; Valentin, R.A.
1990-01-01
This paper describes the family of SWAAM codes developed by Argonne National Laboratory to analyze the effects of sodium/water reactions on LMR steam generators. The SWAAM codes were developed as design tools for analyzing various phenomena related to steam generator leaks and to predict the resulting thermal and hydraulic effects on the steam generator and the intermediate heat transport system (IHTS). The theoretical foundations and numerical treatments on which the codes are based are discussed, followed by a description of code capabilities and limitations, verification of the codes by comparison with experiment, and applications to steam generator and IHTS design. (author). 25 refs, 14 figs
Cambié, D.; Zhao, F.; Hessel, V.; Debije, M.G.; Noël, T.
2017-01-01
Luminescent solar concentrator-based photomicroreactors (LSC-PMs) have been recently proposed for sustainable and energy-efficient photochemical reactions. Herein, a Monte Carlo ray tracing algorithm to simulate photon paths within LSC-PMs was developed and experimentally validated. The simulation
Multi-AGV path planning with double-path constraints by using an improved genetic algorithm.
Directory of Open Access Journals (Sweden)
Zengliang Han
Full Text Available This paper investigates an improved genetic algorithm on multiple automated guided vehicle (multi-AGV path planning. The innovations embody in two aspects. First, three-exchange crossover heuristic operators are used to produce more optimal offsprings for getting more information than with the traditional two-exchange crossover heuristic operators in the improved genetic algorithm. Second, double-path constraints of both minimizing the total path distance of all AGVs and minimizing single path distances of each AGV are exerted, gaining the optimal shortest total path distance. The simulation results show that the total path distance of all AGVs and the longest single AGV path distance are shortened by using the improved genetic algorithm.
DEXTER: A one-dimensional code for calculating thermionic performance of long converters
Sawyer, C. D.
1971-01-01
A versatile code is described for computing the coupled thermionic electric-thermal performance of long thermionic converters in which the temperature and voltage variations cannot be neglected. The code is capable of accounting for a variety of external electrical connection schemes, coolant flow paths and converter failures by partial shorting. Example problem solutions are included along with a user's manual.
Dexter - A one-dimensional code for calculating thermionic performance of long converters.
Sawyer, C. D.
1971-01-01
This paper describes a versatile code for computing the coupled thermionic electric-thermal performance of long thermionic converters in which the temperature and voltage variations cannot be neglected. The code is capable of accounting for a variety of external electrical connection schemes, coolant flow paths and converter failures by partial shorting. Example problem solutions are given.
Toric Varieties and Codes, Error-correcting Codes, Quantum Codes, Secret Sharing and Decoding
DEFF Research Database (Denmark)
Hansen, Johan Peder
We present toric varieties and associated toric codes and their decoding. Toric codes are applied to construct Linear Secret Sharing Schemes (LSSS) with strong multiplication by the Massey construction. Asymmetric Quantum Codes are obtained from toric codes by the A.R. Calderbank P.W. Shor and A.......M. Steane construction of stabilizer codes (CSS) from linear codes containing their dual codes....
Integrated path towards geological storage
International Nuclear Information System (INIS)
Bouchard, R.; Delaytermoz, A.
2004-01-01
Among solutions to contribute to CO 2 emissions mitigation, sequestration is a promising path that presents the main advantage of being able to cope with the large volume at stake when considering the growing energy demand. Of particular importance, geological storage has widely been seen as an effective solution for large CO 2 sources like power plants or refineries. Many R and D projects have been initiated, whereby research institutes, government agencies and end-users achieve an effective collaboration. So far, progress has been made towards reinjection of CO 2 , in understanding and then predicting the phenomenon and fluid dynamics inside the geological target, while monitoring the expansion of the CO 2 bubble in the case of demonstration projects. A question arises however when talking about sequestration, namely the time scale to be taken into account. Time is indeed of the essence, and points out the need to understand leakage as well as trapping mechanisms. It is therefore of prime importance to be able to predict the fate of the injected fluids, in an accurate manner and over a relevant period of time. On the grounds of geology, four items are involved in geological storage reliability: the matrix itself, which is the recipient of the injected fluids; the seal, that is the mechanistic trap preventing the injected fluids to flow upward and escape; the lower part of the concerned structure, usually an aquifer, that can be a migration way for dissolved fluids; and the man- made injecting hole, the well, whose characteristics should be as good as the geological formation itself. These issues call for specific competencies such as reservoir engineering, geology and hydrodynamics, mineral chemistry, geomechanics, and well engineering. These competencies, even if put to use to a large extent in the oil industry, have never been connected with the reliability of geological storage as ultimate goal. This paper aims at providing an introduction to these
Nonlinear variational models for reaction and diffusion systems
International Nuclear Information System (INIS)
Tanyi, G.E.
1983-08-01
There exists a natural metric w.r.t. which the density dependent diffusion operator is harmonic in the sense of Eells and Sampson. A physical corollary of this statement is the property that any two regular points on the orbit of a reaction or diffusion operator can be connected by a path along which the reaction rate is constant. (author)
Lattice-Like Total Perfect Codes
Directory of Open Access Journals (Sweden)
Araujo Carlos
2014-02-01
Full Text Available A contribution is made to the classification of lattice-like total perfect codes in integer lattices Λn via pairs (G, Φ formed by abelian groups G and homomorphisms Φ: Zn → G. A conjecture is posed that the cited contribution covers all possible cases. A related conjecture on the unfinished work on open problems on lattice-like perfect dominating sets in Λn with induced components that are parallel paths of length > 1 is posed as well.
Abnormal reactions in a evaporator in a fuel reprocessing plant
International Nuclear Information System (INIS)
Kida, Takashi; Umeda, Miki; Sugikawa, Susumu
2003-01-01
In order to evaluate a self-accelerated reaction in an evaporator in a fuel reprocessing plant due to organic-nitric acid reactions, a development of a calculation code is under way. Mock-up tests were performed to investigate the fluid dynamic behavior of the organic solvent in the evaporator. Based on these results, the model of the calculation code was constructed. This report describes the results of mock-up tests and the model of the calculation code. (author)
An Optimal Linear Coding for Index Coding Problem
Pezeshkpour, Pouya
2015-01-01
An optimal linear coding solution for index coding problem is established. Instead of network coding approach by focus on graph theoric and algebraic methods a linear coding program for solving both unicast and groupcast index coding problem is presented. The coding is proved to be the optimal solution from the linear perspective and can be easily utilize for any number of messages. The importance of this work is lying mostly on the usage of the presented coding in the groupcast index coding ...
Integrated robust controller for vehicle path following
Energy Technology Data Exchange (ETDEWEB)
Mashadi, Behrooz; Ahmadizadeh, Pouyan, E-mail: p-ahmadizadeh@iust.ac.ir; Majidi, Majid, E-mail: m-majidi@iust.ac.ir [Iran University of Science and Technology, School of Automotive Engineering (Iran, Islamic Republic of); Mahmoodi-Kaleybar, Mehdi, E-mail: m-mahmoodi-k@iust.ac.ir [Iran University of Science and Technology, School of Mechanical Engineering (Iran, Islamic Republic of)
2015-02-15
The design of an integrated 4WS+DYC control system to guide a vehicle on a desired path is presented. The lateral dynamics of the path follower vehicle is formulated by considering important parameters. To reduce the effect of uncertainties in vehicle parameters, a robust controller is designed based on a μ-synthesis approach. Numerical simulations are performed using a nonlinear vehicle model in MATLAB environment in order to investigate the effectiveness of the designed controller. Results of simulations show that the controller has a profound ability to making the vehicle track the desired path in the presence of uncertainties.
Path integral for relativistic particle theory
International Nuclear Information System (INIS)
Fradkin, E.S.; Gitman, D.M.; Shvartsman, Sh.M.
1990-06-01
An action for a relativistic spinning particle interacting with external electromagnetic field is considered in reparametrization and local supergauge invariant form. It is shown that various path integral representations derived for the causal Green function correspond to the different forms of the relativistic particle action. The analogy of the path integral derived with the Lagrangian path integral of the field theory is discussed. It is shown that to obtain the causal propagator, the integration over the null mode of the Lagrangian multiplier corresponding to the reparametrization invariance, has to be performed in the (0,+infinity) limits. (author). 23 refs
Integrated robust controller for vehicle path following
International Nuclear Information System (INIS)
Mashadi, Behrooz; Ahmadizadeh, Pouyan; Majidi, Majid; Mahmoodi-Kaleybar, Mehdi
2015-01-01
The design of an integrated 4WS+DYC control system to guide a vehicle on a desired path is presented. The lateral dynamics of the path follower vehicle is formulated by considering important parameters. To reduce the effect of uncertainties in vehicle parameters, a robust controller is designed based on a μ-synthesis approach. Numerical simulations are performed using a nonlinear vehicle model in MATLAB environment in order to investigate the effectiveness of the designed controller. Results of simulations show that the controller has a profound ability to making the vehicle track the desired path in the presence of uncertainties
Path-Goal Theory of Leadership
1975-04-01
Leadership and Turnover Among Managers ," Organization Behavior and Human Performance, 10(1973), pp. 184-200; R. J. House, "A Path-Goal Theory of...of Leadership ." 6R. J. House and G. Dessler, "Path-Goal Theory of Leadership " R. M. Stqg- dill. Managers , Employees, Organization (Ohio State...of Control." 23 R. J. House, "Notes on the Path-Goal Theory of Leadership " (University of Toronto, Faculty of Management Studies, May 1974). 24 R
Path integral representations on the complex sphere
Energy Technology Data Exchange (ETDEWEB)
Grosche, C. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2007-08-15
In this paper we discuss the path integral representations for the coordinate systems on the complex sphere S{sub 3C}. The Schroedinger equation, respectively the path integral, separates in exactly 21 orthogonal coordinate systems. We enumerate these coordinate systems and we are able to present the path integral representations explicitly in the majority of the cases. In each solution the expansion into the wave-functions is stated. Also, the kernel and the corresponding Green function can be stated in closed form in terms of the invariant distance on the sphere, respectively on the hyperboloid. (orig.)
Path probabilities of continuous time random walks
International Nuclear Information System (INIS)
Eule, Stephan; Friedrich, Rudolf
2014-01-01
Employing the path integral formulation of a broad class of anomalous diffusion processes, we derive the exact relations for the path probability densities of these processes. In particular, we obtain a closed analytical solution for the path probability distribution of a Continuous Time Random Walk (CTRW) process. This solution is given in terms of its waiting time distribution and short time propagator of the corresponding random walk as a solution of a Dyson equation. Applying our analytical solution we derive generalized Feynman–Kac formulae. (paper)
Path integral representations on the complex sphere
International Nuclear Information System (INIS)
Grosche, C.
2007-08-01
In this paper we discuss the path integral representations for the coordinate systems on the complex sphere S 3C . The Schroedinger equation, respectively the path integral, separates in exactly 21 orthogonal coordinate systems. We enumerate these coordinate systems and we are able to present the path integral representations explicitly in the majority of the cases. In each solution the expansion into the wave-functions is stated. Also, the kernel and the corresponding Green function can be stated in closed form in terms of the invariant distance on the sphere, respectively on the hyperboloid. (orig.)
Positroids Induced by Rational Dyck Paths
Gotti, Felix
2017-01-01
A rational Dyck path of type $(m,d)$ is an increasing unit-step lattice path from $(0,0)$ to $(m,d) \\in \\mathbb{Z}^2$ that never goes above the diagonal line $y = (d/m)x$. On the other hand, a positroid of rank $d$ on the ground set $[d+m]$ is a special type of matroid coming from the totally nonnegative Grassmannian. In this paper we describe how to naturally assign a rank $d$ positroid on the ground set $[d+m]$, which we name rational Dyck positroid, to each rational Dyck path of type $(m,d...
Unusual bond paths in organolithium compounds
International Nuclear Information System (INIS)
Bachrach, S.M.; Ritchie, J.P.
1986-01-01
We have applied the topological method to a number of organolithium compounds. The wavefunctions were determined with GAUSSIAN-82 using 3-21G basis set and fully optimized geometries. Gradient paths were obtained using the RHODER package and critical points were located using EXTREME. These results indicate the unusual nature of organolithium compounds. The strange bond paths arise mainly from the ionic nature of the C-Li interaction. We suggest that the term ''bond path'' may best be suited for covalent bonds. 4 figs., 1 tab
New framework for the Feynman path integral
International Nuclear Information System (INIS)
Shaharir, M.Z.
1986-01-01
The well-known Fourier integral solution of the free diffusion equation in an arbitrary Euclidean space is reduced to Feynmannian integrals using the method partly contained in the formulation of the Fresnelian integral. By replacing the standard Hilbert space underlying the present mathematical formulation of the Feynman path integral by a new Hilbert space, the space of classical paths on the tangent bundle to the Euclidean space (and more general to an arbitrary Riemannian manifold) equipped with a natural inner product, we show that our Feynmannian integral is in better agreement with the qualitative features of the original Feynman path integral than the previous formulations of the integral
Realizing spaces as path-component spaces
Banakh, Taras; Brazas, Jeremy
2018-01-01
The path component space of a topological space $X$ is the quotient space $\\pi_0(X)$ whose points are the path components of $X$. We show that every Tychonoff space $X$ is the path-component space of a Tychonoff space $Y$ of weight $w(Y)=w(X)$ such that the natural quotient map $Y\\to \\pi_0(Y)=X$ is a perfect map. Hence, many topological properties of $X$ transfer to $Y$. We apply this result to construct a compact space $X\\subset \\mathbb{R}^3$ for which the fundamental group $\\pi_1(X,x_0)$ is...
Analysis of the sodium concrete interactions with the NABE code
International Nuclear Information System (INIS)
Soule, N.
1989-01-01
Experimental studies have been performed in France to investigate sodium-concrete interactions: thermal decomposition of concrete, specific chemical reactions, experimentation in liquid and vapour phase, sodium-concrete interaction without liner protection. Simultaneously computer codes have been developed in order to study the response of the containment building of a liquid metal fast breeder reactor to a sodium pool fire worsened by a sodium-concrete interaction: the NABE code. This code takes into account: a) sodium combustion; b) thermal decomposition of concrete with associated chemical reactions: (liquid sodium-vapour water reaction, liquid sodium-carbon dioxide reaction, liquid sodium-solid compounds of concrete, hydrogen combustion); c) chemical reactions in vapour phase; d) decay heat; e) gas aerosol inlets/outlets; f) aerosol behaviour (sedimentation, diffusion, leak); g) thermal exchanges. An example of a situation, typical of assessment of beyond design basis situations in LMFBR, is given. (author)
SURE: a system of computer codes for performing sensitivity/uncertainty analyses with the RELAP code
International Nuclear Information System (INIS)
Bjerke, M.A.
1983-02-01
A package of computer codes has been developed to perform a nonlinear uncertainty analysis on transient thermal-hydraulic systems which are modeled with the RELAP computer code. Using an uncertainty around the analyses of experiments in the PWR-BDHT Separate Effects Program at Oak Ridge National Laboratory. The use of FORTRAN programs running interactively on the PDP-10 computer has made the system very easy to use and provided great flexibility in the choice of processing paths. Several experiments simulating a loss-of-coolant accident in a nuclear reactor have been successfully analyzed. It has been shown that the system can be automated easily to further simplify its use and that the conversion of the entire system to a base code other than RELAP is possible
On decoding of multi-level MPSK modulation codes
Lin, Shu; Gupta, Alok Kumar
1990-01-01
The decoding problem of multi-level block modulation codes is investigated. The hardware design of soft-decision Viterbi decoder for some short length 8-PSK block modulation codes is presented. An effective way to reduce the hardware complexity of the decoder by reducing the branch metric and path metric, using a non-uniform floating-point to integer mapping scheme, is proposed and discussed. The simulation results of the design are presented. The multi-stage decoding (MSD) of multi-level modulation codes is also investigated. The cases of soft-decision and hard-decision MSD are considered and their performance are evaluated for several codes of different lengths and different minimum squared Euclidean distances. It is shown that the soft-decision MSD reduces the decoding complexity drastically and it is suboptimum. The hard-decision MSD further simplifies the decoding while still maintaining a reasonable coding gain over the uncoded system, if the component codes are chosen properly. Finally, some basic 3-level 8-PSK modulation codes using BCH codes as component codes are constructed and their coding gains are found for hard decision multistage decoding.
Is the international safety management code an organisational tool ...
African Journals Online (AJOL)
The birth of the International Management Code for the Safe Operation of Ships and for Pollution Prevention (hereinafter ISM Code) is said to a reaction to the sinking of the Herald of free Enterprise on 6th March 1987.The human element is said to be a generic term used to describe what makes humans behave the way ...
DEFF Research Database (Denmark)
Andersen, Christian Ulrik
2007-01-01
Computer art is often associated with computer-generated expressions (digitally manipulated audio/images in music, video, stage design, media facades, etc.). In recent computer art, however, the code-text itself – not the generated output – has become the artwork (Perl Poetry, ASCII Art, obfuscated...... code, etc.). The presentation relates this artistic fascination of code to a media critique expressed by Florian Cramer, claiming that the graphical interface represents a media separation (of text/code and image) causing alienation to the computer’s materiality. Cramer is thus the voice of a new ‘code...... avant-garde’. In line with Cramer, the artists Alex McLean and Adrian Ward (aka Slub) declare: “art-oriented programming needs to acknowledge the conditions of its own making – its poesis.” By analysing the Live Coding performances of Slub (where they program computer music live), the presentation...
International Nuclear Information System (INIS)
Bravyi, Sergey; Terhal, Barbara M; Leemhuis, Bernhard
2010-01-01
We initiate the study of Majorana fermion codes (MFCs). These codes can be viewed as extensions of Kitaev's one-dimensional (1D) model of unpaired Majorana fermions in quantum wires to higher spatial dimensions and interacting fermions. The purpose of MFCs is to protect quantum information against low-weight fermionic errors, that is, operators acting on sufficiently small subsets of fermionic modes. We examine to what extent MFCs can surpass qubit stabilizer codes in terms of their stability properties. A general construction of 2D MFCs is proposed that combines topological protection based on a macroscopic code distance with protection based on fermionic parity conservation. Finally, we use MFCs to show how to transform any qubit stabilizer code to a weakly self-dual CSS code.
Elder, D
1984-06-07
The logic of genetic control of development may be based on a binary epigenetic code. This paper revises the author's previous scheme dealing with the numerology of annelid metamerism in these terms. Certain features of the code had been deduced to be combinatorial, others not. This paradoxical contrast is resolved here by the interpretation that these features relate to different operations of the code; the combinatiorial to coding identity of units, the non-combinatorial to coding production of units. Consideration of a second paradox in the theory of epigenetic coding leads to a new solution which further provides a basis for epimorphic regeneration, and may in particular throw light on the "regeneration-duplication" phenomenon. A possible test of the model is also put forward.
International Nuclear Information System (INIS)
Vokac, P.
1999-12-01
DISP1 code is a simple tool for assessment of the dispersion of the fission product cloud escaping from a nuclear power plant after an accident. The code makes it possible to tentatively check the feasibility of calculations by more complex PSA3 codes and/or codes for real-time dispersion calculations. The number of input parameters is reasonably low and the user interface is simple enough to allow a rapid processing of sensitivity analyses. All input data entered through the user interface are stored in the text format. Implementation of dispersion model corrections taken from the ARCON96 code enables the DISP1 code to be employed for assessment of the radiation hazard within the NPP area, in the control room for instance. (P.A.)
Phonological coding during reading.
Leinenger, Mallorie
2014-11-01
The exact role that phonological coding (the recoding of written, orthographic information into a sound based code) plays during silent reading has been extensively studied for more than a century. Despite the large body of research surrounding the topic, varying theories as to the time course and function of this recoding still exist. The present review synthesizes this body of research, addressing the topics of time course and function in tandem. The varying theories surrounding the function of phonological coding (e.g., that phonological codes aid lexical access, that phonological codes aid comprehension and bolster short-term memory, or that phonological codes are largely epiphenomenal in skilled readers) are first outlined, and the time courses that each maps onto (e.g., that phonological codes come online early [prelexical] or that phonological codes come online late [postlexical]) are discussed. Next the research relevant to each of these proposed functions is reviewed, discussing the varying methodologies that have been used to investigate phonological coding (e.g., response time methods, reading while eye-tracking or recording EEG and MEG, concurrent articulation) and highlighting the advantages and limitations of each with respect to the study of phonological coding. In response to the view that phonological coding is largely epiphenomenal in skilled readers, research on the use of phonological codes in prelingually, profoundly deaf readers is reviewed. Finally, implications for current models of word identification (activation-verification model, Van Orden, 1987; dual-route model, e.g., M. Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; parallel distributed processing model, Seidenberg & McClelland, 1989) are discussed. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Energy Technology Data Exchange (ETDEWEB)
Visser, B. [Stork Product Eng., Amsterdam (Netherlands)
1996-09-01
To support the discussion on aeroelastic codes, a description of the code FLEXLAST was given and experiences within benchmarks and measurement programmes were summarized. The code FLEXLAST has been developed since 1982 at Stork Product Engineering (SPE). Since 1992 FLEXLAST has been used by Dutch industries for wind turbine and rotor design. Based on the comparison with measurements, it can be concluded that the main shortcomings of wind turbine modelling lie in the field of aerodynamics, wind field and wake modelling. (au)
International Nuclear Information System (INIS)
Cramer, S.N.
1984-01-01
The MORSE code is a large general-use multigroup Monte Carlo code system. Although no claims can be made regarding its superiority in either theoretical details or Monte Carlo techniques, MORSE has been, since its inception at ORNL in the late 1960s, the most widely used Monte Carlo radiation transport code. The principal reason for this popularity is that MORSE is relatively easy to use, independent of any installation or distribution center, and it can be easily customized to fit almost any specific need. Features of the MORSE code are described
Waters, Joe
2012-01-01
Find out how to effectively create, use, and track QR codes QR (Quick Response) codes are popping up everywhere, and businesses are reaping the rewards. Get in on the action with the no-nonsense advice in this streamlined, portable guide. You'll find out how to get started, plan your strategy, and actually create the codes. Then you'll learn to link codes to mobile-friendly content, track your results, and develop ways to give your customers value that will keep them coming back. It's all presented in the straightforward style you've come to know and love, with a dash of humor thrown
International Nuclear Information System (INIS)
Reid, R.L.; Barrett, R.J.; Brown, T.G.
1985-03-01
The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged
Efficient Coding of Information: Huffman Coding -RE ...
Indian Academy of Sciences (India)
to a stream of equally-likely symbols so as to recover the original stream in the event of errors. The for- ... The source-coding problem is one of finding a mapping from U to a ... probability that the random variable X takes the value x written as ...
NR-code: Nonlinear reconstruction code
Yu, Yu; Pen, Ue-Li; Zhu, Hong-Ming
2018-04-01
NR-code applies nonlinear reconstruction to the dark matter density field in redshift space and solves for the nonlinear mapping from the initial Lagrangian positions to the final redshift space positions; this reverses the large-scale bulk flows and improves the precision measurement of the baryon acoustic oscillations (BAO) scale.
Euclidean shortest paths exact or approximate algorithms
Li, Fajie
2014-01-01
This book reviews algorithms for the exact or approximate solution of shortest-path problems, with a specific focus on a class of algorithms called rubberband algorithms. The coverage includes mathematical proofs for many of the given statements.
Northern Pintail - Flight Path Telemetry [ds117
California Natural Resource Agency — North-south flight paths of radio-tagged female northern pintails were monitored in a section of Highway 152 near Los Banos, California during 4 and 11 November and...
Ductility behavior of irradiated path B alloys
International Nuclear Information System (INIS)
Yang, W.J.S.; Hamilton, M.L.
1983-01-01
The objective of this study was to assess the practicality of using five Path B alloys in their current form as structural materials in the Fusion First-Wall/Blanket by evaluating both their postirradiation ductility and the corresponding microstructures
AEDT sensor path methods using BADA4
2017-06-01
This report documents the development and use of sensor path data processing in the Federal Aviation Administration's (FAAs) Aviation Environmental Design Tool (AEDT). The methods are primarily intended to assist analysts with using AEDT to determ...
Modeling and Solving the Train Pathing Problem
Directory of Open Access Journals (Sweden)
Chuen-Yih Chen
2009-04-01
Full Text Available In a railroad system, train pathing is concerned with the assignment of trains to links and tracks, and train timetabling allocates time slots to trains. In this paper, we present an optimization heuristic to solve the train pathing and timetabling problem. This heuristic allows the dwell time of trains in a station or link to be dependent on the assigned tracks. It also allows the minimum clearance time between the trains to depend on their relative status. The heuristic generates a number of alternative paths for each train service in the initialization phase. Then it uses a neighborhood search approach to find good feasible combinations of these paths. A linear program is developed to evaluate the quality of each combination that is encountered. Numerical examples are provided.
Search Path Evaluation Incorporating Object Placement Structure
National Research Council Canada - National Science Library
Baylog, John G; Wettergren, Thomas A
2007-01-01
This report describes a computationally robust approach to search path performance evaluation where the objects of search interest exhibit structure in the way in which they occur within the search space...
Hladky, Paul W.
2009-01-01
The conversion of chemical energy entirely into thermal energy by Bunsen burners and into thermal energy and electrical energy by fuel cells of varying efficiencies illustrates different paths by which a chemical reaction can occur. Using the efficiency of producing electrical energy as a path label allows all of the energy-related quantities to…
Multiagent path-finding in strategic games
Mihevc, Simon
2014-01-01
In this thesis I worked on creating, comparing and improving algorithms for multi-agent path planning on a domain typical for real-time strategy games. I implemented and compared Multiagent pathfinding using clearance and Multiagent pathfinding using independence detection and operator decomposition. I discovered that they had problems maintaining group compactness and took too long to calculate the path. I considerably improved the efficiency of both algorithms.
Diversion Path Analysis Handbook. Volume 1. Methodology
International Nuclear Information System (INIS)
Goodwin, K.E.; Schleter, J.C.; Maltese, M.D.K.
1978-11-01
Diversion Path Analysis (DPA) is a safeguards evaluation tool which is used to determine the vulnerability of the Material Control and Material Accounting (MC and MA) Subsystems to the threat of theft of Special Nuclear Material (SNM) by a knowledgeable Insider. The DPA team should consist of two individuals who have technical backgrounds. The implementation of DPA is divided into five basic steps: Information and Data Gathering, Process Characterization, Analysis of Diversion Paths, Results and Findings, and Documentation
Feasible Path Planning for Autonomous Vehicles
Directory of Open Access Journals (Sweden)
Vu Trieu Minh
2014-01-01
Full Text Available The objective of this paper is to find feasible path planning algorithms for nonholonomic vehicles including flatness, polynomial, and symmetric polynomial trajectories subject to the real vehicle dynamical constraints. Performances of these path planning methods are simulated and compared to evaluate the more realistic and smoother generated trajectories. Results show that the symmetric polynomial algorithm provides the smoothest trajectory. Therefore, this algorithm is recommended for the development of an automatic control for autonomous vehicles.
A career path in clinical pathways.
Bower, K A
1998-03-01
Much like the development of a clinical path, the creation of a career path requires knowledge of patterns of behavior, needs for standardized education and skill development, along with variance analysis and individualized care. This nationally known nursing entrepreneur tells the story of her involvement in the development of case management and clinical pathways and how she turned that into a successful business that has changed how patient care is managed nationally and internationally.
Acquisition Path Analysis as a Collaborative Activity
International Nuclear Information System (INIS)
Nakao, A.; Grundule, R.; Gushchyn, K.; El Gebaly, A.; Higgy, R.; Tsvetkov, I.; Mandl, W.
2015-01-01
In the International Atomic Energy Agency, acquisition path analysis (APA) is indispensable to safeguards implementation. It is an integral part of both State evaluation process and the development of State level safeguards approaches, all performed through ongoing collaborative analysis of all available safeguards relevant information by State evaluation groups (SEG) with participation of other contributors, as required. To perform comprehensive State evaluation, to develop and revise State-level safeguards approaches, and to prepare annual implementation plans, the SEG in its collaborative analysis follows accepted safeguards methodology and guidance. In particular, the guide ''Performing Acquisition Path Analysis for the Development of a State-level Safeguards Approach for a State with a CSA'' is used. This guide identifies four major steps of the APA process: 1. Consolidating information about the State's past, present and planned nuclear fuel cycle-related capabilities and infrastructure; 2. Identifying and visually presenting technically plausible acquisition paths for the State; 3. Assessing acquisition path steps (State's technical capabilities and possible actions) along the identified acquisition paths; and 4. Assessing the time needed to accomplish each identified technically plausible acquisition path for the State. The paper reports on SEG members' and other contributors' experience with APA when following the above steps, including the identification of plausible acquisition pathways, estimation of time frames for all identified steps and determination of the time needed to accomplish each acquisition path. The difficulties that the SEG encountered during the process of performing the APA are also addressed. Feedback in the form of practical suggestions for improving the clarity of the acquisition path step assessment forms and a proposal for software support are also included. (author)
Lattice Paths and the Constant Term
International Nuclear Information System (INIS)
Brak, R; Essam, J; Osborn, J; Owczarek, A L; Rechnitzer, A
2006-01-01
We firstly review the constant term method (CTM), illustrating its combinatorial connections and show how it can be used to solve a certain class of lattice path problems. We show the connection between the CTM, the transfer matrix method (eigenvectors and eigenvalues), partial difference equations, the Bethe Ansatz and orthogonal polynomials. Secondly, we solve a lattice path problem first posed in 1971. The model stated in 1971 was only solved for a special case - we solve the full model
International Nuclear Information System (INIS)
Hansen, O.
1983-01-01
A brief review is presented of the experimental and theoretical situation regarding transfer reactions and inelastic scattering. In the first category there is little (very little) precision data for heavy projectiles and consequently almost no experience with quantitative theoretical analysis. For the inelastic scattering the rather extensive data strongly supports the coupled channels models with collective formfactors. At the most back angles, at intensities about 10 -5 of Rutherford scattering, a second, compound-like mechanism becomes dominant. The description of the interplay of these two opposite mechanisms provides a new challenge for our understanding
Computing Diffeomorphic Paths for Large Motion Interpolation.
Seo, Dohyung; Jeffrey, Ho; Vemuri, Baba C
2013-06-01
In this paper, we introduce a novel framework for computing a path of diffeomorphisms between a pair of input diffeomorphisms. Direct computation of a geodesic path on the space of diffeomorphisms Diff (Ω) is difficult, and it can be attributed mainly to the infinite dimensionality of Diff (Ω). Our proposed framework, to some degree, bypasses this difficulty using the quotient map of Diff (Ω) to the quotient space Diff ( M )/ Diff ( M ) μ obtained by quotienting out the subgroup of volume-preserving diffeomorphisms Diff ( M ) μ . This quotient space was recently identified as the unit sphere in a Hilbert space in mathematics literature, a space with well-known geometric properties. Our framework leverages this recent result by computing the diffeomorphic path in two stages. First, we project the given diffeomorphism pair onto this sphere and then compute the geodesic path between these projected points. Second, we lift the geodesic on the sphere back to the space of diffeomerphisms, by solving a quadratic programming problem with bilinear constraints using the augmented Lagrangian technique with penalty terms. In this way, we can estimate the path of diffeomorphisms, first, staying in the space of diffeomorphisms, and second, preserving shapes/volumes in the deformed images along the path as much as possible. We have applied our framework to interpolate intermediate frames of frame-sub-sampled video sequences. In the reported experiments, our approach compares favorably with the popular Large Deformation Diffeomorphic Metric Mapping framework (LDDMM).
Quantum cosmology based on discrete Feynman paths
International Nuclear Information System (INIS)
Chew, Geoffrey F.
2002-01-01
Although the rules for interpreting local quantum theory imply discretization of process, Lorentz covariance is usually regarded as precluding time quantization. Nevertheless a time-discretized quantum representation of redshifting spatially-homogeneous universe may be based on discrete-step Feynman paths carrying causal Lorentz-invariant action--paths that not only propagate the wave function but provide a phenomenologically-promising elementary-particle Hilbert-space basis. In a model under development, local path steps are at Planck scale while, at a much larger ''wave-function scale'', global steps separate successive wave-functions. Wave-function spacetime is but a tiny fraction of path spacetime. Electromagnetic and gravitational actions are ''at a distance'' in Wheeler-Feynman sense while strong (color) and weak (isospin) actions, as well as action of particle motion, are ''local'' in a sense paralleling the action of local field theory. ''Nonmaterial'' path segments and ''trivial events'' collaborate to define energy and gravity. Photons coupled to conserved electric charge enjoy privileged model status among elementary fermions and vector bosons. Although real path parameters provide no immediate meaning for ''measurement'', the phase of the complex wave function allows significance for ''information'' accumulated through ''gentle'' electromagnetic events involving charged matter and ''soft'' photons. Through its soft-photon content the wave function is an ''information reservoir''
International Nuclear Information System (INIS)
Darby, J.L.
1986-01-01
The Adversary Sequence Diagram (ASD) concept was developed by Sandia National Laboratories (SNL) to examine physical security system effectiveness. Sandia also developed a mainframe computer code, PANL, to analyze the ASD. The authors have developed a microcomputer code, SEAPATH, which also analyzes ASD's. The Authors are supporting SNL in software development of the SAVI code; SAVI utilizes the SEAPATH algorithm to identify and quantify paths
Hippocampal “Time Cells”: Time versus Path Integration
Kraus, Benjamin J.; Robinson, Robert J.; White, John A.; Eichenbaum, Howard; Hasselmo, Michael E.
2014-01-01
SUMMARY Recent studies have reported the existence of hippocampal “time cells,” neurons that fire at particular moments during periods when behavior and location are relatively constant. However, an alternative explanation of apparent time coding is that hippocampal neurons “path integrate” to encode the distance an animal has traveled. Here, we examined hippocampal neuronal firing patterns as rats ran in place on a treadmill, thus “clamping” behavior and location, while we varied the treadmill speed to distinguish time elapsed from distance traveled. Hippocampal neurons were strongly influenced by time and distance, and less so by minor variations in location. Furthermore, the activity of different neurons reflected integration over time and distance to varying extents, with most neurons strongly influenced by both factors and some significantly influenced by only time or distance. Thus, hippocampal neuronal networks captured both the organization of time and distance in a situation where these dimensions dominated an ongoing experience. PMID:23707613
Monitoring Java Programs with Java PathExplorer
Havelund, Klaus; Rosu, Grigore; Clancy, Daniel (Technical Monitor)
2001-01-01
We present recent work on the development Java PathExplorer (JPAX), a tool for monitoring the execution of Java programs. JPAX can be used during program testing to gain increased information about program executions, and can potentially furthermore be applied during operation to survey safety critical systems. The tool facilitates automated instrumentation of a program's late code which will then omit events to an observer during its execution. The observer checks the events against user provided high level requirement specifications, for example temporal logic formulae, and against lower level error detection procedures, for example concurrency related such as deadlock and data race algorithms. High level requirement specifications together with their underlying logics are defined in the Maude rewriting logic, and then can either be directly checked using the Maude rewriting engine, or be first translated to efficient data structures and then checked in Java.
Analysing playing using the note-time playing path.
de Graaff, Deborah L E; Schubert, Emery
2011-03-01
This article introduces a new method of data analysis that represents the playing of written music as a graph. The method, inspired by Miklaszewski, charts low-level note timings from a sound recording of a single-line instrument using high-precision audio-to-MIDI conversion software. Note onset times of pitch sequences are then plotted against the score-predicted timings to produce a Note-Time Playing Path (NTPP). The score-predicted onset time of each sequentially performed note (horizontal axis) unfolds in performed time down the page (vertical axis). NTPPs provide a visualisation that shows (1) tempo variations, (2) repetitive practice behaviours, (3) segmenting of material, (4) precise note time positions, and (5) time spent on playing or not playing. The NTPP can provide significant new insights into behaviour and cognition of music performance and may also be used to complement established traditional approaches such as think-alouds, interviews, and video coding.
Reaction energetics on long-range corrected density functional theory: Diels-Alder reactions.
Singh, Raman K; Tsuneda, Takao
2013-02-15
The possibility of quantitative reaction analysis on the orbital energies of long-range corrected density functional theory (LC-DFT) is presented. First, we calculated the Diels-Alder reaction enthalpies that have been poorly given by conventional functionals including B3LYP functional. As a result, it is found that the long-range correction drastically improves the reaction enthalpies. The barrier height energies were also computed for these reactions. Consequently, we found that dispersion correlation correction is also crucial to give accurate barrier height energies. It is, therefore, concluded that both long-range exchange interactions and dispersion correlations are essentially required in conventional functionals to investigate Diels-Alder reactions quantitatively. After confirming that LC-DFT accurately reproduces the orbital energies of the reactant and product molecules of the Diels-Alder reactions, the global hardness responses, the halves of highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gaps, along the intrinsic reaction coordinates of two Diels-Alder reactions were computed. We noticed that LC-DFT results satisfy the maximum hardness rule for overall reaction paths while conventional functionals violate this rule on the reaction pathways. Furthermore, our results also show that the HOMO-LUMO gap variations are close to the reaction enthalpies for these Diels-Alder reactions. Based on these results, we foresee quantitative reaction analysis on the orbital energies. Copyright © 2012 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Corner, J.; Richardson, K.; Fenton, N.
1990-01-01
Nuclear reactions' marks a new development in the study of television as an agency of public policy debate. During the Eighties, nuclear energy became a major international issue. The disasters at Three-mile Island and Chernobyl created a global anxiety about its risks and a new sensitivity to it among politicians and journalists. This book is a case-study into documentary depictions of nuclear energy in television and video programmes and into the interpretations and responses of viewers drawn from many different occupational groupings. How are the complex and specialist arguments about benefit, risk and proof conveyed through the different conventions of commentary, interview and film sequence? What symbolic associations does the visual language of television bring to portrayals of the issue? And how do viewers make sense of various and conflicting accounts, connecting what they see and hear on the screen with their pre-existing knowledge, experience and 'civic' expectations. The authors examine some of the contrasting forms and themes which have been used by programme makers to explain and persuade, and then give a sustained analysis of the nature and sources of viewers' own accounts. 'Nuclear Reactions' inquires into the public meanings surrounding energy and the environment, spelling out in its conclusion some of the implications for future media treatments of this issue. It is also a key contribution to the international literature on 'television knowledge' and the processes of active viewing. (author)
Effects of T-type Channel on Natural Convection Flows in Airflow-Path of Concrete Storage Cask
Energy Technology Data Exchange (ETDEWEB)
Kang, Gyeong Uk; Kim, Hyoung Jin; Cho, Chun Hyung [KORAD, Daejeon (Korea, Republic of)
2016-05-15
The natural convection flows occurring in airflow-path are not simple due to complex flow-path configurations such as horizontal ducts, bent tube and annular flow-path. In addition, 16 T type channels acting as the shroud are attached vertically and 16 channel supporting the canister are attached horizontally on the inner surface of over-pack. The existence and nonexistence of T type channels have influences on the flow fields in airflow- path. The concrete storage cask has to satisfy the requirements to secure the thermal integrity under the normal, off-normal, and accident conditions. The present work is aiming at investigating the effects of T type channels on the flows in airflow-path under the normal conditions using the FLUENT 16.1 code. In order to focus on the flows in airflow-path, fuel regions in the canister are regarded as a single cylinder with heat sources and other components are fully modeled. This study investigated the flow fields in airflow-path of concrete storage cask, numerically. It was found that excepting for the fuel regions, maximum temperatures on other components were evaluated below allowable values. The location of maximum velocities depended on support channels, T type channels and flow area. The flows through air inlets developed along annular flow- path with forming the hot plumes. According to the existence and nonexistence of T type channel, the plume behavior showed the different flow patterns.
CNC LATHE MACHINE PRODUCING NC CODE BY USING DIALOG METHOD
Directory of Open Access Journals (Sweden)
Yakup TURGUT
2004-03-01
Full Text Available In this study, an NC code generation program utilising Dialog Method was developed for turning centres. Initially, CNC lathes turning methods and tool path development techniques were reviewed briefly. By using geometric definition methods, tool path was generated and CNC part program was developed for FANUC control unit. The developed program made CNC part program generation process easy. The program was developed using BASIC 6.0 programming language while the material and cutting tool database were and supported with the help of ACCESS 7.0.
A path-level exact parallelization strategy for sequential simulation
Peredo, Oscar F.; Baeza, Daniel; Ortiz, Julián M.; Herrero, José R.
2018-01-01
Sequential Simulation is a well known method in geostatistical modelling. Following the Bayesian approach for simulation of conditionally dependent random events, Sequential Indicator Simulation (SIS) method draws simulated values for K categories (categorical case) or classes defined by K different thresholds (continuous case). Similarly, Sequential Gaussian Simulation (SGS) method draws simulated values from a multivariate Gaussian field. In this work, a path-level approach to parallelize SIS and SGS methods is presented. A first stage of re-arrangement of the simulation path is performed, followed by a second stage of parallel simulation for non-conflicting nodes. A key advantage of the proposed parallelization method is to generate identical realizations as with the original non-parallelized methods. Case studies are presented using two sequential simulation codes from GSLIB: SISIM and SGSIM. Execution time and speedup results are shown for large-scale domains, with many categories and maximum kriging neighbours in each case, achieving high speedup results in the best scenarios using 16 threads of execution in a single machine.
Whalen, Michael; Schumann, Johann; Fischer, Bernd
2002-01-01
Code certification is a lightweight approach to demonstrate software quality on a formal level. Its basic idea is to require producers to provide formal proofs that their code satisfies certain quality properties. These proofs serve as certificates which can be checked independently. Since code certification uses the same underlying technology as program verification, it also requires many detailed annotations (e.g., loop invariants) to make the proofs possible. However, manually adding theses annotations to the code is time-consuming and error-prone. We address this problem by combining code certification with automatic program synthesis. We propose an approach to generate simultaneously, from a high-level specification, code and all annotations required to certify generated code. Here, we describe a certification extension of AUTOBAYES, a synthesis tool which automatically generates complex data analysis programs from compact specifications. AUTOBAYES contains sufficient high-level domain knowledge to generate detailed annotations. This allows us to use a general-purpose verification condition generator to produce a set of proof obligations in first-order logic. The obligations are then discharged using the automated theorem E-SETHEO. We demonstrate our approach by certifying operator safety for a generated iterative data classification program without manual annotation of the code.
Division for Early Childhood, Council for Exceptional Children, 2009
2009-01-01
The Code of Ethics of the Division for Early Childhood (DEC) of the Council for Exceptional Children is a public statement of principles and practice guidelines supported by the mission of DEC. The foundation of this Code is based on sound ethical reasoning related to professional practice with young children with disabilities and their families…
Interleaved Product LDPC Codes
Baldi, Marco; Cancellieri, Giovanni; Chiaraluce, Franco
2011-01-01
Product LDPC codes take advantage of LDPC decoding algorithms and the high minimum distance of product codes. We propose to add suitable interleavers to improve the waterfall performance of LDPC decoding. Interleaving also reduces the number of low weight codewords, that gives a further advantage in the error floor region.
Napier, Rebecca H; Bruelheide, Lori S; Demann, Eric T K; Haug, Richard H
2008-07-01
The purpose of this article is to highlight the importance of understanding various numeric and alpha-numeric codes for accurately billing dental and medically related services to private pay or third-party insurance carriers. In the United States, common dental terminology (CDT) codes are most commonly used by dentists to submit claims, whereas current procedural terminology (CPT) and International Classification of Diseases, Ninth Revision, Clinical Modification (ICD.9.CM) codes are more commonly used by physicians to bill for their services. The CPT and ICD.9.CM coding systems complement each other in that CPT codes provide the procedure and service information and ICD.9.CM codes provide the reason or rationale for a particular procedure or service. These codes are more commonly used for "medical necessity" determinations, and general dentists and specialists who routinely perform care, including trauma-related care, biopsies, and dental treatment as a result of or in anticipation of a cancer-related treatment, are likely to use these codes. Claim submissions for care provided can be completed electronically or by means of paper forms.
Indian Academy of Sciences (India)
Science and Automation at ... the Reed-Solomon code contained 223 bytes of data, (a byte ... then you have a data storage system with error correction, that ..... practical codes, storing such a table is infeasible, as it is generally too large.
DEFF Research Database (Denmark)
Pries-Heje, Lene; Pries-Heje, Jan; Dalgaard, Bente
2013-01-01
is required. In this paper we present the design of such a new approach, the Scrum Code Camp, which can be used to assess agile team capability in a transparent and consistent way. A design science research approach is used to analyze properties of two instances of the Scrum Code Camp where seven agile teams...
International Nuclear Information System (INIS)
Lysenko, W.P.
1984-04-01
We have developed the RFQLIB simulation system to provide a means to systematically generate the new versions of radio-frequency quadrupole (RFQ) linac simulation codes that are required by the constantly changing needs of a research environment. This integrated system simplifies keeping track of the various versions of the simulation code and makes it practical to maintain complete and up-to-date documentation. In this scheme, there is a certain standard version of the simulation code that forms a library upon which new versions are built. To generate a new version of the simulation code, the routines to be modified or added are appended to a standard command file, which contains the commands to compile the new routines and link them to the routines in the library. The library itself is rarely changed. Whenever the library is modified, however, this modification is seen by all versions of the simulation code, which actually exist as different versions of the command file. All code is written according to the rules of structured programming. Modularity is enforced by not using COMMON statements, simplifying the relation of the data flow to a hierarchy diagram. Simulation results are similar to those of the PARMTEQ code, as expected, because of the similar physical model. Different capabilities, such as those for generating beams matched in detail to the structure, are available in the new code for help in testing new ideas in designing RFQ linacs
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 3. Error Correcting Codes - Reed Solomon Codes. Priti Shankar. Series Article Volume 2 Issue 3 March ... Author Affiliations. Priti Shankar1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India ...
2013-03-26
... Energy Conservation Code. International Existing Building Code. International Fire Code. International... Code. International Property Maintenance Code. International Residential Code. International Swimming Pool and Spa Code International Wildland-Urban Interface Code. International Zoning Code. ICC Standards...
Reference manual for the KfK code PCROSS
International Nuclear Information System (INIS)
Ravndal, S.; Oblozinsky, P.; Kelzenberg, S.; Cierjacks, S.
1991-12-01
The PCROSS code calculates the so-called 'pseudo' cross sections for sequential (x,n) reactions and merges them together with 'effective' cross section for neutron induced reactions into one file of 'collapsed' cross sections. The file is tailored to provide an input for the FISPACT inventory code that calculates the activation and related radiological quantities of material irradiated in given neutron fields. The report summarizes calculational procedure and provides the reader with essential technical details of the code PCROSS (version 1.0) such as description of parameters, common blocks and subroutines. (orig.) [de
Validation of thermalhydraulic codes
International Nuclear Information System (INIS)
Wilkie, D.
1992-01-01
Thermalhydraulic codes require to be validated against experimental data collected over a wide range of situations if they are to be relied upon. A good example is provided by the nuclear industry where codes are used for safety studies and for determining operating conditions. Errors in the codes could lead to financial penalties, to the incorrect estimation of the consequences of accidents and even to the accidents themselves. Comparison between prediction and experiment is often described qualitatively or in approximate terms, e.g. ''agreement is within 10%''. A quantitative method is preferable, especially when several competing codes are available. The codes can then be ranked in order of merit. Such a method is described. (Author)
International Nuclear Information System (INIS)
Dershowitz, W; Herbert, A.; Long, J.
1989-03-01
The hydrology of the SCV site will be modelled utilizing discrete fracture flow models. These models are complex, and can not be fully cerified by comparison to analytical solutions. The best approach for verification of these codes is therefore cross-verification between different codes. This is complicated by the variation in assumptions and solution techniques utilized in different codes. Cross-verification procedures are defined which allow comparison of the codes developed by Harwell Laboratory, Lawrence Berkeley Laboratory, and Golder Associates Inc. Six cross-verification datasets are defined for deterministic and stochastic verification of geometric and flow features of the codes. Additional datasets for verification of transport features will be documented in a future report. (13 figs., 7 tabs., 10 refs.) (authors)
Roadmap for the Future of Commercial Energy Codes
Energy Technology Data Exchange (ETDEWEB)
Rosenberg, Michael I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhang, Jian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2015-01-01
Building energy codes have significantly increased building efficiency over the last 38 years, since the first national energy code was published in 1975. The most commonly used path in energy codes, the prescriptive path, appears to be reaching a point of diminishing returns. The current focus on prescriptive codes has limitations including significant variation in actual energy performance depending on which prescriptive options are chosen, a lack of flexibility for designers and developers, the inability to handle optimization that is specific to building type and use, the inability to account for project-specific energy costs, and the lack of follow-through or accountability after a certificate of occupancy is granted. It is likely that an approach that considers the building as an integrated system will be necessary to achieve the next real gains in building efficiency. This report provides a high-level review of different formats for commercial building energy codes, including prescriptive, prescriptive packages, capacity constrained, outcome based, and predictive performance approaches. This report also explores a next generation commercial energy code approach that places a greater emphasis on performance-based criteria.
Benefit of adaptive FEC in shared backup path protected elastic optical network.
Guo, Hong; Dai, Hua; Wang, Chao; Li, Yongcheng; Bose, Sanjay K; Shen, Gangxiang
2015-07-27
We apply an adaptive forward error correction (FEC) allocation strategy to an Elastic Optical Network (EON) operated with shared backup path protection (SBPP). To maximize the protected network capacity that can be carried, an Integer Linear Programing (ILP) model and a spectrum window plane (SWP)-based heuristic algorithm are developed. Simulation results show that the FEC coding overhead required by the adaptive FEC scheme is significantly lower than that needed by a fixed FEC allocation strategy resulting in higher network capacity for the adaptive strategy. The adaptive FEC allocation strategy can also significantly outperform the fixed FEC allocation strategy both in terms of the spare capacity redundancy and the average FEC coding overhead needed per optical channel. The proposed heuristic algorithm is efficient and not only performs closer to the ILP model but also does much better than the shortest-path algorithm.
Spallation reactions; Reactions de spallation
Energy Technology Data Exchange (ETDEWEB)
Cugon, J.
1996-12-31
Spallation reactions dominate the interactions of hadrons with nuclei in the GeV range (from {approx} 0.1 to {approx} 10 GeV). They correspond to a sometimes important ejection of light particles leaving most of the time a residue of mass commensurate with the target mass. The main features of the experimental data are briefly reviewed. The most successful theoretical model, namely the intranuclear cascade + evaporation model, is presented. Its physical content, results and possible improvements are critically discussed. Alternative approaches are shortly reviewed. (author). 84 refs.
Huffman coding in advanced audio coding standard
Brzuchalski, Grzegorz
2012-05-01
This article presents several hardware architectures of Advanced Audio Coding (AAC) Huffman noiseless encoder, its optimisations and working implementation. Much attention has been paid to optimise the demand of hardware resources especially memory size. The aim of design was to get as short binary stream as possible in this standard. The Huffman encoder with whole audio-video system has been implemented in FPGA devices.
Explorations into Chemical Reactions and Biochemical Pathways.
Gasteiger, Johann
2016-12-01
A brief overview of the work in the research group of the present author on extracting knowledge from chemical reaction data is presented. Methods have been developed to calculate physicochemical effects at the reaction site. It is shown that these physicochemical effects can quite favourably be used to derive equations for the calculation of data on gas phase reactions and on reactions in solution such as aqueous acidity of alcohols or carboxylic acids or the hydrolysis of amides. Furthermore, it is shown that these physicochemical effects are quite effective for assigning reactions into reaction classes that correspond to chemical knowledge. Biochemical reactions constitute a particularly interesting and challenging task for increasing our understanding of living species. The BioPath.Database is a rich source of information on biochemical reactions and has been used for a variety of applications of chemical, biological, or medicinal interests. Thus, it was shown that biochemical reactions can be assigned by the physicochemical effects into classes that correspond to the classification of enzymes by the EC numbers. Furthermore, 3D models of reaction intermediates can be used for searching for novel enzyme inhibitors. It was shown in a combined application of chemoinformatics and bioinformatics that essential pathways of diseases can be uncovered. Furthermore, a study showed that bacterial flavor-forming pathways can be discovered. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Directory of Open Access Journals (Sweden)
Carlo De Lillo
2016-11-01
observer changed dynamically during encoding and recall. This suggested that the effects of structure in spatial span are not dependent on perceptual grouping processes induced by the aerial view of the stimulus array typically afforded by spatial recall tasks. These results demonstrate the independence of coding strategies based on structure from effects of path characteristics and perceptual grouping in immediate serial spatial recall.
Energy Technology Data Exchange (ETDEWEB)
Nelson, R.N. (ed.)
1985-05-01
This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.
International Nuclear Information System (INIS)
Nelson, R.N.
1985-05-01
This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name
Zhao, Zhiqiang; Zhang, Zhaojun; Liu, Shu; Zhang, Dong H.
2017-02-01
Reactions occurring at a carbon atom through the Walden inversion mechanism are one of the most important and useful classes of reactions in chemistry. Here we report an accurate theoretical study of the simplest reaction of that type: the H+CH4 substitution reaction and its isotope analogues. It is found that the reaction threshold versus collision energy is considerably higher than the barrier height. The reaction exhibits a strong normal secondary isotope effect on the cross-sections measured above the reaction threshold, and a small but reverse secondary kinetic isotope effect at room temperature. Detailed analysis reveals that the reaction proceeds along a path with a higher barrier height instead of the minimum-energy path because the umbrella angle of the non-reacting methyl group cannot change synchronously with the other reaction coordinates during the reaction due to insufficient energy transfer from the translational motion to the umbrella mode.
Forces in Motzkin paths in a wedge
International Nuclear Information System (INIS)
Janse van Rensburg, E J
2006-01-01
Entropic forces in models of Motzkin paths in a wedge geometry are considered as models of forces in polymers in confined geometries. A Motzkin path in the square lattice is a path from the origin to a point in the line Y = X while it never visits sites below this line, and it is constrained to give unit length steps only in the north and east directions and steps of length √2 in the north-east direction. Motzkin path models may be generalized to ensembles of NE-oriented paths above the line Y = rX, where r > 0 is an irrational number. These are paths giving east, north and north-east steps from the origin in the square lattice, and confined to the r-wedge formed by the Y-axis and the line Y = rX. The generating function g r of these paths is not known, but if r > 1, then I determine its radius of convergence to be t r = min (r-1)/r≤y≤r/(r+1) [y y (1-r(1-y)) 1-r(1-y) (r(1-y)-y) r(1-y)-y ] and if r is an element of (0, 1), then t r = 1/3. The entropic force the path exerts on the line Y rX may be computed from this. An asymptotic expression for the force for large values of r is given by F(r) = log(2r)/r 2 - (1+2log(2r))/2r 3 + O (log(2r)/r 4 ). In terms of the vertex angle α of the r-wedge, the moment of the force about the origin has leading terms F(α) log(2/α) - (α/2)(1+2log(2/α)) + O(α 2 log(2/α)) as α → 0 + and F(α) = 0 if α is element of [π/4, π/2]. Moreover, numerical integration of the force shows that the total work done by closing the wedge is 1.085 07... lattice units. An alternative ensemble of NE-oriented paths may be defined by slightly changing the generating function g r . In this model, it is possible to determine closed-form expressions for the limiting free energy and the force. The leading term in an asymptotic expansions for this force agrees with the leading term in the asymptotic expansion of the above model, and the subleading term only differs by a factor of 2
Calculation of reaction energies and adiabatic temperatures for waste tank reactions
Energy Technology Data Exchange (ETDEWEB)
Burger, L.L.
1995-10-01
Continual concern has been expressed over potentially hazardous exothermic reactions that might occur in Hanford Site underground waste storage tanks. These tanks contain many different oxidizable compounds covering a wide range of concentrations. The chemical hazards are a function of several interrelated factors, including the amount of energy (heat) produced, how fast it is produced, and the thermal absorption and heat transfer properties of the system. The reaction path(s) will determine the amount of energy produced and kinetics will determine the rate that it is produced. The tanks also contain many inorganic compounds inert to oxidation. These compounds act as diluents and can inhibit exothermic reactions because of their heat capacity and thus, in contrast to the oxidizable compounds, provide mitigation of hazardous reactions. In this report the energy that may be released when various organic and inorganic compounds react is computed as a function of the reaction-mix composition and the temperature. The enthalpy, or integrated heat capacity, of these compounds and various reaction products is presented as a function of temperature; the enthalpy of a given mixture can then be equated to the energy release from various reactions to predict the maximum temperature which may be reached. This is estimated for several different compositions. Alternatively, the amounts of various diluents required to prevent the temperature from reaching a critical value can be estimated. Reactions taking different paths, forming different products such as N{sub 2}O in place of N{sub 2} are also considered, as are reactions where an excess of caustic is present. Oxidants other than nitrate and nitrite are considered briefly.