WorldWideScience

Sample records for reaction monitoring modes

  1. System and process for pulsed multiple reaction monitoring

    Science.gov (United States)

    Belov, Mikhail E

    2013-05-17

    A new pulsed multiple reaction monitoring process and system are disclosed that uses a pulsed ion injection mode for use in conjunction with triple-quadrupole instruments. The pulsed injection mode approach reduces background ion noise at the detector, increases amplitude of the ion signal, and includes a unity duty cycle that provides a significant sensitivity increase for reliable quantitation of proteins/peptides present at attomole levels in highly complex biological mixtures.

  2. Determination of the enantiomer ratio of PBB 149 by GC/NICI-tandem mass spectrometry in the selected reaction monitoring mode

    Energy Technology Data Exchange (ETDEWEB)

    Recke, R. von der; Goetsch, A.; Vetter, W. [Hohenheim Univ., Stuttgart (Germany). Inst. fuer Lebensmittelchemie; Mariussen, E. [Norwegian Inst. for Air Research, Kjeller (Norway); Berger, U.; Herzke, D. [NILU, The Polar Environmental Centre, Tromso (Norway)

    2004-09-15

    Technical mixtures of polybrominated biphenyls (PBBs) have been extensively used as flameretardants in textile and electronic industries and as additives in plastics. Despite a continuous reduction of the worldwide annual production in the last decade, the presence of PBBs in the environment was recently confirmed in a wide range of samples. PBBs exist in a theoretical variety of 209 congeners. Many di-ortho, tri-ortho, and tetra-ortho PBBs form stable pairs of enantiomers, which was experimentally confirmed by enantioselective HPLC separation of chiral PBB in a technical mixture. It is known from the literature, that chiral organohalogen compounds can be degraded enantioselectively. In this work we used a chiral GC stationary phase and developed a method using GC/NICI-MSMS in the single reaction monitoring mode for the determination of the enantioratio of PBB 149 in extracts from Norwegian bird of prey eggs.

  3. Negative reactions to monitoring: Do they undermine the ability of monitoring to protect adolescents?

    Science.gov (United States)

    Laird, Robert D; Zeringue, Megan M; Lambert, Emily S

    2018-02-01

    This study focused on adolescents' negative reactions to parental monitoring to determine whether parents should avoid excessive monitoring because adolescents find monitoring behaviors to be over-controlling and privacy invasive. Adolescents (n = 242, M age = 15.4 years; 51% female) reported monitoring, negative reactions, warmth, antisocial behavior, depressive symptoms, and disclosure. Adolescents additionally reported antisocial behavior, depressive symptoms, and disclosure one to two years later. In cross-sectional analyses, less monitoring but more negative reactions were linked with less disclosure, suggesting that negative reactions can undermine parents' ability to obtain information. Although monitoring behaviors were not related to depressive symptoms, more negative reactions were linked with more depressive symptoms, suggesting that negative reactions also may increase depressive symptoms as a side effect of monitoring behavior. Negative reactions were not linked to antisocial behavior. There were no longitudinal links between negative reactions and changes in disclosure, antisocial behavior, or depressive symptoms. Copyright © 2017. Published by Elsevier Ltd.

  4. Giant dipole modes in heavy-ion reactions

    International Nuclear Information System (INIS)

    Suraud, E.; Schuck, P.

    1988-07-01

    A detailed study of the excitation of giant dipole modes (GDR) in intermediate energy heavy-ion collisions is presented in the framework of a full (non linearized) Landau-Vlasov equation. After having recalled the basic inputs of this dynamical formalism, within insisting upon the limitations of the Uehling-Uhlenbeck collision integral and upon the introduction of a realistic (isospin dependant) effective interaction, we present our tools for analysing the GDR in the simple case of isolated nuclei. We then pass on to simulations of collisions and discuss in some detail isospin modes in the model 12 Be + 12 C reaction. Results obtained for the energy of the excited dipole mode are in agreement with what is expected for excited, rotating, giant dipole oscillations in deformed nuclei

  5. Reference Cross Sections for Charged-particle Monitor Reactions

    Science.gov (United States)

    Hermanne, A.; Ignatyuk, A. V.; Capote, R.; Carlson, B. V.; Engle, J. W.; Kellett, M. A.; Kibédi, T.; Kim, G.; Kondev, F. G.; Hussain, M.; Lebeda, O.; Luca, A.; Nagai, Y.; Naik, H.; Nichols, A. L.; Nortier, F. M.; Suryanarayana, S. V.; Takács, S.; Tárkányi, F. T.; Verpelli, M.

    2018-02-01

    Evaluated cross sections of beam-monitor reactions are expected to become the de-facto standard for cross-section measurements that are performed over a very broad energy range in accelerators in order to produce particular radionuclides for industrial and medical applications. The requirements for such data need to be addressed in a timely manner, and therefore an IAEA coordinated research project was launched in December 2012 to establish or improve the nuclear data required to characterise charged-particle monitor reactions. An international team was assembled to recommend more accurate cross-section data over a wide range of targets and projectiles, undertaken in conjunction with a limited number of measurements and more extensive evaluations of the decay data of specific radionuclides. Least-square evaluations of monitor-reaction cross sections including uncertainty quantification have been undertaken for charged-particle beams of protons, deuterons, 3He- and 4He-particles. Recommended beam monitor reaction data with their uncertainties are available at the IAEA-NDS medical portal http://www-nds.iaea.org/medical/monitor_reactions.html.

  6. Development and validation of LC-MS/MS method with multiple reactions monitoring mode for quantification of vanillin and syringaldehyde in plum brandies

    Directory of Open Access Journals (Sweden)

    Tešević Vele

    2014-01-01

    Full Text Available An ultra-performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-QqQ-MS/MS method with multiple reactions monitoring mode (MRM has been developed and validated for quantification of vanillin and syringaldehyde in plum brandy. The method showed good linearity (0.05 to 10 mgL−1 and low limits of detection and quantification (LOD and LOQ were 11.6 µgL−1 and 38.2 µgL−1 for vanillin, and 12.7 µgL−1 and 42.0 µgL−1 for syringaldehyde, respectively. The overall intra-day and inter-day variations were less than 4.21%, and the overall recovery over 93.0%. The correlation coefficients (R2 of the calibration curves were higher than 0.9999. In order to evaluate if the method is suitable for use as a routine analytical tool, in 31 Serbian plum brandy samples vanillin and syringaldehide were determined. [Projekat Ministarstva nauke Republike Srbije, br. 172053

  7. Mode-locking in advection-reaction-diffusion systems: An invariant manifold perspective

    Science.gov (United States)

    Locke, Rory A.; Mahoney, John R.; Mitchell, Kevin A.

    2018-01-01

    Fronts propagating in two-dimensional advection-reaction-diffusion systems exhibit a rich topological structure. When the underlying fluid flow is periodic in space and time, the reaction front can lock to the driving frequency. We explain this mode-locking phenomenon using the so-called burning invariant manifolds (BIMs). In fact, the mode-locked profile is delineated by a BIM attached to a relative periodic orbit (RPO) of the front element dynamics. Changes in the type (and loss) of mode-locking can be understood in terms of local and global bifurcations of the RPOs and their BIMs. We illustrate these concepts numerically using a chain of alternating vortices in a channel geometry.

  8. Warmth and legitimacy beliefs contextualize adolescents' negative reactions to parental monitoring.

    Science.gov (United States)

    LaFleur, Laura K; Zhao, Yinan; Zeringue, Megan M; Laird, Robert D

    2016-08-01

    This study sought to identify conditions under which parents' monitoring behaviors are most strongly linked to adolescents' negative reactions (i.e., feelings of being controlled and invaded). 242 adolescents (49.2% male; M age = 15.4 years) residing in the United States of America reported parental monitoring and warmth, and their own feelings of being controlled and invaded and beliefs in the legitimacy of parental authority. Analyses tested whether warmth and legitimacy beliefs moderate and/or suppress the link between parents' monitoring behaviors and adolescents' negative reactions. Monitoring was associated with more negative reactions, controlling for legitimacy beliefs and warmth. More monitoring was associated with more negative reactions only at weaker levels of legitimacy beliefs, and at lower levels of warmth. The link between monitoring and negative reactions is sensitive to the context within which monitoring occurs with the strongest negative reactions found in contexts characterized by low warmth and weak legitimacy beliefs. Copyright © 2016 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  9. Intramolecular energy transfer and mode-specific effects in unimolecular reactions of 1,2-difluoroethane

    Science.gov (United States)

    Raff, Lionel M.

    1989-06-01

    The unimolecular decomposition reactions of 1,2-difluoroethane upon mode-specific excitation to a total internal energy of 7.5 eV are investigated using classical trajectory methods and a previously formulated empirical potential-energy surface. The decomposition channels for 1,2-difluoroethane are, in order of importance, four-center HF elimination, C-C bond rupture, and hydrogen-atom dissociation. This order is found to be independent of the particular vibrational mode excited. Neither fluorine-atom nor F2 elimination reactions are ever observed even though these dissociation channels are energetically open. For four-center HF elimination, the average fraction of the total energy partitioned into internal HF motion varies between 0.115-0.181 depending upon the particular vibrational mode initially excited. The internal energy of the fluoroethylene product lies in the range 0.716-0.776. Comparison of the present results with those previously obtained for a random distribution of the initial 1,2-difluoroethane internal energy [J. Phys. Chem. 92, 5111 (1988)], shows that numerous mode-specific effects are present in these reactions in spite of the fact that intramolecular energy transfer rates for this system are 5.88-25.5 times faster than any of the unimolecular reaction rates. Mode-specific excitation always leads to a total decomposition rate significantly larger than that obtained for a random distribution of the internal energy. Excitation of different 1,2-difluoroethane vibrational modes is found to produce as much as a 51% change in the total decomposition rate. Mode-specific effects are also seen in the product energy partitioning. The rate coefficients for decomposition into the various channels are very sensitive to the particular mode excited. A comparison of the calculated mode-specific effects with the previously determined mode-to-mode energy transfer rate coefficients [J. Chem. Phys. 89, 5680 (1988)] shows that, to some extent, the presence of mode

  10. Development of a 10-decade single-mode reactor flux monitoring system

    International Nuclear Information System (INIS)

    Valentine, K.H.; Shepard, R.L.; Falter, K.G.; Reese, W.B.

    1988-01-01

    Conventional wide-range neutron channels employ three optional modes to monitor the required flux range from source levels to full power (typically 10 or more decades). Difficult calibrations are necessary to provide a continuous output signal when such a system switches from counting mode in the source range to mean-square voltage mode in the midrange to dc current mode in the power range. In an ORNL proof-of-principle test, a method of extended range counting was implemented with a fission counter and conventional wide-band pulse processing electronics to provide a single-mode, monotonically increasing signal that spanned /approximately 10/ decades of neutron flux. Ongoing work includes design, fabrication, and testing of a comlpete neutron flux monitoring system suitable for advanced liquid metal reactor designs. 6 refs., 4 figs

  11. NMR reaction monitoring in flow synthesis.

    Science.gov (United States)

    Gomez, M Victoria; de la Hoz, Antonio

    2017-01-01

    Recent advances in the use of flow chemistry with in-line and on-line analysis by NMR are presented. The use of macro- and microreactors, coupled with standard and custom made NMR probes involving microcoils, incorporated into high resolution and benchtop NMR instruments is reviewed. Some recent selected applications have been collected, including synthetic applications, the determination of the kinetic and thermodynamic parameters and reaction optimization, even in single experiments and on the μL scale. Finally, software that allows automatic reaction monitoring and optimization is discussed.

  12. Radiogas chromatography mass spectrometry in the selected ion monitoring mode

    International Nuclear Information System (INIS)

    Doerfler, D.L.; Rosenblum, E.R.; Malloy, J.M.; Naworal, J.D.; McManus, I.R.; Campbell, I.M.

    1980-01-01

    The value of selected ion monitoring in analyzing biological radio isotope incorporation experiments by radiogas chromatography mass spectrometry is illustrated with reference to the biosynthesis of the mycotoxin mycophenolic acid in Penicillium brevicompactum and the mode of action of the anticholesterolemic drug 20,25-diazacholesterol. Both examples used 1-[ 14 C]acetate precursors. It is shown that the increased sensitivity and specificity of the selected ion monitoring mode detector permits straightforward detection and identification of the relatively small cellular pools associated with metabolic intermediates. The computer program RADSIM is described. Problems that still exist in using radiogas gas chromatography mass spectrometry technology to analyse isotope incorporation experiments are discussed. (author)

  13. Mixed-mode chromatography with zwitterionic phosphopeptidomimetic selectors from Ugi multicomponent reaction

    NARCIS (Netherlands)

    Gargano, Andrea F G; Leek, Tomas; Lindner, Wolfgang; Lämmerhofer, Michael

    2013-01-01

    In the present contribution a novel Ugi multicomponent reaction (MCR) was used to generate zwitterionic chromatographic selectors with capability for application in mixed-mode chromatography featuring complementary selectivities in reversed-phase (RP) and hydrophilic interaction liquid

  14. NMR reaction monitoring in flow synthesis

    Directory of Open Access Journals (Sweden)

    M. Victoria Gomez

    2017-02-01

    Full Text Available Recent advances in the use of flow chemistry with in-line and on-line analysis by NMR are presented. The use of macro- and microreactors, coupled with standard and custom made NMR probes involving microcoils, incorporated into high resolution and benchtop NMR instruments is reviewed. Some recent selected applications have been collected, including synthetic applications, the determination of the kinetic and thermodynamic parameters and reaction optimization, even in single experiments and on the μL scale. Finally, software that allows automatic reaction monitoring and optimization is discussed.

  15. Substrate-Coated Illumination Droplet Spray Ionization: Real-Time Monitoring of Photocatalytic Reactions

    Science.gov (United States)

    Zhang, Hong; Li, Na; Zhao, Dandan; Jiang, Jie; You, Hong

    2017-09-01

    Real-time monitoring of photocatalytic reactions facilitates the elucidation of the mechanisms of the reactions. However, suitable tools for real-time monitoring are lacking. Herein, a novel method based on droplet spray ionization named substrate-coated illumination droplet spray ionization (SCI-DSI) for direct analysis of photocatalytic reaction solution is reported. SCI-DSI addresses many of the analytical limitations of electrospray ionization (ESI) for analysis of photocatalytic-reaction intermediates, and has potential for both in situ analysis and real-time monitoring of photocatalytic reactions. In SCI-DSI-mass spectrometry (MS), a photocatalytic reaction occurs by loading sample solutions onto the substrate-coated cover slip and by applying UV light above the modified slip; one corner of this slip adjacent to the inlet of a mass spectrometer is the high-electric-field location for launching a charged-droplet spray. After both testing and optimizing the performance of SCI-DSI, the value of this method for in situ analysis and real-time monitoring of photocatalytic reactions was demonstrated by the removal of cyclophosphamide (CP) in TiO2/UV. Reaction times ranged from seconds to minutes, and the proposed reaction intermediates were captured and identified by tandem mass spectrometry. Moreover, the free hydroxyl radical (·OH) was identified as the main radicals for CP removal. These results show that SCI-DSI is suitable for in situ analysis and real-time monitoring of CP removal under TiO2-based photocatalytic reactions. SCI-DSI is also a potential tool for in situ analysis and real-time assessment of the roles of radicals during CP removal under TiO2-based photocatalytic reactions. Graphical Abstract[Figure not available: see fulltext.

  16. HIFU Monitoring and Control with Dual-Mode Ultrasound Arrays

    Science.gov (United States)

    Casper, Andrew Jacob

    The biological effects of high-intensity focused ultrasound (HIFU) have been known and studied for decades. HIFU has been shown capable of treating a wide variety of diseases and disorders. However, despite its demonstrated potential, HIFU has been slow to gain clinical acceptance. This is due, in part, to the difficulty associated with robustly monitoring and controlling the delivery of the HIFU energy. The non-invasive nature of the surgery makes the assessment of treatment progression difficult, leading to long treatment times and a significant risk of under treatment. This thesis research develops new techniques and systems for robustly monitoring HIFU therapies for the safe and efficacious delivery of the intended treatment. Systems and algorithms were developed for the two most common modes of HIFU delivery systems: single-element and phased array applicators. Delivering HIFU with a single element transducer is a widely used technique in HIFU therapies. The simplicity of a single element offers many benefits in terms of cost and overall system complexity. Typical monitoring schemes rely on an external device (e.g. diagnostic ultrasound or MRI) to assess the progression of therapy. The research presented in this thesis explores using the same element to both deliver and monitor the HIFU therapy. The use of a dual-mode ultrasound transducer (DMUT) required the development of an FPGA based single-channel arbitrary waveform generator and high-speed data acquisition unit. Data collected from initial uncontrolled ablations led to the development of monitoring and control algorithms which were implemented directly on the FPGA. Close integration between the data acquisition and arbitrary waveform units allowed for fast, low latency control over the ablation process. Results are presented that demonstrate control of HIFU therapies over a broad range of intensities and in multiple in vitro tissues. The second area of investigation expands the DMUT research to an

  17. Communication: Equivalence between symmetric and antisymmetric stretching modes of NH3 in promoting H + NH3 → H2 + NH2 reaction

    Science.gov (United States)

    Song, Hongwei; Yang, Minghui; Guo, Hua

    2016-10-01

    Vibrational excitations of reactants sometimes promote reactions more effectively than the same amount of translational energy. Such mode specificity provides insights into the transition-state modulation of reactivity and might be used to control chemical reactions. We report here a state-of-the-art full-dimensional quantum dynamical study of the hydrogen abstraction reaction H + NH3 → H2 + NH2 on an accurate ab initio based global potential energy surface. This reaction serves as an ideal candidate to study the relative efficacies of symmetric and degenerate antisymmetric stretching modes. Strong mode specificity, particularly for the NH3 stretching modes, is demonstrated. It is further shown that nearly identical efficacies of the symmetric and antisymmetric stretching modes of NH3 in promoting the reaction can be understood in terms of local-mode stretching vibrations of the reactant molecule.

  18. Unattented mode monitoring of high resolution gamma-ray spectra

    International Nuclear Information System (INIS)

    Smith, B.G.R.; Van Dyck, P.; Debraix, P.

    1991-01-01

    An Isotope Monitoring System (IMS) for unattended spectrum acquisition is described. This consists of a simple low cost flexible software package running on a Compaq 80386 and controlling up to 4 Canberra Packard System 100 multi-channel analyzer (MCA) cards. The IMS permits the independent configuration of each of the 4 MCA cards for different monitoring cycles and for different spectrum acquisition cycles each being based upon different trigger criteria. In this way IMS is able to automatically identify events, time tag them, and acquire and store valid spectra corresponding to those event. An additional feature of IMS permits to run a Multigroup Analysis (MGA) software package for the determination of plutonium isotopic compositions in batch mode. One particular application is discussed which consists of 4 high resolution gamma-ray detector systems connected together to the IMS for unattended spectrum acquisition. The off-line batch mode analysis of the spectra using MGA is also discussed

  19. Online monitoring of chemical reactions by polarization-induced electrospray ionization.

    Science.gov (United States)

    Meher, Anil Kumar; Chen, Yu-Chie

    2016-09-21

    Polarization-induced electrospray ionization (PI-ESI) is a simple technique for instant generation of gas-phase ions directly from a microliter-sized droplet for mass spectrometric analysis. A sample droplet was placed over a dielectric substrate and in proximity (2-3 mm) to the inlet of a mass spectrometer. Owing to the polarization effect induced by the high electric field provided by the mass spectrometer, the droplet was polarized and the electrospray was generated from the apex of the droplet. The polarization-induced electrospray could last for tens of seconds, which was sufficiently long to monitor fast reactions occurring within few seconds. Thus, we demonstrated the feasibility of using the droplet-based PI-ESI MS for the online monitoring of fast reactions by simply mixing two droplets (5-10 μL) containing reactants on a dielectric substrate placed in front of a mass spectrometer applied with a high voltage (-4500 V). Schiff base reactions and oxidation reactions that can generate intermediates/products within a few seconds were selected as the model reactions. The ionic reaction species generated from intermediates and products can be simultaneously monitored by PI-ESI MS in real time. We also used this approach to selectively detect acetone from a urine sample, in which acetone was derivatized in situ. In addition, the possibility of using this approach for quantitative analysis of acetone from urine samples was examined. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Higher-order-mode damper as beam-position monitors; Higher-Order-Mode Daempfer als Stahllagemonitore

    Energy Technology Data Exchange (ETDEWEB)

    Peschke, C.

    2006-03-15

    In the framework of this thesis a beam-position monitor was developed, which can only because of the signals from the HOM dampers of a linear-accelerator structure determine the beam position with high accuracy. For the unique determination of the beam position in the plane a procedure was developed, which uses the amplitudes and the start-phase difference between a dipole mode and a higher monopole mode. In order tocheck the suitability of the present SBLC-HOM damper as beam position monitor three-dimensional numerical field calculations in the frequency and time range and measurements on the damper cell were performed. For the measurements without beam a beam simulator was constructed, which allows computer-driven measurements with variable depositions of the simulated beam with a resolution of 1.23 {mu}m. Because the complete 6 m long, 180-cell accelerator structure was not available for measurements and could also with the available computers not be three-dimensionally simulated simulated, a one-dimensional equivalent-circuit based model of the multi-cell was studied. The equivalent circuits with 879 concentrated components regards the detuning from cell to cell, the cell losses, the damper losses, and the beam excitation in dependence on the deposition. the measurements and simulations let a resolution of the ready beam-position monitor on the 180-cell in the order of magnitude of 1-10 {mu}m and a relative accuracy smaller 6.2% be expected.

  1. Real time monitoring of accelerated chemical reactions by ultrasonication-assisted spray ionization mass spectrometry.

    Science.gov (United States)

    Lin, Shu-Hsuan; Lo, Ta-Ju; Kuo, Fang-Yin; Chen, Yu-Chie

    2014-01-01

    Ultrasonication has been used to accelerate chemical reactions. It would be ideal if ultrasonication-assisted chemical reactions could be monitored by suitable detection tools such as mass spectrometry in real time. It would be helpful to clarify reaction intermediates/products and to have a better understanding of reaction mechanism. In this work, we developed a system for ultrasonication-assisted spray ionization mass spectrometry (UASI-MS) with an ~1.7 MHz ultrasonic transducer to monitor chemical reactions in real time. We demonstrated that simply depositing a sample solution on the MHz-based ultrasonic transducer, which was placed in front of the orifice of a mass spectrometer, the analyte signals can be readily detected by the mass spectrometer. Singly and multiply charged ions from small and large molecules, respectively, can be observed in the UASI mass spectra. Furthermore, the ultrasonic transducer used in the UASI setup accelerates the chemical reactions while being monitored via UASI-MS. The feasibility of using this approach for real-time acceleration/monitoring of chemical reactions was demonstrated. The reactions of Girard T reagent and hydroxylamine with steroids were used as the model reactions. Upon the deposition of reactant solutions on the ultrasonic transducer, the intermediate/product ions are readily generated and instantaneously monitored using MS within 1 s. Additionally, we also showed the possibility of using this reactive UASI-MS approach to assist the confirmation of trace steroids from complex urine samples by monitoring the generation of the product ions. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Ductile mode grinding of reaction-bonded silicon carbide mirrors.

    Science.gov (United States)

    Dong, Zhichao; Cheng, Haobo

    2017-09-10

    The demand for reaction-bonded silicon carbide (RB-SiC) mirrors has escalated recently with the rapid development of space optical remote sensors used in astronomy or Earth observation. However, RB-SiC is difficult to machine due to its high hardness. This study intends to perform ductile mode grinding to RB-SiC, which produces superior surface integrity and fewer subsurface damages, thus minimizing the workload of subsequent lapping and polishing. For this purpose, a modified theoretical model for grain depth of cut of grinding wheels is presented, which correlates various processing parameters and the material characteristics (i.e., elastic module) of a wheel's bonding matrix and workpiece. Ductile mode grinding can be achieved as the grain depth of cut of wheels decreases to be less than the critical cut depth of workpieces. The theoretical model gives a roadmap to optimize the grinding parameters for ductile mode grinding of RB-SiC and other ultra-hard brittle materials. Its feasibility was validated by experiments. With the optimized grinding parameters for RB-SiC, the ductile mode grinding produced highly specular surfaces (with roughness of ∼2.2-2.8  nm Ra), which means the material removal mechanism of RB-SiC is dominated by plastic deformation rather than brittle fracture. Contrast experiments were also conducted on fused silica, using the same grinding parameters; this produced only very rough surfaces, which further validated the feasibility of the proposed model.

  3. A dose-per-pulse monitor for a dual-mode medical accelerator

    International Nuclear Information System (INIS)

    Galbraith, D.M.; Martell, E.S.; Fueurstake, T.; Norrlinger, B.; Schwendener, H.; Rawlinson, J.A.

    1990-01-01

    On a radiotherapy accelerator, the dose monitoring system is the last level of protection between the patient and the extremely high dose rate which all accelerators are capable of producing. The risk of losing this level of protection is substantially reduced if two or more dose monitoring systems are used which are mechanically and electrically independent in design. This paper describes the installation of an independent radiation monitor in a dual-mode, computer-controlled accelerator with a moveable monitor chamber. The added device is fixed in the beam path, is capable of monitoring each beam pulse, and is capable of terminating irradiation within the pulse repetition period if any measured pulse is unacceptably high

  4. Crosschecking of alpha particle monitor reactions up to 50 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Takács, S., E-mail: stakacs@atomki.hu [Institute for Nuclear Research, Hungarian Academy of Sciences, 4026 Debrecen (Hungary); Ditrói, F.; Szűcs, Z. [Institute for Nuclear Research, Hungarian Academy of Sciences, 4026 Debrecen (Hungary); Haba, H.; Komori, Y. [Nishina Center for Accelerator-Based Science, RIKEN, Wako 351-0198 (Japan); Aikawa, M. [Faculty of Science, Hokkaido University, Sapporo 060-0810 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Wako 351-0198 (Japan); Saito, M. [Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Wako 351-0198 (Japan)

    2017-04-15

    Selected reactions with well-defined excitation functions can be used to monitor the parameters of charged particle beams. The frequently used reactions for monitoring alpha particle beams are the {sup 27}Al(α,x){sup 22,24}Na, {sup nat}Ti(α,x){sup 51}Cr, {sup nat}Cu(α,x){sup 66,67}Ga and {sup nat}Cu(α,x){sup 65}Zn reactions. The excitation functions for these reactions were studied using the activation method and stacked target irradiation technique to crosscheck and to compare the above six reactions. Thin metallic foils with natural isotopic composition and well defined thickness were stacked together in sandwich targets and were irradiated at the AVF cyclotron of RIKEN with an alpha particle beam of 51.2 MeV. The activity of the target foils were assessed by using high-resolution gamma spectrometers of high purity Ge detectors. The data sets of the six processes were crosschecked with each other to provide consistent, cross-linked numerical cross section data.

  5. Modes of reaction front propagation and end-gas combustion of hydrogen/air mixtures in a closed chamber

    KAUST Repository

    Shi, Xian

    2017-01-05

    Modes of reaction front propagation and end-gas combustion of hydrogen/air mixtures in a closed chamber are numerically investigated using an 1-D unsteady, shock-capturing, compressible and reacting flow solver. Different combinations of reaction front propagation and end-gas combustion modes are observed, i.e., 1) deflagration without end-gas combustion, 2) deflagration to end-gas autoignition, 3) deflagration to end-gas detonation, 4) developing or developed detonation, occurring in the sequence of increasing initial temperatures. Effects of ignition location and chamber size are evaluated: the asymmetric ignition is found to promote the reactivity of unburnt mixture compared to ignitions at center/wall, due to additional heating from asymmetric pressure waves. End-gas combustion occurs earlier in smaller chambers, where end-gas temperature rise due to compression heating from the deflagration is faster. According to the ξ−ε regime diagram based on Zeldovich theory, modes of reaction front propagation are primarily determined by reactivity gradients introduced by initial ignition, while modes of end-gas combustion are influenced by the total amount of unburnt mixture at the time when autoignition occurs. A transient reactivity gradient method is provided and able to capture the occurrence of detonation.

  6. Modes of reaction front propagation and end-gas combustion of hydrogen/air mixtures in a closed chamber

    KAUST Repository

    Shi, Xian; Ryu, Je Ir; Chen, Jyh-Yuan; Dibble, Robert W.

    2017-01-01

    Modes of reaction front propagation and end-gas combustion of hydrogen/air mixtures in a closed chamber are numerically investigated using an 1-D unsteady, shock-capturing, compressible and reacting flow solver. Different combinations of reaction front propagation and end-gas combustion modes are observed, i.e., 1) deflagration without end-gas combustion, 2) deflagration to end-gas autoignition, 3) deflagration to end-gas detonation, 4) developing or developed detonation, occurring in the sequence of increasing initial temperatures. Effects of ignition location and chamber size are evaluated: the asymmetric ignition is found to promote the reactivity of unburnt mixture compared to ignitions at center/wall, due to additional heating from asymmetric pressure waves. End-gas combustion occurs earlier in smaller chambers, where end-gas temperature rise due to compression heating from the deflagration is faster. According to the ξ−ε regime diagram based on Zeldovich theory, modes of reaction front propagation are primarily determined by reactivity gradients introduced by initial ignition, while modes of end-gas combustion are influenced by the total amount of unburnt mixture at the time when autoignition occurs. A transient reactivity gradient method is provided and able to capture the occurrence of detonation.

  7. Optofluidic UV-Vis spectrophotometer for online monitoring of photocatalytic reactions.

    Science.gov (United States)

    Wang, Ning; Tan, Furui; Zhao, Yu; Tsoi, Chi Chung; Fan, Xudong; Yu, Weixing; Zhang, Xuming

    2016-06-29

    On-chip integration of optical detection units into the microfluidic systems for online monitoring is highly desirable for many applications and is also well in line with the spirit of optofluidics technology-fusion of optics and microfluidics for advanced functionalities. This paper reports the construction of a UV-Vis spectrophotometer on a microreactor, and demonstrates the online monitoring of the photocatalytic degradations of methylene blue and methyl orange under different flow rates and different pH values by detecting the intensity change and/or the peak shift. The integrated device consists of a TiO2-coated glass substrate, a PDMS micro-sized reaction chamber and two flow cells. By comparing with the results of commercial equipment, we have found that the measuring range and the sensitivity are acceptable, especially when the transmittance is in the range of 0.01-0.9. This integrated optofluidic device can significantly cut down the test time and the sample volume, and would provide a versatile platform for real-time characterization of photochemical performance. Moreover, its online monitoring capability may enable to access the usually hidden information in biochemical reactions like intermediate products, time-dependent processes and reaction kinetics.

  8. Optofluidic UV-Vis spectrophotometer for online monitoring of photocatalytic reactions

    Science.gov (United States)

    Wang, Ning; Tan, Furui; Zhao, Yu; Tsoi, Chi Chung; Fan, Xudong; Yu, Weixing; Zhang, Xuming

    2016-06-01

    On-chip integration of optical detection units into the microfluidic systems for online monitoring is highly desirable for many applications and is also well in line with the spirit of optofluidics technology-fusion of optics and microfluidics for advanced functionalities. This paper reports the construction of a UV-Vis spectrophotometer on a microreactor, and demonstrates the online monitoring of the photocatalytic degradations of methylene blue and methyl orange under different flow rates and different pH values by detecting the intensity change and/or the peak shift. The integrated device consists of a TiO2-coated glass substrate, a PDMS micro-sized reaction chamber and two flow cells. By comparing with the results of commercial equipment, we have found that the measuring range and the sensitivity are acceptable, especially when the transmittance is in the range of 0.01-0.9. This integrated optofluidic device can significantly cut down the test time and the sample volume, and would provide a versatile platform for real-time characterization of photochemical performance. Moreover, its online monitoring capability may enable to access the usually hidden information in biochemical reactions like intermediate products, time-dependent processes and reaction kinetics.

  9. Dissociation pathways of a single dimethyl disulfide on Cu(111): Reaction induced by simultaneous excitation of two vibrational modes

    Energy Technology Data Exchange (ETDEWEB)

    Motobayashi, Kenta, E-mail: kmotobayashi@cat.hokudai.ac.jp [Catalysis Research Center, Hokkaido University, Sapporo 001-0021 (Japan); Department of Advanced Materials Science, The University of Tokyo, Kashiwa 277-8561 (Japan); Surface and Interface Science Laboratory, RIKEN, Wako 351-0198 (Japan); Kim, Yousoo [Surface and Interface Science Laboratory, RIKEN, Wako 351-0198 (Japan); Arafune, Ryuichi [International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044 (Japan); Ohara, Michiaki; Ueba, Hiromu; Kawai, Maki, E-mail: maki@k.u-tokyo.ac.jp [Department of Advanced Materials Science, The University of Tokyo, Kashiwa 277-8561 (Japan)

    2014-05-21

    We present a novel reaction mechanism for a single adsorbed molecule that proceeds via simultaneous excitation of two different vibrational modes excited by inelastic tunneling electrons from a scanning tunneling microscope. Specifically, we analyze the dissociation of a single dimethyl disulfide (DMDS, (CH{sub 3}S){sub 2}) molecule on Cu(111) by using a versatile theoretical method, which permits us to simulate reaction rates as a function of sample bias voltage. The reaction is induced by the excitation of C-H stretch and S-S stretch modes by a two-electron process at low positive bias voltages. However, at increased voltages, the dissociation becomes a single-electron process that excites a combination mode of these stretches, where excitation of the C-H stretch is the energy source and excitation of the S-S stretch mode enhances the anharmonic coupling rate. A much smaller dissociation yield (few orders of magnitude) at negative bias voltages is understood in terms of the projected density of states of a single DMDS on Cu(111), which reflects resonant excitation through the molecular orbitals.

  10. LONG-TERM MONITORING OF MODE SWITCHING FOR PSR B0329+54

    International Nuclear Information System (INIS)

    Chen, J. L.; Wang, N.; Liu, Z. Y.; Yuan, J. P.; Wang, H. G.; Lyne, A.; Jessner, A.; Kramer, M.

    2011-01-01

    The mode-switching phenomenon of PSR B0329+54 is investigated based on the long-term monitoring from 2003 September to 2009 April made with the Urumqi 25 m radio telescope at 1540 MHz. At that frequency, the change of relative intensity between the leading and trailing components is the predominant feature of mode switching. The intensity ratios between the leading and trailing components are measured for the individual profiles averaged over a few minutes. It is found that the ratios follow normal distributions, where the abnormal mode has a greater typical width than the normal mode, indicating that the abnormal mode is less stable than the normal mode. Our data show that 84.9% of the time for PSR B0329+54 was in the normal mode and 15.1% was in the abnormal mode. From the two passages of eight-day quasi-continuous observations in 2004, supplemented by the daily data observed with the 15 m telescope at 610 MHz at Jodrell Bank Observatory, the intrinsic distributions of mode timescales are constrained with the Bayesian inference method. It is found that the gamma distribution with the shape parameter slightly smaller than 1 is favored over the normal, log-normal, and Pareto distributions. The optimal scale parameters of the gamma distribution are 31.5 minutes for the abnormal mode and 154 minutes for the normal mode. The shape parameters have very similar values, i.e., 0.75 +0.22 – 0 .17 for the normal mode and 0.84 +0.28 – 0 .22 for the abnormal mode, indicating that the physical mechanisms in both modes may be the same. No long-term modulation of the relative intensity ratios was found for either mode, suggesting that the mode switching was stable. The intrinsic timescale distributions, constrained for this pulsar for the first time, provide valuable information to understand the physics of mode switching.

  11. Monitoring biodiesel reactions of soybean oil and sunflower oil using ultrasonic parameters

    International Nuclear Information System (INIS)

    Figueiredo, M K K; Silva, C E R; Alvarenga, A V; Costa-Félix, R P B

    2015-01-01

    Biodiesel is an innovation that attempts to substitute diesel oil with biomass. The aim of this paper is to show the development of a real-time method to monitor transesterification reactions by using low-power ultrasound and pulse/echo techniques. The results showed that it is possible to identify different events during the transesterification process by using the proposed parameters, showing that the proposed method is a feasible way to monitor the reactions of biodiesel during its fabrication, in real time, and with relatively low- cost equipment

  12. Monitoring biodiesel reactions of soybean oil and sunflower oil using ultrasonic parameters

    Science.gov (United States)

    Figueiredo, M. K. K.; Silva, C. E. R.; Alvarenga, A. V.; Costa-Félix, R. P. B.

    2015-01-01

    Biodiesel is an innovation that attempts to substitute diesel oil with biomass. The aim of this paper is to show the development of a real-time method to monitor transesterification reactions by using low-power ultrasound and pulse/echo techniques. The results showed that it is possible to identify different events during the transesterification process by using the proposed parameters, showing that the proposed method is a feasible way to monitor the reactions of biodiesel during its fabrication, in real time, and with relatively low- cost equipment.

  13. Monitoring and manipulating Higgs and Goldstone modes in a supersolid quantum gas.

    Science.gov (United States)

    Léonard, Julian; Morales, Andrea; Zupancic, Philip; Donner, Tobias; Esslinger, Tilman

    2017-12-15

    Higgs and Goldstone modes are collective excitations of the amplitude and phase of an order parameter that is related to the breaking of a continuous symmetry. We directly studied these modes in a supersolid quantum gas created by coupling a Bose-Einstein condensate to two optical cavities, whose field amplitudes form the real and imaginary parts of a U(1)-symmetric order parameter. Monitoring the cavity fields in real time allowed us to observe the dynamics of the associated Higgs and Goldstone modes and revealed their amplitude and phase nature. We used a spectroscopic method to measure their frequencies, and we gave a tunable mass to the Goldstone mode by exploring the crossover between continuous and discrete symmetry. Our experiments link spectroscopic measurements to the theoretical concept of Higgs and Goldstone modes. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  14. In Situ Monitoring of Chemical Reactions at a Solid-Water Interface by Femtosecond Acoustics.

    Science.gov (United States)

    Shen, Chih-Chiang; Weng, Meng-Yu; Sheu, Jinn-Kong; Yao, Yi-Ting; Sun, Chi-Kuang

    2017-11-02

    Chemical reactions at a solid-liquid interface are of fundamental importance. Interfacial chemical reactions occur not only at the very interface but also in the subsurface area, while existing monitoring techniques either provide limited spatial resolution or are applicable only for the outmost atomic layer. Here, with the aid of the time-domain analysis with femtosecond acoustics, we demonstrate a subatomic-level-resolution technique to longitudinally monitor chemical reactions at solid-water interfaces, capable of in situ monitoring even the subsurface area under atmospheric conditions. Our work was proven by monitoring the already-known anode oxidation process occurring during photoelectrochemical water splitting. Furthermore, whenever the oxide layer thickness equals an integer  number of the effective atomic layer thickness, the measured acoustic echo will show higher signal-to-noise ratios with reduced speckle noise, indicating the quantum-like behavior of this coherent-phonon-based technique.

  15. Health monitoring of pipeline girth weld using empirical mode decomposition

    Science.gov (United States)

    Rezaei, Davood; Taheri, Farid

    2010-05-01

    In the present paper the Hilbert-Huang transform (HHT), as a time-series analysis technique, has been combined with a local diagnostic approach in an effort to identify flaws in pipeline girth welds. This method is based on monitoring the free vibration signals of the pipe at its healthy and flawed states, and processing the signals through the HHT and its associated signal decomposition technique, known as empirical mode decomposition (EMD). The EMD method decomposes the vibration signals into a collection of intrinsic mode functions (IMFs). The deviations in structural integrity, measured from a healthy-state baseline, are subsequently evaluated by two damage sensitive parameters. The first is a damage index, referred to as the EM-EDI, which is established based on an energy comparison of the first or second IMF of the vibration signals, before and after occurrence of damage. The second parameter is the evaluation of the lag in instantaneous phase, a quantity derived from the HHT. In the developed methodologies, the pipe's free vibration is monitored by piezoceramic sensors and a laser Doppler vibrometer. The effectiveness of the proposed techniques is demonstrated through a set of numerical and experimental studies on a steel pipe with a mid-span girth weld, for both pressurized and nonpressurized conditions. To simulate a crack, a narrow notch is cut on one side of the girth weld. Several damage scenarios, including notches of different depths and at various locations on the pipe, are investigated. Results from both numerical and experimental studies reveal that in all damage cases the sensor located at the notch vicinity could successfully detect the notch and qualitatively predict its severity. The effect of internal pressure on the damage identification method is also monitored. Overall, the results are encouraging and promise the effectiveness of the proposed approaches as inexpensive systems for structural health monitoring purposes.

  16. Monitoring Biological Modes in a Bioreactor Process by Computer Simulation

    Directory of Open Access Journals (Sweden)

    Samia Semcheddine

    2015-12-01

    Full Text Available This paper deals with the general framework of fermentation system modeling and monitoring, focusing on the fermentation of Escherichia coli. Our main objective is to develop an algorithm for the online detection of acetate production during the culture of recombinant proteins. The analysis the fermentation process shows that it behaves like a hybrid dynamic system with commutation (since it can be represented by 5 nonlinear models. We present a strategy of fault detection based on residual generation for detecting the different actual biological modes. The residual generation is based on nonlinear analytical redundancy relations. The simulation results show that the several modes that are occulted during the bacteria cultivation can be detected by residuals using a nonlinear dynamic model and a reduced instrumentation.

  17. In-situ nanoelectrospray for high-throughput screening of enzymes and real-time monitoring of reactions.

    Science.gov (United States)

    Yang, Yuhan; Han, Feifei; Ouyang, Jin; Zhao, Yunling; Han, Juan; Na, Na

    2016-01-01

    The in-situ and high-throughput evaluation of enzymes and real-time monitoring of enzyme catalyzed reactions in liquid phase is quite significant in the catalysis industry. In-situ nanoelectrospray, the direct sampling and ionization method for mass spectrometry, has been applied for high-throughput evaluation of enzymes, as well as the on-line monitoring of reactions. Simply inserting a capillary into a liquid system with high-voltage applied, analytes in liquid reaction system can be directly ionized at the capillary tip with small volume consumption. With no sample pre-treatment or injection procedure, different analytes such as saccharides, amino acids, alkaloids, peptides and proteins can be rapidly and directly extracted from liquid phase and ionized at the capillary tip. Taking irreversible transesterification reaction of vinyl acetate and ethanol as an example, this technique has been used for the high-throughput evaluation of enzymes, fast optimizations, as well as real-time monitoring of reaction catalyzed by different enzymes. In addition, it is even softer than traditional electrospray ionization. The present method can also be used for the monitoring of other homogenous and heterogeneous reactions in liquid phases, which will show potentials in the catalysis industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Protein biomarker discovery and fast monitoring for the identification and detection of Anisakids by parallel reaction monitoring (PRM) mass spectrometry.

    Science.gov (United States)

    Carrera, Mónica; Gallardo, José M; Pascual, Santiago; González, Ángel F; Medina, Isabel

    2016-06-16

    Anisakids are fish-borne parasites that are responsible for a large number of human infections and allergic reactions around the world. World health organizations and food safety authorities aim to control and prevent this emerging health problem. In the present work, a new method for the fast monitoring of these parasites is described. The strategy is divided in three steps: (i) purification of thermostable proteins from fish-borne parasites (Anisakids), (ii) in-solution HIFU trypsin digestion and (iii) monitoring of several peptide markers by parallel reaction monitoring (PRM) mass spectrometry. This methodology allows the fast detection of Anisakids in Biomarker Discovery and the Fast Monitoring for the identification and detection of Anisakids in fishery products. The strategy is based on the purification of thermostable proteins, the use of accelerated in-solution trypsin digestions under an ultrasonic field provided by High-Intensity Focused Ultrasound (HIFU) and the monitoring of several peptide biomarkers by Parallel Reaction Monitoring (PRM) Mass Spectrometry in a linear ion trap mass spectrometer. The workflow allows the unequivocal detection of Anisakids, in <2h. The present strategy constitutes the fastest method for Anisakids detection, whose application in the food quality control area, could provide to the authorities an effective and rapid method to guarantee the safety to the consumers. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Mode specific dynamics of the H2 + CH3 → H + CH4 reaction studied using quasi-classical trajectory and eight-dimensional quantum dynamics methods

    International Nuclear Information System (INIS)

    Wang, Yan; Li, Jun; Guo, Hua; Chen, Liuyang; Yang, Minghui; Lu, Yunpeng

    2015-01-01

    An eight-dimensional quantum dynamical model is proposed and applied to the title reaction. The reaction probabilities and integral cross sections have been determined for both the ground and excited vibrational states of the two reactants. The results indicate that the H 2 stretching and CH 3 umbrella modes, along with the translational energy, strongly promote the reactivity, while the CH 3 symmetric stretching mode has a negligible effect. The observed mode specificity is confirmed by full-dimensional quasi-classical trajectory calculations. The mode specificity can be interpreted by the recently proposed sudden vector projection model, which attributes the enhancement effects of the reactant modes to their strong couplings with the reaction coordinate at the transition state

  20. Searching for O-X-B mode-conversion window with monitoring of stray microwave radiation in LHD

    International Nuclear Information System (INIS)

    Igami, H.; Kubo, S.; Laqua, H. P.; Nagasaki, K.; Inagaki, S.; Notake, T.; Shimozuma, T.; Yoshimura, Y.; Mutoh, T.; LHD Experimental Group

    2006-01-01

    In the Large Helical Device, the stray microwave radiation is monitored by using so-called sniffer probes during electron cyclotron heating. In monitoring the stray radiation, we changed the microwave beam injection angle and search the O-X-B mode-conversion window to excite electron Bernstein waves (EBWs). When the microwave beam is injected toward the vicinity of the predicted O-X-B mode-conversion window, the electron temperature rises in the central part of overdense plasmas. In that case, the stray radiation level near the injection antenna becomes low. These results indicate that monitoring the stray radiation near the injection antenna is helpful in confirming the effectiveness of excitation of EBWs simply without precise analysis

  1. Monitoring chemical reactions by low-field benchtop NMR at 45 MHz: pros and cons.

    Science.gov (United States)

    Silva Elipe, Maria Victoria; Milburn, Robert R

    2016-06-01

    Monitoring chemical reactions is the key to controlling chemical processes where NMR can provide support. High-field NMR gives detailed structural information on chemical compounds and reactions; however, it is expensive and complex to operate. Conversely, low-field NMR instruments are simple and relatively inexpensive alternatives. While low-field NMR does not provide the detailed information as the high-field instruments as a result of their smaller chemical shift dispersion and the complex secondary coupling, it remains of practical value as a process analytical technology (PAT) tool and is complimentary to other established methods, such as ReactIR and Raman spectroscopy. We have tested a picoSpin-45 (currently under ThermoFisher Scientific) benchtop NMR instrument to monitor three types of reactions by 1D (1) H NMR: a Fischer esterification, a Suzuki cross-coupling, and the formation of an oxime. The Fischer esterification is a relatively simple reaction run at high concentration and served as proof of concept. The Suzuki coupling is an example of a more complex, commonly used reaction involving overlapping signals. Finally, the oxime formation involved a reaction in two phases that cannot be monitored by other PAT tools. Here, we discuss the pros and cons of monitoring these reactions at a low-field of 45 MHz by 1D (1) H NMR. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Monitoring Acidophilic Microbes with Real-Time Polymerase Chain Reaction (PCR) Assays

    Energy Technology Data Exchange (ETDEWEB)

    Frank F. Roberto

    2008-08-01

    Many techniques that are used to characterize and monitor microbial populations associated with sulfide mineral bioleaching require the cultivation of the organisms on solid or liquid media. Chemolithotrophic species, such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, or thermophilic chemolithotrophs, such as Acidianus brierleyi and Sulfolobus solfataricus can grow quite slowly, requiring weeks to complete efforts to identify and quantify these microbes associated with bioleach samples. Real-time PCR (polymerase chain reaction) assays in which DNA targets are amplified in the presence of fluorescent oligonucleotide primers, allowing the monitoring and quantification of the amplification reactions as they progress, provide a means of rapidly detecting the presence of microbial species of interest, and their relative abundance in a sample. This presentation will describe the design and use of such assays to monitor acidophilic microbes in the environment and in bioleaching operations. These assays provide results within 2-3 hours, and can detect less than 100 individual microbial cells.

  3. Monitoring emulsion homopolymerization reactions using FT-Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    M. M. Reis

    2005-03-01

    Full Text Available The present work describes a methodology for estimation of monomer concentration during homopolymerization reactions by Raman spectroscopy. The estimation is done using linear models based on two different approaches: a univariate approach and a multivariate approach (with principal component regression, PCR, or partial least squares regression, PLS. The linear models are fitted with data from spectra collected from synthetic samples, i.e., samples prepared by dispersing a known concentration of monomer in polymer emulsions. Homopolymerizations of butyl acrylate and of vinyl acetate were monitored by collecting samples from the reactor, and results show that the methodology is efficient for the model fitting and that Raman spectroscopy is a promising technique for on-line monitoring of the emulsion polymerization process.

  4. Analysis of charged particle induced reactions for beam monitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Surendra Babu, K. [IOP, Academia Sinica, Taipe, Taiwan (China); Lee, Young-Ouk [Nuclear Data Evaluation Laboratory, Korea Atomic Energy Research Institute (Korea, Republic of); Mukherjee, S., E-mail: smukherjee_msuphy@yahoo.co.in [Department of Physics, Faculty of Science, M.S. University of Baroda, Vadodara 390 002 (India)

    2012-07-15

    The reaction cross sections for different residual nuclides produced in the charged particle (p, d, {sup 3}He and {alpha}) induced reactions were calculated and compared with the existing experimental data which are important for beam monitoring and medical diagnostic applications. A detailed literature compilation and comparison were made on the available data sets for the above reactions. These calculations were carried out using the statistical model code TALYS up to 100 MeV, which contains Kalbach's latest systematic for the emission of complex particles and complex particle-induced reactions. All optical model calculations were performed by ECIS-03, which is built into TALYS. The level density, optical model potential parameters were adjusted to get the better description of experimental data. Various pre-equilibrium models were used in the present calculations with default parameters.

  5. C.A.R.S. monitor of fragmentation and secondary reactions during U.V. laser induced decomposition of benzene

    International Nuclear Information System (INIS)

    Fantoni, R.; Giorgi, M.; Moliterni, A.G.G.; Lipinska-Kalita, K.E.

    1992-01-01

    Among the different types of non-linear Raman spectroscopies, vibrational CARS (Coherent AntiStokes Raman Scattering, probing Raman active vibrational modes) has proved to be a valuable on-line technique in the study of laser induced processes involving gas phase reactants, such as the deposition of thin films or synthesis of ultrafine powders. The application of lasers in total decomposition (mineralisation) of gas-phase pollutants has been considered, and test experiments have been started on benzene as a precursor of a large family of aromatic pollutants. This paper reports on the use of a broad-band CARS to monitor, on-line, the laser induced dissociation of benzene at 266 nm. The electronically excited C 2 produced during the process was detected by RECARS (Resonantly Enhanced CARS) in the visible region. The laser induced primary decomposition and secondary reaction were studied under collisional conditions upon the addition of inert (N 2 ) and reactive (O 2 ) partners. Reaction intermediates produced in electronically excited states were detected by time resolved spontaneous emission spectroscopy performed with the same set-up in the absence of probe lasers

  6. A Dual-Mode UWB Wireless Platform with Random Pulse Length Detection for Remote Patient Monitoring

    DEFF Research Database (Denmark)

    Reyes, Carlos; Bisbe, Sergi; Shen, Ming

    2013-01-01

    on a single hardware platform, but it is capable of both monitoring and data transmission. This is achieved by employing a new random pulse length detection method that allows data transmission by using a modulated monitoring signal. To prove the proposed concept a test system has been built, using commercial......This paper presents a dual-mode ultra-wideband platform for wireless Remote Patient Monitoring (RPM). Existing RPM solutions are typically based on two different hardware platforms; one responsible for medical-data monitoring and one to handle data transmission. The proposed RPM topology is based...

  7. Monitoring of biofilm growth using ATR-leaky mode spectroscopy

    International Nuclear Information System (INIS)

    Leitz, M.; Franke, H.; Grattan, K.T.V.; Tamachkiarow, A.

    2002-01-01

    An approach to the in situ monitoring of biofilm formation using the technique of ATR-leaky mode spectroscopy is given as an example for the case of Cytophaga. The biofilm growth was studied on an aluminium layer and on a bilayer of the hydrogel agarose on aluminium. This metal was chosen because of its chemical stability in aqueous systems. The spectra obtained have been recorded using a flow cell to contain the suspension and nutrients over a period of several days. In the case considered using a prism surface coated with agarose, the experiments were performed by breeding in an incubator. (author)

  8. Communication: Mode specific quantum dynamics of the F + CHD{sub 3} → HF + CD{sub 3} reaction

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Ji; Song, Hongwei; Yang, Minghui, E-mail: yangmh@wipm.ac.cn, E-mail: juliana@unq.edu.ar, E-mail: uwe.manthe@uni-bielefeld.de [Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Palma, Juliana, E-mail: yangmh@wipm.ac.cn, E-mail: juliana@unq.edu.ar, E-mail: uwe.manthe@uni-bielefeld.de [Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, CONICET, Sáenz Peña 352, Bernal B1876BXD (Argentina); Manthe, Uwe, E-mail: yangmh@wipm.ac.cn, E-mail: juliana@unq.edu.ar, E-mail: uwe.manthe@uni-bielefeld.de [Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld (Germany); Guo, Hua [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2016-05-07

    The mode specific reactivity of the F + CHD{sub 3} → HF + CD{sub 3} reaction is investigated using an eight-dimensional quantum dynamical model on a recently developed ab initio based full-dimensional potential energy surface. Our results indicate prominent resonance structures at low collision energies and absence of an energy threshold in reaction probabilities. It was also found that excitation of the C–D stretching or CD{sub 3} umbrella mode has a relatively small impact on reactivity. On the other hand, the excitation of the C–H vibration (v{sub 1}) in CHD{sub 3} is shown to significantly increase the reactivity, which, like several recent quasi-classical trajectory studies, is at odds with the available experimental data. Possible sources of the disagreement are discussed.

  9. Study of non-static behavior of tauσ-modes by (p,n) reactions

    International Nuclear Information System (INIS)

    Ichimura, M.; Izumoto, T.; Ko, C.M.; Siemens, P.J.

    1984-01-01

    The nuclear response function of tauσ-modes are investigated in the wide range of the energy-momentum plane (ω,q). The opalescence phenomena associated with the pion condensation is clearly seen at q asymptotically equals 2.2 μ (μ being the pion mass) and rather low ω in the response function of the normal nuclear matter if the Migdal parameter g' >= 0.5. To investigate such behavior of the nuclear response to the tauσ-modes, 90 Zr(p,n) reaction to the continuum states is analyzed by DWBA. The response functions of the finite nucleus are constructed by the local density approximation from those of the nuclear matter. It is found that the finiteness and the distorted wave effects smear the enhancement (the opalescence phenomena) considerably, but it would still be seen if q' >= 0.4. (author)

  10. Mode specificity in the OH + CHD3 reaction: Reduced-dimensional quantum and quasi-classical studies on an ab initio based full-dimensional potential energy surface

    International Nuclear Information System (INIS)

    Song, Hongwei; Yang, Minghui; Lu, Yunpeng; Li, Jun; Guo, Hua

    2016-01-01

    An initial state selected time-dependent wave packet method is applied to study the dynamics of the OH + CHD 3 reaction with a six-dimensional model on a newly developed full-dimensional ab initio potential energy surface (PES). This quantum dynamical (QD) study is complemented by full-dimensional quasi-classical trajectory (QCT) calculations on the same PES. The QD results indicate that both translational energy and the excitation of the CH stretching mode significantly promote the reaction while the excitation of the umbrella mode has a negligible effect on the reactivity. For this early barrier reaction, interestingly, the CH stretching mode is more effective than translational energy in promoting the reaction except at very low collision energies. These QD observations are supported by QCT results. The higher efficacy of the CH stretching model in promoting this early barrier reaction is inconsistent with the prediction of the naively extended Polanyi’s rules, but can be rationalized by the recently proposed sudden vector projection model.

  11. Targeted selected reaction monitoring mass spectrometric immunoassay for insulin-like growth factor 1.

    Directory of Open Access Journals (Sweden)

    Eric E Niederkofler

    Full Text Available Insulin-like growth factor 1 (IGF1 is an important biomarker of human growth disorders that is routinely analyzed in clinical laboratories. Mass spectrometry-based workflows offer a viable alternative to standard IGF1 immunoassays, which utilize various pre-analytical preparation strategies. In this work we developed an assay that incorporates a novel sample preparation method for dissociating IGF1 from its binding proteins. The workflow also includes an immunoaffinity step using antibody-derivatized pipette tips, followed by elution, trypsin digestion, and LC-MS/MS separation and detection of the signature peptides in a selected reaction monitoring (SRM mode. The resulting quantitative mass spectrometric immunoassay (MSIA exhibited good linearity in the range of 1 to 1,500 ng/mL IGF1, intra- and inter-assay precision with CVs of less than 10%, and lowest limits of detection of 1 ng/mL. The linearity and recovery characteristics of the assay were also established, and the new method compared to a commercially available immunoassay using a large cohort of human serum samples. The IGF1 SRM MSIA is well suited for use in clinical laboratories.

  12. The Effect of Temperature on Selectivity in the Oscillatory Mode of the Phenylacetylene Oxidative Carbonylation Reaction.

    Science.gov (United States)

    Parker, Julie; Novakovic, Katarina

    2017-08-05

    Reaction temperature plays a major role in product selectivity in the oscillatory mode of the palladium-catalyzed phenylacetylene oxidative carbonylation reaction. At 40 °C, dimethyl (2Z)-2-phenyl-2-butenedioate is the major product whereas at 0 °C the major product is 5,5-dimethoxy-3-phenyl-2(5H)-furanone. The occurrence of oscillations in pH coincides with an increase in the rate of phenylacetylene consumption and associated product formation. Experiments were performed isothermally in a reaction calorimeter to correlate reactant consumption and product formation with the occurrence of pH oscillations and the heat released by the reaction. An increase in the size of the pH drop in a single oscillation correlates with an increase in energy, indicating that this section of a single oscillation relates to reactant consumption. Based on these observations, a reaction pathway responsible for product formation is provided. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  13. Status report on cross-sections of monitor reactions for radioisotope production

    International Nuclear Information System (INIS)

    Schwerer, O.; Okamoto, K.

    1989-12-01

    The status of data on cross-sections of 19 monitor reactions, especially for cyclotron operation, is summarized. Most of the information was extracted from the data compiled in EXFOR (EXchange FORmat) which is a common format used by the co-operating nuclear data centres in the world. The EXFOR data were supplemented by a number of additional data sets found in the literature. For each reaction a brief status summary, graphical plots of the available experimental and evaluated data, and a table of all experimental data sorted by incident particle energy, are given

  14. Pedagogical Comparison of Five Reactions Performed under Microwave Heating in Multi-Mode versus Mono-Mode Ovens: Diels-Alder Cycloaddition, Wittig Salt Formation, E2 Dehydrohalogenation to Form an Alkyne, Williamson Ether Synthesis, and Fischer Esterification

    Science.gov (United States)

    Baar, Marsha R.; Gammerdinger, William; Leap, Jennifer; Morales, Erin; Shikora, Jonathan; Weber, Michael H.

    2014-01-01

    Five reactions were rate-accelerated relative to the standard reflux workup in both multi-mode and mono-mode microwave ovens, and the results were compared to determine whether the sequential processing of a mono-mode unit could provide for better lab logistics and pedagogy. Conditions were optimized so that yields matched in both types of…

  15. Advancing the sensitivity of selected reaction monitoring-based targeted quantitative proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Tujin; Su, Dian; Liu, Tao; Tang, Keqi; Camp, David G.; Qian, Weijun; Smith, Richard D.

    2012-04-01

    Selected reaction monitoring (SRM)—also known as multiple reaction monitoring (MRM)—has emerged as a promising high-throughput targeted protein quantification technology for candidate biomarker verification and systems biology applications. A major bottleneck for current SRM technology, however, is insufficient sensitivity for e.g., detecting low-abundance biomarkers likely present at the pg/mL to low ng/mL range in human blood plasma or serum, or extremely low-abundance signaling proteins in the cells or tissues. Herein we review recent advances in methods and technologies, including front-end immunoaffinity depletion, fractionation, selective enrichment of target proteins/peptides or their posttranslational modifications (PTMs), as well as advances in MS instrumentation, which have significantly enhanced the overall sensitivity of SRM assays and enabled the detection of low-abundance proteins at low to sub- ng/mL level in human blood plasma or serum. General perspectives on the potential of achieving sufficient sensitivity for detection of pg/mL level proteins in plasma are also discussed.

  16. Mode specificity in the OH + CHD{sub 3} reaction: Reduced-dimensional quantum and quasi-classical studies on an ab initio based full-dimensional potential energy surface

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hongwei, E-mail: hwsong@wipm.ac.cn; Yang, Minghui [Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Lu, Yunpeng [Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Li, Jun [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Guo, Hua [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2016-04-28

    An initial state selected time-dependent wave packet method is applied to study the dynamics of the OH + CHD{sub 3} reaction with a six-dimensional model on a newly developed full-dimensional ab initio potential energy surface (PES). This quantum dynamical (QD) study is complemented by full-dimensional quasi-classical trajectory (QCT) calculations on the same PES. The QD results indicate that both translational energy and the excitation of the CH stretching mode significantly promote the reaction while the excitation of the umbrella mode has a negligible effect on the reactivity. For this early barrier reaction, interestingly, the CH stretching mode is more effective than translational energy in promoting the reaction except at very low collision energies. These QD observations are supported by QCT results. The higher efficacy of the CH stretching model in promoting this early barrier reaction is inconsistent with the prediction of the naively extended Polanyi’s rules, but can be rationalized by the recently proposed sudden vector projection model.

  17. Esterification Reaction Utilizing Sense of Smell and Eyesight for Conversion and Catalyst Recovery Monitoring

    Science.gov (United States)

    Janssens, Nikki; Wee, Lik H.; Martens, Johan A.

    2014-01-01

    The esterification reaction of salicylic acid with ethanol is performed in presence of dissolved 12-tungstophosphoric Brønsted-Lowry acid catalyst, a Keggin-type polyoxometalate (POM). The monitoring of the reaction with smell and the recovery of the catalyst with sight is presented. Formation of the sweet-scented ester is apparent from the smell.…

  18. Comparison of pharmacokinetic behavior of two iridoid glycosides in rat plasma after oral administration of crude Cornus officinals and its jiuzhipin by high performance liquid chromatography triple quadrupole mass spectrometry combined with multiple reactions monitoring mode

    Science.gov (United States)

    Chen, Xiaocheng; Cao, Gang; Jiang, Jianping

    2014-01-01

    Objective: The present study examined the pharmacokinetic profiles of two iridoid glycosides named morroniside and loganin in rat plasma after oral administration of crude and processed Cornus officinals. Materials and Methods: A rapid, selective and specific high-performance liquid chromatography/electrospray ionization tandem mass spectrometry with multiple reactions monitoring mode was developed to simultaneously investigate the pharmacokinetic profiles of morroniside and loganin in rat plasma after oral administration of crude C. officinals and its jiuzhipin. Results: The morroniside and loganin in crude and processed C. officinals could be simultaneously determined within 7.4 min. Linear calibration curves were obtained over the concentration ranges of 45.45-4800 ng/mL for all the analytes. The intra-and inter-day precisions relative standard deviation was lesser than 2.84% and 4.12%, respectively. Conclusion: The pharmacokinetic parameters of two iridoid glucosides were also compared systematically between crude and processed C. officinals. This paper provides the theoretical proofs for further explaining the processing mechanism of Traditional Chinese Medicines. PMID:24914290

  19. Measurement of resonance modes causative of beam position monitor signal noise in vacuum chamber of storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Youngdo; Hwang, Ilmoon; Park, Sungju [Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Kim, Changbum, E-mail: chbkim@postech.ac.k [Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2011-05-11

    It is known that the position reading obtained from the beam position monitor (BPM) mounted at the storage ring can be corrupted by the resonance mode. We carried out a three dimensional finite-difference time-domain (FDTD) simulation of vacuum chambers of the storage ring of the Pohang Light Source (PLS) without simplified modeling to measure the frequencies of resonance modes excited in the vacuum chamber. The frequencies of resonance modes obtained by the eigenmode simulation are well matched with the peak frequencies of RF transmission scattering matrix (S{sub 21}) graph of sector vacuum chamber measured using a network analyzer. It is found that a transverse electric (TE) resonance mode exists in the operation frequency band of BPM and the vertically oriented electric field of TE resonance mode is linked to the BPM position reading noise. Based on this study, we can easily design a vacuum chamber free from the BPM position reading noise caused by the TE resonance mode.

  20. Measurement of resonance modes causative of beam position monitor signal noise in vacuum chamber of storage ring

    International Nuclear Information System (INIS)

    Joo, Youngdo; Hwang, Ilmoon; Park, Sungju; Kim, Changbum

    2011-01-01

    It is known that the position reading obtained from the beam position monitor (BPM) mounted at the storage ring can be corrupted by the resonance mode. We carried out a three dimensional finite-difference time-domain (FDTD) simulation of vacuum chambers of the storage ring of the Pohang Light Source (PLS) without simplified modeling to measure the frequencies of resonance modes excited in the vacuum chamber. The frequencies of resonance modes obtained by the eigenmode simulation are well matched with the peak frequencies of RF transmission scattering matrix (S 21 ) graph of sector vacuum chamber measured using a network analyzer. It is found that a transverse electric (TE) resonance mode exists in the operation frequency band of BPM and the vertically oriented electric field of TE resonance mode is linked to the BPM position reading noise. Based on this study, we can easily design a vacuum chamber free from the BPM position reading noise caused by the TE resonance mode.

  1. Real-time studies of chemical reactions in lab-on-a-chip devices

    NARCIS (Netherlands)

    Brivio, M.

    2005-01-01

    The realization of a lab-on-a-chip system in which chemical reactions are carried out in a continuous flow mode and monitored on-line by a suitable analytical technique is the main topic of this thesis. Two types of a lab-on-a-chip were realized, both using mass spectrometry (MS) as the on-line

  2. Batch and Continuous Flow Preparation of Hantzsch 1,4-Dihydropyridines under Microwave Heating and Simultaneous Real-time Monitoring by Raman Spectroscopy. An Exploratory Study

    Directory of Open Access Journals (Sweden)

    Sylvain Christiaens

    2014-07-01

    Full Text Available Dialkyl 1,4-dihydro-2,6-dimethylpyridine-3,5-dicarboxylates have been prepared in a batch mode under conventional heating as well as under continuous flow conditions in the Miniflow 200SS, Sairem’s microwave-assisted batch and continuous flow equipment. Real-time monitoring of the reactions by Raman spectroscopy enabled to compare both heating modes and to determine (optimized reaction times.

  3. Perspective: Chemical reactions in ionic liquids monitored through the gas (vacuum)/liquid interface.

    Science.gov (United States)

    Maier, F; Niedermaier, I; Steinrück, H-P

    2017-05-07

    This perspective analyzes the potential of X-ray photoelectron spectroscopy under ultrahigh vacuum (UHV) conditions to follow chemical reactions in ionic liquids in situ. Traditionally, only reactions occurring on solid surfaces were investigated by X-ray photoelectron spectroscopy (XPS) in situ. This was due to the high vapor pressures of common liquids or solvents, which are not compatible with the required UHV conditions. It was only recently realized that the situation is very different when studying reactions in Ionic Liquids (ILs), which have an inherently low vapor pressure, and first studies have been performed within the last years. Compared to classical spectroscopy techniques used to monitor chemical reactions, the advantage of XPS is that through the analysis of their core levels all relevant elements can be quantified and their chemical state can be analyzed under well-defined (ultraclean) conditions. In this perspective, we cover six very different reactions which occur in the IL, with the IL, or at an IL/support interface, demonstrating the outstanding potential of in situ XPS to gain insights into liquid phase reactions in the near-surface region.

  4. Simulation of a nuclear measurement system around a multi-task mode real-time monitor

    International Nuclear Information System (INIS)

    De Grandi, G.; Ouiguini, R.

    1983-01-01

    When debugging and testing material and software for the automation of systems, the non-availability of this last one states important logistic problems. A simulator of the system to be automatized, conceived around a multi-task mode real-time monitor, allowing the debugging of the software of automation without the physical presence of the system to be automatized, is proposed in the present report

  5. In situ, dual-mode monitoring of organ-on-a-chip with smartphone-based fluorescence microscope.

    Science.gov (United States)

    Cho, Soohee; Islas-Robles, Argel; Nicolini, Ariana M; Monks, Terrence J; Yoon, Jeong-Yeol

    2016-12-15

    The use of organ-on-a-chip (OOC) platforms enables improved simulation of the human kidney's response to nephrotoxic drugs. The standard method of analyzing nephrotoxicity from existing OOC has majorly consisted of invasively collecting samples (cells, lysates, media, etc.) from an OOC. Such disruptive analyses potentiate contamination, disrupt the replicated in vivo environment, and require expertize to execute. Moreover, traditional analyses, including immunofluorescence microscopy, immunoblot, and microplate immunoassay are essentially not in situ and require substantial time, resources, and costs. In the present work, the incorporation of fluorescence nanoparticle immunocapture/immunoagglutination assay into an OOC enabled dual-mode monitoring of drug-induced nephrotoxicity in situ. A smartphone-based fluorescence microscope was fabricated as a handheld in situ monitoring device attached to an OOC. Both the presence of γ-glutamyl transpeptidase (GGT) on the apical brush-border membrane of 786-O proximal tubule cells within the OOC surface, and the release of GGT to the outflow of the OOC were evaluated with the fluorescence scatter detection of captured and immunoagglutinated anti-GGT conjugated nanoparticles. This dual-mode assay method provides a novel groundbreaking tool to enable the internal and external in situ monitoring of the OOC, which may be integrated into any existing OOCs to facilitate their subsequent analyses. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Comprehensive comparison of macro-strain mode and displacement mode based on different sensing technologies

    Science.gov (United States)

    Hong, Wan; Zhang, Jian; Wu, Gang; Wu, Zhishen

    2015-01-01

    A comprehensive comparison of macro-strain mode and displacement mode obtained from distributed macro-strain sensing and high-density point sensing (such as accelerometers) technologies is presented in this paper. Theoretical derivation reveals that displacement mode shape from accelerometers and modal macro-strain from distributed macro-strain sensors can be converted into each other. However, it is realized that displacement mode shape as global behavior of a structure can still be calculated with high-precision from modal macro-strain considering measurement errors in practical monitoring, whereas modal macro-strain can hardly be accurately achieved from displacement mode shape when signals are corrupted with noise in practical monitoring. Simulation and experiment results show that the calculated displacement mode shapes are very close to the actual ones even if the noise level reaches 5%. Meanwhile, damage index using measured modal macro-strain is still effective when the measurements are corrupted with 5% noise which is reliable for damage detection in practical monitoring. Calculating modal macro-strain from noise-polluted displacement mode shape will cause an unacceptable error if the noise level reaches only 0.5%, which has been verified in the simulation.

  7. A multimodal optical and electrochemical device for monitoring surface reactions: redox active surfaces in porous silicon Rugate filters.

    Science.gov (United States)

    Ciampi, Simone; Guan, Bin; Darwish, Nadim A; Zhu, Ying; Reece, Peter J; Gooding, J Justin

    2012-12-21

    Herein, mesoporous silicon (PSi) is configured as a single sensing device that has dual readouts; as a photonic crystal sensor in a Rugate filter configuration, and as a high surface area porous electrode. The as-prepared PSi is chemically modified to provide it with stability in aqueous media and to allow for the subsequent coupling of chemical species, such as via Cu(I)-catalyzed cycloaddition reactions between 1-alkynes and azides ("click" reactions). The utility of the bimodal capabilities of the PSi sensor for monitoring surface coupling procedures is demonstrated by the covalent coupling of a ferrocene derivative, as well as by demonstrating ligand-exchange reactions (LER) at the PSi surface. Both types of reactions were monitored through optical reflectivity measurements, as well as electrochemically via the oxidation/reduction of the surface tethered redox species.

  8. Spin modes

    International Nuclear Information System (INIS)

    Gaarde, C.

    1985-01-01

    An analysis of spectra of (p,n) reactions showed that they were very selective in exciting spin modes. Charge exchange reactions at intermediate energies give important new understanding of the M1-type of excitations and of the spin structure of continuum p spectra in general. In this paper, the author discusses three charge exchange reactions: (p,n); ( 3 H,t); and (d,2p) at several targets. Low-lying states and the Δ region are discussed separately. Finally, the charge exchange reaction with heavy ion beams is briefly discussed. (G.J.P./Auth.)

  9. Determination of cross sections of nuclear reactions to use Al as monitoring foil in heavy ion irradiation with 20Ne projectile

    International Nuclear Information System (INIS)

    Chowdhury, D.P.; Datta, J.; Guin, R.; Verma, R.

    2009-01-01

    The beam current is generally accurately measured using monitoring foils during the irradiation of thick samples by high energy ion beams. The cross sections of many nuclear reactions induced by light particles are available in literature for use as monitoring foil. However, such cross sections of heavy ion induced reactions are not reported much for their use in applied works. We have determined cross sections of two nuclear reactions, 27 Al ( 20 Ne,2p2n) 43 Sc and 27 Al ( 20 Ne, 2pn) 44m Sc, to use Al as monitoring foil for the irradiation with 20 Ne heavy ion beam. (author)

  10. Unattended mode monitoring of passive neutron coincidence detector systems using a commercial data logger

    International Nuclear Information System (INIS)

    Smith, B.G.R.; Outram, J.D.; Storey, M.

    1991-01-01

    A commercial Data Logger for unattended passive neutron coincidence data acquisition is described. This consists of an inexpensive commercial Data Logging equipment attached to a neutron coincidence electronics and a software package for data review. The Data Logger permits both the flexible configuration of a passive neutron coincidence measurement system for unattended mode monitoring and the storage of the measured Totals and Reals count rates. An additional feature of the Data Logger is a custom software package providing for the complete analysis of the stored data and yielding an assay of each item passing through the measurement cavity. The analysis includes an input for different isotopic compositions, the calculation of the multiplication corrected Reals rates, the inclusion of a calibration functions, and the determination of 240 Pu masses. The software package for data review displays the Totals and Reals count rates logged by the Data Logger as a function of time. In addition the custom software provides input files to the data review package to display the multiplication corrected Reals count rates and the measured 240 Pu masses as a function of time. Information on the Data Logger is presented along with the monitoring mode specifications. The analysis functions implemented are described as is the data review software. Results are presented for a specific application

  11. [Enlightenment of adverse reaction monitoring on safety evaluation of traditional Chinese medicines].

    Science.gov (United States)

    Song, Hai-bo; Du, Xiao-xi; Ren, Jing-tian; Yang, Le; Guo, Xiao-xin; Pang, Yu

    2015-04-01

    The adverse reaction monitoring is important in warning the risks of traditional Chinese medicines at an early stage, finding potential quality problems and ensuring the safe clinical medication. In the study, efforts were made to investigate the risk signal mining techniques in line with the characteristics of traditional Chinese medicines, particularly the complexity in component, processing, compatibility, preparation and clinical medication, find early risk signals of traditional Chinese medicines and establish a traditional Chinese medicine safety evaluation system based on adverse reaction risk signals, in order to improve the target studies on traditional Chinese medicine safety, effective and timely control risks and solve the existing frequent safety issue in traditional Chinese medicines.

  12. A novel detector based on dual-mode fiber polished half block's characteristics for sensitive monitorings of radiation and materials

    International Nuclear Information System (INIS)

    Saeed, Ghadirli

    2005-01-01

    Full text : The overlay index dependence characteristics of the power distribution between two modes of dual-mode fiber polished half blocks is studied. The heat dependence characteristics of a certain overlay index affects the modal power distributions at the input of interferometer sensors used for monitoring the sensitive heat radiation changes. The other fundamental applications such as material recognitions through the index dependence characteristics in the closed chambers is also suggested

  13. Acidic ionic liquids for n-alkane isomerization in a liquid-liquid or slurry-phase reaction mode

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, C.; Hager, V.; Geburtig, D.; Kohr, C.; Wasserscheid, P. [Erlangen-Nuernberg Univ. (Germany). Lehrstuhl fuer Chemische Reaktionstechnik; Haumann, M. [Chemical Reaction Engineering, FAU Busan Campus, Korea (Korea, Republic of)

    2011-07-01

    Highly acidic ionic liquid (IL) catalysts offer the opportunity to convert n-alkanes at very low reaction temperatures. The results of IL catalyzed isomerization and cracking reactions of pure n-octane are presented. Influence of IL composition, [C{sub 4}C{sub 1}Im]Cl / AlCl{sub 3} / H{sub 2}SO{sub 4} and [C{sub 4}C{sub 1}Im]Cl / AlCl{sub 3} / 1-chlorooctane, on catalyst activity and selectivities to branched alkanes was investigated. Acidic chloroaluminate IL catalysts form liquid-liquid biphasic systems with unpolar organic product mixtures. Thus, recycling of the acidic IL is enabled by simple phase separation in the liquid-liquid biphasic reaction mode or the IL can be immobilized on an inorganic support with a large specific surface area. These supported ionic liquid phase (SILP) catalysts offer the advantage to get a macroscopically heterogeneous system while still preserving all benefits of the homogeneous catalyst which can be used for the slurry-phase n-alkane isomerization. The interaction of the solid support and acidic IL influences strongly the catalytic activity. (orig.)

  14. Study of the break reaction of Be11 on Ti48 target; the towing mode: a spectroscopic tool for the study of nuclei

    International Nuclear Information System (INIS)

    Lima, V.

    2004-10-01

    In a towing mode reaction the projectile picks up a nucleon from the target and then breaks up by emitting one nucleon. The velocity of the emitted nucleon is boosted by the projectile velocity, leading to the emission of the nucleon in a narrow cone around the direction of the scattered projectile. This work is dedicated to the towing mode in halo nuclei such as Be 11 . The experiment was performed at Ganil facility by bombarding a Ti 48 target with a 41 MeV per nucleon Be 11 beam, the reaction studied is: Ti 48 (Be 11 , Be 10 + n + γ). The first chapter reviews the various nuclear processes that take place when 2 nuclei collide with a particular attention for the towing mode. The second chapter is dedicated to solving the time dependant Schroedinger equation (TDSE) in order to assess the impact of various parameters such as incident energy, target charge or the linking energy of the nucleon, on the towing mode reaction. The third chapter deals with the experimental equipment and set-up including detectors and the data acquisition system. Computerized simulations have been performed in order to assess the efficiency of the detecting system, they are presented in the fourth chapter. A comparison between experimental data and the results from TDSE solving, concerning the energy spectra of the emitted particles, has enabled the author to deduce the spectroscopic factors for the different contributions of the fundamental state of Be 11 , they are presented in the last chapter. The cross-sections of the towing mode are of the magnitude of several tens of milli-barns in the case of weakly bound nuclei like Be 11 which make it an efficient tool to study intern structure of nuclei. (A.C.)

  15. Performance monitoring and response conflict resolution associated with choice stepping reaction tasks.

    Science.gov (United States)

    Watanabe, Tatsunori; Tsutou, Kotaro; Saito, Kotaro; Ishida, Kazuto; Tanabe, Shigeo; Nojima, Ippei

    2016-11-01

    Choice reaction requires response conflict resolution, and the resolution processes that occur during a choice stepping reaction task undertaken in a standing position, which requires maintenance of balance, may be different to those processes occurring during a choice reaction task performed in a seated position. The study purpose was to investigate the resolution processes during a choice stepping reaction task at the cortical level using electroencephalography and compare the results with a control task involving ankle dorsiflexion responses. Twelve young adults either stepped forward or dorsiflexed the ankle in response to a visual imperative stimulus presented on a computer screen. We used the Simon task and examined the error-related negativity (ERN) that follows an incorrect response and the correct-response negativity (CRN) that follows a correct response. Error was defined as an incorrect initial weight transfer for the stepping task and as an incorrect initial tibialis anterior activation for the control task. Results revealed that ERN and CRN amplitudes were similar in size for the stepping task, whereas the amplitude of ERN was larger than that of CRN for the control task. The ERN amplitude was also larger in the stepping task than the control task. These observations suggest that a choice stepping reaction task involves a strategy emphasizing post-response conflict and general performance monitoring of actual and required responses and also requires greater cognitive load than a choice dorsiflexion reaction. The response conflict resolution processes appear to be different for stepping tasks and reaction tasks performed in a seated position.

  16. A Comparison of Deterministic and Stochastic Modeling Approaches for Biochemical Reaction Systems: On Fixed Points, Means, and Modes.

    Science.gov (United States)

    Hahl, Sayuri K; Kremling, Andreas

    2016-01-01

    In the mathematical modeling of biochemical reactions, a convenient standard approach is to use ordinary differential equations (ODEs) that follow the law of mass action. However, this deterministic ansatz is based on simplifications; in particular, it neglects noise, which is inherent to biological processes. In contrast, the stochasticity of reactions is captured in detail by the discrete chemical master equation (CME). Therefore, the CME is frequently applied to mesoscopic systems, where copy numbers of involved components are small and random fluctuations are thus significant. Here, we compare those two common modeling approaches, aiming at identifying parallels and discrepancies between deterministic variables and possible stochastic counterparts like the mean or modes of the state space probability distribution. To that end, a mathematically flexible reaction scheme of autoregulatory gene expression is translated into the corresponding ODE and CME formulations. We show that in the thermodynamic limit, deterministic stable fixed points usually correspond well to the modes in the stationary probability distribution. However, this connection might be disrupted in small systems. The discrepancies are characterized and systematically traced back to the magnitude of the stoichiometric coefficients and to the presence of nonlinear reactions. These factors are found to synergistically promote large and highly asymmetric fluctuations. As a consequence, bistable but unimodal, and monostable but bimodal systems can emerge. This clearly challenges the role of ODE modeling in the description of cellular signaling and regulation, where some of the involved components usually occur in low copy numbers. Nevertheless, systems whose bimodality originates from deterministic bistability are found to sustain a more robust separation of the two states compared to bimodal, but monostable systems. In regulatory circuits that require precise coordination, ODE modeling is thus still

  17. Chemical methods and techniques to monitor early Maillard reaction in milk products; A review.

    Science.gov (United States)

    Aalaei, Kataneh; Rayner, Marilyn; Sjöholm, Ingegerd

    2018-01-23

    Maillard reaction is an extensively studied, yet unresolved chemical reaction that occurs as a result of application of the heat and during the storage of foods. The formation of advanced glycation end products (AGEs) has been the focus of several investigations recently. These molecules which are formed at the advanced stage of the Maillard reaction, are suspected to be involved in autoimmune diseases in humans. Therefore, understanding to which extent this reaction occurs in foods, is of vital significance. Because of their composition, milk products are ideal media for this reaction, especially when application of heat and prolonged storage are considered. Thus, in this work several chemical approaches to monitor this reaction in an early stage are reviewed. This is mostly done regarding available lysine blockage which takes place in the very beginning of the reaction. The most popular methods and their applications to various products are reviewed. The methods including their modifications are described in detail and their findings are discussed. The present paper provides an insight into the history of the most frequently-used methods and provides an overview on the indicators of the Maillard reaction in the early stage with its focus on milk products and especially milk powders.

  18. Stability study of the higher order mode beam position monitors at the Accelerating cavities at FLASH

    CERN Document Server

    Shi, L; Jones., R M

    2014-01-01

    erating cavities at FLASH linac, DESY, are equipped with electronics for beam position monitoring, which are based on HOM signals from special couplers. These monitors provide the beam position without additional vacuum components and at low cost. Moreover, they can be used to align the beam in the cavities to reduce the HOM effects on the beam. However, the HOMBPM (Higher Order Mode based Beam Position Monitor) shows an instability problem over time. In this paper, we will present the status of studies on this issue. Several methods are utilized to calibrate the HOMBPMs. These methods include DLR (Direct Linear Regression), and SVD (Singular Value Decomposition). We found that SVD generally is more suitable for HOMBPM calibration. We focus on the HOMBPMs at 1.3 GHz cavities. Techniques developed here are applicable to 3.9 ...

  19. Study of the break reaction of Be{sup 11} on Ti{sup 48} target; the towing mode: a spectroscopic tool for the study of nuclei; Etude de la reaction de cassure du {sup 11}Be sur cible de {sup 48}Ti; le towing mode, un outil spectroscopique pour l'etude des noyaux

    Energy Technology Data Exchange (ETDEWEB)

    Lima, V

    2004-10-01

    In a towing mode reaction the projectile picks up a nucleon from the target and then breaks up by emitting one nucleon. The velocity of the emitted nucleon is boosted by the projectile velocity, leading to the emission of the nucleon in a narrow cone around the direction of the scattered projectile. This work is dedicated to the towing mode in halo nuclei such as Be{sup 11}. The experiment was performed at Ganil facility by bombarding a Ti{sup 48} target with a 41 MeV per nucleon Be{sup 11} beam, the reaction studied is: Ti{sup 48}(Be{sup 11}, Be{sup 10} + n + {gamma}). The first chapter reviews the various nuclear processes that take place when 2 nuclei collide with a particular attention for the towing mode. The second chapter is dedicated to solving the time dependant Schroedinger equation (TDSE) in order to assess the impact of various parameters such as incident energy, target charge or the linking energy of the nucleon, on the towing mode reaction. The third chapter deals with the experimental equipment and set-up including detectors and the data acquisition system. Computerized simulations have been performed in order to assess the efficiency of the detecting system, they are presented in the fourth chapter. A comparison between experimental data and the results from TDSE solving, concerning the energy spectra of the emitted particles, has enabled the author to deduce the spectroscopic factors for the different contributions of the fundamental state of Be{sup 11}, they are presented in the last chapter. The cross-sections of the towing mode are of the magnitude of several tens of milli-barns in the case of weakly bound nuclei like Be{sup 11} which make it an efficient tool to study intern structure of nuclei. (A.C.)

  20. Study of the break reaction of Be{sup 11} on Ti{sup 48} target; the towing mode: a spectroscopic tool for the study of nuclei; Etude de la reaction de cassure du {sup 11}Be sur cible de {sup 48}Ti; le towing mode, un outil spectroscopique pour l'etude des noyaux

    Energy Technology Data Exchange (ETDEWEB)

    Lima, V

    2004-10-01

    In a towing mode reaction the projectile picks up a nucleon from the target and then breaks up by emitting one nucleon. The velocity of the emitted nucleon is boosted by the projectile velocity, leading to the emission of the nucleon in a narrow cone around the direction of the scattered projectile. This work is dedicated to the towing mode in halo nuclei such as Be{sup 11}. The experiment was performed at Ganil facility by bombarding a Ti{sup 48} target with a 41 MeV per nucleon Be{sup 11} beam, the reaction studied is: Ti{sup 48}(Be{sup 11}, Be{sup 10} + n + {gamma}). The first chapter reviews the various nuclear processes that take place when 2 nuclei collide with a particular attention for the towing mode. The second chapter is dedicated to solving the time dependant Schroedinger equation (TDSE) in order to assess the impact of various parameters such as incident energy, target charge or the linking energy of the nucleon, on the towing mode reaction. The third chapter deals with the experimental equipment and set-up including detectors and the data acquisition system. Computerized simulations have been performed in order to assess the efficiency of the detecting system, they are presented in the fourth chapter. A comparison between experimental data and the results from TDSE solving, concerning the energy spectra of the emitted particles, has enabled the author to deduce the spectroscopic factors for the different contributions of the fundamental state of Be{sup 11}, they are presented in the last chapter. The cross-sections of the towing mode are of the magnitude of several tens of milli-barns in the case of weakly bound nuclei like Be{sup 11} which make it an efficient tool to study intern structure of nuclei. (A.C.)

  1. Monitoring coping style moderates emotional reactions to genetic testing for hereditary nonpolyposis colorectal cancer: a longitudinal study.

    Science.gov (United States)

    Shiloh, S; Koehly, L; Jenkins, J; Martin, J; Hadley, D

    2008-08-01

    The emotional effects of genetic testing for hereditary nonpolyposis colorectal cancer (HNPCC) provided within a counseling program were assessed among 253 individuals. Assessments were scheduled at baseline before testing, and again after 6 and 12 months post-test. Negative emotional reactions were evaluated using the Revised Impact of Event Scale and the Center for Epidemiological Studies-Depression Scale. Monitoring coping style was assessed at baseline using the Miller Behavioral Style Scale. Mean reductions were indicated in distress and depression levels within the first 6 months after counseling and testing. High monitors were generally more distressed than low monitors, specifically if they had indeterminate or positive results. Genetic counseling and testing for HNPCC do not result in long-term distress for most people. Of the variables investigated, only time and coping style have main effects on emotional reactions, and the impacts of mutation status are moderated by coping style. Psychological interventions, aimed to alleviate adverse emotional effects, were suggested for certain participants, i.e. recipients of positive or indeterminate results who are high monitors.

  2. Monitoring of Adverse Drug Reactions Associated with Antihypertensive Medicines at a University Teaching Hospital in New Delhi

    Directory of Open Access Journals (Sweden)

    Fowad Khurshid

    2012-09-01

    Full Text Available Aim To monitor the adverse drug reactions (ADRs caused by antihypertensive medicines prescribed in a university teaching hospital.Methods:he present work was an open, non-comparative, observational study conducted on hypertensive patients attending the Medicine OPD of Majeedia Hospital, Jamia Hamdard, New Delhi, India by conducting patient interviews and recording the data on ADR monitoring form as recommended by Central Drugs Standard Control Organization (CDSCO, Government of India.Results:A total of 21 adverse drug reactions were observed in 192 hypertensive patients. Incidence of adverse drug reactions was found to be higher in patients more than 40 years in age, and females experienced more ADRs (n = 14, 7.29 % than males, 7 (3.64 %. Combination therapy was associated with more number of adverse drug reactions (66.7 % as against monotherapy (33.3 %. Calcium channel blockers were found to be the most frequently associated drugs with adverse drug reactions (n = 7, followed by diuretics (n = 5, and beta- blockers (n = 4. Among individual drugs, amlodipine was found to be the commonest drug associated with adverse drug reactions (n = 7, followed by torasemide (n = 3. Adverse drug reactions associated with central nervous system were found to be the most frequent (42.8 % followed by musculo-skeletal complaints (23.8 % and gastro-intestinal disorders (14.3 %. Conclusions:The present pharmacovigilance study represents the adverse drug reaction profile of the antihypertensive medicines prescribed in our university teaching hospital. The above findings would be useful for physicians in rational prescribing. Calcium channel blockers were found to be the most frequently associated drugs with adverse drug reactions.

  3. Testing two-nucleon transfer reaction mechanism with elementary modes of excitation in exotic nuclei

    CERN Document Server

    Broglia, R A; Idini, A; Barranco, F; Vigezzi, E

    2015-01-01

    Nuclear Field Theory of structure and reactions is confronted with observations made on neutron halo dripline nuclei, resulting in the prediction of a novel (symbiotic) mode of nuclear excitation, and on the observation of the virtual effect of the halo phenomenon in the apparently non-halo nucleus $^7$Li. This effect is forced to become real by intervening the virtual process with an external (t,p) field which, combined with accurate predictive abilities concerning the absolute differential cross section, reveals an increase of a factor 2 in the cross section due to the presence of halo ground state correlations, and is essential to reproduce the value of the observed $d \\sigma(^7$Li(t,p)$^9$Li)/d$\\Omega$.

  4. A new reactivity mode for the diazo group: diastereoselective 1,3-aminoalkylation reaction of β-amino-α-diazoesters to give triazolines.

    Science.gov (United States)

    Kuznetsov, Alexey; Gulevich, Anton V; Wink, Donald J; Gevorgyan, Vladimir

    2014-08-18

    A novel mode of reactivity for the diazo group, the 1,3-addition of a nucleophile and an electrophile to the diazo group, has been realized in the intramolecular aminoalkylation of β-amino-α-diazoesters to form tetrasubstituted 1,2,3-triazolines. The reaction exhibited a broad scope, good functional group tolerance, and excellent diastereoselectivity. In addition, a new Au-catalyzed intramolecular transannulation reaction of the obtained propargyl triazolines to give pyrroles has been discovered. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Time resolved bovine host reponse to virulence factors mapped in milk by selected reaction monitoring

    DEFF Research Database (Denmark)

    Bislev, Stine Lønnerup; Kusebauch, Ulrike; Codrea, Marius Cosmin

    . In this study, we present a sensitive selected reaction monitoring (SRM) proteomics approach, targeting proteins suggested to play key roles in the bovine host response to mastitis. 17 biomarker candidates related to inflammatory response and mastitis were selected. The 17 candidate proteins were quantified......TIME RESOLVED BOVINE HOST RESPONSE TO VIRULENCE FACTORS, MAPPED IN MILK BY SELECTED REACTION MONITORING S.L. Bislev1, U. Kusebauch2, M.C. Codrea1, R. Moritz2, C.M. Røntved1, E. Bendixen1 1 Department of Animal Science, Faculty of Science and Technology, Aarhus University, Tjele, Denmark; 2...... Institute for Systems Biology, Seattle, Washington, USA Mastitis is beyond doubt the largest health problem in modern milk production. Many different pathogens can cause infections in the mammary gland, and give rise to severe toll on animal welfare, economic gain as well as on excessive use of antibiotics...

  6. A Parallel Reaction Monitoring Mass Spectrometric Method for Analysis of Potential CSF Biomarkers for Alzheimer's Disease

    DEFF Research Database (Denmark)

    Brinkmalm, Gunnar; Sjödin, Simon; Simonsen, Anja Hviid

    2018-01-01

    SCOPE: The aim of this study was to develop and evaluate a parallel reaction monitoring mass spectrometry (PRM-MS) assay consisting of a panel of potential protein biomarkers in cerebrospinal fluid (CSF). EXPERIMENTAL DESIGN: Thirteen proteins were selected based on their association with neurode......SCOPE: The aim of this study was to develop and evaluate a parallel reaction monitoring mass spectrometry (PRM-MS) assay consisting of a panel of potential protein biomarkers in cerebrospinal fluid (CSF). EXPERIMENTAL DESIGN: Thirteen proteins were selected based on their association...... with neurodegenerative diseases and involvement in synaptic function, secretory vesicle function, or innate immune system. CSF samples were digested and two to three peptides per protein were quantified using stable isotope-labeled peptide standards. RESULTS: Coefficients of variation were generally below 15%. Clinical...

  7. Manipulating and Monitoring On-Surface Biological Reactions by Light-Triggered Local pH Alterations.

    Science.gov (United States)

    Peretz-Soroka, Hagit; Pevzner, Alexander; Davidi, Guy; Naddaka, Vladimir; Kwiat, Moria; Huppert, Dan; Patolsky, Fernando

    2015-07-08

    Significant research efforts have been dedicated to the integration of biological species with electronic elements to yield smart bioelectronic devices. The integration of DNA, proteins, and whole living cells and tissues with electronic devices has been developed into numerous intriguing applications. In particular, the quantitative detection of biological species and monitoring of biological processes are both critical to numerous areas of medical and life sciences. Nevertheless, most current approaches merely focus on the "monitoring" of chemical processes taking place on the sensing surfaces, and little efforts have been invested in the conception of sensitive devices that can simultaneously "control" and "monitor" chemical and biological reactions by the application of on-surface reversible stimuli. Here, we demonstrate the light-controlled fine modulation of surface pH by the use of photoactive molecularly modified nanomaterials. Through the use of nanowire-based FET devices, we showed the capability of modulating the on-surface pH, by intensity-controlled light stimulus. This allowed us simultaneously and locally to control and monitor pH-sensitive biological reactions on the nanodevices surfaces, such as the local activation and inhibition of proteolytic enzymatic processes, as well as dissociation of antigen-antibody binding interactions. The demonstrated capability of locally modulating the on-surface effective pH, by a light stimuli, may be further applied in the local control of on-surface DNA hybridization/dehybridization processes, activation or inhibition of living cells processes, local switching of cellular function, local photoactivation of neuronal networks with single cell resolution and so forth.

  8. Conductometric Microbiosensors for Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Sergei V. Dzyadevych

    2008-04-01

    Full Text Available This review presents the principles of conductometric measurements in ionic media and the equivalent electrical circuits of different designs for conductometric measurements. These types of measurements were first applied for monitoring biocatalytic reactions. The use of conductometric microtransducers is then presented and detailed in the case of pollutant detection for environmental monitoring. Conductometric biosensors have advantages over other types of transducers: they can be produced through inexpensive thinfilm standard technology, no reference electrode is needed and differential mode measurements allow cancellation of a lot of interferences. The specifications obtained for the detection of different pesticides, herbicides and heavy metal ions, based on enzyme inhibition, are presented as well as those obtained for the detection of formaldehyde, 4- chlorophenol, nitrate and proteins as markers of dissolved organic carbon based on enzymatic microbiosensors.

  9. Unattended reaction monitoring using an automated microfluidic sampler and on-line liquid chromatography.

    Science.gov (United States)

    Patel, Darshan C; Lyu, Yaqi Fara; Gandarilla, Jorge; Doherty, Steve

    2018-04-03

    In-process sampling and analysis is an important aspect of monitoring kinetic profiles and impurity formation or rejection, both in development and during commercial manufacturing. In pharmaceutical process development, the technology of choice for a substantial portion of this analysis is high-performance liquid chromatography (HPLC). Traditionally, the sample extraction and preparation for reaction characterization have been performed manually. This can be time consuming, laborious, and impractical for long processes. Depending on the complexity of the sample preparation, there can be variability introduced by different analysts, and in some cases, the integrity of the sample can be compromised during handling. While there are commercial instruments available for on-line monitoring with HPLC, they lack capabilities in many key areas. Some do not provide integration of the sampling and analysis, while others afford limited flexibility in sample preparation. The current offerings provide a limited number of unit operations available for sample processing and no option for workflow customizability. This work describes development of a microfluidic automated program (MAP) which fully automates the sample extraction, manipulation, and on-line LC analysis. The flexible system is controlled using an intuitive Microsoft Excel based user interface. The autonomous system is capable of unattended reaction monitoring that allows flexible unit operations and workflow customization to enable complex operations and on-line sample preparation. The automated system is shown to offer advantages over manual approaches in key areas while providing consistent and reproducible in-process data. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Corrosion potential detection method, potential characteristic simulation method for reaction rate and plant monitoring system using the same

    International Nuclear Information System (INIS)

    Sakai, Masanori; Onaka, Noriyuki; Takahashi, Tatsuya; Yamanaka, Hiroshi.

    1995-01-01

    In a calculation controlling device for a plant monitoring system, concentrations of materials concerning reaction materials in a certain state of a reaction process, and an actually measured value for the potential of a material in this state are substituted into a reaction rate equation obtained in accordance with a reaction process model. With such procedures, a relation between the reaction rate (current value) and the potential of the material can be obtained. A potential at which the reaction rates of an anode reaction and a cathode reaction contained in a corrosion reaction are made equal is determined by a numerical value calculation, based on an electrochemical hybrid potential logic by using the reaction rate equation, the reaction rate information relative to the corrosion reaction of the material and the concentration of the material concerning the corrosion reaction is obtained by a numerical value calculation. Then, simulation for the corrosion potential is enabled based on the handling corresponding to the actual reaction. Further, even for a portion which can not be measured actually, the corrosion potential can be recognized by simulation. (N.H.)

  11. A note on the complexity of finding and enumerating elementary modes.

    NARCIS (Netherlands)

    Acuna, V.; Marchetti-Spaccamela, A.; Sagot, M.-F.; Stougie, L.

    2010-01-01

    In the context of the study into elementary modes of metabolic networks, we prove two complexity results. Enumerating elementary modes containing a specific reaction is hard in an enumeration complexity sense. The decision problem if there exists an elementary mode containing two specific reactions

  12. When big brother is watching: goal orientation shapes reactions to electronic monitoring during online training.

    Science.gov (United States)

    Watson, Aaron M; Foster Thompson, Lori; Rudolph, Jane V; Whelan, Thomas J; Behrend, Tara S; Gissel, Amanda L

    2013-07-01

    Web-based training is frequently used by organizations as a convenient and low-cost way to teach employees new knowledge and skills. As web-based training is typically unproctored, employees may be held accountable to the organization by computer software that monitors their behaviors. The current study examines how the introduction of electronic performance monitoring may provoke negative emotional reactions and decrease learning among certain types of e-learners. Through motivated action theory and trait activation theory, we examine the role of performance goal orientation when e-learners are exposed to asynchronous and synchronous monitoring. We show that some e-learners are more susceptible than others to evaluation apprehension when they perceive their activities are being monitored electronically. Specifically, e-learners higher in avoid performance goal orientation exhibited increased evaluation apprehension if they believed asynchronous monitoring was present, and they showed decreased skill attainment as a result. E-learners higher on prove performance goal orientation showed greater evaluation apprehension if they believed real-time monitoring was occurring, resulting in decreased skill attainment. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  13. Rapid determination of alkaloids in Macleaya cordata using ionic liquid extraction followed by multiple reaction monitoring UPLC-MS/MS analysis.

    Science.gov (United States)

    Li, Linqiu; Huang, Mingyuan; Shao, Junli; Lin, Bokun; Shen, Qing

    2017-02-20

    The ultrasonic-assisted extraction (UAE) and ionic liquid based dispersive liquid-liquid microextraction (IL-DLLME) have been successfully applied in extracting of six alkaloids from M. cordata. 1-hexyl-3-methylimidazolium tetrafluoroborate ([C 6 MIM][BF 4 ]) aqueous solution was used as extraction solvent. The target analytes in raw material were deposited into a single drop of 1-hexyl-3-methylimidazolium hexafluorophosphate ([C 6 MIM][PF 6 ]), which was in situ formed by mixing [C 6 MIM][BF 4 ] and potassium hexafluorophosphate ([K][PF 6 ]. Afterwards, the extract was analyzed by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) in multiple-reaction monitoring (MRM) mode. The proposed method was fully validated in terms of linearity (0.9983-0.9992), LOD (0.080ngmL -1 ), LOQ (0.25ngmL -1 ), intra-day precision (MS/MS is powerful and practical for analyzing alkaloids in M. cordata., and it also has great potential for comprehensive quality control of other herbal medicines. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Summary report of the consultants' meeting on improvements in charged-particle monitor reactions and nuclear data for medical isotope production

    International Nuclear Information System (INIS)

    Capote Noy, R.; Nortier, F.M.

    2011-09-01

    A Consultants' Meeting on 'Improvements in Charged-Particle Monitor Reactions and Nuclear Data for Medical Isotope Production' was held at IAEA Headquarters, Vienna, Austria to define the scope, deliverables and appropriate work programme of a possible Coordinated Research Project (CRP) on the subject. The main data areas requiring improvements are monitor reactions for charged-particle beams, production of novel positron emitters, and production of alpha emitters. In all these areas special attention was also given to the need for measurements and re-evaluations of decay data. Detailed deliverables of the planned CRP were proposed. (author)

  15. RAPID MONITORING BY QUANTITATIVE POLYMERASE CHAIN REACTION FOR PATHOGENIC ASPERGILLUS DURING CARPET REMOVAL FROM A HOSPITAL

    Science.gov (United States)

    Monitoring for pathogenic Aspergillus species using a rapid, highly sensitive, quantitative polumerase chain reaction technique during carpet removal in a burn unit provided data which allowed the patients to be safely returned to the re-floored area sooner than if only conventio...

  16. Metal oxide nanoparticle mediated enhanced Raman scattering and its use in direct monitoring of interfacial chemical reactions.

    Science.gov (United States)

    Li, Li; Hutter, Tanya; Finnemore, Alexander S; Huang, Fu Min; Baumberg, Jeremy J; Elliott, Stephen R; Steiner, Ullrich; Mahajan, Sumeet

    2012-08-08

    Metal oxide nanoparticles (MONPs) have widespread usage across many disciplines, but monitoring molecular processes at their surfaces in situ has not been possible. Here we demonstrate that MONPs give highly enhanced (×10(4)) Raman scattering signals from molecules at the interface permitting direct monitoring of their reactions, when placed on top of flat metallic surfaces. Experiments with different metal oxide materials and molecules indicate that the enhancement is generic and operates at the single nanoparticle level. Simulations confirm that the amplification is principally electromagnetic and is a result of optical modulation of the underlying plasmonic metallic surface by MONPs, which act as scattering antennae and couple light into the confined region sandwiched by the underlying surface. Because of additional functionalities of metal oxides as magnetic, photoelectrochemical and catalytic materials, enhanced Raman scattering mediated by MONPs opens up significant opportunities in fundamental science, allowing direct tracking and understanding of application-specific transformations at such interfaces. We show a first example by monitoring the MONP-assisted photocatalytic decomposition reaction of an organic dye by individual nanoparticles.

  17. Cantilever-based sensor with integrated optical read-out using single mode waveguides

    DEFF Research Database (Denmark)

    Nordström, Maria; Zauner, Dan; Calleja, Montserrat

    2007-01-01

    This work presents the design, fabrication and mechanical characterisation of an integrated optical read-out scheme for cantilever-based biosensors. A cantilever can be used as a biosensor by monitoring its bending caused by the surface stress generated due to chemical reactions occurring on its...... surface. Here, we present a novel integrated optical read-out scheme based on single-mode waveguides that enables the fabrication of a compact system. The complete system is fabricated in the polymer SU-8. This manuscript shows the principle of operation and the design well as the fabrication...

  18. Calculation of neutron monitor reaction cross sections of {sup 90}Zr in energy region up to 100 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Qingbiao, Shen; Baosheng, Yu; Dunjiu, Cai [Chinese Nuclear Data Center, Beijing, BJ (China)

    1996-06-01

    Many nuclear data for n + {sup 90}Zr reaction were calculated by using optical model evaporation model and exciton model. The program SPEC, including the first to the sixth particle emission processes, was used in our calculations. The calculated results show that the activation products {sup 89,88}Zr and {sup 88,87}Y are important neutron monitor reaction products for n + {sup 90}Zr reaction in energy range up to 100 MeV. (4 figs.).

  19. Monitoring, Modeling, and Diagnosis of Alkali-Silica Reaction in Small Concrete Samples

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cai, Guowei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gribok, Andrei V. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mahadevan, Sankaran [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This report describes alkali-silica reaction (ASR) degradation mechanisms and factors influencing the ASR. A fully coupled thermo-hydro-mechanical-chemical model developed by Saouma and Perotti by taking into consideration the effects of stress on the reaction kinetics and anisotropic volumetric expansion is presented in this report. This model is implemented in the GRIZZLY code based on the Multiphysics Object Oriented Simulation Environment. The implemented model in the GRIZZLY code is randomly used to initiate ASR in a 2D and 3D lattice to study the percolation aspects of concrete. The percolation aspects help determine the transport properties of the material and therefore the durability and service life of concrete. This report summarizes the effort to develop small-size concrete samples with embedded glass to mimic ASR. The concrete samples were treated in water and sodium hydroxide solution at elevated temperature to study how ingress of sodium ions and hydroxide ions at elevated temperature impacts concrete samples embedded with glass. Thermal camera was used to monitor the changes in the concrete sample and results are summarized.

  20. Near-roadway monitoring of vehicle emissions as a function of mode of operation for light-duty vehicles.

    Science.gov (United States)

    Wen, Dongqi; Zhai, Wenjuan; Xiang, Sheng; Hu, Zhice; Wei, Tongchuan; Noll, Kenneth E

    2017-11-01

    Determination of the effect of vehicle emissions on air quality near roadways is important because vehicles are a major source of air pollution. A near-roadway monitoring program was undertaken in Chicago between August 4 and October 30, 2014, to measure ultrafine particles, carbon dioxide, carbon monoxide, traffic volume and speed, and wind direction and speed. The objective of this study was to develop a method to relate short-term changes in traffic mode of operation to air quality near roadways using data averaged over 5-min intervals to provide a better understanding of the processes controlling air pollution concentrations near roadways. Three different types of data analysis are provided to demonstrate the type of results that can be obtained from a near-roadway sampling program based on 5-min measurements: (1) development of vehicle emission factors (EFs) for ultrafine particles as a function of vehicle mode of operation, (2) comparison of measured and modeled CO 2 concentrations, and (3) application of dispersion models to determine concentrations near roadways. EFs for ultrafine particles are developed that are a function of traffic volume and mode of operation (free flow and congestion) for light-duty vehicles (LDVs) under real-world conditions. Two air quality models-CALINE4 (California Line Source Dispersion Model, version 4) and AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model)-are used to predict the ultrafine particulate concentrations near roadways for comparison with measured concentrations. When using CALINE4 to predict air quality levels in the mixing cell, changes in surface roughness and stability class have no effect on the predicted concentrations. However, when using AERMOD to predict air quality in the mixing cell, changes in surface roughness have a significant impact on the predicted concentrations. The paper provides emission factors (EFs) that are a function of traffic volume and mode of

  1. Identification of Natural Oscillation Modes for Purposes of Seismic Assessment and Monitoring of HPP Dams

    Energy Technology Data Exchange (ETDEWEB)

    Kuz’menko, A. P., E-mail: apkuzm@gmail.com; Saburov, S. V., E-mail: saburov58@yandex.ru [Russian Academy of Sciences, Computer Equipment Design Technology Institute, Siberian Branch (Russian Federation)

    2016-07-15

    The paper puts forward a method for processing data from detailed seismic assessments of HPP dams (dynamic tests). A detailed assessment (hundreds of observation points in dam galleries) is performed with consideration of operating dam equipment and the microseismic noise. It is shown that dynamic oscillation characteristics (natural oscillation frequencies and modes in the main dam axes, the velocities of propagation of elastic waves with given polarization, and so on.) can be determined with sufficient accuracy by using complex transfer functions and pulse characteristics. Monitoring data is processed using data from a detailed assessment, taking account of identified natural oscillation modes and determined ranges of natural frequencies. The spectra of characteristic frequencies thus obtained are used to choose substitution models and estimate the elastic characteristics of the “dam – rock bed” construction system, viz., the modulus of elasticity (the Young modulus), the Poisson ratio, the dam section stiffness with respect to shear, tension and compression and the elastic characteristics of the rock foundation.

  2. Micro flow reactor chips with integrated luminescent chemosensors for spatially resolved on-line chemical reaction monitoring.

    Science.gov (United States)

    Gitlin, Leonid; Hoera, Christian; Meier, Robert J; Nagl, Stefan; Belder, Detlev

    2013-10-21

    Real-time chemical reaction monitoring in microfluidic environments is demonstrated using luminescent chemical sensors integrated in PDMS/glass-based microscale reactors. A fabrication procedure is presented that allows for straightforward integration of thin polymer layers with optical sensing functionality in microchannels of glass-PDMS chips of only 150 μm width and of 10 to 35 μm height. Sensor layers consisting of polystyrene and an oxygen-sensitive platinum porphyrin probe with film thicknesses of about 0.5 to 4 μm were generated by combining spin coating and abrasion techniques. Optimal coating procedures were developed and evaluated. The chip-integrated sensor layers were calibrated and investigated with respect to stability, reproducibility and response times. These microchips allowed observation of dissolved oxygen concentration in the range of 0 to over 40 mg L(-1) with a detection limit of 368 μg L(-1). The sensor layers were then used for observation of a model reaction, the oxidation of sulphite to sulphate in a microfluidic chemical reactor and could observe sulphite concentrations of less than 200 μM. Real-time on-line monitoring of this chemical reaction was realized at a fluorescence microscope setup with 405 nm LED excitation and CCD camera detection.

  3. To track or not to track: user reactions to concepts in longitudinal health monitoring.

    Science.gov (United States)

    Beaudin, Jennifer S; Intille, Stephen S; Morris, Margaret E

    2006-01-01

    Advances in ubiquitous computing, smart homes, and sensor technologies enable novel, longitudinal health monitoring applications in the home. Many home monitoring technologies have been proposed to detect health crises, support aging-in-place, and improve medical care. Health professionals and potential end users in the lay public, however, sometimes question whether home health monitoring is justified given the cost and potential invasion of privacy. The aim of the study was to elicit specific feedback from health professionals and laypeople about how they might use longitudinal health monitoring data for proactive health and well-being. Interviews were conducted with 8 health professionals and 26 laypeople. Participants were asked to evaluate mock data visualization displays that could be generated by novel home monitoring systems. The mock displays were used to elicit reactions to longitudinal monitoring in the home setting as well as what behaviors, events, and physiological indicators people were interested in tracking. Based on the qualitative data provided by the interviews, lists of benefits of and concerns about health tracking from the perspectives of the practitioners and laypeople were compiled. Variables of particular interest to the interviewees, as well as their specific ideas for applications of collected data, were documented. Based upon these interviews, we recommend that ubiquitous "monitoring" systems may be more readily adopted if they are developed as tools for personalized, longitudinal self-investigation that help end users learn about the conditions and variables that impact their social, cognitive, and physical health.

  4. Monitoring and guidance of HIFU beams with dual-mode ultrasound arrays.

    Science.gov (United States)

    Ballard, John R; Casper, Andrew J; Ebbini, Emad S

    2009-01-01

    We present experimental results illustrating the unique advantages of dual-mode array (DMUA) systems in monitoring and guidance of high intensity focused ultrasound (HIFU) lesion formation. DMUAs offer a unique paradigm in image-guided surgery; one in which images obtained using the same therapeutic transducer provide feedback for: 1) refocusing the array in the presence of strongly scattering objects, e.g. the ribs, 2) temperature change at the intended location of the HIFU focus, and 3) changes in the echogenicity of the tissue in response to therapeutic HIFU. These forms of feedback have been demonstrated in vitro in preparation for the design and implementation of a real-time system for imaging and therapy with DMUAs. The results clearly demonstrate that DMUA image feedback is spatially accurate and provide sufficient spatial and contrast resolution for identification of high contrast objects like the ribs and significant blood vessels in the path of the HIFU beam.

  5. Failure mode analysis of preliminary design of ITER divertor impurity monitor

    International Nuclear Information System (INIS)

    Kitazawa, Sin-iti; Ogawa, Hiroaki

    2016-01-01

    Highlights: • Divertor impurity influx monitor for ITER (DIM) is procured by JADA. • DIM is designed to observe light from nuclear fusion plasma directly. • DIM is under preliminary design phase. • Failure mode of DIM was prepared for RAMI analysis. • RAMI analysis on DIM was performed to reduce technical risks. - Abstract: The objective of the divertor impurity influx monitor (DIM) for ITER is to measure the parameters of impurities and hydrogen isotopes (tritium, deuterium, and hydrogen) in divertor plasma using visible and UV spectroscopic techniques in the 200–1000 nm wavelength range. In ITER, special provisions are required to ensure accuracy and full functionality of the diagnostic components under harsh conditions (high temperature, high magnetic field, high vacuum condition, and high radiation field). Japan Domestic Agency is preparing the preliminary design of the ITER DIM system, which will be installed in the upper, equatorial and lower ports. The optical and mechanical designs of the DIM are conducted to fit ITER’s requirements. The optical and mechanical designs meet the requirements of spatial resolution. Some auxiliary systems were examined via prototyping. The preliminary design of the ITER DIM system was evaluated by RAMI analysis. The availability of the designed system is adequately high to satisfy the project requirements. However, some equipment does not have certain designs, and this may cause potential technical risks. The preliminary design should be modified to reduce technical risks and to prepare the final design.

  6. Equipment abnormality monitoring method and device therefor

    International Nuclear Information System (INIS)

    Yamada, Izumi; Asakura, Yamato; Uemura, Hiroshi; Uchida, Shunsuke; Oyamada, Osamu; Oyobe, Koji.

    1994-01-01

    In the present invention, it is judged whether the operation state of equipments used in a plant are normal or not by using learning performances. That is, a plurality of monitoring parameters are measured for an equipment. Previously determined monitoring parameters are extracted. A leaning mode or a monitoring mode is selected. In the leaning mode, based on the values of previously determined monitoring parameters, values of other monitoring parameters during normal states are learned. In the monitoring mode, based on the values of the previously determined monitoring parameters, typical values of other leaned monitoring parameters are outputted. The typical values of other normal monitoring parameters after learning and the values of other parameters at the present time are compared. If the values of the other parameters at the present time are out of normal range, it is judged as abnormal, and the result is alarmed and displayed. (I.S.)

  7. Branched alkanes from ancient and modern sediments: isomer discrimination by GC/MS with multiple reaction monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Summons, R.E.

    1987-01-01

    Linked scanning of a tandem sector mass spectrometer has been used to identify abundant, first field free region (FFR1) unimolecular fragmentations in branched and isoprenoid hydrocarbons. The most intense, structure-specific reactions were selected to establish multiple reaction monitoring (MRM) parameters for GC/MS analysis. This methodology has been used to study the identify of co-eluting and closely eluting hydrocarbon biomarkers from modern and ancient sediments and from extant microorganisms. Some sediments of Cambrian and Proterozoic age have been found to contain suites of monomethylalkanes with all possible isomers present and with little apparent preference for the site of branching.

  8. Quantitative and Selective Analysis of Feline Growth Related Proteins Using Parallel Reaction Monitoring High Resolution Mass Spectrometry.

    Directory of Open Access Journals (Sweden)

    Mårten Sundberg

    Full Text Available Today immunoassays are widely used in veterinary medicine, but lack of species specific assays often necessitates the use of assays developed for human applications. Mass spectrometry (MS is an attractive alternative due to high specificity and versatility, allowing for species-independent analysis. Targeted MS-based quantification methods are valuable complements to large scale shotgun analysis. A method referred to as parallel reaction monitoring (PRM, implemented on Orbitrap MS, has lately been presented as an excellent alternative to more traditional selected reaction monitoring/multiple reaction monitoring (SRM/MRM methods. The insulin-like growth factor (IGF-system is not well described in the cat but there are indications of important differences between cats and humans. In feline medicine IGF-I is mainly analyzed for diagnosis of growth hormone disorders but also for research, while the other proteins in the IGF-system are not routinely analyzed within clinical practice. Here, a PRM method for quantification of IGF-I, IGF-II, IGF binding protein (BP -3 and IGFBP-5 in feline serum is presented. Selective quantification was supported by the use of a newly launched internal standard named QPrEST™. Homology searches demonstrated the possibility to use this standard of human origin for quantification of the targeted feline proteins. Excellent quantitative sensitivity at the attomol/μL (pM level and selectivity were obtained. As the presented approach is very generic we show that high resolution mass spectrometry in combination with PRM and QPrEST™ internal standards is a versatile tool for protein quantitation across multispecies.

  9. Low-emittance tuning of storage rings using normal mode beam position monitor calibration

    Science.gov (United States)

    Wolski, A.; Rubin, D.; Sagan, D.; Shanks, J.

    2011-07-01

    We describe a new technique for low-emittance tuning of electron and positron storage rings. This technique is based on calibration of the beam position monitors (BPMs) using excitation of the normal modes of the beam motion, and has benefits over conventional methods. It is relatively fast and straightforward to apply, it can be as easily applied to a large ring as to a small ring, and the tuning for low emittance becomes completely insensitive to BPM gain and alignment errors that can be difficult to determine accurately. We discuss the theory behind the technique, present some simulation results illustrating that it is highly effective and robust for low-emittance tuning, and describe the results of some initial experimental tests on the CesrTA storage ring.

  10. Real-time monitoring of viscosity changes triggered by chemical reactions using a high-speed imaging method

    Directory of Open Access Journals (Sweden)

    Wooseok Jung

    2015-09-01

    Full Text Available We present a method to monitor in real time peptide self-assembly or polymerization events. The temperature controlled modification of a previously reported splash test setup using high speed imaging enables to observe and measure rheological changes in liquid samples and can, in turn, monitor a peptide self-assembly or polymerization reaction accompanied with specific changes in solution viscosity. A series of 2 mm glass beads were dropped into an Fmoc-L3-OMe (methylated Fluorenylmethyloxycarbonyl-trileucine solution mixed with Alcalase 2.4 L (EC 3.4.21.62 or first dipped in Tetramethylethylenediamine (TEMED, a catalyst for acrylamide polymerization, then dropped into acrylamide. The resulting splashes were observed using a high speed camera. The results demonstrate that the viscosity changes of the peptide sample during the peptide self-assembly or acrylamide polymerization affect the specific shape and evolution of the splashing event. Typically, the increase in viscosity while the reaction occurs decreased the size of the splash and the amount of time for the splash to reach maximum extension from the moment for the beads to impact the sample. The ability to observe rheological changes of sample state presents the opportunity to monitor the real time dynamics of peptide self-assembly or cross-polymerization. Keywords: High-speed imaging, Self-assembly, Viscosity sensor

  11. Real-Time Transportation Mode Identification Using Artificial Neural Networks Enhanced with Mode Availability Layers: A Case Study in Dubai

    Directory of Open Access Journals (Sweden)

    Young-Ji Byon

    2017-09-01

    Full Text Available Traditionally, departments of transportation (DOTs have dispatched probe vehicles with dedicated vehicles and drivers for monitoring traffic conditions. Emerging assisted GPS (AGPS and accelerometer-equipped smartphones offer new sources of raw data that arise from voluntarily-traveling smartphone users provided that their modes of transportation can correctly be identified. By introducing additional raster map layers that indicate the availability of each mode, it is possible to enhance the accuracy of mode detection results. Even in its simplest form, an artificial neural network (ANN excels at pattern recognition with a relatively short processing timeframe once it is properly trained, which is suitable for real-time mode identification purposes. Dubai is one of the major cities in the Middle East and offers unique environments, such as a high density of extremely high-rise buildings that may introduce multi-path errors with GPS signals. This paper develops real-time mode identification ANNs enhanced with proposed mode availability geographic information system (GIS layers, firstly for a universal mode detection and, secondly for an auto mode detection for the particular intelligent transportation system (ITS application of traffic monitoring, and compares the results with existing approaches. It is found that ANN-based real-time mode identification, enhanced by mode availability GIS layers, significantly outperforms the existing methods.

  12. Low-emittance tuning of storage rings using normal mode beam position monitor calibration

    Directory of Open Access Journals (Sweden)

    A. Wolski

    2011-07-01

    Full Text Available We describe a new technique for low-emittance tuning of electron and positron storage rings. This technique is based on calibration of the beam position monitors (BPMs using excitation of the normal modes of the beam motion, and has benefits over conventional methods. It is relatively fast and straightforward to apply, it can be as easily applied to a large ring as to a small ring, and the tuning for low emittance becomes completely insensitive to BPM gain and alignment errors that can be difficult to determine accurately. We discuss the theory behind the technique, present some simulation results illustrating that it is highly effective and robust for low-emittance tuning, and describe the results of some initial experimental tests on the CesrTA storage ring.

  13. Thin layer chromatography coupled with surface-enhanced Raman scattering as a facile method for on-site quantitative monitoring of chemical reactions.

    Science.gov (United States)

    Zhang, Zong-Mian; Liu, Jing-Fu; Liu, Rui; Sun, Jie-Fang; Wei, Guo-Hua

    2014-08-05

    By coupling surface-enhanced Raman spectroscopy (SERS) with thin layer chromatography (TLC), a facile and powerful method was developed for on-site monitoring the process of chemical reactions. Samples were preseparated on a TLC plate following a common TLC procedure, and then determined by SERS after fabricating a large-area, uniform SERS substrate on the TLC plate by spraying gold nanoparticles (AuNPs). Reproducible and strong SERS signals were obtained with substrates prepared by spraying 42-nm AuNPs at a density of 5.54 × 10(10) N/cm(2) on the TLC plate. The capacity of this TLC-SERS method was evaluated by monitoring a typical Suzuki coupling reaction of phenylboronic acid and 2-bromopyridine as a model. Results showed that this proposed method is able to identify reaction product that is invisible to the naked eye, and distinguish the reactant 2-bromopyridine and product 2-phenylpyridine, which showed almost the same retention factors (R(f)). Under the optimized conditions, the peak area of the characteristic Raman band (755 cm(-1)) of the product 2-phenylpyridine showed a good linear correlation with concentration in the range of 2-200 mg/L (R(2) = 0.9741), the estimated detection limit (1 mg/L 2-phenylpyridine) is much lower than the concentration of the chemicals in the common organic synthesis reaction system, and the product yield determined by the proposed TLC-SERS method agreed very well with that by UPLC-MS/MS. In addition, a new byproduct in the reaction system was found and identified through continuous Raman detection from the point of sample to the solvent front. This facile TLC-SERS method is quick, easy to handle, low-cost, sensitive, and can be exploited in on-site monitoring the processes of chemical reactions, as well as environmental and biological processes.

  14. In situ loading of well-dispersed silver nanoparticles on nanocrystalline magnesium oxide for real-time monitoring of catalytic reactions by surface enhanced Raman spectroscopy.

    Science.gov (United States)

    Zhang, Kaige; Li, Gongke; Hu, Yuling

    2015-10-28

    The surface-enhanced Raman spectroscopy (SERS) technique is of great importance for insight into the transient reaction intermediates and mechanistic pathways involved in heterogeneously catalyzed chemical reactions under actual reaction conditions, especially in water. Herein, we demonstrate a facile method for in situ synthesis of nanocrystalline magnesium oxide-Ag(0) (nano MgO-Ag(0)) hybrid nanomaterials with dispersed Ag nanoparticles (Ag NPs) on the surface of nanocrystalline magnesium oxide (nano MgO) via Sn(2+) linkage and reduction. As a benefit from the synergy effect of nano MgO and Ag NPs, the nano MgO-Ag(0) exhibited both excellent SERS and catalytic activities for the reduction of 4-nitrothiophenol in the presence of NaBH4. The nano MgO-Ag(0) was used for real-time monitoring of the catalytic reaction process of 4-nitrothiophenol to 4-aminothiophenol in an aqueous medium by observing the SERS signals of the reactant, intermediate and final products. The intrinsic reaction kinetics and reaction mechanism of this reaction were also investigated. This SERS-based synergy technique provides a novel approach for quantitative in situ monitoring of catalytic chemical reaction processes.

  15. Precursor Ion Scan Mode-Based Strategy for Fast Screening of Polyether Ionophores by Copper-Induced Gas-Phase Radical Fragmentation Reactions.

    Science.gov (United States)

    Crevelin, Eduardo J; Possato, Bruna; Lopes, João L C; Lopes, Norberto P; Crotti, Antônio E M

    2017-04-04

    The potential of copper(II) to induce gas-phase fragmentation reactions in macrotetrolides, a class of polyether ionophores produced by Streptomyces species, was investigated by accurate-mass electrospray tandem mass spectrometry (ESI-MS/MS). Copper(II)/copper(I) transition directly induced production of diagnostic acylium ions with m/z 199, 185, 181, and 167 from α-cleavages of [macrotetrolides + Cu] 2+ . A UPLC-ESI-MS/MS methodology based on the precursor ion scan of these acylium ions was developed and successfully used to identify isodinactin (1), trinactin (2), and tetranactin (3) in a crude extract of Streptomyces sp. AMC 23 in the precursor ion scan mode. In addition, copper(II) was also used to induce radical fragmentation reactions in the carboxylic acid polyether ionophore nigericin. The resulting product ions with m/z 755 and 585 helped to identify nigericin in a crude extract of Streptomyces sp. Eucal-26 by means of precursor ion scan experiments, demonstrating that copper-induced fragmentation reactions can potentially identify different classes of polyether ionophores rapidly and selectively.

  16. Reaction of Br2 with adsorbed CO on Pt, studied by the surface interrogation mode of scanning electrochemical microscopy.

    Science.gov (United States)

    Wang, Qian; Rodríguez-López, Joaquín; Bard, Allen J

    2009-12-02

    Scanning electrochemical microscopy surface interrogation (SI-SECM) in the cyclic voltammetry mode was successfully used to detect and quantify adsorbed CO on a Pt electrode by reaction with electrogenerated Br(2). The two-electrode setup used in this new technique allowed the production of Br(2) on an interrogator tip, which reported a transient positive feedback above a Pt substrate at open circuit as an indication of the reactivity of this halogen with CO((ads)). Br(-) and CO(2) are shown to be the main products of the reaction (in the absence of O(2)), which may involve the formation of bromophosgene as a hydrolyzable intermediate. Under saturation conditions, CO((ads)) was reproducibly quantified at the polycrystalline Pt surface with theta(CO) approximately = 0.5. The reaction is shown to be blocked by the action of pre-adsorbed cyanide, which demonstrates the surface character of the process. The formation of CO(2) as an end product was further tested in a bulk experiment: addition of Pt black to a mixture of Br(2) in 0.5 M H(2)SO(4) through which CO was bubbled gave a precipitate of BaCO(3) in a saturated solution of Ba(OH)(2). The use of SI-SECM allowed access to a reaction that would otherwise be difficult to prove through conventional electrochemistry on a single electrode.

  17. Analysis of Dual- and Full-Circular Polarimetric SAR Modes for Rice Phenology Monitoring: An Experimental Investigation through Ground-Based Measurements

    Directory of Open Access Journals (Sweden)

    Yuta Izumi

    2017-04-01

    Full Text Available Circularly polarized synthetic aperture radar (CP-SAR is known to be insensitive to polarization mismatch losses caused by the Faraday rotation effect and antenna misalignment. Additionally, the dual-circular polarimetric (DCP mode has proven to have more polarimetric information than that of the corresponding mode of linear polarization, i.e., the dual-linear polarimetric (DLP mode. Owing to these benefits, this paper investigates the feasibility of CP-SAR for rice monitoring. A ground-based CP-radar system was exploited, and C-band anechoic chamber data of a self-cultivated Japanese rice paddy were acquired from germination to ripening stages. Temporal variations of polarimetric observables derived from full-circular polarimetric (FCP and DCP as well as synthetically generated DLP data are analyzed and assessed with regard to their effectiveness in phenology retrieval. Among different observations, the H / α ¯ plane and triangle plots obtained by three scattering components (surface, double-bounce, and volume scattering for both the FCP and DCP modes are confirmed to have reasonable capability in discriminating the relevant intervals of rice growth.

  18. [The social portrait of substitute families and modes of development of medical pedagogical monitoring].

    Science.gov (United States)

    Aver'ianova, N I; Khanova, N A

    2014-01-01

    The study demonstrated that in Russia the major cause of orphanage is a social life-style of biological parents of orphan children. The substitute families are more often large with number of children from 3 to 8 and quarter of them are incomplete. The mean age of substitute parent consists 47.8 ± 1.4 years. The leading motivation to take orphan child/or education in family is the availability of kindred relationship regarding child or "deserted nest syndrome". At the initial phase of establishing of substitute family the most of substitute parents/tutors face with problems of health status and behavioral deviations of foster children. The substitute parents are unsatisfied with quality of medical monitoring of foster children. They also suffer fromdeficiency of information concerning characteristics of development, health conditions and modes of rehabilitation of children. In the judgment of substitute parents/tutors placing child into family conditions effects positively on one's development and health, behavior and emotional background. In substitute families, conditions organized for children can be named as approximated to conditions of residing in biological (home) families. The system of medical psychological and pedagogical monitoring of children of this category is needed in further development.

  19. Detection of coherent beam-beam modes with digitized beam position monitor signals

    CERN Document Server

    Stancari, G.; White, S.M.

    2014-01-01

    A system for bunch-by-bunch detection of transverse proton and antiproton coherent oscillations in the Fermilab Tevatron collider is described. It is based on the signal from a single beam-position monitor located in a region of the ring with large amplitude functions. The signal is digitized over a large number of turns and Fourier-analyzed offline with a dedicated algorithm. To enhance the signal, band-limited noise is applied to the beam for about 1 s. This excitation does not adversely affect the circulating beams even at high luminosities. The device has a response time of a few seconds, a frequency resolution of $1.6\\times 10^{-5}$ in fractional tune, and it is sensitive to oscillation amplitudes of 60 nm. It complements Schottky detectors as a diagnostic tool for tunes, tune spreads, and beam-beam effects. Measurements of coherent mode spectra are presented and compared with models of beam-beam oscillations.

  20. Ab initio calculation of transition state normal mode properties and rate constants for the H(T)+CH4(CD4) abstraction and exchange reactions

    International Nuclear Information System (INIS)

    Schatz, G.C.; Walch, S.P.; Wagner, A.F.

    1980-01-01

    We present ab initio (GVB--POL--CI) calculations for enough of the region about the abstraction and exchange saddle points for H(T)+CH 4 (CD 4 ) to perform a full normal mode analysis of the transition states. The resulting normal mode frequencies are compared to four other published surfaces: an ab initio UHF--SCF calculation by Carsky and Zahradnik, a semiempirical surface by Raff, and two semiempirical surfaces by Kurylo, Hollinden, and Timmons. Significant quantitative and qualitative differences exist between the POL--CI results and those of the other surfaces. Transition state theory rate constants and vibrationally adiabatic reaction threshold energies were computed for all surfaces and compared to available experimental values. For abstraction, the POL--CI rates are in good agreement with experimental rates and in better agreement than are the rates of any of the other surfaces. For exchange, uncertainties in the experimental values and in the importance of vibrationally nonadiabatic effects cloud the comparison of theory to experiment. Tentative conclusions are that the POL--CI barrier is too low by several kcal. Unless vibrationaly nonadiabatic effects are severe, the POL--CI surface is still in better agreement with experiment than are the other surfaces. The rates for a simple 3-atom transition state theory model (where CH 3 is treated as an atom) are compared to the rates for the full 6-atom model. The kinetic energy coupling of reaction coordinate modes to methyl group modes is identified as being of primary importance in determining the accuracy of the 3-atom model for this system. Substantial coupling in abstraction, but not exchange, causes the model to fail for abstraction but succeed for exchange

  1. The role of the Australian Adverse Drug Reactions Advisory Committee (ADRAC) in monitoring drug safety

    International Nuclear Information System (INIS)

    Boyd, Ian W.

    2002-01-01

    The Australian adverse drug reaction reporting system is acknowledged as one of the best in the world. Despite its small population of less than 20 million people, Australia's current ADR reporting rate of over 12000 reports per year places it in the top few nations in terms of reports per capita. The ADRAC program has been in operation for over 30 years. Australia was a founding member of the WHO International Drug Monitoring Programme which commenced in 1968 and currently there are about 153000 reports in the ADRAC database. Reports from health professionals have uncovered a number of significant safety problems over the years. Of particular importance are flucloxacillin-induced hepatitis, amoxycillin/clavulanate-induced hepatitis, and the association of cystitis with tiaprofenic acid. The number and quality of the reports has allowed an understanding of the characteristics of the reactions and, using ADRAC reporters as a major source of cases, case-control studies have been completed which have identified risk factors. ADRAC's review of Australian reports has highlighted many important associations that have been disseminated through the Australian Adverse Drug Reactions Bulletin

  2. Adverse drug reaction monitoring of newer oral anti diabetic drugs – a pharmacovigilance perspective

    Directory of Open Access Journals (Sweden)

    Ankita Bhattacharjee

    2016-04-01

    Full Text Available Objective: To monitor and evaluate adverse drug reactions (ADRs of newer oral anti-diabetic drugs in type II diabetics by spontaneous/solicited ADR monitoring.Material and methods: Two hundred and thirty two diabetic patients on newer oral antidiabetic drugs were evaluated prospectively in a cross-sectional study over a period of eighteen months. All patients were followed up for ADRs which were evaluated for incidence, frequency, severity and causality. ADR severity was graded according to University of Virginia Health System Adverse Drug Reaction Reporting program criteria and causality assessment was done using WHO-UMC scale.Results: 190 out of 232 patients (42 patients lost to follow up were evaluated. ADRs were observed in 34 cases (17.9%. Most common ADRs were gastrointestinal (44.2% followed by musculoskeletal (17.6%, metabolic (14.7%, infections (5.9% and others (17.6%. The maximal frequency of ADRs was seen with sitagliptin (6.4% followed by vildagliptin(3.8%, saxagliptin(2.7%, saroglitazar(2.1%, linagliptin(1.6%, canagliflozin(1.6%. 25(73.5%, 8(23.5% and 1(3% ADRs were mild, moderate and severe respectively. 24(70% ADRs were classified as possible, 9(27% probable and 1(3% unlikely on causality assessment. Conclusion: Newer oral antidiabetic drugs like gliptins and SGLT-2 inhibitors have potential to cause ADRs. Gastro-intestinal, musculoskeletal, metabolic were most common ADRs. Active pharmacovigilance should be carried out for risk identification and management. 

  3. Lecture 2: Equilibrium statistical treatment of angular momenta associated with collective modes in fission and heavy-ion reactions

    International Nuclear Information System (INIS)

    Moretto, L.G.

    1979-01-01

    The angular momentum effects in deep inelastic processes and fission have been studied in the limit of statistical equilibrium. The model consists of two touching liquid drop spheres. Angular momentum fractionation has been found to occur along the mass asymmetry coordinate. If neutron competition is included (i.e., in compound nucleus formation and fission), the fractionation occurs only to a slight degree, while extensive fractionation is predicted if no neutron competition occurs (i.e., in fusion--fission without compound nucleus formation). Thermal fluctuations in the angular momentum are predicted to occur due to degrees of freedom which can bear angular momentum, like wriggling, tilting, bending, and twisting. The coupling of relative motion to one of the wriggling modes, leading to fluctuations between orbital and intrinsic angular momentum, is considered first. Next the effect of the excitation of all the collective modes on the fragment spin is treated. General expressions for the first and second moments of the fragment spins are derived as a function of total angular momentum and the limiting behavior at large and small total angular momentum is examined. Furthermore, the effect of collective mode excitation on the fragment spin alignment is explored and is discussed in light of recent experiments. The relevance of the present study to the measured first and second moments of the γ-ray multiplicities as well as to sequential fission angular distributions is illustrated by applying the results of the theory to a well studied heavy ion reaction

  4. Status of higher order mode beam position monitors in 3.9 GHz superconducting accelerating cavities at FLASH

    CERN Document Server

    Zhang, P; Jones, R M; Flisgen, T; Van Rienen, U; Shinton, I R R

    2013-01-01

    Higher order mode (HOM) beam position monitors (BPM) are being developed for the 3.9 GHz third harmonic superconducting accelerating cavities at FLASH. The transverse beam position in a cavity can be determined utilizing beam-excited HOMs based on dipole components. The existing couplers used for HOM suppression provide necessary signals. The diagnostics principle is similar to a cavity BPM, but requires no additional vacuum instruments on the linac. The challenges of HOM-BPM for 3.9 GHz cavities lie in the dense HOM spectrum arising from the coupling of the majority HOMs amongst the four cavities in the cryo-module ACC39. HOMs with particularly promising diagnostics features were evaluated using a spectrum analyzer and custom-built test electronics with various data analysis techniques, data reduction was focused on. After careful theoretical and experimental assessment of the HOM spectrum, multi-cavity modes in the region of 5 GHz were chosen to provide a global position over the complete module with superi...

  5. Study on variance-to-mean method as subcriticality monitor for accelerator driven system operated with pulse-mode

    International Nuclear Information System (INIS)

    Yamauchi, Hideto; Kitamura, Yasunori; Yamane, Yoshihiro; Misawa, Tsuyoshi; Unesaki, Hironobu

    2003-01-01

    Two types of the variance-to-mean methods for the subcritical system that was driven by the periodic and pulsed neutron source were developed and their experimental examination was performed with the Kyoto University Critical Assembly and a pulsed neutron generator. As a result, it was demonstrated that the prompt neutron decay constant could be measured by these methods. From this fact, it was concluded that the present variance-to-mean methods had potential for being used in the subcriticality monitor for the future accelerator driven system operated with the pulse-mode. (author)

  6. Violin mode amplitude glitch monitor for the presence of excess noise on the monolithic silica suspensions of GEO 600

    Energy Technology Data Exchange (ETDEWEB)

    Sorazu, B; Strain, K A; Heng, I S; Kumar, R, E-mail: b.sorazu@physics.gla.ac.u [Department of Physics and Astronomy, University of Glasgow, University Avenue, Glasgow G12 8QQ (United Kingdom)

    2010-08-07

    Non-Gaussian features of data from gravitational wave detectors are of interest as unpredictable 'glitches' limit the sensitivity of searches for many kinds of signal. We consider events due to non-random excitations of the test masses and their suspension fibres. These events could, for example, be related to acoustic emissions in the fibres due to the presence and propagation of cracks or another type of structural perturbation, and they would generate excess noise above the Gaussian background, which matches the level expected due to thermal noise. We look for excess noise in the fundamental violin modes of the monolithic silica suspension fibres of GEO 600. We describe the algorithm used to monitor the violin mode amplitude for glitches, present our results and consider how these may be applied to advanced detectors. The conclusion of our analysis is that no excess noise above what was considered to be thermal noise was observed for several days of h(t) data analysed at the frequency of the selected violin modes.

  7. Violin mode amplitude glitch monitor for the presence of excess noise on the monolithic silica suspensions of GEO 600

    International Nuclear Information System (INIS)

    Sorazu, B; Strain, K A; Heng, I S; Kumar, R

    2010-01-01

    Non-Gaussian features of data from gravitational wave detectors are of interest as unpredictable 'glitches' limit the sensitivity of searches for many kinds of signal. We consider events due to non-random excitations of the test masses and their suspension fibres. These events could, for example, be related to acoustic emissions in the fibres due to the presence and propagation of cracks or another type of structural perturbation, and they would generate excess noise above the Gaussian background, which matches the level expected due to thermal noise. We look for excess noise in the fundamental violin modes of the monolithic silica suspension fibres of GEO 600. We describe the algorithm used to monitor the violin mode amplitude for glitches, present our results and consider how these may be applied to advanced detectors. The conclusion of our analysis is that no excess noise above what was considered to be thermal noise was observed for several days of h(t) data analysed at the frequency of the selected violin modes.

  8. Violin mode amplitude glitch monitor for the presence of excess noise on the monolithic silica suspensions of GEO 600

    Science.gov (United States)

    Sorazu, B.; Strain, K. A.; Heng, I. S.; Kumar, R.

    2010-08-01

    Non-Gaussian features of data from gravitational wave detectors are of interest as unpredictable 'glitches' limit the sensitivity of searches for many kinds of signal. We consider events due to non-random excitations of the test masses and their suspension fibres. These events could, for example, be related to acoustic emissions in the fibres due to the presence and propagation of cracks or another type of structural perturbation, and they would generate excess noise above the Gaussian background, which matches the level expected due to thermal noise. We look for excess noise in the fundamental violin modes of the monolithic silica suspension fibres of GEO 600. We describe the algorithm used to monitor the violin mode amplitude for glitches, present our results and consider how these may be applied to advanced detectors. The conclusion of our analysis is that no excess noise above what was considered to be thermal noise was observed for several days of h(t) data analysed at the frequency of the selected violin modes.

  9. Optimal control of a Cope rearrangement by coupling the reaction path to a dissipative bath or a second active mode

    International Nuclear Information System (INIS)

    Chenel, A.; Meier, C.; Dive, G.; Desouter-Lecomte, M.

    2015-01-01

    We compare the strategy found by the optimal control theory in a complex molecular system according to the active subspace coupled to the field. The model is the isomerization during a Cope rearrangement of Thiele’s ester that is the most stable dimer obtained by the dimerization of methyl-cyclopentadienenylcarboxylate. The crudest partitioning consists in retaining in the active space only the reaction coordinate, coupled to a dissipative bath of harmonic oscillators which are not coupled to the field. The control then fights against dissipation by accelerating the passage across the transition region which is very wide and flat in a Cope reaction. This mechanism has been observed in our previous simulations [Chenel et al., J. Phys. Chem. A 116, 11273 (2012)]. We compare here, the response of the control field when the reaction path is coupled to a second active mode. Constraints on the integrated intensity and on the maximum amplitude of the fields are imposed limiting the control landscape. Then, optimum field from one-dimensional simulation cannot provide a very high yield. Better guess fields based on the two-dimensional model allow the control to exploit different mechanisms providing a high control yield. By coupling the reaction surface to a bath, we confirm the link between the robustness of the field against dissipation and the time spent in the delocalized states above the transition barrier

  10. Isospin influence on the decay modes of the systems produced in the 78,86Kr +40,48Ca reactions at 10 AMeV

    Directory of Open Access Journals (Sweden)

    Gnoffo B.

    2016-01-01

    Full Text Available The results of the analysis of the reactions 78,86Kr +40,48 Ca at 10 AMeV are presented. The experiment was performed at the INFN Laboratori Nazionali del Sud (LNS in Catania by using the 4π multidetector CHIMERA, with beams delivered by the Superconductive Cyclotron. The competition among the various disintegration paths and in particular the isospin effects on the decay modes of the produced composite systems are investigated; this provides information about fundamental nuclear quantities such as level density, fission barrier and viscosity. Different isotopic composition and relative richness are observed among the reaction products of the two systems. An odd-even staggering effect is present in the charge distributions, in particular for the light fragments produced by the neutron-poor system. The kinematical characteristics of the IMF seem to indicate a high degree of the relaxation of the formed system. Besides, global features analysis seems to show some differences in the contribution arising from the various reaction mechanisms for the two reactions.

  11. An automatic mode-locked system for passively mode-locked fiber laser

    Science.gov (United States)

    Li, Sha; Xu, Jun; Chen, Guoliang; Mei, Li; Yi, Bo

    2013-12-01

    This paper designs and implements one kind of automatic mode-locked system. It can adjust a passively mode-locked fiber laser to keep steady mode-locked states automatically. So the unsteadiness of traditional passively mode-locked fiber laser can be avoided. The system transforms optical signals into electrical pulse signals and sends them into MCU after processing. MCU calculates the frequency of the signals and judges the state of the output based on a quick judgment algorithm. A high-speed comparator is used to check the signals and the comparison voltage can be adjusted to improve the measuring accuracy. Then by controlling two polarization controllers at an angle of 45degrees to each other, MCU extrudes the optical fibers to change the polarization until it gets proper mode-locked output. So the system can continuously monitor the output signal and get it back to mode-locked states quickly and automatically. States of the system can be displayed on the LCD and PC. The parameters of the steady mode-locked states can be stored into an EEPROM so that the system will get into mode-locked states immediately next time. Actual experiments showed that, for a 6.238MHz passively mode-locked fiber lasers, the system can get into steady mode-locked states automatically in less than 90s after starting the system. The expected lock time can be reduced to less than 20s after follow up improvements.

  12. Identifying Understudied Nuclear Reactions by Text-mining the EXFOR Experimental Nuclear Reaction Library

    Energy Technology Data Exchange (ETDEWEB)

    Hirdt, J.A. [Department of Mathematics and Computer Science, St. Joseph' s College, Patchogue, NY 11772 (United States); Brown, D.A., E-mail: dbrown@bnl.gov [National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)

    2016-01-15

    The EXFOR library contains the largest collection of experimental nuclear reaction data available as well as the data's bibliographic information and experimental details. We text-mined the REACTION and MONITOR fields of the ENTRYs in the EXFOR library in order to identify understudied reactions and quantities. Using the results of the text-mining, we created an undirected graph from the EXFOR datasets with each graph node representing a single reaction and quantity and graph links representing the various types of connections between these reactions and quantities. This graph is an abstract representation of the connections in EXFOR, similar to graphs of social networks, authorship networks, etc. We use various graph theoretical tools to identify important yet understudied reactions and quantities in EXFOR. Although we identified a few cross sections relevant for shielding applications and isotope production, mostly we identified charged particle fluence monitor cross sections. As a side effect of this work, we learn that our abstract graph is typical of other real-world graphs.

  13. Identifying Understudied Nuclear Reactions by Text-mining the EXFOR Experimental Nuclear Reaction Library

    International Nuclear Information System (INIS)

    Hirdt, J.A.; Brown, D.A.

    2016-01-01

    The EXFOR library contains the largest collection of experimental nuclear reaction data available as well as the data's bibliographic information and experimental details. We text-mined the REACTION and MONITOR fields of the ENTRYs in the EXFOR library in order to identify understudied reactions and quantities. Using the results of the text-mining, we created an undirected graph from the EXFOR datasets with each graph node representing a single reaction and quantity and graph links representing the various types of connections between these reactions and quantities. This graph is an abstract representation of the connections in EXFOR, similar to graphs of social networks, authorship networks, etc. We use various graph theoretical tools to identify important yet understudied reactions and quantities in EXFOR. Although we identified a few cross sections relevant for shielding applications and isotope production, mostly we identified charged particle fluence monitor cross sections. As a side effect of this work, we learn that our abstract graph is typical of other real-world graphs.

  14. Design and Implementation of Dual-Mode Wireless Video Monitoring System

    Directory of Open Access Journals (Sweden)

    BAO Song-Jian

    2014-10-01

    Full Text Available Dual-mode wireless video transmission has two major problems. Firstly, one is time delay difference bringing about asynchronous reception decoding frame error phenomenon; secondly, dual-mode network bandwidth inconformity causes scheduling problem. In order to solve above two problems, a kind of TD-SCDMA/CDMA20001x dual-mode wireless video transmission design method is proposed. For the solution of decoding frame error phenomenon, the design puts forward adding frame identification and packet preprocessing at the sending and synchronizing combination at the receiving end. For the solution of scheduling problem, the wireless communication channel cooperative work and video data transmission scheduling management algorithm is proposed in the design.

  15. New method for monitoring nitric oxide in vivo using microdialysis sampling and chemiluminescence reaction

    Science.gov (United States)

    Yao, Dachun; Evmiridis, Nick P.; Zhou, Yikai; Xu, Shunqing; Zhou, Huarong

    2001-09-01

    A new method employing a combination of micro dialysis sampling and chemiluminescence reaction was developed to monitor nitric oxide (NO) in vivo. A special probe was designed with an interference-free membrane to achieve a very high selectivity for NO. High sensitivity was achieved by optimizing the working system and improving the NO sampling time. This system was used in vivo to monitor blood and brain tissue in rats and rabbits. We have established that this system is sensitive enough to detect variations in NO production in difference physiological state. The system can detect NO in the linear range of 5nM-1(mu) M, with a detection limit of 1nM, and real NO concentrations in our experimental animals were found to be in the range of 1-5 nM or even less. Finally, the effects of body temperature, NO donors, Viagra, NO activators, NO cofactors, NO interference were investigated carefully in different physiological situations.

  16. a Study of Vibrational Mode Coupling in 2-FLUOROETHANOL and 1,2-DIFLUOROETHANE Using High-Resolution Infrared Spectroscopy.

    Science.gov (United States)

    Mork, Steven Wayne

    High resolution infrared spectroscopy was used to examine intramolecular vibrational interactions in 2 -fluoroethanol (2FE) and 1,2-difluoroethane (DFE). A high resolution infrared spectrophotometer capable of better than 10 MHz spectral resolution was designed and constructed. The excitation source consists of three lasers: an argon-ion pumped dye laser which pumps a color -center laser. The infrared beam from the color-center laser is used to excite sample molecules which are rotationally and vibrationally cooled in a supersonic molecular beam. Rovibrational excitation of the sample molecules is detected by monitoring the kinetic energy of the molecular beam with a bolometer. The high resolution infrared spectrum of 2FE was collected and analyzed over the 2977-2990 cm^ {-1}^ectral region. This region contains the asymmetric CH stretch on the fluorinated carbon. The spectrum revealed extensive perturbations in the rotational fine structure. Analysis of these perturbations has provided a quantitative measure of selective vibrational mode coupling between the C-H stretch and its many neighboring dark vibrational modes. Interestingly, excitation of the C-H stretch is known to induce a photoisomerization reaction between 2FE's Gg^' and Tt conformers. Implications of the role of mode coupling in the reaction mechanism are also addressed. Similarly, the high resolution infrared spectrum of DFE was collected and analyzed over the 2978-2996 cm ^{-1}^ectral region. This region contains the symmetric combination of asymmetric C-H stretches in DFE. Perturbations in the rotational fine structure indicate vibrational mode coupling to a single dark vibrational state. The dark state is split by approximately 19 cm^{-1} due to tunneling between two identical gauche conformers. The coupling mechanism is largely anharmonic with a minor component of B/C-plane Coriolis coupling. Effects of centrifugal distortion along the molecular A-axis are also observed. The coupled vibrational

  17. EEG artifacts reduction by multivariate empirical mode decomposition and multiscale entropy for monitoring depth of anaesthesia during surgery.

    Science.gov (United States)

    Liu, Quan; Chen, Yi-Feng; Fan, Shou-Zen; Abbod, Maysam F; Shieh, Jiann-Shing

    2017-08-01

    Electroencephalography (EEG) has been widely utilized to measure the depth of anaesthesia (DOA) during operation. However, the EEG signals are usually contaminated by artifacts which have a consequence on the measured DOA accuracy. In this study, an effective and useful filtering algorithm based on multivariate empirical mode decomposition and multiscale entropy (MSE) is proposed to measure DOA. Mean entropy of MSE is used as an index to find artifacts-free intrinsic mode functions. The effect of different levels of artifacts on the performances of the proposed filtering is analysed using simulated data. Furthermore, 21 patients' EEG signals are collected and analysed using sample entropy to calculate the complexity for monitoring DOA. The correlation coefficients of entropy and bispectral index (BIS) results show 0.14 ± 0.30 and 0.63 ± 0.09 before and after filtering, respectively. Artificial neural network (ANN) model is used for range mapping in order to correlate the measurements with BIS. The ANN method results show strong correlation coefficient (0.75 ± 0.08). The results in this paper verify that entropy values and BIS have a strong correlation for the purpose of DOA monitoring and the proposed filtering method can effectively filter artifacts from EEG signals. The proposed method performs better than the commonly used wavelet denoising method. This study provides a fully adaptive and automated filter for EEG to measure DOA more accuracy and thus reduce risk related to maintenance of anaesthetic agents.

  18. Diagnosing ignition with DT reaction history

    International Nuclear Information System (INIS)

    Wilson, D. C.; Bradley, P. A.; Herrmann, H. W.; Cerjan, C. J.; Salmonson, J. D.; Spears, B. K.; Hatchet, S. P. II; Glebov, V. Yu.

    2008-01-01

    A full range DT reaction history of an ignition capsule, from 10 9 to 10 20 neutrons/ns, offers the opportunity to diagnose fuel conditions hundreds of picoseconds before and during burn. The burn history begins with a sharp rise when the first shock reaches the center of the capsule. The level of this jump reflects the combined shock strength and the adiabat of DT fuel. Changes to the four laser pulses driving the capsule implosion which are large enough to degrade the yield make measurable changes to the reaction history. Low mode asymmetries grow during convergence but change the reaction history during the final ∼100 ps. High mode asymmetry or turbulence mixing affects only the reaction history within ∼50 ps of peak burn rate. A capsule with a tritium fuel layer containing a small amount of deuterium (∼1%) creates a reaction history similar to the ignition capsule, but without the final ignition burn. A combination of gas Cerenkov detectors and the neutron temporal diagnostic could be capable of diagnosing the full history of ignition and tritium rich capsules.

  19. Failure Mode and Effect Analysis for Wind Turbine Systems in China

    DEFF Research Database (Denmark)

    Zhu, Jiangsheng; Ma, Kuichao; N. Soltani, Mohsen

    2017-01-01

    This paper discusses a cost based Failure Mode and Effect Analysis (FMEA) approch for the Wind Turbine (WT) with condition monitoring system in China. Normally, the traditional FMEA uses the Risk Priority Number (RPN) to rank failure modes. But the RPN can be changed with the Condition Monitoring...... Systems (CMS) due to change of the score of detection. The cost of failure mode should also be considered because faults can be detected at an incipient level, and condition-based maintenance can be scheduled. The results show that the proposed failure mode priorities considering their cost consequences...

  20. Key role of temperature monitoring in interpretation of microwave effect on transesterification and esterification reactions for biodiesel production.

    Science.gov (United States)

    Mazubert, Alex; Taylor, Cameron; Aubin, Joelle; Poux, Martine

    2014-06-01

    Microwave effects have been quantified, comparing activation energies and pre-exponential factors to those obtained in a conventionally-heated reactor for biodiesel production from waste cooking oils via transesterification and esterification reactions. Several publications report an enhancement of biodiesel production using microwaves, however recent reviews highlight poor temperature measurements in microwave reactors give misleading reaction performances. Operating conditions have therefore been carefully chosen to investigate non-thermal microwave effects alone. Temperature is monitored by an optical fiber sensor, which is more accurate than infrared sensors. For the transesterification reaction, the activation energy is 37.1kJ/mol (20.1-54.2kJ/mol) in the microwave-heated reactor compared with 31.6kJ/mol (14.6-48.7kJ/mol) in the conventionally-heated reactor. For the esterification reaction, the activation energy is 45.4kJ/mol (31.8-58.9kJ/mol) for the microwave-heated reactor compared with 56.1kJ/mol (55.7-56.4kJ/mol) for conventionally-heated reactor. The results confirm the absence of non-thermal microwave effects for homogenous-catalyzed reactions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The Assessment of Selectivity in Different Quadrupole-Orbitrap Mass Spectrometry Acquisition Modes

    Science.gov (United States)

    Berendsen, Bjorn J. A.; Wegh, Robin S.; Meijer, Thijs; Nielen, Michel W. F.

    2015-02-01

    Selectivity of the confirmation of identity in liquid chromatography (tandem) mass spectrometry using Q-Orbitrap instrumentation was assessed using different acquisition modes based on a representative experimental data set constructed from 108 samples, including six different matrix extracts and containing over 100 analytes each. Single stage full scan, all ion fragmentation, and product ion scanning were applied. By generating reconstructed ion chromatograms using unit mass window in targeted MS2, selected reaction monitoring (SRM), regularly applied using triple-quadrupole instruments, was mimicked. This facilitated the comparison of single stage full scan, all ion fragmentation, (mimicked) SRM, and product ion scanning applying a mass window down to 1 ppm. Single factor Analysis of Variance was carried out on the variance (s2) of the mass error to determine which factors and interactions are significant parameters with respect to selectivity. We conclude that selectivity is related to the target compound (mainly the mass defect), the matrix, sample clean-up, concentration, and mass resolution. Selectivity of the different instrumental configurations was quantified by counting the number of interfering peaks observed in the chromatograms. We conclude that precursor ion selection significantly contributes to selectivity: monitoring of a single product ion at high mass accuracy with a 1 Da precursor ion window proved to be equally selective or better to monitoring two transition products in mimicked SRM. In contrast, monitoring a single fragment in all ion fragmentation mode results in significantly lower selectivity versus mimicked SRM. After a thorough inter-laboratory evaluation study, the results of this study can be used for a critical reassessment of the current identification points system and contribute to the next generation of evidence-based and robust performance criteria in residue analysis and sports doping.

  2. Reference Cross Sections for Charged-particle Monitor Reactions

    Czech Academy of Sciences Publication Activity Database

    Hermanne, A.; Ignatyuk, A. V.; Capote, R.; Carlson, B. V.; Engle, J. W.; Kellett, M. A.; Kibédi, T.; Kim, G.; Kondev, F. G.; Hussain, M.; Lebeda, Ondřej; Luca, A.; Nagai, Y.; Naik, H.; Nichols, A. L.; Nortier, F. M.; Suryanarayana, S. V.; Takacs, S.; Tarkanyi, F. T.; Verpelli, M.

    2018-01-01

    Roč. 148, SI (2018), s. 338-382 ISSN 0090-3752 Institutional support: RVO:61389005 Keywords : deuteron induced reactions * proton induced reactions * cross sections Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.146, year: 2016

  3. A Demonstration of Concrete Structural Health Monitoring Framework for Degradation due to Alkali-Silica Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Sankaran [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States); Neal, Kyle [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nath, Paromita [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bao, Yanqing [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cai, Guowei [Idaho National Lab. (INL), Idaho Falls, ID (United States); Orme, Peter [Idaho National Lab. (INL), Idaho Falls, ID (United States); Adams, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kosson, David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-04-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This ongoing research project is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in a nuclear power plant that is subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of four elements: monitoring, data analytics, uncertainty quantification and prognosis. This report focuses on degradation caused by ASR (alkali-silica reaction). Controlled specimens were prepared to develop accelerated ASR degradation. Different monitoring techniques – thermography, digital image correlation (DIC), mechanical deformation measurements, nonlinear impact resonance acoustic spectroscopy (NIRAS), and vibro-acoustic modulation (VAM) -- were used to detect the damage caused by ASR. Heterogeneous data from the multiple techniques was used for damage diagnosis and prognosis, and quantification of the associated uncertainty using a Bayesian network approach. Additionally, MapReduce technique has been demonstrated with synthetic data. This technique can be used in future to handle large amounts of observation data obtained from the online monitoring of realistic structures.

  4. Vibrational Mode-Specific Reaction of Methane on a Nickel Surface

    Science.gov (United States)

    Beck, Rainer D.; Maroni, Plinio; Papageorgopoulos, Dimitrios C.; Dang, Tung T.; Schmid, Mathieu P.; Rizzo, Thomas R.

    2003-10-01

    The dissociation of methane on a nickel catalyst is a key step in steam reforming of natural gas for hydrogen production. Despite substantial effort in both experiment and theory, there is still no atomic-scale description of this important gas-surface reaction. We report quantum state-resolved studies, using pulsed laser and molecular beam techniques, of vibrationally excited methane reacting on the nickel (100) surface. For doubly deuterated methane (CD2H2), we observed that the reaction probability with two quanta of excitation in one C-H bond was greater (by as much as a factor of 5) than with one quantum in each of two C-H bonds. These results clearly exclude the possibility of statistical models correctly describing the mechanism of this process and attest to the importance of full-dimensional calculations of the reaction dynamics.

  5. Non-stationary filtration mode during chemical reactions with the gas phase

    Science.gov (United States)

    Zavialov, Ivan; Konyukhov, Andrey; Negodyaev, Sergey

    2015-04-01

    An experimental and numerical study of filtration accompanied by chemical reactions between displacing fluid and solid skeleton is considered. Glass balls (400-500 μm in diameter) were placed in 1 cm gap between two glass sheets and were used as model porous medium. The baking soda was added to the glass balls. The 70% solution of acetic acid was used as the displacer. The modeling porous medium was saturated with a mineral oil, and then 70% solution of colored acetic acid was pumped through the medium. The glass balls and a mineral oil have a similar refractive index, so the model porous medium was optically transparent. During the filtration, the gas phase was generated by the chemical reactions between the baking soda and acetic acid, and time-dependent displacement of the chemical reaction front was observed. The front of the chemical reaction was associated with the most intensive gas separation. The front moved, stopped, and then moved again to the area where it had been already. We called this process a secondary oxidation wave. To describe this effect, we added to the balance equations a term associated with the formation and disappearance of phases due to chemical reactions. The equations were supplemented by Darcy's law for multiphase filtration. Nonstationarity front propagation of the chemical reaction in the numerical experiment was observed at Damköhler numbers greater than 100. The mathematical modelling was agreed well with the experimental results.

  6. Process spectroscopy in microemulsions—setup and multi-spectral approach for reaction monitoring of a homogeneous hydroformylation process

    Science.gov (United States)

    Meyer, K.; Ruiken, J.-P.; Illner, M.; Paul, A.; Müller, D.; Esche, E.; Wozny, G.; Maiwald, M.

    2017-03-01

    Reaction monitoring in disperse systems, such as emulsions, is of significant technical importance in various disciplines like biotechnological engineering, chemical industry, food science, and a growing number other technical fields. These systems pose several challenges when it comes to process analytics, such as heterogeneity of mixtures, changes in optical behavior, and low optical activity. Concerning this, online nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for process monitoring in complex reaction mixtures due to its unique direct comparison abilities, while at the same time being non-invasive and independent of optical properties of the sample. In this study the applicability of online-spectroscopic methods on the homogeneously catalyzed hydroformylation system of 1-dodecene to tridecanal is investigated, which is operated in a mini-plant scale at Technische Universität Berlin. The design of a laboratory setup for process-like calibration experiments is presented, including a 500 MHz online NMR spectrometer, a benchtop NMR device with 43 MHz proton frequency as well as two Raman probes and a flow cell assembly for an ultraviolet and visible light (UV/VIS) spectrometer. Results of high-resolution online NMR spectroscopy are shown and technical as well as process-specific problems observed during the measurements are discussed.

  7. Determination of Free Fatty Acid by FT-NIR Spectroscopy in Esterification Reaction for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Djéssica Tatiana Raspe

    2013-01-01

    Full Text Available This work reports the use of FT-NIR spectroscopy coupled with multivariate calibration to determine the percentage of free fatty acids (FFA in samples obtained by the esterification of FFA in vegetable oils. The analytical method used as calibration matrix samples of the reaction medium of esterification of oleic acid in soybean oil in proportions of 0.3 to 40 wt% (by weight of oleic acid obtained under different experimental conditions and utilized the partial least squares (PLS regression. The efficiency of the method was tested to predict the content of FFA in reactions of esterification of oleic acid in soybean oil catalysed by KSF clay and Amberlyst 15 commercial resin, both in a batch mode. Good Correlations were observed between the FT-NIR/PLS method and the reference method (AOCS. The results confirm that FT-NIR spectroscopy, in combination with multivariate calibration, is a promising technique for monitoring esterification reaction for biodiesel production.

  8. Vibrational Mode-Specific Reaction of Methane with a Nickel Surface

    Science.gov (United States)

    Beck, Rainer

    2004-03-01

    The dissociation of methane on a nickel catalyst is a key step in steam reforming of natural gas for hydrogen production. Despite substantial effort in both experiment and theory, there is still no atomic scale description of this important gas-surface reaction. To elucidate its dynamics, we have performed quantum state resolved studies of vibrationally excited methane reacting on the Ni(100) surface using pulsed laser and molecular beam techniques. We observed up to a factor of 5 greater reaction probability for methane-d2 with two quanta of excitation in one C-H bond versus a nearly isoenergetic state with one quanta in each of two C-H bonds. The observed reactivities point to a transition state structure which has one of the C-H bonds significantly elongated. Our results also clearly exclude the possibility of statistical models correctly describing the mechanism of this process and emphasize the importance of full-dimensional calculations of the reaction dynamics.

  9. A method to synchronize signals from multiple patient monitoring devices through a single input channel for inclusion in list-mode acquisitions

    International Nuclear Information System (INIS)

    O’Connor, J. Michael; Pretorius, P. Hendrik; Johnson, Karen; King, Michael A.

    2013-01-01

    Purpose: This technical note documents a method that the authors developed for combining a signal to synchronize a patient-monitoring device with a second physiological signal for inclusion into list-mode acquisition. Our specific application requires synchronizing an external patient motion-tracking system with a medical imaging system by multiplexing the tracking input with the ECG input. The authors believe that their methodology can be adapted for use in a variety of medical imaging modalities including single photon emission computed tomography (SPECT) and positron emission tomography (PET). Methods: The authors insert a unique pulse sequence into a single physiological input channel. This sequence is then recorded in the list-mode acquisition along with the R-wave pulse used for ECG gating. The specific form of our pulse sequence allows for recognition of the time point being synchronized even when portions of the pulse sequence are lost due to collisions with R-wave pulses. This was achieved by altering our software used in binning the list-mode data to recognize even a portion of our pulse sequence. Limitations on heart rates at which our pulse sequence could be reliably detected were investigated by simulating the mixing of the two signals as a function of heart rate and time point during the cardiac cycle at which our pulse sequence is mixed with the cardiac signal. Results: The authors have successfully achieved accurate temporal synchronization of our motion-tracking system with acquisition of SPECT projections used in 17 recent clinical research cases. In our simulation analysis the authors determined that synchronization to enable compensation for body and respiratory motion could be achieved for heart rates up to 125 beats-per-minute (bpm). Conclusions: Synchronization of list-mode acquisition with external patient monitoring devices such as those employed in motion-tracking can reliably be achieved using a simple method that can be implemented using

  10. A method to synchronize signals from multiple patient monitoring devices through a single input channel for inclusion in list-mode acquisitions

    Energy Technology Data Exchange (ETDEWEB)

    O’Connor, J. Michael; Pretorius, P. Hendrik; Johnson, Karen; King, Michael A., E-mail: Michael.King@umassmed.edu [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States)

    2013-12-15

    Purpose: This technical note documents a method that the authors developed for combining a signal to synchronize a patient-monitoring device with a second physiological signal for inclusion into list-mode acquisition. Our specific application requires synchronizing an external patient motion-tracking system with a medical imaging system by multiplexing the tracking input with the ECG input. The authors believe that their methodology can be adapted for use in a variety of medical imaging modalities including single photon emission computed tomography (SPECT) and positron emission tomography (PET). Methods: The authors insert a unique pulse sequence into a single physiological input channel. This sequence is then recorded in the list-mode acquisition along with the R-wave pulse used for ECG gating. The specific form of our pulse sequence allows for recognition of the time point being synchronized even when portions of the pulse sequence are lost due to collisions with R-wave pulses. This was achieved by altering our software used in binning the list-mode data to recognize even a portion of our pulse sequence. Limitations on heart rates at which our pulse sequence could be reliably detected were investigated by simulating the mixing of the two signals as a function of heart rate and time point during the cardiac cycle at which our pulse sequence is mixed with the cardiac signal. Results: The authors have successfully achieved accurate temporal synchronization of our motion-tracking system with acquisition of SPECT projections used in 17 recent clinical research cases. In our simulation analysis the authors determined that synchronization to enable compensation for body and respiratory motion could be achieved for heart rates up to 125 beats-per-minute (bpm). Conclusions: Synchronization of list-mode acquisition with external patient monitoring devices such as those employed in motion-tracking can reliably be achieved using a simple method that can be implemented using

  11. Electrocatalytic oxygen reduction and hydrogen evolution reactions on phthalocyanine modified electrodes: Electrochemical, in situ spectroelectrochemical, and in situ electrocolorimetric monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Koca, Atif, E-mail: akoca@eng.marmara.edu.tr [Department of Chemical Engineering, Faculty of Engineering, Marmara University, Goeztepe, 34722 Istanbul (Turkey); Kalkan, Ayfer; Bayir, Zehra Altuntas [Department of Chemistry, Technical University of Istanbul, Maslak, 34469 Istanbul (Turkey)

    2011-06-30

    Highlights: > Electrochemical and in situ spectroelectrochemical characterizations of the metallophthalocyanines were performed. > The presence of O{sub 2} influences both oxygen reduction reaction and the electrochemical behaviors of the complexes. > Homogeneous catalytic ORR process occurs via an 'inner sphere' chemical catalysis process. > CoPc and CuPc coated on a glassy carbon electrode decrease the overpotential of the working electrode for H{sup +} reduction. - Abstract: This study describes electrochemical, in situ spectroelectrochemical, and in situ electrocolorimetric monitoring of the electrocatalytic reduction of molecular oxygen and hydronium ion on the phthalocyanine-modified electrodes. For this purpose, electrochemical and in situ spectroelectrochemical characterizations of the metallophthalocyanines (MPc) bearing tetrakis-[4-((4'-trifluoromethyl)phenoxy)phenoxy] groups were performed. While CoPc gives both metal-based and ring-based redox processes, H{sub 2}Pc, ZnPc and CuPc show only ring-based electron transfer processes. In situ electrocolorimetric method was applied to investigate the color of the electrogenerated anionic and cationic forms of the complexes. The presence of O{sub 2} in the electrolyte system influences both oxygen reduction reaction and the electrochemical and spectral behaviors of the complexes, which indicate electrocatalytic activity of the complexes for the oxygen reduction reaction. Perchloric acid titrations monitored by voltammetry represent possible electrocatalytic activities of the complexes for hydrogen evolution reaction. CoPc and CuPc coated on a glassy carbon electrode decrease the overpotential of the working electrode for H{sup +} reduction. The nature of the metal center changes the electrocatalytic activities for hydrogen evolution reaction in aqueous solution. Although CuPc has an inactive metal center, its electrocatalytic activity is recorded more than CoPc for H{sup +} reduction in aqueous

  12. Detection of Legionella by quantitative-polymerase chain reaction (qPCR) for monitoring and risk assessment

    DEFF Research Database (Denmark)

    Krøjgaard, Louise H.; Krogfelt, Karen A.; Albrechtsen, Hans-Jorgen

    2011-01-01

    Background: Culture and quantitative polymerase chain reaction (qPCR) assays for the detection of Legionella were compared on samples from a residential area before and after two interventions. A total of 84 samples were collected from shower hoses and taps as first flush samples and at constant...... temperature. Samples were grouped according to the origin of the sample, a) circulation water b) water from empty apartments c) water from shower hoses. The aims were to investigate the usefulness of qPCR compared to culture for monitoring remedial actions for elimination of Legionella bacteria and as a tool...

  13. Problems and principles of NPP diagnostics on the basis of mode parameter monitoring. Problemy i printsipy diagnostirovaniya YaEhU na osnove kontrolya rezhimnykh parametrov

    Energy Technology Data Exchange (ETDEWEB)

    Znyshev, V V

    1990-01-01

    Ideology of an approach to solving the problem of functional NPP diagnostics according to data on the dynamics of the plant monitored mode parameter dynamics, is presented. Difficulties in solving caused by NPP specific features as a diagnostics object are considered. Practical reasons simplifying the problem are expressed.

  14. Evaluation of neutron monitor cross sections for 59Co(n,x)56,57,58Co, 52,54,56Mn, 59Fe reactions

    International Nuclear Information System (INIS)

    Yu Baosheng; Shen Qingbiao; Cai Dunjiu

    1996-01-01

    The neutron monitor cross sections for 59 Co(n,x) 56,57,58 Co, 52,54,56 Mn, 59 Fe reactions were evaluated based on recent experimental data and theoretical calculations from threshold energy to 100 MeV. (8 figs.)

  15. Porous polycarbene-bearing membrane actuator for ultrasensitive weak-acid detection and real-time chemical reaction monitoring.

    Science.gov (United States)

    Sun, Jian-Ke; Zhang, Weiyi; Guterman, Ryan; Lin, Hui-Juan; Yuan, Jiayin

    2018-04-30

    Soft actuators with integration of ultrasensitivity and capability of simultaneous interaction with multiple stimuli through an entire event ask for a high level of structure complexity, adaptability, and/or multi-responsiveness, which is a great challenge. Here, we develop a porous polycarbene-bearing membrane actuator built up from ionic complexation between a poly(ionic liquid) and trimesic acid (TA). The actuator features two concurrent structure gradients, i.e., an electrostatic complexation (EC) degree and a density distribution of a carbene-NH 3 adduct (CNA) along the membrane cross-section. The membrane actuator performs the highest sensitivity among the state-of-the-art soft proton actuators toward acetic acid at 10 -6  mol L -1 (M) level in aqueous media. Through competing actuation of the two gradients, it is capable of monitoring an entire process of proton-involved chemical reactions that comprise multiple stimuli and operational steps. The present achievement constitutes a significant step toward real-life application of soft actuators in chemical sensing and reaction technology.

  16. Automated selected reaction monitoring software for accurate label-free protein quantification.

    Science.gov (United States)

    Teleman, Johan; Karlsson, Christofer; Waldemarson, Sofia; Hansson, Karin; James, Peter; Malmström, Johan; Levander, Fredrik

    2012-07-06

    Selected reaction monitoring (SRM) is a mass spectrometry method with documented ability to quantify proteins accurately and reproducibly using labeled reference peptides. However, the use of labeled reference peptides becomes impractical if large numbers of peptides are targeted and when high flexibility is desired when selecting peptides. We have developed a label-free quantitative SRM workflow that relies on a new automated algorithm, Anubis, for accurate peak detection. Anubis efficiently removes interfering signals from contaminating peptides to estimate the true signal of the targeted peptides. We evaluated the algorithm on a published multisite data set and achieved results in line with manual data analysis. In complex peptide mixtures from whole proteome digests of Streptococcus pyogenes we achieved a technical variability across the entire proteome abundance range of 6.5-19.2%, which was considerably below the total variation across biological samples. Our results show that the label-free SRM workflow with automated data analysis is feasible for large-scale biological studies, opening up new possibilities for quantitative proteomics and systems biology.

  17. Diagnostic for two-mode variable valve activation device

    Science.gov (United States)

    Fedewa, Andrew M

    2014-01-07

    A method is provided for diagnosing a multi-mode valve train device which selectively provides high lift and low lift to a combustion valve of an internal combustion engine having a camshaft phaser actuated by an electric motor. The method includes applying a variable electric current to the electric motor to achieve a desired camshaft phaser operational mode and commanding the multi-mode valve train device to a desired valve train device operational mode selected from a high lift mode and a low lift mode. The method also includes monitoring the variable electric current and calculating a first characteristic of the parameter. The method also includes comparing the calculated first characteristic against a predetermined value of the first characteristic measured when the multi-mode valve train device is known to be in the desired valve train device operational mode.

  18. New cryogenic temperature monitor: PLT-HPT-32

    Science.gov (United States)

    Viera Curbelo, Teodora Aleida; Martín-Fernández, Sergio Gonzáles; Hoyland, R.; Vega-Moreno, A.; Cozar Castellano, Juan; Gómez Reñasco, M. F.; Aguiar-González, M.; Pérez de Taoro, Angeles; Sánchez-de la Rosa, V.; Rubiño-Martín, J. A.; Génova-Santos, R.

    2016-07-01

    The PLT-HPT-32, a new cryogenic temperature monitor, has been developed by the Institute of Astrophysics of the Canary Islands (IAC) and an external engineering company (Sergio González Martín-Fernandez). The PLT-HPT-32 temperature monitor offers precision measurement in a wide range of cryogenic and higher-temperature applications with the ability to easily monitor up to 32 sensor channels. It provides better measurement performance in applications where researchers need to ensure accuracy and precision in their low cryogenic temperature monitoring. The PLT-HPT-32 supports PTC RTDs such as platinum sensors, and diodes such as the Lake Shore DT-670 Series. Used with silicon diodes, it provides accurate measurements in cryo-cooler applications from 16 K to above room temperature. The resolution of the measurement is less than 0.1K. Measurements can be displayed in voltage units or Kelvin units. For it, two different tables can be used. One can be programmed by the user, and the other one corresponds to Lake Shore DT670 sensor that comes standard. There are two modes of measuring, the instantaneous mode and averaged mode. In this moment, all channels must work in the same mode but in the near future it expected to be used in blocks of eight channels. The instantaneous mode takes three seconds to read all channels. The averaged mode takes one minute to average twenty samples in all channels. Alarm thresholds can be configured independently for each input. The alarm events, come from the first eight channels, can activate the unit's relay outputs for hard-wired triggering of other systems or audible annunciators. Activate relays on high, low, or both alarms for any input. For local monitoring, "Stand-Alone Mode", the front panel of the PLT-HPT-32 features a bright liquid crystal display with an LED backlight that shows up to 32 readings simultaneously. Plus, monitoring can be done over a network "Remote Control Mode". Using the Ethernet port on the PLT-HPT-32, you

  19. Golden rule kinetics of transfer reactions in condensed phase: The microscopic model of electron transfer reactions in disordered solid matrices

    International Nuclear Information System (INIS)

    Basilevsky, M. V.; Mitina, E. A.; Odinokov, A. V.; Titov, S. V.

    2013-01-01

    The algorithm for a theoretical calculation of transfer reaction rates for light quantum particles (i.e., the electron and H-atom transfers) in non-polar solid matrices is formulated and justified. The mechanism postulated involves a local mode (an either intra- or inter-molecular one) serving as a mediator which accomplishes the energy exchange between the reacting high-frequency quantum mode and the phonon modes belonging to the environment. This approach uses as a background the Fermi golden rule beyond the usually applied spin-boson approximation. The dynamical treatment rests on the one-dimensional version of the standard quantum relaxation equation for the reduced density matrix, which describes the frequency fluctuation spectrum for the local mode under consideration. The temperature dependence of a reaction rate is controlled by the dimensionless parameter ξ 0 =ℏω 0 /k B T where ω 0 is the frequency of the local mode and T is the temperature. The realization of the computational scheme is different for the high/intermediate (ξ 0 0 ≫ 1) temperature ranges. For the first (quasi-classical) kinetic regime, the Redfield approximation to the solution of the relaxation equation proved to be sufficient and efficient in practical applications. The study of the essentially quantum-mechanical low-temperature kinetic regime in its asymptotic limit requires the implementation of the exact relaxation equation. The coherent mechanism providing a non-vanishing reaction rate has been revealed when T→ 0. An accurate computational methodology for the cross-over kinetic regime needs a further elaboration. The original model of the hopping mechanism for electronic conduction in photosensitive organic materials is considered, based on the above techniques. The electron transfer (ET) in active centers of such systems proceeds via local intra- and intermolecular modes. The active modes, as a rule, operate beyond the kinetic regimes, which are usually postulated in the

  20. APCI as an innovative ionization mode compared with EI and CI for the analysis of a large range of organophosphate esters using GC-MS/MS.

    Science.gov (United States)

    Halloum, Wafaa; Cariou, Ronan; Dervilly-Pinel, Gaud; Jaber, Farouk; Le Bizec, Bruno

    2017-01-01

    Organophosphate esters (OPEs) are chemical compounds incorporated into materials as flame-proof and/or plasticizing agents. In this work, 13 non-halogenated and 5 halogenated OPEs were studied. Their mass spectra were interpreted and compared in terms of fragmentation patterns and dominant ions via various ionization techniques [electron ionization (EI) and chemical ionization (CI) under vacuum and corona discharge atmospheric pressure chemical ionization (APCI)] on gas chromatography coupled to mass spectrometry (GC-MS). The novelty of this paper relies on the investigation of APCI technique for the analysis of OPEs via favored protonation mechanism, where the mass spectra were mostly dominated by the quasi-molecular ion [M + H] + . The EI mass spectra were dominated by ions such as [H 4 PO 4 ] + , [M-R] + , [M-Cl] + , and [M-Br] + , and for some non-halogenated aryl OPEs, [M] +● was also observed. The CI mass spectra in positive mode were dominated by [M + H] + and sometimes by [M-R] + , while in negative mode, [M-R] - and more particularly [X] - and [X 2 ] -● were mainly observed for the halogenated OPEs. Both EI and APCI techniques showed promising results for further development of instrumental method operating in selective reaction monitoring mode. Instrumental detection limits by using APCI mode were 2.5 to 25 times lower than using EI mode for the non-brominated OPEs, while they were determined at 50-100 times lower by the APCI mode than by the EI mode, for the two brominated OPEs. The method was applied to fish samples, and monitored transitions by using APCI mode showed higher specificity but lower stability compared with EI mode. The sensitivity in terms of signal-to-noise ratio varying from one compound to another. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Heavy ions reactions at GANIL energies: the use of LISE telescopic mode for the small angle measurements

    International Nuclear Information System (INIS)

    Bacri, C.O.

    1989-01-01

    The use of heavy ions at GANIL energies leads to a concentration of the reaction products in the forward direction. Measurements have to be performed at and around 0 degree and with an accuracy around one milliradian. The angular selection (after the two dipoles) is performed after a magnetic rigidity one (between the two dipoles). The double sorting does allow measurements close to the beam in magnetic rigidity and in angle. TRANSPORT calculations show that the LISE spectrometer of GANIL can be used in telescopic mode. Experiments with a 44 MeV per nucleon Argon beam on C, Al, Ni and Au targets are performed. The identification of all the detected ions allowed the obtention of angular distributions at and around 0 degree with the required accuracy. This study is completed by a theoretical approach of the thermodynamical evolution based on an extended quantal mean field theory in which a collision-like term simulates residual interaction effects [fr

  2. Continuous Flow Chemistry: Reaction of Diphenyldiazomethane with p-Nitrobenzoic Acid.

    Science.gov (United States)

    Aw, Alex; Fritz, Marshall; Napoline, Jonathan W; Pollet, Pamela; Liotta, Charles L

    2017-11-15

    Continuous flow technology has been identified as instrumental for its environmental and economic advantages leveraging superior mixing, heat transfer and cost savings through the "scaling out" strategy as opposed to the traditional "scaling up". Herein, we report the reaction of diphenyldiazomethane with p-nitrobenzoic acid in both batch and flow modes. To effectively transfer the reaction from batch to flow mode, it is essential to first conduct the reaction in batch. As a consequence, the reaction of diphenyldiazomethane was first studied in batch as a function of temperature, reaction time, and concentration to obtain kinetic information and process parameters. The glass flow reactor set-up is described and combines two types of reaction modules with "mixing" and "linear" microstructures. Finally, the reaction of diphenyldiazomethane with p-nitrobenzoic acid was successfully conducted in the flow reactor, with up to 95% conversion of the diphenyldiazomethane in 11 min. This proof of concept reaction aims to provide insight for scientists to consider flow technology's competitiveness, sustainability, and versatility in their research.

  3. Bond-selective control of a gas-surface reaction

    Science.gov (United States)

    Killelea, Daniel R.

    The prospect of using light to selectively control chemical reactions has tantalized chemists since the development of the laser. Unfortunately, the realization of laser-directed chemistry is frequently thwarted by the randomization of energy within the molecule through intramolecular vibrational energy distribution (IVR). However, recent results showing vibrational mode-specific reactivity on metal surfaces suggest that IVR may not always be complete for gas-surface reactions. Here, we combine molecular beam techniques and direct laser excitation to characterize the bond-specific reactivity of trideuteromethane on a Ni(111) surface. Our results reveal important details about how vibrational energy is distributed in the reactive molecule. We use a molecular beam to direct state-selected trideuteromethane (CHD 3) molecules onto a nickel single crystal sample and use the results we obtain to describe the flow of vibrational energy in the methane-surface reaction complex. We show that CHD3 molecules initially excited to v=1, J=2, K=0 of the v 1 symmetric C-H stretching mode will dissociate exclusively via C-H cleavage on Ni(111). This result highlights the localization of vibrational energy in the reaction complex, despite the presence of many energy exchange channels with the high state-density surface. We demonstrate, for the first time, highly parallel bond-selective control of a heterogeneously catalyzed reaction. We place our results in the context of recent experiments investigating IVR for molecules in both the gas phase and liquid solutions. If IVR is fast on the reaction timescale, vibrational energy would be randomly distributed throughout the nascent methane-surface reaction complex and vibrational mode-specific behavior would not occur. The short timescale of a direct gas-surface collision may explain how the exchange of energy via IVR is limited to only a small subset of the energetic configurations available to the reaction complex. This framework

  4. New modes of halo excitation in the 6He nucleus

    International Nuclear Information System (INIS)

    Danilin, B.V.; Rogde, T.; Ershov, S.N.; Heiberg-Andersen, H.; Vaagen, J.S.; Danilin, B.V.; Ershov, S.N.; Vaagen, J.S.; Thompson, I.J.; Zhukov, M.V.

    1997-01-01

    Predictions are made for the structure of a second 2 + resonance, the soft dipole mode and unnatural parity modes in the 6 He continuum. We use a structure model which describes the system as a three-body α+N+N cluster structure, giving the experimentally known properties of 6 He and 6 Li, and use the distorted-wave impulse approximation (DWIA) reaction theory appropriate for dilute matter. The presence of both resonant and nonresonant structures in the halo excitation continuum is shown to be manifest in charge-exchange reactions as well as inelastic scattering with single nucleons. copyright 1997 The American Physical Society

  5. New gas-filled mode of the large-acceptance spectrometer VAMOS

    International Nuclear Information System (INIS)

    Schmitt, C.; Rejmund, M.; Navin, A.; Lecornu, B.; Jacquot, B.; France, G. de; Lemasson, A.; Shrivastava, A.; Greenlees, P.; Uusitalo, J.; Subotic, K.; Gaudefroy, L.; Theisen, Ch.; Sulignano, B.; Dorvaux, O.; Stuttge, L.

    2010-01-01

    A new gas-filled operation mode of the large-acceptance spectrometer VAMOS at GANIL is reported. A beam rejection factor greater than 10 10 is obtained for the 40 Ca+ 150 Sm system at 196 MeV. The unprecedented transmission efficiency for the evaporation residues produced in this reaction is estimated to be around 80% for αx n channels and above 95% for x ny p channels. A detailed study of the performance of the gas-filled VAMOS and future developments are discussed. This new operation mode opens avenues to explore the potential of fusion reactions in various kinematics.

  6. Redox Reaction in Silicate Melts Monitored by ''Static'' In-Situ Fe K-Edge XANES up to 1180 deg. C

    International Nuclear Information System (INIS)

    Wilke, Max; Partzsch, Georg M.; Welter, Edmund; Farges, Francois

    2007-01-01

    A new experimental setup to measure in-situ kinetics of redox reactions in silicate melts is presented. To study the progress of the Fe-redox reaction, the variation of the signal is recorded at an energy, where the difference between the spectra of the oxidized and reduced Fe in the melt is largest (''static XANES''). To control the redox conditions, the gas atmosphere could be changed between to types of gases using computer-controlled valves (N2:H2 and air, respectively). In this way, a number of reduction/oxidation cycles can be monitored in-situ and continuously. Applied at the Fe K-edge in molten silicates, we obtained a set of high quality data, which includes the very first steps of the redox reaction. An Avrami-type equation is used to investigate rate-controlling parameters for the iron oxidation/reduction kinetics for two melts (basaltic and Na trisilicate) for temperatures up to 1180 deg. C

  7. Golden rule kinetics of transfer reactions in condensed phase: The microscopic model of electron transfer reactions in disordered solid matrices

    Science.gov (United States)

    Basilevsky, M. V.; Odinokov, A. V.; Titov, S. V.; Mitina, E. A.

    2013-12-01

    The algorithm for a theoretical calculation of transfer reaction rates for light quantum particles (i.e., the electron and H-atom transfers) in non-polar solid matrices is formulated and justified. The mechanism postulated involves a local mode (an either intra- or inter-molecular one) serving as a mediator which accomplishes the energy exchange between the reacting high-frequency quantum mode and the phonon modes belonging to the environment. This approach uses as a background the Fermi golden rule beyond the usually applied spin-boson approximation. The dynamical treatment rests on the one-dimensional version of the standard quantum relaxation equation for the reduced density matrix, which describes the frequency fluctuation spectrum for the local mode under consideration. The temperature dependence of a reaction rate is controlled by the dimensionless parameter ξ0 = ℏω0/kBT where ω0 is the frequency of the local mode and T is the temperature. The realization of the computational scheme is different for the high/intermediate (ξ0 conduction in photosensitive organic materials is considered, based on the above techniques. The electron transfer (ET) in active centers of such systems proceeds via local intra- and intermolecular modes. The active modes, as a rule, operate beyond the kinetic regimes, which are usually postulated in the existing theories of the ET. Our alternative dynamic ET model for local modes immersed in the continuum harmonic medium is formulated for both classical and quantum regimes, and accounts explicitly for the mode/medium interaction. The kinetics of the energy exchange between the local ET subsystem and the surrounding environment essentially determine the total ET rate. The efficient computer code for rate computations is elaborated on. The computations are available for a wide range of system parameters, such as the temperature, external field, local mode frequency, and characteristics of mode/medium interaction. The relation of the

  8. Golden rule kinetics of transfer reactions in condensed phase: the microscopic model of electron transfer reactions in disordered solid matrices.

    Science.gov (United States)

    Basilevsky, M V; Odinokov, A V; Titov, S V; Mitina, E A

    2013-12-21

    The algorithm for a theoretical calculation of transfer reaction rates for light quantum particles (i.e., the electron and H-atom transfers) in non-polar solid matrices is formulated and justified. The mechanism postulated involves a local mode (an either intra- or inter-molecular one) serving as a mediator which accomplishes the energy exchange between the reacting high-frequency quantum mode and the phonon modes belonging to the environment. This approach uses as a background the Fermi golden rule beyond the usually applied spin-boson approximation. The dynamical treatment rests on the one-dimensional version of the standard quantum relaxation equation for the reduced density matrix, which describes the frequency fluctuation spectrum for the local mode under consideration. The temperature dependence of a reaction rate is controlled by the dimensionless parameter ξ0 = ℏω0/k(B)T where ω0 is the frequency of the local mode and T is the temperature. The realization of the computational scheme is different for the high/intermediate (ξ0 regime, the Redfield approximation to the solution of the relaxation equation proved to be sufficient and efficient in practical applications. The study of the essentially quantum-mechanical low-temperature kinetic regime in its asymptotic limit requires the implementation of the exact relaxation equation. The coherent mechanism providing a non-vanishing reaction rate has been revealed when T → 0. An accurate computational methodology for the cross-over kinetic regime needs a further elaboration. The original model of the hopping mechanism for electronic conduction in photosensitive organic materials is considered, based on the above techniques. The electron transfer (ET) in active centers of such systems proceeds via local intra- and intermolecular modes. The active modes, as a rule, operate beyond the kinetic regimes, which are usually postulated in the existing theories of the ET. Our alternative dynamic ET model for local

  9. The application of multiple reaction monitoring to assess ApoA-I methionine oxidations in diabetes and cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Hussein N. Yassine

    2014-12-01

    Full Text Available The oxidative modification of apolipoprotein A-I’s methionine148 (M148 is associated with defective HDL function in vitro. Multiple reaction monitoring (MRM is a mass spectrometric technique that can be used to quantitate post-translational modifications. In this study, we developed an MRM assay to monitor the abundance ratio of the peptide containing oxidized M148 to the native peptide in ApoA-I. Measurement of the oxidized-to-unoxidized-M148 ratio was reproducible (CV < 5%. The extent of methionine M148 oxidation in the HDL of healthy controls, and type 2 diabetic participants with and without prior cardiovascular events (CVD were then examined. The results suggest a significant increase in the relative ratio of the peptide containing oxidized M148 to the unmodified peptide in the HDL of participants with diabetes and CVD (p < 0.001, compared to participants without CVD. Monitoring the abundance ratio of the peptides containing oxidized and unoxidized M148 by MRM provides a means of examining the relationship between M148 oxidation and vascular complications in CVD.

  10. Adverse drug reactions monitoring of psychotropic drugs: a tertiary care centre study

    Directory of Open Access Journals (Sweden)

    Hemendra Singh

    2017-06-01

    Full Text Available Background: Many new psychotropic drugs/ agents have been developed and found to be effective in the treatment of psychiatric disorders. However, these drugs also exhibit adverse drug reactions (ADRs which may affect compliance in psychiatric patients. Hence the present study was aimed at monitoring and assessing ADRs caused by psychotropic drugs. Methods: A hospital based prospective observational study was carried out in the psychiatry outpatient department of a tertiary care teaching hospital for the duration of six months. Two hundred and two patients were included in the study and ADRs were documented using a predesigned data collection form. The causality assessment was carried out as per the criteria of both the World Health Organization- Uppsala Monitoring Centre (WHO-UMC and Naranjo scale. Severity and predictability assessment of ADRs were also performed. Results: A total of 106 ADRs were observed during the study period with majority of them occurring in 25-35 years of age group (40.56%. Weight gain (18.86% followed by sedation (16.03% and insomnia (11.32% were found to be the commonest ADRs. Risperidone (19.8% and escitalopram (12.3% were the drugs responsible for majority of the ADRs. Causality assessment showed that most of ADRs were possible and probable. 94.33% of ADRs were found to be mild and 89% of them were predictable. Conclusion: A wide range of ADRs affecting central nervous and metabolic systems were reported with psychotropic drugs. The study findings necessitate the need for an active pharmacovigilance programme for the safe and effective use of psychotropics.

  11. Differences between Drug-Induced and Contrast Media-Induced Adverse Reactions Based on Spontaneously Reported Adverse Drug Reactions.

    Science.gov (United States)

    Ryu, JiHyeon; Lee, HeeYoung; Suh, JinUk; Yang, MyungSuk; Kang, WonKu; Kim, EunYoung

    2015-01-01

    We analyzed differences between spontaneously reported drug-induced (not including contrast media) and contrast media-induced adverse reactions. Adverse drug reactions reported by an in-hospital pharmacovigilance center (St. Mary's teaching hospital, Daejeon, Korea) from 2010-2012 were classified as drug-induced or contrast media-induced. Clinical patterns, frequency, causality, severity, Schumock and Thornton's preventability, and type A/B reactions were recorded. The trends among causality tools measuring drug and contrast-induced adverse reactions were analyzed. Of 1,335 reports, 636 drug-induced and contrast media-induced adverse reactions were identified. The prevalence of spontaneously reported adverse drug reaction-related admissions revealed a suspected adverse drug reaction-reporting rate of 20.9/100,000 (inpatient, 0.021%) and 3.9/100,000 (outpatients, 0.004%). The most common adverse drug reaction-associated drug classes included nervous system agents and anti-infectives. Dermatological and gastrointestinal adverse drug reactions were most frequently and similarly reported between drug and contrast media-induced adverse reactions. Compared to contrast media-induced adverse reactions, drug-induced adverse reactions were milder, more likely to be preventable (9.8% vs. 1.1%, p contrast media-induced adverse reactions (56.6%, p = 0.066). Causality patterns differed between the two adverse reaction classes. The World Health Organization-Uppsala Monitoring Centre causality evaluation and Naranjo algorithm results significantly differed from those of the Korean algorithm version II (p contrast media-induced adverse reactions. The World Health Organization-Uppsala Monitoring Centre and Naranjo algorithm causality evaluation afforded similar results.

  12. Analytical applications of ion/molecule reactions in a triple quadrupole mass spectrometer

    International Nuclear Information System (INIS)

    Kinter, M.T.

    1986-01-01

    The development of triple quadrupole mass spectrometers as a means of performing tandem mass spectrometry has provided a versatile instrument on which the ion/molecule reactions of a mass selected ion can be studied. This dissertation details the application of ion/molecule reactions in a triple quadrupole to two analytical problems. Part I. Ion/Molecule Reactions of Ammonia with Translationally Excited C 2 H 5 O + /Ions. The ability to impart low center-of-mass translational energies, which upon collision are converted into internal energy, allows the observation of reactions that require energy input. In addition, the systematic variation of the ion kinetic energy, often referred to as energy-resolved mass spectrometer, adds another dimension to the mass spectrum and can allow the observation of thresholds for reactions requiring energy input. This investigation develops methods for determining these thresholds. Part 2. The Use of Ion/Molecule Reactions in selected Reaction Monitoring GC/MSD/MS Analyses. An approach to improving the selectivity of an analysis is to improve the selectivity of the detection method. In GC/MS, one method has been to monitor a selected fragmentation reaction, either metastable or collisionally activated, in a selected reaction monitoring (SRM) analysis. This develops the use of ion/molecule reactions for selected reaction monitoring analyses

  13. Golden rule kinetics of transfer reactions in condensed phase: The microscopic model of electron transfer reactions in disordered solid matrices

    Energy Technology Data Exchange (ETDEWEB)

    Basilevsky, M. V.; Mitina, E. A. [Photochemistry Center, Russian Academy of Sciences, 7a, Novatorov ul., Moscow (Russian Federation); Odinokov, A. V. [Photochemistry Center, Russian Academy of Sciences, 7a, Novatorov ul., Moscow (Russian Federation); National Research Nuclear University “MEPhI,” 31, Kashirskoye shosse, Moscow (Russian Federation); Titov, S. V. [Karpov Institute of Physical Chemistry, 3-1/12, Building 6, Obuha pereulok, Moscow (Russian Federation)

    2013-12-21

    The algorithm for a theoretical calculation of transfer reaction rates for light quantum particles (i.e., the electron and H-atom transfers) in non-polar solid matrices is formulated and justified. The mechanism postulated involves a local mode (an either intra- or inter-molecular one) serving as a mediator which accomplishes the energy exchange between the reacting high-frequency quantum mode and the phonon modes belonging to the environment. This approach uses as a background the Fermi golden rule beyond the usually applied spin-boson approximation. The dynamical treatment rests on the one-dimensional version of the standard quantum relaxation equation for the reduced density matrix, which describes the frequency fluctuation spectrum for the local mode under consideration. The temperature dependence of a reaction rate is controlled by the dimensionless parameter ξ{sub 0}=ℏω{sub 0}/k{sub B}T where ω{sub 0} is the frequency of the local mode and T is the temperature. The realization of the computational scheme is different for the high/intermediate (ξ{sub 0} < 1 − 3) and for low (ξ{sub 0}≫ 1) temperature ranges. For the first (quasi-classical) kinetic regime, the Redfield approximation to the solution of the relaxation equation proved to be sufficient and efficient in practical applications. The study of the essentially quantum-mechanical low-temperature kinetic regime in its asymptotic limit requires the implementation of the exact relaxation equation. The coherent mechanism providing a non-vanishing reaction rate has been revealed when T→ 0. An accurate computational methodology for the cross-over kinetic regime needs a further elaboration. The original model of the hopping mechanism for electronic conduction in photosensitive organic materials is considered, based on the above techniques. The electron transfer (ET) in active centers of such systems proceeds via local intra- and intermolecular modes. The active modes, as a rule, operate beyond the

  14. Detection of seventy-two anabolic and androgenic steroids and/or their esters in horse hair using ultra-high performance liquid chromatography-high resolution mass spectrometry in multiplexed targeted MS2 mode and gas chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Choi, Timmy L S; Kwok, Karen Y; Kwok, Wai Him; Tsoi, Yeuki Y K; Wong, Jenny K Y; Wan, Terence S M

    2018-06-20

    Anabolic and androgenic steroids (AAS) are banned substances in both human and equine sports. They are often administered intramuscularly to horses in esterified forms for the purpose of extending their time of action. The authors' laboratory has previously reported an UHPLC/HRMS method using quadrupole-Orbitrap mass spectrometer in full scan and parallel reaction monitoring (PRM) mode for the detection of 48 AAS and/or their esters in horse hair. However, two injections were required due to the long duty cycle time. In this paper, an UHPLC/HRMS method using multiplexed targeted MS 2 mode was developed and validated to improve the coverage to 65 AAS and/or their esters in a single injection. In addition, a GC/MS/MS method in selected reaction monitoring (SRM) mode was developed to screen for another seven AAS and/or their esters not adequately covered by the UHPLC/HRMS method using the same sample extract after derivatisation with pentafluoropropionic anhydride. The UHPLC/HRMS and GC/MS/MS methods in combination allowed the detection of 72 AAS and/or their esters with estimated limits of detection down to sub to low ppb levels with good interday precision. Method applicability was demonstrated by the detection of boldione and 4-androstenedione in two out-of-competition hair samples and testosterone propionate in a referee hair sample. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Summary Report of the First Research Coordination Meeting on Nuclear Data for Charged-Particle Monitor Reactions and Medical Isotope Production

    International Nuclear Information System (INIS)

    Nichols, Alan L.; Noy, Roberto Capote

    2013-02-01

    A summary is given of the first IAEA research coordination meeting on ''Nuclear Data for Charged-particle Monitor Reactions and Medical Isotope Production'. Participants reassessed and reviewed the requirements for both cross-section and decay data, based on the earlier findings of three IAEA consultants' meetings (High-precision beta-intensity measurements and evaluations for specific PET radioisotopes, INDC(NDS)-0535, December 2008; Improvements in charged-particle monitor reactions and nuclear data for medical isotope production, INDC(NDS)-0591, September 2011; Intermediate-term nuclear data needs for medical applications: cross sections and decay data, INDC(NDS)-0596, September 2011). While significant emphasis was placed on the needs defined in IAEA report INDC(NDS)-0591, a limited number of relevant items and issues were also considered from the other two technical meetings. Recommendations focused on cross-section studies for a reasonably wide range of targets and projectiles, along with decay data measurements and evaluations for specific radionuclides. Individual presentations and discussions are described in this report, along with listings of the agreed work packages to be undertaken by the participants of the coordinated research project. (author)

  16. Mode pumping experiments on biomolecules

    International Nuclear Information System (INIS)

    Austin, R.H.; Erramilli, S.; Xie, A.; Schramm, A.

    1995-01-01

    We will explore several aspects of protein dynamics and energy transfer that can be explored by using the intense, picosecond, tunable mid-IR output of the FEL. In order of appearance they are: (1) Saturation recovery and inter-level coupling of the low temperature amide-I band in acetanilide. This is a continuation of earlier experiments to test soliton models in crystalline hydrogen bonded solids. In this experiment we utilize the sub-picosecond time resolution and low repetition rate of the Stanford SCLA FEL to do both T 1 and T 2 relaxation measurements at 1650 cm -1 . (2) Probing the influence of collective dynamics in sensory rhodopsin. In this experiment we use the FIR output of the Stanford FIREFLY FEL to determine the lifetime of collective modes in the photo-active protein sensory rhodopsin, and begin experiments on the influence of collective modes on retinal reaction dynamics. (3) Probing the transition states of enzymes. This experiment, in the initial stages, attempts to use the intense IR output of the FEL to probe and influence the reaction path of a transition state analog for the protein nucleoside hydrolase. The transition state of the inosine substrate is believed to have critical modes softened by the protein so that bond-breaking paths show absorption at approximately 800 cm -1 . A form of action spectrum using FEL excitation will be used to probe this state

  17. Experimental cross-sections of deuteron-induced reaction on Y-89 up to 20 MeV; comparison of Ti-nat(d,x)V-48 and Al-27(d,x)Na-24 monitor reactions

    Czech Academy of Sciences Publication Activity Database

    Lebeda, Ondřej; Štursa, Jan; Ráliš, Jan

    2015-01-01

    Roč. 360, OCT (2015), s. 118-128 ISSN 0168-583X R&D Projects: GA MŠk LM2011019 Institutional support: RVO:61389005 Keywords : deuteron-induced nuclear reactions * excitation functions * Na, Mg, Sc, V, Sr, Y and Zr radioisotopes * deuteron beam monitors * U-120M cyclotron Subject RIV: BG - Nuclear , Atomic and Molecular Physics, Colliders Impact factor: 1.389, year: 2015

  18. Realization of hiberarchy wireless sensor network for mine laneway monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Yang Wei; Wang Bin [Beijing Jiaotong University, Beijing (China). Key Laboratory of All Optical Network and Advanced Telecommunications Network

    2008-01-15

    According to the requirement of monitoring the environment of coal mine laneways and the characteristics of laneway land form, a kind of hiberarchy wireless sensor network was proposed for laneway monitoring. The topology control mechanism and routing mechanism were designed, corresponding hardware of the sensor node and the protocol stack were developed and two work modes for the system were designed. Simulation experiment in the laboratory proved to operate well; the data exceeding the threshold could be timely delivered in interrupt mode and data could be periodically gathered steadily and reliably in period monitor mode. 6 refs., 7 figs.

  19. Optimization to reduce fuel consumption in charge depleting mode

    Science.gov (United States)

    Roos, Bryan Nathaniel; Martini, Ryan D.

    2014-08-26

    A powertrain includes an internal combustion engine, a motor utilizing electrical energy from an energy storage device, and a plug-in connection. A Method for controlling the powertrain includes monitoring a fuel cut mode, ceasing a fuel flow to the engine based upon the fuel cut mode, and through a period of operation including acceleration of the powertrain, providing an entirety of propelling torque to the powertrain with the electrical energy from the energy storage device based upon the fuel cut mode.

  20. Alkyl hydrogen atom abstraction reactions of the CN radical with ethanol

    Science.gov (United States)

    Athokpam, Bijyalaxmi; Ramesh, Sai G.

    2018-04-01

    We present a study of the abstraction of alkyl hydrogen atoms from the β and α positions of ethanol by the CN radical in solution using the Empirical Valence Bond (EVB) method. We have built separate 2 × 2 EVB models for the Hβ and Hα reactions, where the atom transfer is parameterized using ab initio calculations. The intra- and intermolecular potentials of the reactant and product molecules were modelled with the General AMBER Force Field, with some modifications. We have carried out the dynamics in water and chloroform, which are solvents of contrasting polarity. We have computed the potential of mean force for both abstractions in each of the solvents. They are found to have a small and early barrier along the reaction coordinate with a large energy release. Analyzing the solvent structure around the reaction system, we have found two solvents to have little effect on either reaction. Simulating the dynamics from the transition state, we also study the fate of the energies in the HCN vibrational modes. The HCN molecule is born vibrationally hot in the CH stretch in both reactions and additionally in the HCN bends for the Hα abstraction reaction. In the early stage of the dynamics, we find that the CN stretch mode gains energy at the expense of the energy in CH stretch mode.

  1. Decay modes of high-lying excitations in nuclei

    International Nuclear Information System (INIS)

    Gales, S.

    1993-01-01

    Inelastic, charge-exchange and transfer reactions induced by hadronic probes at intermediate energies have revealed a rich spectrum of new high-lying modes embedded in the nuclear continuum. The investigation of their decay properties is believed to be a severe test of their microscopic structure as predicted by nuclear models. In addition the degree of damping of these simple modes in the nuclear continuum can be obtained by means of the measured branching ratios to the various decay channels as compared to statistical model calculations. As illustrative examples the decay modes of high-spin single-particle states and isovector resonances are discussed. (author) 23 refs.; 14 figs

  2. The base catalysed hydrolysis of methyl paraben: a test reaction for flow microcalorimeters used for determination of both kinetic and thermodynamic parameters

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, M.A.A.; Beezer, A.E.; Labetoulle, C.; Nicolaides, L.; Mitchell, J.C.; Orchard, J.A.; Connor, J.A.; Kemp, R.B.; Olomolaiye, D

    2003-03-24

    The results of an inter/intra-laboratory study into a test and reference reaction for isothermal microcalorimeters, the imidazole catalysed hydrolysis of triacetin, have been reported in a recent paper [Thermochim. Acta 380 (2001) 13]. The results and conclusions drawn from this study have been extended to a consideration of the need for a similar test and reference reaction for isothermal microcalorimeters operating in flow mode. This paper reports the findings of a preliminary inter/intra-laboratory study of the base catalysed hydrolysis of methyl 4-hydroxy benzoate (methyl paraben) and its suitability as a test and reference reaction. The derived values for the hydrolysis reaction were (3.15{+-}0.11)x10{sup -4} s{sup -1} and -50.5{+-}4.3 kJ mol{sup -1} for the rate constant and enthalpy, respectively. It is also reported how such a test and reference reaction can be used to validate the thermal output from a LKB 10-700-1 and Thermometric Thermal Activity Monitor (TAM) 2277-202 flow microcalorimeters.

  3. Reaction Order Ambiguity in Integrated Rate Plots

    Science.gov (United States)

    Lee, Joe

    2008-01-01

    Integrated rate plots are frequently used in reaction kinetics to determine orders of reactions. It is often emphasised, when using this methodology in practice, that it is necessary to monitor the reaction to a substantial fraction of completion for these plots to yield unambiguous orders. The present article gives a theoretical and statistical…

  4. DSMC Modeling of Flows with Recombination Reactions

    Science.gov (United States)

    2017-06-23

    its exact analytic integration to provide equally simple temperature dependent reaction rate constant. This is mostly due to the discrete internal... discrete rotational mode may be replaced by its continuous analog, the vibrational mode cannot be simplified this way due to large energy spacing...Rogasinsky, “Analysis of the numerical techniques of the direct simulation Monte Carlo method in the rarefied gas dynamics,” Russ. J. Numer. Anal. Math

  5. A blood pressure monitor with robust noise reduction system under linear cuff inflation and deflation.

    Science.gov (United States)

    Usuda, Takashi; Kobayashi, Naoki; Takeda, Sunao; Kotake, Yoshifumi

    2010-01-01

    We have developed the non-invasive blood pressure monitor which can measure the blood pressure quickly and robustly. This monitor combines two measurement mode: the linear inflation and the linear deflation. On the inflation mode, we realized a faster measurement with rapid inflation rate. On the deflation mode, we realized a robust noise reduction. When there is neither noise nor arrhythmia, the inflation mode incorporated on this monitor provides precise, quick and comfortable measurement. Once the inflation mode fails to calculate appropriate blood pressure due to body movement or arrhythmia, then the monitor switches automatically to the deflation mode and measure blood pressure by using digital signal processing as wavelet analysis, filter bank, filter combined with FFT and Inverse FFT. The inflation mode succeeded 2440 measurements out of 3099 measurements (79%) in an operating room and a rehabilitation room. The new designed blood pressure monitor provides the fastest measurement for patient with normal circulation and robust measurement for patients with body movement or severe arrhythmia. Also this fast measurement method provides comfortableness for patients.

  6. Monitoring of an esterification reaction by on-line direct liquid sampling mass spectrometry and in-line mid infrared spectrometry with an attenuated total reflectance probe

    International Nuclear Information System (INIS)

    Owen, Andrew W.; McAulay, Edith A.J.; Nordon, Alison; Littlejohn, David; Lynch, Thomas P.; Lancaster, J. Steven; Wright, Robert G.

    2014-01-01

    Highlights: • High efficiency thermal vaporiser designed and used for on-line reaction monitoring. • Concentration profiles of all reactants and products obtained from mass spectra. • By-product formed from the presence of an impurity detected by MS but not MIR. • Mass spectrometry can detect trace and bulk components unlike molecular spectrometry. - Abstract: A specially designed thermal vaporiser was used with a process mass spectrometer designed for gas analysis to monitor the esterification of butan-1-ol and acetic anhydride. The reaction was conducted at two scales: in a 150 mL flask and a 1 L jacketed batch reactor, with liquid delivery flow rates to the vaporiser of 0.1 and 1.0 mL min −1 , respectively. Mass spectrometry measurements were made at selected ion masses, and classical least squares multivariate linear regression was used to produce concentration profiles for the reactants, products and catalyst. The extent of reaction was obtained from the butyl acetate profile and found to be 83% and 76% at 40 °C and 20 °C, respectively, at the 1 L scale. Reactions in the 1 L reactor were also monitored by in-line mid-infrared (MIR) spectrometry; off-line gas chromatography (GC) was used as a reference technique when building partial least squares (PLS) multivariate calibration models for prediction of butyl acetate concentrations from the MIR spectra. In validation experiments, good agreement was achieved between the concentration of butyl acetate obtained from in-line MIR spectra and off-line GC. In the initial few minutes of the reaction the profiles for butyl acetate derived from on-line direct liquid sampling mass spectrometry (DLSMS) differed from those of in-line MIR spectrometry owing to the 2 min transfer time between the reactor and mass spectrometer. As the reaction proceeded, however, the difference between the concentration profiles became less noticeable. DLSMS had advantages over in-line MIR spectrometry as it was easier to generate

  7. VALIDATION OF THE MECG-DP-NS-01 MONITOR IN OSCILLOMETRY AND AUSCULTATION MODES IN CHILDREN AND ADOLESCENTS, ACCORDING TO ESH-IP2, BHS AND AAMI PROTOCOLS

    Directory of Open Access Journals (Sweden)

    S. I. Fedorova

    2015-01-01

    Full Text Available Background: High blood pressure in childhood and adolescence is associated with a 2 to 3-fold increase of the risk of arterial hypertension. According to the Russian guidelines, only devices that have been tested by international protocols can be used for the main diagnostic method of arterial hypertension in children and adolescents, i.e. ambulatory 24-hour blood pressure monitoring.Aim: To validate the MECG-DP-NS-01 upper arm BP monitor in oscillometry and auscultation modes within the “Soyuz” complex, in children and adolescents aged from 5 to 15 years according to the international protocol of the European Society of Hypertension (ESH from 2010 (ESH-IP2, the protocol of the British Hypertension Society (BHS from 1993 and the standard of the Association for the Advancement of Medical Instrumentation (AAMI.Materials and methods: We recruited 99 children and adolescents (49 male, 50 female aged from 5 to 15 years (33 children, from 5 to 7 years, 33, from 8 to 11 years, 33, from 12 to 15 years. Expert and device blood pressure measurements were performed in each patient according to the protocols.Results: The MECG-DP-NS-01 upper arm blood pressure monitor was validated and its accuracy in blood pressure measurement in children and adolescents according to ESH-IP2, BHS and AAMI protocols confirmed. According to BHS 1993 protocol, its accuracy corresponded to A/A both in the oscillometry and auscultation modes.Conclusion: According to ESH-IP2, BHS and AAMI protocols, MEGC-DP-NS-01 within the “Soyuz” complex could be recommended for 24-hour ambulatory blood pressure monitoring in children and adolescents aged from 5 to 15 years, both in the oscillometry and auscultation modes. According to the Declaration of blood pressure Measuring Device Equivalence signed by the manufacturer for the devices MDP-NS-02s “Voshod” and MEGCDPNS-01, and to the equivalence criteria for blood pressure measuring devices, the results of testing and its

  8. Policy learning in the Eurozone crisis: modes, power and functionality.

    Science.gov (United States)

    Dunlop, Claire A; Radaelli, Claudio M

    In response to the attacks on the sovereign debt of some Eurozone countries, European Union (EU) leaders have created a set of preventive and corrective policy instruments to coordinate macro-economic policies and reforms. In this article, we deal with the European Semester, a cycle of information exchange, monitoring and surveillance. Countries that deviate from the targets are subjected to increasing monitoring and more severe 'corrective' interventions, in a pyramid of responsive exchanges between governments and EU institutions. This is supposed to generate coordination and convergence towards balanced economies via mechanisms of learning. But who is learning what? Can the EU learn in the 'wrong' mode? We contribute to the literature on theories of the policy process by showing how modes of learning can be operationalized and used in empirical analysis. We use policy learning as theoretical framework to establish empirically the prevalent mode of learning and its implications for both the power of the Commission and the normative question of whether the EU is learning in the 'correct' mode.

  9. MONITORING POTENTIAL DRUG INTERACTIONS AND REACTIONS VIA NETWORK ANALYSIS OF INSTAGRAM USER TIMELINES.

    Science.gov (United States)

    Correia, Rion Brattig; Li, Lang; Rocha, Luis M

    2016-01-01

    Much recent research aims to identify evidence for Drug-Drug Interactions (DDI) and Adverse Drug reactions (ADR) from the biomedical scientific literature. In addition to this "Bibliome", the universe of social media provides a very promising source of large-scale data that can help identify DDI and ADR in ways that have not been hitherto possible. Given the large number of users, analysis of social media data may be useful to identify under-reported, population-level pathology associated with DDI, thus further contributing to improvements in population health. Moreover, tapping into this data allows us to infer drug interactions with natural products-including cannabis-which constitute an array of DDI very poorly explored by biomedical research thus far. Our goal is to determine the potential of Instagram for public health monitoring and surveillance for DDI, ADR, and behavioral pathology at large. Most social media analysis focuses on Twitter and Facebook, but Instagram is an increasingly important platform, especially among teens, with unrestricted access of public posts, high availability of posts with geolocation coordinates, and images to supplement textual analysis. Using drug, symptom, and natural product dictionaries for identification of the various types of DDI and ADR evidence, we have collected close to 7000 user timelines spanning from October 2010 to June 2015.We report on 1) the development of a monitoring tool to easily observe user-level timelines associated with drug and symptom terms of interest, and 2) population-level behavior via the analysis of co-occurrence networks computed from user timelines at three different scales: monthly, weekly, and daily occurrences. Analysis of these networks further reveals 3) drug and symptom direct and indirect associations with greater support in user timelines, as well as 4) clusters of symptoms and drugs revealed by the collective behavior of the observed population. This demonstrates that Instagram

  10. The quantitative monitoring of mechanochemical reaction between solid L-tartaric acid and sodium carbonate monohydrate by terahertz spectroscopy

    Science.gov (United States)

    Liu, Xiaohong; Liu, Guifeng; Zhao, Hongwei; Zhang, Zengyang; Wei, Yongbo; Liu, Min; Wen, Wen; Zhou, Xingtai

    2011-11-01

    The solid-state reaction of chiral tartaric acid and alkali carbonate was studied by terahertz time-domain spectroscopy (THz-TDS). The sodium tartrate dihydrate was synthesized with high efficiency by mechanical grinding in the solid-state without waste that is particularly sustainable and environmentally benign. Distinct THz absorptions were observed for reactants and products. It indicates that THz spectroscopy is sensitive to different materials and crystal structures. The characteristic THz absorption peak at 1.09 THz of L (+)-Tartaric acid was selected for quantitative analysis. The reaction kinetics could be expressed by the Second-order equation and the Jander equation, which is consistent with a three-dimensional diffusion mechanism. The combination of multi-techniques including synchrotron radiation X-ray powder diffraction (SRXRPD), Fourier transform infrared (FT-IR) and scanning electron microscopy (SEM) was used to investigate the grinding process and presented supporting evidences. The results demonstrate that THz spectroscopy technique has great potential applications in process monitoring and analysis in pharmaceutical and chemical synthesis industry.

  11. COPD Exacerbation Biomarkers Validated Using Multiple Reaction Monitoring Mass Spectrometry.

    Directory of Open Access Journals (Sweden)

    Janice M Leung

    Full Text Available Acute exacerbations of chronic obstructive pulmonary disease (AECOPD result in considerable morbidity and mortality. However, there are no objective biomarkers to diagnose AECOPD.We used multiple reaction monitoring mass spectrometry to quantify 129 distinct proteins in plasma samples from patients with COPD. This analytical approach was first performed in a biomarker cohort of patients hospitalized with AECOPD (Cohort A, n = 72. Proteins differentially expressed between AECOPD and convalescent states were chosen using a false discovery rate 1.2. Protein selection and classifier building were performed using an elastic net logistic regression model. The performance of the biomarker panel was then tested in two independent AECOPD cohorts (Cohort B, n = 37, and Cohort C, n = 109 using leave-pair-out cross-validation methods.Five proteins were identified distinguishing AECOPD and convalescent states in Cohort A. Biomarker scores derived from this model were significantly higher during AECOPD than in the convalescent state in the discovery cohort (p<0.001. The receiver operating characteristic cross-validation area under the curve (CV-AUC statistic was 0.73 in Cohort A, while in the replication cohorts the CV-AUC was 0.77 for Cohort B and 0.79 for Cohort C.A panel of five biomarkers shows promise in distinguishing AECOPD from convalescence and may provide the basis for a clinical blood test to diagnose AECOPD. Further validation in larger cohorts is necessary for future clinical translation.

  12. Studies of nuclear structure in antinucleon charge-exchange reactions

    International Nuclear Information System (INIS)

    Auerbach, N.

    1986-01-01

    The antinucleon-nucleus charge exchange reaction is discussed an its use as a probe of isovector excitations in nuclei is described. Attention is drawn to the fact that the (anti p,anti n) reaction will predominantly excite ''pionic'' (i.e., longitudinal spin) modes in nuclei. Comparison between (anti p,anti n) and (n,p) reactions is made. Plans for (anti p,anti n) experiments in the near future are mentioned. 21 refs., 3 figs

  13. Fast and quantitative differentiation of single-base mismatched DNA by initial reaction rate of catalytic hairpin assembly.

    Science.gov (United States)

    Li, Chenxi; Li, Yixin; Xu, Xiao; Wang, Xinyi; Chen, Yang; Yang, Xiaoda; Liu, Feng; Li, Na

    2014-10-15

    The widely used catalytic hairpin assembly (CHA) amplification strategy generally needs several hours to accomplish one measurement based on the prevailingly used maximum intensity detection mode, making it less practical for assays where high throughput or speed is desired. To make the best use of the kinetic specificity of toehold domain for circuit reaction initiation, we developed a mathematical model and proposed an initial reaction rate detection mode to quantitatively differentiate the single-base mismatch. Using the kinetic mode, assay time can be reduced substantially to 10 min for one measurement with the comparable sensitivity and single-base mismatch differentiating ability as were obtained by the maximum intensity detection mode. This initial reaction rate based approach not only provided a fast and quantitative differentiation of single-base mismatch, but also helped in-depth understanding of the CHA system, which will be beneficial to the design of highly sensitive and specific toehold-mediated hybridization reactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Assessment of a maintenance model for a multi-deteriorating mode system

    International Nuclear Information System (INIS)

    Ponchet, Amelie; Fouladirad, Mitra; Grall, Antoine

    2010-01-01

    This paper deals with maintenance policies for stochastically deteriorating systems which are subject to sudden changes in their degradation processes. The main aim is to assess the interest of using change mode monitoring information from a maintenance decision making point of view. Two condition-based maintenance policies are considered and compared, each of them adapted to a specific level of available information, with or without change mode monitoring. Numerical examples show that the time distribution of the change of deterioration rate and the difference between the two possible deterioration rates strongly influence the choice of the best decision rule structure.

  15. Assessment of a maintenance model for a multi-deteriorating mode system

    Energy Technology Data Exchange (ETDEWEB)

    Ponchet, Amelie, E-mail: amelie.ponchet@utt.f [Institut Charles Delaunay, Universite de technologie de Troyes, UMR CNRS 6279 STMR, 12 rue Marie Curie, 10010 Troyes (France); Fouladirad, Mitra [Institut Charles Delaunay, Universite de technologie de Troyes, UMR CNRS 6279 STMR, 12 rue Marie Curie, 10010 Troyes (France); Grall, Antoine, E-mail: antoine.grall@utt.f [Institut Charles Delaunay, Universite de technologie de Troyes, UMR CNRS 6279 STMR, 12 rue Marie Curie, 10010 Troyes (France)

    2010-11-15

    This paper deals with maintenance policies for stochastically deteriorating systems which are subject to sudden changes in their degradation processes. The main aim is to assess the interest of using change mode monitoring information from a maintenance decision making point of view. Two condition-based maintenance policies are considered and compared, each of them adapted to a specific level of available information, with or without change mode monitoring. Numerical examples show that the time distribution of the change of deterioration rate and the difference between the two possible deterioration rates strongly influence the choice of the best decision rule structure.

  16. Beam orbit control in TESLA superconducting cavities from dipole mode measurements

    International Nuclear Information System (INIS)

    Paparella, R.

    2006-09-01

    The knowledge of the electromagnetic interaction between a beam and the surrounding vacuum chamber is necessary in order to optimize the accelerator performance in terms of stored current. Many instability phenomena may occur in the machine because of the fields produced by the beam and acting back on itself. Basically, these fields, wake-fields, produce an extra voltage, affecting the longitudinal dynamics, and a transverse kick which deflects the beam. In this thesis we present the results of theoretical and experimental investigations to demonstrate the possibility of using the dipolar wake fields of the superconducting accelerating to measure the beam transverse position. After an introduction to the ILC project and to the TESLA technology, of superconducting RF cavities, we will approach the problem from an analytical point of view in chapter 2. The expression of the wake fields in a cylindrical cavity will be investigated and the electromagnetic field modes derived from Maxwell equations in an original way. Graphical solutions of a Matlab program simulating the fields due to a particle passing through a pill-box cavity along a generic path will be shown. The interaction of the beam with higher order modes (HOM) in the TESLA cavities has been studied in the past at the TESLA Test Facility (TTF) in order to determine whether the modes with the highest loss factor are sufficiently damped. Starting from the results obtained before 2003, HOM signals has been better observed and examined in order to use dipole modes to find the electric center of each cavity in the first TTF accelerating module. The results presented in chapter 3 will show that by monitoring the HOM signal amplitude for two polarizations of a dipole mode, one can measure electrical center of the modes with a resolution of 50 μm. Moreover, a misalignment of the first TTF module with respect to the gun axis has been predicted using cavity dipole modes. Alternatives to this method are described in

  17. Comparative study of two modes of gastroesophageal reflux measuring: conventional esophageal pH monitoring and wireless pH monitoring

    Directory of Open Access Journals (Sweden)

    Rimon Sobhi Azzam

    2012-06-01

    Full Text Available CONTEXT: Esophageal pH monitoring is considered to be the gold standard for the diagnosis of gastroesophageal acid reflux. However, this method is very troublesome and considerably limits the patient's routine activities. Wireless pH monitoring was developed to avoid these restrictions. OBJECTIVE: To compare the first 24 hours of the conventional and wireless pH monitoring, positioned 3 cm above the lower esophageal sphincter, in relation to: the occurrence of relevant technical failures, the ability to detect reflux and the ability to correlate the clinical symptoms to reflux. METHODS: Twenty-five patients referred for esophageal pH monitoring and with typical symptoms of gastroesophageal reflux disease were studied prospectively, underwent clinical interview, endoscopy, esophageal manometry and were submitted, with a simultaneous initial period, to 24-hour catheter pH monitoring and 48-hour wireless pH monitoring. RESULTS: Early capsule detachment occurred in one (4% case and there were no technical failures with the catheter pH monitoring (P = 0.463. Percentages of reflux time (total, upright and supine were higher with the wireless pH monitoring (P < 0.05. Pathological gastroesophageal reflux occurred in 16 (64% patients submitted to catheter and in 19 (76% to the capsule (P = 0.355. The symptom index was positive in 12 (48% patients with catheter pH monitoring and in 13 (52% with wireless pH monitoring (P = 0.777. CONCLUSIONS: 1 No significant differences were reported between the two methods of pH monitoring (capsule vs catheter, in regard to relevant technical failures; 2 Wireless pH monitoring detected higher percentages of reflux time than the conventional pH-metry; 3 The two methods of pH monitoring were comparable in diagnosis of pathological gastroesophageal reflux and comparable in correlating the clinical symptoms with the gastroesophageal reflux.

  18. Coding the Assembly of Polyoxotungstates with a Programmable Reaction System.

    Science.gov (United States)

    Ruiz de la Oliva, Andreu; Sans, Victor; Miras, Haralampos N; Long, De-Liang; Cronin, Leroy

    2017-05-01

    Chemical transformations are normally conducted in batch or flow mode, thereby allowing the chemistry to be temporally or spatially controlled, but these approaches are not normally combined dynamically. However, the investigation of the underlying chemistry masked by the self-assembly processes that often occur in one-pot reactions and exploitation of the potential of complex chemical systems requires control in both time and space. Additionally, maintaining the intermediate constituents of a self-assembled system "off equilibrium" and utilizing them dynamically at specific time intervals provide access to building blocks that cannot coexist under one-pot conditions and ultimately to the formation of new clusters. Herein, we implement the concept of a programmable networked reaction system, allowing us to connect discrete "one-pot" reactions that produce the building block{W 11 O 38 } ≡ {W 11 } under different conditions and control, in real time, the assembly of a series of polyoxometalate clusters {W 12 O 42 } ≡ {W 12 }, {W 22 O 74 } ≡ {W 22 } 1a, {W 34 O 116 } ≡ {W 34 } 2a, and {W 36 O 120 } ≡ {W 36 } 3a, using pH and ultraviolet-visible monitoring. The programmable networked reaction system reveals that is possible to assemble a range of different clusters using {W 11 }-based building blocks, demonstrating the relationship between the clusters within the family of iso-polyoxotungstates, with the final structural motif being entirely dependent on the building block libraries generated in each separate reaction space within the network. In total, this approach led to the isolation of five distinct inorganic clusters using a "fixed" set of reagents and using a fully automated sequence code, rather than five entirely different reaction protocols. As such, this approach allows us to discover, record, and implement complex one-pot reaction syntheses in a more general way, increasing the yield and reproducibility and potentially giving access to

  19. Photochemical reaction monitoring by ultra-violet spectrophotometry.

    Science.gov (United States)

    Roig, B; Touraud, E; Thomas, O

    2002-11-01

    Within the framework of the monitoring of the trichloroacetylchloride (TCAC) photosynthesis, ultra-violet (UV) spectrophotometry is proposed as a simple and rapid tool allowing, in real time, the control of the process efficiency. A good correlation has been obtained between the results acquired by this alternative method and the standard gas chromatography.

  20. The hexadehydro-Diels-Alder reaction.

    Science.gov (United States)

    Hoye, Thomas R; Baire, Beeraiah; Niu, Dawen; Willoughby, Patrick H; Woods, Brian P

    2012-10-11

    Arynes (aromatic systems containing, formally, a carbon-carbon triple bond) are among the most versatile of all reactive intermediates in organic chemistry. They can be 'trapped' to give products that are used as pharmaceuticals, agrochemicals, dyes, polymers and other fine chemicals. Here we explore a strategy that unites the de novo generation of benzynes-through a hexadehydro-Diels-Alder reaction-with their in situ elaboration into structurally complex benzenoid products. In the hexadehydro-Diels-Alder reaction, a 1,3-diyne is engaged in a [4+2] cycloisomerization with a 'diynophile' to produce the highly reactive benzyne intermediate. The reaction conditions for this simple, thermal transformation are notable for being free of metals and reagents. The subsequent and highly efficient trapping reactions increase the power of the overall process. Finally, we provide examples of how this de novo benzyne generation approach allows new modes of intrinsic reactivity to be revealed.

  1. General coupled mode theory in non-Hermitian waveguides.

    Science.gov (United States)

    Xu, Jing; Chen, Yuntian

    2015-08-24

    In the presence of loss and gain, the coupled mode equation on describing the mode hybridization of various waveguides or cavities, or cavities coupled to waveguides becomes intrinsically non-Hermitian. In such non-Hermitian waveguides, the standard coupled mode theory fails. We generalize the coupled mode theory with a properly defined inner product based on reaction conservation. We apply our theory to the non-Hermitian parity-time symmetric waveguides, and obtain excellent agreement with results obtained by finite element fullwave simulations. The theory presented here is typically formulated in space to study coupling between waveguides, which can be transformed into time domain by proper reformulation to study coupling between non-Hermitian resonators. Our theory has the strength of studying non-Hermitian optical systems with inclusion of the full vector fields, thus is useful to study and design non-Hermitian devices that support asymmetric and even nonreciprocal light propagations.

  2. Theoretical study of the oxidation mechanisms of naphthalene initiated by hydroxyl radicals: the O2 addition reaction pathways.

    Science.gov (United States)

    Shiroudi, A; Deleuze, M S; Canneaux, S

    2015-05-28

    Atmospheric oxidation of the naphthalene-OH adduct [C10H8OH]˙ (R1) by molecular oxygen in its triplet electronic ground state has been studied using density functional theory along with the B3LYP, ωB97XD, UM05-2x and UM06-2x exchange-correlation functionals. From a thermodynamic viewpoint, the most favourable process is O2 addition at the C2 position in syn mode, followed by O2 addition at the C2 position in anti mode, O2 addition at the C4 position in syn mode, and O2 addition at the C4 position in anti mode, as the second, third and fourth most favourable processes. The syn modes of addition at these positions are thermodynamically favoured over the anti ones by the formation of an intramolecular hydrogen bond between the hydroxyl and peroxy substituents. Analysis of the computed structures, bond orders and free energy profiles demonstrate that the reaction steps involved in the oxidation of the naphthalene-OH adduct by O2 satisfy Hammond's principle. Kinetic rate constants and branching ratios under atmospheric pressure and in the fall-off regime have been supplied, using transition state and RRKM theories. By comparison with experiment, these data confirm the relevance of a two-step reaction mechanism. Whatever the addition mode, O2 addition in C4 position is kinetically favoured over O2 addition in C2 position, in contrast with the expectations drawn from thermodynamics and reaction energies. Under a kinetic control of the reaction, and in line with the computed reaction energy barriers, the most efficient process is O2 addition at the C4 position in syn mode, followed by O2 addition at the C2 position in syn mode, O2 addition at the C4 position in anti mode, and O2 addition at the C2 position in anti mode as the second, third and fourth most rapid processes. The computed branching ratios also indicate that the regioselectivity of the reaction decreases with increasing temperatures and decreasing pressures.

  3. Hybrid quadrupole-orbitrap mass spectrometry analysis with accurate-mass database and parallel reaction monitoring for high-throughput screening and quantification of multi-xenobiotics in honey.

    Science.gov (United States)

    Li, Yi; Zhang, Jinzhen; Jin, Yue; Wang, Lin; Zhao, Wen; Zhang, Wenwen; Zhai, Lifei; Zhang, Yaping; Zhang, Yongxin; Zhou, Jinhui

    2016-01-15

    This study reports a rapid, automated screening and quantification method for the determination of multi-xenobiotic residues in honey using ultra-high performance liquid chromatography-hybrid quadrupole-Orbitrap mass spectrometry (UHPLC-Q-Orbitrap) with a user-built accurate-mass database plus parallel reaction monitoring (PRM). The database contains multi-xenobiotic information including formulas, adduct types, theoretical exact mass and retention time, characteristic fragment ions, ion ratios, and mass accuracies. A simple sample preparation method was developed to reduce xenobiotic loss in the honey samples. The screening method was validated based on retention time deviation, mass accuracy via full scan-data-dependent MS/MS (full scan-ddMS2), multi-isotope ratio, characteristic ion ratio, sensitivity, and positive/negative switching performance between the spiked sample and corresponding standard solution. The quantification method based on the PRM mode is a promising new quantitative tool which we validated in terms of selectivity, linearity, recovery (accuracy), repeatability (precision), decision limit (CCα), detection capability (CCβ), matrix effects, and carry-over. The optimized methods proposed in this study enable the automated screening and quantification of 157 compounds in less than 15 min in honey. The results of this study, as they represent a convenient protocol for large-scale screening and quantification, also provide a research approach for analysis of various contaminants in other matrices. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Radioactive phosphorylation of alcohols to monitor biocatalytic Diels-Alder reactions.

    Directory of Open Access Journals (Sweden)

    Alexander Nierth

    Full Text Available Nature has efficiently adopted phosphorylation for numerous biological key processes, spanning from cell signaling to energy storage and transmission. For the bioorganic chemist the number of possible ways to attach a single phosphate for radioactive labeling is surprisingly small. Here we describe a very simple and fast one-pot synthesis to phosphorylate an alcohol with phosphoric acid using trichloroacetonitrile as activating agent. Using this procedure, we efficiently attached the radioactive phosphorus isotope (32P to an anthracene diene, which is a substrate for the Diels-Alderase ribozyme-an RNA sequence that catalyzes the eponymous reaction. We used the (32P-substrate for the measurement of RNA-catalyzed reaction kinetics of several dye-labeled ribozyme variants for which precise optical activity determination (UV/vis, fluorescence failed due to interference of the attached dyes. The reaction kinetics were analyzed by thin-layer chromatographic separation of the (32P-labeled reaction components and densitometric analysis of the substrate and product radioactivities, thereby allowing iterative optimization of the dye positions for future single-molecule studies. The phosphorylation strategy with trichloroacetonitrile may be applicable for labeling numerous other compounds that contain alcoholic hydroxyl groups.

  5. Default mode network connectivity during task execution.

    Science.gov (United States)

    Vatansever, D; Menon, D K; Manktelow, A E; Sahakian, B J; Stamatakis, E A

    2015-11-15

    Initially described as task-induced deactivations during goal-directed paradigms of high attentional load, the unresolved functionality of default mode regions has long been assumed to interfere with task performance. However, recent evidence suggests a potential default mode network involvement in fulfilling cognitive demands. We tested this hypothesis in a finger opposition paradigm with task and fixation periods which we compared with an independent resting state scan using functional magnetic resonance imaging and a comprehensive analysis pipeline including activation, functional connectivity, behavioural and graph theoretical assessments. The results indicate task specific changes in the default mode network topography. Behaviourally, we show that increased connectivity of the posterior cingulate cortex with the left superior frontal gyrus predicts faster reaction times. Moreover, interactive and dynamic reconfiguration of the default mode network regions' functional connections illustrates their involvement with the task at hand with higher-level global parallel processing power, yet preserved small-world architecture in comparison with rest. These findings demonstrate that the default mode network does not disengage during this paradigm, but instead may be involved in task relevant processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Experimental Observation of Nuclear Reactions in Palladium and Uranium - Possible Explanation by Hydrex Mode

    International Nuclear Information System (INIS)

    Dufour, J.; Murat, D.; Dufour, X.; Foos, J.

    2001-01-01

    Experiments with uranium are presented that show a highly exothermal reaction, which can only be of nuclear origin. One striking point of these results is that they clearly show that what is being observed is not some kind of fusion reaction of the deuterium present (only exceedingly small amounts of it are present). This is a strong indication that hydrogen can trigger nuclear reactions that seem to involve the nuclei of the lattice (which would yield a fission-like pattern of products). Confronted with a situation where some experiments in the field yield a fusion-like pattern of products (CF experiments) and others a fissionlike one (LENR experiments), one can reasonably wonder whether one is not observing two aspects of the same phenomenon. Thus, it is proposed to describe CF and LENR reactions as essentially the same phenomenon based on the possible existence of a still hypothetical proton/electron resonance, which would catalyze fissionlike reactions with a neutron sink. Finally, a series of experiments is proposed to assess this hypothesis

  7. ϕ-meson photoproduction on hydrogen in the neutral decay mode

    Science.gov (United States)

    Seraydaryan, H.; Amaryan, M. J.; Gavalian, G.; Baghdasaryan, H.; Weinstein, L.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Anderson, M. D.; Pereira, S. Anefalos; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bennett, R. P.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Collins, P.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Fassi, L. El; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Fleming, J. A.; Gevorgyan, N.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Heddle, D.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lewis, S.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Martinez, D.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Munevar, E.; Camacho, C. Munoz; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Tang, W.; Taylor, C. E.; Tian, Ye; Tkachenko, S.; Ungaro, M.; Vineyard, M. F.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; CLAS Collaboration

    2014-05-01

    We report the first measurement of the photoproduction cross section of the ϕ meson in its neutral decay mode in the reaction γp →pϕ(KSKL). The experiment was performed with a tagged photon beam of energy 1.6≤Eγ≤3.6 GeV incident on a liquid hydrogen target of the CLAS spectrometer at the Thomas Jefferson National Accelerator Facility. The pϕ final state is identified via reconstruction of KS in the invariant mass of two oppositely charged pions and by requiring the missing particle in the reaction γp →pKSX to be KL. The presented results significantly enlarge the existing data on ϕ photoproduction. These data, combined with the data from the charged decay mode, will help to constrain different mechanisms of ϕ photoproduction.

  8. A symmetry measure for damage detection with mode shapes

    Science.gov (United States)

    Chen, Justin G.; Büyüköztürk, Oral

    2017-11-01

    This paper introduces a feature for detecting damage or changes in structures, the continuous symmetry measure, which can quantify the amount of a particular rotational, mirror, or translational symmetry in a mode shape of a structure. Many structures in the built environment have geometries that are either symmetric or almost symmetric, however damage typically occurs in a local manner causing asymmetric changes in the structure's geometry or material properties, and alters its mode shapes. The continuous symmetry measure can quantify these changes in symmetry as a novel indicator of damage for data-based structural health monitoring approaches. This paper describes the concept as a basis for detecting changes in mode shapes and detecting structural damage. Application of the method is demonstrated in various structures with different symmetrical properties: a pipe cross-section with a finite element model and experimental study, the NASA 8-bay truss model, and the simulated IASC-ASCE structural health monitoring benchmark structure. The applicability and limitations of the feature in applying it to structures of varying geometries is discussed.

  9. In Situ Solid-State Reactions Monitored by X-ray Absorption Spectroscopy: Temperature-Induced Proton Transfer Leads to Chemical Shifts.

    Science.gov (United States)

    Stevens, Joanna S; Walczak, Monika; Jaye, Cherno; Fischer, Daniel A

    2016-10-24

    The dramatic colour and phase alteration with the solid-state, temperature-dependent reaction between squaric acid and 4,4'-bipyridine has been probed in situ with X-ray absorption spectroscopy. The electronic and chemical sensitivity to the local atomic environment through chemical shifts in the near-edge X-ray absorption fine structure (NEXAFS) revealed proton transfer from the acid to the bipyridine base through the change in nitrogen protonation state in the high-temperature form. Direct detection of proton transfer coupled with structural analysis elucidates the nature of the solid-state process, with intermolecular proton transfer occurring along an acid-base chain followed by a domino effect to the subsequent acid-base chains, leading to the rapid migration along the length of the crystal. NEXAFS thereby conveys the ability to monitor the nature of solid-state chemical reactions in situ, without the need for a priori information or long-range order. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Multiple reaction monitoring assay based on conventional liquid chromatography and electrospray ionization for simultaneous monitoring of multiple cerebrospinal fluid biomarker candidates for Alzheimer's disease.

    Science.gov (United States)

    Choi, Yong Seok; Lee, Kelvin H

    2016-03-01

    Alzheimer's disease (AD) is the most common type of dementia, but early and accurate diagnosis remains challenging. Previously, a panel of cerebrospinal fluid (CSF) biomarker candidates distinguishing AD and non-AD CSF accurately (>90 %) was reported. Furthermore, a multiple reaction monitoring (MRM) assay based on nano liquid chromatography tandem mass spectrometry (nLC-MS/MS) was developed to help validate putative AD CSF biomarker candidates including proteins from the panel. Despite the good performance of the MRM assay, wide acceptance may be challenging because of limited availability of nLC-MS/MS systems in laboratories. Thus, here, a new MRM assay based on conventional LC-MS/MS is presented. This method monitors 16 peptides representing 16 (of 23) biomarker candidates that belonged to the previous AD CSF panel. A 30-times more concentrated sample than the sample used for the previous study was loaded onto a high capacity trap column, and all 16 MRM transitions showed good linearity (average R(2) = 0.966), intra-day reproducibility (average coefficient of variance (CV) = 4.78 %), and inter-day reproducibility (average CV = 9.85 %). The present method has several advantages such as a shorter analysis time, no possibility of target variability, and no need for an internal standard.

  11. Development of infrared communication in radiation protection and monitoring

    International Nuclear Information System (INIS)

    Thakur, Vaishali M.; Choithramani, S.J.; Sharma, D.N.; Abani, M.C.

    2003-01-01

    Infra-red communication has many important applications in instrumentation and control. Different types of nuclear instruments are used for radiation protection and surveillance program. The application of this mode of communication in these instruments helps in monitoring of inaccessible or high radiation field areas by avoiding undue exposure to the occupational worker. The demand for remotely controlled monitoring instruments and wireless data communication in the mobile computing environment has rapidly increased. This is due to the increasing need for on-line radiological data analysis with minimum human interventions, especially so if the monitoring is in hazardous environment. The wireless communication can be achieved using different communication methodology for short and long range communication. The infrared based communication is used for different applications for short range up to 9-10 meters. The use of this mode of communication has been implemented in some of the radiation monitoring instruments developed in house. The evaluation of data communication using this mode was conducted for the systems like Environmental Radiation Monitor (ERM) and results showed that data communication error is less than 0.1% up to 10 meter distance. (author)

  12. Standalone, battery powered radiation monitors for accelerator electronics

    CERN Document Server

    Wijnands, T; Spiezia, G

    2009-01-01

    A technical description of the design of a new type of radiation monitors is given. The key point in the design is the low power consumption inferior to 17 mW in radiation sensing mode and inferior to 0.3 mW in standby mode. The radiation monitors can operate without any external power or signal cabling and measure and store radiation data for a maximum period of 800 days. To read the radiation data, a standard PC can be connected via a USB interface to the device at any time. Only a few seconds are required to read out a single monitor. This makes it possible to survey a large network of monitoring devices in a short period of time, for example during a stop of the accelerator.

  13. MONITORING POTENTIAL DRUG INTERACTIONS AND REACTIONS VIA NETWORK ANALYSIS OF INSTAGRAM USER TIMELINES

    Science.gov (United States)

    CORREIA, RION BRATTIG; LI, LANG; ROCHA, LUIS M.

    2015-01-01

    Much recent research aims to identify evidence for Drug-Drug Interactions (DDI) and Adverse Drug reactions (ADR) from the biomedical scientific literature. In addition to this “Bibliome”, the universe of social media provides a very promising source of large-scale data that can help identify DDI and ADR in ways that have not been hitherto possible. Given the large number of users, analysis of social media data may be useful to identify under-reported, population-level pathology associated with DDI, thus further contributing to improvements in population health. Moreover, tapping into this data allows us to infer drug interactions with natural products—including cannabis—which constitute an array of DDI very poorly explored by biomedical research thus far. Our goal is to determine the potential of Instagram for public health monitoring and surveillance for DDI, ADR, and behavioral pathology at large. Most social media analysis focuses on Twitter and Facebook, but Instagram is an increasingly important platform, especially among teens, with unrestricted access of public posts, high availability of posts with geolocation coordinates, and images to supplement textual analysis. Using drug, symptom, and natural product dictionaries for identification of the various types of DDI and ADR evidence, we have collected close to 7000 user timelines spanning from October 2010 to June 2015. We report on 1) the development of a monitoring tool to easily observe user-level timelines associated with drug and symptom terms of interest, and 2) population-level behavior via the analysis of co-occurrence networks computed from user timelines at three different scales: monthly, weekly, and daily occurrences. Analysis of these networks further reveals 3) drug and symptom direct and indirect associations with greater support in user timelines, as well as 4) clusters of symptoms and drugs revealed by the collective behavior of the observed population. This demonstrates that

  14. Flexible Mode Control of Grid Connected Wind Energy Conversion System Using Wavelet

    Directory of Open Access Journals (Sweden)

    Bhavna Jain

    2015-01-01

    Full Text Available Small wind turbine systems offer services to critical loads during grid faults and also connected back to grid in normal condition. The connection of a wind energy conversion system to the grid requires a robust phase locked loop (PLL and continuous monitoring of the grid conditions such as overvoltage, undervoltage, overfrequency, underfrequency, and grid outages. This paper describes a flexible control operation to operate a small wind turbine in both stand-alone mode via planned islanding and grid connected mode as well. In particular, a proper monitoring and control algorithm is required for transition between the modes. A wavelet based energy function is used for detection of grid disturbances as well as recovery of grid so that transition between the modes is made. To obtain good power quality LCL filter is used to reduce ripples. PLL is used for synchronization whenever mode changes from stand-alone to grid connected. Simulation results from a 10 kW wind energy conversion system are included to show the usefulness of the proposed methods. The control method is tested by generated gate pulses for single phase bridge inverter using field programmable gate array (FPGA.

  15. Damage detection and quantification using mode curvature variation on framed structures: analysis of the preliminary results

    Science.gov (United States)

    Iacovino, Chiara; Ditommaso, Rocco; Auletta, Gianluca; Ponzo, Felice C.

    2017-04-01

    Continuous monitoring based on vibrational identification methods is increasingly employed for the evaluation of the state of health of existing buildings after strong motion earthquake. Different damage identification methods are based on the variations of damage indices defined in terms modal (eigenfrequencies, mode shapes, and modal damping) and/or non-modal parameters. Most of simplified methods for structural health monitoring and damage detection are based on the evaluation of the dynamic characteristics evolution associated to the fundamental mode of vibration of a monitored structure. Aim of this work is the upgrade of an existing method for damage localization on framed structures during a moderate/destructive earthquake. The existing version of the method is based on the comparison of the geometric characteristics (with particular reference to the mode curvature) exhibited by the structures, related to fundamental mode of vibration, before and during an earthquake. The approach is based on the use of a nonlinear filter, the band-variable filter, based on the Stockwell Transform able to extract the nonlinear response of each mode of vibration. The new version of the method provides the possibility to quantify a possible damage occurred on the monitored structure linking the mode curvature variation with the maximum inter-story drift. This paper shows the preliminary results obtained from several simulations on nonlinear numerical models of reinforced concrete framed structures, designed for only gravity loads, without and with the presence of infill panels. Furthermore, a correlation between maximum mode curvature difference and maximum inter-story drift has been defined for the different numerical models in order to quantify the structural damage. Acknowledgements This study was partially funded by the Italian Department of Civil Protection within the project DPC-RELUIS 2016 - RS4 ''Seismic observatory of structures and health monitoring'' and by the

  16. THz time domain spectroscopy of biomolecular conformational modes

    International Nuclear Information System (INIS)

    Markelz, Andrea; Whitmire, Scott; Hillebrecht, Jay; Birge, Robert

    2002-01-01

    We discuss the use of terahertz time domain spectroscopy for studies of conformational flexibility and conformational change in biomolecules. Protein structural dynamics are vital to biological function with protein flexibility affecting enzymatic reaction rates and sensory transduction cycling times. Conformational mode dynamics occur on the picosecond timescale and with the collective vibrational modes associated with these large scale structural motions in the 1-100 cm -1 range. We have performed THz time domain spectroscopy (TTDS) of several biomolecular systems to explore the sensitivity of TTDS to distinguish different molecular species, different mutations within a single species and different conformations of a given biomolecule. We compare the measured absorbances to normal mode calculations and find that the TTDS absorbance reflects the density of normal modes determined by molecular mechanics calculations, and is sensitive to both conformation and mutation. These early studies demonstrate some of the advantages and limitations of using TTDS for the study of biomolecules

  17. Multiple reaction monitoring targeted LC-MS analysis of potential cell death marker proteins for increased bioprocess control.

    Science.gov (United States)

    Albrecht, Simone; Kaisermayer, Christian; Reinhart, David; Ambrose, Monica; Kunert, Renate; Lindeberg, Anna; Bones, Jonathan

    2018-05-01

    The monitoring of protein biomarkers for the early prediction of cell stress and death is a valuable tool for process characterization and efficient biomanufacturing control. A representative set of six proteins, namely GPDH, PRDX1, LGALS1, CFL1, TAGLN2 and MDH, which were identified in a previous CHO-K1 cell death model using discovery LC-MS E was translated into a targeted liquid chromatography multiple reaction monitoring mass spectrometry (LC-MRM-MS) platform and verified. The universality of the markers was confirmed in a cell growth model for which three Chinese hamster ovary host cell lines (CHO-K1, CHO-S, CHO-DG44) were grown in batch culture in two different types of basal media. LC-MRM-MS was also applied to spent media (n = 39) from four perfusion biomanufacturing series. Stable isotope-labelled peptide analogues and a stable isotope-labelled monoclonal antibody were used for improved protein quantitation and simultaneous monitoring of the workflow reproducibility. Significant increases in protein concentrations were observed for all viability marker proteins upon increased dead cell numbers and allowed for discrimination of spent media with dead cell densities below and above 1 × 10 6  dead cells/mL which highlights the potential of the selected viability marker proteins in bioprocess control. Graphical abstract Overview of the LC-MRM-MS workflow for the determination of proteomic markers in conditioned media from the bioreactor that correlate with CHO cell death.

  18. Corrosion monitoring using high-frequency guided waves

    Science.gov (United States)

    Fromme, P.

    2016-04-01

    Corrosion can develop due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Generalized corrosion leading to wall thickness loss can cause the reduction of the strength and thus degradation of the structural integrity. The monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic wedge transducers with single sided access to the structure, guided wave modes were selectively generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted for wall thickness reduction due to milling of the steel structure. From the measured signal changes due to the wave mode interference the reduced wall thickness was monitored. Good agreement with theoretical predictions was achieved. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  19. A Simple and Novel Approach to Delineating Stereochemistry of Electrocyclic Reactions

    Science.gov (United States)

    Mandal, Dipak K.

    2012-01-01

    The dynamic stereochemistry of electrocyclic reactions (a class of pericyclic reactions) stems from the operation of either conrotatory (con) or disrotatory (dis) mode of ring-closing and ring-opening processes. Difficulty is often encountered in depicting product stereochemistry resulting from such movements of substituents. A novel, simple,…

  20. Evaluation of neutron monitor cross sections for {sup 59}Co(n,x){sup 56,57,58}Co, {sup 52,54,56}Mn, {sup 59}Fe reactions

    Energy Technology Data Exchange (ETDEWEB)

    Baosheng, Yu; Qingbiao, Shen; Dunjiu, Cai [Chinese Nuclear Data Center, Beijing, BJ (China)

    1996-06-01

    The neutron monitor cross sections for {sup 59}Co(n,x){sup 56,57,58}Co, {sup 52,54,56}Mn, {sup 59}Fe reactions were evaluated based on recent experimental data and theoretical calculations from threshold energy to 100 MeV. (8 figs.).

  1. The effect of intramolecular quantum modes on free energy relationships for electron transfer reactions

    DEFF Research Database (Denmark)

    Ulstrup, Jens; Jortner, Joshua

    1975-01-01

    A general quantum mechanical description of exothermic electron transfer reactions is formulated by treating such reactions as the nonradiative decay of a ''supermolecule'' consisting of the electron donor, the electron acceptor, and the polar solvent. In particular, the role of the high-frequenc...

  2. Dengue viral infection monitoring from diagnostic to recovery using Raman spectroscopy

    International Nuclear Information System (INIS)

    Firdous, Shamaraz; Anwar, Shahzad

    2015-01-01

    Raman spectroscopy has been found useful for monitoring the dengue patient diagnostic and recovery after infection. In the present work, spectral changes that occurred in the blood sera of a dengue infected patient and their possible utilization for monitoring of infection and recovery were investigated using 532 nm wavelength of light. Raman spectrum peaks for normal and after recovery of dengue infection are observed at 1527, 1170, 1021 cm −1 attributed to guanine, adenine, TRP (protein) carbohydrates peak for solids, and skeletal C–C stretch of lipids acyl chains. Where in the dengue infected patient Raman peaks are at 1467, 1316, 1083, and 860 attributed to CH2/CH3 deformation of lipids and collagen, guanine (B, Z-marker), lipids and protein bands. Due to antibodies and antigen reactions the portions and lipids concentration totally changes in dengue viral infection compared to normal blood. These chemical changes in blood sera of dengue viral infection in human blood may be used as possible markers to indicate successful remission and suggest that Raman spectroscopy may provide a rapid optical method for continuous monitoring or evaluation of a protein bands and an antibodies population. Accumulate acquisition mode was used to reduce noise and thermal fluctuation and improve signal to noise ratio. This in vitro dengue infection monitoring methodology will lead in vivo noninvasive on-line monitoring and screening of viral infected patients and their recovery. (letter)

  3. Accurate Quantification of Cardiovascular Biomarkers in Serum Using Protein Standard Absolute Quantification (PSAQ™) and Selected Reaction Monitoring*

    Science.gov (United States)

    Huillet, Céline; Adrait, Annie; Lebert, Dorothée; Picard, Guillaume; Trauchessec, Mathieu; Louwagie, Mathilde; Dupuis, Alain; Hittinger, Luc; Ghaleh, Bijan; Le Corvoisier, Philippe; Jaquinod, Michel; Garin, Jérôme; Bruley, Christophe; Brun, Virginie

    2012-01-01

    Development of new biomarkers needs to be significantly accelerated to improve diagnostic, prognostic, and toxicity monitoring as well as therapeutic follow-up. Biomarker evaluation is the main bottleneck in this development process. Selected Reaction Monitoring (SRM) combined with stable isotope dilution has emerged as a promising option to speed this step, particularly because of its multiplexing capacities. However, analytical variabilities because of upstream sample handling or incomplete trypsin digestion still need to be resolved. In 2007, we developed the PSAQ™ method (Protein Standard Absolute Quantification), which uses full-length isotope-labeled protein standards to quantify target proteins. In the present study we used clinically validated cardiovascular biomarkers (LDH-B, CKMB, myoglobin, and troponin I) to demonstrate that the combination of PSAQ and SRM (PSAQ-SRM) allows highly accurate biomarker quantification in serum samples. A multiplex PSAQ-SRM assay was used to quantify these biomarkers in clinical samples from myocardial infarction patients. Good correlation between PSAQ-SRM and ELISA assay results was found and demonstrated the consistency between these analytical approaches. Thus, PSAQ-SRM has the capacity to improve both accuracy and reproducibility in protein analysis. This will be a major contribution to efficient biomarker development strategies. PMID:22080464

  4. Corrosion monitoring using high-frequency guided ultrasonic waves

    Science.gov (United States)

    Fromme, Paul

    2014-02-01

    Corrosion develops due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the structural integrity. The nondestructive detection and monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, guided wave modes were generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted and the wall thickness reduced by consecutive milling of the steel structure. Further measurements were conducted using accelerated corrosion in a salt water bath and the damage severity monitored. From the measured signal change due to the wave mode interference the wall thickness reduction was monitored. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  5. In-situ Studies of the Reactions of Bifunctional and Heterocyclic Molecules over Noble Metal Single Crystal and Nanoparticle Catalysts Studied with Kinetics and Sum-Frequency Generation Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kliewer, Christopher J. [Univ. of California, Berkeley, CA (United States)

    2009-06-30

    Sum frequency generation surface vibrational spectroscopy (SFG-VS) in combination with gas chromatography (GC) was used in-situ to monitor surface bound reaction intermediates and reaction selectivities for the hydrogenation reactions of pyrrole, furan, pyridine, acrolein, crotonaldehyde, and prenal over Pt(111), Pt(100), Rh(111), and platinum nanoparticles under Torr reactant pressures and temperatures of 300K to 450K. The focus of this work is the correlation between the SFG-VS observed surface bound reaction intermediates and adsorption modes with the reaction selectivity, and how this is affected by catalyst structure and temperature. Pyrrole hydrogenation was investigated over Pt(111) and Rh(111) single crystals at Torr pressures. It was found that pyrrole adsorbs to Pt(111) perpendicularly by cleaving the N-H bond and binding through the nitrogen. However, over Rh(111) pyrrole adsorbs in a tilted geometry binding through the {pi}-aromatic orbitals. A surface-bound pyrroline reaction intermediate was detected over both surfaces with SFG-VS. It was found that the ring-cracking product butylamine is a reaction poison over both surfaces studied. Furan hydrogenation was studied over Pt(111), Pt(100), 10 nm cubic platinum nanoparticles and 1 nm platinum nanoparticles. The product distribution was observed to be highly structure sensitive and the acquired SFG-VS spectra reflected this sensitivity. Pt(100) exhibited more ring-cracking to form butanol than Pt(111), while the nanoparticles yielded higher selectivities for the partially saturated ring dihydrofuran. Pyridine hydrogenation was investigated over Pt(111) and Pt(100). The α-pyridyl surface adsorption mode was observed with SFG-VS over both surfaces. 1,4-dihydropyridine was seen as a surface intermediate over Pt(100) but not Pt(111). Upon heating the surfaces to 350K, the adsorbed pyridine changes to a flat-lying adsorption mode. No evidence was found for the pyridinium cation. The hydrogenation of the

  6. Ozonation of norfloxacin and levofloxacin in water: Specific reaction rate constants and defluorination reaction.

    Science.gov (United States)

    Ling, Wencui; Ben, Weiwei; Xu, Ke; Zhang, Yu; Yang, Min; Qiang, Zhimin

    2018-03-01

    The degradation kinetics and mechanism of two typical fluoroquinolones (FQs), norfloxacin (NF) and levofloxacin (LOF), by ozone in water were investigated. Semi-continuous mode and competition kinetics mode experiments were conducted to determine the reaction rate constants of target FQs with ozone and OH, separately. Results indicate that both NF and LOF were highly reactive toward ozone, and the reactivity was strongly impacted by the solution pH. The specific reaction rate constants of the diprotonated, monoprotonated and deprotonated species were determined to be 7.20 × 10 2 , 8.59 × 10 3 , 4.54 × 10 5  M -1  s -1 respectively for NF and 1.30 × 10 3 , 1.40 × 10 4 , 1.33 × 10 6  M -1  s -1 respectively for LOF. The reaction rate constants of target FQs toward OH were measured to be (4.81-7.41) × 10 9  M -1  s -1 in the pH range of 6.3-8.3. Furthermore, NF was selected as a model compound to clarify the degradation pathways, with a particular focus on the defluorination reaction. The significant release of F - ions and the formation of three F-free organic byproducts indicated that defluorination was a prevalent pathway in ozonation of FQs, while six F-containing organic byproducts indicated that ozone also attacked the piperazinyl and quinolone moieties. Escherichia coli growth inhibition tests revealed that ozonation could effectively eliminate the antibacterial activity of target FQ solutions, and the residual antibacterial activity had a negative linear correlation with the released F - concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Liquid-Crystalline Ionic Liquids as Ordered Reaction Media for the Diels-Alder Reaction.

    Science.gov (United States)

    Bruce, Duncan W; Gao, Yanan; Canongia Lopes, José Nuno; Shimizu, Karina; Slattery, John M

    2016-11-02

    Liquid-crystalline ionic liquids (LCILs) are ordered materials that have untapped potential to be used as reaction media for synthetic chemistry. This paper investigates the potential for the ordered structures of LCILs to influence the stereochemical outcome of the Diels-Alder reaction between cyclopentadiene and methyl acrylate. The ratio of endo- to exo-product from this reaction was monitored for a range of ionic liquids (ILs) and LCILs. Comparison of the endo:exo ratios in these reactions as a function of cation, anion and liquid crystallinity of the reaction media, allowed for the effects of liquid crystallinity to be distinguished from anion effects or cation alkyl chain length effects. These data strongly suggest that the proportion of exo-product increases as the reaction media is changed from an isotropic IL to a LCIL. A detailed molecular dynamics (MD) study suggests that this effect is related to different hydrogen bonding interactions between the reaction media and the exo- and endo-transition states in solvents with layered, smectic ordering compared to those that are isotropic. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. 26kDa endochitinase from barley seeds: real-time monitoring of the enzymatic reaction and substrate binding experiments using electrospray ionization mass spectrometry

    DEFF Research Database (Denmark)

    Dennhart, Nicole; Weigang, Linda M M; Fujiwara, Maho

    2009-01-01

    A 26 kDa endochitinase from barley seeds was enzymatically characterized exclusively by electrospray ionization mass spectrometry (ESI-MS). At first, oligosaccharide hydrolysis catalyzed by the barley chitinase was monitored in real-time by ESI-MS. The reaction time-course obtained by ESI......-MS monitoring was found to be consistent with the data obtained earlier by HPLC, and the quantitative profile was successfully simulated by kinetic modeling of the enzymatic hydrolysis. It is obvious that the real-time monitoring method by ESI-MS allows a faster and cheaper determination of the chitinase...... of the enzymatic activity in E67Q is definitely caused by a point mutation of Glu67 but not due to partial unfolding of the mutated enzyme. Finally, association constants of enzyme-oligosaccharide complexes were calculated from Scatchard plots obtained by mass spectra. The binding free energy values obtained for E...

  9. The nuclear reaction n + 3He -> 1H + 3H as proximity reaction

    International Nuclear Information System (INIS)

    Hilber, H.C.

    1982-01-01

    The present thesis tries to give by means of the nuclear reaction n + 3 He -> 1 H + 3 H as proximity reaction on the three-particle system 3 He + 9 Be -> 1 H + 3 H + 8 Be an experimental verification to the second term of a multiple scattering series. The study of these rescattering effects is of great interest for the present theory of the final-state interaction. At three incident energies (7.08 MeV, 8.98 MeV, and 6.37 MeV) to detector telescopes identify the exit channel of the three-particle system in list-mode coincidence experiments according to protons and tritons. Peaks on the kinematical curves occur. The detailed study of their kinematic behaviour allows to exclude the inconcurrence to the proximity reaction lying cascade decays via intermediate states in 4 He, 9 B, and 11 B. Regarding the Coulomb interaction the experimental results can be also explained in the sense of the classical kinematics by the proximity model. (orig.) [de

  10. Use of remote monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Fournel, E; Gouilloux, C

    1977-01-01

    Paper traces the development of remote monitoring devices, since their first appearance for safety purposes. Discusses their uses in coal mines: working and safety (definitions); sources and channels of information (transmission of information by automatic or verbal means); mine control stations; duties and responsibilities of persons in charge. Examines the contribution made by remote monitoring to management in production sector. Gives examples of assistance given to production management showing a very advantageous result on balance, by their use. The use of computers in real time and in batched mode is compared. Discusses their use in monitoring mine atmosphere. Very favorable results have already been obtained in France and abroad. The broadening scope and future of remote monitoring is considered.

  11. Interference between direct and indirect modes in two-nucleon transfer reactions with heavy ions

    International Nuclear Information System (INIS)

    Scott, D.K.; Harvey, B.G.; Hendrie, D.L.; Jahnke, U.; Kraus, L.; Maguire, C.F.; Mahoney, J.; Terrien, Y.; Yagi, K.; Glendenning, N.K.

    1975-01-01

    Direct and indirect transitions to the lowest 2 + collective states are shown to interfere constructively in the pickup reaction 122 Sn( 16 O, 18 O) 120 Sn at 104 MeV, and destructively in the inverse stripping reaction 120 Sn( 18 O, 16 O) 122 Sn at 99 MeV

  12. Performance of a GM tube based environmental dose rate monitor operating in the Time-To-Count mode

    Energy Technology Data Exchange (ETDEWEB)

    Zickefoose, J.; Kulkarni, T.; Martinson, T.; Phillips, K.; Voelker, M. [Canberra Industries Inc. (United States)

    2015-07-01

    The events at the Fukushima Daiichi power plant in the aftermath of a natural disaster underline the importance of a large array of networked environmental monitors to cover areas around nuclear power plants. These monitors should meet a few basic criteria: have a uniform response over a wide range of gamma energies, have a uniform response over a wide range of incident angles, and have a large dynamic range. Many of these criteria are met if the probe is qualified to the international standard IEC 60532 (Radiation protection instrumentation - Installed dose rate meters, warning assemblies and monitors - X and gamma radiation of energy between 50 keV and 7 MeV), which specifically deals with energy response, angle of incidence, dynamic range, response time, and a number of environmental characteristics. EcoGamma is a dual GM tube environmental gamma radiation monitor designed specifically to meet the requirements of IEC 60532 and operate in the most extreme conditions. EcoGamma utilizes two energy compensated GM tubes operating with a Time-To-Count (TTC) collection algorithm. The TTC algorithm extends the lifetime and range of a GM tube significantly and allows the dual GM tube probe to achieve linearity over approximately 10 decades of gamma dose rate (from the Sv/hr range to 100 Sv/hr). In the TTC mode of operation, the GM tube is not maintained in a biased condition continuously. This is different from a traditional counting system where the GM tube is held at a constant bias continuously and the total number of strikes that the tube registers are counted. The traditional approach allows for good sensitivity, but does not lend itself to a long lifetime of the tube and is susceptible to linearity issues at high count rates. TTC on the other hand only biases the tube for short periods of time and in effect measures the time between events, which is statistically representative of the total strike rate. Since the tube is not continually biased, the life of the tube

  13. Performance of a GM tube based environmental dose rate monitor operating in the Time-To-Count mode

    International Nuclear Information System (INIS)

    Zickefoose, J.; Kulkarni, T.; Martinson, T.; Phillips, K.; Voelker, M.

    2015-01-01

    The events at the Fukushima Daiichi power plant in the aftermath of a natural disaster underline the importance of a large array of networked environmental monitors to cover areas around nuclear power plants. These monitors should meet a few basic criteria: have a uniform response over a wide range of gamma energies, have a uniform response over a wide range of incident angles, and have a large dynamic range. Many of these criteria are met if the probe is qualified to the international standard IEC 60532 (Radiation protection instrumentation - Installed dose rate meters, warning assemblies and monitors - X and gamma radiation of energy between 50 keV and 7 MeV), which specifically deals with energy response, angle of incidence, dynamic range, response time, and a number of environmental characteristics. EcoGamma is a dual GM tube environmental gamma radiation monitor designed specifically to meet the requirements of IEC 60532 and operate in the most extreme conditions. EcoGamma utilizes two energy compensated GM tubes operating with a Time-To-Count (TTC) collection algorithm. The TTC algorithm extends the lifetime and range of a GM tube significantly and allows the dual GM tube probe to achieve linearity over approximately 10 decades of gamma dose rate (from the Sv/hr range to 100 Sv/hr). In the TTC mode of operation, the GM tube is not maintained in a biased condition continuously. This is different from a traditional counting system where the GM tube is held at a constant bias continuously and the total number of strikes that the tube registers are counted. The traditional approach allows for good sensitivity, but does not lend itself to a long lifetime of the tube and is susceptible to linearity issues at high count rates. TTC on the other hand only biases the tube for short periods of time and in effect measures the time between events, which is statistically representative of the total strike rate. Since the tube is not continually biased, the life of the tube

  14. Properties of a novel linear sulfur response mode in a multiple flame photometric detector.

    Science.gov (United States)

    Clark, Adrian G; Thurbide, Kevin B

    2014-01-24

    A new linear sulfur response mode was established in the multiple flame photometric detector (mFPD) by monitoring HSO* emission in the red spectral region above 600nm. Optimal conditions for this mode were found by using a 750nm interference filter and oxygen flows to the worker flames of this device that were about 10mL/min larger than those used for monitoring quadratic S2* emission. By employing these parameters, this mode provided a linear response over about 4 orders of magnitude, with a detection limit near 5.8×10(-11)gS/s and a selectivity of sulfur over carbon of about 3.5×10(3). Specifically, the minimum detectable masses for 10 different sulfur analytes investigated ranged from 0.4 to 3.6ng for peak half-widths spanning 4-6s. The response toward ten different sulfur compounds was examined and produced an average reproducibility of 1.7% RSD (n=10) and an average equimolarity value of 1.0±0.1. In contrast to this, a conventional single flame S2* mode comparatively yielded respective values of 6.7% RSD (n=10) and 1.1±0.4. HSO* emission in the mFPD was also found to be relatively much less affected by response quenching due to hydrocarbons compared to a conventional single flame S2* emission mode. Results indicate that this new alternative linear mFPD response mode could be beneficial for sulfur monitoring applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. The application of selected radionuclides for monitoring of the D-D reactions produced by dense plasma-focus device.

    Science.gov (United States)

    Jednorog, S; Szydlowski, A; Bienkowska, B; Prokopowicz, R

    The dense plasma focus (DPF) device-DPF-1000U which is operated at the Institute of Plasma Physics and Laser Microfusion is the largest that type plasma experiment in the world. The plasma that is formed in large plasma experiments is characterized by vast numbers of parameters. All of them need to be monitored. A neutron activation method occupies a high position among others plasma diagnostic methods. The above method is off-line, remote, and an integrated one. The plasma which has enough temperature to bring about nuclear fusion reactions is always a strong source of neutrons that leave the reactions area and take along energy and important information on plasma parameters and properties as well. Silver as activated material is used as an effective way of neutrons measurement, especially when they are emitted in the form of short pulses like as it happens from the plasma produced in Dense Plasma-Focus devices. Other elements such as beryllium and yttrium are newly introduced and currently tested at the Institute of Plasma Physics and Laser Microfusion to use them in suitable activation neutron detectors. Some specially designed massive indium samples have been recently adopted for angular neutrons distribution measurements (vertical and horizontal) and have been used in the recent plasma experiment conducted on the DPF-1000U device. This choice was substantiated by relatively long half-lives of the neutron induced isotopes and the threshold character of the 115 In(n,n') 115m In nuclear reaction.

  16. Instantaneous Respiratory Estimation from Thoracic Impedance by Empirical Mode Decomposition

    OpenAIRE

    Wang, Fu-Tai; Chan, Hsiao-Lung; Wang, Chun-Li; Jian, Hung-Ming; Lin, Sheng-Hsiung

    2015-01-01

    Impedance plethysmography provides a way to measure respiratory activity by sensing the change of thoracic impedance caused by inspiration and expiration. This measurement imposes little pressure on the body and uses the human body as the sensor, thereby reducing the need for adjustments as body position changes and making it suitable for long-term or ambulatory monitoring. The empirical mode decomposition (EMD) can decompose a signal into several intrinsic mode functions (IMFs) that disclos...

  17. A Microfluidic Chip Based on Localized Surface Plasmon Resonance for Real-Time Monitoring of Antigen-Antibody Reactions

    Science.gov (United States)

    Hiep, Ha Minh; Nakayama, Tsuyoshi; Saito, Masato; Yamamura, Shohei; Takamura, Yuzuru; Tamiya, Eiichi

    2008-02-01

    Localized surface plasmon resonance (LSPR) connecting to noble metal nanoparticles is an important issue for many analytical and biological applications. Therefore, the development of microfluidic LSPR chip that allows studying biomolecular interactions becomes an essential requirement for micro total analysis systems (µTAS) integration. However, miniaturized process of the conventional surface plasmon resonance system has been faced with some limitations, especially with the usage of Kretschmann configuration in total internal reflection mode. In this study, we have tried to solve this problem by proposing a novel microfluidic LSPR chip operated with a simple collinear optical system. The poly(dimethylsiloxane) (PDMS) based microfluidic chip was fabricated by soft-lithography technique and enables to interrogate specific insulin and anti-insulin antibody reaction in real-time after immobilizing antibody on its surface. Moreover, the sensing ability of microfluidic LSPR chip was also evaluated with various glucose concentrations. The kinetic constant of insulin and anti-insulin antibody was determined and the detection limit of 100 ng/mL insulin was archived.

  18. Charged particle cross-section database for medical radioisotope production: diagnostic radioisotopes and monitor reactions. Final report of a co-ordinated research project

    International Nuclear Information System (INIS)

    2001-05-01

    Medical applications of nuclear radiation are of considerable interest to the IAEA. Cyclotrons and accelerators, available in recent years in an increasing number of countries, are being used for the production of radioisotopes for both diagnostic and therapeutic purposes. The physical basis of this production is described through interaction of charged particles, such as protons, deuterons and alphas, with matter. These processes have to be well understood in order to produce radioisotopes in an efficient and clean manner. In addition to medical radioisotope production, reactions with low energy charged particles are of primary importance for two major applications. Techniques of ion beam analysis use many specific reactions to identify material properties, and in nuclear astrophysics there is interest in numerous reaction rates to understand nucleosynthesis in the Universe. A large number of medically oriented cyclotrons have been running in North America, western Europe and Japan for more than two decades. In recent years, 30-40 MeV cyclotrons and smaller cyclotrons (E p < 20 MeV) have been installed in several countries. Although the production methods are well established, there are no evaluated and recommended nuclear data sets available. The need for standardization was thus imminent. This was pointed out at three IAEA meetings. Based on the recommendations made at these meetings, the IAEA decided to undertake and organize the Co-ordinated Research Project (CRP) on Development of Reference Charged Particle Cross-Section Database for Medical Radioisotope Production. The project was initiated in 1995. It focused on radioisotopes for diagnostic purposes and on the related beam monitor reactions in order to meet current needs. It constituted the first major international effort dedicated to standardization of nuclear data for radioisotope production. It covered the following areas: Compilation of data on the most important reactions for monitoring light ion

  19. A kinetic model for chemical reactions without barriers: transport coefficients and eigenmodes

    International Nuclear Information System (INIS)

    Alves, Giselle M; Kremer, Gilberto M; Marques, Wilson Jr; Soares, Ana Jacinta

    2011-01-01

    The kinetic model of the Boltzmann equation proposed in the work of Kremer and Soares 2009 for a binary mixture undergoing chemical reactions of symmetric type which occur without activation energy is revisited here, with the aim of investigating in detail the transport properties of the reactive mixture and the influence of the reaction process on the transport coefficients. Accordingly, the non-equilibrium solutions of the Boltzmann equations are determined through an expansion in Sonine polynomials up to the first order, using the Chapman–Enskog method, in a chemical regime for which the reaction process is close to its final equilibrium state. The non-equilibrium deviations are explicitly calculated for what concerns the thermal–diffusion ratio and coefficients of shear viscosity, diffusion and thermal conductivity. The theoretical and formal analysis developed in the present paper is complemented with some numerical simulations performed for different concentrations of reactants and products of the reaction as well as for both exothermic and endothermic chemical processes. The results reveal that chemical reactions without energy barrier can induce an appreciable influence on the transport properties of the mixture. Oppositely to the case of reactions with activation energy, the coefficients of shear viscosity and thermal conductivity become larger than those of an inert mixture when the reactions are exothermic. An application of the non-barrier model and its detailed transport picture are included in this paper, in order to investigate the dynamics of the local perturbations on the constituent number densities, and velocity and temperature of the whole mixture, induced by spontaneous internal fluctuations. It is shown that for the longitudinal disturbances there exist two hydrodynamic sound modes, one purely diffusive hydrodynamic mode and one kinetic mode

  20. A kinetic model for chemical reactions without barriers: transport coefficients and eigenmodes

    Science.gov (United States)

    Alves, Giselle M.; Kremer, Gilberto M.; Marques, Wilson, Jr.; Jacinta Soares, Ana

    2011-03-01

    The kinetic model of the Boltzmann equation proposed in the work of Kremer and Soares 2009 for a binary mixture undergoing chemical reactions of symmetric type which occur without activation energy is revisited here, with the aim of investigating in detail the transport properties of the reactive mixture and the influence of the reaction process on the transport coefficients. Accordingly, the non-equilibrium solutions of the Boltzmann equations are determined through an expansion in Sonine polynomials up to the first order, using the Chapman-Enskog method, in a chemical regime for which the reaction process is close to its final equilibrium state. The non-equilibrium deviations are explicitly calculated for what concerns the thermal-diffusion ratio and coefficients of shear viscosity, diffusion and thermal conductivity. The theoretical and formal analysis developed in the present paper is complemented with some numerical simulations performed for different concentrations of reactants and products of the reaction as well as for both exothermic and endothermic chemical processes. The results reveal that chemical reactions without energy barrier can induce an appreciable influence on the transport properties of the mixture. Oppositely to the case of reactions with activation energy, the coefficients of shear viscosity and thermal conductivity become larger than those of an inert mixture when the reactions are exothermic. An application of the non-barrier model and its detailed transport picture are included in this paper, in order to investigate the dynamics of the local perturbations on the constituent number densities, and velocity and temperature of the whole mixture, induced by spontaneous internal fluctuations. It is shown that for the longitudinal disturbances there exist two hydrodynamic sound modes, one purely diffusive hydrodynamic mode and one kinetic mode.

  1. Autonomous Vehicles: Disengagements, Accidents and Reaction Times.

    Directory of Open Access Journals (Sweden)

    Vinayak V Dixit

    Full Text Available Autonomous vehicles are being viewed with scepticism in their ability to improve safety and the driving experience. A critical issue with automated driving at this stage of its development is that it is not yet reliable and safe. When automated driving fails, or is limited, the autonomous mode disengages and the drivers are expected to resume manual driving. For this transition to occur safely, it is imperative that drivers react in an appropriate and timely manner. Recent data released from the California trials provide compelling insights into the current factors influencing disengagements of autonomous mode. Here we show that the number of accidents observed has a significantly high correlation with the autonomous miles travelled. The reaction times to take control of the vehicle in the event of a disengagement was found to have a stable distribution across different companies at 0.83 seconds on average. However, there were differences observed in reaction times based on the type of disengagements, type of roadway and autonomous miles travelled. Lack of trust caused by the exposure to automated disengagements was found to increase the likelihood to take control of the vehicle manually. Further, with increased vehicle miles travelled the reaction times were found to increase, which suggests an increased level of trust with more vehicle miles travelled. We believe that this research would provide insurers, planners, traffic management officials and engineers fundamental insights into trust and reaction times that would help them design and engineer their systems.

  2. Autonomous Vehicles: Disengagements, Accidents and Reaction Times.

    Science.gov (United States)

    Dixit, Vinayak V; Chand, Sai; Nair, Divya J

    2016-01-01

    Autonomous vehicles are being viewed with scepticism in their ability to improve safety and the driving experience. A critical issue with automated driving at this stage of its development is that it is not yet reliable and safe. When automated driving fails, or is limited, the autonomous mode disengages and the drivers are expected to resume manual driving. For this transition to occur safely, it is imperative that drivers react in an appropriate and timely manner. Recent data released from the California trials provide compelling insights into the current factors influencing disengagements of autonomous mode. Here we show that the number of accidents observed has a significantly high correlation with the autonomous miles travelled. The reaction times to take control of the vehicle in the event of a disengagement was found to have a stable distribution across different companies at 0.83 seconds on average. However, there were differences observed in reaction times based on the type of disengagements, type of roadway and autonomous miles travelled. Lack of trust caused by the exposure to automated disengagements was found to increase the likelihood to take control of the vehicle manually. Further, with increased vehicle miles travelled the reaction times were found to increase, which suggests an increased level of trust with more vehicle miles travelled. We believe that this research would provide insurers, planners, traffic management officials and engineers fundamental insights into trust and reaction times that would help them design and engineer their systems.

  3. Autonomous Vehicles: Disengagements, Accidents and Reaction Times

    Science.gov (United States)

    Dixit, Vinayak V.; Chand, Sai; Nair, Divya J.

    2016-01-01

    Autonomous vehicles are being viewed with scepticism in their ability to improve safety and the driving experience. A critical issue with automated driving at this stage of its development is that it is not yet reliable and safe. When automated driving fails, or is limited, the autonomous mode disengages and the drivers are expected to resume manual driving. For this transition to occur safely, it is imperative that drivers react in an appropriate and timely manner. Recent data released from the California trials provide compelling insights into the current factors influencing disengagements of autonomous mode. Here we show that the number of accidents observed has a significantly high correlation with the autonomous miles travelled. The reaction times to take control of the vehicle in the event of a disengagement was found to have a stable distribution across different companies at 0.83 seconds on average. However, there were differences observed in reaction times based on the type of disengagements, type of roadway and autonomous miles travelled. Lack of trust caused by the exposure to automated disengagements was found to increase the likelihood to take control of the vehicle manually. Further, with increased vehicle miles travelled the reaction times were found to increase, which suggests an increased level of trust with more vehicle miles travelled. We believe that this research would provide insurers, planners, traffic management officials and engineers fundamental insights into trust and reaction times that would help them design and engineer their systems. PMID:27997566

  4. Parallel reaction monitoring on a Q Exactive mass spectrometer increases reproducibility of phosphopeptide detection in bacterial phosphoproteomics measurements.

    Science.gov (United States)

    Taumer, Christoph; Griesbaum, Lena; Kovacevic, Alen; Soufi, Boumediene; Nalpas, Nicolas C; Macek, Boris

    2018-03-29

    Increasing number of studies report the relevance of protein Ser/Thr/Tyr phosphorylation in bacterial physiology, yet the analysis of this type of modification in bacteria still presents a considerable challenge. Unlike in eukaryotes, where tens of thousands of phosphorylation events likely occupy more than two thirds of the proteome, the abundance of protein phosphorylation is much lower in bacteria. Even the state-of-the-art phosphopeptide enrichment protocols fail to remove the high background of abundant unmodified peptides, leading to low signal intensity and undersampling of phosphopeptide precursor ions in consecutive data-dependent MS runs. Consequently, large-scale bacterial phosphoproteomic datasets often suffer from poor reproducibility and a high number of missing values. Here we explore the application of parallel reaction monitoring (PRM) on a Q Exactive mass spectrometer in bacterial phosphoproteome analysis, focusing especially on run-to-run sampling reproducibility. In multiple measurements of identical phosphopeptide-enriched samples, we show that PRM outperforms data-dependent acquisition (DDA) in terms of detection frequency, reaching almost complete sampling efficiency, compared to 20% in DDA. We observe a similar trend over multiple heterogeneous phosphopeptide-enriched samples and conclude that PRM shows a great promise in bacterial phosphoproteomics analyses where reproducible detection and quantification of a relatively small set of phosphopeptides is desired. Bacterial phosphorylated peptides occur in low abundance compared to their unmodified counterparts, and are therefore rarely reproducibly detected in shotgun (DDA) proteomics measurements. Here we show that parallel reaction monitoring complements DDA analyses and makes detection of known, targeted phosphopeptides more reproducible. This will be of significance in replicated MS measurements that have a goal to reproducibly detect and quantify phosphopeptides of interest. Copyright

  5. Mass effect of redox reactions: A novel mode for surface plasmon resonance-based bioanalysis.

    Science.gov (United States)

    Yuan, Pei-Xin; Deng, Sheng-Yuan; Xin, Peng; Ji, Xu-Bo; Shan, Dan; Cosnier, Serge

    2015-12-15

    The pursuit of more specific and sensitive response is a perpetual goal for modern bioassays. This work proposed a novel label-free strategy about redox-related mass effect based on the surface plasmon resonance (SPR) technique for ultrasensitive determination of DNA. The protocol starts with the modification of SPR gilded disk with the capture DNA (cDNA). After the conjugation of immobilized cDNA with the target DNA (tDNA), the hybridization chain reaction was triggered by the introduction of mutual partial complementary primers to elongate the terminal into a nanoscale duplex. As it is reported that porphyrin could intercalate into the grooves of the double-stranded DNA (dsDNA) scaffold, multiple positive-charged Fe(III)meso-tetra(N-methyl-4-pyridyl) porphine (FeTMPyP) with symmetric structure were uptaken for in situ formation of porphyrin-dsDNA complex. Given FeTMPyP a highly efficient catalysis for the peroxide reduction, its presence as a biomimetic cofactor was validated via circular dichroism and UV-vis spectroscopy, demonstrating a tight binding as well as high catalytic activity and stability. Using 4-chloro-1-naphthol as a proton donor, the catalytic reduction of H2O2 would oxidize it into insoluble benzo-4-chloro-hexadienone, which simultaneously deposited on the heterogeneous interface, leading to a significant amplification in both SPR response and topological height profile. The signal increment was proportional to the concentration of tDNA, thus an ultrasensitive SPR-based DNA assay was developed with a linear range over four orders of magnitudes and a sub-femtomolar detection limit of 0.73 fM. The developed methodology exemplifies a different way of thinking about mass-sensing modes, extending conventional SPR-based DNA analysis to relevant biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. SIGNIFICANCE OF СD4+ Т-LYMPHOCYTE POPULATIONS MONITORING FOR DIAGNOSING AND FORECASTING OF ORGANISM REACTION ON TRANSPLANT

    Directory of Open Access Journals (Sweden)

    N. A. Onishchenko

    2013-01-01

    Full Text Available In this review article the necessity of adaptation and introduction into clinical practice of simultaneous monitoring of immune blood cells and cytokines in patients with grafted organs for a choice of individual tactic of immuno- suppressive therapy, determination of its efficiency and forecasting is proved. It is emphasized, that with the spe- cial attention it ought to concern to characteristic of CD4 + T-lymphocytes and to definition of an interrelation of their separate populations in peripheral blood (Treg, Th17, Tact memory cells – CD4+CD25hiCD127hiCD45RO since they are the basic participants of immune system reaction on grafts. 

  7. Continuous monitoring of the zinc-phosphate acid-base cement setting reaction by proton nuclear magnetic relaxation

    International Nuclear Information System (INIS)

    Apih, T.; Lebar, A.; Pawlig, O.; Trettin, R.

    2001-01-01

    Proton nuclear magnetic relaxation is a well-established technique for continuous and non destructive monitoring of hydration of conventional Portland building cements. Here, we demonstrate the feasibility of nuclear magnetic resonance (NMR) monitoring of the setting reaction of zinc-phosphate acid-base dental cements, which harden in minutes as compared to days, as in the case of Portland cements. We compare the setting of cement powder (mainly, zinc oxide) prepared with clinically used aluminum-modified orthophosphoric acid solution with the setting of a model system where cement powder is mixed with pure orthophosphoric acid solution. In contrast to previously published NMR studies of setting Portland cements, where a decrease of spin-lattice relaxation time is attributed to enhanced relaxation at the growing internal surface, spin-lattice relaxation time T 1 increases during the set of clinically used zinc-phosphate cement. Comparison of these results with a detailed study of diffusion, viscosity, and magnetic-field dispersion of T 1 in pure and aluminum-modified orthophosphoric acid demonstrates that the increase of T 1 in the setting cement is connected with the increase of molecular mobility in the residual phosphoric acid solution. Although not taken into account so far, such effects may also significantly influence the relaxation times in setting Portland cements, particularly when admixtures with an effect on water viscosity are used. [copyright] 2001 American Institute of Physics

  8. Plasma fluctuations and confinement of fusion reaction products

    International Nuclear Information System (INIS)

    Coppi, B.; Pegoraro, F.

    1981-01-01

    The interaction between the fluctuations that can be excited in a magnetically confined plasma and the high-energy-particle population produced by fusion reactions is analyzed in view of its relevance to the process of thermonuclear ignition. The spectrum of the perturbations that, in the absence of fusion reaction products, would be described by the incompressible ideal magnetohydrodynamic approximation is studied considering finite value of the plasma pressure relative ot the magnetic pressure. The combined effects of the magnetic field curvature and shear are taken into account and the relevant spectrum is shown to consist of a continuous portion, that could be identified as a mixture of shear-Alfven and interchange oscillations, and a discrete unstable part corresponding to the so-called ballooning modes. The rate of diffusion of the fusion reaction products induced by oscillations in the continuous part of the spectrum, as estimated from the appropriate quasi-linear theory, is found to be significantly smaller than could be expected if normal modes (i.e., nonconvective solutions) were excited. However, a relatively wide intermediate region is identified where opalescent fluctuations, capable of achieving significant amplitudes and corresponding to a quasi-discrete spectrum, can be excited

  9. Heavy lon Reactions The Elementary Processes, Parts I and II

    CERN Document Server

    Broglia, Ricardo A

    2004-01-01

    Combining elastic and inelastic processes with transfer reactions, this two-part volume explores how these events affect heavy ion collisions. Special attention is given to processes involving the transfer of two nucleons, which are specific for probing pairing correlations in nuclei. This novel treatment provides, together with the description of surface vibration and rotations, a unified picture of heavy ion reactions in terms of the elementary modes of nuclear excitation. Heavy Ion Reactions is essential reading for beginning graduate students as well as experienced researchers.

  10. The oxidative response and viable reaction mechanism of the textile dyes by fenton reagent

    International Nuclear Information System (INIS)

    Masooda, Q.; Hijira, T.; Sitara, M.; Sehar, M.; Sundus, A.; Mohsin, A.

    2017-01-01

    The mechanism of the degradation of the Reactive Red 239 and Reactive Blue 19 by Fenton reagent was studied by advanced oxidation process in aqueous medium. The spectroscopic technique was adopted for the measurements of dye concentration. Moreover they were determined at 540 nm and 590 nm, respectively. Kinetics of the reaction was studied under the effect of concentration of reactive dyes, concentration of oxidant were followed under pseudo first order condition and found to influence the catalytic mechanism. The pH of the medium, vibrant response of several cations and anions and influence of ionic strength on the reaction kinetics were also monitored. Physical evidences for the degradation and mineralization of the dyes were evaluated by Lime water test, Ring Test and TLC test also confirmed the degradation of dye. Inhibitory effects of dyes were observed by CO3-, HCO3-, HPO42-, Cl-, I- Al3+ and Na+. Thermodynamic activation parameters in the oxidation reaction were studied and mode of mechanism was suggested on the basic of these parameters. This study explored the safe and eco friendly degradation of the textile dyes under Pseudo first order rate constant. It was observed that Fenton assisted degradation of the dyes under controlled conditions was found to be favorable for the treatment of textile wastewater. Moreover compared to other chemical methods it is effective and harmless to the environment. (author)

  11. Stochastic semi-classical description of sub-barrier fusion reactions

    Directory of Open Access Journals (Sweden)

    Ayik Sakir

    2011-10-01

    Full Text Available A semi-classical method that incorporates the quantum effects of the low-lying vibrational modes is applied to fusion reactions. The quantum effect is simulated by stochastic sampling of initial zero-point fluctuations of the surface modes. In this model, dissipation of the relative energy into non-collective excitations of nuclei can be included straightforwardly. The inclusion of dissipation is shown to increase the agreement with the fusion cross section data of Ni isotopes.

  12. Electrochemical study of quinone redox cycling: A novel application of DNA-based biosensors for monitoring biochemical reactions.

    Science.gov (United States)

    Ensafi, Ali A; Jamei, Hamid Reza; Heydari-Bafrooei, Esmaeil; Rezaei, B

    2016-10-01

    This paper presents the results of an experimental investigation of voltammetric and impedimetric DNA-based biosensors for monitoring biological and chemical redox cycling reactions involving free radical intermediates. The concept is based on associating the amounts of radicals generated with the electrochemical signals produced, using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). For this purpose, a pencil graphite electrode (PGE) modified with multiwall carbon nanotubes and poly-diallydimethlammonium chloride decorated with double stranded fish sperm DNA was prepared to detect DNA damage induced by the radicals generated from a redox cycling quinone (i.e., menadione (MD; 2-methyl-1,4-naphthoquinone)). Menadione was employed as a model compound to study the redox cycling of quinones. A direct relationship was found between free radical production and DNA damage. The relationship between MD-induced DNA damage and free radical generation was investigated in an attempt to identify the possible mechanism(s) involved in the action of MD. Results showed that DPV and EIS were appropriate, simple and inexpensive techniques for the quantitative and qualitative comparisons of different reducing reagents. These techniques may be recommended for monitoring DNA damages and investigating the mechanisms involved in the production of redox cycling compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Optimal sensor configuration for flexible structures with multi-dimensional mode shapes

    International Nuclear Information System (INIS)

    Chang, Minwoo; Pakzad, Shamim N

    2015-01-01

    A framework for deciding the optimal sensor configuration is implemented for civil structures with multi-dimensional mode shapes, which enhances the applicability of structural health monitoring for existing structures. Optimal sensor placement (OSP) algorithms are used to determine the best sensor configuration for structures with a priori knowledge of modal information. The signal strength at each node is evaluated by effective independence and modified variance methods. Euclidean norm of signal strength indices associated with each node is used to expand OSP applicability into flexible structures. The number of sensors for each method is determined using the threshold for modal assurance criterion (MAC) between estimated (from a set of observations) and target mode shapes. Kriging is utilized to infer the modal estimates for unobserved locations with a weighted sum of known neighbors. A Kriging model can be expressed as a sum of linear regression and random error which is assumed as the realization of a stochastic process. This study presents the effects of Kriging parameters for the accurate estimation of mode shapes and the minimum number of sensors. The feasible ranges to satisfy MAC criteria are investigated and used to suggest the adequate searching bounds for associated parameters. The finite element model of a tall building is used to demonstrate the application of optimal sensor configuration. The dynamic modes of flexible structure at centroid are appropriately interpreted into the outermost sensor locations when OSP methods are implemented. Kriging is successfully used to interpolate the mode shapes from a set of sensors and to monitor structures associated with multi-dimensional mode shapes. (paper)

  14. Rapid establishment of polymerase chain reaction-restriction ...

    African Journals Online (AJOL)

    2012-03-30

    Mar 30, 2012 ... genome using polymerase chain reaction (PCR) has made it possible to explore organelle DNA diversity for taxonomic and phylogenetic purposes. Because of its uniparental mode of inheritance and its low mutation rate related to the nuclear genome, chloroplast DNA (cpDNA) is considered to be an ideal ...

  15. Defense against common-mode failures in protection system design

    International Nuclear Information System (INIS)

    Wyman, R.H.; Johnson, G.L.

    1998-01-01

    The introduction of digital instrumentation and control into reactor safety systems creates a heightened concern about common-mode failure. This paper discusses the concern and methods of cope with the concern. Common-mode failures have been a 'fact-of-life' in existing systems. The informal introduction of defense-in-depth and diversity (D-in-D and D) - coupled with the fact that hardware common-mode failures are often distributed in time - has allowed systems to deal with past common-mode failures. However, identical software operating in identical redundant systems presents the potential for simultaneous failure. Consequently, the use of digital systems raises the concern about common-mode failure to a new level. A more methodical approach to mitigating common-mode failure is needed to address these concerns. Purposeful introduction of D-in-D and D has been used as a defense against common-mode failure in reactor protection systems. At least two diverse systems are provided to mitigate any potential initiating event. Additionally, diverse displays and controls are provided to allow the operator to monitor plant status and manually initiate engineered safety features. A special form of common-mode failure analysis called 'defense-in-depth and diversity analysis' has been developed to identify possible common-mode failure vulnerabilities in digital systems. An overview of this analysis technique is provided. (author)

  16. Defense against common-mode failures in protection system design

    International Nuclear Information System (INIS)

    Wyman, R.H.; Johnson, G.L.

    1997-01-01

    The introduction of digital instrumentation and control into reactor safety systems creates a heightened concern about common-mode failure. This paper discusses the concern and methods to cope with the concern. Common-mode failures have been a ''fact-of-life'' in existing systems. The informal introduction of defense-in-depth and diversity (D-in-D ampersand D)-coupled with the fact that hardware common-mode failures are often distributed in time-has allowed systems to deal with past common-mode failures. However, identical software operating in identical redundant systems presents the potential for simultaneous failure. Consequently, the use of digital systems raises the concern about common-mode failure to a new level. A more methodical approach to mitigating common-mode failure is needed to address these concerns. Purposeful introduction of D-in-D ampersand D has been used as a defense against common-mode failure in reactor protection systems. At least two diverse systems are provided to mitigate any potential initiating event. Additionally, diverse displays and controls are provided to allow the operator to monitor plant status and manually initiate engineered safety features. A special form of conimon-mode failure analysis called ''defense-in-depth and diversity analysis'' has been developed to identify possible conimon-mode failure vulnerabilities in digital systems. An overview of this analysis technique is provided

  17. State-to-State Mode Specificity: Energy Sequestration and Flow Gated by Transition State.

    Science.gov (United States)

    Zhao, Bin; Sun, Zhigang; Guo, Hua

    2015-12-23

    Energy flow and sequestration at the state-to-state level are investigated for a prototypical four-atom reaction, H2 + OH → H + H2O, using a transition-state wave packet (TSWP) method. The product state distribution is found to depend strongly on the reactant vibrational excitation, indicating mode specificity at the state-to-state level. From a local-mode perspective, it is shown that the vibrational excitation of the H2O product derives from two different sources, one attributable to the energy flow along the reaction coordinate into the newly formed OH bond and the other due to the sequestration of the vibrational energy in the OH spectator moiety during the reaction. The analysis provided a unified interpretation of some seemingly contradicting experimental observations. It is further shown that the transfer of vibrational energy from the OH reactant to H2O product is gated by the transition state, accomplished coherently by multiple TSWPs with the corresponding OH vibrational excitation.

  18. Mode Specific Electronic Friction in Dissociative Chemisorption on Metal Surfaces: H2 on Ag(111)

    Science.gov (United States)

    Maurer, Reinhard J.; Jiang, Bin; Guo, Hua; Tully, John C.

    2017-06-01

    Electronic friction and the ensuing nonadiabatic energy loss play an important role in chemical reaction dynamics at metal surfaces. Using molecular dynamics with electronic friction evaluated on the fly from density functional theory, we find strong mode dependence and a dominance of nonadiabatic energy loss along the bond stretch coordinate for scattering and dissociative chemisorption of H2 on the Ag(111) surface. Exemplary trajectories with varying initial conditions indicate that this mode specificity translates into modulated energy loss during a dissociative chemisorption event. Despite minor nonadiabatic energy loss of about 5%, the directionality of friction forces induces dynamical steering that affects individual reaction outcomes, specifically for low-incidence energies and vibrationally excited molecules. Mode-specific friction induces enhanced loss of rovibrational rather than translational energy and will be most visible in its effect on final energy distributions in molecular scattering experiments.

  19. Monitoring mass transport in heterogeneously catalyzed reactions by field-gradient NMR for assessing reaction efficiency in a single pellet

    Science.gov (United States)

    Buljubasich, L.; Blümich, B.; Stapf, S.

    2011-09-01

    An important aspect in assessing the performance of a catalytically active reactor is the accessibility of the reactive sites inside the individual pellets, and the mass transfer of reactants and products to and from these sites. Optimal design often requires a suitable combination of micro- and macropores in order to facilitate mass transport inside the pellet. In an exothermic reaction, fluid exchange between the pellet and the surrounding medium is enhanced by convection, and often by the occurrence of gas bubbles. Determining mass flow in the vicinity of a pellet thus represents a parameter for quantifying the reaction efficiency and its dependence on time or external reaction conditions. Field gradient Nuclear Magnetic Resonance (NMR) methods are suggested as a tool for providing parameters sensitive to this mass flow in a contact-free and non-invasive way. For the example of bubble-forming hydrogen peroxide decomposition in an alumina pellet, the dependence of the mean-squared displacement of fluid molecules on spatial direction, observation time and reaction time is presented, and multi-pulse techniques are employed in order to separate molecular displacements from coherent and incoherent motion on the timescale of the experiment. The reaction progress is followed until the complete decomposition of H 2O 2.

  20. Degradation of chlorpyrifos contaminated soil by bioslurry reactor operated in sequencing batch mode: bioprocess monitoring

    International Nuclear Information System (INIS)

    Mohan, S. Venkata; Sirisha, K.; Rao, N. Chandrasekhara; Sarma, P.N.; Reddy, S. Jayarama

    2004-01-01

    Bioslurry reactor (SS-SBR) was studied for the degradation of chlorpyrifos contaminated soil using native mixed microflora, by adopting sequencing batch mode (anoxic-aerobic-anoxic) operation. Reactor operation was monitored for a total cycle period of 72 h consisting of 3 h of FILL, 64 h REACT, 2 h of SETTLE, and 3 h of DECANT with chlorpyrifos concentrations of 3000 μg/g, 6000 μg/g and 12000 μg/g. At 3000 μg/g of chlorpyrifos concentration, 91% was degraded after 72 h of the cycle period, whereas in the case of 6000 μg/g of chlorpyrifos, 82.5% was degraded. However, for 12000 μg/g of chlorpyrifos, only 14.5% degradation was observed. The degradation rate was rapid at lower substrate concentration and 12000 μg/g of substrate concentration was found to be inhibitory. Chlorpyrifos removal rate was slow during the initial phase of the sequence operation. Half-life of chlorpyrifos degradation (t 0.5 ) was estimated to be 6.3 h for 3000 μg/g of substrate, 17.5 h for 6000 μg/g and 732.2 h for 12000 μg/g. Process performance was assessed by monitoring chlorpyrifos concentration and biochemical process parameters viz., pH, oxidation and reduction potential (ORP), dissolved oxygen (DO), oxygen consumption rate (OCR) and microbial count (CFU) during sequence operation. From the experimental data obtained it can be concluded that the rate-limiting step with the bioslurry phase reactor in the process of chlorpyrifos degradation may be attributed to the concentration of substrate present in either soil or liquid phase. Periodic operations (SBR) by varying individual components of substrate with time in each process step place micro-organisms under nutritional changes from feast to famine and maintains a wide distribution in the population of micro-organisms resulting in high uptake of the substrate in the bioslurry reactor

  1. Degradation of chlorpyrifos contaminated soil by bioslurry reactor operated in sequencing batch mode: bioprocess monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, S. Venkata [Biochemical and Environmental Engineering Centre, Indian Institute of Chemical Technology, Hyderabad 500007 (India); Sirisha, K. [Electrochemical Research Laboratories, Department of Chemistry, Sri Venkateswara University, Tirupati 517502 (India); Rao, N. Chandrasekhara [Biochemical and Environmental Engineering Centre, Indian Institute of Chemical Technology, Hyderabad 500007 (India); Sarma, P.N. [Biochemical and Environmental Engineering Centre, Indian Institute of Chemical Technology, Hyderabad 500007 (India); Reddy, S. Jayarama [Electrochemical Research Laboratories, Department of Chemistry, Sri Venkateswara University, Tirupati 517502 (India)]. E-mail: profjreddy_s@yahoo.co.in

    2004-12-10

    Bioslurry reactor (SS-SBR) was studied for the degradation of chlorpyrifos contaminated soil using native mixed microflora, by adopting sequencing batch mode (anoxic-aerobic-anoxic) operation. Reactor operation was monitored for a total cycle period of 72 h consisting of 3 h of FILL, 64 h REACT, 2 h of SETTLE, and 3 h of DECANT with chlorpyrifos concentrations of 3000 {mu}g/g, 6000 {mu}g/g and 12000 {mu}g/g. At 3000 {mu}g/g of chlorpyrifos concentration, 91% was degraded after 72 h of the cycle period, whereas in the case of 6000 {mu}g/g of chlorpyrifos, 82.5% was degraded. However, for 12000 {mu}g/g of chlorpyrifos, only 14.5% degradation was observed. The degradation rate was rapid at lower substrate concentration and 12000 {mu}g/g of substrate concentration was found to be inhibitory. Chlorpyrifos removal rate was slow during the initial phase of the sequence operation. Half-life of chlorpyrifos degradation (t{sub 0.5}) was estimated to be 6.3 h for 3000 {mu}g/g of substrate, 17.5 h for 6000 {mu}g/g and 732.2 h for 12000 {mu}g/g. Process performance was assessed by monitoring chlorpyrifos concentration and biochemical process parameters viz., pH, oxidation and reduction potential (ORP), dissolved oxygen (DO), oxygen consumption rate (OCR) and microbial count (CFU) during sequence operation. From the experimental data obtained it can be concluded that the rate-limiting step with the bioslurry phase reactor in the process of chlorpyrifos degradation may be attributed to the concentration of substrate present in either soil or liquid phase. Periodic operations (SBR) by varying individual components of substrate with time in each process step place micro-organisms under nutritional changes from feast to famine and maintains a wide distribution in the population of micro-organisms resulting in high uptake of the substrate in the bioslurry reactor.

  2. Wearable health monitoring using capacitive voltage-mode Human Body Communication.

    Science.gov (United States)

    Maity, Shovan; Das, Debayan; Sen, Shreyas

    2017-07-01

    Rapid miniaturization and cost reduction of computing, along with the availability of wearable and implantable physiological sensors have led to the growth of human Body Area Network (BAN) formed by a network of such sensors and computing devices. One promising application of such a network is wearable health monitoring where the collected data from the sensors would be transmitted and analyzed to assess the health of a person. Typically, the devices in a BAN are connected through wireless (WBAN), which suffers from energy inefficiency due to the high-energy consumption of wireless transmission. Human Body Communication (HBC) uses the relatively low loss human body as the communication medium to connect these devices, promising order(s) of magnitude better energy-efficiency and built-in security compared to WBAN. In this paper, we demonstrate a health monitoring device and system built using Commercial-Off-The-Shelf (COTS) sensors and components, that can collect data from physiological sensors and transmit it through a) intra-body HBC to another device (hub) worn on the body or b) upload health data through HBC-based human-machine interaction to an HBC capable machine. The system design constraints and signal transfer characteristics for the implemented HBC-based wearable health monitoring system are measured and analyzed, showing reliable connectivity with >8× power savings compared to Bluetooth low-energy (BTLE).

  3. Square Turing patterns in reaction-diffusion systems with coupled layers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing [State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871 (China); Wang, Hongli, E-mail: hlwang@pku.edu.cn, E-mail: qi@pku.edu.cn [State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871 (China); Center for Quantitative Biology, Peking University, Beijing 100871 (China); Ouyang, Qi, E-mail: hlwang@pku.edu.cn, E-mail: qi@pku.edu.cn [State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871 (China); Center for Quantitative Biology, Peking University, Beijing 100871 (China); The Peking-Tsinghua Center for Life Sciences, Beijing 100871 (China)

    2014-06-15

    Square Turing patterns are usually unstable in reaction-diffusion systems and are rarely observed in corresponding experiments and simulations. We report here an example of spontaneous formation of square Turing patterns with the Lengyel-Epstein model of two coupled layers. The squares are found to be a result of the resonance between two supercritical Turing modes with an appropriate ratio. Besides, the spatiotemporal resonance of Turing modes resembles to the mode-locking phenomenon. Analysis of the general amplitude equations for square patterns reveals that the fixed point corresponding to square Turing patterns is stationary when the parameters adopt appropriate values.

  4. Postinduction minimal residual disease monitoring by polymerase chain reaction in children with acute lymphoblastic leukemia.

    Science.gov (United States)

    Paganin, Maddalena; Fabbri, Giulia; Conter, Valentino; Barisone, Elena; Polato, Katia; Cazzaniga, Giovanni; Giraldi, Eugenia; Fagioli, Franca; Aricò, Maurizio; Valsecchi, Maria Grazia; Basso, Giuseppe

    2014-11-01

    Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer. Monitoring minimal residual disease (MRD) by using real-time quantitative polymerase chain reaction (RQ-PCR) provides information for patient stratification and individual risk-directed treatment. Cooperative studies have documented that measurement of blast clearance from the bone marrow during and after induction therapy identifies patient populations with different risk of relapse. We explored the possible contribution of measurements of MRD during the course of treatment. We used RQ-PCR to detect MRD in 110 unselected patients treated in Italy in the International Collaborative Treatment Protocol for Children and Adolescents With Acute Lymphoblastic Leukemia (AIEOP-BFM ALL 2000). The trial took place in AIEOP centers during postinduction chemotherapy. Results were categorized as negative, low positive (below the quantitative range [< 5 × 10(-4)]), or high positive (≥ 5 × 10(-4)). Patients with at least one low-positive or high-positive result were assigned to the corresponding subgroup. Patients who tested high positive, low positive, or negative had significantly different cumulative incidences of leukemia relapse: 83.3%, 34.8%, and 8.6%, respectively (P < .001). Two thirds of positive cases were identified within 4 months after induction-consolidation therapy, suggesting that this time frame may be most suitable for cost-effective MRD monitoring, particularly in patients who did not clear their disease at the end of consolidation. These findings provide further insights into the dynamic of MRD and the ongoing effort to define molecular relapse in childhood ALL. © 2014 by American Society of Clinical Oncology.

  5. Movement monitoring device

    International Nuclear Information System (INIS)

    Ichikawa, Takashi; Yoneda, Yasuaki; Hanatsumi, Masaharu.

    1997-01-01

    The present invention provides a device suitable to accurate recognition for the moving state of reactor core fuels as an object to be monitored in a nuclear power plant. Namely, the device of the present invention prepares each of scheduled paths for the movement of the object to be monitored and executed moving paths along with the movement based on the information of the movement obtained from scheduled information for the movement of the reactor core fuels as a object to be monitored and the actual movement of the object to be monitored. The results of the preparation are outputted. As an output mode, (1) the results of preparation for each of the paths for movement and the results of the monitoring obtained by monitoring the state of the object to be monitored are jointed and outputted, (2) images showing each of the paths for the movement are formed, and the formed images are displayed on a screen, and (3) each of the moving paths is prepared as an image, and the image is displayed together with the image of the regions before and after the movement of the object to be monitored. In addition, obtained images of each of the paths for the movement and the monitored images obtained by monitoring the state of the object to be monitored are joined and displayed. (I.S.)

  6. Monitoring transcranial direct current stimulation induced changes in cortical excitability during the serial reaction time task.

    Science.gov (United States)

    Ambrus, Géza Gergely; Chaieb, Leila; Stilling, Roman; Rothkegel, Holger; Antal, Andrea; Paulus, Walter

    2016-03-11

    The measurement of the motor evoked potential (MEP) amplitudes using single pulse transcranial magnetic stimulation (TMS) is a common method to observe changes in motor cortical excitability. The level of cortical excitability has been shown to change during motor learning. Conversely, motor learning can be improved by using anodal transcranial direct current stimulation (tDCS). In the present study, we aimed to monitor cortical excitability changes during an implicit motor learning paradigm, a version of the serial reaction time task (SRTT). Responses from the first dorsal interosseous (FDI) and forearm flexor (FLEX) muscles were recorded before, during and after the performance of the SRTT. Online measurements were combined with anodal, cathodal or sham tDCS for the duration of the SRTT. Negative correlations between the amplitude of online FDI MEPs and SRTT reaction times (RTs) were observed across the learning blocks in the cathodal condition (higher average MEP amplitudes associated with lower RTs) but no significant differences in the anodal and sham conditions. tDCS did not have an impact on SRTT performance, as would be predicted based on previous studies. The offline before-after SRTT MEP amplitudes showed an increase after anodal and a tendency to decrease after cathodal stimulation, but these changes were not significant. The combination of different interventions during tDCS might result in reduced efficacy of the stimulation that in future studies need further attention. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Identifying Slow Molecular Motions in Complex Chemical Reactions.

    Science.gov (United States)

    Piccini, GiovanniMaria; Polino, Daniela; Parrinello, Michele

    2017-09-07

    We have studied the cyclization reaction of deprotonated 4-chloro-1-butanethiol to tetrahydrothiophene by means of well-tempered metadynamics. To properly select the collective variables, we used the recently proposed variational approach to conformational dynamics within the framework of metadyanmics. This allowed us to select the appropriate linear combinations from a set of collective variables representing the slow degrees of freedom that best describe the slow modes of the reaction. We performed our calculations at three different temperatures, namely, 300, 350, and 400 K. We show that the choice of such collective variables allows one to easily interpret the complex free-energy surface of such a reaction by univocal identification of the conformers belonging to reactants and product states playing a fundamental role in the reaction mechanism.

  8. Radiation monitoring data on the power-up test of HTTR. Results up to 20 MW operation

    International Nuclear Information System (INIS)

    Ashikagaya, Yoshinobu; Nakazawa, Takashi; Yoshino, Toshiaki; Yasu, Katsuji

    2002-01-01

    The High Temperature Engineering Test Reactor (HTTR) have completed the Power-up test of 9 MW (the single and parallel loaded operation) in the rated operation mode. After that the Power-up test in the rated operation mode and the high-temperature test operation mode with a thermal output of 20 MW (the single and parallel loaded operation) were performed between January 16, 2001 and June 10, 2001. This report describes the radiation monitoring data carried out during the HTTR Power-up test in the rated operation mode and the high-temperature test operation mode with a thermal output of 20 MW. The followings were concluded from these radiation monitoring data. The monitoring of radioactive gaseous effluents and the radiation protection for the works will be easy to do and the exposure dose of the workers will be kept the low level. (author)

  9. Click chemistry based biomolecular conjugation monitoring using surface-enhanced Raman spectroscopy mapping

    DEFF Research Database (Denmark)

    Palla, Mirko; Kumar, Shiv; Li, Zengmin

    2016-01-01

    We describe here a novel surface-enhanced Raman spectroscopy (SERS) based technique for monitoring the conjugation of small molecules by the well-known click reaction between an alkyne and azido moiety on the partner molecules. The monitoring principle is based on the loss of the characteristic...... alkyne/azide Raman signal with triazole formation in the reaction as a function of time. Since these universal Raman reporter groups are specific for click reactions, this method may facilitate a broad range of applications for monitoring the conjugation efficiency of molecules in diverse areas...

  10. Quasi-classical trajectory study of the role of vibrational and translational energy in the Cl(2P) + NH3 reaction.

    Science.gov (United States)

    Monge-Palacios, M; Corchado, J C; Espinosa-Garcia, J

    2012-05-28

    A detailed state-to-state dynamics study was performed to analyze the effects of vibrational excitation and translational energy on the dynamics of the Cl((2)P) + NH(3)(v) gas-phase reaction, effects which are connected to such issues as mode selectivity and Polanyi's rules. This reaction evolves along two deep wells in the entry and exit channels. At low and high collision energies quasi-classical trajectory calculations were performed on an analytical potential energy surface previously developed by our group, together with a simplified model surface in which the reactant well is removed to analyze the influence of this well. While at high energy the independent vibrational excitation of all NH(3)(v) modes increases the reactivity by a factor ≈1.1-2.9 with respect to the vibrational ground-state, at low energy the opposite behaviour is found (factor ≈ 0.4-0.9). However, when the simplified model surface is used at low energy the independent vibrational excitation of all NH(3)(v) modes increases the reactivity, showing that the behaviour at low energies is a direct consequence of the existence of the reactant well. Moreover, we find that this reaction exhibits negligible mode selectivity, first because the independent excitation of the N-H symmetric and asymmetric stretch modes, which lie within 200 cm(-1) of each other, leads to reactions with similar reaction probabilities, and second because the vibrational excitation of the reactive N-H stretch mode is only partially retained in the products. For this "late transition-state" reaction, we also find that vibrational energy is more effective in driving the reaction than an equivalent amount of energy in translation, consistent with an extension of Polanyi's rules. Finally, we find that the non-reactive events, Cl((2)P)+NH(3)(v) → Cl((2)P) + NH(3)(v'), lead to a great number of populated vibrational states in the NH(3)(v') product, even starting from the NH(3)(v = 0) vibrational ground state at low energies

  11. HPLC method for rapidly following biodiesel fuel transesterification reaction progress using a core-shell column.

    Science.gov (United States)

    Allen, Samuel J; Ott, Lisa S

    2012-07-01

    There are a wide and growing variety of feedstocks for biodiesel fuel. Most commonly, these feedstocks contain triglycerides which are transesterified into the fatty acid alkyl esters (FAAEs) which comprise biodiesel fuel. While the tranesterification reaction itself is simple, monitoring the reaction progress and reaction products is not. Gas chromatography-mass spectrometry is useful for assessing the FAAE products, but does not directly address either the tri-, di-, or monoglycerides present from incomplete transesterification or the free fatty acids which may also be present. Analysis of the biodiesel reaction mixture is complicated by the solubility and physical property differences among the components of the tranesterification reaction mixture. In this contribution, we present a simple, rapid HPLC method which allows for monitoring all of the main components in a biodiesel fuel transesterification reaction, with specific emphasis on the ability to monitor the reaction as a function of time. The utilization of a relatively new, core-shell stationary phase for the HPLC column allows for efficient separation of peaks with short elution times, saving both time and solvent.

  12. MONITORING REACTIONS IN ALKALINE DIRECT ETHANOL FUEL CELLS ASSEMBLED WITH NON-PT-CATALYST

    OpenAIRE

    Gülzow, Erich; Beyer, Monique; Friedrich, K. Andreas; Pengel, Stefanie; Fischer, Peter; Bettermann, Hans

    2011-01-01

    This contribution shows how Raman spectroscopy can be used to pursue chemical reactions within fuel cells. For this, the oxidation of ethanol occurring in an alkaline direct ethanolic fuel cell was investigated. The analysis of a sequence of Raman spectra recorded during the reaction shows that ethanol was solely oxidized to acetate in a unique reaction.

  13. Energy spectrum of tearing mode turbulence in sheared background field

    Science.gov (United States)

    Hu, Di; Bhattacharjee, Amitava; Huang, Yi-Min

    2018-06-01

    The energy spectrum of tearing mode turbulence in a sheared background magnetic field is studied in this work. We consider the scenario where the nonlinear interaction of overlapping large-scale modes excites a broad spectrum of small-scale modes, generating tearing mode turbulence. The spectrum of such turbulence is of interest since it is relevant to the small-scale back-reaction on the large-scale field. The turbulence we discuss here differs from traditional MHD turbulence mainly in two aspects. One is the existence of many linearly stable small-scale modes which cause an effective damping during the energy cascade. The other is the scale-independent anisotropy induced by the large-scale modes tilting the sheared background field, as opposed to the scale-dependent anisotropy frequently encountered in traditional critically balanced turbulence theories. Due to these two differences, the energy spectrum deviates from a simple power law and takes the form of a power law multiplied by an exponential falloff. Numerical simulations are carried out using visco-resistive MHD equations to verify our theoretical predictions, and a reasonable agreement is found between the numerical results and our model.

  14. Magnetic Dipole and Gamow-Teller Modes in Neutrino-Nucleus Reactions: Impact on Supernova Dynamics and Nucleosynthesis

    International Nuclear Information System (INIS)

    Neumann-Cosel, P. von; Byelikov, A.; Richter, A.; Shevchenko, A.; Adachi, T.; Fujita, Y.; Shimbara, Y.; Fujita, H.; Heger, A.; Kolbe, E.; Langanke, K.; Martinez-Pinedo, G.

    2006-01-01

    Some aspects of the importance of neutrino-induced reactions on nuclei within supernova physics are discussed. It is argued that important constraints on the experimentally unknown cross sections can be obtained from experimental studies of the nuclear response in selected cases. Examples are neutral-current induced reactions on fp-shell nuclei extracted from high-resolution inelastic electron scattering data providing the M1 strength distributions and the production of the exotic heavy, odd-odd nuclei 138La and 180Ta through charged-current reactions dominated by Gamow-Teller transitions. The Gamow-Teller strength can deduced from the (3He,t) charge-exchange reaction at zero degree

  15. Auxetic Foam-Based Contact-Mode Triboelectric Nanogenerator with Highly Sensitive Self-Powered Strain Sensing Capabilities to Monitor Human Body Movement

    KAUST Repository

    Zhang, Steven L.; Lai, Ying-Chih; He, Xu; Liu, Ruiyuan; Zi, Yunlong; Wang, Zhong Lin

    2017-01-01

    The first contact-mode triboelectric self-powered strain sensor using an auxetic polyurethane foam, conductive fabric, and polytetrafluroethylene (PTFE) is fabricated. Utilizing the auxetic properties of the polyurethane foam, the auxetic polyurethane foam would expand into the PTFE when the foam is stretched, causing contact electrification. Due to a larger contact area between the PTFE and the foam as the foam is stretched, this device can serve effectively as a strain sensor. The sensitivity of this method is explored, and this sensor has the highest sensitivity in all triboelectric nanogenerator devices that are used previously as a strain sensor. Different applications of this strain sensor are shown, and this sensor can be used as a human body monitoring system, self-powered scale to measure weight, and a seat belt to measure body movements inside a car seat.

  16. Auxetic Foam-Based Contact-Mode Triboelectric Nanogenerator with Highly Sensitive Self-Powered Strain Sensing Capabilities to Monitor Human Body Movement

    KAUST Repository

    Zhang, Steven L.

    2017-05-15

    The first contact-mode triboelectric self-powered strain sensor using an auxetic polyurethane foam, conductive fabric, and polytetrafluroethylene (PTFE) is fabricated. Utilizing the auxetic properties of the polyurethane foam, the auxetic polyurethane foam would expand into the PTFE when the foam is stretched, causing contact electrification. Due to a larger contact area between the PTFE and the foam as the foam is stretched, this device can serve effectively as a strain sensor. The sensitivity of this method is explored, and this sensor has the highest sensitivity in all triboelectric nanogenerator devices that are used previously as a strain sensor. Different applications of this strain sensor are shown, and this sensor can be used as a human body monitoring system, self-powered scale to measure weight, and a seat belt to measure body movements inside a car seat.

  17. Chemical dynamics simulations of X- + CH3Y → XCH3 + Y- gas-phase S(N)2 nucleophilic substitution reactions. Nonstatistical dynamics and nontraditional reaction mechanisms.

    Science.gov (United States)

    Manikandan, Paranjothy; Zhang, Jiaxu; Hase, William L

    2012-03-29

    Extensive classical chemical dynamics simulations of gas-phase X(-) + CH(3)Y → XCH(3) + Y(-) S(N)2 nucleophilic substitution reactions are reviewed and discussed and compared with experimental measurements and predictions of theoretical models. The primary emphasis is on reactions for which X and Y are halogen atoms. Both reactions with the traditional potential energy surface (PES), which include pre- and postreaction potential energy minima and a central barrier, and reactions with nontraditional PESs are considered. These S(N)2 reactions exhibit important nonstatistical atomic-level dynamics. The X(-) + CH(3)Y → X(-)---CH(3)Y association rate constant is less than the capture model as a result of inefficient energy transfer from X(-)+ CH(3)Y relative translation to CH(3)Y rotation and vibration. There is weak coupling between the low-frequency intermolecular modes of the X(-)---CH(3)Y complex and higher frequency CH(3)Y intramolecular modes, resulting in non-RRKM kinetics for X(-)---CH(3)Y unimolecular decomposition. Recrossings of the [X--CH(3)--Y](-) central barrier is important. As a result of the above dynamics, the relative translational energy and temperature dependencies of the S(N)2 rate constants are not accurately given by statistical theory. The nonstatistical dynamics results in nonstatistical partitioning of the available energy to XCH(3) +Y(-) reaction products. Besides the indirect, complex forming atomic-level mechanism for the S(N)2 reaction, direct mechanisms promoted by X(-) + CH(3)Y relative translational or CH(3)Y vibrational excitation are possible, e.g., the roundabout mechanism.

  18. Combustion Synthesis Reaction Behavior of Cold-Rolled Ni/Al and Ti/Al Multilayers

    Science.gov (United States)

    2011-04-01

    reaction modes of the films. Anselmi-Tamburini and Munir (21) studied the 2 SHS reaction in laminated Ni/Al foils and established a sequence of... convolution of three peaks. The very large broad peak, centered on position C, contains a superimposed peak appearing as a shoulder (position A) and a

  19. Development of multimedia computer-based training for VXI integrated fuel monitors

    International Nuclear Information System (INIS)

    Keeffe, R.; Ellacott, T.; Truong, Q.S.

    1999-01-01

    The Canadian Safeguards Support Program has developed the VXI Integrated Fuel Monitor (VFIM) which is based on the international VXI instrument bus standard. This equipment is a generic radiation monitor which can be used in an integrated mode where several detection systems can be connected to a common system where information is collected, displayed, and analyzed via a virtual control panel with the aid of computers, trackball and computer monitor. The equipment can also be used in an autonomous mode as a portable radiation monitor with a very low power consumption. The equipment has been described at previous international symposia. Integration of several monitoring systems (bundle counter, core discharge monitor, and yes/no monitor) has been carried out at Wolsong 2. Performance results from one of the monitoring systems which was installed at CANDU nuclear stations are discussed in a companion paper at this symposium. This paper describes the development of an effective multimedia computer-based training package for the primary users of the equipment; namely IAEA inspectors and technicians. (author)

  20. Mapping Students' Conceptual Modes When Thinking about Chemical Reactions Used to Make a Desired Product

    Science.gov (United States)

    Weinrich, M. L.; Talanquer, V.

    2015-01-01

    The central goal of this qualitative research study was to uncover major implicit assumptions that students with different levels of training in the discipline apply when thinking and making decisions about chemical reactions used to make a desired product. In particular, we elicited different ways of conceptualizing why chemical reactions happen…

  1. Real Time Monitoring of Containerless Microreactions in Acoustically Levitated Droplets via Ambient Ionization Mass Spectrometry.

    Science.gov (United States)

    Crawford, Elizabeth A; Esen, Cemal; Volmer, Dietrich A

    2016-09-06

    Direct in-droplet (in stillo) microreaction monitoring using acoustically levitated micro droplets has been achieved by combining acoustic (ultrasonic) levitation for the first time with real time ambient tandem mass spectrometry (MS/MS). The acoustic levitation and inherent mixing of microliter volumes of reactants (3 μL droplets), yielding total reaction volumes of 6 μL, supported monitoring the acid-catalyzed degradation reaction of erythromycin A. This reaction was chosen to demonstrate the proof-of-principle of directly monitoring in stillo microreactions via hyphenated acoustic levitation and ambient ionization mass spectrometry. The microreactions took place completely in stillo over 30, 60, and 120 s within the containerless stable central pressure node of an acoustic levitator, thus readily promoting reaction miniaturization. For the evaluation of the miniaturized in stillo reactions, the degradation reactions were also carried out in vials (in vitro) with a total reaction volume of 400 μL. The reacted in vitro mixtures (6 μL total) were similarly introduced into the acoustic levitator prior to ambient ionization MS/MS analysis. The in stillo miniaturized reactions provided immediate real-time snap-shots of the degradation process for more accurate reaction monitoring and used a fraction of the reactants, while the larger scale in vitro reactions only yielded general reaction information.

  2. Non-linear multivariate and multiscale monitoring and signal denoising strategy using Kernel Principal Component Analysis combined with Ensemble Empirical Mode Decomposition method

    Science.gov (United States)

    Žvokelj, Matej; Zupan, Samo; Prebil, Ivan

    2011-10-01

    The article presents a novel non-linear multivariate and multiscale statistical process monitoring and signal denoising method which combines the strengths of the Kernel Principal Component Analysis (KPCA) non-linear multivariate monitoring approach with the benefits of Ensemble Empirical Mode Decomposition (EEMD) to handle multiscale system dynamics. The proposed method which enables us to cope with complex even severe non-linear systems with a wide dynamic range was named the EEMD-based multiscale KPCA (EEMD-MSKPCA). The method is quite general in nature and could be used in different areas for various tasks even without any really deep understanding of the nature of the system under consideration. Its efficiency was first demonstrated by an illustrative example, after which the applicability for the task of bearing fault detection, diagnosis and signal denosing was tested on simulated as well as actual vibration and acoustic emission (AE) signals measured on purpose-built large-size low-speed bearing test stand. The positive results obtained indicate that the proposed EEMD-MSKPCA method provides a promising tool for tackling non-linear multiscale data which present a convolved picture of many events occupying different regions in the time-frequency plane.

  3. The Dutch Brucella abortus monitoring programme for cattle: the impact of false-positive serological reactions and comparison of serological tests.

    Science.gov (United States)

    Emmerzaal, A; de Wit, J J; Dijkstra, Th; Bakker, D; van Zijderveld, F G

    2002-02-01

    The Dutch national Brucella abortus eradication programme for cattle started in 1959. Sporadic cases occurred yearly until 1995; the last infected herd was culled in 1996. In August 1999 the Netherlands was declared officially free of bovine brucellosis by the European Union. Before 1999, the programme to monitor the official Brucella-free status of bovine herds was primarily based on periodical testing of dairy herds with the milk ring test (MRT) and serological testing of all animals older than 1 year of age from non-dairy herds, using the micro-agglutination test (MAT) as screening test. In addition, serum samples of cattle that aborted were tested with the MAT. The high number of false positive reactions in both tests and the serum agglutination test (SAT) and complement fixation test (CFT) used for confirmation seemed to result in unnecessary blockade of herds, subsequent testing and slaughter of animals. For this reason, a validation study was performed in which three indirect enzyme-linked immunosorbent assays (ELISAs), the CFT and the SAT were compared using a panel of sera from brucellosis-free cattle, sera from experimentally infected cattle, and sera from cattle experimentally infected with bacteria which are known to induce cross-reactive antibodies (Pasteurella, Salmonella, Yersinia, and Escherichia). Moreover, four ELISAs and the MRT were compared using a panel of 1000 bulk milk samples from Brucella-free herds and 12 milk samples from Brucella abortus- infected cattle. It is concluded that the ELISA obtained from ID-Lelystad is the most suitable test to monitor the brucelosis free status of herds because it gives rise to fewer false-positive reactions than the SAT.

  4. Action monitoring and perfectionism in anorexia nervosa

    NARCIS (Netherlands)

    Pieters, G.L.M.; Bruijn, E.R.A. de; Maas, Y.J.; Hulstijn, W.; Vandereycken, W.; Peuskens, J.; Sabbe, B.G.C.

    2007-01-01

    To study action monitoring in anorexia nervosa, behavioral and EEG measures were obtained in underweight anorexia nervosa patients (n = 17) and matched healthy controls (n = 19) while performing a speeded choice-reaction task. Our main measures of interest were questionnaire outcomes, reaction

  5. Training of the IMIS-emergency mode by the German Meterological Service

    International Nuclear Information System (INIS)

    Steinkopff, Th.; Mirsch, M.; Dyck, W.

    2003-01-01

    Due to a set of general administrative regulations for the ''Integrated Measuring and Information System for the Monitoring of Radioactivity in the Environment'' the measuring programmes for the normal mode and the emergency mode have a different design. In case of an emergency the results of the meteorological prognosis and the measuring data provide a first input for the calculation of the dosis. The capability to change from normal mode to emergency mode without difficulties should therefore be guaranteed. Only continuously operated exercises give a tool to test the organisation and the working-procedures in an emergency mode. The integration of all the different working-units is documented in an emergency programme. In the frame of an exercise of three days in 2002 valuable results have been experienced. The exercise took into account real meteorological data. Requirements for the further optimization were the result of this exercise. (orig.)

  6. Two-mode PLC-based mode multi/demultiplexer for mode and wavelength division multiplexed transmission.

    Science.gov (United States)

    Hanzawa, Nobutomo; Saitoh, Kuimasa; Sakamoto, Taiji; Matsui, Takashi; Tsujikawa, Kyozo; Koshiba, Masanori; Yamamoto, Fumihiko

    2013-11-04

    We proposed a PLC-based mode multi/demultiplexer (MUX/DEMUX) with an asymmetric parallel waveguide for mode division multiplexed (MDM) transmission. The mode MUX/DEMUX including a mode conversion function with an asymmetric parallel waveguide can be realized by matching the effective indices of the LP(01) and LP(11) modes of two waveguides. We report the design of a mode MUX/DEMUX that can support C-band WDM-MDM transmission. The fabricated mode MUX/DEMUX realized a low insertion loss of less than 1.3 dB and high a mode extinction ratio that exceeded 15 dB. We used the fabricated mode MUX/DEMUX to achieve a successful 2 mode x 4 wavelength x 10 Gbps transmission over a 9 km two-mode fiber with a penalty of less than 1 dB.

  7. Parametric spatiotemporal oscillation in reaction-diffusion systems.

    Science.gov (United States)

    Ghosh, Shyamolina; Ray, Deb Shankar

    2016-03-01

    We consider a reaction-diffusion system in a homogeneous stable steady state. On perturbation by a time-dependent sinusoidal forcing of a suitable scaling parameter the system exhibits parametric spatiotemporal instability beyond a critical threshold frequency. We have formulated a general scheme to calculate the threshold condition for oscillation and the range of unstable spatial modes lying within a V-shaped region reminiscent of Arnold's tongue. Full numerical simulations show that depending on the specificity of nonlinearity of the models, the instability may result in time-periodic stationary patterns in the form of standing clusters or spatially localized breathing patterns with characteristic wavelengths. Our theoretical analysis of the parametric oscillation in reaction-diffusion system is corroborated by full numerical simulation of two well-known chemical dynamical models: chlorite-iodine-malonic acid and Briggs-Rauscher reactions.

  8. Multi-control modes for a master-slave manipulator with different configurations and its maneuverability

    International Nuclear Information System (INIS)

    Matsuhira, Nobuto; Asakura, Makoto; Bamba, Hiroyuki

    1995-01-01

    The new master-slave control method is proposed on multi-control modes for a master-slave manipulator with different configurations. A virtual internal model following control is applied to position symmetrical bilateral control. In our method, a master-slave control mode (MS-mode), a joystick control mode (JS-mode), a master arm offset mode (OM-mode), and a servo hold mode (LK-mode) are able to be realized by operating the desired output values of the virtual internal models in a common control algorithm. There is compliant characteristic between the master and slave models. In the result of evaluation experiments between the MS-mode and the JS-mode, although the MS-mode is superior to the JS-mode in manipulating a fine task, our JS-mode is found to be useful to carry out such a task compared with a conventional JS-mode which only directs the rates for the slave arm. In the JS-mode, the slave arm moves to the position where the reaction force of the slave arm and the operating force of the master arm are balanced. Thus, it is possible either to control an overload for an object and to control the contact force. The validity of the proposed method is verified. (author)

  9. Nonintercepting emittance monitor

    International Nuclear Information System (INIS)

    Miller, R.H.; Clendenin, J.E.; James, M.B.; Sheppard, J.C.

    1983-08-01

    A nonintercepting emittance monitor is a helpful device for measuring and improving particle beams in accelerators and storage rings as it allows continuous monitoring of the beam's distribution in phase space, and perhaps closed loop computer control of the distributions. Stripline position monitors are being investigated for use as nonintercepting emittance monitors for a beam focused by a FODO array in the first 100 meters of our linear accelerator. The technique described here uses the signal from the four stripline probes of a single position monitor to measure the quadrupole mode of the wall current in the beam pipe. This current is a function of the quadrupole moment of the beam, sigma 2 /sub x/ - sigma 2 /sub y/. In general, six independent measurements of the quadrupole moment are necessary to determine the beam emittance. This technique is dependent on the characteristically large variations of sigma 2 /sub x/ - sigma 2 /sub y/ in a FODO array. It will not work in a focusing system where the beam is round at each focusing element

  10. Suicide Survivors' Mental Health and Grief Reactions: A Systematic Review of Controlled Studies

    Science.gov (United States)

    Sveen, Carl-Aksel; Walby, Fredrik A.

    2008-01-01

    There has been a debate over several decades whether suicide survivors experience more severe mental health consequences and grief reactions than those who have been bereaved through other causes of death. This is the first systematic review of suicide survivors' reactions compared with survivors after other modes of death. Studies were identified…

  11. Photovoltaics: tests of thin-film technologies. 6 thin-film technologies in 3 different BIPV modes compared in a real outdoor performance test; PV-ThinFilmTest. 6 thin-film technologies in 3 different BIPV modes compared in a real outdoor performance test

    Energy Technology Data Exchange (ETDEWEB)

    Frei, R.; Meier, Ch.

    2005-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a comparison made between six types of thin-film, building-integrated photovoltaic (BIPV) technologies used in three different modes of building-integration. More than 450 thin-film modules including amorphous silicon and CIS technologies were monitored. Each type of module was installed in three different modes: inclined (20{sup o}), flat with free back air flow, and flat with thermal back insulation. The performance of these commercially available thin-film BIPV systems was monitored using an extensive monitoring program. Additionally, three mono-crystalline PV arrays allowed direct comparison of the technologies. The results of the monitoring work are presented and further work to be done is discussed, including the monitoring of possible long-term degradation.

  12. The nuclear reaction model code MEDICUS

    International Nuclear Information System (INIS)

    Ibishia, A.I.

    2008-01-01

    The new computer code MEDICUS has been used to calculate cross sections of nuclear reactions. The code, implemented in MATLAB 6.5, Mathematica 5, and Fortran 95 programming languages, can be run in graphical and command line mode. Graphical User Interface (GUI) has been built that allows the user to perform calculations and to plot results just by mouse clicking. The MS Windows XP and Red Hat Linux platforms are supported. MEDICUS is a modern nuclear reaction code that can compute charged particle-, photon-, and neutron-induced reactions in the energy range from thresholds to about 200 MeV. The calculation of the cross sections of nuclear reactions are done in the framework of the Exact Many-Body Nuclear Cluster Model (EMBNCM), Direct Nuclear Reactions, Pre-equilibrium Reactions, Optical Model, DWBA, and Exciton Model with Cluster Emission. The code can be used also for the calculation of nuclear cluster structure of nuclei. We have calculated nuclear cluster models for some nuclei such as 177 Lu, 90 Y, and 27 Al. It has been found that nucleus 27 Al can be represented through the two different nuclear cluster models: 25 Mg + d and 24 Na + 3 He. Cross sections in function of energy for the reaction 27 Al( 3 He,x) 22 Na, established as a production method of 22 Na, are calculated by the code MEDICUS. Theoretical calculations of cross sections are in good agreement with experimental results. Reaction mechanisms are taken into account. (author)

  13. Combustion kinetics and reaction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Klemm, R.B.; Sutherland, J.W. [Brookhaven National Laboratory, Upton, NY (United States)

    1993-12-01

    This project is focused on the fundamental chemistry of combustion. The overall objectives are to determine rate constants for elementary reactions and to elucidate the pathways of multichannel reactions. A multitechnique approach that features three independent experiments provides unique capabilities in performing reliable kinetic measurements over an exceptionally wide range in temperature, 300 to 2500 K. Recent kinetic work has focused on experimental studies and theoretical calculations of the methane dissociation system (CH{sub 4} + Ar {yields} CH{sub 3} + H + Ar and H + CH{sub 4} {yields} CH{sub 3} + H{sub 2}). Additionally, a discharge flow-photoionization mass spectrometer (DF-PIMS) experiment is used to determine branching fractions for multichannel reactions and to measure ionization thresholds of free radicals. Thus, these photoionization experiments generate data that are relevant to both reaction pathways studies (reaction dynamics) and fundamental thermochemical research. Two distinct advantages of performing PIMS with high intensity, tunable vacuum ultraviolet light at the National Synchrotron Light Source are high detection sensitivity and exceptional selectivity in monitoring radical species.

  14. ATAQS: A computational software tool for high throughput transition optimization and validation for selected reaction monitoring mass spectrometry

    Directory of Open Access Journals (Sweden)

    Ramos Hector

    2011-03-01

    Full Text Available Abstract Background Since its inception, proteomics has essentially operated in a discovery mode with the goal of identifying and quantifying the maximal number of proteins in a sample. Increasingly, proteomic measurements are also supporting hypothesis-driven studies, in which a predetermined set of proteins is consistently detected and quantified in multiple samples. Selected reaction monitoring (SRM is a targeted mass spectrometric technique that supports the detection and quantification of specific proteins in complex samples at high sensitivity and reproducibility. Here, we describe ATAQS, an integrated software platform that supports all stages of targeted, SRM-based proteomics experiments including target selection, transition optimization and post acquisition data analysis. This software will significantly facilitate the use of targeted proteomic techniques and contribute to the generation of highly sensitive, reproducible and complete datasets that are particularly critical for the discovery and validation of targets in hypothesis-driven studies in systems biology. Result We introduce a new open source software pipeline, ATAQS (Automated and Targeted Analysis with Quantitative SRM, which consists of a number of modules that collectively support the SRM assay development workflow for targeted proteomic experiments (project management and generation of protein, peptide and transitions and the validation of peptide detection by SRM. ATAQS provides a flexible pipeline for end-users by allowing the workflow to start or end at any point of the pipeline, and for computational biologists, by enabling the easy extension of java algorithm classes for their own algorithm plug-in or connection via an external web site. This integrated system supports all steps in a SRM-based experiment and provides a user-friendly GUI that can be run by any operating system that allows the installation of the Mozilla Firefox web browser. Conclusions Targeted

  15. Vibronic coupling in ionized organic molecules: structural distortions and chemical reactions

    International Nuclear Information System (INIS)

    Williams, Ffrancon

    2003-01-01

    Ionized organic molecules (radical cations) in radiation chemistry are liable to undergo vibronic coupling whenever there is a relatively small energy gap (∼0.5-1.5 eV) between their ground and excited states. As a result of this mixing, the force constant for the symmetry-allowed vibrational mode that couples these states is lowered in the ground state of the radical cation so that deformation can take place more easily along this specific mode. This pseudo-Jahn-Teller effect can then result in a permanent structural distortion of the radical cation relative to the symmetry of the parent neutral molecule. It can also bring about an energetically favored pathway for a facile chemical rearrangement along a reaction coordinate defined by the coupling mode. Examples taken from matrix-isolation studies are used to illustrate these dramatic consequences of vibronic coupling in radical cations. Thus, the bicyclo[2.2.2]oct-2-ene and tetramethylurea radical cations are found to have twisted structures departing from the C 2v symmetry of their parent molecules, while the oxirane and bicyclo[1.1.1]pentane radical cations undergo ring-opening rearrangements along reaction coordinates that correspond to the deformational modes predicted by the pseudo-Jahn-Teller effect

  16. Exclusive measurements of Δ excitation by the (3He,t) reaction

    International Nuclear Information System (INIS)

    Hennino, Th.

    1993-12-01

    The production of Δ in nuclei through charge exchange reactions induced by medium energy light projectiles has been undertaken at Laboratoire National Saturne. The possible existence of a pionic collective mode built on Δ-hole correlations has been proposed to explain medium effects which appeared in inclusive experiments. Using the Diogene 4π apparatus to detect the charged particles, the decay pattern of the Δ-hole states has been separated into its different modes. 3 of them deserve particular attention: the quasi free Δ production, the two nucleon absorption channel and the coherent mode. (author). 17 refs., 10 figs

  17. Theoretical calculation of n + {sup 59}Co reaction in energy region up to 100 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Qingbiao, Shen; Baosheng, Yu; Dunjiu, Cai [Chinese Nuclear Data Center, Beijing, BJ (China)

    1996-06-01

    A set of neutron optical potential parameters for {sup 59}Co in energy region of 2{approx}100 MeV was obtained based on concerned experimental data. Various cross sections of n + {sup 59}Co reactions were calculated and predicted. The calculated results show that the activation products {sup 58,57}Co, {sup 59}Fe and {sup 56}Mn are main neutron monitor reaction products for n + {sup 59}Co reaction in energy range up to 100 MeV. {sup 54}Mn production reaction can be a promising neutron monitor reaction in the energy region from 30 to 100 MeV. (6 figs.).

  18. Quasi-optical mode converter for a coaxial cavity gyrotron

    International Nuclear Information System (INIS)

    Jin, J.

    2007-03-01

    This work concentrates on the synthesis of the quasioptical mode converter for the 170 GHz, TE 34,19 -mode, 2MW, CW coaxial-cavity gyrotron at Forschungszentrum Karlsruhe (FZK). The improvement of the general method for the design of so-call dimpled-wall launcher to provide a good Gaussian mode content is described. This method is verified through the design of a launcher operating in the TE 22,6 mode at 118 GHz. A phase rule is proposed as a quality criterion for monitoring the optimization and the choices of parameters of the quasi-optical mode converter. High-order harmonics introduced to the launcher wall deformations are proposed for this gyrotron. The launcher is numerically optimized, the fields on the cut edges are suppressed. The fields in the launcher are well approximated by the waveguide modes, the radiated fields are calculated using the scalar diffraction integral. The procedure for the numerical optimization of the mirror system is improved, the tolerance conditions of the phase correcting mirrors are investigated. A conversion efficiency of 95.8% to the circular fundamental Gaussian distribution with 20mm beam waist and power transmission of 90% are achieved in the window plane using the optimized quasi-optical mode converter. The methods to ameliorate the initial conditions of the phase correcting mirrors are explored. (orig.)

  19. Study on loss detection algorithms using tank-monitoring data

    International Nuclear Information System (INIS)

    Suzuki, Mitsutoshi; Hori, Masato; Nagaoka, Shinichi; Kimura, Takashi

    2009-01-01

    An application of solution monitoring to material balance evaluation has been investigated with actual data from the Solution Monitoring Management System (SMMS) in the Tokai Reprocessing Plant (TRP). Loss detection capabilities of the proposed multivariate statistical methods are examined numerically for a simulated loss corresponding to parameters of a significant quantity in the wait mode. Multiscale statistical analysis as well as multivariate cumulative sum analysis are successfully used to demonstrate the protracted-loss detection. Because the actual tank data is composed of records in both the wait and transfer modes, the tank-to-tank transferring data is extracted from the sequence of monitoring data, and the error model effectiveness is evaluated in comparison with calculations. Although the data taken from the SMMS does not describe the entire solution process, an extended application of solution monitoring to the nuclear material accounting is advanced using the plant data, and future research subjects are described. (author)

  20. A Selected Reaction Monitoring Mass Spectrometry Protocol for Validation of Proteomic Biomarker Candidates in Studies of Psychiatric Disorders.

    Science.gov (United States)

    Reis-de-Oliveira, Guilherme; Garcia, Sheila; Guest, Paul C; Cassoli, Juliana S; Martins-de-Souza, Daniel

    2017-01-01

    Most biomarker candidates arising from proteomic studies of psychiatric disorders have not progressed for use in clinical studies due to insufficient validation steps. Here we describe a selective reaction monitoring mass spectrometry (SRM-MS) approach that could be used as a follow-up validation tool of proteins identified in blood serum or plasma. This protocol specifically covers the stages of peptide selection and optimization. The increasing application of SRM-MS should enable fast, sensitive, and robust methods with the potential for use in clinical studies involving sampling of serum or plasma. Understanding the molecular mechanisms and identifying potential biomarkers for risk assessment, diagnosis, prognosis, and prediction of drug response goes toward the implementation of translational medicine strategies for improved treatment of patients with psychiatric disorders and other debilitating diseases.

  1. Novel Profluorescent Nitroxides for Monitoring Alkyl Radical Reactions During Radiation Degradation

    International Nuclear Information System (INIS)

    George, G.

    2006-01-01

    Hindered amine stabilizers (HAS) are effective at retarding the photo-oxidative and high energy radiation degradation of PP and in certain circumstances, also thermo-oxidative degradation. The effectiveness of HAS as retarders of oxidation relies on the oxidation of the N-C bond by polymer hydroperoxide, ROOH, to form the nitroxyl group -NO which is the scavenger of polymer alkyl radicals, R. This reaction, which produces the alkoxy amine: -NO-R, must be competitive with the reaction of R with oxygen (which gives the chain-carrying peroxy radical, RO 2 ) if this stabilization mechanism is to be important in the inhibition of radiation-induced oxidative degradation of polyolefins by HAS. The rate of this reaction is high and in solution the rate coefficient is from 1 to 9x10 8 l mol - 1 s - 1. The efficient radical trapping by nitroxides has been widely employed in spin-trapping studies by electron spin resonance (esr) spectroscopy]. In addition to the hindered piperidine structure of commercial HAS, more rigid aromatic systems have been studied that are more stable to oxidative degradation and are more efficient at scavenging alkyl radicals. One such family is the iso-indoline nitroxide system, TMDBIO, shown below which, as it contains the phenanthrene fluorophore, is termed phenanthrene nitroxide. This nitroxide only becomes fluorescent when it reacts with alkyl radicals or is reduced and is termed profluorescent. TMDBIO has a vanishingly small fluorescence quantum yield (φ∼10 - 4) due to the enhanced intersystem crossing from the first excited singlet state to the ground state due to electron exchange interactions of the nitroxyl radical. When the nitroxide traps an alkyl radical, R, the resulting alkoxy amine is fluorescent (φ∼10 - 1) and the emission intensity is a measure of the number of reactions that have occurred. This property may be exploited by using quantitative fluorescence spectroscopy to follow the reaction of the nitroxide with alkyl radicals

  2. Characterization of Mode 1 and Mode 2 delamination growth and thresholds in graphite/peek composites

    Science.gov (United States)

    Martin, Roderick H.; Murri, Gretchen B.

    1988-01-01

    Composite materials often fail by delamination. The onset and growth of delamination in AS4/PEEK, a tough thermoplastic matrix composite, was characterized for mode 1 and mode 2 loadings, using the Double Cantilever Beam (DCB) and the End Notched Flexure (ENF) test specimens. Delamination growth per fatigue cycle, da/dN, was related to strain energy release rate, G, by means of a power law. However, the exponents of these power laws were too large for them to be adequately used as a life prediction tool. A small error in the estimated applied loads could lead to large errors in the delamination growth rates. Hence strain energy release rate thresholds, G sub th, below which no delamination would occur were also measured. Mode 1 and 2 threshold G values for no delamination growth were found by monitoring the number of cycles to delamination onset in the DCB and ENF specimens. The maximum applied G for which no delamination growth had occurred until at least 1,000,000 cycles was considered the threshold strain energy release rate. Comments are given on how testing effects, facial interference or delamination front damage, may invalidate the experimental determination of the constants in the expression.

  3. Thermal modeling of core sampling in flammable gas waste tanks. Part 1: Push-mode sampling

    International Nuclear Information System (INIS)

    Unal, C.; Stroh, K.; Pasamehmetoglu, K.O.

    1997-01-01

    The radioactive waste stored in underground storage tanks at Hanford site is routinely being sampled for waste characterization purposes. The push- and rotary-mode core sampling is one of the sampling methods employed. The waste includes mixtures of sodium nitrate and sodium nitrite with organic compounds that can produce violent exothermic reactions if heated above 160 C during core sampling. A self-propagating waste reaction would produce very high temperatures that eventually result in failure of the tank and radioactive material releases to environment. A two-dimensional thermal model based on a lumped finite volume analysis method is developed. The enthalpy of each node is calculated from the first law of thermodynamics. A flash temperature and effective contact area concept were introduced to account the interface temperature rise. No maximum temperature rise exceeding the critical value of 60 C was found in the cases studied for normal operating conditions. Several accident conditions are also examined. In these cases it was found that the maximum drill bit temperature remained below the critical reaction temperature as long as a 30 scfm purge flow is provided the push-mode drill bit during sampling in rotary mode. The failure to provide purge flow resulted in exceeding the limiting temperatures in a relatively short time

  4. Evaluation of cross sections for neutron monitor reactions {sup 90}Zr(n,x){sup 89,88}Zr, {sup 88,87,86}Y from threshold to 100 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Baosheng, Yu; Qingbiao, Shen; Dunjiu, Cai [Chinese Nuclear Data Center, Beijing, BJ (China)

    1996-06-01

    The cross sections for {sup 90}Zr(n,x){sup 89,88}Zr and {sup 90}Zr(n,x){sup 88,87,86}Y reactions in intermediate energy region are useful in neutron field monitor, safety and material damage research. Below 20 MeV, the evaluated cross sections for {sup 90}Zr(n,2n){sup 89}Zr reaction are recommended based on the recent experimental data, including the new measured results in CIAE (Above 20 MeV). The measured cross sections are still insufficient to do evaluation. So the evaluation for {sup 90}Zr(n,x){sup 89,88}Zr and {sup 90}Zr(n,x){sup 88,87,86}Y reactions from threshold to 100 MeV are based on experimental and calculated data. (2 figs.).

  5. PLC-based mode multi/demultiplexers for mode division multiplexing

    Science.gov (United States)

    Saitoh, Kunimasa; Hanzawa, Nobutomo; Sakamoto, Taiji; Fujisawa, Takeshi; Yamashita, Yoko; Matsui, Takashi; Tsujikawa, Kyozo; Nakajima, Kazuhide

    2017-02-01

    Recently developed PLC-based mode multi/demultiplexers (MUX/DEMUXs) for mode division multiplexing (MDM) transmission are reviewed. We firstly show the operation principle and basic characteristics of PLC-based MUX/DEMUXs with an asymmetric directional coupler (ADC). We then demonstrate the 3-mode (2LP-mode) multiplexing of the LP01, LP11a, and LP11b modes by using fabricated PLC-based mode MUX/DEMUX on one chip. In order to excite LP11b mode in the same plane, a PLC-based LP11 mode rotator is introduced. Finally, we show the PLC-based 6-mode (4LP-mode) MUX/DEMUX with a uniform height by using ADCs, LP11 mode rotators, and tapered waveguides. It is shown that the LP21a mode can be excited from the LP11b mode by using ADC, and the two nearly degenerated LP21b and LP02 modes can be (de)multiplexed separately by using tapered mode converter from E13 (E31) mode to LP21b (LP02) mode.

  6. Universal Authenticated Item Monitoring System (AIMS) second generation equipment

    International Nuclear Information System (INIS)

    Schoeneman, J.L.; Baumann, M.J.; Fox, L.J.; Jenkins, C.D.; Perlinsk, A.W.

    1992-01-01

    Sandia National Laboratories (SNL) is in the final stages of developing a Universal Authenticated Item Monitoring System (AIMS). When completed, AIMS will provide applicable agencies in the US government, and those in the International arena, with a secure and convenient method of monitoring the physical status of selected items. The benefit derived from this development activity will be the commercial availability of an item monitoring system with the capability for ''quick set-up'' monitoring, as well as long-term unattended monitoring. The AIMS includes a variety of sensors, a robust and authenticated radio frequency (RF) communication link, a Receiver Processing Unit (RPU), and an inspector-friendly personal computer (PC) interface for collecting, sorting, viewing and archiving pertinent event histories. The system will provide the capability to monitor selected items in a real-time mode, a remotely interrogated mode, and a stand-alone, unattended data collection mode. The sensor suite under development includes advanced motion sensors, interior volumetric intrusion sensors, Re-usable, In-situ Verifiable Authenticated (RIVA) fiber-optic seal sensors, generic utility sensors (to accommodate contact closure inputs), and radiation and environmental sensors. A new generation authentication algorithm recently has been developed that provides a high degree of system security 121. The AIMS has potential safeguards applications in the areas of arms control and treaty verification military asset control, International Atomic Energy Agency (IAEA) and Euratom safeguards verification activities, as well as domestic nuclear safeguard activities. Commercial applications could include high-value inventory control and security systems. This paper describes the second-generation AIMS along with its recently expanded sensor suite and enhanced data collection capabilities

  7. Self-stabilization of a mode-locked femtosecond fiber laser using a photonic bandgap fiber

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2010-01-01

    We demonstrate a self-stabilization mechanism of a semiconductor saturable absorber mode-locked linearcavity Yb-doped fiber laser using an intracavity photonic bandgap fiber. This mechanism relies on the spectral shift of the laser pulses to a spectral range of higher anomalous dispersion...... and higher loss of the photonic bandgap fiber, as a reaction to the intracavity power buildup. This, in particular, results in a smaller cavity loss for the stably mode-locked laser, as opposed to the Q-switched mode-locking scenario. The laser provides stable 39–49 pJ pulses of around 230 fs duration at 29...

  8. Probing cluster structures through sub-barrier transfer reactions

    Directory of Open Access Journals (Sweden)

    Rafferty D. C.

    2016-01-01

    Full Text Available Multinucleon transfer probabilities and excitation energy distributions have been measured in 16,18O, 19F + 208Pb at energies between 90% - 100% of the Coulomb barrier. A strong 2p2n enhancement is observed for all reactions, though most spectacularly in the 18O induced reaction. Results are interpreted in terms of the Semiclassical model, which seems to suggest α-cluster transfer in all studied systems. The relation to cluster-states in the projectile is discussed, with the experimental results consistent with previous structure studies. Dissipation of energy in the collisions of 18O is compared between different reaction modes, with cluster transfer associated with dissipation over a large number of internal states. Cluster transfer is shown to be a long range dissipation mechanism, which will inform the development of future models to treat these dynamic processes in reactions.

  9. Automatic NMR-based identification of chemical reaction types in mixtures of co-occurring reactions.

    Science.gov (United States)

    Latino, Diogo A R S; Aires-de-Sousa, João

    2014-01-01

    The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1)H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants) and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1)H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps) produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF), the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure elucidation of

  10. Automatic NMR-based identification of chemical reaction types in mixtures of co-occurring reactions.

    Directory of Open Access Journals (Sweden)

    Diogo A R S Latino

    Full Text Available The combination of chemoinformatics approaches with NMR techniques and the increasing availability of data allow the resolution of problems far beyond the original application of NMR in structure elucidation/verification. The diversity of applications can range from process monitoring, metabolic profiling, authentication of products, to quality control. An application related to the automatic analysis of complex mixtures concerns mixtures of chemical reactions. We encoded mixtures of chemical reactions with the difference between the (1H NMR spectra of the products and the reactants. All the signals arising from all the reactants of the co-occurring reactions were taken together (a simulated spectrum of the mixture of reactants and the same was done for products. The difference spectrum is taken as the representation of the mixture of chemical reactions. A data set of 181 chemical reactions was used, each reaction manually assigned to one of 6 types. From this dataset, we simulated mixtures where two reactions of different types would occur simultaneously. Automatic learning methods were trained to classify the reactions occurring in a mixture from the (1H NMR-based descriptor of the mixture. Unsupervised learning methods (self-organizing maps produced a reasonable clustering of the mixtures by reaction type, and allowed the correct classification of 80% and 63% of the mixtures in two independent test sets of different similarity to the training set. With random forests (RF, the percentage of correct classifications was increased to 99% and 80% for the same test sets. The RF probability associated to the predictions yielded a robust indication of their reliability. This study demonstrates the possibility of applying machine learning methods to automatically identify types of co-occurring chemical reactions from NMR data. Using no explicit structural information about the reactions participants, reaction elucidation is performed without structure

  11. Interaction Modes for Emergency Mobile Apps

    Directory of Open Access Journals (Sweden)

    Claudia Nass

    2018-01-01

    Full Text Available While seemingly irrational behaviors such as panicking or displaying antisocial behavior are the responses to emergency situations the media and movies lead us to believe, several studies show that people rather react based on decision-making such as acting altruistically and protectively. However, what can we really expect from people in a crowd in terms of participation in an emergency response system? In this paper, we present a mobile application called the RESCUER App, which allows civilians to participate in the emergency response process by providing information about the emergency to a command center and to receive instructions from this command center. We developed a human reaction model for emergencies to better understand the human–computer interaction capabilities of people in an emergency situation. Based on this model, we defined three different interaction modes: one-click interaction, guided interaction, and chat interaction. These interaction modes were implemented in an interactive prototype and evaluated in an experiment in which high cognitive load was induced to simulate a stress situation, similar to the stress experienced in an emergency. The experiment results showed that the three predefined interaction modes enabled people to interact with the RESCUER App even though they were in a stress situation.

  12. Proton exchange in acid–base complexes induced by reaction coordinates with heavy atom motions

    International Nuclear Information System (INIS)

    Alavi, Saman; Taghikhani, Mahdi

    2012-01-01

    Highlights: ► Proton exchange in acid–base complexes is studied. ► The structures, binding energies, and normal mode vibrations are calculated. ► Transition state structures of proton exchange mechanism are determined. ► In the complexes studied, the reaction coordinate involves heavy atom rocking. ► The reaction coordinate is not simply localized in the proton movements. - Abstract: We extend previous work on nitric acid–ammonia and nitric acid–alkylamine complexes to illustrate that proton exchange reaction coordinates involve the rocking motion of the base moiety in many double hydrogen-bonded gas phase strong acid–strong base complexes. The complexes studied involve the biologically and atmospherically relevant glycine, formic, acetic, propionic, and sulfuric acids with ammonia/alkylamine bases. In these complexes, the magnitude of the imaginary frequencies associated with the proton exchange transition states are −1 . This contrasts with widely studied proton exchange reactions between symmetric carboxylic acid dimers or asymmetric DNA base pair and their analogs where the reaction coordinate is localized in proton motions and the magnitude of the imaginary frequencies for the transition states are >1100 cm −1 . Calculations on complexes of these acids with water are performed for comparison. Variations of normal vibration modes along the reaction coordinate in the complexes are described.

  13. Liquid-phase sample preparation method for real-time monitoring of airborne asbestos fibers by dual-mode high-throughput microscopy.

    Science.gov (United States)

    Cho, Myoung-Ock; Kim, Jung Kyung; Han, Hwataik; Lee, Jeonghoon

    2013-01-01

    Asbestos that had been used widely as a construction material is a first-level carcinogen recognized by the World Health Organization. It can be accumulated in body by inhalation causing virulent respiratory diseases including lung cancer. In our previous study, we developed a high-throughput microscopy (HTM) system that can minimize human intervention accompanied by the conventional phase contrast microscopy (PCM) through automated counting of fibrous materials and thus significantly reduce analysis time and labor. Also, we attempted selective detection of chrysotile using DksA protein extracted from Escherichia coli through a recombinant protein production technique, and developed a dual-mode HTM (DM-HTM) by upgrading the HTM device. We demonstrated that fluorescently-labeled chrysotile asbestos fibers can be identified and enumerated automatically among other types of asbestos fibers or non-asbestos particles in a high-throughput manner through a newly modified HTM system for both reflection and fluorescence imaging. However there is a limitation to apply DM-HTM to airborne sample with current air collecting method due to the difficulty of applying the protein to dried asbestos sample. Here, we developed a technique for preparing liquid-phase asbestos sample using an impinger normally used to collect odor molecules in the air. It would be possible to improve the feasibility of the dual-mode HTM by integrating a sample preparation unit for making collected asbestos sample dispersed in a solution. The new technique developed for highly sensitive and automated asbestos detection can be a potential alternative to the conventional manual counting method, and it may be applied on site as a fast and reliable environmental monitoring tool.

  14. Monitoring benzene formation from benzoate in model systems by proton transfer reaction-mass spectrometry

    Science.gov (United States)

    Aprea, Eugenio; Biasioli, Franco; Carlin, Silvia; Märk, Tilmann D.; Gasperi, Flavia

    2008-08-01

    The presence of benzene in food and in particular in soft drinks has been reported in several studies and should be considered in fundamental investigations about formation of this carcinogen compound as well as in quality control. Proton transfer reaction-mass spectrometry (PTR-MS) has been used here for rapid, direct quantification of benzene and to monitor its formation in model systems related to the use of benzoate, a common preservative, in presence of ascorbic acid: a widespread situation that yields benzene in, e.g., soft drinks and fruit juices. Firstly, we demonstrate here that PTR-MS allows a rapid determination of benzene that is in quantitative agreement with independent solid phase micro-extraction/gas chromatography (SPME/GC) analysis. Secondly, as a case study, the effect of different sugars (sucrose, fructose and glucose) on benzene formation is investigated indicating that they inhibit its formation and that this effect is enhanced for reducing sugars. The sugar-induced inhibition of benzene formation depends on several parameters (type and concentration of sugar, temperature, time) but can be more than 80% in situations that can be expected in the storage of commercial soft drinks. This is consistent with the reported observations of higher benzene concentrations in sugar-free soft drinks.

  15. The importance of monitoring adverse drug reactions in pediatric patients: the results of a national surveillance program in Italy.

    Science.gov (United States)

    Carnovale, Carla; Brusadelli, Tatiana; Zuccotti, GianVincenzo; Beretta, Silvia; Sullo, Maria Giuseppa; Capuano, Annalisa; Rossi, Francesco; Moschini, Martina; Mugelli, Alessandro; Vannacci, Alfredo; Laterza, Marcella; Clementi, Emilio; Radice, Sonia

    2014-09-01

    To gain information on safety of drugs used in pediatrics through a 4-year post-marketing active pharmacovigilance program. The program sampled the Italian population and was termed 'Monitoring of the Adverse Effects in Pediatric population' (MEAP). Adverse drug reactions (ADRs) were collected for individuals aged 0 - 17 years treated in hospitals and territorial health services in Lombardy, Tuscany, Apulia and Campania; located to gain an appropriate sampling of the population. ADRs were evaluated using the Adverse Drug Reaction Probability Scale (Naranjo) and analyzed with respect to time, age, sex, category of ADR, seriousness, suspected medicines, type of reporter and off-label use. We collected and analyzed reports from 3539 ADRs. Vaccines, antineoplastic and psychotropic drugs were the most frequently pharmacotherapeutic subgroups involved. Seventeen percent of reported ADRs were serious; of them fever, vomiting and angioedema were the most frequently reported. Eight percent of ADRs were associated with off-label use, and 10% were unknown ADRs. Analysis of these revealed possible strategies of therapy optimization. The MEAP project demonstrated that active post-marketing pharmacovigilance programs are a valid strategy to increase awareness on pediatric pharmacology, reduce underreporting and provide information on drug actions in pediatrics. This information enhances drug therapy optimization in the pediatric patients.

  16. Reaction kinetics of cellulose hydrolysis in subcritical and supercritical water

    Science.gov (United States)

    Olanrewaju, Kazeem Bode

    The uncertainties in the continuous supply of fossil fuels from the crisis-ridden oil-rich region of the world is fast shifting focus on the need to utilize cellulosic biomass and develop more efficient technologies for its conversion to fuels and chemicals. One such technology is the rapid degradation of cellulose in supercritical water without the need for an enzyme or inorganic catalyst such as acid. This project focused on the study of reaction kinetics of cellulose hydrolysis in subcritical and supercritical water. Cellulose reactions at hydrothermal conditions can proceed via the homogeneous route involving dissolution and hydrolysis or the heterogeneous path of surface hydrolysis. The work is divided into three main parts. First, the detailed kinetic analysis of cellulose reactions in micro- and tubular reactors was conducted. Reaction kinetics models were applied, and kinetics parameters at both subcritical and supercritical conditions were evaluated. The second major task was the evaluation of yields of water soluble hydrolysates obtained from the hydrolysis of cellulose and starch in hydrothermal reactors. Lastly, changes in molecular weight distribution due to hydrothermolytic degradation of cellulose were investigated. These changes were also simulated based on different modes of scission, and the pattern generated from simulation was compared with the distribution pattern from experiments. For a better understanding of the reaction kinetics of cellulose in subcritical and supercritical water, a series of reactions was conducted in the microreactor. Hydrolysis of cellulose was performed at subcritical temperatures ranging from 270 to 340 °C (tau = 0.40--0.88 s). For the dissolution of cellulose, the reaction was conducted at supercritical temperatures ranging from 375 to 395 °C (tau = 0.27--0.44 s). The operating pressure for the reactions at both subcritical and supercritical conditions was 5000 psig. The results show that the rate-limiting step in

  17. On a possible method of experimental investigation of proton decay modes

    International Nuclear Information System (INIS)

    Gulkanyan, H.R.; Pogosov, V.S.; Tamanyan, A.G.

    1982-01-01

    A detector for experimental investigation of proton decay modes is described. The detector represents a multiwire high pressure gas chamber, located in an underground cavity in a rock salt layer, analogous to known underground artificial depositories of fuel gas. It allows to identify decay particles and reaction kinematics at the amount of working gas of several dozens of kilotons and more required for the proton decay detection at the half-lifetime tau > 10 33 years and investigation of decay modes at tau 33 years. The detector also permits to investigate other exotic events such as a search for fractional charge particles, neutrino oscillations

  18. Spatial-mode switchable ring fiber laser based on low mode-crosstalk all-fiber mode MUX/DEMUX

    Science.gov (United States)

    Ren, Fang; Yu, Jinyi; Wang, Jianping

    2018-05-01

    We report an all-fiber ring laser that emits linearly polarized (LP) modes based on the intracavity all-fiber mode multiplexer/demultiplexer (MUX/DEMUX). Multiple LP modes in ring fiber laser are generated by taking advantage of mode MUX/DEMUX. The all-fiber mode MUX/DEMUX are composed of cascaded mode-selective couplers (MSCs). The output lasing mode of the ring fiber laser can be switched among the three lowest-order LP modes by employing combination of a mode MUX and a simple N × 1 optical switch. The slope efficiencies, optical spectra and mode profiles are measured.

  19. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    KAUST Repository

    Kabanov, Dmitry I.

    2017-12-08

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  20. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    KAUST Repository

    Kabanov, Dmitry; Kasimov, Aslan R.

    2018-01-01

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  1. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    KAUST Repository

    Kabanov, Dmitry

    2018-03-20

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  2. Quantum theory of enhanced unimolecular reaction rates below the ergodicity threshold

    International Nuclear Information System (INIS)

    Leitner, David M.; Wolynes, Peter G.

    2006-01-01

    A variety of unimolecular reactions exhibit measured rates that exceed Rice-Ramsperger-Kassel-Marcus (RRKM) predictions. We show using the local random matrix theory (LRMT) of vibrational energy flow how the quantum localization of the vibrational states of a molecule, by violating the ergodicity assumption, can give rise to such an enhancement of the apparent reaction rate. We present an illustrative calculation using LRMT for a model 12-vibrational mode organic molecule to show that below the ergodicity threshold the reaction rate may exceed many times the RRKM prediction due to quantum localization of vibrational states

  3. Characterization of Mode I and Mode II delamination growth and thresholds in AS4/PEEK composites

    Science.gov (United States)

    Martin, Roderick H.; Murri, Gretchen Bostaph

    1990-01-01

    Composite materials often fail by delamination. The onset and growth of delamination in AS4/PEEK, a tough thermoplastic matrix composite, was characterized for mode 1 and mode 2 loadings, using the Double Cantilever Beam (DCB) and the End Notched Flexure (ENF) test specimens. Delamination growth per fatigue cycle, da/dN, was related to strain energy release rate, G, by means of a power law. However, the exponents of these power laws were too large for them to be adequately used as a life prediction tool. A small error in the estimated applied loads could lead to large errors in the delamination growth rates. Hence strain energy release rate thresholds, G sub th, below which no delamination would occur were also measured. Mode 1 and 2 threshold G values for no delamination growth were found by monitoring the number of cycles to delamination onset in the DCB and ENF specimens. The maximum applied G for which no delamination growth had occurred until at least 1,000,000 cycles was considered the threshold strain energy release rate. Comments are given on how testing effects, facial interference or delamination front damage, may invalidate the experimental determination of the constants in the expression.

  4. Viewport: an object-oriented approach to integrate workstation software for tile and stack mode display.

    Science.gov (United States)

    Ghosh, S; Andriole, K P; Avrin, D E

    1997-08-01

    Diagnostic workstation design has migrated towards display presentation in one of two modes: tiled images or stacked images. It is our impression that the workstation setup or configuration in each of these two modes is rather distinct. We sought to establish a commonality to simplify software design, and to enable a single descriptor method to facilitate folder manager development of "hanging" protocols. All current workstation designs use a combination of "off-screen" and "on-screen" memory whether or not they use a dedicated display subsystem, or merely a video board. Most diagnostic workstations also have two or more monitors. Our central concept is that of a "logical" viewport that can be smaller than, the same size as, or larger than a single monitor. Each port "views" an image data sequence loaded into offscreen memory. Each viewport can display one or more images in sequence in a one-on-one or traditionally tiled presentation. Viewports can be assigned to the available monitor "real estate" in any manner that fits. For example, a single sequence computed tomography (CT) study could be displayed across all monitors in a tiled appearance by assigning a single large viewport to the monitors. At the other extreme, a multisequence magnetic resonance (MR) study could be compared with a similar previous study by assigning four viewports to each monitor, single image display per viewport, and assigning four of the sequences of the current study to the left monitor viewports, and four of the earlier study to the right monitor viewports. Ergonomic controls activate scrolling through the off-screen image sequence data. Workstation folder manager hanging protocols could then specify viewports, number of images per viewport, and the automatic assignment of appropriately named sequences of current and previous studies to the viewports on a radiologist-specific basis. Furthermore, software development is simplified by common base objects and methods of the tile and stack

  5. Automatic identification approach for high-performance liquid chromatography-multiple reaction monitoring fatty acid global profiling.

    Science.gov (United States)

    Tie, Cai; Hu, Ting; Jia, Zhi-Xin; Zhang, Jin-Lan

    2015-08-18

    Fatty acids (FAs) are a group of lipid molecules that are essential to organisms. As potential biomarkers for different diseases, FAs have attracted increasing attention from both biological researchers and the pharmaceutical industry. A sensitive and accurate method for globally profiling and identifying FAs is required for biomarker discovery. The high selectivity and sensitivity of high-performance liquid chromatography-multiple reaction monitoring (HPLC-MRM) gives it great potential to fulfill the need to identify FAs from complicated matrices. This paper developed a new approach for global FA profiling and identification for HPLC-MRM FA data mining. Mathematical models for identifying FAs were simulated using the isotope-induced retention time (RT) shift (IRS) and peak area ratios between parallel isotope peaks for a series of FA standards. The FA structures were predicated using another model based on the RT and molecular weight. Fully automated FA identification software was coded using the Qt platform based on these mathematical models. Different samples were used to verify the software. A high identification efficiency (greater than 75%) was observed when 96 FA species were identified in plasma. This FAs identification strategy promises to accelerate FA research and applications.

  6. A multi-level maintenance policy for a multi-component and multifailure mode system with two independent failure modes

    International Nuclear Information System (INIS)

    Zhu, Wenjin; Fouladirad, Mitra; Bérenguer, Christophe

    2016-01-01

    This paper studies the maintenance modelling of a multi-component system with two independent failure modes with imperfect prediction signal in the context of a system of systems. Each individual system consists of multiple series components and the failure modes of all the components are divided into two classes due to their consequences: hard failure and soft failure, where the former causes system failure while the later results in inferior performance (production reduction) of system. Besides, the system is monitored and can be alerted by imperfect prediction signal before hard failure. Based on an illustration example of offshore wind farm, in this paper three maintenance strategies are considered: periodic routine, reactive and opportunistic maintenance. The periodic routine maintenance is scheduled at fixed period for each individual system in the perspective of system of systems. Between two successive routine maintenances, the reactive maintenance is instructed by the imperfect prediction signal according to two criterion proposed in this study for the system components. Due to the high setup cost and practical restraints of implementing maintenance activities, both routine and reactive maintenance can create the opportunities of maintenance for the other components of an individual system. The life cycle of the system and the cost of the proposed maintenance policies are analytically derived. Restrained by the complexity from both the system failure modelling and maintenance strategies, the performances and application scope of the proposed maintenance model are evaluated by numerical simulations. - Highlights: • We study the life behavior of a complex system with two failure modes. • We consider the imperfect prediction signal of potential failure by monitoring. • We propose an integrated maintenance policy with three levels based on wind turbine. • We derive the mathematical cost formulations for the proposed maintenance policy.

  7. Catalytic activation of molecular hydrogen in alkyne hydrogenation reactions by lanthanide metal vapor reaction products

    International Nuclear Information System (INIS)

    Evans, W.J.; Bloom, I.; Engerer, S.C.

    1983-01-01

    A rotary metal vapor was used in the synthesis of Lu, Er, Nd, Sm, Yb, and La alkyne, diene, and phosphine complexes. A typical catalytic hydrogenation experiment is described. The lanthanide metal vapor product is dissolved in tetrahydrofuran or toluene and placed in a pressure reaction vessel 3-hexyne (or another substrate) is added, the chamber attached to a high vacuum line, cooled to -196 0 C, evacuated, warmed to ambient temperature and hydrogen is added. The solution is stirred magnetically while the pressure in monitored. The reaction products were analyzed by gas chromatography. Rates and products of various systems are listed. This preliminary survey indicates that catalytic reaction chemistry is available to these metals in a wide range of coordination environments. Attempts to characterize these compounds are hampered by their paramagnetic nature and their tendency to polymerize

  8. Photocatalytic degradation of paracetamol: intermediates and total reaction mechanism.

    Science.gov (United States)

    Moctezuma, Edgar; Leyva, Elisa; Aguilar, Claudia A; Luna, Raúl A; Montalvo, Carlos

    2012-12-01

    The advanced oxidation of paracetamol (PAM) promoted by TiO(2)/UV system in aqueous medium was investigated. Monitoring this reaction by HPLC and TOC, it was demonstrated that while oxidation of paracetamol is quite efficient under these conditions, its mineralization is not complete. HPLC indicated the formation of hydroquinone, benzoquinone, p-aminophenol and p-nitrophenol in the reaction mixtures. Further evidence of p-nitrophenol formation was obtained following the reaction by UV-vis spectroscopy. Continuous monitoring by IR spectroscopy demonstrated the breaking of the aromatic amide present in PAM and subsequent formation of several aromatic intermediate compounds such as p-aminophenol and p-nitrophenol. These aromatic compounds were eventually converted into trans-unsaturated carboxylic acids. Based on these experimental results, an alternative deacylation mechanism for the photocatalytic oxidation of paracetamol is proposed. Our studies also demonstrated IR spectroscopy to be a useful technique to investigate oxidative mechanisms of pharmaceutical compounds. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Simultaneous chromatic dispersion, polarization-mode-dispersion and OSNR monitoring at 40Gbit/s.

    Science.gov (United States)

    Baker-Meflah, Lamia; Thomsen, Benn; Mitchell, John; Bayvel, Polina

    2008-09-29

    A novel method for independent and simultaneous monitoring of chromatic dispersion (CD), first-order PMD and OSNR in 40Gbit/s systems is proposed and demonstrated. This is performed using in-band tone monitoring of 5GHz, optically down-converted to a low intermediate-frequency (IF) of 10kHz. The measurement provides a large monitoring range with good accuracies for CD (4742+/-100ps/nm), differential group delay (DGD) (200+/-4ps) and OSNR (23+/-1dB), independently of the bit-rate. In addition, the use of electro-absorption modulators (EAM) for the simultaneous down-conversion of all channels and the use of low-speed detectors makes it cost effective for multi-channel operation.

  10. A wide dynamic range BF3 neutron monitor with front-end electronics based on a logarithmic amplifier

    International Nuclear Information System (INIS)

    Ferrarini, M.; Varoli, V.; Favalli, A.; Caresana, M.; Pedersen, B.

    2010-01-01

    This paper describes a wide dynamic range neutron monitor based on a BF 3 neutron detector. The detector is used in current mode, and front-end electronics based on a logarithmic amplifier are used in order to have a measurement capability ranging over many orders of magnitude. The system has been calibrated at the Polytechnic of Milan, CESNEF, with an AmBe neutron source, and has been tested in a pulsed field at the PUNITA facility at JRC, Ispra. The detector has achieved a dynamic range of over 6 orders of magnitude, being able to measure single neutron pulses and showing saturation-free response for a reaction rate up to 10 6 s -1 . It has also proved effective in measuring the PUNITA facility pulse integral fluence.

  11. Matrix Failure Modes and Effects Analysis as a Knowledge Base for a Real Time Automated Diagnosis Expert System

    Science.gov (United States)

    Herrin, Stephanie; Iverson, David; Spukovska, Lilly; Souza, Kenneth A. (Technical Monitor)

    1994-01-01

    Failure Modes and Effects Analysis contain a wealth of information that can be used to create the knowledge base required for building automated diagnostic Expert systems. A real time monitoring and diagnosis expert system based on an actual NASA project's matrix failure modes and effects analysis was developed. This Expert system Was developed at NASA Ames Research Center. This system was first used as a case study to monitor the Research Animal Holding Facility (RAHF), a Space Shuttle payload that is used to house and monitor animals in orbit so the effects of space flight and microgravity can be studied. The techniques developed for the RAHF monitoring and diagnosis Expert system are general enough to be used for monitoring and diagnosis of a variety of other systems that undergo a Matrix FMEA. This automated diagnosis system was successfully used on-line and validated on the Space Shuttle flight STS-58, mission SLS-2 in October 1993.

  12. Capillary zone electrophoresis-multiple reaction monitoring from 100 pg of RAW 264.7 cell lysate digest.

    Science.gov (United States)

    Sun, Liangliang; Li, Yihan; Champion, Matthew M; Zhu, Guijie; Wojcik, Roza; Dovichi, Norman J

    2013-06-07

    Capillary zone electrophoresis-multiple/single reaction monitoring (CZE-MRM/SRM), which employed an electrokinetically driven sheath-flow electrospray interface, was used for the rapid and highly sensitive detection of protein analytes in complex tryptic digests. MRM channels were developed against a commercial exponential mixture of bovine proteins. Five proteins spanning four orders of magnitude concentration range were confidently detected from only 2.5 ng of the digest mixture; the mass detection limits (S/N = 3) of two detected proteins, alpha-casein and glutamate dehydrogenase were about 600 zmol and 30 amol, respectively. This technique was then applied to a RAW 264.7 cell lysate digest. Three proteins were confidently and reproducibly detected from 100 pg of this digest. The sample amount corresponds to the approximate protein content from a single cell, which suggests that CZE-MRM may be a useful analytical tool in chemical cytometry. In addition to providing highly sensitive detection of proteins in complex mixtures, this system is highly rapid; migration time of the protein digests was less than 10 min.

  13. Incore monitoring device

    International Nuclear Information System (INIS)

    Tai, Ichiro; Shirayama, Shin-pei; Nozaki, Shin-ichi.

    1978-01-01

    Purpose: To provide an incore monitoring device wherein both radiation monitoring and acoustic monitoring are carried out simultaneously by one detector, whereby installation of the device and signal pick-up are facilitated. Incore conditions are accurately grasped. Constitution: When a neutron is irradiated in a state where a DC voltage is applied between the electrode and the vessel in the device, an ionization current is occured by (n.γ) reaction of the transformed substance as in an ionization chamber, Accordingly, a voltage drop occurs at both ends of the resistor of the radiation signal processing system, as a result of which a neutron flux can be detected. Further, when a sound is generated in the reactor, the monitoring device bottom wall which formed by a piezoelectric element detects the sound-waves. This output signal is picked up by the acoustic signal processing system to judge the generation of sound. (Aizawa, K.)

  14. Precursory changes in seismic velocity for the spectrum of earthquake failure modes

    Science.gov (United States)

    Scuderi, M.M.; Marone, C.; Tinti, E.; Di Stefano, G.; Collettini, C.

    2016-01-01

    Temporal changes in seismic velocity during the earthquake cycle have the potential to illuminate physical processes associated with fault weakening and connections between the range of fault slip behaviors including slow earthquakes, tremor and low frequency earthquakes1. Laboratory and theoretical studies predict changes in seismic velocity prior to earthquake failure2, however tectonic faults fail in a spectrum of modes and little is known about precursors for those modes3. Here we show that precursory changes of wave speed occur in laboratory faults for the complete spectrum of failure modes observed for tectonic faults. We systematically altered the stiffness of the loading system to reproduce the transition from slow to fast stick-slip and monitored ultrasonic wave speed during frictional sliding. We find systematic variations of elastic properties during the seismic cycle for both slow and fast earthquakes indicating similar physical mechanisms during rupture nucleation. Our data show that accelerated fault creep causes reduction of seismic velocity and elastic moduli during the preparatory phase preceding failure, which suggests that real time monitoring of active faults may be a means to detect earthquake precursors. PMID:27597879

  15. Moisture monitoring and control system engineering study

    International Nuclear Information System (INIS)

    Carpenter, K.E.; Fadeff, J.G.

    1995-01-01

    During the past 50 years, a wide variety of chemical compounds have been placed in the 149 single-shell tanks (SSTS) on the Hanford Site. A concern relating to chemical stability, chemical control, and safe storage of the waste is the potential for propagating reactions as a result of ferrocyanide-oxidizer and organic-oxidizer concentrations in the SSTS. Propagating reactions in fuel-nitrate mixtures are precluded if the amounts of fuel and moisture present in the waste are within specified limits. Because most credible ignition sources occur near the waste surface, the main emphasis of this study is toward monitoring and controlling moisture in the top 14 cm (5.5 in.) of waste. The purpose of this engineering study is to recommend a moisture monitoring and control system for use in SSTs containing sludge and saltcake. This study includes recommendations for: (1) monitoring and controlling moisture in SSTs; (2) the fundamental design criteria for a moisture monitoring and control system; and (3) criteria for the deployment of a moisture monitoring and control system in hanford Site SSTs. To support system recommendations, technical bases for selecting and using a moisture monitoring and control system are presented. Key functional requirements and a conceptual design are included to enhance system development and establish design criteria

  16. Simultaneous Determination of Antipsychotic Drugs and Their Active Metabolites by LC-MS-MS and its Application to Therapeutic Drug Monitoring.

    Science.gov (United States)

    Miroshnichenko, Igor I; Baymeeva, Natalia V

    2018-04-07

    A quantitative method was developed to support therapeutic drug monitoring of eight antipsychotic drugs: chlorpromazine, haloperidol, zuclopenthixol, clozapine, risperidone, quetiapine, aripiprazole or olanzapine and some active metabolites (dehydroaripiprazole, N-desmethylclozapine and 9-hydroxyrisperidone) in human serum. Separation of the compounds was achieved using a Zorbax SB-C18 (150 mm × 4.6 mm, 5 μm) column and mass-spectrometric detection in multiple reaction monitoring mode. Human blood samples were collected in vacutainer tubes and the analytes were extracted with methyl-tert-butyl ether. The lower limits of quantitation were equal 0.5-1 ng/mL for all analytes. The method was applied with success to serum samples from schizophrenic patients undergoing polypharmacy with two or more different antipsychotic drugs. Precision data, accuracy results were satisfactory, and no interference from other psychotropic drugs was found. Hence, the method is suitable for the TDM of the analytes in psychotic patients' serum.

  17. Direct chemical-analysis of uv laser-ablation products of organic polymers by using selective ion monitoring mode in gas-chromatography mass-spectrometry

    Science.gov (United States)

    Cho, Yirang; Lee, H.W.; Fountain, S.T.; Lubman, D.M.

    1994-01-01

    Trace quantities of laser ablated organic polymers were analyzed by using commercial capillary column gas chromatography/mass spectrometry; the instrument was modified so that the laser ablation products could be introduced into the capillary column directly and the constituents of each peak in the chromatogram were identified by using a mass spectrometer. The present study takes advantage of the selective ion monitoring mode for significantly improving the sensitivity of the mass spectrometer as a detector, which is critical in analyzing the trace quantities and confirming the presence or absence of the species of interest in laser ablated polymers. The initial composition of the laser ablated polymers was obtained by using an electron impact reflectron time-of-flight mass spectrometer and the possible structure of the fragments observed in the spectra was proposed based on the structure of the polymers.

  18. Molecular beam studies of reaction dynamics

    International Nuclear Information System (INIS)

    Lee, Yuan T.

    1991-03-01

    The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation

  19. Molecular beam studies of reaction dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.T. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation.

  20. Standard Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Niobium

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method describes procedures for measuring reaction rates by the activation reaction 93Nb(n,n′)93mNb. 1.2 This activation reaction is useful for monitoring neutrons with energies above approximately 0.5 MeV and for irradiation times up to about 30 years. 1.3 With suitable techniques, fast-neutron reaction rates for neutrons with energy distribution similar to fission neutrons can be determined in fast-neutron fluences above about 1016cm−2. In the presence of high thermal-neutron fluence rates (>1012cm−2·s−1), the transmutation of 93mNb due to neutron capture should be investigated. In the presence of high-energy neutron spectra such as are associated with fusion and spallation sources, the transmutation of 93mNb by reactions such as (n,2n) may occur and should be investigated. 1.4 Procedures for other fast-neutron monitors are referenced in Practice E 261. 1.5 Fast-neutron fluence rates can be determined from the reaction rates provided that the appropriate cross section information ...

  1. Stack Monitor Operating Experience Review

    International Nuclear Information System (INIS)

    Cadwallader, L.C.; Bruyere, S.A.

    2009-01-01

    Stack monitors are used to sense radioactive particulates and gases in effluent air being vented from rooms of nuclear facilities. These monitors record the levels and types of effluents to the environment. This paper presents the results of a stack monitor operating experience review of the U.S. Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS) database records from the past 18 years. Regulations regarding these monitors are briefly described. Operating experiences reported by the U.S. DOE and in engineering literature sources were reviewed to determine the strengths and weaknesses of these monitors. Electrical faults, radiation instrumentation faults, and human errors are the three leading causes of failures. A representative 'all modes' failure rate is 1E-04/hr. Repair time estimates vary from an average repair time of 17.5 hours (with spare parts on hand) to 160 hours (without spare parts on hand). These data should support the use of stack monitors in any nuclear facility, including the National Ignition Facility and the international ITER project.

  2. Chemical reactions of water molecules on Ru(0001) induced by selective excitation of vibrational modes

    Energy Technology Data Exchange (ETDEWEB)

    Mugarza, Aitor; Shimizu, Tomoko K.; Ogletree, D. Frank; Salmeron, Miquel

    2009-05-07

    Tunneling electrons in a scanning tunneling microscope were used to excite specific vibrational quantum states of adsorbed water and hydroxyl molecules on a Ru(0 0 0 1) surface. The excited molecules relaxed by transfer of energy to lower energy modes, resulting in diffusion, dissociation, desorption, and surface-tip transfer processes. Diffusion of H{sub 2}O molecules could be induced by excitation of the O-H stretch vibration mode at 445 meV. Isolated molecules required excitation of one single quantum while molecules bonded to a C atom required at least two quanta. Dissociation of single H{sub 2}O molecules into H and OH required electron energies of 1 eV or higher while dissociation of OH required at least 2 eV electrons. In contrast, water molecules forming part of a cluster could be dissociated with electron energies of 0.5 eV.

  3. Monitoring of itaconic acid hydrogenation in a trickle bed reactor using fiber-optic coupled near-infrared spectroscopy.

    Science.gov (United States)

    Wood, Joseph; Turner, Paul H

    2003-03-01

    Near-infrared (NIR) spectroscopy has been applied to determine the conversion of itaconic acid in the effluent stream of a trickle bed reactor. Hydrogenation of itaconic to methyl succinic acid was carried out, with the trickle bed operating in recycle mode. For the first time, NIR spectra of itaconic and methyl succinic acids in aqueous solution, and aqueous mixtures withdrawn from the reactor over a range of reaction times, have been recorded using a fiberoptic sampling probe. The infrared spectra displayed a clear isolated absorption band at a wavenumber of 6186 cm(-1) (wavelength 1.617 microm) resulting from the =C-H bonds of itaconic acid, which was found to decrease in intensity with increasing reaction time. The feature could be more clearly observed from plots of the first derivatives of the spectra. A partial least-squares (PLS) model was developed from the spectra of 13 reference samples and was used successfully to calculate the concentration of the two acids in the reactor effluent solution. Itaconic acid conversions of 23-29% were calculated after 360 min of reaction time. The potential of FT-NIR with fiber-optic sampling for remote monitoring of three-phase catalytic reactors and validation of catalytic reactor models is highlighted in the paper.

  4. Four dimensional X-ray imaging of deformation modes in organic-rich Green River Shale retorted under uniaxial compression

    Science.gov (United States)

    Kobchenko, M.; Pluymakers, A.; Cordonnier, B.; Tairova, A.; Renard, F.

    2017-12-01

    Time-lapse imaging of fracture network development in organic-rich shales at elevated temperatures while kerogen is retorted allows characterizing the development of microfractures and the onset of primary migration. When the solid organic matter is transformed to hydrocarbons with lower molecular weight, the local pore-pressure increases and drives the propagation of hydro-fractures sub-parallel to the shale lamination. On the scale of samples of several mm size, these fractures can be described as mode I opening, where fracture walls dilate in the direction of minimal compression. However, so far experiments coupled to microtomography in situ imaging have been performed on samples where no load was imposed. Here, an external load was applied perpendicular to the sample laminations and we show that this stress state slows down, but does not stop, the propagation of fracture along bedding. Conversely, microfractures also propagate sub-perpendicular to the shale lamination, creating a percolating network in three dimensions. To monitor this process we have used a uniaxial compaction rig combined with in-situ heating from 50 to 500 deg C, while capturing three-dimensional X-ray microtomography scans at a voxel resolution of 2.2 μm; Data were acquired at beamline ID19 at the European Synchrotron Radiation Facility. In total ten time-resolved experiments were performed at different vertical loading conditions, with and without lateral passive confinement and different heating rates. At high external load the sample fails by symmetric bulging, while at lower external load the reaction-induced fracture network develops with the presence of microfractures both sub-parallel and sub-perpendicular to the bedding direction. In addition, the variation of experimental conditions allows the decoupling of the effects of the hydrocarbon decomposition reaction on the deformation process from the influence of thermal stress heating on the weakening and failure mode of immature

  5. Statistical analysis of dragline monitoring data

    Energy Technology Data Exchange (ETDEWEB)

    Mirabediny, H.; Baafi, E.Y. [University of Tehran, Tehran (Iran)

    1998-07-01

    Dragline monitoring systems are normally the best tool used to collect data on the machine performance and operational parameters of a dragline operation. This paper discusses results of a time study using data from a dragline monitoring system captured over a four month period. Statistical summaries of the time study in terms of average values, standard deviation and frequency distributions showed that the mode of operation and the geological conditions have a significant influence on the dragline performance parameters. 6 refs., 14 figs., 3 tabs.

  6. Dual-cavity mode converter for a fundamental mode output in an over-moded relativistic backward-wave oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiawei; Huang, Wenhua [Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027 (China); Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Xiao, Renzhen; Bai, Xianchen; Zhang, Yuchuan; Zhang, Xiaowei; Shao, Hao; Chen, Changhua [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Zhu, Qi [Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027 (China)

    2015-03-16

    A dual-cavity TM{sub 02}–TM{sub 01} mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM{sub 01} mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM{sub 01} mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM{sub 01} mode feedback.

  7. Dual-cavity mode converter for a fundamental mode output in an over-moded relativistic backward-wave oscillator

    International Nuclear Information System (INIS)

    Li, Jiawei; Huang, Wenhua; Xiao, Renzhen; Bai, Xianchen; Zhang, Yuchuan; Zhang, Xiaowei; Shao, Hao; Chen, Changhua; Zhu, Qi

    2015-01-01

    A dual-cavity TM 02 –TM 01 mode converter is designed for a dual-mode operation over-moded relativistic backward-wave oscillator. With the converter, the fundamental mode output is achieved. Particle-in-cell simulation shows that the efficiency of beam-wave conversion was over 46% and a pureTM 01 mode output was obtained. Effects of end reflection provided by the mode converter were studied. Adequate TM 01 mode feedback provided by the converter enhances conversion efficiency. The distance between the mode converter and extraction cavity critically affect the generation of microwaves depending on the reflection phase of TM 01 mode feedback

  8. Integrated active sensor system for real time vibration monitoring.

    Science.gov (United States)

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-11-05

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0-60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems.

  9. Dynamical barrier and isotope effects in the simplest substitution reaction via Walden inversion mechanism

    Science.gov (United States)

    Zhao, Zhiqiang; Zhang, Zhaojun; Liu, Shu; Zhang, Dong H.

    2017-02-01

    Reactions occurring at a carbon atom through the Walden inversion mechanism are one of the most important and useful classes of reactions in chemistry. Here we report an accurate theoretical study of the simplest reaction of that type: the H+CH4 substitution reaction and its isotope analogues. It is found that the reaction threshold versus collision energy is considerably higher than the barrier height. The reaction exhibits a strong normal secondary isotope effect on the cross-sections measured above the reaction threshold, and a small but reverse secondary kinetic isotope effect at room temperature. Detailed analysis reveals that the reaction proceeds along a path with a higher barrier height instead of the minimum-energy path because the umbrella angle of the non-reacting methyl group cannot change synchronously with the other reaction coordinates during the reaction due to insufficient energy transfer from the translational motion to the umbrella mode.

  10. Structure of fungal oxyluciferin, the product of the bioluminescence reaction.

    Science.gov (United States)

    Purtov, K V; Osipova, Z M; Petushkov, V N; Rodionova, N S; Tsarkova, A S; Kotlobay, A A; Chepurnykh, T V; Gorokhovatsky, A Yu; Yampolsky, I V; Gitelson, J I

    2017-11-01

    The structure of fungal oxyluciferin was determined, the enzymatic bioluminescence reaction under substrate saturation conditions with discrete monitoring of formed products was conducted, and the structures of the end products of the reaction were established. On the basis of these studies, the scheme of oxyluciferin degradation to the end products was developed. The structure of fungal oxyluciferin was confirmed by counter synthesis.

  11. An Investigation of Digital Instrumentation and Control System Failure Modes

    International Nuclear Information System (INIS)

    Korsah, Kofi; Cetiner, Mustafa Sacit; Muhlheim, Michael David; Poore, Willis P. III

    2010-01-01

    A study sponsored by the Nuclear Regulatory Commission study was conducted to investigate digital instrumentation and control (DI and C) systems and module-level failure modes using a number of databases both in the nuclear and non-nuclear industries. The objectives of the study were to obtain relevant operational experience data to identify generic DI and C system failure modes and failure mechanisms, and to obtain generic insights, with the intent of using results to establish a unified framework for categorizing failure modes and mechanisms. Of the seven databases studied, the Equipment Performance Information Exchange database was found to contain the most useful data relevant to the study. Even so, the general lack of quality relative to the objectives of the study did not allow the development of a unified framework for failure modes and mechanisms of nuclear I and C systems. However, an attempt was made to characterize all the failure modes observed (i.e., without regard to the type of I and C equipment under consideration) into common categories. It was found that all the failure modes identified could be characterized as (a) detectable/preventable before failures, (b) age-related failures, (c) random failures, (d) random/sudden failures, or (e) intermittent failures. The percentage of failure modes characterized as (a) was significant, implying that a significant reduction in system failures could be achieved through improved online monitoring, exhaustive testing prior to installation, adequate configuration control or verification and validation, etc.

  12. Single-mode fiber laser based on core-cladding mode conversion.

    Science.gov (United States)

    Suzuki, Shigeru; Schülzgen, Axel; Peyghambarian, N

    2008-02-15

    A single-mode fiber laser based on an intracavity core-cladding mode conversion is demonstrated. The fiber laser consists of an Er-doped active fiber and two fiber Bragg gratings. One Bragg grating is a core-cladding mode converter, and the other Bragg grating is a narrowband high reflector that selects the lasing wavelength. Coupling a single core mode and a single cladding mode by the grating mode converter, the laser operates as a hybrid single-mode laser. This approach for designing a laser cavity provides a much larger mode area than conventional large-mode-area step-index fibers.

  13. Effect of modes interaction on the resistive wall mode stability

    International Nuclear Information System (INIS)

    Chen Longxi; Wu Bin

    2013-01-01

    Effects of modes interaction on the resistive wall mode (RWM) stability are studied. When considering the modes interaction effects, the linear growth rate of the most unstable (3, 1) mode decreases. After linear evolution, the RWM saturates at the nonlinear phase. The saturation can be attributed to flux piling up on the resistive wall. When some modes exist, the (3, 1) mode saturates at lower level compared with single mode evolution. Meanwhile, the magnetic energy of the (5, 2) mode increases correspondingly, but the magnetic energy saturation level of the (2, 1) mode changes weakly. (authors)

  14. Scaling Fiber Lasers to Large Mode Area: An Investigation of Passive Mode-Locking Using a Multi-Mode Fiber.

    Science.gov (United States)

    Ding, Edwin; Lefrancois, Simon; Kutz, Jose Nathan; Wise, Frank W

    2011-01-01

    The mode-locking of dissipative soliton fiber lasers using large mode area fiber supporting multiple transverse modes is studied experimentally and theoretically. The averaged mode-locking dynamics in a multi-mode fiber are studied using a distributed model. The co-propagation of multiple transverse modes is governed by a system of coupled Ginzburg-Landau equations. Simulations show that stable and robust mode-locked pulses can be produced. However, the mode-locking can be destabilized by excessive higher-order mode content. Experiments using large core step-index fiber, photonic crystal fiber, and chirally-coupled core fiber show that mode-locking can be significantly disturbed in the presence of higher-order modes, resulting in lower maximum single-pulse energies. In practice, spatial mode content must be carefully controlled to achieve full pulse energy scaling. This paper demonstrates that mode-locking performance is very sensitive to the presence of multiple waveguide modes when compared to systems such as amplifiers and continuous-wave lasers.

  15. MRMer, an interactive open source and cross-platform system for data extraction and visualization of multiple reaction monitoring experiments.

    Science.gov (United States)

    Martin, Daniel B; Holzman, Ted; May, Damon; Peterson, Amelia; Eastham, Ashley; Eng, Jimmy; McIntosh, Martin

    2008-11-01

    Multiple reaction monitoring (MRM) mass spectrometry identifies and quantifies specific peptides in a complex mixture with very high sensitivity and speed and thus has promise for the high throughput screening of clinical samples for candidate biomarkers. We have developed an interactive software platform, called MRMer, for managing highly complex MRM-MS experiments, including quantitative analyses using heavy/light isotopic peptide pairs. MRMer parses and extracts information from MS files encoded in the platform-independent mzXML data format. It extracts and infers precursor-product ion transition pairings, computes integrated ion intensities, and permits rapid visual curation for analyses exceeding 1000 precursor-product pairs. Results can be easily output for quantitative comparison of consecutive runs. Additionally MRMer incorporates features that permit the quantitative analysis experiments including heavy and light isotopic peptide pairs. MRMer is open source and provided under the Apache 2.0 license.

  16. Reaction parameters for controlled sonosynthesis of gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez M, A. L. [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon esq. Paseo Tollocan s/n, 50120 Toluca, Estado de Mexico (Mexico); Cabrera L, L. I. [UNAM-UAEM, Centro Conjunto de Investigacion en Quimica Sustentable, Km 14.5 Carretera Toluca-Atlacomulco, 50200 San Cayetano-Toluca, Estado de Mexico (Mexico)

    2015-07-01

    The synthesis of gold nanoparticles by sonochemical technique has been previously performed with excellent results. The synthesis has been carried out in the presence of citric acid, a strong reducing agent, which allows the nucleation and growth of gold nanoparticles, at the same time that controls particle size. In this work we report the use of sodium tartrate as a mild reducing agent that allows a better understanding of the effect of the reaction parameters during gold nanoparticle synthesis. A conventional sonication bath (37 k Hz) was used for the sonochemical synthesis. This work focuses on the reaction temperature effect and the effect of sodium tartrate concentration. It was confirmed that particle size, and particle morphology is dependent of these two reaction parameters. Equally, colloidal stabilization was related to reaction temperature and sodium tartrate concentration. It was also determined that Ostwald ripening takes place during sonochemical reaction under our conditions, allowing to understand the mechanism that takes place during synthesis. Gold nanoparticles with main particle size of 17 nm were achieved by this method. Characterization techniques used: Fourier transform infrared spectra (Ftir), X-ray diffraction and Atomic Force Microscope was used in order to determine particle size of the synthetic product of reaction M10c by tapping mode. (Author)

  17. Reaction parameters for controlled sonosynthesis of gold nanoparticles

    International Nuclear Information System (INIS)

    Gonzalez M, A. L.; Cabrera L, L. I.

    2015-01-01

    The synthesis of gold nanoparticles by sonochemical technique has been previously performed with excellent results. The synthesis has been carried out in the presence of citric acid, a strong reducing agent, which allows the nucleation and growth of gold nanoparticles, at the same time that controls particle size. In this work we report the use of sodium tartrate as a mild reducing agent that allows a better understanding of the effect of the reaction parameters during gold nanoparticle synthesis. A conventional sonication bath (37 k Hz) was used for the sonochemical synthesis. This work focuses on the reaction temperature effect and the effect of sodium tartrate concentration. It was confirmed that particle size, and particle morphology is dependent of these two reaction parameters. Equally, colloidal stabilization was related to reaction temperature and sodium tartrate concentration. It was also determined that Ostwald ripening takes place during sonochemical reaction under our conditions, allowing to understand the mechanism that takes place during synthesis. Gold nanoparticles with main particle size of 17 nm were achieved by this method. Characterization techniques used: Fourier transform infrared spectra (Ftir), X-ray diffraction and Atomic Force Microscope was used in order to determine particle size of the synthetic product of reaction M10c by tapping mode. (Author)

  18. Laser Mode Behavior of the Cassini CIRS Fourier Transform Spectrometer at Saturn

    Science.gov (United States)

    Brasunas, John C.

    2012-01-01

    The CIRS Fourier transform spectrometer aboard the NASA/ESA/ASI Cassini orbiter has been acquiring spectra of the Saturnian system since 2004. The CIRS reference interferometer employs a laser diode to trigger the interferogram sampling. Although the control of laser diode drive current and operating temperature are stringent enough to restrict laser wavelength variation to a small fraction of CIRS finest resolution element, the CIRS instrument does need to be restarted every year or two, at which time it may start in a new laser mode. By monitoring the Mylar absorption features in uncalibrated spectra due to the beam splitter Mylar substrate, it can be shown that these jumps are to adjacent modes and that most of the eight-year operation so far is restricted to three adjacent modes. For a given mode, the wavelength stability appears consistent with the stability of the laser diode drive curren.t and operating temperature.

  19. Oxidation mode of pyranose 2-oxidase is controlled by pH.

    Science.gov (United States)

    Prongjit, Methinee; Sucharitakul, Jeerus; Palfey, Bruce A; Chaiyen, Pimchai

    2013-02-26

    Pyranose 2-oxidase (P2O) from Trametes multicolor is a flavoenzyme that catalyzes the oxidation of d-glucose and other aldopyranose sugars at the C2 position by using O₂ as an electron acceptor to form the corresponding 2-keto-sugars and H₂O₂. In this study, the effects of pH on the oxidative half-reaction of P2O were investigated using stopped-flow spectrophotometry. The results showed that flavin oxidation occurred via different pathways depending on the pH of the environment. At pH values lower than 8.0, reduced P2O reacts with O₂ to form a C4a-hydroperoxyflavin intermediate, leading to elimination of H₂O₂. At pH 8.0 and higher, the majority of the reduced P2O reacts with O₂ via a pathway that does not allow detection of the C4a-hydroperoxyflavin, and flavin oxidation occurs with decreased rate constants upon the rise in pH. The switching between the two modes of P2O oxidation is controlled by protonation of a group which has a pK(a) of 7.6 ± 0.1. Oxidation reactions of reduced P2O under rapid pH change as performed by stopped-flow mixing were different from the same reactions performed with enzyme pre-equilibrated at the same specified pH values, implying that the protonation of the group which controls the mode of flavin oxidation cannot be rapidly equilibrated with outside solvent. Using a double-mixing stopped-flow experiment, a rate constant for proton dissociation from the reaction site was determined to be 21.0 ± 0.4 s⁻¹.

  20. New portable hand-held radiation instruments for measurements and monitoring

    International Nuclear Information System (INIS)

    Fehlau, P.E.

    1987-01-01

    Hand-held radiation monitors are often used to search pedestrians and motor vehicles for special nuclear material (SNM) as part of a physical protection plan for nuclear materials. Recently, the Los Alamos Advanced Nuclear Technology group has commercialized an improved hand-held monitor that can be used for both physical-protection monitoring and verification measurements in nuclear material control and waste management. The new monitoring instruments are smaller and lighter; operate much longer on a battery charge; are available with NaI(Tl) or neutron and gamma-ray sensitive plastic scintillation detectors; and are less expensive than other comparable instruments. They also have a second operating mode for making precise measurements over counting times as long as 99 s. This mode permits making basic verification measurements that may be needed before transporting nuclear material or waste outside protected areas. Improved verification measurements can be made with a second new hand-held instrument that has a stabilized detector and three separate gamma-ray energy windows to obtain spectral information for SNM quantity, enrichment, or material-type verification

  1. Automated selected reaction monitoring data analysis workflow for large-scale targeted proteomic studies.

    Science.gov (United States)

    Surinova, Silvia; Hüttenhain, Ruth; Chang, Ching-Yun; Espona, Lucia; Vitek, Olga; Aebersold, Ruedi

    2013-08-01

    Targeted proteomics based on selected reaction monitoring (SRM) mass spectrometry is commonly used for accurate and reproducible quantification of protein analytes in complex biological mixtures. Strictly hypothesis-driven, SRM assays quantify each targeted protein by collecting measurements on its peptide fragment ions, called transitions. To achieve sensitive and accurate quantitative results, experimental design and data analysis must consistently account for the variability of the quantified transitions. This consistency is especially important in large experiments, which increasingly require profiling up to hundreds of proteins over hundreds of samples. Here we describe a robust and automated workflow for the analysis of large quantitative SRM data sets that integrates data processing, statistical protein identification and quantification, and dissemination of the results. The integrated workflow combines three software tools: mProphet for peptide identification via probabilistic scoring; SRMstats for protein significance analysis with linear mixed-effect models; and PASSEL, a public repository for storage, retrieval and query of SRM data. The input requirements for the protocol are files with SRM traces in mzXML format, and a file with a list of transitions in a text tab-separated format. The protocol is especially suited for data with heavy isotope-labeled peptide internal standards. We demonstrate the protocol on a clinical data set in which the abundances of 35 biomarker candidates were profiled in 83 blood plasma samples of subjects with ovarian cancer or benign ovarian tumors. The time frame to realize the protocol is 1-2 weeks, depending on the number of replicates used in the experiment.

  2. Calculation of the Reaction Cross Section for Several Actinides

    International Nuclear Information System (INIS)

    Hambsch, Franz-Josef; Oberstedt, Stephan; Vladuca, Gheorghita; Tudora, Anabella; Filipescu, Dan

    2005-01-01

    New, self-consistent, neutron-induced reaction cross-section calculations for 235,238U, 237Np, and 231,232,233Pa have been performed. The statistical model code STATIS was extended to take into account the multi-modality of the fission process. The three most dominant fission modes, the two asymmetric standard I (S1) and standard II (S2) modes, and the symmetric superlong (SL) mode have been taken into account. De-convoluted fission cross sections for these modes in 235,238U(n,f) and 237Np(n,f) based on experimental branching ratios, were calculated for the first time up to the second chance fission threshold. For 235U(n,f) and 233Pa(n,f), the calculations being made up to 50 MeV and 20 MeV incident neutron energy, respectively, higher fission chances have been considered. This implied the need for additional calculations for the neighbouring isotopes.As a side product also mass yield distributions could be calculated at energies hitherto not accessible by experiment. Experimental validation of the predictions is being envisaged

  3. Coadsorption and reaction of H2 and CO on Raney nickel: Neutron vibrational spectroscopy

    International Nuclear Information System (INIS)

    Kelley, R.D.; Kernforschungsanlage Juelich G.m.b.H.

    1983-01-01

    Neutron vibration spectroscopy is used to study the adsorption and reaction of H 2 and Co on a catalytic nickel surface. The sample was first exposed to H 2 and than to CO. At low temperatures there is no change of vibrational modes of H in the three-fold site; at a higher temperature changes occur. Some conclusions are drawn on the reaction product. (G.Q.)

  4. Finite-Time Reentry Attitude Control Using Time-Varying Sliding Mode and Disturbance Observer

    Directory of Open Access Journals (Sweden)

    Xuzhong Wu

    2015-01-01

    Full Text Available This paper presents the finite-time attitude control problem for reentry vehicle with redundant actuators in consideration of planet uncertainties and external disturbances. Firstly, feedback linearization technique is used to cancel the nonlinearities of equations of motion to construct a basic mode for attitude controller. Secondly, two kinds of time-varying sliding mode control methods with disturbance observer are integrated with the basic mode in order to enhance the control performance and system robustness. One method is designed based on boundary layer technique and the other is a novel second-order sliding model control method. The finite-time stability analyses of both resultant closed-loop systems are carried out. Furthermore, after attitude controller produces the torque commands, an optimization control allocation approach is introduced to allocate them into aerodynamic surface deflections and on-off reaction control system thrusts. Finally, the numerical simulation results demonstrate that both of the time-varying sliding mode control methods are robust to uncertainties and disturbances without chattering phenomenon. Moreover, the proposed second-order sliding mode control method possesses better control accuracy.

  5. Design of MPPT Controller Monitoring Software Based on QT Framework

    Science.gov (United States)

    Meng, X. Z.; Lu, P. G.

    2017-10-01

    The MPPT controller was a hardware device for tracking the maximum power point of solar photovoltaic array. Multiple controllers could be working as networking mode by specific communicating protocol. In this article, based on C++ GUI programming with Qt frame, we designed one sort of desktop application for monitoring and analyzing operational parameter of MPPT controller. The type of communicating protocol for building network was Modbus protocol which using Remote Terminal Unit mode and The desktop application of host computer was connected with all the controllers in the network through RS485 communication or ZigBee wireless communication. Using this application, user could monitor the parameter of controller wherever they were by internet.

  6. A comparison of co-current and counter-current modes of operation for a novel hydrogen-permselective membrane dual-type FTS reactor in GTL technology

    Energy Technology Data Exchange (ETDEWEB)

    Rahimpour, M.R.; Forghani, A.A.; Mostafazadeh, A. Khosravanipour; Shariati, A. [Chemical Engineering Department, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71345 (Iran)

    2010-01-15

    In this work, a comparison of co-current and counter-current modes of operation for a novel hydrogen-permselective membrane reactor for Fischer-Tropsch Synthesis (FTS) has been carried out. In both modes of operations, a system with two-catalyst bed instead of one single catalyst bed is developed for FTS reactions. In the first catalytic reactor, the synthesis gas is partly converted to products in a conventional water-cooled fixed-bed reactor, while in the second reactor which is a membrane fixed-bed reactor, the FTS reactions are completed and heat of reaction is used to preheat the feed synthesis gas to the first reactor. In the co-current mode, feed gas is entered into the tubes of the second reactor in the same direction with the reacting gas stream in shell side while in the counter-current mode the gas streams are in the opposite direction. Simulation results for both co-current and counter-current modes have been compared in terms of temperature, gasoline and CO{sub 2} yields, H{sub 2} and CO conversion, selectivity of components as well as permeation rate of hydrogen through the membrane. The results showed that the reactor in the co-current configuration operates with lower conversion and lower permeation rate of hydrogen, but it has more favorable profile of temperature. The counter-current mode of operation decreases undesired products such as CO{sub 2} and CH{sub 4} and also produces more gasoline. (author)

  7. Pionic modes of excitation in continuum from the (p,n) reaction

    International Nuclear Information System (INIS)

    Izumoto, T.; Ichimura, M.; Ko, C.M.; Siemens, P.J.; Texas A and M Univ., College Station

    1982-01-01

    The continuum spectra of the 90 Zr(p, n) reaction at Esub(p) = 200 MeV are studied in the DWBA up to high excitation hω(approx. <= 60 MeV) and large momentum transfer q(approx. <= 3 μsub(π)). The response function is obtained in a local-density approximation, taking into account p-h and Δ-h excitations and the short-range correlation g' between them. For small g' approx. <= 0.5, a broad bump due to the opalescence effect can be seen in the calculated cross section at rather low excitation and near q approx. equal to 2.2 μsub(π). However, for larger g', this effect is suppressed, and a broader bump in cross section is located at higher excitation. (orig.)

  8. Peculiarities of formation of zirconium aluminides in hydride cycle mode

    International Nuclear Information System (INIS)

    Muradyan, G.N.

    2016-01-01

    The zirconium aluminides are promising structural materials in aerospace, mechanical engineering, chemical industry, etc. They are promising for manufacturing of heat-resistant wires, that will improve the reliability and efficiency of electrical networks. In the present work, the results of study of zirconium aluminides formation in the Hydride Cycle (HC) mode, developed in the Laboratory of high-temperature synthesis of the Institute of Chemical Physics of NAS RA, are described. The formation of zirconium aluminides in HC proceeded according to the reaction xZrH_2+(1-x)Al → alloy Zr_xAl(1-x)+H_2↑. The samples were certified using: chemical analysis to determine the content of hydrogen (pyrolysis method); differential thermal analysis (DTA, derivatograph Q-1500, T_heating = 1000°C, rate 20°C/min); X-ray analysis (XRD, diffractometer DRON-0.5). The influences of the ratio of powders ZrH_2/Al in the reaction mixture, compacting pressure, temperature and heating velocity on the characteristics of the synthesized aluminides were determined. In HC, the solid solutions of Al in Zr, single phase ZrAl_2 and ZrAl_3 aluminides and Zr_3AlH_4.49 hydride were synthesized. Formation of aluminides in HC mode took place by the solid-phase mechanism, without melting of aluminum. During processing, the heating of the initial charge up to 540°C resulted in the decomposition of zirconium hydride (ZrH_2) to HCC ZrH_1.5, that interacted with aluminum at 630°C forming FCC alumohydride of zirconium. Further increase of the temperature up to 800°C led to complete decomposition of the formed alumohydride of zirconium. The final formation of the zirconium aluminide occurred at 1000-1100°C in the end of HC process. Conclusion: in the synthesis of zirconium aluminides, the HC mode has several significant advantages over the conventional modes: lower operating temperatures (1000°C instead of 1800°C); shorter duration (1.5-2 hours instead of tens of hours); the availability of

  9. Kinematical program package for nuclear reaction

    International Nuclear Information System (INIS)

    Dai Nengxiong; Xie Ying

    1988-01-01

    A FORTRAN package is designed to provide users as many conveniences as possible. Besides adopting man-machine interaction mode and setting nuclide mass file, there are still some other features which are, for examples, the functions of offering the initial values for some transcendental equations and evaluating all the kinematic variables in nuclear reactions at low energies of the form of T (p,1)2, T (p,12)3 and T (p,12)34. All these make the users much easier to use the package

  10. Theoretical estimation of adiabatic temperature rise from the heat flow data obtained from a reaction calorimeter

    International Nuclear Information System (INIS)

    Das, Parichay K.

    2012-01-01

    Highlights: ► This method for estimating ΔT ad (t) against time in a semi-batch reactor is distinctively pioneer and novel. ► It has established uniquely a direct correspondence between the evolution of ΔT ad (t) in RC and C A (t) in a semi-batch reactor. ► Through a unique reaction scheme, the independent effects of heat of mixing and reaction on ΔT ad (t) has been demonstrated quantitatively. ► This work will help to build a thermally safe corridor of a thermally hazard reaction. ► This manuscript, the author believes will open a new vista for further research in Adiabatic Calorimetry. - Abstract: A novel method for estimating the transient profile of adiabatic rise in temperature has been developed from the heat flow data for exothermic chemical reactions that are conducted in reaction calorimeter (RC). It has also been mathematically demonstrated by the present design that there exists a direct qualitative equivalence between the temporal evolution of the adiabatic temperature rise and the concentration of the limiting reactant for an exothermic chemical reaction, carried out in semi batch mode. The proposed procedure shows that the adiabatic temperature rise will always be less than that of the reaction executed at batch mode thereby affording a thermally safe corridor. Moreover, a unique reaction scheme has been designed to establish the independent heat effect of dissolution and reaction quantitatively. It is hoped that the testimony of the transient adiabatic temperature rise that can be prepared by the proposed method, may provide ample scope for further research.

  11. Review of Regulatory Emphasis on Transportation Safety in the United States, 2002-2009: Public versus Private Modes.

    Science.gov (United States)

    Waycaster, Garrett C; Matsumura, Taiki; Bilotkach, Volodymyr; Haftka, Raphael T; Kim, Nam H

    2018-05-01

    The U.S. Department of Transportation is responsible for implementing new safety improvements and regulations with the goal of ensuring limited funds are distributed to where they can have the greatest impact on safety. In this work, we conduct a study of new regulations and other reactions (such as recalls) to fatal accidents in several different modes of transportation implemented from 2002 to 2009. We find that in the safest modes of commercial aviation and bus transport, the amount of spending on new regulations is high in relation to the number of fatalities compared to the regulatory attention received by less safe modes of general aviation and private automobiles. Additionally, we study two major fatal accident investigations from commercial aviation and two major automotive recalls associated with fatal accidents. We find differences in the cost per expected fatality prevented for these reactions, with the airline accident investigations being more cost effective. Overall, we observe trends in both the automotive and aviation sectors that suggest that public transportation receives more regulatory attention than private transport. We also observe that the types of safety remedies utilized, regulation versus investigation, have varying levels of effectiveness in different transport modes. We suggest that these differences are indicative of increased public demand for safety in modes where a third party may be held responsible, even for those not participating in the transportation. These findings have important implications for the transportation industry, policymakers, and for estimating the public demand for safety in new transport modes. © 2017 Society for Risk Analysis.

  12. A luminosity monitor for LHC [notes of a thesis

    CERN Document Server

    Perrot, Anne Laure

    2000-01-01

    LHC luminosity will reach 10/sup 34/ cm/sup -2/ s/sup -1/ but special runs at 10/sup 28/ cm/sup -2/ s/sup -1/ are foreseen. Thus a luminosity monitor must have a dynamic range of six orders of magnitude. A good tolerance to radiation is also required. A detector using both ionisation and secondary emission techniques has been studied in this context. Its design is based on monitors used previously at the CERN PS and SPS. Special attention was devoted to minimise leakage currents. Linearity in both Secondary Emission Counter (SEC) and Ionisation Chamber (IC) modes has been tested from ~10/sup 4/ incident particles to ~10/sup 8/ incident particles. SEC is linear above ~5.10/sup 6/ incident particles while IC is linear over the full studied range. However, because of the radiation environment at LHC, the SEC mode is much preferred at high intensity. A solution actually foreseen is to switch from IC to SEC mode when the intensity is around 5.10/sup 6/ incident particles per second corresponding to an LHC luminosi...

  13. Comparative Analysis of Battery Behavior with Different Modes of Discharge for Optimal Capacity Sizing and BMS Operation

    Directory of Open Access Journals (Sweden)

    Mazhar Abbas

    2016-10-01

    Full Text Available Battery-operated systems are always concerned about the proper management and sizing of a battery. A Traditional Battery Management System (BMS only includes battery-aware task scheduling based on the discharge characteristics of a whole battery pack and do not take into account the mode of the load being served by the battery. On the other hand, an efficient and intelligent BMS should monitor the battery at a cell level and track the load with significant consideration of the load mode. Depending upon the load modes, the common modes of discharge (MOD of a battery identified so far are Constant Power Mode (CPM, Constant Current Mode (CCM and Constant Impedance Mode (CIM. This paper comparatively analyzes the discharging behavior of batteries at an individual cell level for different load modes. The difference in discharging behavior from mode to mode represents the study of the mode-dependent behavior of the battery before its deployment in some application. Based on simulation results, optimal capacity sizing and BMS operation of battery for an assumed situation in a remote microgrid has been proposed.

  14. Effect of dual task activity on reaction time in males and females.

    Science.gov (United States)

    Kaur, Manjinder; Nagpal, Sangeeta; Singh, Harpreet; Suhalka, M L

    2014-01-01

    The present study was designed to compare the auditory and visual reaction time on an Audiovisual Reaction Time Machine with the concomitant use of mobile phones in 52 women and 30 men in the age group of 18-40 years. Males showed significantly (p multitasking, in hand held (24.38% & 18.70% respectively) and hands free modes (36.40% & 18.40% respectively) of the use of cell phone. VRT increased non significantly during multitasking in both the groups. However, the multitasking per se has detrimental effect on the reaction times in both the groups studied. Hence, it should best be avoided in crucial and high attention demanding tasks like driving.

  15. Automated Cryocooler Monitor and Control System

    Science.gov (United States)

    Britcliffe, Michael J.; Hanscon, Theodore R.; Fowler, Larry E.

    2011-01-01

    A system was designed to automate cryogenically cooled low-noise amplifier systems used in the NASA Deep Space Network. It automates the entire operation of the system including cool-down, warm-up, and performance monitoring. The system is based on a single-board computer with custom software and hardware to monitor and control the cryogenic operation of the system. The system provides local display and control, and can be operated remotely via a Web interface. The system controller is based on a commercial single-board computer with onboard data acquisition capability. The commercial hardware includes a microprocessor, an LCD (liquid crystal display), seven LED (light emitting diode) displays, a seven-key keypad, an Ethernet interface, 40 digital I/O (input/output) ports, 11 A/D (analog to digital) inputs, four D/A (digital to analog) outputs, and an external relay board to control the high-current devices. The temperature sensors used are commercial silicon diode devices that provide a non-linear voltage output proportional to temperature. The devices are excited with a 10-microamp bias current. The system is capable of monitoring and displaying three temperatures. The vacuum sensors are commercial thermistor devices. The output of the sensors is a non-linear voltage proportional to vacuum pressure in the 1-Torr to 1-millitorr range. Two sensors are used. One measures the vacuum pressure in the cryocooler and the other the pressure at the input to the vacuum pump. The helium pressure sensor is a commercial device that provides a linear voltage output from 1 to 5 volts, corresponding to a gas pressure from 0 to 3.5 MPa (approx. = 500 psig). Control of the vacuum process is accomplished with a commercial electrically operated solenoid valve. A commercial motor starter is used to control the input power of the compressor. The warm-up heaters are commercial power resistors sized to provide the appropriate power for the thermal mass of the particular system, and

  16. Analysis of blowout fractures using cine mode MRI

    International Nuclear Information System (INIS)

    Kawahara, Masaaki; Shiihara, Kumiko; Kimura, Hisashi; Fukai, Sakuko; Tabuchi, Akio; Kojo, Tuyoshi

    1995-01-01

    By observing conventional CT and MRI images, it is difficult to distinguish extension failure from adhesion, bone fracture or damage to the extraocular muscle, any one of which may be the direct cause of the eye movement disturbance accompanying blowout fracture. We therefore carried out dynamic analysis of eye movement disturbance using a cine mode MRI. We put seven fixation points in the gantry of the MRI and filmed eye movement disturbances by the gradient echo method, using a surface coil and holding the vision on each fixation point. We also video recorded the CRT monitor of the MRI to obtain dynamic MRI images. The subjects comprised 5 cases (7-23 years old). In 4 cases, we started orthoptic treatment, saccadic eye movement training, convergence training and fusional amplitude training after surgery, with only orthoptic treatment in the 5 th case. In all cases, fusion area improvement was recognized during training. In 2 cases examined by cine mode MRI before and after surgery, we observed improved eye movement after training, the effectiveness of which was thereby proven. Also, using cine mode MRI we were able to determine the character of incarcerated tissue and the cause of eye movement disturbance. We conclude that it blowout fracture, cine mode MRI may be useful in selecting treatment and observing its effectiveness. (author)

  17. Giant resonances: reaction theory approach

    International Nuclear Information System (INIS)

    Toledo Piza, A.F.R. de; Foglia, G.A.

    1989-09-01

    The study of giant resonances through the use of reaction theory approach is presented and discussed. Measurements of cross-sections to the many available decay channels following excitation of giant multipole resonances (GMR) led one to view these phenomena as complicated dynamical syndromes so that theoretical requirements for their study must be extended beyond the traditional bounds of nuclear structure models. The spectra of decay products following GMR excitation in heavy nuclei are well described by statistical model (Hauser-Feshback, HF) predictions indicated that spreading of the collective modes plays a major role in shaping exclusive cross-sections. (A.C.A.S.) [pt

  18. Isospin and spin-isospin modes in nuclei

    International Nuclear Information System (INIS)

    Zegers, R.G.T.; Berg, A.M. van den; Brandenburg, S.

    2002-01-01

    The ( 3 He,t) reaction on Pb at E 3He =177 MeV and the subsequent decay by proton emission were studied in order to distinguish isovector monopole strength corresponding to 2ℎω transitions from the non-resonant continuum background. Monopole strength at excitation energies above 25 MeV was discovered and compared to the calculated strength due to the isovector giant monopole resonance and the spin-flip isovector monopole resonance. Calculations in a normal-modes framework show that all isovector monopole strength can be accounted for if the branching ratio for decay by proton emission is 20%. (author)

  19. Excited state intramolecular charge transfer reaction in 4-(1 ...

    Indian Academy of Sciences (India)

    Administrator

    cal reactions to the determination of paleotempera- tures from isotopic ... ordered liquid than H2O due to stronger H-bond in- teractions in the deuterated water ... layer chromatography and monitoring the excitation wavelength dependence of ...

  20. Model-based health monitoring of hybrid systems

    CERN Document Server

    Wang, Danwei; Low, Chang Boon; Arogeti, Shai

    2013-01-01

    Offers in-depth comprehensive study on health monitoring for hybrid systems Includes new concepts, such as GARR, mode tracking and multiple failure prognosis Contains many examples, making the developed techniques easily understandable and accessible Introduces state-of-the-art algorithms and methodologies from experienced researchers

  1. Development of monitoring and control technology based on trace gas monitoring. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Liebowitz, B.

    1997-07-01

    Trace gases are generated by many biological reactions. During anaerobic decomposition, trace levels of hydrogen (H{sub 2}) and carbon monoxide (CO) gases are produced. It was shown previously that these trace gases are intrinsically related to the biochemical reactions occurring and, therefore, offer promise for on-line process monitoring and control. This work was designed to test how effectively hydrogen and CO could be to monitor high-rate anaerobic systems that has significant mass transfer and complex hydraulics. An experimental program was designed to examine the behavior of an upflow anaerobic sludge blanket (UASB) reactor system under steady state and in response to organic loading perturbations. The responses of trace gases CO and H{sub 2} were tracked using an on-line, real-time gas-monitoring system linked to a computer-controlled data acquisition package. Data on conventional process parameters such as pH, chemical oxygen demand (COD), volatile fatty acids (VFAs) were concurrently collected. Monitoring of conventional process indicators (i.e., pH, VFA, gas production) and trace gas (H{sub 2} and CO) indicators was conducted using a matrix of nine different steady-state OLRs (4-23 kg COD/m{sup 3} -d) and system HRTs (0.5 to 2.5 days) was performed to determine any correlation among the indicators. Of OLR, HRT, and influent COD, only OLR had any significant influence on the process indicators examined. All parameters except methane increased with increases in OLR; methane decreased with increased OLR. The OLR and gas production rate (GP) were observed to be linearly correlated.

  2. Capability of LEP-type surfaces to describe noncollinear reactions 2 - Polyatomic systems

    CERN Document Server

    Espinosa-Garcia, Joaquin

    2001-01-01

    In this second article of the series, the popular LEP-type surface for collinear reaction paths and a "bent" surface, which involves a saddle point geometry with a nonlinear central angle, were used to examine the capacity of LEP-type surfaces to describe the kinetics and dynamics of noncollinear reaction paths in polyatomic systems. Analyzing the geometries, vibrational frequencies, curvature along the reaction path (to estimate the tunneling effect and the reaction coordinate-bound modes coupling), and the variational transition- state theory thermal rate constants for the NH//3 + O(**3P) reaction, we found that the "collinear" LEP-type and the "bent" surfaces for this polyatomic system show similar behavior, thus allowing a considerable saving in time and computational effort. This agreement is especially encouraging for this polyatomic system because in the Cs symmetry the reaction proceeds via two electronic states of symmetries **3A prime and **3A double prime , which had to be independently calibrated....

  3. Development of an omni-directional shear horizontal mode magnetostrictive patch transducer

    Science.gov (United States)

    Liu, Zenghua; Hu, Yanan; Xie, Muwen; Fan, Junwei; He, Cunfu; Wu, Bin

    2018-04-01

    The fundamental shear horizontal wave, SH0 mode, has great potential in defect detection and on-line monitoring with large scale and high efficiency in plate-like structures because of its non-dispersive characteristics. Aiming at consistently exciting single SH0 mode in plate-like structures, an omni-directional shear horizontal mode magnetostrictive patch transducer (OSHM-MPT) is developed on the basis of magnetostrictive effect. It consists of four fan-shaped array elements and corresponding plane solenoid array (PSA) coils, four fan-shaped permanent magnets and a circular nickel patch. The experimental results verify that the developed transducer can effectively produce the single SH0 mode in an aluminum plate. The frequency response characteristics of this developed transducer are tested. The results demonstrate that the proposed OSHM-MPT has a center frequency of 300kHz related to the distance between adjacent arc-shaped steps of the PSA coils. Furthermore, omni-directivity of this developed transducer is tested. The results demonstrate that the developed transducer has a high omnidirectional consistency.

  4. A wide dynamic range BF{sub 3} neutron monitor with front-end electronics based on a logarithmic amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Ferrarini, M., E-mail: michele.ferrarini@polimi.i [Politecnico di Milano, Dipartimento Energia, via G. Ponzio 34/3, I-20133 Milano (Italy); Fondazione CNAO, via Caminadella 16, 20123 Milano (Italy); Varoli, V. [Politecnico di Milano, Dipartimento Energia, via G. Ponzio 34/3, I-20133 Milano (Italy); Favalli, A. [European Commission, Joint Research Centre, Institute for the Protection and Security of Citizen, TP 800, Via E. Fermi, 21027 Ispra (Vatican City State, Holy See) (Italy); Caresana, M. [Politecnico di Milano, Dipartimento Energia, via G. Ponzio 34/3, I-20133 Milano (Italy); Pedersen, B. [European Commission, Joint Research Centre, Institute for the Protection and Security of Citizen, TP 800, Via E. Fermi, 21027 Ispra (Italy)

    2010-02-01

    This paper describes a wide dynamic range neutron monitor based on a BF{sub 3} neutron detector. The detector is used in current mode, and front-end electronics based on a logarithmic amplifier are used in order to have a measurement capability ranging over many orders of magnitude. The system has been calibrated at the Polytechnic of Milan, CESNEF, with an AmBe neutron source, and has been tested in a pulsed field at the PUNITA facility at JRC, Ispra. The detector has achieved a dynamic range of over 6 orders of magnitude, being able to measure single neutron pulses and showing saturation-free response for a reaction rate up to 10{sup 6} s{sup -1}. It has also proved effective in measuring the PUNITA facility pulse integral fluence.

  5. Monitoring techniques for the manufacture of tapered optical fibers.

    Science.gov (United States)

    Mullaney, Kevin; Correia, Ricardo; Staines, Stephen E; James, Stephen W; Tatam, Ralph P

    2015-10-01

    The use of a range of optical techniques to monitor the process of fabricating optical fiber tapers is investigated. Thermal imaging was used to optimize the alignment of the optical system; the transmission spectrum of the fiber was monitored to confirm that the tapers had the required optical properties and the strain induced in the fiber during tapering was monitored using in-line optical fiber Bragg gratings. Tapers were fabricated with diameters down to 5 μm and with waist lengths of 20 mm using single-mode SMF-28 fiber.

  6. Method and apparatus for controlling gas evolution from chemical reactions

    Science.gov (United States)

    Skorpik, James R.; Dodson, Michael G.

    1999-01-01

    The present invention is directed toward monitoring a thermally driven gas evolving chemical reaction with an acoustic apparatus. Signals from the acoustic apparatus are used to control a heater to prevent a run-away condition. A digestion module in combination with a robotic arm further automate physical handling of sample material reaction vessels. The invention is especially useful for carrying out sample procedures defined in EPA Methods SW-846.

  7. Free and Protein-Bound Maillard Reaction Products in Beer: Method Development and a Survey of Different Beer Types.

    Science.gov (United States)

    Hellwig, Michael; Witte, Sophia; Henle, Thomas

    2016-09-28

    The Maillard reaction is important for beer color and flavor, but little is known about the occurrence of individual glycated amino acids in beer. Therefore, seven Maillard reaction products (MRPs), namely, fructosyllysine, maltulosyllysine, pyrraline, formyline, maltosine, MG-H1, and argpyrimidine, were synthesized and quantitated in different types of beer (Pilsner, dark, bock, wheat, and nonalcoholic beers) by HPLC-ESI-MS/MS in the multiple reaction monitoring mode through application of the standard addition method. Free MRPs were analyzed directly. A high molecular weight fraction was isolated by dialysis and hydrolyzed enzymatically prior to analysis. Maltulosyllysine was quantitated for the first time in food. The most important free MRPs in beer are fructosyllysine (6.8-27.0 mg/L) and maltulosyllysine (3.7-21.8 mg/L). Beer contains comparatively high amounts of late-stage free MRPs such as pyrraline (0.2-1.6 mg/L) and MG-H1 (0.3-2.5 mg/L). Minor amounts of formyline (4-230 μg/L), maltosine (6-56 μg/L), and argpyrimidine (0.1-4.1 μg/L) were quantitated. Maltulosyllysine was the most significant protein-bound MRP, but both maltulosyllysine and fructosyllysine represent only 15-60% of the total protein-bound lysine-derived Amadori products. Differences in the patterns of protein-bound and free individual MRPs and the ratios between them were identified, which indicate differences in their chemical, biochemical, and microbiological stabilities during the brewing process.

  8. Triaxiality and the wobbling mode In 167Lu

    International Nuclear Information System (INIS)

    Amro, H.; Ma, W.C.; Winger, J.A.; Li, Y.; Thompson, J.; Hagemann, G.; Herskind, B.; Sletten, G.; Wilson, J.N.; Jensen, D.R.; Fallon, P.; Ward, D.; Diamond, R.M.; Goergen, A.; Machiavelli, A.; Huebel, H.; Domscheit, J.; Wiedenhoewer, I.

    2002-01-01

    High spin states in 167Lu nucleus were populated through the 123Sb(48Ca,xn) reaction at 203 MeV. Five presumably triaxial superdeformed (TSD) bands have been found. The electromagnetic properties of several connecting transitions between the yrast (TSD1) and the excited (TSD2) bands have been established. Evidence for the assignment of TSD2 band as a wobbling mode built on the yrast TSD band is presented. These bands coexist with bands built on quasiparticle excitations in normal deformed (ND) minimum for which new data are also presented

  9. Techniques to extract physical modes in model-independent analysis of rings

    International Nuclear Information System (INIS)

    Wang, C.-X.

    2004-01-01

    A basic goal of Model-Independent Analysis is to extract the physical modes underlying the beam histories collected at a large number of beam position monitors so that beam dynamics and machine properties can be deduced independent of specific machine models. Here we discuss techniques to achieve this goal, especially the Principal Component Analysis and the Independent Component Analysis.

  10. Transverse multibunch modes for non-rigid bunches, including mode coupling

    Energy Technology Data Exchange (ETDEWEB)

    Berg, J S; Ruth, R D [Stanford Linear Accelerator Center, Menlo Park, CA (United States)

    1996-08-01

    A method for computing transverse multibunch growth rates and frequency shifts in rings, which has been described previously, is applied to the PEP-II B factory. The method allows multibunch modes with different internal-bunch oscillation modes to couple to one another, similar to single-bunch mode coupling. Including coupling between the multibunch modes gives effects similar to those seen in single-bunch mode coupling. These effects occur at currents that are lower than the single-bunch mode coupling threshold. (author)

  11. H-mode physics

    International Nuclear Information System (INIS)

    Itoh, Sanae.

    1991-06-01

    After the discovery of the H-mode in ASDEX ( a tokamak in Germany ) the transition between the L-mode ( Low confinement mode ) and H-mode ( High confinement mode ) has been observed in many tokamaks in the world. The H-mode has made a breakthrough in improving the plasma parameters and has been recognized to be a universal phenomena. Since its discovery, the extensive studies both in experiments and in theory have been made. The research on H-mode has been casting new problems of an anomalous transport across the magnetic surface. This series of lectures will provide a brief review of experiments for explaining H-mode and a model theory of H-mode transition based on the electric field bifurcation. If the time is available, a new theoretical model of the temporal evolution of the H-mode will be given. (author)

  12. Chemical reaction on solid surface observed through isotope tracer technique

    International Nuclear Information System (INIS)

    Tanaka, Ken-ichi

    1983-01-01

    In order to know the role of atoms and ions on solid surfaces as the partners participating in elementary processes, the literatures related to the isomerization and hydrogen exchanging reaction of olefines, the hydrogenation of olefines, the metathesis reaction and homologation of olefines based on solid catalysts were reviewed. Various olefines, of which the hydrogen atoms were substituted with deuterium at desired positions, were reacted using various solid catalysts such as ZnO, K 2 CO 3 on C, MoS 2 (single crystal and powder) and molybdenum oxide (with various carriers), and the infra-red spectra of adsorbed olefines on catalysts, the isotope composition of reaction products and the production rate of the reaction products were measured. From the results, the bonding mode of reactant with the atoms and ions on solid surfaces, and the mechanism of the elementary process were considered. The author emphasized that the mechanism of the chemical reaction on solid surfaces and the role of active points or catalysts can be made clear to the considerable extent by combining isotopes suitably. (Yoshitake, I.)

  13. MALDI MS-based Composition Analysis of the Polymerization Reaction of Toluene Diisocyanate (TDI) and Ethylene Glycol (EG).

    Science.gov (United States)

    Ahn, Yeong Hee; Lee, Yeon Jung; Kim, Sung Ho

    2015-01-01

    This study describes an MS-based analysis method for monitoring changes in polymer composition during the polyaddition polymerization reaction of toluene diisocyanate (TDI) and ethylene glycol (EG). The polymerization was monitored as a function of reaction time using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS). The resulting series of polymer adducts terminated with various end-functional groups were precisely identified and the relative compositions of those series were estimated. A new MALDI MS data interpretation method was developed, consisting of a peak-resolving algorithm for overlapping peaks in MALDI MS spectra, a retrosynthetic analysis for the generation of reduced unit mass peaks, and a Gaussian fit-based selection of the most prominent polymer series among the reconstructed unit mass peaks. This method of data interpretation avoids errors originating from side reactions due to the presence of trace water in the reaction mixture or MALDI analysis. Quantitative changes in the relative compositions of the resulting polymer products were monitored as a function of reaction time. These results demonstrate that the mass data interpretation method described herein can be a powerful tool for estimating quantitative changes in the compositions of polymer products arising during a polymerization reaction.

  14. Surface dependent behaviour of CdS LO-phonon mode

    International Nuclear Information System (INIS)

    Molina-Contreras, J R; Medina-Gutierrez, C; Frausto-Reyes, C; Trejo-Vazquez, R; Villalobos-Pina, F J; Romo-Luevano, G; Calixto, S

    2007-01-01

    In this paper, we develop a sensitive optical method to monitor the surface roughness in the investigation of surfaces. By applying this method to measure the RMS surface roughness of various surfaces, we found RMS values which are comparable to those obtained by atomic force microscopy measurements. In addition, we present a simple empirical model to calculate the RMS surface roughness which shows very good agreement with the surface roughness measurements taken by the method reported in this paper. Finally, the application of our method to the study of the LO-phonon mode of CdS suggests that its intensity is dominated by the surface roughness. This roughness dependent behaviour of the CdS LO-phonon mode is experimentally confirmed by using an excitation wavelength near its E 0 transition

  15. Hairpin stabilized fluorescent silver nanoclusters for quantitative detection of NAD+ and monitoring NAD+/NADH based enzymatic reactions.

    Science.gov (United States)

    Jain, Priyamvada; Chakma, Babina; Patra, Sanjukta; Goswami, Pranab

    2017-03-01

    A set of 90 mer long ssDNA candidates, with different degrees of cytosine (C-levels) (% and clusters) was analyzed for their function as suitable Ag-nanocluster (AgNC) nucleation scaffolds. The sequence (P4) with highest C-level (42.2%) emerged as the only candidate supporting the nucleation process as evident from its intense fluorescence peak at λ 660 nm . Shorter DNA subsets derived from P4 with only stable hairpin structures could support the AgNC formation. The secondary hairpin structures were confirmed by PAGE, and CD studies. The number of base pairs in the stem region also contributes to the stability of the hairpins. A shorter 29 mer sequence (Sub 3) (ΔG = -1.3 kcal/mol) with 3-bp in the stem of a 7-mer loop conferred highly stable AgNC. NAD + strongly quenched the fluorescence of Sub 3-AgNC in a concentration dependent manner. Time resolved photoluminescence studies revealed the quenching involves a combined static and dynamic interaction where the binding constant and number of binding sites for NAD + were 0.201 L mol -1 and 3.6, respectively. A dynamic NAD + detection range of 50-500 μM with a limit of detection of 22.3 μM was discerned. The NAD + mediated quenching of AgNC was not interfered by NADH, NADP + , monovalent and divalent ions, or serum samples. The method was also used to follow alcohol dehydrogenase and lactate dehydrogenase catalyzed physiological reactions in a turn-on and turn-off assay, respectively. The proposed method with ssDNA-AgNC could therefore be extended to monitor other NAD + /NADH based enzyme catalyzed reactions in a turn-on/turn-off approach. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Pre-study and in-study validation of a size-exclusion chromatography method with different detection modes for the analysis of monoclonal antibody aggregates.

    Science.gov (United States)

    Oliva, Alexis; Fariña, Jose B; Llabrés, Matías

    2016-06-01

    Size exclusion chromatography (SEC) with different detection modes was assessed as a means to characterize the type of bevacizumab aggregate that forms under thermal stress, quantitatively monitoring the aggregation kinetics. The combination of SEC with light-scattering (SEC/LS) detection was validated using in-study validation process. This was performed by applying a strategy based on a control chart to monitor the process parameters and by inserting quality control samples in routine runs. The SEC coupled with a differential refractive-index detector (SEC/RI) was validated using a pre-study validation process in accordance with the ICH-Q2 (R1) guidelines and in-study monitoring in accordance with the Analytical Target Profile (ATP) criteria. The total error and β-expectation tolerance interval rules were used to assess method suitability and control the risk of incorrectly accepting unsuitable analytical methods. The aggregation kinetics data were interpreted using a modified Lumry-Eyring model. The true order of the reaction was determined using the initial-rate approach. All the kinetic data show a linear Arrhenius dependence within the studied temperature range. The Arrhenius approach over-predicted the aggregation rate for 5°C, but provides an idea of the aggregation process and amount of aggregate formed. In any case, real-time stability data are necessary to establish the product shelf-life. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Mode-to-mode energy transfers in convective patterns

    Indian Academy of Sciences (India)

    Abstract. We investigate the energy transfer between various Fourier modes in a low- dimensional model for thermal convection. We have used the formalism of mode-to-mode energy transfer rate in our calculation. The evolution equations derived using this scheme is the same as those derived using the hydrodynamical ...

  18. The Emotional Child Witness Effect Survives Presentation Mode.

    Science.gov (United States)

    Melinder, Annika; Burrell, Lisa; Eriksen, Maria Olaussen; Magnussen, Svein; Wessel, Ellen

    2016-01-01

    The emotional witness effect - the phenomenon whereby people are affected by the emotional manner in which a witness presents testimony - constitutes a possible source of wrongful decisions in legal contexts. One stereotypical view of abused children is that they should be sad when talking about their experiences of maltreatment, whereas children may in fact express a variety of emotional expressions when talking about abusive events. This raises the question as to whether there is an optimal mode in which to present child victim testimony that could reduce the possible influence of displayed emotions. In the present study, mock police interviews were carried out with female child actors, role-playing the victims of physical abuse by their stepfather, telling the same story with four emotional expressions (neutral, sad, angry, or positive). Laypersons (N = 465) were presented with the interviews as transcripts with the emotional reactions of the child witness noted, audio recordings, or videotaped recordings. Participants then rated the credibility of the victim witness. Replicating previous results, the "sad" expression elicited the highest credibility ratings across all modes of presentations. Presentation mode affected ratings of credibility, with the transcript versions resulting in the highest ratings. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Investigation of energetic particle induced geodesic acoustic mode

    Science.gov (United States)

    Schneller, Mirjam; Fu, Guoyong; Chavdarovski, Ilija; Wang, Weixing; Lauber, Philipp; Lu, Zhixin

    2017-10-01

    Energetic particles are ubiquitous in present and future tokamaks due to heating systems and fusion reactions. Anisotropy in the distribution function of the energetic particle population is able to excite oscillations from the continuous spectrum of geodesic acoustic modes (GAMs), which cannot be driven by plasma pressure gradients due to their toroidally and nearly poloidally symmetric structures. These oscillations are known as energetic particle-induced geodesic acoustic modes (EGAMs) [G.Y. Fu'08] and have been observed in recent experiments [R. Nazikian'08]. EGAMs are particularly attractive in the framework of turbulence regulation, since they lead to an oscillatory radial electric shear which can potentially saturate the turbulence. For the presented work, the nonlinear gyrokinetic, electrostatic, particle-in-cell code GTS [W.X. Wang'06] has been extended to include an energetic particle population following either bump-on-tail Maxwellian or slowing-down [Stix'76] distribution function. With this new tool, we study growth rate, frequency and mode structure of the EGAM in an ASDEX Upgrade-like scenario. A detailed understanding of EGAM excitation reveals essential for future studies of EGAM interaction with micro-turbulence. Funded by the Max Planck Princeton Research Center. Computational resources of MPCDF and NERSC are greatefully acknowledged.

  20. Relationship between mode of sport training and general cognitive performance

    Directory of Open Access Journals (Sweden)

    Erik Chih-Hung Chang

    2017-03-01

    Conclusion: These findings indicate that the mode of sport training, which results in either high cardiovascular or high motor fitness, bears no relationship to measures of general cognition in elite athletes. The present findings suggest that coaches and athletic trainers should be encouraged to monitor athletes' stress levels during training in order to maximize the beneficial effects of such training on general cognitive performance.

  1. The Design of an Autonomous Underwater Vehicle for Water Quality Monitoring

    Science.gov (United States)

    Li, Yulong; Liu, Rong; Liu, Shujin

    2018-01-01

    This paper describes the development of a civilian-used autonomous underwater vehicle (AUV) for water quality monitoring at reservoirs and watercourses that can obtain realtime visual and locational information. The mechanical design was completed with CAD software Solidworks. Four thrusters—two horizontal and two vertical—on board enable the vehicle to surge, heave, yaw, and pitch. A specialized water sample collection compartment is designed to perform water collection at target locations. The vehicle has a central controller—STM32—and a sub-coordinate controller—Arduino MEGA 2560—that coordinates multiple sensors including an inertial sensor, ultrasonic sensors, etc. Global Navigation Satellite System (GNSS) and the inertial sensor enable the vehicle’s localization. Remote operators monitor and control the vehicle via a host computer system. Operators choose either semi-autonomous mode in which they set target locations or manual mode. The experimental results show that the vehicle is able to perform well in either mode.

  2. Radiation monitor reporting requirements

    International Nuclear Information System (INIS)

    Bates, W.F.

    1993-01-01

    Within High-Level Waste Management (HLWM), CAMs and VAMPs are currently considered Class B equipment, therefore, alarm conditions associated with the CAMs and VAMPs result in an Unusual Occurrence or Off-Normal notification and subsequent occurrence reporting. Recent equipment difficulties associated with Continuous Air Monitors (CAMs) and Victoreen Area Radiation Monitors (VAMPs) have resulted in a significant number of notification reports. These notification have the potential to decrease operator sensitivity to the significance of specific CAM and VAMP failures. Additionally, the reports are extremely costly and are not appropriate as a means for tracking and trending equipment performance. This report provides a technical basis for a change in Waste Management occurrence reporting categorization for specific CAM and VAMP failure modes

  3. Iaverage current mode (ACM) control for switching power converters

    OpenAIRE

    2014-01-01

    Providing a fast current sensor direct feedback path to a modulator for controlling switching of a switched power converter in addition to an integrating feedback path which monitors average current for control of a modulator provides fast dynamic response consistent with system stability and average current mode control. Feedback of output voltage for voltage regulation can be combined with current information in the integrating feedback path to limit bandwidth of the voltage feedback signal.

  4. Effects of mode coupling between low-mode radiation flux asymmetry and intermediate-mode ablator roughness on ignition capsule implosions

    Directory of Open Access Journals (Sweden)

    Jianfa Gu

    2017-01-01

    Full Text Available The low-mode shell asymmetry and high-mode hot spot mixing appear to be the main reasons for the performance degradation of the National Ignition Facility (NIF implosion experiments. The effects of the mode coupling between low-mode P2 radiation flux asymmetry and intermediate-mode L = 24 capsule roughness on the implosion performance of ignition capsule are investigated by two-dimensional radiation hydrodynamic simulations. It is shown that the amplitudes of new modes generated by the mode coupling are in good agreement with the second-order mode coupling equation during the acceleration phase. The later flow field not only shows large areal density P2 asymmetry in the main fuel, but also generates large-amplitude spikes and bubbles. In the deceleration phase, the increasing mode coupling generates more new modes, and the perturbation spectrum on the hot spot boundary is mainly from the strong mode interactions rather than the initial perturbation conditions. The combination of the low-mode and high-mode perturbations breaks up the capsule shell, resulting in a significant reduction of the hot spot temperature and implosion performance.

  5. Clozapine-associated extrapyramidal reaction.

    Science.gov (United States)

    Elliott, E S; Marken, P A; Ruehter, V L

    2000-05-01

    To report a case of extrapyramidal reaction associated with a dosage increase of clozapine. A 44-year-old white man with a 20-year history of chronic paranoid schizophrenia was admitted to an inpatient psychiatric facility. His prior medications restarted on admission were clozapine 650 mg at bedtime, haloperidol 10 mg at bedtime, clonazepam 2 mg/d, and aspirin 325 mg/d. Two days after admission (hospital day 3), clozapine and clonazepam were discontinued, and he was prescribed haloperidol 5 mg every morning and 10 mg every evening. Stabilization occurred over the following 24 days, with progressively lower dosages of haloperidol and increasing dosages of clozapine. Haloperidol was discontinued on day 24. On day 47, the patient was agitated and making bizarre statements; thus, the morning dose of clozapine was increased by 50 mg (total 450 mg/d). On day 48 at 2200, a dystonic reaction was diagnosed; he received intramuscular diphenhydramine 50 mg, which caused the reaction to subside. At the time of the adverse reaction, he was prescribed clozapine 450 mg/d, vitamin E 400 IU three times daily, aspirin 325 mg/d, and acetaminophen, milk of magnesia, and Maalox as needed. Although the risk of extrapyramidal symptoms (EPS) is significantly lower with clozapine than with conventional agents, elevated clozapine blood concentrations have been reported to cause EPS; other reports have cited severe dystonias and dyskinesias on abrupt clozapine withdrawal. Considering the medications prescribed at the time and the discontinuation of haloperidol 24 days before the event, clozapine was the most likely cause of the extrapyramidal reaction. Regardless of anticipated safety associated with novel antipsychotics such as clozapine, reports of dystonic reactions must be taken into account and patients monitored appropriately.

  6. Passive low-cost inkjet-printed smart skin sensor for structural health monitoring

    KAUST Repository

    Cook, Benjamin Stassen

    2012-11-20

    Monitoring fatigue cracking of large engineering structures is a costly and time-intensive process. The authors\\' present the first low-cost inkjet-printed patch antenna sensor that can passively detect crack formation, orientation and shape by means of resonant frequency shifts in the two resonant modes of the antenna. For the first time, the effect of non-linear crack shapes on the parallel and perpendicular resonant modes of a patch antenna is quantified with simulation and measurement. This study presents a step towards fully integrated, low-cost, conformal and environmentally friendly smart skins for real-time monitoring of large structures. © The Institution of Engineering and Technology 2012.

  7. In-situ electrical analysis in view of monitoring the processing of thermoplastics

    Science.gov (United States)

    Gonnet, J. M.; Guillet, J.; Ainser, A.; Boiteux, G.; Fulchiron, R.; Seytre, Gerard

    1999-12-01

    In the last recent years, electrical techniques like microdielectrometry have presented an attracting and increasing interest for continuous monitoring, in a nondestructive way, of the advancement of the reaction of thermoset resins under cure. We think that the use of electrical analysis for in situ monitoring of chemical reactions can be extended to get information on thermoplastic and the physical phenomena such sa crystallization or study of residence time distribution in processing machines such as extruders.

  8. Respiratory Physiology and the Impact of Different Modes of Ventilation on the Photoplethysmographic Waveform

    OpenAIRE

    Alian, Aymen A.; Shelley, Kirk H.

    2012-01-01

    The photoplethysmographic waveform sits at the core of the most used, and arguably the most important, clinical monitor, the pulse oximeter.  Interestingly, the pulse oximeter was discovered while examining an artifact during the development of a noninvasive cardiac output monitor.  This article will explore the response of the pulse oximeter waveform to various modes of ventilation.  Modern digital signal processing is allowing for a re-examination of this ubiquitous signal. The effect of ve...

  9. Application of auditory signals to the operation of an agricultural vehicle: results of pilot testing.

    Science.gov (United States)

    Karimi, D; Mondor, T A; Mann, D D

    2008-01-01

    The operation of agricultural vehicles is a multitask activity that requires proper distribution of attentional resources. Human factors theories suggest that proper utilization of the operator's sensory capacities under such conditions can improve the operator's performance and reduce the operator's workload. Using a tractor driving simulator, this study investigated whether auditory cues can be used to improve performance of the operator of an agricultural vehicle. Steering of a vehicle was simulated in visual mode (where driving error was shown to the subject using a lightbar) and in auditory mode (where a pair of speakers were used to convey the driving error direction and/or magnitude). A secondary task was also introduced in order to simulate the monitoring of an attached machine. This task included monitoring of two identical displays, which were placed behind the simulator, and responding to them, when needed, using a joystick. This task was also implemented in auditory mode (in which a beep signaled the subject to push the proper button when a response was needed) and in visual mode (in which there was no beep and visual, monitoring of the displays was necessary). Two levels of difficulty of the monitoring task were used. Deviation of the simulated vehicle from a desired straight line was used as the measure of performance in the steering task, and reaction time to the displays was used as the measure of performance in the monitoring task. Results of the experiments showed that steering performance was significantly better when steering was a visual task (driving errors were 40% to 60% of the driving errors in auditory mode), although subjective evaluations showed that auditory steering could be easier, depending on the implementation. Performance in the monitoring task was significantly better for auditory implementation (reaction time was approximately 6 times shorter), and this result was strongly supported by subjective ratings. The majority of the

  10. Mode of delivery has an independent impact on neonatal condition at birth.

    Science.gov (United States)

    Prior, Tomas; Kumar, Sailesh

    2014-10-01

    Current intra-partum monitoring techniques are often criticized for their poor specificity, with their performance frequently evaluated using measures of the neonatal condition at birth as a surrogate marker for intra-partum fetal compromise. However, these measures may potentially be influenced by a multitude of other factors, including the mode of delivery itself. This study aimed to investigate the impact of mode of delivery on neonatal condition at birth. This prospective observational study, undertaken at a tertiary referral maternity unit in London, UK, included 604 'low risk' women recruited prior to delivery. Commonly assessed neonatal outcome variables (Apgar score at 1 and 5min, umbilical artery pH and base excess, neonatal unit admission, and a composite neonatal outcome score) were used to compare the condition at birth between babies born by different modes of delivery, using one-way ANOVA and chi-squared testing. Infants born by instrumental delivery for presumed fetal compromise had the poorest condition at birth (mean composite score=1.20), whereas those born by Cesarean section for presumed fetal compromise had a better condition at birth (mean composite score=0.64) (p=surrogate marker of intra-partum fetal compromise. When evaluating the efficacy of intra-partum monitoring techniques, the isolated use of Apgar scores, umbilical artery acidosis and neonatal unit admission should be discouraged. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Engineering task plan for rotary mode core sampling exhausters CAM high radiation interlock

    International Nuclear Information System (INIS)

    BOGER, R.M.

    1999-01-01

    The Rotary Mode Core Sampling (RMCS) system is primarily made up of the Rotary Mode Core Sample Trucks (RMCST) and the RMCS Exhausters. During RMCS operations an Exhauster is connected to a tank riser and withdraws gases from the tank dome vapor space at approximately 200 Standard Cubic Feet per Minute (SCFM). The gases are passed through two High Efficiency Particulate Air (HEPA) filters before passing out the exhaust stack to the atmosphere. A Continuous Air Monitor (CAM) monitors the exhaust gases in the exhaust stack for beta particle and gamma radiation. The CAM has a high radiation alarm output and a detector fail alarm output. The CAM alarms are currently connected to the data logger only. The CAM alarms require operator response per procedure LMHC 1998 but no automatic functions are initiated by the CAM alarms. Currently, there are three events that can cause an automatic shut down of the Exhauster. These are, Low Tank Pressure, Highnow Stack Flow and High HEPA Filter Differential Pressure (DP)

  12. Design of ex-vessel neutron monitor for ITER

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Yamauchi, Michinori; Kasai, Satoshi; Ebisawa, Katsuyuki; Walker, Chris

    2002-07-01

    A neutron flux monitor has been designed by using 235 U fission chambers to be installed outside the vacuum vessel of ITER. We investigated moderator materials to get flat energy response the responses of 235 U fission chambers. Here we employed graphite and beryllium with a ratio of Be/C=0.25 as moderator, which materials are stable in ITER relevant temperature in a horizontal port. Based on the neutronics calculations, a fission chamber with 200 mg of 235 U is adopted for the neutron flux monitor. Three detectors are mounted in a stainless steel housing with moderation material. Two fission chamber assemblies will be installed in a horizontal port; one is for D-D and calibration operation, and another is for D-T operation. The assembly for the D-D operation and the calibration are installed just outside the port plug in the horizontal port. The assembly for the D-T operation is installed just behind the additional shield in the port. Combining of those assemblies with both pulse counting mode and Campbelling mode in the electronics, a dynamic range of 10 7 can be obtained with 1 ms temporal resolution. Effects of gamma-rays and magnetic fields on the fission chamber are negligible in this arrangement. The neutron flux monitor can meet the required 10% accuracy for a fusion power monitor. (author)

  13. Remote Supervision and Control of Air Conditioning Systems in Different Modes

    Science.gov (United States)

    Rafeeq, Mohammed; Afzal, Asif; Rajendra, Sree

    2018-01-01

    In the era of automation, most of the application of engineering and science are interrelated with system for optimal operation. To get the efficient result of an operation and desired response, interconnected systems should be controlled by directing, regulating and commanding. Here, air conditioning (AC) system is considered for experimentation, to supervise and control its functioning in both, automated and manual mode. This paper reports the work intended to design and develop an automated and manual AC system working in remote and local mode, to increase the level of comfort, easy operation, reducing human intervention and faults occurring in the system. The Programmable Logical Controller (PLC) and Supervisory Control and Data Acquisition (SCADA) system were used for remote supervision and monitoring of AC systems using series ninety protocol and remote terminal unit modbus protocol as communication module to operate in remote mode. PLC was used as remote terminal for continuous supervision and control of AC system. SCADA software was used as a tool for designing user friendly graphical user interface. The proposed SCADA AC system successfully monitors and controls in accordance within the parameter limits like temperature, pressure, humidity and voltage. With all the features, this designed system is capable of efficient handling of the resources like the compressor, humidifier etc., with all the levels of safety and durability. This system also maintains the temperature and controls the humidity of the remote location and also looks after the health of the compressor.

  14. PLC-based LP₁₁ mode rotator for mode-division multiplexing transmission.

    Science.gov (United States)

    Saitoh, Kunimasa; Uematsu, Takui; Hanzawa, Nobutomo; Ishizaka, Yuhei; Masumoto, Kohei; Sakamoto, Taiji; Matsui, Takashi; Tsujikawa, Kyozo; Yamamoto, Fumihiko

    2014-08-11

    A PLC-based LP11 mode rotator is proposed. The proposed mode rotator is composed of a waveguide with a trench that provides asymmetry of the waveguide. Numerical simulations show that converting LP11a (LP11b) mode to LP11b (LP11a) mode can be achieved with high conversion efficiency (more than 90%) and little polarization dependence over a wide wavelength range from 1450 nm to 1650 nm. In addition, we fabricate the proposed LP11 mode rotator using silica-based PLC. It is confirmed that the fabricated mode rotator can convert LP11a mode to LP11b mode over a wide wavelength range.

  15. Multistandard Receiver Design for Telemedicine Monitoring System

    Directory of Open Access Journals (Sweden)

    Hongmei Wang

    2018-01-01

    Full Text Available In short-distance wireless communications for telemedicine monitoring, different medical data measurement equipment has different wireless transmission modes. A multistandard receiver is designed that can adapt to different medical data measuring equipment. Using a second-order bandpass sampling for the design of antialiasing filters, two aliasing signals can be separated. Simultaneously, constraint conditions for sampling frequency are not as critical. The design is useful for a multistandard receiver in a telemedicine monitoring system and has the advantages such as saving spectrum resources and facilitating spectrum planning.

  16. Effects of multiple modes interaction on the resistive wall mode instability

    International Nuclear Information System (INIS)

    Chen, Longxi; Lei, Wenqing; Ma, Zhiwei; Wu, Bin

    2013-01-01

    The effects of multiple modes interaction on the resistive wall mode (RWM) are studied in a slab geometry with and without plasma flow. The modes interaction can have a large effect on both the linear growth rate and the nonlinear saturation level of the RWM. We found that modes interaction can suppress the linear growth rate for the most unstable mode. The plasma flow can also help to control the growth of the RWM. The RWM can be stabilized completely by a plasma flow when considering the modes interaction. The effect of modes interaction on the RWM is stronger for the mode rational surface in the vacuum than that in the plasma. The modes interaction results in a substantially lowered saturation level for the most unstable RWM. (paper)

  17. Quantitative optical diagnostics in pathology recognition and monitoring of tissue reaction to PDT

    Science.gov (United States)

    Kirillin, Mikhail; Shakhova, Maria; Meller, Alina; Sapunov, Dmitry; Agrba, Pavel; Khilov, Alexander; Pasukhin, Mikhail; Kondratieva, Olga; Chikalova, Ksenia; Motovilova, Tatiana; Sergeeva, Ekaterina; Turchin, Ilya; Shakhova, Natalia

    2017-07-01

    Optical coherence tomography (OCT) is currently actively introduced into clinical practice. Besides diagnostics, it can be efficiently employed for treatment monitoring allowing for timely correction of the treatment procedure. In monitoring of photodynamic therapy (PDT) traditionally employed fluorescence imaging (FI) can benefit from complementary use of OCT. Additional diagnostic efficiency can be derived from numerical processing of optical diagnostics data providing more information compared to visual evaluation. In this paper we report on application of OCT together with numerical processing for clinical diagnostic in gynecology and otolaryngology, for monitoring of PDT in otolaryngology and on OCT and FI applications in clinical and aesthetic dermatology. Image numerical processing and quantification provides increase in diagnostic accuracy. Keywords: optical coherence tomography, fluorescence imaging, photod

  18. Ballooning modes or Fourier modes in a toroidal plasma?

    International Nuclear Information System (INIS)

    Connor, J.W.; Taylor, J.B.

    1987-01-01

    The relationship between two different descriptions of eigenmodes in a torus is investigated. In one the eigenmodes are similar to Fourier modes in a cylinder and are highly localized near a particular rational surface. In the other they are the so-called ballooning modes that extend over many rational surfaces. Using a model that represents both drift waves and resistive interchanges the transition from one of these structures to the other is investigated. In this simplified model the transition depends on a single parameter which embodies the competition between toroidal coupling of Fourier modes (which enhances ballooning) and variation in frequency of Fourier modes from one rational surface to another (which diminishes ballooning). As the coupling is increased each Fourier mode acquires a sideband on an adjacent rational surface and these sidebands then expand across the radius to form the extended mode described by the conventional ballooning mode approximation. This analysis shows that the ballooning approximation is appropriate for drift waves in a tokamak but not for resistive interchanges in a pinch. In the latter the conventional ballooning effect is negligible but they may nevertheless show a ballooning feature. This is localized near the same rational surface as the primary Fourier mode and so does not lead to a radially extended structure

  19. Reaction theory for analysis of nuclear giant resonances production and decay processes

    International Nuclear Information System (INIS)

    Foglia, G.A.

    1991-01-01

    The existence of mixing parameters connected to the different decay forms of the giant resonances was theoretically justified, and their energy dependence determined as well using a reaction theory which treats in a consistent manner the giant multipolar resonances formation and their different decay modes. (L.C.J.A.)

  20. Identification of known chemicals and their metabolites from Alpinia oxyphylla fruit extract in rat plasma using liquid chromatography/tandem mass spectrometry (LC-MS/MS) with selected reaction monitoring.

    Science.gov (United States)

    Chen, Feng; Li, Hai-Long; Tan, Yin-Feng; Li, Yong-Hui; Lai, Wei-Yong; Guan, Wei-Wei; Zhang, Jun-Qing; Zhao, Yuan-Sheng; Qin, Zhen-Miao

    2014-08-01

    Alpinia oxyphylla (Yizhi) capsularfruits are commonly used in traditional medicine. Pharmacological studies have demonstrated that A. oxyphylla capsularfruits have some beneficial roles. Besides volatile oil, sesquiterpenes, diarylheptanoids and flavonoids are main bioactive constituents occurring in the Yizhi capsularfruits. The representative constituents include tectochrysin, izalpinin, chrysin, apigenin-4',7-dimethylether, kaempferide, yakuchinone A, yakuchinone B, oxyphyllacinol and nootkatone. Their content levels in the fruit and its pharmaceutical preparations have been reported by our group. The nine phytochemicals are also the major components present in the Yizhi alcoholic extracts, which have anti-diarrheal activities. However, the fates of these constituents in the body after oral or intravenous administration remain largely unknown. In the present study, we focus on these phytochemicals albeit other concomitant compounds. The chemicals and their metabolites in rat plasma were identified using liquid chromatography/tandem mass spectrometry with selected reaction monitoring mode after orally administered Yizhi extract to rats. Rat plasma samples were treated by methanol precipitation, acidic or enzymatic hydrolysis. This target analysis study revealed that: (1) low or trace plasma levels of parent chemicals were measured after p.o. administration of Yizhi extract, Suoquan capsules and pills to rats; (2) flavonoids and diarylheptanoids formed mainly monoglucuronide metabolites; however, diglucuronide metabolites for chrysin, izalpinin and kaempferide were also detected; (3) metabolic reduction of Yizhi diarylheptanoids occurred in rats. Yakuchinone B was reduced to yakuchinone A and then to oxyphyllacinol in a stepwise manner and subsequently glucuronidated by UDP-glucuronosyl transferase. Further research is needed to characterize the UDP-glucuronosyl transferase and reductase involved in the biotransformation of Yizhi chemicals. Copyright © 2014

  1. Single-Mode VCSELs

    Science.gov (United States)

    Larsson, Anders; Gustavsson, Johan S.

    The only active transverse mode in a truly single-mode VCSEL is the fundamental mode with a near Gaussian field distribution. A single-mode VCSEL produces a light beam of higher spectral purity, higher degree of coherence and lower divergence than a multimode VCSEL and the beam can be more precisely shaped and focused to a smaller spot. Such beam properties are required in many applications. In this chapter, after discussing applications of single-mode VCSELs, we introduce the basics of fields and modes in VCSELs and review designs implemented for single-mode emission from VCSELs in different materials and at different wavelengths. This includes VCSELs that are inherently single-mode as well as inherently multimode VCSELs where higher-order modes are suppressed by mode selective gain or loss. In each case we present the current state-of-the-art and discuss pros and cons. At the end, a specific example with experimental results is provided and, as a summary, the most promising designs based on current technologies are identified.

  2. Mode-selective chemistry on metal surfaces: The dissociative chemisorption of CH{sub 4} on Pt(111)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Han; Jackson, Bret, E-mail: jackson@chem.umass.edu [Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003 (United States)

    2016-05-14

    A quantum approach based on an expansion in vibrationally adiabatic eigenstates is used to explore CH{sub 4} dissociation on Pt(111). Computed sticking probabilities for molecules in the ground, 1v{sub 3} and 2v{sub 3}, states are in very good agreement with the available experimental data, reproducing the variation in reactivity with collision energy and vibrational state. As was found in similar studies on Ni(100) and Ni(111), exciting the 1v{sub 1} symmetric stretch of CH{sub 4} is more effective at promoting the dissociative chemisorption of CH{sub 4} than exciting the 1v{sub 3} antisymmetric stretch. This behavior is explained in terms of symmetry, mode-softening, and nonadiabatic transitions between vibrationally adiabatic states. We find that the efficacies of the bending modes for promoting reaction are reasonably large, and similar to the 1v{sub 3} state. The vibrational efficacies for promoting reaction on Ni(111) are larger than for reaction on Pt(111), due to the larger nonadiabatic couplings. Our computed sticking probabilities are in good agreement with results from recent ab initio molecular dynamics and reactive force field studies.

  3. Incomplete fusion reactions in 16O+159Tb system: Spin distribution measurements

    Directory of Open Access Journals (Sweden)

    Sharma Vijay R.

    2015-01-01

    Full Text Available In order to explore the reaction modes on the basis of their entry state spin population, an experiment has been done by employing particle-γ coincidence technique carried out at the Inter University Accelerator Centre, New Delhi. The preliminary analysis conclusively demonstrates, spin distribution for some reaction products populated via complete and/or incomplete fusion of 16O with 159Tb system found to be distinctly different. Further, the existence of incomplete fusion at low bombarding energies indicates the possibility to populate high spin states.

  4. A General LC-MS/MS Method for Monitoring Potential β-Lactam Contamination in Drugs and Drug-Manufacturing Surfaces.

    Science.gov (United States)

    Qiu, Chen; Zhu, Hongbin; Ruzicka, Connie; Keire, David; Ye, Hongping

    2018-05-15

    Penicillins and some non-penicillin β-lactams may cause potentially life-threatening allergic reactions. Thus, possible cross contamination of β-lactams in food or drugs can put people at risk. Therefore, when there is a reasonable possibility that a non-penicillin product could be contaminated by penicillin, the drug products are tested for penicillin contamination. Here, a sensitive and rapid method for simultaneous determination of multiple β-lactam antibiotics using high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed and validated. Mass spectral acquisition was performed on a Q-Exactive HF mass spectrometer in positive ion mode with parallel reaction monitoring (PRM). The method was validated for seven β-lactam antibiotics including one or two from each class and a synthetic intermediate. The quantification precision and accuracy at 200 ppb were in the range of ± 1.84 to ± 4.56 and - 5.20 to 3.44%, respectively. The limit of detection (LOD) was 0.2 ppb, and the limit of quantitation (LOQ) was 2 ppb with a linear dynamic range (LDR) of 2-2000 ppb for all eight β-lactams. From various drug products, the recoveries of eight β-lactams at 200 and 2 ppb ranged from 93.8 ± 3.2 to 112.1 ± 4.2% and 89.7 ± 4.6 to 110.6 ± 1.9%, respectively. The application of the method for detecting cross contamination of trace β-lactams (0.2 ppb) and for monitoring facility surface cleaning was also investigated. This sensitive and fast method was fit-for-purpose for detecting and quantifying trace amount of β-lactam contamination, monitoring cross contamination in manufacturing processes, and determining potency for regulatory purposes and for quality control.

  5. Condition Monitoring Of Operating Pipelines With Operational Modal Analysis Application

    Directory of Open Access Journals (Sweden)

    Mironov Aleksey

    2015-12-01

    Full Text Available In the petroleum, natural gas and petrochemical industries, great attention is being paid to safety, reliability and maintainability of equipment. There are a number of technologies to monitor, control, and maintain gas, oil, water, and sewer pipelines. The paper focuses on operational modal analysis (OMA application for condition monitoring of operating pipelines. Special focus is on the topicality of OMA for definition of the dynamic features of the pipeline (frequencies and mode shapes in operation. The research was conducted using two operating laboratory models imitated a part of the operating pipeline. The results of finite-element modeling, identification of pipe natural modes and its modification under the influence of virtual failure are discussed. The work considers the results of experimental research of dynamic behavior of the operating pipe models using one of OMA techniques and comparing dynamic properties with the modeled data. The study results demonstrate sensitivity of modal shape parameters to modification of operating pipeline technical state. Two strategies of pipeline repair – with continuously condition-based monitoring with proposed technology and without such monitoring, was discussed. Markov chain reliability models for each strategy were analyzed and reliability improvement factor for proposed technology of monitoring in compare with traditional one was evaluated. It is resumed about ability of operating pipeline condition monitoring by measuring dynamic deformations of the operating pipe and OMA techniques application for dynamic properties extraction.

  6. Fragmentation processes in nuclear reactions

    International Nuclear Information System (INIS)

    Baur, G.; Roesel, F.; Trautmann, D.; Shyam, R.

    1983-10-01

    Fragmentation processes in nuclear collisions are reviewed. The main emphasis is put on light ion breakup at nonrelativistic energies. The post- and prior-form DWBA theories are discussed. The post-form DWBA, appropriate for the ''spectator breakup'' describes elastic as well as inelastic breakup modes. This theory can also account for the stripping to unbound states. The theoretical models are compared to typical experimental results to illustrate the various possible mechanisms. It is discussed, how breakup reactions can be used to study high-lying single particle strength in the continuum; how it can yield information about momentum distributions of fragments in the nucleus. (orig.)

  7. Site-specific growth of Au-Pd alloy horns on Au nanorods: A platform for highly sensitive monitoring of catalytic reactions by surface enhancement raman spectroscopy

    KAUST Repository

    Huang, Jianfeng

    2013-06-12

    Surface-enhanced Raman scattering (SERS) is a highly sensitive probe for molecular detection. The aim of this study was to develop an efficient platform for investigating the kinetics of catalytic reactions with SERS. To achieve this, we synthesized a novel Au-Pd bimetallic nanostructure (HIF-AuNR@AuPd) through site-specific epitaxial growth of Au-Pd alloy horns as catalytic sites at the ends of Au nanorods. Using high-resolution electron microscopy and tomography, we successfully reconstructed the complex three-dimensional morphology of HIF-AuNR@AuPd and identified that the horns are bound with high-index {11l} (0.25 < l < 0.43) facets. With an electron beam probe, we visualized the distribution of surface plasmon over the HIF-AuNR@AuPd nanorods, finding that strong longitudinal surface plasmon resonance concentrated at the rod ends. This unique crystal morphology led to the coupling of high catalytic activity with a strong SERS effect at the rod ends, making HIF-AuNR@AuPd an excellent bifunctional platform for in situ monitoring of surface catalytic reactions. Using the hydrogenation of 4-nitrothiophenol as a model reaction, we demonstrated that its first-order reaction kinetics could be accurately determined from this platform. Moreover, we clearly identified the superior catalytic activity of the rod ends relative to that of the rod bodies, owing to the different SERS activities at the two positions. In comparison with other reported Au-Pd bimetallic nanostructures, HIF-AuNR@AuPd offered both higher catalytic activity and greater detection sensitivity. © 2013 American Chemical Society.

  8. Dynamics of the slow mode in the family of six-carbon monosaccharides monitored by dielectric spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, K; Kaminska, E; Wlodarczyk, P; Adrjanowicz, K; Wojnarowska, Z; Grzybowska, K; Paluch, M [Institute of Physics, Silesian University, ulica Uniwersytecka 4, 40-007 Katowice (Poland)

    2010-09-15

    Broadband dielectric measurements performed on D-glucose, L-sorbose, D-fructose and D-galactose revealed that, except for the structural relaxation process, one can detect in the liquid phase of these carbohydrates a much slower relaxation mode. Recently we have demonstrated that in D-glucose this relaxation mode might be related to the long range correlation of density fluctuations (LRCDF), also called Fischer clusters (FC). Based on the dielectric data obtained for the four monosaccharides we were able to make a more general conclusion about the characteristic dielectric features of the slow mode in the whole family of carbohydrates. We found out that the timescale separation between structural and considered relaxation reaches up to six decades at the glass transition temperature and the dielectric strength decreases significantly with lowering temperature. Another very interesting feature of the slow process is that it can be described by an almost exponential response function. We have found out that the fragility of the slow process lies within the range m = 44-50. Finally, we have also shown that there is a close link between structural and slow relaxation.

  9. Sub-ensemble monitoring of DNA strand displacement using multiparameter single-molecule FRET

    OpenAIRE

    Baltierra Jasso, Laura; Morten, Michael; Magennis, Steven William

    2018-01-01

    Non-enzymatic DNA strand displacement is an important mechanism in dynamic DNA nanotechnology. Here we show that the large parameter space that is accessible by single-molecule FRET is ideal for the simultaneous monitoring of multiple reactants and products of DNA strand exchange reactions. We monitored the strand displacement from double-stranded DNA (dsDNA) by single-stranded DNA (ssDNA) at 37 °C; the data were modelled as a second-order reaction approaching equilibrium, with a rate constan...

  10. Single-molecule electronics: Cooling individual vibrational modes by the tunneling current.

    Science.gov (United States)

    Lykkebo, Jacob; Romano, Giuseppe; Gagliardi, Alessio; Pecchia, Alessandro; Solomon, Gemma C

    2016-03-21

    Electronic devices composed of single molecules constitute the ultimate limit in the continued downscaling of electronic components. A key challenge for single-molecule electronics is to control the temperature of these junctions. Controlling heating and cooling effects in individual vibrational modes can, in principle, be utilized to increase stability of single-molecule junctions under bias, to pump energy into particular vibrational modes to perform current-induced reactions, or to increase the resolution in inelastic electron tunneling spectroscopy by controlling the life-times of phonons in a molecule by suppressing absorption and external dissipation processes. Under bias the current and the molecule exchange energy, which typically results in heating of the molecule. However, the opposite process is also possible, where energy is extracted from the molecule by the tunneling current. Designing a molecular "heat sink" where a particular vibrational mode funnels heat out of the molecule and into the leads would be very desirable. It is even possible to imagine how the vibrational energy of the other vibrational modes could be funneled into the "cooling mode," given the right molecular design. Previous efforts to understand heating and cooling mechanisms in single molecule junctions have primarily been concerned with small models, where it is unclear which molecular systems they correspond to. In this paper, our focus is on suppressing heating and obtaining current-induced cooling in certain vibrational modes. Strategies for cooling vibrational modes in single-molecule junctions are presented, together with atomistic calculations based on those strategies. Cooling and reduced heating are observed for two different cooling schemes in calculations of atomistic single-molecule junctions.

  11. Cutaneous adverse drug reactions in a tertiary care teaching hospital in India: An intensive monitoring study

    Directory of Open Access Journals (Sweden)

    Sejal Thakkar

    2017-01-01

    Full Text Available Background: The epidemiological data based on intensive monitoring studies are limited for the cutaneous adverse drug reactions (CADRs in terms of incidence. Most of earlier Indian studies focused only on types and causative drugs of CADRs. Aim: The aim of this study is to analyze the CADRs with reference to the incidence, its subgroup analysis, causative drugs, and other clinical characteristics in Indian population. Methodology: Intensive monitoring study was carried out over a period of 3 years in the dermatology outpatient and inpatient department. CADRs due to only systematically administered drugs were considered. The WHO definition for CADR, the WHO causality definitions, modified Schumock and Thornton's criteria for preventability, and International Conference on Harmonisation E2A guidelines for seriousness were considered. Incidence was expressed in percentage and its 95% confidence interval. The incidence was analyzed on basis of characteristics of study population and CADRs. Results: A total of 171 CADRs were observed from 37,623 patients. The CADR incidence was 0.45% (95% CI: 0.39–0.53. The incidence did not significantly differ in different age groups and gender. Commonly observed CADRs were maculopapular rash (23.98%, urticaria (21.64%, and fixed drug eruptions (FDEs (18.13%. Antimicrobials (35.18% and nonsteroidal anti-inflammatory drugs (NSAIDs were suspected in all common CADRs. Anti-infective and NSAIDs were most commonly suspected drugs in overall CADRs, maculopapular rash, urticaria, FDEs, and erythema multiforme. The exact nature of drugs remained inaccessible in one-fourth cases due to use of the over-the-counter self-medications. The incidence of preventable and serious and fatal CADRs was 0.08% (95% CI: 0.05–0.11, 0.04% (95% CI: 0.02–0.06, and 0.003% (95% CI: 0.000–0.001, respectively. Conclusion: Ethnic characteristics should be considered while interpreting incidence from the international studies. The

  12. Reaction of uranium and the fluorocarbon FC-75

    Science.gov (United States)

    Young, R. H.

    1985-04-01

    Because of criticality concerns with water cooling in enriched uranium upgrading, a fluorocarbon has been evaluated as a replacement coolant for internal module components in the Plasma Separation Process (PSP). The interaction of bulk uranium and of powdered uranium with FC-75 has been investigated at temperatures between 200 and 700 C. The gas pressure and the metal temperature were monitored as a function of time. Modest temperature changes of 50 to 100 C were observed for the bulk uranium/fluorocarbon reaction. Much larger changes (up to 1000 C) were noted for the reaction involving high surface area uranium powder. These temperature transients, particularly for the powdered uranium reaction, were short-lived ( 10 seconds) and indicative of the formation of a protective layer of reaction products. Analysis of residual gas products by infrared spectroscopy indicated that one potentially serious hazard, UF6, was not present; however, several small toxic fluorocarbons were produced by thermolysis and/or reaction. X-ray diffraction analysis of the residual solids indicated UF4 and UO2 were the major solid products.

  13. First results from the 'Violin-Mode' tests on an advanced LIGO suspension at MIT

    International Nuclear Information System (INIS)

    Lockerbie, N A; Tokmakov, K V; Carbone, L; Shapiro, B; Bell, A; Strain, K A

    2011-01-01

    This paper describes the first results from 'Violin-Mode' measurements made on the four suspension fibres of a fully suspended 40 kg test mass. These measurements were made at the LIGO lab, Gravitational Wave Observatory test facility, at MIT. Here, an aluminium-alloy (dummy) test mass, simulating an advanced LIGO (Laser Interferometer Gravitational Wave Observatory) test mass/mirror, had been suspended in air from a test suspension by four fused-silica suspension fibres, each measuring 400 μm in diameter x 600 mm long. Violin-Mode measurements were made on these highly tensioned fibres by retrofitting a prototype system of four novel shadow sensors to the test suspension, one per fibre, these sensors having, collectively, a displacement sensitivity of (6.9 ± 1.3) x 10 -11 m (rms) Hz -1/2 , at 500 Hz, over a measuring span of ±0.1 mm. Violin-Mode fundamental resonances were detected in all four fibres: with frequencies ∼ 485 Hz when the test mass was supported lightly from below, and at ∼500 Hz when it was fully suspended. In the latter case the Violin-Mode detection took place whilst the test mass, together with its suspension fibres, was undergoing relatively large-amplitude 'pendulum-mode' motion, at ∼0.6 Hz. This motion was measured to have a peak-peak amplitude at one of the suspension fibres of up to ∼140 μm (35 μm, rms) the shadow sensors each having subsidiary outputs for monitoring such low-frequency, large amplitude, motion. Under fully suspended conditions, a calibrated Violin-Mode 'free-oscillation' amplitude of 430 ± 20 picometres, rms, was measured at 500.875 Hz, in the same suspension fibre which was found to be undergoing, simultaneously, the ∼140 μm peak-peak motion. Over the bandwidth monitored (dc to 3.2 kHz), Violin-Mode harmonics up to the sixth were recorded in an evoked response. It was concluded that the prototype system had demonstrated amply its practical viability as a detector of Violin-Mode resonances in the test

  14. Adaptive extended-state observer-based fault tolerant attitude control for spacecraft with reaction wheels

    Science.gov (United States)

    Ran, Dechao; Chen, Xiaoqian; de Ruiter, Anton; Xiao, Bing

    2018-04-01

    This study presents an adaptive second-order sliding control scheme to solve the attitude fault tolerant control problem of spacecraft subject to system uncertainties, external disturbances and reaction wheel faults. A novel fast terminal sliding mode is preliminarily designed to guarantee that finite-time convergence of the attitude errors can be achieved globally. Based on this novel sliding mode, an adaptive second-order observer is then designed to reconstruct the system uncertainties and the actuator faults. One feature of the proposed observer is that the design of the observer does not necessitate any priori information of the upper bounds of the system uncertainties and the actuator faults. In view of the reconstructed information supplied by the designed observer, a second-order sliding mode controller is developed to accomplish attitude maneuvers with great robustness and precise tracking accuracy. Theoretical stability analysis proves that the designed fault tolerant control scheme can achieve finite-time stability of the closed-loop system, even in the presence of reaction wheel faults and system uncertainties. Numerical simulations are also presented to demonstrate the effectiveness and superiority of the proposed control scheme over existing methodologies.

  15. Flows and chemical reactions in homogeneous mixtures

    CERN Document Server

    Prud'homme, Roger

    2013-01-01

    Flows with chemical reactions can occur in various fields such as combustion, process engineering, aeronautics, the atmospheric environment and aquatics. The examples of application chosen in this book mainly concern homogeneous reactive mixtures that can occur in propellers within the fields of process engineering and combustion: - propagation of sound and monodimensional flows in nozzles, which may include disequilibria of the internal modes of the energy of molecules; - ideal chemical reactors, stabilization of their steady operation points in the homogeneous case of a perfect mixture and c

  16. Design and implementation air quality monitoring robot

    Science.gov (United States)

    Chen, Yuanhua; Li, Jie; Qi, Chunxue

    2017-01-01

    Robot applied in environmental protection can break through the limitations in working environment, scope and mode of the existing environmental monitoring and pollution abatement equipments, which undertake the innovation and improvement in the basin, atmosphere, emergency and pollution treatment facilities. Actually, the relevant technology is backward with limited research and investment. Though the device companies have achieved some results in the study on the water quality monitoring, pipeline monitoring and sewage disposal, this technological progress on the whole is still much slow, and the mature product has not been formed. As a result, the market urges a demand of a new type of device which is more suitable for environmental protection on the basis of robot successfully applied in other fields. This paper designs and realizes a tracked mobile robot of air quality monitoring, which can be used to monitor air quality for the pollution accident in industrial parks and regular management.

  17. Controlled assembly of organic whispering-gallery-mode microlasers as highly sensitive chemical vapor sensors.

    Science.gov (United States)

    Gao, Miaomiao; Wei, Cong; Lin, Xianqing; Liu, Yuan; Hu, Fengqin; Zhao, Yong Sheng

    2017-03-09

    We demonstrate the fabrication of organic high Q active whispering-gallery-mode (WGM) resonators from π-conjugated polymer by a controlled emulsion-solvent-evaporation method, which can simultaneously provide optical gain and act as an effective resonant cavity. By measuring the shift of their lasing modes on exposure to organic vapor, we successfully monitored the slight concentration variation in the chemical gas. These microlaser sensors demonstrated high detection sensitivity and good signal repeatability under continuous chemical gas treatments. The results offer an effective strategy to design miniaturized optical sensors.

  18. Axion monodromy inflation with warped KK-modes

    Energy Technology Data Exchange (ETDEWEB)

    Hebecker, Arthur; Moritz, Jakob; Witkowski, Lukas T. [Heidelberg Univ. (Germany). Inst. for Theoretical Physics; Westphal, Alexander [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2015-12-15

    We present a particularly simple model of axion monodromy inflation: Our axion is the lowest-lying KK-mode of the RR-2-form-potential C{sub 2} in the standard Klebanov-Strassler throat. One can think of this inflaton candidate as being defined by the integral of C{sub 2} over the S{sup 2} cycle of the throat. It obtains an exponentially small mass from the IR-region in which the S{sup 2} shrinks to zero size. Crucially, the S{sup 2} cycle has to be shared between two throats, such that the second locus where the S{sup 2} shrinks is also in a warped region. Well-known problems like the potentially dangerous back-reaction of brane/antibrane pairs and explicit supersymmetry breaking are not present in our scenario. The inflaton back-reaction on the geometry turns out to be controlled by the string coupling g{sub s}. We hope that our setting is simple enough for many critical consistency issues of large-field inflation in string theory to be addressed at a quantitative level.

  19. Axion monodromy inflation with warped KK-modes

    International Nuclear Information System (INIS)

    Hebecker, Arthur; Moritz, Jakob; Witkowski, Lukas T.

    2015-12-01

    We present a particularly simple model of axion monodromy inflation: Our axion is the lowest-lying KK-mode of the RR-2-form-potential C 2 in the standard Klebanov-Strassler throat. One can think of this inflaton candidate as being defined by the integral of C 2 over the S 2 cycle of the throat. It obtains an exponentially small mass from the IR-region in which the S 2 shrinks to zero size. Crucially, the S 2 cycle has to be shared between two throats, such that the second locus where the S 2 shrinks is also in a warped region. Well-known problems like the potentially dangerous back-reaction of brane/antibrane pairs and explicit supersymmetry breaking are not present in our scenario. The inflaton back-reaction on the geometry turns out to be controlled by the string coupling g s . We hope that our setting is simple enough for many critical consistency issues of large-field inflation in string theory to be addressed at a quantitative level.

  20. Axion monodromy inflation with warped KK-modes

    Science.gov (United States)

    Hebecker, Arthur; Moritz, Jakob; Westphal, Alexander; Witkowski, Lukas T.

    2016-03-01

    We present a particularly simple model of axion monodromy inflation: Our axion is the lowest-lying KK-mode of the RR-2-form-potential C2 in the standard Klebanov-Strassler throat. One can think of this inflaton candidate as being defined by the integral of C2 over the S2 cycle of the throat. It obtains an exponentially small mass from the IR-region in which the S2 shrinks to zero size. Crucially, the S2 cycle has to be shared between two throats, such that the second locus where the S2 shrinks is also in a warped region. Well-known problems like the potentially dangerous back-reaction of brane/antibrane pairs and explicit supersymmetry breaking are not present in our scenario. The inflaton back-reaction on the geometry turns out to be controlled by the string coupling gs. We hope that our setting is simple enough for many critical consistency issues of large-field inflation in string theory to be addressed at a quantitative level.

  1. Free chattering hybrid sliding mode control for a class of non-linear systems

    DEFF Research Database (Denmark)

    Khooban, Mohammad Hassan; Niknam, Taher; Blaabjerg, Frede

    2016-01-01

    In current study, in order to find the control of general uncertain nonlinear systems, a new optimal hybrid control approach called Optimal General Type II Fuzzy Sliding Mode (OGT2FSM) is presented. In order to estimate unknown nonlinear activities in monitoring dynamic uncertainties, the benefits...... on the same topic, which are an Adaptive Interval Type-2 Fuzzy Logic Controller (AGT2FLC) and Conventional Sliding Mode Controller (CSMC), to assess the efficiency of the suggested controller. The suggested control scheme is finally used to the Electric Vehicles type as a case study. Results of simulation...

  2. Now day methods for heavy ion monitoring

    International Nuclear Information System (INIS)

    Luk'yanov, S.M.; Penionzhkevich, Yu.Eh.; Chubaryan, G.G.

    1984-01-01

    Up-to-date methods for identification of products yield as a result of heavy ion interaction with nuclei are described. Monitoring of total ionization has been realized by gas-filled ionization chambers semiconductor detectors, scintillators. A method for specific ionization loss monitoring and time-of-flight technique for heavy-ion mass identification are considered. Advantages of the method for identification of nuclear reaction prodUcts by means of a magnetic analyzer are displayed

  3. A 66 fs highly stable single wall carbon nanotube mode locked fiber laser

    International Nuclear Information System (INIS)

    Yu, Zhenhua; Zhang, Xiao; Dong, Xinzheng; Tian, Jinrong; Song, Yanrong; Wang, Yonggang

    2014-01-01

    We demonstrate a highly stable mode locked fiber laser based on single wall carbon nanotubes. The mode locking is achieved by the evanescent field interaction of the propagating light with a single wall carbon nanotube saturable absorber in a microfiber. The pulse width is 66 fs, which, to the best of our knowledge, is the shortest pulse achieved in a carbon nanotube mode locked fiber laser. The maximum average output power is 26 mW, which is about 20 times larger than that of a typical carbon nanotube mode locked fiber laser. The center of the wavelength is 1555 nm, with 54 nm spectral width. The repetition rate is 146 MHz. To investigate the laser’s stability, the output pulses are monitored for 120 h and there is no significant degradation of the laser spectral width or shape. (paper)

  4. Influence of additives on microstructures, mechanical properties and shock-induced reaction characteristics of Al/Ni composites

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Wei; Zhang, Xianfeng, E-mail: lynx@mail.njust.edu.cn; Wu, Yang; He, Yong; Wang, Chuanting; Guo, Lei

    2015-11-05

    Granular composites containing aluminum (Al) and nickel (Ni) are typical structural energetic materials, which possess ideal combination of both mechanical properties and energy release capability. The influence of two additives, namely Teflon (PTFE) and copper (Cu), on mechanical properties and shock-induced chemical reaction (SICR) characteristics of Al/Ni material system has been investigated. Three composites, namely Al/Ni, Al/Ni/PTFE and Al/Ni/Cu with same volumetric ratio of Al powder to Ni powder, were processed by means of static pressing. Scanning electron microscopy was used to study the microstructure of the mentioned three composites. Quasi static compression tests were also conducted to determine the mechanical properties and fracture behavior of the mentioned three composites. It was shown that the additives affected both compressive strength and fracture mode of the three composites. Impact initiation experiments on the mentioned three composites were performed to determine their shock-induced chemical reaction characteristics by considering pressure histories measured in the test chamber. The experimental results showed that the additives had significant effects on critical initiation velocity, reaction rate, reaction efficiency and post-reaction behavior. - Highlights: • .Al/Ni, Al/Ni/PTFE and Al/Ni/Cu were processed by means of static pressing. • .Microstructures, mechanical properties and shock-induced reactions were studied. • .Microstructures affect both compressive strength and fracture mode. • .Impact velocity is an important factor in shock-induced chemical characteristics. • .Each additive has significant effects on energy release behavior.

  5. Influence of additives on microstructures, mechanical properties and shock-induced reaction characteristics of Al/Ni composites

    International Nuclear Information System (INIS)

    Xiong, Wei; Zhang, Xianfeng; Wu, Yang; He, Yong; Wang, Chuanting; Guo, Lei

    2015-01-01

    Granular composites containing aluminum (Al) and nickel (Ni) are typical structural energetic materials, which possess ideal combination of both mechanical properties and energy release capability. The influence of two additives, namely Teflon (PTFE) and copper (Cu), on mechanical properties and shock-induced chemical reaction (SICR) characteristics of Al/Ni material system has been investigated. Three composites, namely Al/Ni, Al/Ni/PTFE and Al/Ni/Cu with same volumetric ratio of Al powder to Ni powder, were processed by means of static pressing. Scanning electron microscopy was used to study the microstructure of the mentioned three composites. Quasi static compression tests were also conducted to determine the mechanical properties and fracture behavior of the mentioned three composites. It was shown that the additives affected both compressive strength and fracture mode of the three composites. Impact initiation experiments on the mentioned three composites were performed to determine their shock-induced chemical reaction characteristics by considering pressure histories measured in the test chamber. The experimental results showed that the additives had significant effects on critical initiation velocity, reaction rate, reaction efficiency and post-reaction behavior. - Highlights: • .Al/Ni, Al/Ni/PTFE and Al/Ni/Cu were processed by means of static pressing. • .Microstructures, mechanical properties and shock-induced reactions were studied. • .Microstructures affect both compressive strength and fracture mode. • .Impact velocity is an important factor in shock-induced chemical characteristics. • .Each additive has significant effects on energy release behavior

  6. Streaming tearing mode

    Science.gov (United States)

    Shigeta, M.; Sato, T.; Dasgupta, B.

    1985-01-01

    The magnetohydrodynamic stability of streaming tearing mode is investigated numerically. A bulk plasma flow parallel to the antiparallel magnetic field lines and localized in the neutral sheet excites a streaming tearing mode more strongly than the usual tearing mode, particularly for the wavelength of the order of the neutral sheet width (or smaller), which is stable for the usual tearing mode. Interestingly, examination of the eigenfunctions of the velocity perturbation and the magnetic field perturbation indicates that the streaming tearing mode carries more energy in terms of the kinetic energy rather than the magnetic energy. This suggests that the streaming tearing mode instability can be a more feasible mechanism of plasma acceleration than the usual tearing mode instability.

  7. Production of structured lipids by acidolysis of an EPA-enriched fish oil and caprylic acid in a packed bed reactor: analysis of three different operation modes.

    Science.gov (United States)

    González Moreno, P A; Robles Medina, A; Camacho Rubio, F; Camacho Páez, B; Molina Grima, E

    2004-01-01

    Structured triacylglycerols (ST) enriched in eicosapentaenoic acid (EPA) in position 2 of the triacylglycerol (TAG) backbone were synthesized by acidolysis of a commercially available EPA-rich oil (EPAX4510, 40% EPA) and caprylic acid (CA), catalyzed by the 1,3-specific immobilized lipase Lipozyme IM. The reaction was carried out in a packed bed reactor (PBR) operating in two ways: (1) by recirculating the reaction mixture from the exit of the bed to the substrate reservoir (discontinuous mode) and (2) in continuous mode, directing the product mixture leaving the PBR to a product reservoir. By operating in these two ways and using a simple kinetic model, representative values for the apparent kinetic constants (kX) for each fatty acid (native, Li or odd, M) were obtained. The kinetic model assumes that the rate of incorporation of a fatty acid into TAG per amount of enzyme, rX (mole/(h g lipase)) is proportional to the extent of the deviation from the equilibrium for each fatty acid (i.e., the difference of concentration between the fatty acid in the triacylglycerol and the concentration of the same fatty acid in the triacylglycerol once the equilibrium of the acidolysis reaction is reached). The model allows comparing the two operating modes through the processing intensity, defined as mLt/(V[TG]0) and mL/(q[TG]0), for the discontinuous and continuous operation modes, respectively. In discontinuous mode, ST with 59.5% CA and 9.6% EPA were obtained. In contrast, a ST with 51% CA and 19.6% EPA were obtained when using the continuous operation mode. To enhance the CA incorporation when operating in continuous mode, a two-step acidolysis reaction was performed (third operation mode). This continuous two-step process yields a ST with a 64% CA and a 15% EPA. Finally, after purifying the above ST in a preparative silica gel column, impregnated with boric acid, a ST with 66.9% CA and 19.6% EPA was obtained. The analysis by reverse phase and Ag+ liquid chromatography of

  8. Competition and evolution of dielectric waveguide mode and plasmonic waveguide mode

    Science.gov (United States)

    Yuan, Sheng-Nan; Fang, Yun-Tuan

    2017-10-01

    In order to study the coupling and evolution law of the waveguide mode and two plasmonic surface modes, we construct a line defect waveguide based on hexagonal honeycomb plasmonic photonic crystal. Through adjusting the radius of the edge dielectric rods, the competition and evolution behaviors occur between dielectric waveguide mode and plasmonic waveguide mode. There are three status: only plasmonic waveguide modes occur for rA 0.25a; two kinds of modes coexist for 0.09a advantages in achieving slow light.

  9. The concept of adverse drug reaction reporting: awareness among ...

    African Journals Online (AJOL)

    Arun Kumar Agnihotri

    concept of pharmacovigilance and adverse drug reaction reporting, a section on ... ADR go undocumented worldwide8,9. ... international drug monitoring collaborating centre, ... practitioners to report all suspected ADR, the few .... more with some of the guidelines such as nurses, .... patients: a meta-analysis of prospective.

  10. Connection of automatic integral multichannel monitor of aerosol concentration

    International Nuclear Information System (INIS)

    Krejci, M.; Stulik, P.

    1985-01-01

    The instrument consists of the actual aerosol concentration monitor with two equivalent inputs, of an electropneumatic sampling selector, an aerosol pump, an electropneumatic valve, and of an exhaust device. For integral operating mode the instrument allows rapid checking and indication of exceedance of the permissible aerosol concentration limit at any sampling point. Upon exceedance of the permissible concentration limit, the device automatically switches into the multichannel cyclic measurement mode while the sampling point is identified where the aerosol concentration was increased. An emergency is displayed if the permissible limit has been exceeded. Following removal of the source of dangerous aerosol concentration, the control unit automatically switches the device into the integral measurement mode. (J.B.)

  11. A monitoring program of the histograms based on ROOT package

    International Nuclear Information System (INIS)

    Zhou Yongzhao; Liang Hao; Chen Yixin; Xue Jundong; Yang Tao; Gong Datao; Jin Ge; Yu Xiaoqi

    2002-01-01

    KHBOOK is a histogram monitor and browser based on ROOT package, which reads the histogram file in HBOOK format from Physmon, converts it into ROOT format, and browses the histograms in Repeat and Overlap modes to monitor and trace the quality of the data from DAQ. KHBOOK is a program of small memory, easy maintenance and fast running as well, using mono-behavior classes and a communication class of C ++

  12. The oxidation mode of pyranose 2-oxidase is controlled by pH

    Science.gov (United States)

    Prongjit, Methinee; Sucharitakul, Jeerus; Palfey, Bruce A.; Chaiyen, Pimchai

    2013-01-01

    Pyranose 2-oxidase (P2O) from Trametes multicolor is a flavoenzyme that catalyzes the oxidation of D-glucose and other aldopyranose sugars at the C2 position by using O2 as an electron acceptor to form the corresponding 2-keto-sugars and H2O2. In this study, the effects of pH on the oxidative half-reaction of P2O were investigated using stopped-flow spectrophotometry. The results showed that flavin oxidation occurred via different pathways depending on the pH of the environment. At pH values lower than 8.0, reduced P2O reacts with O2 to form a C4a-hydroperoxy-flavin intermediate, leading to elimination of H2O2. At pH 8.0 and higher, the majority of the reduced P2O reacts with O2 via a pathway which does not allow detection of the C4a-hydroperoxy-flavin, and flavin oxidation occurs with decreased rate constants upon the rise in pH. The switching between the two modes of P2O oxidation is controlled by protonation of a group which has a pKa of 7.6 ± 0.1. Oxidation reactions of reduced P2O under rapid pH change as performed by stopped-flow mixing were different from the same reactions performed with enzyme pre-equilibrated at the same specified pH values, implying that the protonation of the group which controls the mode of flavin oxidation cannot be rapidly equilibrated with outside solvent. Using a double-mixing stopped-flow experiment, a rate constant for proton dissociation from the reaction site was determined to be 21.0 ± 0.4 s-1. PMID:23356577

  13. Tritiated-water detection with a 2D(γ,n)1H monitor

    International Nuclear Information System (INIS)

    Winn, W.G.; Baumann, N.P.

    Tritiated process water is monitored by detecting the D 2 O component via the 2 D(γ,n) 1 H reaction. A probe containing a 1 to 7 mCi 24 Na (15 h) γ-source and six 3 He neutron detectors produces and monitors the 2 D(γ,n) 1 H reaction. A variety of probe configurations were examined for D 2 O detection sensitivity. The corresponding detection limits range from 6 to 280 μL for D 2 O droplets and 1 to 13 μL/cm for D 2 O streams, when 10-minute neutron counting with a 1 mCi γ-source is used. Results from two field applications illustrate the utility of the monitor

  14. Sensor system for multi-point monitoring using bending loss of single mode optical fiber

    International Nuclear Information System (INIS)

    Kim, Heon Young; Kim, Dae Hyun

    2015-01-01

    Applications of smart sensors have been extended to safety systems in the aerospace, transportation and civil engineering fields. In particular, structural health monitoring techniques using smart sensors have gradually become necessary and have been developed to prevent dangers to human life and damage to assets. Generally, smart sensors are based on electro-magnets and have several weaknesses, including electro-magnetic interference and distortion. Therefore, fiber optic sensors are an outstanding alternative to overcome the weaknesses of electro-magnetic sensors. However, they require expensive devices and complex systems. This paper proposes a new, affordable and simple sensor system that uses a single fiber to monitor pressures at multiple-points. Moreover, a prototype of the sensor system was manufactured and tested for a feasibility study. Based on the results of this experimental test, a relationship was carefully observed between the bend loss conditions and light-intensity. As a result, it was shown that impacts at multiple-points could be monitored.

  15. [Necessity of applying pharmacovigilance in post-marketing safety monitoring of traditional Chinese medicine injections].

    Science.gov (United States)

    Wang, Hai-Nan; Chen, Wen; Fu, Zheng; Du, Wen-min; He, Jia

    2008-03-01

    Traditional Chinese medicine (TCM) injection has become one of the hotspots in the new TCM research and development. The serious adverse drug reactions happened in clinical have arosed attention widely in the whole society. It's very urgent to monitor the post-marketing safety of TCM injections. This paper elucidated the pharmacovigilance's necessity in the post-marketing safety monitoring of TCM injections, basing on the reason of safety problem of TCM injections and the future developing trend of adverse drug reaction monitoring. Also, this paper introduced the rapid signal detection method of spontaneous reporting system database by data mining technology.

  16. Mode coupling in hybrid square-rectangular lasers for single mode operation

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiu-Wen; Huang, Yong-Zhen, E-mail: yzhuang@semi.ac.cn; Yang, Yue-De; Xiao, Jin-Long; Weng, Hai-Zhong; Xiao, Zhi-Xiong [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100083 (China)

    2016-08-15

    Mode coupling between a square microcavity and a Fabry-Pérot (FP) cavity is proposed and demonstrated for realizing single mode lasers. The modulations of the mode Q factor as simulation results are observed and single mode operation is obtained with a side mode suppression ratio of 46 dB and a single mode fiber coupling loss of 3.2 dB for an AlGaInAs/InP hybrid laser as a 300-μm-length and 1.5-μm-wide FP cavity connected to a vertex of a 10-μm-side square microcavity. Furthermore, tunable single mode operation is demonstrated with a continuous wavelength tuning range over 10 nm. The simple hybrid structure may shed light on practical applications of whispering-gallery mode microcavities in large-scale photonic integrated circuits and optical communication and interconnection.

  17. Pervaporation applied for dewatering of reaction mixture during esterification

    Directory of Open Access Journals (Sweden)

    Krasiński Andrzej

    2016-03-01

    Full Text Available In this work the esterification of diethyl tartrate was studied. The research was focused on the enhancement of reversible reaction yield, which is accomplished by dewatering of the reaction mixture. The removal of water shifts the equilibrium towards the main product. Pervaporation was applied for this purpose, and results were compared to distillation. The advantages and limitations of both processes are discussed. The experimental part consists of dewatering of mixture after the reaction had reached the equilibrium, and was subsequently fed to the test rig equipped with a single zeolite membrane purchased from Pervatech B.V. Results show a significant conversion increase as a result of water removal by pervaporation. Compared to distillation no addition of organics is necessary to efficiently remove water above the azeotrope. Nevertheless, some limitations and issues which call for optimisation are pointed out. A simple numerical model is proposed to support design and sizing of the pervaporation system. Various modes of integrated system operation are also briefly discussed.

  18. Response of a neutron monitor area with TLDs pairs

    Energy Technology Data Exchange (ETDEWEB)

    Guzman G, K. A.; Borja H, C. G.; Valero L, C.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Gallego, E.; Lorente, A., E-mail: ing_karen_guzman@yahoo.com.mx [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, Jose Gutierrez Abascal 2, E-28006 Madrid (Spain)

    2011-10-15

    The response of a passive neutron monitor area has been calculated using the Monte Carlo code MCNP5. The response was the amount of n({sup 6}Li, T){alpha} reactions occurring in a TLD-600 located at the center of a cylindrical polyethylene moderator. Fluence, (n, a) and H*(10) responses were calculated for 47 monoenergetic neutron sources. The H*(10) relative response was compared with responses of commercially available neutron monitors being alike. Due to {sup 6}Li cross section (n, {alpha}) reactions are mainly produced by thermal neutrons, however TLD-600 is sensitive to gamma-rays; to eliminate the signal due to photons monitor area was built to hold 2 pairs of TLD-600 and 2 pairs of TLD-700, thus from the difference between TLD-600 and TLD-700 readouts the net signal due to neutrons is obtained. The monitor area was calibrated at the Universidad Politecnica de Madrid using a {sup 241}AmBe neutron source; net TLD readout was compared with the H*(10) measured with a Bert hold Lb-6411. Performance of the neutron monitor area was determined through two independent experiments, in both cases the H*(10) was statistically equal to H*(10) measured with a Bert hold Lb-6411. Neutron monitor area with TLDs pairs can be used in working areas with intense, mixed and pulsed radiation fields. (Author)

  19. Molecular controls of the oxygenation and redox reactions of hemoglobin.

    Science.gov (United States)

    Bonaventura, Celia; Henkens, Robert; Alayash, Abdu I; Banerjee, Sambuddha; Crumbliss, Alvin L

    2013-06-10

    The broad classes of O(2)-binding proteins known as hemoglobins (Hbs) carry out oxygenation and redox functions that allow organisms with significantly different physiological demands to exist in a wide range of environments. This is aided by allosteric controls that modulate the protein's redox reactions as well as its O(2)-binding functions. The controls of Hb's redox reactions can differ appreciably from the molecular controls for Hb oxygenation and come into play in elegant mechanisms for dealing with nitrosative stress, in the malarial resistance conferred by sickle cell Hb, and in the as-yet unsuccessful designs for safe and effective blood substitutes. An important basic principle in consideration of Hb's redox reactions is the distinction between kinetic and thermodynamic reaction control. Clarification of these modes of control is critical to gaining an increased understanding of Hb-mediated oxidative processes and oxidative toxicity in vivo. This review addresses emerging concepts and some unresolved questions regarding the interplay between the oxygenation and oxidation reactions of structurally diverse Hbs, both within red blood cells and under acellular conditions. Developing methods that control Hb-mediated oxidative toxicity will be critical to the future development of Hb-based blood substitutes.

  20. RHEED transmission mode and pole figures thin film and nanostructure texture analysis

    CERN Document Server

    Wang, Gwo-Ching

    2014-01-01

    This unique book covers the fundamental principle of electron diffraction, basic instrumentation of RHEED, definitions of textures in thin films and nanostructures, mechanisms and control of texture formation, and examples of RHEED transmission mode measurements of texture and texture evolution of thin films and nanostructures. Also presented is a new application of RHEED in the transmission mode called RHEED pole figure technique that can be used to monitor the texture evolution in thin film growth and nanostructures and is not limited to single crystal epitaxial film growth. Details of the construction of RHEED pole figures and the interpretation of observed pole figures are presented.  Materials covered include metals, semiconductors, and thin insulators. This book also: Presents a new application of RHEED in the transmission mode Introduces a variety of textures from metals, semiconductors, compound semiconductors, and their characteristics in RHEED pole figures Provides examples of RHEED measurements o...

  1. Understanding and Improvement of an Experiment Measuring Chemical Reaction Rates by Monitoring Volume Change of a Gas: On the Reaction between HCl(aq) and Mg(s)

    International Nuclear Information System (INIS)

    Bang, Jeong Ah; Yoon, Hee Sook; Jeong, Dae Hong; Choi, Won Ho

    2006-01-01

    In this study we analyzed and improved an experiment measuring chemical reaction rates introduced in the high school science textbooks through an understanding of the phenomena observed in carrying out the experiment. For this purpose, the contents of textbooks related to the experiment were analyzed, and the problems observed in carrying out the experiment were addressed through experimental analysis. When the experiment was carried out by the method of aquatic transposition presented in textbooks, the observed volume change of H 2 gas was delayed and chemical reaction rate was increased in the early stage of reaction period. To resolve these problems, an improved method for measuring the reaction rates was suggested. In the improved experiment the reaction rate was measured to be constant on time, which was interpreted in terms of the concentration of H + and the surface area of magnesium

  2. Failure mode and effects analysis and fault tree analysis of surface image guided cranial radiosurgery.

    Science.gov (United States)

    Manger, Ryan P; Paxton, Adam B; Pawlicki, Todd; Kim, Gwe-Ya

    2015-05-01

    Surface image guided, Linac-based radiosurgery (SIG-RS) is a modern approach for delivering radiosurgery that utilizes optical stereoscopic imaging to monitor the surface of the patient during treatment in lieu of using a head frame for patient immobilization. Considering the novelty of the SIG-RS approach and the severity of errors associated with delivery of large doses per fraction, a risk assessment should be conducted to identify potential hazards, determine their causes, and formulate mitigation strategies. The purpose of this work is to investigate SIG-RS using the combined application of failure modes and effects analysis (FMEA) and fault tree analysis (FTA), report on the effort required to complete the analysis, and evaluate the use of FTA in conjunction with FMEA. A multidisciplinary team was assembled to conduct the FMEA on the SIG-RS process. A process map detailing the steps of the SIG-RS was created to guide the FMEA. Failure modes were determined for each step in the SIG-RS process, and risk priority numbers (RPNs) were estimated for each failure mode to facilitate risk stratification. The failure modes were ranked by RPN, and FTA was used to determine the root factors contributing to the riskiest failure modes. Using the FTA, mitigation strategies were formulated to address the root factors and reduce the risk of the process. The RPNs were re-estimated based on the mitigation strategies to determine the margin of risk reduction. The FMEA and FTAs for the top two failure modes required an effort of 36 person-hours (30 person-hours for the FMEA and 6 person-hours for two FTAs). The SIG-RS process consisted of 13 major subprocesses and 91 steps, which amounted to 167 failure modes. Of the 91 steps, 16 were directly related to surface imaging. Twenty-five failure modes resulted in a RPN of 100 or greater. Only one of these top 25 failure modes was specific to surface imaging. The riskiest surface imaging failure mode had an overall RPN-rank of eighth

  3. Post-accident monitoring systems in Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    Suriya Murthy, N.; Sivasailanathan, Vidhya; Ananth, Allu; Roy, Kallol

    2018-01-01

    PFBR is a 500 MW(e) MOX fueled and sodium cooled fast reactor (SFR) under advanced stage of commissioning at Kalpakkam. Currently, the main vessel is preheated and sodium has been charged into two secondary loops that are operated in recirculation mode. In order to characterize the radiation field and contamination, the workplace monitoring is undertaken using installed monitors that are commissioned and made operational. This helps to ensure radiological protection during normal operating conditions. On the other hand, radiological monitoring in emergency conditions is quite different. For undertaking the mitigative accident management, a set of specialized nuclear instruments called post-accident monitoring systems (PAMS) which include radiation monitors are stipulated. The Fukushima Daiichi accident emphasized the importance and need for reliable accident monitoring instrumentation to indicate the safety functions during the progression and aftermath of accident in NPP. In PFBR, the PAMS are integrated with other monitoring systems in design stage itself to manage the measurements and indicating the safety functions for implementing EOP and SAMG

  4. Optical fiber Cherenkov detector for beam current monitoring

    International Nuclear Information System (INIS)

    Pishchulin, I.V.; Solov'ev, N.G.; Romashkin, O.B.

    1991-01-01

    The results obtained in calculation of an optical fiber Cherenkov detector for accelerated beam current monitoring are presented. The technique of beam parameters monitoring is based on Cherenkov radiation excitation by accelerated electrons in the optical fiber. The formulas for calculations of optical power and time dependence of Cherenkov radiation pulse are given. The detector sensitivity and time resolution dependence on the fiber material characteristics are investigated. Parameters of a 10μm one-mode quartz optical fiber detector for the free electron laser photoinjector are calculated. The structure of a monitoring system with the optical fiber Cherenkov detector is considered. Possible applications of this technique are discussed and some recommendations are given

  5. First Evidence for the Wobbling Mode in A Triaxial Superdeformed Odd-A Nucleus

    International Nuclear Information System (INIS)

    Hamamoto, I.; Odegaerd, S.W.; Hagemann, G.B.

    2001-01-01

    The wobbling mode is uniquely related to rotation of a triaxial body. The Lu-Hf isotopes with N ∼ 94 provides a possible region of nuclei with pronounced triaxiality. We have investigated 163 Lu through the fusion- evaporation reaction 139 La( 29 Si,5n) 163 Lu with a beam energy of 152 MeV. The electromagnetic properties of several connecting transitions between two presumably Triaxial, Super Deformed (TSD) bands have been studied. New particle-rotor calculations in which an aligned i 13/2 proton is coupled to a ''wobbling'' core are presented and evidence for the assignment of the excited TSD band as a wobbling mode built on the yrast TSD band in 163 Lu is given. (author)

  6. Penetrometer compatible, fiber-optic sensor for continuous monitoring of chlorinated hydrocarbons -- field test results

    International Nuclear Information System (INIS)

    Milanovich, F.P.; Brown, S.B.; Colston, B.W. Jr.

    1993-04-01

    We have developed and field tested a fiber optic chemical sensor for use in environmental monitoring and remediation. The principle of detection is colorimetric and is based on an irreversible chemical reaction between a specific reagent and the target compound. The formation of reaction products are monitored remotely with optical fibers. Successive or on-demand measurements are made possible with a reagent reservoir and a miniature pumping system. The sensor has been evaluated against gas chromatography standards and has demonstrated accuracy and sensitivity (>5ppb w/w) sufficient for the environmental monitoring of the contaminants triceoroethlyene (TCE) and chloroform. The sensor system can be used for bench-top analyses or for in-situ measurements such as groundwater and vadose monitoring wells or in Penetrometry mediated placements

  7. Reaction monitoring using hyperpolarized NMR with scaling of heteronuclear couplings by optimal tracking

    Science.gov (United States)

    Zhang, Guannan; Schilling, Franz; Glaser, Steffen J.; Hilty, Christian

    2016-11-01

    Off-resonance decoupling using the method of Scaling of Heteronuclear Couplings by Optimal Tracking (SHOT) enables determination of heteronuclear correlations of chemical shifts in single scan NMR spectra. Through modulation of J-coupling evolution by shaped radio frequency pulses, off resonance decoupling using SHOT pulses causes a user-defined dependence of the observed J-splitting, such as the splitting of 13C peaks, on the chemical shift offset of coupled nuclei, such as 1H. Because a decoupling experiment requires only a single scan, this method is suitable for characterizing on-going chemical reactions using hyperpolarization by dissolution dynamic nuclear polarization (D-DNP). We demonstrate the calculation of [13C, 1H] chemical shift correlations of the carbanionic active sites from hyperpolarized styrene polymerized using sodium naphthalene as an initiator. While off resonance decoupling by SHOT pulses does not enhance the resolution in the same way as a 2D NMR spectrum would, the ability to obtain the correlations in single scans makes this method ideal for determination of chemical shifts in on-going reactions on the second time scale. In addition, we present a novel SHOT pulse that allows to scale J-splittings 50% larger than the respective J-coupling constant. This feature can be used to enhance the resolution of the indirectly detected chemical shift and reduce peak overlap, as demonstrated in a model reaction between p-anisaldehyde and isobutylamine. For both pulses, the accuracy is evaluated under changing signal-to-noise ratios (SNR) of the peaks from reactants and reaction products, with an overall standard deviation of chemical shift differences compared to reference spectra of 0.02 ppm when measured on a 400 MHz NMR spectrometer. Notably, the appearance of decoupling side-bands, which scale with peak intensity, appears to be of secondary importance.

  8. Condition Monitoring Of Operating Pipelines With Operational Modal Analysis Application

    OpenAIRE

    Mironov Aleksey; Doronkin Pavel; Priklonsky Aleksander; Kabashkin Igor

    2015-01-01

    In the petroleum, natural gas and petrochemical industries, great attention is being paid to safety, reliability and maintainability of equipment. There are a number of technologies to monitor, control, and maintain gas, oil, water, and sewer pipelines. The paper focuses on operational modal analysis (OMA) application for condition monitoring of operating pipelines. Special focus is on the topicality of OMA for definition of the dynamic features of the pipeline (frequencies and mode shapes) i...

  9. Structural health monitoring an advanced signal processing perspective

    CERN Document Server

    Chen, Xuefeng; Mukhopadhyay, Subhas

    2017-01-01

    This book highlights the latest advances and trends in advanced signal processing (such as wavelet theory, time-frequency analysis, empirical mode decomposition, compressive sensing and sparse representation, and stochastic resonance) for structural health monitoring (SHM). Its primary focus is on the utilization of advanced signal processing techniques to help monitor the health status of critical structures and machines encountered in our daily lives: wind turbines, gas turbines, machine tools, etc. As such, it offers a key reference guide for researchers, graduate students, and industry professionals who work in the field of SHM.

  10. Capturing Chemistry in Action with Electrons: Realization of Atomically Resolved Reaction Dynamics.

    Science.gov (United States)

    Ischenko, Anatoly A; Weber, Peter M; Miller, R J Dwayne

    2017-08-23

    One of the grand challenges in chemistry has been to directly observe atomic motions during chemical processes. The depiction of the nuclear configurations in space-time to understand barrier crossing events has served as a unifying intellectual theme connecting the different disciplines of chemistry. This challenge has been cast as an imaging problem in which the technical issues reduce to achieving not only sufficient simultaneous space-time resolution but also brightness for sufficient image contrast to capture the atomic motions. This objective has been met with electrons as the imaging source. The review chronicles the first use of electron structural probes to study reactive intermediates, to the development of high bunch charge electron pulses with sufficient combined spatial-temporal resolution and intensity to literally light up atomic motions, as well as the means to characterize the electron pulses in terms of temporal brightness and image reconstruction. The use of femtosecond Rydberg spectroscopy as a novel means to use internal electron scattering within the molecular reference frame to obtain similar information on reaction dynamics is also discussed. The focus is on atomically resolved chemical reaction dynamics with pertinent references to work in other areas and forms of spectroscopy that provide additional information. Effectively, we can now directly observe the far-from-equilibrium atomic motions involved in barrier crossing and categorize chemistry in terms of a power spectrum of a few dominant reaction modes. It is this reduction in dimensionality that makes chemical reaction mechanisms transferrable to seemingly arbitrarily complex (large N) systems, up to molecules as large as biological macromolecules (N > 1000 atoms). We now have a new way to reformulate reaction mechanisms using an experimentally determined dynamic mode basis that in combination with recent theoretical advances has the potential to lead to a new conceptual basis for

  11. Medical cannabis use in Canada: vapourization and modes of delivery.

    Science.gov (United States)

    Shiplo, Samantha; Asbridge, Mark; Leatherdale, Scott T; Hammond, David

    2016-10-29

    The mode of medical cannabis delivery-whether cannabis is smoked, vapourized, or consumed orally-may have important implications for its therapeutic efficacy and health risks. However, there is very little evidence on current patterns of use among Canadian medical cannabis users, particularly with respect to modes of delivery. The current study examined modes of medical cannabis delivery following regulatory changes in 2014 governing how Canadians access medical cannabis. A total of 364 approved adult Canadian medical cannabis users completed an online cross-sectional survey between April and June 2015. The survey examined patterns of medical cannabis use, modes of delivery used, and reasons for use. Participants were recruited through a convenience sample from nine Health Canada licensed producers. Using a vapourizer was the most popular mode of delivery for medical cannabis (53 %), followed by smoking a joint (47 %). The main reason for using a vapourizer was to reduce negative health consequences associated with smoking. A majority of current vapourizer users reported using a portable vapourizer (67.2 %), followed by a stationary vapourizer (41.7 %), and an e-cigarette or vape pen (19.3 %). Current use of a vapourizer was associated with fewer respiratory symptoms (AOR = 1.28, 95 % CI 1.05-1.56, p = 0.01). The findings suggest an increase in the popularity of vapourizers as the primary mode of delivery among approved medical users. Using vapourizers has the potential to prevent some of the adverse respiratory health consequences associated with smoking and may serve as an effective harm reduction method. Monitoring implications of such current and future changes to medical cannabis regulations may be beneficial to policymakers.

  12. Adaptive variational mode decomposition method for signal processing based on mode characteristic

    Science.gov (United States)

    Lian, Jijian; Liu, Zhuo; Wang, Haijun; Dong, Xiaofeng

    2018-07-01

    Variational mode decomposition is a completely non-recursive decomposition model, where all the modes are extracted concurrently. However, the model requires a preset mode number, which limits the adaptability of the method since a large deviation in the number of mode set will cause the discard or mixing of the mode. Hence, a method called Adaptive Variational Mode Decomposition (AVMD) was proposed to automatically determine the mode number based on the characteristic of intrinsic mode function. The method was used to analyze the simulation signals and the measured signals in the hydropower plant. Comparisons have also been conducted to evaluate the performance by using VMD, EMD and EWT. It is indicated that the proposed method has strong adaptability and is robust to noise. It can determine the mode number appropriately without modulation even when the signal frequencies are relatively close.

  13. Information about adverse drug reactions reported in children

    DEFF Research Database (Denmark)

    Aagaard, Lise; Christensen, Arne; Hansen, Ebba Holme

    2010-01-01

    AIM: To review the literature on adverse drug reactions (ADRs) in children with respect to occurrence, seriousness, type, therapeutic group, age and gender of the child and category of reporter. METHODS: Medline and Embase databases were searched from origin and updated until February 2010. We...... included empirically based articles on ADRs in populations aged 0 to 17 years. Studies monitoring ADRs in patients with particular conditions or drug exposure were excluded. We extracted information about types and seriousness of ADRs, therapeutic groups, age and gender of the child and category...... of reporter. ADR occurrence was calculated as incidence rate and prevalence. RESULTS: We included 33 studies monitoring ADRs in general paediatric populations. The highest numbers of ADRs were reported in national ADR databases where data were collected over a longer period than in studies monitoring...

  14. FAST GC-FID METHOD FOR MONITORING ACIDIC AND BASIC CATALYTIC TRANSESTERIFICATION REACTIONS IN VEGETABLE OILS TO METHYL ESTER BIODIESEL PREPARATION

    Directory of Open Access Journals (Sweden)

    Renata Takabayashi Sato

    2016-04-01

    Full Text Available A fast gas chromatography with a flame ionisation detector (GC-FID method for the simultaneous analysis of methyl palmitate (C16:0, stearate (C18:0, oleate (C18:1, linoleate (C18:2 and linolenate (C18:3 in biodiesel samples was proposed. The analysis was conducted in a customised ionic-liquid stationary-phase capillary, SLB-IL 111, with a length of 14 m, an internal diameter of 0.10 mm, a film thickness of 0.08 µm and operated isothermally at 160 °C using hydrogen as the carrier gas at a rate of 50 cm s-1 in run time about 3 min. Once methyl myristate (C14:0 is present lower than 0.5% m/m in real samples it was used as an internal standard. The method was successful applied to monitoring basic and acidic catalysis transesterification reactions of vegetable oils such as soybean, canola, corn, sunflower and those used in frying process.

  15. Insights into the mechanisms on chemical reactions: reaction paths for chemical reactions

    International Nuclear Information System (INIS)

    Dunning, T.H. Jr.; Rosen, E.; Eades, R.A.

    1987-01-01

    We report reaction paths for two prototypical chemical reactions: Li + HF, an electron transfer reaction, and OH + H 2 , an abstraction reaction. In the first reaction we consider the connection between the energetic terms in the reaction path Hamiltonian and the electronic changes which occur upon reaction. In the second reaction we consider the treatment of vibrational effects in chemical reactions in the reaction path formalism. 30 refs., 9 figs

  16. Verification of multimarkers for detection of early stage diabetic retinopathy using multiple reaction monitoring.

    Science.gov (United States)

    Kim, Kyunggon; Kim, Sang Jin; Han, Dohyun; Jin, Jonghwa; Yu, Jiyoung; Park, Kyong Soo; Yu, Hyeong Gon; Kim, Youngsoo

    2013-03-01

    Diabetic retinopathy (DR) is a complication of diabetes and 80% of diabetes mellitus (DM) patients whose DM duration is over 10 years can be expected to suffer with DR. The diagnosis of DR depends on an ophthalmological examination, and no molecular methods of screening DR status exist. Nonproliferative diabetic retinopathy (NPDR) is the early DR which is hard to be noticed in early NPDR, showing significant cause of adult blindness in type 2 diabetes patients. Protein biomarkers have been valuable in the diagnosis of disease and the use of multiple biomarkers has been suggested to overcome the low specificity of single ones. For biomarker development, multiple reaction monitoring (MRM) has been spotlighted as an alternative method to quantify target proteins with no need for immunoassay. In this study, 54 candidate DR marker proteins from a previous study were verified by MRM in plasma samples from NPDR patients in 3 stages (mild, moderate and severe; 15 cases each) and diabetic patients without retinopathy (15 cases) as a control. Notably, 27 candidate markers distinguished moderate NPDR from type 2 diabetic patients with no diabetic retinopathy, generating AUC values (>0.7). Specifically, 28 candidate proteins underwent changes in expression as type 2 diabetic patients with no diabetic retinopathy progressed to mild and moderate NPDR. Further, a combination of 4 markers from these 28 candidates had the improved specificity in distinguishing moderate NPDR from type 2 diabetic patients with no diabetic retinopathy, yielding a merged AUC value of nearly 1.0. We concluded that MRM is a fast, robust approach of multimarker panel determination and an assay platform that provides improved specificity compared with single biomarker assay systems.

  17. Guaranteed performance in reaching mode of sliding mode ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    addresses the design of constant plus proportional rate reaching law-based SMC for second-order ... Reaching mode; sliding mode controlled systems; output tracking ... The uncertainty in the input distribution function g is expressed as.

  18. Mechanical Seal Opening Condition Monitoring Based on Acoustic Emission Technology

    Directory of Open Access Journals (Sweden)

    Erqing Zhang

    2014-06-01

    Full Text Available Since the measurement of mechanical sealing film thickness and just-lift-off time is very difficult, the sealing film condition monitoring method based on acoustic emission signal is proposed. The mechanical seal acoustic emission signal present obvious characteristics of time-varying nonlinear and pulsating. In this paper, the acoustic emission signal is used to monitor the seal end faces just-lift-off time and friction condition. The acoustic emission signal is decomposed by empirical mode decomposition into a series of intrinsic mode function with independent characteristics of different time scales and different frequency band. The acoustic emission signal only generated by end faces friction is obtained by eliminating the false intrinsic mode function components. The correlation coefficient of acoustic emission signal and Multi-scale Laplace Wavelet is calculated. It is proved that the maximum frequency (8000 Hz of the correlation coefficient is appeared at the spindle speed of 300 rpm. And at this time (300 rpm the end faces have just lifted off. By a set of mechanical oil seal running test, it is demonstrated that this method could accurately identify mechanical seal end faces just-lift-off time and friction condition.

  19. A Novel Method To On-Line Monitor Reactor Nuclear Power And In-Core Thermal Environments

    International Nuclear Information System (INIS)

    Liu, Hanying; Miller, Don W.; Li, Dongxu; Radcliff, Thomas D.

    2002-01-01

    For current nuclear power plants, nuclear power can not be directly measured and in-core fuel thermal environments can not be monitored due to the unavailability of an appropriate measurement technology and the inaccessibility of the fuel. If the nuclear deposited power and the in-core thermal conditions (i.e. fuel or coolant temperature and heat transfer coefficient) can be monitored in-situ, then it would play a valuable and critical role in increasing nuclear power, predicting abnormal reactor operation, improving core physical models and reducing core thermal margin so as to implement higher fuel burn-up. Furthermore, the management of core thermal margin and fuel operation may be easier during reactor operation, post-accident or spent fuel storage. On the other hand, for some advanced Generation IV reactors, the sealed and long-lived reactor core design challenges traditional measurement techniques while conventional ex-core detectors and current in-core detectors can not monitor details of the in-core fuel conditions. A method is introduced in this paper that responds to the challenge to measure nuclear power and to monitor the in-core thermal environments, for example, local fuel pin or coolant heat convection coefficient and temperature. In summary, the method, which has been designed for online in-core measurement and surveillance, will be beneficial to advanced plant safety, efficiency and economics by decreasing thermal margin or increasing nuclear power. The method was originally developed for a constant temperature power sensor (CTPS). The CTPS is undergoing design and development for an advanced reactor core to measure in-core nuclear power in measurement mode and to monitor thermal environments in compensation mode. The sensor dynamics was analyzed in compensation mode to determine the environmental temperature and the heat transfer coefficient. Previous research demonstrated that a first order dynamic model is not sufficient to simulate sensor

  20. OIL SPILL DETECTION AND MONITORING OF ABU DHABI COASTAL ZONE USING KOMPSAT-5 SAR IMAGERY

    Directory of Open Access Journals (Sweden)

    H. A. Harahsheh

    2016-06-01

    Full Text Available Abu Dhabi Government endorsed vision for its Maritime Strategy ‘A safe, secure and sustainable maritime domain for Abu Dhabi'. This research study share this vision using the concept of monitoring as tool for marine protection against any possible oil pollution. The best technology to detect and monitor oil pollution and in particularly oil spill is SAR imagery In this case study we chose KOMPSAT-5 SAR. KOMPSAT-5 carries X-band SAR for earth observation, and is capable of day-and-night imaging under all weather condition. It provides three operation modes: High Resolution Mode to provide 1 m resolution, Standard Mode to provide 3 m resolution and Wide Swath Mode to provide 20 m resolution with 100 km swath at 550 km altitude, with four modes of polarization. KOMPSAT-5 provides products for various applications; security and defense, mapping, and natural resource management, environmental monitoring, disaster monitoring and more. For our case study we chose to work with Wide Swath mode (WS with Vertical polarization (VV to cover a wide area of interest located to the north west of Abu Dhabi including some important islands like ”Zirku Island”, and areas with oil production activities. The results of data acquired on 4th May 2015 show some spot of oil spill with length estimated about 3 KM, and the daily satellite data acquisition over the period July 24 through July 31 shows serious and many oil spill events some are small, but many others are considered to be big with area size around 20 km2. In the context of oil spill pollution in the seas, we have to consider the development and increase of overseas transportation, which is an important factor for both social and economic sectors. The harmful effects of marine pollution are numerous, from the damage of marine life to the damage of the aquatic ecosystem as whole. As such, the need for oil slick detection is crucial, for the location of polluted areas and to evaluate slick drift to

  1. Oil Spill Detection and Monitoring of Abu Dhabi Coastal Zone Using KOMPSAT-5 SAR Imagery

    Science.gov (United States)

    Harahsheh, H. A.

    2016-06-01

    Abu Dhabi Government endorsed vision for its Maritime Strategy `A safe, secure and sustainable maritime domain for Abu Dhabi'. This research study share this vision using the concept of monitoring as tool for marine protection against any possible oil pollution. The best technology to detect and monitor oil pollution and in particularly oil spill is SAR imagery In this case study we chose KOMPSAT-5 SAR. KOMPSAT-5 carries X-band SAR for earth observation, and is capable of day-and-night imaging under all weather condition. It provides three operation modes: High Resolution Mode to provide 1 m resolution, Standard Mode to provide 3 m resolution and Wide Swath Mode to provide 20 m resolution with 100 km swath at 550 km altitude, with four modes of polarization. KOMPSAT-5 provides products for various applications; security and defense, mapping, and natural resource management, environmental monitoring, disaster monitoring and more. For our case study we chose to work with Wide Swath mode (WS) with Vertical polarization (VV) to cover a wide area of interest located to the north west of Abu Dhabi including some important islands like "Zirku Island", and areas with oil production activities. The results of data acquired on 4th May 2015 show some spot of oil spill with length estimated about 3 KM, and the daily satellite data acquisition over the period July 24 through July 31 shows serious and many oil spill events some are small, but many others are considered to be big with area size around 20 km2. In the context of oil spill pollution in the seas, we have to consider the development and increase of overseas transportation, which is an important factor for both social and economic sectors. The harmful effects of marine pollution are numerous, from the damage of marine life to the damage of the aquatic ecosystem as whole. As such, the need for oil slick detection is crucial, for the location of polluted areas and to evaluate slick drift to protect the coastline

  2. High-mode-number ballooning modes in a heliotron/torsatron system. II. Stability

    International Nuclear Information System (INIS)

    Nakajima, N.

    1996-01-01

    In heliotron/torsatron systems that have a large Shafranov shift, the local magnetic shear is found to have no stabilizing effect on high-mode-number ballooning modes at the outer side of the torus, even in the region where the global shear is stellarator-like in nature. The disappearance of this stabilization, in combination with the compression of the flux surfaces at the outer side of the torus, leads at relatively low values of the plasma pressure to significant modifications of the stabilizing effect due to magnetic field-line bending on high-mode-number ballooning modes-specifically, that the field-line bending stabilization can be remarkably suppressed or enhanced. In an equilibrium that is slightly Mercier-unstable or completely Mercier-stable due to peaked pressure profiles, such as those used in standard stability calculations, high-mode-number ballooning modes are destabilized due to these modified stability effects, with their eigenfunctions highly localized along the field line. Highly localized mode structures such as these cause the ballooning mode eigenvalues ω 2 to have a strong field line dependence (i.e., α-variation) through the strong dependence of the local magnetic curvature, such that the level surfaces of ω 2 (ψ,θ k ,α) (≤0) become spheroids in (ψ,θ k ,α) space, where ψ labels flux surfaces and θ k is the radial wave number. Because the spheroidal level surfaces for unstable eigenvalues are surrounded by level surfaces for stable eigenvalues of high-mode-number toroidal Alfvacute en eigenmodes, those high-mode-number ballooning modes never lead to low-mode-number modes. In configuration space, these high-mode-number modes are localized in a single toroidal pitch of the helical coils, and hence they may experience substantial stabilization due to finite Larmor radius effects. copyright 1996 American Institute of Physics

  3. Comparison of techniques for the determination of conversion during suspension polymerization reactions

    Directory of Open Access Journals (Sweden)

    J. C. Santos

    2008-06-01

    Full Text Available The determination of conversion during suspension polymerization reactions is not an easy task due to the heterogeneity of the reaction medium and the tendency of particles to agglomerate rapidly when stirring is stopped. Usually, bulk polymerization in ampoules is employed to study the kinetics of suspension polymerization reactions. In this work, a comparison of different techniques for the determination of conversion during suspension polymerization reactions is presented. Results showed a good agreement between the conversion obtained by gravimetry during styrene suspension polymerization and on-line conversion monitoring data using fiber-optic based Raman Spectroscopy. Nevertheless, the polymerization rate of styrene bulk polymerization carried out in ampoules was higher than the real reaction rate of styrene suspension polymerization due to slightly higher reaction temperatures. Simulation results using the experimental temperature data in a mathematical model confirmed these results.

  4. Development of large area silicon semiconductor detectors for use in the current mode

    CERN Document Server

    Ouyang Xia Opin; Li Zhen Fu; Zhang Guo Guang; Zhang Qi; Zhang Xia; Song Xian Cai; Jia Huan Yi; Lei Jian Hua; Sun Yuan Cheng

    2002-01-01

    Large area silicon semiconductor detectors for use in the current mode, with their dimensions of phi 40, phi 50 and phi 60 mm, their depletion thickness of 200-300 mu m, have been developed. Their performance measurements have been made, which indicate that the developed detectors can satisfactorily meet the needs in expectation. Compared with the detectors commercially available on the market, authors' large PIN detectors can serve both as reliable and efficient high-resolution devices for nuclear counting experiments, as well as monitors of high-intensity radiation fields in the current mode under a bias of 100-1000 V, while the detectors commercially available are only for the counting use

  5. Reflection-mode x-ray powder diffraction cell for in situ studies of electrochemical reactions

    International Nuclear Information System (INIS)

    Roberts, G.A.; Stewart, K.D.

    2004-01-01

    The design and operation of an electrochemical cell for reflection-mode powder x-ray diffraction experiments are discussed. The cell is designed for the study of electrodes that are used in rechargeable lithium batteries. It is designed for assembly in a glove box so that air-sensitive materials, such as lithium foil electrodes and carbonate-based electrolytes with lithium salts, can be used. The cell uses a beryllium window for x-ray transmission and electrical contact. A simple mechanism for compressing the electrodes is included in the design. Sample results for the cell are shown with a Cu Kα source and a position-sensitive detector

  6. Modes of transmission of influenza B virus in households.

    Directory of Open Access Journals (Sweden)

    Benjamin J Cowling

    Full Text Available While influenza A and B viruses can be transmitted via respiratory droplets, the importance of small droplet nuclei "aerosols" in transmission is controversial.In Hong Kong and Bangkok, in 2008-11, subjects were recruited from outpatient clinics if they had recent onset of acute respiratory illness and none of their household contacts were ill. Following a positive rapid influenza diagnostic test result, subjects were randomly allocated to one of three household-based interventions: hand hygiene, hand hygiene plus face masks, and a control group. Index cases plus their household contacts were followed for 7-10 days to identify secondary infections by reverse transcription polymerase chain reaction (RT-PCR testing of respiratory specimens. Index cases with RT-PCR-confirmed influenza B were included in the present analyses. We used a mathematical model to make inferences on the modes of transmission, facilitated by apparent differences in clinical presentation of secondary infections resulting from aerosol transmission. We estimated that approximately 37% and 26% of influenza B virus transmission was via the aerosol mode in households in Hong Kong and Bangkok, respectively. In the fitted model, influenza B virus infections were associated with a 56%-72% risk of fever plus cough if infected via aerosol route, and a 23%-31% risk of fever plus cough if infected via the other two modes of transmission.Aerosol transmission may be an important mode of spread of influenza B virus. The point estimates of aerosol transmission were slightly lower for influenza B virus compared to previously published estimates for influenza A virus in both Hong Kong and Bangkok. Caution should be taken in interpreting these findings because of the multiple assumptions inherent in the model, including that there is limited biological evidence to date supporting a difference in the clinical features of influenza B virus infection by different modes.

  7. Decree of the 12. may 2004 giving the modes of monitoring the radiation quality of waters specified to human consumption

    International Nuclear Information System (INIS)

    2004-01-01

    The present decree settles the modes of radiation quality monitoring of waters specified for human consumption. It defines the radionuclides to be taken into account for the calculation of the total indicative dose. The total indicative dose corresponds to the involved efficient dose resulted from an intake during one year of every natural radionuclide, radon and its short lived daughters excepted ( specified in present annexe). The calculation of dose is made for adults on the base of a consumption of 730 liters of water by year. The coefficients of doses used to allow the dose calculation from the measured activity, expressed in SvBq -1 , are these ones taken in application of the article R.13333-10 of the code of Public Health. The alpha and beta activities, tritium and potassium activities have to be measured whatever the case. According to the results of the reference analysis and the type of installation in proximity it is proceeding to the research of other radioactive elements such 234 U, 238 U, 226 Ra, 228 Ra, 210 Po, 210 Pb, 14 C, 90 Sr, gamma emitters radionuclides in particular 60 Co, 131 I, 134 Cs, and 137 Cs and alpha emitters radionuclides in particular 238 Pu, 239 Pu, 240 Pu and 241 Am. (N.C.)

  8. Ambient Mechanochemical Solid-State Reactions of Carbon Nanotubes and Their Reactions via Covalent Coordinate Bond in Solution

    Science.gov (United States)

    Kabbani, Mohamad A.

    In its first part, this thesis deals with ambient mechanochemical solid-state reactions of differently functionalized multiple walled carbon nanotubes (MWCNTs) while in its second part it investigates the cross-linking reactions of CNTs in solution via covalent coordinate bonds with transitions metals and carboxylate groups decorating their surfaces. In the first part a series of mechanochemical reactions involving different reactive functionalities on the CNTs such as COOH/OH, COOH/NH2 and COCl/OH were performed. The solid-state unzipping of CNTs leading to graphene formation was confirmed using spectroscopic, thermal and electron microscopy techniques. The non-grapheme products were established using in-situ quadruple mass spectroscopy. The experimental results were confirmed by theoretical simulation calculations using the 'hot spots' protocol. The kinetics of the reaction between MWCNT-COOH and MWCNT-OH was monitored using variable temperature Raman spectroscopy. The low activation energy was discussed in terms of hydrogen bond mediated proton transfer mechanism. The second part involves the reaction of MWCNTII COOH with Zn (II) and Cu (II) to form CNT metal-organic frame (MOFs) products that were tested for their effective use as counter-electrodes in dyes sensitized solar cells (DSSC). The thesis concludes by the study of the room temperature reaction between the functionalized graphenes, GOH and G'-COOH followed by the application of compressive loads. The 3D solid graphene pellet product ( 0.6gm/cc) is conductive and reflective with a 35MPa ultimate strength as compared to 10MPa strength of graphite electrode ( 2.2gm/cc).

  9. Edge-localized mode avoidance and pedestal structure in I-mode plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Walk, J. R., E-mail: jrwalk@psfc.mit.edu; Hughes, J. W.; Hubbard, A. E.; Terry, J. L.; Whyte, D. G.; White, A. E.; Baek, S. G.; Reinke, M. L.; Theiler, C.; Churchill, R. M.; Rice, J. E. [MIT Plasma Science and Fusion Center, Cambridge, MA 02139-4307 (United States); Snyder, P. B.; Osborne, T. [General Atomics, San Diego, CA 92186-5608 (United States); Dominguez, A [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Cziegler, I. [UCSD Center for Momentum Transport and Flow Organization, La Jolla, CA 92093-0417 (United States)

    2014-05-15

    I-mode is a high-performance tokamak regime characterized by the formation of a temperature pedestal and enhanced energy confinement, without an accompanying density pedestal or drop in particle and impurity transport. I-mode operation appears to have naturally occurring suppression of large Edge-Localized Modes (ELMs) in addition to its highly favorable scalings of pedestal structure and overall performance. Extensive study of the ELMy H-mode has led to the development of the EPED model, which utilizes calculations of coupled peeling-ballooning MHD modes and kinetic-ballooning mode (KBM) stability limits to predict the pedestal structure preceding an ELM crash. We apply similar tools to the structure and ELM stability of I-mode pedestals. Analysis of I-mode discharges prepared with high-resolution pedestal data from the most recent C-Mod campaign reveals favorable pedestal scalings for extrapolation to large machines—pedestal temperature scales strongly with power per particle P{sub net}/n{sup ¯}{sub e}, and likewise pedestal pressure scales as the net heating power (consistent with weak degradation of confinement with heating power). Matched discharges in current, field, and shaping demonstrate the decoupling of energy and particle transport in I-mode, increasing fueling to span nearly a factor of two in density while maintaining matched temperature pedestals with consistent levels of P{sub net}/n{sup ¯}{sub e}. This is consistent with targets for increased performance in I-mode, elevating pedestal β{sub p} and global performance with matched increases in density and heating power. MHD calculations using the ELITE code indicate that I-mode pedestals are strongly stable to edge peeling-ballooning instabilities. Likewise, numerical modeling of the KBM turbulence onset, as well as scalings of the pedestal width with poloidal beta, indicates that I-mode pedestals are not limited by KBM turbulence—both features identified with the trigger for large ELMs

  10. Low-bending loss and single-mode operation in few-mode optical fiber

    Science.gov (United States)

    Yin, Ping; Wang, Hua; Chen, Ming-Yang; Wei, Jin; Cai, Zhi-Min; Li, Lu-Ming; Yang, Ji-Hai; Zhu, Yuan-Feng

    2016-10-01

    The technique of eliminating the higher-order modes in a few-mode optical fiber is proposed. The fiber is designed with a group of defect modes in the cladding. The higher-order modes in the fiber can be eliminated by bending the fiber to induce strong coupling between the defect modes and the higher-order modes. Numerical simulation shows the bending losses of the LP01 mode are lower than 1.5×10-4 dB/turn for the wavelength shorter than 1.625 μm. The proposed fiber can be bent multiple turns at small bending radius which are preferable for FTTH related applications.

  11. Plasma Modes

    Science.gov (United States)

    Dubin, D. H. E.

    This chapter explores several aspects of the linear electrostatic normal modes of oscillation for a single-species non-neutral plasma in a Penning trap. Linearized fluid equations of motion are developed, assuming the plasma is cold but collisionless, which allow derivation of the cold plasma dielectric tensor and the electrostatic wave equation. Upper hybrid and magnetized plasma waves in an infinite uniform plasma are described. The effect of the plasma surface in a bounded plasma system is considered, and the properties of surface plasma waves are characterized. The normal modes of a cylindrical plasma column are discussed, and finally, modes of spheroidal plasmas, and finite temperature effects on the modes, are briefly described.

  12. Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks

    OpenAIRE

    Rui Zhao; Ruqiang Yan; Jinjiang Wang; Kezhi Mao

    2017-01-01

    In modern manufacturing systems and industries, more and more research efforts have been made in developing effective machine health monitoring systems. Among various machine health monitoring approaches, data-driven methods are gaining in popularity due to the development of advanced sensing and data analytic techniques. However, considering the noise, varying length and irregular sampling behind sensory data, this kind of sequential data cannot be fed into classification and regression mode...

  13. Nanodiamond-Manganese dual mode MRI contrast agents for enhanced liver tumor detection.

    Science.gov (United States)

    Hou, Weixin; Toh, Tan Boon; Abdullah, Lissa Nurrul; Yvonne, Tay Wei Zheng; Lee, Kuan J; Guenther, Ilonka; Chow, Edward Kai-Hua

    2017-04-01

    Contrast agent-enhanced magnetic resonance (MR) imaging is critical for the diagnosis and monitoring of a number of diseases, including cancer. Certain clinical applications, including the detection of liver tumors, rely on both T1 and T2-weighted images even though contrast agent-enhanced MR imaging is not always reliable. Thus, there is a need for improved dual mode contrast agents with enhanced sensitivity. We report the development of a nanodiamond-manganese dual mode contrast agent that enhanced both T1 and T2-weighted MR imaging. Conjugation of manganese to nanodiamonds resulted in improved longitudinal and transverse relaxivity efficacy over unmodified MnCl 2 as well as clinical contrast agents. Following intravenous administration, nanodiamond-manganese complexes outperformed current clinical contrast agents in an orthotopic liver cancer mouse model while also reducing blood serum concentration of toxic free Mn 2+ ions. Thus, nanodiamond-manganese complexes may serve as more effective dual mode MRI contrast agent, particularly in cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Monitoring the wild black bear's reaction to human and environmental stressors

    Directory of Open Access Journals (Sweden)

    Iaizzo Paul A

    2011-08-01

    Full Text Available Abstract Background Bears are among the most physiologically remarkable mammals. They spend half their life in an active state and the other half in a state of dormancy without food or water, and without urinating, defecating, or physical activity, yet can rouse and defend themselves when disturbed. Although important data have been obtained in both captive and wild bears, long-term physiological monitoring of bears has not been possible until the recent advancement of implantable devices. Results Insertable cardiac monitors that were developed for use in human heart patients (Reveal® XT, Medtronic, Inc were implanted in 15 hibernating bears. Data were recovered from 8, including 2 that were legally shot by hunters. Devices recorded low heart rates (pauses of over 14 seconds and low respiration rates (1.5 breaths/min during hibernation, dramatic respiratory sinus arrhythmias in the fall and winter months, and elevated heart rates in summer (up to 214 beats/min (bpm and during interactions with hunters (exceeding 250 bpm. The devices documented the first and last day of denning, a period of quiescence in two parturient females after birthing, and extraordinary variation in the amount of activity/day, ranging from 0 (winter to 1084 minutes (summer. Data showed a transition toward greater nocturnal activity in the fall, preceding hibernation. The data-loggers also provided evidence of the physiological and behavioral responses of bears to our den visits to retrieve the data. Conclusions Annual variations in heart rate and activity have been documented for the first time in wild black bears. This technique has broad applications to wildlife management and physiological research, enabling the impact of environmental stressors from humans, changing seasons, climate change, social interactions and predation to be directly monitored over multiple years.

  15. Chemical reactions on platinum-group metal surfaces studied by synchrotron-radiation-based spectroscopy

    International Nuclear Information System (INIS)

    Kondoh, Hiroshi; Nakai, Ikuyo; Nagasaka, Masanari; Amemiya, Kenta; Ohta, Toshiaki

    2009-01-01

    A new version of synchrotron-radiation-based x-ray spectroscopy, wave-length-dispersive near-edge x-ray absorption fine structure (dispersive-NEXAFS), and fast x-ray photoelectron spectroscopy have been applied to mechanistic studies on several surface catalytic reactions on platinum-group-metal surfaces. In this review, our approach using above techniques to understand the reaction mechanism and actual application studies on three well-known catalytic surface reactions, CO oxidation on Pt(111) and Pd(111), NO reduction on Rh(111), and H 2 O formation on Pt(111), are introduced. Spectroscopic monitoring of the progress of the surface reactions enabled us to detect reaction intermediates and analyze the reaction kinetics quantitatively which provides information on reaction order, rate constant, pre-exponential factor, activation energy and etc. Such quantitative analyses combined with scanning tunneling microscopy and kinetic Monte Carlo simulations revealed significant contribution of the adsorbate configurations and their dynamic changes to the reaction mechanisms of the above fundamental catalytic surface reactions. (author)

  16. Stability of longitudinal modes in a bunched beam with mode coupling

    International Nuclear Information System (INIS)

    Satoh, K.

    1981-06-01

    In this paper we study a longitudinal coherent bunch instability in which the growth time is comparable to or less than the period of synchrotron oscillations. Both longitudinal and transverse bunch instabilities have been studied. In most treatments, however, the coherent force is assumed to be small and is treated as a perturbation compared with the synchrotron force. This makes the problem simpler because an individual synchrotron mode is decoupled. As bunch current increases, the coherent force is no longer small and the mode frequency shift becomes significant compared with the synchrotron frequency. Therefore in this case it is necessary to include coupling of the synchrotron modes. Recently a fast blow-up instability which comes from mode coupling was studied. Their method is to derive a dispersion relation for a bunched beam using the Vlasov equation and to analyze it as in a coasting beam. They showed that if mode coupling is included the Vlasov equation predicts a fast microwave instability with a stability condition similar to that for a coasting beam. In this paper we will partly follow their method and present a formalism which includes coupling between higher-order radial modes as well as coupling between synchrotron modes. The formalism is considered to be generalization of the Sacherer formalism without mode coupling. This theory predicts that instability is induced not only by coupling between different synchrotron modes, but also by coupling between positive and negative modes, since negative synchrotron modes are included in the theory in a natural manner. This formalism is to be used for a Gaussian bunch and a parabolic bunch, and is also useful for transverse problems

  17. Recent improvements in check valve monitoring methods

    International Nuclear Information System (INIS)

    Haynes, H.D.

    1991-01-01

    In support of the NRC Nuclear Plant Aging Research (NPAR) program, ORNL has carried out an evaluation of three check valve monitoring methods: acoustic emission, ultrasonic inspection, and magnetic flux signature analysis (MFSA). This work has focussed on determining the capabilities of each method to provide diagnostic information useful in determining check valve aging and service wear effects (degradation) and undesirable operating modes. In addition, as part of the ORNL Advanced Diagnostic Engineering Research and Development Center (ADEC), two novel nonintrusive monitoring methods were developed (external ac- and dc-magnetic monitoring) that provide several improvements over the other methods. None of the examined methods could, by themselves, monitor the instantaneous position and motion of check valve internals and valve leakage; however, the combination of acoustic emission monitoring with one of the other methods provides the means to determine vital check valve operational information. This paper describes the benefits and limitations associated with each method and includes recent laboratory and field test data to illustrate the capabilities of these methods to detect simulated check valve degradation. 3 refs., 22 figs., 4 tabs

  18. Recent improvements in check valve monitoring methods

    International Nuclear Information System (INIS)

    Haynes, H.D.

    1990-01-01

    In support of the NRC Nuclear Plant Aging Research (NPAR) program, ORNL has carried out an evaluation of three check valve monitoring methods: acoustic emission, ultrasonic inspection, and magnetic flux signature analysis (MFSA). This work has focused on determining the capabilities of each method to provide diagnostic information useful in determining check valve aging and service wear effects (degradation) and undesirable operating modes. In addition, as part of the ORNL Advanced Diagnostic Engineering Research and Development Center (ADEC), two noval nonintrusive monitoring methods were developed (external ac- and dc-magnetic monitoring) that provide several improvements over the other methods. None of the examined methods could, by themselves, monitor the instantaneous position and motion of check valve internals and valve leakage; however, the combination of acoustic emission monitoring with one of the other methods provides the means to determine vital check valve operational information. This paper describes the benefits and limitations associated with each method and includes recent laboratory and field test data to illustrate the capabilities of these methods to detect simulated check valve degradation. 3 refs., 22 figs., 4 tabs

  19. Illumination of Nanoliter-NMR Spectroscopy Chips for Real-Time Photochemical Reaction Monitoring

    NARCIS (Netherlands)

    Gomez, M.V.; Juan, Alberto; Jiménez-Márquez, Francisco; La Hoz, De Antonio; Velders, Aldrik H.

    2018-01-01

    We report the use of a small-volume nuclear-magnetic-resonance (NMR)-spectroscopy device with integrated fiber-optics for the real-time detection of UV-vis-light-assisted chemical reactions. An optical fiber is used to guide the light from LEDs or a laser diode positioned safely outside the magnet

  20. Two-Dimensional Simulation of Mass Transfer in Unitized Regenerative Fuel Cells under Operation Mode Switching

    Directory of Open Access Journals (Sweden)

    Lulu Wang

    2016-01-01

    Full Text Available A two-dimensional, single-phase, isothermal, multicomponent, transient model is built to investigate the transport phenomena in unitized regenerative fuel cells (URFCs under the condition of switching from the fuel cell (FC mode to the water electrolysis (WE mode. The model is coupled with an electrochemical reaction. The proton exchange membrane (PEM is selected as the solid electrolyte of the URFC. The work is motivated by the need to elucidate the complex mass transfer and electrochemical process under operation mode switching in order to improve the performance of PEM URFC. A set of governing equations, including conservation of mass, momentum, species, and charge, are considered. These equations are solved by the finite element method. The simulation results indicate the distributions of hydrogen, oxygen, water mass fraction, and electrolyte potential response to the transient phenomena via saltation under operation mode switching. The hydrogen mass fraction gradients are smaller than the oxygen mass fraction gradients. The average mass fractions of the reactants (oxygen and hydrogen and product (water exhibit evident differences between each layer in the steady state of the FC mode. By contrast, the average mass fractions of the reactant (water and products (oxygen and hydrogen exhibit only slight differences between each layer in the steady state of the WE mode. Under either the FC mode or the WE mode, the duration of the transient state is only approximately 0.2 s.