WorldWideScience

Sample records for reaction layers leading

  1. Chemical reactions in organic monomolecular layers. Condensation of hydrazine on carbonyl functions

    International Nuclear Information System (INIS)

    Rosilio, Charles; Ruaudel-Teixier, Annie.

    1976-01-01

    Evidence is given for chemical reactions of hydrazine (NH 2 -NH 2 ) with different carbonyl functional groups of organic molecules in the solid state, in monomolecular layer structures. The condensation of hydrazine with these molecules leads to conjugated systems by bridging the N-N links, to cyclizations, and also to polycondensations. The reactions investigated were followed up by infrared spectrophotometry, by transmission and metallic reflection. These chemical reactions revealed in the solid phase constitute a polycondensation procedure which is valuable in obtaining organized polymers in monomolecular layers [fr

  2. Mass transfer model for two-layer TBP oxidation reactions

    International Nuclear Information System (INIS)

    Laurinat, J.E.

    1994-01-01

    To prove that two-layer, TBP-nitric acid mixtures can be safely stored in the canyon evaporators, it must be demonstrated that a runaway reaction between TBP and nitric acid will not occur. Previous bench-scale experiments showed that, at typical evaporator temperatures, this reaction is endothermic and therefore cannot run away, due to the loss of heat from evaporation of water in the organic layer. However, the reaction would be exothermic and could run away if the small amount of water in the organic layer evaporates before the nitric acid in this layer is consumed by the reaction. Provided that there is enough water in the aqueous layer, this would occur if the organic layer is sufficiently thick so that the rate of loss of water by evaporation exceeds the rate of replenishment due to mixing with the aqueous layer. This report presents measurements of mass transfer rates for the mixing of water and butanol in two-layer, TBP-aqueous mixtures, where the top layer is primarily TBP and the bottom layer is comprised of water or aqueous salt solution. Mass transfer coefficients are derived for use in the modeling of two-layer TBP-nitric acid oxidation experiments. Three cases were investigated: (1) transfer of water into the TBP layer with sparging of both the aqueous and TBP layers, (2) transfer of water into the TBP layer with sparging of just the TBP layer, and (3) transfer of butanol into the aqueous layer with sparging of both layers. The TBP layer was comprised of 99% pure TBP (spiked with butanol for the butanol transfer experiments), and the aqueous layer was comprised of either water or an aluminum nitrate solution. The liquid layers were air sparged to simulate the mixing due to the evolution of gases generated by oxidation reactions. A plastic tube and a glass frit sparger were used to provide different size bubbles. Rates of mass transfer were measured using infrared spectrophotometers provided by SRTC/Analytical Development

  3. Mass transfer model for two-layer TBP oxidation reactions: Revision 1

    International Nuclear Information System (INIS)

    Laurinat, J.E.

    1994-01-01

    To prove that two-layer, TBP-nitric acid mixtures can be safely stored in the Canyon evaporators, it must be demonstrated that a runaway reaction between TBP and nitric acid will not occur. Previous bench-scale experiments showed that, at typical evaporator temperatures, this reaction is endothermic and therefore cannot run away, due to the loss of heat from evaporation of water in the organic layer. However, the reaction would be exothermic and could run away if the small amount of water in the organic layer evaporates before the nitric acid in this layer is consumed by the reaction. Provided that there is enough water in the aqueous layer, this would occur if the organic layer is sufficiently thick so that the rate of loss of water by evaporation exceeds the rate of replenishment due to mixing with the aqueous layer. Bubbles containing reaction products enhance the rate of transfer of water from the aqueous layer to the organic layer. These bubbles are generated by the oxidation of TBP and its reaction products in the organic layer and by the oxidation of butanol in the aqueous layer. Butanol is formed by the hydrolysis of TBP in the organic layer. For aqueous-layer bubbling to occur, butanol must transfer into the aqueous layer. Consequently, the rate of oxidation and bubble generation in the aqueous layer strongly depends on the rate of transfer of butanol from the organic to the aqueous layer. This report presents measurements of mass transfer rates for the mixing of water and butanol in two-layer, TBP-aqueous mixtures, where the top layer is primarily TBP and the bottom layer is comprised of water or aqueous salt solution. Mass transfer coefficients are derived for use in the modeling of two-layer TBP-nitric acid oxidation experiments

  4. Chemical boundary layers in CVD II. Reversible reactions

    NARCIS (Netherlands)

    Croon, de M.H.J.M.; Giling, L.J.

    1990-01-01

    In addition to irreversible reactions, which were treated in part I, reversible reactions in the gas phase have beenstudied using the concept of the chemical boundary layer. The analysis is given for the situations in which either the forwardor the back reaction is dominant. Two conceptual models

  5. Reaction layer growth and reaction heat of U-Mo/Al dispersion fuels using centrifugally atomized powders

    International Nuclear Information System (INIS)

    Ryu, Ho Jin; Han, Young Soo; Park, Jong Man; Park, Soon Dal; Kim, Chang Kyu

    2003-01-01

    The growth behavior of reaction layers and heat generation during the reaction between U-Mo powders and the Al matrix in U-Mo/Al dispersion fuels were investigated. Annealing of 10 vol.% U-10Mo/Al dispersion fuels at temperatures from 500 to 550 deg. C was carried out for 10 min to 36 h to measure the growth rate and the activation energy for the growth of reaction layers. The concentration profiles of reaction layers between the U-10Mo vs. Al diffusion couples were measured and the integrated interdiffusion coefficients were calculated for the U and Al in the reaction layers. Heat generation of U-Mo/Al dispersion fuels with 10-50 vol.% of U-Mo fuel during the thermal cycle from room temperature to 700 deg. C was measured employing the differential scanning calorimetry. Exothermic heat from the reaction between U-Mo and the Al matrix is the largest when the volume fraction of U-Mo fuel is about 30 vol.%. The unreacted fraction in the U-Mo powders increases as the volume fraction of U-Mo fuel increases from 30 to 50 vol.%

  6. Effect of multi-layered bottom electrodes on the orientation of strontium-doped lead zirconate titanate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskaran, M. [Microelectronics and Materials Technology Centre, School of Electrical and Computer Engineering, RMIT University, GPO Box 2476V, Melbourne, Victoria 3001 (Australia)], E-mail: madhu.bhaskaran@gmail.com; Sriram, S. [Microelectronics and Materials Technology Centre, School of Electrical and Computer Engineering, RMIT University, GPO Box 2476V, Melbourne, Victoria 3001 (Australia); Mitchell, D.R.G.; Short, K.T. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation (ANSTO), PMB 1, Menai, New South Wales 2234 (Australia); Holland, A.S. [Microelectronics and Materials Technology Centre, School of Electrical and Computer Engineering, RMIT University, GPO Box 2476V, Melbourne, Victoria 3001 (Australia)

    2008-09-30

    This article discusses the results from X-ray diffraction (XRD) analysis of piezoelectric strontium-doped lead zirconate titanate (PSZT) thin films deposited on multi-layer coatings on silicon. The films were deposited by RF magnetron sputtering on a metal coated substrate. The aim was to exploit the pronounced piezoelectric effect that is theoretically expected normal to the substrate. This work highlighted the influence that the bottom electrode architecture exerts on the final crystalline orientation of the deposited thin films. A number of bottom electrode architectures were used, with the uppermost metal layer on which PSZT was deposited being gold or platinum. The XRD analysis revealed that the unit cell of the PSZT thin films deposited on gold and on platinum were deformed, relative to expected unit cell dimensions. Experimental results have been used to estimate the unit cell parameters. The XRD results were then indexed based on these unit cell parameters. The choice and the thickness of the intermediate adhesion layers influenced the relative intensity, and in some cases, the presence of perovskite peaks. In some cases, undesirable reactions between the bottom electrode layers were observed, and layer architectures to overcome these reactions are also discussed.

  7. AC losses for the various voltage-leads in a semi-triple layer BSCCO conductor

    International Nuclear Information System (INIS)

    Li, Z.; Ryu, K.; Hwang, S.D.; Cha, G.; Song, H.J.

    2011-01-01

    Two voltage-leads (inner-lead, outer-lead) were soldered to the wires in each layer. Voltage-lead (total-lead) was soldered to the inner layer and arranged on the surface of the outer layer. The loss from the total-lead significantly differs from the sum of the wire losses. In order to investigate the AC loss of the multilayer conductor in a high temperature superconductor cable, a voltage-lead was generally attached to the outermost layer of the conductor. But the conductor's AC loss has not been completely cleared due to the various contact positions and arrangements of the voltage-lead. In this paper, we prepared a semi-triple layer conductor consisting of an inner layer and an outer layer with double layer structure. To measure the AC loss of the conductor, two voltage-leads (inner-lead, outer-lead) were soldered to the wires in each layer and arranged along their surfaces, as well as another voltage-lead (total-lead) was soldered to the inner layer and arranged on the surface of the outer layer. The results show that the AC losses for each layer measured from the inner-lead and the outer-lead, respectively, are identical to the sum of the wire losses. The AC losses in the semi-triple layer conductor measured from the total-lead and the outer-lead are identical for the uniform layer current density, and similar to the sum of the wire losses in both layers. However, the losses measured for the non-uniform layer current density from three voltage-leads are unequal to each other, and the loss from the total-lead significantly differs from the sum of the wire losses.

  8. Identification of reaction compounds in micrometric layers from gothic paintings using combined SR-XRD and SR-FTIR.

    Science.gov (United States)

    Salvadó, Nati; Butí, Salvador; Nicholson, James; Emerich, Hermann; Labrador, Ana; Pradell, Trinitat

    2009-07-15

    Synchrotron radiation X-ray diffraction (micro-SR-XRD) and Fourier transform infrared spectroscopy (micro-SR-FTIR) are used in the non-destructive identification of reaction and aging compounds from micrometric ancient painting layers. The combination of the micrometer size and non-destructive nature of the techniques together with the high resolution and brilliance of the synchrotron radiation has proved to be a procedure most advantageous for the study of reaction, aging and degradation processes. Copper, lead and calcium carboxylates and oxalates are determined in the chromatic, preparation and alteration layers from 15th century egg tempera and oil paintings. Their nature and crystallinity have been assessed. Some hypothesis about the mechanisms of development of both carboxylates and oxalates are presented.

  9. Convection and reaction in a diffusive boundary layer in a porous medium: nonlinear dynamics.

    Science.gov (United States)

    Andres, Jeanne Therese H; Cardoso, Silvana S S

    2012-09-01

    We study numerically the nonlinear interactions between chemical reaction and convective fingering in a diffusive boundary layer in a porous medium. The reaction enhances stability by consuming a solute that is unstably distributed in a gravitational field. We show that chemical reaction profoundly changes the dynamics of the system, by introducing a steady state, shortening the evolution time, and altering the spatial patterns of velocity and concentration of solute. In the presence of weak reaction, finger growth and merger occur effectively, driving strong convective currents in a thick layer of solute. However, as the reaction becomes stronger, finger growth is inhibited, tip-splitting is enhanced and the layer of solute becomes much thinner. Convection enhances the mass flux of solute consumed by reaction in the boundary layer but has a diminishing effect as reaction strength increases. This nonlinear behavior has striking differences to the density fingering of traveling reaction fronts, for which stronger chemical kinetics result in more effective finger merger owing to an increase in the speed of the front. In a boundary layer, a strong stabilizing effect of reaction can maintain a long-term state of convection in isolated fingers of wavelength comparable to that at onset of instability.

  10. Modeling Electric Double-Layers Including Chemical Reaction Effects

    DEFF Research Database (Denmark)

    Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.

    2014-01-01

    A physicochemical and numerical model for the transient formation of an electric double-layer between an electrolyte and a chemically-active flat surface is presented, based on a finite elements integration of the nonlinear Nernst-Planck-Poisson model including chemical reactions. The model works...... for symmetric and asymmetric multi-species electrolytes and is not limited to a range of surface potentials. Numerical simulations are presented, for the case of a CaCO3 electrolyte solution in contact with a surface with rate-controlled protonation/deprotonation reactions. The surface charge and potential...... are determined by the surface reactions, and therefore they depends on the bulk solution composition and concentration...

  11. Reaction layer in U-7WT%MO/Al diffusion couples

    International Nuclear Information System (INIS)

    Mirandou, M.I.; Balart, S.N.; Ortiz, M.; Granovsky, M.S.

    2003-01-01

    New results of the reaction layer characterization between γ (U-7wt%Mo) alloy and Al, in chemical diffusion couples, are presented. The analysis was performed using optical and scanning electron microscopy with EDAX and X-ray diffraction techniques. Besides the main components (U, Mo)Al 3 and (U, Mo)Al 4 , already reported, two ternary compounds of high Al content have been identified in the reaction layer when it grew in retained or decomposed γ (U, Mo) phase, respectively. The drastic consequence on the interdiffusion behavior due to the thermal instability of the retained γ (U, Mo) phase is discussed. (author)

  12. Synthesis of layered sodium lanthanum selenide through ion exchange reactions

    International Nuclear Information System (INIS)

    Butts, Laura J.; Strickland, Nicholas; Martin, Benjamin R.

    2009-01-01

    Layered hexagonal KLaSe2 (α-NaFeO 2 -type) was synthesized using the reactive flux method and analyzed by powder XRD to determine its lattice constants (space group R-3m, a = 4.40508(5) A, c = 22.7838(5) A). NaLaSe 2 , which normally crystallizes as a disordered rock salt structure with mixed Na+/La + 3 sites, was synthesized through a solid state ion exchange reaction at 585 deg. C from a 1:3 molar ratio mixture of KLaSe 2 :NaI. The product of this reaction was hexagonally layered NaLaSe 2 (space group R-3m, a = 4.3497(3) A, c = 20.808(2) A) isostructural to KLaSe 2 . This product was analyzed by comparison with members of the set of solid solutions Na (1-x) K (x) LaSe 2 to confirm that the extent ion exchange in this reaction was complete. Cubic (disordered) NaLaSe 2 was also reacted with KI to yield the poorly crystalline hexagonally layered product with the approximate formula Na 0.79 K 0.21 LaSe 2

  13. Effect of trace elements on the interface reactions between two lead-free solders and copper or nickel substrates

    Directory of Open Access Journals (Sweden)

    Soares D.

    2007-01-01

    Full Text Available Traditional Sn-Pb solder alloys are being replaced, because of environmental and health concerns about lead toxicity. Among some alternative alloy systems, the Sn-Zn and Sn-Cu base alloy systems have been studied and reveal promising properties. The reliability of a solder joint is affected by the solder/substrate interaction and the nature of the layers formed at the interface. The solder/substrate reactions, for Sn-Zn and Sn-Cu base solder alloys, were evaluated in what concerns the morphology and chemical composition of the interface layers. The effect of the addition of P, at low levels, on the chemical composition of the layers present at the interface was studied. The phases formed at the interface between the Cu or Ni substrate and a molten lead-free solder at 250ºC, were studied for different stage times and alloy compositions. The melting temperatures, of the studied alloys, were determined by Differential Scanning Calorimetry (DSC. Identification of equilibrium phases formed at the interface layer, and the evaluation of their chemical composition were performed by Scanning Electron Microscopy (SEM/EDS. Different interface characteristics were obtained, namely for the alloys containing Zn. The obtained IML layer thickness was compared, for both types of alloy systems.

  14. A numerical model for chemical reaction on slag layer surface and slag layer behavior in entrained-flow gasifier

    Directory of Open Access Journals (Sweden)

    Liu Sheng

    2013-01-01

    Full Text Available The paper concerns with slag layer accumulation, chemical reaction on slag layer surface, and slag layer flow, heat and mass transfer on the wall of entrained-flow coal gasifier. A slag layer model is developed to simulate slag layer behaviors in the coal gasifier. This 3-D model can predict temperature, slag particle disposition rate, disposition particle composition, and syngas distribution in the gasifier hearth. The model is used to evaluate the effects of O2/coal ratio on slag layer behaviors.

  15. Relationship between reaction layer thickness and leach rate for nuclear waste glasses

    International Nuclear Information System (INIS)

    Chick, L.A.; Pederson, L.R.

    1984-02-01

    Three leaching tests, devised to distinguish among several proposed nuclear waste glass leaching mechanisms, were carried out for four different waste glasses. In the first test, the influence of a pre-formed reaction layer on elemental release was evaluated. In the second test, glass specimens were replaced with fresh samples halfway through the leaching experiment, to evaluate the influence of the concentration of glass components in leaching. Finally, regular replacement of the leachant at fixed time intervals essentially removed the variable changing solution concentration, and allowed an assessment of the influence of reaction layer thickness on the leaching rate. Results for all glasses tested indicated that the reaction layer presented little or no barrier to leaching, and that most of the retardation on leaching rates generally observed are attributable to saturation effects. 20 references, 6 figures, 1 table

  16. Experimental investigation of separated shear layer from a leading ...

    Indian Academy of Sciences (India)

    Shear layer development over a thick flat plate with a semi-circular leading edge is investigated for a range of angles of attack under different pressure gradients for a Reynolds number of 2.44×105 (based on chord and free-stream velocity). The characteristics of the separated shear layer are very well documented through ...

  17. Structural design study of tritium breeding blanket with a lead layer as a neutron multiplier

    International Nuclear Information System (INIS)

    Iida, Hiromasa; Kitamura, Kazunori; Minato, Akio; Sakamoto, Hiroki; Yamamoto, Takashi

    1980-12-01

    Thermal and structural design study of a tritium breeding blanket with a lead layer for a International Tokamak Reactor (INTOR) is carried out. Tube in shell type blanket with a lead layer is found to be promising. The volume fraction of structural material in the lead layer can be small enough to keep the neutron multiplication effect of lead. Reasonable value of shell effect is attainable due to lead layer in the front part of the blanket. (author)

  18. Determination of the shapes and sizes of the regions in which in hadron-nucleus collisions reactions leading to the nucleon emission, particle production, and fragment evaporation occur

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1985-01-01

    Shapes and sizes of the regions in target-nuclei in which reactions leading to the nucleon emission, particle production and fragment evaporation occur are determined. The region of nucleon emission is of cylindrical shape, with the diameter as large as two nucleon diameters, centered on the incident hadron course. The reactions leading to the particle production happen predominantly along the incident hadron course in nuclear matter. The fragment evaporation goes from the surface layer of the part of the target-nucleus damaged in nucleon emission process

  19. Heterogeneous reactions of dioctahedral smectites in illite-smectite and kaolinite-smectite mixed-layers: applications to clay materials for engineered barriers

    International Nuclear Information System (INIS)

    Meunier, A.; Proust, D.; Beaufort, D.; Lajudie, A.; Petit, J.-C.

    1992-01-01

    The clay materials selected for use in the engineered barriers of the French nuclear waste isolation programme are mainly composed of dioctahedral smectite, either bentonite of Wyoming type or kaolinite-smectites most often consist of randomly stacked layers with low and high charges. In the case of the Wyoming-type bentonite, these two differently charged layers do not react in the same way when subjected to hydrothermal alteration. Overall, the low-charge smectite layers react to form high-charge smectite layers + quartz + kaolinite. Then, fixing K ions, the high-charge smectite layers are transformed into illite-smectite mixed-layers (I/S) when the temperature conditions increase. A symmetrical process is observed in natural or experimental hydrothermal conditions when the high-charge smectite layers of I/S minerals react with quartz and/or kaolinite to produce low-charge smectite layers. The chemical properties of the bentonite-engineered barriers clearly depend on the low charge/high charge smectite layer proportion, which is in turn controlled by the temperature-dependent reactions in the vicinity of the waste disposal. Although there are fewer published data on the kaolinite-smectite mixed-layered minerals (K/S), a similar low charge-high charge reaction appears to affect their smectite component. The experimental alteration of K/S leads to the formation of a low-charge beidellite with an increase in the cation-exchange capacity and in the expandability of the clay material. Thus, the properties of the engineered barrier seems to be improved after hydrothermal alteration. (Author)

  20. XPS study of the passive layers formed on lead in aqueous nitrate solutions

    International Nuclear Information System (INIS)

    Uchida, Miho; Okuwaki, Akitsugu

    1997-01-01

    The analysis of the lead surface immersed in aqueous nitrate solutions by X-ray photoelectron spectroscopy (XPS) shows the formation of passive oxide layer containing nitrogen compound. The oxide layer formed on the lead surface in aqueous ammonium nitrate solution was hydrolyzed and cracked. (author)

  1. Oxide layer stability in lead-bismuth at high temperature

    Science.gov (United States)

    Martín, F. J.; Soler, L.; Hernández, F.; Gómez-Briceño, D.

    2004-11-01

    Materials protection by 'in situ' oxidation has been studied in stagnant lead-bismuth, with different oxygen levels (H 2/H 2O ratios of 0.3 and 0.03), at temperatures from 535 °C to 600 °C and times from 100 to 3000 h. The materials tested were the martensitic steels F82Hmod, EM10 and T91 and the austenitic stainless steels, AISI 316L and AISI 304L. The results obtained point to the existence of an apparent threshold temperature above which corrosion occurs and the formation of a protective and stable oxide layer is not possible. This threshold temperature depends on material composition, oxygen concentration in the liquid lead-bismuth and time. The threshold temperature is higher for the austenitic steels, especially for the AISI 304L, and it increases with the oxygen concentration in the lead-bismuth. The oxide layer formed disappear with time and, after 3000 h all the materials, except AISI 304L, suffer corrosion, more severe for the martensitic steels and at the highest temperature tested.

  2. Surface reactivity and layer analysis of chemisorbed reaction films in ...

    Indian Academy of Sciences (India)

    Administrator

    Surface reactivity and layer analysis of chemisorbed reaction films in ... in the nitrogen environment. Keywords. Surface reactivity ... sium (Na–K) compounds in the coating or core of the ..... Barkshire I R, Pruton M and Smith G C 1995 Appl. Sur.

  3. Catalytic reaction in a porous solid subject to a boundary layer flow

    Energy Technology Data Exchange (ETDEWEB)

    Mihail, R; Teddorescu, C

    1978-01-01

    A mathematical model of a boundary layer flowing past a catalytic slab was developed which included an analysis of the coupled mass and heat transfer and the heterogeneous chemical reaction. The porous flat plate was used to illustrate the interaction of boundary layer flow with chemical reaction within a porous catalytic body. The model yielded systems of transcendental equations which were solved numerically by means of a superposition integral in connection with a norm reduction procedure. A parametric study was conducted and an analysis of the possible multiplicity of steady states was developed and illustrated for the extreme case of infinite solid thermal conductivity. Tables, diagrams, graphs, and 12 references.

  4. Effect of leading-edge geometry on boundary-layer receptivity to freestream sound

    Science.gov (United States)

    Lin, Nay; Reed, Helen L.; Saric, W. S.

    1991-01-01

    The receptivity to freestream sound of the laminar boundary layer over a semi-infinite flat plate with an elliptic leading edge is simulated numerically. The incompressible flow past the flat plate is computed by solving the full Navier-Stokes equations in general curvilinear coordinates. A finite-difference method which is second-order accurate in space and time is used. Spatial and temporal developments of the Tollmien-Schlichting wave in the boundary layer, due to small-amplitude time-harmonic oscillations of the freestream velocity that closely simulate a sound wave travelling parallel to the plate, are observed. The effect of leading-edge curvature is studied by varying the aspect ratio of the ellipse. The boundary layer over the flat plate with a sharper leading edge is found to be less receptive. The relative contribution of the discontinuity in curvature at the ellipse-flat-plate juncture to receptivity is investigated by smoothing the juncture with a polynomial. Continuous curvature leads to less receptivity. A new geometry of the leading edge, a modified super ellipse, which provides continuous curvature at the juncture with the flat plate, is used to study the effect of continuous curvature and inherent pressure gradient on receptivity.

  5. Analysis of the Deposit Layer from Electrolyte Side Reaction on the Anode of the Pouch Type Lithium Ion Polymer Batteries: The Effect of State of Charge and Charge Rate

    International Nuclear Information System (INIS)

    Agubra, Victor A.; Fergus, Jeffrey W.; Fu, Rujian; Choe, Song-yul

    2014-01-01

    Highlights: • Raising the battery cycling potential increased the rate of side reaction. • Growth of deposit layer thickness at the electrode/electrolyte interface at high SOC. • A significant amount of lithium was consumed in forming the deposit layer. • Some of the lithium were “trapped” in the graphite after the discharge cycle. - Abstract: The formation of the solid electrolyte interface (SEI) layer on the surface of the anode electrode of a lithium ion battery prevents further electrolyte decomposition reaction. However, at certain battery operating conditions, the SEI breakdown leading to more electrolyte decomposition reactions that form several species on the anode electrode surface. This paper focuses on the effect of battery potential and charge rate on the decomposition side reaction on the anode electrode of a lithium ion polymer battery, as a result of the breakdown of the SEI layer. The results from this study indicate that raising the state of charge (SOC) increases the rate of the electrolyte decomposition side reaction that resulted in formation of a thick deposit layer at the electrolyte/electrolyte interface. This deposit layer contains lithium that can no longer participate in the reversible electrochemical reaction. In addition, at high cycling potential and charge rates the amount of lithium in the graphite after complete cell discharge increased due to the entrapment of lithium in the graphite. The amount of irreversible capacity loss for the batteries cycled at high potential and current correlates with the amount of trapped lithium in the graphite and the growth of the deposit layer thickness at the electrode/electrolyte interface

  6. Redox Reactions between Mn(II) and Hexagonal Birnessite Change Its Layer Symmetry.

    Science.gov (United States)

    Zhao, Huaiyan; Zhu, Mengqiang; Li, Wei; Elzinga, Evert J; Villalobos, Mario; Liu, Fan; Zhang, Jing; Feng, Xionghan; Sparks, Donald L

    2016-02-16

    Birnessite, a phyllomanganate and the most common type of Mn oxide, affects the fate and transport of numerous contaminants and nutrients in nature. Birnessite exhibits hexagonal (HexLayBir) or orthogonal (OrthLayBir) layer symmetry. The two types of birnessite contain contrasting content of layer vacancies and Mn(III), and accordingly have different sorption and oxidation abilities. OrthLayBir can transform to HexLayBir, but it is still vaguely understood if and how the reverse transformation occurs. Here, we show that HexLayBir (e.g., δ-MnO2 and acid birnessite) transforms to OrthLayBir after reaction with aqueous Mn(II) at low Mn(II)/Mn (in HexLayBir) molar ratios (5-24%) and pH ≥ 8. The transformation is promoted by higher pH values, as well as smaller particle size, and/or greater stacking disorder of HexLayBir. The transformation is ascribed to Mn(III) formation via the comproportionation reaction between Mn(II) adsorbed on vacant sites and the surrounding layer Mn(IV), and the subsequent migration of the Mn(III) into the vacancies with an ordered distribution in the birnessite layers. This study indicates that aqueous Mn(II) and pH are critical environmental factors controlling birnessite layer structure and reactivity in the environment.

  7. Secondary lead production

    Energy Technology Data Exchange (ETDEWEB)

    Hollis, R.G.

    1990-10-16

    This invention is concerned with the efficient recovery of soft lead from the paste component of used automobile lead-acid storage batteries. According to the invention, a scrap which contains lead oxide, lead sulfate, and antimony in an oxidized state is processed in the following steps to recover lead. A refractory lined reaction vessel is continuously charged with the scrap, along with a reductant effective for reducing lead oxide. The charged material is melted and agitated by means of a submerged lance at 900-1150{degree}C whereby some of the lead oxide of the scrap is reduced to form molten lead. A slag layer is then formed above the molten lead, and an amount of lead oxide is maintained in the slag layer. The molten lead, now containing under 0.5 wt % of antimony, is removed, and the antimony oxide in the scrap is concentrated as oxide in the slag layer. Preferred embodiments of the invention result in the production, in a single step, of a soft lead substantially free of antimony. The slag may be subsequently treated to reduce the antimony oxide and produce a valuable antimony-lead product. Further advantages of the process are that a wet battery paste may be used as the feed without prior drying, and the process can be conducted at a temperature 100-150{degree}C lower than in previously known methods. In addition, a smaller reactor can be employed which reduces both capital cost and fuel costs. The process of the invention is illustrated by descriptions of pilot plant tests. 1 fig.

  8. Tuning the two-dimensional electron liquid at oxide interfaces by buffer-layer-engineered redox reactions

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Green, Robert J.; Sutarto, Ronny

    2017-01-01

    Polar discontinuities and redox reactions provide alternative paths to create two-dimensional electron liquids (2DELs) at oxide interfaces. Herein, we report high mobility 2DELs at interfaces involving SrTiO3 (STO) achieved using polar La7/8Sr1/8MnO3 (LSMO) buffer layers to manipulate both...... polarities and redox reactions from disordered overlayers grown at room temperature. Using resonant x-ray reflectometry experiments, we quantify redox reactions from oxide overlayers on STO as well as polarity induced electronic reconstruction at epitaxial LSMO/STO interfaces. The analysis reveals how...... these effects can be combined in a STO/LSMO/disordered film trilayer system to yield high mobility modulation doped 2DELs, where the buffer layer undergoes a partial transformation from perovskite to brownmillerite structure. This uncovered interplay between polar discontinuities and redox reactions via buffer...

  9. Electronic spectra of anions intercalated in layered double hydroxides

    Indian Academy of Sciences (India)

    groups of the layers and interlayer water through the termi- nal atom symmetry ... results in a reaction with the metal hydroxide layers lead- ing to the ..... List of band positions observed for potassium salts of anion and LDH samples. Salts.

  10. A Chemical-Adsorption Strategy to Enhance the Reaction Kinetics of Lithium-Rich Layered Cathodes via Double-Shell Surface Modification.

    Science.gov (United States)

    Guo, Lichao; Li, Jiajun; Cao, Tingting; Wang, Huayu; Zhao, Naiqin; He, Fang; Shi, Chunsheng; He, Chunnian; Liu, Enzuo

    2016-09-21

    Sluggish surface reaction kinetics hinders the power density of Li-ion battery. Thus, various surface modification techniques have been applied to enhance the electronic/ionic transfer kinetics. However, it is challenging to obtain a continuous and uniform surface modification layer on the prime particles with structure integration at the interface. Instead of classic physical-adsorption/deposition techniques, we propose a novel chemical-adsorption strategy to synthesize double-shell modified lithium-rich layered cathodes with enhanced mass transfer kinetics. On the basis of experimental measurement and first-principles calculation, MoO2S2 ions are proved to joint the layered phase via chemical bonding. Specifically, the Mo-O or Mo-S bonds can flexibly rotate to bond with the cations in the layered phase, leading to the good compatibility between the thiomolybdate adsorption layer and layered cathode. Followed by annealing treatment, the lithium-excess-spinel inner shell forms under the thiomolybdate adsorption layer and functions as favorable pathways for lithium and electron. Meanwhile, the nanothick MoO3-x(SO4)x outer shell protects the transition metal from dissolution and restrains electrolyte decomposition. The double-shell modified sample delivers an enhanced discharge capacity almost twice as much as that of the unmodified one at 1 A g(-1) after 100 cycles, demonstrating the superiority of the surface modification based on chemical adsorption.

  11. Preparation and optical characteristics of layered perovskite-type lead-bromide-incorporated azobenzene chromophores

    International Nuclear Information System (INIS)

    Sasai, Ryo; Shinomura, Hisashi

    2013-01-01

    Lead bromide-based layered perovskite powders with azobenzene derivatives were prepared by a homogeneous precipitation method. From the diffuse reflectance (DR) and photoluminescence (PL) spectra of the hybrid powder materials, the present hybrids exhibited sharp absorption and PL peaks originating from excitons produced in the PbBr 4 2− layer. When the present hybrid powder was irradiated with UV light at 350 nm, the absorption band from the trans-azobenzene chromophore, observed around 350 nm, decreased, while the absorption band from the cis-azobenzene chromophore, observed around 450 nm, increased. These results indicate that azobenzene chromophores in the present hybrid materials exhibit reversible photoisomerization. Moreover, it was found that the PL intensity from the exciton also varied due to photoisomerization of the azobenzene chromophores in the present hybrid. Thus, for the first time we succeeded in preparing the azobenzene derivative lead-bromide-based layered perovskite with photochromism before and after UV light irradiation. - Graphical abstract: For the first time, we succeeded in preparing the azobenzene derivative lead-bromide-based layered perovskite with photochromism before and after UV light irradiation. Highlights: ► PbBr-based layered perovskite with azobenezene derivatives could be synthesized by a homogeneous precipitation method. ► Azobenzene derivatives incorporated the present hybrid that exhibited reversible photoisomerization under UV and/or visible light irradiation. ► PL property of the present hybrid could also be varied by photoisomerization.

  12. Editors' Choice Growth of Layered WS2Electrocatalysts for Highly Efficient Hydrogen Production Reaction

    KAUST Repository

    Alsabban, Merfat M.; Min, Shixiong; Hedhili, Mohamed N.; Ming, Jun; Li, Lain-Jong; Huang, Kuo-Wei

    2016-01-01

    Seeking more economical alternative electrocatalysts without sacrificing much in performance to replace precious metal Pt is one of the major research topics in hydrogen evolution reactions (HER). Tungsten disulfide (WS2) has been recognized as a promising substitute for Pt owing to its high efficiency and low-cost. Since most existing works adopt solution-synthesized WS2 crystallites for HER, direct growth of WS2 layered materials on conducting substrates should offer new opportunities. The growth of WS2 by the thermolysis of ammonium tetrathiotungstate (NH4)(2)WS4 was examined under various gaseous environments. Structural analysis and electrochemical studies show that the H2S environment leads to the WS2 catalysts with superior HER performance with an extremely low overpotential (eta(10) = 184 mV). (C) The Author(s) 2016. Published by ECS. All rights reserved.

  13. Editors' Choice Growth of Layered WS2Electrocatalysts for Highly Efficient Hydrogen Production Reaction

    KAUST Repository

    Alsabban, Merfat M.

    2016-08-18

    Seeking more economical alternative electrocatalysts without sacrificing much in performance to replace precious metal Pt is one of the major research topics in hydrogen evolution reactions (HER). Tungsten disulfide (WS2) has been recognized as a promising substitute for Pt owing to its high efficiency and low-cost. Since most existing works adopt solution-synthesized WS2 crystallites for HER, direct growth of WS2 layered materials on conducting substrates should offer new opportunities. The growth of WS2 by the thermolysis of ammonium tetrathiotungstate (NH4)(2)WS4 was examined under various gaseous environments. Structural analysis and electrochemical studies show that the H2S environment leads to the WS2 catalysts with superior HER performance with an extremely low overpotential (eta(10) = 184 mV). (C) The Author(s) 2016. Published by ECS. All rights reserved.

  14. Leading edge effect in laminar boundary layer excitation by sound

    International Nuclear Information System (INIS)

    Leehey, P.; Shapiro, P.

    1980-01-01

    Essentially plane pure tone sound waves were directed downstream over a heavily damped smooth flat plate installed in a low turbulence (0.04%) subsonic wind tunnel. Laminar boundary layer disturbance growth rates were measured with and without sound excitation and compared with numerical results from spatial stability theory. The data indicate that the sound field and Tollmien-Schlichting (T-S) waves coexist with comparable amplitudes when the latter are damped; moreover, the response is linear. Higher early growth rates occur for excitation by sound than by stream turbulence. Theoretical considerations indicate that the boundary layer is receptive to sound excitation primarily at the test plate leading edge. (orig.)

  15. Evidence for leading mesons in anti p4He reactions at 0.6 GeV/c incident momentum

    International Nuclear Information System (INIS)

    Breivik, F.O.; Haatuft, A.; Halsteinslid, A.

    1990-05-01

    In a previous report, evidence has been shown for leading mesons in anti p Ne - reactions at 0.6 Gev/c incident momentum. In this report evidence is shown for leading mesons in anti p 4 He reactions at the same incident momentum, based on data from the same detector. In anti p Ne - reactions, only kaons are observed as leading mesons in K o s-events, and only pions are observed as leading mesons in Λ o -events. In anti p He - reactions this is not longer true, since also pions behave as leading mesons in K o s-events. 5 refs., 9 figs

  16. A novel surface cleaning method for chemical removal of fouling lead layer from chromium surfaces

    International Nuclear Information System (INIS)

    Gholivand, Kh.; Khosravi, M.; Hosseini, S.G.; Fathollahi, M.

    2010-01-01

    Most products especially metallic surfaces require cleaning treatment to remove surface contaminations that remain after processing or usage. Lead fouling is a general problem which arises from lead fouling on the chromium surfaces of bores and other interior parts of systems which have interaction with metallic lead in high temperatures and pressures. In this study, a novel chemical solution was introduced as a cleaner reagent for removing metallic lead pollution, as a fouling metal, from chromium surfaces. The cleaner aqueous solution contains hydrogen peroxide (H 2 O 2 ) as oxidizing agent of lead layer on the chromium surface and acetic acid (CH 3 COOH) as chelating agent of lead ions. The effect of some experimental parameters such as acetic acid concentration, hydrogen peroxide concentration and temperature of the cleaner solution during the operation on the efficiency of lead cleaning procedure was investigated. The results of scanning electron microscopy (SEM) showed that using this procedure, the lead pollution layer could be completely removed from real chromium surfaces without corrosion of the original surface. Finally, the optimum conditions for the complete and fast removing of lead pollution layer from chromium surfaces were proposed. The experimental results showed that at the optimum condition (acetic acid concentration 28% (V/V), hydrogen peroxide 8% (V/V) and temperature 35 deg. C), only 15-min time is needed for complete removal of 3 g fouling lead from a chromium surface.

  17. Removing antimony from waste lead storage batteries alloy by vacuum displacement reaction technology.

    Science.gov (United States)

    Liu, Tiantian; Qiu, Keqiang

    2018-04-05

    With the wide application of lead acid battery, spent lead acid battery has become a serious problem to environmental protection and human health. Though spent battery can be a contaminant if not handled properly, it is also an important resource to obtain refined lead. Nowadays, the Sb-content in lead storage batteries is about 0.5-3 wt%, which is higher than the Sb-content in the crude lead. However, there are few reports about the process of removing antimony from high-antimony lead bullion. In this study, vacuum displacement reaction technology, a new process for removing antimony from high-antimony lead melts, was investigated. During this process, lead oxide was added to the system and antimony from lead melts was converted into antimony trioxide, which easily was evaporated under vacuum so that antimony was removed from lead melts. The experimental results demonstrated that Sb-content in lead melts decreased from 2.5% to 23 ppm under following conditions: mass ratio of PbO/lead bullion of 0.33, residual gas pressure of 30 Pa, melt temperature of 840 °C, reaction time of 60 min. The distillate gotten can be used as by-product to produce antimony white. Moreover, this study is of importance to recycling of waste lead storage batteries alloy. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Monolithic Laser Scribed Graphene Scaffold with Atomic Layer Deposited Platinum for Hydrogen Evolution Reaction

    KAUST Repository

    Nayak, Pranati

    2017-09-01

    The use of three-dimensional (3D) electrode architectures as scaffolds for conformal deposition of catalysts is an emerging research area with significant potential for electrocatalytic applications. In this study, we report the fabrication of monolithic, self-standing, 3D graphitic carbon scaffold with conformally deposited Pt by atomic layer deposition (ALD) as a hydrogen evolution reaction catalyst. Laser scribing is employed to transform polyimide into 3D porous graphitic carbon, which possesses good electronic conductivity and numerous edge plane sites. This laser scribed graphene (LSG) architecture makes it possible to fabricate monolithic electrocatalyst support without any binders or conductive additives. The synergistic effect between ALD of Pt on 3D network of LSG provides an avenue for minimal yet effective Pt usage, leading to an enhanced HER activity. This strategy establish a general approach for inexpensive and large scale HER device fabrication with minimum catalyst cost.

  19. Monolithic Laser Scribed Graphene Scaffold with Atomic Layer Deposited Platinum for Hydrogen Evolution Reaction

    KAUST Repository

    Nayak, Pranati; Jiang, Qiu; Kurra, Narendra; Buttner, Ulrich; Wang, Xianbin; Alshareef, Husam N.

    2017-01-01

    The use of three-dimensional (3D) electrode architectures as scaffolds for conformal deposition of catalysts is an emerging research area with significant potential for electrocatalytic applications. In this study, we report the fabrication of monolithic, self-standing, 3D graphitic carbon scaffold with conformally deposited Pt by atomic layer deposition (ALD) as a hydrogen evolution reaction catalyst. Laser scribing is employed to transform polyimide into 3D porous graphitic carbon, which possesses good electronic conductivity and numerous edge plane sites. This laser scribed graphene (LSG) architecture makes it possible to fabricate monolithic electrocatalyst support without any binders or conductive additives. The synergistic effect between ALD of Pt on 3D network of LSG provides an avenue for minimal yet effective Pt usage, leading to an enhanced HER activity. This strategy establish a general approach for inexpensive and large scale HER device fabrication with minimum catalyst cost.

  20. In situ X-ray diffraction study of the electrochemical reaction on lead electrodes in sulphate electrolytes

    International Nuclear Information System (INIS)

    Angerer, P.; Mann, R.; Gavrilovic, A.; Nauer, G.E.

    2009-01-01

    The anodic oxidation of pure lead in two acidic sulphate electrolytes with identical ionic strength (pH ∼ 0 and pH ∼ -0.1) was studied by in situ grazing incidence X-ray diffraction method (GIXD). Crystalline products such as lead sulphate (anglesite, PbSO 4 , orthorhombic), α- and β-lead dioxide (α-PbO 2 , orthorhombic, and β-PbO 2 , tetragonal), and tribasic lead sulphate hydrate with the stoichiometric composition 3PbO.PbSO 4 .H 2 O (triclinic) were detected at defined potentials. A method for the semi-quantitative determination of the thickness of the deposited layer from diffraction data is described. After the in situ measurement, the washed and dried working electrodes were additionally characterized ex situ by GIXD measurements at different angles of incidence. The phase litharge (lead oxide, t-PbO, tetragonal) and lead sulphate were observed at the surface of the lead substrate. The quantitative evaluation of the diffraction intensity of this measurement series enables the modelling of a qualitative depth profile of the layer generated during the electrochemical treatment. The anglesite phase is located in the uppermost layer, while the litharge phase was detected closer to the lead substrate

  1. Molecular extinction coefficients of lead sulfide and polymerized diaminobenzidine as final reaction products of histochemical phosphatase reactions

    NARCIS (Netherlands)

    van Noorden, C. J.; Jonges, G. N.

    1992-01-01

    Molar extinction coefficients of precipitated lead sulfide (PbS) and polymerized diaminobenzidine (polyDAB) have been determined at wavelengths of 450 nm and 480 nm, respectively, for quantitative histochemical analysis of phosphatase reactions. These values are essential for the conversion of

  2. Electrochemical Li Topotactic Reaction in Layered SnP3 for Superior Li-Ion Batteries

    Science.gov (United States)

    Park, Jae-Wan; Park, Cheol-Min

    2016-10-01

    The development of new anode materials having high electrochemical performances and interesting reaction mechanisms is highly required to satisfy the need for long-lasting mobile electronic devices and electric vehicles. Here, we report a layer crystalline structured SnP3 and its unique electrochemical behaviors with Li. The SnP3 was simply synthesized through modification of Sn crystallography by combination with P and its potential as an anode material for LIBs was investigated. During Li insertion reaction, the SnP3 anode showed an interesting two-step electrochemical reaction mechanism comprised of a topotactic transition (0.7-2.0 V) and a conversion (0.0-2.0 V) reaction. When the SnP3-based composite electrode was tested within the topotactic reaction region (0.7-2.0 V) between SnP3 and LixSnP3 (x ≤ 4), it showed excellent electrochemical properties, such as a high volumetric capacity (1st discharge/charge capacity was 840/663 mA h cm-3) with a high initial coulombic efficiency, stable cycle behavior (636 mA h cm-3 over 100 cycles), and fast rate capability (550 mA h cm-3 at 3C). This layered SnP3 anode will be applicable to a new anode material for rechargeable LIBs.

  3. Hybrid perovskite resulting from the solid-state reaction between the organic cations and perovskite layers of alpha1-(Br-(CH(2))(2)-NH(3))(2)PbI(4).

    Science.gov (United States)

    Sourisseau, Sebastien; Louvain, Nicolas; Bi, Wenhua; Mercier, Nicolas; Rondeau, David; Buzaré, Jean-Yves; Legein, Christophe

    2007-07-23

    The alpha1-(Br-(CH(2))(2)-NH(3))(2)PbI(4) hybrid perovskite undergoes a solid-state transformation, that is, the reaction between the organic cations and the perovskite layers to give the new hybrid perovskite (Br-(CH(2))(2)-NH(3))(2-x)(I-(CH(2))(2)-NH(3))(x)PbBr(x)I(4-x), based on mixed halide inorganic layers. This transformation has been followed by a conventional powder X-ray diffraction system equipped with a super speed detector, and both solid-state (13)C NMR and ESI/MS measurements have been adopted in the estimation of the rate of halide substitution. The first reaction step leads to the special composition of x approximately 1 (A phase), while the complete substitution is not achieved even at elevated temperature (x(max) approximately 1.85 (B phase)). This unprecedented solid-state reaction between organic and inorganic components of a hybrid perovskite can be considered as a completely new strategy to achieve interesting hybrid perovskites.

  4. Preparation and optical characteristics of layered perovskite-type lead-bromide-incorporated azobenzene chromophores

    Science.gov (United States)

    Sasai, Ryo; Shinomura, Hisashi

    2013-02-01

    Lead bromide-based layered perovskite powders with azobenzene derivatives were prepared by a homogeneous precipitation method. From the diffuse reflectance (DR) and photoluminescence (PL) spectra of the hybrid powder materials, the present hybrids exhibited sharp absorption and PL peaks originating from excitons produced in the PbBr42- layer. When the present hybrid powder was irradiated with UV light at 350 nm, the absorption band from the trans-azobenzene chromophore, observed around 350 nm, decreased, while the absorption band from the cis-azobenzene chromophore, observed around 450 nm, increased. These results indicate that azobenzene chromophores in the present hybrid materials exhibit reversible photoisomerization. Moreover, it was found that the PL intensity from the exciton also varied due to photoisomerization of the azobenzene chromophores in the present hybrid. Thus, for the first time we succeeded in preparing the azobenzene derivative lead-bromide-based layered perovskite with photochromism before and after UV light irradiation.

  5. Self-cleaning and surface chemical reactions during hafnium dioxide atomic layer deposition on indium arsenide.

    Science.gov (United States)

    Timm, Rainer; Head, Ashley R; Yngman, Sofie; Knutsson, Johan V; Hjort, Martin; McKibbin, Sarah R; Troian, Andrea; Persson, Olof; Urpelainen, Samuli; Knudsen, Jan; Schnadt, Joachim; Mikkelsen, Anders

    2018-04-12

    Atomic layer deposition (ALD) enables the ultrathin high-quality oxide layers that are central to all modern metal-oxide-semiconductor circuits. Crucial to achieving superior device performance are the chemical reactions during the first deposition cycle, which could ultimately result in atomic-scale perfection of the semiconductor-oxide interface. Here, we directly observe the chemical reactions at the surface during the first cycle of hafnium dioxide deposition on indium arsenide under realistic synthesis conditions using photoelectron spectroscopy. We find that the widely used ligand exchange model of the ALD process for the removal of native oxide on the semiconductor and the simultaneous formation of the first hafnium dioxide layer must be significantly revised. Our study provides substantial evidence that the efficiency of the self-cleaning process and the quality of the resulting semiconductor-oxide interface can be controlled by the molecular adsorption process of the ALD precursors, rather than the subsequent oxide formation.

  6. Deposition of very thin uniform indium sulfide layers over metallic nano-rods by the Spray-Ion Layer Gas Reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Genduso, G. [Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università di Palermo, Viale delle Scienze, 90100 Palermo (Italy); Institut for Heterogeneous Material Systems, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Inguanta, R.; Sunseri, C.; Piazza, S. [Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università di Palermo, Viale delle Scienze, 90100 Palermo (Italy); Kelch, C.; Sáez-Araoz, R. [Institut for Heterogeneous Material Systems, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Zykov, A. [Institut for Heterogeneous Material Systems, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); present address: Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15,12489 Berlin (Germany); Fischer, Ch.-H., E-mail: fischer@helmholtz-berlin.de [Institut for Heterogeneous Material Systems, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); second affiliation: Free University Berlin, Chemistry Institute, Takustr. 3, D-14195 Berlin (Germany)

    2013-12-02

    Very thin and uniform layers of indium sulfide were deposited on nickel nano-rods using the sequential and cyclical Spray-ILGAR® (Ion Layer Gas Reaction) technique. Substrates were fabricated by electrodeposition of Ni within the pores of polycarbonate membranes and subsequent chemical dissolution of the template. With respect to the depositions on flat substrates, experimental conditions were modified and optimized for the present geometry. Our results show that nano-rods up to a length of 10 μm were covered uniformly along their full length and with an almost constant film growth rate, thus allowing a good control of the coating thickness; the effect of the deposition temperature was also investigated. However, for high numbers of process steps, i.e. thickness, the films became uneven and crusty, especially at higher temperature, mainly owing to the simultaneous side reaction of the metallic Ni forming nickel sulfide at the surface of the rods. However, such a problem occurs only in the case of reactive nano-rod materials, such as less noble metals. It could be strongly reduced by doubling the spray step duration and thereby sealing the metallic surface before the process step of the sulfurization. Thus, quite smooth, about 100 nm thick coatings could be obtained. - Highlights: • Ni nano-rod substrates were grown within polycarbonate membranes. • We can coat nano-rods uniformly by the Ion Layer Gas Reaction method. • As a model we deposited up to about 100 nm In{sub 2}S{sub 3} on Ni nanorods (250 nm × 10 μm). • Element mapping at insulated rods showed homogenous coating over the full length. • Parameter optimization reduced effectively the Ni sulfide formation.

  7. Direct Measurements of Half-Cycle Reaction Heats during Atomic Layer Deposition by Calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Lownsbury, James M. [Department; Gladden, James A. [Department; Campbell, Charles T. [Department; Department; Kim, In Soo [Materials; Martinson, Alex B. F. [Materials

    2017-10-05

    We introduce a new high-temperature adsorption calorimeter that approaches the ideal limit of a heat detector whereby the signal at any time is proportional to the heat power being delivered to the sample and prove its sensitivity for measuring pulse-to-pulse heats of half-reactions during atomic layer deposition (ALD) at 400 K. The heat dynamics of amorphous Al2O3 growth via sequential self-limiting surface reaction of trimethylaluminum (TMA) and H2O is clearly resolved. Calibration enables quantitation of the exothermic TMA and H2O half-reactions with high precision, -343 kJ/mol TMA and -251 kJ/mol H2O, respectively. A time resolution better than 1 ms is demonstrated, allowing for the deconvolution of at least two distinct surface reactions during TMA microdosing. It is further demonstrated that this method can provide the heat of reaction versus extent of reaction during each precursors half-reaction, thus providing even richer mechanistic information on the surface processes involved. The broad applicability of this novel calorimeter is demonstrated through excellent signal-to-noise ratios of less exothermic ALD half-reactions to produce TiO2 and MnO.

  8. Synthetic Control of Kinetic Reaction Pathway and Cationic Ordering in High-Ni Layered Oxide Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dawei [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton NY 11973 USA; Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory Physical Chemistry Solid Surfaces, Department of Chemistry, Xiamen University, Xiamen Fujian 361005 China; Kou, Ronghui [X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Ren, Yang [X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Sun, Cheng-Jun [X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne IL 60439 USA; Zhao, Hu [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton NY 11973 USA; Zhang, Ming-Jian [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton NY 11973 USA; School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen Guangdong 518055 P. R. China; Li, Yan [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne IL 60439 USA; Huq, Ashifia [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge TN 37831 USA; Ko, J. Y. Peter [The Cornell High Energy Synchrotron Source, Cornell University, Ithaca NY 14853 USA; Pan, Feng [School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen Guangdong 518055 P. R. China; Sun, Yang-Kook [Department of Energy Engineering, Hanyang University, Seoul 133-791 South Korea; Yang, Yong [Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory Physical Chemistry Solid Surfaces, Department of Chemistry, Xiamen University, Xiamen Fujian 361005 China; Amine, Khalil [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne IL 60439 USA; Bai, Jianming [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton NY 11973 USA; Chen, Zonghai [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne IL 60439 USA; Wang, Feng [Sustainable Energy Technologies Department, Brookhaven National Laboratory, Upton NY 11973 USA

    2017-08-25

    Nickel-rich layered transition metal oxides, LiNi1-x(MnCo)(x)O-2 (1-x >= 0.5), are appealing candidates for cathodes in next-generation lithium-ion batteries (LIBs) for electric vehicles and other large-scale applications, due to their high capacity and low cost. However, synthetic control of the structural ordering in such a complex quaternary system has been a great challenge, especially in the presence of high Ni content. Herein, synthesis reactions for preparing layered LiNi0.7Mn0.15Co0.15O2 (NMC71515) by solid-state methods are investigated through a combination of time-resolved in situ high-energy X-ray diffraction and absorption spectroscopy measurements. The real-time observation reveals a strong temperature dependence of the kinetics of cationic ordering in NMC71515 as a result of thermal-driven oxidation of transition metals and lithium/oxygen loss that concomitantly occur during heat treatment. Through synthetic control of the kinetic reaction pathway, a layered NMC71515 with low cationic disordering and a high reversible capacity is prepared in air. The findings may help to pave the way for designing high-Ni layered oxide cathodes for LIBs.

  9. Characterization of the reaction layer in U-7wt%Mo/Al diffusion couples

    Energy Technology Data Exchange (ETDEWEB)

    Mirandou, M.I.; Balart, S.N.; Ortiz, M.; Granovsky, M.S. E-mail: granovsk@cnea.gov.ar

    2003-11-15

    The reaction layer in chemical diffusion couples U-7wt%Mo/Al was investigated using optical and scanning electron microscopy, electron probe microanalysis and X-ray diffraction (XRD) techniques. When the U-7wt%Mo alloy was previously homogenized and the {gamma}(U, Mo) phase was retained, the formation of (U, Mo)Al{sub 3} and (U, Mo)Al{sub 4} was observed at 580 deg. C. Also a very thin band was detected close to the Al side, the structure of the ternary compound Al{sub 20}UMo{sub 2} might be assigned to it. When the decomposition of the {gamma}(U, Mo) took place, a drastic change in the diffusion behavior was observed. In this case, XRD indicated the presence of phases with the structures of (U, Mo)Al{sub 3}, Al{sub 43}U{sub 6}Mo{sub 4}, {gamma}(U, Mo) and {alpha}(U) in the reaction layer.

  10. Quantum chemical study of the elementary reactions in zirconium oxide atomic layer deposition

    International Nuclear Information System (INIS)

    Widjaja, Yuniarto; Musgrave, Charles B.

    2002-01-01

    Elementary reactions in atomic layer deposition of zirconia using zirconium tetrachloride and water are investigated using the density functional theory. The atomistic mechanisms of the two deposition half cycles on the Zr-OH and Zr-Cl surface sites are investigated. Both half reactions proceed through the formation of stable intermediates, resulting in high barriers for HCl formation. We find that the intermediate stability is lowered as the surface temperature is raised. However, increasing temperature also increases the dissociation free-energy barrier, which in turn results in increased desorption of adsorbed precursors

  11. A facile and expedient one-pot three-component reaction leading to ...

    Indian Academy of Sciences (India)

    Sci. Vol. 124, No. 5, September 2012, pp. 1007–1012. c Indian Academy of Sciences. A facile and expedient one-pot three-component reaction leading to multifunctionalized stabilized phosphorus ylides. ZAHRA HASSANI. ∗ and ZEINAB ESFANDIARPOUR. Department of New Materials, International Center for Science, ...

  12. Synthesis Of Magnesium-Aluminum Layered Double Hydroxides By Mechanochemical Method And Its Solid State Reaction Kinetics

    Directory of Open Access Journals (Sweden)

    Hongbo Y.

    2015-06-01

    Full Text Available A mechanochemical method is developed in preparing magnesium-aluminum-layered double hydroxides (MgAl-LDHs. This approach includes activation process and diffusion process. In order to verify the LDHs structure and study the reaction kinetics, X-ray diffraction (XRD patterns, inductively coupled plasma(ICP and physical adsorption instrument were characterized. The results show that activation time can change the surface of particles and affect the reaction grade. During the diffusion process, reaction time is the most important factor. The reaction energy (ΔQ was calculated that is 6kJ/mol.

  13. Square Turing patterns in reaction-diffusion systems with coupled layers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing [State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871 (China); Wang, Hongli, E-mail: hlwang@pku.edu.cn, E-mail: qi@pku.edu.cn [State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871 (China); Center for Quantitative Biology, Peking University, Beijing 100871 (China); Ouyang, Qi, E-mail: hlwang@pku.edu.cn, E-mail: qi@pku.edu.cn [State Key Laboratory for Mesoscopic Physics and School of Physics, Peking University, Beijing 100871 (China); Center for Quantitative Biology, Peking University, Beijing 100871 (China); The Peking-Tsinghua Center for Life Sciences, Beijing 100871 (China)

    2014-06-15

    Square Turing patterns are usually unstable in reaction-diffusion systems and are rarely observed in corresponding experiments and simulations. We report here an example of spontaneous formation of square Turing patterns with the Lengyel-Epstein model of two coupled layers. The squares are found to be a result of the resonance between two supercritical Turing modes with an appropriate ratio. Besides, the spatiotemporal resonance of Turing modes resembles to the mode-locking phenomenon. Analysis of the general amplitude equations for square patterns reveals that the fixed point corresponding to square Turing patterns is stationary when the parameters adopt appropriate values.

  14. Interfacial reactions between indium tin oxide and triphenylamine tetramer layers induced by photoirradiation

    International Nuclear Information System (INIS)

    Satoh, Toshikazu; Fujikawa, Hisayoshi; Yamamoto, Ichiro; Murasaki, Takanori; Kato, Yoshifumi

    2008-01-01

    The effects of photoirradiation on the interfacial chemical reactions between indium tin oxide (ITO) films and layers of triphenylamine tetramer (TPTE) were investigated by using in situ x-ray photoelectron spectroscopy (XPS). Thin TPTE layers deposited onto sputter-deposited ITO films were irradiated with violet light-emitting diodes (peak wavelength: 380 nm). Shifts in the peak positions of spectral components that originated in the organic layer toward the higher binding-energy side were observed in the XPS profiles during the early stages of irradiation. No further peak shifts were observed after additional irradiation. An increase in the ratio of the organic component in the O 1s spectra was also observed during the photoirradiation. The ratio of the organic component increased in proportion to the cube root of the irradiation time. These results suggest that photoirradiation induces an increase in the height of the carrier injection barrier at the interface between TPTE and ITO in the early stages of the irradiation, possibly due to the rapid diffusion controlled formation and growth of an oxidized TPTE layer, which is considered to act as a high resistance layer

  15. Products and stability of phosphate reactions with lead under freeze-thaw cycling in simple systems

    International Nuclear Information System (INIS)

    Hafsteinsdottir, Erla G.; White, Duanne A.; Gore, Damian B.; Stark, Scott C.

    2011-01-01

    Orthophosphate fixation of metal contaminated soils in environments that undergo freeze-thaw cycles is understudied. Freeze-thaw cycling potentially influences the reaction rate, mineral chemical stability and physical breakdown of particles during fixation. This study determines what products form when phosphate (triple superphosphate [Ca(H 2 PO 4 ) 2 ] or sodium phosphate [Na 3 PO 4 ]) reacts with lead (PbSO 4 or PbCl 2 ) in simple chemical systems in vitro, and assesses potential changes in formation during freeze-thaw cycles. Systems were subjected to multiple freeze-thaw cycles from +10 deg. C to -20 deg. C and then analysed by X-ray diffractometry. Pyromorphite formed in all systems and was stable over multiple freeze-thaw cycles. Low temperature lead orthophosphate reaction efficiency varied according to both phosphate and lead source; the most time-efficient pyromorphite formation was observed when PbSO 4 and Na 3 PO 4 were present together. These findings have implications for the manner in which metal contaminated materials in freezing ground can be treated with phosphate. - Highlights: → Formation of lead phosphate products in cold environments is identified. → Potential change in formation during freeze-thaw cycling is assessed. → Lead phosphate reaction efficiency varies according to phosphate and lead source. → Pyromorphite formation is stable during 240 freeze-thaw cycles. - Pyromorphite, formed from Pb phosphate fixation, is stable during multiple freeze-thaw cycles but the efficiency of the fixation depends on the phosphate source and the type of Pb mineral.

  16. Surface reactions during atomic layer deposition of Pt derived from gas phase infrared spectroscopy

    NARCIS (Netherlands)

    Kessels, W.M.M.; Knoops, H.C.M.; Dielissen, S.A.F.; Mackus, A.J.M.; Sanden, van de M.C.M.

    2009-01-01

    Infrared spectroscopy was used to obtain absolute number information on the reaction products during atomic layer deposition of Pt from (methylcyclopentadienyl)trimethylplatinum [(MeCp)PtMe3] and O2. From the detection of CO2 and H2O it was established that the precursor ligands are oxidatively

  17. A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance

    International Nuclear Information System (INIS)

    Ogawa, Makoto; Morita, Masashi; Igarashi, Shota; Sato, Soh

    2013-01-01

    A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 µm was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 °C, though 600 °C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassium lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: • Potassium lithium titanate was prepared by solid-state reaction. • Lower temperature reaction resulted in smaller sized particles of titanate. • 600 °C was good enough to obtain single phased potassium lithium titanate. • The product exhibited better performance as photocatalyst

  18. Versatility of Alkyne-Modified Poly(Glycidyl Methacrylate) Layers for Click Reactions

    International Nuclear Information System (INIS)

    Soto-Cantu, Erick; Lokitz, Bradley S.; Hinestrosa Salazar, Juan Pablo; Deodhar, Chaitra; Messman, Jamie M.; Ankner, John Francis; Kilbey, S. Michael II

    2011-01-01

    Functional soft interfaces are of interest for a variety of technologies. We describe three methods for preparing substrates with alkyne groups, which show versatility for 'click' chemistry reactions. Two of the methods have the same root: formation of thin, covalently attached, reactive interfacial layers of poly(glycidyl methacrylate) (PGMA) via spin coating onto silicon wafers followed by reactive modification with either propargylamine or 5-hexynoic acid. The amine or the carboxylic acid moieties react with the epoxy groups of PGMA, creating interfacial polymer layers decorated with alkyne groups. The third method consists of using copolymers comprising glycidyl methacrylate and propargyl methacrylate (pGP). The pGP copolymers are spin coated and covalently attached on silicon wafers. For each method, we investigate the factors that control film thickness and content of alkyne groups using ellipsometry, and study the nanophase structure of the films using neutron reflectometry. Azide-terminated polymers of methacrylic acid and 2-vinyl-4,4-dimethylazlactone synthesized via reversible addition-fragmentation chain transfer polymerization were attached to the alkyne-modified substrates using 'click' chemistry, and grafting densities in the range of 0.007-0.95 chains nm -2 were attained. The maximum density of alkyne groups attained by functionalization of PGMA with propargylamine or 5-hexynoic acid was approximately 2 alkynes nm -3 . The alkyne content obtained by the three decorating approaches was sufficiently high that it was not the limiting factor for the click reaction of azide-capped polymers.

  19. Lead-free, bronze-based surface layers for wear resistance in axial piston hydraulic pumps

    Energy Technology Data Exchange (ETDEWEB)

    Vetterick, Gregory Alan [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    Concerns regarding the safety of lead have provided sufficient motivation to develop substitute materials for the surface layer on a thrust bearing type component known as a valve plate in axial piston hydraulic pumps that consists of 10% tin, 10% lead, and remainder cooper (in wt. %). A recently developed replacement material, a Cu-10Sn-3Bi (wt.%) P/M bronze, was found to be unsuitable as valve plate surface layer, requiring the development of a new alloy. A comparison of the Cu-1-Sn-10Pb and Cu-10Sn-3Bi powder metal valve plates showed that the differences in wear behavior between the two alloys arose due to the soft phase bismuth in the alloy that is known to cause both solid and liquid metal embrittlement of copper alloys.

  20. Products and stability of phosphate reactions with lead under freeze-thaw cycling in simple systems

    Energy Technology Data Exchange (ETDEWEB)

    Hafsteinsdottir, Erla G., E-mail: erla.hafsteinsdottir@gmail.com [Department of Environment and Geography, Macquarie University, NSW 2109 (Australia); White, Duanne A., E-mail: duanne.white@mq.edu.au [Department of Environment and Geography, Macquarie University, NSW 2109 (Australia); Gore, Damian B., E-mail: damian.gore@mq.edu.au [Department of Environment and Geography, Macquarie University, NSW 2109 (Australia); Stark, Scott C., E-mail: scott.stark@aad.gov.au [Environmental Protection and Change, Australian Antarctic Division, Department of Sustainability, Environment, Water, Population and Communities, Tasmania 7050 (Australia)

    2011-12-15

    Orthophosphate fixation of metal contaminated soils in environments that undergo freeze-thaw cycles is understudied. Freeze-thaw cycling potentially influences the reaction rate, mineral chemical stability and physical breakdown of particles during fixation. This study determines what products form when phosphate (triple superphosphate [Ca(H{sub 2}PO{sub 4}){sub 2}] or sodium phosphate [Na{sub 3}PO{sub 4}]) reacts with lead (PbSO{sub 4} or PbCl{sub 2}) in simple chemical systems in vitro, and assesses potential changes in formation during freeze-thaw cycles. Systems were subjected to multiple freeze-thaw cycles from +10 deg. C to -20 deg. C and then analysed by X-ray diffractometry. Pyromorphite formed in all systems and was stable over multiple freeze-thaw cycles. Low temperature lead orthophosphate reaction efficiency varied according to both phosphate and lead source; the most time-efficient pyromorphite formation was observed when PbSO{sub 4} and Na{sub 3}PO{sub 4} were present together. These findings have implications for the manner in which metal contaminated materials in freezing ground can be treated with phosphate. - Highlights: > Formation of lead phosphate products in cold environments is identified. > Potential change in formation during freeze-thaw cycling is assessed. > Lead phosphate reaction efficiency varies according to phosphate and lead source. > Pyromorphite formation is stable during 240 freeze-thaw cycles. - Pyromorphite, formed from Pb phosphate fixation, is stable during multiple freeze-thaw cycles but the efficiency of the fixation depends on the phosphate source and the type of Pb mineral.

  1. Porous double-layer polymer tubing for the potential use in heterogeneous continuous flow reactions.

    Science.gov (United States)

    Herwig, Gordon; Hornung, Christian H; Peeters, Gary; Ebdon, Nicholas; Savage, G Paul

    2014-12-24

    Functional polymer tubing with an OD of 1/16 or 1/8 in. was fabricated by a simple polymer coextrusion process. The tubing was made of an outer impervious polypropylene layer and an inner layer, consisting of a blend of a functional polymer, polyethylene-co-methacrylic acid, and a sacrificial polymer, polystyrene. After a simple solvent leaching step using common organic solvents, the polystyrene was removed, leaving behind a porous inner layer that contains functional carboxylic acid groups, which could then be used for the immobilization of target molecules. Solution-phase reactions using amines or isocyanates have proven successful for the immobilization of a series of small molecules and polymers. This flexible multilayered functional tubing can be easily cut to the desired length and connected via standard microfluidic fittings.

  2. Boundary-layer development and transition due to free-stream exothermic reactions in shock-induced flows

    Science.gov (United States)

    Hall, J. L.

    1974-01-01

    A study of the effect of free-stream thermal-energy release from shock-induced exothermic reactions on boundary-layer development and transition is presented. The flow model is that of a boundary layer developing behind a moving shock wave in two-dimensional unsteady flow over a shock-tube wall. Matched sets of combustible hydrogen-oxygen-nitrogen mixtures and inert hydrogen-nitrogen mixtures were used to obtain transition data over a range of transition Reynolds numbers from 1,100,000 to 21,300,000. The heat-energy is shown to significantly stabilize the boundary layer without changing its development character. A method for application of this data to flat-plate steady flows is included.

  3. Optical diagnostics of lead and PbGa2S4 layered crystal laser plasmas

    International Nuclear Information System (INIS)

    Shuaibov, A.K.; Dashchenko, A.I.; Shevera, I.V.

    2001-01-01

    Laser plasmas produced at the surfaces of lead and a PbGa 2 S 4 layered crystal irradiated by a neodymium laser with λ = 1.06 μm, pulse duration τ = 20 ns, and intensity W = (1-2) x 10 9 W/cm 2 are studied using optical diagnostics. It is shown that, in a lead plasma, the most intense (characteristic) lines are the PbI 405.7-nm, PbI 368.3-nm, PbI 364-nm, and PbII 220.4-nm lines. In a layered crystal plasma, the emission spectrum is an aggregation of the most intense PbI and GaI lines, whereas sulfur lines are absent. The bottlenecks of the recombination of the ionic and atomic components of the lead and PbGa 2 S 4 crystal plasmas are determined. The average propagation velocity of the lead laser plume is 18-20 km/s. A comparative analysis of the emission dynamics of PbI and GaI lines in the laser plasmas of these metals and in the plasma of a PbGa 2 S 4 crystal is carried out. The results obtained are important for the optical diagnostics of the plasmas of lead- and gallium-containing crystals and for the optimization of laser deposition of the thin films of these substances

  4. Effects of Organic Cation Length on Exciton Recombination in Two-Dimensional Layered Lead Iodide Hybrid Perovskite Crystals.

    Science.gov (United States)

    Gan, Lu; Li, Jing; Fang, Zhishan; He, Haiping; Ye, Zhizhen

    2017-10-19

    In recent years, 2D layered organic-inorganic lead halide perovskites have attracted considerable attention due to the distinctive quantum confinement effects as well as prominent excitonic luminescence. Herein, we show that the recombination dynamics and photoluminescence (PL) of the 2D layered perovskites can be tuned by the organic cation length. 2D lead iodide perovskite crystals with increased length of the organic chains reveal blue-shifted PL as well as enhanced relative internal quantum efficiency. Furthermore, we provide experimental evidence that the formation of face-sharing [PbI 6 ] 4- octahedron in perovskites with long alkyls induces additional confinement for the excitons, leading to 1D-like recombination. As a result, the PL spectra show enhanced inhomogeneous broadening at low temperature. Our work provides physical understanding of the role of organic cation in the optical properties of 2D layered perovskites, and would benefit the improvement of luminescence efficiency of such materials.

  5. Production of He-, Ne-, Ar-, Kr-, and Xe-isotopes by proton-induced reactions on lead

    International Nuclear Information System (INIS)

    Leya, I.; Michel, R.

    2003-01-01

    We measured integral thin target cross sections for the proton-induced production of He-, Ne-, Ar-, Kr-, and Xe-isotopes from lead from the respective reaction thresholds up to 2.6 GeV. The production of noble gas isotopes in lead by proton-induced reactions is of special importance for design studies of accelerator driven systems and energy amplifiers. In order to minimise the influences of secondary particles on the production of residual nuclides a new Mini-Stack approach was used instead of the well-known stacked-foil techniques for all experiments with proton energies above 200 MeV. With some exceptions our database for the proton-induced production of noble gas isotopes from lead is consistent and nearly complete. In contradistinction to the production of He from Al and Fe, where the cross sections obtained by thin-target irradiation experiments are up to a factor of 2 higher than the NESSI data, both datasets agree for the He production from lead. (orig.)

  6. First-principles study of oxygen evolution reaction on Co doped NiFe-layered double hydroxides

    Science.gov (United States)

    Yu, Jie; Perdew, John; Yan, Qimin

    The conversion of solar energy to renewable fuels is a grand challenge. One of the crucial steps for this energy conversion process is the discovery of efficient catalysts with lower overpotential for the oxygen evolution reaction (OER). Layered double hydroxides (LDH) with earth abundant elements such as Ni and Fe have been found as promising OER catalysts and shown to be active for water oxidation. Doping is one of the feasible ways to even lower the overpotential of host materials and breaks the linear scaling law. In this talk we'll present our study on the reaction mechanism of OER on pure and Co-doped NiFe-LDH systems in alkaline solution. We study the absorption energetics of reaction intermediate states and calculate the thermodynamic reaction energy using density functional theory with the PBE +U and the newly developed SCAN functionals. It is shown that the NiFe-LDH system with Co dopants has lower overpotential and higher activity compared with the undoped system. The improvement in activity is related to the presence of Co states in the electronic structure. The work provides a clear clue for the further improvement of the OER activity of LDH systems by chemical doping. The work was supported as part of the Center for the Computational Design of Functional Layered Materials, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science.

  7. Effect of surface reaction layer on grindability of cast titanium alloys.

    Science.gov (United States)

    Ohkubo, Chikahiro; Hosoi, Toshio; Ford, J Phillip; Watanabe, Ikuya

    2006-03-01

    The purpose of this study was to investigate the effect of the cast surface reaction layer on the grindability of titanium alloys, including free-machining titanium alloy (DT2F), and to compare the results with the grindability of two dental casting alloys (gold and Co-Cr). All titanium specimens (pure Ti, Ti-6Al-4V and DT2F) were cast using a centrifugal casting machine in magnesia-based investment molds. Two specimen sizes were used to cast the titanium metals so that the larger castings would be the same size as the smaller gold and Co-Cr alloy specimens after removal of the surface reaction layer (alpha-case). Grindability was measured as volume loss ground from a specimen for 1 min using a handpiece engine with a SiC abrasive wheel at 0.1 kgf and four circumferential wheel speeds. For the titanium and gold alloys, grindability increased as the rotational speed increased. There was no statistical difference (p>0.05) in grindability for all titanium specimens either with or without the alpha-case. Of the titanium metals tested, Ti-6 Al-4V had the greatest grindability at higher speeds, followed by DT2F and CP Ti. The grindability of the gold alloy was similar to that of Ti-6 Al-4V, whereas the Co-Cr alloy had the lowest grindability. The results of this study indicated that the alpha-case did not significantly affect the grindability of the titanium alloys. The free-machining titanium alloy had improved grindability compared to CP Ti.

  8. Design and construction of a multi-layer CsI(Tl) telescope for high-energy reaction studies

    International Nuclear Information System (INIS)

    Yan, D.; Sun, Z.Y.; Yue, K.; Wang, S.T.; Zhang, X.H.; Yu, Y.H.; Chen, J.L.; Tang, S.W.; Fang, F.; Zhou, Y.; Sun, Y.; Wang, Z.M.; Sun, Y.Z.

    2017-01-01

    A prototype of a new CsI(Tl) telescope, which will be used in the reaction studies of light isotopes with energy of several hundred AMeV, was constructed and tested at the Institute of Modern Physics, Chinese Academy of Sciences. The telescope has a multi-layer structure, and the range information was obtained to improve the particle identification performance. This prototype has seven layers of different thickness. An energy resolution of 5.0% (FWHM) was obtained for one of the layers in a beam test experiment. Positive improvement for the identification of 14 O and 15 O isotopes was achieved using the range information.

  9. Design and construction of a multi-layer CsI(Tl) telescope for high-energy reaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Yan, D.; Sun, Z.Y. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yue, K., E-mail: yueke@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, S.T.; Zhang, X.H.; Yu, Y.H.; Chen, J.L.; Tang, S.W.; Fang, F. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhou, Y.; Sun, Y. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Lanzhou University, Lanzhou 730000 (China); Wang, Z.M.; Sun, Y.Z. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China)

    2017-01-21

    A prototype of a new CsI(Tl) telescope, which will be used in the reaction studies of light isotopes with energy of several hundred AMeV, was constructed and tested at the Institute of Modern Physics, Chinese Academy of Sciences. The telescope has a multi-layer structure, and the range information was obtained to improve the particle identification performance. This prototype has seven layers of different thickness. An energy resolution of 5.0% (FWHM) was obtained for one of the layers in a beam test experiment. Positive improvement for the identification of {sup 14}O and {sup 15}O isotopes was achieved using the range information.

  10. The preparation of a novel layered lead titanate and its conversion to the perovskite lead titanate PbTiO3

    NARCIS (Netherlands)

    Blake, G.R.; Armstrong, A.R.; Sastre, E.; Wright, P.A.

    2001-01-01

    A novel layered lead titanate with the approximate composition PbTiO2(CO3)0.3(NO3)0.35(OH) has been synthesized hydrothermally under acidic conditions. The structure has been solved and refined from X-ray and neutron powder diffraction data in the space group P -3 1 m, with cell dimensions a =

  11. Hydrothermal synthesis of highly nitrogen-doped few-layer graphene via solid–gas reaction

    International Nuclear Information System (INIS)

    Liang, Xianqing; Zhong, Jun; Shi, Yalin; Guo, Jin; Huang, Guolong; Hong, Caihao; Zhao, Yidong

    2015-01-01

    Highlights: • A novel approach to synthesis of N-doped few-layer graphene has been developed. • The high doping levels of N in products are achieved. • XPS and XANES results reveal a thermal transformation of N bonding configurations. • The developed method is cost-effective and eco-friendly. - Abstract: Nitrogen-doped (N-doped) graphene sheets with high doping concentration were facilely synthesized through solid–gas reaction of graphene oxide (GO) with ammonia vapor in a self-designed hydrothermal system. The morphology, surface chemistry and electronic structure of N-doped graphene sheets were investigated by TEM, AFM, XRD, XPS, XANES and Raman characterizations. Upon hydrothermal treatment, up to 13.22 at% of nitrogen could be introduced into the crumpled few-layer graphene sheets. Both XPS and XANES analysis reveal that the reaction between oxygen functional groups in GO and ammonia vapor produces amide and amine species in hydrothermally treated GO (HTGO). Subsequent thermal annealing of the resultant HTGO introduces a gradual transformation of nitrogen bonding configurations in graphene sheets from amine N to pyridinic and graphitic N with the increase of annealing temperature. This study provides a simple but cost-effective and eco-friendly method to prepare N-doped graphene materials in large-scale for potential applications

  12. Structural characteristics of the shock-induced boundary layer separation extended to the leading edge

    Science.gov (United States)

    Tao, Y.; Liu, W. D.; Fan, X. Q.; Zhao, Y. L.

    2017-07-01

    For a better understanding of the local unstart of supersonic/hypersonic inlet, a series of experiments has been conducted to investigate the shock-induced boundary layer separation extended to the leading edge. Using the nanoparticle-based planar laser scattering, we recorded the fine structures of these interactions under different conditions and paid more attention to their structural characteristics. According to their features, these interactions could be divided into four types. Specifically, Type A wave pattern is similar to the classic shock wave/turbulent boundary layer interaction, and Type B wave configuration consists of an overall Mach reflection above the large scale separation bubble. Due to the gradual decrease in the size of the separation bubble, the separation bubble was replaced by several vortices (Type C wave pattern). Besides, for Type D wave configuration which exists in the local unstart inlet, there appears to be some flow spillage around the leading edge.

  13. A mechanistic study on the reaction pathways leading to benzene and naphthalene in cellulose vapor phase cracking

    International Nuclear Information System (INIS)

    Norinaga, Koyo; Yang, Huamei; Tanaka, Ryota; Appari, Srinivas; Iwanaga, Keita; Takashima, Yuka; Kudo, Shinji; Shoji, Tetsuya; Hayashi, Jun-ichiro

    2014-01-01

    The reaction pathways leading to aromatic hydrocarbons such as benzene and naphthalene in gas-phase reactions of multi-component mixtures derived from cellulose fast pyrolysis were studied both experimentally and numerically. A two-stage tubular reactor was used for evaluating the reaction kinetics of secondary vapor phase cracking of the nascent pyrolysates at temperature ranging from 400 to 900 °C, residence time from 0.2 to 4.3 s, and at 241 kPa. The products of alkyne and diene were identified from the primary pyrolysis of cellulose even at low temperature range 500–600 °C. These products include acetylene, propyne, propadiene, vinylacetylene, and cyclopentadiene. Experiments were also numerically validated by a detailed chemical kinetic model consisting of more than 8000 elementary step-like reactions with over 500 chemical species. Acceptable capabilities of the kinetic model in predicting concentration profiles of the products enabled us to assess reaction pathways leading to benzene and naphthalene via the alkyne and diene from primary pyrolysates of cellulose. C 3 alkyne and diene are primary precursors of benzene at 650 °C, while combination of ethylene and vinylacetylene produces benzene dominantly at 850 °C. Cyclopentadiene is a prominent precursor of naphthalene. Combination of acetylene with propyne or allyl radical leads to the formation of cyclopentadiene. Furan and acrolein are likely important alkyne precursors in cellulose pyrolysis at low temperature, whereas dehydrogenations of olefins are major route to alkyne at high temperatures. - Highlights: • Analytical pyrolysis experiments provided data for kinetic modeling. • Detailed chemical kinetic model was used and evaluated. • Alkyne and diene were important intermediates for aromatic hydrocarbon formation. • Reaction pathways leading to aromatic hydrocarbons were proposed

  14. Solid-state reactions to synthesize nanostructured lead selenide semiconductor powders by high-energy milling

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Chavez, H., E-mail: uu_gg_oo@yahoo.com.mx [Centro de Investigacion e Innovacion Tecnologica - IPN, Cerrada de CECATI s/n, Col. Santa Catarina, Del. Azcapotzalco (Mexico) and Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada - IPN, Legaria 694, Col. Irrigacion, Del. Miguel Hidalgo (Mexico); Reyes-Carmona, F. [Facultad de Quimica - UNAM, Circuito de la Investigacion Cientifica s/n, C.U. Del. Coyoacan (Mexico); Jaramillo-Vigueras, D. [Centro de Investigacion e Innovacion Tecnologica - IPN, Cerrada de CECATI s/n, Col. Santa Catarina, Del. Azcapotzalco (Mexico)

    2011-10-15

    Highlights: {yields} PbSe synthesized from PbO instead of Pb powder do not require an inert atmosphere. {yields} During high-energy milling oxygen has to be chemically reduced from the lead oxide. {yields} Solid-state and solid-gas chemical reactions promote both solid and gaseous products. -- Abstract: Both solid-solid and gas-solid reactions have been traced during high-energy milling of Se and PbO powders under vial (P, T) conditions in order to synthesize the PbSe phase. Chemical and thermodynamic arguments are postulated to discern the high-energy milling mechanism to transform PbO-Se micropowders onto PbSe-nanocrystals. A set of reactions were evaluated at around room temperature. Therefore an experimental campaign was designed to test the nature of reactions in the PbO-Se system during high-energy milling.

  15. Solid-state reactions to synthesize nanostructured lead selenide semiconductor powders by high-energy milling

    International Nuclear Information System (INIS)

    Rojas-Chavez, H.; Reyes-Carmona, F.; Jaramillo-Vigueras, D.

    2011-01-01

    Highlights: → PbSe synthesized from PbO instead of Pb powder do not require an inert atmosphere. → During high-energy milling oxygen has to be chemically reduced from the lead oxide. → Solid-state and solid-gas chemical reactions promote both solid and gaseous products. -- Abstract: Both solid-solid and gas-solid reactions have been traced during high-energy milling of Se and PbO powders under vial (P, T) conditions in order to synthesize the PbSe phase. Chemical and thermodynamic arguments are postulated to discern the high-energy milling mechanism to transform PbO-Se micropowders onto PbSe-nanocrystals. A set of reactions were evaluated at around room temperature. Therefore an experimental campaign was designed to test the nature of reactions in the PbO-Se system during high-energy milling.

  16. Applicability of the Reaction Layer Principle to Nanoparticulate Metal Complexes at a Macroscopic Reactive (Bio)Interface

    NARCIS (Netherlands)

    Duval, Jérôme F.L.; Town, Raewyn M.; Leeuwen, Van Herman P.

    2017-01-01

    The reaction layer concept is commonly adopted to estimate the contribution of metal complexes to the flux of free metal ions (M) toward a macroscopic M-accumulating (bio)interface, e.g., a biosurface (microorganism) or a sensor (electrode). This concept is well-established for molecular ligands

  17. Method of determining paper-deposited materials, eg. lead, by their reaction with radioactive krypton

    International Nuclear Information System (INIS)

    Tolgyessy, J.; Pruzinec, J.

    1976-01-01

    The invention claims a method of determining substances on a paper carrier based on the substance reaction with 85 Kr gas and the measurement of radioactivity of the kryptonate formed. Lead is shown as an example. Different amounts of lead acetate were deposited on Whatman 2 chromatographic paper as was an unknown sample of Pb salt. The paper was exposed to a 2.5 mCi 85 Kr atmosphere for 48 hours. The activity of the individual spots was then measured, a calibration curve established and the amount of lead in the analyzed sample read-out. (Ha)

  18. An Influence Study of Hydrogen Evolution Characteristics on the Negative Strap Corrosion of Lead Acid Battery

    Directory of Open Access Journals (Sweden)

    Zhong Guobin

    2015-01-01

    Full Text Available Negative strap corrosion is an important reason for the failure of valve regulated lead acid battery. This paper selected the Pb-Sb alloy material and Pb-Sn alloy material, made an investigation on the negative corrosion resistance and hydrogen evolution of these two alloy materials by scanning electron microscope analysis, metallographic analysis, chemical study and linear sweep voltammetry, and discussed the influence of lead alloy hydrogen evolution on the negative strap corrosion. The results showed that the hydrogen evolution reaction rates of the alloys had an impact on the corrosion areas with the maximum thickness of the alloys and the depth of corrosion layers. Greater hydrogen evolution reaction rate can lead to shorter distance between the corrosion area with the maximum thickness and the liquid level; whereas the greater corrosion layer thickness can bring aggravated risk of negative strap corrosion failure.

  19. Confining Domains Lead to Reaction Bursts: Reaction Kinetics in the Plasma Membrane

    Science.gov (United States)

    Kalay, Ziya; Fujiwara, Takahiro K.; Kusumi, Akihiro

    2012-01-01

    Confinement of molecules in specific small volumes and areas within a cell is likely to be a general strategy that is developed during evolution for regulating the interactions and functions of biomolecules. The cellular plasma membrane, which is the outermost membrane that surrounds the entire cell, was considered to be a continuous two-dimensional liquid, but it is becoming clear that it consists of numerous nano-meso-scale domains with various lifetimes, such as raft domains and cytoskeleton-induced compartments, and membrane molecules are dynamically trapped in these domains. In this article, we give a theoretical account on the effects of molecular confinement on reversible bimolecular reactions in a partitioned surface such as the plasma membrane. By performing simulations based on a lattice-based model of diffusion and reaction, we found that in the presence of membrane partitioning, bimolecular reactions that occur in each compartment proceed in bursts during which the reaction rate is sharply and briefly increased even though the asymptotic reaction rate remains the same. We characterized the time between reaction bursts and the burst amplitude as a function of the model parameters, and discussed the biological significance of the reaction bursts in the presence of strong inhibitor activity. PMID:22479350

  20. Confining domains lead to reaction bursts: reaction kinetics in the plasma membrane.

    Directory of Open Access Journals (Sweden)

    Ziya Kalay

    Full Text Available Confinement of molecules in specific small volumes and areas within a cell is likely to be a general strategy that is developed during evolution for regulating the interactions and functions of biomolecules. The cellular plasma membrane, which is the outermost membrane that surrounds the entire cell, was considered to be a continuous two-dimensional liquid, but it is becoming clear that it consists of numerous nano-meso-scale domains with various lifetimes, such as raft domains and cytoskeleton-induced compartments, and membrane molecules are dynamically trapped in these domains. In this article, we give a theoretical account on the effects of molecular confinement on reversible bimolecular reactions in a partitioned surface such as the plasma membrane. By performing simulations based on a lattice-based model of diffusion and reaction, we found that in the presence of membrane partitioning, bimolecular reactions that occur in each compartment proceed in bursts during which the reaction rate is sharply and briefly increased even though the asymptotic reaction rate remains the same. We characterized the time between reaction bursts and the burst amplitude as a function of the model parameters, and discussed the biological significance of the reaction bursts in the presence of strong inhibitor activity.

  1. Layer-by-layer evolution of structure, strain, and activity for the oxygen evolution reaction in graphene-templated Pt monolayers.

    Science.gov (United States)

    Abdelhafiz, Ali; Vitale, Adam; Joiner, Corey; Vogel, Eric; Alamgir, Faisal M

    2015-03-25

    In this study, we explore the dimensional aspect of structure-driven surface properties of metal monolayers grown on a graphene/Au template. Here, surface limited redox replacement (SLRR) is used to provide precise layer-by-layer growth of Pt monolayers on graphene. We find that after a few iterations of SLRR, fully wetted 4-5 monolayer Pt films can be grown on graphene. Incorporating graphene at the Pt-Au interface modifies the growth mechanism, charge transfers, equilibrium interatomic distances, and associated strain of the synthesized Pt monolayers. We find that a single layer of sandwiched graphene is able to induce a 3.5% compressive strain on the Pt adlayer grown on it, and as a result, catalytic activity is increased due to a greater areal density of the Pt layers beyond face-centered-cubic close packing. At the same time, the sandwiched graphene does not obstruct vicinity effects of near-surface electron exchange between the substrate Au and adlayers Pt. X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS) techniques are used to examine charge mediation across the Pt-graphene-Au junction and the local atomic arrangement as a function of the Pt adlayer dimension. Cyclic voltammetry (CV) and the oxygen reduction reaction (ORR) are used as probes to examine the electrochemically active area of Pt monolayers and catalyst activity, respectively. Results show that the inserted graphene monolayer results in increased activity for the Pt due to a graphene-induced compressive strain, as well as a higher resistance against loss of the catalytically active Pt surface.

  2. Study on the surface reaction of uranium metal in hydrogen atmosphere with XPS

    International Nuclear Information System (INIS)

    Wang Xiaolin; Fu Yibei; Xie Renshou; Zuo Changming; Zhao Chunpei; Chen Hong

    1998-01-01

    The surface reactions of uranium metal in hydrogen atmosphere at 25 degree C and 200 degree C and effects of temperature and carbon monoxide to the hydriding reaction have been studied by X-ray photoelectron spectroscopy (XPS). The reaction between H 2 and uranium metal at 25 degree C leads to the further oxidation of surface layer of metal due to traces of water vapor. At 200 degree C, it may lead to the hydriding reaction of uranium and the hydriding increases with increasing exposure to H 2 in the initial stages. The U4f 7/2 binding energy of UH 3 has been found to be 378.6 eV. Investigation indicates carbon monoxide inhibits both the hydriding reaction and oxidation on the condition of H 2 -CO atmosphere

  3. Micro-EDXRF surface analyses of a bronze spear head: Lead content in metal and corrosion layers

    International Nuclear Information System (INIS)

    Figueiredo, E.; Valerio, P.; Araujo, M.F.; Senna-Martinez, J.C.

    2007-01-01

    A bronze spear head from Central Portugal dated to Late Bronze Age has been analyzed by non-destructive micro-EDXRF in the metal surface and corrosion layers. The artifact had previously been analyzed using a conventional EDXRF spectrometer having a larger incident beam. The quantification of the micro-EDXRF analyses showed that lead content in corrosion layers can reach values up to four times higher than the content determined in the metal surface. Results obtained with the higher energy incident beam from the EDXRF equipment, although referring mainly to the corrosion layers, seem to suffer some influence from the surface composition of the metallic alloy

  4. XPS study on the surface reaction of uranium metal in H2 and H2-CO atmospheres

    International Nuclear Information System (INIS)

    Wang Xiaolin; Fu Yibei; Xie Renshou

    1996-04-01

    The surface reactions of uranium metal in H 2 and H 2 -CO atmospheres and the effects of temperature and CO on the hydriding reaction have been studied by X-ray photoelectron spectroscopy (XPS). The reaction between commercial H 2 and uranium metal at 25 degree C leads mainly to the further oxidation of surface layer of metal due to traces of water vapour. At 200 degree C, it may lead to the hydriding reaction of uranium and the hydriding increases with increasing the exposure of H 2 . Investigation indicates CO inhibits both the hydriding reaction and oxidation on the condition of H 2 -CO atmospheres. (13 refs., 10 figs.)

  5. Lead titanate nanotubes synthesized via ion-exchange method: Characteristics and formation mechanism

    International Nuclear Information System (INIS)

    Song Liang; Cao Lixin; Li Jingyu; Liu Wei; Zhang Fen; Zhu Lin; Su Ge

    2011-01-01

    Highlights: → Lead titanate nanotubes PbTi 3 O 7 were firstly synthesized by ion-exchange method. → Sodium titanate nanotubes have ion exchangeability. → Lead titanate nanotubes show a distinct red shift on absorption edge. - Abstract: A two-step method is presented for the synthesis of one dimensional lead titanate (PbTi 3 O 7 ) nanotubes. Firstly, titanate nanotubes were prepared by an alkaline hydrothermal process with TiO 2 nanopowder as precursor, and then lead titanate nanotubes were formed through an ion-exchange reaction. We found that sodium titanate nanotubes have ion exchangeability with lead ions, while protonated titanate nanotubes have not. For the first time, we distinguished the difference between sodium titanate nanotubes and protonated titanate nanotubes in the ion-exchange process, which reveals a layer space effect of nanotubes in the ion-exchange reaction. In comparison with sodium titanate, the synthesized lead titanate nanotubes show a narrowed bandgap.

  6. A new set of K3Fe3(PO4)4·yH2O (0 ≤ y ≤ 1) layered phases obtained by topotactic reactions

    Science.gov (United States)

    Trad, Khiem; Wattiaux, Alain; Ben Amara, Mongi; Delmas, Claude; Carlier, Dany

    2018-06-01

    K3Fe3(PO4)4·H2O powder was synthesized by Na+/K+ exchange reaction from Na3Fe3(PO4)4 in aqueous medium. The replacement of the sodium cations by the potassium larger ones and water molecules causes a structural distortion leading to P2/n monoclinic K3Fe3(PO4)4·H2O. This new layered phase was characterized by XRD, Mössbauer spectroscopy and magnetic measurements. The study of its thermal stability reveals that other new layered K3Fe3(PO4)4·yH2O with (0 ≤ y ≤ 1) phases can be stabilized up to 600 °C and finally at higher temperature a new K3Fe3(PO4)4 polymorph with a different structural type is irreversibility formed.

  7. Recombination barrier layers in solid-state quantum dot-sensitized solar cells

    KAUST Repository

    Roelofs, Katherine E.

    2012-06-01

    By replacing the dye in the dye-sensitized solar cell design with semiconductor quantum dots as the light-absorbing material, solid-state quantum dot-sensitized solar cells (ss-QDSSCs) were fabricated. Cadmium sulfide quantum dots (QDs) were grown in situ by successive ion layer adsorption and reaction (SILAR). Aluminum oxide recombination barrier layers were deposited by atomic layer deposition (ALD) at the TiO2/hole-conductor interface. For low numbers of ALD cycles, the Al2O3 barrier layer increased open circuit voltage, causing an increase in device efficiency. For thicker Al2O3 barrier layers, photocurrent decreased substantially, leading to a decrease in device efficiency. © 2012 IEEE.

  8. A chip-type thin-layer electrochemical cell coupled with capillary electrophoresis for online separation of electrode reaction products

    Energy Technology Data Exchange (ETDEWEB)

    He, Jian-Bo, E-mail: jbhe@hfut.edu.cn; Cui, Ting; Zhang, Wen-Wen; Deng, Ning

    2013-07-05

    Graphical abstract: -- Highlights: •A new coupling of thin-layer electrolysis with capillary electrophoresis (CE). •Rapid electrolysis, direct sampling followed by online CE separation. •At least 13 products of quercetin oxidation were separated. •Thermodynamic and kinetic parameters were determined from CE peak areas. -- Abstract: A coupling technique of thin-layer electrolysis with high-performance capillary electrophoresis/UV–vis technique(EC/HPCE/UV–vis) is developed for online separation and determination of electrode reaction products. A chip-type thin-layer electrolytic (CTE) cell was designed and fabricated, which contains a capillary channel and a background electrolyte reservoir, allowing rapid electrolysis, direct sampling and online electrophoretic separation. This chip-type setup was characterized based on an electrophoresis expression of Nernst equation that was applied to the redox equilibrium of o-tolidine at different potentials. The utility of the method was demonstrated by separating and determining the electro-oxidation products of quercetin in different pH media. Two main products were always found in the studied time, potential and pH ranges. The variety of products increased not only with increasing potential but also with increasing pH value, and in total, at least 13 products were observed in the electropherograms. This work illustrates a novel example of capillary electrophoresis used online with thin-layer electrolysis to separate and detect electrode reaction products.

  9. A chip-type thin-layer electrochemical cell coupled with capillary electrophoresis for online separation of electrode reaction products

    International Nuclear Information System (INIS)

    He, Jian-Bo; Cui, Ting; Zhang, Wen-Wen; Deng, Ning

    2013-01-01

    Graphical abstract: -- Highlights: •A new coupling of thin-layer electrolysis with capillary electrophoresis (CE). •Rapid electrolysis, direct sampling followed by online CE separation. •At least 13 products of quercetin oxidation were separated. •Thermodynamic and kinetic parameters were determined from CE peak areas. -- Abstract: A coupling technique of thin-layer electrolysis with high-performance capillary electrophoresis/UV–vis technique(EC/HPCE/UV–vis) is developed for online separation and determination of electrode reaction products. A chip-type thin-layer electrolytic (CTE) cell was designed and fabricated, which contains a capillary channel and a background electrolyte reservoir, allowing rapid electrolysis, direct sampling and online electrophoretic separation. This chip-type setup was characterized based on an electrophoresis expression of Nernst equation that was applied to the redox equilibrium of o-tolidine at different potentials. The utility of the method was demonstrated by separating and determining the electro-oxidation products of quercetin in different pH media. Two main products were always found in the studied time, potential and pH ranges. The variety of products increased not only with increasing potential but also with increasing pH value, and in total, at least 13 products were observed in the electropherograms. This work illustrates a novel example of capillary electrophoresis used online with thin-layer electrolysis to separate and detect electrode reaction products

  10. New magnetic materials obtained by ion-exchange reactions from non-magnetic layered perovskites

    International Nuclear Information System (INIS)

    Kageyama, H; Viciu, L; Caruntu, G; Ueda, Y; Wiley, J B

    2004-01-01

    New layered magnetic materials (MCl)Ca 2 Ta 3 O 10 (M = Cu, Fe), have been prepared by ion-exchange reactions of non-magnetic perovskite derivatives, ACa 2 Ta 3 O 10 (A = Rb, Li), in corresponding anhydrous molten salts. Powder x-ray diffraction patterns of the products are successfully indexed assuming tetragonal symmetry with cell dimensions a = 3.829 A and c = 15.533 A for Cu, and a = 3.822 A and c = 15.672 A for Fe. Being separated by the Ca 2 Ta 3 O 10 triple-layer perovskite slabs, the transition-metal chloride (MCl) network provides a two-dimensional magnetic lattice. Magnetic susceptibility measurements show that (CuCl)Ca 2 Ta 3 O 10 is in an antiferromagnetic state below 8 K, while (FeCl)Ca 2 Ta 3 O 10 has two anomalies at 91 and 125 K, suggesting successive phase transitions due to geometrical spin frustration

  11. Recyclization reactions leading to benzimidazoles

    Science.gov (United States)

    Mamedov, Vakhid A.; Murtazina, Anna M.

    2011-05-01

    The published data on the recyclization reactions that afford benzimidazoles are generalized and systematized. Both classical and new methods of benzimidazole synthesis are considered. Attention is focused on the publications over the recent 10-15 years; of the earlier publications, only those unknown to the wide circle of chemists are analyzed.

  12. Recyclization reactions leading to benzimidazoles

    International Nuclear Information System (INIS)

    Mamedov, Vakhid A; Murtazina, Anna M

    2011-01-01

    The published data on the recyclization reactions that afford benzimidazoles are generalized and systematized. Both classical and new methods of benzimidazole synthesis are considered. Attention is focused on the publications over the recent 10-15 years; of the earlier publications, only those unknown to the wide circle of chemists are analyzed.

  13. Fission-product SiC reaction in HTGR fuel

    International Nuclear Information System (INIS)

    Montgomery, F.

    1981-01-01

    The primary barrier to release of fission product from any of the fuel types into the primary circuit of the HTGR are the coatings on the fuel particles. Both pyrolytic carbon and silicon carbide coatings are very effective in retaining fission gases under normal operating conditions. One of the possible performance limitations which has been observed in irradiation tests of TRISO fuel is chemical interaction of the SiC layer with fission products. This reaction reduces the thickness of the SiC layer in TRISO particles and can lead to release of fission products from the particles if the SiC layer is completely penetrated. The experimental section of this report describes the results of work at General Atomic concerning the reaction of fission products with silicon carbide. The discussion section describes data obtained by various laboratories and includes (1) a description of the fission products which have been found to react with SiC; (2) a description of the kinetics of silicon carbide thinning caused by fission product reaction during out-of-pile thermal gradient heating and the application of these kinetics to in-pile irradiation; and (3) a comparison of silicon carbide thinning in LEU and HEU fuels

  14. Ruthenium/Graphene-like Layered Carbon Composite as an Efficient Hydrogen Evolution Reaction Electrocatalyst.

    Science.gov (United States)

    Chen, Zhe; Lu, Jinfeng; Ai, Yuejie; Ji, Yongfei; Adschiri, Tadafumi; Wan, Lijun

    2016-12-28

    Efficient water splitting through electrocatalysis has been studied extensively in modern energy devices, while the development of catalysts with activity and stability comparable to those of Pt is still a great challenge. In this work, we successfully developed a facile route to synthesize graphene-like layered carbon (GLC) from a layered silicate template. The obtained GLC has layered structure similar to that of the template and can be used as support to load ultrasmall Ru nanoparticles on it in supercritical water. The specific structure and surface properties of GLC enable Ru nanoparticles to disperse highly uniformly on it even at a large loading amount (62 wt %). When the novel Ru/GLC was used as catalyst on a glass carbon electrode for hydrogen evolution reaction (HER) in a 0.5 M H 2 SO 4 solution, it exhibits an extremely low onset potential of only 3 mV and a small Tafel slope of 46 mV/decade. The outstanding performance proved that Ru/GLC is highly active catalyst for HER, comparable with transition-metal dichalcogenides or selenides. As the price of ruthenium is much lower than platinum, our study shows that Ru/GLC might be a promising candidate as an HER catalyst in future energy applications.

  15. New hybrid lead iodides: From one-dimensional chain to two-dimensional layered perovskite structure

    International Nuclear Information System (INIS)

    Xiong, Kecai; Liu, Wei; Teat, Simon J.; An, Litao; Wang, Hao; Emge, Thomas J.; Li, Jing

    2015-01-01

    Two new hybrid lead halides (H 2 BDA)[PbI 4 ] (1) (H 2 BDA=1,4-butanediammonium dication) and (HNPEIM)[PbI 3 ] (2) (HNPEIM=N-​phenyl-ethanimidamidine cation) have been synthesized and structurally characterized. X-ray diffraction analyses reveal that compound 1 features a two-dimensional corner-sharing perovskite layer whereas compound 2 contains one-dimensional edge-sharing double chains. The N-​phenyl-ethanimidamidine cation within compound 2 was generated in-situ under solvothermal conditions. The optical absorption spectra collected at room temperature suggest that both compounds are semiconductors having direct band gaps, with estimated values of 2.64 and 2.73 eV for 1 and 2, respectively. Results from the density functional theory (DFT) calculations are consistent with the experimental data. Density of states (DOS) analysis reveals that in both compounds 1 and 2, the energy states in the valence band maximum region are iodine 5p atomic orbitals with a small contribution from lead 6s, while in the region of conduction band minimum, the major contributions are from the inorganic (Pb 6p atomic orbitals) and organic components (C and N 2p atomic orbitals) in compound 1 and 2, respectively. - Graphical abstract: Two new hybrid lead halides built on one-dimensional edge-sharing double chains and two-dimensional corner-sharing perovskite layers are synthesized and their structural and electronic properties are analyzed. - Highlights: • Two new hybrid lead iodides are designed, synthesized, and characterized. • They are closely related to, but different from, perovskite structures. • The electronic properties of both compounds are analyzed by DFT calculations

  16. New hybrid lead iodides: From one-dimensional chain to two-dimensional layered perovskite structure

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Kecai; Liu, Wei [Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 (United States); Teat, Simon J. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); An, Litao; Wang, Hao; Emge, Thomas J. [Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 (United States); Li, Jing, E-mail: jingli@rutgers.edu [Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 (United States)

    2015-10-15

    Two new hybrid lead halides (H{sub 2}BDA)[PbI{sub 4}] (1) (H{sub 2}BDA=1,4-butanediammonium dication) and (HNPEIM)[PbI{sub 3}] (2) (HNPEIM=N-​phenyl-ethanimidamidine cation) have been synthesized and structurally characterized. X-ray diffraction analyses reveal that compound 1 features a two-dimensional corner-sharing perovskite layer whereas compound 2 contains one-dimensional edge-sharing double chains. The N-​phenyl-ethanimidamidine cation within compound 2 was generated in-situ under solvothermal conditions. The optical absorption spectra collected at room temperature suggest that both compounds are semiconductors having direct band gaps, with estimated values of 2.64 and 2.73 eV for 1 and 2, respectively. Results from the density functional theory (DFT) calculations are consistent with the experimental data. Density of states (DOS) analysis reveals that in both compounds 1 and 2, the energy states in the valence band maximum region are iodine 5p atomic orbitals with a small contribution from lead 6s, while in the region of conduction band minimum, the major contributions are from the inorganic (Pb 6p atomic orbitals) and organic components (C and N 2p atomic orbitals) in compound 1 and 2, respectively. - Graphical abstract: Two new hybrid lead halides built on one-dimensional edge-sharing double chains and two-dimensional corner-sharing perovskite layers are synthesized and their structural and electronic properties are analyzed. - Highlights: • Two new hybrid lead iodides are designed, synthesized, and characterized. • They are closely related to, but different from, perovskite structures. • The electronic properties of both compounds are analyzed by DFT calculations.

  17. Centrality in Hadron-Carbon, Hadron-Lead, and Lead-Lead Reactions at 158 GeV/c

    International Nuclear Information System (INIS)

    Rybicki, A.

    2006-08-01

    A study of centrality in p + C, π + C, p + Pb, π + Pb, and Pb + Pb reactions is made. The analysis is performed by means of a simple geometrical model. The mean number of elementary collisions, , is estimated in minimum bias p + C reactions. For the specific case of the carbon nucleus, estimates on appear to depend strongly on assumed nuclear densities. Most realistic of the presented assumptions result in a value of 1.71 ± 0.05. Additional quantities, like predictions for the total inelastic cross-section in p + C reactions, or the number of participants in minimum bias C + C collisions, are given. The analysis is subsequently extended to minimum bias π + C, π + Pb, and p + Pb reactions. Estimates are given for the mean number of elementary collisions as well as for the contribution of single collisions P(1). A comparison with experimental data is made. Finally, the impact parameter dependence of p + Pb and Pb + Pb collisions is discussed. In view of future studies, various aspects of the analysis are discussed in detail; a bibliography of used references is included. (author)

  18. Encaging palladium(0 in layered double hydroxide: A sustainable catalyst for solvent-free and ligand-free Heck reaction in a ball mill

    Directory of Open Access Journals (Sweden)

    Wei Shi

    2017-08-01

    Full Text Available In this paper, the synthesis of a cheap, reusable and ligand-free Pd catalyst supported on MgAl layered double hydroxides (Pd/MgAl-LDHs by co-precipitation and reduction methods is described. The catalyst was used in Heck reactions under high-speed ball milling (HSBM conditions at room temperature. The effects of milling-ball size, milling-ball filling degree, reaction time, rotation speed and grinding auxiliary category, which would influence the yields of mechanochemical Heck reactions, were investigated in detail. The characterization results of XRD, ICP–MS and XPS suggest that Pd/MgAl-LDHs have excellent textural properties with zero-valence Pd on its layers. The reaction results indicate that the catalyst could be utilized in HSBM systems to afford a wide range of Heck coupling products in satisfactory yields. Furthermore, this catalyst could be easily recovered and reused for at least five times without significant loss of catalytic activity.

  19. Hydrothermal syntheses, characterizations and crystal structures of a new lead(II) carboxylate-phosphonate with a double layer structure and a new nickel(II) carboxylate-phosphonate containing a hydrogen-bonded 2D layer with intercalation of ethylenediamines

    International Nuclear Information System (INIS)

    Song, J.-L.; Mao, J.-G.; Sun, Y.-Q.; Zeng, H.-Y.; Kremer, R.K.; Clearfield, Abraham

    2004-01-01

    Hydrothermal reactions of N,N-bis(phosphonomethyl)aminoacetic acid (HO 2 CCH 2 N(CH 2 PO 3 H 2 ) 2 ) with metal(II) salts afforded two new metal carboxylate-phosphonates, namely, Pb 2 [O 2 CCH 2 N(CH 2 PO 3 )(CH 2 PO 3 H)]·H 2 O (1) and {NH 3 CH 2 CH 2 NH 3 }{Ni[O 2 CCH 2 N(CH 2 PO 3 H) 2 ](H 2 O) 2 } 2 (2). Among two unique lead(II) ions in the asymmetric unit of complex 1, one is five coordinated by five phosphonate oxygen atoms from 5 ligands, whereas the other one is five-coordinated by a tridentate chelating ligand (1 N and 2 phosphonate O atoms) and two phosphonate oxygen atoms from two other ligands. The carboxylate group of the ligand remains non-coordinated. The bridging of above two types of lead(II) ions through phosphonate groups resulted in a double layer with the carboxylate group of the ligand as a pendant group. These double layers are further interlinked via hydrogen bonds between the carboxylate groups into a 3D network. The nickel(II) ion in complex 2 is octahedrally coordinated by a tetradentate chelating ligand (two phosphonate oxygen atoms, one nitrogen and one carboxylate oxygen atoms) and two aqua ligands. These {Ni[O 2 CCH 2 N(CH 2 PO 3 H) 2 ][H 2 O] 2 } - anions are further interlinked via hydrogen bonds between non-coordinated phosphonate oxygen atoms to form a hydrogen bonded 2D layer. The 2H-protonated ethylenediamine cations are intercalated between two layers, forming hydrogen bonds with the non-coordinated carboxylate oxygen atoms. Results of magnetic measurements for complex 2 indicate that there is weak Curie-Weiss behavior with θ=-4.4 K indicating predominant antiferromagnetic interaction between the Ni(II) ions. Indication for magnetic low-dimension magnetism could not be detected

  20. Effect of lead on Inconel 600 and Incoloy 800 oxide layers formed in simulated steam generator secondary environments

    International Nuclear Information System (INIS)

    Garcia-Mazario, M.; Lancha, A.M.; Hernandez, M.; Maffiotte, C.

    1996-01-01

    The existence of lead in steam generators, detected during the analysis of deposits in the damaged areas of tubing, supports the hypothesis that lead may contribute to the cracking problems experienced in steam generator tubes. In addition, the harmful effect of lead on Inconel 600 is known not only through laboratory tests but also as a result of operating experience. Operating experience of Incoloy 800 is, however, much more limited and there are very few laboratory studies in this area. Taking into account that thin films formed on metals reflect the interaction between such metals and the aqueous environment and also that incoloy 800 is considered to be a suitable material for new steam generators as a substitute for Inconel 600, attempts to determine the effect of lead on corrosion films are considered useful with a view to better understanding the stress-corrosion-cracking behaviour of these materials. For these reasons the objective of this paper is to gain some insights into the effect of lead on the oxide layers forming on Inconel 600 and Incoloy 800 tested in the laboratory in various aggressive lead-containing environments. Auger electron spectroscopy (AES) and electron spectroscopy for chemical analysis (ESCA) have been used to study the composition of these oxide layers. (orig.)

  1. Numerical simulation of a plane turbulent mixing layer, with applications to isothermal, rapid reactions

    Science.gov (United States)

    Lin, P.; Pratt, D. T.

    1987-01-01

    A hybrid method has been developed for the numerical prediction of turbulent mixing in a spatially-developing, free shear layer. Most significantly, the computation incorporates the effects of large-scale structures, Schmidt number and Reynolds number on mixing, which have been overlooked in the past. In flow field prediction, large-eddy simulation was conducted by a modified 2-D vortex method with subgrid-scale modeling. The predicted mean velocities, shear layer growth rates, Reynolds stresses, and the RMS of longitudinal velocity fluctuations were found to be in good agreement with experiments, although the lateral velocity fluctuations were overpredicted. In scalar transport, the Monte Carlo method was extended to the simulation of the time-dependent pdf transport equation. For the first time, the mixing frequency in Curl's coalescence/dispersion model was estimated by using Broadwell and Breidenthal's theory of micromixing, which involves Schmidt number, Reynolds number and the local vorticity. Numerical tests were performed for a gaseous case and an aqueous case. Evidence that pure freestream fluids are entrained into the layer by large-scale motions was found in the predicted pdf. Mean concentration profiles were found to be insensitive to Schmidt number, while the unmixedness was higher for higher Schmidt number. Applications were made to mixing layers with isothermal, fast reactions. The predicted difference in product thickness of the two cases was in reasonable quantitative agreement with experimental measurements.

  2. Reaction Heterogeneity in LiNi 0.8 Co 0.15 Al 0.05 O 2 Induced by Surface Layer

    Energy Technology Data Exchange (ETDEWEB)

    Grenier, Antonin [X-ray; Liu, Hao [X-ray; Wiaderek, Kamila M. [X-ray; Lebens-Higgins, Zachary W. [Department; Borkiewicz, Olaf J. [X-ray; Piper, Louis F. J. [Department; Chupas, Peter J. [Energy; Chapman, Karena W. [X-ray

    2017-08-15

    Through operando synchrotron powder X-ray diffraction (XRD) analysis of layered transition metal oxide electrodes of composition LiNi0.8Co0.15Al0.05O2 (NCA), we decouple the intrinsic bulk reaction mechanism from surface-induced effects. For identically prepared and cycled electrodes stored in different environments, we demonstrate that the intrinsic bulk reaction for pristine NCA follows solid-solution mechanism, not a two-phase as suggested previously. By combining high resolution powder X-ray diffraction, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and surface sensitive X-ray photoelectron spectroscopy (XPS), we demonstrate that adventitious Li2CO3 forms on the electrode particle surface during exposure to air, through reaction with atmospheric CO2. This surface impedes ionic and electronic transport to the underlying electrode, with progressive erosion of this layer during cycling giving rise to different reaction states in particles with an intact vs an eroded Li2CO3 surface-coating. This reaction heterogeneity, with a bimodal distribution of reaction states, has previously been interpreted as a “two-phase” reaction mechanism for NCA, as an activation step that only occurs during the first cycle. Similar surface layers may impact the reaction mechanism observed in other electrode materials using bulk probes such as operando powder XRD.

  3. The electrochemical transfer reactions and the structure of the iron|oxide layer|electrolyte interface

    International Nuclear Information System (INIS)

    Petrović, Željka; Metikoš-Huković, Mirjana; Babić, Ranko

    2012-01-01

    The thickness, barrier (protecting) and semiconducting properties of the potentiostatically formed oxide films on the pure iron electrode in an aqueous borate buffer solution were investigated by electrochemical quartz crystal nanobalance (EQCN), electrochemical impedance spectroscopy (EIS), and Mott–Schottky (MS) analysis. The thicknesses of the prepassive Fe(II)hydroxide layer (up to monolayer) nucleated on the bare iron surface and the passive Fe(II)/Fe(III) layer (up to 2 nm), deposited on the top of the first one, were determined using in situ gravimetry. Electronic properties of iron prepassive and passive films as well as ionic and electronic transfer reactions at the film|solution interface were discussed on the basis of a band structure model of the surface oxide film and the potential distribution at the interface. The anodic oxide film formation and cathodic decomposition are coupled processes and their reversible inter-conversion is mediated by the availability of free charge carriers on the electrode|solution interface. The structure of the reversible double layer at the iron oxide|solution interface was discussed based on the concept of the specific adsorption of the imidazolium cation on the negatively charged electrode surface at pH > pH pzc .

  4. Development of Streamwise Counter-Rotating Vortices in Flat Plate Boundary Layer Pre-set by Leading Edge Patterns

    KAUST Repository

    Hasheminejad, S.M.; Mitsudharmadi, Hatsari; Winoto, S.H.; Low, H.T.; Lua, K.B.

    2017-01-01

    Development of streamwise counter-rotating vortices induced by leading edge patterns with different pattern shape is investigated using hot-wire anemometry in the boundary layer of a flat plate. A triangular, sinusoidal and notched patterns

  5. Formation of porous surface layers in reaction bonded silicon nitride during processing

    Science.gov (United States)

    Shaw, N. J.; Glasgow, T. K.

    1979-01-01

    Microstructural examination of reaction bonded silicon nitride (RBSN) has shown that there is often a region adjacent to the as-nitrided surfaces that is even more porous than the interior of this already quite porous material. Because this layer of large porosity is considered detrimental to both the strength and oxidation resistance of RBSN, a study was undertaken to determine if its formation could be prevented during processing. All test bars studied were made from a single batch of Si powder which was milled for 4 hours in heptane in a vibratory mill using high density alumina cylinders as the grinding media. After air drying the powder, bars were compacted in a single acting die and hydropressed.

  6. Synthesis and crystal structure of Mg0.5NbO2: An ion-exchange reaction with Mg2+ between trigonal [NbO2]- layers

    Science.gov (United States)

    Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro

    2013-01-01

    A new layered niobate, Mg0.5NbO2, was synthesized from LiNbO2 through a cation-exchange reaction with Mg2+ at 450-550 °C. This is the first example of a topotactic reaction with an aliovalent cation between trigonal [NbO2]- layers. It is proposed to be isostructural with LiNbO2 (space group; P63/mmc) with lattice parameters of a=2.9052(6) Å, c=10.625(15) Å. The lattice parameters and formation energy of Mg0.5NbO2 crystallized in LiNbO2 form and other layered CaNb2O4 one were calculated by density functional theory.

  7. Palladium-catalyzed three-component reaction of N-tosyl hydrazones, isonitriles and amines leading to amidines.

    Science.gov (United States)

    Dai, Qiang; Jiang, Yan; Yu, Jin-Tao; Cheng, Jiang

    2015-12-04

    A palladium-catalyzed three-component reaction between N-tosyl hydrazones, aryl isonitriles and amines was developed, leading to amidines in moderate to good yields. This procedure features the rapid construction of amidine frameworks with high diversity and complexity. Ketenimines serve as intermediates, which encounter nucleophilic attack by amines to produce amidines.

  8. Lead Halide Perovskites as Charge Generation Layers for Electron Mobility Measurement in Organic Semiconductors.

    Science.gov (United States)

    Love, John A; Feuerstein, Markus; Wolff, Christian M; Facchetti, Antonio; Neher, Dieter

    2017-12-06

    Hybrid lead halide perovskites are introduced as charge generation layers (CGLs) for the accurate determination of electron mobilities in thin organic semiconductors. Such hybrid perovskites have become a widely studied photovoltaic material in their own right, for their high efficiencies, ease of processing from solution, strong absorption, and efficient photogeneration of charge. Time-of-flight (ToF) measurements on bilayer samples consisting of the perovskite CGL and an organic semiconductor layer of different thickness are shown to be determined by the carrier motion through the organic material, consistent with the much higher charge carrier mobility in the perovskite. Together with the efficient photon-to-electron conversion in the perovskite, this high mobility imbalance enables electron-only mobility measurement on relatively thin application-relevant organic films, which would not be possible with traditional ToF measurements. This architecture enables electron-selective mobility measurements in single components as well as bulk-heterojunction films as demonstrated in the prototypical polymer/fullerene blends. To further demonstrate the potential of this approach, electron mobilities were measured as a function of electric field and temperature in an only 127 nm thick layer of a prototypical electron-transporting perylene diimide-based polymer, and found to be consistent with an exponential trap distribution of ca. 60 meV. Our study furthermore highlights the importance of high mobility charge transporting layers when designing perovskite solar cells.

  9. Growth of Cu thin films by the successive ionic layer adsorption and reaction (SILAR) method

    International Nuclear Information System (INIS)

    Lindroos, S.; Ruuskanen, T.; Ritala, M.; Leskelae, M.

    2004-01-01

    Copper thin films were grown on reduced indium tin oxide, molybdenum and polymer substrates using successive ionic layer adsorption and reaction (SILAR) method. Copper films were grown sequentially in a controlled way using simple copper salt and basic solution of formaldehyde as precursors. The copper films were polycrystalline with no preferred orientation as characterised by X-ray diffraction. On all substrates, the growth was clearly island growth in the beginning but after the whole surface was covered, the growth was more homogeneous

  10. A successive ionic layer adsorption and reaction (SILAR) method to fabricate a layer-by-layer (LbL) MnO2-reduced graphene oxide assembly for supercapacitor application

    Science.gov (United States)

    Jana, Milan; Saha, Sanjit; Samanta, Pranab; Murmu, Naresh Chandra; Kim, Nam Hoon; Kuila, Tapas; Lee, Joong Hee

    2017-02-01

    A facile, cost effective and additive-free successive ionic layer adsorption and reaction (SILAR) technique is demonstrated to develop layer-by-layer (LbL) assembly of reduced graphene oxide (RGO) and MnO2 (MnO2-RGOSILAR) on a stainless steel current collector, for designing light-weight and small size supercapacitor electrode. The transmission electron microscopy and field emission scanning electron microscopy images shows uniform distribution of RGO and MnO2 in the MnO2-RGOSILAR. The LbL (MnO2-RGOSILAR) demonstrates improved physical and electrochemical properties over the hydrothermally prepared MnO2-RGO (MnO2-RGOHydro). The electrochemical environment of MnO2-RGOSILAR is explained by constant phase element in the high frequency region, and a Warburg element in the low frequency region in the Z-View fitted Nyquist plot. The equivalent circuit of the MnO2-RGOHydro, displays the co-existence of EDL and constant phase element, indicating inhomogeneous distribution of MnO2 and RGO by the hydrothermal technique. An asymmetric supercapacitor device is designed with MnO2-RGOSILAR as positive electrode, and thermally reduced GO (TRGO) as negative electrode. The designed cell exhibits high energy density of ∼88 Wh kg-1, elevated power density of ∼23,200 W kg-1, and ∼79% retention in capacitance after 10,000 charge-discharge cycles.

  11. Photoreactive molecular layers containing aryl ester units: Preparation, UV patterning and post-exposure modification

    Energy Technology Data Exchange (ETDEWEB)

    Hoefler, Thomas [Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 16, A-8010 Graz (Austria); Track, Anna M. [Institute of Solid State Physics, Graz University of Technology, Petersgasse 16/II, A-8010 Graz (Austria); Institute of Physics, University of Graz, Universitaetsplatz 5, A-8010 Graz (Austria); Pacher, Peter [Institute of Solid State Physics, Graz University of Technology, Petersgasse 16/II, A-8010 Graz (Austria); Shen, Quan [Institute of Physics, Montanuniversitaet Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria); Flesch, Heinz-Georg [Institute of Solid State Physics, Graz University of Technology, Petersgasse 16/II, A-8010 Graz (Austria); Hlawacek, Gregor [Institute of Physics, Montanuniversitaet Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria); Koller, Georg; Ramsey, Michael G. [Institute of Physics, University of Graz, Universitaetsplatz 5, A-8010 Graz (Austria); Schennach, Robert; Resel, Roland [Institute of Solid State Physics, Graz University of Technology, Petersgasse 16/II, A-8010 Graz (Austria); Teichert, Christian [Institute of Physics, Montanuniversitaet Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria); Kern, Wolfgang [Institute of Chemistry of Polymers, Montanuniversitaet Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria); Trimmel, Gregor [Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 16, A-8010 Graz (Austria); Griesser, Thomas, E-mail: thomas.griesser@unileoben.ac.at [Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 16, A-8010 Graz (Austria); Institute of Chemistry of Polymers, Montanuniversitaet Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria)

    2010-01-15

    The photolithographic modification of thin functional silane layers provides a versatile and powerful means of fabricating functionalized patterned surfaces which can be applied for tuning inorganic surface properties and for modern immobilisation techniques. In this contribution we present the synthesis of a new functional trichloro organosilane bearing photoreactive aryl ester groups and its application in thin silane layers on silicon oxide surfaces. Whereas the trichlorosilyl group acts as anchoring unit to the inorganic surface, the aryl ester group undergoes the photo-Fries rearrangement to yield hydroxyketones upon irradiation with UV-light of 254 nm which leads to a change in chemical reactivity of the surface. By a subsequent reaction with perfluorobutyryl chloride, the photogenerated hydroxy groups yield the corresponding perfluorinated ester compound, which allows further tuning of surface properties. The layer formation as well as the photoreaction and post-modification reaction was monitored by FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). The thickness of the obtained thin layers was determined by X-ray reflectivity (XRR). Photopatterned surfaces were produced using a contact mask during illumination followed by the post-modification reaction. Friction force microscopy (FFM) revealed the contrast between modified and unmodified regions of the patterned samples.

  12. CdTe deposition by successive ionic layer adsorption and reaction (SILAR) technique onto ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Raul; Delamoreanu, Alexandru; Saidi, Bilel; Ivanova, Valentina [CEA, LETI, MINATEC Campus, 17 Rue des Martyrs, 38054, Grenoble (France); Levy-Clement, Claude [CNRS, Institut de Chimie et des Materiaux de Paris-Est, 94320, Thiais (France)

    2014-09-15

    In this study is reported CdTe deposition by Successive Ionic Layer Adsorption and reaction (SILAR) at room temperature onto ZnO nanowires (NWs). The as-deposited CdTe layer exhibits poor crystalline quality and not well defined optical transition which is probably result of its amorphous nature. The implementation of an annealing step and chemical treatment by CdCl{sub 2} to the classical SILAR technique improved significantly the CdTe film quality. The XRD analysis showed that the as treated layers are crystallized in the cubic zinc blende structure. The full coverage of ZnO nanowires and thickness of the CdTe shell, composed of small crystallites, was confirmed by STEM and TEM analysis. The layer thickness could be controlled by the number of SILAR cycles. The sharper optical transitions for the annealed and CdCl{sub 2} treated heterostructures additionally proves the enhancement of the layer crystalline quality. For comparison CdTe was also deposited by close space sublimation (CSS) method onto ZnO nanowires. It is shown that the SILAR deposited CdTe exhibits equal crystalline and optical properties to that prepared by CSS. These results demonstrate that SILAR technique is more suitable for conformal thin film deposition on nanostructures. CdTe extremely thin film deposited by SILAR method onto ZnO nanowire. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. CdTe deposition by successive ionic layer adsorption and reaction (SILAR) technique onto ZnO nanowires

    International Nuclear Information System (INIS)

    Salazar, Raul; Delamoreanu, Alexandru; Saidi, Bilel; Ivanova, Valentina; Levy-Clement, Claude

    2014-01-01

    In this study is reported CdTe deposition by Successive Ionic Layer Adsorption and reaction (SILAR) at room temperature onto ZnO nanowires (NWs). The as-deposited CdTe layer exhibits poor crystalline quality and not well defined optical transition which is probably result of its amorphous nature. The implementation of an annealing step and chemical treatment by CdCl 2 to the classical SILAR technique improved significantly the CdTe film quality. The XRD analysis showed that the as treated layers are crystallized in the cubic zinc blende structure. The full coverage of ZnO nanowires and thickness of the CdTe shell, composed of small crystallites, was confirmed by STEM and TEM analysis. The layer thickness could be controlled by the number of SILAR cycles. The sharper optical transitions for the annealed and CdCl 2 treated heterostructures additionally proves the enhancement of the layer crystalline quality. For comparison CdTe was also deposited by close space sublimation (CSS) method onto ZnO nanowires. It is shown that the SILAR deposited CdTe exhibits equal crystalline and optical properties to that prepared by CSS. These results demonstrate that SILAR technique is more suitable for conformal thin film deposition on nanostructures. CdTe extremely thin film deposited by SILAR method onto ZnO nanowire. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Enhancement of chitosan-graphene oxide SPR sensor with a multi-metallic layers of Au–Ag–Au nanostructure for lead(II) ion detection

    Energy Technology Data Exchange (ETDEWEB)

    Kamaruddin, Nur Hasiba [Department of Electric, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Bakar, Ahmad Ashrif A., E-mail: ashrif@ukm.edu.my [Department of Electric, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Yaacob, Mohd Hanif; Mahdi, Mohd Adzir [Wireless and Photonic Network Research Centre, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Zan, Mohd Saiful Dzulkefly [Department of Electric, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Shaari, Sahbudin [Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2016-01-15

    Highlights: • Tri-metallic Au–Ag–Au CS-GO SPR sensor was fabricated for the first time. • The tri-metallic nanostructure provided an enhanced evanescent field. • Successful functionalization of the CS-GO sensing layer. • Superior performance for lead(II) ion detection. - Abstract: We demonstrate the enhancement of surface plasmon resonance (SPR) technique by implementing a multi-metallic layers of Au–Ag–Au nanostructure in the chitosan-graphene oxide (CS-GO) SPR sensor for lead(II) ion detection. The performance of the sensor is analyzed via SPR measurements, from which the sensitivity, signal-to-noise ratio and repeatability are determined. The nanostructure layers are characterized using field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). We showed that the proposed structure has increased the shift in the SPR angle up to 3.5° within the range of 0.1–1 ppm due to the enhanced evanescent field at the sensing layer-analyte interface. This sensor also exhibits great repeatability which benefits from the stable multi-metallic nanostructure. The SNR value of 0.92 for 5 ppm lead(II) ion solution and reasonable linearity range up to that concentration shows that the tri-metallic CS-GO SPR sensor gives a good response towards the lead(II) ion solution. The CS-GO SPR sensor is also sensitive to at least a 10{sup −5} change in the refractive index. The results prove that our proposed tri-metallic CS-GO SPR sensor demonstrates a strong performance and reliability for lead(II) ion detection in accordance with the standardized lead safety level for wastewater.

  15. Densification of Ce0.9Gd0.1O1.95 barrier layer by in-situ solid state reaction

    DEFF Research Database (Denmark)

    Ni, De Wei; Esposito, Vincenzo

    2014-01-01

    A novel methodology, called in-situ solid state reaction (SSR), is developed and achieved for the densification of gadolinia doped ceria (CGO) barrier layer (BL) within the solid oxide fuel cell (SOFC) technology. The method is based on the combined use of impregnation technique and a designed two...

  16. Wafer scale lead zirconate titanate film preparation by sol-gel method using stress balance layer

    International Nuclear Information System (INIS)

    Lu Jian; Kobayashi, Takeshi; Yi Zhang; Maeda, Ryutaro; Mihara, Takashi

    2006-01-01

    In this paper, platinum/titanium (Pt/Ti) film was introduced as a residual stress balance layer into wafer scale thick lead zirconate titanate (PZT) film fabrication by sol-gel method. The stress developing in PZT film's bottom electrode as well as in PZT film itself during deposition were analyzed; the wafer curvatures, PZT crystallizations and PZT electric properties before and after using Pt/Ti stress balance layer were studied and compared. It was found that this layer is effective to balance the residual stress in PZT film's bottom electrode induced by thermal expansion coefficient mismatch and Ti diffusion, thus can notably reduce the curvature of 4-in. wafer from - 40.5 μm to - 12.9 μm after PZT film deposition. This stress balance layer was also found effective to avoid the PZT film cracking even when annealed by rapid thermal annealing with heating-rate up to 10.5 deg. C/s. According to X-ray diffraction analysis and electric properties characterization, crack-free uniform 1-μm-thick PZT film with preferred pervoskite (001) orientation, excellent dielectric constant, as high as 1310, and excellent remanent polarization, as high as 39.8 μC/cm 2 , can be obtained on 4-in. wafer

  17. Evaluation of potential reaction mechanisms leading to the formation of coniferyl alcohol α-linkages in lignin: a density functional theory study.

    Science.gov (United States)

    Watts, Heath D; Mohamed, Mohamed Naseer Ali; Kubicki, James D

    2011-12-21

    Five potential reaction mechanisms, each leading to the formation of an α-O-4-linked coniferyl alcohol dimer, and one scheme leading to the formation of a recently proposed free-radical coniferyl alcohol trimer were assessed using density functional theory (DFT) calculations. These potential reaction mechanisms were evaluated using both the calculated Gibbs free energies, to predict the spontaneity of the constituent reactions, and the electron-density mapped Fukui function, to determine the most reactive sites of each intermediate species. The results indicate that each reaction in one of the six mechanisms is thermodynamically favorable to those in the other mechanisms; what is more, the Fukui function for each free radical intermediate corroborates with the thermochemical results for this mechanism. This mechanism proceeds via the formation of two distinct free-radical intermediates, which then react to produce the four α-O-4 stereoisomers.

  18. Analysis of reaction between c+a and -c+a dislocations in GaN layer grown on 4-inch Si(111) substrate with AlGaN/AlN strained layer superlattice by transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, Yoshihiro; Ishikawa, Yukari, E-mail: yukari@jfcc.or.jp [Japan Fine Ceramics Center, Atsuta, Nagoya, 456-8587 (Japan); Watanabe, Arata [Research Center for Nano Devices and Advanced Materials, Nagoya Institute of Technology, Nagoya, 466-8555 (Japan); Miyoshi, Makoto; Egawa, Takashi [Research Center for Nano Devices and Advanced Materials, Nagoya Institute of Technology, Nagoya, 466-8555 (Japan); Innovation Center for Multi-Business of Nitride Semiconductors, Nagoya Institute of Technoloy, Nagoya, 466-8555 (Japan)

    2016-04-15

    The behavior of dislocations in a GaN layer grown on a 4-inch Si(111) substrate with an AlGaN/AlN strained layer superlattice using horizontal metal-organic chemical vapor deposition was observed by transmission electron microscopy. Cross-sectional observation indicated that a drastic decrease in the dislocation density occurred in the GaN layer. The reaction of a dislocation (b=1/3[-211-3]) and anothor dislocation (b =1/3[-2113]) to form one dislocation (b =2/3[-2110]) in the GaN layer was clarified by plan-view observation using weak-beam dark-field and large-angle convergent-beam diffraction methods.

  19. Rapid Synthesis of Lead Oxide Nanorods by One-step Solid-state Chemical Reaction at Room Temperature

    Institute of Scientific and Technical Information of China (English)

    CAO, Ya-Li(曹亚丽); JIA, Dian-Zeng(贾殿赠); LIU, Lang(刘浪); LUO, Jian-Min(骆建敏)

    2004-01-01

    A simple and facile method was reported to synthesize lead oxide nanorods. Nanorods of lead oxide were obtained directly from grinding solid metal salt and sodium hydroxide in agate mortar with the assistance of a suitable nonionic surfactant in only one step, which is different from the result of hydroxide in solution. The product has been characterized by XRD, TEM and SEM. The formation mechanism of rod-like morphology is discussed and the surfactant plays an important soft-template role in modifying the interface of solid-state reaction and according process of rod-formation.

  20. Lightweight, durable lead-acid batteries

    Science.gov (United States)

    Lara-Curzio, Edgar; An, Ke; Kiggans, Jr., James O; Dudney, Nancy J; Contescu, Cristian I; Baker, Frederick S; Armstrong, Beth L

    2013-05-21

    A lightweight, durable lead-acid battery is disclosed. Alternative electrode materials and configurations are used to reduce weight, to increase material utilization and to extend service life. The electrode can include a current collector having a buffer layer in contact with the current collector and an electrochemically active material in contact with the buffer layer. In one form, the buffer layer includes a carbide, and the current collector includes carbon fibers having the buffer layer. The buffer layer can include a carbide and/or a noble metal selected from of gold, silver, tantalum, platinum, palladium and rhodium. When the electrode is to be used in a lead-acid battery, the electrochemically active material is selected from metallic lead (for a negative electrode) or lead peroxide (for a positive electrode).

  1. Pacing Lead-Induced Granuloma in the Atrium: A Foreign Body Reaction to Polyurethane

    Directory of Open Access Journals (Sweden)

    Shinagawa Yoko

    2013-01-01

    Full Text Available We described a case of an 82-year-old male who presented with a granuloma entrapping the polyurethane-coated pacing lead at the site of contact on the atrium. He had been paced for 8 years without symptoms or signs suggestive of an allergic reaction to the pacemaker system and died from thrombosis of the superior mesenteric artery and heart failure. A histological examination of the nodule showed an incidental granuloma with multinucleated giant cells. No granuloma was found in the heart or the lung.

  2. Homoepitaxial growth of a-plane GaN layers by reaction between Ga2O vapor and NH3 gas

    International Nuclear Information System (INIS)

    Sumi, Tomoaki; Taniyama, Yuuki; Takatsu, Hiroaki; Juta, Masami; Kitamoto, Akira; Imade, Mamoru; Yoshimura, Masashi; Mori, Yusuke; Isemura, Masashi

    2015-01-01

    Growth of high-quality a-plane GaN layers was performed by reaction between Ga 2 O vapor and NH 3 gas at a high temperature. Smooth a-plane GaN epitaxial layers were obtained on a-plane GaN seed substrates sliced from thick c-plane GaN crystals. Growth rate increased with increasing Ga 2 O partial pressure. An a-plane GaN layer with a growth rate of 48 μm/h was obtained. The X-ray rocking curve (XRC) measurement showed that the full widths at half maximum (FWHMs) of GaN(112-bar0) with the incident beam parallel and perpendicular to the [0001] direction were 29–43 and 29–42 arcsec, respectively. Secondary ion mass spectrometry (SIMS) measurement revealed that oxygen concentration decreased at a high temperature. These results suggest that growth of a-GaN layers using Ga 2 O vapor and NH 3 gas at a high temperature enables the generation of high-quality crystals. (author)

  3. Study on the properties of leading protons and antiprotons from exclusive anti pp reactions at 32 GeV/c

    International Nuclear Information System (INIS)

    Bogolyubskij, M.Yu.; Borovikov, A.A.; Boos, Eh.G.

    1986-01-01

    The leading properties of protons and antiprotons from the nondiffractive events are studied for p-barp-exclusive reactions at 32 GeV/c. It is found that the relative leading effect of protons and antiprotons does not depend on the final-state multiplicity and that the longitudinal moments of the leading hadrons are uncorrelated, but a significant part of the transverse momentum of a leading hadron is compensated by the transverse momentum of another leading hadron. It is shown that these experimental facts are described well by a statistical jet-independent model but contradict the Lund string-fragmentation model

  4. Studies on neutron production in the interaction of 7.4 GeV protons with extended lead target

    CERN Document Server

    Hashemi-Nezhad, S R; Ochs, M; Wan, J S; Schmidt, T; Langrock, E J; Vater, P; Adam, J; Bamblevskij, V P; Bradnova, V; Gelovani, L K; Kalinnikov, V K; Krivopustov, M I; Kulakov, B A; Sosnin, A N; Perelygin, V P; Pronskikh, V S; Stegailov, V I; Tsoupko-Sitnikov, V M; Modolo, G; Odoj, R; Phlippen, P W; Adloff, J C; Debeauvais, M; Zamani-Valassiadou, M; Dwivedi, K K; Wilson, B

    1999-01-01

    A cylindrical lead target of diameter 8 cm and length 20 cm was irradiated with 7.4 GeV protons along the axis of the cylinder. The lead target was surrounded with a paraffin layer of thickness 6 cm to moderate the neutrons produced in p + Pb reactions. The spatial distribution of the slow and fast neutrons on different surfaces of the moderator were determined using LR 115 2B detectors (through sup 1 sup 0 B(n,alpha) sup 7 Li reactions) and CR39 detectors (through proton recoils) respectively. Such results can be valuable in the studies and design of Accelerator Driven Subcritical Nuclear Reactors and Nuclear Waste Incinerators.

  5. Passivation effects on quantum dots prepared by successive ionic layer adsorption and reaction

    Science.gov (United States)

    Dai, Qilin; Maloney, Scott; Chen, Weimin; Poudyal, Uma; Wang, Wenyong

    2016-06-01

    ZnS is typically used to passivate semiconductor quantum dots (QDs) prepared by the successive ionic layer adsorption and reaction (SILAR) method for solar cell applications, while for colloidal QDs, organic ligands are usually used for this passivation purpose. In this study we utilized oleylamine and oleic acid ligands, besides ZnS, to passivate QDs prepared by the SILAR approach, and investigated their effects on the incident photon-to-current efficiency (IPCE) performance of the solar cells. It was observed that oleylamine passivation decreased device performance, while oleic acid passivation improved the IPCE of the cells. Redshift of the IPCE onset wavelength was also observed after oleic acid coating, which was attributed to the delocalization of excitons in the CdS QDs.

  6. Ab-initio structure determination of novel strontium-containing layered silicate AES-18 synthesized using mechanochemical reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Takuji [AIST Tohoku, Sendai (Japan). Research Center for Compact Chemical System; Ideta, Chiaki; Yamamoto, Katsutoshi [Kitakyushu Univ. (Japan). Faculty of Environmental Engineering

    2013-07-01

    A new strontium-containing layered silicate, alkaline earth-containing silicate (AES)-18 [chemical composition: Si{sub 16}O{sub 24}(OH){sub 16} . {Sr(OH)_2}{sub 8} . (KOH){sub 2}], was synthesized utilizing a mechanochemical reaction in which an admixture of strontium hydroxide, which unfavorably precipitates in conventional syntheses, and a fumed silica (Aerosil) was allowed to react in the solid phase. The crystal structure of AES-18 was elucidated by the charge-flipping method using powder X-ray diffraction data, and the obtained structure was refined by a combination with the Rietveld method and the maximum entropy method (MEM). The structure analyses showed a tetragonal symmetry with a = 0.912738(3) nm, c = 1.628120(8) nm, and the space group P4{sub 2}/mnc. Two silicate layers composed of Q{sup 3} local structure [(-SiO){sub 3}Si-OH], 7-coordinated Sr{sup 2+} cations, and K{sup +} cations were included in a unit cell, and a Sr{sub 4}(OH){sub 17} cluster was formed between adjacent silicate layers. The framework topology of AES-18 containing 4- and 8-Si-membered rings was similar to that of paracelsian.

  7. 57Fe-Mössbauer spectroscopy and electrochemical activities of graphitic layer encapsulated iron electrocatalysts for the oxygen reduction reaction

    DEFF Research Database (Denmark)

    Zhong, Lijie; Frandsen, Cathrine; Mørup, Steen

    2018-01-01

    Graphitic layer encapsulated iron based nanoparticles (G@FeNPs) have recently been disclosed as an interesting type of highly active electrocatalysts for the oxygen reduction reaction (ORR). However, the complex composition of the metal-containing components and their contributions in catalysis r...

  8. Some studies on successive ionic layer adsorption and reaction (SILAR) grown indium sulphide thin films

    International Nuclear Information System (INIS)

    Pathan, H.M.; Lokhande, C.D.; Kulkarni, S.S.; Amalnerkar, D.P.; Seth, T.; Han, Sung-Hwan

    2005-01-01

    Indium sulphide (In 2 S 3 ) thin films were grown on amorphous glass substrate by the successive ionic layer adsorption and reaction (SILAR) method. X-ray diffraction, optical absorption, scanning electron microscopy (SEM) and Rutherford back scattering (RBS) were applied to study the structural, optical, surface morphological and compositional properties of the indium sulphide thin films. Utilization of triethanolamine and hydrazine hydrate complexed indium sulphate and sodium sulphide as precursors resulted in nanocrystalline In 2 S 3 thin film. The optical band gap was found to be 2.7 eV. The film appeared to be smooth and homogeneous from SEM study

  9. The effect of coadsorbed oxygen on the reaction of methanol on Rh(111) and on a rhodium/vanadium surface alloy

    International Nuclear Information System (INIS)

    Schennach, R.; Krenn, G.; Rendulic, K.D.

    2002-01-01

    Full text: Molecular adsorption of methanol can be observed on all transition metal surfaces at low temperatures. Methanol is adsorbed on Rh (111) at 98 K. With increasing methanol exposure first a mono-layer and then multi-layers of methanol are formed at this surface temperature. During heating, desorption of the methanol from physisorbed multi-layers is detected at about 120 K, followed by desorption of methanol from a chemisorbed mono-layer at 170 K. About 50 % of the adsorbed methanol undergoes a dehydrogenation reaction to form hydrogen and carbon monoxide adsorbed on the surface. These reaction products desorb at 300 K and 480 K, respectively. Less than 0.05 monolayers of coadsorbed oxygen increases the amount of methanol that reacts on the surface to about 80 %. Experiments using a Rh/V surface alloy were performed, in order to distinguish between steric and electronic effects in the adsorption and reaction processes. Deposition of 0.3 monolayers of V on the Rh (111) surface leads to the formation of a subsurface alloy, with V atoms in the second atomic layer only. The initial reaction probability was measured as a function of surface temperature and molecular beam energy. A marked difference was found between the two surfaces. On the clean surface methanol adsorption and reaction stops above 198 K, whereas on the alloy surface adsorption and subsequent reaction occurs up to 473 K. The effects of coadsorbed oxygen are similar on both surfaces. The results are discussed in terms of the possible reactions of the adsorbed methanol on the surface. (author)

  10. Controlling successive ionic layer absorption and reaction cycles to optimize silver nanoparticle-induced localized surface plasmon resonance effects on the paper strip

    Science.gov (United States)

    Lee, Jae-Chul; Kim, Wansun; Park, Hun-Kuk; Choi, Samjin

    2017-03-01

    This study investigates why a silver nanoparticle (SNP)-induced surface-enhanced Raman scattering (SERS) paper chip fabricated at low successive ionic layer absorption and reaction (SILAR) cycles leads to a high SERS enhancement factor (7 × 108) with an inferior nanostructure and without generating a hot spot effect. The multi-layered structure of SNPs on cellulose fibers, verified by magnified scanning electron microscopy (SEM) and analyzed by a computational simulation method, was hypothesized as the reason. The pattern of simulated local electric field distribution with respect to the number of SILAR cycles showed good agreement with the experimental Raman intensity, regardless of the wavelength of the excitation laser sources. The simulated enhancement factor at the 785-nm excitation laser source (2.8 × 109) was 2.5 times greater than the experimental enhancement factor (1.1 × 109). A 532-nm excitation laser source exhibited the highest maximum local electric field intensity (1.9 × 1011), particularly at the interparticle gap called a hot spot. The short wavelength led to a strong electric field intensity caused by strong electromagnetic coupling arising from the SNP-induced local surface plasmon resonance (LSPR) effects through high excitation energy. These findings suggest that our paper-based SILAR-fabricated SNP-induced LSPR model is valid for understanding SNP-induced LSPR effects.

  11. Computer-assisted study on the reaction between pyruvate and ylide in the pathway leading to lactyl-ThDP.

    Science.gov (United States)

    Alvarado, Omar; Jaña, Gonzalo; Delgado, Eduardo J

    2012-08-01

    In this study the formation of the lactyl-thiamin diphosphate intermediate (L-ThDP) is addressed using density functional theory calculations at X3LYP/6-31++G(d,p) level of theory. The study includes potential energy surface scans, transition state search, and intrinsic reaction coordinate calculations. Reactivity is analyzed in terms of Fukui functions. The results allow to conclude that the reaction leading to the formation of L-ThDP occurs via a concerted mechanism, and during the nucleophilic attack on the pyruvate molecule, the ylide is in its AP form. The calculated activation barrier for the reaction is 19.2 kcal/mol, in agreement with the experimental reported value.

  12. Two-Dimensional Layered Double Hydroxides for Reactions of Methanation and Methane Reforming in C1 Chemistry.

    Science.gov (United States)

    Li, Panpan; Yu, Feng; Altaf, Naveed; Zhu, Mingyuan; Li, Jiangbing; Dai, Bin; Wang, Qiang

    2018-01-31

    CH₄ as the paramount ingredient of natural gas plays an eminent role in C1 chemistry. CH₄ catalytically converted to syngas is a significant route to transmute methane into high value-added chemicals. Moreover, the CO/CO₂ methanation reaction is one of the potent technologies for CO₂ valorization and the coal-derived natural gas production process. Due to the high thermal stability and high extent of dispersion of metallic particles, two-dimensional mixed metal oxides through calcined layered double hydroxides (LDHs) precursors are considered as the suitable supports or catalysts for both the reaction of methanation and methane reforming. The LDHs displayed compositional flexibility, small crystal sizes, high surface area and excellent basic properties. In this paper, we review previous works of LDHs applied in the reaction of both methanation and methane reforming, focus on the LDH-derived catalysts, which exhibit better catalytic performance and thermal stability than conventional catalysts prepared by impregnation method and also discuss the anti-coke ability and anti-sintering ability of LDH-derived catalysts. We believe that LDH-derived catalysts are promising materials in the heterogeneous catalytic field and provide new insight for the design of advance LDH-derived catalysts worthy of future research.

  13. Blaming for a better future: future orientation and associated intolerance of personal uncertainty lead to harsher reactions toward innocent victims.

    Science.gov (United States)

    Bal, Michèlle; van den Bos, Kees

    2012-07-01

    People are often encouraged to focus on the future and strive for long-term goals. This noted, the authors argue that this future orientation is associated with intolerance of personal uncertainty, as people usually cannot be certain that their efforts will pay off. To be able to tolerate personal uncertainty, people adhere strongly to the belief in a just world, paradoxically resulting in harsher reactions toward innocent victims. In three experiments, the authors show that a future orientation indeed leads to more negative evaluations of an innocent victim (Study 1), enhances intolerance of personal uncertainty (Study 2), and that experiencing personal uncertainty leads to more negative evaluations of a victim (Study 3). So, while a future orientation enables people to strive for long-term goals, it also leads them to be harsher toward innocent victims. One underlying mechanism causing these reactions is intolerance of personal uncertainty, associated with a future orientation.

  14. A nitride-based epitaxial surface layer formed by ammonia treatment of silicene-terminated ZrB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wiggers, F. B., E-mail: F.B.Wiggers@utwente.nl; Van Bui, H.; Schmitz, J.; Kovalgin, A. Y.; Jong, M. P. de [MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede (Netherlands); Friedlein, R.; Yamada-Takamura, Y. [School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292 (Japan)

    2016-04-07

    We present a method for the formation of an epitaxial  surface layer involving B, N, and Si atoms on a ZrB{sub 2}(0001) thin film on Si(111). It has the potential to be an insulating growth template for 2D semiconductors. The chemical reaction of NH{sub 3} molecules with the silicene-terminated ZrB{sub 2}  surface was characterized by synchrotron-based, high-resolution core-level photoelectron spectroscopy and low-energy electron diffraction. In particular, the dissociative chemisorption of NH{sub 3} at 400 °C leads to surface  nitridation, and subsequent annealing up to 830 °C results in a solid phase reaction with the ZrB{sub 2} subsurface layers. In this way, a new nitride-based epitaxial  surface layer is formed with hexagonal symmetry and a single in-plane crystal orientation.

  15. PHYSIOLOGICAL REACTION OF COMMON OSIER (SALIX VIMINIALIS L. VAR. JORR TO THE PRESENCE OF LEAD IN THE SUBSOIL

    Directory of Open Access Journals (Sweden)

    Katarzyna Malinowska

    2015-02-01

    Full Text Available The effect of lead ions of the concentrations within the range of 15–1000 mg∙dm-3 on the physiological reaction of common osier var. Jorr was examined. The content of assimilation pigments, the rate the CO2 assimilation, transpiration, the indices of relative water content and the deficit of water saturation and the content of lead in the nutrient solution. The studied physiological parameters in common osier var. Jorr were differentiated by the rate of lead ions in the nutrient solution. The Jorr variety of common osier was characterised by good values of the determined physiological parameters under stressful conditions at a large accumulation of lead. This suggests that it shows quite a high tolerance to the stress caused by contamination of the subsoil with lead.

  16. Inorganic-Organic Coating via Molecular Layer Deposition Enables Long Life Sodium Metal Anode.

    Science.gov (United States)

    Zhao, Yang; Goncharova, Lyudmila V; Zhang, Qian; Kaghazchi, Payam; Sun, Qian; Lushington, Andrew; Wang, Biqiong; Li, Ruying; Sun, Xueliang

    2017-09-13

    Metallic Na anode is considered as a promising alternative candidate for Na ion batteries (NIBs) and Na metal batteries (NMBs) due to its high specific capacity, and low potential. However, the unstable solid electrolyte interphase layer caused by serious corrosion and reaction in electrolyte will lead to big challenges, including dendrite growth, low Coulombic efficiency and even safety issues. In this paper, we first demonstrate the inorganic-organic coating via advanced molecular layer deposition (alucone) as a protective layer for metallic Na anode. By protecting Na anode with controllable alucone layer, the dendrites and mossy Na formation have been effectively suppressed and the lifetime has been significantly improved. Moreover, the molecular layer deposition alucone coating shows better performances than the atomic layer deposition Al 2 O 3 coating. The novel design of molecular layer deposition protected Na metal anode may bring in new opportunities to the realization of the next-generation high energy-density NIBs and NMBs.

  17. Initial deposition and electron paramagnetic resonance defects characterization of TiO2 films prepared using successive ionic layer adsorption and reaction method

    International Nuclear Information System (INIS)

    Wu Yiyong; Shi Yaping; Xu Xianbin; Sun Chengyue

    2012-01-01

    Successive ionic layer adsorption and reaction (SILAR) technique was considered promisingly to deposit ultra thin titanium dioxide (TiO 2 ) films under ambient condition. In this paper, the growth process, structures and paramagnetic defects of the films were characterized by complementary techniques of atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and electron paramagnetic resonance spectroscopy. The results indicate that on glass substrate the SILAR TiO 2 film nucleates in an island mode within the initial five deposition cycles but grows in a layer-by-layer mode afterwards. The growth rate was measured as 4.6 Å/cycle. In the as-deposited films, a kind of paramagnetic defects is detected at g (2.0029) and it can be attributed to oxygen vacancies. These as-received oxygen vacancies could be annealed out at 473 K. Ultraviolet irradiation on the as-deposited films can also decrease the density of the defects. The relative mechanisms on the phenomenon were discussed in this paper. - Highlights: ► TiO 2 films are deposited on glass at 25 °C by successive ionic layer adsorption and reaction method with a rate of 4.6 Å/cycle. ► The films nucleate in an island mode initially but grow in a layer mode afterwards. ► The SILAR TiO 2 films nucleation period is five cycles. ► Electron paramagnetic resonance spectroscopy shows that TiO 2 films paramagnetic defects are attributed to oxygen vacancies. ► They will decrease by anneal or ultraviolet radiation and form hydroxyl or superoxide radicals.

  18. Multilayer Network Analysis of Nuclear Reactions

    Science.gov (United States)

    Zhu, Liang; Ma, Yu-Gang; Chen, Qu; Han, Ding-Ding

    2016-08-01

    The nuclear reaction network is usually studied via precise calculation of differential equation sets, and much research interest has been focused on the characteristics of nuclides, such as half-life and size limit. In this paper, however, we adopt the methods from both multilayer and reaction networks, and obtain a distinctive view by mapping all the nuclear reactions in JINA REACLIB database into a directed network with 4 layers: neutron, proton, 4He and the remainder. The layer names correspond to reaction types decided by the currency particles consumed. This combined approach reveals that, in the remainder layer, the β-stability has high correlation with node degree difference and overlapping coefficient. Moreover, when reaction rates are considered as node strength, we find that, at lower temperatures, nuclide half-life scales reciprocally with its out-strength. The connection between physical properties and topological characteristics may help to explore the boundary of the nuclide chart.

  19. Reaction diffusion in chromium-zircaloy-2 system

    International Nuclear Information System (INIS)

    Xiang Wenxin; Ying Shihao

    2001-01-01

    Reaction diffusion in the chromium-zircaloy-2 diffusion couples is investigated in the temperature range of 1023 - 1123 K. Scanning electron microscope (SEM) and energy dispersive spectrum (EDS) were used to measure the thickness of the reaction layer and to determine the Zr, Fe and Cr concentration penetrate profile in reaction layer, respectively. The growth kinetics of reaction layer has been studied and the results show that the growth of intermetallic compound is controlled by the process of volume diffusion as the layer growth approximately obeys the parabolic law. Interdiffusion coefficients were calculated using Boltzmann-Matano-Heumann model. Calculated interdiffusion coefficients were compared with those obtained on the condition that Cr dissolves in Zr and merely forms dilute solid solution. The comparison indicates that Cr diffuses in dilute solid solution is five orders of magnitude faster than in Zr(Fe, Cr) 2 intermetallic compound

  20. A novel layered titanoniobate LiTiNbO5: topotactic synthesis and electrochemistry versus lithium.

    Science.gov (United States)

    Colin, J-F; Pralong, V; Caignaert, V; Hervieu, M; Raveau, B

    2006-09-04

    A new layered titanoniobate, LiTiNbO5, an n = 2 member of the A(x)M(2n)O(4n+2) family, has been synthesized using a molten salt reaction between HTiNbO5 and an eutectic "LiOH/LiNO3". This compound crystallizes in the P2(1)/m space group with a = 6.41 A, b = 3.77 A, c = 8.08 A, and beta = 92 degrees . It exhibits |TiNbO5|(infinity) layers similar to HTiNbO5, but differs from the latter by a "parallel configuration" of its |TiNbO6|(infinity) ribbons between the two successive layers. The topotactic character of the reaction suggests that exfoliation plays a prominent role in the synthesis of this new form. This new phase intercalates reversibly 0.8 lithium through a first-order transformation leading to a capacity of 94 mAh/g at a potential of 1.67 V vs Li/Li+.

  1. Calculation of Buildup Factor for Gamma-ray Exposure in Two Layered Shields Made of Water and Lead

    International Nuclear Information System (INIS)

    Al-Saadi, A.H.

    2012-01-01

    The buildup factor for gamma ray exposure is most useful in calculations for biological protective shields.The buildup factors for gamma ray exposure were calculated in tow layered shields consist of water-lead and lead-water up to optical Thickness 20 mean free path (mfp) at gamma ray energies 1, 2 and 6MeV by using kalos's formula.The program has been designed to work at any atomic number of the attenuating medium, photon energy, slab thickness and and the arrangement of materials.The results obtained in this search leading to the buildup factor for gamma ray exposure at energies (1and2MeV) in lead-water were higher than the reverse case,while at energy 6 MeV the effect was opposite.The calculated data were parameterized by an empirical formula as a function of optical thickness of tow materials.The results obtained were in reasonable agreement with a previous work

  2. Passivation Layer and Cathodic Redox Reactions in Sodium-Ion Batteries Probed by HAXPES.

    Science.gov (United States)

    Doubaji, Siham; Philippe, Bertrand; Saadoune, Ismael; Gorgoi, Mihaela; Gustafsson, Torbjorn; Solhy, Abderrahim; Valvo, Mario; Rensmo, Håkan; Edström, Kristina

    2016-01-08

    The cathode material P2-Nax Co2/3 Mn2/9 Ni1/9 O2, which could be used in Na-ion batteries, was investigated through synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES). Nondestructive analysis was made through the electrode/electrolyte interface of the first electrochemical cycle to ensure access to information not only on the active material, but also on the passivation layer formed at the electrode surface and referred to as the solid permeable interface (SPI). This investigation clearly shows the role of the SPI and the complexity of the redox reactions. Cobalt, nickel, and manganese are all electrochemically active upon cycling between 4.5 and 2.0 V; all are in the 4+ state at the end of charging. Reduction to Co(3+), Ni(3+), and Mn(3+) occurs upon discharging and, at low potential, there is partial reversible reduction to Co(2+) and Ni(2+). A thin layer of Na2 CO3 and NaF covers the pristine electrode and reversible dissolution/reformation of these compounds is observed during the first cycle. The salt degradation products in the SPI show a dependence on potential. Phosphates mainly form at the end of the charging cycle (4.5 V), whereas fluorophosphates are produced at the end of discharging (2.0 V). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Investigations on organolead compounds V. Lead---lead bond cleavage reactions of hexaphenyldilead

    NARCIS (Netherlands)

    Willemsens, L.C.; Kerk, G.J.M. van der

    1968-01-01

    It has been shown that a number of nucleophilic and weakly electrophilic reagents (organolithium and organomagnesium compounds, metallic lithium, potassium permanganate, sodium ethoxide, diaryl disulphides, sulphur, ozone, hypochlorous acid and iodine/iodide) selectively cleave the lead---lead bond

  4. Fracture behavior of reaction layers in W and SiC joint system

    International Nuclear Information System (INIS)

    Son, S.J.; Kohyama, A.; Yu, I.K.; Cho, S.

    2007-01-01

    Full text of publication follows: SiC and SiC/SiC composites are considering as attractive structural materials for fusion reactors, because of their excellent physical, chemical and nuclear properties in fusion environments. For the application of these materials to gas-cooled fusion blanket systems, they have to satisfy specific requirements, such as hermeticity and surface features, in addition to baseline thermo-mechanical and irradiation properties. One of the critical issues for a fusion technology is a plasma facing material, which is considered in the connection with joining, heat transfer control and protection from helium gas in high temperature components. Tungsten as a coating material for SiC-based plasma-facing components has excellent advantages, such as a small mismatch in coefficient of thermal expansion, a very low sputtering yield, inherent heat resistance and high thermal conductivity. Therefore, tungsten and its alloys are promising as potential coating materials for divertor and first wall applications. In the present work, by using micron-sized tungsten and nano-SiC powders, W-SiC joints were prepared by simultaneous and sequential hot-pressing process. Various reaction products in the tungsten-SiC system were revealed by microstructural analyses. The interfacial phases and thickness were strongly depended on the temperature and time of hot pressing. The fracture characteristics of the reaction layers determine the robustness of W/SiC systems. Therefore, in this work, fracture behaviors by analyzing the indentation induced cracks in each phase and mechanical properties of W/SiC joints were examined. The most high shear strength was obtained in the joints fabricated at the conditions of 1780 deg. C, 20 MPa, 1 hr holding time. Easy crack extension was confirmed in the region of WC phase. The fracture of 1870 deg. C fabrication samples, which showed comparatively low shear strength, occurred at the wide region of reaction phases (WC+W 5 Si 3 +W

  5. Study of the properties of leading protons and antiprotons produced in p-barp exclusive reactions at 32 GeV/c

    International Nuclear Information System (INIS)

    Bogolyubskii, M.Y.; Boos, E.G.; Borovikov, A.A.

    1986-01-01

    We study the properties of leading protons and antiprotons from nondiffractive events in p-barp exclusive reactions at 32 GeV/c. It is found that the relative leading of protons and antiprotons does not depend on the final-state multiplicity and that the longitudinal momenta of leading hadrons are not correlated, but a significant part of the transverse momentum of a leading hadron is compensated by the transverse momentum of another hadron. It is shown that these experimental data are well described by the statistical model of independent particle emission but contradict the Lund string-fragmentation model

  6. Measurement of activation reaction rate distributions in a lead assembly bombarded with 500-MeV protons

    CERN Document Server

    Takada, H; Sasa, T; Tsujimoto, K; Yasuda, H

    2000-01-01

    Reaction rate distributions of various activation detectors such as the /sup nat/Ni(n, x)/sup 58/Co, /sup 197/Au(n,2n)/sup 196/Au, and /sup 197/Au(n,4n)/sup 194/Au reactions were measured to study the production and the transport of spallation neutrons in a lead assembly bombarded with protons of 500 MeV. The measured data were analyzed with the nucleon-meson transport code NMTC/JAERI combined with the MCNP4A code using the nuclide production cross sections based on the JENDL Dosimetry File and those calculated with the ALICE-F code. It was found that the NMTC/JAERI-MCNP4A calculations agreed well with the experiments for the low-energy-threshold reaction of /sup nat/Ni(n, x)/sup 58/Co. With the increase of threshold energy, however, the calculation underestimated the experiments, especially above 20 MeV. The reason for the disagreement can be attributed to the underestimation of the neutron yield in the tens of mega-electron-volt regions by the NMTC/JAERI code. (32 refs).

  7. Water permeability, hybrid layer long-term integrity and reaction mechanism of a two-step adhesive system.

    Science.gov (United States)

    Grégoire, Geneviève; Dabsie, Firas; Delannée, Mathieu; Akon, Bernadette; Sharrock, Patrick

    2010-07-01

    Our aim was to investigate the reaction mechanism of formation of the hybrid layer by a HEMA-containing self-etch adhesive and to study fluid filtration, contact angle and interfacial ultrastructure by SEM following a 1 year ageing period. Acidic behaviour and chemical interactions between Silorane System Adhesive and dentine were studied by potentiometric titrations, atomic absorption spectroscopy and infrared spectroscopy. The hydrophilicity of the adhesive was evaluated using the sessile drop method and dentine permeability by hydraulic conductance. The morphological study of the dentine/adhesive system interface was conducted using SEM. The Silorane System Adhesive behaved as a multi-acid with several different pK(a) values. When the adhesive was in contact with dentine, the acid was progressively consumed and calcium ions were released. The acrylate substituted phosphonate bound strongly to apatite crystals. The polyacrylic acid copolymer reacted with calcium ions and formed an interpenetrating polymer network (IPN). Water contact angle measurements showed rapid spreading on primer (angles reached 15 degrees at 30s) and larger contact angles when the Silorane bonding layer was added (from over 60 degrees to 44 degrees ). A thick, homogeneous hybrid layer was observed both initially and after 1 year of ageing, with a corresponding hydraulic conductance of -48.50% initially and -52.07% at 12 months. The Silorane System Adhesive is capable of both dissolving calcium ions and binding to apatite surfaces. The results showed the hydrophilicity of the adhesive, which formed an IPN-like hybrid layer that conserved adequate impermeability over a 1-year period. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Leading coordinate analysis of reaction pathways in proton chain transfer: Application to a two-proton transfer model for the green fluorescent protein

    International Nuclear Information System (INIS)

    Wang Sufan; Smith, Sean C.

    2006-01-01

    The 'leading coordinate' approach to computing an approximate reaction pathway, with subsequent determination of the true minimum energy profile, is applied to a two-proton chain transfer model based on the chromophore and its surrounding moieties within the green fluorescent protein (GFP). Using an ab initio quantum chemical method, a number of different relaxed energy profiles are found for several plausible guesses at leading coordinates. The results obtained for different trial leading coordinates are rationalized through the calculation of a two-dimensional relaxed potential energy surface (PES) for the system. Analysis of the 2-D relaxed PES reveals that two of the trial pathways are entirely spurious, while two others contain useful information and can be used to furnish starting points for successful saddle-point searches. Implications for selection of trial leading coordinates in this class of proton chain transfer reactions are discussed, and a simple diagnostic function is proposed for revealing whether or not a relaxed pathway based on a trial leading coordinate is likely to furnish useful information

  9. Study on interfacial reaction between lead-free solders and alternative surface finishes

    International Nuclear Information System (INIS)

    Siti Rabiatul Aisha; Ourdjini, A.; Saliza Osman

    2007-01-01

    This study investigates the interfacial reactions occurring during reflow soldering between Sn-Ag-Cu lead-free solder and two surface finishes: electroless nickel/ immersion gold (ENIG) and immersion silver (IAg). The study focuses on interfacial reactions evolution and growth kinetics of intermetallic compounds (IMC) formed during soldering and isothermal ageing at 150 degree Celsius for up to 2000 hours. Optical and scanning electron microscopy were used to measure IMC thickness and examine the morphology of IMC respectively, whereas the IMC phases were identified by energy dispersive X-ray analysis (EDX). The results showed that the IMC formed on ENIG finish is thinner compared to that formed on IAg finish. For IAg surface finish, Cu 6 Sn 5 IMCs with scallop morphology are formed at the solder/ surface finish interface after reflow while a second IMC, Cu 3 Sn was formed between the copper and Cu 6 Sn 5 IMC after the isothermal ageing treatment. For ENIG surface finish both (Cu,Ni) 6 Sn 5 and (Ni,Cu) 3 Sn 4 are formed after soldering. Isothermal aging of the solder joints formed on ENIG finish was found to have a significant effect on the morphology of the intermetallics by transforming to more spherical and denser morphology in addition to increase i their thickness with increased ageing time. (author)

  10. Atomistic kinetic Monte Carlo study of atomic layer deposition derived from density functional theory.

    Science.gov (United States)

    Shirazi, Mahdi; Elliott, Simon D

    2014-01-30

    To describe the atomic layer deposition (ALD) reactions of HfO2 from Hf(N(CH3)2)4 and H2O, a three-dimensional on-lattice kinetic Monte-Carlo model is developed. In this model, all atomistic reaction pathways in density functional theory (DFT) are implemented as reaction events on the lattice. This contains all steps, from the early stage of adsorption of each ALD precursor, kinetics of the surface protons, interaction between the remaining precursors (steric effect), influence of remaining fragments on adsorption sites (blocking), densification of each ALD precursor, migration of each ALD precursors, and cooperation between the remaining precursors to adsorb H2O (cooperative effect). The essential chemistry of the ALD reactions depends on the local environment at the surface. The coordination number and a neighbor list are used to implement the dependencies. The validity and necessity of the proposed reaction pathways are statistically established at the mesoscale. The formation of one monolayer of precursor fragments is shown at the end of the metal pulse. Adsorption and dissociation of the H2O precursor onto that layer is described, leading to the delivery of oxygen and protons to the surface during the H2O pulse. Through these processes, the remaining precursor fragments desorb from the surface, leaving the surface with bulk-like and OH-terminated HfO2, ready for the next cycle. The migration of the low coordinated remaining precursor fragments is also proposed. This process introduces a slow reordering motion (crawling) at the mesoscale, leading to the smooth and conformal thin film that is characteristic of ALD. Copyright © 2013 Wiley Periodicals, Inc.

  11. Spallation Neutron Spectrum on a Massive Lead/Paraffin Target Irradiated with 1 GeV Protons

    CERN Document Server

    Adam, J; Barashenkov, V S; Brandt, R; Golovatiouk, V M; Kalinnikov, V G; Katovsky, K; Krivopustov, M I; Kumar, V; Kumawat, H; Odoj, R; Pronskikh, V S; Solnyshkin, A A; Stegailov, V I; Tsoupko-Sitnikov, V M; Westmeier, W

    2004-01-01

    The spectra of gamma-ray emitted by decaying residual nuclei, produced by spallation neutrons with (n, xn), (n,xnyp), (n,p), (n,gamma) reactions in activation threshold detectors - namely, ^{209}Bi, ^{197}Au, ^{59}Co, ^{115}In, ^{232}Th, were measured in the Laboratory of Nuclear Problems (LNP), JINR, Dubna, Russia. Spallation neutrons were generated by bombarding a 20 cm long cylindrical lead target, 8 cm in diameter, surrounded by a 6 cm thick layer of paraffin moderator, with a 1 GeV proton beam from the Nuclotron accelerator. Reaction rates and spallation neutron spectrum were measured and compared with CASCADE code calculations.

  12. Subnanometer Ga2O3 tunnelling layer by atomic layer deposition to achieve 1.1 V open-circuit potential in dye-sensitized solar cells.

    Science.gov (United States)

    Chandiran, Aravind Kumar; Tetreault, Nicolas; Humphry-Baker, Robin; Kessler, Florian; Baranoff, Etienne; Yi, Chenyi; Nazeeruddin, Mohammad Khaja; Grätzel, Michael

    2012-08-08

    Herein, we present the first use of a gallium oxide tunnelling layer to significantly reduce electron recombination in dye-sensitized solar cells (DSC). The subnanometer coating is achieved using atomic layer deposition (ALD) and leading to a new DSC record open-circuit potential of 1.1 V with state-of-the-art organic D-π-A sensitizer and cobalt redox mediator. After ALD of only a few angstroms of Ga(2)O(3), the electron back reaction is reduced by more than an order of magnitude, while charge collection efficiency and fill factor are increased by 30% and 15%, respectively. The photogenerated exciton separation processes of electron injection into the TiO(2) conduction band and the hole injection into the electrolyte are characterized in detail.

  13. Effect of Different HTM Layers and Electrical Parameters on ZnO Nanorod-Based Lead-Free Perovskite Solar Cell for High-Efficiency Performance

    Directory of Open Access Journals (Sweden)

    Farhana Anwar

    2017-01-01

    Full Text Available Simulation has been done using SCAPS-1D to examine the efficiency of CH3NH3SnI3-based solar cells including various HTM layers such as spiro-OMeTAD, Cu2O, and CuSCN. ZnO nanorod array has been considered as an ETM layer. Device parameters such as thickness of the CH3NH3SnI3 layer, defect density of interfaces, density of states, and metal work function were studied. For optimum parameters of all three structures, efficiency of 20.21%, 20.23%, and 18.34% has been achieved for spiro-OMeTAD, Cu2O, and CuSCN, respectively. From the simulations, an alternative lead-free perovskite solar cell is introduced with the CH3NH3SnI3 absorber layer, ZnO nanorod ETM layer, and Cu2O HTM layer.

  14. Removal of lead from crude antimony by using NaPo3 as lead elimination reagent

    Directory of Open Access Journals (Sweden)

    Ye L.G.

    2015-01-01

    Full Text Available In order to solve the shortcomings when removing lead from crude antimony in the traditional antimony smelting, a new process was provided using NaPO3 as lead elimination reagent to yield phosphate slag, and it was removed by floating on the surface of the liquid antimony. Reaction mechanism was clarified by using the TG-DTA and XRD techniques and single factor experiments of removal lead from crude antimony were engaged. The results show that PbO and NaPO3 begin endothermic reaction at 863K (590°C, and the reaction mainly form NaPb4(PO43 and NaPbPO4 below 1123K (850°C and above 1123K (850°C, respectively. Sb2O3 and NaPO3 start the reaction at 773K (500°C and generate an antimonic salt compound. The reaction product of the mixture of PbO, Sb2O3 and NaPO3 show that NaPO3 reacted with PbO prior when NaPO3 was insufficient, amorphous antimony glass will be generated only when NaPO3 was adequate. Single factor experiments were taken with NaNO3 as oxidizing agent under argon, effect of reaction time, reaction temperature and dosage of NaPO3 and NaNO3 on smelting results. The average content of lead in refined antimony was 0.05340% and 98.85% of lead were removed under optimal conditions; the content of lead in antimony have meet the requirements of commercial antimony.

  15. Outcome of homogeneous and heterogeneous reactions in Darcy-Forchheimer flow with nonlinear thermal radiation and convective condition

    Science.gov (United States)

    Hayat, T.; Shah, Faisal; Alsaedi, A.; Hussain, Zakir

    The present analysis aims to report the consequences of nonlinear radiation, convective condition and heterogeneous-homogeneous reactions in Darcy-Forchheimer flow over a non-linear stretching sheet with variable thickness. Non-uniform magnetic field and nonuniform heat generation/absorption are accounted. The governing boundary layer partial differential equations are converted into a system of nonlinear ordinary differential equations. The computations are organized and the effects of physical variables such as thickness parameter, power index, Hartman number, inertia and porous parameters, radiation parameter, Biot number, Prandtl number, ratio parameter, heat generation parameter and homogeneous-heterogeneous reaction parameter are investigated. The variations of skin friction coefficient and Nusselt number for different interesting variables are plotted and discussed. It is noticed that Biot number and heat generation variable lead to enhance the temperature distribution. The solutal boundary layer thickness decreases for larger homogeneous variable while reverse trend is seen for heterogeneous reaction.

  16. Low-Speed Wind-Tunnel Investigation of Blowing Boundary-Layer Control on Leading- and Trailing-Edge Flaps of a Large-Scale, Low-Aspect-Ratio, 45 Swept-wing Airplane Configuration

    Science.gov (United States)

    Maki, Ralph L.

    1959-01-01

    Blowing boundary-layer control was applied to the leading- and trailing-edge flaps of a 45 deg sweptback-wing complete model in a full-scale low-speed wind-tunnel study. The principal purpose of the study was to determine the effects of leading-edge flap deflection and boundary-layer control on maximum lift and longitudinal stability. Leading-edge flap deflection alone was sufficient to maintain static longitudinal stability without trailing-edge flaps. However, leading-edge flap blowing was required to maintain longitudinal stability by delaying leading-edge flow separation when trailing-edge flaps were deflected either with or without blowing. Partial-span leading-edge flaps deflected 60 deg with moderate blowing gave the major increase in maximum lift, although higher deflection and additional blowing gave some further increase. Inboard of 0.4 semispan leading-edge flap deflection could be reduced to 40 deg and/or blowing could be omitted with only small loss in maximum lift. Trailing-edge flap lift increments were increased by boundary-layer control for deflections greater than 45 deg. Maximum lift was not increased with deflected trailing-edge flaps with blowing.

  17. Synthesizing new types of ultrathin 2D metal oxide nanosheets via half-successive ion layer adsorption and reaction

    Science.gov (United States)

    Gao, Linjie; Li, Yaguang; Xiao, Mu; Wang, Shufang; Fu, Guangsheng; Wang, Lianzhou

    2017-06-01

    Two-dimensional (2D) metal oxide nanosheets have demonstrated their great potential in a broad range of applications. The existing synthesis strategies are mainly preparing 2D nanosheets from layered and specific transition metal oxides. How to prepare the other types of metal oxides as ultrathin 2D nanosheets remains unsolved, especially for metal oxides containing alkali, alkaline earth metal, and multiple metal elements. Herein, we developed a half-successive ion layer adsorption and reaction (SILAR) method, which could synthesize those types of metal oxides as ultrathin 2D nanosheets. The synthesized 2D metal oxides nanosheets are within 1 nm level thickness and 500 m2 · g-1 level surface area. This method allows us to develop many new types of ultrathin 2D metal oxides nanosheets that have never been prepared before.

  18. Zinc electrodeposition from flowing alkaline zincate solutions: Role of hydrogen evolution reaction

    Science.gov (United States)

    Dundálek, Jan; Šnajdr, Ivo; Libánský, Ondřej; Vrána, Jiří; Pocedič, Jaromír; Mazúr, Petr; Kosek, Juraj

    2017-12-01

    The hydrogen evolution reaction is known as a parasitic reaction during the zinc electrodeposition from alkaline zincate solutions and is thus responsible for current efficiency losses during the electrolysis. Besides that, the rising hydrogen bubbles may cause an extra convection within a diffusion layer, which leads to an enhanced mass transport of zincate ions to an electrode surface. In this work, the mentioned phenomena were studied experimentally in a flow through electrolyzer and the obtained data were subsequently evaluated by mathematical models. The results prove the indisputable influence of the rising hydrogen bubbles on the additional mixing of the diffusion layer, which partially compensates the drop of the current efficiency of the zinc deposition at higher current flows. Moreover, the results show that the current density ratio (i.e., the ratio of an overall current density to a zinc limiting current density) is not suitable for the description of the zinc deposition, because the hydrogen evolution current density is always involved in the overall current density.

  19. Microstructure and wear properties of the electroslag remelting layer reinforced by TiC particles

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The electroslag remelting (ESR) layer reinforced by TiC particles was obtained by electroslag remelting.The microstructure and wear properties of the ESR layer were studied by means of scanning electron microscopy (SEM),X-ray diffraction (XRD),and wear test.The results indicate that TiC particles are synthesized by self-propagating high-temperature synthesis (SHS) reaction during the electroslag remelting process.The size of TiC particles is in the range of 1-10 μm,and the distribution of TiC particles is uniform,from outside to inside of the ESR layer,and the volume fraction and the size of TiC particles decrease gradually.Molten iron and slag flow into porosity due to the SHS process leading to rapid densification and the elimination of porosity in the ESR layer during the ESR process.TiC particles enhance the wear resistance of the ESR layer,whereas CaF2 can improve the high temperature lubricating property of the ESR layer.

  20. Deposition of yttria stabilized zirconia layer for solid oxide fuel cell by chemical vapor infiltration

    International Nuclear Information System (INIS)

    John, John T.; Dubey, Vivekanand; Kain, Vivekanand; Dey, Gautham Kumar; Prakash, Deep

    2011-01-01

    Free energy associated with a chemical reaction can be converted into electricity, if we can split the reaction into an anodic reaction and a cathodic reaction and carry out the reactions in an electrochemical cell using electrodes that will catalyze the reactions. We also have to use a suitable electrolyte, that serves to isolate the chemical species in the two compartments from getting mixed directly but allow an ion produced in one of the reactions to proceed to the other side and complete the reaction. For this reason cracks and porosity are not tolerated in the electrolyte. First generation solid oxide fuel cell (SOFC) uses yttria stabilized zirconia (YSZ) as the electrolyte. In spite of the fact that several solid electrolytes with higher conductivities at lower temperature are being investigated and developed, 8 mol% yttria stabilized zirconia (8YSZ) is considered to be the most favored electrolyte for the SOFC today. The electrolyte should be present as a thin, impervious layer of uniform thickness with good adherence, chemical and mechanical stability, in between the porous cathode and anode. Efforts to produce the 8YSZ coatings on porous lanthanum strontium manganite tubes by electrochemical vapor deposition (ECVD) have met with unexpected difficulties such as impurity pick up and chemical and mechanical instability of the LSM tubes in the ECVD environment. It was also difficult to keep the chemical composition of the YSZ coating at exactly 8 mol% Yttria in zirconia and to control the coating thickness in tight control. These problems were overcome by a two step deposition process where a YSZ layer of required thickness was produced by electrophoretic coating from an acetyl acetone bath at a voltage of 30-300V DC and sintered at 1300 deg C. The resulting porous YSZ layer was made impervious by chemical vapor infiltration (CVI) by the reaction between a mixture of vapors of YCl 3 and ZrCl 4 and steam at 1300 deg C as in the case of ECVD for a short

  1. Modelling and simulation of a direct ethanol fuel cell considering multistep electrochemical reactions, transport processes and mixed potentials

    International Nuclear Information System (INIS)

    Meyer, Marco; Melke, Julia; Gerteisen, Dietmar

    2011-01-01

    Highlights: → A DEFC model considering the mixed potential formation at cathode and anode. → The low cell voltage at open circuit is due to the parasitic reaction of ethanol and oxygen. → Under load, only the parasitic oxidation of ethanol is significant. → Inhibiting the parasitic reactions can approximately double the current density. - Abstract: In this work a one-dimensional mathematical model of a direct ethanol fuel cell (DEFC) is presented. The electrochemical oxidation of ethanol in the catalyst layers is described by several reaction steps leading to surface coverage with adsorbed intermediates (CH 3 CO, CO, CH 3 and OH) and to the final products acetaldehyde, acetic acid and CO 2 . A bifunctional reaction mechanism is assumed for the activation of water on a binary catalyst favouring the further oxidation of adsorbates blocking active catalyst sites. The chemical reactions are highly coupled with the charge and reactant transport. The model accounts for crossover of the reactants through the membrane leading to the phenomenon of cathode and anode mixed potentials due to the parasitic oxidation and reduction of ethanol and oxygen, respectively. Polarisation curves of a DEFC were recorded for various ethanol feed concentrations and were used as reference data for the simulation. Based on one set of model parameters the characteristic of electronic and protonic potential, the relative surface coverage and the parasitic current densities in the catalyst layers were studied.

  2. Joint implementation. Strategic reactions and possible remedies

    International Nuclear Information System (INIS)

    Wirl, F.; Huber, C.; Walker, I.O.

    1998-01-01

    This paper investigates the promising proposal of Joint Implementation (R) to mitigate greenhouse gas emissions. This was ultimately the only concrete outcome of the Conference on Climate Change in Berlin, albeit restricted to a pilot phase. The basic idea, given the public's awareness of global warming, sounds economically plausible: The industrialized countries, the only ones required to stabilize and lower carbon emissions, can search for cheaper reductions of greenhouse gas emissions in developing countries and economies in transition. However, this proposal leads to strategic reactions by developing countries reinforced by the fact that this cheating coincides with the interest of the industrialized country. In short, this proposal will lead to cheating (given asymmetric information) and will thus produce largely faked reductions in emissions. On the constructive side, an efficient mechanism retaining the spirit of JI is derived, which deters strategic reactions. This differs from a usual principal-agent problem through an additional hierarchical layer: a global authority (e.g. Conference of Parties on Climate Change), an industrialized country and a developing country. The unavoidable loss that is even associated with an optimal scheme due to strategic, behavioural reality (the first best optimum is unattainable, except at the top) leads, of course, to much less glamorous predictions in emission reductions. Moreover, the implicit subsidization scheme focuses favours on already 'efficient' partners. 39 refs

  3. Preparation of CdS nanoparticels with spin-coating assisted successive ionic layer reaction and their photoelectrochemical properties

    Directory of Open Access Journals (Sweden)

    Bao SUN

    2017-10-01

    Full Text Available In order to settle the problems in the traditional SILAR method for CdS deposition, such as smaller particles and being difficult to enhance the sensitive layers, an improved spin-coating assisted successive ionic layer reaction method (S-SILR substituted for the traditional SILAR method is used to deposit the CdS nanocrystals. The comparison between the improved and traditional methods is studied after depositing the CdS nanocrystals onto the ZnO nanorod arrays with the two approaches. Different analysis methods, SEM, XRD, UV-vis and the transit photocurrent measurement are conducted to characterize the morphologies and structures of the samples, as well as investigating the light absorption properties, and the photoelectric conversion performance of the electrodes. The results indicate that the CdS nanocrystals photosensitive layers could be totally coated onto the ZnO nanorod arrays more easily by the improved S-SILR method; the light absorption properties and the photoelectric conversion performance of the electrodes prepared by the improved S-SILR method are more excellent compared with those electrodes prepared by the traditional SILAR method. The improvement of the CdS deposition method has certain guiding significance in enhancing the operability of the preparation technology and the photovoltaic performance of the solar cells.

  4. Lead enrichment in different genotypes of rice grains.

    Science.gov (United States)

    Chen, Gang; Sun, Guo-rong; Liu, Ai-ping; Zhou, Wei-dong

    2008-03-01

    Using environmental scanning electron microscopy and X-ray electron probe microanalysis, the lead content was studied in inner and outer surface of rice glume, surface of caryopsis, center of caryopsis, near aleuronic layer and aleuronic layer in 21 genotypes of rice grains. The results showed that the lead content in different part of 21 genotypes of rice grains changed as inner surface of rice glume > aleuronic layer > near aleuronic layer > surface of caryopsis > outer surface of rice glume > center of caryopsis. There were genetic differences in lead enrichment in different genotypes of rice grains, which reflected as the differences of lead content in the same part and different part of rice grains. In different genotypes of rice grains, there were significant non-linear correlations between lead content in the inner surface of rice glume, center of caryopsis, aleuronic layer and that in the other parts of rice grain. The results also indicated that the lead enrichment in the center of caryopsis regulated by glume and aleuronic layer. In addition, in different genotypes of rice grains, there were differences in regulation of lead enrichment among different parts, which changed non-linearly.

  5. Surface layer effects on waste glass corrosion

    International Nuclear Information System (INIS)

    Feng, X.

    1993-01-01

    Water contact subjects waste glass to chemical attack that results in the formation of surface alteration layers. Two principal hypotheses have been advanced concerning the effect of surface alteration layers on continued glass corrosion: (1) they act as a mass transport barrier and (2) they influence the chemical affinity of the glass reaction. In general, transport barrier effects have been found to be less important than affinity effects in the corrosion of most high-level nuclear waste glasses. However, they can be important under some circumstances, for example, in a very alkaline solution, in leachants containing Mg ions, or under conditions where the matrix dissolution rate is very low. The latter suggests that physical barrier effect may affect the long-term glass dissolution rate. Surface layers influence glass reaction affinity through the effects of the altered glass and secondary phases on the solution chemistry. The reaction affinity may be controlled by various precipitates and crystalline phases, amorphous silica phases, gel layer, or all the components of the glass. The surface alteration layers influence radionuclide release mainly through colloid formation, crystalline phase incorporation, and gel layer retention. This paper reviews current understanding and uncertainties

  6. Outcome of homogeneous and heterogeneous reactions in Darcy-Forchheimer flow with nonlinear thermal radiation and convective condition

    Directory of Open Access Journals (Sweden)

    T. Hayat

    Full Text Available The present analysis aims to report the consequences of nonlinear radiation, convective condition and heterogeneous-homogeneous reactions in Darcy-Forchheimer flow over a non-linear stretching sheet with variable thickness. Non-uniform magnetic field and nonuniform heat generation/absorption are accounted. The governing boundary layer partial differential equations are converted into a system of nonlinear ordinary differential equations. The computations are organized and the effects of physical variables such as thickness parameter, power index, Hartman number, inertia and porous parameters, radiation parameter, Biot number, Prandtl number, ratio parameter, heat generation parameter and homogeneous-heterogeneous reaction parameter are investigated. The variations of skin friction coefficient and Nusselt number for different interesting variables are plotted and discussed. It is noticed that Biot number and heat generation variable lead to enhance the temperature distribution. The solutal boundary layer thickness decreases for larger homogeneous variable while reverse trend is seen for heterogeneous reaction. Keywords: Variable sheet thickness, Darcy-Forchheimer flow, Homogeneous-heterogeneous reactions, Power-law surface velocity, Convective condition, Heat generation/absorption, Nonlinear radiation

  7. Synthesis and crystal structure of Mg{sub 0.5}NbO{sub 2}: An ion-exchange reaction with Mg{sup 2+} between trigonal [NbO{sub 2}]{sup -} layers

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Akira, E-mail: amiura@yamanashi.ac.jp [Center for Crystal Science and Technology, University of Yamanashi (Japan); Takei, Takahiro; Kumada, Nobuhiro [Center for Crystal Science and Technology, University of Yamanashi (Japan)

    2013-01-15

    A new layered niobate, Mg{sub 0.5}NbO{sub 2}, was synthesized from LiNbO{sub 2} through a cation-exchange reaction with Mg{sup 2+} at 450-550 Degree-Sign C. This is the first example of a topotactic reaction with an aliovalent cation between trigonal [NbO{sub 2}]{sup -} layers. It is proposed to be isostructural with LiNbO{sub 2} (space group; P6{sub 3}/mmc) with lattice parameters of a=2.9052(6) A, c=10.625(15) A. The lattice parameters and formation energy of Mg{sub 0.5}NbO{sub 2} crystallized in LiNbO{sub 2} form and other layered CaNb{sub 2}O{sub 4} one were calculated by density functional theory. - Graphical abstract: A new layered niobate, Mg{sub 0.5}NbO{sub 2}, was synthesized from LiNbO{sub 2} through a cation-exchange reaction with Mg{sup 2+} at 450-550 Degree-Sign C. It is isostructural with LiNbO{sub 2} with lattice parameters of a=2.9052(6) A, c=10.625(15) A. Mg{sup 2+} are described in spheres located between [NbO{sub 2}]{sup -} trigonal layers and its occupancy is 0.5. Highlights: Black-Right-Pointing-Pointer A new layered niobate, Mg{sub 0.5}NbO{sub 2}, was synthesized from LiNbO{sub 2}. Black-Right-Pointing-Pointer Cation-exchange reaction converted two monovalent Li{sup +} into one divalent Mg{sup 2+} at 450-550 Degree-Sign C. Black-Right-Pointing-Pointer Mg{sub 0.5}NbO{sub 2} was isostructural with LiNbO{sub 2} (space group; P6{sub 3}/mmc). Black-Right-Pointing-Pointer Its lattice parameters were a=2.9052(6) A and c=10.625(15) A. Black-Right-Pointing-Pointer Synthesized Mg{sub 0.5}NbO{sub 2} was calculated to be thermodynamically more favorable.

  8. Initial deposition and electron paramagnetic resonance defects characterization of TiO{sub 2} films prepared using successive ionic layer adsorption and reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yiyong, E-mail: wuyiyong2001@yahoo.com.cn [National Key Laboratory of Materials Behaviors and Evaluation Technology in Space Environments, Harbin Institute of Technology, P.O. 432, Nan gang District, Harbin, 150080 (China); Shi Yaping [National Key Laboratory of Materials Behaviors and Evaluation Technology in Space Environments, Harbin Institute of Technology, P.O. 432, Nan gang District, Harbin, 150080 (China); Harbin University of Commerce, P.O. 493, Song bei District, Harbin, 150028 (China); Xu Xianbin; Sun Chengyue [National Key Laboratory of Materials Behaviors and Evaluation Technology in Space Environments, Harbin Institute of Technology, P.O. 432, Nan gang District, Harbin, 150080 (China)

    2012-06-01

    Successive ionic layer adsorption and reaction (SILAR) technique was considered promisingly to deposit ultra thin titanium dioxide (TiO{sub 2}) films under ambient condition. In this paper, the growth process, structures and paramagnetic defects of the films were characterized by complementary techniques of atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and electron paramagnetic resonance spectroscopy. The results indicate that on glass substrate the SILAR TiO{sub 2} film nucleates in an island mode within the initial five deposition cycles but grows in a layer-by-layer mode afterwards. The growth rate was measured as 4.6 A/cycle. In the as-deposited films, a kind of paramagnetic defects is detected at g (2.0029) and it can be attributed to oxygen vacancies. These as-received oxygen vacancies could be annealed out at 473 K. Ultraviolet irradiation on the as-deposited films can also decrease the density of the defects. The relative mechanisms on the phenomenon were discussed in this paper. - Highlights: Black-Right-Pointing-Pointer TiO{sub 2} films are deposited on glass at 25 Degree-Sign C by successive ionic layer adsorption and reaction method with a rate of 4.6 A/cycle. Black-Right-Pointing-Pointer The films nucleate in an island mode initially but grow in a layer mode afterwards. Black-Right-Pointing-Pointer The SILAR TiO{sub 2} films nucleation period is five cycles. Black-Right-Pointing-Pointer Electron paramagnetic resonance spectroscopy shows that TiO{sub 2} films paramagnetic defects are attributed to oxygen vacancies. Black-Right-Pointing-Pointer They will decrease by anneal or ultraviolet radiation and form hydroxyl or superoxide radicals.

  9. Facile Synthesis of In–Situ Nitrogenated Graphene Decorated by Few–Layer MoS2 for Hydrogen Evolution Reaction

    International Nuclear Information System (INIS)

    Dai, Xiaoping; Li, Zhanzhao; Du, Kangli; Sun, Hui; Yang, Ying; Zhang, Xin; Ma, Xingyu; Wang, Jie

    2015-01-01

    Graphical abstract: In–situ nitrogenated graphene–few layer MoS 2 composites are fabricated by combinating chemical and hydrothermal reduction. The resulting MoS 2 /N–rGO–HA by N 2 H 4 ·H 2 O and NH 3 ·H 2 O as co-reductant exhibits high activity and remarkable stability for hydrogen evolution reaction (HER). The excellent electro-catalytic performance is ascribed to the synergistic effects, confinement effects and highly dispersed MoS 2 nanosheets on N-doping rGO. Display Omitted -- Highlights: • In–situ nitrogenated graphene–few layer MoS 2 composites are fabricated by combinating chemical and hydrothermal co-reduction. • The resulting MoS 2 /N–rGO–HA exhibits high activity and remarkable stability for HER. • The excellent electro-catalytic performance is ascribed to the synergistic effects, confinement effects and highly dispersed MoS 2 nanosheets on N-doping rGO. -- Abstract: A facile one–step synthetic strategy by combinating chemical and hydrothermal reduction of graphene oxide and Mo precursor is proposed to fabricate in–situ nitrogenated graphene–few layer MoS 2 composite (MoS 2 /N–rGO–HA) for hydrogen evolution reaction (HER). The N–doping graphene nanosheets and highly dispersed MoS 2 nanosheets by ammonia and hydrozine as co–reductant have greatly promoted the N content, concentrations of pyridinic and graphitic N, the electron transport in electrodes, and assure high catalytic efficiency. The MoS 2 /N–rGO–HA composite exhibits extremely high activity in acidic solutions with a small onset potential of 100 mV and Tafel slope of 45 mV/dec, as well as a current density about 32.4 mA cm −2 at overpotential about 0.2 V. Moreover, such MoS 2 /N–rGO–HA electroncatalyst also shows an excellent stability during 1000 cycles with negligible loss of the cathodic current. This facile hydrothermal method could provide a promising strategy for the synthesis of in–situ nitrogen–doping graphene sheets and few–layer

  10. Kinetics and Mechanisms of Calcite Reactions with Saline Waters

    Energy Technology Data Exchange (ETDEWEB)

    Gorman, Brian P [Colorado School of Mines, Golden, CO (United States)

    2015-09-02

    Project Description: The general objective of the proposed research is to determine the kinetics and mechanisms of calcite reactions with saline waters over a wide range of saline water composition, pCO2, and modest ranges in T and P. This will be accomplished by studying both reaction rates and solubility from changes in solution chemistry, and making nanoscale observations of calcite precipitate surface morphology and composition at the micro-to-nano-scale to provide an understanding of controlling reaction mechanisms and pathways. The specific objectives necessary to reach the general objective are: a) determination of how pCO2, Ca2+, ionic strength and “foreign” ions influence reaction rates; and b) investigate the influence of these parameters on apparent kinetic solubility from dissolution and precipitation reactions. This information will clearly be central to the construction of reliable reaction-transport models to predict reservoir and formation response to increased CO2 in saline waters. This program was initially collaborative with John Morse at Texas A&M, however his passing shortly after the beginning of this program resulted in abbreviated research time and effort. Summary of Results: Early studies using electron microscopy and spectroscopy indicated that carbonate precipitation from natural seawater (NSW) conditions onto aragonite substrates was mediated by a surface amorphous calcium carbonate layer. It was hypothesized that this ACC layer (observed after < 5days reaction time) was responsible for the abnormal reaction kinetics and also served as a metastable seed layer for growth of epitaxial aragonite. Further studies of the ACC formation mechanism indicated a strong dependence on the Mg concentration in solution. Subsequent studies at shorter times (10 hrs) on calcite substrates and in a wide range of supersaturation conditions did not indicate any ACC layer. Instead, an epitaxial layer by layer

  11. Layer-by-layer deposition of nanostructured CsPbBr3 perovskite thin films

    Science.gov (United States)

    Reshetnikova, A. A.; Matyushkin, L. B.; Andronov, A. A.; Sokolov, V. S.; Aleksandrova, O. A.; Moshnikov, V. A.

    2017-11-01

    Layer-by-layer deposition of nanostructured perovskites cesium lead halide thin films is described. The method of deposition is based on alternate immersion of the substrate in the precursor solutions or colloidal solution of nanocrystals and methyl acetate/lead nitrate solution using the device for deposition of films by SILAR and dip-coating techniques. An example of obtaining a photosensitive structure based on nanostructures of ZnO nanowires and layers of CsBbBr3 nanocrystals is also shown.

  12. Subnanometer Ga 2 O 3 Tunnelling Layer by Atomic Layer Deposition to Achieve 1.1 V Open-Circuit Potential in Dye-Sensitized Solar Cells

    KAUST Repository

    Chandiran, Aravind Kumar

    2012-08-08

    Herein, we present the first use of a gallium oxide tunnelling layer to significantly reduce electron recombination in dye-sensitized solar cells (DSC). The subnanometer coating is achieved using atomic layer deposition (ALD) and leading to a new DSC record open-circuit potential of 1.1 V with state-of-the-art organic D-π-A sensitizer and cobalt redox mediator. After ALD of only a few angstroms of Ga 2O 3, the electron back reaction is reduced by more than an order of magnitude, while charge collection efficiency and fill factor are increased by 30% and 15%, respectively. The photogenerated exciton separation processes of electron injection into the TiO 2 conduction band and the hole injection into the electrolyte are characterized in detail. © 2012 American Chemical Society.

  13. Reactions between monolayer Fe and Si(001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, M; Kobayashi, N; Hayashi, N [Electrotechnical Lab., Tsukuba, Ibaraki (Japan)

    1997-03-01

    Reactions between 1.5 monolayer(ML) Fe deposited on Si(001)-2x1 and -dihydride surfaces were studied in situ by reflection high-energy electron diffraction and time-of-flight ion scattering spectrometry with the use of 25 keV H ions. The reactions between Fe and Si which were successively deposited on Si(001)-dihydride surface were also studied. After the room temperature deposition Fe reacted with Si(001)-2x1 substrate resulting in the formation of polycrystalline Fe5Si3. By annealing to 560-650degC composite heteroepitaxial layer of both type A and type B {beta}-FeSi2 was formed. On the dihydride surface polycrystalline Fe was observed after 1.5ML Fe deposition at room temperature, and reaction between Fe and Si(001)-dihydride surface is not likely at room temperature. We observed 3D rough surface when we deposited only Fe layer on the dihydride surface and annealed above 700degC. The hydrogen termination of Si(001) surface prevents the deposited Fe from diffusing into the substrate below 500degC, however the annealing above 710degC leads to the diffusion. We obtained 2D ordered surface, which showed 3x3 RHEED pattern as referenced to the primitive unreconstructed Si(001) surface net, when we deposited 2.5ML Fe and 5.8ML Si successively onto Si(001)-dihydride surface and annealed to 470degC. (author)

  14. Glaucomatous retinal nerve fiber layer thickness loss is associated with slower reaction times under a divided attention task.

    Science.gov (United States)

    Tatham, Andrew J; Boer, Erwin R; Rosen, Peter N; Della Penna, Mauro; Meira-Freitas, Daniel; Weinreb, Robert N; Zangwill, Linda M; Medeiros, Felipe A

    2014-11-01

    To examine the relationship between glaucomatous structural damage and ability to divide attention during simulated driving. Cross-sectional observational study. Hamilton Glaucoma Center, University of California San Diego. Total of 158 subjects from the Diagnostic Innovations in Glaucoma Study, including 82 with glaucoma and 76 similarly aged controls. Ability to divide attention was investigated by measuring reaction times to peripheral stimuli (at low, medium, or high contrast) while concomitantly performing a central driving task (car following or curve negotiation). All subjects had standard automated perimetry (SAP) and optical coherence tomography was used to measure retinal nerve fiber layer (RNFL) thickness. Cognitive ability was assessed using the Montreal Cognitive Assessment and subjects completed a driving history questionnaire. Reaction times to the driving simulator divided attention task. The mean reaction times to the low-contrast stimulus were 1.05 s and 0.64 s in glaucoma and controls, respectively, during curve negotiation (P divide attention, RNFL thickness measurements provided additional information. Information from structural tests may improve our ability to determine which patients are likely to have problems performing daily activities, such as driving. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Two-layer targets for the D-D reaction

    International Nuclear Information System (INIS)

    Dekhtyar, M.I.; Primenko, G.I.; Strizhak, V.I.

    1980-01-01

    Neutron concentration and neutron output from twolayer loading target during deuteron beam braking in first layer of target is studied theoretically. Struggling effect on neutron output is discussed [ru

  16. Synthesis and characterization of novel Co/Bi-layered double hydroxides and their adsorption performance for lead in aqueous solution

    Directory of Open Access Journals (Sweden)

    Amita Jaiswal

    2017-05-01

    Full Text Available The Co/Bi-layered double hydroxides (Co/Bi-LDH were synthesized by co-precipitation method and used for the removal of lead from aqueous solutions. The Co/Bi-LDH was characterized using X-ray diffraction (XRD, Fourier Transform Infrared spectroscopy (FTIR, Transmission Electron Microscopy (TEM, Selected Area Electron Diffraction (SAED and BET for textural properties. Adsorption of lead solution by Co/Bi-LDH was carried out using batch experiment by mixing the lead solution and the adsorbent. The effects of various parameters such as contact time, pH, adsorbent dosage and initial concentration were investigated. The optimum pH for lead removal was found to be 4 and the optimum time of lead removal was found to be 120 min. The isotherm data were analyzed using Freundlich and Langmuir. The adsorption isotherms can be well described by the Langmuir model with R2 > 0.99. Its adsorption kinetics followed the pseudo-second-order kinetic model. Thermodynamic parameters were also studied. It was found that the synthesized Co/Bi-LDH can reduce the lead concentration and makes it a potential material for the decontamination of lead polluted water.

  17. New layered double hydroxides by prepared by the intercalation of gibbsite

    International Nuclear Information System (INIS)

    Rees, Jennifer R.; Burden, Chloe S.; Fogg, Andrew M.

    2015-01-01

    New layered double hydroxides (LDHs) with the composition [MAl 4 (OH) 12 ]Cl 2 ·1.5H 2 O (M=Co, Ni) have been prepared by reacting gibbsite, γ-Al(OH) 3 , with the appropriate chloride salt in a synthesis in which the water of crystallization is the only solvent present and fully characterized. These LDHs have been shown to undergo facile anion exchange reactions with both organic and inorganic anions at room temperature making them comparable to other LDHs in this respect. Reactions under the same conditions with CuCl 2 ·2H 2 O and ZnCl 2 failed to form the desired LDHs but those with nitrate salts did lead to the formation of the previously reported [MAl 4 (OH) 12 ](NO 3 ) 2 ·1.5H 2 O (M=Co, Ni) compounds. - Graphical abstract: New layered double hydroxides (LDHs) with the composition [MAl 4 (OH) 12 ]Cl 2 ·1.5H 2 O (M=Co, Ni) have been prepared by reacting gibbsite, γ-Al(OH) 3 , with the appropriate chloride salt in a synthesis in which no additional solvent is used and fully characterized. These LDHs have been shown to undergo facile anion exchange reactions with both organic and inorganic anions at room temperature. - Highlights: • Synthesis of new layered double hydroxides, [MAl 4 (OH) 12 ]Cl 2 ·1.5H 2 O (M=Co, Ni). • Demonstration of the anion exchange capacity with both organic and inorganic anions. • Demonstration of the generality of the synthesis for LDHs

  18. Embedding of polyaniline molecules on adhesive tape using successive ionic layer adsorption and reaction (SILAR) technique

    Science.gov (United States)

    Pamatmat, J. K.; Gillado, A. V.; Herrera, M. U.

    2017-05-01

    Polyaniline molecules are embedded on adhesive tape using successive ionic layer adsorption and reaction (SILAR) technique. The infrared spectrum shows the existence of molecular vibrational modes associated with the presence of polyaniline molecules on the sample. With the addition of polyaniline molecules, the conductivity of adhesive tape increases. Surface conductivity increases with number of dipping cycle until it reaches a certain value. Beyond this value, surface conductivity begins to decrease. The surface conductivity of the sample is associated with the connectivity of the embedded polyaniline molecules. The connectivity increases as the number of dipping cycle progresses. Meanwhile, the decrease in surface conductivity is attributed to the eroding of existing embedded structure at higher number of dipping cycle.

  19. Electroless atomic layer deposition

    Science.gov (United States)

    Robinson, David Bruce; Cappillino, Patrick J.; Sheridan, Leah B.; Stickney, John L.; Benson, David M.

    2017-10-31

    A method of electroless atomic layer deposition is described. The method electrolessly generates a layer of sacrificial material on a surface of a first material. The method adds doses of a solution of a second material to the substrate. The method performs a galvanic exchange reaction to oxidize away the layer of the sacrificial material and deposit a layer of the second material on the surface of the first material. The method can be repeated for a plurality of iterations in order to deposit a desired thickness of the second material on the surface of the first material.

  20. Effects of reaction conditions on the emission behaviors of arsenic, cadmium and lead during sewage sludge pyrolysis.

    Science.gov (United States)

    Han, Hengda; Hu, Song; Syed-Hassan, Syed Shatir A; Xiao, Yiming; Wang, Yi; Xu, Jun; Jiang, Long; Su, Sheng; Xiang, Jun

    2017-07-01

    Sewage sludge is an important class of bioresources whose energy content could be exploited using pyrolysis technology. However, some harmful trace elements in sewage sludge can escape easily to the gas phase during pyrolysis, increasing the potential of carcinogenic material emissions to the atmosphere. This study investigates emission characteristics of arsenic, cadmium and lead under different pyrolysis conditions for three different sewage sludge samples. The increased temperature (within 723-1123K) significantly promoted the cadmium and lead emissions, but its influence on arsenic emission was not pronounced. The releasing rate order of the three trace elements is volatile arsenic compounds>cadmium>lead in the beginning of pyrolysis. Fast heating rates promoted the emission of trace elements for the sludge containing the highest amount of ash, but exhibited an opposite effect for other studied samples. Overall, the high ash sludge released the least trace elements almost under all reaction conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Dynamic magnetoelectric effects in bulk and layered composites of cobalt zinc ferrite and lead zirconate titanate

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, G.; Hayes, R.; DeVreugd, C.P. [Oakland University, Physics Department, Rochester, MI (United States); Laletsin, V.M.; Paddubnaya, N. [National Academy of Sciences, Institute of Technical Acoustics, Vitebsk (Belarus)

    2005-02-01

    Low-frequency magnetoelectric (ME) coupling is investigated in bulk samples and multilayers of cobalt zinc ferrite, Co{sub 1-x}Zn{sub x}Fe{sub 2}O{sub 4} (x=0-0.6), and lead zirconate titanate. In bulk samples, the transverse and longitudinal couplings are weak and of equal magnitude. A substantial strengthening of ME interactions is evident in layered structures, with the ME voltage coefficient a factor of 10-30 higher than in bulk samples. Important findings of our studies of layered composites are as follows. (i) The transverse coupling is stronger than the longitudinal coupling. (ii) The strength of ME interactions is dependent on Zn substitution, with a maximum for x=0.4. (iii) A weak coupling exists at the ferromagnetic-piezoelectric interface, as revealed by an analysis of the volume and static magnetic field dependence of ME voltage coefficients. (iv) The interface coupling k increases with Zn substitution and the k versus x profile shows a maximum centered at x=0.4. (v) The Zn-assisted enhancement can be attributed to efficient magneto-mechanical coupling in the ferrite. (orig.)

  2. An experimental investigation of the shear-layer and acoustic sources produced by a leading edge slat

    Science.gov (United States)

    Wilkins, Stephen; Richard, Patrick; Hall, Joseph; Turbulence; Flow Noise Laboratory Team

    2013-11-01

    Leading edge slats are a common addition to airfoils as part of a high lift configuration employed during take-off and landing; the unsteady flow caused by these slats is a major contributor to the overal airframe noise. As the next generation of aircraft seeks to reduce these noise concerns, a better understanding of the sources of aeroacoustic noise generation is sought. Particle Image Velocimetry (PIV) and simultaneous multipoint measurements of the unsteady surface pressure are used herein to investigate the unsteady flow around a leading edge slat coupled with an airfoil for several different configurations and a range of Reynolds numbers (Re = 156 , 000 to Re = 1 . 2 million based on the wing chord). Shear-layer development off the slat cusp and the related unsteady vortex structures are examined in detail to better establish and understand the mechanisms responsible for the generation of aeroacoustic slat noise. The authors are grateful for the support provided by GARDN.

  3. ZnS nanostructured thin-films deposited by successive ionic layer adsorption and reaction

    Science.gov (United States)

    Deshmukh, S. G.; Jariwala, Akshay; Agarwal, Anubha; Patel, Chetna; Panchal, A. K.; Kheraj, Vipul

    2016-04-01

    ZnS thin films were grown on glass substrate using successive ionic layer adsorption and reaction (SILAR) technique at room temperature. Aqueous solutions of ZnCl2 and Na2S were used as precursors. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectroscopy and optical absorption measurements were applied to study the structural, surface morphology and optical properties of as-deposited ZnS thin films. The X-ray diffraction profiles revealed that ZnS thin films consist of crystalline grains with cubic phase. Spherical nano grains of random size and well covered on the glass substrate were observed from FESEM. The average grain size were found to be 77 nm, 100 nm and 124 nm for 20 cycles, 40 cycles and 60 cycles samples respectively. For 60 cycle sample, Raman spectra show two prominent peaks at 554 cm-1 and 1094 cm-1. The optical band gap values were found to be 3.76 eV, 3.72 eV and 3.67 eV for 20 cycle, 40 cycle and 60 cycle samples respectively.

  4. Fabrication and Evaluation of One-Axis Oriented Lead Zirconate Titanate Films Using Metal-Oxide Nanosheet Interface Layer

    Science.gov (United States)

    Minemura, Yoshiki; Nagasaka, Kohei; Kiguchi, Takanori; Konno, Toyohiko J.; Funakubo, Hiroshi; Uchida, Hiroshi

    2013-09-01

    Nanosheet Ca2Nb3O20 (ns-CN) layers with pseudo-perovskite-type crystal configuration were applied on the surface of polycrystalline metal substrates to achieve preferential crystal orientation of Pb(Zr,Ti)O3 (PZT) films for the purpose of enhanced ferroelectricity comparable to that of epitaxial thin films. PZT films with tetragonal symmetry (Zr/Ti=0.40:0.60) were fabricated by chemical solution deposition (CSD) on ns-CN-buffered Inconel 625 and SUS 316L substrates, while ns-CN was applied on the the substrates by dip-coating. The preferential crystal growth on the ns-CN layer can be achieved by favorable lattice matching between (001)/(100)PZT and (001)ns-CN planes. The degree of (001) orientation was increased for PZT films on ns-CN/Inconel 625 and ns-CN/SUS 316L substrates, whereas randomly-oriented PZT films with a lower degree of (001) orientation were grown on bare and Inconel 625 films. Enhanced remanent polarization of 60 µC/cm2 was confirmed for the PZT films on ns-CN/metal substrates, ascribed to the preferential alignment of the polar [001] axis normal to the substrate surface, although it also suffered from higher coercive field above 500 kV/cm caused by PZT/metal interfacial reaction.

  5. A Light-Induced Reaction with Oxygen Leads to Chromophore Decomposition and Irreversible Photobleaching in GFP-Type Proteins.

    Science.gov (United States)

    Grigorenko, Bella L; Nemukhin, Alexander V; Polyakov, Igor V; Khrenova, Maria G; Krylov, Anna I

    2015-04-30

    Photobleaching and photostability of proteins of the green fluorescent protein (GFP) family are crucially important for practical applications of these widely used biomarkers. On the basis of simulations, we propose a mechanism for irreversible bleaching in GFP-type proteins under intense light illumination. The key feature of the mechanism is a photoinduced reaction of the chromophore with molecular oxygen (O2) inside the protein barrel leading to the chromophore's decomposition. Using quantum mechanics/molecular mechanics (QM/MM) modeling we show that a model system comprising the protein-bound Chro(-) and O2 can be excited to an electronic state of the intermolecular charge-transfer (CT) character (Chro(•)···O2(-•)). Once in the CT state, the system undergoes a series of chemical reactions with low activation barriers resulting in the cleavage of the bridging bond between the phenolic and imidazolinone rings and disintegration of the chromophore.

  6. Enhanced relaxation of strained Ge{sub x}Si{sub 1-x} layers induced by Co/Ge{sub x}Si{sub 1-x} thermal reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ridgway, M.C.; Elliman, R.G.; Rao, M.R. [Australian National Univ., Canberra, ACT (Australia); Baribeau, J.M. [National Research Council of Canada, Ottawa, ON (Canada)

    1993-12-31

    Enhanced relaxation of strained Ge{sub x}Si{sub l-x} layers during the formation of CoSi{sub 2} by Co/Ge{sub x}Si{sub 1-x} thermal reaction has been observed. Raman spectroscopy and transmission electron microscopy were used to monitor the extent of relaxation. Possible mechanisms responsible for the enhanced relaxation, including metal-induced dislocation nucleation, chemical and/or structural inhomogeneities at the reacted layer/Ge{sub x}Si{sub 1-x} interface and point defect injection due to silicide formation will be discussed. Also, methodologies for inhibiting relaxation will be presented. 11 refs., 1 fig.

  7. Enhanced relaxation of strained Ge{sub x}Si{sub 1-x} layers induced by Co/Ge{sub x}Si{sub 1-x} thermal reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ridgway, M C; Elliman, R G; Rao, M R [Australian National Univ., Canberra, ACT (Australia); Baribeau, J M [National Research Council of Canada, Ottawa, ON (Canada)

    1994-12-31

    Enhanced relaxation of strained Ge{sub x}Si{sub l-x} layers during the formation of CoSi{sub 2} by Co/Ge{sub x}Si{sub 1-x} thermal reaction has been observed. Raman spectroscopy and transmission electron microscopy were used to monitor the extent of relaxation. Possible mechanisms responsible for the enhanced relaxation, including metal-induced dislocation nucleation, chemical and/or structural inhomogeneities at the reacted layer/Ge{sub x}Si{sub 1-x} interface and point defect injection due to silicide formation will be discussed. Also, methodologies for inhibiting relaxation will be presented. 11 refs., 1 fig.

  8. Forming lead-based anodes

    Energy Technology Data Exchange (ETDEWEB)

    Ogorodnichuk, V I; Voitsekhovich, R I

    1972-01-01

    Lead-based anodes can be produced by forming a layer of lead dioxide by chemical treatment in a solution of sulfuric acid in potassium permanganate at 80 to 100/sup 0/. The solution is mixed by compressed air. (RWR)

  9. Layered materials

    Science.gov (United States)

    Johnson, David; Clarke, Simon; Wiley, John; Koumoto, Kunihito

    2014-06-01

    Layered compounds, materials with a large anisotropy to their bonding, electrical and/or magnetic properties, have been important in the development of solid state chemistry, physics and engineering applications. Layered materials were the initial test bed where chemists developed intercalation chemistry that evolved into the field of topochemical reactions where researchers are able to perform sequential steps to arrive at kinetically stable products that cannot be directly prepared by other approaches. Physicists have used layered compounds to discover and understand novel phenomena made more apparent through reduced dimensionality. The discovery of charge and spin density waves and more recently the remarkable discovery in condensed matter physics of the two-dimensional topological insulating state were discovered in two-dimensional materials. The understanding developed in two-dimensional materials enabled subsequent extension of these and other phenomena into three-dimensional materials. Layered compounds have also been used in many technologies as engineers and scientists used their unique properties to solve challenging technical problems (low temperature ion conduction for batteries, easy shear planes for lubrication in vacuum, edge decorated catalyst sites for catalytic removal of sulfur from oil, etc). The articles that are published in this issue provide an excellent overview of the spectrum of activities that are being pursued, as well as an introduction to some of the most established achievements in the field. Clusters of papers discussing thermoelectric properties, electronic structure and transport properties, growth of single two-dimensional layers, intercalation and more extensive topochemical reactions and the interleaving of two structures to form new materials highlight the breadth of current research in this area. These papers will hopefully serve as a useful guideline for the interested reader to different important aspects in this field and

  10. Reaction of hydroborate anions with liquid hydrogen fluoride

    International Nuclear Information System (INIS)

    Volkov, V.V.; Myakishev, K.G.

    1978-01-01

    The reaction of anhydrous liquid HF with salts of the decahydro-closodecarborate (2) ion B 10 H 10 2- at room temperature or a decreased temperature leads to the formation of complex mixtures of high-molecular boranes with yields of 88 to 92 %. This solid, yellow, nonvolatile product contains traces of B 10 H 14 and B 18 H 22 . The average molecular masses of the borane mixtures obtained are in the range of 438 - 992. The complex composition of the mixtures was confirmed by thin-layer chromatography on silica gel. The IR and NMR spectra of the products are presented. The possible mechanism of the reaction between HF and B 10 H 10 2- with the formation of higher boron hydrides is discussed. Salts of B 12 H 10 2- and B 10 Cl 10 2- do not react with HF; KBF 4 and CsB 9 H 14 are decomposed by HF with the formation of MBF 4

  11. Double Charged Surface Layers in Lead Halide Perovskite Crystals

    KAUST Repository

    Sarmah, Smritakshi P.

    2017-02-01

    Understanding defect chemistry, particularly ion migration, and its significant effect on the surface’s optical and electronic properties is one of the major challenges impeding the development of hybrid perovskite-based devices. Here, using both experimental and theoretical approaches, we demonstrated that the surface layers of the perovskite crystals may acquire a high concentration of positively charged vacancies with the complementary negatively charged halide ions pushed to the surface. This charge separation near the surface generates an electric field that can induce an increase of optical band gap in the surface layers relative to the bulk. We found that the charge separation, electric field, and the amplitude of shift in the bandgap strongly depend on the halides and organic moieties of perovskite crystals. Our findings reveal the peculiarity of surface effects that are currently limiting the applications of perovskite crystals and more importantly explain their origins, thus enabling viable surface passivation strategies to remediate them.

  12. Near-infrared responsive PbS-sensitized photovoltaic photodetectors fabricated by the spin-assisted successive ionic layer adsorption and reaction method

    International Nuclear Information System (INIS)

    Im, Sang Hyuk; Kim, Hi-jung; Seok, Sang Il

    2011-01-01

    A PbS-sensitized photovoltaic photodetector responsive to near-infrared (NIR) light was fabricated by depositing monolayered PbS nanoparticles on a mesoporous TiO 2 (mp-TiO 2 ) film via the spin-assisted successive ionic layer adsorption and reaction (SILAR) method. By adjusting the size and morphology of the PbS nanoparticles through repeated spin-assisted SILAR cycles, the PbS-sensitized photovoltaic photodetector achieved an external quantum efficiency of 9.3% at 1140 nm wavelength and could process signals up to 1 kHz.

  13. Mechanistic interpretation of glass reaction: Input to kinetic model development

    International Nuclear Information System (INIS)

    Bates, J.K.; Ebert, W.L.; Bradley, J.P.; Bourcier, W.L.

    1991-05-01

    Actinide-doped SRL 165 type glass was reacted in J-13 groundwater at 90 degree C for times up to 278 days. The reaction was characterized by both solution and solid analyses. The glass was seen to react nonstoichiometrically with preferred leaching of alkali metals and boron. High resolution electron microscopy revealed the formation of a complex layer structure which became separated from the underlying glass as the reaction progressed. The formation of the layer and its effect on continued glass reaction are discussed with respect to the current model for glass reaction used in the EQ3/6 computer simulation. It is concluded that the layer formed after 278 days is not protective and may eventually become fractured and generate particulates that may be transported by liquid water. 5 refs., 5 figs. , 3 tabs

  14. Host-Guest Engineering of Layered Double Hydroxides towards Efficient Oxygen Evolution Reaction: Recent Advances and Perspectives

    Directory of Open Access Journals (Sweden)

    Jianming Li

    2018-05-01

    Full Text Available Electrochemical water splitting has great potential in the storage of intermittent energy from the sun, wind, or other renewable sources for sustainable clean energy applications. However, the anodic oxygen evolution reaction (OER usually determines the efficiency of practical water electrolysis due to its sluggish four-electron process. Layered double hydroxides (LDHs have attracted increasing attention as one of the ideal and promising electrocatalysts for water oxidation due to their excellent activity, high stability in basic conditions, as well as their earth-abundant compositions. In this review, we discuss the recent progress on LDH-based OER electrocatalysts in terms of active sites, host-guest engineering, and catalytic performances. Moreover, further developments and challenges in developing promising electrocatalysts based on LDHs are discussed from the viewpoint of molecular design and engineering.

  15. Growth of polyaniline nanofibers for supercapacitor applications using successive ionic layer adsorption and reaction (SILAR) method

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, P. R.; Pusawale, S. N.; Shinde, N. M.; Lokhande, C. D. [Shivaji University, Kolhapur (India)

    2014-07-15

    We report the synthesis of polyaniline nanofibers using the successive ionic layer adsorption and reaction (SILAR) method. The structural study shows the amorphous nature of polyaniline. The formation of polyaniline nanofibers has been revealed by scanning electron microscopy (SEM) whereas the confirmation of polyaniline material is obtained from Fourier transform infrared (FT-IR) spectroscopy. A plausible explanation illustrating the growth mechanism is presented. A maximum specific capacitance of 1078 F·g{sup -1} at a scan rate of 5 mV·s{sup -1} is obtained. The charge-discharge behavior shows a maximum specific power of 1.2 kW·kg{sup -1} and specific energy of 64 Wh·kg{sup -1}. The ease of the synthesis and the interesting electrochemical properties indicate that polyaniline nanofibers are promising materials for supercapacitor applications.

  16. Growth of polyaniline nanofibers for supercapacitor applications using successive ionic layer adsorption and reaction (SILAR) method

    International Nuclear Information System (INIS)

    Deshmukh, P. R.; Pusawale, S. N.; Shinde, N. M.; Lokhande, C. D.

    2014-01-01

    We report the synthesis of polyaniline nanofibers using the successive ionic layer adsorption and reaction (SILAR) method. The structural study shows the amorphous nature of polyaniline. The formation of polyaniline nanofibers has been revealed by scanning electron microscopy (SEM) whereas the confirmation of polyaniline material is obtained from Fourier transform infrared (FT-IR) spectroscopy. A plausible explanation illustrating the growth mechanism is presented. A maximum specific capacitance of 1078 F·g -1 at a scan rate of 5 mV·s -1 is obtained. The charge-discharge behavior shows a maximum specific power of 1.2 kW·kg -1 and specific energy of 64 Wh·kg -1 . The ease of the synthesis and the interesting electrochemical properties indicate that polyaniline nanofibers are promising materials for supercapacitor applications.

  17. Experimental flame speed in multi-layered nano-energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Manesh, Navid Amini; Basu, Saptarshi; Kumar, Ranganathan [Department of Mechanical, Material and Aerospace Engineering, University of Central Florida, Orlando, FL (United States)

    2010-03-15

    This paper deals with the reaction of dense Metastable Intermolecular Composite (MIC) materials, which have a higher density than conventional energetic materials. The reaction of a multilayer thin film of aluminum and copper oxide has been studied by varying the substrate material and thicknesses. The in-plane speed of propagation of the reaction was experimentally determined using a time of- flight technique. The experiment shows that the reaction is completely quenched for a silicon substrate having an intervening silica layer of less than 200 nm. The speed of reaction seems to be constant at 40 m/s for silica layers with a thickness greater than 1 {mu}m. Different substrate materials such as glass and photoresist were also used. (author)

  18. Layer-by-Layer Motif Architectures: Programmed Electrochemical Syntheses of Multilayer Mesoporous Metallic Films with Uniformly Sized Pores.

    Science.gov (United States)

    Jiang, Bo; Li, Cuiling; Qian, Huayu; Hossain, Md Shahriar A; Malgras, Victor; Yamauchi, Yusuke

    2017-06-26

    Although multilayer films have been extensively reported, most compositions have been limited to non-catalytically active materials (e.g. polymers, proteins, lipids, or nucleic acids). Herein, we report the preparation of binder-free multilayer metallic mesoporous films with sufficient accessibility for high electrocatalytic activity by using a programmed electrochemical strategy. By precisely tuning the deposition potential and duration, multilayer mesoporous architectures consisting of alternating mesoporous Pd layers and mesoporous PdPt layers with controlled layer thicknesses can be synthesized within a single electrolyte, containing polymeric micelles as soft templates. This novel architecture, combining the advantages of bimetallic alloys, multilayer architectures, and mesoporous structures, exhibits high electrocatalytic activity for both the methanol oxidation reaction (MOR) and the ethanol oxidation reaction (EOR). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Reaction of silanes in supercritical CO2 with TiO2 and Al2O3.

    Science.gov (United States)

    Gu, Wei; Tripp, Carl P

    2006-06-20

    Infrared spectroscopy was used to investigate the reaction of silanes with TiO2 and Al2O3 using supercritical CO2 (Sc-CO2) as a solvent. It was found that contact of Sc-CO2 with TiO2 leads to partial removal of the water layer and to the formation of carbonate, bicarbonate, and carboxylate species on the surface. Although these carbonate species are weakly bound to the TiO2 surface and can be removed by a N2 purge, they poison the surface, resulting in a lower level of reaction of silanes with TiO2. Specifically, the amount of hexamethyldisilazane adsorbed on TiO2 is about 10% of the value obtained when the reaction is performed from the gas phase. This is not unique to TiO2, as the formation of carbonate species also occurs upon contact of Al2O3 with Sc-CO2 and this leads to a lower level of reaction with hexamethyldisilazane. This is in contrast to reactions of silanes on SiO2 where Sc-CO2 has several advantages over conventional gaseous or nonaqueous methods. As a result, caution needs to be applied when using Sc-CO2 as a solvent for silanization reactions on oxides other than SiO2.

  20. Graphene-oxide-supported CuAl and CoAl layered double hydroxides as enhanced catalysts for carbon-carbon coupling via Ullmann reaction

    Science.gov (United States)

    Ahmed, Nesreen S.; Menzel, Robert; Wang, Yifan; Garcia-Gallastegui, Ainara; Bawaked, Salem M.; Obaid, Abdullah Y.; Basahel, Sulaiman N.; Mokhtar, Mohamed

    2017-02-01

    Two efficient catalyst based on CuAl and CoAl layered double hydroxides (LDHs) supported on graphene oxide (GO) for the carbon-carbon coupling (Classic Ullmann Homocoupling Reaction) are reported. The pure and hybrid materials were synthesised by direct precipitation of the LDH nanoparticles onto GO, followed by a chemical, structural and physical characterisation by electron microscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), surface area measurements and X-ray photoelectron spectroscopy (XPS). The GO-supported and unsupported CuAl-LDH and CoAl-LDH hybrids were tested over the Classic Ullman Homocoupling Reaction of iodobenzene. In the current study CuAl- and CoAl-LDHs have shown excellent yields (91% and 98%, respectively) at very short reaction times (25 min). GO provides a light-weight, charge complementary and two-dimensional material that interacts effectively with the 2D LDHs, in turn enhancing the stability of LDH. After 5 re-use cycles, the catalytic activity of the LDH/GO hybrid is up to 2 times higher than for the unsupported LDH.

  1. Preparation and tribological behavior of Cu-nanoparticle polyelectrolyte multilayers obtained by spin-assisted layer-by-layer assembly

    International Nuclear Information System (INIS)

    Yang Guangbin; Geng Zhengang; Ma Hongxia; Wu Zhishen; Zhang Pingyu

    2009-01-01

    Polyelectrolyte multilayers (PEMs) fabricated by spin-assisted layer-by-layer assembly technique were used as nanoreactors for in-situ synthesis Cu nanoparticles. Chemical reaction within the PEMs was initiated by a reaction cycle in which Cu 2+ was absorbed into the polymer-coated substrate and then reduced in NaBH 4 solutions. Repeating the above process resulted in an increase in density of the nanoparticles and further growth in the dimension of the particles initially formed. So, different Cu-nanoparticle polyelectrolyte multilayers were formed in the process. The friction and wear properties of Cu-nanoparticle PEMs formed by different reaction cycles were investigated on a microtribometer against a stainless steel ball. The PEMs reinforced with Cu nanoparticles, prepared under the best preparation conditions, possess good tribological behavior, because of the weakened adhesion between the PEMs and the substrate and decreased mobility of the polymeric chains in the presence of excessive Cu nanoparticles generated at larger reaction cycles

  2. Evidence for leading mesons in anti p sup 4 He reactions at 0. 6 GeV c sup -1 incident momentum

    Energy Technology Data Exchange (ETDEWEB)

    Balestra, F.; Bossolasco, S.; Bussa, M.P.; Busso, L.; Fava, L.; Ferrero, L.; Grasso, A.; Maggiora, A.; Panzieri, D.; Piragino, G.; Piragino, R.; Tosello, F. (Ist. di Fisica Generale ' A. Avogadro' , Univ. of Turin (Italy) INFN, Sezione di Torino (Italy)); Bendiscioli, G.; Filippini, V.; Rotondi, A.; Salvini, P.; Venaglioni, A.; Zenoni, A. (Dipt. di Fisica Nucleare e Teoria, Univ. of Pavia (Italy) INFN, Sezione di Pavia (Italy)); Batusov, Yu.; Bunyatov, S.A.; Falomkin, I.V.; Nichitiu, F.; Pontecorvo, G.B.; Rozhdestvensky, A.M.; Sapozhnikov, M.G.; Tretyak, V.I. (Joint Inst. of Nuclear Research, Dubna (USSR)); Guaraldo, C. (Lab. Nazionali di Frascati dell' INFN (Italy)); Lodi Rizzini, E. (Dipt. di Automazione Industriale, Univ. of Brescia (Italy) INFN, Sezione di Pavia (Italy)); Haatuft, A.; Halsteinslid, A.; Myklebost, K.; Olsen, J.M. (Physics Dept., Univ. of Bergen (Norway)); Breivik, F.O.; Danielsen, K.M.; Jacobsen, T.; Soerensen, S.O. (Inst. of Physics, Univ. of Oslo (Norway))

    1991-01-01

    Leading mesons are seen in anti p {sup 4}He {yields} neutral strange particles at 0.6 GeV c{sup -1} incident momentum. These results differ somewhat from our previous results from anti p Ne-reactions. The concept of an ''effective target'' is useless. (orig.).

  3. Facile synthesis of NaYF4:Yb, Ln/NaYF4:Yb core/shell upconversion nanoparticles via successive ion layer adsorption and one-pot reaction technique

    NARCIS (Netherlands)

    Zeng, Q.; Xue, B.; Zhang, Y.; Wang, D.; Liu, X.; Tu, L.; Zhao, H.; Kong, X.; Zhang, H.

    2013-01-01

    The facile one-pot synthesis of NaYF4:Yb, Ln/NaYF4:Yb core/shell (CS) upconversion nanoparticles (UCNPs) was firstly developed through the successive ion layer adsorption and reaction (SILAR) technique, which represents an attractive alternative to conventional synthesis utilizing the chloride of Ln

  4. Photocatalytic hydrogen production on SOLECTRO {sup registered} titanium dioxide layers. Investigation of reaction processes and of the influence of various reaction parameters; Photokatalytische Wasserstoffgewinnung an SOLECTRO {sup registered} -Titandioxidschichten. Untersuchung der ablaufenden Reaktionsprozesse und des Einflusses verschiedener Reaktionsparameter

    Energy Technology Data Exchange (ETDEWEB)

    Keil, Doreen

    2010-04-14

    The dissertation investigated the reaction processes of photocatalytic hydrogen production on palladium and copper-doped SOLECTRO {sup registered} titanium dioxide layers. Methanol was used as electron donor. [German] In dieser Doktorarbeit werden die ablaufenden Reaktionsprozesse der photokatalytischen Wasserstoffentwicklung an palladium- und kupferbeladenen SOLECTRO {sup registered} -Titandioxidschichten untersucht. Als Elektronendonator wurde Methanol verwendet.

  5. Electrochemical lithium and sodium intercalation into the tantalum-rich layered chalcogenides Ta2Se and Ta2Te3

    International Nuclear Information System (INIS)

    Lavela, P.; Tirado, J.L.

    1999-01-01

    Two-layered tantalum chalcogenides are evaluated as alkali metal intercalation hosts in lithium and sodium electrochemical cells. The metal-rich pseudo-two-dimensional solid Ta 2 Se shows a poor intercalation behaviour. Lithium reacts with the selenide by deintercalating selenium from the blocks of Ta-related b.c.c. structure leading to a collapse of the structure and the formation of tantalum metal. Sodium is reversibly intercalated to a limited extent leading to complex structural changes in the selenide, as revealed by electron diffraction. The two-dimensional telluride Ta 2 Te 3 allows a topotactic intercalation of lithium below 1 F/mol, while a more extended reaction leads to sample amorphization. The better intercalation behaviour of this solid can be related with the one-atom thick metal layer and the van der Waals gap separating tellurium atoms of successive layers. Sodium can be reversibly intercalated into Ta 2 Te 3 in sodium cells which show a good cycling behaviour. Exposure of the intercalated solid to water vapour allows the preparation of hydrated products with a monolayer or a bilayer of water molecules solvating sodium in the interlayer space. (orig.)

  6. ZnS nanostructured thin-films deposited by successive ionic layer adsorption and reaction

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, S. G., E-mail: deshmukhpradyumn@gmail.com; Jariwala, Akshay; Agarwal, Anubha; Patel, Chetna; Kheraj, Vipul, E-mail: vipulkheraj@gmail.com [Department of Applied Physics, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat (India); Panchal, A. K. [Department of Electrical Engineering, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat (India)

    2016-04-13

    ZnS thin films were grown on glass substrate using successive ionic layer adsorption and reaction (SILAR) technique at room temperature. Aqueous solutions of ZnCl{sub 2} and Na{sub 2}S were used as precursors. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectroscopy and optical absorption measurements were applied to study the structural, surface morphology and optical properties of as-deposited ZnS thin films. The X-ray diffraction profiles revealed that ZnS thin films consist of crystalline grains with cubic phase. Spherical nano grains of random size and well covered on the glass substrate were observed from FESEM. The average grain size were found to be 77 nm, 100 nm and 124 nm for 20 cycles, 40 cycles and 60 cycles samples respectively. For 60 cycle sample, Raman spectra show two prominent peaks at 554 cm{sup −1} and 1094 cm{sup −1}. The optical band gap values were found to be 3.76 eV, 3.72 eV and 3.67 eV for 20 cycle, 40 cycle and 60 cycle samples respectively.

  7. New layered double hydroxides by prepared by the intercalation of gibbsite

    Science.gov (United States)

    Rees, Jennifer R.; Burden, Chloe S.; Fogg, Andrew M.

    2015-04-01

    New layered double hydroxides (LDHs) with the composition [MAl4(OH)12]Cl2·1.5H2O (M=Co, Ni) have been prepared by reacting gibbsite, γ-Al(OH)3, with the appropriate chloride salt in a synthesis in which the water of crystallization is the only solvent present and fully characterized. These LDHs have been shown to undergo facile anion exchange reactions with both organic and inorganic anions at room temperature making them comparable to other LDHs in this respect. Reactions under the same conditions with CuCl2·2H2O and ZnCl2 failed to form the desired LDHs but those with nitrate salts did lead to the formation of the previously reported [MAl4(OH)12](NO3)2·1.5H2O (M=Co, Ni) compounds.

  8. Near-infrared responsive PbS-sensitized photovoltaic photodetectors fabricated by the spin-assisted successive ionic layer adsorption and reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Im, Sang Hyuk; Kim, Hi-jung; Seok, Sang Il, E-mail: seoksi@krict.re.kr [KRICT-EPFL Global Research Laboratory, Advanced Materials Division, Korea Research Institute of Chemical Technology, 19 Sinseongno, Yuseong, Daejeon 305-600 (Korea, Republic of)

    2011-09-30

    A PbS-sensitized photovoltaic photodetector responsive to near-infrared (NIR) light was fabricated by depositing monolayered PbS nanoparticles on a mesoporous TiO{sub 2} (mp-TiO{sub 2}) film via the spin-assisted successive ionic layer adsorption and reaction (SILAR) method. By adjusting the size and morphology of the PbS nanoparticles through repeated spin-assisted SILAR cycles, the PbS-sensitized photovoltaic photodetector achieved an external quantum efficiency of 9.3% at 1140 nm wavelength and could process signals up to 1 kHz.

  9. Global effects of double layers

    International Nuclear Information System (INIS)

    Raad, M.A.

    1984-12-01

    Locally the formation of an electrostatic double layer in a current carrying plasma leads to a direct acceleration of particles which may penetrate far into the surrounding medium. The potential across the double layer, giving this acceleration, must be maintained by the external system and is a basic parameter for the local to global coupling. The double layer potential is associated with an electric field parallel to the magnetic field. In general this leads to a magnetohydrodynamic relaxation of the surrounding medium providing the influx of energy which is dissipated by the double layer. The double layer potential is limited as is the maximum possible rate of energy influx. If the global response of the external medium can be represented by an external circuit and if an equivalent circuit element can be found to represent the double layer, for example a negative resistance for intermediate time scales, it is possible to give a description of the dynamics and stability of the whole system. (Author)

  10. US EPA Nonattainment Areas and Designations-Lead (2008 NAAQS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This web service contains the following layers: Lead NAA 2008 NAAQS and Lead NAA Centroids 2008 NAAQS. Full FGDC metadata records for each layer may be found by...

  11. Interfacial Reaction of Sn-Ag-Cu Lead-Free Solder Alloy on Cu: A Review

    Directory of Open Access Journals (Sweden)

    Liu Mei Lee

    2013-01-01

    Full Text Available This paper reviews the function and importance of Sn-Ag-Cu solder alloys in electronics industry and the interfacial reaction of Sn-Ag-Cu/Cu solder joint at various solder forms and solder reflow conditions. The Sn-Ag-Cu solder alloys are examined in bulk and in thin film. It then examines the effect of soldering conditions to the formation of intermetallic compounds such as Cu substrate selection, structural phases, morphology evolution, the growth kinetics, temperature and time is also discussed. Sn-Ag-Cu lead-free solder alloys are the most promising candidate for the replacement of Sn-Pb solders in modern microelectronic technology. Sn-Ag-Cu solders could possibly be considered and adapted in miniaturization technologies. Therefore, this paper should be of great interest to a large selection of electronics interconnect materials, reliability, processes, and assembly community.

  12. Interfacial reaction in cast WC particulate reinforced titanium metal matrix composites coating produced by laser processing

    Science.gov (United States)

    Liu, Dejian; Hu, Peipei; Min, Guoqing

    2015-06-01

    Laser injection of ceramic particle was conducted to produce particulate reinforced metal matrix composites (MMCs) coating on Ti-6Al-4V alloy. Cast WC particle (WCp) was used as injection reinforcement to avoid excessive release of carbon atoms into the melt pool. The interfaces and boundaries between WC and Ti matrix were investigated by electron microscopy study. Compared with single crystal WCp, cast WCp was an appropriate solution to control the reaction products (TiC) in the matrix and the total amount of reaction products was significantly reduced. Irregular-shape reaction layers were formed around cast WCp. The reaction layers consist of a W2C layer and a mixed layer of W and TiC. Such reaction layers are effective in load transfer under an external load.

  13. New layered double hydroxides by prepared by the intercalation of gibbsite

    Energy Technology Data Exchange (ETDEWEB)

    Rees, Jennifer R.; Burden, Chloe S.; Fogg, Andrew M., E-mail: andrewmfogg@hotmail.com

    2015-04-15

    New layered double hydroxides (LDHs) with the composition [MAl{sub 4}(OH){sub 12}]Cl{sub 2}·1.5H{sub 2}O (M=Co, Ni) have been prepared by reacting gibbsite, γ-Al(OH){sub 3}, with the appropriate chloride salt in a synthesis in which the water of crystallization is the only solvent present and fully characterized. These LDHs have been shown to undergo facile anion exchange reactions with both organic and inorganic anions at room temperature making them comparable to other LDHs in this respect. Reactions under the same conditions with CuCl{sub 2}·2H{sub 2}O and ZnCl{sub 2} failed to form the desired LDHs but those with nitrate salts did lead to the formation of the previously reported [MAl{sub 4}(OH){sub 12}](NO{sub 3}){sub 2}·1.5H{sub 2}O (M=Co, Ni) compounds. - Graphical abstract: New layered double hydroxides (LDHs) with the composition [MAl{sub 4}(OH){sub 12}]Cl{sub 2}·1.5H{sub 2}O (M=Co, Ni) have been prepared by reacting gibbsite, γ-Al(OH){sub 3}, with the appropriate chloride salt in a synthesis in which no additional solvent is used and fully characterized. These LDHs have been shown to undergo facile anion exchange reactions with both organic and inorganic anions at room temperature. - Highlights: • Synthesis of new layered double hydroxides, [MAl{sub 4}(OH){sub 12}]Cl{sub 2}·1.5H{sub 2}O (M=Co, Ni). • Demonstration of the anion exchange capacity with both organic and inorganic anions. • Demonstration of the generality of the synthesis for LDHs.

  14. Reaction Hamiltonian and state-to-state description of chemical reactions

    International Nuclear Information System (INIS)

    Ruf, B.A.; Kresin, V.Z.; Lester, W.A. Jr.

    1985-08-01

    A chemical reaction is treated as a quantum transition from reactants to products. A specific reaction Hamiltonian (in second quantization formalism) is introduced. The approach leads to Franck-Condon-like factor, and adiabatic method in the framework of the nuclear motion problems. The influence of reagent vibrational state on the product energy distribution has been studied following the reaction Hamiltonian method. Two different cases (fixed available energy and fixed translational energy) are distinguished. Results for several biomolecular reactions are presented. 40 refs., 5 figs

  15. Simulation of the catalyst layer in PEMFC based on a novel two-phase lattice model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jiejing; Yang Wei; Xu Li [School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072 (China); Wang Yuxin, E-mail: yxwang@tju.edu.cn [School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072 (China)

    2011-08-01

    Highlights: > We propose a novel two phase lattice model of catalyst layer in PEMFC. > The model features a catalyst phase and a mixed ionomer and pores phase. > Transport and electrochemical reaction in the lattice are simulated. > The model enables more accurate results than pore-solid two phase model. > Profiles of oxygen level and reaction rate across catalyst layer vary with cell current. - Abstract: A lattice model of catalyst layer in proton exchange membrane fuel cells (PEMFCs), consisting of randomly distributed catalyst phase (C phase) and mixed ionomer-pore phase (IP phase), was established by means of Monte Carlo method. Transport and electrochemical reactions in the model catalyst layer were calculated. The newly proposed C-IP model was compared with previously established pore-solid two phase model. The variation of oxygen level and reaction rate along the thickness of catalyst layer with cell current was discussed. The effect of ionomer distribution across catalyst layer was studied by comparing profiles of oxygen level, reaction rate and overpotential, as well as corresponding polarization curves.

  16. MgAl-Layered Double Hydroxide Solid Base Catalysts for Henry Reaction: A Green Protocol

    Directory of Open Access Journals (Sweden)

    Magda H. Abdellattif

    2018-03-01

    Full Text Available A series of MgAl-layered double hydroxide (MgAl-HT, the calcined form at 500 °C (MgAlOx, and the rehydrated one at 25 °C (MgAl-HT-RH were synthesized. Physicochemical properties of the catalysts were characterized by X-ray diffraction (XRD and scanning electron microscopy (SEM. Surface area of the as-synthesized, calcined, and rehydrated catalysts was determined by N2 physisorption at −196 °C. CO2 temperature-programmed desorption (CO2-TPD was applied to determine the basic sites of catalysts. The catalytic test reaction was carried out using benzaldehyde and their derivatives with nitromethane and their derivatives. The Henry products (1–15 were obtained in a very good yield using MgAl-HT-RH catalyst either by conventional method at 90 °C in liquid phase or under microwave irradiation method. The mesoporous structure and basic nature of the rehydrated solid catalyst were responsible for its superior catalytic efficiency. The robust nature was determined by using the same catalyst five times, where the product % yield was almost unchanged significantly.

  17. Decolorization of methylene blue in layered manganese oxide suspension with H2O2

    International Nuclear Information System (INIS)

    Zhang Lili; Nie Yulun; Hu Chun; Hu Xuexiang

    2011-01-01

    Highlights: → Layered birnessite-type manganese oxides exhibited a well-crystallized octahedral layer (OL) structure with β-MnOOH, α-MnOOH and γ-Mn 3 O 4 . → The catalyst was highly effective for the decolorization and degradation of methylene blue in the presence of H 2 O 2 at neutral pH. → The 1 O 2 and O 2 · - were the main reactive oxygen species in the reaction. - Abstract: Layered birnessite-type manganese oxides (Na-OL-1) were prepared via a redox reaction involving MnO 4 - and Mn 2+ under markedly alkaline conditions. According to the XRD analysis, the resulting material exhibited a well-crystallized octahedral layer (OL) structure with several different phases, including β-MnOOH, α-MnOOH and γ-Mn 3 O 4 . The catalyst was highly effective for the decolorization and degradation of methylene blue (MB) in the presence of H 2 O 2 at neutral pH. The tested MB was completely decolorized in Na-OL-1 suspension by the fraction dosing of H 2 O 2 (556.5 mM at the beginning and then 183.8 mM at 40 min). Based on the studies of electron spin resonance and the effect of radical scavengers, the 1 O 2 and O 2 · - were the main reactive oxygen species (ROS) in the reaction. It was found that both oxygen and ROS were generated from the decomposition of H 2 O 2 in Na-OL-1 suspension, wherein the decomposition pathways were proposed. The generation of H 2 O 2 in Na-OL-1 suspension at air atmosphere indicated that the existence of multivalent manganese oxides greatly enhanced the interfacial electron transfer, leading to the high activity of Na-OL-1.

  18. Modeling interfacial glass-water reactions: recent advances and current limitations

    International Nuclear Information System (INIS)

    Pierce, Eric M.; Frugier, Pierre; Criscenti, Louise J.; Kwon, Kideok D.; Kerisit, Sebastien N.

    2014-01-01

    Describing the reactions that occur at the glass-water interface and control the development of the altered layer constitutes one of the main scientific challenges impeding existing models from providing accurate radionuclide release estimates. Radionuclide release estimates are a critical component of the safety basis for geologic repositories. The altered layer (i.e., amorphous hydrated surface layer and crystalline reaction products) represents a complex region, both physically and chemically, sandwiched between two distinct boundaries-pristine glass surface at the inner most interface and aqueous solution at the outer most interface. Computational models, spanning different length and timescales, are currently being developed to improve our understanding of this complex and dynamic process with the goal of accurately describing the mesoscale changes that occur as the system evolves. These modeling approaches include geochemical simulations (i.e., classical reaction path simulations and glass reactivity in allowance for alteration layer simulations), Monte Carlo simulations, and molecular dynamics methods. Discussed in this manuscript are the advances and limitations of each modeling approach placed in the context of the glass-water reaction and how collectively these approaches provide insights into the mechanisms that control the formation and evolution of altered layers. New results are presented as examples of each approach. (authors)

  19. Layered growth of aligned carbon nanotube arrays by pyrolysis

    International Nuclear Information System (INIS)

    Zhang Hongrui; Liang Erjun; Ding Pei; Chao Mingju

    2003-01-01

    Based on the study of reaction temperature and duration of the growth of aligned carbon nanotube arrays, layered aligned multi-wall carbon nanotube (MWNT) films grown directly around a reaction quartz tube in an Ar/H 2 atmosphere by pyrolysis of ferrocene in xylene in a suitable reaction furnace with the help of cobalt powder. The scanning electron microscope and transmission electron microscope images indicated that the obtained arrays were composed of many separated layers with MWNTs. The reaction temperature significantly influenced the alignment of the MWNTs, and an appropriate reaction temperature range for growth was 800-900 deg. C. The diameter of the carbon nanotube increased from 46 to 75 nm with the growth temperature. Besides temperature, the reaction duration influenced the length of the well-aligned carbon nanotubes. There was no significant relation between the growth time and the diameter of the carbon nanotubes in the array

  20. Redox mechanisms and superconductivity in layered copper oxides

    International Nuclear Information System (INIS)

    Raveau, B.; Michel, C.; Hervieu, M.; Provost, J.

    1992-01-01

    Redox reactions in high T c superconductors cuprates are complex and play an important role in superconductivity: oxygen non-stoichiometry is influencing the critical temperature, and rock salt layers interact with copper layers. 25 refs., 7 figs

  1. Growth of the interaction layer around fuel particles in dispersion fuel

    International Nuclear Information System (INIS)

    Olander, D.

    2009-01-01

    Corrosion of uranium particles in dispersion fuel by the aluminum matrix produces interaction layers (an intermetallic-compound corrosion product) around the shrinking fuel spheres. The rate of this process was modeled as series resistances due to Al diffusion through the interaction layer and reaction of aluminum with uranium in the fuel particle to produce UAl x . The overall kinetics are governed by the relative rates of these two steps, the slowest of which is reaction at the interface between Al in the interaction layer and U in the fuel particle. The substantial volume change as uranium is transferred from the fuel to the interaction layer was accounted for. The model was compared to literature data on in-reactor growth of the interaction layer and the Al/U gradient in this layer, the latter measured in ex-reactor experiments. The rate constant of the Al-U interface reaction and the diffusivity of Al in the interaction layer were obtained from this fitting procedure. The second feature of the corrosion process is the transfer of fission products from the fuel particle to the interaction layer due to the reaction. It is commonly assumed that the observed swelling of irradiated fuel elements of this type is due to release of fission gas in the interaction layer to form large bubbles. This hypothesis was tested by using the model to compute the quantity of fission gas available from this source and comparing the pressure of the resulting gas with the observed swelling of fuel plates. It was determined that the gas pressure so generated is too small to account for the observed delamination of the fuel

  2. Layer-by-layer assembly of graphene oxide on polypropylene macroporous membranes via click chemistry to improve antibacterial and antifouling performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhen-Bei, E-mail: 1021453457@qq.com [The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, East Beijing Rd. 1, Wuhu, Anhui 241000 (China); Wu, Jing-Jing, E-mail: 957522275@qq.com [The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, East Beijing Rd. 1, Wuhu, Anhui 241000 (China); Su, Yu, E-mail: 819388710@qq.com [The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, East Beijing Rd. 1, Wuhu, Anhui 241000 (China); Zhou, Jin, E-mail: zhoujin_ah@163.com [Department of Materials and Chemical Engineering, Chizhou University, Muzhi Rd. 199, Chizhou, Anhui 247000 (China); Gao, Yong, E-mail: 154682180@qq.com [School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001 (China); Yu, Hai-Yin, E-mail: yhy456@mail.ahnu.edu.cn [The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, East Beijing Rd. 1, Wuhu, Anhui 241000 (China); Gu, Jia-Shan, E-mail: jiashanG@mail.ahnu.edu.cn [The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, East Beijing Rd. 1, Wuhu, Anhui 241000 (China)

    2015-03-30

    Graphical abstract: - Highlights: • Clickable membrane prepared by photo bromination and S{sub N}2 nucleophilic substitution. • Azide graphene oxide prepared by ring-opening reaction. • Alkyne graphene oxide was prepared via esterification reaction. • Layer-by-layer assembly of graphene oxide on membrane by click chemistry. • Antibacterial and antifouling characteristics were enhanced greatly. - Abstract: Polypropylene is an extensively used membrane material; yet, polypropylene membranes exhibit extremely poor resistance to protein fouling. To ameliorate this issue, graphene oxide (GO) nanosheets were used to modify macroporous polypropylene membrane (MPPM) via layer-by-layer assembly technique through click reaction. First, alkyne-terminated GO was prepared through esterification between carboxyl groups in GO and amide groups in propargylamine; azide-terminated GO was synthesized by the ring-opening reaction of epoxy groups in GO with sodium azide. Second, GO was introduced to the membrane by click chemistry. Characterizations of infrared spectra and X-ray photoelectron spectroscopy confirmed the modification. The sharply decreasing of static water contact angle indicated the improvement of the surface hydrophilicity for GO modified membrane. Introducing GO to the membrane results in a dramatic increase of water flux, improvements in the antifouling characteristics and antibacterial property for the membranes. The pure water flux through the 5-layered GO modified membrane is 1.82 times that through the unmodified one. The water flux restores to 43.0% for the unmodified membrane while to 79.8% for the modified membrane. The relative flux reduction decreases by 32.1% due to GO modification. The antibacterial property was also enhanced by two-thirds. These results demonstrate that the antifouling and antibacterial characteristics can be raised by tethering GO to the membrane surface.

  3. Layer-by-layer assembly of graphene oxide on polypropylene macroporous membranes via click chemistry to improve antibacterial and antifouling performance

    International Nuclear Information System (INIS)

    Zhang, Zhen-Bei; Wu, Jing-Jing; Su, Yu; Zhou, Jin; Gao, Yong; Yu, Hai-Yin; Gu, Jia-Shan

    2015-01-01

    Graphical abstract: - Highlights: • Clickable membrane prepared by photo bromination and S N 2 nucleophilic substitution. • Azide graphene oxide prepared by ring-opening reaction. • Alkyne graphene oxide was prepared via esterification reaction. • Layer-by-layer assembly of graphene oxide on membrane by click chemistry. • Antibacterial and antifouling characteristics were enhanced greatly. - Abstract: Polypropylene is an extensively used membrane material; yet, polypropylene membranes exhibit extremely poor resistance to protein fouling. To ameliorate this issue, graphene oxide (GO) nanosheets were used to modify macroporous polypropylene membrane (MPPM) via layer-by-layer assembly technique through click reaction. First, alkyne-terminated GO was prepared through esterification between carboxyl groups in GO and amide groups in propargylamine; azide-terminated GO was synthesized by the ring-opening reaction of epoxy groups in GO with sodium azide. Second, GO was introduced to the membrane by click chemistry. Characterizations of infrared spectra and X-ray photoelectron spectroscopy confirmed the modification. The sharply decreasing of static water contact angle indicated the improvement of the surface hydrophilicity for GO modified membrane. Introducing GO to the membrane results in a dramatic increase of water flux, improvements in the antifouling characteristics and antibacterial property for the membranes. The pure water flux through the 5-layered GO modified membrane is 1.82 times that through the unmodified one. The water flux restores to 43.0% for the unmodified membrane while to 79.8% for the modified membrane. The relative flux reduction decreases by 32.1% due to GO modification. The antibacterial property was also enhanced by two-thirds. These results demonstrate that the antifouling and antibacterial characteristics can be raised by tethering GO to the membrane surface

  4. Effects of porosity in a model of corrosion and passive layer growth

    Directory of Open Access Journals (Sweden)

    F.D.A. Aarão Reis

    2017-12-01

    Full Text Available We introduce a stochastic lattice model to investigate the effects of pore formation in a passive layer grown with products of metal corrosion. It considers that an anionic species diffuses across that layer and reacts at the corrosion front (metal-oxide interface, producing a random distribution of compact regions and large pores, respectively represented by O (oxide and P (pore sites. O sites are assumed to have very small pores, so that the fraction Φ of P sites is an estimate of the porosity, and the ratio between anion diffusion coefficients in those regions is D_r0 and D_r≪1, significant changes are observed in passive layer growth and corrosion front roughness. For small Φ, a slowdown of the growth rate is observed, which is interpreted as a consequence of the confinement of anions in isolated pores for long times. However, the presence of large pores near the corrosion front increases the frequency of reactions at those regions, which leads to an increase in the roughness of that front. This model may be a first step to represent defects in a passive layer which favor pitting corrosion.

  5. New MCRs: The first 4-component reaction leading to 2,4-disubstituted thiazoles

    NARCIS (Netherlands)

    Kolb, Jürgen; Beck, Barbara; Almstetter, Michael; Heck, Stefan; Herdtweck, Eberhardt; Dömling, Alexander

    2003-01-01

    New organic reactions allow chemical transformations which were previously not possible. Therefore, new reactions are important contributions to the progress in the field of organic synthesis. In this series we describe the design, scope, and limitations of newly-discovered multi-component reactions

  6. Recombination barrier layers in solid-state quantum dot-sensitized solar cells

    KAUST Repository

    Roelofs, Katherine E.; Brennan, Thomas P.; Dominguez, Juan C.; Bent, Stacey F.

    2012-01-01

    in situ by successive ion layer adsorption and reaction (SILAR). Aluminum oxide recombination barrier layers were deposited by atomic layer deposition (ALD) at the TiO2/hole-conductor interface. For low numbers of ALD cycles, the Al2O3 barrier layer

  7. Experimental specifications for eutectic reaction between metallic fuel and HT-9

    International Nuclear Information System (INIS)

    Hwang, Woan; Nam, Cheol; Lee, Byoung Oon; Ryu, Woo Seog

    1998-10-01

    The chemical interaction between metallic fuel and cladding is important in designing the fuel pin of the KALIMER. When metal fuel and cladding are contacted, the elements in fuel and cladding are inter-diffuse each other, forming the reaction layers at interface. The reaction layers may cause two important factors in aspects of fuel pin integrity. Firstly, it degrades cladding strength by reducing effective cladding thickness. Secondly, these layers accelerate eutectic reaction at transient conditions. To evaluate these phenomena, the diffusion couple experiment is planned by using metal fuels with various zirconium contents and HT-9 steel. The U-Zr fuel alloys will be used for the experiment with the different zirconium contents, these are 8, 10 and 12 weight %. This experiment aims to evaluate the effects of zirconium content on the chemical reaction. Furthermore, the reaction rate and threshold temperature of the eutectic melting will be determined as a function of the zirconium content. This document describes the detail experimental specifications for the eutectic reaction such as test setup, test requirements and test procedure. (author). 10 refs

  8. Use of ion beams to simulate reaction of reactor fuels with their cladding

    International Nuclear Information System (INIS)

    Birtcher, R.C.; Baldo, P.

    2006-01-01

    Processes occurring within reactor cores are not amenable to direct experimental observation. Among major concerns are damage, fission gas accumulation and reaction between the fuel and its cladding all of which lead to swelling. These questions can be investigated through simulation with ion beams. As an example, we discuss the irradiation driven interaction of uranium-molybdenum alloys, intended for use as low-enrichment reactor fuels, with aluminum, which is used as fuel cladding. Uranium-molybdenum coated with a 100 nm thin film of aluminum was irradiated with 3 MeV Kr ions to simulate fission fragment damage. Mixing and diffusion of aluminum was followed as a function of irradiation with RBS and nuclear reaction analysis using the 27 Al(p,γ) 28 Si reaction which occurs at a proton energy of 991.9 keV. During irradiation at 150 deg. C, aluminum diffused into the uranium alloy at a irradiation driven diffusion rate of 30 nm 2 /dpa. At a dose of 90 dpa, uranium diffusion into the aluminum layer resulted in formation of an aluminide phase at the initial interface. The thickness of this phase grew until it consumed the aluminum layer. The rapid diffusion of Al into these reactor fuels may offer explanation of the observation that porosity is not observed in the fuel particles but on their periphery

  9. Hydrogen release from irradiated elastomers measured by Nuclear Reaction Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jagielski, J., E-mail: jacek.jagielski@itme.edu.pl [Institute for Electronic Materials Technology, Wolczynska 133, 01-926 Warszawa (Poland); National Centre for Nuclear Research, A. Soltana 7, 05-400 Swierk/Otwock (Poland); Ostaszewska, U. [Institute for Engineering of Polymer Materials & Dyes, Division of Elastomers & Rubber Technology, Harcerska 30, 05-820 Piastow (Poland); Bielinski, D.M. [Technical University of Lodz, Institute of Polymer & Dye Technology, Stefanowskiego 12/16, 90-924 Lodz (Poland); Grambole, D. [Institute of Ion Beam Physics and Materials Research, Helmholtz Zentrum Dresden Rossendorf, PO Box 51 01 19, D-01314 Dresden (Germany); Romaniec, M.; Jozwik, I.; Kozinski, R. [Institute for Electronic Materials Technology, Wolczynska 133, 01-926 Warszawa (Poland); Kosinska, A. [National Centre for Nuclear Research, A. Soltana 7, 05-400 Swierk/Otwock (Poland)

    2016-03-15

    Ion irradiation appears as an interesting method of modification of elastomers, especially friction and wear properties. Main structural effect caused by heavy ions is a massive loss of hydrogen from the surface layer leading to its smoothening and shrinking. The paper presents the results of hydrogen release from various elastomers upon irradiation with H{sup +}, He{sup +} and Ar{sup +} studied by using Nuclear Reaction Analysis (NRA) method. The analysis of the experimental data indicates that the hydrogen release is controlled by inelastic collisions between ions and target electrons. The last part of the study was focused on preliminary analysis of mechanical properties of irradiated rubbers.

  10. Nanoscale surface modification of Li-rich layered oxides for high-capacity cathodes in Li-ion batteries

    Science.gov (United States)

    Lan, Xiwei; Xin, Yue; Wang, Libin; Hu, Xianluo

    2018-03-01

    Li-rich layered oxides (LLOs) have been developed as a high-capacity cathode material for Li-ion batteries, but the structural complexity and unique initial charging behavior lead to several problems including large initial capacity loss, capacity and voltage fading, poor cyclability, and inferior rate capability. Since the surface conditions are critical to electrochemical performance and the drawbacks, nanoscale surface modification for improving LLO's properties is a general strategy. This review mainly summarizes the surface modification of LLOs and classifies them into three types of surface pre-treatment, surface gradient doping, and surface coating. Surface pre-treatment usually introduces removal of Li2O for lower irreversible capacity while surface doping is aimed to stabilize the structure during electrochemical cycling. Surface coating layers with different properties, protective layers to suppress the interface side reaction, coating layers related to structural transformation, and electronic/ionic conductive layers for better rate capability, can avoid the shortcomings of LLOs. In addition to surface modification for performance enhancement, other strategies can also be investigated to achieve high-performance LLO-based cathode materials.

  11. Sodium-water reaction product flow system

    Energy Technology Data Exchange (ETDEWEB)

    Shirataki, K; Wada, H

    1978-11-18

    Purpose: To provide the subject equipments wherein thermal insulating layers which neither exfoliate nor react by the impact due to high temperature sodium and hydrogen gas and are used for mitigating the thermal impact are provided on the inner surfaces of the emission system equipments, thereby preventing the destruction of the emission system equipments. Constitution: Thermal insulating layers are formed on the inner surfaces of sodium-water reaction product emission system equipments, that is, the inner surface of the emission system pipeline, that of the accommodation vessel and the surface of the cyclone separator, by film treatment, coating or heat resisting coating, and these surfaces are covered with the layers. Each of the layers is made of a material which does not cause a rapid reaction with high temperature sodium or hydrogen gas nor exfoliates and is withstandable for several seconds in which the thermal impact of at least the emission system comes into question, and its thickness is more than one capable of securing the necessary thermal resistance computed by the thermal impact analysis of the emission system.

  12. Sodium-water reaction product flow system

    International Nuclear Information System (INIS)

    Shirataki, Koji; Wada, Hozumi.

    1978-01-01

    Purpose: To provide the subject equipments wherein thermal insulating layers which neither exfoliate nor react by the impact due to high temperature sodium and hydrogen gas and are used for mitigating the thermal impact are provided on the inner surfaces of the emission system equipments, thereby preventing the destruction of the emission system equipments. Constitution: Thermal insulating layers are formed on the inner surfaces of sodium-water reaction product emission system equipments, that is, the inner surface of the emission system pipeline, that of the accommodation vessel and the surface of the cyclone separator, by film treatment, coating or heat resisting coating, and these surfaces are covered with the layers. Each of the layers is made of a material which does not cause a rapid reaction with high temperature sodium or hydrogen gas nor exfoliates and is withstandable for several seconds in which the thermal impact of at least the emission system comes into question, and its thickness is more than one capable of securing the necessary thermal resistance computed by the thermal impact analysis of the emission system. (Yoshihara, H.)

  13. Connecting localized DNA strand displacement reactions

    Science.gov (United States)

    Mullor Ruiz, Ismael; Arbona, Jean-Michel; Lad, Amitkumar; Mendoza, Oscar; Aimé, Jean-Pierre; Elezgaray, Juan

    2015-07-01

    Logic circuits based on DNA strand displacement reactions have been shown to be versatile enough to compute the square root of four-bit numbers. The implementation of these circuits as a set of bulk reactions faces difficulties which include leaky reactions and intrinsically slow, diffusion-limited reaction rates. In this paper, we consider simple examples of these circuits when they are attached to platforms (DNA origamis). As expected, constraining distances between DNA strands leads to faster reaction rates. However, it also induces side-effects that are not detectable in the solution-phase version of this circuitry. Appropriate design of the system, including protection and asymmetry between input and fuel strands, leads to a reproducible behaviour, at least one order of magnitude faster than the one observed under bulk conditions.Logic circuits based on DNA strand displacement reactions have been shown to be versatile enough to compute the square root of four-bit numbers. The implementation of these circuits as a set of bulk reactions faces difficulties which include leaky reactions and intrinsically slow, diffusion-limited reaction rates. In this paper, we consider simple examples of these circuits when they are attached to platforms (DNA origamis). As expected, constraining distances between DNA strands leads to faster reaction rates. However, it also induces side-effects that are not detectable in the solution-phase version of this circuitry. Appropriate design of the system, including protection and asymmetry between input and fuel strands, leads to a reproducible behaviour, at least one order of magnitude faster than the one observed under bulk conditions. Electronic supplementary information (ESI) available. See DOI: 10.1039/C5NR02434J

  14. Room temperature deposition of ZnSe thin films by successive ionic layer adsorption and reaction (SILAR) method

    International Nuclear Information System (INIS)

    Kale, R.B.; Lokhande, C.D.

    2004-01-01

    The zinc selenide (ZnSe) thin films are deposited onto glass substrate using relatively simple and inexpensive successive ionic layer adsorption and reaction (SILAR) method. The films are deposited using zinc acetate sodium selenosulphate precursors. The concentration, pH, immersion and rinsing times and number of immersion cycles have been optimized to obtain good quality ZnSe thin films. The X-ray diffraction (XRD) study and scanning electron microscopy (SEM) studies reveals nanocrystalline nature alongwith some amorphous phase present in ZnSe thin films. Energy dispersive X-ray (EDAX) analysis shows that the films are Se deficient. From optical absorption data, the optical band gap 'E g ' for as-deposited thin film was found to be 2.8 eV and electrical resistivity in the order of 10 7 Ω cm

  15. The fabrication of highly uniform ZnO/CdS core/shell structures using a spin-coating-based successive ion layer adsorption and reaction method

    International Nuclear Information System (INIS)

    Joo, Jinmyoung; Kim, Darae; Yun, Dong-Jin; Jun, Hwichan; Rhee, Shi-Woo; Lee, Jae Sung; Yong, Kijung; Jeon, Sangmin; Kim, Sungjee

    2010-01-01

    We developed a successive ion layer adsorption and reaction method based on spin-coating (spin-SILAR) and applied the method to the fabrication of highly uniform ZnO/CdS core/shell nanowire arrays. Because the adsorption, reaction, and rinsing steps occur simultaneously during spin-coating, the spin-SILAR method does not require rinsing steps between the alternating ion adsorption steps, making the growth process simpler and faster than conventional SILAR methods based on dip-coating (dip-SILAR). The ZnO/CdS core/shell nanowire arrays prepared by spin-SILAR had a denser and more uniform structure than those prepared by dip-SILAR, resulting in the higher power efficiency for use in photoelectrochemical cells.

  16. The fabrication of highly uniform ZnO/CdS core/shell structures using a spin-coating-based successive ion layer adsorption and reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Jinmyoung; Kim, Darae; Yun, Dong-Jin; Jun, Hwichan; Rhee, Shi-Woo; Lee, Jae Sung; Yong, Kijung; Jeon, Sangmin [System on Chip Chemical Process Research, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang (Korea, Republic of); Kim, Sungjee, E-mail: jeons@postech.ac.kr [Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang (Korea, Republic of)

    2010-08-13

    We developed a successive ion layer adsorption and reaction method based on spin-coating (spin-SILAR) and applied the method to the fabrication of highly uniform ZnO/CdS core/shell nanowire arrays. Because the adsorption, reaction, and rinsing steps occur simultaneously during spin-coating, the spin-SILAR method does not require rinsing steps between the alternating ion adsorption steps, making the growth process simpler and faster than conventional SILAR methods based on dip-coating (dip-SILAR). The ZnO/CdS core/shell nanowire arrays prepared by spin-SILAR had a denser and more uniform structure than those prepared by dip-SILAR, resulting in the higher power efficiency for use in photoelectrochemical cells.

  17. Adsorption, hydrogenation and dehydrogenation of C2H on a CoCu bimetallic layer

    Science.gov (United States)

    Wu, Donghai; Yuan, Jinyun; Yang, Baocheng; Chen, Houyang

    2018-05-01

    In this paper, adsorption, hydrogenation and dehydrogenation of C2H on a single atomic layer of bimetallic CoCu were investigated using first-principles calculations. The CoCu bimetallic layer is formed by Cu replacement of partial Co atoms on the top layer of a Co(111) surface. Our adsorption and reaction results showed those sites, which have stronger adsorption energy of C2H, possess higher reactivity. The bimetallic layer possesses higher reactivity than either of the pure monometallic layer. A mechanism of higher reactivity of the bimetallic layer is proposed and identified, i.e. in the bimetallic catalyst, the catalytic performance of one component is promoted by the second component, and in our work, the catalytic performance of Co atoms in the bimetallic layer are improved by introducing Cu atoms, lowing the activation barrier of the reaction of C2H. The bimetallic layer could tune adsorption and reaction of C2H by modulating the ratio of Co and Cu. Results of adsorption energies and adsorption configurations reveal that C2H prefers to be adsorbed in parallel on both the pure Co metallic and CoCu bimetallic layers, and Co atoms in subsurface which support the metallic or bimetallic layer have little effect on C2H adsorption. For hydrogenation reactions, the products greatly depend on the concentration and initial positions of hydrogen atoms, and the C2H hydrogenation forming acetylene is more favorable than forming vinylidene in both thermodynamics and kinetics. This study would provide fundamental guidance for hydrocarbon reactions on Co-based and/or Cu-based bimetallic surface chemistry and for development of new bimetallic catalysts.

  18. Application of ionic liquids as an electrolyte additive on the electrochemical behavior of lead acid battery

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, Behzad; Mallakpour, Shadpour; Taki, Mahmood [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran)

    2009-02-15

    Ionic liquids (ILs) belong to new branch of salts with unique properties which their applications have been increasing in electrochemical systems especially lithium-ion batteries. In the present work, for the first time, the effects of four ionic liquids as an electrolyte additive in battery's electrolyte were studied on the hydrogen and oxygen evolution overpotential and anodic layer formation on lead-antimony-tin grid alloy of lead acid battery. Cyclic and linear sweep voltammetric methods were used for this study in aqueous sulfuric acid solution. The morphology of grid surface after cyclic redox reaction was studied using scanning electron microscopy. The results show that most of added ionic liquids increase hydrogen overpotential and whereas they have no significant effect on oxygen overpotential. Furthermore ionic liquids increase antimony dissolution that might be related to interaction between Sb{sup 3+} and ionic liquids. Crystalline structure of PbSO{sub 4} layer changed with presence of ionic liquids and larger PbSO{sub 4} crystals were formed with some of them. These additives decrease the porosity of PbSO{sub 4} perm selective membrane layer at the surface of electrode. Also cyclic voltammogram on carbon-PbO paste electrode shows that with the presence of ionic liquids, oxidation and reduction peak current intensively increased. (author)

  19. Fabrication of SnS thin films by the successive ionic layer adsorption and reaction (SILAR) method

    International Nuclear Information System (INIS)

    Ghosh, Biswajit; Das, Madhumita; Banerjee, Pushan; Das, Subrata

    2008-01-01

    Tin sulfide films of 0.20 µm thickness were grown on glass and ITO substrates by the successive ionic layer adsorption and reaction (SILAR) method using SnSO 4 and Na 2 S solution. The as-grown films were well covered and strongly adherent to the substrate. XRD confirmed the deposition of SnS thin films and provided information on the crystallite size and residual strain of the thin films. FESEM revealed almost equal distribution of the particle size well covered on the surface of the substrate. EDX showed that as-grown SnS films were slightly rich in tin component. High absorption in the visible region was evident from UV–Vis transmission spectra. PL studies were carried out with 550 nm photon excitation. To the best of our knowledge, however, no attempt has been made to fabricate a SnS thin film using the SILAR technique

  20. Reaction of Aldehydes/Ketones with Electron-Deficient 1,3,5-Triazines Leading to Functionalized Pyrimidines as Diels-Alder/Retro-Diels-Alder Reaction Products: Reaction Development and Mechanistic Studies.

    Science.gov (United States)

    Yang, Kai; Dang, Qun; Cai, Pei-Jun; Gao, Yang; Yu, Zhi-Xiang; Bai, Xu

    2017-03-03

    Catalytic inverse electron demand Diels-Alder (IEDDA) reactions of heterocyclic aza-dienes are rarely reported since highly reactive and electron-rich dienophiles are often found not compatible with strong acids such as Lewis acids. Herein, we disclose that TFA-catalyzed reactions of electron-deficient 1,3,5-triazines and electron-deficient aldehydes/ketones can take place. These reactions led to highly functionalized pyrimidines as products in fair to good yields. The reaction mechanism was carefully studied by the combination of experimental and computational studies. The reactions involve a cascade of stepwise inverse electron demand hetero-Diels-Alder (ihDA) reactions, followed by retro-Diels-Alder (rDA) reactions and elimination of water. An acid was required for both ihDA and rDA reactions. This mechanism was further verified by comparing the relative reactivity of aldehydes/ketones and their corresponding vinyl ethers in the current reaction system.

  1. Stabilization of antioxidant gallate in layered double hydroxide by exfoliation and reassembling reaction

    Science.gov (United States)

    Ansy, Kanakappan Mickel; Lee, Ji-Hee; Piao, Huiyan; Choi, Goeun; Choy, Jin-Ho

    2018-06-01

    As for the stabilization of chemically sensitive bioactive molecule in this study, gallic acid (GA) with antioxidant property was intercalated into interlayer space of layered double hydroxide (LDH), which was realized by exfoliation and reassembling reaction. At first, the pristine nitrate-type Zn2Al-LDH in solid state was synthesized via co-precipitation followed by the hydrothermal treatment at 80 °C for 6 h, and then exfoliated in formamide to form a colloidal solution of exfoliated LDH nanosheets, and finally reassembled in the presence of GA to prepare GA intercalated LDH (GA-LDH) desired, where the pH was adjusted to 8.0 in order to deprotonate GA to form gallate anion. According to the XRD analysis, GA-LDH showed well-developed (00l) diffraction peaks with a basal spacing of 1.15 nm, which was estimated to be larger than that of the pristine LDH (0.88 nm), indicating that gallate molecules were incorporated into LDH layers with perpendicular orientation. From the FT-IR spectra it was found that gallic acid was completely deprotonated into gallate, and stabilized in between LDH lattices via electrostatic interaction. The content of GA in GA-LDH was determined to be around 23 wt% by UV-vis spectroscopic study, which was also confirmed by HPLC analysis. According to the in-vitro release of GA out of GA-LDH in PBS solution (pH 7.4) at 4 °C, GA was sustainably released from GA-LDH nanohybrid up to 86% within 72 h. The antioxidant property of GA-LDH was almost the same with that of intact GA which was examined by DPPH. The photostability of GA-LDH under UV light irradiation was immensely enhanced compared to intact GA. It is, therefore, concluded that the present GA-LDH nanohybrid can be considered as an excellent antioxidant material with high chemical- and photo-stabilities, and controlled release property.

  2. Development of Streamwise Counter-Rotating Vortices in Flat Plate Boundary Layer Pre-set by Leading Edge Patterns

    KAUST Repository

    Hasheminejad, S.M.

    2017-04-03

    Development of streamwise counter-rotating vortices induced by leading edge patterns with different pattern shape is investigated using hot-wire anemometry in the boundary layer of a flat plate. A triangular, sinusoidal and notched patterns with the same pattern wavelength λ of 15mm and the same pattern amplitude A of 7.5mm were examined for free-stream velocity of 3m/s. The results show a good agreement with earlier studies. The inflection point on the velocity profile downstream of the trough of the patterns at the beginning of the vortex formation indicates that the vortices non-linearly propagate downstream. An additional vortex structure was also observed between the troughs of the notched pattern.

  3. An oxidative cross-coupling reaction of 4-hydroxydithiocoumarin and amines/thiols using a combination of I2 and TBHP: access to lead molecules for biomedical applications.

    Science.gov (United States)

    Mahato, Karuna; Arora, Neha; Ray Bagdi, Prasanta; Gattu, Radhakrishna; Ghosh, Siddhartha Sankar; Khan, Abu T

    2018-02-06

    A metal-free I 2 /TBHP induced highly atom economic and operationally simple oxidative cross-coupling reaction has been developed for the direct synthesis of sulfenamides/sulfanes/disulfides from the reaction of 4-hydroxydithiocoumarin and amines/thiols. The novelties of the present protocol are unprecedented S-C bond formation in addition to S-N and S-S bonds, shorter reaction time, mild and environmentally benign reaction conditions, functional group tolerance and moderate to excellent yields. Moreover, the four newly synthesized compounds namely 4q, 6d, 6e and 7a exhibit anti-proliferative activity against the breast cancer cell line MCF7, and may be lead molecules for future drug development.

  4. Thin layer chromatography coupled with surface-enhanced Raman scattering as a facile method for on-site quantitative monitoring of chemical reactions.

    Science.gov (United States)

    Zhang, Zong-Mian; Liu, Jing-Fu; Liu, Rui; Sun, Jie-Fang; Wei, Guo-Hua

    2014-08-05

    By coupling surface-enhanced Raman spectroscopy (SERS) with thin layer chromatography (TLC), a facile and powerful method was developed for on-site monitoring the process of chemical reactions. Samples were preseparated on a TLC plate following a common TLC procedure, and then determined by SERS after fabricating a large-area, uniform SERS substrate on the TLC plate by spraying gold nanoparticles (AuNPs). Reproducible and strong SERS signals were obtained with substrates prepared by spraying 42-nm AuNPs at a density of 5.54 × 10(10) N/cm(2) on the TLC plate. The capacity of this TLC-SERS method was evaluated by monitoring a typical Suzuki coupling reaction of phenylboronic acid and 2-bromopyridine as a model. Results showed that this proposed method is able to identify reaction product that is invisible to the naked eye, and distinguish the reactant 2-bromopyridine and product 2-phenylpyridine, which showed almost the same retention factors (R(f)). Under the optimized conditions, the peak area of the characteristic Raman band (755 cm(-1)) of the product 2-phenylpyridine showed a good linear correlation with concentration in the range of 2-200 mg/L (R(2) = 0.9741), the estimated detection limit (1 mg/L 2-phenylpyridine) is much lower than the concentration of the chemicals in the common organic synthesis reaction system, and the product yield determined by the proposed TLC-SERS method agreed very well with that by UPLC-MS/MS. In addition, a new byproduct in the reaction system was found and identified through continuous Raman detection from the point of sample to the solvent front. This facile TLC-SERS method is quick, easy to handle, low-cost, sensitive, and can be exploited in on-site monitoring the processes of chemical reactions, as well as environmental and biological processes.

  5. Survivability and Fusibility in Reactions Leading to Heavy Nuclei in the Vicinity of the N=126 Closed Shell

    International Nuclear Information System (INIS)

    Sagaidak, R. N.

    2009-01-01

    Nuclear fission is well suited to study the dynamic properties and dissipative processes in cold and moderately excited nuclei. It is also a unique tool to explore level density and shell effects at an extreme deformation. Despite the significant progress in the fission studies, the isospin dependence of fission properties and, in particular, of fission barrier heights still remains an open problem. Theoretical fission model parameters are tuned by using the experimental nuclear and fission data close to stability [1]. The models provide a reasonable description of the fission barriers close to the stability line. However, large deviations are observed between predictions of different models for the fission barriers of very neutron-deficient and neutron-rich nuclei. These discrepancies (by as much as 20-30 MeV, see, e.g. [2]) become especially important in the r-process calculations for extremely neutron-rich nuclei, whose fission barriers determine the termination of the r-process by fission [3]. Unfortunately, such neutron-rich nuclei will probably not become accessible in the nearest experiments. Therefore, fission properties of exotic nuclei and especially their isospin dependence can be investigated in alternative regions of the Nuclide Chart, which are accessible for such studies now. Fusion-evaporation cross sections for heavy fissile nuclei obtained in heavy ion induced reactions as well as their fission cross sections are mainly determined by statistical properties of decaying compound nuclei (CN) and first of all by the fission-barrier heights of nuclei involved in the de-excitation chains leading to observable evaporation residues (ER). At the same time, the ER production and fission in nearly symmetric projectile-target fusion reactions leading to the most neutron-deficient CN could be strongly suppressed due to the quasi-fission (QF) effect [4], as observed recently in the 4 8C a induced reactions leading to Ra [5] and Pb [6] CN. The production of

  6. Hydrogen-Etched TiO2−x as Efficient Support of Gold Catalysts for Water–Gas Shift Reaction

    Directory of Open Access Journals (Sweden)

    Li Song

    2018-01-01

    Full Text Available Hydrogen-etching technology was used to prepare TiO2−x nanoribbons with abundant stable surface oxygen vacancies. Compared with traditional Au-TiO2, gold supported on hydrogen-etched TiO2−x nanoribbons had been proven to be efficient and stable water–gas shift (WGS catalysts. The disorder layer and abundant stable surface oxygen vacancies of hydrogen-etched TiO2−x nanoribbons lead to higher microstrain and more metallic Au0 species, respectively, which all facilitate the improvement of WGS catalytic activities. Furthermore, we successfully correlated the WGS thermocatalytic activities with their optoelectronic properties, and then tried to understand WGS pathways from the view of electron flow process. Hereinto, the narrowed forbidden band gap leads to the decreased Ohmic barrier, which enhances the transmission efficiency of “hot-electron flow”. Meanwhile, the abundant surface oxygen vacancies are considered as electron traps, thus promoting the flow of “hot-electron” and reduction reaction of H2O. As a result, the WGS catalytic activity was enhanced. The concept involved hydrogen-etching technology leading to abundant surface oxygen vacancies can be attempted on other supported catalysts for WGS reaction or other thermocatalytic reactions.

  7. Electrocatalysis of anodic oxygen-transfer reactions at modified lead dioxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Yun-Lin.

    1990-09-21

    The electrocatalytic activities were compared for pure and chloride-doped beta-PbO{sub 2} (Cl-PbO{sub 2}) films on gold and platinum substrates. Rate constants were increased significantly for oxidations of Mn{sup 2+}, toluene, benzyl alcohol, dimethylsulphoxide (DMSO) and benzaldehyde in acidic media by the incorporation of Cl{sup {minus}} into the oxide films. These reactions are concluded to occur by the electrocatalytic transfer of oxygen from H{sub 2}O to the reaction products. Results of x-ray diffraction studies indicate the Cl-PbO{sub 2} film continues to have the slightly distorted rutile structure of pure beta-PbO{sub 2}. The observed electrocatalytic phenomena are concluded to be the beneficial consequence of surface defects generated when Cl{sup {minus}} serves for charge compensation within the surface matrix and, thereby, increases the number of surface sites capable of adsorbing hydroxyl radicals which are transferred in the electrocatalytic O-transfer reactions. 91 refs., 44 figs., 10 tabs.

  8. Corrosion by liquid lead and lead-bismuth: experimental results review and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinsuo [Los Alamos National Laboratory

    2008-01-01

    Liquid metal technologies for liquid lead and lead-bismuth alloy are under wide investigation and development for advanced nuclear energy systems and waste transmutation systems. Material corrosion is one of the main issues studied a lot recently in the development of the liquid metal technology. This study reviews corrosion by liquid lead and lead bismuth, including the corrosion mechanisms, corrosion inhibitor and the formation of the protective oxide layer. The available experimental data are analyzed by using a corrosion model in which the oxidation and scale removal are coupled. Based on the model, long-term behaviors of steels in liquid lead and lead-bismuth are predictable. This report provides information for the selection of structural materials for typical nuclear reactor coolant systems when selecting liquid lead or lead bismuth as heat transfer media.

  9. Enhanced photovoltaic performance of CdS-sensitized inverted organic solar cells prepared via a successive ionic layer adsorption and reaction method

    Science.gov (United States)

    Oleiwi, Hind Fadhil; Zakaria, Azmi; Yap, Chi Chin; Abbas, Haidr Abdulzahra; Tan, Sin Tee; Lee, Hock Beng; Tan, Chun Hui; Ginting, Riski Titian; Alshanableh, Abdelelah; Talib, Zainal Abidin

    2017-05-01

    One-dimensional ZnO nanorods (ZNRs) synthesized on fluorine-doped tin oxide (FTO) glass by hydrothermal method were modified with cadmium sulfide quantum dots (CdS QDs) as an electron transport layer (ETL) in order to enhance the photovoltaic performance of inverted organic solar cell (IOSC). In present study, CdS QDs were deposited on ZNRs using a Successive Ionic Layer Adsorption and Reaction method (SILAR) method. In typical procedures, IOSCs were fabricated by spin-coating the P3HT:PC61BM photoactive layer onto the as-prepared ZNRs/CdS QDs. The results of current-voltage (I-V) measurement under illumination shows that the FTO/ZNRs/CdS QDs/ P3HT:PC61BM/ PEDOT: PSS/Ag IOSC achieved a higher power conversion efficiency (4.06 %) in comparison to FTO/ZNRs/P3HT:PC61BM/PEDOT: PSS/Ag (3.6 %). Our findings suggest that the improved open circuit voltage (Voc) and short circuit current density (Jsc) of ZNRs/CdS QDs devices could be attributed to enhanced electron selectivity and reduced interfacial charge carrier recombination between ZNRs and P3HT:PC61BM after the deposition of CdS QDs. The CdS QDs sensitized ZNRs reported herein exhibit great potential for advanced optoelectronic application.

  10. Hydrophobic Modification of Layered Clays and Compatibility for Epoxy Nanocomposites

    Directory of Open Access Journals (Sweden)

    Jiang-Jen Lin

    2010-04-01

    Full Text Available Recent studies on the intercalation and exfoliation of layered clays with polymeric intercalating agents involving poly(oxypropylene-amines and the particular uses for epoxy nanocomposites are reviewed. For intercalation, counter-ionic exchange reactions of clays including cationic layered silicates and anionic Al-Mg layered double hydroxide (LDH with polymeric organic ions afforded organoclays led to spatial interlayer expansion from 12 to 92 Å (X-ray diffraction as well as hydrophobic property. The inorganic clays of layered structure could be modified by the poly(oxypropyleneamine-salts as the intercalating agents with molecular weights ranging from 230 to 5,000 g/mol. Furthermore, natural montmorillonite (MMT clay could be exfoliated into thin layer silicate platelets (ca. 1 nm thickness in one step by using polymeric types of exfoliating agents. Different lateral dimensions of MMT, synthetic fluorinated Mica and LDH clays had been cured into epoxy nanocomposites. The hydrophobic amine-salt modification resulting in high spacing of layered or exfoliation of individual clay platelets is the most important factor for gaining significant improvements of properties. In particular, these modified clays were reported to gain significant improvements such as reduced coefficient of thermal expansion (CTE, enhanced thermal stability, and hardness. The utilization of these layered clays for initiating the epoxy self-polymerization was also reported to have a unique compatibility between clay and organic resin matrix. However, the matrix domain lacks of covalently bonded crosslink and leads to the isolation of powder material. It is generally concluded that the hydrophobic expansion of the clay inter-gallery spacing is the crucial step for enhancing the compatibility and the ultimate preparation of the advanced epoxy materials.

  11. Hydrophobic Modification of Layered Clays and Compatibility for Epoxy Nanocomposites

    Science.gov (United States)

    Lin, Jiang-Jen; Chan, Ying-Nan; Lan, Yi-Fen

    2010-01-01

    Recent studies on the intercalation and exfoliation of layered clays with polymeric intercalating agents involving poly(oxypropylene)-amines and the particular uses for epoxy nanocomposites are reviewed. For intercalation, counter-ionic exchange reactions of clays including cationic layered silicates and anionic Al-Mg layered double hydroxide (LDH) with polymeric organic ions afforded organoclays led to spatial interlayer expansion from 12 to 92 Å (X-ray diffraction) as well as hydrophobic property. The inorganic clays of layered structure could be modified by the poly(oxypropylene)amine-salts as the intercalating agents with molecular weights ranging from 230 to 5,000 g/mol. Furthermore, natural montmorillonite (MMT) clay could be exfoliated into thin layer silicate platelets (ca. 1 nm thickness) in one step by using polymeric types of exfoliating agents. Different lateral dimensions of MMT, synthetic fluorinated Mica and LDH clays had been cured into epoxy nanocomposites. The hydrophobic amine-salt modification resulting in high spacing of layered or exfoliation of individual clay platelets is the most important factor for gaining significant improvements of properties. In particular, these modified clays were reported to gain significant improvements such as reduced coefficient of thermal expansion (CTE), enhanced thermal stability, and hardness. The utilization of these layered clays for initiating the epoxy self-polymerization was also reported to have a unique compatibility between clay and organic resin matrix. However, the matrix domain lacks of covalently bonded crosslink and leads to the isolation of powder material. It is generally concluded that the hydrophobic expansion of the clay inter-gallery spacing is the crucial step for enhancing the compatibility and the ultimate preparation of the advanced epoxy materials.

  12. Modelling the effects of porous and semi-permeable layers on corrosion processes

    International Nuclear Information System (INIS)

    King, F.; Kolar, M.; Shoesmith, D.W.

    1996-09-01

    Porous and semi-permeable layers play a role in many corrosion processes. Porous layers may simply affect the rate of corrosion by affecting the rate of mass transport of reactants and products to and from the corroding surface. Semi-permeable layers can further affect the corrosion process by reacting with products and/or reactants. Reactions in semi-permeable layers include redox processes involving electron transfer, adsorption, ion-exchange and complexation reactions and precipitation/dissolution processes. Examples of porous and semi-permeable layers include non-reactive salt films, precipitate layers consisting of redox-active species in multiple oxidation states (e.g., Fe oxide films), clay and soil layers and biofilms. Examples of these various types of processes will be discussed and modelling techniques developed from studies for the disposal of high-level nuclear waste presented. (author). 48 refs., 1 tab., 12 figs

  13. Mechanism of the CO2-Ca(OH)2 reaction

    International Nuclear Information System (INIS)

    Chew, V.S.; Cheh, C.H.; Glass, R.W.

    1983-01-01

    Recent studies clearly showed the importance of moisture in achieving high Ca(OH) 2 absorbent utilization for removing CO 2 from gas streams at ambient temperatures. However, the role of moisture and the mechanism of the reaction was not well understood. This paper summarizes the results of a study of the mechanism of the CO 2 -Ca(OH) 2 reaction with emphasis on the role of moisture. The reaction between Ca(OH) 2 and CO 2 in moist N 2 was found to be first order with respect to the reactants with a rate constant of about 100 min -1 . At high humidities, the rate of reaction was chemically controlled, but at low humidities, the reaction rate was limited by the diffusion through the carbonate layer formed by the reaction. Calculations showed that capillary condensation could have occurred only in about 2% of the pore volume and was unlikely to have affected the reaction rate significantly by allowing the reaction to occur in the liquid phase. It was, therefore, concluded that the main role of moisture was to improve the Ca(OH) 2 utilization by lowering the resistance to diffusion through the carbonate layer

  14. Real cause of detrimental carbonation in chemically stabilized layers and possible solutions

    CSIR Research Space (South Africa)

    Botha, PB

    2005-10-01

    Full Text Available to determine the other reaction that may take place in the material. KEYWORDS CARBONATION/ CHEMICAL REACTIONS/ WATER CURING/ NEW TESTING PROTOCOL 1 INTRODUCTION This paper deals with the problems related to the “curing” of the stabilized layers... than CO2 driven. In actually fact the so-called “detrimental carbonation” chemical reaction cannot even take place without free water being available. The water is normally supplied by the specified curing 2 technique to keep the layer moist...

  15. Chemical burn or reaction

    Science.gov (United States)

    Chemicals that touch skin can lead to a reaction on the skin, throughout the body, or both. ... leave the person alone and watch carefully for reactions affecting the entire body. Note: If a chemical gets into the eyes, the eyes should be ...

  16. Growth of multilayered polycrystalline reaction rims in the MgO-SiO2 system, part I: experiments

    Science.gov (United States)

    Gardés, E.; Wunder, B.; Wirth, R.; Heinrich, W.

    2011-01-01

    Growth of transport-controlled reaction layers between single crystals of periclase and quartz, and forsterite and quartz was investigated experimentally at 1.5 GPa, 1100°C to 1400°C, 5 min to 72 h under dry and melt-free conditions using a piston-cylinder apparatus. Starting assemblies consisting of Per | Qtz | Fo sandwiches produced polycrystalline double layers of forsterite and enstatite between periclase and quartz, and enstatite single layers between forsterite and quartz. The position of inert Pt-markers initially deposited at the interface of the reactants and inspection of mass balance confirmed that both layer-producing reactions are controlled by MgO diffusion, while SiO2 is relatively immobile. BSE and TEM imaging revealed thicknesses from 0.6 μm to 14 μm for double layers and from 0 to 6.8 μm for single layers. Both single and double layers displayed non-parabolic growth together with pronounced grain coarsening. Textural evolution and growth rates for each reaction are directly comparable. Forsterite-enstatite double layers are always wider than enstatite single layers, and the growth of enstatite in the double layer is slower than that in the single layer. In double layers, the enstatite/forsterite layer thickness ratio significantly increases with temperature, reflecting different MgO mobilities as temperature varies. Thus, thickness ratios in multilayered reaction zones may contain a record of temperature, but also that of any physico-chemical parameter that modifies the mobilities of the chemical components between the various layers. This potential is largely unexplored in geologically relevant systems, which calls for further experimental studies of multilayered reaction zones.

  17. In Situ Solid-State Reactions Monitored by X-ray Absorption Spectroscopy: Temperature-Induced Proton Transfer Leads to Chemical Shifts.

    Science.gov (United States)

    Stevens, Joanna S; Walczak, Monika; Jaye, Cherno; Fischer, Daniel A

    2016-10-24

    The dramatic colour and phase alteration with the solid-state, temperature-dependent reaction between squaric acid and 4,4'-bipyridine has been probed in situ with X-ray absorption spectroscopy. The electronic and chemical sensitivity to the local atomic environment through chemical shifts in the near-edge X-ray absorption fine structure (NEXAFS) revealed proton transfer from the acid to the bipyridine base through the change in nitrogen protonation state in the high-temperature form. Direct detection of proton transfer coupled with structural analysis elucidates the nature of the solid-state process, with intermolecular proton transfer occurring along an acid-base chain followed by a domino effect to the subsequent acid-base chains, leading to the rapid migration along the length of the crystal. NEXAFS thereby conveys the ability to monitor the nature of solid-state chemical reactions in situ, without the need for a priori information or long-range order. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Small scale lithium-lead/water-interaction studies

    International Nuclear Information System (INIS)

    Kranert, O.; Kottowski, H.

    1991-01-01

    One current concept in fusion blanket design is to utilize water as the coolant and liquid lithium-lead as the breeding/neutron multiplier material. Considering the complex design of the blanket module, it is likely that a water leakage into the liquid alloy may occur due to a tube rupture provoking an intolerable pressure increase in the blanket module. The pressure increase is caused by the combined chemical and thermohydraulic reaction of lithium-lead with water. Experiments which simulate such a transient event are necessary to obtain information which is important for the blanket module design. The interaction has been investigated by conducting small-scale experiments at various injection pressures, alloy- and coolant temperatures. Besides using eutectic Li 17 Pb 83 , Li 7 Pb 2 , lithium and lead have been used. Among other results, the experiments indicate increasing chemical reaction with increasing lithium concentration. At the same time, the chemical reaction inhibits violent thermohydaulic reactions due to the attenuating effect of the hydrogen produced. The preliminary epxerimental results from Li 17 Pb 83 and Li 7 Pb 2 reveal that the pressure- and temperature transients caused by the chemical and thermohydraulic reactions lie within technically manageable limits. (orig.)

  19. The Layer 1 / Layer 2 readout upgrade for the ATLAS Pixel Detector

    CERN Document Server

    Mullier, Geoffrey; The ATLAS collaboration

    2016-01-01

    The Pixel Detector of the ATLAS experiment has shown excellent performance during the whole Run-1 of the Large Hadron Collider (LHC). The increase of instantaneous luminosity foreseen during the LHC Run 2, will lead to an increased detector occupancy that is expected to saturate the readout links of the outermost layers of the pixel detector: Layers 1 and 2. To ensure a smooth data taking under such conditions, the read out system of the recently installed fourth innermost pixel layer, the Insertable B-Layer, was modified to accomodate the needs of the older detector. The Layer 2 upgrade installation took place during the 2015 winter shutdown, with the Layer 1 installation scheduled for 2016. A report of the successful installation, together with the design of novel dedicated optical to electrical converters and the software and firmware updates will be presented.

  20. Comments on leading mesons in anti p Ne - reactions at 607 MeV/c incident momentum in terms of four-momentum transfers in two-vertex diagrams

    International Nuclear Information System (INIS)

    Breivik, F.O.; Haatuft, A.; Halsteinslid, A.

    1990-02-01

    Based on previous observations of anti p Ne - reactions the author discuss, in terms of four-momentum transfers, why only leading pions are seen in events detected by their Λ-decays, and only leading kaons in the events detected by their neutral K-decays. The experimental results are consistent with a two-vertex model with strange or non-strange baryon exchange. 3 refs.; 4 figs.; 1 tab

  1. Ion-beam-induced reactions in metal-thin-film-/BP system

    International Nuclear Information System (INIS)

    Kobayashi, N.; Kumashiro, Y.; Revesz, P.; Mayer, J.W.

    1989-01-01

    Ion-beam-induced reactions in Ni thin films on BP(100) have been investigated and compared with the results of the thermal reaction. The full reaction of Ni layer with BP induced by energetic heavy ion bombardments (600 keV Xe) was observed at 200degC and the formation of the crystalline phase corresponding to a composition of Ni 4 BP was observed. Amorphous layer with the same composition was formed by the bombardments below RT. For thermally annealed samples the reaction of the Ni layer on BP started at temperatures between 350degC and 400degC and full reaction was observed at 450degC. Metal-rich ternary phase or mixed binary phase is thought to be the first crystalline phase formed both in the ion-beam-induced and in the thermally induced reactions. The crystalline phase has the same composition and X-ray diffraction pattern both for ion-beam-induced and thermal reactions. Linear dependence of the reacted thickness on the ion fluence was also observed. The authors would like to express their sincere gratitude to Jian Li and Shi-Qing Wang for X-ray diffraction measurements at Cornell University. One of the authors (N.K.) acknowledge the Agency of Science and Technology of Japan for the financial support of his stay at Cornell. We also acknowledge Dr. H. Tanoue at ETL for his help in ion bombardment experiments. (author)

  2. Kinetics of oil saponification by lead salts in ancient preparations of pharmaceutical lead plasters and painting lead mediums.

    Science.gov (United States)

    Cotte, M; Checroun, E; Susini, J; Dumas, P; Tchoreloff, P; Besnard, M; Walter, Ph

    2006-12-15

    Lead soaps can be found in archaeological cosmetics as well as in oil paintings, as product of interactions of lead salts with oil. In this context, a better understanding of the formation of lead soaps allows a follow-up of the historical evolution of preparation recipes and provides new insights into conservation conditions. First, ancient recipes of both pharmaceutical lead plasters and painting lead mediums, mixtures of oil and lead salts, were reconstructed. The ester saponification by lead salts is determined by the preparation parameters which were quantified by FT-IR spectrometry. In particular, ATR/FT-IR spectrometer was calibrated by the standard addition method to quantitatively follow the kinetics of this reaction. The influence of different parameters such as temperature, presence of water and choice of lead salts was assessed: the saponification is clearly accelerated by water and heating. This analysis provides chemical explanations to the historical evolution of cosmetic and painting preparation recipes.

  3. Investigation of reaction mechanisms during electroreduction of carbon dioxide on lead electrode for the production of organic compounds

    International Nuclear Information System (INIS)

    Innocent, B.

    2008-09-01

    The aim of this work was to promote the reduction of CO 2 through its electrochemical conversion (electro-synthesis) on a lead electrode into high added value products. Depending on the nature of electrolyte, the electro-reduction of carbon dioxide leads to different products. Various electrolytes (aqueous or organic, protic or aprotic) were used to study two mechanisms: hydrogenation (formation of formate) and electro-dimerization (synthesis of oxalate). Cyclic voltammetry studies have been carried out for electrochemically characterizing CO 2 reduction on Pb. The electrochemical investigation of the electrode electrolyte interface has shown that the process of CO 2 electro-reduction is a mass transfer control both in the organic and aqueous media. Electrochemical experiments (cyclic voltammetry, chrono-amperometry) coupled with in situ infrared reflectance spectroscopic techniques (SPAIRS, SNIFTIRS) have also shown that in aqueous medium (7 ≤pH≤9) hydrogeno-carbonate ions were reduced to formate. The modification of solvent (propylene carbonate) leads selectively to oxalate as the main reaction product. Long-term electrolyses were performed in a filter-press cell to deal large volumes. In aqueous medium, the reduction of HCO 3 - to HCOO - (R F = 89% at -2.5 mA cm -2 and 4 C) is always accompanied by the production of H 2 . (author)

  4. Real-time monitoring of enzyme activity in a mesoporous silicon double layer

    Science.gov (United States)

    Orosco, Manuel M.; Pacholski, Claudia; Sailor, Michael J.

    2009-04-01

    The activity of certain proteolytic enzymes is often an indicator of disease states such as cancer, stroke and neurodegeneracy, so there is a need for rapid assays that can characterize the kinetics and substrate specificity of enzymatic reactions. Nanostructured membranes can efficiently separate biomolecules, but coupling a sensitive detection method to such a membrane remains difficult. Here, we demonstrate a single mesoporous nanoreactor that can isolate and quantify in real time the reaction products of proteases. The reactor consists of two layers of porous films electrochemically prepared from crystalline silicon. The upper layer, with large pore sizes (~100 nm in diameter), traps the protease and acts as the reactor. The lower layer, with smaller pore sizes (~6 nm), excludes the proteases and other large proteins and captures the reaction products. Infiltration of the digested fragments into the lower layer produces a measurable change in optical reflectivity, and this allows label-free quantification of enzyme kinetics in real time within a volume of ~5 nl.

  5. Clustering mechanism of oxocarboxylic acids involving hydration reaction: Implications for the atmospheric models

    Science.gov (United States)

    Liu, Ling; Kupiainen-Määttä, Oona; Zhang, Haijie; Li, Hao; Zhong, Jie; Kurtén, Theo; Vehkamäki, Hanna; Zhang, Shaowen; Zhang, Yunhong; Ge, Maofa; Zhang, Xiuhui; Li, Zesheng

    2018-06-01

    The formation of atmospheric aerosol particles from condensable gases is a dominant source of particulate matter in the boundary layer, but the mechanism is still ambiguous. During the clustering process, precursors with different reactivities can induce various chemical reactions in addition to the formation of hydrogen bonds. However, the clustering mechanism involving chemical reactions is rarely considered in most of the nucleation process models. Oxocarboxylic acids are common compositions of secondary organic aerosol, but the role of oxocarboxylic acids in secondary organic aerosol formation is still not fully understood. In this paper, glyoxylic acid, the simplest and the most abundant atmospheric oxocarboxylic acid, has been selected as a representative example of oxocarboxylic acids in order to study the clustering mechanism involving hydration reactions using density functional theory combined with the Atmospheric Clusters Dynamic Code. The hydration reaction of glyoxylic acid can occur either in the gas phase or during the clustering process. Under atmospheric conditions, the total conversion ratio of glyoxylic acid to its hydration reaction product (2,2-dihydroxyacetic acid) in both gas phase and clusters can be up to 85%, and the product can further participate in the clustering process. The differences in cluster structures and properties induced by the hydration reaction lead to significant differences in cluster formation rates and pathways at relatively low temperatures.

  6. Hybrid inorganic–organic superlattice structures with atomic layer deposition/molecular layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tynell, Tommi; Yamauchi, Hisao; Karppinen, Maarit, E-mail: maarit.karppinen@aalto.fi [Department of Chemistry, Aalto University, FI-00076 Aalto (Finland)

    2014-01-15

    A combination of the atomic layer deposition (ALD) and molecular layer deposition (MLD) techniques is successfully employed to fabricate thin films incorporating superlattice structures that consist of single layers of organic molecules between thicker layers of ZnO. Diethyl zinc and water are used as precursors for the deposition of ZnO by ALD, while three different organic precursors are investigated for the MLD part: hydroquinone, 4-aminophenol and 4,4′-oxydianiline. The successful superlattice formation with all the organic precursors is verified through x-ray reflectivity studies. The effects of the interspersed organic layers/superlattice structure on the electrical and thermoelectric properties of ZnO are investigated through resistivity and Seebeck coefficient measurements at room temperature. The results suggest an increase in carrier concentration for small concentrations of organic layers, while higher concentrations seem to lead to rather large reductions in carrier concentration.

  7. Optical Analysis of Iron-Doped Lead Sulfide Thin Films for Opto-Electronic Applications

    Science.gov (United States)

    Chidambara Kumar, K. N.; Khadeer Pasha, S. K.; Deshmukh, Kalim; Chidambaram, K.; Shakil Muhammad, G.

    Iron-doped lead sulfide thin films were deposited on glass substrates using successive ionic layer adsorption and reaction method (SILAR) at room temperature. The X-ray diffraction pattern of the film shows a well formed crystalline thin film with face-centered cubic structure along the preferential orientation (1 1 1). The lattice constant is determined using Nelson Riley plots. Using X-ray broadening, the crystallite size is determined by Scherrer formula. Morphology of the thin film was studied using a scanning electron microscope. The optical properties of the film were investigated using a UV-vis spectrophotometer. We observed an increase in the optical band gap from 2.45 to 3.03eV after doping iron in the lead sulfide thin film. The cutoff wavelength lies in the visible region, and hence the grown thin films can be used for optoelectronic and sensor applications. The results from the photoluminescence study show the emission at 500-720nm. The vibrating sample magnetometer measurements confirmed that the lead sulfide thin film becomes weakly ferromagnetic material after doping with iron.

  8. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2001-01-01

    Full text: The last year of the twentieth-century was productive for our Department. Although the name of the Department suggests that we are all involved in investigations of nuclear reactions, in fact our activities are spread over three major domains: nuclear, atomic and material physics. Some of the projects we were involved in the last year have been realized using national facilities and accelerators, like the Van de Graaff accelerator of our Department at 69 Hoza Street, Warsaw Cyclotron U-200P of Warsaw University, and compact C30 cyclotron of our Institute at Swierk. Other projects were done abroad, using facilities of the Gesellschaft fuer Schwerionenforschung in Darmstadt, Institute de Physique Nucleaire at Orsay, and Universitaet Erlangen-Nuernberg in Erlangen. We carried out our work in close collaborations with physicists from many laboratories, Polish and foreign. - Low energy nuclear reactions. In collaboration with scientists from Ukraine experiments, using heavy ion beam provided by the Warsaw Cyclotron, were started. The aim of the experiments is to study nuclear reactions leading to the exotic light nuclei in exit channels and energy dependence of the nucleus - nucleus interaction. Efforts were made to develop a multistep direct model of nuclear reactions. In the model contributions due to the low energy collective excitations were taken into account. Good agreement with the experimental data was achieved. - Multifragmentation of relativistic heavy ions. ALADIN Collaboration studied multifragmentation reactions induced by relativistic heavy ions. The main activities of our scientists concentrated on an upgrade of the detecting system in order to replace photo multipliers with large area avalanche photodiodes in the central section of the TOF-wall. Some tests of the photodiodes manufactured by Advanced Photonix Inc. were performed using standard β - and γ-sources. - Structure of a nucleon. Decay properties of the Roper resonance were studied. A

  9. Dissipative effects in fission investigated with proton-on-lead reactions

    Directory of Open Access Journals (Sweden)

    Rodríguez-Sánchez J. L.

    2016-01-01

    Full Text Available The complete kinematic measurement of the two fission fragments permitted us to investigate dissipative effects at large deformations, between the saddle-point and the corresponding scission configurations. Up to now, this kind of study has only been performed with fusionfission reactions using a limited number of observables, such as the mass distribution of the fission fragments or the neutron multiplicities. However, the large angular momenta gained by the compound nucleus could affect the conclusions drawn from such experiments. In this work, the use of spallation reactions, where the fissioning systems are produced with low angular momentum, small deformations and high excitation energies, favors the study of dissipation, and allowed us to define new observables, such as postscission neutron multiplicities and the neutron excess of the final fission fragments as a function of the atomic number of the fissioning system. These new observables are used to investigate the dissipation at large deformations.

  10. Ab initio modeling of 2D layered organohalide lead perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Fraccarollo, Alberto; Cantatore, Valentina; Boschetto, Gabriele; Marchese, Leonardo; Cossi, Maurizio, E-mail: maurizio.cossi@uniupo.it [Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale, via T. Michel 11, I-15121 Alessandria (Italy)

    2016-04-28

    A number of 2D layered perovskites A{sub 2}PbI{sub 4} and BPbI{sub 4}, with A and B mono- and divalent ammonium and imidazolium cations, have been modeled with different theoretical methods. The periodic structures have been optimized (both in monoclinic and in triclinic systems, corresponding to eclipsed and staggered arrangements of the inorganic layers) at the DFT level, with hybrid functionals, Gaussian-type orbitals and dispersion energy corrections. With the same methods, the various contributions to the solid stabilization energy have been discussed, separating electrostatic and dispersion energies, organic-organic intralayer interactions and H-bonding effects, when applicable. Then the electronic band gaps have been computed with plane waves, at the DFT level with scalar and full relativistic potentials, and including the correlation energy through the GW approximation. Spin orbit coupling and GW effects have been combined in an additive scheme, validated by comparing the computed gap with well known experimental and theoretical results for a model system. Finally, various contributions to the computed band gaps have been discussed on some of the studied systems, by varying some geometrical parameters and by substituting one cation in another’s place.

  11. A Simple, Cost-Effective Sensor for Detecting Lead Ions in Water Using Under-Potential Deposited Bismuth Sub-Layer with Differential Pulse Voltammetry (DPV)

    Science.gov (United States)

    Dai, Yifan; Liu, Chung Chiun

    2017-01-01

    This research has developed a simple to use, cost effective sensor system for the detection of lead ions in tap water. An under-potential deposited bismuth sub-layer on a thin gold film based electrochemical sensor was designed, manufactured, and evaluated. Differential pulse voltammetry (DPV) measurement technique was employed in this detection. Tap water from the Cleveland, OH, USA regional water district was the test medium. Concentrations of lead ion in the range of 8 × 10−7 M to 5 × 10−4 M were evaluated, showing a good sensitivity over this concentration range. The calibration curve for the DPV measurements of lead ions in tap water showed excellent reproducibility with R2 value of 0.970. This DPV detection system required 3–6 min to complete the detection measurement. A longer measurement time of 6 min was used for the lower lead ion concentration. The selectivity of this lead ion sensor was very good, and Fe III, Cu II, Ni II, and Mg II at a concentration level of 5 × 10−4 M did not interfere with the lead ion measurement. PMID:28441356

  12. Reaction of Titanocene Alkyls with Pyridines; A Novel Type of Cyclometallation Reaction

    NARCIS (Netherlands)

    Klei, E.; Teuben, J.H.

    1981-01-01

    Reaction of Cp2TiR (R = alkyl) with 2-substituted-pyridines and with quinolines leads to α-metallation of these ligands with formation of triangular titanocycles containing TiIII. Proof of the metallation at the α-position comes from reactions of the complexes formed with I2 and D2O/DCl which yield

  13. Exclusive Hydrogen Generation by Electrocatalysts Coated with an Amorphous Chromium-Based Layer Achieving Efficient Overall Water Splitting

    KAUST Repository

    Qureshi, Muhammad

    2017-08-08

    Successful conversion of renewable energy to useful chemicals requires efficient devices that can electrocatalyze or photocatalyze redox reactions, e.g., overall water splitting. Excellent electrocatalysts for the hydrogen evolution reaction (HER), such as Pt, can also cause other side-reactions, including the water-forming back-reaction from H2 and O2 products. A Cr-based amorphous layer coated on catalysts can work as a successful surface modifier that avoids the back-reaction, but its capabilities and limitations toward other species have not been studied. Herein, we investigated the Cr-based layer on Pt from perspectives of both electrocatalysis and photocatalysis using redox-active molecules/ions (O2, ferricyanide, IO3–, S2O82–, H2O2, and CO gas). Our systematic study revealed that utilization of the Cr-based layer realized an exclusive cathodic reaction only to HER, even in the presence of the aforementioned reactive species, suggesting that Cr-based layers work as membranes, as well as corrosion and poison inhibition layers. However, the Cr-based layer experienced self-oxidation and dissolved into the aqueous phase when a strong oxidizing agent or low pH was present. Presented herein are fundamental and critical aspects of the Cr-based modifier, which is essential for the successful and practical development of solar fuel production systems.

  14. Exclusive Hydrogen Generation by Electrocatalysts Coated with an Amorphous Chromium-Based Layer Achieving Efficient Overall Water Splitting

    KAUST Repository

    Qureshi, Muhammad; Shinagawa, Tatsuya; Tsiapis, Nikolaos; Takanabe, Kazuhiro

    2017-01-01

    Successful conversion of renewable energy to useful chemicals requires efficient devices that can electrocatalyze or photocatalyze redox reactions, e.g., overall water splitting. Excellent electrocatalysts for the hydrogen evolution reaction (HER), such as Pt, can also cause other side-reactions, including the water-forming back-reaction from H2 and O2 products. A Cr-based amorphous layer coated on catalysts can work as a successful surface modifier that avoids the back-reaction, but its capabilities and limitations toward other species have not been studied. Herein, we investigated the Cr-based layer on Pt from perspectives of both electrocatalysis and photocatalysis using redox-active molecules/ions (O2, ferricyanide, IO3–, S2O82–, H2O2, and CO gas). Our systematic study revealed that utilization of the Cr-based layer realized an exclusive cathodic reaction only to HER, even in the presence of the aforementioned reactive species, suggesting that Cr-based layers work as membranes, as well as corrosion and poison inhibition layers. However, the Cr-based layer experienced self-oxidation and dissolved into the aqueous phase when a strong oxidizing agent or low pH was present. Presented herein are fundamental and critical aspects of the Cr-based modifier, which is essential for the successful and practical development of solar fuel production systems.

  15. NiMn layered double hydroxide nanosheets/NiCo2O4 nanowires with surface rich high valence state metal oxide as an efficient electrocatalyst for oxygen evolution reaction

    Science.gov (United States)

    Yang, Liting; Chen, Lin; Yang, Dawen; Yu, Xu; Xue, Huaiguo; Feng, Ligang

    2018-07-01

    High valence transition metal oxide is significant for anode catalyst of proton membrane water electrolysis technique. Herein, we demonstrate NiMn layered double hydroxide nanosheets/NiCo2O4 nanowires hierarchical nanocomposite catalyst with surface rich high valence metal oxide as an efficient catalyst for oxygen evolution reaction. A low overpotential of 310 mV is needed to drive a 10 mA cm-2 with a Tafel slope of 99 mV dec-1, and a remarkable stability during 8 h is demonstrated in a chronoamperometry test. Theoretical calculation displays the change in the rate-determining step on the nanocomposite electrode in comparison to NiCo2O4 nanowires alone. It is found high valence Ni and Mn oxide in the catalyst system can efficiently facilitate the charge transport across the electrode/electrolyte interface. The enhanced electrical conductivity, more accessible active sites and synergistic effects between NiMn layered double hydroxide nanosheets and NiCo2O4 nanowires can account for the excellent oxygen evolution reaction. The catalytic performance is comparable to most of the best non-noble catalysts and IrO2 noble catalyst, indicating the promising applications in water-splitting technology. It is an important step in the development of hierarchical nanocomposites by surface valence state tuning as an alternative to noble metals for oxygen evolution reaction.

  16. Graphene-oxide-supported CuAl and CoAl layered double hydroxides as enhanced catalysts for carbon-carbon coupling via Ullmann reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Nesreen S. [Department of Chemistry, Faculty of Science, King Abdulaziz University (Saudi Arabia); Surface Chemistry and Catalytic Studies Group, King Abdulaziz University (Saudi Arabia); Menzel, Robert [Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Bio Nano Consulting, The Gridiron Building, One Pancras Square, London N1C 4AG (United Kingdom); Wang, Yifan [Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Garcia-Gallastegui, Ainara [Bio Nano Consulting, The Gridiron Building, One Pancras Square, London N1C 4AG (United Kingdom); Bawaked, Salem M.; Obaid, Abdullah Y.; Basahel, Sulaiman N. [Department of Chemistry, Faculty of Science, King Abdulaziz University (Saudi Arabia); Surface Chemistry and Catalytic Studies Group, King Abdulaziz University (Saudi Arabia); Mokhtar, Mohamed, E-mail: mmokhtar2000@yahoo.com [Department of Chemistry, Faculty of Science, King Abdulaziz University (Saudi Arabia); Surface Chemistry and Catalytic Studies Group, King Abdulaziz University (Saudi Arabia)

    2017-02-15

    Two efficient catalyst based on CuAl and CoAl layered double hydroxides (LDHs) supported on graphene oxide (GO) for the carbon-carbon coupling (Classic Ullmann Homocoupling Reaction) are reported. The pure and hybrid materials were synthesised by direct precipitation of the LDH nanoparticles onto GO, followed by a chemical, structural and physical characterisation by electron microscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), surface area measurements and X-ray photoelectron spectroscopy (XPS). The GO-supported and unsupported CuAl-LDH and CoAl-LDH hybrids were tested over the Classic Ullman Homocoupling Reaction of iodobenzene. In the current study CuAl- and CoAl-LDHs have shown excellent yields (91% and 98%, respectively) at very short reaction times (25 min). GO provides a light-weight, charge complementary and two-dimensional material that interacts effectively with the 2D LDHs, in turn enhancing the stability of LDH. After 5 re-use cycles, the catalytic activity of the LDH/GO hybrid is up to 2 times higher than for the unsupported LDH. - Graphical abstract: CuAl- and CoAl-LDHs have shown excellent yields (91% and 98%, respectively) at very short reaction times (25 min). GO provides a light-weight, charge complementary, two-dimensional material that interacts effectively with the 2D LDHs, in turn enhancing the stability of LDH. - Highlights: • CuAl LDH/GO and CoAl LDH/GO hybrid materials with different LDH compositions were prepared. • Hybrids were fully characterised and their catalytic efficiency over the Classic Ullman Reaction was studied. • CuAl- and CoAl-LDHs have shown excellent yields (91% and 98%, respectively) in 25 min reaction times. • GO provides a light-weight, charge complementary, two-dimensional material that interacts effectively with the 2D LDHs. • After 5 re-use cycles, the catalytic activity of the LDH/GO hybrid is up to 2 times higher than for the unsupported LDH.

  17. Pion-transfer (n,d) and (d, 3He) reactions leading to deeply bound pionic atoms

    International Nuclear Information System (INIS)

    Toki, H.; Hirenzaki, S.; Yamazaki, T.

    1990-11-01

    Theoretical studies are given on the (n,d) and (d, 3 He) reactions leading to deeply bound pionic atoms in heavy nuclei of configuration [(nl) π ·j n -1 ]J. The cross sections for various pionic and neutron-hole configurations in the case of a 208 Pb target are calculated at incident energies 300-1000 MeV/u by using the effective number approach and the eikonal approximation for distortion. The effective number with a pion in the 1s or 2p state and a neutron hole in the i 13/2 orbit peaks around the same incident energy (T n =600 MeV) as the elementary cross section n+n→d+π - , where the momentum transfer matches the angular-momentum transfer of L=5∼7. The DWIA cross section for (n,d) producing a pion in the 1s or 2p orbit at T n =600 MeV is found to be around 42 or 75 μb/sr, respectively. At T n =350 MeV, where the momentum transfer is small, quasi-substitutional states of configurations [(2p) π (3p 1/2 ) n -1 ]L=0 and [(2p) π (3p 3/2 ) n -1 ]L=0 are preferentially populated with cross sections of 190 and 380 μb/sr, respectively. The (d, 3 He) cross sections are estimated to be an order of magnitude smaller than the (n,d) cross sections. Thus, the (n,d) and (d, 3 He) reactions are found to be suited for the production of deeply bound pionic atoms. (author)

  18. Liquid-Crystalline Ionic Liquids as Ordered Reaction Media for the Diels-Alder Reaction.

    Science.gov (United States)

    Bruce, Duncan W; Gao, Yanan; Canongia Lopes, José Nuno; Shimizu, Karina; Slattery, John M

    2016-11-02

    Liquid-crystalline ionic liquids (LCILs) are ordered materials that have untapped potential to be used as reaction media for synthetic chemistry. This paper investigates the potential for the ordered structures of LCILs to influence the stereochemical outcome of the Diels-Alder reaction between cyclopentadiene and methyl acrylate. The ratio of endo- to exo-product from this reaction was monitored for a range of ionic liquids (ILs) and LCILs. Comparison of the endo:exo ratios in these reactions as a function of cation, anion and liquid crystallinity of the reaction media, allowed for the effects of liquid crystallinity to be distinguished from anion effects or cation alkyl chain length effects. These data strongly suggest that the proportion of exo-product increases as the reaction media is changed from an isotropic IL to a LCIL. A detailed molecular dynamics (MD) study suggests that this effect is related to different hydrogen bonding interactions between the reaction media and the exo- and endo-transition states in solvents with layered, smectic ordering compared to those that are isotropic. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Characterization of nanostructured photosensitive (NiS)x(CdS)(1-x) composite thin films grown by successive ionic layer adsorption and reaction (SILAR) route

    International Nuclear Information System (INIS)

    Ubale, A.U.; Bargal, A.N.

    2011-01-01

    Highlights: → Thin films of (NiS) x (CdS) (1-x) with variable composition (x = 1 to 0) were deposited onto glass substrates by the successive ionic layer adsorption and reaction (SILAR) method. → The structural, surface morphological and electrical characterizations of the as deposited and annealed films were studied. → The bandgap and activation energy of annealed (NiS) x (CdS) (1-x) film decrease with improvement in photosensitive nature. -- Abstract: Recently ternary semiconductor nanostructured composite materials have attracted the interest of researchers because of their photovoltaic applications. Thin films of (NiS) x (CdS) (1-x) with variable composition (x = 1-0) had been deposited onto glass substrates by the successive ionic layer adsorption and reaction (SILAR) method. As grown and annealed films were characterised by X-ray diffraction, scanning electron microscopy and EDAX to investigate structural and morphological properties. The (NiS) x (CdS) (1-x) films were polycrystalline in nature having mixed phase of rhombohedral and hexagonal crystal structure due to NiS and CdS respectively. The optical and electrical properties of (NiS) x (CdS) (1-x) thin films were studied to determine compsition dependent bandgap, activation energy and photconductivity. The bandgap and activation energy of annealed (NiS) x (CdS) (1-x) film decrease with improvement in photosensitive nature.

  20. Building Honeycomb-Like Hollow Microsphere Architecture in a Bubble Template Reaction for High-Performance Lithium-Rich Layered Oxide Cathode Materials.

    Science.gov (United States)

    Chen, Zhaoyong; Yan, Xiaoyan; Xu, Ming; Cao, Kaifeng; Zhu, Huali; Li, Lingjun; Duan, Junfei

    2017-09-13

    In the family of high-performance cathode materials for lithium-ion batteries, lithium-rich layered oxides come out in front because of a high reversible capacity exceeding 250 mAh g -1 . However, the long-term energy retention and high energy densities for lithium-rich layered oxide cathode materials require a stable structure with large surface areas. Here we propose a "bubble template" reaction to build "honeycomb-like" hollow microsphere architecture for a Li 1.2 Mn 0.52 Ni 0.2 Co 0.08 O 2 cathode material. Our material is designed with ca. 8-μm-sized secondary particles with hollow and highly exposed porous structures that promise a large flexible volume to achieve superior structure stability and high rate capability. Our preliminary electrochemical experiments show a high capacity of 287 mAh g -1 at 0.1 C and a capacity retention of 96% after 100 cycles at 1.0 C. Furthermore, the rate capability is superior without any other modifications, reaching 197 mAh g -1 at 3.0 C with a capacity retention of 94% after 100 cycles. This approach may shed light on a new material engineering for high-performance cathode materials.

  1. A Flexible Solid Electrolyte Interphase Layer for Long-Life Lithium Metal Anodes.

    Science.gov (United States)

    Li, Nian-Wu; Shi, Yang; Yin, Ya-Xia; Zeng, Xian-Xiang; Li, Jin-Yi; Li, Cong-Ju; Wan, Li-Jun; Wen, Rui; Guo, Yu-Guo

    2018-02-05

    Lithium (Li) metal is a promising anode material for high-energy density batteries. However, the unstable and static solid electrolyte interphase (SEI) can be destroyed by the dynamic Li plating/stripping behavior on the Li anode surface, leading to side reactions and Li dendrites growth. Herein, we design a smart Li polyacrylic acid (LiPAA) SEI layer high elasticity to address the dynamic Li plating/stripping processes by self-adapting interface regulation, which is demonstrated by in situ AFM. With the high binding ability and excellent stability of the LiPAA polymer, the smart SEI can significantly reduce the side reactions and improve battery safety markedly. Stable cycling of 700 h is achieved in the LiPAA-Li/LiPAA-Li symmetrical cell. The innovative strategy of self-adapting SEI design is broadly applicable, providing opportunities for use in Li metal anodes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The effect of layer thickness and composition on the kinetics of solid state reactions in the niobium-selenium system studied using superlattice reactants

    International Nuclear Information System (INIS)

    Fukuto, M.; Kevan, S.D.

    1997-01-01

    The ability to form an amorphous reaction intermediate by the low temperature interdiffusion of a modulated elemental reactant is shown to be a function of the overall composition as well as elemental layer thicknesses in the niobium-selenium system. For niobium-rich reactants, an amorphous reaction intermediate was observed to form upon low temperature annealing of reactants with modulation thicknesses less than 60 A. Further annealing of the amorphous intermediates led to the crystallization of Nb 2 Se, Nb 5 Se 4 or Nb 3 Se 4 depending upon the overall composition of the amorphous intermediate. Modulated elemental reactants with overall compositions containing more than two-thirds selenium were found to heterogeneously nucleate NbSe 2 at the reacting interfaces. The formation of the thermodynamically expected compounds Nb 2 Se 3 , NbSe 3 , and Nb 2 Se 9 at their respective compositions required extended high temperature annealing to react the dichalcogenide with the remaining elemental reactants. A striking difference between the evolution of the low angle diffraction patterns in these two composition regimes suggests the differences in the reaction kinetics result from a composition dependence of the diffusion coefficients. (orig.)

  3. Ion beam analysis of multi-layered structure in Nb/Cu system

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Shunya; Goppelt-Langer, P; Naramoto, Hiroshi; Aoki, Yasushi; Takeshita, Hidefumi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    The dependence of H concentration on the layer thickness in H charged Nb/Cu multilayer samples has been studied using {sup 15}N resonance nuclear reaction analysis({sup 15}N-NRA) and high energy elastic recoil detection analysis(HE-ERDA). Also a simulation code has been developed for accurate simulation of the {sup 1}H({sup 15}N,{alpha}{gamma}){sup 12}C4.43 MeV {gamma}-yields at 6.385 MeV and 13.365 MeV reaction energy. The simulation are in good agreement with the experimental results. The present results show smooth increase of the H concentrations in Nb layers with increasing layer thickness. (author)

  4. Hot-Dip Coating of Lead-free Aluminum on Steel Substrates with Ultrasonic Vibration

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Hot-dip coating has been practically employed in manufacturing zinc alloy coated steel sheets. However, it is difficult to coat aluminum alloy on a bulky steel substrate without sufficient preheating, because a rapidly solidified layer containing gas babbles is formed on a substrate surface. A variety of iron-aluminides are also formed at the interface of a steel and aluminum hot-dip coating system, which is the main difficulty in joining of steel with aluminum. Ultrasonic vibration was applied to a steel substrate during hot-dip coating of aluminum alloy to control a rapidly solidified layer and a brittle reaction layer. Hot dipping of columnar steel substrates into molten aluminum alloy (Al-2.7 mass fraction Si-4.6 mass fraction Sn) was carried out through the use of a Langevin oscillator with resonant frequency of 19.5 kHz. The application of ultrasonic vibration is quite effective to control a rapidly solidified layer and a surface oxide layer from a substrate surface by the sonocapillary effect based on a cavitation phenomenon, so that the intimate contact is achieved at the beginning of hot-dip coating. The application of ultrasonic vibration to hot-dipping is effective to control a reaction layer with less than 5μm in thickness. An impact test exhibits that the good adhesive strength is approved in hot-dipped aluminum coatings with a thin reaction layer of approximately 5μm.

  5. Mechanochemical approach for synthesis of layered double hydroxides

    Science.gov (United States)

    Zhang, Xiaoqing; Li, Shuping

    2013-06-01

    In this paper, a mechanochemical approach is used to prepare layered double hydroxides (LDHs). This approach involves manually grinding the precursor, nitrates and then the hydrothermal treatment. The study indicates that grinding leads to the incomplete formation of LDHs phase, LDHs-M. The reaction degree of precursor salts to LDHs after grinding depends on the melting points of the precursors. As expected, hydrothermal treatment is beneficial for the good crystallization and regularity of LDHs. Especially, the effect of hydrothermal treatment has been emphatically explored. The hydration of LDHs-M, increment of zeta potentials and the complete exchange of NO3- by CO32- anions occur successively or in parallel during the hydrothermal treatment. It can be found that combination of grinding and hydrothermal treatment gives rise to the formation of uniform and monodispersed particles of LDHs.

  6. Electrical properties of a novel lead alkoxide precursor: Lead glycolate

    International Nuclear Information System (INIS)

    Tangboriboon, Nuchnapa; Pakdeewanishsukho, Kittikhun; Jamieson, Alexander; Sirivat, Anuvat; Wongkasemjit, Sujitra

    2006-01-01

    The reaction of lead acetate trihydrate Pb(CH 3 COO) 2 .3H 2 O and ethylene glycol, using triethylenetetramine (TETA) as a catalyst, provides in one step access to a polymer-like precursor of lead glycolate [-PbOCH 2 CH 2 O-]. On the basis of high-resolution mass spectroscopy, chemical analysis composition, FTIR, 13 C-solid state NMR and TGA, the lead glycolate precursor can be identified as a trimer structure. The FTIR spectrum demonstrates the characteristics of lead glycolate; the peaks at 1086 and 1042 cm -1 can be assigned to the C-O-Pb stretchings. The 13 C-solid state NMR spectrum gives notably only one peak at 68.639 ppm belonging to the ethylene glycol ligand. The phase transformations of lead glycolate and lead acetate trihydrate to lead oxide, their microstructures, and electrical properties were found to vary with increasing temperature. The lead glycolate precursor has superior electrical properties relative to those of lead acetate trihydrate, suggesting that the lead glycolate precursor can possibly be used as a starting material for producing electrical and semiconducting ceramics, viz. ferroelectric, anti-ferroelectric, and piezoelectric materials

  7. A literature review of surface alteration layer effects on waste glass behavior

    International Nuclear Information System (INIS)

    Feng, X.; Cunnane, J.C.; Bates, J.K.

    1993-01-01

    When in contact with an aqueous solution, nuclear waste glass is subject to a chemical attack that results in progressive alteration. During tills alteration, constituent elements of the glass pass into the solution; elements initially in solution diffuse into, or are adsorbed onto, the solid; and new phases appear. This results in the formation of surface layers on the reacted glass. The glass corrosion and radionuclide release can be better understood by investigating these surface layer effects. In the past decade, there have been numerous studies regarding the effects of surface layers on glass reactions. This paper presents a systematic analysis and summary of the past knowledge regarding the effects of surface layers on glass-water interaction. This paper describes the major formation mechanisms of surface layers; reviews the role of surface layers in controlling mass transport and glass reaction affinity (through crystalline phases, an amorphous silica, a gel layer, or all the components in the glass); and discusses how the surface layers contribute to the retention of radionuclides during glass dissolution

  8. Improvement of the crystallographic orientation of double-layered perpendicular recording media by using CoCr (Mo)/Cu intermediate layers

    International Nuclear Information System (INIS)

    Tamai, Ichiro; Yamamoto, T.; Kikukawa, A.; Tanahashi, K.; Ishikawa, A.; Futamoto, M.

    2001-01-01

    We have introduced intermediate layers of CoCr/Cu and CoCrMo/Cu between a CoCrPtB recording layer and a soft-magnetic CoTaZr underlayer. The combination of the FCC-Cu first-intermediate layer and the HCP-CoCrMo second-intermediate layer was found to enhance the c-axis vertical orientation of the CoCrPtB recording layer. In media with intermediate layers of CoCrMo/Cu, the thickness of the intermediate layers can be reduced without sacrificing good magnetic properties, and this leads to high resolutions

  9. A New Epoxy-Based Layered Silicate Nanocomposite Using a Hyperbranched Polymer: Study of the Curing Reaction and Nanostructure Development.

    Science.gov (United States)

    Cortés, Pilar; Fraga, Iria; Calventus, Yolanda; Román, Frida; Hutchinson, John M; Ferrando, Francesc

    2014-03-04

    Polymer layered silicate (PLS) nanocomposites have been prepared with diglycidyl ether of bisphenol-A (DGEBA) epoxy resin as the matrix and organically modified montmorillonite (MMT) as the clay nanofiller. Resin-clay mixtures with different clay contents (zero, two, five and 10 wt%) were cured, both isothermally and non-isothermally, using a poly(ethyleneimine) hyperbranched polymer (HBP), the cure kinetics being monitored by differential scanning calorimetry (DSC). The nanostructure of the cured nanocomposites was characterized by small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM), and their mechanical properties were determined by dynamic mechanical analysis (DMA) and impact testing. The results are compared with an earlier study of the structure and properties of the same DGEBA-MMT system cured with a polyoxypropylene diamine, Jeffamine. There are very few examples of the use of HBP as a curing agent in epoxy PLS nanocomposites; here, it is found to enhance significantly the degree of exfoliation of these nanocomposites compared with those cured with Jeffamine, with a corresponding enhancement in the impact energy for nanocomposites with the low clay content of 2 wt%. These changes are attributed to the different cure kinetics with the HBP, in which the intra-gallery homopolymerization reaction is accelerated, such that it occurs before the bulk cross-linking reaction.

  10. A New Epoxy-Based Layered Silicate Nanocomposite Using a Hyperbranched Polymer: Study of the Curing Reaction and Nanostructure Development

    Directory of Open Access Journals (Sweden)

    Pilar Cortés

    2014-03-01

    Full Text Available Polymer layered silicate (PLS nanocomposites have been prepared with diglycidyl ether of bisphenol-A (DGEBA epoxy resin as the matrix and organically modified montmorillonite (MMT as the clay nanofiller. Resin-clay mixtures with different clay contents (zero, two, five and 10 wt% were cured, both isothermally and non-isothermally, using a poly(ethyleneimine hyperbranched polymer (HBP, the cure kinetics being monitored by differential scanning calorimetry (DSC. The nanostructure of the cured nanocomposites was characterized by small angle X-ray scattering (SAXS and transmission electron microscopy (TEM, and their mechanical properties were determined by dynamic mechanical analysis (DMA and impact testing. The results are compared with an earlier study of the structure and properties of the same DGEBA-MMT system cured with a polyoxypropylene diamine, Jeffamine. There are very few examples of the use of HBP as a curing agent in epoxy PLS nanocomposites; here, it is found to enhance significantly the degree of exfoliation of these nanocomposites compared with those cured with Jeffamine, with a corresponding enhancement in the impact energy for nanocomposites with the low clay content of 2 wt%. These changes are attributed to the different cure kinetics with the HBP, in which the intra-gallery homopolymerization reaction is accelerated, such that it occurs before the bulk cross-linking reaction.

  11. Structural Investigation of Sodium Layered Oxides Via in Situ Synchrotron X-Ray Diffraction

    DEFF Research Database (Denmark)

    Jung, Young Hwa; Christiansen, Ane Sælland; Johnsen, Rune

    2015-01-01

    electrochemical reaction is generally considered to be a pivotal feature for understanding the relationship between layered structures and electrochemical properties. Here the structure, phase stability, and electrochemical properties of two kinds of layered oxides, P2 and O3, are investigated through in......-situ synchrotron XRD experiments. A capillary Na-based cell is designed to minimize interference in other substances such as a separator or external battery parts. This approach could give us to obtain clear diffraction patterns with high intensity during electrochemical reaction in a short period of time without...... further relaxation step. We carefully scrutinized reversible structural phase transformations during electrochemical reaction of P2 and O3-layered compounds based on in situ analysis, and detailed results will be discussed....

  12. Leading survey and research report for fiscal 1999. Survey and research on chemical reaction simulator technology; 1999 nendo kagaku hanno simulator gijutsu no chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Although various chemical reactions are made use of at scenes of chemical industry for the acquisition of desired chemicals, the control of reaction process governing factors, such as temperature, pressure, catalysts, solutions, etc., is found to be carried out only on the empirical basis. At the present time, rational or optimum reaction designs are not to be prepared in a short period of time in the presence of the widespread shortage of knowledge about chemical reactions and of the shortage of understanding of chemical reactions at the micro level. Leading survey and research are conducted for the development of a 'chemical reaction simulator' technology to enable the acquisition of optimum reaction designing guidelines in a short period of time. Using the simulator, a chemical of his choice is inputted by a researcher engaged in the study of an real chemical reaction and then various techniques of computer science are mobilized for the preparation of a huge number of feasible reaction routes, and high-precision simulations are conducted for the feasible reaction routes. The results achieved this fiscal year are reported. The purpose of this research and its ripple effect on new product industry creation are stated. Then the positioning, mission, and concept of such a chemical reaction simulator are described. Finally, the result of research and survey of knowledge databases and the result of research and survey of computational chemistry are stated. (NEDO)

  13. Leading survey and research report for fiscal 1999. Survey and research on chemical reaction simulator technology; 1999 nendo kagaku hanno simulator gijutsu no chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Although various chemical reactions are made use of at scenes of chemical industry for the acquisition of desired chemicals, the control of reaction process governing factors, such as temperature, pressure, catalysts, solutions, etc., is found to be carried out only on the empirical basis. At the present time, rational or optimum reaction designs are not to be prepared in a short period of time in the presence of the widespread shortage of knowledge about chemical reactions and of the shortage of understanding of chemical reactions at the micro level. Leading survey and research are conducted for the development of a 'chemical reaction simulator' technology to enable the acquisition of optimum reaction designing guidelines in a short period of time. Using the simulator, a chemical of his choice is inputted by a researcher engaged in the study of an real chemical reaction and then various techniques of computer science are mobilized for the preparation of a huge number of feasible reaction routes, and high-precision simulations are conducted for the feasible reaction routes. The results achieved this fiscal year are reported. The purpose of this research and its ripple effect on new product industry creation are stated. Then the positioning, mission, and concept of such a chemical reaction simulator are described. Finally, the result of research and survey of knowledge databases and the result of research and survey of computational chemistry are stated. (NEDO)

  14. Efficiency enhancement of polymer solar cells by applying poly(vinylpyrrolidone) as a cathode buffer layer via spin coating or self-assembly.

    Science.gov (United States)

    Wang, Haitao; Zhang, Wenfeng; Xu, Chenhui; Bi, Xianghong; Chen, Boxue; Yang, Shangfeng

    2013-01-01

    A non-conjugated polymer poly(vinylpyrrolidone) (PVP) was applied as a new cathode buffer layer in P3HT:PCBM bulk heterojunction polymer solar cells (BHJ-PSCs), by means of either spin coating or self-assembly, resulting in significant efficiency enhancement. For the case of incorporation of PVP by spin coating, power conversion efficiency (PCE) of the ITO/PEDOT:PSS/P3HT:PCBM/PVP/Al BHJ-PSC device (3.90%) is enhanced by 29% under the optimum PVP spin-coating speed of 3000 rpm, which leads to the optimum thickness of PVP layer of ~3 nm. Such an efficiency enhancement is found to be primarily due to the increase of the short-circuit current (J(sc)) (31% enhancement), suggesting that the charge collection increases upon the incorporation of a PVP cathode buffer layer, which originates from the conjunct effects of the formation of a dipole layer between P3HT:PCBM active layer and Al electrodes, the chemical reactions of PVP molecules with Al atoms, and the increase of the roughness of the top Al film. Incorporation of PVP layer by doping PVP directly into the P3HT:PCBM active layer leads to an enhancement of PCE by 13% under the optimum PVP doping ratio of 3%, and this is interpreted by the migration of PVP molecules to the surface of the active layer via self-assembly, resulting in the formation of the PVP cathode buffer layer. While the formation of the PVP cathode buffer layer is fulfilled by both fabrication methods (spin coating and self-assembly), the dependence of the enhancement of the device performance on the thickness of the PVP cathode buffer layer formed by self-assembly or spin coating is different, because of the different aggregation microstructures of the PVP interlayer.

  15. Development of Functional Inorganic Materials by Soft Chemical Process Using Ion-Exchange Reactions

    Science.gov (United States)

    Feng, Qi

    Our study on soft chemical process using the metal oxide and metal hydroxide nanosheets obtained by exfoliation their layered compounds were reviewed. Ni(OH)2⁄MnO2 sandwich layered nanostructure can be prepared by layer by-layer stacking of exfoliated manganese oxide nanosheets and nickel hydroxide layers. Manganese oxide nanotubes can be obtained by curling the manganese oxide nanosheets using the cationic surfactants as the template. The layered titanate oriented thin film can be prepared by restacking the titanate nanosheets on a polycrystalline substrate, and transformed to the oriented BaTiO3 and TiO2 thin films by the topotactic structural transformation reactions, respectively. The titanate nanosheets can be transformed anatase-type TiO2 nanocrystals under hydrothermal conditions. The TiO2 nanocrystals are formed by a topotactic structural transformation reaction. The TiO2 nanocrystals prepared by this method expose specific crystal plane on their surfaces, and show high photocatalytic activity and high dye adsorption capacity for high performance dye-sensitized solar cell. A series of layered basic metal salt (LBMS) compounds were prepared by hydrothermal reactions of transition metal hydroxides and organic acids. We succeeded in the exfoliation of these LBMS compounds in alcohol solvents, and obtained the transition metal hydroxide nanosheets for the first time.

  16. Remarkable effects of disorder on superconductivity of single atomic layers of lead on silicon

    Science.gov (United States)

    Brun, Christophe

    2015-03-01

    It is well known that conventional superconductivity is very robust against non-magnetic disorder. Nevertheless for thin and ultrathin films the structural properties play a major role in determining the superconducting properties, through a subtle interplay between disorder and Coulomb interactions. Unexpectedly, in 2010 superconductivity was discovered in single atomic layers of lead and indium grown on silicon substrate using scanning tunneling spectroscopy and confirmed later on by macroscopic transport measurements. Such well-controlled and tunable crystalline monolayers are ideal systems for studying the influence of various kinds of structural defects on the superconducting properties at the atomic and mesoscopic scale. In particular, Pb monolayers offer the opportunity of probing new effects of disorder because not only superconductivity is 2D but also the electronic wave functions are 2D. Our study of two Pb monolayers of different crystal structures by very-low temperature STM (300 mK) under magnetic field reveals unexpected results involving new spatial spectroscopic variations. Our results show that although the sheet resistance of the Pb monolayers is much below the resistance quantum, strong non-BCS corrections appear leading to peak heights fluctuations in the dI/dV tunneling spectra at a spatial scale much smaller than the superconducting coherence length. Furthermore, strong local evidence of the signature of Rashba effect on the superconductivity of the Pb/Si(111) monolayer is revealed through filling of in gap states and local spatial variations of this filling. Finally the nature of vortices in a monolayer is found to be very sensitive to the properties of step edges areas. This work was supported by University Pierre et Marie Curie UPMC `Emergence' project, French ANR Project `ElectroVortex,' ANR-QuDec and Templeton Foundation (40381), ARO (W911NF-13-1-0431) and CNRS PICS funds. Partial funding by US-DOE Grant DE-AC02-07CH1.

  17. Flame retardation of cellulose-rich fabrics via a simplified layer-by-layer assembly.

    Science.gov (United States)

    Yang, Jun-Chi; Liao, Wang; Deng, Shi-Bi; Cao, Zhi-Jie; Wang, Yu-Zhong

    2016-10-20

    Due to the high cellulose content of cotton (88.0-96.5%), the flame retardation of cotton fabrics can be achieved via an approach for the flame retardation of cellulose. In this work, a facile water-based flame retardant coating was deposited on cotton fabrics by a 'simplified' layer-by-layer (LbL) assembly. The novel coating solution was based on a mild reaction between ammonium polyphosphate (APP) and branched polyethyleneimine (BPEI), and the reaction mechanism was studied. TGA results showed that the char residues of coated fabrics were remarkably increased. The fabric with only 5wt% coating showed self-extinguishing in the horizontal flame test, and the peak heat release rate (pHRR) in cone calorimeter test decreased by 51%. Furthermore, this coating overcame a general drawback of flame-retardant LbL assembly which was easily washed away. Therefore, the simplified LbL method provides a fast, low-cost, eco-friendly and wash-durable flame-retardant finishing for the cellulose-rich cotton fabrics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Streamwise counter-rotating vortices generated by triangular leading edge pattern in flat plate boundary layer

    KAUST Repository

    Hasheminejad, S. M.

    2016-01-05

    A series of flow visualizations were conducted to qualitatively study the development of streamwise counter-rotating vortices over a flat plate induced by triangular patterns at the leading edge of a flat plate. The experiments were carried out for a Reynolds number based on the pattern wavelength (λ) of 3080. The results depict the onset, development and breakdown of the vortical structures within the flat plate boundary layer. Moreover, the effect of one spanwise array of holes with diameter of 0.2λ (=3 mm) was examined. This investigation was done on two different flat plates with holes placed at the location x/λ = 2 downstream of the troughs and peaks. The presence of holes after troughs does not show any significant effect on the vortical structures. However, the plate with holes after peaks noticeably delays the vortex breakdown. In this case, the “mushroom-like” vortices move away from the wall and propagate downstream with stable vortical structures. The vortex growth is halted further downstream but start to tilt aside.

  19. Chemical solution deposited BaPbO3 buffer layers for lead zirconate titanate ferroelectric films

    International Nuclear Information System (INIS)

    Tseng, T.-K.; Wu, J.-M.

    2005-01-01

    Conductive perovskite BaPbO 3 (BPO) films have been prepared successfully by chemical solution deposition method through spin-coating on Pt/Ti/SiO 2 /Si substrates. The choice of baking temperature is a key factor on the development of conducting BPO perovskite phase. When the baking temperature is higher than 350 deg. C, the BPO films contain a high content of BaCO 3 phase after annealing at temperatures higher than 500 deg. C. If the baking temperature is chosen lower than 300 deg. C, such as 200 deg. C, the annealed BPO films consist mostly of perovskite with only traces of BaCO 3 . Choosing 200 deg. C as the baking temperature, the BPO films developed single perovskite phase at temperatures as low as 550 deg. C. The perovskite BPO phase is stable in the range of 550-650 deg. C and the measured sheet resistance of the BPO films is about 2-3 Ω/square. The perovskite BPO film as a buffer layer provides improvement in electric properties of lead zirconate titanate films

  20. Interfacial reactions between titanium and borate glass

    Energy Technology Data Exchange (ETDEWEB)

    Brow, R.K. [Sandia National Labs., Albuquerque, NM (United States); Saha, S.K.; Goldstein, J.I. [Lehigh Univ., Bethlehem, PA (United States). Dept. of Materials Science

    1992-12-31

    Interfacial reactions between melts of several borate glasses and titanium have been investigated by analytical scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (XPS). A thin titanium boride interfacial layer is detected by XPS after short (30 minutes) thermal treatments. ASEM analyses after longer thermal treatments (8--120 hours) reveal boron-rich interfacial layers and boride precipitates in the Ti side of the interface.

  1. Modeling chemical reactions for drug design.

    Science.gov (United States)

    Gasteiger, Johann

    2007-01-01

    Chemical reactions are involved at many stages of the drug design process. This starts with the analysis of biochemical pathways that are controlled by enzymes that might be downregulated in certain diseases. In the lead discovery and lead optimization process compounds have to be synthesized in order to test them for their biological activity. And finally, the metabolism of a drug has to be established. A better understanding of chemical reactions could strongly help in making the drug design process more efficient. We have developed methods for quantifying the concepts an organic chemist is using in rationalizing reaction mechanisms. These methods allow a comprehensive modeling of chemical reactivity and thus are applicable to a wide variety of chemical reactions, from gas phase reactions to biochemical pathways. They are empirical in nature and therefore allow the rapid processing of large sets of structures and reactions. We will show here how methods have been developed for the prediction of acidity values and of the regioselectivity in organic reactions, for designing the synthesis of organic molecules and of combinatorial libraries, and for furthering our understanding of enzyme-catalyzed reactions and of the metabolism of drugs.

  2. Polymer and Membrane Design for Low Temperature Catalytic Reactions

    KAUST Repository

    Villalobos, Luis Francisco; Xie, Yihui; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2016-01-01

    Catalytically active asymmetric membranes have been developed with high loadings of palladium nanoparticles located solely in the membrane's ultrathin skin layer. The manufacturing of these membranes requires polymers with functional groups, which can form insoluble complexes with palladium ions. Three polymers have been synthesized for this purpose and a complexation/nonsolvent induced phase separation followed by a palladium reduction step is carried out to prepare such membranes. Parameters to optimize the skin layer thickness and porosity, the palladium loading in this layer, and the palladium nanoparticles size are determined. The catalytic activity of the membranes is verified with the reduction of a nitro-compound and with a liquid phase Suzuki-Miyaura coupling reaction. Very low reaction times are observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Polymer and Membrane Design for Low Temperature Catalytic Reactions

    KAUST Repository

    Villalobos, Luis Francisco

    2016-02-29

    Catalytically active asymmetric membranes have been developed with high loadings of palladium nanoparticles located solely in the membrane\\'s ultrathin skin layer. The manufacturing of these membranes requires polymers with functional groups, which can form insoluble complexes with palladium ions. Three polymers have been synthesized for this purpose and a complexation/nonsolvent induced phase separation followed by a palladium reduction step is carried out to prepare such membranes. Parameters to optimize the skin layer thickness and porosity, the palladium loading in this layer, and the palladium nanoparticles size are determined. The catalytic activity of the membranes is verified with the reduction of a nitro-compound and with a liquid phase Suzuki-Miyaura coupling reaction. Very low reaction times are observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Layer by layer assembly of gold nanoparticles and graphene via Langmuir Blodgett method for efficient light-harvesting in photocatalytic applications

    International Nuclear Information System (INIS)

    Shakir, Imran; Ali, Zahid; Kang, Dae Joon

    2014-01-01

    Highlights: • Layer by layer assembly of gold nanoparticles and graphene. • Efficient visible light photocatalysis. • Plasmonic resonances by nanoparticles are utilized for visible light scattering. • Electron scavenging reaction. • Easy handling and recycling. - Abstract: The synthesis of a photocatalyst that is highly active under visible light is one of the most challenging tasks for solar-energy utilization. Here we report a multilayer assembly of gold nanoparticles and graphene that offers dual functionality to efficiently harness visible photons. Firstly, plasmonic resonances by gold nanoparticles are utilized for visible light scattering; secondly the electron scavenging reaction is enhanced by the gold nanoparticles trapping the electrons that are injected from the dye into the graphene. Moreover, the structure is in the form of a thin film, which demonstrates the potential for easy handling and recycling. Precise control over light harvesting and the photocatalytic response is achieved by controlling the number of layers

  5. Layer by layer assembly of gold nanoparticles and graphene via Langmuir Blodgett method for efficient light-harvesting in photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Shakir, Imran, E-mail: shakir@skku.edu [Deanship of scientific research, College of Engineering, King Saud University, PO-BOX 800, Riyadh 11421 (Saudi Arabia); Ali, Zahid [BK 21 Physics Research Division, Department of Energy Science, Institute of Basic Sciences, SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); National Institute of Lasers and Optronics, Islamabad (Pakistan); Kang, Dae Joon [BK 21 Physics Research Division, Department of Energy Science, Institute of Basic Sciences, SKKU Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-12-25

    Highlights: • Layer by layer assembly of gold nanoparticles and graphene. • Efficient visible light photocatalysis. • Plasmonic resonances by nanoparticles are utilized for visible light scattering. • Electron scavenging reaction. • Easy handling and recycling. - Abstract: The synthesis of a photocatalyst that is highly active under visible light is one of the most challenging tasks for solar-energy utilization. Here we report a multilayer assembly of gold nanoparticles and graphene that offers dual functionality to efficiently harness visible photons. Firstly, plasmonic resonances by gold nanoparticles are utilized for visible light scattering; secondly the electron scavenging reaction is enhanced by the gold nanoparticles trapping the electrons that are injected from the dye into the graphene. Moreover, the structure is in the form of a thin film, which demonstrates the potential for easy handling and recycling. Precise control over light harvesting and the photocatalytic response is achieved by controlling the number of layers.

  6. Hydrophobic ZnO nanostructured thin films on glass substrate by simple successive ionic layer absorption and reaction (SILAR) method

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P. Suresh; Raj, A. Dhayal [Thin Film and Nanomaterials Laboratory, Department of Physics, Bharathiar University, Coimbatore-641046 (India); Mangalaraj, D., E-mail: dmraj800@yahoo.co [Department of Nanoscience and Technology, Bharathiar University, Coimbatore-641046 (India); Nataraj, D. [Thin Film and Nanomaterials Laboratory, Department of Physics, Bharathiar University, Coimbatore-641046 (India)

    2010-10-01

    In the present work, ZnO nanostructured thin films were grown on glass substrates by a simple successive ionic layer absorption and reaction method (SILAR) process at relatively low temperature for its self cleaning application. X-ray diffraction, scanning electron microscopy and Photoluminescence (PL) spectra were used to characterize the prepared ZnO nanostructured film. XRD pattern clearly reviles that the grown ZnO nanostructure film reflect (002) orientation with c-direction. SEM image clearly shows the surface morphology with cluster of spindle and flower-like nanostructured with diameter various around 350 nm. Photoluminescence (PL) spectra of ZnO nanostructures film exhibit a UV emission around 385nm and visible emission in the range around 420-500 nm. Good water repellent behavior were observed for ZnO nanostructured film without any surface modification.

  7. Hydrophobic ZnO nanostructured thin films on glass substrate by simple successive ionic layer absorption and reaction (SILAR) method

    International Nuclear Information System (INIS)

    Kumar, P. Suresh; Raj, A. Dhayal; Mangalaraj, D.; Nataraj, D.

    2010-01-01

    In the present work, ZnO nanostructured thin films were grown on glass substrates by a simple successive ionic layer absorption and reaction method (SILAR) process at relatively low temperature for its self cleaning application. X-ray diffraction, scanning electron microscopy and Photoluminescence (PL) spectra were used to characterize the prepared ZnO nanostructured film. XRD pattern clearly reviles that the grown ZnO nanostructure film reflect (002) orientation with c-direction. SEM image clearly shows the surface morphology with cluster of spindle and flower-like nanostructured with diameter various around 350 nm. Photoluminescence (PL) spectra of ZnO nanostructures film exhibit a UV emission around 385nm and visible emission in the range around 420-500 nm. Good water repellent behavior were observed for ZnO nanostructured film without any surface modification.

  8. The synthesis of PdPt/carbon paper via surface limited redox replacement reactions for oxygen reduction reaction

    CSIR Research Space (South Africa)

    Motsoeneng, RG

    2015-09-01

    Full Text Available Surface-limited redox replacement reactions using the electrochemical atomic layer deposition (EC-ALD) technique were used to synthesize PdPt bimetallic electrocatalysts on carbon paper substrate. Electrocatalysts having different Pd:Pt ratio were...

  9. Thermal decomposition of a molecular material {N(n-C4H94[FeIIFeIII(C2O43]}∞ leading to ferrite: A reaction kinetics study

    Directory of Open Access Journals (Sweden)

    Bhattacharjee Ashis

    2013-01-01

    Full Text Available A multi-step thermal decomposition of a molecular precursor, {N(n-C4H94[FeIIFeIII(C2O43}∞ has been studied using non-isothermal thermogravimetry (TG measurements in the temperature range 300 to ~800 K at multiple heating rates (5, 10 and 20 K min-1. The thermal decomposition of the oxalate-based complex proceeds stepwise through a series of intermediate reactions. Two different isoconversional methods, namely, improved iterative method and model-free method are employed to evaluate the kinetic parameters: activation energy and rate of reaction, and the most probable reaction mechanism of thermal decomposition is also determined. The different reaction pathways leading to different steps in the TG profile have also been explored which are supplemented by earlier experimental observations of the present authors.

  10. Lithium-lead/water interaction. Large break experiments

    International Nuclear Information System (INIS)

    Savatteri, C.; Gemelli, A.

    1991-01-01

    One current concept in fusion blanket module design is to utilize water as coolant and liquid lithium-lead as breeding/neutron-multiplier material. Considering the possibility of certain off-normal events, it is possible that water leakage into the liquid metal may occur due to a tube rupture. The lithium-lead/water contact can lead to a thermal and chemical reaction which should provoke an intolerable pressure increase in the blanket module. For realistic simulation of such in-blanket events, the Blanket Safety Test (BLAST) facility has been built. It simulates the transient event by injecting subcooled water under high pressure into a stagnant pool of about 500 kg liquid Pb-17Li. Eight fully instrumented large break tests were carried out under different conditions. The aim of the experiments is to study the chemical and thermal process and particularly: The pressurization history of the reaction vessel, the formation and deposition of the reaction products, the identification and propagation of the reaction zones and the temperature transient in the liquid metal. In this paper the results of all tests performed are presented and discussed. (orig.)

  11. Two luminescent frameworks constructed from lead(II) salts with carboxylate ligands containing dinuclear lead(II) units

    International Nuclear Information System (INIS)

    Zhu Xiandong; Li Xiaoju; Liu Qingyan; Lue Jian; Guo Zhengang; He Jinrun; Li Yafeng; Cao Rong

    2007-01-01

    Two luminescent Pb(II) coordination frameworks containing dinuclear lead(II) units, [Pb(PYDC)(H 2 O)] n (1) and [Pb(HPHT)] n (2) have been prepared by the self-assembly of lead(II) salts with pyridinecarboxylate and benzenecarboxylate. Single-crystal X-ray diffraction analyses reveal that compound 1 is a three-dimensional architecture consisting of Pb 2 O 2 dimeric building units, whereas compound 2 is a two-dimensional layer structure containing one-dimensional lead-oxide chains. The luminescent properties of 1 and 2 have been investigated in the solid state at room temperature, indicating structure-dependent photoluminescent properties of the coordination frameworks. - Graphical abstract: Two luminescent Pb(II) coordination frameworks, [Pb(PYDC)(H 2 O)] n (1) and [Pb(HPHT)] n (2) have been prepared. Single-crystal analyses reveal that compound 1 is a three-dimensional architecture consisting of Pb 2 O 2 dimeric building units, whereas compound 2 is a two-dimensional layer structure containing one-dimensional lead-oxide chains. The luminescent properties have been investigated, indicating structure-dependent photoluminescent properties of the coordination frameworks

  12. Resistive switching memory properties of layer-by-layer assembled enzyme multilayers

    International Nuclear Information System (INIS)

    Baek, Hyunhee; Cho, Jinhan; Lee, Chanwoo; Lim, Kwang-il

    2012-01-01

    The properties of enzymes, which can cause reversible changes in currents through redox reactions in solution, are of fundamental and practical importance in bio-electrochemical applications. These redox properties of enzymes are often associated with their charge-trap sites. Here, we demonstrate that reversible changes in resistance in dried lysozyme (LYS) films can be generated by an externally applied voltage as a result of charge trap/release. Based on such changes, LYS can be used as resistive switching active material for nonvolatile memory devices. In this study, cationic LYS and anionic poly(styrene sulfonate) (PSS) layers were alternately deposited onto Pt-coated silicon substrates using a layer-by-layer assembly method. Then, top electrodes were deposited onto the top of LYS/PSS multilayers to complete the fabrication of the memory-like device. The LYS/PSS multilayer devices exhibited typical resistive switching characteristics with an ON/OFF current ratio above 10 2 , a fast switching speed of 100 ns and stable performance. Furthermore, the insertion of insulating polyelectrolytes (PEs) between the respective LYS layers significantly enhanced the memory performance of the devices showing a high ON/OFF current ratio of ∼10 6 and low levels of power consumption. (paper)

  13. Boosting water oxidation layer-by-layer.

    Science.gov (United States)

    Hidalgo-Acosta, Jonnathan C; Scanlon, Micheál D; Méndez, Manuel A; Amstutz, Véronique; Vrubel, Heron; Opallo, Marcin; Girault, Hubert H

    2016-04-07

    Electrocatalysis of water oxidation was achieved using fluorinated tin oxide (FTO) electrodes modified with layer-by-layer deposited films consisting of bilayers of negatively charged citrate-stabilized IrO2 NPs and positively charged poly(diallyldimethylammonium chloride) (PDDA) polymer. The IrO2 NP surface coverage can be fine-tuned by controlling the number of bilayers. The IrO2 NP films were amorphous, with the NPs therein being well-dispersed and retaining their as-synthesized shape and sizes. UV/vis spectroscopic and spectro-electrochemical studies confirmed that the total surface coverage and electrochemically addressable surface coverage of IrO2 NPs increased linearly with the number of bilayers up to 10 bilayers. The voltammetry of the modified electrode was that of hydrous iridium oxide films (HIROFs) with an observed super-Nernstian pH response of the Ir(III)/Ir(IV) and Ir(IV)-Ir(IV)/Ir(IV)-Ir(V) redox transitions and Nernstian shift of the oxygen evolution onset potential. The overpotential of the oxygen evolution reaction (OER) was essentially pH independent, varying only from 0.22 V to 0.28 V (at a current density of 0.1 mA cm(-2)), moving from acidic to alkaline conditions. Bulk electrolysis experiments revealed that the IrO2/PDDA films were stable and adherent under acidic and neutral conditions but degraded in alkaline solutions. Oxygen was evolved with Faradaic efficiencies approaching 100% under acidic (pH 1) and neutral (pH 7) conditions, and 88% in alkaline solutions (pH 13). This layer-by-layer approach forms the basis of future large-scale OER electrode development using ink-jet printing technology.

  14. Pollution by lead near the Turin--Milan highway

    Energy Technology Data Exchange (ETDEWEB)

    Sapetti, C; Arduino, E

    1973-10-01

    Soil samples taken at 5 to 50 m from the Turin-Milan highway at depths ranging from 0 to 30 cm on two different sites were analyzed for lead residues by atomic absorption spectrophotometry following extraction by means of ammoniacal EDTA at pH 9. Soil samples from the surface layer taken in one well-ventilated site contained 11.5 to 12.4 ppM lead, while subsoil samples had 5.7 to 9.8 ppM. Soil samples taken in the other site with poor ventilation contained 23.5 to 43.3 ppM lead in the surface layer, and 9.2 to 15.4 ppM in the subsoil. Decrease of the lead concentrations in the soil with increasing depth and distance from the highway was noted. Plant samples taken from the same sites contained 6.4 to 32.2 ppM lead. Lead was fixed predominantly to the exchange complex; partly to the clay fraction, and partly to the humic fraction.

  15. Peclet number analysis of cross-flow in porous gas diffusion layer of polymer electrolyte membrane fuel cell (PEMFC).

    Science.gov (United States)

    Suresh, P V; Jayanti, Sreenivas

    2016-10-01

    Adoption of hydrogen economy by means of using hydrogen fuel cells is one possible solution for energy crisis and climate change issues. Polymer electrolyte membrane (PEM) fuel cell, which is an important type of fuel cells, suffers from the problem of water management. Cross-flow is induced in some flow field designs to enhance the water removal. The presence of cross-flow in the serpentine and interdigitated flow fields makes them more effective in proper distribution of the reactants on the reaction layer and evacuation of water from the reaction layer than diffusion-based conventional parallel flow fields. However, too much of cross-flow leads to flow maldistribution in the channels, higher pressure drop, and membrane dehydration. In this study, an attempt has been made to quantify the amount of cross-flow required for effective distribution of reactants and removal of water in the gas diffusion layer. Unit cells containing two adjacent channels with gas diffusion layer (GDL) and catalyst layer at the bottom have been considered for the parallel, interdigitated, and serpentine flow patterns. Computational fluid dynamics-based simulations are carried out to study the reactant transport in under-the-rib area with cross-flow in the GDL. A new criterion based on the Peclet number is presented as a quantitative measure of cross-flow in the GDL. The study shows that a cross-flow Peclet number of the order of 2 is required for effective removal of water from the GDL. Estimates show that this much of cross-flow is not usually produced in the U-bends of Serpentine flow fields, making these areas prone to flooding.

  16. Electrical and optical properties of Bi2S3 thin films deposited by successive ionic layer adsorption and reaction (SILAR) method

    International Nuclear Information System (INIS)

    Ubale, A.U.; Daryapurkar, A.S.; Mankar, R.B.; Raut, R.R.; Sangawar, V.S.; Bhosale, C.H.

    2008-01-01

    Bi 2 S 3 thin films were prepared on amorphous glass substrates by successive ionic layer adsorption and reaction (SILAR) method at room temperature using bismuth nitrate and thioacetamide as the cationic and anionic precursors in aqueous medium. The X-ray diffraction study reveals that as-deposited films of Bi 2 S 3 are amorphous in nature, it becomes polycrystalline after annealing at 573 K. The decrease in activation energy from 0.65 to 0.36 eV and optical band gap energy, E g , from 2.35 to 1.86 eV are observed as film thickness varies from 67 to 150 nm. Such changes are attributed to the quantum size effect in semiconducting films

  17. Solution synthesis of lead seeded germanium nanowires and branched nanowire networks and their application as Li-ion battery anodes

    Science.gov (United States)

    Flynn, Grace; Palaniappan, Kumaranand; Sheehan, Martin; Kennedy, Tadhg; Ryan, Kevin M.

    2017-06-01

    Herein, we report the high density growth of lead seeded germanium nanowires (NWs) and their development into branched nanowire networks suitable for application as lithium ion battery anodes. The synthesis of the NWs from lead seeds occurs simultaneously in both the liquid zone (solution-liquid-solid (SLS) growth) and solvent rich vapor zone (vapor-liquid-solid (VLS) growth) of a high boiling point solvent growth system. The reaction is sufficiently versatile to allow for the growth of NWs directly from either an evaporated catalyst layer or from pre-defined nanoparticle seeds and can be extended to allowing extensive branched nanowire formation in a secondary reaction where these seeds are coated onto existing wires. The NWs are characterized using TEM, SEM, XRD and DF-STEM. Electrochemical analysis was carried out on both the single crystal Pb-Ge NWs and the branched Pb-Ge NWs to assess their suitability for use as anodes in a Li-ion battery. Differential capacity plots show both the germanium wires and the lead seeds cycle lithium and contribute to the specific capacity that is approximately 900 mAh g-1 for the single crystal wires, rising to approximately 1100 mAh g-1 for the branched nanowire networks.

  18. The effects of different types of investments on the alpha-case layer of titanium castings.

    Science.gov (United States)

    Guilin, Yu; Nan, Li; Yousheng, Li; Yining, Wang

    2007-03-01

    Different types of investments affect the formation of the alpha-case (alpha-case) layer on titanium castings. This alpha-case layer may possibly alter the mechanical properties of cast titanium, which may influence the fabrication of removable and fixed prostheses. The formation mechanism for the alpha-case layer is not clear. The aim of this study was to evaluate the effect of 3 types of investments on the microstructure, composition, and microhardness of the alpha-case layer on titanium castings. Fifteen wax columns with a diameter of 5 mm and a length of 40 mm were divided into 3 groups of 5 patterns each. Patterns were invested using 3 types of investment materials, respectively, and were cast in pure titanium. The 3 types of materials tested were SiO(2)-, Al(2)O(3)-, and MgO-based investments. All specimens were sectioned and prepared for metallographic observation. The microstructure and composition of the surface reaction layer of titanium castings were investigated by scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). The surface microhardness (VHN) for all specimens was measured using a hardness testing machine, and a mean value for each group was calculated. The alpha-case layer on titanium castings invested with SiO(2)-, Al(2)O(3)-, and MgO-based investments consisted of 3 layers-namely, the oxide layer, alloy layer, and hardening layer. In this study, the oxide layer and alloy layer were called the reaction layer. The thickness of the reaction layer for titanium castings using SiO(2)-, Al(2)O(3)-, and MgO-based investments was approximately 80 microm, 50 microm, and 14 microm, respectively. The surface microhardness of titanium castings made with SiO(2)-based investments was the highest, and that with MgO-based investments was the lowest. The type of investment affects the microstructure and microhardness of the alpha-case layer of titanium castings. Based on the thickness of the surface reaction layer and the surface

  19. Kinetics of intercalation of fluorescent probes in magnesium-aluminium layered double hydroxide within a multiscale reaction-diffusion framework

    Science.gov (United States)

    Saliba, Daniel; Al-Ghoul, Mazen

    2016-11-01

    We report the synthesis of magnesium-aluminium layered double hydroxide (LDH) using a reaction-diffusion framework (RDF) that exploits the multiscale coupling of molecular diffusion with chemical reactions, nucleation and growth of crystals. In an RDF, the hydroxide anions are allowed to diffuse into an organic gel matrix containing the salt mixture needed for the precipitation of the LDH. The chemical structure and composition of the synthesized magnesium-aluminium LDHs are determined using powder X-ray diffraction (PXRD), thermo-gravimetric analysis, differential scanning calorimetry, solid-state nuclear magnetic resonance (SSNMR), Fourier transform infrared and energy dispersive X-ray spectroscopy. This novel technique also allows the investigation of the mechanism of intercalation of some fluorescent probes, such as the neutral three-dimensional rhodamine B (RhB) and the negatively charged two-dimensional 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS), using in situ steady-state fluorescence spectroscopy. The incorporation of these organic dyes inside the interlayer region of the LDH is confirmed via fluorescence microscopy, solid-state lifetime, SSNMR and PXRD. The activation energies of intercalation of the corresponding molecules (RhB and HPTS) are computed and exhibit dependence on the geometry of the involved probe (two or three dimensions), the charge of the fluorescent molecule (anionic, cationic or neutral) and the cationic ratio of the corresponding LDH. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  20. Layered tin dioxide microrods

    International Nuclear Information System (INIS)

    Duan Junhong; Huang Hongbo; Gong Jiangfeng; Zhao Xiaoning; Cheng Guangxu; Yang Shaoguang

    2007-01-01

    Single-crystalline layered SnO 2 microrods were synthesized by a simple tin-water reaction at 900 deg. C. The structural and optical properties of the sample were characterized by x-ray powder diffraction, energy-dispersive x-ray spectroscopy, scanning electron microscopy, high resolution transmission electron microscopy, Raman scattering and photoluminescence (PL) spectroscopy. High resolution transmission electron microscopy studies and selected area electron diffraction patterns revealed that the layered SnO 2 microrods are single crystalline and their growth direction is along [1 1 0]. The growth mechanism of the microrods was proposed based on SEM, TEM characterization and thermodynamic analysis. It is deduced that the layered microrods grow by the stacking of SnO 2 sheets with a (1 1 0) surface in a vapour-liquid-solid process. Three emission peaks at 523, 569 and 626 nm were detected in room-temperature PL measurements

  1. An algebraic method to develop well-posed PML models Absorbing layers, perfectly matched layers, linearized Euler equations

    International Nuclear Information System (INIS)

    Rahmouni, Adib N.

    2004-01-01

    In 1994, Berenger [Journal of Computational Physics 114 (1994) 185] proposed a new layer method: perfectly matched layer, PML, for electromagnetism. This new method is based on the truncation of the computational domain by a layer which absorbs waves regardless of their frequency and angle of incidence. Unfortunately, the technique proposed by Berenger (loc. cit.) leads to a system which has lost the most important properties of the original one: strong hyperbolicity and symmetry. We present in this paper an algebraic technique leading to well-known PML model [IEEE Transactions on Antennas and Propagation 44 (1996) 1630] for the linearized Euler equations, strongly well-posed, preserving the advantages of the initial method, and retaining symmetry. The technique proposed in this paper can be extended to various hyperbolic problems

  2. Nanoparticle layer deposition for highly controlled multilayer formation based on high-coverage monolayers of nanoparticles

    International Nuclear Information System (INIS)

    Liu, Yue; Williams, Mackenzie G.; Miller, Timothy J.; Teplyakov, Andrew V.

    2016-01-01

    This paper establishes a strategy for chemical deposition of functionalized nanoparticles onto solid substrates in a layer-by-layer process based on self-limiting surface chemical reactions leading to complete monolayer formation within the multilayer system without any additional intermediate layers — nanoparticle layer deposition (NPLD). This approach is fundamentally different from previously established traditional layer-by-layer deposition techniques and is conceptually more similar to well-known atomic and molecular layer deposition processes. The NPLD approach uses efficient chemical functionalization of the solid substrate material and complementary functionalization of nanoparticles to produce a nearly 100% coverage of these nanoparticles with the use of “click chemistry”. Following this initial deposition, a second complete monolayer of nanoparticles is deposited using a copper-catalyzed “click reaction” with the azide-terminated silica nanoparticles of a different size. This layer-by-layer growth is demonstrated to produce stable covalently-bound multilayers of nearly perfect structure over macroscopic solid substrates. The formation of stable covalent bonds is confirmed spectroscopically and the stability of the multilayers produced is tested by sonication in a variety of common solvents. The 1-, 2- and 3-layer structures are interrogated by electron microscopy and atomic force microscopy and the thickness of the multilayers formed is fully consistent with that expected for highly efficient monolayer formation with each cycle of growth. This approach can be extended to include a variety of materials deposited in a predesigned sequence on different substrates with a highly conformal filling. - Highlights: • We investigate the formation of high-coverage monolayers of nanoparticles. • We use “click chemistry” to form these monolayers. • We form multiple layers based on the same strategy. • We confirm the formation of covalent bonds

  3. Lead, zinc and copper fine powder with controlled size and shape

    Directory of Open Access Journals (Sweden)

    Mahmoud A Rabah

    2017-12-01

    Full Text Available This study describes the preparation of lead, zinc and copper powders by hydrometallurgy from secondary resources. Chloride, sulphate and acetate salts of zinc, copper and lead were prepared. The powders were prepared by reducing the ionic species of these metals by hydrazine hydrate or ascorbic acid. The effect of addition of some water soluble polar organic solvents to the aqueous salt solutions on the morphology and particle size of the prepared powder was studied. Findings were explained on the basis of the transition state theory and according to the Hughes and Ingold’s rule. Aqueous solutions alone produce metal powder having different size and irregular shape. The presence of polar organic solvents with high molecular weight and polarity produce powders having controlled size and regular morphology. The reason was because solvent polarity enhances the rate of red-ox reactions between metal ions and the reducing agent. The mean particle size of the powder was 60 um with zinc, 80 um with copper, and 90 um with lead. The extent of productivity was ≥98%. Results highlighted that the chemical reduction of the ionic species took place in a sequence steps. The first is a diffusion of the reactants across a boundary layer established at the polar site of the organic solvent molecules. The next step is the direct contact of the reactants. The third step involved reduction to yield powder. The last is the backward diffusion of the powder outside the boundary layer. Results showed that addition of water-miscible solvents having high dielectric constant increased the polarity of the medium. This energizes and enhances the one or more t step of the model to be more rapid to yield particles with small size and symmetrical shape.

  4. Arctic Mixed Layer Dynamics

    National Research Council Canada - National Science Library

    Morison, James

    2003-01-01

    .... Over the years we have sought to understand the heat and mass balance of the mixed layer, marginal ice zone processes, the Arctic internal wave and mixing environment, summer and winter leads, and convection...

  5. Reaction 12C(16O,α)24Mg leading to nuclear molecular resonances

    International Nuclear Information System (INIS)

    Nagatani, K.; Shimoda, T.; Tanner, D.; Tribble, R.; Yamaya, T.

    1979-01-01

    The reactions 12 C( 16 O,α) 24 Mg and 13 C( 16 O,α) 25 Mg were investigated at an incident energy of 145 MeV. In the reaction with the 12 C target, broad peaks are observed at forward angles which correspond to the molecular resonance states of the 12 C+ 12 C system, while the spectra with 13 C target show only a smooth continuum

  6. LES-ODT Simulations of Turbulent Reacting Shear Layers

    Science.gov (United States)

    Hoffie, Andreas; Echekki, Tarek

    2012-11-01

    Large-eddy simulations (LES) combined with the one-dimensional turbulence (ODT) simulations of a spatially developing turbulent reacting shear layer with heat release and high Reynolds numbers were conducted and compared to results from direct numerical simulations (DNS) of the same configuration. The LES-ODT approach is based on LES solutions for momentum on a coarse grid and solutions for momentum and reactive scalars on a fine ODT grid, which is embedded in the LES computational domain. The shear layer is simulated with a single-step, second-order reaction with an Arrhenius reaction rate. The transport equations are solved using a low Mach number approximation. The LES-ODT simulations yield reasonably accurate predictions of turbulence and passive/reactive scalars' statistics compared to DNS results.

  7. Experimental investigation of separated shear layer from a leading ...

    Indian Academy of Sciences (India)

    from a leading edge subjected to various angles of attack with tail flap deflections .... the PXI module to enable data multiplexing. ... generating machine and a laser of 136 mJ capacity produces the required light sheet optics that is used in ...

  8. Investigation of corrosion, water reaction, polonium evaporation and bismuth resource in liquid metal lead-bismuth technology

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Hideki; Takizuka, Takakazu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kitano, Teruaki [Mitsui Shipbuilding and Engineering Co. Ltd., Tokyo (Japan)

    2000-10-01

    Lead-bismuth is the first candidate material for liquid metal target find coolant of fueled blanket system in accelerator-driven system (ADS) studied at JAERI. Advantages of the lead-bismuth utilization are non-active material, very low capture cross section, low melting point of 125degC and high boiling point of 1670degC, and beside coolant void reactivity become negative. But problems are due to the high corrosivity to most of the structural materials and the corrosive data are scarcity. In this report, corrosivity, reaction with water, thermal-hydraulics, chemical toxicity etc. are studied by investigating some facilities utilized and researched really for lead or lead-bismuth. And, furthermore, polonium evaporation rate and bismuth resource are investigated. Main results obtained are as follows: (1) In a refinery, there are enough employment experience for liquid Pb-Bi in period of about 17 years and not corrosion for the thermal conductive materials (1Cr-0.5Mo steel) used under the condition of natural convection with temperature around 400degC. (2) In Russia, extensive experience in the use as Russian submarines and in R and D during about 50 years are available. And as a result, it will be able to lead approximately zero corrosion for Cr-Si materials by adjusting oxygen film with oxygen concentration control between 10{sup -7} to 10{sup -5}% mass. However, the corrosion data are not enough systematically collected involving them in radiation dose field. (3) In liquid-dropping experiment, it is shown that interaction between water and high temperature liquid Pb-Bi is reduced steeply with rising of atmosphere pressure. But, in order to design the second circuit removal model of ADS, the interaction should be evaluated by water continuous injection experiment. (4) Polonium forms PbPo in Pb-Bi, and the evaporation rate become less three factor than that of Po, and furthermore, the rate decreases in the atmosphere. The effects of Po on employee and environment

  9. Synthesis, crystal structures and properties of lead phosphite compounds

    International Nuclear Information System (INIS)

    Song, Jun-Ling; Hu, Chun-Li; Xu, Xiang; Kong, Fang; Mao, Jiang-Gao

    2015-01-01

    Here, we report the preparation and characterization of two lead(II) phosphites, namely, Pb_2(HPO_3)_2 and Pb_2(HPO_3)(NO_3)_2 through hydrothermal reaction or simple solution synthesis, respectively. A new lead phosphite, namely, Pb_2(HPO_3)_2, crystallizes in the noncentrosymmetric space group Cmc2_1 (no. 36), which features 3D framework formed by the interconnection of 2D layer of lead(II) phosphites and 1D chain of [Pb(HPO_3)_5]_∞. The nonlinear optical properties of Pb_2(HPO_3)(NO_3)_2 have been studied for the first time. The synergistic effect of the stereo-active lone-pairs on Pb"2"+ cations and π-conjugated NO_3 units in Pb_2(HPO_3)(NO_3)_2 produces a moderate second harmonic generation (SHG) response of ∼1.8×KDP (KH_2PO_4), which is phase matchable (type I). IR, UV–vis spectra and thermogravimetric analysis (TGA) for the two compounds were also measured. - Graphical abstract: Two lead phosphites Pb_2(HPO_3)_2 and Pb_2(HPO_3)(NO_3)_2 are studied. A new lead phosphite Pb_2(HPO_3)_2 features a unique 3D framework structure and Pb_2(HPO_3)(NO_3)_2 shows a moderate SHG response of ∼1.8×KDP (KH_2PO_4). - Highlights: • A new lead phosphite, Pb_2(HPO_3)_2 is reported. • Pb_2(HPO_3)_2 features a unique 3D framework structure. • NLO property of Pb_2(HPO_3)(NO_3)_2 is investigated. • Pb_2(HPO_3)(NO_3)_2 produces a moderate SHG response of ∼1.8×KDP (KH_2PO_4).

  10. Iron Contamination Mechanism and Reaction Performance Research on FCC Catalyst

    Directory of Open Access Journals (Sweden)

    Zhaoyong Liu

    2015-01-01

    Full Text Available FCC (Fluid Catalytic Cracking catalyst iron poisoning would not only influence units’ product slate; when the poisoning is serious, it could also jeopardize FCC catalysts’ fluidization in reaction-regeneration system and further cause bad influences on units’ stable operation. Under catalytic cracking reaction conditions, large amount of iron nanonodules is formed on the seriously iron contaminated catalyst due to exothermic reaction. These nodules intensify the attrition between catalyst particles and generate plenty of fines which severely influence units’ smooth running. A dense layer could be formed on the catalysts’ surface after iron contamination and the dense layer stops reactants to diffuse to inner structures of catalyst. This causes extremely negative effects on catalyst’s heavy oil conversion ability and could greatly cut down gasoline yield while increasing yields of dry gas, coke, and slurry largely. Research shows that catalyst’s reaction performance would be severely deteriorated when iron content in E-cat (equilibrium catalyst exceeds 8000 μg/g.

  11. Effect of castor oil enrichment layer produced by reaction on the properties of PLA/HDI-g-starch blends.

    Science.gov (United States)

    Xiong, Zhu; Zhang, Lisheng; Ma, Songqi; Yang, Yong; Zhang, Chuanzhi; Tang, Zhaobin; Zhu, Jin

    2013-04-15

    Blends of entirely bio-sourced polymers, namely polylactide (PLA) and starch, have been melt-compounded by lab-scale co-extruder with castor oil (CO) as a plasticizer. The enrichment of castor oil on starch had great effect on the properties of the blends. If the castor oil was mainly dispersed in PLA matrix, the properties of the blends were poor, but when the hexamethylenediisocyanate (HDI) was grafted on starch granules the ready reactions between the hydroxyl on CO and the isocyante on the HDI-grafted starch (HGSTs) brought CO molecules enriched on starch particles. DSC analysis shows that the CO layer on starch has a positive effect on the crystallization of PLA in the ternary blend. The accumulation of CO on starch greatly improves the toughness and impact strength of PLA/starch blends. The grafting content of HDI on the starch granules primarily determined the compatibility and properties of the resulted blends. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition.

    Science.gov (United States)

    Nakayama, Hirokazu; Hayashi, Aki

    2014-07-30

    The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids.

  13. Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition

    Directory of Open Access Journals (Sweden)

    Hirokazu Nakayama

    2014-07-01

    Full Text Available The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids.

  14. Layer-by-layer self-assembled two-dimensional MXene/layered double hydroxide composites as cathode for alkaline hybrid batteries

    Science.gov (United States)

    Dong, Xiaowan; Zhang, Yadi; Ding, Bing; Hao, Xiaodong; Dou, Hui; Zhang, Xiaogang

    2018-06-01

    Multifarious layered materials have received extensive concern in the field of energy storage due to their distinctive two-dimensional (2D) structure. However, the natural tendency to be re-superimposed and the inherent disadvantages of a single 2D material significantly limit their performance. In this work, the delaminated Ti3C2Tx (d-Ti3C2Tx)/cobalt-aluminum layered double hydroxide (Ti3C2Tx/CoAl-LDH) composites are prepared by layer-by-layer self-assembly driven by electrostatic interaction. The alternate Ti3C2Tx and CoAl-LDH layers prevent each other from restacking and the obtained Ti3C2Tx/CoAl-LDH heterostructure combine the advantages of high electron conductivity of Ti3C2Tx and high electrochemical activity of CoAl-LDH, thus effectively improving the electrochemical reactivity of electrode materials and accelerating the kinetics of Faraday reaction. As a consequence, as a cathode for alkaline hybrid battery, the Ti3C2Tx/CoAl-LDH electrode exhibits a high specific capacity of 106 mAh g-1 at a current density of 0.5 A g-1 and excellent rate capability (78% at 10 A g-1), with an excellent cycling stability of 90% retention after 5000 cycles at 4 A g-1. This work provides an alternative route to design advanced 2D electrode materials, thus exploiting their full potentials for alkaline hybrid batteries.

  15. Structure and Chemical Durability of Lead Crystal Glass.

    Science.gov (United States)

    Angeli, Frédéric; Jollivet, Patrick; Charpentier, Thibault; Fournier, Maxime; Gin, Stéphane

    2016-11-01

    Silicate glasses containing lead, also called lead crystal glasses, are commonly used as food product containers, in particular for alcoholic beverages. Lead's health hazards require major attention, which can first be investigated through the understanding of Pb release mechanisms in solution. The behavior of a commercial crystal glass containing 10.6 mol % of PbO (28.3 wt %) was studied in a reference solution of 4% acetic acid at 22, 40, and 70 °C at early and advanced stages of reaction. High-resolution solid-state 17 O and 29 Si NMR was used to probe the local structure of the pristine and, for the first time, of the altered lead crystal glass. Inserted into the vitreous structure between the network formers as Si-O-Pb bonds, Pb does not form Pb-O-Pb clusters which are expected to be more easily leached. A part of K is located near Pb, forming mixed Si-O-(Pb,K) near the nonbridging oxygens. Pb is always released into the solution following a diffusion-controlled dissolution over various periods of time, at a rate between 1 and 2 orders of magnitude lower than the alkalis (K and Na). The preferential release of alkalis is followed by an in situ repolymerization of the silicate network. Pb is only depleted in the outermost part of the alteration layer. In the remaining part, it stays mainly surrounded by Si in a stable structural configuration similar to that of the pristine glass. A simple model is proposed to estimate the Pb concentration as a function of glass surface, solution volume, temperature, and contact time.

  16. Multi-layer micro/nanofluid devices with bio-nanovalves

    Science.gov (United States)

    Li, Hao; Ocola, Leonidas E.; Auciello, Orlando H.; Firestone, Millicent A.

    2013-01-01

    A user-friendly multi-layer micro/nanofluidic flow device and micro/nano fabrication process are provided for numerous uses. The multi-layer micro/nanofluidic flow device can comprise: a substrate, such as indium tin oxide coated glass (ITO glass); a conductive layer of ferroelectric material, preferably comprising a PZT layer of lead zirconate titanate (PZT) positioned on the substrate; electrodes connected to the conductive layer; a nanofluidics layer positioned on the conductive layer and defining nanochannels; a microfluidics layer positioned upon the nanofluidics layer and defining microchannels; and biomolecular nanovalves providing bio-nanovalves which are moveable from a closed position to an open position to control fluid flow at a nanoscale.

  17. Nonequilibrium thermodynamics and a fluctuation theorem for individual reaction steps in a chemical reaction network

    International Nuclear Information System (INIS)

    Pal, Krishnendu; Das, Biswajit; Banerjee, Kinshuk; Gangopadhyay, Gautam

    2015-01-01

    We have introduced an approach to nonequilibrium thermodynamics of an open chemical reaction network in terms of the propensities of the individual elementary reactions and the corresponding reverse reactions. The method is a microscopic formulation of the dissipation function in terms of the relative entropy or Kullback-Leibler distance which is based on the analogy of phase space trajectory with the path of elementary reactions in a network of chemical process. We have introduced here a fluctuation theorem valid for each opposite pair of elementary reactions which is useful in determining the contribution of each sub-reaction on the nonequilibrium thermodynamics of overall reaction. The methodology is applied to an oligomeric enzyme kinetics at a chemiostatic condition that leads the reaction to a nonequilibrium steady state for which we have estimated how each step of the reaction is energy driven or entropy driven to contribute to the overall reaction. (paper)

  18. Instabilities in fluid layers and in reaction-diffusion systems: Steady states, time-periodic solutions, non-periodic attractors, and related convective and otherwise non-linear phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Velarde, M

    1977-07-01

    Thermo convective instabilities in horizontal fluid layers are discussed with emphasis on the Rayleigh-Bernard model problem. Steady solutions and time-dependent phenomena (relaxation oscillations and transition to turbulence) are studied within the nonlinear Boussinesq-Oberbeck approximation. Homogeneous steady solutions, limit cycles, and inhomogeneous (ordered) spatial structures are also studied in simple reaction-diffusion systems. Lastly, the non-periodic attractor that appears at large Rayleigh numbers in the truncated Boussinesq-Oberbeck model of Lorenz, is constructed, and a discussion of turbulent behavior is given. (Author) 105 refs.

  19. Instabilities in fluid layers and in reaction-diffusion systems: Steady states, time-periodic solutions, non-periodic attractors, and related convective and otherwise non-linear phenomena

    International Nuclear Information System (INIS)

    Garcia Velarde, M.

    1977-01-01

    Thermoconvective instabilities in horizontal fluid layers are discussed with emphasis on the Rayleigh-Benard model problem. Steady solutions and time-dependent phenomena (relaxation oscillations and transition to turbulence) are studied within the nonlinear Boussinesq-Oberbeck approximation. Homogeneous steady solutions, limit cycles, and inhomogeneous (ordered) spatial structures are also studied in simple reaction-diffusion systems. Lastly, the non-periodic attractor that appears at large Rayleigh numbers in the truncated Boussinesq-Oberbeck model of Lorenz, is constructed, and a discussion of turbulent behavior is given. (author) [es

  20. Instabilities in fluid layers and in reaction-diffusion systems: Steady states, time-periodic solutions, non-periodic attractors, and related convective and otherwise non-linear phenomena

    International Nuclear Information System (INIS)

    Garcia Velarde, M.

    1977-01-01

    Thermo convective instabilities in horizontal fluid layers are discussed with emphasis on the Rayleigh-Bernard model problem. Steady solutions and time-dependent phenomena (relaxation oscillations and transition to turbulence) are studied within the nonlinear Boussinesq-Oberbeck approximation. Homogeneous steady solutions, limit cycles, and inhomogeneous (ordered) spatial structures are also studied in simple reaction-diffusion systems. Lastly, the non-periodic attractor that appears at large Rayleigh numbers in the truncated Boussinesq-Oberbeck model of Lorenz, is constructed, and a discussion of turbulent behavior is given. (Author) 105 refs

  1. Low-Energy Nuclear Reactions Resulting as Picometer Interactions with Similarity to K-Shell Electron Capture

    Science.gov (United States)

    Hora, H.; Miley, G. H.; Li, X. Z.; Kelly, J. C.; Osman, F.

    2006-02-01

    Since the appeal by Brian Josephson at the meeting of the Nobel Laureates July 2004, it seems to be indicated to summarize the following serious, reproducible and confirmed observations on reactions of protons or deuterons incorporated in host metals such as palladium. Some reflections to Rutherford's discovery of nuclear physics, the Cockroft-Oliphant discovery of anomalous low-energy fusion reactions and the chemist Hahn's discovery of fission had to be included. Using gaseous atmosphere or discharges between palladium targets, rather significant results were seen e.g. from the "life after death" heat production of such high values per host atom that only nuclear reactions can be involved. This supports the earlier evaluation of neutron generation in fully reversible experiments with gas discharges hinting that a reasonable screening effect - preferably in the swimming electron layer - may lead to reactions at nuclear distances d of picometers with reaction probability times U of about megaseconds similar to the K-shell capture radioactivity. Further electrolytic experiments led to low-energy nuclear reactions (LENR) where the involvement of pollution could be excluded from the appearance of very seldom rare earth elements. A basically new theory for DD cross-sections is used to confirm the picometer-megasecond reactions of cold fusion. Other theoretical aspects are given from measured heavy element distributions similar to the standard abundance distribution, SAD, in the Universe with consequences on endothermic heavy nuclei generation, magic numbers and to quark-gluon plasmas.

  2. Low-energy nuclear reactions resulting as parametric interactions with similarity to K-shell electron capture

    International Nuclear Information System (INIS)

    Hora, H.; Miley, G.H.; Li, X.Z.; Kelly, J.C.; Osman, F.

    2006-01-01

    Since the appeal by Brian Josephson at the meeting of the Nobel Laureates July 2004, it seems to be indicated to summarize the following serious, reproducible and confirmed observations on reactions of protons of deuterons incorporated in host metals such as palladium. Some reflections to Rutherford's discovery of nuclear physics, the Cockcroft Oliphant discovery of anomalous low-energy fusion reactions and the chemist Hahn's discovery of fission had to be included. Using gaseous atmosphere or discharges between palladium targets, rather significant results were seen e.g. from the 'life after death' heat production of such high values per host atom that only nuclear reactions can be involved. This supports the earlier evaluation of neutron generation in fully reversible experiments with gas discharges hinting that a reasonable screening effect - preferably in the swimming electron layer - may lead to reactions at nuclear distances d of pico-meters with reaction probability times U of about mega-seconds similar to the K-shell capture radioactivity. Further electrolytic experiments led to low-energy nuclear reactions (LENR) where the involvement of pollution could be excluded from the appearance of very seldom rare earth elements. A basically new theory for DD cross-sections is used to confirm the pico-meter- mega-second reactions of cold fusion. Other theoretical aspects are given from measured heavy element distributions similar to the standard abundance distribution, SAD, in the Universe with consequences on endothermic heavy nuclei generation, magic numbers and to quark-gluon plasmas. (authors)

  3. Photonuclear reactions in the GNASH code: Benchmarking model calculations for reactions on lead up to 140 MeV

    International Nuclear Information System (INIS)

    Chadwick, M.B.; Young, P.G.

    1994-08-01

    The authors have developed the GNASH code to include photonuclear reactions for incident energies up to 140 MeV. Photoabsorption is modeled through the giant resonance at the lower energies, and the quasideuteron mechanism at the higher energies, and the angular momentum coupling of the incident photon to the target is properly accounted for. After the initial interaction, primary and multiple preequilibrium emission of fast particles can occur before compound nucleus decay from the equilibrated compound nucleus. The angular distributions from compound nucleus decay are taken as isotropic, and those from preequilibrium emission (which they obtain from a phase-space model which conserves momentum) are forward-peaked. To test the new modeling they apply the code to calculate photonuclear reactions on 208 Pb for incident energies up to 140 MeV

  4. Boson states in the reaction π-p → π-π-π+p with leading π+ meson at 25 GeV/c

    International Nuclear Information System (INIS)

    Antipov, Yu.M.; Baud, R.

    1975-01-01

    The reaction π - + p → p + π - + π - + π + at 25 GeV/c was studied in the mass region M sub(3π) >>= 1.8 GeV with leading π + in the final state. The mass spectrum of π 1 π - -system evidently shows peaks rho deg, f, g deg resonances and an enhancement in S'-region. It is shown that the g deg and π - mesons are mainly in A4 state J sub(P) = 3 + S-wave g degπ - like A1(sup(rhoπ)) and A3(sup(fπ))

  5. Existence and Asymptotic Stability of Periodic Solutions of the Reaction-Diffusion Equations in the Case of a Rapid Reaction

    Science.gov (United States)

    Nefedov, N. N.; Nikulin, E. I.

    2018-01-01

    A singularly perturbed periodic in time problem for a parabolic reaction-diffusion equation in a two-dimensional domain is studied. The case of existence of an internal transition layer under the conditions of balanced and unbalanced rapid reaction is considered. An asymptotic expansion of a solution is constructed. To justify the asymptotic expansion thus constructed, the asymptotic method of differential inequalities is used. The Lyapunov asymptotic stability of a periodic solution is investigated.

  6. Swelling, intercalation, and exfoliation behavior of layered ruthenate derived from layered potassium ruthenate

    International Nuclear Information System (INIS)

    Fukuda, Katsutoshi; Kato, Hisato; Sato, Jun; Sugimoto, Wataru; Takasu, Yoshio

    2009-01-01

    The intercalation chemistry of a layered protonic ruthenate, H 0.2 RuO 2.1 .nH 2 O, derived from a layered potassium ruthenate was studied in detail. Three phases with different hydration states were isolated, H 0.2 RuO 2.1 .nH 2 O (n=∼0, 0.5, 0.9), and its reactivity with tetrabutylammonium ions (TBA + ) was considered. The layered protonic ruthenate mono-hydrate readily reacted with TBA + , affording direct intercalation of bulky tetrabutylammonium ions into the interlayer gallery. Fine-tuning the reaction conditions allowed exfoliation of the layered ruthenate into elementary nanosheets and thereby a simplified one-step exfoliation was achieved. Microscopic observation by atomic force microscopy and transmission electron microscopy clearly showed the formation of unilamellar sheets with very high two-dimensional anisotropy, a thickness of only 1.3±0.1 nm. The nanosheets were characterized by two-dimensional crystallites with the oblique cell of a=0.5610(8) nm, b=0.5121(6) nm and γ=109.4(2) o on the basis of in-plane diffraction analysis. - Graphical abstract: Layered protonic ruthenate derived from a potassium form was directly reacted with bulky tetrabutylammonium ions to trigger exfoliation into nanosheets as long as it is highly hydrated.

  7. A novel catalyst layer structure based surface-patterned Nafion® membrane for high-performance direct methanol fuel cell

    DEFF Research Database (Denmark)

    Chen, Ming; Wang, Meng; Ding, Xianan

    2018-01-01

    .5% respectively, compared with the conventional catalyst layer. Performance improvement is attributed to the fact that the novel catalyst layer structure optimizes the electrolyte membrane/catalyst layer and gas diffusion layer/catalyst layer interfacial structure, which increases the electrochemical reaction......Conventional catalyst layer with a smooth surface exists the larger area of“catalytic dead zone” and reduces the utilization of catalyst. Based on this, a novel catalyst layer structure based surface-patterned Nafion® membrane was designed to achieve more efficient electrochemical reaction...... to prepare the novel catalyst layer, and the effect of pressure on the performance of MEA was investigated. The results suggested that the peak power density of DMFC with optimal novel catalyst layer structure increased by 28.84%, the charge transfer resistances of anode and cathode reduced by 28.8% and 26...

  8. A facile and expedient one-pot three-component reaction leading to ...

    Indian Academy of Sciences (India)

    A three-component reaction between triphenylphosphine, a dialkyl acetylenedicarboxylate and phthalazin-1(2H)-ones that affords novel organic phosphorane derivatives in good to excellent yields is reported. FTIR, 1H, 13C and 31P NMR and elemental analyses have been utilized to characterize the synthesized ...

  9. Preparation of Cu{sub 2}ZnSnS{sub 4} thin films by sulfurizing stacked precursor thin films via successive ionic layer adsorption and reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Su Zhenghua; Yan Chang; Sun Kaiwen; Han Zili [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Liu Fangyang, E-mail: liufangyang@csu.edu.cn [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Liu Jin [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Lai Yanqing, E-mail: laiyanqingcsu@163.com [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Li Jie; Liu Yexiang [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China)

    2012-07-15

    Earth-abundant Cu{sub 2}ZnSnS{sub 4} is a promising alternative photovoltaic material which has been examined as absorber layer of thin film solar cells. In this study, Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films have been successfully fabricated by sulfurizing stacked precursor thin films via successive ionic layer adsorption and reaction (SILAR) method. The prepared CZTS thin films have been characterized by X-ray diffraction, energy dispersive spectrometer, Raman spectroscopy, UV-vis spectroscopy, Hall effect measurements and photoelectrochemical tests. Results reveal that the thin films have kesterite structured Cu{sub 2}ZnSnS{sub 4} and the p-type conductivity with a carrier concentration in the order of 10{sup 18} cm{sup -3} and an optical band gap of 1.5 eV, which are suitable for applications in thin film solar cells.

  10. Issues involved in the atomic layer deposition of metals

    Science.gov (United States)

    Grubbs, Robert Kimes

    Auger Electron Spectroscopy (AES) was used to study the nucleation and growth of tungsten on aluminum oxide surfaces. Tungsten metal was deposited using Atomic Layer Deposition (ALD) techniques. ALD uses sequential surface reactions to deposit material with atomic layer control. W ALD is performed using sequential exposures of WF6 and Si2H6. The step-wise nature of W ALD allows nucleation studies to be performed by analyzing the W surface concentration after each ALD reaction. Nucleation and growth regions can be identified by quantifying the AES signal intensities from both the W surface and the Al2O3 substrate. W nucleation occurred in 3 ALD reaction cycles. The AES results yielded a nucleation rate of 1.0 A/ALD cycle and a growth rate of ≈3 A/ALD cycle. AES studies also explored the nucleation and growth of Al2O3 on W. Al2O3 nucleated in 1 ALD cycle giving a nucleation rate of 3.5 A/ALD cycle and a subsequent growth rate of 1.0 A/ALD cycle. Mass spectrometry was then used to study the ALD reaction chemistry of tungsten deposition. Because of the step-wise nature of the W ALD chemistry, each W ALD reaction could be studied independently. The gaseous mass products were identified from both the WF6 and Si2H6 reactions. H2, HF and SiF4 mass products were observed for the WF6 reaction. The Si2H6 reaction displayed a room temperature reaction and a 200°C reaction. Products from the room temperature Si2H6 reaction were H2 and SiF3H. The reaction at 200°C yielded only H2 as a reaction product. H2 desorption from the surface contributes to the 200°C Si2H6 reaction. AES was used to confirm that the gas phase reaction products are correlated with a change in the surface species. Atomic hydrogen reduction of metal halides and oganometallic compounds provides another method for depositing metals with atomic layer control. The quantity of atomic hydrogen necessary to perform this chemistry is critical to the metal ALD process. A thermocouple probe was constructed to

  11. Durable superhydrophobic surfaces made by intensely connecting a bipolar top layer to the substrate with a middle connecting layer.

    Science.gov (United States)

    Zhi, Jinghui; Zhang, Li-Zhi

    2017-08-30

    This study reported a simple fabrication method for a durable superhydrophobic surface. The superhydrophobic top layer of the durable superhydrophobic surface was connected intensely to the substrate through a middle connecting layer. Glycidoxypropyltrimethoxysilane (KH-560) after hydrolysis was used to obtain a hydrophilic middle connecting layer. It could be adhered to the hydrophilic substrate by covalent bonds. Ring-open reaction with octadecylamine let the KH-560 middle layer form a net-like structure. The net-like sturcture would then encompass and station the silica particles that were used to form the coarse micro structures, intensely to increase the durability. The top hydrophobic layer with nano-structures was formed on the KH-560 middle layer. It was obtained by a bipolar nano-silica solution modified by hexamethyldisilazane (HMDS). This layer was connected to the middle layer intensely by the polar Si hydroxy groups, while the non-polar methyl groups on the surface, accompanied by the micro and nano structures, made the surface rather hydrophobic. The covalently interfacial interactions between the substrate and the middle layer, and between the middle layer and the top layer, strengthened the durability of the superhydrophobic surface. The abrasion test results showed that the superhydrophobic surface could bear 180 abrasion cycles on 1200 CW sandpaper under 2 kPa applied pressure.

  12. Does electrical double layer formation lead to salt exclusion or to uptake?

    NARCIS (Netherlands)

    Lyklema, J.

    2005-01-01

    When electric double layers are formed, cases have been reported where this formation nvolves expulsion of electrolyte into the solution and cases in which electrolyte is absorbed from the solution. Both situations are experimentally and theoretically documented, but they cannot be simultaneously

  13. Electro-deposition of Pd on carbon paper and Ni foam via surface limited redox-replacement reaction for oxygen reduction reaction

    CSIR Research Space (South Africa)

    Modibedi, RM

    2014-05-01

    Full Text Available Pd nanostructured catalysts were electrodeposited by surface-limited redox replacement reactions usingthe electrochemical atomic layer deposition technique. Carbon paper and Ni foam were used as substratesfor the electrodeposition of the metal...

  14. Conductive polymer layers to limit transfer of fuel reactants to catalysts of fuel cells to reduce reactant crossover

    Science.gov (United States)

    Stanis, Ronald J.; Lambert, Timothy N.

    2016-12-06

    An apparatus of an aspect includes a fuel cell catalyst layer. The fuel cell catalyst layer is operable to catalyze a reaction involving a fuel reactant. A fuel cell gas diffusion layer is coupled with the fuel cell catalyst layer. The fuel cell gas diffusion layer includes a porous electrically conductive material. The porous electrically conductive material is operable to allow the fuel reactant to transfer through the fuel cell gas diffusion layer to reach the fuel cell catalyst layer. The porous electrically conductive material is also operable to conduct electrons associated with the reaction through the fuel cell gas diffusion layer. An electrically conductive polymer material is coupled with the fuel cell gas diffusion layer. The electrically conductive polymer material is operable to limit transfer of the fuel reactant to the fuel cell catalyst layer.

  15. Capture reactions on C-14 in nonstandard big bang nucleosynthesis

    Science.gov (United States)

    Wiescher, Michael; Gorres, Joachim; Thielemann, Friedrich-Karl

    1990-01-01

    Nonstandard big bang nucleosynthesis leads to the production of C-14. The further reaction path depends on the depletion of C-14 by either photon, alpha, or neutron capture reactions. The nucleus C-14 is of particular importance in these scenarios because it forms a bottleneck for the production of heavier nuclei A greater than 14. The reaction rates of all three capture reactions at big bang conditions are discussed, and it is shown that the resulting reaction path, leading to the production of heavier elements, is dominated by the (p, gamma) and (n, gamma) rates, contrary to earlier suggestions.

  16. Microstructure and growth kinetics of nickel silicide ultra-thin films synthesized by solid-state reactions

    Science.gov (United States)

    Coia, Cedrik

    The objective of the thesis is to develop a detailed fundamental understanding of the thermally induced solid-state reactions that lead to the formation of the NiSi. We use in situ synchrotron x-ray diffraction as well as wafer curvature measurements to monitor reactions as they occur during the annealing treatment. These analyses are complemented by ex situ transmission electron microscopy, Rutherford backscattering spectroscopy, and secondary ions mass spectroscopy. The solid-state reactions between 4 to 500 nm-thick Ni films and Si (001) are considerably more complex than previously believed. In addition to the commonly observed phases listed above, we observe the formation of three additional compounds---θ-Ni2Si, Ni31Si12 and Ni3Si2---before the complete transformation of the reacted film into NiSi. These compounds are found to co-exist laterally (within the same layer) with delta-Ni2Si and/or NiSi. The metastable compound θ-Ni2Si, which formation results from texture inheritance and rapid growth through vacancy diffusion, is present in all samples and forms at the same temperature (300+/-10°C) regardless of the initial Ni thickness. Indeed, this compound forms rapidly during ramps anneals, apparently consuming all the delta-Ni2Si for initial Ni films thickness of up to 10 nm. Its disappearance is also rapid and is correlated to both the growth of NiSi and to a surprising return of the orthorhombic delta-Ni 2Si. The formation sequence is therefore not monotonic in composition in contrast to what is usually expected in solid-state reactions. An investigation of the effect of alloying elements (Pt and Co) and impurities (B, P, As, F, N) on the Ni-Si reactions enables us to determine that nucleation plays a limiting role in the growth of metastable θ-Ni2Si and that the template provided by delta-Ni2Si is crucial in promoting this nucleation. Furthermore, reactions with amorphized and amorphous substrates indicate that the possibility of epitaxy with the Si

  17. Short-term static corrosion tests in lead-bismuth

    Science.gov (United States)

    Soler Crespo, L.; Martín Muñoz, F. J.; Gómez Briceño, D.

    2001-07-01

    Martensitic steels have been proposed to be used as structural materials and as spallation target window in hybrid systems devoted to the transmutation of radioactive waste of long life and high activity. However, their compatibility with lead-bismuth in the operating conditions of these systems depends on the existence of a protective layer such as an oxide film. The feasibility of forming and maintaining an oxide layer or maintaining a pre-oxidised one has been studied. Martensitic steel F82Hmod. (8% Cr) has been tested in lead-bismuth under static and isothermal conditions at 400°C and 600°C. In order to study the first stages of the interaction between the steel and the eutectic, short-term tests (100 and 665 h) have been carried out. Pre-oxidised and as-received samples have been tested in atmospheres with different oxidant potential. For low oxygen concentration in lead-bismuth due to unexpected oxygen consumption in the experimental device, dissolution of as-received F82Hmod. occurs and pre-oxidation does not prevent the material dissolution. For high oxygen concentration, the pre-oxidation layer seems to improve the feasibility of protecting stainless steels controlling the oxygen potential of lead-bismuth with a gas phase.

  18. Short-term static corrosion tests in lead-bismuth

    International Nuclear Information System (INIS)

    Soler Crespo, L.; Martin Munoz, F.J.; Gomez Briceno, D.

    2001-01-01

    Martensitic steels have been proposed to be used as structural materials and as spallation target window in hybrid systems devoted to the transmutation of radioactive waste of long life and high activity. However, their compatibility with lead-bismuth in the operating conditions of these systems depends on the existence of a protective layer such as an oxide film. The feasibility of forming and maintaining an oxide layer or maintaining a pre-oxidised one has been studied. Martensitic steel F82Hmod. (8% Cr) has been tested in lead-bismuth under static and isothermal conditions at 400 o C and 600 o C. In order to study the first stages of the interaction between the steel and the eutectic, short-term tests (100 and 665 h) have been carried out. Pre-oxidised and as-received samples have been tested in atmospheres with different oxidant potential. For low oxygen concentration in lead-bismuth due to unexpected oxygen consumption in the experimental device, dissolution of as-received F82Hmod. occurs and pre-oxidation does not prevent the material dissolution. For high oxygen concentration, the pre-oxidation layer seems to improve the feasibility of protecting stainless steels controlling the oxygen potential of lead-bismuth with a gas phase

  19. Ultrasensitive electrochemical detection of microRNA-21 combining layered nanostructure of oxidized single-walled carbon nanotubes and nanodiamonds by hybridization chain reaction.

    Science.gov (United States)

    Liu, Lingzhi; Song, Chao; Zhang, Zhang; Yang, Juan; Zhou, Lili; Zhang, Xing; Xie, Guoming

    2015-08-15

    Measurement of microRNA (miRNA) levels in body fluids is a crucial tool for the early diagnosis and prognosis of cancers. In this study, we developed an electrochemical assay to detect miRNA-21 by fabricating the electrode with layer-by-layer assembly of oxidized single-walled carbon nanotubes and nanodiamonds. Tetrahedron-structured probes with free-standing probe on the top served as receptors to hybridize with target miRNA directly. The probes were immobilized on the deposited gold nanoparticles through a well-established strong Au-S bond. The electrochemical signal was mainly derived from an ultrasensitive pattern by combining hybridization chain reaction with DNA-functionalized AuNPs, which provided DNAzyme to catalyze H2O2 reduction. Differential pulse voltammetry was applied to record the electrochemical signals, which was increased linearly with the target miRNA-21, and the linear detection range was 10 fM to 1.0 nM. The limit of detection reached 1.95 fM (S/N=3), and the proposed biosensor exhibited good reproducibility and stability, as well as high sensitivity. Hence, this biosensor has a promising potential in clinical application. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Interface Controlled Oxidation States in Layered Cobalt Oxide Nanoislands on Gold

    DEFF Research Database (Denmark)

    Walton, Alexander; Fester, Jakob; Bajdich, Michal

    2015-01-01

    Layered cobalt oxides have been shown to be highly active catalysts for the oxygen evolution reaction (OER; half of the catalytic “water splitting” reaction), particularly when promoted with gold. However, the surface chemistry of cobalt oxides and in particular the nature of the synergistic effect...

  1. Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers

    NARCIS (Netherlands)

    Fatima, T.; Ijioma, E.R.; Ogawa, T.; Muntean, A.

    2014-01-01

    We study the homogenization of a reaction-diffusion-convection system posed in an e-periodic d-thin layer made of a two-component (solid-air) composite material. The microscopic system includes heat flow, diffusion and convection coupled with a nonlinear surface chemical reaction. We treat two

  2. Low energy ion-molecule reactions

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, J.M. [Univ. of Rochester, NY (United States)

    1993-12-01

    This project is concerned with elucidating the dynamics of elementary ion-molecule reactions at collision energies near and below 1 eV. From measurements of the angular and energy distributions of the reaction products, one can infer intimathe details about the nature of collisions leading to chemical reaction, the geometries and lifetimes of intermediate complexes that govern the reaction dynamics, and the collision energy dependence of these dynamical features. The author employs crossed-beam low energy mass spectrometry technology developed over the last several years, with the focus of current research on proton transfer and hydrogen atom transfer reactions of te O{sup {minus}} ion with species such as HF, H{sub 2}O, and NH{sub 3}.

  3. Modelling of high temperature interfacial reactions in continuously reinforced Ti/SiC metal matrix composites (MMCs)

    International Nuclear Information System (INIS)

    Fox, K.M.

    1993-01-01

    Previous experimental work by Gundel and Wawner showed that the matrix alloy has a strong effect on reaction layer growth in Ti alloy/SCS-6 composite systems. A finite difference technique was used to model the reaction layer growth, which predicts the same trends as those exhibited by the experimental data. Matrix alloying elements such as Mo and Cr in metastable β alloys will affect the equilibrium compositions and diffusivities in the matrix, but matrix diffusion is not found to be rate controlling. Regular solution thermodynamic models indicate that the main affect of matrix composition is in controlling carbon-flux through the reaction layer by altering equilibrium C-TiC-Ti interfacial compositions. (orig.)

  4. On one model problem for the reaction-diffusion-advection equation

    Science.gov (United States)

    Davydova, M. A.; Zakharova, S. A.; Levashova, N. T.

    2017-09-01

    The asymptotic behavior of the solution with boundary layers in the time-independent mathematical model of reaction-diffusion-advection arising when describing the distribution of greenhouse gases in the surface atmospheric layer is studied. On the basis of the asymptotic method of differential inequalities, the existence of a boundary-layer solution and its asymptotic Lyapunov stability as a steady-state solution of the corresponding parabolic problem is proven. One of the results of this work is the determination of the local domain of the attraction of a boundary-layer solution.

  5. Protective layer formation on magnesium in cell culture medium

    Energy Technology Data Exchange (ETDEWEB)

    Wagener, V.; Virtanen, S., E-mail: virtanen@ww.uni-erlangen.de

    2016-06-01

    In the past, different studies showed that hydroxyapatite (HA) or similar calcium phosphates can be precipitated on Mg during immersion in simulated body fluids. However, at the same time, in most cases a dark grey or black layer is built under the white HA crystals. This layer seems to consist as well of calcium phosphates. Until now, neither the morphology nor its influence on Mg corrosion have been investigated in detail. In this work commercially pure magnesium (cp) was immersed in cell culture medium for one, three and five days at room temperature and in the incubator (37 °C, 5% CO{sub 2}). In addition, the influence of proteins on the formation of a corrosion layer was investigated by adding 20% of fetal calf serum (FCS) to the cell culture medium in the incubator. In order to analyze the formed layers, SEM images of cross sections, X-ray Photoelectron Spectroscopy (XPS), X-ray diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDX) and Fourier Transformed Infrared Spectroscopy (FTIR) measurements were carried out. Characterization of the corrosion behavior was achieved by electrochemical impedance spectroscopy (EIS) and by potentio-dynamic polarization in Dulbecco's Modified Eagle's Medium (DMEM) at 37 °C. Surface analysis showed that all formed layers consist mainly of amorphous calcium phosphate compounds. For the immersion at room temperature the Ca/P ratio indicates the formation of HA, while in the incubator probably pre-stages to HA are formed. The different immersion conditions lead to a variation in layer thicknesses. However, electrochemical characterization shows that the layer thickness does not influence the corrosion resistance of magnesium. The main influencing factor for the corrosion behavior is the layer morphology. Thus, immersion at room temperature leads to the highest corrosion protection due to the formation of a compact outer layer. Layers formed in the incubator show much worse performances due to completely porous

  6. Protective layer formation on magnesium in cell culture medium

    International Nuclear Information System (INIS)

    Wagener, V.; Virtanen, S.

    2016-01-01

    In the past, different studies showed that hydroxyapatite (HA) or similar calcium phosphates can be precipitated on Mg during immersion in simulated body fluids. However, at the same time, in most cases a dark grey or black layer is built under the white HA crystals. This layer seems to consist as well of calcium phosphates. Until now, neither the morphology nor its influence on Mg corrosion have been investigated in detail. In this work commercially pure magnesium (cp) was immersed in cell culture medium for one, three and five days at room temperature and in the incubator (37 °C, 5% CO_2). In addition, the influence of proteins on the formation of a corrosion layer was investigated by adding 20% of fetal calf serum (FCS) to the cell culture medium in the incubator. In order to analyze the formed layers, SEM images of cross sections, X-ray Photoelectron Spectroscopy (XPS), X-ray diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDX) and Fourier Transformed Infrared Spectroscopy (FTIR) measurements were carried out. Characterization of the corrosion behavior was achieved by electrochemical impedance spectroscopy (EIS) and by potentio-dynamic polarization in Dulbecco's Modified Eagle's Medium (DMEM) at 37 °C. Surface analysis showed that all formed layers consist mainly of amorphous calcium phosphate compounds. For the immersion at room temperature the Ca/P ratio indicates the formation of HA, while in the incubator probably pre-stages to HA are formed. The different immersion conditions lead to a variation in layer thicknesses. However, electrochemical characterization shows that the layer thickness does not influence the corrosion resistance of magnesium. The main influencing factor for the corrosion behavior is the layer morphology. Thus, immersion at room temperature leads to the highest corrosion protection due to the formation of a compact outer layer. Layers formed in the incubator show much worse performances due to completely porous structures. The

  7. Substrate dependent reaction channels of the Wolff–Kishner reduction reaction: A theoretical study

    Directory of Open Access Journals (Sweden)

    Shinichi Yamabe

    2014-01-01

    Full Text Available Wolff–Kishner reduction reactions were investigated by DFT calculations for the first time. B3LYP/6-311+G(d,p SCRF=(PCM, solvent = 1,2-ethanediol optimizations were carried out. To investigate the role of the base catalyst, the base-free reaction was examined by the use of acetone, hydrazine (H2N–NH2 and (H2O8. A ready reaction channel of acetone → acetone hydrazine (Me2C=N–NH2 was obtained. The channel involves two likely proton-transfer routes. However, it was found that the base-free reaction was unlikely at the N2 extrusion step from the isopropyl diimine intermediate (Me2C(H–N=N–H. Two base-catalyzed reactions were investigated by models of the ketone, H2N–NH2 and OH−(H2O7. Here, ketones are acetone and acetophenone. While routes of the ketone → hydrazone → diimine are similar, those from the diimines are different. From the isopropyl diimine, the N2 extrusion and the C–H bond formation takes place concomitantly. The concomitance leads to the propane product concertedly. From the (1-phenylethyl substituted diimine, a carbanion intermediate is formed. The para carbon of the phenyl ring of the anion is subject to the protonation, which leads to a 3-ethylidene-1,4-cyclohexadiene intermediate. Its [1,5]-hydrogen migration gives the ethylbenzene product. For both ketone substrates, the diimines undergoing E2 reactions were found to be key intermediates.

  8. Enhanced Colloidal Stability of CeO2 Nanoparticles by Ferrous Ions: Adsorption, Redox Reaction, and Surface Precipitation.

    Science.gov (United States)

    Liu, Xuyang; Ray, Jessica R; Neil, Chelsea W; Li, Qingyun; Jun, Young-Shin

    2015-05-05

    Due to the toxicity of cerium oxide (CeO2) nanoparticles (NPs), a better understanding of the redox reaction-induced surface property changes of CeO2 NPs and their transport in natural and engineered aqueous systems is needed. This study investigates the impact of redox reactions with ferrous ions (Fe2+) on the colloidal stability of CeO2 NPs. We demonstrated that under anaerobic conditions, suspended CeO2 NPs in a 3 mM FeCl2 solution at pH 4.8 were much more stable against sedimentation than those in the absence of Fe2+. Redox reactions between CeO2 NPs and Fe2+ lead to the formation of 6-line ferrihydrite on the CeO2 surfaces, which enhanced the colloidal stability by increasing the zeta potential and hydrophilicity of CeO2 NPs. These redox reactions can affect the toxicity of CeO2 NPs by increasing cerium dissolution, and by creating new Fe(III) (hydr)oxide reactive surface layers. Thus, these findings have significant implications for elucidating the phase transformation and transport of redox reactive NPs in the environment.

  9. Investigation of lead workers for subclinical effects of lead using three performance tests

    Energy Technology Data Exchange (ETDEWEB)

    Milburn, H; Mitran, E; Crockford, G W

    1976-12-01

    Using three performance tests, lead exposed workers were studied for signs of subclinical neurological effects. The three tests were: two flash fusion threshold, a test considered to indicate the level of arousal; reaction time to a touch stimulus and the rate at which hand grip pressure is developed, both influenced by the conduction velocity of the peripheral nerves and impulse transmission across the motor end plates. Sixteen male lead workers were tested and compared with a non-exposed matched control group of fifteen. The occupational history, neurological symptoms and blood lead levels were recorded. The three performance tests revealed no differences between the exposed and the non-exposed groups.

  10. Effect of Tin Electrode (Sn, Electrode Distance and Thin Layer Size of Zinc Phthalocyanine (ZnPc to Resistance Changes With Ozone Exposure

    Directory of Open Access Journals (Sweden)

    Agustina Mogi

    2018-01-01

    Full Text Available This study was aimed to determine the effect of tin electrode distances and the thickness of a thin layer of ZnPc (Zinc phtyalocyanine toward changes in resistance with ozone exposure. Tin deposition on the glass surface was conducted using spraying method. The reaction between ozone and ZnPc produces electrical properties that can be read through the resistance value of the multimeter. Based on this study, it was investigated that the smaller a distance between the electrode and the thicker deposition of ZnPc lead to the less resistance. This showed that a thin layer of the conductivity increases along with the longer exposure to ozone gas. The movement of electrons with the hole was free.

  11. Accuracy of measuring half- and quarter-value layers and appropriate aperture width of a convenient method using a lead-covered case in X-ray computed tomography.

    Science.gov (United States)

    Matsubara, Kosuke; Ichikawa, Katsuhiro; Murasaki, Yuichi; Hirosawa, Ayaka; Koshida, Kichiro

    2014-01-06

    Determination of the half-value layer (HVL) and quarter-value layer (QVL) values is not an easy task in x-ray computed tomography (CT), because a nonrotating x-ray tube must be used, which requires the assistance of service engineers. Therefore, in this study, we determined the accuracy of the lead-covered case method, which uses x-rays from a rotating x-ray tube, for measuring the HVL and QVL in CT. The lead-covered case was manufactured from polystyrene foam and a 4-mm thick lead plate. The ionizing chamber was placed in the center of the case, and aluminum filters were placed 15 cm above the aperture surface. Aperture widths of 1.0, 2.0, and 3.0 cm for a tube voltage of 110 kV and an aperture width of 2.0 cm for the tube voltages of 80 and 130 kV were used to measure exposure doses. The results of the HVL and QVL were compared with those of the conventional nonrotating method. A 2.0-cm aperture was believed to be adequate, because of its small differences in the HVL and QVL in the nonrotating method and its reasonable exposure dose level. When the 2.0-cm aperture was used, the lead-covered case method demonstrated slightly larger HVLs and QVLs (0.03-0.06 mm for the HVL and 0.2-0.4 mm for the QVL) at all the tube voltage settings. However, the differences in the effective energy were 0.1-0.3 keV; therefore, it could be negligible in an organ-absorbed dose evaluation and a quality assurance test for CT.

  12. Histopathology and immune histochemistry of red tattoo reactions. Interface dermatitis is the lead pathology, with increase in T-lymphocytes and Langerhans cells suggesting an allergic pathomechanism.

    Science.gov (United States)

    Høgsberg, T; Thomsen, B M; Serup, J

    2015-11-01

    The majority of tattoo reactions are affiliated to red pigmented areas and often suspected to be allergic in nature. A sizeable series of biopsies of such reactions has not previously been performed. The aim of this study was to type and grade epidermal and dermal changes in tattoo reactions to red/red nuances by microscopy and immunochemistry relevant for the assessment of a possible allergic pathomechanism. Skin biopsies were taken from red tattoo reactions, graded by conventional microscopy and stained for T and B-lymphocytes, Langerhans cells, macrophages and tumour necrosis factor (TNF)-α. The study included 19 biopsies from 19 patients. The culprit colours were red/pink (n = 15) and purple/bordeaux (n = 4). Interface dermatitis was clearly the lead pathology found in 78% of samples, overlapped with granulomatous (in 32%) and pseudolymphomatous reaction patterns (in 32%). Epidermal hyperkeratosis (in 89%) was common as was leakage of red pigment across the dermo-epidermal junction, with transepidermal elimination (in 28%). The dermal cellular infiltration was dominated by T-lymphocytes (in 100%), Langerhans cells (in 95%) and macrophages (in 100%). TNF-α was common. The predominant histological pattern of chronic tattoo reactions in red/red nuances is interface dermatitis. T-lymphocytes and Langerhans cells are increased suggesting an allergic pathomechanism. TNF-α may contribute to reactions. In many cases, overlapping reactive patterns were identified. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Structure and thermal evolution of Mg-Al layered double hydroxide containing interlayer organic glyphosate anions

    Energy Technology Data Exchange (ETDEWEB)

    Li Feng; Zhang Lihong; Evans, David G.; Forano, Claude; Duan Xue

    2004-12-15

    Layered double hydroxide (LDH) with the Mg{sup 2+}/Al{sup 3+} molar ratio of 2.0 containing interlayer organic pesticide glyphosate anions (MgAl-Gly-LDH) has been synthesized by the use of anion exchange and coprecipitation routes. Intercalation experiments with glyphosate (Gly) reveal a correlation between the temperatures for thermal treatments and the types of reaction it undergoes with Gly. The grafting of the Gly anion onto hydroxylated sheets of LDH by moderate thermal treatments (hydrothermal treatments and calcinations) was confirmed by a combination of several techniques, including powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry analysis (TGA-DTG), and {sup 31}P nuclear magnetic resonance (NMR). The thermal decomposition of MgAl-Gly-LDH results in the removal of loosely held interlayer water, grafting reaction between the interlayer anions and hydroxyl groups on the lattice of LDH, dehydroxylation of the lattice and decomposition of the interlayer species in succession, thus leading to a variety of crystallographic transitions.

  14. On the smectite-to-illite reaction

    International Nuclear Information System (INIS)

    Oscarson, D.W.; Hume, H.B.

    1993-08-01

    The smectite component of the buffer material in a nuclear fuel waste disposal vault could slowly transform over long periods of time to an inter-stratified illite/smectite (I/S) material. This has important implications for the long-term effectiveness of the buffer material. The smectite-to-illite reaction was examined by treating Wyoming bentonite at 150, 200 and 250 degrees C for periods ranging from 90 to 194 days in five synthetic solutions having widely varying compositions. The solution-to-clay ratio was 0.025 m 3 /kg. Progress of the smectite alteration reaction was determined by measuring the expandability of the reaction products by X-ray diffractometry after the exchange complex of the clay was saturated with K and solvated with ethylene glycol. In all systems, the expandability of the I/S run products generally decreased (increase in the amount of I/S formed) with increasing temperature and time. The cation-exchange capacity of the clay was not, however, markedly affected by the hydrothermal treatments. The results indicate the presence of K in solution is not necessary for the development of high-charge layers in smectite (an increase in layer charge is the first step in the formation of illite from smectite). The expandability of the I/S was greater in the solutions with comparatively high concentrations of Ca. This supports the observation that the presence of Ca, rather than Na, on the exchange complex of smectite inhibits the formation of high-charge layers. The data do not allow us to predict the rate at which smectite will transform to I/S in a disposal vault environment. But the reaction will undoubtedly be very slow given that the temperature in a disposal vault will be <100 C and the concentration of K in groundwaters deep in granite rock very low compared with that of Ca and Na. (author). 54 refs., 4 tabs., 3 figs

  15. Dissolution mechanism of austenitic stainless steels in lead-bismuth eutectic at 500 deg. C

    International Nuclear Information System (INIS)

    Roy, M.

    2012-01-01

    In the framework of the future nuclear power plants studies, lead-bismuth eutectic (LBE) is foreseen as a coolant in the primary or the secondary circuit in three nuclear systems. The use of this liquid alloy induces corrosion issues for structural steels. In liquid lead alloys, steels can undergo two corrosion phenomena: dissolution or oxidation depending on the temperature and the dissolved oxygen content in LBE. The goal of this study is to identify the dissolution mechanisms of austenitic steels in LBE at 500 deg. C. Four Fe-Cr-Ni model austenitic steels, the 316L steel and five other industrial steels were corroded in LBE up to, respectively, 3000, 6000 and 200 h. The dissolution mechanism is identical for all steels: it starts by a preferential dissolution of chromium and nickel. This dissolution leads to the formation of a ferritic corrosion layer penetrated by LBE and containing between 5 and 10 at% of chromium and almost no nickel. This study demonstrates that dissolutions of nickel and chromium are linked. Otherwise, the corrosion kinetics is linear whatever the tested austenitic steel. The controlling steps of the austenitic steels' corrosion rates have been identified. Natural convection in the LBE bath leads to the formation of a diffusion boundary layer at the steel surface. Chromium diffusion in this diffusion boundary layer seems to control the corrosion rates of the model and industrial austenitic steels except the 316L steel. Indeed, the corrosion rate of the 316L steel is controlled by an interfacial reaction which is either the simultaneous dissolution of nickel and chromium in Ni, Cr compounds or the nickel and chromium dissolution catalyzed by the dissolved oxygen in LBE. This study has permitted to highlight the major role of chromium on the corrosion mechanisms and the corrosion rates of austenitic steels: the corrosion rate increases when chromium activity increases. Finally, the impact of the dissolved oxygen and the minor alloying

  16. Layer-by-layer assembly of TiO(2) colloids onto diatomite to build hierarchical porous materials.

    Science.gov (United States)

    Jia, Yuxin; Han, Wei; Xiong, Guoxing; Yang, Weishen

    2008-07-15

    TiO(2) colloids with the most probably particle size of 10 nm were deposited on the surface of macroporous diatomite by a layer-by-layer (LBL) assembly method with using phytic acid as molecular binder. For preparation of colloidal TiO(2), titanium(IV) isopropoxide (Ti(C(3)H(7)O)(4)) was used as titanium precursor, nitric acid (HNO(3)) as peptizing agent and deionized water and isopropanol (C(3)H(7)OH) as solvent. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), N(2) adsorption-desorption, and UV-vis spectra are used to assess the morphology and physical chemistry properties of the resulting TiO(2) coated diatomite. It was shown that the mesoporosity has been introduced into macroporous diatomite by LBL deposition. The mesoporosity was originated from close-packing of the uniform TiO(2) nanoparticles. More TiO(2) could be coated on the surface of diatomite by increasing the deposition cycles. This hierarchical porous material has potential for applications in catalytic reactions involved diffusion limit, especially in photocatalytic reactions.

  17. Free energy for protonation reaction in lithium-ion battery cathode materials

    International Nuclear Information System (INIS)

    Benedek, R.; Thackeray, M. M.; van de Walle, A.

    2008-01-01

    Calculations are performed of free energies for proton-for-lithium-ion exchange reactions in lithium-ion battery cathode materials. First-principles calculations are employed for the solid phases and tabulated ionization potential and hydration energy data for aqueous ions. Layered structures, spinel LiMn 2 O 4 , and olivine LiFePO 4 are considered. Protonation is most favorable energetically in layered systems, such as Li 2 MnO 3 and LiCoO 2 . Less favorable are ion-exchange in spinel LiMn 2 O 4 and LiV 3 O 8 . Unfavorable is the substitution of protons for Li in olivine LiFePO 4 , because of the large distortion of the Fe and P coordination polyhedra. The reaction free energy scales roughly linearly with the volume change in the reaction

  18. Cu and Cu(Mn) films deposited layer-by-layer via surface-limited redox replacement and underpotential deposition

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J.S., E-mail: jsfang@nfu.edu.tw [Department of Materials Science and Engineering, National Formosa University, Huwei 63201, Taiwan (China); Sun, S.L. [Department of Materials Science and Engineering, National Formosa University, Huwei 63201, Taiwan (China); Cheng, Y.L. [Department of Electrical Engineering, National Chi-Nan University, Nan-Tou 54561, Taiwan (China); Chen, G.S.; Chin, T.S. [Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan (China)

    2016-02-28

    Graphical abstract: - Abstract: The present paper reports Cu and Cu(Mn) films prepared layer-by-layer using an electrochemical atomic layer deposition (ECALD) method. The structure and properties of the films were investigated to elucidate their suitability as Cu interconnects for microelectronics. Previous studies have used primarily a vacuum-based atomic layer deposition to form a Cu metallized film. Herein, an entirely wet chemical process was used to fabricate a Cu film using the ECALD process by combining underpotential deposition (UPD) and surface-limited redox replacement (SLRR). The experimental results indicated that an inadequate UPD of Pb affected the subsequent SLRR of Cu and lead to the formation of PbSO{sub 4}. A mechanism is proposed to explain the results. Layer-by-layer deposition of Cu(Mn) films was successfully performed by alternating the deposition cycle-ratios of SLRR-Cu and UPD-Mn. The proposed self-limiting growth method offers a layer-by-layer wet chemistry-based deposition capability for fabricating Cu interconnects.

  19. Simply synthesized TiO2 nanorods as an effective scattering layer for quantum dot sensitized solar cells

    International Nuclear Information System (INIS)

    Samadpour, Mahmoud; Zad, Azam Iraji; Molaei, Mehdi

    2014-01-01

    TiO 2 nanorod layers are synthesized by simple chemical oxidation of Ti substrates. Diffuse reflectance spectroscopy measurements show effective light scattering properties originating from nanorods with length scales on the order of one micron. The films are sensitized with CdSe quantum dots (QDs) by successive ionic layer adsorption and reaction (SILAR) and integrated as a photoanode in quantum dot sensitized solar cells (QDSCs). Incorporating nanorods in photoanode structures provided 4- to 8-fold enhancement in light scattering, which leads to a high power conversion efficiency, 3.03% (V oc = 497 mV, J sc = 11.32 mA/cm 2 , FF = 0.54), in optimized structures. High efficiency can be obtained just by tuning the photoanode structure without further treatments, which will make this system a promising nanostructure for efficient quantum dot sensitized solar cells. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  20. Layer-by-Layer Heparinization of the Cell Surface by Using Heparin-Binding Peptide Functionalized Human Serum Albumin.

    Science.gov (United States)

    Song, Guowei; Hu, Yaning; Liu, Yusheng; Jiang, Rui

    2018-05-20

    Layer-by-layer heparinization of therapeutic cells prior to transplantation is an effective way to inhibit the instant blood-mediated inflammatory reactions (IBMIRs), which are the major cause of early cell graft loss during post-transplantation. Here, a conjugate of heparin-binding peptide (HBP) and human serum albumin (HSA), HBP-HSA, was synthesized by using heterobifunctional crosslinker. After the first heparin layer was coated on human umbilical vein endothelial cells (HUVECs) by means of the HBP-polyethylene glycol-phospholipid conjugate, HBP-HSA and heparin were then applied to the cell surface sequentially to form multiple layers. The immobilization and retention of heparin were analyzed by confocal microscopy and flow cytometry, respectively, and the cytotoxity of HBP-HSA was further evaluated by cell viability assay. Results indicated that heparin was successfully introduced to the cell surface in a layer-by-layer way and retained for at least 24 h, while the cytotoxity of HBP-HSA was negligible at the working concentration. Accordingly, this conjugate provides a promising method for co-immobilization of heparin and HSA to the cell surface under physiological conditions with improved biocompatibility.

  1. Efficient Planar Structured Perovskite Solar Cells with Enhanced Open-Circuit Voltage and Suppressed Charge Recombination Based on a Slow Grown Perovskite Layer from Lead Acetate Precursor.

    Science.gov (United States)

    Li, Cong; Guo, Qiang; Wang, Zhibin; Bai, Yiming; Liu, Lin; Wang, Fuzhi; Zhou, Erjun; Hayat, Tasawar; Alsaedi, Ahmed; Tan, Zhan'ao

    2017-12-06

    For planar structured organic-inorganic hybrid perovskite solar cells (PerSCs) with the poly(3,4-ethylenedioxythiophene:polystyrene sulfonate) (PEDOT:PSS) hole transport layer, the open-circuit voltage (V oc ) of the device is limited to be about 1.0 V, resulting in inferior performance in comparison with TiO 2 -based planar counterparts. Therefore, increasing V oc of the PEDOT:PSS-based planar device is an important way to enhance the efficiency of the PerSCs. Herein, we demonstrate a novel approach for perovskite film formation and the film is formed by slow growth from lead acetate precursor via a one-step spin-coating process without the thermal annealing (TA) process. Because the perovskite layer grows slowly and naturally, high-quality perovskite film can be achieved with larger crystalline particles, less defects, and smoother surface morphology. Ultraviolet absorption, X-ray diffraction, scanning electron microscopy, steady-state fluorescence spectroscopy (photoluminescence), and time-resolved fluorescence spectroscopy are used to clarify the crystallinity, morphology, and internal defects of perovskite thin films. The power conversion efficiency of p-i-n PerSCs based on slow-grown film (16.33%) shows greatly enhanced performance compared to that of the control device based on traditional thermally annealed perovskite film (14.33%). Furthermore, the V oc of the slow-growing device reaches 1.12 V, which is 0.1 V higher than that of the TA device. These findings indicate that slow growth of the perovskite layer from lead acetate precursor is a promising approach to achieve high-quality perovskite film for high-performance PerSCs.

  2. Overproduction of Upper-Layer Neurons in the Neocortex Leads to Autism-like Features in Mice

    Directory of Open Access Journals (Sweden)

    Wei-Qun Fang

    2014-12-01

    Full Text Available Summary: The functional integrity of the neocortex depends upon proper numbers of excitatory and inhibitory neurons; however, the consequences of dysregulated neuronal production during the development of the neocortex are unclear. As excess cortical neurons are linked to the neurodevelopmental disorder autism, we investigated whether the overproduction of neurons leads to neocortical malformation and malfunction in mice. We experimentally increased the number of pyramidal neurons in the upper neocortical layers by using the small molecule XAV939 to expand the intermediate progenitor population. The resultant overpopulation of neurons perturbs development of dendrites and spines of excitatory neurons and alters the laminar distribution of interneurons. Furthermore, these phenotypic changes are accompanied by dysregulated excitatory and inhibitory synaptic connection and balance. Importantly, these mice exhibit behavioral abnormalities resembling those of human autism. Thus, our findings collectively suggest a causal relationship between neuronal overproduction and autism-like features, providing developmental insights into the etiology of autism. : Fang et al. generated a mouse model with excessive excitatory neurons in the neocortex by manipulating embryonic neurogenesis. Overproduction of neurons results in autism-like anatomical and behavioral features. These findings suggest a causal relationship between overproduction of neurons and cortical malfunction and provide developmental insights into the etiology of autism.

  3. Analysis of the laser-induced discoloration of lead white pigment

    International Nuclear Information System (INIS)

    Cooper, M.I.; Fowles, P.S.; Tang, C.C.

    2002-01-01

    The use of laser cleaning in artwork conservation is becoming increasingly important. An investigation into the effects of laser radiation on lead white pigment, considered to be historically the most important of all white pigments used in art, has been undertaken. Samples of pigment and pigment in a water-colour binding medium have been prepared and irradiated by laser radiation at 1064 nm (pulse duration 5-10 ns) at an average fluence of 0.3 J cm -2 . Irradiation under such conditions leads to the formation of an extremely thin discoloured layer. Synchrotron X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) have been used to characterise the altered layer. Analytical evidence for the formation of elemental lead is presented for the first time and the effect of exposure of the altered layer to air and the effect of a binding medium on the process are discussed

  4. Method to grow group III-nitrides on copper using passivation layers

    Science.gov (United States)

    Li, Qiming; Wang, George T; Figiel, Jeffrey T

    2014-06-03

    Group III-nitride epilayers can be grown directly on copper substrates using intermediate passivation layers. For example, single crystalline c-plane GaN can be grown on Cu (110) substrates with MOCVD. The growth relies on a low temperature AlN passivation layer to isolate any alloying reaction between Ga and Cu.

  5. Reflective article having a sacrificial cathodic layer

    Science.gov (United States)

    Kabagambe, Benjamin; Buchanan, Michael J.; Scott, Matthew S.; Rearick, Brian K.; Medwick, Paul A.; McCamy, James W.

    2017-09-12

    The present invention relates to reflective articles, such as solar mirrors, that include a sacrificial cathodic layer. The reflective article, more particularly includes a substrate, such as glass, having a multi-layered coating thereon that includes a lead-free sacrificial cathodic layer. The sacrificial cathodic layer includes at least one transition metal, such as a particulate transition metal, which can be in the form of flakes (e.g., zinc flakes). The sacrificial cathodic layer can include an inorganic matrix formed from one or more organo-titanates. Alternatively, the sacrificial cathodic layer can include an organic polymer matrix (e.g., a crosslinked organic polymer matrix formed from an organic polymer and an aminoplast crosslinking agent). The reflective article also includes an outer organic polymer coating, that can be electrodeposited over the sacrificial cathodic layer.

  6. Tuning Catalytic Performance through a Single or Sequential Post-Synthesis Reaction(s) in a Gas Phase

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Junjun [Department; Department; Zhang, Shiran [Department; Department; Choksi, Tej [Department; Nguyen, Luan [Department; Department; Bonifacio, Cecile S. [Department; Li, Yuanyuan [Department; Zhu, Wei [Department; Department; College; Tang, Yu [Department; Department; Zhang, Yawen [College; Yang, Judith C. [Department; Greeley, Jeffrey [Department; Frenkel, Anatoly I. [Department; Tao, Franklin [Department; Department

    2016-12-05

    Catalytic performance of a bimetallic catalyst is determined by geometric structure and electronic state of the surface or even the near-surface region of the catalyst. Here we report that single and sequential postsynthesis reactions of an as-synthesized bimetallic nanoparticle catalyst in one or more gas phases can tailor surface chemistry and structure of the catalyst in a gas phase, by which catalytic performance of this bimetallic catalyst can be tuned. Pt–Cu regular nanocube (Pt–Cu RNC) and concave nanocube (Pt–Cu CNC) are chosen as models of bimetallic catalysts. Surface chemistry and catalyst structure under different reaction conditions and during catalysis were explored in gas phase of one or two reactants with ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The newly formed surface structures of Pt–Cu RNC and Pt–Cu CNC catalysts strongly depend on the reactive gas(es) used in the postsynthesis reaction(s). A reaction of Pt–Cu RNC-as synthesized with H2 at 200 °C generates a near-surface alloy consisting of a Pt skin layer, a Cu-rich subsurface, and a Pt-rich deep layer. This near-surface alloy of Pt–Cu RNC-as synthesized-H2 exhibits a much higher catalytic activity in CO oxidation in terms of a low activation barrier of 39 ± 4 kJ/mol in contrast to 128 ± 7 kJ/mol of Pt–Cu RNC-as synthesized. Here the significant decrease of activation barrier demonstrates a method to tune catalytic performances of as-synthesized bimetallic catalysts. A further reaction of Pt–Cu RNC-as synthesized-H2 with CO forms a Pt–Cu alloy surface, which exhibits quite different catalytic performance in CO oxidation. It suggests the capability of generating a different surface by using another gas. The capability of tuning surface chemistry and structure of bimetallic catalysts was also demonstrated in restructuring of Pt–Cu CNC-as synthesized.

  7. Characterization of nanostructured photosensitive (NiS){sub x}(CdS){sub (1-x)} composite thin films grown by successive ionic layer adsorption and reaction (SILAR) route

    Energy Technology Data Exchange (ETDEWEB)

    Ubale, A.U., E-mail: ashokuu@yahoo.com [Nanostructured Thin Film Materials Laboratory, Department of Physics, Govt. Vidarbha Institute of Science and Humanities, Amravati 444604, Maharashtra (India); Bargal, A.N. [Nanostructured Thin Film Materials Laboratory, Department of Physics, Govt. Vidarbha Institute of Science and Humanities, Amravati 444604, Maharashtra (India)

    2011-07-15

    Highlights: {yields} Thin films of (NiS){sub x}(CdS){sub (1-x)} with variable composition (x = 1 to 0) were deposited onto glass substrates by the successive ionic layer adsorption and reaction (SILAR) method. {yields} The structural, surface morphological and electrical characterizations of the as deposited and annealed films were studied. {yields} The bandgap and activation energy of annealed (NiS){sub x}(CdS){sub (1-x)} film decrease with improvement in photosensitive nature. -- Abstract: Recently ternary semiconductor nanostructured composite materials have attracted the interest of researchers because of their photovoltaic applications. Thin films of (NiS){sub x}(CdS){sub (1-x)} with variable composition (x = 1-0) had been deposited onto glass substrates by the successive ionic layer adsorption and reaction (SILAR) method. As grown and annealed films were characterised by X-ray diffraction, scanning electron microscopy and EDAX to investigate structural and morphological properties. The (NiS){sub x}(CdS){sub (1-x)} films were polycrystalline in nature having mixed phase of rhombohedral and hexagonal crystal structure due to NiS and CdS respectively. The optical and electrical properties of (NiS){sub x}(CdS){sub (1-x)} thin films were studied to determine compsition dependent bandgap, activation energy and photconductivity. The bandgap and activation energy of annealed (NiS){sub x}(CdS){sub (1-x)} film decrease with improvement in photosensitive nature.

  8. Department of Nuclear Reactions: Overview

    International Nuclear Information System (INIS)

    Rusek, K.

    2002-01-01

    Full text: Department of Nuclear Reactions has had a very productive year. We have carried out our work in close collaborations with physicists from many laboratories, home and foreign. The following reports cover three major domains of our activities: nuclear, material and atomic physics. * Nuclear physics: In collaboration with scientists from Ukraine experimental studies of nuclear reaction induced by heavy ions from the Warsaw Cyclotron have been performed. The aim of the experiments is to study nuclear reactions leading to the exotic light nuclei in exit channels and energy dependence of the nucleus - nucleus interactions. Proton induced charge-exchange reactions were investigated theoretically by means of multistep-direct model. Good agreement with the experimental data was achieved. A novel approach to the problem of the nuclear liquid → gas phase transition was proposed, based on synergetics - a domain of science dealing with self-organization in macroscopic systems. Decay properties of the Roper resonance were studied. Final analysis of the analysing powers for the polarized deuterons scattered on protons was accomplished. Experimental programme of the near-threshold meson production in proton - proton scattering has been started in collaboration with Forschungszentrum. Juelich. * Atomic physics: Spectra of the X-rays emitted by energetic sulphur ions scattered off carbon atoms were analysed in order to study the role of the multiple charge states of the inner shells in the dynamics of the collision process. Ionization probabilities in collision of oxygen ions with gold atoms were measured. The observed disagreement of the experimental data with the theoretical predictions suggest a strong effect generated by the sub-shell couplings. * Materials research: Ion channelling method was applied to investigate transformation of the defects in Al x Ga 1-x As crystalline layers. Activities of our colleagues in didactics have grown considerably. Lectures

  9. Low-energy nuclear reactions resulting as parametric interactions with similarity to K-shell electron capture

    Energy Technology Data Exchange (ETDEWEB)

    Hora, H. [University of New South Wales, Sydney 2052 (Australia); Miley, G.H. [Fusion Studies Laboratory, University of Illinois, Urbana, lL 61801 (United States); Li, X.Z. [Physics Department, Tsinghua University, Beijing 100084 (China); Kelly, J.C. [School of Physics, Sydney University, Sydney 2006 (Australia); Osman, F. [University of Western Sydney, Penrith-Soutti, NSW 1791 (Australia)

    2006-07-01

    Since the appeal by Brian Josephson at the meeting of the Nobel Laureates July 2004, it seems to be indicated to summarize the following serious, reproducible and confirmed observations on reactions of protons of deuterons incorporated in host metals such as palladium. Some reflections to Rutherford's discovery of nuclear physics, the Cockcroft Oliphant discovery of anomalous low-energy fusion reactions and the chemist Hahn's discovery of fission had to be included. Using gaseous atmosphere or discharges between palladium targets, rather significant results were seen e.g. from the 'life after death' heat production of such high values per host atom that only nuclear reactions can be involved. This supports the earlier evaluation of neutron generation in fully reversible experiments with gas discharges hinting that a reasonable screening effect - preferably in the swimming electron layer - may lead to reactions at nuclear distances d of pico-meters with reaction probability times U of about mega-seconds similar to the K-shell capture radioactivity. Further electrolytic experiments led to low-energy nuclear reactions (LENR) where the involvement of pollution could be excluded from the appearance of very seldom rare earth elements. A basically new theory for DD cross-sections is used to confirm the pico-meter- mega-second reactions of cold fusion. Other theoretical aspects are given from measured heavy element distributions similar to the standard abundance distribution, SAD, in the Universe with consequences on endothermic heavy nuclei generation, magic numbers and to quark-gluon plasmas. (authors)

  10. Oxygen Reduction Reaction on Pt Overlayers Deposited onto a Gold Film: Ligand, Strain, and Ensemble Effect

    DEFF Research Database (Denmark)

    Deng, Yu-Jia; Tripkovic, Vladimir; Rossmeisl, Jan

    2016-01-01

    We study the oxygen reduction reaction (ORR), the catalytic process occurring at the cathode in fuel cells, on Pt layers prepared by electrodeposition onto an Au substrate. Using a nominal Pt layer by layer deposition method previously proposed, imperfect layers of Pt on Au are obtained. The ORR...

  11. Fabrication of hydrophobic surface of titanium dioxide films by successive ionic layer adsorption and reaction (SILAR) method

    International Nuclear Information System (INIS)

    More, A.M.; Gunjakar, J.L.; Lokhande, C.D.; Joo, Oh Shim

    2009-01-01

    Titanium dioxide (TiO 2 ) films were fabricated on fluorine doped tin oxide (FTO) coated glass substrate using successive ionic layer adsorption and reaction (SILAR) method. The X-ray diffraction, scanning electron microscopy, transmission electron microscopy, optical absorption and contact angle measurement were applied to study the structural, surface morphological, optical and surface wettability properties of the as-deposited and annealed TiO 2 films. The X-ray diffraction studies revealed both as-deposited and annealed TiO 2 films are amorphous. Irregular shaped spherical grains of random size and well covered to the fluorine doped tin oxide coated glass substrates were observed from SEM studies with some cracks after annealing. The optical band gap values of virgin TiO 2, annealed, methyl violet and rose bengal sensitized TiO 2 were found to be 3.6, 3.5, 2.87 and 2.95 eV, respectively. Surface wettability studied in contact with liquid interface, showed hydrophobic nature as water contact angles were greater than 90 deg. The adsorption of dyes, as confirmed by the photographs, is one of the prime requirements for dye sensitized solar cells (DSSC).

  12. The Role of Iron In Sporadic E Layers

    Science.gov (United States)

    Vondrak, T.; Woodcock, K. R. I.; Plane, J. M. C.

    Sporadic E layers in the lower thermosphere are mostly composed of metallic ions, of which Fe+ is the most abundant. Because dielectric recombination (Fe+ + elec- tron) is very slow, the lifetime of Fe+ above about 100 km is at least several days. However, below this height molecular ions such as FeO+, FeO2+ and FeN2+ form in- creasingly rapidly through reactions with O3, O2 and N2, respectively. These undergo rapid dissociative recombination with electrons, causing Fe+ to be neutralised increas- ingly rapidly as a sporadic E layer descends. Indeed, this is the most likely mechanism for the formation of the sporadic neutral Fe layers that are observed by lidar. However, atomic O plays a very important role in reducing these molecular ions back to Fe+, competing with dissociative recombination and thus slowing the rate at which Fe+ is neutralised and a sporadic E layer dissipates. This paper will discuss a laboratory and modelling study of the reactions of FeO+, FeO2+ and FeN2+ with atomic O. These reactions were studied (for the first time) in a fast flow tube, using the pulsed laser ablation of a rotating iron rod as the source of Fe+ ions in the upstream section of the tube. Reactants were then added to produce molecular ions, and atomic O further downstream through a movable injector. Fe+ and the molecular ions were detected at the downstream end of the tube using a two-stage quadrupole mass spectrometer. The spectroscopy of the FeO+ ion, observed by laser induced fluorescence, will also be discussed as a candidate for future ground-based lidar studies of the ion chemistry of the lower thermosphere.

  13. The In Situ Enzymatic Screening (ISES) Approach to Reaction Discovery and Catalyst Identification.

    Science.gov (United States)

    Swyka, Robert A; Berkowitz, David B

    2017-12-14

    The importance of discovering new chemical transformations and/or optimizing catalytic combinations has led to a flurry of activity in reaction screening. The in situ enzymatic screening (ISES) approach described here utilizes biological tools (enzymes/cofactors) to advance chemistry. The protocol interfaces an organic reaction layer with an adjacent aqueous layer containing reporting enzymes that act upon the organic reaction product, giving rise to a spectroscopic signal. ISES allows the experimentalist to rapidly glean information on the relative rates of a set of parallel organic/organometallic reactions under investigation, without the need to quench the reactions or draw aliquots. In certain cases, the real-time enzymatic readout also provides information on sense and magnitude of enantioselectivity and substrate specificity. This article contains protocols for single-well (relative rate) and double-well (relative rate/enantiomeric excess) ISES, in addition to a colorimetric ISES protocol and a miniaturized double-well procedure. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  14. Chlorine-Incorporation-Induced Formation of the Layered Phase for Antimony-Based Lead-Free Perovskite Solar Cells.

    Science.gov (United States)

    Jiang, Fangyuan; Yang, Dongwen; Jiang, Youyu; Liu, Tiefeng; Zhao, Xingang; Ming, Yue; Luo, Bangwu; Qin, Fei; Fan, Jiacheng; Han, Hongwei; Zhang, Lijun; Zhou, Yinhua

    2018-01-24

    The environmental toxicity of Pb in organic-inorganic hybrid perovskite solar cells remains an issue, which has triggered intense research on seeking alternative Pb-free perovskites for solar applications. Halide perovskites based on group-VA cations of Bi 3+ and Sb 3+ with the same lone-pair ns 2 state as Pb 2+ are promising candidates. Herein, through a joint experimental and theoretical study, we demonstrate that Cl-incorporated methylammonium Sb halide perovskites (CH 3 NH 3 ) 3 Sb 2 Cl X I 9-X show promise as efficient solar absorbers for Pb-free perovskite solar cells. Inclusion of methylammonium chloride into the precursor solutions suppresses the formation of the undesired zero-dimensional dimer phase and leads to the successful synthesis of high-quality perovskite films composed of the two-dimensional layered phase favored for photovoltaics. Solar cells based on the as-obtained (CH 3 NH 3 ) 3 Sb 2 Cl X I 9-X films reach a record-high power conversion efficiency over 2%. This finding offers a new perspective for the development of nontoxic and low-cost Sb-based perovskite solar cells.

  15. Quantitative analysis of oxygen depth distribution by means of deuteron reaction

    International Nuclear Information System (INIS)

    Dyumin, A.N.; Eremin, V.K.; Konnikov, S.G.

    1993-01-01

    Experimentally are investigated and realized possibilities for using the reaction for quantitative determination of the depth profiles of the oxygen distribution in HTSC structures in layers up to 10 4 A. It is concluded that in the near-surface layers when profiling the oxygen content is achieved the spatial resolution of 150 A

  16. Reaction of winter oilseed rape varieties to elevated concentrations of lead

    Directory of Open Access Journals (Sweden)

    Oreščanin Bojana

    2012-01-01

    Full Text Available Remediation methods allow the removal of metals from contaminated soil, and phytoremediation a technology for cleaning contaminated soil and waste material by plants, is becoming increasingly used. Brassica napus L., as one of the main oilcrops and high-biomass producing species, is becoming more and more interesting for the use in phytoextraction as it is proved to be tolerant to higher concentrations of heavy metals. The aim of this study was to examine the specific responses of three commercial winter rapeseed varieties, Banaćanka, Slavica and Kata, to the increased concentrations of lead in vitro. Significant reduction in root length of plants treated with lead was observed only in the variety Slavica, indicating susceptibility of this variety to the increased concentrations of this heavy metal. As in variety Kata a significant reduction in the length of the above-ground part due to the treatment with lead was detected, it could be concluded that the variety Banaćanka is the most tolerant to the applied concentrations of lead since there were no significant changes in the growth and biomass accumulation in all treatments except one, and could be recommended for further use in phytoremediation studies. [Projekat Ministarstva nauke Republike Srbije, br. TR31025 i br. III43007

  17. Effects of the presence of core debris on the behavior of sodium-concrete reactions

    International Nuclear Information System (INIS)

    Nguyen, D.H.; Muhlestein, L.D.

    1984-01-01

    Calculations using the SOCON model indicated the following: the temperature was increased throughout the concrete and the reaction product layer. Temperature could be raised to above sodium bp. Rate of release and accumulation of water and CO 2 gas were increased. The sodium mass transport to the reaction surface was also increased. As a consequence, more hydrogen and chemical heat were produced. The probability of concrete mechanical failure was higher. Sodium boiling inside the reaction product layer would not significantly alter the course of the reaction, unless it could reduce the rate of sodium transport. Although the chemical heat dominated during the early period, the decay heat could become the main source later. The reactions were driven by three main heat sources: the chemical heat, core debris heat and conduction heat from the hot sodium pool. The latter could become a heat sink. Even with the presence of core debris, the chemical reaction penetration was self-limiting and eventually, the reaction penetration rate decreased to a small value

  18. In Situ Monitoring of Chemical Reactions at a Solid-Water Interface by Femtosecond Acoustics.

    Science.gov (United States)

    Shen, Chih-Chiang; Weng, Meng-Yu; Sheu, Jinn-Kong; Yao, Yi-Ting; Sun, Chi-Kuang

    2017-11-02

    Chemical reactions at a solid-liquid interface are of fundamental importance. Interfacial chemical reactions occur not only at the very interface but also in the subsurface area, while existing monitoring techniques either provide limited spatial resolution or are applicable only for the outmost atomic layer. Here, with the aid of the time-domain analysis with femtosecond acoustics, we demonstrate a subatomic-level-resolution technique to longitudinally monitor chemical reactions at solid-water interfaces, capable of in situ monitoring even the subsurface area under atmospheric conditions. Our work was proven by monitoring the already-known anode oxidation process occurring during photoelectrochemical water splitting. Furthermore, whenever the oxide layer thickness equals an integer  number of the effective atomic layer thickness, the measured acoustic echo will show higher signal-to-noise ratios with reduced speckle noise, indicating the quantum-like behavior of this coherent-phonon-based technique.

  19. Atomic Layer Control of Thin Film Growth Using Binary Reaction Sequence Chemistry

    National Research Council Canada - National Science Library

    George, Steven

    1997-01-01

    Our research is focusing on the atomic layer control of thin film growth. Our goal is to deposit films with precise control of thickness and conformality on both flat and high aspect ratio structures...

  20. Silica nanoparticles for the layer-by-layer assembly of fully electro-active cytochrome c multilayers

    Directory of Open Access Journals (Sweden)

    Feifel Sven C

    2011-12-01

    Full Text Available Abstract Background For bioanalytical systems sensitivity and biomolecule activity are critical issues. The immobilization of proteins into multilayer systems by the layer-by-layer deposition has become one of the favorite methods with this respect. Moreover, the combination of nanoparticles with biomolecules on electrodes is a matter of particular interest since several examples with high activities and direct electron transfer have been found. Our study describes the investigation on silica nanoparticles and the redox protein cytochrome c for the construction of electro-active multilayer architectures, and the electron transfer within such systems. The novelty of this work is the construction of such artificial architectures with a non-conducting building block. Furthermore a detailed study of the size influence of silica nanoparticles is performed with regard to formation and electrochemical behavior of these systems. Results We report on interprotein electron transfer (IET reaction cascades of cytochrome c (cyt c immobilized by the use of modified silica nanoparticles (SiNPs to act as an artificial matrix. The layer-by-layer deposition technique has been used for the formation of silica particles/cytochrome c multilayer assemblies on electrodes. The silica particles are characterized by dynamic light scattering (DLS, Fourier transformed infrared spectroscopy (FT-IR, Zeta-potential and transmission electron microscopy (TEM. The modified particles have been studied with respect to act as an artificial network for cytochrome c and to allow efficient interprotein electron transfer reactions. We demonstrate that it is possible to form electro-active assemblies with these non-conducting particles. The electrochemical response is increasing linearly with the number of layers deposited, reaching a cyt c surface concentration of about 80 pmol/cm2 with a 5 layer architecture. The interprotein electron transfer through the layer system and the

  1. Analysis of dimensionality effect on shock wave boundary layer interaction in laminar hypersonic flows

    International Nuclear Information System (INIS)

    John, Bibin; Surendranath, Srikanth; Natarajan, Ganesh; Kulkarni, Vinayak

    2016-01-01

    Highlights: • Leading edge bluntness based separation control has been analysed numerically for 2D and axi-symmetric flows. • Differential growth of entropy layer in the streamwise direction in these cases leads to different interaction with respective boundary layers. • Separation control is found possible for planar flows beyond a critical radius called as equivalent radius. • No equivalent radius has been noticed in axi-symmertric flows in the present studies due to thin entropy layer and lack of favourable pressure gradient. - Abstract: Present investigations are centered on passive control of shock wave boundary layer interaction (SWBLI) for double cone and double wedge configurations with leading edge bluntness. This study seeks the differences in the flow physics of SWBLI in case of two dimensional (2D) and axisymmetric flow fields. In-house developed second order accurate finite-volume 2D axisymmetric compressible flow solver is employed for these studies. It is observed that the idea of leading edge bluntness offers reduction in separation bubble for 2D flow fields, whereas it leads to enhanced separation zone in case of axisymmetric flow fields. Relevant flow physics is well explored herein using wall pressure profile and relative thicknesses of boundary layer and entropy layer. Thicker entropy layer and stronger favorable pressure gradient are found responsible for the possibility of separation control in case of 2D flow fields. Thin entropy layer due to three dimensional relieving effect and its swallowing by the boundary layer are attributed for higher separation bubble size in case of cone with range of radii under consideration.

  2. UV and plasma treatment of thin silver layers and glass surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hluschi, J.H. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany); Helmke, A. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany); Roth, P. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany); Boewer, R. [Interpane Glasbeschichtungsgesellschaft mbH and Co KG, Sohnreystr. 21, D-37697 Lauenfoerde (Germany); Herlitze, L. [Interpane Glasbeschichtungsgesellschaft mbH and Co KG, Sohnreystr. 21, D-37697 Lauenfoerde (Germany); Vioel, W. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany)]. E-mail: vioel@hawk-hhg.de

    2006-11-10

    Thin silver layers can be modified by treatment with UV radiation or a plasma discharge. UV treatment at a wavelength of {lambda}=308 -bar nm improves the layer properties, thus leading to an enhancement of the layers IR reflectivity. For the purpose of in situ-measurement the sheet resistance is recorded during the process. Due to the Hagen-Rubens-Relation [E. Hagen, H. Rubens, Ann. Phys. 11 (1903) 873]-bar the sheet resistance is linked to the IR reflectivity of thin metal-films. A pretreatment of uncoated glass using a dielectric barrier discharge activates and cleans its surface, thus leading to an increase in adhesion of thin layers.

  3. UV and plasma treatment of thin silver layers and glass surfaces

    International Nuclear Information System (INIS)

    Hluschi, J.H.; Helmke, A.; Roth, P.; Boewer, R.; Herlitze, L.; Vioel, W.

    2006-01-01

    Thin silver layers can be modified by treatment with UV radiation or a plasma discharge. UV treatment at a wavelength of λ=308 -bar nm improves the layer properties, thus leading to an enhancement of the layers IR reflectivity. For the purpose of in situ-measurement the sheet resistance is recorded during the process. Due to the Hagen-Rubens-Relation [E. Hagen, H. Rubens, Ann. Phys. 11 (1903) 873]-bar the sheet resistance is linked to the IR reflectivity of thin metal-films. A pretreatment of uncoated glass using a dielectric barrier discharge activates and cleans its surface, thus leading to an increase in adhesion of thin layers

  4. Interfacial reactions in thermoelectric modules

    KAUST Repository

    Wu, Hsin-jay

    2018-02-21

    Engineering transport properties of thermoelectric (TE) materials leads to incessantly breakthroughs in the zT values. Nevertheless, modular design holds a key factor to advance the TE technology. Herein, we discuss the structures of TE module and illustrate the inter-diffusions across the interface of constituent layers. For Bi2Te3-based module, soldering is the primary bonding method, giving rise to the investigations on the selections of solder, diffusion barrier layer and electrode. For mid-temperature PbTe-based TE module, hot-pressing or spark plasma sintering are alternative bonding approaches; the inter-diffusions between the diffusion barrier layer, electrode and TE substrate are addressed as well.

  5. Ion beam analysis of aluminium in thin layers

    International Nuclear Information System (INIS)

    Healy, M.J.F.; Pidduck, A.J.; Dollinger, G.; Gorgens, L.; Bergmaier, A.

    2002-01-01

    This work quantifies aluminium in thin surface and near surface layers. In one example, the layer overlies a thin gallium nitride layer on an aluminium oxide substrate and in a second example the aluminium exists just below the surface of an indium arsenide substrate. The technique of non-Rutherford elastic backscattering of protons was used for the samples where aluminum in the layer of interest needed to be resolved from aluminium in the sapphire substrate and the results were corroborated at the Technische Universitaet Muenchen using heavy ion elastic recoil detection analysis. In the second example, where it was unnecessary to isolate the signal of aluminium in the layer of interest (as the substrate contained no aluminium), then the 27 Al(d,p 01 ) 28 Al nuclear reaction was used. The elastic proton scattering cross section of aluminum was found to vary very rapidly over the energy range of interest

  6. Impact ionization processes in the steady state of a driven Mott-insulating layer coupled to metallic leads

    Science.gov (United States)

    Sorantin, Max E.; Dorda, Antonius; Held, Karsten; Arrigoni, Enrico

    2018-03-01

    We study a simple model of photovoltaic energy harvesting across a Mott-insulating gap consisting of a correlated layer connected to two metallic leads held at different chemical potentials. We address, in particular, the issue of impact ionization, whereby a particle photoexcited to the high-energy part of the upper Hubbard band uses its extra energy to produce a second particle-hole excitation. We find a drastic increase of the photocurrent upon entering the frequency regime where impact ionization is possible. At large values of the Mott gap, where impact ionization is energetically not allowed, we observe a suppression of the current and a piling up of charge in the high-energy part of the upper Hubbard band. Our study is based on a Floquet dynamical mean-field theory treatment of the steady state with the so-called auxiliary master equation approach as impurity solver. We verify that an additional approximation, taking the self-energy diagonal in the Floquet indices, is appropriate for the parameter range we are considering.

  7. Suppression of interfacial reactions between Li4Ti5O12 electrode and electrolyte solution via zinc oxide coating

    International Nuclear Information System (INIS)

    Han, Cuiping; He, Yan-Bing; Li, Hongfei; Li, Baohua; Du, Hongda; Qin, Xianying; Kang, Feiyu

    2015-01-01

    Graphical abstract: The Li 4 Ti 5 O 12 (LTO) based batteries have severe gassing behavior due to the strong interfacial reactions between LTO and the electrolyte solution, which hampers the practical application of LTO in high power LIBs. The ZnO coating on LTO particles as a barrier layer can effectively suppress the interfacial reactions between LTO and the electrolyte solution. Simultaneously, the ZnO coating significantly reduces the charge-transfer resistance and increases the lithium ion diffusion coefficient, which leads to great improvement of rate and cyclic performance of LTO electrode. - Highlights: • A ZnO coating layer was constructed on the LTO particles by a chemical process as a barrier layer between LTO and surrounding electrolyte solution. • The ZnO coating can effectively stabilize the electrode/electrolyte interface and suppress interfacial reactions between LTO and electrolyte solution. • The ZnO coating can improve the electronic conductivity and lithium ion diffusion coefficient, which contributes to a great improvement in cyclic and high rate capabilities of LTO electrode. • The ZnO coating on LTO may be an effective method to solve the gassing behavior of LTO based battery and promote its wide application in lithium ion power battery. - Abstract: Li 4 Ti 5 O 12 (LTO) based batteries have severe gassing behavior during charge/discharge and storage process. The interfacial reactions between LTO and electrolyte solution may be the main reason. In this work, the LTO spinel particles are modified with ZnO coating using a chemical process to reduce the surface reactivity of LTO particles. Results show that the ZnO coating can effectively stabilize the electrode/electrolyte interface and suppress the formation of a solid electrolyte interface (SEI) film. Simultaneously, this ZnO modification can improve the electronic conductivity and lithium ion diffusion coefficient, which contributes to a great improvement in cyclic and high rate

  8. Modeling of the symmetry factor of electrochemical proton discharge via the Volmer reaction

    DEFF Research Database (Denmark)

    Björketun, Mårten E.; Tripkovic, Vladimir; Skúlason, Egill

    2013-01-01

    A scheme for evaluating symmetry factors of elementary electrode reactions using a density functional theory (DFT) based model of the electrochemical double layer is presented. As an illustration, the symmetry factor is determined for hydrogen adsorption via the electrochemical Volmer reaction...

  9. Diagnosing ignition with DT reaction history

    International Nuclear Information System (INIS)

    Wilson, D. C.; Bradley, P. A.; Herrmann, H. W.; Cerjan, C. J.; Salmonson, J. D.; Spears, B. K.; Hatchet, S. P. II; Glebov, V. Yu.

    2008-01-01

    A full range DT reaction history of an ignition capsule, from 10 9 to 10 20 neutrons/ns, offers the opportunity to diagnose fuel conditions hundreds of picoseconds before and during burn. The burn history begins with a sharp rise when the first shock reaches the center of the capsule. The level of this jump reflects the combined shock strength and the adiabat of DT fuel. Changes to the four laser pulses driving the capsule implosion which are large enough to degrade the yield make measurable changes to the reaction history. Low mode asymmetries grow during convergence but change the reaction history during the final ∼100 ps. High mode asymmetry or turbulence mixing affects only the reaction history within ∼50 ps of peak burn rate. A capsule with a tritium fuel layer containing a small amount of deuterium (∼1%) creates a reaction history similar to the ignition capsule, but without the final ignition burn. A combination of gas Cerenkov detectors and the neutron temporal diagnostic could be capable of diagnosing the full history of ignition and tritium rich capsules.

  10. Radiation induced topotactic [2 + 2] dimerisation of acrylate derivatives among the layers of a CaFe layered double hydroxide followed by IR spectroscopy

    Science.gov (United States)

    Srankó, D. F.; Canton, S.; Enghdahl, A.; Muráth, Sz.; Kukovecz, Á.; Kónya, Z.; Sipiczki, M.; Sipos, P.; Pálinkó, I.

    2013-07-01

    Various acrylates [E-phenylpropenoate, E-3(4‧-nitrophenyl)propenoate, E-3(2‧,5‧-difluorphenyl)propenoate, E-3(2‧-thienyl)propenoate, E-3(4‧-imidazolyl)propenoate or E-2,3-dimethylpropenoate] were successfully intercalated into Ca(II)Fe(III) layered double hydroxide (CaFe-LDH) verified by a range of instrumental methods. The possible arrangements for the organic anions were suggested on the basis of basal spacing data, layer thickness and the dimensions of the quantum chemically optimised structures of the acrylate ions. Using the acrylate-CaFe-LDHs as reactant-filled nanoreactors, photoinitiated topotactic [2 + 2] cyclisation reactions followed by IR spectroscopy could be performed with many representatives [E-phenylpropenoate-, E-3(4‧-nitrophenyl)propenoate-, E-3(2‧,5‧-difluorphenyl)propenoate- or E-3(2‧-thienyl)propenoate-CaFe-LDHs] resulting in cyclobutane derivatives within the layers of the host material indicating that there were domains where the intercalated anions were in close proximity to each other and in proper arrangement for the reaction to occur.

  11. Evaporation residue cross sections and average neutron multiplicities in the /sup 64/Ni+/sup 92/Zr and /sup 12/C+/sup 144/Sm reactions leading to /sup 156/Er

    Energy Technology Data Exchange (ETDEWEB)

    Janssens, R.V.F.; Holzmann, R.; Henning, W.; Khoo, T.L.; Lesko, K.T.; Stephans, G.S.F.; Radford, D.C.; Van den Berg, A.M.; Kuehn, W.; Ronningen, R.M.

    1986-11-27

    Evaporation residue cross sections and neutron multiplicity distributions have been measured for the /sup 12/C+/sup 144/Sm and /sup 64/Ni+/sup 92/Zr reactions leading to the same compound nucleous /sup 156/Er. Statistical model calculations can account for the data in the /sup 12/C-induced reaction. In contrast, the inhibition of neutron emission with respect to statistical model predictions seen in /sup 64/Ni+/sup 92/Zr cannot be explained even with the inclusion of the broad angular momentum distributions required to describe the fusion cross section data.

  12. Catalysts, Protection Layers, and Semiconductors

    DEFF Research Database (Denmark)

    Chorkendorff, Ib

    2015-01-01

    Hydrogen is the simplest solar fuel to produce and in this presentation we shall give a short overview of the pros and cons of various tandem devices [1]. The large band gap semiconductor needs to be in front, but apart from that we can chose to have either the anode in front or back using either...... acid or alkaline conditions. Since most relevant semiconductors are very prone to corrosion the advantage of using buried junctions and using protection layers offering shall be discussed [2-4]. Next we shall discuss the availability of various catalysts for being coupled to these protections layers...... and how their stability may be evaluated [5, 6]. Examples of half-cell reaction using protection layers for both cathode and anode will be discussed though some of recent examples under both alkaline and acidic conditions. Si is a very good low band gap semiconductor and by using TiO2 as a protection...

  13. Reactivity of Single-Walled Carbon Nanotubes in the Diels-Alder Cycloaddition Reaction: Distortion-Interaction Analysis along the Reaction Pathway.

    Science.gov (United States)

    Li, Yingzi; Osuna, Sílvia; Garcia-Borràs, Marc; Qi, Xiaotian; Liu, Song; Houk, Kendall N; Lan, Yu

    2016-08-26

    Diels-Alder cycloaddition is one of the most powerful tools for the functionalization of single-walled carbon nanotubes (SWCNTs). Density functional theory at the B3-LYP level of theory has been used to investigate the reactivity of different-diameter SWCNTs (4-9,5) in Diels-Alder reactions with 1,3-butadiene; the reactivity was found to decrease with increasing SWCNT diameter. Distortion/interaction analysis along the whole reaction pathway was found to be a better way to explore the reactivity of this type of reaction. The difference in interaction energy along the reaction pathway is larger than that of the corresponding distortion energy. However, the distortion energy plots for these reactions show the same trend. Therefore, the formation of the transition state can be determined from the interaction energy. A lower interaction energy leads to an earlier transition state, which indicates a lower activation energy. The computational results also indicate that the original distortion of the SWCNTs leads to an increase in the reactivity of the SWCNTs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Sodium-concrete reactions experiments and code development

    International Nuclear Information System (INIS)

    Casselman, C.; Malet, J.C.; Dufresne, J.; Bolvin, M.

    1988-01-01

    Hypothesis of hot sodium leak in a fast breeder reactor implies, for the safety organism to consider spillage of sodium on concrete. This safety analysis involves the understanding of sodium-concrete reactions, the knowledge of their consequences and to test the choiced preventive solutions. In association with EDF, the nuclear safety department had carried out an extensive experimental program, the different parts of which are connected with each aspect of this problem: - firstly, interaction between sodium and bare surface of usual concrete; - secondly, the case of a sodium spillage on a concrete surface covered with a defected liner; - thirdly, special concrete tests for a comparison with usual concrete behavior, in direct contact with hot sodium; - at last, a test which concerns a new design with a layer of the selected concrete protected with a defected liner. On the same time, theoretical work leads to elaborate a physical model to describe temporal evolution of thermal and chemical decomposition of a concrete slab under hot sodium action. SORBET-REBUS system will use quoted above test results to its validation

  15. Development of a new molecular dynamics method for tribochemical reaction and its application to formation dynamics of MoS2 tribofilm

    International Nuclear Information System (INIS)

    Morita, Yusuke; Onodera, Tasuku; Suzuki, Ai; Sahnoun, Riadh; Koyama, Michihisa; Tsuboi, Hideyuki; Hatakeyama, Nozomu; Endou, Akira; Takaba, Hiromitsu; Kubo, Momoji; Del Carpio, Carlos A.; Shin-yoshi, Takatoshi; Nishino, Noriaki; Suzuki, Atsushi; Miyamoto, Akira

    2008-01-01

    Recently we have developed a novel molecular dynamics program NEW-RYUDO-CR, which can deal with chemical reactions. The developed method has been applied to the study of tribochemical reaction dynamics of MoS 2 tribofilm on iron surface. The initially amorphous MoS 2 layer self-organized its structure as result of the tribochemical reactions and formed layered MoS 2 tribofilm. The friction coefficient significantly decreased as the MoS 2 tribofilm was formed. Besides, sliding was observed between sulfur layers of MoS 2 tribofilms which occurred due to repulsive Coulombic interaction forces between sulfur atoms. This indicates that the formation of the layered MoS 2 tribofilm is important to achieve better lubrication properties

  16. Regio- and stereoselective carbometallation reactions of N-alkynylamides and sulfonamides

    Directory of Open Access Journals (Sweden)

    Yury Minko

    2013-03-01

    Full Text Available The carbocupration reactions of heterosubstituted alkynes allow the regio- and stereoselective formation of vinyl organometallic species. N-Alkynylamides (ynamides are particularly useful substrates for the highly regioselective carbocupration reaction, as they lead to the stereodefined formation of vinylcopper species geminated to the amide moiety. The latter species are involved in numerous synthetically useful transformations leading to valuable building blocks in organic synthesis. Here we describe in full the results of our studies related to the carbometallation reactions of N-alkynylamides.

  17. Interfacial Layer Engineering for Performance Enhancement in Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Hao Zeng

    2015-02-01

    Full Text Available Improving power conversion efficiency and device performance stability is the most critical challenge in polymer solar cells for fulfilling their applications in industry at large scale. Various methodologies have been developed for realizing this goal, among them interfacial layer engineering has shown great success, which can optimize the electrical contacts between active layers and electrodes and lead to enhanced charge transport and collection. Interfacial layers also show profound impacts on light absorption and optical distribution of solar irradiation in the active layer and film morphology of the subsequently deposited active layer due to the accompanied surface energy change. Interfacial layer engineering enables the use of high work function metal electrodes without sacrificing device performance, which in combination with the favored kinetic barriers against water and oxygen penetration leads to polymer solar cells with enhanced performance stability. This review provides an overview of the recent progress of different types of interfacial layer materials, including polymers, small molecules, graphene oxides, fullerene derivatives, and metal oxides. Device performance enhancement of the resulting solar cells will be elucidated and the function and operation mechanism of the interfacial layers will be discussed.

  18. Rapid sonochemical preparation of shape-selective lead iodide

    International Nuclear Information System (INIS)

    Huang, Baojun; He, Qin; Fa, Wenjun; Li, Pinjiang; Zhang, Yange; Zheng, Zhi

    2012-01-01

    Graphical abstract: SEM morphologies of various PbI2 products obtained with the iodine concentration of 6.7 g/L and irradiation time of 1 minute at the reaction temperatures of 35 °C (a), 25 °C (b), and 15 °C (c). Highlights: ► PbI 2 with various morphologies were rapidly formed at room temperature. ► We could well control the morphologies of PbI 2 by changing reaction conditions. ► The PbI 2 films could better resist rolling in a liquid media. -- Abstract: Lead iodide (PbI 2 ) films/crystals with various nano/micro morphologies (e.g., Nanoflake, block and microrod) were rapidly synthesized by taking advantage of a simple sonochemical method. The PbI 2 crystals with uniform nanoflake structures could be fabricated directly on lead foils with the irradiation time as short as 36 s via interfacial reaction between lead foils and elemental iodine in ethanol at ambient temperature. It was found experimentally that the morphologies of the resulting thin films/crystals could be well controlled by the adjustment of several parameters including irradiation time, reaction solvents, iodine concentration, ultrasonic power, and reaction temperature. Most importantly, the resultant PbI 2 films are stable enough to resist rolling under the drastic ultrasound irradiation in a liquid media. This method is believed to be the fastest way for in situ fabrication of morphology-controlled semiconductor films on various metal substrates for subsequent applications related to the other metal iodide or metal sulfide semiconductor films.

  19. Thin pentacene layer under pressure

    International Nuclear Information System (INIS)

    Srnanek, R.; Jakabovic, J.; Kovac, J.; Donoval, D.; Dobrocka, E.

    2011-01-01

    Organic semiconductors have got a lot of interest during the last years, due to their usability for organic thin film transistor. Pentacene, C 22 H 14 , is one of leading candidates for this purpose. While we obtain the published data about pressure-induced phase transition only on single crystal of pentacene we present pressure-induced phase transition in pentacene thin layers for the first time. Changes in the pentacene structure, caused by the pressure, were detected by micro-Raman spectroscopy. Applying the defined pressure to the pentacene layer it can be transformed from thin phase to bulk phase. Micro-Raman spectroscopy was found as useful method for detection of changes and phases identification in the pentacene layer induced by mechanical pressure. Such a pressure-induced transformation of pentacene thin layers was observed and identified for the first time. (authors)

  20. Studies of the pulse charge of lead-acid batteries for PV applications. Part I. Factors influencing the mechanism of the pulse charge of the positive plate

    Energy Technology Data Exchange (ETDEWEB)

    Kirchev, A.; Perrin, M.; Lemaire, E.; Karoui, F.; Mattera, F. [Commissariat de l' Energie Atomique, Institut National de l' Energie Solaire, INES-RDI, Parc Technologique de Savoie Technolac, 50 Avenue du Lac Leman, 73377 Le Bourget du Lac Cedex (France)

    2008-02-15

    The mechanism of the positive plate charge in pulse regime was studied in model lead-acid cells with one positive and two negative plates (8 Ah each) and Ag/Ag{sub 2}SO{sub 4} reference electrodes. The results showed that the evolution of the electrode potential is much slower on the positive plate than on the negative plate. Regardless of this fact, the calculated capacitive current of charge and self-discharge of the electrochemical double layer (EDL) during the 'ON' and 'OFF' half-periods of the pulse current square waves is comparable with the charge current amplitude. The result is due to the high values of the EDL on the surface of the lead dioxide active material. The influence of different factors like state of charge, state of health, pulse frequency, current amplitude and open circuit stay before the polarization was discussed. The previously determined optimal frequency of 1 Hz was associated with a maximum in the average double layer current on frequency dependence. The average double layer current is also maximal at SOC between 75 and 100%. The exchange of the constant current polarization with pulse polarization does not change substantially the mechanism and the overvoltage of the oxygen evolution reaction on the positive plate. The mechanism of the self-discharge of the EDL was also estimated analyzing long-time PPP transients (up to 2 h). It was found that when the PPP is lower than 1.2 V the preferred mechanism of EDL self-discharge is by coupling with the lead sulphate oxidation reaction. At higher values of PPP the EDL self-discharge happens via oxygen evolution. The high faradic efficiency of the pulse charge is due to the chemical oxidation of the Pb(II) ions by the O atoms and OH radicals formed at the oxygen evolution both during the 'ON' and 'OFF' periods. (author)

  1. Protective layer formation on magnesium in cell culture medium.

    Science.gov (United States)

    Wagener, V; Virtanen, S

    2016-06-01

    In the past, different studies showed that hydroxyapatite (HA) or similar calcium phosphates can be precipitated on Mg during immersion in simulated body fluids. However, at the same time, in most cases a dark grey or black layer is built under the white HA crystals. This layer seems to consist as well of calcium phosphates. Until now, neither the morphology nor its influence on Mg corrosion have been investigated in detail. In this work commercially pure magnesium (cp) was immersed in cell culture medium for one, three and five days at room temperature and in the incubator (37 °C, 5% CO2). In addition, the influence of proteins on the formation of a corrosion layer was investigated by adding 20% of fetal calf serum (FCS) to the cell culture medium in the incubator. In order to analyze the formed layers, SEM images of cross sections, X-ray Photoelectron Spectroscopy (XPS), X-ray diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDX) and Fourier Transformed Infrared Spectroscopy (FTIR) measurements were carried out. Characterization of the corrosion behavior was achieved by electrochemical impedance spectroscopy (EIS) and by potentio-dynamic polarization in Dulbecco's Modified Eagle's Medium (DMEM) at 37°C. Surface analysis showed that all formed layers consist mainly of amorphous calcium phosphate compounds. For the immersion at room temperature the Ca/P ratio indicates the formation of HA, while in the incubator probably pre-stages to HA are formed. The different immersion conditions lead to a variation in layer thicknesses. However, electrochemical characterization shows that the layer thickness does not influence the corrosion resistance of magnesium. The main influencing factor for the corrosion behavior is the layer morphology. Thus, immersion at room temperature leads to the highest corrosion protection due to the formation of a compact outer layer. Layers formed in the incubator show much worse performances due to completely porous structures. The

  2. Effect of crystallochemistry of starting materials on the rate of smectite to illite reaction

    International Nuclear Information System (INIS)

    Sato, Tsutomu; Isobe, Hiroshi; Ohnuki, Toshihiko; Murakami, Takashi

    1995-01-01

    A series of hydrothermal experiments was performed to determine the effect of layer charge of starting materials on the smectite to illite reaction rate that might be applied to nuclear-waste repository design. The experiments were conducted on K-saturated fractions of Wyoming smectite (SWy-1) and Tsukinuno smectite (SKu-F) in a closed system at temperatures of 95, 150, 200, 250, 300 C for run durations of up to 477 days with a 1:20 mass ratio of solid to deionized water. The mean layer charge and tetrahedral charge of SKu-F are larger than those of SWy-1. The proportion of smectite layers in illite/smectite interstratified minerals rapidly decreases, and then slowly decreases with increase in reaction time; a plot of ln (100/% smectite) vs. time produces two distinct straight lines in all experiments. These lines are suggestive of two first-order kinetic processes with different rates for this reaction; the first process has a greater rate than the second one. An Arrhenius plot of the reaction rates for each process produces a folding and straight lines for the first and second processes, respectively, suggesting that there are at least two parallel processes in the first process, and a dominant process is different between high- and low-temperature reactions. The activation energies of the first and second processes determined from the plots are the same for the two starting materials, meaning that the reaction mechanisms for the two starting materials are the same. However, the rate of the first process is different between the two starting materials, although that of the second process is similar. The difference in the rate of the first process results possibly from the difference in the amount of layer charge between the two starting smectites

  3. Structural and thermal stabilities of layered Li(Ni 1/3Co 1/3Mn 1/3)O 2 materials in 18650 high power batteries

    Science.gov (United States)

    He, Yan-Bing; Ning, Feng; Yang, Quan-Hong; Song, Quan-Sheng; Li, Baohua; Su, Fangyuan; Du, Hongda; Tang, Zhi-Yuan; Kang, Feiyu

    The structural and thermal stabilities of the layered Li(Ni 1/3Co 1/3Mn 1/3)O 2 cathode materials under high rate cycling and abusive conditions are investigated using the commercial 18650 Li(Ni 1/3Co 1/3Mn 1/3)O 2/graphite high power batteries. The Li(Ni 1/3Co 1/3Mn 1/3)O 2 materials maintain their layered structure even when the power batteries are subjected to 200 cycles with 10 C discharge rate at temperatures of 25 and 50 °C, whereas their microstructure undergoes obvious distortion, which leads to the relatively poor cycling performance of power batteries at high charge/discharge rates and working temperature. Under abusive conditions, the increase in the battery temperature during overcharge is attributed to both the reactions of electrolyte solvents with overcharged graphite anode and Li(Ni 1/3Co 1/3Mn 1/3)O 2 cathode and the Joule heat that results from the great increase in the total resistance (R cell) of batteries. The reactions of fully charged Li(Ni 1/3Co 1/3Mn 1/3)O 2 cathodes and graphite anodes with electrolyte cannot be activated during short current test in the fully charged batteries. However, these reactions occur at around 140 °C in the fully charged batteries during oven test, which is much lower than the temperature of about 240 °C required for the reactions outside batteries.

  4. Effects of metallic nanoparticle doped flux on the interfacial intermetallic compounds between lead-free solder ball and copper substrate

    International Nuclear Information System (INIS)

    Sujan, G.K.; Haseeb, A.S.M.A.; Afifi, A.B.M.

    2014-01-01

    Lead free solders currently in use are prone to develop thick interfacial intermetallic compound layers with rough morphology which are detrimental to the long term solder joint reliability. A novel method has been developed to control the morphology and growth of intermetallic compound layers between lead-free Sn–3.0Ag–0.5Cu solder ball and copper substrate by doping a water soluble flux with metallic nanoparticles. Four types of metallic nanoparticles (nickel, cobalt, molybdenum and titanium) were used to investigate their effects on the wetting behavior and interfacial microstructural evaluations after reflow. Nanoparticles were dispersed manually with a water soluble flux and the resulting nanoparticle doped flux was placed on copper substrate. Lead-free Sn–3.0Ag–0.5Cu solder balls of diameter 0.45 mm were placed on top of the flux and were reflowed at a peak temperature of 240 °C for 45 s. Angle of contact, wetting area and interfacial microstructure were studied by optical microscopy, field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. It was observed that the angle of contact increased and wetting area decreased with the addition of cobalt, molybdenum and titanium nanoparticles to flux. On the other hand, wettability improved with the addition of nickel nanoparticles. Cross-sectional micrographs revealed that both nickel and cobalt nanoparticle doping transformed the morphology of Cu 6 Sn 5 from a typical scallop type to a planer one and reduced the intermetallic compound thickness under optimum condition. These effects were suggested to be related to in-situ interfacial alloying at the interface during reflow. The minimum amount of nanoparticles required to produce the planer morphology was found to be 0.1 wt.% for both nickel and cobalt. Molybdenum and titanium nanoparticles neither appear to undergo alloying during reflow nor have any influence at the solder/substrate interfacial reaction. Thus, doping of flux

  5. Effects of metallic nanoparticle doped flux on the interfacial intermetallic compounds between lead-free solder ball and copper substrate

    Energy Technology Data Exchange (ETDEWEB)

    Sujan, G.K., E-mail: sgkumer@gmail.com; Haseeb, A.S.M.A., E-mail: haseeb@um.edu.my; Afifi, A.B.M., E-mail: amalina@um.edu.my

    2014-11-15

    Lead free solders currently in use are prone to develop thick interfacial intermetallic compound layers with rough morphology which are detrimental to the long term solder joint reliability. A novel method has been developed to control the morphology and growth of intermetallic compound layers between lead-free Sn–3.0Ag–0.5Cu solder ball and copper substrate by doping a water soluble flux with metallic nanoparticles. Four types of metallic nanoparticles (nickel, cobalt, molybdenum and titanium) were used to investigate their effects on the wetting behavior and interfacial microstructural evaluations after reflow. Nanoparticles were dispersed manually with a water soluble flux and the resulting nanoparticle doped flux was placed on copper substrate. Lead-free Sn–3.0Ag–0.5Cu solder balls of diameter 0.45 mm were placed on top of the flux and were reflowed at a peak temperature of 240 °C for 45 s. Angle of contact, wetting area and interfacial microstructure were studied by optical microscopy, field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. It was observed that the angle of contact increased and wetting area decreased with the addition of cobalt, molybdenum and titanium nanoparticles to flux. On the other hand, wettability improved with the addition of nickel nanoparticles. Cross-sectional micrographs revealed that both nickel and cobalt nanoparticle doping transformed the morphology of Cu{sub 6}Sn{sub 5} from a typical scallop type to a planer one and reduced the intermetallic compound thickness under optimum condition. These effects were suggested to be related to in-situ interfacial alloying at the interface during reflow. The minimum amount of nanoparticles required to produce the planer morphology was found to be 0.1 wt.% for both nickel and cobalt. Molybdenum and titanium nanoparticles neither appear to undergo alloying during reflow nor have any influence at the solder/substrate interfacial reaction. Thus, doping

  6. Two-Dimensional Layered Oxide Structures Tailored by Self-Assembled Layer Stacking via Interfacial Strain.

    Science.gov (United States)

    Zhang, Wenrui; Li, Mingtao; Chen, Aiping; Li, Leigang; Zhu, Yuanyuan; Xia, Zhenhai; Lu, Ping; Boullay, Philippe; Wu, Lijun; Zhu, Yimei; MacManus-Driscoll, Judith L; Jia, Quanxi; Zhou, Honghui; Narayan, Jagdish; Zhang, Xinghang; Wang, Haiyan

    2016-07-06

    Study of layered complex oxides emerge as one of leading topics in fundamental materials science because of the strong interplay among intrinsic charge, spin, orbital, and lattice. As a fundamental basis of heteroepitaxial thin film growth, interfacial strain can be used to design materials that exhibit new phenomena beyond their conventional forms. Here, we report a strain-driven self-assembly of bismuth-based supercell (SC) with a two-dimensional (2D) layered structure. With combined experimental analysis and first-principles calculations, we investigated the full SC structure and elucidated the fundamental growth mechanism achieved by the strain-enabled self-assembled atomic layer stacking. The unique SC structure exhibits room-temperature ferroelectricity, enhanced magnetic responses, and a distinct optical bandgap from the conventional double perovskite structure. This study reveals the important role of interfacial strain modulation and atomic rearrangement in self-assembling a layered singe-phase multiferroic thin film, which opens up a promising avenue in the search for and design of novel 2D layered complex oxides with enormous promise.

  7. The effects of lithium hydroxide solution on alkali silica reaction gels created with opal

    International Nuclear Information System (INIS)

    Mitchell, Lyndon D.; Beaudoin, James J.; Grattan-Bellew, Patrick

    2004-01-01

    The reaction of Nevada opal with calcium hydroxide, potassium hydroxide and lithium hydroxide solutions was investigated. In addition, opal was exposed to a combined solution of these three hydroxides. The progress of the three reactions was followed using X-ray diffraction (XRD), 29 Si nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM). The XRD results indicated the presence of a low-angle peak exclusive to the lithium-based reactions. The NMR results suggested a change in the silicate structure in the presence of lithium. These techniques indicated that the reaction of the alkali with the opal starting material is inhibited and perhaps stopped in the presence of lithium hydroxide. SEM revealed that the morphology of the reaction products on the surface of the reacted opal grains is markedly different invariably. It was concluded that evidence to support the theory of a protective layer exists and that the nature of the layer varies with ion type

  8. Mechanical behavior of a bi-layer glass ionomer

    NARCIS (Netherlands)

    Bonifácio, C.C.; de Jager, N.; Kleverlaan, C.J.

    2013-01-01

    Objective A high-viscosity consistency of the glass-ionomer cement (GIC) may lead to poor adaptation into the cavity. The use of a flowable GIC layer seemed to improve its adaptation in approximal restorations in vitro. In this study we assessed the flexural strength of a two-layered GIC, using a

  9. Hemoglobin protein hollow shells fabricated through covalent layer-by-layer technique

    International Nuclear Information System (INIS)

    Duan Li; He Qiang; Yan Xuehai; Cui Yue; Wang Kewei; Li Junbai

    2007-01-01

    Hemoglobin (Hb) protein microcapsules held together by cross-linker, glutaraldehyde (GA), were successfully fabricated by covalent layer-by-layer (LbL) technique. The Schiff base reaction occurred on the colloid templates between the aldehyde groups of GA and free amino sites of Hb results in the formation of GA/Hb microcapsules after the removal of the templates. The structure of obtained monodisperse protein microcapsule was characterized by transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). The UV-Vis spectra measurements demonstrate the existence of Hb in the assembled capsules. Cyclic voltammetry (CV) and potential-controlled amperometric measurements (I-t curve) confirm that hemoglobin microcapsules after fabrication remain their heme electroactivity. Moreover, direct electron transfer process from protein to electrode surface was performed to detect the heme electrochemistry without using any mediator or promoter. The experiments of fluorescence recovery after photobleaching (FRAP) by CLSM demonstrate that the hemoglobin protein microcapsules have an improved permeability comparing to the conventional polyelectrolyte microcapsules

  10. Errors in Postural Preparation Lead to Increased Choice Reaction Times for Step Initiation in Older Adults

    Science.gov (United States)

    Nutt, John G.; Horak, Fay B.

    2011-01-01

    Background. This study asked whether older adults were more likely than younger adults to err in the initial direction of their anticipatory postural adjustment (APA) prior to a step (indicating a motor program error), whether initial motor program errors accounted for reaction time differences for step initiation, and whether initial motor program errors were linked to inhibitory failure. Methods. In a stepping task with choice reaction time and simple reaction time conditions, we measured forces under the feet to quantify APA onset and step latency and we used body kinematics to quantify forward movement of center of mass and length of first step. Results. Trials with APA errors were almost three times as common for older adults as for younger adults, and they were nine times more likely in choice reaction time trials than in simple reaction time trials. In trials with APA errors, step latency was delayed, correlation between APA onset and step latency was diminished, and forward motion of the center of mass prior to the step was increased. Participants with more APA errors tended to have worse Stroop interference scores, regardless of age. Conclusions. The results support the hypothesis that findings of slow choice reaction time step initiation in older adults are attributable to inclusion of trials with incorrect initial motor preparation and that these errors are caused by deficits in response inhibition. By extension, the results also suggest that mixing of trials with correct and incorrect initial motor preparation might explain apparent choice reaction time slowing with age in upper limb tasks. PMID:21498431

  11. Decontaminating lead bricks and shielding

    International Nuclear Information System (INIS)

    Lussiez, G.W.

    1993-01-01

    Lead used for shielding is often surface contaminated with radionuclides and is therefore a Resource Conservation and Recovery Act (RCRA) D008 mixed waste. The technology-based standard for treatment is macroencapsulation. However, decontaminating and recycling the clean lead is a more attractive solution. Los Alamos National Lab. decontaminates material and equipment contaminated with radioisotopes. Decontaminating lead poses special problems because of the RCRA hazard classification and the size of the inventory, now about 100 metric tons and likely to grow substantially because of planned decommissioning operations. This lead, in the form of bricks and other shield shapes, is surface contaminated with fission products. One of the best methods for decontaminating lead is removing the thin superficial layer of contamination with an abrasive medium under pressure. For lead, a mixture of alumina with water and air at about 280 kPa (40 psig) rapidly and effectively decontaminates the lead. The abrasive medium is sprayed onto the lead in a sealed-off area. The slurry of abrasive and particles of lead falls through a floor grating and is collected in a pump. A pump sends the slurry mixture back to the spray gun, creating a continuous process

  12. The effect of mass transport on the graphite/CO2 reaction

    International Nuclear Information System (INIS)

    Stephen, W.J.

    1984-11-01

    The Graphite/CO 2 reaction is strongly inhibited by the reaction product CO and therefore any model for the influence of mass transport on reaction rate should consider this. The problem of internal mass transport alone has been considered in previous notes. This note extends the models to include external mass transport. Results are compared with simple first order reaction with no volume change. The calculations demonstrate that, for strong CO inhibition, external mass transport limits reaction at a much lower rate than for first order kinetics and that the usual concept of three reaction zones corresponding to chemical control, in-pore diffusion control and boundary layer control can be unrealistically idealised. (U.K.)

  13. The reaction of Lupinus angustifolius L. root meristematic cell nucleoli to lead.

    Science.gov (United States)

    Balcerzak, Lucja; Glińska, Sława; Godlewski, Mirosław

    2011-04-01

    The effect of 2-48 h treatment of Lupinus angustifolius L. roots with lead nitrate at the concentration of 10(-4) M on the nucleoli in meristematic cells was investigated. In the lead presence the number of ring-shaped as well as segregated nucleoli increased especially after 12-48 h of treatment, while spindle-shaped nucleoli appeared after 24 h and 48 h. Lead presence also increased the frequency of cells with silver-stained particles in the nucleus and the number of these particles especially from the 12th hour of treatment. It was accompanied by significant decline of nucleolar area. Analysis of these cells in transmission electron microscope confirmed the presence of ring-shaped and segregated nucleoli. Moreover, electron microscopy revealed compact structure nucleoli without granular component. Additionally, one to three oval-shaped fibrillar structures attached to nucleolus or lying free in the nucleoplasm were visible. The possible mechanism of lead toxicity to the nucleolus is briefly discussed.

  14. Reaction and devitrification of a prototype nuclear-waste-storage glass with hot magnesium-rich brine

    International Nuclear Information System (INIS)

    Komarneni, S.; Freeborn, W.P.; Scheetz, B.E.; White, W.B.; McCarthy, G.J.

    1982-10-01

    PNL 76-68, a prototype nuclear waste storage glass, was reacted under hydrothermal conditions at 100, 200, and 300 C with NBT-6a (Ca-Mg-K-Na-Cl) brine. Reaction products were identified, the state of the residual glass determined, and the concentrations of various elements remaining in the solutions analyzed. Solid products formed by reaction of the glass and brine talc (hydrated magnesium silicate), powellite (CaMoO 4 ), hematite (Fe 2 O 3 ) and rarely an unidentified uranium-containing phase. Glass fragments were leached to depths of 300 to 500 μm, depending on time and temperature. Most elements were extracted, but the silicate framework remained intact. Distinct diffusion fronts due to K/Na exchange and Mg/Zn exchange were identified. A complex compositional layering develops in the outer reaction rind. The concentration of silica in brine solution was lower by an order of magnitude than the concentration of silica in deionized water reacted under similar conditions. The concentration of cesium, strontium, uranium, rare earths, and other alkali and alkaline earth elements in solution increases exponentially with temperature of reaction. Behavior of the transition metals is more complex. In general the extraction of elements from the glass by hydrothermal brine leads to concentrations in solution that are from 10 to 100 times higher than the concentrations obtained by deionized water extraction under similar conditions of temperature and pressure

  15. Understanding Radionuclide Interactions with Layered Materials

    Science.gov (United States)

    Wang, Y.

    2015-12-01

    Layered materials play an important role in nuclear waste management and environmental cleanup. Better understanding of radionuclide interactions with those materials is critical for engineering high-performance materials for various applications. This presentation will provide an overview on radionuclide interactions with two general categories of layered materials - cationic clays and anionic clays - from a perspective of nanopore confinement. Nanopores are widely present in layered materials, either as the interlayers or as inter-particle space. Nanopore confinement can significantly modify chemical reactions in those materials. This effect may cause the preferential enrichment of radionuclides in nanopores and therefore directly impact the mobility of the radionuclides. This effect also implies that conventional sorption measurements using disaggregated samples may not represent chemical conditions in actual systems. The control of material structures on ion exchange, surface complexation, and diffusion in layered materials will be systematically examined, and the related modeling approaches will be discussed. This work was performed at Sandia National Laboratories, which is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the DOE under contract DE-AC04-94AL8500.

  16. Lead Acetate Based Hybrid Perovskite Through Hot Casting for Planar Heterojunction Solar Cells

    Science.gov (United States)

    Shin, Gwang Su; Choi, Won-Gyu; Na, Sungjae; Gökdemir, Fatma Pinar; Moon, Taeho

    2018-03-01

    Flawless coverage of a perovskite layer is essential in order to achieve realistic high-performance planar heterojunction solar cells. We present that high-quality perovskite layers can be efficiently formed by a novel hot casting route combined with MAI (CH3NH3I) and non-halide lead acetate (PbAc2) precursors under ambient atmosphere. Casting temperature is controlled to produce various perovskite microstructures and the resulted crystalline layers are found to be comprised of closely packed islands with a smooth surface structure. Lead acetate employed perovskite solar cells are fabricated using PEDOT:PSS and PCBM charge transporting layers, in p- i- n type planar architecture. Especially, the outstanding open-circuit voltage demonstrates the high crystallinity and dense coverage of the produced perovskite layers by this facile route.

  17. Optical and structural properties of zinc oxide films with different thicknesses prepared by successive ionic layer adsorption and reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Taner, Ahmet, E-mail: ataner@anadolu.edu.tr [Institute of Science and Technology, Anadolu University, Eskisehir 26470 (Turkey); Kul, Metin; Turan, Evren; Aybek, A. Senol; Zor, Muhsin [Department of Physics, Anadolu University, Eskisehir 26470 (Turkey); Taskoeprue, Turan [Department of Physics, Anadolu University, Eskisehir 26470 (Turkey); Department of Physics, Cank Latin-Small-Letter-Dotless-I r Latin-Small-Letter-Dotless-I Karatekin University, Cank Latin-Small-Letter-Dotless-I r Latin-Small-Letter-Dotless-I 18100 (Turkey)

    2011-12-01

    In this work, zinc oxide semiconducting films belonging to the II-VI group have been produced by successive ionic layer adsorption and reaction (SILAR) method on glass substrates with 10, 15, 20 and 25 cycles at room temperature. Following the deposition, the samples were dried in air at 400 Degree-Sign C for 1 h. The films were characterized by X-ray diffraction, field emission scanning electron microscopy and optical absorption measurement techniques. The X-ray diffractions of the films showed that they are hexagonal in structure. The crystallite size of ZnO films varied between 34 and 38 nm accordingly with the number of SILAR cycles. The material has exhibited direct band gap transition with the band gap values lying in the range between 3.13 and 3.18 eV. The red shift is observed in the absorption edge as the cycles increased. Transmission of the films decreased from 65 to 40% with increasing the number of cycles.

  18. Optical and structural properties of zinc oxide films with different thicknesses prepared by successive ionic layer adsorption and reaction method

    International Nuclear Information System (INIS)

    Taner, Ahmet; Kul, Metin; Turan, Evren; Aybek, A. Şenol; Zor, Muhsin; Taşköprü, Turan

    2011-01-01

    In this work, zinc oxide semiconducting films belonging to the II-VI group have been produced by successive ionic layer adsorption and reaction (SILAR) method on glass substrates with 10, 15, 20 and 25 cycles at room temperature. Following the deposition, the samples were dried in air at 400 °C for 1 h. The films were characterized by X-ray diffraction, field emission scanning electron microscopy and optical absorption measurement techniques. The X-ray diffractions of the films showed that they are hexagonal in structure. The crystallite size of ZnO films varied between 34 and 38 nm accordingly with the number of SILAR cycles. The material has exhibited direct band gap transition with the band gap values lying in the range between 3.13 and 3.18 eV. The red shift is observed in the absorption edge as the cycles increased. Transmission of the films decreased from 65 to 40% with increasing the number of cycles.

  19. Increased bone calcium dissociation in lead-exposed rats

    Directory of Open Access Journals (Sweden)

    Eko Suhartono

    2012-12-01

    Full Text Available Background Lead is still a major environmental and occupational health hazard, since it is extensively used in the production of paints, gasoline and cosmetics. This causes the metal to be ubiquitous in the environment, being found in the air, soil, and water, from which it can enter the human body by inhalation or ingestion. Absorbed lead is capable of altering the calcium levels in bone. The aim of this study was to demonstrate the effect of lead on bone calcium levels by measuring the reaction constant, Gibbs free energy, and enthalpy. Methods This study was of pure experimental design using 100 male albino rats (Rattus norvegicus. The experimental animals were assigned by simple randomization to two groups, one group receiving lead acetate orally at a dosage of 100 mg/kgBW, while the other group did not receive lead acetate. The intervention was given for 4 weeks and the rats were observed weekly for measurement of bone calcium levels by the permanganometric method. Results This study found that k1 (hydroxyapatite dissociation rate constant was 0.90 x 10-3 dt-1, and that k2 (hydroxyapatite association rate constant was 6.16 x 10-3 dt-1 for the control group, whereas for the intervention group k1 = 26.20 x 10-3 dt-1 and k2 = 16.75 x 10-3 dt-1. Thermodynamically, the overall reaction was endergonic and endothermic (DG > 0 and DH > 0. ConclusionS Lead exposure results in increased dissociation rate of bone in comparison with its association rate. Overall, the reaction was endergonic and endothermic (DG > 0 and DH > 0.

  20. Increased bone calcium dissociation in lead-exposed rats

    Directory of Open Access Journals (Sweden)

    Eko Suhartono

    2015-12-01

    Full Text Available BACKGROUND Lead is still a major environmental and occupational health hazard, since it is extensively used in the production of paints, gasoline and cosmetics. This causes the metal to be ubiquitous in the environment, being found in the air, soil, and water, from which it can enter the human body by inhalation or ingestion. Absorbed lead is capable of altering the calcium levels in bone. The aim of this study was to demonstrate the effect of lead on bone calcium levels by measuring the reaction constant, Gibbs free energy, and enthalpy. METHODS This study was of pure experimental design using 100 male albino rats (Rattus norvegicus. The experimental animals were assigned by simple randomization to two groups, one group receiving lead acetate orally at a dosage of 100 mg/ kgBW, while the other group did not receive lead acetate. The intervention was given for 4 weeks and the rats were observed weekly for measurement of bone calcium levels by the permanganometric method. RESULTS This study found that k1 (hydroxyapatite dissociation rate constant was 0.90 x 10-3 dt-1, and that k2 (hydroxyapatite association rate constant was 6.16 x 10-3 dt-1 for the control group, whereas for the intervention group k1 = 26.20 x 10-3 dt-1 and k2 = 16.75 x 10-3 dt-1. Thermodynamically, the overall reaction was endergonic and endothermic (ΔG > 0 and ΔH > 0. CONCLUSIONS Lead exposure results in increased dissociation rate of bone in comparison with its association rate. Overall, the reaction was endergonic and endothermic (ΔG > 0 and ΔH > 0.

  1. Comparisons of predicted steady-state levels in rooms with extended- and local-reaction bounding surfaces

    Science.gov (United States)

    Hodgson, Murray; Wareing, Andrew

    2008-01-01

    A combined beam-tracing and transfer-matrix model for predicting steady-state sound-pressure levels in rooms with multilayer bounding surfaces was used to compare the effect of extended- and local-reaction surfaces, and the accuracy of the local-reaction approximation. Three rooms—an office, a corridor and a workshop—with one or more multilayer test surfaces were considered. The test surfaces were a single-glass panel, a double-drywall panel, a carpeted floor, a suspended-acoustical ceiling, a double-steel panel, and glass fibre on a hard backing. Each test surface was modeled as of extended or of local reaction. Sound-pressure levels were predicted and compared to determine the significance of the surface-reaction assumption. The main conclusions were that the difference between modeling a room surface as of extended or of local reaction is not significant when the surface is a single plate or a single layer of material (solid or porous) with a hard backing. The difference is significant when the surface consists of multilayers of solid or porous material and includes a layer of fluid with a large thickness relative to the other layers. The results are partially explained by considering the surface-reflection coefficients at the first-reflection angles.

  2. Subnanometer Ga 2 O 3 Tunnelling Layer by Atomic Layer Deposition to Achieve 1.1 V Open-Circuit Potential in Dye-Sensitized Solar Cells

    KAUST Repository

    Chandiran, Aravind Kumar; Tetreault, Nicolas; Humphry-Baker, Robin; Kessler, Florian; Baranoff, Etienne; Yi, Chenyi; Nazeeruddin, Mohammad Khaja; Grä tzel, Michael

    2012-01-01

    Herein, we present the first use of a gallium oxide tunnelling layer to significantly reduce electron recombination in dye-sensitized solar cells (DSC). The subnanometer coating is achieved using atomic layer deposition (ALD) and leading to a new

  3. Study on characteristics of U-Mo/Al-Si interaction layers of dispersion fuel plates

    International Nuclear Information System (INIS)

    Liu Lijian; Yin Changgeng; Chen Jiangang; Sun Changlong; Liu Yunming

    2014-01-01

    In this paper, we analyzed the characteristics of U-Mo/Al-Si interaction layers of dispersion fuel plates. The results show that the interaction layers (IL) are with irregular morphology and uneven thickness, and are mainly formed in the internal micro cracks of the dispersion fuel particles or at the interface between the particles and the substrates. The diffusion mechanism of U-Mo/Al-Si is the vacancy diffusion, Al and Si are migrating elements, and the diffusion reaction is that Al and Si diffuse to U-Mo alloy. Inside the interaction layers, the Al content keeps constant basically, but the Si content gradually increases with the substrate-fuel direction, and the maximum content of Si appears interaction layers near the U-Mo side. Adding about 5 wt% Si into Al matrix can restrain the diffusion reaction, and improve the performance of dispersion fuel plates finally. (authors)

  4. Decontaminating lead bricks and shielding

    International Nuclear Information System (INIS)

    Lussiez, G.

    1994-01-01

    Lead used for shielding is often surface contaminated with radioisotopes and is therefore a RCRA D008 mixed waste. The technology-based standard for treatment is macroencapsulation. However, decontaminating and recycling the clean lead is a more attractive solution. Los Alamos National Laboratory decontaminates material and equipment contaminated with radioisotopes. Decontaminating lead poses special problems because of the RCRA hazard classification and the size of the inventory, now about 50 tons and likely to grow substantially of planned decommissioning operations. Thus lead, in the form of bricks and other shield shapes, is surface contaminated with fission products. One of the best methods for contaminated lead is removing the superficial layer of contamination with an abrasive medium under pressure. For lead, a mixture of alumina with water and air at about 40 psig rapidly and effectively decontaminates the lead. The abrasive medium is sprayed onto the lead in a scaled-off area. The slurry of abrasive and particles of lead falls through a floor and is collected in a sump. A pump sends the slurry mixture back to the spray gun, creating a continuous process. The process generates small volumes of lead slurry that can be solidified and, because it passes the TCLP, is not a mixed waste. The decontaminated lead can be released for recycling

  5. Solid-state interfacial reaction in molybdenum-carbide systems at high temperature-pressure, and its application to bonding technique

    International Nuclear Information System (INIS)

    Horiguchi, Akihiro; Suganuma, Katsuaki; Miyamoto, Yoshinari; Koizumi, Mitsue; Shimada, Masahiko.

    1986-01-01

    Diffusion couples of molybdenum with several carbides, i.e. SiC, B 4 C, TiC, ZrC, HfC and TaC, were heated at various temperatures ranging from 1500 to 1840 deg C under high pressures of 3 GPa and 100 MPa for up to 4 hr. The couples were then examined for the composition of reaction products, the growth rate of reaction layers, interfacial structures, and tensile strength. In case of Mo-transition metal carbides, Mo 2 C layer was mainly formed, so that the carbides, which had supplied carbon, resulted in having the nonstoichiometric composition near the interface. The activation energy for the growth of Mo 2 C layer in Mo-TiC system was 332 kJ/mol, and that in Mo-TaC system was 366 kJ/mol. In Mo-SiC system, Mo 2 C layer, the mixed phase of Mo 2 C and Mo 5 Si 3 , and Mo 5 Si 3 C layer were formed in order from the Mo side. In Mo-B 4 C system, the mixed phase of Mo 2 B and MoB, and Mo 2 BC layer appeared. The decomposed graphite from B 4 C was also observed between B 4 C and Mo 2 BC phase. The activation energy for the growth of total reaction layer in Mo-SiC system was 531 kJ/mol, and that in Mo-B 4 C system was 183 kJ/mol. It can be said that the growth of reaction layers is controlled by diffusion. The orientation of crystals was observed in all reaction products except for Mo 2 BC phase in Mo-B 4 C system and (Mo, Ta) 2 C phase in Mo-TaC system. In HIPed couples, the magnitude of tensile strength was dependent on the difference in thermal expansion coefficient between Mo and carbides. HIPed Mo-TaC couple had the best weldability among the systems examined in the present investigation. (author)

  6. Neutron Production in Spallation Reactions of 0.9 and 1.5 GeV Protons on a Thick Lead Target. Comparison between Experimental Data and Monte-Carlo Simulations

    CERN Document Server

    Krasa, A; Bradnova, V; Caloun, P; Chultem, D; Henzl, V; Henzlová, D; Kalinnikov, V G; Krivopustov, M I; Krízek, F; Kugler, A; Majerle, M; Solnyshkin, A A; Stegailov, V I; Tsoupko-Sitnikov, V M; Tumendelger, T; Vasilev, S I; Wagner, V; Nuclear Physics Institute of Academy of Sciences of Czech Republic, Rez, Czech Republic

    2005-01-01

    This paper reports on two experiments performed at the Synchrophasotron/Nuclotron accelerator complex at JINR. Relativistic protons with energies 885 MeV and 1.5 GeV hit a massive cylindrical lead target. The spatial and energetic distributions of the neutron field produced by the spallation reactions were measured by the activation of Al, Au, Bi, Co, and Cu foils placed on the surface of the target and close to it. The yields of the radioactive nuclei produced by threshold reactions in these foils were determined by the analyses of their $\\gamma$ spectra. The comparison with Monte-Carlo based simulations was performed both with the LAHET+MCNP code and the MCNPX code.

  7. Neutron production in spallation reactions of 0.9 and 1.5 GeV protons on a thick lead target. Comparison between experimental data and Monte-Carlo simulations

    International Nuclear Information System (INIS)

    Krasa, A.; Krizek, F.; Wagner, V.; Kugler, A.; Henzl, V.; Henzlova, D.; Majerle, M.; Adam, J.; Caloun, P.; Bradnova, V.; Chultem, D.; Kalinnikov, V.G.; Krivopustov, M.I.; Solnyshkin, A.A.; Stegajlov, V.I.; Tsupko-Sitnikov, V.M.; Tumehndehlgehr, Ts.; Vasil'ev, S.I.

    2005-01-01

    This paper reports on two experiments performed at the Synchrophasotron/Nuclotron accelerator complex at JINR. Relativistic protons with energies 885 MeV and 1.5 GeV hit a massive cylindrical lead target. The spatial and energetic distributions of the neutron field produced by the spallation reactions were measured by the activation of Al, Au, Bi, Co, and Cu foils placed on the surface of the target and close to it. The yields of the radioactive nuclei produced by threshold reactions in these foils were determined by the analyses of their γ spectra. The comparison with Monte-Carlo based simulations was performed both with the LAHET+MCNP code and the MCNPX code

  8. Excited state intramolecular charge transfer reaction in 4-(1 ...

    Indian Academy of Sciences (India)

    Administrator

    cal reactions to the determination of paleotempera- tures from isotopic ... ordered liquid than H2O due to stronger H-bond in- teractions in the deuterated water ... layer chromatography and monitoring the excitation wavelength dependence of ...

  9. Longitudinal vortices in a transitioning boundary layer

    International Nuclear Information System (INIS)

    Anders, J.B.; Backwelder, R.F.

    1980-01-01

    Naturally occurring spanwise variations of the streamwise velocity component, characteristic of longitudinal vortices embedded in a transitioning boundary layer were explored using hot-wire anemometers. A vibrating ribbon introduced stable or unstable Tollmien-Schlichting waves into the laminar boundary layer. These damped or growing disturbances always developed a strong three-dimensional pattern even though no spanwise perturbations were artificially induced. Changing the radius of the leading edge and other modifications to the flat plate, wind tunnel and boundary layer did not alter the spanwise wavelength of the vortices. (orig.)

  10. Nonlinear Transient Growth and Boundary Layer Transition

    Science.gov (United States)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-01-01

    Parabolized stability equations (PSE) are used in a variational approach to study the optimal, non-modal disturbance growth in a Mach 3 at plate boundary layer and a Mach 6 circular cone boundary layer. As noted in previous works, the optimal initial disturbances correspond to steady counter-rotating streamwise vortices, which subsequently lead to the formation of streamwise-elongated structures, i.e., streaks, via a lift-up effect. The nonlinear evolution of the linearly optimal stationary perturbations is computed using the nonlinear plane-marching PSE for stationary perturbations. A fully implicit marching technique is used to facilitate the computation of nonlinear streaks with large amplitudes. To assess the effect of the finite-amplitude streaks on transition, the linear form of plane- marching PSE is used to investigate the instability of the boundary layer flow modified by spanwise periodic streaks. The onset of bypass transition is estimated by using an N- factor criterion based on the amplification of the streak instabilities. Results show that, for both flow configurations of interest, streaks of sufficiently large amplitude can lead to significantly earlier onset of transition than that in an unperturbed boundary layer without any streaks.

  11. A Review of Atomic Layer Deposition for Nanoscale Devices

    Directory of Open Access Journals (Sweden)

    Edy Riyanto

    2012-12-01

    Full Text Available Atomic layer deposition (ALD is a thin film growth technique that utilizes alternating, self-saturation chemical reactions between gaseous precursors to achieve a deposited nanoscale layers. It has recently become a subject of great interest for ultrathin film deposition in many various applications such as microelectronics, photovoltaic, dynamic random access memory (DRAM, and microelectromechanic system (MEMS. By using ALD, the conformability and extreme uniformity of layers can be achieved in low temperature process. It facilitates to be deposited onto the surface in many variety substrates that have low melting temperature. Eventually it has advantages on the contribution to the wider nanodevices.

  12. Chitosan Derivatives/Calcium Carbonate Composite Capsules Prepared by the Layer-by-Layer Deposition Method

    Directory of Open Access Journals (Sweden)

    Takashi Sasaki

    2008-01-01

    Full Text Available Core/shell capsules composed of calcium carbonate whisker core (rod-like shape and chitosan/chitosansulfate shell were prepared by the layer-by-layer deposition technique. Two chitosan samples of different molecular weights (Mw=9.7×104 and 1.09×106g·mol-1 were used as original materials. Hollow capsules were also obtained by dissolution of the core in hydrochloric acid. Electron microscopy revealed that the surface of the shell is rather ragged associated with some agglomerates. The shell thickness l obeys a linear relation with respect to the number of deposited layers m as l=md+a(a>0. The values of d (thickness per layer were 4.0 and 1.0 nm for the higher and lower Mw chitosan materials, respectively, both of which are greater than the thickness of the monolayer. The results suggest that the feature of the deposition does not obey an ideal homogeneous monolayer-by-monolayer deposition mechanism. Shell crosslinked capsules were also prepared via photodimerization reaction of cinnamoyl groups after a deposition of cinnamoyl chitosan to the calcium carbonate whisker core. The degree of crosslink was not enough to stabilize the shell structure, and hollow capsule was not obtained.

  13. Temperature effects on lithium-nitrogen reaction rates

    International Nuclear Information System (INIS)

    Ijams, W.J.; Kazimi, M.S.

    1985-08-01

    A series of experiments have been run with the aim of measuring the reaction rate of lithium and nitrogen over a wide spectrum of lithium pool temperatures. In these experiments, pure nitrogen was blown at a controlled flow rate over a preheated lithium pool. The pool had a surface area of approximately 4 cm 2 and a total volume of approximately 6 cm 3 . The system pressure varied from 0 to 4 psig. The reaction rate was very small - approximately 0.002 to 0.003 g Li min cm 2 for lithium temperatures below 500 0 C. Above 500 0 C the reaction rate began to increase sharply, and reached a maximum of approximately 0.80 g Li min cm 2 above 700 0 C. It dropped off beyond 1000 0 C and seemed to approach zero at 1150 0 C. The maximum reaction rate observed in these forced convection experiments was higher by 60% than those previously observed in experiments where the nitrogen flowed to the reaction site by means of natural convection. During a reaction, a hard nitride layer built up on the surface of the lithium pool - its effect on the reaction rate was observed. The effect of the nitrogen flow rate on the reaction rate was also observed

  14. Lead Monoxide: Two-Dimensional Ferromagnetic Semiconductor Induced by Hole-Doping

    KAUST Repository

    Wang, Yao

    2017-04-12

    We employ first-principles calculations to demonstrate ferromagnetic ground states for single- and multi-layer lead monoxide (PbO) under hole-doping, originating from a van Hove singularity at the valence band edge. Both the sample thickness and applied strain are found to have huge effects on the electronic and magnetic properties. Multi-layer PbO is an indirect band gap semiconductor, while a direct band gap is realized in the single-layer limit. In hole-doped single-layer PbO, biaxial tensile strain can enhance the stability of the ferromagnetic state.

  15. Lead Monoxide: Two-Dimensional Ferromagnetic Semiconductor Induced by Hole-Doping

    KAUST Repository

    Wang, Yao; Zhang, Qingyun; Shen, Qian; Cheng, Yingchun; Schwingenschlö gl, Udo; Huang, Wei

    2017-01-01

    We employ first-principles calculations to demonstrate ferromagnetic ground states for single- and multi-layer lead monoxide (PbO) under hole-doping, originating from a van Hove singularity at the valence band edge. Both the sample thickness and applied strain are found to have huge effects on the electronic and magnetic properties. Multi-layer PbO is an indirect band gap semiconductor, while a direct band gap is realized in the single-layer limit. In hole-doped single-layer PbO, biaxial tensile strain can enhance the stability of the ferromagnetic state.

  16. Modified Back Contact Interface of CZTSe Thin Film Solar Cells: Elimination of Double Layer Distribution in Absorber Layer.

    Science.gov (United States)

    Zhang, Zhaojing; Yao, Liyong; Zhang, Yi; Ao, Jianping; Bi, Jinlian; Gao, Shoushuai; Gao, Qing; Jeng, Ming-Jer; Sun, Guozhong; Zhou, Zhiqiang; He, Qing; Sun, Yun

    2018-02-01

    Double layer distribution exists in Cu 2 SnZnSe 4 (CZTSe) thin films prepared by selenizing the metallic precursors, which will degrade the back contact of Mo substrate to absorber layer and thus suppressing the performance of solar cell. In this work, the double-layer distribution of CZTSe film is eliminated entirely and the formation of MoSe 2 interfacial layer is inhibited successfully. CZTSe film is prepared by selenizing the precursor deposited by electrodeposition method under Se and SnSe x mixed atmosphere. It is found that the insufficient reaction between ZnSe and Cu-Sn-Se phases in the bottom of the film is the reason why the double layer distribution of CZTSe film is formed. By increasing Sn content in the metallic precursor, thus making up the loss of Sn because of the decomposition of CZTSe and facilitate the diffusion of liquid Cu 2 Se, the double layer distribution is eliminated entirely. The crystallization of the formed thin film is dense and the grains go through the entire film without voids. And there is no obvious MoSe 2 layer formed between CZTSe and Mo. As a consequence, the series resistance of the solar cell reduces significantly to 0.14 Ω cm 2 and a CZTSe solar cell with efficiency of 7.2% is fabricated.

  17. Randomness in multi-step direct reactions

    International Nuclear Information System (INIS)

    Koning, A.J.; Akkermans, J.M.

    1991-01-01

    The authors propose a quantum-statistical framework that provides an integrated perspective on the differences and similarities between the many current models for multi-step direct reactions in the continuum. It is argued that to obtain a statistical theory two physically different approaches are conceivable to postulate randomness, respectively called leading-particle statistics and residual-system statistics. They present a new leading-particle statistics theory for multi-step direct reactions. It is shown that the model of Feshbach et al. can be derived as a simplification of this theory and thus can be founded solely upon leading-particle statistics. The models developed by Tamura et al. and Nishioka et al. are based upon residual-system statistics and hence fall into a physically different class of multi-step direct theories, although the resulting cross-section formulae for the important first step are shown to be the same. The widely used semi-classical models such as the generalized exciton model can be interpreted as further phenomenological simplification of the leading-particle statistics theory

  18. Comparative study of the synthesis of layered transition metal molybdates

    International Nuclear Information System (INIS)

    Mitchell, S.; Gomez-Aviles, A.; Gardner, C.; Jones, W.

    2010-01-01

    Mixed metal oxides (MMOs) prepared by the mild thermal decomposition of layered double hydroxides (LDHs) differ in their reactivity on exposure to aqueous molybdate containing solutions. In this study, we investigate the reactivity of some T-Al containing MMOs (T=Co, Ni, Cu or Zn) towards the formation of layered transition metal molybdates (LTMs) possessing the general formula AT 2 (OH)(MoO 4 ) 2 .H 2 O, where A=NH 4 + , Na + or K + . The phase selectivity of the reaction was studied with respect to the source of molybdate, the ratio of T to Mo and the reaction pH. LTMs were obtained on reaction of Cu-Al and Zn-Al containing MMOs with aqueous solutions of ammonium heptamolybdate. Rehydration of these oxides in the presence of sodium or potassium molybdate yielded a rehydrated LDH phase as the only crystalline product. The LTM products obtained by the rehydration of MMO precursors were compared with LTMs prepared by direct precipitation from the metal salts in order to study the influence of preparative route on their chemical and physical properties. Differences were noted in the composition, morphology and thermal properties of the resulting products. - Graphical abstract: Mixed metal oxides (MMOs) derived from layered double hydroxide precursors differ in their reactivity on exposure to aqueous molybdate containing solutions. We investigate the influence of the molybdate source, the rehydration pH and the ratio of T/Mo on the reactivity of some T-Al containing MMOs (T=Co, Ni, Cu or Zn) towards the formation of layered transition metal molybdates of general formula AT 2 (OH)(MoO 4 ) 2 .H 2 O (where A + =NH 4 + , K + or Na + ).

  19. Layered Nanojunctions for Hydrogen-revolution Catalysis

    DEFF Research Database (Denmark)

    Hou, Y.; Laursen, Anders B.; Zhang, J.

    2013-01-01

    The H2 production performance of mpg-CN under visible light is significantly improved by growing thin layers of MoS2 on mpg-CN. The 0.5 wt% MoS2/mpg-CN performs better than 0.5 wt% Pt/mpg-CN under identical reaction conditions. The geometric similarity in the layered structures of MoS2 and g...... dichalcogenides such as WS2 are also efficient promoters for hydrogen production over gCN. Herein we have presented not only an example of a catalyst made of abundant C, N, Mo and S elements for efficient H2 photosynthesis, but also a conceptual advance to rationally design and fabricate a thin, effective...

  20. Electrochemical sensor based on EDTA intercalated into layered double hydroxides of magnesium and aluminum for ultra trace level detection of lead (II)

    International Nuclear Information System (INIS)

    Dong, Junping; Fang, Qinghua; He, Haibo; Xu, Jiaqiang; Zhang, Yuan; Sun, Youbao

    2015-01-01

    The chelator ethylene diaminetetraacetate (EDTA) has been intercalated into layered double hydroxides by the anion exchange method. The resulting composites were characterized by powder X-ray diffraction, FTIR spectroscopy, thermogravimetry and X-ray photoelectron spectrometry. They were applied to modify a carbon paste electrode for the stripping voltammetric determination of lead (II) ions at ng L −1 levels. Stripping currents are linearly related to the logarithm of Pb (II) concentrations from 2 ng L −1 to 33 μg L −1 . The detection limit (3σ) is as low as 0.95 ng L −1 . The method was successfully applied to the determination of Pb (II) in spiked tap water without any pretreatment.(author)

  1. Adverse reactions associated with acetylcysteine.

    Science.gov (United States)

    Sandilands, E A; Bateman, D N

    2009-02-01

    Paracetamol (acetaminophen) is one of the most common agents deliberately ingested in self-poisoning episodes and a leading cause of acute liver failure in the western world. Acetylcysteine is widely acknowledged as the antidote of choice for paracetamol poisoning, but its use is not without risk. Adverse reactions, often leading to treatment delay, are frequently associated with both intravenous and oral acetylcysteine and are a common source of concern among treating physicians. A systematic literature review investigating the incidence, clinical features, and mechanisms of adverse effects associated with acetylcysteine. A variety of adverse reactions to acetylcysteine have been described ranging from nausea to death, most of the latter due to incorrect dosing. The pattern of reactions differs with oral and intravenous dosing, but reported frequency is at least as high with oral as intravenous. The reactions to the intravenous preparation result in similar clinical features to true anaphylaxis, including rash, pruritus, angioedema, bronchospasm, and rarely hypotension, but are caused by nonimmunological mechanisms. The precise nature of this reaction remains unclear. Histamine now seems to be an important mediator of the response, and there is evidence of variability in patient susceptibility, with females, and those with a history of asthma or atopy are particularly susceptible. Quantity of paracetamol ingestion, measured through serum paracetamol concentration, is also important as higher paracetamol concentrations protect patients against anaphylactoid effects. Most anaphylactoid reactions occur at the start of acetylcysteine treatment when concentrations are highest. Acetylcysteine also affects clotting factor activity, and this affects the interpretation of minor disturbances in the International Normalized Ratio in the context of paracetamol overdose. This review discusses the incidence, clinical features, underlying pathophysiological mechanisms, and

  2. SnO2 anode surface passivation by atomic layer deposited HfO2 improves li-ion battery performance

    KAUST Repository

    Yesibolati, Nulati

    2014-03-14

    For the first time, it is demonstrated that nanoscale HfO2 surface passivation layers formed by atomic layer deposition (ALD) significantly improve the performance of Li ion batteries with SnO2-based anodes. Specifically, the measured battery capacity at a current density of 150 mAg -1 after 100 cycles is 548 and 853 mAhg-1 for the uncoated and HfO2-coated anodes, respectively. Material analysis reveals that the HfO2 layers are amorphous in nature and conformably coat the SnO2-based anodes. In addition, the analysis reveals that ALD HfO2 not only protects the SnO2-based anodes from irreversible reactions with the electrolyte and buffers its volume change, but also chemically interacts with the SnO2 anodes to increase battery capacity, despite the fact that HfO2 is itself electrochemically inactive. The amorphous nature of HfO2 is an important factor in explaining its behavior, as it still allows sufficient Li diffusion for an efficient anode lithiation/delithiation process to occur, leading to higher battery capacity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Alkali (Li, K and Na) and alkali-earth (Be, Ca and Mg) adatoms on SiC single layer

    Science.gov (United States)

    Baierle, Rogério J.; Rupp, Caroline J.; Anversa, Jonas

    2018-03-01

    First-principles calculations within the density functional theory (DFT) have been addressed to study the energetic stability, and electronic properties of alkali and alkali-earth atoms adsorbed on a silicon carbide (SiC) single layer. We observe that all atoms are most stable (higher binding energy) on the top of a Si atom, which moves out of the plane (in the opposite direction to the adsorbed atom). Alkali atoms adsorbed give raise to two spin unpaired electronic levels inside the band gap leading the SiC single layer to exhibit n-type semiconductor properties. For alkaline atoms adsorbed there is a deep occupied spin paired electronic level inside the band gap. These finding suggest that the adsorption of alkaline and alkali-earth atoms on SiC layer is a powerful feature to functionalize two dimensional SiC structures, which can be used to produce new electronic, magnetic and optical devices as well for hydrogen and oxygen evolution reaction (HER and OER, respectively). Furthermore, we observe that the adsorption of H2 is ruled by dispersive forces (van der Waals interactions) while the O2 molecule is strongly adsorbed on the functionalized system.

  4. Medium effects in direct reactions

    International Nuclear Information System (INIS)

    Karakoc, M; Bertulani, C

    2013-01-01

    We discuss medium corrections of the nucleon-nucleon (NN) cross sections and their influence on direct reactions at intermediate energies ≳50 MeV/nucleon. The results obtained with free NN cross sections are compared with those obtained with a geometrical treatment of Pauli-blocking and Dirac-Bruecker methods. We show that medium corrections may lead to sizable modifications for collisions at intermediate energies and that they are more pronounced in reactions involving weakly bound nuclei.

  5. Microstructural Characterization of Reaction-Formed Silicon Carbide Ceramics. Materials Characterization

    Science.gov (United States)

    Singh, M.; Leonhardt, T. A.

    1995-01-01

    Microstructural characterization of two reaction-formed silicon carbide ceramics has been carried out by interference layering, plasma etching, and microscopy. These specimens contained free silicon and niobium disilicide as minor phases with silicon carbide as the major phase. In conventionally prepared samples, the niobium disilicide cannot be distinguished from silicon in optical micrographs. After interference layering, all phases are clearly distinguishable. Back scattered electron (BSE) imaging and energy dispersive spectrometry (EDS) confirmed the results obtained by interference layering. Plasma etching with CF4 plus 4% O2 selectively attacks silicon in these specimens. It is demonstrated that interference layering and plasma etching are very useful techniques in the phase identification and microstructural characterization of multiphase ceramic materials.

  6. Lead salt resonant cavity enhanced detector with MEMS mirror

    Science.gov (United States)

    Felder, F.; Fill, M.; Rahim, M.; Zogg, H.; Quack, N.; Blunier, S.; Dual, J.

    2010-01-01

    We describe a tunable resonant cavity enhanced detector (RCED) for the mid-infrared employing narrow gap lead-chalcogenide (IV-VI) layers on a Si substrate. The device consists of an epitaxial Bragg reflector layer, a thin p-n+ heterojunction with PbSrTe as detecting layer and a micro-electro-mechanical system (MEMS) micromirror as second mirror. Despite the thin absorber layer the sensitivity is even higher than for a conventional detector. Tunability is achieved by changing the cavity length with a vertically movable MEMS mirror. The device may be used as miniature infrared spectrometer to cover the spectral range from 30 μm.

  7. Degradation reactions in SONY-type Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Roth, E.P.; Nagasubramanian, G.

    2000-07-01

    Thermal instabilities were identified in SONY-type lithium-ion cells and correlated with interactions of cell constituents and reaction products. Three temperature regions of interaction were identified and associated with the state of charge (degree of Li intercalation) of the cell. Anodes were shown to undergo exothermic reactions as low as 100 C involving the solid electrolyte interface (SEI) layer and the LiPF{sub 6} salt in the electrolyte (EC:PC:DEC/LiPF{sub 6}). These reactions could account for the thermal runaway observed in these cells beginning at 100 C. Exothermic reactions were also observed in the 200 C--300 C region between the intercalated lithium anodes, the LiPF{sub 6} salt, and the PVDF. These reactions were followed by a high-temperature reaction region, 300 C--400 C, also involving the PVDF binder and the intercalated lithium anodes. The solvent was not directly involved in these reactions but served as a moderator and transport medium. Cathode exothermic reactions with the PVDF binder were observed above 200 C and increased with the state of charge (decreasing Li content). This offers an explanation for the observed lower thermal runaway temperatures for charged cells.

  8. Phosphite radicals and their reactions. Examples of redox, substitution, and addition reactions

    International Nuclear Information System (INIS)

    Schaefer, K.; Asmus, K.D.

    1980-01-01

    Phosphite radicals HPO 3 - and PO 3 2 -, which exist in an acid-base equilibrium with pK = 5.75, are shown to take part in various types of reactions. In the absence of scavengers, they disappear mainly by second-order disproportionation and combination; a first-order contribution to the decay is also indicated. HPO 3 - and PO 3 2 - are good reductants toward electron acceptors such as tetranitromethane. In this reaction phosphate and C(NO 2 ) 3 - are formed. Phosphite radicals can, however, also act as good oxidants, e.g., toward thiols and thiolate ions. These reactions lead to the formation of RS. radicals which were identified either directly, as in the case of penicillamine, through the optical absorption of PenS. or more indirectly through equilibration of RS. with RS- to the optically absorbing RSSR-. disulfide radical anion. A homolytic substitution reaction (S/sub H/2) occurs in the reaction of the phosphite radicals with aliphatic disulfides, yielding RS. radicals and phosphate thioester RSPO 3 2 -. Lipoic acid, as an example of a cyclic disulfide, is reduced to the corresponding RSSR-. radical anion and also undergoes the S/sub H/2 reaction with about equal probability. An addition reaction is observed between phosphite radicals and molecular oxygen. The resulting peroxo phosphate radicals establish an acid-base equilibrium HPO 5 - . reversible PO 5 2- . + H+ with a pK = 3.4. Absolute rate constants were determined for all reactions discussed

  9. Mis-expression of grainyhead-like transcription factors in zebrafish leads to defects in enveloping layer (EVL) integrity, cellular morphogenesis and axial extension.

    Science.gov (United States)

    Miles, Lee B; Darido, Charbel; Kaslin, Jan; Heath, Joan K; Jane, Stephen M; Dworkin, Sebastian

    2017-12-14

    The grainyhead-like (grhl) transcription factors play crucial roles in craniofacial development, epithelial morphogenesis, neural tube closure, and dorso-ventral patterning. By utilising the zebrafish to differentially regulate expression of family members grhl2b and grhl3, we show that both genes regulate epithelial migration, particularly convergence-extension (CE) type movements, during embryogenesis. Genetic deletion of grhl3 via CRISPR/Cas9 results in failure to complete epiboly and pre-gastrulation embryonic rupture, whereas morpholino (MO)-mediated knockdown of grhl3 signalling leads to aberrant neural tube morphogenesis at the midbrain-hindbrain boundary (MHB), a phenotype likely due to a compromised overlying enveloping layer (EVL). Further disruptions of grhl3-dependent pathways (through co-knockdown of grhl3 with target genes spec1 and arhgef19) confirm significant MHB morphogenesis and neural tube closure defects. Concomitant MO-mediated disruption of both grhl2b and grhl3 results in further extensive CE-like defects in body patterning, notochord and somite morphogenesis. Interestingly, over-expression of either grhl2b or grhl3 also leads to numerous phenotypes consistent with disrupted cellular migration during gastrulation, including embryo dorsalisation, axial duplication and impaired neural tube migration leading to cyclopia. Taken together, our study ascribes novel roles to the Grhl family in the context of embryonic development and morphogenesis.

  10. Oxide layers of Zr-1% Nb under PWR primary circuit conditions

    International Nuclear Information System (INIS)

    Nagy, Gabor; Kerner, Zsolt; Battistig, Gabor; Pinter-Csordas, Anna; Balogh, Janos; Pajkossy, Tamas

    2001-01-01

    Oxide layers were grown on Zr-1% Nb under conditions simulating those in VVER-type pressurised water reactors (PWRs), viz. in borate solutions in an autoclave at 290 deg. C. The layers were characterised by various methods: their respective thickness values were determined by weight gain measurements, Rutherford backscattering (RBS), nuclear reaction analysis (NRA) and scanning electron microscopy (SEM); the electrical properties were tested by electrochemical impedance spectroscopy. The results show that the oxide layer on Zr-1% Nb is homogeneous and somewhat thicker than that on Zircaloy-4

  11. Carbon monoxide gas sensing using zinc oxide deposited by successive ionic layer adhesion and reaction

    Science.gov (United States)

    Florido, E. A.; Dagaas, N. A. C.

    2017-05-01

    This study was aimed to determine the carbon monoxide (CO) gas sensing capability of zinc oxide (ZnO) film fabricated by successive ionic layer adsorption and reaction (SILAR) on glass substrate. Films consisting of a mixture of flower-like clusters of ZnO nanorods and nanowires were observed using scanning electron microscopy (SEM). Current-voltage characterization of the samples showed an average resistivity of 13.0 Ω-m. Carbon monoxide gas was synthesized by mixing the required amount of formic acid and excess sulfuric acid to produce CO gas concentrations of 100, 200, 300, 400, and 500 parts per million (ppm) v/v with five trials for each concentration. Two sets of data were obtained. One set consisted of the voltage response of the single film sensor while the other set were obtained from the double film sensor. The voltage response for the single film sensor and the double film sensor showed an average sensitivity of 0.0038 volts per ppm and 0.0024 volts per ppm, respectively. The concentration the single film can detect with a 2V output is 526 ppm while the double film sensor can detect up to 833 ppm with a 2V output. This shows that using the double film sensor is advantageous compared to single film sensor, because of its higher concentration range due to the larger surface area for the gas to interact. Moreover, the measured average resistance for the single film sensor was 10 MΩ while for the double film sensor the average resistance was 5 MΩ.

  12. Lead-210, polonium-210, and stable lead in the food-chain lichen, reindeer and man

    International Nuclear Information System (INIS)

    Persson, B.R.

    1972-01-01

    The measurements of stable lead and the natural fallout radionuclides lead-210 and polonium-210 in communities of lichen (Cladonia alpestris) in central Sweden from 1961 to 1970 indicate a quite constant level. The average lead-210 content per unit area in lichen carpets was found to be 15 +- 2 nCi m -2 , the average lead-210 activity concentration 6.7 +- 0.9 nCi per kg dry weight and the lead-210 specific activity 630 +- 60 nCi per g of stable lead. The polonium-210/lead-210 activity ratio was about 0.9 +- 0.1. The vertical distribution of lead-210 in the lichen carpet showed a maximum concentration in the top layer. The distribution was similar during 1967 and 1968 but the low amount of precipitation during 1968 and 1969 disturbed the distribution pattern in 1969 and 1970. The transfer of lead-210, polonium-210 and stable lead through the food chain: lichen, reindeer, and man was characterized. The absorbed dose rate in Lapps due to polonium-210 was estimated to be about 6 to 8 mrad per year in gonads and 8 to 20 mrad per year in bone tissues. This is about ten percent of their entire absorbed dose contribution from all natural radiation sources. (U.S.)

  13. Iodinated Contrast Media and the Alleged "Iodine Allergy": An Inexact Diagnosis Leading to Inferior Radiologic Management and Adverse Drug Reactions.

    Science.gov (United States)

    Böhm, Ingrid; Nairz, Knud; Morelli, John N; Keller, Patricia Silva Hasembank; Heverhagen, Johannes T

    2017-04-01

    Purpose  To test the hypothesis that the incomplete diagnosis "iodine allergy" is a possibly dangerous concept for patients under routine radiologic conditions. Materials and Methods  300 patients with a history of an "iodine allergy" were retrospectively screened and compared with two age-, sex-, and procedure-matched groups of patients either diagnosed with a nonspecific "iodine contrast medium (ICM) allergy" or an allergy to a specific ICM agent. For all groups, the clinical symptoms of the most recent past adverse drug reaction (ADR), prophylactic actions taken for subsequent imaging, and ultimate outcome were recorded and analyzed. Results  The diagnosis "iodine allergy" was not otherwise specified in 84.3 % patients. For this group, in most cases, the symptoms of the previous ADRs were not documented. In contrast, the type of ADR was undocumented in only a minority of patients in the comparison groups. In the group of patients with an "iodine allergy" the percentage of unenhanced CT scans was greater than within the other two groups (36.7 % vs. 28.7 %/18.6 %). ADRs following prophylactic measures were only observed in the "iodine allergy" group (OR of 9.24 95 % CI 1.16 - 73.45; p contrast media containing covalently bound iodine.. · There is a clear correlation between the exactness of the diagnosis - from the alleged "iodine allergy" to "contrast media allergy" to naming the exact culprit CM - and the quality of documentation of the symptoms.. · Management of patients diagnosed with "iodine allergy" was associated with uncertainty leading to unenhanced scans and sometimes unnecessary prophylactic actions.. · The term "iodine allergy" should be omitted, because it is potentially dangerous and can decrease the quality of radiology exams.. Citation Format · Böhm Ingrid, Nairz Knud, Morelli John N et al. Iodinated Contrast Media and the Alleged "Iodine Allergy": An Inexact Diagnosis Leading to Inferior Radiologic Management and

  14. Aligned carbon nanotube array functionalization for enhanced atomic layer deposition of platinum electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Dameron, Arrelaine A., E-mail: arrelaine.dameron@nrel.gov [National Renewable Energy Laboratory, 1617 Cole Blvd Golden, Golden, CO 80401 (United States); Pylypenko, Svitlana; Bult, Justin B.; Neyerlin, K.C.; Engtrakul, Chaiwat; Bochert, Christopher; Leong, G. Jeremy; Frisco, Sarah L.; Simpson, Lin; Dinh, Huyen N.; Pivovar, Bryan [National Renewable Energy Laboratory, 1617 Cole Blvd Golden, Golden, CO 80401 (United States)

    2012-04-15

    Uniform metal deposition onto high surface area supports is a key challenge of developing successful efficient catalyst materials. Atomic layer deposition (ALD) circumvents permeation difficulties, but relies on gas-surface reactions to initiate growth. Our work demonstrates that modified surfaces within vertically aligned carbon nanotube (CNT) arrays, from plasma and molecular precursor treatments, can lead to improved catalyst deposition. Gas phase functionalization influences the number of ALD nucleation sites and the onset of ALD growth and, in turn, affects the uniformity of the coating along the length of the CNTs within the aligned arrays. The induced chemical changes for each functionalization route are identified by X-ray photoelectron and Raman spectroscopies. The most effective functionalization routes increase the prevalence of oxygen moieties at defect sites on the carbon surfaces. The striking effects of the functionalization are demonstrated with ALD Pt growth as a function of surface treatment and ALD cycles examined by electron microscopy of the arrays and the individual CNTs. Finally, we demonstrate applicability of these materials as fuel cell electrocatalysts and show that surface functionalization affects their performance towards oxygen reduction reaction.

  15. Activation barriers for series of exothermic homologous reactions. VI. Reactions of lanthanide and transition metal atoms.

    Science.gov (United States)

    Blue, Alan S.; Fontijn, Arthur

    2001-09-01

    Semiempirical configuration interaction (SECI) theory to predict activation barriers, E, as given by k(T)=ATn exp(-E(RT), has been applied to homologous series of lanthanide (LN) and transition metal (TM) atom oxidation reactions. This was achieved by considering as homologous series reactions of elements differing only by the number of electrons in one subshell. Comparison between SECI and experimental results leads to an average deviation for the LN+N2O reactions of 0.66 kJ mol-1, and up to 5.5 kJ mol-1 for other series. Thirty-one activation barriers are reported.

  16. Concept and numerical simulations of a reactive anti-fragment armour layer

    Science.gov (United States)

    Hušek, Martin; Kala, Jiří; Král, Petr; Hokeš, Filip

    2017-07-01

    The contribution describes the concept and numerical simulation of a ballistic protective layer which is able to actively resist projectiles or smaller colliding fragments flying at high speed. The principle of the layer was designed on the basis of the action/reaction system of reactive armour which is used for the protection of armoured vehicles. As the designed ballistic layer consists of steel plates simultaneously combined with explosive material - primary explosive and secondary explosive - the technique of coupling the Finite Element Method with Smoothed Particle Hydrodynamics was used for the simulations. Certain standard situations which the ballistic layer should resist were simulated. The contribution describes the principles for the successful execution of numerical simulations, their results, and an evaluation of the functionality of the ballistic layer.

  17. On-line and precise measurement of iron wear using thin layer activation reactions by proton beam

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Nishimura, Kazuo.

    1990-01-01

    For the purpose of the on-line measurement of iron wear, thin layer activation (TLA) method or surface layer activation (SLA) method has been carried out since early 1970s. This method uses the irradiation of charged particle beam like protons from an accelerator onto a metal surface to produce a thin activated layer of several tens μm. The wear of this activated layer is measured by nondestructive on-line method with a radiation detector. There are two methods of the measurement. One is the activity loss measurement on the surface, and the other is the activity measurement of the metal debris collected in a filter. The former method is considered here. The purpose it to measure the wear of engine cam noses to help the development of good engine oil. Proton beam irradiation with a tandem van de Graaff accelerator, wear calibration using a gamma ray spectrometer, on-line wear measurement of cam noses of car engines by TLA method and so on are reported. The 7.00 MeV proton beam from a van de Graaff accelerator was used for activation, and Co-56, Co-57 and Co-58 were obtained in thin layers. (K.I.)

  18. Allergic reactions in anaesthesia

    DEFF Research Database (Denmark)

    Krøigaard, M; Garvey, L H; Menné, T

    2005-01-01

    a significant number of patients at unnecessary risk. Some patients may be labelled with a wrong allergy, leading to unnecessary warnings against harmless substances, and some patients may be put at risk of subsequent re-exposure to the real allergen. Patients with suspected allergic reactions during...

  19. A proposed agglomerate model for oxygen reduction in the catalyst layer of proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Zhang, Xiaoxian; Gao, Yuan; Ostadi, Hossein; Jiang, Kyle; Chen, Rui

    2014-01-01

    Highlights: • We developed a new agglomerate model to describe oxygen reduction reaction. • We showed how to calculate the model parameters from catalyst layer structure. • We verified the agglomerate model. - Abstract: Oxygen diffusion and reduction in the catalyst layer of PEM fuel cell is an important process in fuel cell modelling, but models able to link the reduction rate to catalyst-layer structure are lack; this paper makes such an effort. We first link the average reduction rate over the agglomerate within a catalyst layer to a probability that an oxygen molecule, which is initially on the agglomerate surface, will enter and remain in the agglomerate at any time in the absence of any electrochemical reaction. We then propose a method to directly calculate distribution function of this probability and apply it to two catalyst layers with contrasting structures. A formula is proposed to describe these calculated distribution functions, from which the agglomerate model is derived. The model has two parameters and both can be independently calculated from catalyst layer structures. We verify the model by first showing that it is an improvement and able to reproduce what the spherical model describes, and then testing it against the average oxygen reductions directly calculated from pore-scale simulations of oxygen diffusion and reaction in the two catalyst layers. The proposed model is simple, but significant as it links the average oxygen reduction to catalyst layer structures, and its two parameters can be directly calculated rather than by calibration

  20. Cross sections of (p, xn) reactions in the isotopes of lead and bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Bell, R E [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Skarsgard, H M [Atomic Energy Research Establishment, Reactor Research Div., Harwell (United Kingdom)

    1956-07-01

    Measurements have been made by the activation method of cross sections of (p, xn) reactions in Bi{sup 209}, Pb{sup 206}, Pb{sup 207}, and Pb{sup 208}. The present results cover x = 3 to 7 in Bi{sup 209}, 2 to 6 in Pb{sup 206}, 2 to 4 in Pb{sup 207}, and 3 and 4 in Pb{sup 208}, over a total proton energy range from 12 to 85 Mev. The absolute accuracy is about 15%. Each cross section plotted as a function of proton energy rises above its threshold to a peak whose height is of the order of one barn, and then falls again to a low and fairly constant value. The results from x = 3 to 7 are consistent with a compound nucleus plus prompt nucleon-nucleon cascade model using reasonable nuclear parameters, but the experimental (p, 2n) cross section appears to be almost double the value so predicted. Since (p, xn) reactions are dominant in the energy range 10 to 40 Mev., their sum approximates the total reaction cross section; the experimental sum fluctuates around the smooth curve computed for the compound nucleus model with r{sub 0} = 1.3 X 10{sup -13} cm. The fluctuations are similar to, but more marked than, those in the total neutron cross section of heavy elements in the same energy range. A more detailed theoretical discussion of these results is given by Jackson in the paper immediately following. (author)

  1. Reaction of tellurium with Zircaloy-4

    International Nuclear Information System (INIS)

    Boer, R. de; Cordfunke, E.H.P.

    1994-09-01

    Interaction of tellurium vapour with Zircaloy during the initial stage of an accident will lead to retention of tellurium in the core. For reliable estimation of the release behaviour of tellurium, it is necessary to know which zirconium tellurides are formed during this interaction. In this work the reaction of tellurium with Zircaloy-4 has been studied, using various reaction temperatures and tellurium vapour pressures. The compound ZrTe 2-x is formed on the surface of the Zircaloy in a broad range of reaction temperatures and vapour pressures. It is found that the formation of the more zirconium-rich compound Zr 5 Te 4 is favoured at high reaction temperatures is combination with low tellurium vapour pressures. (orig.)

  2. Selective extraction by dissolvable (nitriloacetic acid-nickel)-layered double hydroxide coupled with reaction with potassium thiocyanate for sensitive detection of iron(III).

    Science.gov (United States)

    Tang, Sheng; Chang, Yuepeng; Shen, Wei; Lee, Hian Kee

    2016-07-01

    A highly selective method has been proposed for the determination of iron cation (Fe(3+)). (Nitriloacetic acid-nickel)-layered double hydroxide ((NTA-Ni)-LDH) was successfully synthesized and used as dissolvable sorbent in dispersive solid-phase extraction to pre-concentrate and separate Fe(3+) from aqueous phase. Since Fe(3+) has a larger formation constant with NTA compared to Ni(2+), subsequently ion exchange occurred when (NTA-Ni)-LDH was added to the sample solution. The resultant (NTA-Fe)-LDH sol was isolated and transferred in an acidic medium containing potassium thiocyanate (KSCN). Since (NTA-Fe)-LDH could be dissolved in acidic conditions, Fe(3+)was released and reacted with SCN(-) to form an Fe-SCN complex. The resulting product was measured by ultraviolet-visible spectrometry for quantitative detection of Fe(3+). Extraction factors, including sample pH, reaction pH, extraction temperature, extraction time, reaction time and concentration of KSCN were optimized. This method achieved a low limit of detection of 15.2nM and a good linear range from 0.05 to 50μM (r(2)=0.9937). A nearly 18-fold enhancement of signal intensity was achieved after selective extraction. The optimized conditions were validated by applying the method to determine Fe(3+) in seawater samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Shear wave propagation in piezoelectric-piezoelectric composite layered structure

    Directory of Open Access Journals (Sweden)

    Anshu Mli Gaur

    Full Text Available The propagation behavior of shear wave in piezoelectric composite structure is investigated by two layer model presented in this approach. The composite structure comprises of piezoelectric layers of two different materials bonded alternatively. Dispersion equations are derived for propagation along the direction normal to the layering and in direction of layering. It has been revealed that thickness and elastic constants have significant influence on propagation behavior of shear wave. The phase velocity and wave number is numerically calculated for alternative layer of Polyvinylidene Difluoride (PVDF and Lead Zirconate Titanate (PZT-5H in composite layered structure. The analysis carried out in this paper evaluates the effect of volume fraction on the phase velocity of shear wave.

  4. Controlling the Growth of Staphylococcus epidermidis by Layer-By-Layer Encapsulation.

    Science.gov (United States)

    Jonas, Alain M; Glinel, Karine; Behrens, Adam; Anselmo, Aaron C; Langer, Robert S; Jaklenec, Ana

    2018-05-16

    Commensal skin bacteria such as Staphylococcus epidermidis are currently being considered as possible components in skin-care and skin-health products. However, considering the potentially adverse effects of commensal skin bacteria if left free to proliferate, it is crucial to develop methodologies that are capable of maintaining bacteria viability while controlling their proliferation. Here, we encapsulate S. epidermidis in shells of increasing thickness using layer-by-layer assembly, with either a pair of synthetic polyelectrolytes or a pair of oppositely charged polysaccharides. We study the viability of the cells and their delay of growth depending on the composition of the shell, its thickness, the charge of the last deposited layer, and the degree of aggregation of the bacteria which is varied using different coating procedures-among which is a new scalable process that easily leads to large amounts of nonaggregated bacteria. We demonstrate that the growth of bacteria is not controlled by the mechanical properties of the shell but by the bacteriostatic effect of the polyelectrolyte complex, which depends on the shell thickness and charge of its outmost layer, and involves the diffusion of unpaired amine sites through the shell. The lag times of growth are sufficient to prevent proliferation for daily topical applications.

  5. Hydrogen speciation in hydrated layers on nuclear waste glass

    International Nuclear Information System (INIS)

    Aines, R.D.; Weed, H.C.; Bates, J.K.

    1987-01-01

    The hydration of an outer layer on nuclear waste glasses is known to occur during leaching, but the actual speciation of hydrogen (as water or hydroxyl groups) in these layers has not been determined. As part of the Nevada Nuclear Waste Storage Investigations Project, we have used infrared spectroscopy to determine hydrogen speciations in three nuclear waste glass compositions (SRL-131 and 165, and PNL 76-68), which were leached at 90 0 C (all glasses) or hydrated in a vapor-saturated atmosphere at 202 0 C (SRL-131 only). Hydroxyl groups were found in the surface layers of all the glasses. Molecular water was found in the surface of SRL-131 and PNL 76-68 glasses that had been leached for several months in deionized water, and in the vapor-hydrated sample. The water/hydroxyl ratio increases with increasing reaction time; molecular water makes up most of the hydrogen in the thick reaction layers on vapor-phase hydrated glass while only hydroxyl occurs in the least reacted samples. Using the known molar absorptivities of water and hydroxyl in silica-rich glass the vapor-phase layer contained 4.8 moles/liter of molecular water, and 0.6 moles water in the form hydroxyl. A 15 μm layer on SRL-131 glass formed by leaching at 90 0 C contained a total of 4.9 moles/liter of water, 2/3 of which was as hydroxyl. The unreacted bulk glass contains about 0.018 moles/liter water, all as hydroxyl. The amount of hydrogen added to the SRL-131 glass was about 70% of the original Na + Li content, not the 300% that would result from alkali=hydronium ion interdiffusion. If all the hydrogen is then assumed to be added as the result of alkali-H + interdiffusion, the molecular water observed may have formed from condensation of the original hydroxyl groups

  6. Detailed Reaction Kinetics for CFD Modeling of Nuclear Fuel Pellet Coating for High Temperature Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    Battaglia, Francine

    2008-01-01

    The research project was related to the Advanced Fuel Cycle Initiative and was in direct alignment with advancing knowledge in the area of Nuclear Fuel Development related to the use of TRISO fuels for high-temperature reactors. The importance of properly coating nuclear fuel pellets received a renewed interest for the safe production of nuclear power to help meet the energy requirements of the United States. High-temperature gas-cooled nuclear reactors use fuel in the form of coated uranium particles, and it is the coating process that was of importance to this project. The coating process requires four coating layers to retain radioactive fission products from escaping into the environment. The first layer consists of porous carbon and serves as a buffer layer to attenuate the fission and accommodate the fuel kernel swelling. The second (inner) layer is of pyrocarbon and provides protection from fission products and supports the third layer, which is silicon carbide. The final (outer) layer is also pyrocarbon and provides a bonding surface and protective barrier for the entire pellet. The coating procedures for the silicon carbide and the outer pyrocarbon layers require knowledge of the detailed kinetics of the reaction processes in the gas phase and at the surfaces where the particles interact with the reactor walls. The intent of this project was to acquire detailed information on the reaction kinetics for the chemical vapor deposition (CVD) of carbon and silicon carbine on uranium fuel pellets, including the location of transition state structures, evaluation of the associated activation energies, and the use of these activation energies in the prediction of reaction rate constants. After the detailed reaction kinetics were determined, the reactions were implemented and tested in a computational fluid dynamics model, MFIX. The intention was to find a reduced mechanism set to reduce the computational time for a simulation, while still providing accurate results

  7. Decontaminating lead bricks and shielding

    International Nuclear Information System (INIS)

    Lussiez, G.W.

    1993-01-01

    Lead used for shielding is often surface contaminated with radioisotopes and is therefore a RCRA D008 mixed waste. The technology-based standard for treatment is macroencapsulation. However, decontaminating and recycling the clean lead is a more attractive solution. Los Alamos National Laboratory decontaminates material and equipment contaminated with radioisotopes. Decontaminating lead poses special problems because of the RCRA hazard classification and the size of the inventory, now about 50 tons and likely to grow substantially because of planned decommissioning operations. This lead, in the form of bricks and other shield shapes, is surface contaminated with fission products. One of the best methods for decontaminating lead is removing the thin superficial layer of contamination with an abrasive medium trader pressure. For lead, a mixture of alumina with water and air at about 40 psig rapidly and effectively decontaminates the lead. The abrasive medium is sprayed onto the lead in a sealed-off area. The slurry of abrasive and particles of lead falls through a floor grating and is collected in a sump. A pump sends the slurry mixture back to the spray gun, creating a continuous process. The process generates small volumes of contaminated lead slurry that can be solidified and, because it passes the TCLP, is not a mixed waste. The decontaminated lead can be released for recycling

  8. Partial equilibrium in induced redox reactions of plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Nikol' skii, B P; Posvol' skii, M V; Krylov, L I; Morozova, Z P

    1975-01-01

    A study was made of oxidation-reduction reactions of Pu in buffer solutions containing bichromate and a reducing agent which reacted with hexavalent chromium at pH=3.5. In most cases sodium nitrite was used. A rather slow reduction of Pu (6) with NaNO/sub 2/ in the course of which tetravalent plutonium was formed via disproportionation reaction of plutonium (5), became very rapid upon the addition of bichromate to the solution. The yield of tetravalent plutonium increased with an increase in the concentration of NaNO/sub 2/ and the bichromate but never reached 100%. This was due to a simultaneous occurrenc of the induced oxidation reaction of Pu(4), leading to a partial equilibrium between the valence forms of plutonium in the nitrite-bichromate system which on the whole was in a nonequilibrium state. It was shown that in the series of reactions leading to the reduction of plutonium the presence of bivalent chromium was a necessary link.

  9. Mass spectrometric study of thermodynamic properties of gaseous lead tellurates. Estimation of formation enthalpies of gaseous lead polonates

    Energy Technology Data Exchange (ETDEWEB)

    Shugurov, S.M., E-mail: s.shugurov@spbu.ru; Panin, A.I.; Lopatin, S.I.; Emelyanova, K.A.

    2016-10-15

    Gaseous reactions involving lead oxides, tellurium oxide and lead tellurates were studied by the Knudsen effusion mass spectrometry. Equilibrium constants and reaction enthalpies were evaluated. Structures, molecular parameters and thermodynamic functions of gaseous PbTeO{sub 3} and Pb{sub 2}TeO{sub 4} were calculated by quantum chemistry methods. The formation enthalpies Δ{sub f}H{sup 0} (298.15) = −294 ± 13 for gaseous PbTeO{sub 3} and Δ{sub f}H{sup 0} (298.15) = −499 ± 12 for gaseous Pb{sub 2}TeO{sub 4} were obtained. On the base of these results the formation enthalpies of gaseous PbPoO{sub 3} and Pb{sub 2}PoO{sub 4} were estimated as −249 ± 34 and −478 ± 38, respectively. - Highlights: • Gaseous lead tellurates PbTeO{sub 3}, Pb{sub 2}TeO{sub 4} were discovered. • Their thermodynamic properties were studied using both high temperature mass spectrometry and quantum chemistry computations. • The obtained data allows to predict the formation enthalpies of gaseous lead polonates PbPoO{sub 3}, Pb{sub 2}PoO{sub 4}.

  10. On Medium Chemical Reaction in Diffusion-Based Molecular Communication: a Two-Way Relaying Example

    OpenAIRE

    Farahnak-Ghazani, Maryam; Aminian, Gholamali; Mirmohseni, Mahtab; Gohari, Amin; Nasiri-Kenari, Masoumeh

    2016-01-01

    Chemical reactions are a prominent feature of molecular communication (MC) systems, with no direct parallels in wireless communications. While chemical reactions may be used inside the transmitter nodes, receiver nodes or the communication medium, we focus on its utility in the medium in this paper. Such chemical reactions can be used to perform computation over the medium as molecules diffuse and react with each other (physical-layer computation). We propose the use of chemical reactions for...

  11. Role of experimental resolution in measurements of critical layer thickness for strained-layer epitaxy

    International Nuclear Information System (INIS)

    Fritz, I.J.

    1987-01-01

    Experimental measurements of critical layer thicknesses (CLT's) in strained-layer epitaxy are considered. Finite experimental resolution can have a major effect on measured CLT's and can easily lead to spurious results. The theoretical approach to critical layer thicknesses of J. W. Matthews [J. Vac. Sci. Technol. 12, 126 (1975)] has been modified in a straightforward way to predict the apparent critical thickness for an experiment with finite resolution in lattice parameter. The theory has also been modified to account for the general empirical result that fewer misfit dislocations are generated than predicted by equilibrium calculation. The resulting expression is fit to recent x-ray diffraction data on InGaAs/GaAs and SiGe/Si. The results suggest that CLT's in these systems may not be significantly larger than predicted by equilibrium theory, in agreement with high-resolution measurements

  12. 47nm alumina–water nanofluid flow within boundary layer formed on upper horizontal surface of paraboloid of revolution in the presence of quartic autocatalysis chemical reaction

    Directory of Open Access Journals (Sweden)

    Isaac Lare Animasaun

    2016-09-01

    Full Text Available In this article, a modified version of buoyancy-induced model is considered to investigate the flow of 47nm alumina–water nanofluid along an upper surface of horizontal paraboloid of revolution in the presence of nonlinear thermal radiation, Lorentz force and quartic autocatalysis kind of homogeneous heterogeneous chemical reaction. The case of unequal diffusion coefficients of reactant A (bulk fluid and B (high concentration of catalyst at the surface in the presence of bioconvection is considered. Governing equation suitable to unravel the thermophoresis which takes place within the boundary layer is presented. Since chemical reactant B is of higher concentration at the surface more than the concept described as cubic autocatalytic, the suitable schemes are herein described as isothermal quartic autocatalytic reaction and first order reaction. The viscosity and thermal conductivity are assumed to vary with volume fraction (ϕ and suitable models for the case 0%⩽ϕ⩽0.8% are adopted. The transformed governing equations are solved numerically using Runge–Kutta fourth order along with shooting technique (RK4SM. Good agreement is obtained between the solutions of RK4SM and MATLAB bvp5c for a limiting case. The influence of some pertinent parameters on velocity, temperature, diffusion of motile microorganism, concentration of bulk fluid and catalyst is illustrated graphically and discussed.

  13. A low-cost lead-acid battery with high specific-energy

    Indian Academy of Sciences (India)

    Lightweight grids for lead-acid battery grids have been prepared from acrylonitrile butadiene styrene (ABS) copolymer followed by coating with lead. Subsequently, the grids have been electrochemically coated with a conductive and corrosion-resistant layer of polyaniline. These grids are about 75% lighter than those ...

  14. A low-cost lead-acid battery with high specific-energy

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Lightweight grids for lead-acid battery grids have been prepared from acrylonitrile butadiene styrene (ABS) copolymer followed by coating with lead. Subsequently, the grids have been electro- chemically coated with a conductive and corrosion-resistant layer of polyaniline. These grids are about. 75% lighter than ...

  15. Steps in growth of Nb-doped layered titanates with very high surface area suitable for water purification

    International Nuclear Information System (INIS)

    Milanović, Marija; Nikolić, Ljubica M.; Stijepović, Ivan; Kontos, Athanassios G.; Giannakopoulos, Konstantinos P.

    2014-01-01

    Nb-doped layered titanates, as highly efficient adsorbents, have been synthesized by hydrothermal reaction for variable duration and at 150 °C in a highly alkaline solution with NbCl 5 as the Nb source. The results have shown the formation of nanosheets already after 1 h of hydrothermal processing, but morphology and phase composition change as the reaction proceeds. The prepared layered titanates have been structurally investigated via scanning and transmission electron microscopy, X-ray diffraction, as well as Raman and Fourier transform infrared spectroscopies. The steps of layered titanate growth have been followed and an intermediate layered anatase phase is identified. Thus optimized growth of mesoporous titanate materials with 10% Nb atomic content present very high specific surface area of 345.3 m 2  g −1 , and perform as very efficient adsorbents for wastewater treatment applications. - Highlights: • Nb-doped layered titanates have been prepared by a hydrothermal procedure. • Introduction of Nb to precursor lowers the rate of layered titanate formation. • Steps in growth of Nb-doped layered titanates are considered. • Nb-doped layered titanates show high/fast MB adsorption from concentrated solution

  16. Organically pillared layered zinc hydroxides

    International Nuclear Information System (INIS)

    Kongshaug, K.O.; Fjellvaag, Helmer

    2004-01-01

    The two organically pillared layered zinc hydroxides [Zn 2 (OH) 2 (ndc)], CPO-6, and [Zn 3 (OH) 4 (bpdc)], CPO-7, were obtained in hydrothermal reactions between 2,6-naphthalenedicarboxylic acid (ndc) and zinc nitrate (CPO-6) and 4,4'biphenyldicarboxylate (bpdc) and zinc nitrate (CPO-7), respectively. In CPO-6, the tetrahedral zinc atoms are connected by two μ 2 -OH groups and two carboxylate oxygen atoms, forming infinite layers extending parallel to the bc-plane. These layers are pillared by ndc to form a three-dimensional structure. In CPO-7, the zinc hydroxide layers are containing four-, five- and six coordinated zinc atoms, and the layers are built like stairways running along the [001] direction. Each step is composed of three infinite chains running in the [010] direction. Both crystal structures were solved from conventional single crystal data. Crystal data for CPO-6: Monoclinic space group P2 1 /c (No. 14), a=11.9703(7), b=7.8154(5), c=6.2428(4) A, β=90.816(2) deg., V=583.97(6) A 3 and Z=4. Crystal data for CPO-7: Monoclinic space group C2/c (No. 15), a=35.220(4), b=6.2658(8), c=14.8888(17) A, β=112.580(4) deg., V=3033.8(6) A 3 and Z=8. The compounds were further characterized by thermogravimetric- and chemical analysis

  17. Flexible 2D layered material junctions

    Science.gov (United States)

    Balabai, R.; Solomenko, A.

    2018-03-01

    Within the framework of the methods of the electron density functional and the ab initio pseudopotential, we have obtained the valence electron density spatial distribution, the densities of electron states, the widths of band gaps, the charges on combined regions, and the Coulomb potentials for graphene-based flexible 2D layered junctions, using author program complex. It is determined that the bending of the 2D layered junctions on the angle α leads to changes in the electronic properties of these junctions. In the graphene/graphane junction, there is clear charge redistribution with different signs in the regions of junctions. The presence in the heterojunctions of charge regions with different signs leads to the formation of potential barriers. The greatest potential jump is in the graphene/fluorographene junction. The greatest value of the band gap width is in the graphene/graphane junction.

  18. The influence of CdS intermediate layer on CdSe/CdS co-sensitized free-standing TiO2 nanotube solar cells

    Science.gov (United States)

    Ren, Xuefeng; Yu, Libo; Li, Zhen; Song, Hai; Wang, Qingyun

    2018-01-01

    We build CdSe quantum dots (QDs) sensitized TiO2 NT solar cells (CdSe/TiO2 solar cells) by successive ionic layer adsorption reaction (SILAR) method on free-standing translucent TiO2 nanotube (NT) film. The best power conversion efficiency (PCE) 0.74% is obtained with CdSe/TiO2 NT solar cells, however, it is very low. Hence, we introduced the CdS QDs layer located between CdSe QDs and TiO2 NT to achieve an enhanced photovoltaic performance. The J-V test results indicated that the insert of CdS intermediate layer yield a significant improvement of PCE to 2.52%. Combining experimental and theoretical analysis, we find that the effects caused by a translucent TiO2 nanotube film, a better lattices match between CdS and TiO2, and a new formed stepwise band edges structure not only improve the light harvesting efficiency but also increase the driving force of electrons, leading to the improvement of photovoltaic performance.

  19. Transfer and breakup reactions at intermediate energies

    International Nuclear Information System (INIS)

    Stokstad, R.G.

    1986-04-01

    The origin of the quasi-elastic peak in peripheral heavy-ion reactions is discussed in terms of inelastic scattering and transfer reactions to unbound states of the primary projectile-like fragment. The situation is analogous to the use of reverse kinematics in fusion reactions, a technique in which the object of study is moving with nearly the beam velocity. It appears that several important features of the quasi-elastic peak may be explained by this approach. Projectile-breakup reactions have attractive features for the study of nuclear structure. They may also be used to determine the partition of excitation energy in peripheral reactions. At intermediate energies, neutron-pickup reactions leading to four-body final states become important. Examples of experiments are presented that illustrate these points. 15 refs., 14 figs

  20. Front propagation in Rayleigh-Taylor systems with reaction

    International Nuclear Information System (INIS)

    Scagliarini, A; Biferale, L; Sbragaglia, M; Mantovani, F; Pivanti, M; Schifano, S F; Tripiccione, R; Pozzati, F; Toschi, F

    2011-01-01

    A special feature of Rayleigh-Taylor systems with chemical reactions is the competition between turbulent mixing and the 'burning processes', which leads to a highly non-trivial dynamics. We studied the problem performing high resolution numerical simulations of a 2d system, using a thermal lattice Boltzmann (LB) model. We spanned the various regimes emerging at changing the relative chemical/turbulent time scales, from slow to fast reaction; in the former case we found numerical evidence of an enhancement of the front propagation speed (with respect to the laminar case), providing a phenomenological argument to explain the observed behaviour. When the reaction is very fast, instead, the formation of sharp fronts separating patches of pure phases, leads to an increase of intermittency in the small scale statistics of the temperature field.