WorldWideScience

Sample records for reaction kinetics ligand

  1. Thermo-Kinetic Investigation of Comparative Ligand Effect on Cysteine Iron Redox Reaction

    Directory of Open Access Journals (Sweden)

    Masood Ahmad Rizvi

    2015-03-01

    Full Text Available Transition metal ions in their free state bring unwanted biological oxidations generating oxidative stress. The ligand modulated redox potential can be indispensable in prevention of such oxidative stress by blocking the redundant bio-redox reactions. In this study we investigated the comparative ligand effect on the thermo-kinetic aspects of biologically important cysteine iron (III redox reaction using spectrophotometric and potentiometric methods. The results were corroborated with the complexation effect on redox potential of iron(III-iron(II redox couple. The selected ligands were found to increase the rate of cysteine iron (III redox reaction in proportion to their stability of iron (II complex (EDTA < terpy < bipy < phen. A kinetic profile and the catalytic role of copper (II ions by means of redox shuttle mechanism for the cysteine iron (III redox reaction in presence of 1,10-phenanthroline (phen ligand is also reported.

  2. Design, testing and kinetic analysis of bulky monodentate phosphorus ligands in the Mizoroki-Heck reaction

    NARCIS (Netherlands)

    Dodds, D.L.; Boele, M.D.K.; van Strijdonck, G.P.F.; de Vries, J.G.; van Leeuwen, P.W.N.M.; Kamer, P.C.J.

    2012-01-01

    A series of new monodentate phosphane ligands 2 have been evaluated in the Mizoroki-Heck arylation reaction of iodobenzene and styrene and compared with our previously reported ligands, 1, 3 and 4. The concept of rational ligand design is discussed, and we describe how the performance of this new li

  3. Design, Testing and Kinetic Analysis of Bulky Monodentate Phosphorus Ligands in the Mizoroki-Heck Reaction

    NARCIS (Netherlands)

    Dodds, Deborah L.; Boele, Maarten D. K.; van Strijdonck, Gino P. F.; de Vries, Johannes G.; van Leeuwen, Piet W. N. M.; Kamer, Paul C. J.

    2012-01-01

    A series of new monodentate phosphane ligands 2 have been evaluated in the MizorokiHeck arylation reaction of iodobenzene and styrene and compared with our previously reported ligands, 1, 3 and 4. The concept of rational ligand design is discussed, and we describe how the performance of this new lig

  4. Design, Testing and Kinetic Analysis of Bulky Monodentate Phosphorus Ligands in the Mizoroki-Heck Reaction

    NARCIS (Netherlands)

    Dodds, Deborah L.; Boele, Maarten D. K.; van Strijdonck, Gino P. F.; de Vries, Johannes G.; van Leeuwen, Piet W. N. M.; Kamer, Paul C. J.

    A series of new monodentate phosphane ligands 2 have been evaluated in the MizorokiHeck arylation reaction of iodobenzene and styrene and compared with our previously reported ligands, 1, 3 and 4. The concept of rational ligand design is discussed, and we describe how the performance of this new

  5. Design, testing and kinetic analysis of bulky monodentate phosphorus ligands in the Mizoroki-Heck reaction

    NARCIS (Netherlands)

    Dodds, D.L.; Boele, M.D.K.; van Strijdonck, G.P.F.; de Vries, J.G.; van Leeuwen, P.W.N.M.; Kamer, P.C.J.

    2012-01-01

    A series of new monodentate phosphane ligands 2 have been evaluated in the Mizoroki-Heck arylation reaction of iodobenzene and styrene and compared with our previously reported ligands, 1, 3 and 4. The concept of rational ligand design is discussed, and we describe how the performance of this new

  6. Equilibrium and kinetic studies on ligand substitution reactions of chloromethyl(aquo)cobaloxime with aromatic and aliphatic N-donor ligands

    Indian Academy of Sciences (India)

    D Sudarshan Reddy; S Satyanarayana

    2003-06-01

    Equilibria and kinetics of the reactions of chloromethyl(aquo)cobaloxime with histamine, histidine, glycine and ethyl glycine ester were studied as a function of pH at 25°C, 1.0 M ionic strength (KCl) by spectrophotometric techniques. Comparison of equilibrium constants and rate constants tells that the order is Hisdn > Hiamn > Gly > EtGlyest. The rate of substitution of H2O varies with the p of the incoming ligand and nucleophilic participation of the ligand in the transition state. The rate constants and equilibrium constants are correlated to the hardness and softness of the ligands and the Co(III) of cobaloxime.

  7. Kinetics and mechanism of the ligand substitution reaction of di--hydroxobis(bipyridyl)dipalladium(II) ion with diethyldithiocarbamate anion in aqueous solution

    Indian Academy of Sciences (India)

    Subhasis Mallick; Biplab K Bera; Subala Mondal; Parnajyoti Karmakar; Arup Mandal; Alak K Ghosh

    2011-05-01

    The kinetics of the interaction between diethyldithiocarbamate (Et2DTC) and the title complex has been studied spectrophotometrically in aqueous medium as a function of nucleophile concentration, temperature and pH at constant ionic strength. The reaction is a two-step process in which the first step is liganddependent, but the second step is ligand-independent and is assigned to ring closure. The rate and activation parameters, conductivity studies and IR data were used to deduce a plausible mechanism.

  8. Development and Application of Ligand-Exchange Reaction Method ...

    African Journals Online (AJOL)

    Erah

    Methods: The method is based on ligand-exchange reaction. ... Clonazepam, Ligand-exchange reaction, Kinetic spectrometry, Validation, Pharmaceutical ... sensitive and selective analytical method for ... does not need sophisticated instruments or ..... of clonazepam in human serum ("Lytorol N) by standard addition method.

  9. Chemical kinetics of gas reactions

    CERN Document Server

    Kondrat'Ev, V N

    2013-01-01

    Chemical Kinetics of Gas Reactions explores the advances in gas kinetics and thermal, photochemical, electrical discharge, and radiation chemical reactions. This book is composed of 10 chapters, and begins with the presentation of general kinetic rules for simple and complex chemical reactions. The next chapters deal with the experimental methods for evaluating chemical reaction mechanisms and some theories of elementary chemical processes. These topics are followed by discussions on certain class of chemical reactions, including unimolecular, bimolecular, and termolecular reactions. The rema

  10. Substitution reactions of [Pd(bipy)(malonate)] explored with a different set of ligands: Kinetic and mechanistic interpretation in aqueous medium and at pH 7.4

    Indian Academy of Sciences (India)

    SUMON RAY; PARNAJYOTI KARMAKAR; ANIMESH CHATTOPADHYAY; DEBABRATA NANDI; SUSHOBHAN UKIL; ROSHNI SARKAR (SAIN); ALAK K GHOSH

    2016-08-01

    A brief overview of mechanistic studies of the reactions of Pd(II)-bipy-malonate complex with different set of ligands, viz., (N, S), (S, O) and (S) donor molecules is reported here. The kinetics of complex formation reactions of three sulphur containing bio-relevant ligands thioglycolic acid[L₁],thiourea[L₂] andthiosemicarbazide [L₃] were studied with innermetallic [Pd(bipy)(malonate)] complex at physiological condition. The effect of the nucleophilicity of the chosen nucleophiles was studied for the reactant complex under pseudo-first order conditions as a function of nucleophile concentration and temperature using stopped-flow technique. This article describes the results obtained for substitution reactions of bi-functional Pd(II) complex with different biomolecules, under varying experimental conditions. The kinetic studies showed that the malonate ring departs from the coordination zone of palladium centre via two-step mechanism. The first step depends on the concentration of the incoming ligand for all the ligands. But in the second step thiourea is ligand dependent where as other two are independent of the ligand concentration. Hence, it can be concluded that the second step is the chelation step for L₁ and L₃. The mechanism for the substitution of the coordinated malonate molecule is associative, as demonstrated by the negative values of ∆S=. Such type of complexes are less toxic than chloro-, which in turn hydrolyses to aqua or aqua complexes as they are prevented from oligomer formation at physiological pH.

  11. The extraordinary specificity of xanthine phosphoribosyltransferase from Bacillus subtilis elucidated by reaction kinetics, ligand binding, and crystallography

    DEFF Research Database (Denmark)

    Arent, Susan; Kadziola, Anders; Larsen, Sine

    2006-01-01

    (X)GPRTases with respect to sequence, PRPP binding motif, and oligomeric structure. They are more related with the PurR repressor of Gram-positive bacteria, the adenine PRTase, and orotate PRTase. The catalytic function and high specificity for xanthine of B. subtilis XPRTase were investigated by ligand binding studies...... related to a few key residues in the active site. Asn27 can in different orientations form hydrogen bonds to an amino group or an oxo group at the 2-position of the purine base, and Lys156 is positioned to make a hydrogen bond with N7. This and the absence of a catalytic carboxylate group near the N7......Xanthine phosphoribosyltransferase (XPRTase) from Bacillus subtilis is a representative of the highly xanthine specific XPRTases found in Gram-positive bacteria. These XPRTases constitute a distinct subclass of 6-oxopurine PRTases, which deviate strongly from the major class of H...

  12. Evidence of Kinetic Control of Ligand Binding and Staged Product Release in MurA (enolpyruvyl UDP-GlcNAc synthase)-catalyzed Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, S.; Zhang, F; Chindemi, P; Junop, M; Berti, P

    2009-01-01

    MurA (enolpyruvyl UDP-GlcNAc synthase) catalyzes the first committed step in peptidoglycan biosynthesis. In this study, MurA-catalyzed breakdown of its tetrahedral intermediate (THI), with a k{sub cat}/K{sub M} of 520 M{sup -1} s{sup -1}, was far slower than the normal reaction, and 3 x 10{sup 5}-fold slower than the homologous enzyme, AroA, reacting with its THI. This provided kinetic evidence of slow binding and a conformationally constrained active site. The MurA cocrystal structure with UDP-N-acetylmuramic acid (UDP-MurNAc), a potent inhibitor, and phosphite revealed a new 'staged' MurA conformation in which the Arg397 side chain tracked phosphite out of the catalytic site. The closed-to-staged transition involved breaking eight MurA {center_dot} ligand ion pairs, and three intraprotein hydrogen bonds helping hold the active site loop closed. These were replaced with only two MurA {center_dot} UDP-MurNAc ion pairs, two with phosphite, and seven new intraprotein ion pairs or hydrogen bonds. Cys115 appears to have an important role in forming the staged conformation. The staged conformation appears to be one step in a complex choreography of release of the product from MurA.

  13. Organotellurium ligands - designing and complexation reactions

    Indian Academy of Sciences (India)

    Ajai K Singh

    2002-08-01

    A variety of tellurium ligands has been designed and studied for their complexation reactions in the last decade. Of these hybrid telluroethers, halotellurium ligands and polytellurides are the most notable ones. RTe- and polytelluride ions have also been used to design clusters. Ligation of ditelluroethers and several hybrid telluroethers is extensively studied in our laboratories. The ditelluroether ligand RTeCH2TeR (where R = 4-MeOC6H4) (1), similar to dppm [1,2-bis(diphenylphosphino) methane], has been synthesized in good yield (∼80 %) by reacting CHCl3 with RTe- (generated in situ by borohydride reduction of R2Te2). Iodine reacts with 1 to give tetra-iodo derivative, which has intermolecular Te$\\cdots$I interactions resulting in a macro structure containing rectangular Te-I$\\cdots$Te bridges. 1 readily forms four membered rings with Pd(II) and Ru(II). On the formation of this chelate ring, the signal in 125Te NMR spectra shifts significantly upfield (50-60 ppm). The bridging mode of 1 has been shown in [Ru(-cymene)Cl2](-1)[Ru(-cymene)Cl2]. The hybrid telluroether ligands explored are of the types (Te, S), (Te, N) and (Te, O). The tellurium donor site has strong trans influence, which is manifested more strongly in square planar complexes of palladium(II). The morpholine N-donor site has been found to have weaker donor characteristics in (Te, N) ligands than pyridine and alkylamine donor sites of analogous ligands. The singlet oxygen readily oxidises the coordinated Te. This oxidation follows first order kinetics. The complexation reaction of RuCl3.H2O with N-[2-(4-methoxyphenyltelluro)ethyl]phthalimide (2) results in a novel (Te, N, O)-heterocycle, Te-chloro,Te-anisyl-1a-aza-4-oxa-3-tellura-1H, 2H, 4aH-9 fluorenone. The (Te, O) ligands can be used as hemilabile ligands, the oxygen atom temporarily protects the vacant coordination site before the arrival of the substrate. The chelate shifts observed in 125Te NMR spectra of metal complexes of Te-ligands have

  14. Kinetics of Bio-Reactions

    DEFF Research Database (Denmark)

    2015-01-01

    his chapter predicts the specific rates of reaction by means of a mathematical expression, the kinetics of the reaction. This expression can be derived through a mechanistic interpretation of an enzymatically catalyzed reaction, but it is essentially of empirical nature for cell reactions....... The models can be used in mass balances for design of processes under process conditions not yet studied experimentally. The value of the predictive kinetic model depends on the quality of the experimental data on which the model is based, and well-founded kinetic models for enzyme reactions have...... a considerable predictive power. This is also true for cell reaction models, when the model is used in its proper context. The chapter first discusses the kinetics for enzymatically catalyzed reactions (“enzyme reactions”). The kinetics can be derived from a mechanistic model. Then, the chapter derives empirical...

  15. Ligand Exchange Kinetics of Environmentally Relevant Metals

    Energy Technology Data Exchange (ETDEWEB)

    Panasci, Adele Frances [Univ. of California, Davis, CA (United States)

    2014-07-15

    The interactions of ground water with minerals and contaminants are of broad interest for geochemists but are not well understood. Experiments on the molecular scale can determine reaction parameters (i.e. rates of ligand exchange, activation entropy, activation entropy, and activation volume) that can be used in computations to gain insight into reactions that occur in natural groundwaters. Experiments to determine the rate of isotopic ligand exchange for three environmentally relevant metals, rhodium (Rh), iron (Fe), and neptunium (Np), are described. Many environmental transformations of metals (e.g. reduction) in soil occur at trivalent centers, Fe(III) in particular. Contaminant ions absorb to mineral surfaces via ligand exchange, and the reversal of this reaction can be dangerous, releasing contaminants into the environment. Ferric iron is difficult to study spectroscopically because most of its complexes are paramagnetic and are generally reactive toward ligand exchange; therefore, Rh(III), which is diamagnetic and less reactive, was used to study substitution reactions that are analogous to those that occur on mineral oxide surfaces. Studies on both Np(V) and Np(VI) are important in their own right, as 237Np is a radioactive transuranic element with a half-life of 2 million years.

  16. Reaction kinetics of polybutylene terephthalate polycondensation reaction

    NARCIS (Netherlands)

    Darda, P. J.; Hogendoorn, J. A.; Versteeg, G. F.; Souren, F.

    2005-01-01

    The kinetics of the forward polycondensation reaction of polybutylene terephthalate (PBT) has been investigated using thermogravimetric analysis (TGA). PBT - prepolymer with an initial degree of polymerization of 5.5 was used as starting material. The PBT prepolymer was prepared from dimethyl tereph

  17. Influence of the ligand alkyl chain length on the solubility, aqueous speciation, and kinetics of substitution reactions of water-soluble M3S4 (M = Mo, W) clusters bearing hydroxyalkyl diphosphines.

    Science.gov (United States)

    Beltrán, Tomás F; Llusar, Rosa; Sokolov, Maxim; Basallote, Manuel G; Fernández-Trujillo, M Jesús; Pino-Chamorro, Jose Ángel

    2013-08-05

    Water-soluble [M3S4X3(dhbupe)3](+) diphosphino complexes (dhbupe = 1,2-bis(bis(hydroxybutyl)phosphino)ethane), 1(+) (M = Mo, X = Cl) and 2(+) (M = W; X = Br), have been synthesized by extending the procedure used for the preparation of their hydroxypropyl analogues by reaction of the M3S4(PPh3)3X4(solvent)x molecular clusters with the corresponding 1,2-bis(bishydroxyalkyl)diphosphine. The solid state structure of the [M3S4X3(dhbupe)3](+) cation possesses a C3 symmetry with a cuboidal M3S4 unit, and the outer positions are occupied by one halogen and two phosphorus atoms of the diphosphine ligand. At a basic pH, the halide ligands are substituted by hydroxo groups to afford the corresponding [Mo3S4(OH)3(dhbupe)3](+) (1OH(+)) and [W3S4(OH)3(dhbupe)3](+) (2OH(+)) complexes. This behavior is similar to that found in 1,2-bis(bis(hydroxymethyl)phosphino)ethane (dhmpe) complexes and differs from that observed for 1,2-bis(bis(hydroxypropyl)phosphino)ethane (dhprpe) derivatives. In the latter case, an alkylhydroxo group of the functionalized diphosphine replaces the chlorine ligands to afford Mo3S4 complexes in which the deprotonated dhprpe acts in a tridentate fashion. Detailed studies based on stopped-flow, (31)P{(1)H} NMR, and electrospray ionization mass spectrometry techniques have been carried out in order to understand the solution behavior and kinetics of interconversion between the different species formed in solution: 1 and 1OH(+) or 2 and 2OH(+). On the basis of the kinetic results, a mechanism with two parallel reaction pathways involving water and OH(-) attacks is proposed for the formal substitution of halides by hydroxo ligands. On the other hand, reaction of the hydroxo clusters with HX acids occurs with protonation of the OH(-) ligands followed by substitution of coordinated water by X(-).

  18. Analysis of kinetic reaction mechanisms

    CERN Document Server

    Turányi, Tamás

    2014-01-01

    Chemical processes in many fields of science and technology, including combustion, atmospheric chemistry, environmental modelling, process engineering, and systems biology, can be described by detailed reaction mechanisms consisting of numerous reaction steps. This book describes methods for the analysis of reaction mechanisms that are applicable in all these fields. Topics addressed include: how sensitivity and uncertainty analyses allow the calculation of the overall uncertainty of simulation results and the identification of the most important input parameters, the ways in which mechanisms can be reduced without losing important kinetic and dynamic detail, and the application of reduced models for more accurate engineering optimizations. This monograph is invaluable for researchers and engineers dealing with detailed reaction mechanisms, but is also useful for graduate students of related courses in chemistry, mechanical engineering, energy and environmental science and biology.

  19. Combustion kinetics and reaction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Klemm, R.B.; Sutherland, J.W. [Brookhaven National Laboratory, Upton, NY (United States)

    1993-12-01

    This project is focused on the fundamental chemistry of combustion. The overall objectives are to determine rate constants for elementary reactions and to elucidate the pathways of multichannel reactions. A multitechnique approach that features three independent experiments provides unique capabilities in performing reliable kinetic measurements over an exceptionally wide range in temperature, 300 to 2500 K. Recent kinetic work has focused on experimental studies and theoretical calculations of the methane dissociation system (CH{sub 4} + Ar {yields} CH{sub 3} + H + Ar and H + CH{sub 4} {yields} CH{sub 3} + H{sub 2}). Additionally, a discharge flow-photoionization mass spectrometer (DF-PIMS) experiment is used to determine branching fractions for multichannel reactions and to measure ionization thresholds of free radicals. Thus, these photoionization experiments generate data that are relevant to both reaction pathways studies (reaction dynamics) and fundamental thermochemical research. Two distinct advantages of performing PIMS with high intensity, tunable vacuum ultraviolet light at the National Synchrotron Light Source are high detection sensitivity and exceptional selectivity in monitoring radical species.

  20. Kinetics of heterogeneous catalytic reactions

    CERN Document Server

    Boudart, Michel

    2014-01-01

    This book is a critical account of the principles of the kinetics of heterogeneous catalytic reactions in the light of recent developments in surface science and catalysis science. Originally published in 1984. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase acc

  1. Moment equations for chromatography based on Langmuir type reaction kinetics.

    Science.gov (United States)

    Miyabe, Kanji

    2014-08-22

    Moment equations were derived for chromatography, in which the reaction kinetics between solute molecules and functional ligands on the stationary phase was represented by the Langmuir type rate equation. A set of basic equations of the general rate model of chromatography representing the mass balance, mass transfer rate, and reaction kinetics in the column were analytically solved in the Laplace domain. The moment equations for the first absolute moment and the second central moment in the real time domain were derived from the analytical solution in the Laplace domain. The moment equations were used for predicting the chromatographic behavior under hypothetical HPLC conditions. The influence of the parameters relating to the adsorption equilibrium and to the reaction kinetics on the chromatographic behavior was quantitatively evaluated. It is expected that the moment equations are effective for a detailed analysis of the influence of the mass transfer rates and of the Langmuir type reaction kinetics on the column efficiency.

  2. Solvent fluctuations induce non-Markovian kinetics in hydrophobic pocket-ligand binding

    CERN Document Server

    Weiß, R Gregor; Dzubiella, Joachim

    2016-01-01

    We investigate the impact of water fluctuations on the key-lock association kinetics of a hydrophobic ligand (key) binding to a hydrophobic pocket (lock) by means of a minimalistic stochastic model system. It describes the collective hydration behavior of the pocket by bimodal fluctuations of a water-pocket interface that dynamically couples to the diffusive motion of the approaching ligand via the hydrophobic interaction. This leads to a set of overdamped Langevin equations in 2D-coordinate-space, that is Markovian in each dimension. Numerical simulations demonstrate locally increased friction of the ligand, decelerated binding kinetics, and local non-Markovian (memory) effects in the ligand's reaction coordinate as found previously in explicit-water molecular dynamics studies of model hydrophobic pocket-ligand binding [1,2]. Our minimalistic model elucidates the origin of effectively enhanced friction in the process that can be traced back to long-time decays in the force-autocorrelation function induced by...

  3. Mechanics, thermodynamics, and kinetics of ligand binding to biopolymers.

    Science.gov (United States)

    Jarillo, Javier; Morín, José A; Beltrán-Heredia, Elena; Villaluenga, Juan P G; Ibarra, Borja; Cao, Francisco J

    2017-01-01

    Ligands binding to polymers regulate polymer functions by changing their physical and chemical properties. This ligand regulation plays a key role in many biological processes. We propose here a model to explain the mechanical, thermodynamic, and kinetic properties of the process of binding of small ligands to long biopolymers. These properties can now be measured at the single molecule level using force spectroscopy techniques. Our model performs an effective decomposition of the ligand-polymer system on its covered and uncovered regions, showing that the elastic properties of the ligand-polymer depend explicitly on the ligand coverage of the polymer (i.e., the fraction of the polymer covered by the ligand). The equilibrium coverage that minimizes the free energy of the ligand-polymer system is computed as a function of the applied force. We show how ligands tune the mechanical properties of a polymer, in particular its length and stiffness, in a force dependent manner. In addition, it is shown how ligand binding can be regulated applying mechanical tension on the polymer. Moreover, the binding kinetics study shows that, in the case where the ligand binds and organizes the polymer in different modes, the binding process can present transient shortening or lengthening of the polymer, caused by changes in the relative coverage by the different ligand modes. Our model will be useful to understand ligand-binding regulation of biological processes, such as the metabolism of nucleic acid. In particular, this model allows estimating the coverage fraction and the ligand mode characteristics from the force extension curves of a ligand-polymer system.

  4. Preventing Corrosion by Controlling Cathodic Reaction Kinetics

    Science.gov (United States)

    2016-03-25

    Preventing corrosion by controlling cathodic reaction kinetics Progress Report for Period: 1 SEP 2015-31 MAR 2016 John Keith Department of...25 March 2016 Preventing corrosion by controlling cathodic reaction kinetics Annual Summary Report: FY16 PI: John Keith, 412-624-7016,jakeith...dominate the metal’s cathodic behavior. Within an alkaline environment, we expect the following reduction reactions to be catalyzed on the oxide

  5. Kinetic Studies of the Coordination of Mono- and Ditopic Ligands with First Row Transition Metal Ions.

    Science.gov (United States)

    Munzert, Stefanie Martina; Schwarz, Guntram; Kurth, Dirk G

    2016-03-01

    The reactions of the ditopic ligand 1,4-bis(2,2':6',2″-terpyridin-4'-yl)benzene (1) as well as the monotopic ligands 4'-phenyl-2,2':6',2″-terpyridine (2) and 2,2':6',2″-terpyridine (3) with Fe(2+), Co(2+), and Ni(2+) in solution are studied. While the reaction of 1 with Fe(2+), Co(2+), and Ni(2+) results in metallo-supramolecular coordination polyelectrolytes (MEPEs), ligands 2 and 3 give mononuclear complexes. All compounds are analyzed by UV/vis and fluorescence spectroscopy. Fluorescence spectroscopy indicates that protonation as well as coordination to Zn(2+) leads to an enhanced fluorescence of the terpyridine ligands. In contrast, Fe(2+), Co(2+), or Ni(2+) quench the fluorescence of the ligands. The kinetics of the reactions are studied by stopped-flow fluorescence spectroscopy. Analysis of the measured data is presented and the full kinetic rate laws for the coordination of the terpyridine ligands 1, 2, and 3 to Fe(2+), Co(2+), and Ni(2+) are presented. The coordination occurs within a few seconds, and the rate constant increases in the order Ni(2+) < Co(2+) < Fe(2+). With the rate constants at hand, the polymer growth of Ni-MEPE is computed.

  6. Kinetics of Receptor-Ligand Interactions in Immune Responses

    Institute of Scientific and Technical Information of China (English)

    Mian Long; Shouqin Lü; Ganyun Sun

    2006-01-01

    Receptor-ligand interactions in blood flow are crucial to initiate the biological processes as inflammatory cascade,platelet thrombosis, as well as tumor metastasis. To mediate cell adhesions, the interacting receptors and ligands must be anchored onto two apposing surfaces of two cells or a cell and a substratum, i.e., the two-dimensional (2D) binding, which is different from the binding of a soluble ligand in fluid phase to a receptor, i.e., three-dimensional (3D) binding. While numerous works have been focused on 3D kinetics of receptor-ligand interactions in immune systems, 2D kinetics and its regulations have less been understood, since no theoretical framework and experimental assays have been established until 1993. Not only does the molecular structure dominate 2D binding kinetics, but the shear force in blood flow also regulates cell adhesions mediated by interacting receptors and ligands. Here we provided the overview of current progresses in 2D bindings and regulations. Relevant issues of theoretical frameworks, experimental measurements, kinetic rates and binding affinities, and force regulations,were discussed.

  7. Kinetic studies of elementary chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Durant, J.L. Jr. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    This program concerning kinetic studies of elementary chemical reactions is presently focussed on understanding reactions of NH{sub x} species. To reach this goal, the author is pursuing experimental studies of reaction rate coefficients and product branching fractions as well as using electronic structure calculations to calculate transition state properties and reaction rate calculations to relate these properties to predicted kinetic behavior. The synergy existing between the experimental and theoretical studies allow one to gain a deeper insight into more complex elementary reactions.

  8. Chemical kinetics and reaction dynamics

    CERN Document Server

    Houston, Paul L

    2006-01-01

    This text teaches the principles underlying modern chemical kinetics in a clear, direct fashion, using several examples to enhance basic understanding. It features solutions to selected problems, with separate sections and appendices that cover more technical applications.Each chapter is self-contained and features an introduction that identifies its basic goals, their significance, and a general plan for their achievement. This text's important aims are to demonstrate that the basic kinetic principles are essential to the solution of modern chemical problems, and to show how the underlying qu

  9. Reaction networks and kinetics of biochemical systems.

    Science.gov (United States)

    Arceo, Carlene Perpetua P; Jose, Editha C; Lao, Angelyn R; Mendoza, Eduardo R

    2017-01-01

    This paper further develops the connection between Chemical Reaction Network Theory (CRNT) and Biochemical Systems Theory (BST) that we recently introduced [1]. We first use algebraic properties of kinetic sets to study the set of complex factorizable kinetics CFK(N) on a CRN, which shares many characteristics with its subset of mass action kinetics. In particular, we extend the Theorem of Feinberg-Horn [9] on the coincidence of the kinetic and stoichiometric subsets of a mass action system to CF kinetics, using the concept of span surjectivity. We also introduce the branching type of a network, which determines the availability of kinetics on it and allows us to characterize the networks for which all kinetics are complex factorizable: A "Kinetics Landscape" provides an overview of kinetics sets, their algebraic properties and containment relationships. We then apply our results and those (of other CRNT researchers) reviewed in [1] to fifteen BST models of complex biological systems and discover novel network and kinetic properties that so far have not been widely studied in CRNT. In our view, these findings show an important benefit of connecting CRNT and BST modeling efforts. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Reaction Kinetics of Nanostructured Silicon Carbide

    Science.gov (United States)

    Wallis, Kendra; Zerda, T. W.

    2006-10-01

    Nanostructured silicon carbide (SiC) is of interest particularly for use in nanocomposites that demonstrate high hardness as well as for use in semiconductor applications. Reaction kinetics studies of solid-solid reactions are relatively recent and present a method of determining the reaction mechanism and activation energy by measuring reaction rates. We have used induction heating to heat quickly, thus reducing the error in reaction time measurements. Data will be presented for reactions using silicon nanopowder (melting point of silicon. Using the well-known Avrami-Erofeev model, a two-parameter chi- square fit of the data provided a rate constant (k) and parameter (n), related to the reaction mechanism, for each temperature. From these data, an activation energy of 138 kJ/mol was calculated. In addition, the parameter n suggests the reaction mechanism, which will also be discussed. Experiments are continuing at higher temperatures to consider the liquid- solid reaction as well.

  11. The hydrothermal reaction kinetics of aspartic acid

    Science.gov (United States)

    Cox, Jenny S.; Seward, Terry M.

    2007-02-01

    Experimental data on the hydrothermal reaction kinetics of aspartic acid were acquired using a custom-built spectrophotometric reaction cell which permits in situ observation under hydrothermal conditions. The results of this study indicate that the reaction kinetics of dilute aspartic acid solutions are significantly different depending on the presence or absence of catalytic surfaces such as standard metal alloys. The spectroscopic data presented here represent the first direct observations, in situ and in real time, of an amino acid reacting in a hydrothermal solution. Quantitative kinetic information, including rate constants, concentration versus time profiles, and calculations of the individual component spectra, was obtained from the data using a chemometric approach based on factor analysis/principle component analysis which treats the rate expressions simultaneously as a system of differential algebraic equations (DAE) of index 1. Identification of the products was confirmed where possible by high pressure anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The reaction kinetics of aspartic acid under hydrothermal conditions was observed to be highly complex, in contrast to previous studies which indicated almost exclusively deamination. At lower temperatures (120-170 °C), several different reaction pathways were observed, including decarboxylation and polymerization, and the catalytic effects of reactor surfaces on the aspartic acid system were clearly demonstrated. At higher temperatures (above 170 °C), aspartic acid exhibited highly complex behaviour, with evidence indicating that it can simultaneously dimerize and cyclize, deaminate (by up to two pathways), and decarboxylate (by up to two pathways). These higher temperature kinetics were not fully resolvable in a quantitative manner due to the complexity of the system and the constraints of UV spectroscopy. The results of this study provide strong evidence that the reaction

  12. Enzyme-catalyzed and binding reaction kinetics determined by titration calorimetry.

    Science.gov (United States)

    Hansen, Lee D; Transtrum, Mark K; Quinn, Colette; Demarse, Neil

    2016-05-01

    Isothermal calorimetry allows monitoring of reaction rates via direct measurement of the rate of heat produced by the reaction. Calorimetry is one of very few techniques that can be used to measure rates without taking a derivative of the primary data. Because heat is a universal indicator of chemical reactions, calorimetry can be used to measure kinetics in opaque solutions, suspensions, and multiple phase systems and does not require chemical labeling. The only significant limitation of calorimetry for kinetic measurements is that the time constant of the reaction must be greater than the time constant of the calorimeter which can range from a few seconds to a few minutes. Calorimetry has the unique ability to provide both kinetic and thermodynamic data. This article describes the calorimetric methodology for determining reaction kinetics and reviews examples from recent literature that demonstrate applications of titration calorimetry to determine kinetics of enzyme-catalyzed and ligand binding reactions. A complete model for the temperature dependence of enzyme activity is presented. A previous method commonly used for blank corrections in determinations of equilibrium constants and enthalpy changes for binding reactions is shown to be subject to significant systematic error. Methods for determination of the kinetics of enzyme-catalyzed reactions and for simultaneous determination of thermodynamics and kinetics of ligand binding reactions are reviewed. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Kinetic modeling of reactions in Foods

    NARCIS (Netherlands)

    Boekel, van M.A.J.S.

    2008-01-01

    The level of quality that food maintains as it travels down the production-to-consumption path is largely determined by the chemical, biochemical, physical, and microbiological changes that take place during its processing and storage. Kinetic Modeling of Reactions in Foods demonstrates how to effec

  14. Ligand Intermediates in Metal-Catalyzed Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Gladysz, John A.

    1999-07-31

    The longest-running goal of this project has been the synthesis, isolation, and physical chemical characterization of homogeneous transition metal complexes containing ligand types believed to be intermediates in the metal-catalyzed conversion of CO/H{sub 2}, CO{sub 2}, CH{sub 4}, and similar raw materials to organic fuels, feedstocks, etc. In the current project period, complexes that contain unusual new types of C{sub x}(carbide) and C{sub x}O{sub y} (carbon oxide) ligands have been emphasized. A new program in homogeneous fluorous phase catalysis has been launched as described in the final report.

  15. Impact of ligand protonation on higher-order metal complexation kinetics in aqueous systems.

    Science.gov (United States)

    Town, Raewyn M; Leeuwen, Herman P van

    2008-03-27

    The impact of ligand protonation on the complexation kinetics of higher-order complexes is quantitatively described. The theory is formulated on the basis of the usual situation for metal complex formation in aqueous systems in which the exchange of water for the ligand in the inner coordination sphere is rate-determining (Eigen mechanism). We derive expressions for the general case of lability of ML(n) species that account for the contributions from all outer-sphere complexes to the rate of complex formation. For dynamic complexes, dissociation of ML is usually the rate-determining step in the overall process ML(n) --> M. Under such conditions, it is the role of ligand protonation in the step ML --> M that is relevant for the kinetic flux. 1:2 complexes of Cd(II) with pyridine-2,6-dicarboxylic acid fall into this category, and their lability at a microelectrode is reasonably well predicted by the differentiated approach. For non-dynamic systems, the kinetic flux arising from dissociation of higher-order complexes contributes to the rate-determining step. In this case, the weighted contribution of protonated and unprotonated outer-sphere complexes in all contributing dissociation reactions must be taken into account. The kinetic flux arising from the dissociation of 1:2 complexes of Ni(II) with bicine at a conventional electrode was quite well described by this combined approach. The results establish the generic role of ligand protonation within the overall framework of metal complexation kinetics in which complexes may be dynamic to an extent that depends on the operational time scale of the measurement technique.

  16. Reaction kinetics of bond rotations in graphene

    KAUST Repository

    Skowron, Stephen T.

    2016-04-12

    The formation and healing processes of the fundamental topological defect in graphitic materials, the Stone-Wales (SW) defect, are brought into a chemical context by considering the rotation of a carbon-carbon bond as chemical reaction. We investigate the rates and mechanisms of these SW transformations in graphene at the atomic scale using transmission electron microscopy. We develop a statistical atomic kinetics formalism, using direct observations obtained under different conditions to determine key kinetic parameters of the reactions. Based on the obtained statistics we quantify thermally and irradiation induced routes, identifying a thermal process of healing with an activation energy consistent with predicted adatom catalysed mechanisms. We discover exceptionally high rates for irradiation induced SW healing, incompatible with the previously assumed mechanism of direct knock-on damage and indicating the presence of an efficient nonadiabatic coupling healing mechanism involving beam induced electronic excitations of the SW defect.

  17. Rhodium catalyzed asymmetric Pauson-Khand reaction using SDP ligands

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The activity and enantiocontrol ability of the chiral catalysts prepared from spiro diphosphine ligands, SDP, and rhodium precursor were investigated in the asymmetric catalytic Pauson-Khand reaction. The results showed that SDP ligands were very effective in Rh-catalyzed Pauson-Khand reaction, and their complexes with rhodium could convert a variety of 1,6-enyne compounds into bicyclopentone derivatives under CO atmosphere in high yields with good enantioselectivities. The SbF6- was found to be a suitable counter anion of the catalyst, and 1,2-dichloroethane was the best choice of the solvent for Pauson-Khand reaction.

  18. Kinetics of catalytic reactions solutions manual

    CERN Document Server

    Vannice, M Albert

    2005-01-01

    Including countless exercises and worked examples, this advanced reference work and textbook will be extremely useful for the work of many industrial scientists. It teaches readers to design kinetic experiments involving heterogeneous catalysts, to characterize these catalysts, to acquire rate data, to find heat and mass transfer limitations in these data, to select reaction models, to derive rate expressions based on these models, and to assess the consistency of these rate equations.

  19. Pozzolanic Reaction Kinetics of Coal Ashes

    Institute of Scientific and Technical Information of China (English)

    ZHENG Hongwei; WANG Zhijuan; QIAN Jueshi; SONG Yuanming; WANG Zhi

    2009-01-01

    The pozzolanic reactivity was determined by the hydration kinetics of pozzolanic reaction based on the fact that the hydration products of active SiO_2 and Al_2O_3 with lime were soluble in dilute hydrochloric acid.The results show that the pozzolanic reaction of active SiO_2 and Al2O3 of coal ashes follows apparent first-order kinetics.The reaction rate constant of FBC ashes is greater than that of PC ashes,while the activation energy of the former is lower than that of the latter.It is confirmed that the pozzolanic activity of fluidized bed combustion(FBC)ashes is significantly higher than that of PC ashes,and the reaction barrier of the former is lower than that of the latter,because the microstructures of FBC ashes,such as mineralogical composition,morphology and polymerization degree of [SiO_4]and[AlO_6]are more favorable to the pozzolanic activity development than those of PC ashes.

  20. Evaluation of small ligand-protein interaction by ligation reaction with DNA-modified ligand.

    Science.gov (United States)

    Sugita, Rie; Mie, Masayasu; Funabashi, Hisakage; Kobatake, Eiry

    2010-01-01

    A method for the evaluation of interactions between protein and ligand using DNA-modified ligands, including signal enhancement of the DNA ligation reactions, is described. For proof of principle, a DNA probe modified by biotin was used. Two DNA probes were prepared with complementary sticky-ends. While one DNA probe was modified at the 5'-end of the sticky-end, the other was not modified. The probes could be ligated together by T4 DNA ligase along the strand without biotin modification. However, in the presence of streptavidin or anti-biotin Fab, the ligation reaction joining the two probes could not occur on either strand.

  1. Kinetic treatment of radiation reaction effects

    Science.gov (United States)

    Noble, Adam; Gratus, Jonathan; Burton, David; Ersfeld, Bernhard; Islam, M. Ranaul; Kravets, Yevgen; Raj, Gaurav; Jaroszynski, Dino

    2011-05-01

    Modern accelerators and light sources subject bunches of charged particles to quasiperiodic motion in extremely high electric fields, under which they may emit a substantial fraction of their energy. To properly describe the motion of these particle bunches, we require a kinetic theory of radiation reaction. We develop such a theory based on the notorious Lorentz-Dirac equation, and explore how it reduces to the usual Vlasov theory in the appropriate limit. As a simple illustration of the theory, we explore the radiative damping of Langmuir waves.

  2. Reaction kinetic analysis of reactor surveillance data

    Science.gov (United States)

    Yoshiie, T.; Kinomura, A.; Nagai, Y.

    2017-02-01

    In the reactor pressure vessel surveillance data of a European-type pressurized water reactor (low-Cu steel), it was found that the concentration of matrix defects was very high, and a large number of precipitates existed. In this study, defect structure evolution obtained from surveillance data was simulated by reaction kinetic analysis using 15 rate equations. The saturation of precipitation and the growth of loops were simulated, but it was not possible to explain the increase in DBTT on the basis of the defect structures. The sub-grain boundary segregation of solutes was discussed for the origin of the DBTT increase.

  3. Kinetics of Reaction Important in Oxygen Steelmaking

    Science.gov (United States)

    Coley, Kenneth S.; Chen, Elaine; Pomeroy, Michael

    Recent work on modeling of BOF steelmaking is reviewed, highlighting the critical aspects of each approach. It is concluded that the most successful models should be based on a deep understanding of the mechanisms and kinetics of the critical reactions. The importance of the decarburization mechanism is discussed with particular reference to its role in droplet swelling or bloating which has a profound influence on the droplet residence time in the slag. Conditions which cause bloating are discussed and the rate determining step is proposed to be primarily nucleation of CO bubbles inside the metal droplet with some influence from growth by reaction at the bubble/metal interface. The discrepancy in the super-saturation ratio required for classical nucleation is discussed and an approach using a surface tension modifying parameter is illustrated. Finally, the role of CO nucleation in controlling the driving force for dephosphorization is discussed.

  4. Reaction rates for mesoscopic reaction-diffusion kinetics.

    Science.gov (United States)

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2015-02-01

    The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In this paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. We show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results.

  5. Reaction rates for mesoscopic reaction-diffusion kinetics

    Science.gov (United States)

    Hellander, Stefan; Hellander, Andreas; Petzold, Linda

    2015-02-01

    The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In this paper we derive mesoscopic scale-dependent reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a Robin boundary condition at the reaction radius of two molecules. We also establish fundamental limits on the range of mesh resolutions for which this approach yields accurate results and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics. We show that for mesh sizes below the fundamental lower limit, results are less accurate. Thus, the lower limit determines the mesh size for which we obtain the most accurate results.

  6. Equilibria and kinetics for H-dependent axial ligation of alkyl(aquo) cobaloximes with aromatic and aliphatic N-donor ligands

    Indian Academy of Sciences (India)

    V Sridhar; D Sudarshan Reddy; N Ravikumar Reddy; S Satyanarayana

    2002-02-01

    Equilibria and kinetics of the reaction of bromomethyl(aquo) cobaloxime with histamine, histidine, glycine and ethyl glycine ester and iodomethyl(aquo) cobaloxime with cyanide, imidazole and substituted imidazoles were studied as a function of H at 25°C, 1.0 M ionic strength (KCl) by spectrophotometry technique. The rate of substitution of H2O varies with the of the incoming ligand, thus establishing the existence of nucleophilic participation of the ligand in the transition state. Dissociation kinetic reactions were also studied as a function of H. Binding and kinetic data were interpreted based on the basicity, steric crowd of the entering ligand and HSAB principle. To compare the rate constants of the entering ligands H independent second-order rate constants were calculated.

  7. Computer prediction system on solid/solid reaction kinetics

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A computer software system of kinetic predication of solid/solid reaction, KinPreSSR, was developed using Visual C++ and FoxPro. It includes two main modules, REACTION and DIFFUSION. KinPreSSR deals with the kinetics on the diffusion in solids as well as solid/solid reactions. The REACTION module in KinPreSSR was mainly described, which has organized the commonly recognized kinetic models, parameters, and employed both numerical and graphical methods for data analyses. The proper combination between the kinetic contents and the analytical methods enables users to use KinPreSSR for the evaluation and prediction of solid/solid reactions interested. As an example to show some of functions of KinPreSSR, the kinetics analysis for the reaction between SrCO3 and TiO2 powders to form SrTiO3 with a series of kinetic data from isothermal measurements was demonstrated.

  8. Mechanism for the formation of substituted manganese(V) cyanidonitrido complexes: crystallographic and kinetic study of the substitution reactions of trans-[MnN(H2O)(CN)4]2- with monodentate pyridine and bidentate pyridine-carboxylate ligands.

    Science.gov (United States)

    van der Westhuizen, Hendrik J; Meijboom, Reinout; Schutte, Marietjie; Roodt, Andreas

    2010-10-18

    Dissolution of [(CH(3))N](2)Na[MnN(CN)(5)]·H(2)O in water results in the rapid dissociation of the trans-CN(-) ligand to form trans-[MnN(H(2)O)(CN)(4)](2-)(aq), which reacts with monodentate pyridine ligands such as 3-methyl and 4-methyl pyridine to form the corresponding mono-substituted complexes, of which the molecular structures obtained from X-ray crystallography, trans-[MnN(3-pic)(CN)(4)](2-) and trans-[MnN(4-pic)(CN)(4)](2-), are reported. [MnN(H(2)O)(CN)(4)](2-)(aq) also reacts with bidentate nucleophiles such as pyridine-2-carboxylate (pico) and quinoline-2-carboxylate (quino), yielding the corresponding [MnN(η(2)-pico)(CN)(3)](2-) and [MnN(η(2)-quino)(CN)(3)](2-) complexes as determined by X-ray crystallography. The formation kinetics of pyridine-2-carboxylate and three different pyridine-2,x-dicarboxylate ligands (x = 3, 4, 5) are reported, and two consecutive reaction steps are proposed, defined as the formation of the [MnN(η(1)-pico)(CN)(4)](3-) and [MnN(η(2)-pico)(CN)(3)](3-) complexes, respectively. Only the second steps could be spectrophotometrically observed and kinetically investigated. The first reaction is attributed to the rapid aqua substitution of [MnN(H(2)O)(CN)(4)](2-), thermodynamically unfavored and too fast to observe by conventional rapid third generation stopped-flow techniques. The second, slower reaction is attributed to cyanido substitution, with overall formation rate constants (25 °C; k(1)'; M(-1) s(-1)) and corresponding activation parameters (ΔH(k1')(double dagger), kJ mol(-1), ΔS(k1')(double dagger), J K(-1) mol(-1)) for the following entering bidentate nucleophiles: pyridine-2-carboxylate: (1.15 ± 0.04) × 10(-3), 102 ± 1, and 48 ± 3; pyridine-2,3-dicarboxylate: (1.1 ± 0.1) × 10(-3), 93 ± 2, and 20 ± 4; pyridine-2,4-dicarboxylate (8.5 ± 0.5) × 10(-4), 123 ± 5, and 115 ± 14; pyridine-2,5-dicarboxylate: (1.08 ± 0.04) × 10(-3), 106 ± 1, and 60 ± 2. A dissociative activation for the cyanido substitution

  9. Superparamagnetic Ironoxide Nanoparticles via Ligand Exchange Reactions: Organic 1,2-Diols as Versatile Building Blocks for Surface Engineering

    Directory of Open Access Journals (Sweden)

    Robert Sachsenhofer

    2008-09-01

    Full Text Available A method for the preparation of ligand-covered superparamagnetic iron oxide nanoparticles via exchange reactions is described. 1,2-diol-ligands are used to provide a stable binding of the terminally modified organic ligands onto the surface of γ-Fe2O3-nanoparticles (r∼4 nm. The 1,2-diol-ligands are equipped with variable terminal functional groups (i.e., hydrogen bonding moieties, azido- bromo-, fluorescent moieties and can be easily prepared via osmium tetroxide-catalyzed 1,2-dihydroxylation reactions of the corresponding terminal alkenes. Starting from octylamine-covered Î��-Fe2O3-nanoparticles, ligand exchange was effected at 50∘C over 24–48 hours, whereupon complete ligand exchange is taking place as proven by thermogravimetric (TGA- and IR-spectroscopic measurements. A detailed kinetic analysis of the ligand exchange reaction was performed via TGA analysis, demonstrating a complete ligand exchange after 24 hours. The method offers a simple approach for the generation of various γ-Fe2O3-nanoparticles with functional organic shells in a one-step procedure.

  10. Effect of ionic strength on ligand exchange kinetics between a mononuclear ferric citrate complex and siderophore desferrioxamine B

    Science.gov (United States)

    Ito, Hiroaki; Fujii, Manabu; Masago, Yoshifumi; Waite, T. David; Omura, Tatsuo

    2015-04-01

    The effect of ionic strength (I) on the ligand exchange reaction between a mononuclear ferric citrate complex and the siderophore, desferrioxamine B (DFB), was examined in the NaCl concentration range of 0.01-0.5 M, particularly focusing on the kinetics and mechanism of ligand exchange under environmentally relevant conditions. Overall ligand exchange rate constants were determined by spectrophotometrically measuring the time course of ferrioxamine B formation at a water temperature of 25 °C, pH 8.0, and citrate/Fe molar ratios of 500-5000. The overall ligand exchange rate decreased by 2-11-fold (depending on the citrate/Fe molar ratios) as I increased from approximately 0.01 to 0.5 M. In particular, a relatively large decrease was observed at lower I (dissociation of citrate from the parent complexes) dominates in ferrioxamine formation under the experimental conditions used. The model also predicts that the higher rate of ligand exchange at lower I is associated with the decrease in the ferric dicitrate complex stability because of the relatively high electrical repulsion between ferric monocitrate and free citrate at lower I (note that the reactivity of ferric dicitrate with DFB is smaller than that for the monocitrate complex). Overall, the findings of this study contribute to the understanding of the potential effect of I on ligand exchange kinetics in natural waters and provide fundamental knowledge on iron transformation and bioavailability.

  11. Mathematics analysis of polymerase chain reaction kinetic curves.

    Science.gov (United States)

    Sochivko, D G; Fedorov, A A; Varlamov, D A; Kurochkin, V E; Petrov, R V

    2016-01-01

    The paper reviews different approaches to the mathematical analysis of polymerase chain reaction (PCR) kinetic curves. The basic principles of PCR mathematical analysis are presented. Approximation of PCR kinetic curves and PCR efficiency curves by various functions is described. Several PCR models based on chemical kinetics equations are suggested. Decision criteria for an optimal function to describe PCR efficiency are proposed.

  12. Understanding Chemical Reaction Kinetics and Equilibrium with Interlocking Building Blocks

    Science.gov (United States)

    Cloonan, Carrie A.; Nichol, Carolyn A.; Hutchinson, John S.

    2011-01-01

    Chemical reaction kinetics and equilibrium are essential core concepts of chemistry but are challenging topics for many students, both at the high school and undergraduate university level. Visualization at the molecular level is valuable to aid understanding of reaction kinetics and equilibrium. This activity provides a discovery-based method to…

  13. β-Hydrogen Elimination Reactions of Nickel and Palladium Methoxides Stabilised by PCP Pincer Ligands.

    Science.gov (United States)

    Martínez-Prieto, Luis M; Ávila, Elena; Palma, Pilar; Álvarez, Eleuterio; Cámpora, Juan

    2015-06-26

    Nickel and palladium methoxides [((iPr)PCP)M-OMe], which contain the (iPr)PCP pincer ligand, decompose upon heating to give products of different kinds. The palladium derivative cleanly gives the dimeric Pd(0) complex [Pd(μ-(iPr)PCHP)]2 ((iPr)PCHP = 2,6-bis(diisopropylphosphinomethyl)phenyl) and formaldehyde. In contrast, decomposition of [((iPr)PCP)Ni-OMe] affords polynuclear carbonyl phosphine complexes. Both decomposition processes are initiated by β-hydrogen elimination (BHE), but the resulting [((iPr)PCP)M-H] hydrides undergo divergent reaction sequences that ultimately lead to the irreversible breakdown of the pincer units. Whereas the Pd hydride spontaneously experiences reductive C-H coupling, the decay of its Ni analogue is brought about by its reaction with formaldehyde released in the BHE step. Kinetic measurements showed that the BHE reaction is reversible and less favourable for Ni than for Pd for both kinetic and thermodynamic reasons. DFT calculations confirmed the main conclusions of the kinetic studies and provided further insight into the mechanisms of the decomposition reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Kinetic consequences of introducing a proximal selenocysteine ligand into cytochrome P450cam.

    Science.gov (United States)

    Vandemeulebroucke, An; Aldag, Caroline; Stiebritz, Martin T; Reiher, Markus; Hilvert, Donald

    2015-11-10

    The structural, electronic, and catalytic properties of cytochrome P450cam are subtly altered when the cysteine that coordinates to the heme iron is replaced with a selenocysteine. To map the effects of the sulfur-to-selenium substitution on the individual steps of the catalytic cycle, we conducted a comparative kinetic analysis of the selenoenzyme and its cysteine counterpart. Our results show that the more electron-donating selenolate ligand has only negligible effects on substrate, product, and oxygen binding, electron transfer, catalytic turnover, and coupling efficiency. Off-pathway reduction of oxygen to give superoxide is the only step significantly affected by the mutation. Incorporation of selenium accelerates this uncoupling reaction approximately 50-fold compared to sulfur, but because the second electron transfer step is much faster, the impact on overall catalytic turnover is minimal. Density functional theory calculations with pure and hybrid functionals suggest that superoxide formation is governed by a delicate interplay of spin distribution, spin state, and structural effects. In light of the remarkably similar electronic structures and energies calculated for the sulfur- and selenium-containing enzymes, the ability of the heavier atom to enhance the rate of spin crossover may account for the experimental observations. Because the selenoenzyme closely mimics wild-type P450cam, even at the level of individual steps in the reaction cycle, selenium represents a unique mechanistic probe for analyzing the role of the proximal ligand and spin crossovers in P450 chemistry.

  15. Kinetics of ozone-phenol reaction in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, M.G.; Shambaugh, R.L.

    1982-01-01

    The kinetics of the reaction of ozone and phenol in aqueous medium was studied. The reaction was first order with respect to both ozone and phenol. The rate constant was found to increase with increase in the pH of the reaction mixture. Four different catalysts were examined for their effect on the rate of reaction. 30 refs.

  16. Displacement of aqua ligands from the hydroxopentaaquarhodium(III) ion by 1-hydroxybenzotriazole (HOBt): A kinetic and mechanistic approach

    Indian Academy of Sciences (India)

    Biplab K Bera; Arup Mandal; Biswarup Maity; Sumon Ray; Parnajyoti Karmakar; Subala Mondal; Subhasis Mallick; Alak K Ghosh

    2012-07-01

    The kinetics of the reaction of HOBt with [Rh(H2O)5(OH)]2+ has been studied spectrophotometrically in aqueous medium as a function of [Rh(H2O)5OH2+], [HOBt], pH and temperature. At pH 4.3, the reaction proceeds via a rapid outer sphere association complex formation step followed by two consecutive steps. The first of these involves ligand-assisted anation, while the second involves chelation as the second aqua ligand is displaced. The association equilibrium constant for the outer sphere complex formation has been evaluated together with the rate constants for the two subsequent steps. The activation parameters for both steps have been evaluated using Eyrings equation. Thermodynamic parameters calculated from the temperature dependence of the outer sphere association equilibrium constants are also consistent with an associative mode of activation. The product of the reaction has been characterized by IR and ESI-mass spectroscopic analysis.

  17. Thermodynamic and kinetic studies of the equilibration reaction between the sulfur and carbon bonded forms of a cobalt(III) complex with the ligands 2-aminoethyl-3-aminopropylsulfide and 1,1,1-tris(aminomethyl)ethane

    DEFF Research Database (Denmark)

    Springborg, J.; Kjellerup, S.; Kofod, Pauli

    1996-01-01

    A thermodn. and kinetic study of the equilibration between the Co-S bonded complex Co(tame)(S-aeaps)3+ and the Co-C bonded complex Co(tame)(C-aeaps)2+ is reported (tame = 1,1,1-tris(aminomethyl)ethane, aeaps = 2-aminoethyl-3-aminopropyl sulfide = 3-thiahexane-1,6-diamine and C-aeaps = 1,6-diamine...... the Co-alkyl complex gave complete loss of D. From the kinetic data it is estd. that the carbanion reacts with H2O 170 times faster than it is captured by Co(III)....

  18. Impact of ligand protonation on higher-order metal complexation kinetics in aqueous systems

    NARCIS (Netherlands)

    Town, R.M.; Leeuwen, van H.P.

    2008-01-01

    The impact of ligand protonation on the complexation kinetics of higher-order complexes is quantitatively described. The theory is formulated on the basis of the usual situation for metal complex formation in aqueous systems in which the exchange of water for the ligand in the inner coordination sph

  19. Impact of ligand protonation on higher-order metal complexation kinetics in aqueous systems

    NARCIS (Netherlands)

    Town, R.M.; Leeuwen, van H.P.

    2008-01-01

    The impact of ligand protonation on the complexation kinetics of higher-order complexes is quantitatively described. The theory is formulated on the basis of the usual situation for metal complex formation in aqueous systems in which the exchange of water for the ligand in the inner coordination sph

  20. Kinetic modeling and fitting software for interconnected reaction schemes: VisKin.

    Science.gov (United States)

    Zhang, Xuan; Andrews, Jared N; Pedersen, Steen E

    2007-02-15

    Reaction kinetics for complex, highly interconnected kinetic schemes are modeled using analytical solutions to a system of ordinary differential equations. The algorithm employs standard linear algebra methods that are implemented using MatLab functions in a Visual Basic interface. A graphical user interface for simple entry of reaction schemes facilitates comparison of a variety of reaction schemes. To ensure microscopic balance, graph theory algorithms are used to determine violations of thermodynamic cycle constraints. Analytical solutions based on linear differential equations result in fast comparisons of first order kinetic rates and amplitudes as a function of changing ligand concentrations. For analysis of higher order kinetics, we also implemented a solution using numerical integration. To determine rate constants from experimental data, fitting algorithms that adjust rate constants to fit the model to imported data were implemented using the Levenberg-Marquardt algorithm or using Broyden-Fletcher-Goldfarb-Shanno methods. We have included the ability to carry out global fitting of data sets obtained at varying ligand concentrations. These tools are combined in a single package, which we have dubbed VisKin, to guide and analyze kinetic experiments. The software is available online for use on PCs.

  1. Thermodynamic and kinetic studies of the equilibration reaction between the sulfur and carbon bonded forms of a cobalt(III) complex with the ligands 2-aminoethyl-3-aminopropylsulfide and 1,1,1-tris(aminomethyl)ethane

    DEFF Research Database (Denmark)

    Springborg, J.; Kjellerup, S.; Kofod, Pauli

    1996-01-01

    A thermodn. and kinetic study of the equilibration between the Co-S bonded complex Co(tame)(S-aeaps)3+ and the Co-C bonded complex Co(tame)(C-aeaps)2+ is reported (tame = 1,1,1-tris(aminomethyl)ethane, aeaps = 2-aminoethyl-3-aminopropyl sulfide = 3-thiahexane-1,6-diamine and C-aeaps = 1,6-diamine-3...

  2. How wet should be the reaction coordinate for ligand unbinding?

    CERN Document Server

    Tiwary, Pratyush

    2016-01-01

    We use a recently proposed method called Spectral Gap Optimization of Order Parameters (SGOOP) (Tiwary and Berne, Proc. Natl. Acad. Sci 2016, 113, 2839 (2016)), to determine an optimal 1-dimensional reaction coordinate (RC) for the unbinding of a bucky-ball from a pocket in explicit water. This RC is estimated as a linear combination of the multiple available order parameters that collectively can be used to distinguish the various stable states relevant for unbinding. We pay special attention to determining and quantifying the degree to which water molecules should be included in the RC. Using SGOOP with under-sampled biased simulations, we predict that water plays a distinct role in the reaction coordinate for unbinding in the case when the ligand is sterically constrained to move along an axis of symmetry. This prediction is validated through extensive calculations of the unbinding times through metadynamics, and by comparison through detailed balance with unbiased molecular dynamics estimate of the bindin...

  3. Development of new chiral ligand exchange capillary electrophoresis system with amino acid ionic liquids ligands and its application in studying the kinetics of L-amino acid oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Bingbing [Beijing National Laboratory for Molecular Sciences, Key Lab of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); College of Food Sciences and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018 (China); Mu, Xiaoyu [Beijing National Laboratory for Molecular Sciences, Key Lab of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Qi, Li, E-mail: qili@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, Key Lab of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-04-01

    Highlights: • Novel amino acid ionic liquids with pyridinium as cations and L-lysine as anion were synthesized. • These synthesized AAILs have been explored as the ligands coordinated with Zn(II) in CLE-CE system. • The developed CLE-CE method could be used for the enantioseparation of Dns-D, L-amino acids. • The kinetic contents of L-amino acid oxidase were investigated with the proposed CLE-CE system. - Abstract: New kinds of amino acid ionic liquids (AAILs) with pyridinium as cations and L-lysine (L-Lys) as anion have been developed as the available chiral ligands coordinated with Zn(II) in chiral ligand-exchange capillary electrophoresis (CLE-CE). Four kinds of AAILs, including [1-ethylpyridinium][L-lysine], 1-butylpyridinium][L-lysine], [1-hexylpyridinium][L-lysine] and 1-[octylpyridinium][L-lysine], were successfully synthesized and characterized by nuclear magnetic resonance and mass spectrometry. Compared with other AAILs, the best chiral separation of Dns-D, L-amino acids could be achieved when [1-ethylpyridinium][L-lysine] was chosen as the chiral ligand. It has been found that after investigating the influence of key factors on the separation efficiency, such as pH of buffer solution, the ratio of Zn(II) to ligand and complex concentration, eight pairs of Dns-D, L-AAs enantiomers could be baseline separated and three pairs were partly separated under the optimum conditions. The proposed CLE-CE method also exhibited favorable quantitative analysis property of Dns-D, L-Met with good linearity (r{sup 2} = 0.998) and favorable repeatability (RSD ≤ 1.5%). Furthermore, the CLE-CE system was applied in investigating the kinetic contents of L-amino acid oxidase, which implied that the proposed system has the potential in studying the enzymatic reaction mechanism.

  4. Reactions of diiron m-aminocarbyne complexes containing nitrile ligands

    Directory of Open Access Journals (Sweden)

    Busetto Luigi

    2003-01-01

    Full Text Available The acetonitrile ligand in the mu-aminocarbyne complexes [Fe2{mu-CN(MeR}(mu-CO(CO(NCMe(Cp2][SO 3CF3] (R = Me, 2a, CH2Ph, 2b, Xyl, 2c (Xyl = 2,6-Me2C6H3 is readily displaced by halides and cyanide anions affording the corresponding neutral species [Fe2{mu-CN(MeR}(mu-CO(CO(X(Cp2 ] (X = Br, I, CN. Complexes 2 undergo deprotonation and rearrangement of the coordinated MeCN upon treatment with organolithium reagents. Trimethylacetonitrile, that does not contain acidic alpha hydrogens has been used in place of MeCN to form the complexes [Fe2{mu-CN(MeR}(mu-CO(CO(NCCMe3 (Cp2][SO3CF3] (7a-c. Attempts to replace the nitrile ligand in 3 with carbon nucleophiles (by reaction with RLi failed, resulting in decomposition products. However the reaction of 7c with LiCºCTol (Tol = C6H4Me, followed by treatment with HSO3CF3, yielded the imino complex [Fe2{mu-CN(MeXyl}(mu-CO(CO {N(HC(CºCC6H4Me-4CMe3}(Cp 2][SO3CF3 ] (8, obtained via acetilyde addition at the coordinated NCCMe3.

  5. Kinetic Study of the Heck Reaction: An Interdisciplinary Experiment

    Science.gov (United States)

    Gozzi, Christel; Bouzidi, Naoual

    2008-01-01

    The aim of this experiment is to study and calculate the kinetic constant of a Heck reaction: the arylation of but-3-en-2-ol by iodobenzene catalyzed by palladium acetate in presence of triethylamine in DMF. The reaction leads to a mixture of two ketones. Students use GC analysis to quantify reagents and products of reaction. They control the…

  6. Reversible dissociation and ligand-glutathione exchange reaction in binuclear cationic tetranitrosyl iron complex with penicillamine.

    Science.gov (United States)

    Syrtsova, Lidia; Sanina, Natalia; Lyssenko, Konstantin; Kabachkov, Evgeniy; Psikha, Boris; Shkondina, Natal'ja; Pokidova, Olesia; Kotelnikov, Alexander; Aldoshin, Sergey

    2014-01-01

    This paper describes a comparative study of the decomposition of two nitrosyl iron complexes (NICs) with penicillamine thiolic ligands [Fe2(SC5H11NO2)2(NO)4]SO4 ·5H2O (I) and glutathione- (GSH-) ligands [Fe2(SC10H17N3O6)2(NO)4]SO4 ·2H2O (II), which spontaneously evolve to NO in aqueous medium. NO formation was measured by a sensor electrode and by spectrophotometric methods by measuring the formation of a hemoglobin- (Hb-) NO complex. The NO evolution reaction rate from (I)  k 1 = (4.6 ± 0.1)·10(-3) s(-1) and the elimination rate constant of the penicillamine ligand k 2 = (1.8 ± 0.2)·10(-3) s(-1) at 25°C in 0.05 M phosphate buffer,  pH 7.0, was calculated using kinetic modeling based on the experimental data. Both reactions are reversible. Spectrophotometry and mass-spectrometry methods have firmly shown that the penicillamine ligand is exchanged for GS(-) during decomposition of 1.5·10(-4) M (I) in the presence of 10(-3) M GSH, with 76% yield in 24 h. As has been established, such behaviour is caused by the resistance of (II) to decomposition due to the higher affinity of iron to GSH in the complex. The discovered reaction may impede S-glutathionylation of the essential enzyme systems in the presence of (I) and is important for metabolism of NIC, connected with its antitumor activity.

  7. Thermodynamic and kinetic studies of the equilibration reaction between the sulfur and carbon bonded forms of a cobalt(III) complex with the ligands 1,4,7-triazycyclononane and 1,4-diaza-7-thiacyclodecane

    DEFF Research Database (Denmark)

    Song, Y.S.; Becker, J.; Kofod, Pauli

    1996-01-01

    The new cyclic thioether 1,4-diaza-7-thiacyclodecane, dathicd, has been synthesized and used for the prepn. of the sulfur- and carbon-bonded cobalt(III) complexes: [Co(tacn)(S-dathicd)]Cl3.5H2O and [Co(tacn)(C-dathicd)](ClO4)2 (tacn, 1,4,7-triazacyclononane; C-dathicd, 1,4-diamino-7-thiacyclodecan......-8-ide anion). A thermodn. and kinetic study of the equilibration between these coordination compds. has been performed using UV-VIS absorption spectroscopy, IE-HPLC and 13C NMR ([OH-]=10-5-1.0 M, T=25.0 DegC, I=1.0 M). In basic soln. Co(tacn)(S-dathicd)3+ deprotonates at one of the coordinated amine...

  8. Thermodynamic and kinetic studies of the equilibration reaction between the sulfur and carbon bonded forms of a cobalt(III) complex with the ligands 1,4,7-triazycyclononane and 1,4-diaza-7-thiacyclodecane

    DEFF Research Database (Denmark)

    Song, Y.S.; Becker, J.; Kofod, Pauli

    1996-01-01

    -sulfur complex to form the alkyl complex gave 100% loss of deuterium. It is concluded that the labile methylene proton is bound to the carbon atom which in the alkyl complex is bound to cobalt(III). From the kinetic data it is estd. that the carbanion reacts with water 270 times faster than it is captured......The new cyclic thioether 1,4-diaza-7-thiacyclodecane, dathicd, has been synthesized and used for the prepn. of the sulfur- and carbon-bonded cobalt(III) complexes: [Co(tacn)(S-dathicd)]Cl3.5H2O and [Co(tacn)(C-dathicd)](ClO4)2 (tacn, 1,4,7-triazacyclononane; C-dathicd, 1,4-diamino-7-thiacyclodecan...

  9. Complex Kinetics in the Reaction of Taurine with Aqueous Bromine ...

    African Journals Online (AJOL)

    Complex Kinetics in the Reaction of Taurine with Aqueous Bromine and Acidic Bromate : A Possible Cytoprotective Role against Hypobromous Acid. ... toxicity of bromine and hypobromous acid in the slightly basic physiological environments.

  10. A relativistic correlationless kinetic equation with radiation reaction fully incorporated

    Science.gov (United States)

    Lai, H. M.

    1984-06-01

    The Landau-Lifshitz expression for the Lorentz-Dirac equation is used to derive a relativistic correlationless kinetic equation for a system of electrons with radiation reaction fully incorporated. Various situations and possible applications are discussed.

  11. The thermodynamic natural path in chemical reaction kinetics

    Directory of Open Access Journals (Sweden)

    Moishe garfinkle

    2000-01-01

    Full Text Available The Natural Path approach to chemical reaction kinetics was developed to bridge the considerable gap between the Mass Action mechanistic approach and the non-mechanistic irreversible thermodynamic approach. The Natural Path approach can correlate empirical kinetic data with a high degree precision, as least equal to that achievable by the Mass-Action rate equations, but without recourse mechanistic considerations. The reaction velocities arising from the particular rate equation chosen by kineticists to best represent the kinetic behavior of a chemical reaction are the natural outcome of the Natural Path approach. Moreover, by virtue of its thermodynamic roots, equilibrium thermodynamic functions can be extracted from reaction kinetic data with considerable accuracy. These results support the intrinsic validity of the Natural Path approach.

  12. Kinetics of Acid Reactions: Making Sense of Associated Concepts

    Science.gov (United States)

    Tan, Kim Chwee Daniel; Treagust, David F.; Chandrasegaran, A. L.; Mocerino, Mauro

    2010-01-01

    In chemical kinetics, in addition to the concepts related to kinetics, stoichiometry, chemical equilibrium and the characteristics of the reactants are often involved when comparing the rates of different reactions, making such comparisons very challenging for students at all levels, as well as for pre-service science teachers. Consequently, four…

  13. Kinetics of the Exothermic Decomposition Reaction of s-Tripicryaminotrinitrobenzene

    Institute of Scientific and Technical Information of China (English)

    ZHAO Feng-qi; HU Rong-zu; GAO Hong-xu; LUO Yang; GAO Sheng-li; SONG Ji-rong; SHI Qi-zhen

    2007-01-01

    The kinetic parameters of the exothermic decomposition reaction of s-Tripicryaminotrinitrobenzene under linear temperature rise condition are studied by means of DSC. The results show that the empirical kinetic model function in difs-1, respectively. The critical temperature of thermal explosion of the compound is 267.36 ℃.

  14. Belousov-Zhabotinsky oscillatory reaction. Kinetics of malonic acid decomposition

    Directory of Open Access Journals (Sweden)

    LJILJANA KOLAR-ANIC

    2000-10-01

    Full Text Available The kinetics of the Belousov-Zhabotinsky (BZ oscillatory reaction was analyzed. With this aim, the time evolution of a reaction mixture composed of malonic acid, bromate, sulfuric acid and cerium(III was studied at 298 K. Pseudo-first order kinetics with respect to malonic acid as the species undergoing decomposition with a corresponding rate constant, k = 7.5×10-3 min-1, was found.

  15. Kinetics of Model Reactions for Interfacial Polymerization

    Directory of Open Access Journals (Sweden)

    Henry Hall

    2012-02-01

    Full Text Available To model the rates of interfacial polycondensations, the rates of reaction of benzoyl chloride and methyl chloroformate with various aliphatic monoamines in acetonitrile were determined at 25 °C. Buffering with picric acid slowed these extremely fast reactions so the rate constants could be determined from the rate of disappearance of picrate ion. The rates of the amine reactions correlated linearly with their Swain-Scott nucleophilicities.

  16. Parameterization of phosphine ligands reveals mechanistic pathways and predicts reaction outcomes

    Science.gov (United States)

    Niemeyer, Zachary L.; Milo, Anat; Hickey, David P.; Sigman, Matthew S.

    2016-06-01

    The mechanistic foundation behind the identity of a phosphine ligand that best promotes a desired reaction outcome is often non-intuitive, and thus has been addressed in numerous experimental and theoretical studies. In this work, multivariate correlations of reaction outcomes using 38 different phosphine ligands were combined with classic potentiometric analyses to study a Suzuki reaction, for which the site selectivity of oxidative addition is highly dependent on the nature of the phosphine. These studies shed light on the generality of hypotheses regarding the structural influence of different classes of phosphine ligands on the reaction mechanism(s), and deliver a methodology that should prove useful in future studies of phosphine ligands.

  17. Photocatalytic Water-Splitting Reaction from Catalytic and Kinetic Perspectives

    KAUST Repository

    Hisatomi, Takashi

    2014-10-16

    Abstract: Some particulate semiconductors loaded with nanoparticulate catalysts exhibit photocatalytic activity for the water-splitting reaction. The photocatalysis is distinct from the thermal catalysis because photocatalysis involves photophysical processes in particulate semiconductors. This review article presents a brief introduction to photocatalysis, followed by kinetic aspects of the photocatalytic water-splitting reaction.Graphical Abstract: [Figure not available: see fulltext.

  18. Equilibria and kinetics for pH-dependent axial ligation of ethylester and methylester(aquo)cobaloximes with aromatic and aliphatic N-donor ligands and a molecular mechanistic study of the Co-C bond

    Indian Academy of Sciences (India)

    J V Madhuri; V Malathi; S Satyanarayana

    2004-03-01

    Equilibrium constants are determined for the reaction of ethylester and methyl ester (aquo) cobaloximes with histamine, histidine, glycine and ethyl glycine ester as a function of pH at 25°C, using spectrophotometric technique. The functional dependence of p on the substitution rate of H2O varies with the p of the incoming ligand, establishing the existence of nucleophilic participation of the ligand in the transition state. This data is interpreted with the help of kinetic data where dissociation kinetic reactions were also studied as a function of pH. Binding and kinetic data were correlated based on the basicity, steric hindrance of the entering ligand and HSAB principle. To compare the rate constants of the entering ligands pH-independent second-order rate constants were calculated. The effect of incoming ligand on Co-C bond is studied using molecular mechanics.

  19. Effect of montmorillonite on kinetics of polyurethane preparation reaction

    Institute of Scientific and Technical Information of China (English)

    You Cao; Yu Jiang; Shu Lu Zhao; Xiao Jun Cai; Mei Long Hu; Bing Liao

    2008-01-01

    The prepolymerization and curing reaction kinetics of polyurethane/montmorillonite have been studied with end group analysisand FTIR respectively. It was found that the prepolymerization and curing reaction followed the 2nd-order kinetics. But theactivation energy of prepolymerization increased from 42.7 k J/mol to 56.5 k J/mol after the montmorillonite was added in thereaction system, and activation energy of curing reaction decreased from 64.4 kJ/mol to 17.5 k J/mol.

  20. Reaction rates for reaction-diffusion kinetics on unstructured meshes

    Science.gov (United States)

    Hellander, Stefan; Petzold, Linda

    2017-02-01

    The reaction-diffusion master equation is a stochastic model often utilized in the study of biochemical reaction networks in living cells. It is applied when the spatial distribution of molecules is important to the dynamics of the system. A viable approach to resolve the complex geometry of cells accurately is to discretize space with an unstructured mesh. Diffusion is modeled as discrete jumps between nodes on the mesh, and the diffusion jump rates can be obtained through a discretization of the diffusion equation on the mesh. Reactions can occur when molecules occupy the same voxel. In this paper, we develop a method for computing accurate reaction rates between molecules occupying the same voxel in an unstructured mesh. For large voxels, these rates are known to be well approximated by the reaction rates derived by Collins and Kimball, but as the mesh is refined, no analytical expression for the rates exists. We reduce the problem of computing accurate reaction rates to a pure preprocessing step, depending only on the mesh and not on the model parameters, and we devise an efficient numerical scheme to estimate them to high accuracy. We show in several numerical examples that as we refine the mesh, the results obtained with the reaction-diffusion master equation approach those of a more fine-grained Smoluchowski particle-tracking model.

  1. Reaction wheels for kinetic energy storage

    Science.gov (United States)

    Studer, P. A.

    1984-01-01

    In contrast to all existing reaction wheel implementations, an order of magnitude increase in speed can be obtained efficiently if power to the actuators can be recovered. This allows a combined attitude control-energy storage system to be developed with structure mounted reaction wheels. The feasibility of combining reaction wheels with energy storage wwheels is demonstrated. The power required for control torques is a function of wheel speed but this energy is not dissipated; it is stored in the wheel. The I(2)R loss resulting from a given torque is shown to be constant, independent of the design speed of the motor. What remains, in order to efficiently use high speed wheels (essential for energy storage) for control purposes, is to reduce rotational losses to acceptable levels. Progress was made in permanent magnet motor design for high speed operation. Variable field motors offer more control flexibility and efficiency over a broader speed range.

  2. A unifying kinetic framework for modeling oxidoreductase-catalyzed reactions

    OpenAIRE

    Chang, Ivan; Baldi, Pierre

    2013-01-01

    Motivation: Oxidoreductases are a fundamental class of enzymes responsible for the catalysis of oxidation–reduction reactions, crucial in most bioenergetic metabolic pathways. From their common root in the ancient prebiotic environment, oxidoreductases have evolved into diverse and elaborate protein structures with specific kinetic properties and mechanisms adapted to their individual functional roles and environmental conditions. While accurate kinetic modeling of oxidoreductases is thus imp...

  3. Kinetic model for hydroisomerization reaction of C8-aromatics

    Institute of Scientific and Technical Information of China (English)

    Ouguan XU; Hongye SU; Xiaoming JIN; Jian CHU

    2008-01-01

    Based on the reported reaction networks, a novel six-component hydroisomerization reaction net-work with a new lumped species including C8-naphthenes and Cs-paraffins is proposed and a kinetic model for a commercial unit is also developed. An empirical catalyst deactivation function is incorporated into the model accounting for the loss in activity because of coke forma-tion on the catalyst surface during the long-term opera-tion. The Runge-Kutta method is used to solve the ordinary differential equations of the model. The reaction kinetic parameters are benchmarked with several sets of balanced plant data and estimated by the differential vari-able metric optimization method (BFGS). The kinetic model is validated by an industrial unit with sets of plant data under different operating conditions and simulation results show a good agreement between the model predic-tions and the plant observations.

  4. The influence of gas-kinetic evolution on plasma reactions

    CERN Document Server

    Diver, D A; MacLachlan, C S; Potts, H E

    2008-01-01

    Plasmas in which there is a threshold for a dominant reaction to take place (such as recombination or attachment) will have particle distributions that evolve as the reaction progresses. The form of the Boltzmann collision term in such a context will cause the distribution to drift from its initial form, and so cause for example temperature fluctuations in the plasma if the distribution is originally Maxwellian. This behaviour will impact on the relevant reaction rates in a feedback loop that is missing from simple chemical kinetic descriptions since the plasma cannot be considered to be isothermal, as is the case in the latter approach. In this article we present a simple kinetic model that captures these essential features, showing how cumulative differences in the instantaneous species levels can arise over the purely chemical kinetic description, with implications for process yields and efficiencies.

  5. The bainite reaction kinetics in austempered ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Taran, Yu.N.; Uzlov, K.I.; Kutsov, A.Yu. [State Metall. Acad., Dnepropetrovsk (Ukraine). Phys. Metall. Dept.

    1997-11-01

    Bainitic reaction kinetics in ductile iron contained according to Ukrainian standard (weight%) 3.60-3.80 carbon, 2.60-2.80 Si, {proportional_to}0.12 Mn, {proportional_to}0.60 Cu and additionally alloyed by Mo (0.15-0.20) has been studied. It was found that the overall transformation kinetics becomes slower as transformation temperature increase. This is because more intensive redistribution of carbon into austenite at higher temperatures. Two austenites with different carbon content have been fixed and kinetics of their lattices parameters has been studied. (orig.). 6 refs.

  6. Ligand-receptor binding kinetics in surface plasmon resonance cells: A Monte Carlo analysis

    CERN Document Server

    Carroll, Jacob; Forsten-Williams, Kimberly; Täuber, Uwe C

    2016-01-01

    Surface plasmon resonance (SPR) chips are widely used to measure association and dissociation rates for the binding kinetics between two species of chemicals, e.g., cell receptors and ligands. It is commonly assumed that ligands are spatially well mixed in the SPR region, and hence a mean-field rate equation description is appropriate. This approximation however ignores the spatial fluctuations as well as temporal correlations induced by multiple local rebinding events, which become prominent for slow diffusion rates and high binding affinities. We report detailed Monte Carlo simulations of ligand binding kinetics in an SPR cell subject to laminar flow. We extract the binding and dissociation rates by means of the techniques frequently employed in experimental analysis that are motivated by the mean-field approximation. We find major discrepancies in a wide parameter regime between the thus extracted rates and the known input simulation values. These results underscore the crucial quantitative importance of s...

  7. Interpolated lattice Boltzmann boundary conditions for surface reaction kinetics.

    Science.gov (United States)

    Walsh, S D C; Saar, M O

    2010-12-01

    This paper describes a method for implementing surface reaction kinetics in lattice Boltzmann simulations. The interpolated boundary conditions are capable of simulating surface reactions and dissolution at both stationary and moving solid-fluid and fluid-fluid interfaces. Results obtained with the boundary conditions are compared to analytical solutions for first-order and constant-flux kinetic surface reactions in a one-dimensional half space, as well as to the analytical solution for evaporation from the surface of a cylinder. Excellent agreement between analytical and simulated results is obtained for a wide range of diffusivities, lattice velocities, and surface reaction rates. The boundary model's ability to represent dissolution in binary fluid mixtures is demonstrated by modeling diffusion from a rising bubble and dissolution of a droplet near a flat plate.

  8. Diagnostic Appraisal of Grade 12 Students' Understanding of Reaction Kinetics

    Science.gov (United States)

    Yan, Yaw Kai; Subramaniam, R.

    2016-01-01

    The study explored grade 12 students' understanding of reaction kinetics, a topic which has not been extensively explored in the chemistry education literature at this level. A 3-tier diagnostic instrument with 11 questions was developed--this format is of very recent origin and has been the subject of only a handful of studies. The findings…

  9. REACTION KINETICS OF CA-BASED SORBENTS WITH HC1

    Science.gov (United States)

    The kinetics of the reaction between CaO and HCl were investigated under conditions that minimize bulk mass transfer and pore diffusion limitations. Reactivity data from 0.2- to 1-s exposure to 5000 ppm HCl in a fixed bed reactor were analyzed by a shrinking core model of diffusi...

  10. Reaction kinetics of fluorite in flow systems and surface chemistry

    Institute of Scientific and Technical Information of China (English)

    张荣华; 胡书敏

    1996-01-01

    The kinetic experiments of fluorite in water-HCl solution in an open-flow system at the temperatures ≤100℃ reveal that the variation of flow rate (U) can change the reaction rate orders from 0 to 2 or higher. In the far from equilibrium systems, the dissolution rates of fluorite in aqueous solutions have a zero order.The reaction rates are controlled by pH values of input solutions. In fact, the reaction rates are related to the concentrations of the active sites occupied by H+ on fluorite surface [SOH]. X-ray photospectroscopy observations on fluorite surface before and after reaction indicate that surface chemical processes control the reaction rates: Cl- cations attach on and enter into surface of fluorite besides H+ when fluorites react with HCl solutions, which affect the reaction rates.

  11. Developing the reaction kinetics for a biodiesel reactor.

    Science.gov (United States)

    Slinn, Matthew; Kendall, Kevin

    2009-04-01

    The aim of this paper was to investigate the kinetics of the biodiesel reaction in order to find out how best to reach 96.5% methyl ester. The purity of the biodiesel product was examined using gas chromatography to the EN14214 FAME standard and real-time optical microscopy was used to observe the reaction. The problem was the reaction does not reach completion and the mechanism is not understood. It was observed that droplet size had a major influence on reaction end point and that the reaction was mass-transfer limited. This observation was confirmed by developing a mass-transfer based reaction model using the data from the batch reactor which agreed with results from other researchers. The model predicted better conversion with more mixing intensity. The results show that significant improvements could be made to the conventional FAME process.

  12. Oscillatory enzyme reactions and Michaelis-Menten kinetics.

    Science.gov (United States)

    Goldbeter, Albert

    2013-09-02

    Oscillations occur in a number of enzymatic systems as a result of feedback regulation. How Michaelis-Menten kinetics influences oscillatory behavior in enzyme systems is investigated in models for oscillations in the activity of phosphofructokinase (PFK) in glycolysis and of cyclin-dependent kinases in the cell cycle. The model for the PFK reaction is based on a product-activated allosteric enzyme reaction coupled to enzymatic degradation of the reaction product. The Michaelian nature of the product decay term markedly influences the period, amplitude and waveform of the oscillations. Likewise, a model for oscillations of Cdc2 kinase in embryonic cell cycles based on Michaelis-Menten phosphorylation-dephosphorylation kinetics shows that the occurrence and amplitude of the oscillations strongly depend on the ultrasensitivity of the enzymatic cascade that controls the activity of the cyclin-dependent kinase. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. Evaluation of true kinetic parameters for reversible immobilized enzyme reactions

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, H.; Tanaka, T.; Kurose, K.; Hikita, H.

    1987-06-01

    For a reversible one-substrate reaction system that follows the Haldane reaction mechanism, a new and effective method has been proposed to extract true or intrinsic kinetic parameters of immobilized enzymes from diffusion limited rate data. The method utilizes the effectiveness factors correlated in terms of the general modulus defined by Aris and Bischoff, and a new modulus defined in the present study. It requires a trial-and-error calculation, but only a few data points. Furthermore, it provides a saving of materials such as substrates and enzymes, and takes less time for experiments compared to the initial rate methods. The usefulness of the method is demonstrated by determining the kinetic parameters for membrane bound fumarase which catalyzes the reaction of the conversion of fumarate to L-malate, for which the equilibrium constant is circa 4. (Refs. 20).

  14. Reaction Mechanism Generator: Automatic construction of chemical kinetic mechanisms

    Science.gov (United States)

    Gao, Connie W.; Allen, Joshua W.; Green, William H.; West, Richard H.

    2016-06-01

    Reaction Mechanism Generator (RMG) constructs kinetic models composed of elementary chemical reaction steps using a general understanding of how molecules react. Species thermochemistry is estimated through Benson group additivity and reaction rate coefficients are estimated using a database of known rate rules and reaction templates. At its core, RMG relies on two fundamental data structures: graphs and trees. Graphs are used to represent chemical structures, and trees are used to represent thermodynamic and kinetic data. Models are generated using a rate-based algorithm which excludes species from the model based on reaction fluxes. RMG can generate reaction mechanisms for species involving carbon, hydrogen, oxygen, sulfur, and nitrogen. It also has capabilities for estimating transport and solvation properties, and it automatically computes pressure-dependent rate coefficients and identifies chemically-activated reaction paths. RMG is an object-oriented program written in Python, which provides a stable, robust programming architecture for developing an extensible and modular code base with a large suite of unit tests. Computationally intensive functions are cythonized for speed improvements.

  15. Non-Michaelis-Menten kinetics in cytochrome P450-catalyzed reactions.

    Science.gov (United States)

    Atkins, William M

    2005-01-01

    The cytochrome P450 monooxygenases (CYPs) are the dominant enzyme system responsible for xenobiotic detoxification and drug metabolism. Several CYP isoforms exhibit non-Michaelis-Menten, or "atypical," steady state kinetic patterns. The allosteric kinetics confound prediction of drug metabolism and drug-drug interactions, and they challenge the theoretical paradigms of allosterism. Both homotropic and heterotropic ligand effects are now widely documented. It is becoming apparent that multiple ligands can simultaneously bind within the active sites of individual CYPs, and the kinetic parameters change with ligand occupancy. In fact, the functional effect of any specific ligand as an activator or inhibitor can be substrate dependent. Divergent approaches, including kinetic modeling and X-ray crystallography, are providing new information about how multiple ligand binding yields complex CYP kinetics.

  16. Reaction kinetics of cellulose hydrolysis in subcritical and supercritical water

    Science.gov (United States)

    Olanrewaju, Kazeem Bode

    The uncertainties in the continuous supply of fossil fuels from the crisis-ridden oil-rich region of the world is fast shifting focus on the need to utilize cellulosic biomass and develop more efficient technologies for its conversion to fuels and chemicals. One such technology is the rapid degradation of cellulose in supercritical water without the need for an enzyme or inorganic catalyst such as acid. This project focused on the study of reaction kinetics of cellulose hydrolysis in subcritical and supercritical water. Cellulose reactions at hydrothermal conditions can proceed via the homogeneous route involving dissolution and hydrolysis or the heterogeneous path of surface hydrolysis. The work is divided into three main parts. First, the detailed kinetic analysis of cellulose reactions in micro- and tubular reactors was conducted. Reaction kinetics models were applied, and kinetics parameters at both subcritical and supercritical conditions were evaluated. The second major task was the evaluation of yields of water soluble hydrolysates obtained from the hydrolysis of cellulose and starch in hydrothermal reactors. Lastly, changes in molecular weight distribution due to hydrothermolytic degradation of cellulose were investigated. These changes were also simulated based on different modes of scission, and the pattern generated from simulation was compared with the distribution pattern from experiments. For a better understanding of the reaction kinetics of cellulose in subcritical and supercritical water, a series of reactions was conducted in the microreactor. Hydrolysis of cellulose was performed at subcritical temperatures ranging from 270 to 340 °C (tau = 0.40--0.88 s). For the dissolution of cellulose, the reaction was conducted at supercritical temperatures ranging from 375 to 395 °C (tau = 0.27--0.44 s). The operating pressure for the reactions at both subcritical and supercritical conditions was 5000 psig. The results show that the rate-limiting step in

  17. Synthesis of Novel Bisoxazoline Ligands for the Enantioselective Diels-Alder Reaction

    Institute of Scientific and Technical Information of China (English)

    Qing Hua BIAN; Jun LIU; Ming Ming YIN; Min WANG

    2006-01-01

    Four novel bisoxazoline ligands 8a-d were synthesized from (S)-amino alcohols and could be formed effective catalysts (up to 77% ee for endo isomer) with Cu(OTf)2 for enantioselective Diels-Alder addition. The facility of the reaction was dependent on the nature of the substituent R in the bisoxazoline ligand.

  18. Binding kinetics of membrane-anchored receptors and ligands: Molecular dynamics simulations and theory.

    Science.gov (United States)

    Hu, Jinglei; Xu, Guang-Kui; Lipowsky, Reinhard; Weikl, Thomas R

    2015-12-28

    The adhesion of biological membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. Central questions are how the binding kinetics of these proteins is affected by the membranes and by the membrane anchoring of the proteins. In this article, we (i) present detailed data for the binding of membrane-anchored proteins from coarse-grained molecular dynamics simulations and (ii) provide a theory that describes how the binding kinetics depends on the average separation and thermal roughness of the adhering membranes and on the anchoring, lengths, and length variations of the proteins. An important element of our theory is the tilt of bound receptor-ligand complexes and transition-state complexes relative to the membrane normals. This tilt results from an interplay of the anchoring energy and rotational entropy of the complexes and facilitates the formation of receptor-ligand bonds at membrane separations smaller than the preferred separation for binding. In our simulations, we have considered both lipid-anchored and transmembrane receptor and ligand proteins. We find that the binding equilibrium constant and binding on-rate constant of lipid-anchored proteins are considerably smaller than the binding constant and on-rate constant of rigid transmembrane proteins with identical binding domains.

  19. Autocatalysis-driven clock reaction II: kinetics of the pentathionate-periodate reaction.

    Science.gov (United States)

    Xu, Li; Horváth, Attila K

    2014-10-23

    The pentathionate-periodate reaction has been investigated by spectrophotometrically monitoring the total amount of iodine evolved in the presence of phosphoric acid/dihydrogen phosphate buffer at 468 nm. The majority of the main characteristics of the title system is very reminiscent of that found recently in the pentathionate-iodate reaction, a system that led us to classify generally the clock reactions. Along with the pentathionate-iodate reaction the title system is proposed to belong to the autocatalysis-driven clock reactions as well. The kinetic model of the pentathionate-iodate system published recently was implemented by the necessary reactions of periodate to compose a 24-step kinetic model in which the mechanisms of the pentathionate-iodine, pentathionate-iodate, bisulfite-periodate, bisulfite-iodate, iodide-periodate, and the well-known Dushman reactions are combined. A thorough analysis revealed that the direct pentathionate-periodate reaction plays a role only to produce iodide ion via a finite sequence of reactions, and once its concentration reaches a certain level, the reaction is almost exclusively governed by the pentathionate-iodine, the iodide-periodate, and the Dushman reactions. As expected strong catalytic effect of the buffer composition is also found that can readily be explained by its well-known catalytic influence on the Dushman reaction.

  20. A kinetic and structural investigation of DNA-Based asymmetric catalysis using first-generation ligands

    NARCIS (Netherlands)

    Rosati, Fiora; Boersma, Arnold J.; Klijn, Jaap E.; Meetsma, Auke; Feringa, Ben L.; Roelfes, Gerard

    2009-01-01

    The recently developed concept of DNA-based asymmetric catalysis involves the transfer of chirality from the DNA double helix in reactions using a noncovalently bound catalyst. To date, two generations of DNA-based catalysts have been reported that differ in the design of the ligand for the metal. H

  1. Rational design of cyclopropane-based chiral PHOX ligands for intermolecular asymmetric Heck reaction

    Directory of Open Access Journals (Sweden)

    Marina Rubina

    2014-07-01

    Full Text Available A novel class of chiral phosphanyl-oxazoline (PHOX ligands with a conformationally rigid cyclopropyl backbone was synthesized and tested in the intermolecular asymmetric Heck reaction. Mechanistic modelling and crystallographic studies were used to predict the optimal ligand structure and helped to design a very efficient and highly selective catalytic system. Employment of the optimized ligands in the asymmetric arylation of cyclic olefins allowed for achieving high enantioselectivities and significantly suppressing product isomerization. Factors affecting the selectivity and the rate of the isomerization were identified. It was shown that the nature of this isomerization is different from that demonstrated previously using chiral diphosphine ligands.

  2. Nanoconfinement effects: glucose oxidase reaction kinetics in nanofluidics.

    Science.gov (United States)

    Wang, Chen; Sheng, Zhen-Huan; Ouyang, Jun; Xu, Jing-Juan; Chen, Hong-Yuan; Xia, Xing-Hua

    2012-02-01

    Size-tunable nanofluidic devices coupled to an electrochemical detector have been designed and then used to study glucose oxidase (GOx) reaction kinetics confined in nanospaces. The devices are fabricated via a photochemical decomposition reaction, which forms nanochannels covered with carboxyl groups. The generated carboxyl groups enable us to chemically pattern biological molecules on the polymer surfaces via covalent bonding. With this approach, the activity of the immobilized biological molecules confined in nanospaces with different sizes has been investigated. GOx species are chemically immobilized on the surface of the nanochannels, catalyzing the oxidation of substrate glucose as it flows through the channels. The enzyme reaction product, hydrogen peroxide, passing through the nanochannels, reaches an electrochemical detector, giving rise to an increase in anodic current. This steady-state electrochemical current, which responds to various glucose concentrations, can be used to evaluate the GOx activity under confinement conditions. The results show significant nanoconfinement effects that are dependent on the channel size where the reaction occurs, demonstrating the importance of spatial confinement on the GOx reaction kinetics. The present approach provides an effective method for the study of enzyme activity and other bioassay systems, such as cell assays, drug discovery, and clinical diagnosis. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Kinetics of the reversible reaction of struvite crystallisation.

    Science.gov (United States)

    Crutchik, D; Garrido, J M

    2016-07-01

    The crystallisation of struvite could be a sustainable and economical alternative for recovering phosphorus from wastewater streams with high phosphate concentrations. Knowledge regarding the kinetics and thermodynamics that are involved in the crystallisation of struvite is the key to determine the optimal conditions for obtaining an efficient process. This study was conducted in a continuous stirred batch reactor. Different sets of experiments were performed in which struvite was either dissolved (undersaturated) or precipitated (oversaturated). These experiments were conducted at different temperatures (25, 30 and 35 °C) and pH values (8.2, 8.5 and 8.8) to determine the kinetics of struvite precipitation and dissolution. Struvite crystallisation was modelled as a reversible reaction. The kinetic rate parameters of struvite precipitation were 1.03·10(-4), 1.25·10(-4) and 1.54·10(-4) mol m(-2) min(-1) at 25, 30 and 35 °C, respectively. Similar kinetic rate parameters were determined for struvite dissolution. Struvite heterogeneous crystallisation can be represented by a first-order kinetic model that fitted well the experimental data.

  4. Kinetics of oxytetracycline reaction with a hydrous manganese oxide.

    Science.gov (United States)

    Rubert, Kennedy F; Pedersen, Joel A

    2006-12-01

    Tetracycline antibiotics comprise a class of broad spectrum antimicrobial agents finding application in human therapy, animal husbandry, aquaculture, and fruit crop production. To better understand the processes affecting these antibiotics in soils and sediments, the kinetics of oxytetracycline transformation by a hydrous manganese oxide (MnO2) were investigated as a function of reactant concentration, pH, and temperature. Oxytetracycline was rapidly degraded by MnO2. Initial reaction rates exhibited pronounced pH-dependence, increasing as pH decreased. Reaction of oxytetracycline with MnO2 was accompanied by generation of Mn(II) ions, suggesting oxidative transformation of the antibiotic. At pH 5.6, apparent reaction orders for oxytetracycline and MnO2 were 0.7 and 0.8. Reaction order with respect to H+ was 0.6 between pH 4 and 9. Initial reaction rates increased by a factor of approximately 2.4 for 10 degrees C temperature increases; the apparent activation energy (60 kJ x mol(-1)) was consistent with a surface-controlled reaction. Reactivity of tetracycline antibiotics toward MnO2 increased in the following order: rolitetracyline oxytetracycline manganese oxides in soils and sediments are likely to promote appreciable degradation of tetracycline antibiotics, and that reaction rates are strongly dependent on reaction time scale and solution conditions.

  5. Kinetics and mechanism of the chlorine dioxide-trithionate reaction.

    Science.gov (United States)

    Cseko, György; Horváth, Attila K

    2012-03-22

    The trithionate-chlorine dioxide reaction has been studied spectrophotometrically in a slightly acidic medium at 25.0 ± 0.1 °C in acetate/acetic acid buffer monitoring the decay of chlorine dioxide at constant ionic strength (I = 0.5 M) adjusted by sodium perchlorate. We found that under our experimental conditions two limiting stoichiometries exist and the pH, the concentration of the reactants, and even the concentration of chloride ion affects the actual stoichiometry of the reaction that can be augmented by an appropriate linear combination of these limiting processes. It is also shown that although the formal kinetic order of trithionate is strictly one that of chlorine dioxide varies between 1 and 2, depending on the actual chlorine dioxide excess and the pH. Moreover, the otherwise sluggish chloride ion, which is also a product of the reaction, slightly accelerates the initial rate of chlorine dioxide consumption and may therefore act as an autocatalyst. In addition to that, overshoot-undershoot behavior is also observed in the [(·)ClO(2)]-time curves in the presence of chloride ion at chlorine dioxide excess. On the basis of the experiments, a 13-step kinetic model with 6 fitted kinetic parameter is proposed by nonlinear parameter estimation. © 2012 American Chemical Society

  6. Synthesis and Thermal Decomposition Kinetics of La(Ⅲ) Complex with Unsymmetrical Schiff Base Zwitterion Ligand

    Institute of Scientific and Technical Information of China (English)

    Bi Caifeng; Xiao Yan; Fan Yuhua; Xie Sitan; Xu Jiakun

    2007-01-01

    A new unsymmetrical solid Schiff base (LLi) was synthesized using L-lysine. o-vanillin and 2-hydroxy-l-naph-thaldehyde. Solid La (Ⅲ) complex of this ligand [LaL(NO3)](NO3)·2H2O was prepared and characterized by elemental analyses, IR, UV and molar conductance. The thermal decomposition kinetics of the complex for the second stage were studied under non-isothermal condition by TG and DTG methods. The kinetic equation may be expressed as: dα/dt=A·e-E/RT·(1-α)2. The kinetic parameters (E, A), activation entropy ΔS≠ and activation free-energy ΔG≠ were also gained.

  7. The Palladium-Catalyzed Aerobic Kinetic Resolution of Secondary Alcohols: Reaction Development, Scope, and Applications

    KAUST Repository

    Ebner, Davidâ C.

    2009-12-07

    The first palladium-catalyzed enantioselective oxidation of secondary alcohols has been developed, utilizing the readily available diamine (-)-sparteine as a chiral ligand and molecular oxygen as the stoichiometric oxidant. Mechanistic insights regarding the role of the base and hydrogen-bond donors have resulted in several improvements to the original system. Namely, addition of cesium carbonate and tert-butyl alcohol greatly enhances reaction rates, promoting rapid resolutions. The use of chloroform as solvent allows the use of ambient air as the terminal oxidant at 23 degrees C, resulting in enhanced catalyst selectivity. These improved reaction conditions have permitted the successful kinetic resolution of benzylic, allylic, and cyclopropyl secondary alcohols to high enantiomeric excess with good-to-excellent selectivity factors. This catalyst system has also been applied to the desymmetrization of meso-diols, providing high yields of enantioenriched hydroxyketones.

  8. Reaction of a sterically hindered iron(III porphyrin with peroxyacetic acid: degradation kinetics

    Directory of Open Access Journals (Sweden)

    P. PRAKASH

    2005-09-01

    Full Text Available A kinetic analysis of the reaction between peracetic acid (AcOOH, and tetrakis (pentafluorophenyl - 21H, 23H-porphine iron(III chloride, Fe(F20TPPCl, in acetonitrile showed that the peracetic acid oxidatively destroys Fe(F20TPPCl. This is in contrast to an assumption that the oxidative degradation of metalloporphyrins can be prevented by the introduction of electron-withdrawing substituents into the phenyl groups of the porphyrin ligand. A UV-visible spectroscopic study showed a degree of macro cycle destruction of the tetrapyrrole conjucation of the metalloporphyrin. The degradation takes place via oxoperferryl species. The first step of the reaction mechanism is the reversible formation of an adduct ’X’(k1/k-1 between Fe(F20TPPCl and peracetic acid, followed by an irreversible step (k2 for the formation of oxoperferryl species.

  9. A robust methodology for kinetic model parameter estimation for biocatalytic reactions

    DEFF Research Database (Denmark)

    Al-Haque, Naweed; Andrade Santacoloma, Paloma de Gracia; Lima Afonso Neto, Watson;

    2012-01-01

    Effective estimation of parameters in biocatalytic reaction kinetic expressions are very important when building process models to enable evaluation of process technology options and alternative biocatalysts. The kinetic models used to describe enzyme-catalyzed reactions generally include several...

  10. Reaction Path Optimization with Holonomic Constraints and Kinetic Energy Potentials.

    Science.gov (United States)

    Brokaw, Jason B; Haas, Kevin R; Chu, Jhih-Wei

    2009-08-11

    Two methods are developed to enhance the stability, efficiency, and robustness of reaction path optimization using a chain of replicas. First, distances between replicas are kept equal during path optimization via holonomic constraints. Finding a reaction path is, thus, transformed into a constrained optimization problem. This approach avoids force projections for finding minimum energy paths (MEPs), and fast-converging schemes such as quasi-Newton methods can be readily applied. Second, we define a new objective function - the total Hamiltonian - for reaction path optimization, by combining the kinetic energy potential of each replica with its potential energy function. Minimizing the total Hamiltonian of a chain determines a minimum Hamiltonian path (MHP). If the distances between replicas are kept equal and a consistent force constant is used, then the kinetic energy potentials of all replicas have the same value. The MHP in this case is the most probable isokinetic path. Our results indicate that low-temperature kinetic energy potentials (optimization and can significantly reduce the required steps of minimization by 2-3 times without causing noticeable differences between a MHP and MEP. These methods are applied to three test cases, the C7eq-to-Cax isomerization of an alanine dipeptide, the (4)C1-to-(1)C4 transition of an α-d-glucopyranose, and the helix-to-sheet transition of a GNNQQNY heptapeptide. By applying the methods developed in this work, convergence of reaction path optimization can be achieved for these complex transitions, involving full atomic details and a large number of replicas (>100). For the case of helix-to-sheet transition, we identify pathways whose energy barriers are consistent with experimental measurements. Further, we develop a method based on the work energy theorem to quantify the accuracy of reaction paths and to determine whether the atoms used to define a path are enough to provide quantitative estimation of energy barriers.

  11. Kinetic studies on the reaction between dicyanocobinamide and hypochlorous acid.

    Directory of Open Access Journals (Sweden)

    Dhiman Maitra

    Full Text Available Hypochlorous acid (HOCl is a potent oxidant generated by myeloperoxidase (MPO, which is an abundant enzyme used for defense against microbes. We examined the potential role of HOCl in corrin ring destruction and subsequent formation of cyanogen chloride (CNCl from dicyanocobinamide ((CN2-Cbi. Stopped-flow analysis revealed that the reaction consists of at least three observable steps, including at least two sequential transient intermediates prior to corrin ring destruction. The first two steps were attributed to sequential replacement of the two cyanide ligands with hypochlorite, while the third step was the destruction of the corrin ring. The formation of (OCl(CN-Cbi and its conversion to (OCl2-Cbi was fitted to a first order rate equation with second order rate constants of 0.002 and 0.0002 µM(-1 s(-1, respectively. The significantly lower rate of the second step compared to the first suggests that the replacement of the first cyanide molecule by hypochlorite causes an alteration in the ligand trans effects changing the affinity and/or accessibility of Co toward hypochlorite. Plots of the apparent rate constants as a function of HOCl concentration for all the three steps were linear with Y-intercepts close to zero, indicating that HOCl binds in an irreversible one-step mechanism. Collectively, these results illustrate functional differences in the corrin ring environments toward binding of diatomic ligands.

  12. Kinetics and Mechanisms of Calcite Reactions with Saline Waters

    Energy Technology Data Exchange (ETDEWEB)

    Gorman, Brian P [Colorado School of Mines, Golden, CO (United States)

    2015-09-02

    Project Description: The general objective of the proposed research is to determine the kinetics and mechanisms of calcite reactions with saline waters over a wide range of saline water composition, pCO2, and modest ranges in T and P. This will be accomplished by studying both reaction rates and solubility from changes in solution chemistry, and making nanoscale observations of calcite precipitate surface morphology and composition at the micro-to-nano-scale to provide an understanding of controlling reaction mechanisms and pathways. The specific objectives necessary to reach the general objective are: a) determination of how pCO2, Ca2+, ionic strength and “foreign” ions influence reaction rates; and b) investigate the influence of these parameters on apparent kinetic solubility from dissolution and precipitation reactions. This information will clearly be central to the construction of reliable reaction-transport models to predict reservoir and formation response to increased CO2 in saline waters. This program was initially collaborative with John Morse at Texas A&M, however his passing shortly after the beginning of this program resulted in abbreviated research time and effort. Summary of Results: Early studies using electron microscopy and spectroscopy indicated that carbonate precipitation from natural seawater (NSW) conditions onto aragonite substrates was mediated by a surface amorphous calcium carbonate layer. It was hypothesized that this ACC layer (observed after < 5days reaction time) was responsible for the abnormal reaction kinetics and also served as a metastable seed layer for growth of epitaxial aragonite. Further studies of the ACC formation mechanism indicated a strong dependence on the Mg concentration in solution. Subsequent studies at shorter times (10 hrs) on calcite substrates and in a wide range of supersaturation conditions did not indicate any ACC layer. Instead, an epitaxial layer by layer

  13. Functional model of oxomolybdoenzymes: Synthesis and characterization of a molybdenum complex with sulphur and pterin ligands exhibiting saturation kinetics with pyridine N-oxide

    Indian Academy of Sciences (India)

    M D Afsar Ali; Parag S Roy

    2001-04-01

    Redox reaction between 6-acetonylisoxanthopterin (H2pte) and [MoVIO2(ssp)] [ssp = anion of 2-(salicylideneamino) benzenethiol] in CH3OH-C2H5OH medium produces a new mixed ligand compound [MoIV (ssp) (Hpte) (OCH3)] (1). It has been characterized by elemental analysis, ESMS data, UV-Vis, IR, 1H NMR (1D and 2D) spectroscopy and cyclic voltammetry. Kinetics of formation of this compound as well as that of its reaction with pyridine N-oxide have been followed spectrophotometrically. Both the reactions follow substrate saturation kinetics and involve metal-centred oxygen atom transfer process. Large negative values of entropy of activation indicate the operation of associative mechanism.

  14. Variation of kinetic isotope effect in multiple proton transfer reactions

    Indian Academy of Sciences (India)

    B Saritha; M Durga Prasad

    2012-01-01

    Recently, we had suggested that the motion along the promoter mode in the first part of the IRC of proton transfer reaction enhances the delocalization of electrons on the acceptor atom into the * orbital of the donor-hydrogen covalent bond, and as a consequence weakens it. This leads to a reduction of the barrier to the proton transfer as well as the stretching frequency of donor-hydrogen bond. An extension of this to the concerted multiple proton transfer reactions implies that the kinetic isotope effect in such reaction depends exponentially on the number of protons that are being transferred. Computational evidence on three systems, (HF)3, formic acid dimer, and (H2O) clusters is provided to support this assertion.

  15. Combination of isothermal titration calorimetry and time-resolved luminescence for high affinity antibody-ligand interaction thermodynamics and kinetics

    Science.gov (United States)

    Aweda, Tolulope A.; Meares, Claude F.

    2011-01-01

    For experiments using synthetic ligands as probes for biological experiments, it is useful to determine the specificity and affinity of the ligands for their receptors. As ligands with higher affinities are developed (KA >108 M−1; KD calorimetry measures heat produced or consumed during ligand binding, and also provides the equilibrium binding constant. However, as normally practiced, its range is limited. Displacement titration, where a competing weaker ligand is used to lower the apparent affinity of the stronger ligand, can be used to determine the binding affinity as well as the complete thermodynamic data for ligand-antibody complexes with very high affinity. These equilibrium data have been combined with kinetic measurements to yield the rate constants as well. We describe this methodology, using as an example antibody 2D12.5, which captures yttrium S-2-(4-aminobenzyl)-1, 4, 7, 10-tetraazacyclododecanetetraacetate. PMID:21964396

  16. Manifestation of macroscopic correlations in elementary reaction kinetics. II. Irreversible reaction A+B→C.

    Science.gov (United States)

    Kipriyanov, Alexander A; Kipriyanov, Alexey A; Doktorov, Alexander B

    2010-11-07

    The applicability of the Encounter Theory (ET) (the prototype of the Collision Theory) concepts for widely occurring diffusion assisted irreversible bulk reaction A+B→C (for example, radical reaction) in dilute solutions with arbitrary ratio of initial concentrations of reactants has been treated theoretically with modern many-particle method for the derivation of non-Markovian binary kinetic equations. The method shows that, just as in the reaction A+A→C considered earlier, the agreement with the Encounter Theory is observed when the familiar Integral Encounter Theory is used which is just a step in the derivation of kinetic equations in the framework of the method employed. It allows for two-particle correlations only, and fails to consider the correlation of reactant simultaneously with a partner and with a reactant in the bulk. However, the next step leading to the Modified Encounter Theory under reduction of equations to a regular form both extends the time applicability interval of ET homogeneous rate equation (as for reactions proceeding in excess of one of the reactants), and yields the inhomogeneous equation of the Generalized Encounter Theory (GET) that reveals macroscopic correlations induced by the encounters in a reservoir of free walks in full agreement with physical considerations. This means that the encounters of reactants in solution are correlated at rather large time interval of the reaction course. However, unlike the reaction A+A→C of identical reactants, the reaction A+B→C accumulation of the above macroscopic correlations (even with the initial concentrations of reactants being equal) proceeds much slower. Another distinction is that for the reaction A+A→C the long-term behavior of ET and GET kinetics is the same, while in the reaction A+B→C these kinetics behave differently. It is of interest that just taking account of the above macroscopic correlations in the reaction A+B→C (in GET) results in the universal character of the

  17. Rhodium-catalysed hydroacylation or reductive aldol reactions: a ligand dependent switch of reactivity.

    Science.gov (United States)

    Osborne, James D; Willis, Michael C

    2008-10-28

    The pathway for the combination of enones and beta-S-substituted aldehydes using Rh-catalysis can be switched between a hydroacylation reaction or a reductive aldol reaction by simple choice of the phosphine ligand; this catalyst controlled switch allows access to new ketone hydroacylation products; useful 1,4-diketone intermediates for the synthesis of N-, S- and O-heterocycles.

  18. Thermodynamic criteria for estimating the kinetic parameters of catalytic reactions

    Science.gov (United States)

    Mitrichev, I. I.; Zhensa, A. V.; Kol'tsova, E. M.

    2017-01-01

    Kinetic parameters are estimated using two criteria in addition to the traditional criterion that considers the consistency between experimental and modeled conversion data: thermodynamic consistency and the consistency with entropy production (i.e., the absolute rate of the change in entropy due to exchange with the environment is consistent with the rate of entropy production in the steady state). A special procedure is developed and executed on a computer to achieve the thermodynamic consistency of a set of kinetic parameters with respect to both the standard entropy of a reaction and the standard enthalpy of a reaction. A problem of multi-criterion optimization, reduced to a single-criterion problem by summing weighted values of the three criteria listed above, is solved. Using the reaction of NO reduction with CO on a platinum catalyst as an example, it is shown that the set of parameters proposed by D.B. Mantri and P. Aghalayam gives much worse agreement with experimental values than the set obtained on the basis of three criteria: the sum of the squares of deviations for conversion, the thermodynamic consistency, and the consistency with entropy production.

  19. Kinetics and mechanisms of reactions involving small aromatic reactive intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Lin, M.C. [Emory Univ., Atlanta, GA (United States)

    1993-12-01

    Small aromatic radicals such as C{sub 6}H{sub 5}, C{sub 6}H{sub 5}O and C{sub 6}H{sub 4} are key prototype species of their homologs. C{sub 6}H{sub 5} and its oxidation product, C{sub 6}H{sub 5}O are believed to be important intermediates which play a pivotal role in hydrocarbon combustion, particularly with regard to soot formation. Despite their fundamental importance, experimental data on the reaction mechanisms and reactivities of these species are very limited. For C{sub 6}H{sub 5}, most kinetic data except its reactions with NO and NO{sub 2}, were obtained by relative rate measurements. For C{sub 6}H{sub 5}O, the authors have earlier measured its fragmentation reaction producing C{sub 5}H{sub 5} + CO in shock waves. For C{sub 6}H{sub 4}, the only rate constant measured in the gas phase is its recombination rate at room temperature. The authors have proposed to investigate systematically the kinetics and mechanisms of this important class of molecules using two parallel laser diagnostic techniques--laser resonance absorption (LRA) and resonance enhanced multiphoton ionization mass spectrometry (REMPI/MS). In the past two years, study has been focused on the development of a new multipass adsorption technique--the {open_quotes}cavity-ring-down{close_quotes} technique for kinetic applications. The preliminary results of this study appear to be quite good and the sensitivity of the technique is at least comparable to that of the laser-induced fluorescence method.

  20. Kinetic Study of the Austempering Reactions in Ductile Irons

    Science.gov (United States)

    Pérez, M. J.; Cisneros, M. M.; Almanza, E.; Haro, S.

    2012-11-01

    Kinetics of the reaction that occur during the austempering heat treatment in unalloyed and alloyed ductile irons with 1Cu-0.25Mo, 1Ni-0.25Mo, and 0.7Cu-1Ni-0.25Mo, was studied. The austenitization and austempering cycles were achieved by isothermal dilatometry in cylindrical samples of 2 mm in diameter and 12 mm in length. The specimens were austenitized at 870 °C for 120 min, followed by isothermal holding for 300 min at temperatures between 270 and 420 °C. Kinetic parameters such as the order of reaction " n" and the rate of reaction " k" were calculated using the Johnson-Mehl equation while the empirical activation energy was calculated by means of the Arrhenius equation. It was found that the values of " k" decreased with the addition of Cu, Ni, and Mo as well as with the reduction of the isothermal temperature. The activation energy changes with the austempering temperature, in the range 30,348-58,250 J/mol when the heat treatment was carried out between 370 and 420 °C and 10,336-26,683 J/mol when the temperature varied from 270 to 350 °C. The microstructures in samples austempered at 370 and 315 °C were observed by transmission electron microscopy. No carbides precipitation was observed on samples heat treated at 370 °C for less than 120 min, while at 315 °C carbides of hexagonal structure ɛ(Fe2.4C) were found from the beginning of the transformation. The smallest value of activation energy and a slower kinetic transformation seem to be related with the presence of a carbide phase. Additionally, the time results obtained for transformation fractions of 0.05 and 0.95 by the dilatometry analysis were used to build the temperature-time-transformation diagrams for the irons.

  1. The reaction kinetics of amino radicals with sulfur dioxide

    DEFF Research Database (Denmark)

    Gao, Yide; Glarborg, Peter; Marshall, Paul

    2015-01-01

    Application of the laser photolysis-laser-induced fluorescence method to the reaction NH2+SO2 in argon bath gas yields pressure-dependent, third-order kinetics which may be summarized as k = (1.49 ± 0.15) × 10-31 (T/298 K)-0.83cm6 molecule-2 s-1 over 292-555K, where the uncertainty is the 95...... yields a H2N-SO2 dissociation enthalpy of 73.5 kJ mol-1, and comparison with RRKM theory and the exponential down model for energy transfer yields down = 350 cm-1 for Ar at room temperature....

  2. Kinetics of Reduction Reaction in Micro-Fluidized Bed

    Institute of Scientific and Technical Information of China (English)

    LINYin-he; GUOZhan—cheng; TANGHui—qing; REN Shan; LIJing—wei

    2012-01-01

    Micro-fluidized bed reactor is a new research method for the reduction of iron ore fines. The reactor is op- erated as a differential reactor to ensure a constant gas concentration and temperature within the reactor volume. In order to understand the dynamic process of the reduction reaction in micro-fluidized bed, a series of kinetic experi- ments were designed. In the micro fluidized bed, the use of shrinking core model describes the dynamic behavior of reduction of iron ore. And the apparent activation energy is calculated in the range of 700--850 ~C while the initial atmosphere is 100% content of CO.

  3. KINETIC MODELS STUDY OF HYDRODESULPHURIZATION VACUUM DISTILLATE REACTION

    Directory of Open Access Journals (Sweden)

    AbdulMunem A. Karim

    2013-05-01

    Full Text Available    This study deals with  kinetics of hydrodesulphurization (HDS reaction of vacuum gas oil (611-833 K which was distillated from Kirkuk crude oil and which was obtained by blending the fractions, light vacuum gas oil (611 - 650 K, medium vacuum gas oil (650-690 K, heavy vacuum gas oil (690-727 K and very heavy vacuum gas oil (727-833 K.   The vacuum gas oil was hydrotreated on a commercial cobalt-molybdenum alumina catalyst presulfied at specified conditions in a laboratory trickle bed reactor. The reaction temperature range (583-643 K,liquid hourly space velocity range (1.5-3.75 h-1 and hydrogen pressure was kept constant at 3.5 MPa with hydrogen to oil ratio about 250 lt/lt.           The conversion results for desulphurization reaction appeared to obey the second order reaction. According to this model, the rate constants for desulphurization reaction were determined. Finally, the apparent activation energy (Ea, enthalpy of activation ( H* and entropy ( S* were calculated based on the values of rate constant (k2 and were equal 80.3792 KJ/mole, 75.2974 KJ/mole and 197.493 J/mole, respectively.

  4. Python framework for kinetic modeling of electronically excited reaction pathways

    Science.gov (United States)

    Verboncoeur, John; Parsey, Guy; Guclu, Yaman; Christlieb, Andrew

    2012-10-01

    The use of plasma energy to enhance and control the chemical reactions during combustion, a technology referred to as ``plasma assisted combustion'' (PAC), can result in a variety of beneficial effects: e.g. stable lean operation, pollution reduction, and wider range of p-T operating conditions. While experimental evidence abounds, theoretical understanding of PAC is at best incomplete, and numerical tools still lack in reliable predictive capabilities. In the context of a joint experimental-numerical effort at Michigan State University, we present here an open-source modular Python framework dedicated to the dynamic optimization of non-equilibrium PAC systems. Multiple sources of experimental reaction data, e.g. reaction rates, cross-sections and oscillator strengths, are used in order to quantify the effect of data uncertainty and limiting assumptions. A collisional-radiative model (CRM) is implemented to organize reactions by importance and as a potential means of measuring a non-Maxwellian electron energy distribution function (EEDF), when coupled to optical emission spectroscopy data. Finally, we explore scaling laws in PAC parameter space using a kinetic global model (KGM) accelerated with CRM optimized reaction sequences and sparse stiff integrators.

  5. Single-molecule chemical reaction reveals molecular reaction kinetics and dynamics.

    Science.gov (United States)

    Zhang, Yuwei; Song, Ping; Fu, Qiang; Ruan, Mingbo; Xu, Weilin

    2014-06-25

    Understanding the microscopic elementary process of chemical reactions, especially in condensed phase, is highly desirable for improvement of efficiencies in industrial chemical processes. Here we show an approach to gaining new insights into elementary reactions in condensed phase by combining quantum chemical calculations with a single-molecule analysis. Elementary chemical reactions in liquid-phase, revealed from quantum chemical calculations, are studied by tracking the fluorescence of single dye molecules undergoing a reversible redox process. Statistical analyses of single-molecule trajectories reveal molecular reaction kinetics and dynamics of elementary reactions. The reactivity dynamic fluctuations of single molecules are evidenced and probably arise from either or both of the low-frequency approach of the molecule to the internal surface of the SiO2 nanosphere or the molecule diffusion-induced memory effect. This new approach could be applied to other chemical reactions in liquid phase to gain more insight into their molecular reaction kinetics and the dynamics of elementary steps.

  6. Ligand-rebinding kinetics of 2/2 hemoglobin from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125.

    Science.gov (United States)

    Russo, Roberta; Giordano, Daniela; di Prisco, Guido; Hui Bon Hoa, Gaston; Marden, Michael C; Verde, Cinzia; Kiger, Laurent

    2013-09-01

    Kinetic studies were performed on ligand rebinding to a cold-adapted globin of the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 (Ph-2/2HbO). This 2/2 hemoglobin displays a rapid spectroscopic phase that is independent of CO concentration, followed by the standard bimolecular recombination. While the geminate recombination usually occurs on a ns timescale, Ph-2/2HbO displays a component of about 1μs that accounts for half of the geminate phase at 8°C, indicative of a relatively slow internal ligand binding. The O2 binding kinetics were measured in competition with CO to allow a short-time exposure of the deoxy hemes to O2 before CO replacement. Indeed Ph-2/2HbO is readily oxidised in the presence of O2, probably due to a superoxide character of the FeO2 bond induced by of a hydrogen-bond donor amino-acid residue. Upon O2 release or iron oxidation a distal residue (probably Tyr) is able to reversibly bind to the heme and as such to compete for binding with an external ligand. The transient hexacoordinated ferrous His-Fe-Tyr conformation after O2 dissociation could initiate the electron transfer from the iron toward its final acceptor, molecular O2 under our conditions. The hexacoordination via the distal Tyr is only partial, indicating a weak interaction between Tyr and the heme under atmospheric pressure. Hydrostatic high pressure enhances the hexacoordination indicating a flexible globin that allows structural changes. The O2 binding affinity for Ph-2/2HbO, poorly affected by the competition with Tyr, is about 1Torr at 8°C, pH7.0, which is compatible for an in vivo O2 binding function; however, this globin is more likely involved in a redox reaction associating diatomic ligands and their derived oxidative species. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.

  7. Species-specific kinetics and zonation of hepatic DNA synthesis induced by ligands of PPARalpha.

    Science.gov (United States)

    Al Kholaifi, Abdullah; Amer, Abeer; Jeffery, Brett; Gray, Tim J B; Roberts, Ruth A; Bell, David R

    2008-07-01

    Peroxisome proliferator-activated receptor alpha (PPARalpha) ligands evoke a profound mitogenic response in rodent liver, and the aim of this study was to characterize the kinetics of induction of DNA synthesis. The CAR ligand, 1,4-bis[2-(3,5-dichoropyridyloxy)]benzene, caused induction of hepatocyte DNA synthesis within 48 h in 129S4/SvJae mice, but the potent PPARalpha ligand, ciprofibrate, induced hepatocyte DNA synthesis only after 3 or 4 days dosing; higher or lower doses did not hasten the DNA synthesis response. This contrasted with the rapid induction (24 h) reported by Styles et al., 1988, Carcinogenesis 9, 1647-1655. C57BL/6 and DBA/2J mice showed significant induction of DNA synthesis after 4, but not 2, days ciprofibrate treatment. Alderley Park and 129S4/SvJae mice dosed with methylclofenapate induced hepatocyte DNA synthesis at 4, but not 2, days after dosing and proved that inconsistency with prior work was not due to a difference in mouse strain or PPARalpha ligand. Ciprofibrate-induced liver DNA synthesis and growth was absent in PPARalpha-null mice and are PPARalpha dependent. In the Fisher344 rat, hepatocyte DNA synthesis was induced at 24 h after dosing, with a second peak at 48 h. Lobular localization of hepatocyte DNA synthesis showed preferential periportal induction of DNA synthesis in rat but panlobular zonation of hepatocyte DNA synthesis in mouse. These results characterize a markedly later hepatic induction of panlobular DNA synthesis by PPARalpha ligands in mouse, compared to rapid induction of periportal DNA synthesis in rat.

  8. Ligand substitution reactions of a phenolic quinolyl hydrazone; oxidovanadium (IV complexes

    Directory of Open Access Journals (Sweden)

    Seleem Hussein S

    2011-08-01

    Full Text Available Abstract Background Quinoline ring has therapeutic and biological activities. Quinolyl hydrazones constitute a class of excellent chelating agents. Recently, the physiological and biological activities of quinolyl hydrazones arise from their tendency to form metal chelates with transition metal ions. In this context, we have aimed to study the competency effect of a phenolic quinolyl hydrazone (H2L; primary ligand with some auxiliary ligands (Tmen, Phen or Oxine; secondary ligands towards oxidovanadium (IV ions. Results Mono- and binuclear oxidovanadium (IV - complexes were obtained from the reaction of a phenolic quinolyl hydrazone with oxidovanadium (IV- ion in absence and presence of N,N,N',N'- tetramethylethylenediamine (Tmen, 1,10-phenanthroline (Phen or 8-hydroxyquinoline (Oxine. The phenolic quinolyl hydrazone ligand behaves as monobasic bidentate (NO- donor with O- bridging. All the obtained complexes have the preferable octahedral geometry except the oxinato complex (2 which has a square pyramid geometry with no axial interaction; the only homoleptic complex in this study. Conclusion The ligand exchange (substitution/replacement reactions reflect the strong competency power of the auxiliary aromatic ligands (Phen/Oxine compared to the phenolic quinolyl hydrazone (H2L towards oxidovanadium (IV ion; (complexes 2 and 3. By contrast, in case of the more flexible aliphatic competitor (Tmen, an adduct was obtained (4. The obtained complexes reflect the strength of the ligand field towards the oxidovanadium (IV- ion; Oxine or Phen >> phenolic hydrazone (H2L > Tmen.

  9. Diffusion Controlled Reactions, Fluctuation Dominated Kinetics, and Living Cell Biochemistry

    CERN Document Server

    Konkoli, Zoran

    2009-01-01

    In recent years considerable portion of the computer science community has focused its attention on understanding living cell biochemistry and efforts to understand such complication reaction environment have spread over wide front, ranging from systems biology approaches, through network analysis (motif identification) towards developing language and simulators for low level biochemical processes. Apart from simulation work, much of the efforts are directed to using mean field equations (equivalent to the equations of classical chemical kinetics) to address various problems (stability, robustness, sensitivity analysis, etc.). Rarely is the use of mean field equations questioned. This review will provide a brief overview of the situations when mean field equations fail and should not be used. These equations can be derived from the theory of diffusion controlled reactions, and emerge when assumption of perfect mixing is used.

  10. Enzymatic reactions in microfluidic devices: Michaelis-Menten kinetics.

    Science.gov (United States)

    Ristenpart, William D; Wan, Jiandi; Stone, Howard A

    2008-05-01

    Kinetic rate constants for enzymatic reactions are typically measured with a series of experiments at different substrate concentrations in a well-mixed container. Here we demonstrate a microfluidic technique for measuring Michaelis-Menten rate constants with only a single experiment. Enzyme and substrate are brought together in a coflow microfluidic device, and we establish analytically and numerically that the initial concentration of product scales with the distance x along the channel as x5/2. Measurements of the initial rate of product formation, combined with the quasi-steady rate of product formation further downstream, yield the rate constants. We corroborate the x5/2 scaling result experimentally using the bioluminescent reaction between ATP and luciferase/luciferin as a model system.

  11. Bayesian inference of chemical kinetic models from proposed reactions

    KAUST Repository

    Galagali, Nikhil

    2015-02-01

    © 2014 Elsevier Ltd. Bayesian inference provides a natural framework for combining experimental data with prior knowledge to develop chemical kinetic models and quantify the associated uncertainties, not only in parameter values but also in model structure. Most existing applications of Bayesian model selection methods to chemical kinetics have been limited to comparisons among a small set of models, however. The significant computational cost of evaluating posterior model probabilities renders traditional Bayesian methods infeasible when the model space becomes large. We present a new framework for tractable Bayesian model inference and uncertainty quantification using a large number of systematically generated model hypotheses. The approach involves imposing point-mass mixture priors over rate constants and exploring the resulting posterior distribution using an adaptive Markov chain Monte Carlo method. The posterior samples are used to identify plausible models, to quantify rate constant uncertainties, and to extract key diagnostic information about model structure-such as the reactions and operating pathways most strongly supported by the data. We provide numerical demonstrations of the proposed framework by inferring kinetic models for catalytic steam and dry reforming of methane using available experimental data.

  12. Reaction route graphs. III. Non-minimal kinetic mechanisms.

    Science.gov (United States)

    Fishtik, Ilie; Callaghan, Caitlin A; Datta, Ravindra

    2005-02-24

    The concept of reaction route (RR) graphs introduced recently by us for kinetic mechanisms that produce minimal graphs is extended to the problem of non-minimal kinetic mechanisms for the case of a single overall reaction (OR). A RR graph is said to be minimal if all of the stoichiometric numbers in all direct RRs of the mechanism are equal to +/-1 and non-minimal if at least one stoichiometric number in a direct RR is non-unity, e.g., equal to +/-2. For a given mechanism, four unique topological characteristics of RR graphs are defined and enumerated, namely, direct full routes (FRs), empty routes (ERs), intermediate nodes (INs), and terminal nodes (TNs). These are further utilized to construct the RR graphs. One algorithm involves viewing each IN as a central node in a RR sub-graph. As a result, the construction and enumeration of RR graphs are reduced to the problem of balancing the peripheral nodes in the RR sub-graphs according to the list of FRs, ERs, INs, and TNs. An alternate method involves using an independent set of RRs to draw the RR graph while satisfying the INs and TNs. Three examples are presented to illustrate the application of non-minimal RR graph theory.

  13. Stochastic reaction-diffusion kinetics in the microscopic limit

    Science.gov (United States)

    Fange, David; Berg, Otto G.; Sjöberg, Paul; Elf, Johan

    2010-01-01

    Quantitative analysis of biochemical networks often requires consideration of both spatial and stochastic aspects of chemical processes. Despite significant progress in the field, it is still computationally prohibitive to simulate systems involving many reactants or complex geometries using a microscopic framework that includes the finest length and time scales of diffusion-limited molecular interactions. For this reason, spatially or temporally discretized simulations schemes are commonly used when modeling intracellular reaction networks. The challenge in defining such coarse-grained models is to calculate the correct probabilities of reaction given the microscopic parameters and the uncertainty in the molecular positions introduced by the spatial or temporal discretization. In this paper we have solved this problem for the spatially discretized Reaction-Diffusion Master Equation; this enables a seamless and physically consistent transition from the microscopic to the macroscopic frameworks of reaction-diffusion kinetics. We exemplify the use of the methods by showing that a phosphorylation-dephosphorylation motif, commonly observed in eukaryotic signaling pathways, is predicted to display fluctuations that depend on the geometry of the system. PMID:21041672

  14. Extension of a Kinetic-Theory Approach for Computing Chemical-Reaction Rates to Reactions with Charged Particles

    Science.gov (United States)

    Liechty, Derek S.; Lewis, Mark J.

    2010-01-01

    Recently introduced molecular-level chemistry models that predict equilibrium and nonequilibrium reaction rates using only kinetic theory and fundamental molecular properties (i.e., no macroscopic reaction rate information) are extended to include reactions involving charged particles and electronic energy levels. The proposed extensions include ionization reactions, exothermic associative ionization reactions, endothermic and exothermic charge exchange reactions, and other exchange reactions involving ionized species. The extensions are shown to agree favorably with the measured Arrhenius rates for near-equilibrium conditions.

  15. Kinetic analysis of palladium(II) adsorption process on condensed-tannin gel based on redox reaction models.

    Science.gov (United States)

    Kim, Yeon-Ho; Ogata, Takeshi; Nakano, Yoshio

    2007-07-01

    We have developed a novel recovery system of palladium (Pd) from wastes such as spent catalysts or scraps, using tannin gel particles synthesized from condensed-tannin molecules. The Pd(II) ionic species are reduced to metallic Pd(0) on the network of the tannin gel: a two-electron transfer from the tannin gel to Pd(II). The kinetic study of the electron transfer was performed with a multiple reaction model containing an intermediate step (formation of a ligand-substituted Pd(II)-tannin inner sphere complex), resulting in a better fit with the experimental results than with the single reaction model (outer sphere redox reaction), which means that the inner sphere redox mechanism is an appropriate reaction model for the Pd(II) adsorption process. Because the intermediate is included in the adsorption amount, the adsorption process can be divided into two steps: fast adsorption by the ligand substitution at the initial stage and slow adsorption by the subsequent redox reaction after the ligand substitution reaches an equilibrium state, with different adsorption rates between the Pd(II) ionic species (PdCl(+)>PdCl(2)>PdCl(3)(-),PdCl(4)(2-)).

  16. Roles of cell and microvillus deformation and receptor-ligand binding kinetics in cell rolling.

    Science.gov (United States)

    Pawar, Parag; Jadhav, Sameer; Eggleton, Charles D; Konstantopoulos, Konstantinos

    2008-10-01

    Polymorphonuclear leukocyte (PMN) recruitment to sites of inflammation is initiated by selectin-mediated PMN tethering and rolling on activated endothelium under flow. Cell rolling is modulated by bulk cell deformation (mesoscale), microvillus deformability (microscale), and receptor-ligand binding kinetics (nanoscale). Selectin-ligand bonds exhibit a catch-slip bond behavior, and their dissociation is governed not only by the force but also by the force history. Whereas previous theoretical models have studied the significance of these three "length scales" in isolation, how their interplay affects cell rolling has yet to be resolved. We therefore developed a three-dimensional computational model that integrates the aforementioned length scales to delineate their relative contributions to PMN rolling. Our simulations predict that the catch-slip bond behavior and to a lesser extent bulk cell deformation are responsible for the shear threshold phenomenon. Cells bearing deformable rather than rigid microvilli roll slower only at high P-selectin site densities and elevated levels of shear (>or=400 s(-1)). The more compliant cells (membrane stiffness=1.2 dyn/cm) rolled slower than cells with a membrane stiffness of 3.0 dyn/cm at shear rates >50 s(-1). In summary, our model demonstrates that cell rolling over a ligand-coated surface is a highly coordinated process characterized by a complex interplay between forces acting on three distinct length scales.

  17. Force-Mediated Kinetics of Single P-Selectin/Ligand Complexes Observed by Atomic Force Microscopy

    Science.gov (United States)

    Fritz, Jurgen; Katopodis, Andreas G.; Kolbinger, Frank; Anselmetti, Dario

    1998-10-01

    Leukocytes roll along the endothelium of postcapillary venules in response to inflammatory signals. Rolling under the hydrodynamic drag forces of blood flow is mediated by the interaction between selectins and their ligands across the leukocyte and endothelial cell surfaces. Here we present force-spectroscopy experiments on single complexes of P-selectin and P-selectin glycoprotein ligand-1 by atomic force microscopy to determine the intrinsic molecular properties of this dynamic adhesion process. By modeling intermolecular and intramolecular forces as well as the adhesion probability in atomic force microscopy experiments we gain information on rupture forces, elasticity, and kinetics of the P-selectin/P-selectin glycoprotein ligand-1 interaction. The complexes are able to withstand forces up to 165 pN and show a chain-like elasticity with a molecular spring constant of 5.3 pN nm-1 and a persistence length of 0.35 nm. The dissociation constant (off-rate) varies over three orders of magnitude from 0.02 s-1 under zero force up to 15 s-1 under external applied forces. Rupture force and lifetime of the complexes are not constant, but directly depend on the applied force per unit time, which is a product of the intrinsic molecular elasticity and the external pulling velocity. The high strength of binding combined with force-dependent rate constants and high molecular elasticity are tailored to support physiological leukocyte rolling.

  18. Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain.

    Science.gov (United States)

    Gilbert, Sunny D; Stoddard, Colby D; Wise, Sarah J; Batey, Robert T

    2006-06-09

    Riboswitches are cis-acting genetic regulatory elements found commonly in bacterial mRNAs that consist of a metabolite-responsive aptamer domain coupled to a regulatory switch. Purine riboswitches respond to intracellular concentrations of either adenine or guanine/hypoxanthine to control gene expression. The aptamer domain of the purine riboswitch contains a pyrimidine residue (Y74) that forms a Watson-Crick base-pairing interaction with the bound purine nucleobase ligand that discriminates between adenine and guanine. We sought to understand the structural basis of this specificity and the mechanism of ligand recognition by the purine riboswitch. Here, we present the 2,6-diaminopurine-bound structure of a C74U mutant of the xpt-pbuX guanine riboswitch, along with a detailed thermodynamic and kinetic analysis of nucleobase recognition by both the native and mutant riboswitches. These studies demonstrate clearly that the pyrimidine at position 74 is the sole determinant of purine riboswitch specificity. In addition, the mutant riboswitch binds adenine and adenine derivatives well compared with the guanine-responsive riboswitch. Under our experimental conditions, 2,6-diaminopurine binds the RNA with DeltaH=-40.3 kcal mol(-1), DeltaS=-97.6 cal mol(-1)K(-1), and DeltaG=-10.73 kcal mol(-1). A kinetic determination of the slow rate (0.15 x 10(5)M(-1)s(-1) and 2.1 x 10(5)mM(-1)s(-1) for 2-aminopurine binding the adenine-responsive mutant riboswitch and 7-deazaguanine-binding guanine riboswitch, respectively) of association under varying experimental conditions allowed us to propose a mechanism for ligand recognition by the purine riboswitch. A conformationally dynamic unliganded state for the binding pocket is stabilized first by the Watson-Crick base pairing between the ligand and Y74, and by the subsequent ordering of the J2/3 loop, enclosing the ligand within the three-way junction.

  19. Statistical theory for the kinetics and dynamics of roaming reactions.

    Science.gov (United States)

    Klippenstein, Stephen J; Georgievskii, Yuri; Harding, Lawrence B

    2011-12-22

    We present a statistical theory for the effect of roaming pathways on product branching fractions in both unimolecular and bimolecular reactions. The analysis employs a separation into three distinct steps: (i) the formation of weakly interacting fragments in the long-range/van der Waals region of the potential via either partial decomposition (for unimolecular reactants) or partial association (for bimolecular reactants), (ii) the roaming step, which involves the reorientation of the fragments from one region of the long-range potential to another, and (iii) the abstraction, addition, and/or decomposition from the long-range region to yield final products. The branching between the roaming induced channel(s) and other channels is obtained from a steady-state kinetic analysis for the two (or more) intermediates in the long-range region of the potential. This statistical theory for the roaming-induced product branching is illustrated through explicit comparisons with reduced dimension trajectory simulations for the decompositions of H(2)CO, CH(3)CHO, CH(3)OOH, and CH(3)CCH. These calculations employ high-accuracy analytic potentials obtained from fits to wide-ranging CASPT2 ab initio electronic structure calculations. The transition-state fluxes for the statistical theory calculations are obtained from generalizations of the variable reaction coordinate transition state theory approach. In each instance, at low energy the statistical analysis accurately reproduces the branching obtained from the trajectory simulations. At higher energies, e.g., above 1 kcal/mol, increasingly large discrepancies arise, apparently due to a dynamical biasing toward continued decomposition of the incipient molecular fragments (for unimolecular reactions). Overall, the statistical theory based kinetic analysis is found to provide a useful framework for interpreting the factors that determine the significance of roaming pathways in varying chemical environments.

  20. Fixed-charge phosphine ligands to explore gas-phase coinage metal-mediated decarboxylation reactions.

    Science.gov (United States)

    Vikse, Krista; Khairallah, George N; McIndoe, J Scott; O'Hair, Richard A J

    2013-05-14

    A combination of multistage mass spectrometry experiments and density functional theory (DFT) calculations were used to examine the decarboxylation reactions of a series of metal carboxylate complexes bearing a fixed-charge phosphine ligand, [(O3SC6H4)(C6H5)2PM(I)O2CR](-) (M = Cu, Ag, Au; R = Me, Et, benzyl, Ph). Collision-induced dissociation (CID) of these complexes using an LTQ linear ion mass spectrometer results in three main classes of reactions being observed: (1) decarboxylation; (2) loss of the phosphine ligand; (3) loss of carboxylic acid. The gas-phase unimolecular chemistry of the resultant decarboxylated organometallic ions, [(O3SC6H4)(C6H5)2PM(I)R](-), were also explored using CID experiments, and fragment primarily via loss of the phosphine ligand. Energy-resolved CID experiments on [(O3SC6H4)(C6H5)2PM(I)O2CR](-) (M = Cu, Ag, Au; R = Me, Et, benzyl, Ph) using a Q-TOF mass spectrometer were performed to gain a more detailed understanding of the factors influencing coinage metal-catalyzed decarboxylation and DFT calculations on the major fragmentation pathways aided in interpretation of the experimental results. Key findings are that: (1) the energy required for loss of the phosphine ligand follows the order Ag phosphine ligand on decarboxylation is also considered in comparison with previous studies on metal carboxylates that do not contain a phosphine ligand.

  1. Equilibria and kinetics for pH-dependent axial ligation of bromomethyl(aquo)cobaloxime by aliphatic amine ligands

    Indian Academy of Sciences (India)

    M Bhoopal; N Ravi Kumar Reddy; S Satyanarayana

    2003-04-01

    Kinetics and equilibria of axial ligation of bromomethyl(aquo) cobaloxime by a series of straight chain primary amines (methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine), cycloamines (cyclopentylamine, cyclohexylamine, cycloheptylamine) and secondary amines (N,N-dimethylamine, N,N-diethylamine) have been measured as functions of pH by spectrophotometric technique in aqueous solution, ionic strength 1 M (KCl) at 25°C. The rate of substitution of H2O varies with the Ka of incoming ligand, thus establishing nucleophilic participation of the ligand in the transition state. Binding and kinetic data are interpreted based on the basicity and steric influence of the entering ligand. To compare the rate constants of the entering ligands, pH independent second-order rate constants (on) are calculated.

  2. Molecular Dynamics Simulations and Kinetic Measurements to Estimate and Predict Protein-Ligand Residence Times.

    Science.gov (United States)

    Mollica, Luca; Theret, Isabelle; Antoine, Mathias; Perron-Sierra, Françoise; Charton, Yves; Fourquez, Jean-Marie; Wierzbicki, Michel; Boutin, Jean A; Ferry, Gilles; Decherchi, Sergio; Bottegoni, Giovanni; Ducrot, Pierre; Cavalli, Andrea

    2016-08-11

    Ligand-target residence time is emerging as a key drug discovery parameter because it can reliably predict drug efficacy in vivo. Experimental approaches to binding and unbinding kinetics are nowadays available, but we still lack reliable computational tools for predicting kinetics and residence time. Most attempts have been based on brute-force molecular dynamics (MD) simulations, which are CPU-demanding and not yet particularly accurate. We recently reported a new scaled-MD-based protocol, which showed potential for residence time prediction in drug discovery. Here, we further challenged our procedure's predictive ability by applying our methodology to a series of glucokinase activators that could be useful for treating type 2 diabetes mellitus. We combined scaled MD with experimental kinetics measurements and X-ray crystallography, promptly checking the protocol's reliability by directly comparing computational predictions and experimental measures. The good agreement highlights the potential of our scaled-MD-based approach as an innovative method for computationally estimating and predicting drug residence times.

  3. Stepwise kinetic equilibrium models of quantitative polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Cobbs Gary

    2012-08-01

    Full Text Available Abstract Background Numerous models for use in interpreting quantitative PCR (qPCR data are present in recent literature. The most commonly used models assume the amplification in qPCR is exponential and fit an exponential model with a constant rate of increase to a select part of the curve. Kinetic theory may be used to model the annealing phase and does not assume constant efficiency of amplification. Mechanistic models describing the annealing phase with kinetic theory offer the most potential for accurate interpretation of qPCR data. Even so, they have not been thoroughly investigated and are rarely used for interpretation of qPCR data. New results for kinetic modeling of qPCR are presented. Results Two models are presented in which the efficiency of amplification is based on equilibrium solutions for the annealing phase of the qPCR process. Model 1 assumes annealing of complementary targets strands and annealing of target and primers are both reversible reactions and reach a dynamic equilibrium. Model 2 assumes all annealing reactions are nonreversible and equilibrium is static. Both models include the effect of primer concentration during the annealing phase. Analytic formulae are given for the equilibrium values of all single and double stranded molecules at the end of the annealing step. The equilibrium values are then used in a stepwise method to describe the whole qPCR process. Rate constants of kinetic models are the same for solutions that are identical except for possibly having different initial target concentrations. Analysis of qPCR curves from such solutions are thus analyzed by simultaneous non-linear curve fitting with the same rate constant values applying to all curves and each curve having a unique value for initial target concentration. The models were fit to two data sets for which the true initial target concentrations are known. Both models give better fit to observed qPCR data than other kinetic models present in the

  4. Manifestation of macroscopic correlations in elementary reaction kinetics. I. Irreversible reaction A +A→product

    Science.gov (United States)

    Doktorov, Alexander B.; Kipriyanov, Alexander A.; Kipriyanov, Alexey A.

    2010-05-01

    Using an modern many-particle method for the derivation of non-Markovian binary kinetic equations, we have treated theoretically the applicability of the encounter theory (ET) (the prototype of the collision theory) concepts to the widely known diffusion assisted irreversible bulk reaction A +A→product (for example, radical reaction) in dilute solutions. The method shows that the agreement with the ET is observed when the familiar integral ET is employed which in this method is just a step in the derivation of kinetic equations. It allows for two-particle correlations only, but fails to take account of correlation of reactant simultaneously with the partner of the encounter and the reactant in the bulk. However, the next step leading to the modified ET under transformation of equations to the regular form both extends the time range of the applicability of ET rate equation (as it was for reactions proceeding with one of the reactants in excess), and gives the equation of the generalized ET. In full agreement with physical considerations, this theory reveals macroscopic correlations induced by the encounters in the reservoir of free walks. This means that the encounters of reactants in solution are correlated on a rather large time interval of the reaction. Though any nonstationary (non-Markovian) effects manifest themselves rather weakly in the kinetics of the bimolecular reaction in question, just the existence of the revealed macroscopic correlations in the binary theory is of primary importance. In particular, it means that the well-known phenomena which are generally considered to be associated solely with correlation of particles on the encounter (for example, chemically induced dynamic nuclear polarization) may be induced by correlation in the reservoir of free random walks of radicals in solution.

  5. Manifestation of macroscopic correlations in elementary reaction kinetics. I. Irreversible reaction A+A-->product.

    Science.gov (United States)

    Doktorov, Alexander B; Kipriyanov, Alexander A; Kipriyanov, Alexey A

    2010-05-28

    Using an modern many-particle method for the derivation of non-Markovian binary kinetic equations, we have treated theoretically the applicability of the encounter theory (ET) (the prototype of the collision theory) concepts to the widely known diffusion assisted irreversible bulk reaction A+A-->product (for example, radical reaction) in dilute solutions. The method shows that the agreement with the ET is observed when the familiar integral ET is employed which in this method is just a step in the derivation of kinetic equations. It allows for two-particle correlations only, but fails to take account of correlation of reactant simultaneously with the partner of the encounter and the reactant in the bulk. However, the next step leading to the modified ET under transformation of equations to the regular form both extends the time range of the applicability of ET rate equation (as it was for reactions proceeding with one of the reactants in excess), and gives the equation of the generalized ET. In full agreement with physical considerations, this theory reveals macroscopic correlations induced by the encounters in the reservoir of free walks. This means that the encounters of reactants in solution are correlated on a rather large time interval of the reaction. Though any nonstationary (non-Markovian) effects manifest themselves rather weakly in the kinetics of the bimolecular reaction in question, just the existence of the revealed macroscopic correlations in the binary theory is of primary importance. In particular, it means that the well-known phenomena which are generally considered to be associated solely with correlation of particles on the encounter (for example, chemically induced dynamic nuclear polarization) may be induced by correlation in the reservoir of free random walks of radicals in solution.

  6. Thermochemistry, reaction paths, and kinetics on the tert-isooctane radical reaction with O2.

    Science.gov (United States)

    Snitsiriwat, Suarwee; Bozzelli, Joseph W

    2014-07-03

    Thermochemical properties of tert-isooctane hydroperoxide and its radicals are determined by computational chemistry. Enthalpies are determined using isodesmic reactions with B3LYP density function and CBS QB3 methods. Application of group additivity with comparison to calculated values is illustrated. Entropy and heat capacities are determined using geometric parameters and frequencies from the B3LYP/6-31G(d,p) calculations for the lowest energy conformer. Internal rotor potentials are determined for the tert-isooctane hydroperoxide and its radicals in order to identify isomer energies. Recommended values derived from the most stable conformers of tert-isooctane hydroperoxide of are -77.85 ± 0.44 kcal mol(-1). Isooctane is a highly branched molecule, and its structure has a significant effect on its thermochemistry and reaction barriers. Intramolecular interactions are shown to have a significant effect on the enthalpy of the isooctane parent and its radicals on peroxy/peroxide systems, the R• + O2 well depths and unimolecular reaction barriers. Bond dissociation energies and well depths, for tert-isooctane hydroperoxide → R• + O2 are 33.5 kcal mol(-1) compared to values of ∼38 to 40 kcal mol(-1) for the smaller tert-butyl-O2 → R• + O2. Transition states and kinetic parameters for intramolecular hydrogen atom transfer and molecular elimination channels are characterized to evaluate reaction paths and kinetics. Kinetic parameters are determined versus pressure and temperature for the chemically activated formation and unimolecular dissociation of the peroxide adducts. Multifrequency quantum RRK (QRRK) analysis is used for k(E) with master equation analysis for falloff. The major reaction paths at 1000 K are formation of isooctane plus HO2 followed by cyclic ether plus OH. Stabilization of the tert-isooctane hydroperoxy radical becomes important at lower temperatures.

  7. Ligand-Substitution Reactions of the Tellurium Compound AS-101 in Physiological Aqueous and Alcoholic Solutions.

    Science.gov (United States)

    Silberman, Alon; Albeck, Michael; Sredni, Benjamin; Albeck, Amnon

    2016-11-07

    Since its first crystallization, the aqueous structure of the tellurium-containing experimental drug AS-101 has never been studied. We show that, under the aqueous conditions in which it is administered, AS-101 is subjected to an immediate ligand-substitution reaction with water, yielding a stable hydrolyzed oxide anion product that is identified, for the first time, to be TeOCl3(-). Studying the structure of AS-101 in propylene glycol (PG), an alcoholic solvent often used for the topical and oral administration of AS-101, revealed the same phenomenon of ligand-substitution reaction between the alcoholic ligands. Upon exposure to water, the PG-substituted product is also hydrolyzed to the same tellurium(IV) oxide form, TeOCl3(-).

  8. The kinetics of the hydrogen/deuterium exchange of epidermal growth factor receptor ligands.

    Science.gov (United States)

    Iloro, Ibon; Narváez, Daniel; Guillén, Nancy; Camacho, Carlos M; Guillén, Lalisse; Cora, Elsa; Pastrana-Ríos, Belinda

    2008-05-15

    Five highly homologous epidermal growth factor receptor ligands were studied by mass spectral analysis, hydrogen/deuterium (H/D) exchange via attenuated total reflectance Fourier transform-infrared spectroscopy, and two-dimensional correlation analysis. These studies were performed to determine the order of events during the exchange process, the extent of H/D exchange, and associated kinetics of exchange for a comparative analysis of these ligands. Furthermore, the secondary structure composition of amphiregulin (AR) and heparin-binding-epidermal growth factor (HB-EGF) was determined. All ligands were found to have similar contributions of 3(10)-helix and random coil with varying contributions of beta-sheets and beta-turns. The extent of exchange was 40%, 65%, 55%, 65%, and 98% for EGF, transforming growth factor-alpha (TGF-alpha), AR, HB-EGF, and epiregulin (ER), respectively. The rate constants were determined and classified as fast, intermediate, and slow: for EGF the 0.20 min(-1) (Tyr), 0.09 min(-1) (Arg, beta-turns), and 1.88 x 10(-3) min(-1) (beta-sheets and 3(10)-helix); and for TGF-alpha 0.91 min(-1) (Tyr), 0.27 min(-1) (Arg, beta-turns), and 1.41 x 10(-4) min(-1) (beta-sheets). The time constants for AR 0.47 min(-1) (Tyr), 0.04 min(-1) (Arg), and 1.00 x 10(-4) min(-1) (buried 3(10)-helix, beta-turns, and beta-sheets); for HB-EGF 0.89 min(-1) (Tyr), 0.14 min(-1) (Arg and 3(10)-helix), and 1.00 x 10(-3) min(-1) (buried 3(10)-helix, beta-sheets, and beta-turns); and for epiregulin 0.16 min(-1) (Tyr), 0.03 min(-1) (Arg), and 1.00 x 10(-4) min(-1) (3(10)-helix and beta-sheets). These results provide essential information toward understanding secondary structure, H/D exchange kinetics, and solvation of these epidermal growth factor receptor ligands in their unbound state.

  9. Recoverable Palladium(0) on Poly(vinylpyrrolidone) Catalyzed Ligand-free Suzuki Reaction in Water

    Institute of Scientific and Technical Information of China (English)

    WANG Lei; LI Pin-Hua

    2006-01-01

    In the absence of any ligand, a recoverable palladium(O) on poly(vinylpyrrolidone) (PVP) catalyzed Suzuki reaction of aryl iodide and bromide with potassium aryltrifluoroborate was developed. The reaction conditions involved the use of water as the solvent, potassium carbonate as the base, and PVP supported palladium metal colloids as the catalyst. The palladium metal could be recovered and recycled for eight consecutive trials without significant loss of its activity.

  10. Heterogeneous Palladium Chloride Catalyzed Ligand-free Suzuki-Miyaura Coupling Reactions at Ambient Temperature

    Institute of Scientific and Technical Information of China (English)

    WANG Min; WANG Lei

    2008-01-01

    A mild and efficient ligand-free Suzuki-Miyaura coupling reaction catalyzed by heterogeneous palladium chloride was developed at room temperature in a short reaction time under air atmosphere.Various phenyl iodides,bromides and activated chlorides were coupled with sodium tetraphenylborate or phenylboronic acids efficiently to afford the corresponding cross-coupled products in good to excellent yields.Furthermore,the catalyst could be recycled up to four times without loss of its activity.

  11. Electrochemical Study on Ligand Substitution Reactions in Oxofluoro Boron Containing Melts

    DEFF Research Database (Denmark)

    Polyakova, L.P.; Bukatova, G.A.; Polyakov, E.G.;

    1997-01-01

    Linear voltammetry was used for study of the ligand substitution reactions in the process of titration of FLINAK-KBF4, melt with different oxides. At molar ratio O/B=1 complexes BF4- which are characteristic for oxygenless melt transform into BOF2- Further increasing of O/B ratio up to 2 leads to...

  12. Database of atomistic reaction mechanisms with application to kinetic Monte Carlo.

    Science.gov (United States)

    Terrell, Rye; Welborn, Matthew; Chill, Samuel T; Henkelman, Graeme

    2012-07-07

    Kinetic Monte Carlo is a method used to model the state-to-state kinetics of atomic systems when all reaction mechanisms and rates are known a priori. Adaptive versions of this algorithm use saddle searches from each visited state so that unexpected and complex reaction mechanisms can also be included. Here, we describe how calculated reaction mechanisms can be stored concisely in a kinetic database and subsequently reused to reduce the computational cost of such simulations. As all accessible reaction mechanisms available in a system are contained in the database, the cost of the adaptive algorithm is reduced towards that of standard kinetic Monte Carlo.

  13. A biological interpretation of transient anomalous subdiffusion. II. Reaction kinetics.

    Science.gov (United States)

    Saxton, Michael J

    2008-02-01

    Reaction kinetics in a cell or cell membrane is modeled in terms of the first passage time for a random walker at a random initial position to reach an immobile target site in the presence of a hierarchy of nonreactive binding sites. Monte Carlo calculations are carried out for the triangular, square, and cubic lattices. The mean capture time is expressed as the product of three factors: the analytical expression of Montroll for the capture time in a system with a single target and no binding sites; an exact expression for the mean escape time from the set of lattice points; and a correction factor for the number of targets present. The correction factor, obtained from Monte Carlo calculations, is between one and two. Trapping may contribute significantly to noise in reaction rates. The statistical distribution of capture times is obtained from Monte Carlo calculations and shows a crossover from power-law to exponential behavior. The distribution is analyzed using probability generating functions; this analysis resolves the contributions of the different sources of randomness to the distribution of capture times. This analysis predicts the distribution function for a lattice with perfect mixing; deviations reflect imperfect mixing in an ordinary random walk.

  14. Design and Synthesis of Bis-thioureas Ligands for Pd-Catalyzed Heck Reaction

    Institute of Scientific and Technical Information of China (English)

    CHEN Wei; CHEN Ying-Chun; WU Yong

    2004-01-01

    The palladium-catalyzed arylation of olefins (the Heck reaction) is one of the most versatile tools for C-C bond formation in organic synthesis. Phosphine ligands are generally used to stabilize the reactive palladium intermediates, the air-sensitivity of phosphine ligands, however,places significant limits on their synthetic applications. Recently, Yang1 and we2 have reported Heck and Suzuki reactions of highly active arenediazonium salts and halides catalyzed by air-stable monothiourea-Pd complexes.In this presentation, we disclose our results on the design and synthesis of novel bis-thiourea ligands. We report that the bis-thiourea-Pd(0) complexes are highly air-, moisture- and thermally stable catalysts for Heck reactions of aryl halides. We tested the catalytic activity of their complexes with Pd (0) in the Heck reaction between iodobenzene and n-butyl acrylate. Our work shows that in NMP at 180℃, quantitative yield was achieved within 0.5h when 0.001mol% Pd was used (TOF up to 200,000). Furthermore, solvent-free condition can be applied in our catalytic system and very high TON (up to 1,000,000) is obtained within 12h.Further investigations aimed at clarification of the reaction scope are currently in progress.

  15. Chlorination of parabens: reaction kinetics and transformation product identification.

    Science.gov (United States)

    Mao, Qianhui; Ji, Feng; Wang, Wei; Wang, Qiquan; Hu, Zhenhu; Yuan, Shoujun

    2016-11-01

    The reactivity and fate of parabens during chlorination were investigated in this work. Chlorination kinetics of methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and butylparaben (BuP) were studied in the pH range of 4.0 to 11.0 at 25 ± 1 °C. Apparent rate constants (k app) of 9.65 × 10(-3) M(-0.614)·s(-1), 1.77 × 10(-2) M(-1.019)·s(-1), 2.98 × 10(-2) M(-0.851)·s(-1), and 1.76 × 10(-2) M(-0.860)·s(-1) for MeP, EtP, PrP, and BuP, respectively, were obtained at pH 7.0. The rate constants depended on the solution pH, temperature, and NH4(+) concentration. The maximum k app was obtained at pH 8.0, and the minimum value was obtained at pH 11.0. The reaction rate constants increased with increasing temperature. When NH4(+) was added to the solution, the reaction of parabens was inhibited due to the rapid formation of chloramines. Two main transformation products, 3-chloro-parabens and 3,5-dichloro-parabens, were identified by GC-MS and LCMS-IT-TOF, and a reaction pathway was proposed. Dichlorinated parabens accumulated in solution, which is a threat to human health and the aqueous environment.

  16. Combustion reaction kinetics of guarana seed residue applying isoconversional methods and consecutive reaction scheme.

    Science.gov (United States)

    Lopes, Fernanda Cristina Rezende; Tannous, Katia; Rueda-Ordóñez, Yesid Javier

    2016-11-01

    This work aims the study of decomposition kinetics of guarana seed residue using thermogravimetric analyzer under synthetic air atmosphere applying heating rates of 5, 10, and 15°C/min, from room temperature to 900°C. Three thermal decomposition stages were identified: dehydration (25.1-160°C), oxidative pyrolysis (240-370°C), and combustion (350-650°C). The activation energies, reaction model, and pre-exponential factor were determined through four isoconversional methods, master plots, and linearization of the conversion rate equation, respectively. A scheme of two-consecutive reactions was applied validating the kinetic parameters of first-order reaction and two-dimensional diffusion models for the oxidative pyrolysis stage (149.57kJ/mol, 6.97×10(10)1/s) and for combustion stage (77.98kJ/mol, 98.611/s), respectively. The comparison between theoretical and experimental conversion and conversion rate showed good agreement with average deviation lower than 2%, indicating that these results could be used for modeling of guarana seed residue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Cascade ultrafiltration and competing ligand exchange for kinetic speciation of aluminium, iron, and nickel in fresh water.

    Science.gov (United States)

    Hassan, Nouri M; Murimboh, John D; Sekaly, Amina L R; Mandal, Rupasri; Chakrabarti, Chuni L; Grégoire, D Conrad

    2006-04-01

    Kinetic speciation of nickel, aluminium, and iron in fresh water has been investigated by cascade ultrafiltration followed by competing ligand exchange of the ultrafiltered fractions. Graphite furnace atomic absorption spectrometry was used to measure the kinetics of metal complex dissociation. Dissolved metal species were fractionated by cascade ultrafiltration. Metal speciation in each ultrafiltered fraction was then characterized as free metal ions, "labile" metal complexes (with dissociation rate constants >/=10(-3) s(-1)), "slowly labile" metal complexes (with dissociation rate constants >10(-6) s(-1)), and "inert" metal complexes (with dissociation rate constants measurement of dissociation kinetics alone.

  18. Kinetic characterization of the photosynthetic reaction centres in microalgae by means of fluorescence methodology

    NARCIS (Netherlands)

    Gargano, Immacolata; Olivieri, Giuseppe; Spasiano, Danilo; Andreozzi, Roberto; Pollio, Antonino; Marotta, Raffaele; Ambrosio, D' Nicola; Marzocchella, Antonio

    2015-01-01

    The kinetic characterization of the photosynthetic activity in autotrophic microalgae plays a key role in the design of optimized photobioreactors. This paper presents a procedure to assess kinetic parameters of a three-state photosynthetic reaction centres model. Four kinetic parameters of the

  19. Determination of multivalent protein-ligand binding kinetics by second-harmonic correlation spectroscopy.

    Science.gov (United States)

    Sly, Krystal L; Conboy, John C

    2014-11-18

    Binding kinetics of the multivalent proteins peanut agglutinin (PnA) and cholera toxin B subunit (CTB) to a GM1-doped 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid bilayer were investigated by both second-harmonic correlation spectroscopy (SHCS) and a traditional equilibrium binding isotherm. Adsorption and desorption rates, as well as binding affinity and binding free energy, for three bulk protein concentrations were determined by SHCS. For PnA binding to GM1, the measured adsorption rate decreased with increasing bulk PnA concentration from (3.7 ± 0.3) × 10(6) M(-1)·s(-1) at 0.43 μM PnA to (1.1 ± 0.1) × 10(5) M(-1)·s(-1) at 12 μM PnA. CTB-GM1 exhibited a similar trend, decreasing from (1.0 ± 0.1) × 10(9) M(-1)·s(-1) at 0.5 nM CTB to (3.5 ± 0.2) × 10(6) M(-1)·s(-1) at 240 nM CTB. The measured desorption rates in both studies did not exhibit any dependence on initial protein concentration. As such, 0.43 μM PnA and 0.5 nM CTB had the strongest measured binding affinities, (3.7 ± 0.8) × 10(9) M(-1) and (2.8 ± 0.5) × 10(13) M(-1), respectively. Analysis of the binding isotherm data suggests there is electrostatic repulsion between protein molecules when PnA binds GM1, while CTB-GM1 demonstrates positive ligand-ligand cooperativity. This study provides additional insight into the complex interactions between multivalent proteins and their ligands and showcases SHCS for examining these complex yet technologically important protein-ligand complexes used in biosensors, immunoassays, and other biomedical diagnostics.

  20. Polymer-pendant ligand chemistry. 1. Reactions of organoarsonic acids and arsenic acid with catechol ligands bonded to polystryene-divinylbenzene and regeneration of the ligand site by a simple hydrolysis procedure

    Energy Technology Data Exchange (ETDEWEB)

    Fish, R.H.; Tannous, R.S.

    1985-12-18

    A novel method is reported for reactions of organoarsonic acids and arsenic acid, known to be present in oil shale and its pyrolysis products, with catechol ligands bonded to either 2% or 20% cross-linked methylated polystyrene-divinylbenzene (PS-DVB) resins. A previous study with catechol-bonded ligands on PS-DVB resins dealt with their reactions with metal ions in aqueous solution and showed a selectivity toward Hg/sup 2 +/ ions. As far as we have been able to determine, reactions of this polymer-supported ligand with organometallic compounds or inorganic anions have not been reported. 9 references, 2 figures, 1 table.

  1. Kinetics of the Reaction of CO2 with Aqueous Potassium Salt of Taurine and Glycine

    NARCIS (Netherlands)

    Kumar, P.S.; Hogendoorn, J.A.; Versteeg, G.F.; Feron, P.H.M.

    2003-01-01

    The kinetics of the reaction between CO2 and aqueous potassium salts of taurine and glycine was measured at 295 K in a stirred-cell reactor with a flat gas–liquid interface. For aqueous potassium taurate solutions, the temperature effect on the reaction kinetics was measured at 285 and 305 K. Unlike

  2. Reaction Kinetics in cw Rare-Gas Halogen Lamps

    Science.gov (United States)

    Salvermoser, M.; Murnick, D. E.; Ulrich, A.; Wieser, J.

    1999-10-01

    Pumping with a continuous low energy (excimer gas mixtures, the reaction kinetics leading to efficient vuv emission from ArF and F2 at 193nm and 157nm respectively has been studied. The scaling of the pumping power density with energy to the inverse 2.5 power and cube of the pressure allows a wide range of pumping rates to be considered. And, by studying the spectrum and yield as a function of pressure and gas mixture, optimum conditions for vuv emission can be determined and specific formation and quenching channels can be isolated. Energy transfer efficiency near 10% has been obtained at 193nm for neon-argon-fluorine (1:0.008:0.0004) mixtures and at 157nm for neon-fluorine (1:0.002) at two to three bar pressure. Lamps emitting tens of milliwatts light output from a 0.8mm diameter point have been stable for tens of hours. Scaling to at least 10W/cm^2str continuous output is possible.

  3. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II ? reactions of organic species

    OpenAIRE

    2005-01-01

    International audience; This article, the second in the series, presents kinetic and photochemical data evaluated by the IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. It covers the gas phase and photochemical reactions of Organic species, which were last published in 1999, and were updated on the IUPAC website in late 2002. The article consists of a summary sheet, containing the recommended kinetic parameters for the evaluated reactions, and eight appendices con...

  4. A Pyridine-Based Ligand with Two Hydrazine Functions for Lanthanide Chelation: Remarkable Kinetic Inertness for a Linear, Bishydrated Complex.

    Science.gov (United States)

    Bonnet, Célia S; Laine, Sophie; Buron, Frédéric; Tircsó, Gyula; Pallier, Agnès; Helm, Lothar; Suzenet, Franck; Tóth, Éva

    2015-06-15

    To study the influence of hydrazine functions in the ligand skeleton, we designed the heptadentate HYD ligand (2,2',2″,2‴-(2,2'-(pyridine-2,6-diyl)bis(2-methylhydrazine-2,1,1-triyl)) tetraacetic acid) and compared the thermodynamic, kinetic, and relaxation properties of its Ln(3+) complexes to those of the parent pyridine (Py) analogues without hydrazine (Py = 2,6-pyridinebis(methanamine)-N,N,N',N'-tetraacetic acid). The protonation constants of HYD were determined by pH-potentiometric measurements, and assigned by a combination of UV-visible and NMR spectroscopies. The protonation sequence is rather unusual and illustrates that small structural changes can strongly influence ligand basicity. The first protonation step occurs on the pyridine nitrogen in the basic region, followed by two hydrazine nitrogens and the carboxylate groups at acidic pH. Contrary to Py, HYD self-aggregates through a pH-dependent process (from pH ca. 4). Thermodynamic stability constants have been obtained by pH-potentiometry and UV-visible spectrophotometry for various Ln(3+) and physiological cations (Zn(2+), Ca(2+), Cu(2+)). LnHYD stability constants show the same trend as those of LnDTPA complexes along the Ln(3+) series, with log K = 18.33 for Gd(3+), comparable to the Py analogue. CuHYD has a particularly high stability (log K > 19) preventing its determination from pH-potentiometric measurements. The stability constant of CuPy was also revisited and found to be underestimated in previous studies, highlighting that UV-visible spectrophotometry is often indispensable to obtain reliable stability constants for Cu(2+) chelates. The dissociation of GdL, assessed by studying the Cu(2+)-exchange reaction, occurs mainly via an acid-catalyzed process, with limited contribution from direct Cu(2+) attack. The kinetic inertness of GdHYD is remarkable for a linear bishydrated chelate; the 25-fold increase in the dissociation half-life with respect to the monohydrated commercial contrast agent

  5. Electron and ligand transfer reactions between cyclometallated platinum(II) compounds and thallium(III) carboxylates

    NARCIS (Netherlands)

    Koten, G. van; Ploeg, A.F.M.J. van der; Vrieze, K.

    1982-01-01

    Reaction of trans-[(2-Me{2}NCH{2}C{6}H{4}{2}Pt}I{}I{] with Tl}I{}I{}I{(O{2}CR){3} (R = Me, i-Pr) gave direct elimination of Tl}I{(O{2}CR) and formation of the oxidative addition product [(2-Me{2}NCH{2}C{6}H{4}){2}Pt}I{}V{ (O{2}CR){2}], in two isomeric forms. A structure with the carbon ligands in tr

  6. Electron and ligand transfer reactions between cyclometallated platinum(II) compounds and thallium(III) carboxylates

    NARCIS (Netherlands)

    Koten, G. van; Ploeg, A.F.M.J. van der; Vrieze, K.

    1982-01-01

    Reaction of trans-[(2-Me{2}NCH{2}C{6}H{4}{2}Pt}I{}I{] with Tl}I{}I{}I{(O{2}CR){3} (R = Me, i-Pr) gave direct elimination of Tl}I{(O{2}CR) and formation of the oxidative addition product [(2-Me{2}NCH{2}C{6}H{4}){2}Pt}I{}V{ (O{2}CR){2}], in two isomeric forms. A structure with the carbon ligands in

  7. Chemical Reactions and Kinetics of the Carbon Monoxide Coupling in the Presence of Hydrogen

    Institute of Scientific and Technical Information of China (English)

    Fandong Meng; Genhui Xu; Zhenhua Li; Pa Du

    2002-01-01

    The chemical reactions and kinetics of the catalytic coupling reaction of carbon monoxide to diethyl oxalate were studied in the presence of hydrogen over a supported palladium catalyst in the gaseous phase at the typical coupling reaction conditions. The experiments were performed in a continuous flow fixed-bed reactor. The results indicated that hydrogen only reacts with ethyl nitrite to form ethanol, and kinetic studies revealed that the rate-determining step is the surface reaction of adsorbed hydrogen and the ethoxy radical (EtO-). A kinetic model is proposed and a comparison of the observed and calculated conversions showed that the rate expressions are of rather high confidence.

  8. Phenalenyl-based ligand for transition metal chemistry: Application in Henry reaction

    Indian Academy of Sciences (India)

    Arup Mukherjee; Tamal K Sen; Swadhin K Mandal; Daniel Kratzert; Dietmar Stalke; Alexander Döring; Carola Schulzke

    2011-03-01

    We report the synthesis and characterization of the first transition metal complex of a phenalenylbased ligand. The reaction of Cu(OAc)2.H2O with 9--methylamino-1-'-methylimino-phenalene (LH) in 1:1 stoichiometric ratio results in the formation of a mononuclear copper complex [LCu(OAc)] (1). The molecular structure of 1 was established by X-ray crystallography. The electrochemistry of 1 indicates the formation of an anionic radical by one electron reduction into the non-bonding molecular orbital of the phenalenyl system. The complex 1 efficiently catalyses the C-C bond forming Henry reaction.

  9. Complex kinetics of a Landolt-type reaction: the later phase of the thiosulfate-iodate reaction.

    Science.gov (United States)

    Varga, Dénes; Nagypál, István; Horváth, Attila K

    2010-05-13

    The thiosulfate-iodate reaction has been studied spectrophotometrically in slightly acidic medium at 25.0 +/- 0.1 degrees C in acetate/acetic acid buffer by monitoring the absorbance at 468 nm at the isosbestic point of iodine-triiodide ion system. The formation of iodine after the Landolt time follows a rather complex kinetic behavior depending on the pH and on the concentration of the reactants as well. It is shown that the key intermediate of the reaction is I(2)O(2), its equilibrium formation from the well-known Dushman reaction along with their further reactions followed by subsequent reactions of HOI, HIO(2), S(2)O(3)OH(-), and S(2)O(3)I(-) adequately accounts for all the experimentally measured characteristics of the kinetic curves. A 19-step kinetic model is proposed and discussed with 13 fitted and 7 fixed parameters in detail.

  10. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan [ORNL; Yeh, Gour-Tsyh [University of Central Florida, Orlando; Parker, Jack C [ORNL; Brooks, Scott C [ORNL; Pace, Molly [ORNL; Kim, Young Jin [ORNL; Jardine, Philip M [ORNL; Watson, David B [ORNL

    2007-01-01

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing NE equilibrium reactions and a set of reactive transport equations of M-NE kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.

  11. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions

    Science.gov (United States)

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C.; Brooks, Scott C.; Pace, Molly N.; Kim, Young-Jin; Jardine, Philip M.; Watson, David B.

    2007-06-01

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing NE equilibrium reactions and a set of reactive transport equations of M- NE kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.

  12. Ligand-tailored single-site silica supported titanium catalysts: Synthesis, characterization and towards cyanosilylation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wei; Li, Yani; Yu, Bo; Yang, Jindou; Zhang, Ying; Chen, Xi; Zhang, Guofang, E-mail: gfzhang@snnu.edu.cn; Gao, Ziwei, E-mail: zwgao@snnu.edu.cn

    2015-01-15

    A successive anchoring of Ti(NMe{sub 2}){sub 4}, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1′-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on silica was conducted by SOMC strategy in moderate conditions. The silica, monitored by in-situ Fourier transform infrared spectroscopy (in-situ FT-IR), was pretreated at different temperatures (200, 500 and 800 °C). The ligand tailored silica-supported titanium complexes were characterized by in-situ FT-IR, {sup 13}C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and elemental analysis in detail, verifying that the surface titanium species are single sited. The catalytic activity of the ligand tailored single-site silica supported titanium complexes was evaluated by a cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the dehydroxylation temperatures of silica and the configuration of the ligands. - Graphical abstract: The ligand-tailored silica supported “single site” titanium complexes were synthesized by SOMC strategy and fully characterized. Their catalytic activity were evaluated by benzaldehyde silylcyanation. - Highlights: • Single-site silica supported Ti active species was prepared by SOMC technique. • O-donor ligand tailored Ti surface species was synthesized. • The surface species was characterized by XPS, {sup 13}C CP-MAS NMR, XANES etc. • Catalytic activity of the Ti active species in silylcyanation reaction was evaluated.

  13. Kinetic modelling of GlmU reactions - prioritization of reaction for therapeutic application.

    Directory of Open Access Journals (Sweden)

    Vivek K Singh

    Full Text Available Mycobacterium tuberculosis(Mtu, a successful pathogen, has developed resistance against the existing anti-tubercular drugs necessitating discovery of drugs with novel action. Enzymes involved in peptidoglycan biosynthesis are attractive targets for antibacterial drug discovery. The bifunctional enzyme mycobacterial GlmU (Glucosamine 1-phosphate N-acetyltransferase/ N-acetylglucosamine-1-phosphate uridyltransferase has been a target enzyme for drug discovery. Its C- and N- terminal domains catalyze acetyltransferase (rxn-1 and uridyltransferase (rxn-2 activities respectively and the final product is involved in peptidoglycan synthesis. However, the bifunctional nature of GlmU poses difficulty in deciding which function to be intervened for therapeutic advantage. Genetic analysis showed this as an essential gene but it is still unclear whether any one or both of the activities are critical for cell survival. Often enzymatic activity with suitable high-throughput assay is chosen for random screening, which may not be the appropriate biological function inhibited for maximal effect. Prediction of rate-limiting function by dynamic network analysis of reactions could be an option to identify the appropriate function. With a view to provide insights into biochemical assays with appropriate activity for inhibitor screening, kinetic modelling studies on GlmU were undertaken. Kinetic model of Mtu GlmU-catalyzed reactions was built based on the available kinetic data on Mtu and deduction from Escherichia coli data. Several model variants were constructed including coupled/decoupled, varying metabolite concentrations and presence/absence of product inhibitions. This study demonstrates that in coupled model at low metabolite concentrations, inhibition of either of the GlmU reactions cause significant decrement in the overall GlmU rate. However at higher metabolite concentrations, rxn-2 showed higher decrement. Moreover, with available intracellular

  14. Square-Wave Voltammetry of Cathodic Stripping Reactions. Diagnostic Criteria, Redox Kinetic Measurements, and Analytical Applications

    OpenAIRE

    Gulaboski, Rubin; Mirceski, Valentin; Komorsky-Lovrić, Šebojka; Lovrić, Milivoj

    2004-01-01

    A comparative study of different types of cathodic stripping reactions under conditions of square-wave voltammetry is presented. Cathodic stripping processes involving reactions of second order as well as reactions coupled by adsorption of the reacting ligand are analyzed The inherent parameters, controlling the overall voltammetric behavior of each cathodic stripping electrode reaction are derived. The criteria for qualitative distinguishing of each mechanism are established as w...

  15. Insights into ligand binding to a glutathione S-transferase from mango: Structure, thermodynamics and kinetics.

    Science.gov (United States)

    Valenzuela-Chavira, Ignacio; Contreras-Vergara, Carmen A; Arvizu-Flores, Aldo A; Serrano-Posada, Hugo; Lopez-Zavala, Alonso A; García-Orozco, Karina D; Hernandez-Paredes, Javier; Rudiño-Piñera, Enrique; Stojanoff, Vivian; Sotelo-Mundo, Rogerio R; Islas-Osuna, Maria A

    2017-04-01

    We studied a mango glutathione S-transferase (GST) (Mangifera indica) bound to glutathione (GSH) and S-hexyl glutathione (GSX). This GST Tau class (MiGSTU) had a molecular mass of 25.5 kDa. MiGSTU Michaelis-Menten kinetic constants were determined for their substrates obtaining a Km, Vmax and kcat for CDNB of 0.792 mM, 80.58 mM min(-1) and 68.49 s(-1) respectively and 0.693 mM, 105.32 mM min(-1) and 89.57 s(-1), for reduced GSH respectively. MiGSTU had a micromolar affinity towards GSH (5.2 μM) or GSX (7.8 μM). The crystal structure of the MiGSTU in apo or bound to GSH or GSX generated a model that explains the thermodynamic signatures of binding and showed the importance of enthalpic-entropic compensation in ligand binding to Tau-class GST enzymes. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  16. Photochemical Synthesis and Ligand Exchange Reactions of Ru(CO)[subscript 4] (Eta[superscript 2]-Alkene) Compounds

    Science.gov (United States)

    Cooke, Jason; Berry, David E.; Fawkes, Kelli L.

    2007-01-01

    The photochemical synthesis and subsequent ligand exchange reactions of Ru(CO)[subscript 4] (eta[superscript2]-alkene) compounds has provided a novel experiment for upper-level inorganic chemistry laboratory courses. The experiment is designed to provide a system in which the changing electronic properties of the alkene ligands could be easily…

  17. Metal-ligand binding affinity vs reactivity: qualitative studies in Rh(I)-catalyzed asymmetric ring-opening reactions.

    Science.gov (United States)

    Tsui, Gavin Chit; Dougan, Patrick; Lautens, Mark

    2013-06-01

    Rh(I)-catalyzed asymmetric ring opening (ARO) of oxabenzonorbornadiene is used as a model system to qualitatively study reactions involving multiple metal-ligand interactions. The key feature of this approach is the use of product ee as an indicator to quickly gain important information such as the relative ligand binding affinity and relative reactivity of catalysts.

  18. Some kinetics aspects of chlorine-solids reactions

    Directory of Open Access Journals (Sweden)

    Kanari, N.

    2010-02-01

    Full Text Available The present paper describes detailed kinetics investigations on some selected chlorine-solid reactions through thermogravimetric measurements. The solids studied in this article include chemical pure oxides and sulfides as well as their natural bearing materials. The chlorinating agents employed are gaseous mixtures of Cl2+N2 (chlorination, Cl2+O2 (oxychlorination, and Cl2+CO (carbochlorination. Results are presented as effects of various parameters on the reaction rate of these solids with these chlorinating agents. It was observed that the reactivity of these solids towards different chlorinating agents varied widely. Sulfides could be chlorinated at room temperature, while carbochlorination of chromium (III oxide was possible only above 500 °C. The variation of the chlorination rate of these complex materials with respect to gas velocity, composition and temperature enabled us to focus some light on the plausible reaction mechanisms and stoichiometries. The obtained results were used for selective removal of iron from chromite concentrates, extraction of valuable metals from sulfide materials, purification of MgO samples, etc.

    Este trabajo describe detalladas investigaciones cinéticas en algunas reacciones seleccionadas de cloro-sólido a través de medidas termogravimétricas. Los sólidos estudiados en este artículo incluyen óxidos químicos puros y sulfuros, así como sus materiales naturales de soporte. Los agentes de cloración empleados son mezclas de gases de Cl2+N2 (cloración, Cl2+O2 (oxicloración y Cl2+O2 (carbocloración. Los resultados se presentan como efecto de varios parámetros en el porcentaje de reacción de estos sólidos con los agentes de cloración. Se ha observado que la reactividad de estos sólidos a través de diferentes agentes de cloración varía ampliamente. Los sulfuros se pudieron

  19. Cure Reaction Kinetics of Low Pressure Sheet Molding Compound System Thickened by Crystalline Polymer

    Institute of Scientific and Technical Information of China (English)

    QIN Yan; LIU Haihua; HUANG Zhixiong; MEI Qilin

    2007-01-01

    Several kinetic models for unsaturated polyester cure reaction and some existing parameter estimation techniques of these models were introduced. Correlated kinetic parameters and kinetic equations of the autocatalytic empirical kinetic model of LPSMC system were determined by using isothermal DSC to scan the system which was thickened by crystalline polymer (PEG-MAH). Through using a serial curing degree of the system to validate the model, the experimental results were basically identical with the predictions of the autocatalytic empirical kinetic model. This model could provide a theoretical reference to the determination of molding techniques of low pressure SMC.

  20. Model for reaction kinetics in pyrolysis of wood

    Energy Technology Data Exchange (ETDEWEB)

    Ahuja, P.; Singh, P.C.; Upadhyay, S.N.; Kumar, S. [Banaras Hindu Univ., Varanasi (India)

    1996-12-31

    A reaction model for the pyrolysis of small and large particles of wood Is developed. The chemical reactions that take place when biomass is pyrolyzed are the devolatilization reactions (primary) and due to the vapour-solid interactions (secondary). In the case of small particles, when the volatiles are immediately removed by the purge gas, only primary reactions occur and the reaction model is described by weight loss and char forming reactions. The of heterogeneous secondary reactions occur in the case of large particles due to the interaction between the volatiles and the hot nascent primary char. A chain reaction mechanism of secondary char formation is proposed. The model takes both the volatiles retention time and cracking and repolymerization reactions of the vapours with the decomposing solid as well as autocatalysis into consideration. 7 refs., 3 figs., 2 tabs.

  1. Model for reaction kinetics in pyrolysis of wood

    Energy Technology Data Exchange (ETDEWEB)

    Ahuja, P.; Singh, P.C.; Upadhyay, S.N.; Kuma, S. [Banaras Hindu Univ., Varanasi (India)

    1996-12-31

    A reaction model for the pyrolysis of small and large particles of wood is developed. The chemical reactions that take place when biomass is pyrolyzed are the devolatilization reactions (primary) and due to the vapour-solid interactions (secondary). In the case of small particles, when the volatiles are immediately removed by the purge gas, only primary reactions occur and the reaction model is described by weight loss and char forming reactions. The heterogeneous secondary reactions occur in the case of large particles due to the interaction between the volatiles and the hot nascent primary char. A chain reaction mechanism of secondary char formation is proposed. The model takes both the volatiles retention time and cracking and repolymerization reactions of the vapours with the decomposing solid as well as autocatalysis into consideration. 6 refs., 3 figs., 2 tabs.

  2. Determination of kinetic parameters for complex transesterification reaction by standard optimisation methods

    Directory of Open Access Journals (Sweden)

    Almagrbi Abdualnaser Muftah

    2014-01-01

    Full Text Available This article presents a methodology for kinetic parameter estimation which is based on standard optimization methods. The parameter estimation procedure is applied to the example of modelling of non-catalytic transesterification reaction, based on laboratory experiments performed under elevated pressure. The kinetic model employed in this study consists of three consecutive and parallel reversible reactions of the second order, with six kinetic constants. The influence of the mass transfer effects was considered as well. The best results were obtained by Genetic Algorithm method. The application of this method resulted in kinetic parameters with improved accuracy in predicting concentrations of important reaction intermediates, i.e. diglycerides and monoglycerides. Activation energies of kinetic parameters obtained by the Genetic Algorithm method are in very good agreement with theoretical values determined by molecular orbital calculations. [Projekat Ministarstva nauke Republike Srbije, br. III-45019

  3. Hydrothermal reactions: From the synthesis of ligand to new lanthanide 3D-coordination polymers

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Fausthon Fred da; Fernandes de Oliveira, Carlos Alberto; Lago Falcão, Eduardo Henrique [Laboratório de Terras Raras, Departamento de Química Fundamental, Universidade Federal de Pernambuco (DQF-UFPE), 50590-470 Recife, PE (Brazil); Gatto, Claudia Cristina [Laboratório de Síntese Inorgânica e Cristalografia, Instituto de Química, Universidade de Brasília (IQ-UnB), 70904-970 Brasilia, DF (Brazil); Bezerra da Costa, Nivan; Oliveira Freire, Ricardo [Pople Computational Chemistry Laboratory, Departamento de Química, Universidade Federal de Sergipe, São Cristóvão-SE 49100-000 (Brazil); Chojnacki, Jarosław [Department of Inorganic Chemistry, Gdansk University of Technology, 80-233 Gdansk (Poland); Alves Júnior, Severino, E-mail: salvesjr@ufpe.br [Laboratório de Terras Raras, Departamento de Química Fundamental, Universidade Federal de Pernambuco (DQF-UFPE), 50590-470 Recife, PE (Brazil)

    2013-11-15

    The organic ligand 2,5-piperazinedione-1,4-diacetic acid (H{sub 2}PDA) was synthesized under hydrothermal conditions starting from the iminodiacetic acid and catalyzed by oxalic acid. The X-ray powder diffraction data indicates that the compound crystallizes in the P2{sub 1}/c monoclinic system as reported in the literature. The ligand was also characterized by elemental analysis, magnetic nuclear resonance, infrared spectroscopy and thermogravimetric analysis. Two new coordination networks based on lanthanide ions were obtained with this ligand using hydrothermal reaction. In addition to single-crystal X-ray diffraction, the compounds were characterized by infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and elemental analysis. Single-crystal XRD showed that the compounds are isostructural, crystallizing in P2{sub 1}/n monoclinic system with chemical formula [Ln(PDA){sub 1.5}(H{sub 2}O)](H{sub 2}O){sub 3} (Ln=Gd{sup 3+}(1) and Eu{sup 3+}(2)).The luminescence properties of both compounds were studied. In the compound (1), a broad emission band was observed at 479 nm, redshifted by 70 nm in comparison of the free ligand. In (2), the typical f–f transition was observed with a maximum peak at 618 nm, related with the red emission of the europium ions. Computational methods were performed to simulate the crystal structure of (2). The theoretical calculations of the intensity parameters are in good agreement with the experimental values. - Graphical abstract: Scheme of obtaining the ligand 2,5-piperazinedione-1,4-diacetic acid (H{sub 2}PDA) and two new isostructural 3D-coordination polymers [Ln(PDA){sub 1.5}(H{sub 2}O)](H{sub 2}O){sub 3} (Ln=Gd{sup 3+} and Eu{sup 3+}) by hydrothermal synthesis. Display Omitted - Highlights: • The ligand 2,5-piperazinedione-1,4-diacetic acid was synthetized using the hydrothermic method and characterized. • Two new 3D-coordination polymers with this ligand containing Gd{sup 3+} and Eu{sup 3+} ions

  4. Removal of triclosan via peroxidases-mediated reactions in water: Reaction kinetics, products and detoxification.

    Science.gov (United States)

    Li, Jianhua; Peng, Jianbiao; Zhang, Ya; Ji, Yuefei; Shi, Huanhuan; Mao, Liang; Gao, Shixiang

    2016-06-05

    This study investigated and compared reaction kinetics, product characterization, and toxicity variation of triclosan (TCS) removal mediated by soybean peroxidase (SBP), a recognized potential peroxidase for removing phenolic pollutants, and the commonly used horseradish peroxidase (HRP) with the goal of assessing the technical feasibility of SBP-catalyzed removal of TCS. Reaction conditions such as pH, H2O2 concentration and enzyme dosage were found to have a strong influence on the removal efficiency of TCS. SBP can retain its catalytic ability to remove TCS over broad ranges of pH and H2O2 concentration, while the optimal pH and H2O2 concentration were 7.0 and 8μM, respectively. 98% TCS was removed with only 0.1UmL(-1) SBP in 30min reaction time, while an HRP dose of 0.3UmL(-1) was required to achieve the similar conversion. The catalytic performance of SBP towards TCS was more efficient than that of HRP, which can be explained by catalytic rate constant (KCAT) and catalytic efficiency (KCAT/KM) for the two enzymes. MS analysis in combination with quantum chemistry computation showed that the polymerization products were generated via CC and CO coupling pathways. The polymers were proved to be nontoxic through growth inhibition of green alga (Scenedesmus obliquus). Taking into consideration of the enzymatic treatment cost, SBP may be a better alternative to HRP upon the removal and detoxification of TCS in water/wastewater treatment.

  5. Complex Kinetics in the Reaction of Taurine with Aqueous Bromine ...

    African Journals Online (AJOL)

    The reaction of chlorite and thiourea,4 for example, had shown complex ..... From an analysis of the combination of the slow reaction R4 and the very rapid reaction ..... 22 B.S. Martincigh, C. Mundoma and R. H. Simoyi, J. Phys. Chem. A, 1998,.

  6. Kinetics and thermodynamics of chemical reactions in Li/SOCl2 cells

    Science.gov (United States)

    Hansen, Lee D.; Frank, Harvey

    1987-01-01

    Work is described that was designed to determine the kinetic constants necessary to extrapolate kinetic data on Li/SOCl2 cells over the temperature range from 25 to 75 C. A second objective was to characterize as far as possible the chemical reactions that occur in the cells since these reactions may be important in understanding the potential hazards of these cells. The kinetics of the corrosion processes in undischarged Li/SOCl2 cells were determined and separated according to their occurrence at the anode and cathode; the effects that switching the current on and off has on the corrosion reactions was determined; and the effects of discharge state on the kinetics of the corrosion process were found. A thermodynamic analysis of the current-producing reactions in the cell was done and is included.

  7. Kinetics and thermodynamics of chemical reactions in Li/SOCl2 cells

    Science.gov (United States)

    Hansen, Lee D.; Frank, Harvey

    1987-01-01

    Work is described that was designed to determine the kinetic constants necessary to extrapolate kinetic data on Li/SOCl2 cells over the temperature range from 25 to 75 C. A second objective was to characterize as far as possible the chemical reactions that occur in the cells since these reactions may be important in understanding the potential hazards of these cells. The kinetics of the corrosion processes in undischarged Li/SOCl2 cells were determined and separated according to their occurrence at the anode and cathode; the effects that switching the current on and off has on the corrosion reactions was determined; and the effects of discharge state on the kinetics of the corrosion process were found. A thermodynamic analysis of the current-producing reactions in the cell was done and is included.

  8. Learning the Fundamentals of Kinetics and Reaction Engineering with the Catalytic Oxidation of Methane

    Science.gov (United States)

    Cybulskis, Viktor J.; Smeltz, Andrew D.; Zvinevich, Yury; Gounder, Rajamani; Delgass, W. Nicholas; Ribeiro, Fabio H.

    2016-01-01

    Understanding catalytic chemistry, collecting and interpreting kinetic data, and operating chemical reactors are critical skills for chemical engineers. This laboratory experiment provides students with a hands-on supplement to a course in chemical kinetics and reaction engineering. The oxidation of methane with a palladium catalyst supported on…

  9. A kinetic model for the glucose/glycine Maillard reaction pathways

    NARCIS (Netherlands)

    Martins, S.I.F.S.; Boekel, van M.A.J.S.

    2005-01-01

    A comprehensive kinetic model for the glucose/glycine Maillard reaction is proposed based on an approach called multiresponse kinetic modelling. Special attention was paid to reactants, intermediates and end products: -fructose, N-(1-deoxy--fructos-1-yl)-glycine (DFG), 1-deoxy-2,3-hexodiulose and

  10. Physico-Geometrical Kinetics of Solid-State Reactions in an Undergraduate Thermal Analysis Laboratory

    Science.gov (United States)

    Koga, Nobuyoshi; Goshi, Yuri; Yoshikawa, Masahiro; Tatsuoka, Tomoyuki

    2014-01-01

    An undergraduate kinetic experiment of the thermal decomposition of solids by microscopic observation and thermal analysis was developed by investigating a suitable reaction, applicable techniques of thermal analysis and microscopic observation, and a reliable kinetic calculation method. The thermal decomposition of sodium hydrogen carbonate is…

  11. Physico-Geometrical Kinetics of Solid-State Reactions in an Undergraduate Thermal Analysis Laboratory

    Science.gov (United States)

    Koga, Nobuyoshi; Goshi, Yuri; Yoshikawa, Masahiro; Tatsuoka, Tomoyuki

    2014-01-01

    An undergraduate kinetic experiment of the thermal decomposition of solids by microscopic observation and thermal analysis was developed by investigating a suitable reaction, applicable techniques of thermal analysis and microscopic observation, and a reliable kinetic calculation method. The thermal decomposition of sodium hydrogen carbonate is…

  12. Utilization of the Recycle Reactor in Determining Kinetics of Gas-Solid Catalytic Reactions.

    Science.gov (United States)

    Paspek, Stephen C.; And Others

    1980-01-01

    Describes a laboratory scale reactor that determines the kinetics of a gas-solid catalytic reaction. The external recycle reactor construction is detailed with accompanying diagrams. Experimental details, application of the reactor to CO oxidation kinetics, interphase gradients, and intraphase gradients are discussed. (CS)

  13. Gold(I)-selenolate complexes: Synthesis, characterization and ligand exchange reactions

    Indian Academy of Sciences (India)

    Krishna P Bhabak; Govindasamy Mugesh

    2011-11-01

    In this paper, the synthesis and characterization of some imidazole-based gold-selenolates are described. This study indicates that the nature of selenolate plays an important role in ligand exchange reactions in gold(I) selenolates. Furthermore, the reactivity of imidazole-based gold(I) selenolates toward nucleophiles such as selenols and phosphines is strikingly different from that of the ,-dimethylaminobenzylamine-based gold(I) complexes. The presence of Se$\\cdots$N non-bonded interactions in ,-dimethylaminobenzylamine-based gold(I) complexes modulates the reactivity of Au(I) centre towards incoming nucleophiles.

  14. A kinetic study on non-catalytic reactions in hydroprocessing Boscan crude oil

    Energy Technology Data Exchange (ETDEWEB)

    A. Marafi; E. Kam; A. Stanislaus [Kuwait Institute for Scientific Research, Safat (Kuwait). Petroleum Refining Department, Petroleum Research and Studies Center

    2008-08-15

    Non-catalytic hydrothermal cracking reactions are known to associate with catalytic hydrocracking reactions. In a recent study on hydroprocessing of Boscan crude over a specific catalyst system containing three distinct catalysts, it was found that hydrodesulfurization (HDS) and hydrodemetallation (HDM) reactions continued even when the catalyst is severely deactivated. Since the reactor was packed with considerable amount of inert material besides the three catalysts, it will be advantage to determine if the inert materials can also facilitate hydroprocessing reactions. A series of kinetic experiments for the inert particles was undertaken under different space velocity and temperature conditions. The extent of catalytic and non-catalytic hydroprocessing reactions was assessed. Through statistical analysis, the initial reaction rate constant, reaction order and activation energy for various hydroprocessing reactions were then determined. The absolute average deviations (AAD) of the kinetics values obtained for inert materials are less than 10%. 25 refs., 7 figs., 4 tabs.

  15. Rapid-reaction kinetic characterization of the pathway of streptokinase-plasmin catalytic complex formation.

    Science.gov (United States)

    Verhamme, Ingrid M; Bock, Paul E

    2008-09-19

    Binding of the fibrinolytic proteinase plasmin (Pm) to streptokinase (SK) in a tight stoichiometric complex transforms Pm into a potent proteolytic activator of plasminogen. SK binding to the catalytic domain of Pm, with a dissociation constant of 12 pm, is assisted by SK Lys(414) binding to a Pm kringle, which accounts for a 11-20-fold affinity decrease when Pm lysine binding sites are blocked by 6-aminohexanoic acid (6-AHA) or benzamidine. The pathway of SK.Pm catalytic complex formation was characterized by stopped-flow kinetics of SK and the Lys(414) deletion mutant (SKDeltaK414) binding to Pm labeled at the active site with 5-fluorescein ([5F]FFR-Pm) and the reverse reactions by competitive displacement of [5F]FFR-Pm with active site-blocked Pm. The rate constants for the biexponential fluorescence quenching caused by SK and SKDeltaK414 binding to [5F]FFR-Pm were saturable as a function of SK concentration, reporting encounter complex affinities of 62-110 nm in the absence of lysine analogs and 4900-6500 and 1430-2200 nm in the presence of 6-AHA and benzamidine, respectively. The encounter complex with SKDeltaK414 was approximately 10-fold weaker in the absence of lysine analogs but indistinguishable from that of native SK in the presence of 6-AHA and benzamidine. The studies delineate for the first time the sequence of molecular events in the formation of the SK.Pm catalytic complex and its regulation by kringle ligands. Analysis of the forward and reverse reactions supports a binding mechanism in which SK Lys(414) binding to a Pm kringle accompanies near-diffusion-limited encounter complex formation followed by two slower, tightening conformational changes.

  16. Reactions driving conformational movements (molecular motors) in gels: conformational and structural chemical kinetics.

    Science.gov (United States)

    Otero, Toribio F

    2017-01-18

    In this perspective the empirical kinetics of conducting polymers exchanging anions and solvent during electrochemical reactions to get dense reactive gels is reviewed. The reaction drives conformational movements of the chains (molecular motors), exchange of ions and solvent with the electrolyte and structural (relaxation, swelling, shrinking and compaction) gel changes. Reaction-driven structural changes are identified and quantified from electrochemical responses. The empirical reaction activation energy (Ea), the reaction coefficient (k) and the reaction orders (α and β) change as a function of the conformational energy variation during the reaction. This conformational energy becomes an empirical magnitude. Ea, k, α and β include and provide quantitative conformational and structural information. The chemical kinetics becomes structural chemical kinetics (SCK) for reactions driving conformational movements of the reactants. The electrochemically stimulated conformational relaxation model describes empirical results and some results from the literature for biochemical reactions. In parallel the development of an emerging technological world of soft, wet, multifunctional and biomimetic tools and anthropomorphic robots driven by reactions of the constitutive material, as in biological organs, can be now envisaged being theoretically supported by the kinetic model.

  17. Thermodynamics of axial substitution and kinetics of reactions with amino acids for the paddlewheel complex tetrakis(acetato)chloridodiruthenium(II,III).

    Science.gov (United States)

    Santos, Rodrigo L S R; van Eldik, Rudi; de Oliveira Silva, Denise

    2012-06-18

    The known paddlewheel, tetrakis(acetato)chloridodiruthenium(II,III), offers a versatile synthetic route to a novel class of antitumor diruthenium(II,III) metallo drugs, where the equatorial ligands are nonsteroidal anti-inflammatory carboxylates. This complex was studied here as a soluble starting prototype model for antitumor analogues to elucidate the reactivity of the [Ru(2)(CH(3)COO)(4)](+) framework. Thermodynamic studies on equilibration reactions for axial substitution of water by chloride and kinetic studies on reactions of the diaqua complexes with the amino acids glycine, cysteine, histidine, and tryptophan were performed. The standard thermodynamic reaction parameters ΔH°, ΔS°, and ΔV° were determined and showed that both of the sequential axial substitution reactions are enthalpy driven. Kinetic rate laws and rate constants were determined for the axial substitution reactions of coordinated water by the amino acids that gave the corresponding aqua(amino acid)-Ru(2) substituted species. The results revealed that the [Ru(2)(CH(3)COO)(4)](+) paddlewheel framework remained stable during the axial ligand substitution reactions and was also mostly preserved in the presence of the amino acids.

  18. Spectroscopic, Structural, and Computational Characterization of Three Bispidinone Derivatives, as Ligands for Enantioselective Metal Catalyzed Reactions.

    Science.gov (United States)

    Castellano, Carlo; Sacchetti, Alessandro; Meneghetti, Fiorella

    2016-04-01

    Three chiral derivatives of the alkaloid sparteine (bispidines), characterized by the 3,7-diazabicyclo[3.3.1]nonane moiety, were designed as efficient ligands in a number of enantioselective reactions due to their metal coordination properties. A full evaluation of the 3D properties of the compounds was carried out, as the geometrical features of the bicyclic framework are strictly related to the efficiency of the ligands in the asymmetric catalysis. The selected molecules have different molecular complexity for investigating the effects of different chiral groups on the bicycle conformation. We report here a thorough analysis of their molecular arrangement, by NMR spectroscopy, single crystal X-ray crystallography, and computational techniques, which put in evidence their conformational preferences and the parameters needed for the design of more efficient ligands in asymmetric synthetic routes. The results confirmed the high molecular flexibility of the compounds, and indicated how to achieve a control of the chair-chair/boat-chair conformational ratio, by adjusting the relative size of the substituents on the piperidine nitrogens.

  19. Versatile cooperative ligand effects in group 9 transition metal catalysis: Applications in transfer hydrogenation & hydrogen autotransfer reactions, ketene & ketene imine synthesis and hydroformylation

    NARCIS (Netherlands)

    Tang, Z.

    2015-01-01

    Cooperative ligand effects of transition metal complexes have a profound impact on the reaction outcome of catalytic reactions, and development of (new) cooperative metal-ligand systems is a hot topic in current catalysis research. Conventional ligands with hydride-accepting/delivering activities ar

  20. Kinetics for the reaction of hydrogen with uranium powder

    Energy Technology Data Exchange (ETDEWEB)

    Stakebake, J.L.

    1979-01-01

    The reaction of hydrogen with uranium powder was investigated at 13.3 and 26.6 kPa between 50 and 250/sup 0/C. The reaction order was independent of temperature but varied from 2/3-order at 13.3 kPa to 1st-order at 26.6 kPa. Increasing temperatures resulted in decreasing reaction rates over the temperature range studied. A reaction mechanism with adsorption as the rate controlling step is proposed to explain the temperature behavior. Decomposition of the hydride was found to follow a zero-order rate process.

  1. The kinetic resolution of enantiomers by means of enzymatic reactions

    NARCIS (Netherlands)

    Otto, P.P.H.L.

    1990-01-01

    For conversions involving a single enzyme, and under certain limiting conditions, the process of kinetic resolution can be described with five variables, which can be determined experimentally. Their quantitative relations have been derived. If any three of these variables are known the other two ca

  2. 1D to 3D diffusion-reaction kinetics of defects in crystals

    DEFF Research Database (Denmark)

    Trinkaus, H.; Heinisch, H.L.; Barashev, A.V.

    2002-01-01

    Microstructural features evolving in crystalline solids from diffusion-reaction kinetics of mobile components depend crucially on the dimension of the underlying diffusion process which is commonly assumed to be three-dimensional (3D). In metals, irradiation-induced displacement cascades produce ...... and 3D limiting cases. The analytical result is fully confirmed by kinetic Monte Carlo simulations.......Microstructural features evolving in crystalline solids from diffusion-reaction kinetics of mobile components depend crucially on the dimension of the underlying diffusion process which is commonly assumed to be three-dimensional (3D). In metals, irradiation-induced displacement cascades produce...

  3. Kinetically influenced terms for solute transport affected by heterogeneous and homogeneous classical reactions

    Science.gov (United States)

    Bahr, J.M.

    1990-01-01

    This paper extends a four-step derivation procedure, previously presented for cases of transport affected by surface reactions, to transport problems involving homogeneous reactions. Derivations for these classes of reactions are used to illustrate the manner in which mathematical differences between reaction classes are reflected in the mathematical derivation procedures required to identify kinetically influenced terms. Simulation results for a case of transport affected by a single solution phase complexation reaction and for a case of transport affected by a precipitation-dissolution reaction are used to demonstrate the nature of departures from equilibrium-controlled transport as well as the use of kinetically influenced terms in determining criteria for the applicability of the local equilibrium assumption. A final derivation for a multireaction problem demonstrates the application of the generalized procedure to a case of transport affected by reactions of several classes. -from Author

  4. Removal of triclosan via peroxidases-mediated reactions in water: Reaction kinetics, products and detoxification

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianhua; Peng, Jianbiao [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Zhang, Ya [Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of the People’s Republic of China, Nanjing 210042 (China); Ji, Yuefei [College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095 (China); Shi, Huanhuan; Mao, Liang [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Gao, Shixiang, E-mail: ecsxg@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China)

    2016-06-05

    Highlights: • Enzymatic treatment of triclosan in water by soybean and horseradish peroxidases. • pH, H{sub 2}O{sub 2} concentration and enzyme dosage affected the removal efficiency of TCS. • The removal of TCS by SBP was more efficient than that of HRP. • K{sub CAT} and K{sub CAT}/K{sub M} values for SBP toward TCS were much higher than those for HRP. • Polymers formed via radical coupling mechanism were nontoxic to the growth of alga. - Abstract: This study investigated and compared reaction kinetics, product characterization, and toxicity variation of triclosan (TCS) removal mediated by soybean peroxidase (SBP), a recognized potential peroxidase for removing phenolic pollutants, and the commonly used horseradish peroxidase (HRP) with the goal of assessing the technical feasibility of SBP-catalyzed removal of TCS. Reaction conditions such as pH, H{sub 2}O{sub 2} concentration and enzyme dosage were found to have a strong influence on the removal efficiency of TCS. SBP can retain its catalytic ability to remove TCS over broad ranges of pH and H{sub 2}O{sub 2} concentration, while the optimal pH and H{sub 2}O{sub 2} concentration were 7.0 and 8 μM, respectively. 98% TCS was removed with only 0.1 U mL{sup −1} SBP in 30 min reaction time, while an HRP dose of 0.3 U mL{sup −1} was required to achieve the similar conversion. The catalytic performance of SBP towards TCS was more efficient than that of HRP, which can be explained by catalytic rate constant (K{sub CAT}) and catalytic efficiency (K{sub CAT}/K{sub M}) for the two enzymes. MS analysis in combination with quantum chemistry computation showed that the polymerization products were generated via C−C and C−O coupling pathways. The polymers were proved to be nontoxic through growth inhibition of green alga (Scenedesmus obliquus). Taking into consideration of the enzymatic treatment cost, SBP may be a better alternative to HRP upon the removal and detoxification of TCS in water

  5. The binding of quinone to the photosynthetic reaction centers: kinetics and thermodynamics of reactions occurring at the QB-site in zwitterionic and anionic liposomes.

    Science.gov (United States)

    Mavelli, Fabio; Trotta, Massimo; Ciriaco, Fulvio; Agostiano, Angela; Giotta, Livia; Italiano, Francesca; Milano, Francesco

    2014-07-01

    Liposomes represent a versatile biomimetic environment for studying the interaction between integral membrane proteins and hydrophobic ligands. In this paper, the quinone binding to the QB-site of the photosynthetic reaction centers (RC) from Rhodobacter sphaeroides has been investigated in liposomes prepared with either the zwitterionic phosphatidylcholine (PC) or the negatively charged phosphatidylglycerol (PG) to highlight the role of the different phospholipid polar heads. Quinone binding (K Q) and interquinone electron transfer (L AB) equilibrium constants in the two type of liposomes were obtained by charge recombination reaction of QB-depleted RC in the presence of increasing amounts of ubiquinone-10 over the temperature interval 6-35 °C. The kinetic of the charge recombination reactions has been fitted by numerically solving the ordinary differential equations set associated with a detailed kinetic scheme involving electron transfer reactions coupled with quinone release and uptake. The entire set of traces at each temperature was accurately fitted using the sole quinone release constants (both in a neutral and a charge separated state) as adjustable parameters. The temperature dependence of the quinone exchange rate at the QB-site was, hence, obtained. It was found that the quinone exchange regime was always fast for PC while it switched from slow to fast in PG as the temperature rose above 20 °C. A new method was introduced in this paper for the evaluation of constant K Q using the area underneath the charge recombination traces as the indicator of the amount of quinone bound to the QB-site.

  6. The Spectroscopy and Reaction Kinetics of Coordinated Unsaturated Metal Carbonyls.

    Science.gov (United States)

    1985-10-20

    liquid disso- ciation. I. Martyn Poliakoff and Eric Weitz, to be published in "Advances in Organo- metallic Chemistry" (1985). 2. A. J. Ouderkirk, P... Poliakoff and Eric Weitz, to be published in Annual Review of Organometallic Chemistry, 1985. c) Gas Phase Infrared Spectroscopy and Recombination Kinetics...support of this work by the 7.. 7 donors of the Petroleum Research Fund, administered by the American Chemical * -Society. We thank Dr. Martyn Poliakoff

  7. Magnetic Resonance Determinations of Structure and Reaction Kinetics of Epoxy/Amine Systems.

    Science.gov (United States)

    1981-12-31

    bisphenol A ( DGEBA ), and two model compounds, a secondary amine nitroxide and a tertiary amine nitroxide. The rate constants for both reactions (kl, k2...EPR EXPERIMENTS ON EPOXY RESINS ....................................... 4 2.1 Nitroxide- DGEBA Kinetics ......................................... 4 2.2...dependence of the rate constants for METAMIN and DIMETAMIN reactions with DGEBA ...................................... 14 11. EPR spectra observed at 299

  8. Kinetic calculations and mechanism definition for reactions in an ammonium perchlorate flame

    Energy Technology Data Exchange (ETDEWEB)

    Ermolin, N.E.; Fomin, V.M.; Korobeinichev, O.P.; Tereshchenko, A.G.

    1982-09-01

    This article reports on detailed calculations on the reaction kinetics in APC flames on the basis of a wide set of possible reactions and experimental data on the initial composition of the gas mixture (gasification products from APC). The purpose is to select the most important reactions in this system by comparing the calculations on the kinetics with experimental data on the concentration profiles in APC flames. Discusses kinetic equations; rate constants as the reaction mechanism; results from kinetic calculations; and identification of major stages. A laminar flame such as that provided by ammonium perchlorate is described in general form by a system of differential equations that incorporate the transport of heat and matter in the presence of chemical reactions. APC is a system consisting of 4 elements (N,H,Cl and O). Points out that the scheme enables one to determine which reactions are responsible for producing the final products. Suggests that in the future one will be able to analyze experimental data on the reaction-rate profiles for stable components in order to determine either the atom and radical concentrations or the rate constants of the reactions involving them.

  9. Kinetic Studies of Reactions in Solution Using Fast Mass Spectrometry

    Science.gov (United States)

    2013-08-13

    REPORT Directorate of Chemistry and Materials Research NUMBER(S) AFOSR/RSA, 875 Randolph St., Suite 325, Rm 3112, Arlington, VA 222C 3 12...Mass Spectrometry to detect transient intermediates and decomposition products of catalyzed organometallic reactions Identifying intermediates is...in organometallic catalysis. HV N2 45o 5 mm 2 mm Reagent A Reagent B MS Secondary microdroplets Surface ~2-5 ms reaction time

  10. Graphene liquid marbles as photothermal miniature reactors for reaction kinetics modulation.

    Science.gov (United States)

    Gao, Wei; Lee, Hiang Kwee; Hobley, Jonathan; Liu, Tianxi; Phang, In Yee; Ling, Xing Yi

    2015-03-23

    We demonstrate the fabrication of graphene liquid marbles as photothermal miniature reactors with precise temperature control for reaction kinetics modulation. Graphene liquid marbles show rapid and highly reproducible photothermal behavior while maintaining their excellent mechanical robustness. By tuning the applied laser power, swift regulation of graphene liquid marble's surface temperature between 21-135 °C and its encapsulated water temperature between 21-74 °C are demonstrated. The temperature regulation modulates the reaction kinetics in our graphene liquid marble, achieving a 12-fold superior reaction rate constant for methylene blue degradation than at room temperature.

  11. Kinetic equation for the reaction of titanium tetrachloride with hydride functional groups of diamond

    Energy Technology Data Exchange (ETDEWEB)

    Zhidkov, A.B.; Smirnov, E.P.

    1989-02-01

    This work is devoted to the study of the kinetics of the reaction of titanium tetrachloride with the hydride functional groups of diamond. The research was performed on submicron powders of ASM 0.7/0.3 grade synthetic diamond with a specific surface area of 8.0 m/sup 2//g as measured from the adsorption of nitrogen. The reaction was carried out in a flow-through quartz reactor in a flow of dry He. The content of the titanium in the samples was determined by a photocolorimetric method. A kinetic equation for the reaction of diamond with titanium tetrachloride was found on the basis of a statistical approach.

  12. Kinetics of the Bray-Liebhafsky oscillatory reaction perturbed by polymer supported cobalt catalyst

    Directory of Open Access Journals (Sweden)

    Maksimović J.P.

    2011-01-01

    Full Text Available The Bray-Liebhafsky (BL oscillatory reaction generated in the batch reactor at 62- 68 oC was perturbed by cobalt(II-nitrate, supported on the macroreticular copolymer of poly-4-vinylpyridine with divinylbenzene (Co-PVPDVB. The kinetic data was analyzed of the complex pathways of the hydrogen peroxide decomposition in the examined BL reaction. The obtained results confirm that the kinetics of the BL reaction in the presence Co-PVPDVB comes partially from the Co-catalyst and partially from the macroreticular copolymer support.

  13. Reaction Kinetics for Heterogeneous Oxidation of Mn(Ⅲ)—Toluene

    Institute of Scientific and Technical Information of China (English)

    张彰; 朱宪

    2002-01-01

    The reaction kinetics of the heterogeneous oxidation oftoluene with Mn3+ was studied by considering the effects of disproportionation of Mn3+ in reaction system,a “parallel”modulus was set up.And then the concentration of Mn3+ in disproportionation and the concentration of benzaldehyde in oxidation were respectively determined in turn.the rate constant,order and pseudo-activation energy of the heterogeneous oxidation were obtained by mathematical deduction and the kinetic equation was concluded.In addition,the reaction mechanism was analyzed.It shows that the results are completely consistent with modulus.

  14. Digallane with redox-active diimine ligand: dualism of electron-transfer reactions.

    Science.gov (United States)

    Fedushkin, Igor L; Skatova, Alexandra A; Dodonov, Vladimir A; Chudakova, Valentina A; Bazyakina, Natalia L; Piskunov, Alexander V; Demeshko, Serhiy V; Fukin, Georgy K

    2014-05-19

    The reactivity of digallane (dpp-Bian)Ga-Ga(dpp-Bian) (1), which consists of redox-active ligand 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-Bian), has been studied. The reaction of 1 with I2 proceeds via one-electron oxidation of each of two dpp-Bian ligands to a radical-anionic state and affords complex (dpp-Bian)IGa-GaI(dpp-Bian) (2). Dissolution of complex 2 in pyridine (Py) gives monomeric compound (dpp-Bian)GaI(Py) (3) as a result of a solvent-induced intramolecular electron transfer from the metal-metal bond to the dpp-Bian ligands. Treatment of compound 3 with B(C6F5)3 leads to removal of pyridine and restores compound 2. The reaction of compound 1 with 3,6-di-tert-butyl-ortho-benzoquinone (3,6-Q) proceeds with oxidation of all the redox-active centers in 1 (the Ga-Ga bond and two dpp-Bian dianions) and results in mononuclear catecholate (dpp-Bian)Ga(Cat) (4) (Cat = [3,6-Q](2-)). Treatment of 4 with AgBF4 gives a mixture of [(dpp-Bian)2Ag][BF4] (5) and (dpp-Bian)GaF(Cat) (6), which both consist of neutral dpp-Bian ligands. The reduction of benzylideneacetone (BA) with 1 generates the BA radical-anions, which dimerize, affording (dpp-Bian)Ga-(BA-BA)-Ga(dpp-Bian) (7). In this case the Ga-Ga bond remains unchanged. Within 10 min at 95 °C in solution compound 7 undergoes transformation to paramagnetic complex (dpp-Bian)Ga(BA-BA) (8) and metal-free compound C36H40N2 (9). The latter is a product of intramolecular addition of the C-H bond of one of the iPr groups to the C═N bond in dpp-Bian. Diamagnetic compounds 3, 5, 6, and 9 have been characterized by NMR spectroscopy, and paramagnetic complexes 2, 4, 7, and 8 by ESR spectroscopy. Molecular structures of 2-7 and 9 have been established by single-crystal X-ray analysis.

  15. Kinetic and mechanistic studies of free-radical reactions in combustion

    Energy Technology Data Exchange (ETDEWEB)

    Tully, F.P. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    Combustion is driven by energy-releasing chemical reactions. Free radicals that participate in chain reactions carry the combustion process from reactants to products. Research in chemical kinetics enables us to understand the microscopic mechanisms involved in individual chemical reactions as well as to determine the rates at which they proceed. Both types of information are required for an understanding of how flames burn, why engines knock, how to minimize the production of pollutants, and many other important questions in combustion. In this program the authors emphasize accurate measurements over wide temperature ranges of the rates at which ubiquitous free radicals react with stable molecules. The authors investigate a variety of OH, CN, and CH + stable molecule reactions important to fuel conversion, emphasizing application of the extraordinarily precise technique of laser photolysis/continuous-wave laser-induced fluorescence (LP/cwLIF). This precision enables kinetic measurements to serve as mechanistic probes. Since considerable effort is required to study each individual reaction, prudent selection is critical. Two factors encourage selection of a specific reaction: (1) the rates and mechanisms of the subject reaction are required input to a combustion model; and (2) the reaction is a chemical prototype which, upon characterization, will provide fundamental insight into chemical reactivity, facilitate estimation of kinetic parameters for similar reactions, and constrain and test the computational limits of reaction-rate theory. Most studies performed in this project satisfy both conditions.

  16. A COMPUTERIZED SYSTEM ON KINETIC ANALYSIS AND EVALUATION OF GAS/SOLID REACTIONS

    Institute of Scientific and Technical Information of China (English)

    J.H. Liu; J. Y. Zhang; S.K. Wei

    2003-01-01

    The present paper presents the structure, features and functions of a computerized system on kinetic analysis and evaluation of gas/solid reactions, KinPreGSR. KinPreGSR is a menu driven system, can be operated with MS Windows as workbench in a PC computer. It has been developed using visual C++ with FoxPro hybrid coding technique.KinPreGSR combines the characteristics of gas/solid reactions with the kinetic models as well as mass and heat transfer equations. The database files were established for the apparent activation energies of some reduction and decomposition reactions to allow the prediction of the reaction kinetics to some extents. Outputs can be displayed using graphical or numerical forms. Examples regarding the oxide reduction and carbonate decomposition under isothermal conditions are given to show those functions.

  17. Explaining the atypical reaction profiles of heme enzymes with a novel mechanistic hypothesis and kinetic treatment.

    Directory of Open Access Journals (Sweden)

    Kelath Murali Manoj

    Full Text Available Many heme enzymes show remarkable versatility and atypical kinetics. The fungal extracellular enzyme chloroperoxidase (CPO characterizes a variety of one and two electron redox reactions in the presence of hydroperoxides. A structural counterpart, found in mammalian microsomal cytochrome P450 (CYP, uses molecular oxygen plus NADPH for the oxidative metabolism (predominantly hydroxylation of substrate in conjunction with a redox partner enzyme, cytochrome P450 reductase. In this study, we employ the two above-mentioned heme-thiolate proteins to probe the reaction kinetics and mechanism of heme enzymes. Hitherto, a substrate inhibition model based upon non-productive binding of substrate (two-site model was used to account for the inhibition of reaction at higher substrate concentrations for the CYP reaction systems. Herein, the observation of substrate inhibition is shown for both peroxide and final substrate in CPO catalyzed peroxidations. Further, analogy is drawn in the "steady state kinetics" of CPO and CYP reaction systems. New experimental observations and analyses indicate that a scheme of competing reactions (involving primary product with enzyme or other reaction components/intermediates is relevant in such complex reaction mixtures. The presence of non-selective reactive intermediate(s affords alternate reaction routes at various substrate/product concentrations, thereby leading to a lowered detectable concentration of "the product of interest" in the reaction milieu. Occam's razor favors the new hypothesis. With the new hypothesis as foundation, a new biphasic treatment to analyze the kinetics is put forth. We also introduce a key concept of "substrate concentration at maximum observed rate". The new treatment affords a more acceptable fit for observable experimental kinetic data of heme redox enzymes.

  18. Kinetic studies of the infrared-induced reaction between atomic chlorine and solid parahydrogen

    Science.gov (United States)

    Raston, Paul L.; Kettwich, Sharon C.; Anderson, David T.

    2015-04-01

    We present Fourier-transform infrared (FTIR) spectroscopic studies of the IR-induced Cl + H2(v = 1) → HCl + H reaction in a parahydrogen (pH2) matrix aimed at distinguishing between two proposed reactions mechanisms; direct-IR and vibron-mediated. The Cl atom reactants are produced via 355 nm in situ photolysis of a Cl2 doped pH2 matrix. After photolysis is complete, a long-pass IR filter in the FTIR beam is removed and we measure the ensuing IR-induced reaction kinetics using rapid scan FTIR spectroscopy. We follow both the decay of the Cl atom reactant and growth of the HCl product using the Cl spin-orbit (SO) + Q1(0) and HCl R1(0) transitions, respectively. We show the IR-induced reaction mechanism depends on the spectral profile of the IR radiation; for IR spectral profiles that have significant IR intensities between 4000 and 5000 cm-1 we observe first-order kinetics that are assigned to a vibron-mediated mechanism and for spectral profiles that have significant IR intensities that include the Cl SO + Q1(0) transition near 5094 cm-1 we observe bi-exponential kinetics that are dominated by the direct-IR mechanism at early reaction times. We can distinguish between the two mechanisms using the observed kinetics. We investigate the reaction kinetics for different FTIR optical setups, for a range of sample conditions, and start and stop the IR-induced reaction to investigate the importance of secondary H atom reactions. We also study the IR-induced reaction in Br/Cl co-doped pH2 samples and show the presence of the Br atom quenches the vibron-mediated reaction kinetics presumably because the Br-atoms serve as efficient vibron traps. This paper indicates that in a highly enriched pH2 matrix the H atoms that are produced by the IR-induced Cl atom reaction likely do not play a significant role in the measured reaction kinetics which implies these secondary H atom reactions are highly selective.

  19. A Note on the Kinetics of Diffusion-mediated Reactions

    CERN Document Server

    Naqvi, K Razi

    2014-01-01

    The prevalent scheme of a diffusion-mediated bimolecular reaction $A+B\\rightarrow P$ is an adaptation of that proposed by Briggs and Haldane for enzyme action [{\\em Biochem J.\\/}, 19:338--339, 1925]. The purpose of this Note is to explain, {\\em by using an argument involving no mathematics\\/}, why the breakup of the encounter complex cannot be described, except in special circumstances, in terms of a first-order process $\\{AB\\}\\rightarrow A+B$. Briefly, such a description neglects the occurrence of re-encounters, which lie at the heart of Noyes's theory of diffusion-mediated reactions. The relation $k=\\alpha k_{\\mbox{\\scriptsize e}}$ becomes valid only when $\\alpha$ (the reaction probability per encounter) is very much smaller than unity (activation-controlled reactions), or when $\\beta$ (the re-encounter probability) is negligible (as happens in a gas-phase reaction). References to some works (by the author and his collaborators) which propound the correct approach for finding $k$ are also supplied.

  20. Spectroscopic and Kinetic Characterization of Peroxidase-Like π-Cation Radical Pinch-Porphyrin-Iron(III Reaction Intermediate Models of Peroxidase Enzymes

    Directory of Open Access Journals (Sweden)

    Samuel Hernández Anzaldo

    2016-06-01

    Full Text Available The spectroscopic and kinetic characterization of two intermediates from the H2O2 oxidation of three dimethyl ester [(proto, (meso, (deuteroporphyrinato (picdien]Fe(III complexes ([FePPPic], [FeMPPic] and [FeDPPic], respectively pinch-porphyrin peroxidase enzyme models, with s = 5/2 and 3/2 Fe(III quantum mixed spin (qms ground states is described herein. The kinetic study by UV/Vis at λmax = 465 nm showed two different types of kinetics during the oxidation process in the guaiacol test for peroxidases (1–3 + guaiacol + H2O2 → oxidation guaiacol products. The first intermediate was observed during the first 24 s of the reaction. When the reaction conditions were changed to higher concentration of pinch-porphyrins and hydrogen peroxide only one type of kinetics was observed. Next, the reaction was performed only between pinch-porphyrins-Fe(III and H2O2, resulting in only two types of kinetics that were developed during the first 0–4 s. After this time a self-oxidation process was observed. Our hypotheses state that the formation of the π-cation radicals, reaction intermediates of the pinch-porphyrin-Fe(III family with the ligand picdien [N,N’-bis-pyridin-2-ylmethyl-propane-1,3-diamine], occurred with unique kinetics that are different from the overall process and was involved in the oxidation pathway. UV-Vis, 1H-NMR and ESR spectra confirmed the formation of such intermediates. The results in this paper highlight the link between different spectroscopic techniques that positively depict the kinetic traits of artificial compounds with enzyme-like activity.

  1. Reusable manganese compounds containing pyrazole-based ligands for olefin epoxidation reactions.

    Science.gov (United States)

    Manrique, Ester; Poater, Albert; Fontrodona, Xavier; Solà, Miquel; Rodríguez, Montserrat; Romero, Isabel

    2015-10-28

    We describe the synthesis of new manganese(ii) and manganese(iii) complexes containing the bidentate ligands 2-(3-pyrazolyl)pyridine, pypz-H, and 3(5)-(2-hydroxyphenyl)pyrazole, HOphpz-H, with formula [MnX2(pypz-H)2] (X = Cl(-), 1, CF3SO3(-), 2, OAc(-), 3 or NO3(-) (4)), [MnCl2(pypz-H)(H2O)2], 5, or [MnCl(Ophpz-H)2], 6. All the complexes have been characterized through analytical, spectroscopic and electrochemical techniques. Single X-ray structure analysis revealed a six-coordinated Mn(ii) ion in complexes 1-5, and a five-coordinated Mn(iii) ion in complex 6. Compound 5 is the first co-crystal of Mn(ii) containing Cl and H2O ligands together with bidentate nitrogen ligands. The catalytic activity of complexes 1-6 has been tested with regard to the epoxidation of styrene and, in the case of 1, 5 and 6, other alkenes have been epoxidized using peracetic acid as oxidant in different media, among which glycerol, a green solvent never used in epoxidation reactions using peracetic acid as oxidant. The catalysts show moderate to high conversions and selectivities towards the corresponding epoxides. For complexes 1, 5 and 6, a certain degree of cis→trans isomerization is observed in the case of cis-β-methylstyrene. These observations have been explained through computational calculations. The reutilization of catalysts 1 and 6 for the epoxidation of alkenes has been evaluated in [bmim] : acetonitrile mixture (bmim = 1-butyl-3-methylimidazolium), allowing the effective recyclability of the catalytic system and keeping high conversion and selectivity values up to 12 successive runs, in all cases.

  2. Stimulating kinetic of aerobic reactions skilled athlete in sport dance

    Directory of Open Access Journals (Sweden)

    Lee Bo

    2010-10-01

    Full Text Available Changes speed of development of reaction of frequency of heart-throbs are appraised under act of the program of trainings facilities. Directions stimulation of the cardiorespiratory system of sportsmen are rotined. In research took part 2 homogeneous groups of sportsmen for 12 sportsmen (6 pair. It is set that the high-rate of development of reactions of aerobic power providing reflects reactive properties of the cardiorespiratory system and influences on efficiency of functional preparation on the whole. Possibilities of estimation of reactive properties of the cardiorespiratory system are rotined in the natural terms of training process.

  3. A possible candidate to be classified as an autocatalysis-driven clock reaction: kinetics of the pentathionate-iodate reaction.

    Science.gov (United States)

    Xu, Li; Horváth, Attila K

    2014-08-14

    The pentathionate-iodate reaction has been investigated by spectrophotometrically monitoring the formation of the total amount of iodine at 468 nm in the presence of phosphoric acid/dihydrogen phosphate buffer. We noticed that iodine forms only after a fairly long time lag, and the inverse of time necessary to produce a certain amount of iodine is linearly proportional to the initial concentration of iodate ion and the square of the hydrogen ion concentration, while depending complexly on the concentration of substrate pentathionate. This reaction can therefore be treated as a clock reaction but differs from the original Landolt reaction in the sense that substrate pentathionate and the clock species iodine coexist for a relatively long time--due to their relatively slow direct reaction--depending on the experimental circumstances. Furthermore, we also provided experimental evidence that iodide ion acts as an autocatalyst of the system. A 14-step kinetic model is proposed in which the mechanisms of the pentathionate-iodine, bisulfite-iodate, and the well-known Dushman reactions are combined. A thorough analysis revealed that the direct pentathionate-iodate reaction plays a role only to produce iodide ions via a finite sequence of reactions, and once its concentration reaches a certain level, the reaction is almost exclusively governed by the pentathionate-iodine and the Dushman reactions. As expected, a strong catalytic effect of the buffer composition is also found that can readily be explained by its well-known catalytic influence on the original Dushman reaction.

  4. Kinetics of the decomposition reaction of phosphorite concentrate

    Directory of Open Access Journals (Sweden)

    Huang Run

    2014-01-01

    Full Text Available Apatite is the raw material, which is mainly used in phosphate fertilizer, and part are used in yellow phosphorus, red phosphorus, and phosphoric acid in the industry. With the decrease of the high grade phosphorite lump, the agglomeration process is necessary for the phosphorite concentrate after beneficiation process. The decomposition behavior and the phase transformation are of vital importance for the agglomeration process of phosphorite. In this study, the thermal kinetic analysis method was used to study the kinetics of the decomposition of phosphorite concentrate. The phosphorite concentrate was heated under various heating rate, and the phases in the sample heated were examined by the X-ray diffraction method. It was found that the main phases in the phosphorite are fluorapatiteCa5(PO43F, quartz SiO2,and dolomite CaMg(CO32.The endothermic DSC peak corresponding to the mass loss caused by the decomposition of dolomite covers from 600°C to 850°C. The activation energy of the decomposition of dolomite, which increases with the increase in the extent of conversion, is about 71.6~123.6kJ/mol. The mechanism equation for the decomposition of dolomite agrees with the Valensi equation and G-B equation.

  5. Mechanism of electron transfer reaction of ternary dipicolinatochromium(III) complex involving oxalate as secondary ligand

    Indian Academy of Sciences (India)

    Hassan Amroun Ewais; Iqbal Mohamed Ibrhium Ismail

    2013-09-01

    Mechanism of electron transfer reaction of ternary Mechanism of the oxidation of [CrIII(DPA)(OX)(H2O)]− (DPA = dipicolinate and OX = oxalate) by periodate in aqueous acidic medium has been studied spectrophotometrically over the pH range of 4.45-5.57 at different temperatures. The reaction is first order with respect to both [IO$^{−}_{4}$] and the complex concentration, and it obeys the following rate law: $$d[{\\text Cr}^{\\text{VI}}]/dt = k_6K_4K_6[{\\text IO}^−_4][{\\text{Cr}}^{\\text{III}}]_{\\text{T}}/\\{([H^+] + K_4) + (K_5[H+] + K_6K_4)[{\\text{IO}}^{−}_{4}]\\}.$$ The rate of the reaction increases with increasing pH due to the deprotonation equilibria of the complex. The experimental rate law is consistent with a mechanism in which the deprotonated form [CrIII(DPA)(OX)(OH)]2− is more reactive than the conjugated acid. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of IO$^{−}_{4}$ to chromium(III). Thermodynamic activation parameters were calculated using the transition state theory equation.dipicolinatochromium(III) complex involving oxalate as secondary ligand

  6. Allyl functionalized phosphinite and phosphonite ligands: Synthesis, transition metal chemistry and orthopalladation reactions

    Indian Academy of Sciences (India)

    Singappagudem Govindaraju; Guddekoppa S Ananthnag; Susmita Naik; Shaikh M Mobin; Maravanji S Balakrishn

    2012-07-01

    Allyl functionalized phosphinite PPh2(OAr) [Ar=C6H4(-C3H5)] (1) and phosphonite PPh(OAr)2 (2) ligands were prepared by the reactions of 2-allylphenol with PPh2Cl and PPhCl2, respectively. The ruthenium(II) complexes, [Ru(6--cymene)(PPh2(OAr))Cl2] (3) and [Ru(6--cymene)(PPh(OAr)2Cl2)] (4) were obtained by reacting 1 or 2 with [Ru(6--cymene)Cl2]2 in 2:1 molar ratios, respectively. Reactions of 1 or 2 with AuCl(SMe2) gave [Au{PPh2(OAr)}Cl] (5) or [Au{PPh(OAr)2}Cl] (6) in good yield. The palladium complex, [Pd{PPh(OAr)2}2Cl2] (7) was prepared by reacting Pd(COD)Cl2 with 2 in 1:2 molar ratio. The reaction between Pd(COD)Cl2 and 1 yielded a mixture of orthopalladated cis- and trans-[Pd(Ph2P(OAr))Cl]2 (8a and 8b). The treatment of 8 with PPh3 and Ph2PCH2PPh2 resulted in the cleavage of chloro bridge to give respectively, [Ph2(OAr)PPd(PPh3)Cl] (9) and [Ph2(ArO)PPd(2-dppm)]OTf (10). Single crystal X-ray structure of the ruthenium complex 3 is described.

  7. nonlinear kinetics and mechanism of nile blue reaction

    African Journals Online (AJOL)

    Prof. S.B. Jonnalagadda

    under varied oxidative and reducing media is pivotal in their applications as ... communication, we report the complex mechanism of the reaction between nile blue ... Both the instruments were interfaced for data storage and have ..... The authors acknowledge the financial support received from the University of Durban-.

  8. Hybrid NS ligands supported Cu(I)/(II) complexes for azide-alkyne cycloaddition reactions.

    Science.gov (United States)

    Bai, Shi-Qiang; Jiang, Lu; Zuo, Jing-Lin; Hor, T S Andy

    2013-08-21

    Three copper complexes of nitrogen-sulfur donor ligands, [CuBr₂(L1)] (1), [CuCl₂(L2)₂] (2) and [Cu₂I₂(L3)]n (3) (L1 = bis(2-cyclohexylsulfanylethyl)amine, L2 = 2-(benzylsulfanylmethyl)pyridine and L3 = 2-(4-pyridylsulfanylmethyl)pyridine), have been synthesized and characterized by single-crystal X-ray diffraction (XRD), powder XRD and TGA analysis. Complexes 1 and 2 are mononuclear Cu(II) complexes and are EPR active with distorted square-pyramidal and octahedral geometry, respectively. Complex 3 is a two-dimensional tetrahedral Cu(I) coordination polymer with 16- and 20-membered metallocycles. These complexes show good catalytic activities for one-pot azide-alkyne cycloaddition reactions in CH₃OH-H₂O.

  9. Oxygen Diffusion and Reaction Kinetics in Continuous Fiber Ceramic Matrix Composites

    Science.gov (United States)

    Halbig, Michael C.; Eckel, Andrew J.; Cawley, James D.

    1999-01-01

    Previous stressed oxidation tests of C/SiC composites at elevated temperatures (350 C to 1500 C) and sustained stresses (69 MPa and 172 MPa) have led to the development of a finite difference cracked matrix model. The times to failure in the samples suggest oxidation occurred in two kinetic regimes defined by the rate controlling mechanisms (i.e. diffusion controlled and reaction controlled kinetics). Microstructural analysis revealed preferential oxidation along as-fabricated, matrix microcracks and also suggested two regimes of oxidation kinetics dependent on the oxidation temperature. Based on experimental results, observation, and theory, a finite difference model was developed. The model simulates the diffusion of oxygen into a matrix crack bridged by carbon fibers. The model facilitates the study of the relative importance of temperature, the reaction rate constant, and the diffusion coefficient on the overall oxidation kinetics.

  10. Effect of mixing on reaction-diffusion kinetics for protein hydrogel-based microchips.

    Science.gov (United States)

    Zubtsov, D A; Ivanov, S M; Rubina, A Yu; Dementieva, E I; Chechetkin, V R; Zasedatelev, A S

    2006-03-09

    Protein hydrogel-based microchips are being developed for high-throughput evaluation of the concentrations and activities of various proteins. To shorten the time of analysis, the reaction-diffusion kinetics on gel microchips should be accelerated. Here we present the results of the experimental and theoretical analysis of the reaction-diffusion kinetics enforced by mixing with peristaltic pump. The experiments were carried out on gel-based protein microchips with immobilized antibodies under the conditions utilized for on-chip immunoassay. The dependence of fluorescence signals at saturation and corresponding saturation times on the concentrations of immobilized antibodies and antigen in solution proved to be in good agreement with theoretical predictions. It is shown that the enhancement of transport with peristaltic pump results in more than five-fold acceleration of binding kinetics. Our results suggest useful criteria for the optimal conditions for assays on gel microchips to balance high sensitivity and rapid fluorescence saturation kinetics.

  11. Reaction kinetics, molecular action, and mechanisms of cellulolytic proteins.

    Science.gov (United States)

    Mosier, N S; Hall, P; Ladisch, C M; Ladisch, M R

    1999-01-01

    Cellulolytic proteins form a complex of enzymes that work together to depolymerize cellulose to the soluble products cellobiose and glucose. Fundamental studies on their molecular mechanisms have been facilitated by advances in molecular biology. These studies have shown homology between cellulases from different microorganisms, and common mechanisms between enzymes whose modes of action have sometimes been viewed as being different, as suggested by the distribution of soluble products. A more complete picture of the cellulolytic action of these proteins has emerged and combines the physical and chemical characteristics of solid cellulose substrates with the specialized structure and function of the cellulases that break it down. This chapter combines the fundamentals of cellulose structure with enzyme function in a manner that relates the cellulose binding and biochemical kinetics at the catalytic site of the proteins to the macroscopic behavior of cellulase enzyme systems.

  12. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III ? gas phase reactions of inorganic halogens

    OpenAIRE

    Atkinson, R.; Baulch, D. L.; Cox, R A; J. N. Crowley; Hampson, R. F.; Hynes, R. G.; Jenkin, M. E.; M. J. Rossi; Troe, J.

    2007-01-01

    International audience; This article, the third in the series, presents kinetic and photochemical data evaluated by the IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. It covers the gas phase and photochemical reactions of inorganic halogen species, which were last published in J. Phys. Chem. Ref. Data, in 2000 (Atkinson et al., 2000), were updated on the IUPAC website in 2003 and are updated again in the present evaluation. The article consists of a summary sheet...

  13. Spectrophotometric method for determination and kinetics of amino acids through their reaction with syringaldehyde

    Science.gov (United States)

    Medien, H. A. A.

    1998-02-01

    A spectrophotometric method is described for the determination of amino acids. The method is based on the reaction between amino acids and syringaldehyde at pH 9.0, by which a color is developed with maximum absorption at 420 nm in aqueous methyl alcohol. The absorption of the product obeys Beer's law within the concentration range of 0.025-0.5 mM of original amino acid. The kinetics of the reaction follows overall second order kinetics, first order in each of the reactants. The rates of the reaction were investigated as a function of pH of the reaction medium and structure of the amino compounds. Logarithms of the second-order rate constants increased with amino acid anion concentration as the pH was increased. The mechanisms of the reaction have been discussed.

  14. Complex Cure Kinetics of the Hydroxyl-Epoxide Reaction in DGEBA Epoxy Hardened with Diethanolamine

    Science.gov (United States)

    Ancipink, Windy; McCoy, John; Kropka, Jamie; Celina, Mathias

    The curing of a diglycidyl ether of bisphenol-A Epoxy (Epon 828) with diethanolamine (DEA) involves a fast amine-epoxide reaction followed by a slower hydroxyl-epoxide reaction. At curing temperatures below 100°C, the time scales of these two reactions are well separated, and the hydroxyl addition can be studied as an ''isolated'' reaction. The hydroxyl-epoxide reaction is of great interest due to the complex kinetics involved, which are brought about by competing reactions. The reaction kinetics are believed to be tertiary amine catalyzed and are well fit to a modified form of the Kamal-type equation. Here we study the complex long term reaction kinetics at various temperatures, by using isothermal modulated differential scanning calorimetry, micro calorimetry, and infrared spectroscopy. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  15. Use of Competition Kinetics with Fast Reactions of Grignard Reagents

    DEFF Research Database (Denmark)

    Holm, Torkil

    2000-01-01

    may account for almost all the product even when present as only 1 part in 100 parts of the competing agent. In this way allylmagnesium bromide is estimated to react with acetone, benzophenone, benzaldehyde, and diethylacetaldehyde ca. 1.5 x 105 times faster than does butylmagnesium bromide. The rates...... or effects of polar substituents with isotopically or otherwise substituted benzophenones. A recently reported a-deuterium secondary KIE for the reaction of benzaldehyde with allylmagnesium bromide was observed at -78 °C , but was absent at room temperature. It is suggested that the reaction of benzophenone...... and benzaldehyde with allylmagnesium bromide has a radical-concerted mechanism since no radical type products are produced and since no colour from an intermediate ketyl is observed even at -78 °C....

  16. Assessing Effects of Oxidizer Characteristics on Composite Reaction Kinetics

    Science.gov (United States)

    2013-12-01

    these 2 reactants react to form the products shown. For a complete reaction it was necessary to have two oxygen molecules for each methane molecule. A...properties such as high density (13.31 g cm-3) and large neutron capture cross section such that Hf and HfH2 are widely used for nuclear reactor and...volume can be calculated. In this case, plastic work per volume is = = 2 (−) , where Y is the yield strength of the plate

  17. Chlorination of tramadol: Reaction kinetics, mechanism and genotoxicity evaluation.

    Science.gov (United States)

    Cheng, Hanyang; Song, Dean; Chang, Yangyang; Liu, Huijuan; Qu, Jiuhui

    2015-12-01

    Tramadol (TRA) is one of the most detected analgesics in environmental matrices, and it is of high significance to study the reactivity of TRA during chlorination considering its potential toxicity to the environment. The chlorine/TRA reaction is first order with respect to the TRA concentration, and a combination of first-order and second-order with respect to chlorine concentration. The pH dependence of the observed rate constants (kobs) showed that the TRA oxidation reactivity increased with increasing pH. kobs can be quantitatively described by considering all active species including Cl2, Cl2O and HOCl, and the individual rate constants of HOCl/TRA(0), HOCl/TRAH(+), Cl2/TRA and Cl2O/TRA reactions were calculated to be (2.61±0.29)×10(3)M(-1)s(-1), 14.73±4.17M(-1)s(-1), (3.93±0.34)×10(5)M(-1)s(-1) and (5.66±1.83)×10(6)M(-1)s(-1), respectively. Eleven degradation products were detected with UPLC-Q-TOF-MS, and the corresponding structures of eight products found under various pH conditions were proposed. The amine group was proposed to be the initial attack site under alkaline pH conditions, where reaction of the deprotonated amine group with HOCl is favorable. Under acidic and neutral pH conditions, however, two possible reaction pathways were proposed. One is an electrophilic substitution on the aromatic ring, and another is an electrophilic substitution on the nitrogen, leading to an N-chlorinated intermediate, which can be further oxidized. Finally, the SOS/umu test showed that the genotoxicity of TRA chlorination products increased with increasing dosage of chlorine, which was mostly attributed to the formation of some chlorine substitution products.

  18. Reaction kinetics of resveratrol with tert-butoxyl radicals

    Science.gov (United States)

    Džeba, Iva; Pedzinski, Tomasz; Mihaljević, Branka

    2012-09-01

    The rate constant for the reaction of t-butoxyl radicals with resveratrol was studied under pseudo-first order conditions. The rate constant was determined by measuring the phenoxyl radical formation rate at 390 nm as function of resveratrol concentration in acetonitrile. The rate constant was determined to be 6.5×108 M-1s-1. This high value indicates the high reactivity consistent with the strong antioxidant activity of resveratrol.

  19. Reaction Kinetic Parameters and Surface Thermodynamic Properties of Cu2O Nanocubes

    Directory of Open Access Journals (Sweden)

    Xingxing Li

    2015-07-01

    Full Text Available Cuprous oxide (Cu2O nanocubes were synthesized by reducing Cu(OH2 in the presence of sodium citrate at room temperature. The samples were characterized in detail by field-emission scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray powder diffraction, and N2 absorption (BET specific surface area. The equations for acquiring reaction kinetic parameters and surface thermodynamic properties of Cu2O nanocubes were deduced by establishment of the relations between thermodynamic functions of Cu2O nanocubes and these of the bulk Cu2O. Combined with thermochemical cycle, transition state theory, basic theory of chemical thermodynamics, and in situ microcalorimetry, reaction kinetic parameters, specific surface enthalpy, specific surface Gibbs free energy, and specific surface entropy of Cu2O nanocubes were successfully determined. We also introduced a universal route for gaining reaction kinetic parameters and surface thermodynamic properties of nanomaterials.

  20. Light-induced copper(II) coordination by a bicyclic tetraaza chelator through a ligand-to-metal charge-transfer reaction.

    Science.gov (United States)

    Holm-Jørgensen, Jacob R; Jensen, Mikael; Bjerrum, Morten J

    2011-12-19

    To enable utilization of the broad potential of copper isotopes in nuclear medicine, rapid and robust chelation of the copper is required. Bowl adamanzanes (bicyclic tetraaza ligands) can form kinetically stable copper complexes, but they are usually formed at low rates unless high pH values and high temperatures are applied. We have investigated the effects of the variation in the pH, different anions, and UV irradiation on the chelation rate. UV spectra of mixtures of Cu(2+) and [2(4).3(1)]adz in water show the existence of a long-lived two-coordinated copper(II) intermediate (only counting coordinated amine groups) at pH above 6. These findings are supported by pH titrations of mixtures of Cu(2+) and [2(4).3(1)]adz in water. Irradiation of this complex in the ligand-to-metal charge-transfer (LMCT) band by a diode-array spectrophotometer leads to photodeprotonation and subsequently to formation of the four-coordinated copper(II) complex at a rate up to 7800-fold higher at 25 °C than in the dark. Anions in the solution were found to have three major effects: competitive inhibition due to Cu(II) binding anions, inhibition of the photoinduced transchelation from UV-absorbing anions, and photoredox inhibition from acido ligands capable of acting as electron donors in LMCT reactions. Dissolved O(2) was also found to result in photoredox inhibition.

  1. The influence of anionic ligands on stereoisomerism of Ru carbenes and their importance to efficiency and selectivity of catalytic olefin metathesis reactions.

    Science.gov (United States)

    Torker, Sebastian; Khan, R Kashif M; Hoveyda, Amir H

    2014-03-01

    Investigations detailed herein provide insight regarding the mechanism of stereochemical inversion of stereogenic-at-Ru carbene complexes through a nonolefin metathesis-based polytopal rearrangement pathway. Computational analyses (DFT) reveal that there are two key factors that generate sufficient energy barriers that are responsible for the possibility of isolation and characterization of high-energy, but kinetically stable, intermediates: (1) donor-donor interactions that involve the anionic ligands and the strongly electron donating carbene groups and (2) dipolar effects arising from the syn relationship between the anionic groups (iodide and phenoxide). We demonstrate that a Brønsted acid lowers barriers to facilitate isomerization, and that the positive influence of a proton source is the result of its ability to diminish the repulsive electronic interactions originating from the anionic ligands. The implications of the present studies regarding a more sophisticated knowledge of the role of anionic units on the efficiency of Ru-catalyzed olefin metathesis reactions are discussed. The electronic basis for the increased facility with which allylic alcohols participate in olefin metathesis processes will be presented as well. Finally, we illustrate how a better understanding of the role of anionic ligands has served as the basis for successful design of Ru-based Z-selective catalysts for alkene metathesis.

  2. Reaction kinetics of solid fuels during entrained flow gasification

    Energy Technology Data Exchange (ETDEWEB)

    Tremel, Alexander

    2012-10-24

    Despite the application of entrained flow gasification on larger scales, the reaction rates in the hot conversion zone are almost unknown. But the knowledge of the rates of the gasification reactions at high temperature and high pressure is crucial for the detailed design and optimisation of these gasifiers. This dissertation provides measurements of fuel conversion under operation conditions relevant to industrial gasifiers and aims at the transfer of the data to larger scale applications. A novel pilot-scale research reactor is developed that enables the study of gasification reactions at high temperature, high pressure and under entrained flow conditions. The Pressurised High Temperature Entrained Flow Reactor (PiTER) is operated at up to 1600 C and 4.0 MPa in pyrolysis and gasification experiments. The data set is extended by measurements in an atmospheric entrained flow reactor and a pressurised wire mesh reactor. Devolatilisation and gasification behaviour of a wide range of fuels is analysed including anthracite, bituminous coal, lignite, biocoal (from hydrothermal carbonisation), and biomass; however, Rhenish lignite is used in most of the experiments. The pyrolysis data enable the validation of a simple first order reaction model that describes the influence of pressure, temperature, and residence time on volatile yield. Char samples collected from the three reactors are analysed using laboratory procedures and bench-scale setups. Specific char surface area is measured by CO{sub 2} adsorption at 273 K, and is found to be significantly influenced by char conversion, reaction temperature, and devolatilisation pressure. The surface data are described by an extension of the Random Pore Model. Intrinsic char reactivity is measured in a pressurised thermogravimetric analyser and the influence of reactant partial pressure and temperature on the char-CO{sub 2} and char-H{sub 2}O reaction is studied. The intrinsic reaction rate is described by nth order and

  3. Reaction diffusion and solid state chemical kinetics handbook

    CERN Document Server

    Dybkov, V I

    2010-01-01

    This monograph deals with a physico-chemical approach to the problem of the solid-state growth of chemical compound layers and reaction-diffusion in binary heterogeneous systems formed by two solids; as well as a solid with a liquid or a gas. It is explained why the number of compound layers growing at the interface between the original phases is usually much lower than the number of chemical compounds in the phase diagram of a given binary system. For example, of the eight intermetallic compounds which exist in the aluminium-zirconium binary system, only ZrAl3 was found to grow as a separate

  4. Reaction kinetics and mechanism of magnetic field effects in cryptochrome

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Schulten, Klaus

    2012-01-01

    Creatures as varied as mammals, fish, insects, reptiles, and birds have an intriguing sixth sense that allows them to orient themselves in the Earth's magnetic field. Despite decades of study, the physical basis of this magnetic sense remains elusive. A likely mechanism is furnished by magnetically...... sensitive radical pair reactions occurring in the retina, the light-sensitive part of animal eyes. A photoreceptor, cryptochrome, has been suggested to endow birds with magnetoreceptive abilities as the protein has been shown to exhibit the biophysical properties required for an animal magnetoreceptor...

  5. The kinetics of electron transfer reaction of methylene green and titanium trichloride in different solvents

    Science.gov (United States)

    Saeed, Rehana; Nadeem, Syed Muhammad Saqib

    2016-06-01

    The kinetics of the electron transfer reaction of methylene green and titanium trichloride was investigated in different solvents by spectrophotometry at different temperatures. The the reaction rate was determined by monitoring the absorbance as a function of time at λmax 655 nm. The reaction is pseudo-first order, dependent only on the concentration of titanium trichloride at a fixed concentration of methylene green. The effect of an aqueous alcoholic solvent was studied in the acidic range of pH from 4 to 7. It was observed that the reaction rate increased with an increase in polarity of the reaction medium. The the reaction rate was high in acidic conditions and decreased with a further increase in acidity. The increase in temperature increased the rate of the electron transfer reaction of methylene green and titanium trichloride. The activation energy ( E a) was calculated by the Arrhenius relation. The absence of any reaction intermediate was confirmed by spectroscopic and kinetic investigations. A plausible mechanism for the reaction in line with outer-sphere reaction pathway has been proposed. Thermodynamic parameters such as the activation energy ( E a), enthalpy change (Δ H), free energy change (Δ G), and entropy change (Δ S) were also evaluated

  6. Kinetic modeling for thermal dehydration of ferrous oxalate dihydrate polymorphs: a combined model for induction period-surface reaction-phase boundary reaction.

    Science.gov (United States)

    Ogasawara, Haruka; Koga, Nobuyoshi

    2014-04-03

    In this study, ferrous oxalate dihydrate polymorph particles, α- and β-phases, with square bipyramidal and quadratic prismatic shapes, respectively, were synthesized. Thermal dehydration of the samples was subjected to kinetic study as a typical reaction that indicates a significant induction period and a sigmoidal mass-loss behavior. On the basis of the formal kinetic analysis of the mass-loss traces recorded under isothermal, nonisothermal, and constant transformation rate conditions and the morphological observations of the surface textures of the partially reacted sample particles, a combined kinetic model for the induction period-surface reaction-phase boundary reaction was developed. The sigmoidal mass-loss behavior after the significant induction period under isothermal conditions was satisfactorily simulated by the combined kinetic model. The kinetic parameters for the component processes of induction period, surface reaction, and phase boundary reaction were separately determined from the kinetic simulation. The differences in the kinetic behaviors of the induction period and the phase boundary reaction between α- and β-phase samples were well described by the kinetic parameters. The applicability of the combined kinetic model to practical systems was demonstrated through characterizing the physicogeometrical kinetics of the thermal dehydration of ferrous oxalate dihydrate polymorphs.

  7. Half-sandwich iron(ii) complexes with protic acyclic diaminocarbene ligands: synthesis, deprotonation and metalation reactions.

    Science.gov (United States)

    Ruiz, Javier; García, Lucía; Vivanco, Marilín; Sol, Daniel; García-Granda, Santiago

    2017-08-08

    A variety of half-sandwich iron(ii) complexes with diprotic acyclic diaminocarbene ligands (pADCs) have been obtained by reaction of the cationic complexes [Fe(Cp)(CO)2(CNR)](+) and [Fe(Cp)(CO)(CNR)2](+) with methylamine, and their acid-base behaviour was studied, revealing an easy reversible deprotonation reaction of both N-H moieties of the carbene ligands. The deprotonation process is frequently followed by a nucleophilic attack of the nitrogen atom on a vicinal carbonyl or isocyanide ligand, affording the corresponding metallacycles. Metalation of one or two N-H groups of the pADC ligands can be accomplished by reaction of the carbene complexes with either [AuCl(PPh3)] or [Ru(p-cym)Cl2]2 in the presence of KOH or LiHMDS as deprotonating agents. A number of Fe(ii)/Au(i) and Fe(ii)/Ru(ii) heterometallic complexes have been prepared in this way, some of them formally containing unique metalla-N-heterocyclic carbene ligands.

  8. KINETICS: A computer program to analyze chemical reaction data. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Braun, R.L.; Burnham, A.K.

    1994-09-01

    KINETICS (Version 3.2) is a copyrighted, user-friendly kinetics analysis computer program designed for reactions such-as kerogen or polymer decomposition. It can fit rate parameters to chemical reaction data (rate or cumulative reacted) measured at a series of constant temperatures, constant heating rates, or arbitrary thermal histories. The program uses two models with conversion-dependent Azrhenius parameters and two models with activation energy distributions. The discrete distribution model fits an average frequency factor and relative fractions and activation energies for up to 25 parallel, fast-order reactions. The Gaussian distribution model fits a frequency factor, activation energy, Gaussian distribution parameter, and reaction order for up to 3 parallel reactions. For both distribution models, if the experiments are at a series of constant heating rates, the program uses a very fast approximate fitting procedure to determine possible initial parameter-estimates for the subsequent nonlinear regression analysis. This increases the probability that the regression analysis will properly. converge with a minimum of computer time. Once convergence is reached by the discrete model, the parameter space is further systematically searched to achieve global convergence. With the Gaussian model, the calculated rates or integrals can be convoluted with an experimental tracer signal during the nonlinear regression to account for dispersion effects often found in real chemical reaction data. KINETICS can also be used in an application mode to calculate reaction rates and integrals for previously determined Gaussian or discrete, parameters, using an arbitrary thermal history. Four additional models have been incorporated for the kinetics analysis of polymers and other materials, including some kerogens, which have a reaction-rate profile that is narrower than that for a single first-order reaction.

  9. Reaction Kinetic Equation for Char Combustion of Underground Coal Gasification

    Institute of Scientific and Technical Information of China (English)

    YU Hong-guan; YANG Lan-he; FENG Wei-min; LIU Shu-qin; SONG Zhen-qi

    2006-01-01

    Based on the quasi-steady-state approximation, the dynamic equation of char combustion in the oxidation zone of underground coal gasification (UCG) was derived. The parameters of the dynamic equation were determined at 900℃ using a thermo-gravimetric (TG) analyzer connected to a flue gas analyzer and this equation. The equation was simplified for specific coals, including high ash content, low ash content, and low ash fusibility ones. The results show that 1) the apparent reaction rate constant increases with an increase in volatile matter value as dry ash-free basis, 2) the effective coefficient of diffusion decreases with an increase in ash as dry basis, and 3) the mass transfer coefficient is independent of coal quality on the whole. The apparent reaction rate constant, mass-transfer coefficient and effective coefficient of diffusion of six char samples range from 7.51×104 m/s to 8.98×104 m/s, 3.05×106 m/s to 3.23×106 m/s and 5.36×106 m2/s to 8.23×106 m2/s at 900℃, respectively.

  10. Self-triggering reaction kinetics between nitrates and aluminium powder

    Energy Technology Data Exchange (ETDEWEB)

    Demichela, Micaela [SAfeR-Centro Studi su Sicurezza Affidabilita e Rischi, Dipartimento di Scienza dei Materiali e Ingegneria Chimica, Politecnico di Torino, Corso Duca degli Abruzzi, 24, I 10129 Torino (Italy)], E-mail: micaela.demichela@polito.it

    2007-09-05

    During the night between the 19 and 20 September 2003, a loud explosion occurred at about 3 km from the town of Carignano that was clearly heard at a distance of some tens of kilometres. The explosion almost completely destroyed most of the laboratories of the Panzera Company that were used for the production of fireworks. The results of the research activities that were carried out using a differential scanning calorimeter (DSC) on the same raw materials that made up the pyrotechnical mixture that exploded are reported in this paper. This activity was carried out to identify the dynamics of the accident. It proved possible to verify how the event was produced because of a slow exothermic reaction which, after about 8 h, caused the self-triggering of 120 kg of finished product. The detonation can therefore be put down to a runaway reaction in the solid phase, whose primogenial causes can be attributed to a still craftsman type production system, not conformed to the rigorous controls and inspections as those required by a safety management system for major risk plants, as the Panzera Company was.

  11. Kinetics of pozzolanic reaction for preparation of flue gas desulfurizer from fly ash and Ca(OH)2

    Institute of Scientific and Technical Information of China (English)

    WANG Jingang; HU Jinbang; WANG Daobin; DUAN Zhenya

    2007-01-01

    A kinetic model of the pozzolanic reaction for the preparation of flue gas desulfurizers from fly ash and Ca(OH)2 was deduced on the basis of solid phase reaction kinetic theory.Kinetic expressions and parameters were obtained and verified by experiment.A comparison of calculated results with experimental results showed that precision in kinetic expressions was good.The apparent reaction rate constants of the pozzolanic reaction could be raised by increasing the specific surface area of fly ash and the hydration temperature,and by using a suitable additive.

  12. Control of DNA replication by anomalous reaction-diffusion kinetics

    Science.gov (United States)

    Bechhoefer, John; Gauthier, Michel

    2010-03-01

    DNA replication requires two distinct processes: the initiation of pre-licensed replication origins and the propagation of replication forks away from the fired origins. Experiments indicate that these origins are triggered over the whole genome at a rate I(t) (the number of initiations per unreplicated length per time) that increases throughout most of the synthesis (S) phase, before rapidly decreasing to zero at the end of the replication process. We propose a simple model for the control of DNA replication in which the rate of initiation of replication origins is controlled by protein-DNA interactions. Analyzing recent data from Xenopus frog embryos, we find that the initiation rate is reaction limited until nearly the end of replication, when it becomes diffusion limited. Initiation of origins is suppressed when the diffusion-limited search time dominates. To fit the experimental data, we find that the interaction between DNA and the rate-limiting protein must be subdiffusive.

  13. Ligand Binding Kinetics of the Quorum Sensing Regulator PqsR

    DEFF Research Database (Denmark)

    Welch, Martin; Hodgkinson, James T.; Gross, Jeremy;

    2013-01-01

    The Pseudomonas aeruginosa quinolone signal (PQS) is a quorum sensing molecule that plays an important role in regulating the virulence of this organism. We have purified the ligand binding domain of the receptor PqsRLBD for PQS and have used Förster resonance energy transfer fluorimetry...

  14. Lipoproteins attenuate TLR2 and TLR4 activation by bacteria and bacterial ligands with differences in affinity and kinetics.

    Science.gov (United States)

    van Bergenhenegouwen, Jeroen; Kraneveld, Aletta D; Rutten, Lieke; Garssen, Johan; Vos, Arjan P; Hartog, Anita

    2016-10-28

    The small intestine is a specialized compartment were close interactions take place between host, microbes, food antigens and dietary fatty acids. Dietary fats get absorbed by epithelial cells and processed into a range of lipoprotein particles after which they are basolaterally secreted and collected in the lymphatics. In contrast to the colon, the small intestine is covered only by a thin mucus coat that allows for intimate interactions between host-cells and microbes. Lipoproteins have long been recognized as protective factors in infectious diseases via the neutralization of bacterial toxins like lipopolysaccharides. Much less attention has been given to the potential role of lipoproteins as factors contributing to the maintenance of small intestinal immune homeostasis via modulating bacteria-induced immune responses. Lipoproteins VLDL, LDL and HDL were found to neutralize TLR responses towards specific TLR-ligands or a selection of gram-negative and gram-positive bacteria. Attenuation of TLR2 activity was acute and only slightly improved by longer pre-incubation times of ligands and lipoproteins with no differences between bacterial-lipopeptides or bacteria. In contrast, attenuation of TLR4 responses was only observed after extensive preincubation of lipoproteins and LPS. Preincubation of bacteria and lipoproteins led only to a modest attenuation of TLR4 activity. Moreover, compared to TLR2, TLR4 activity could only be attenuated by lipoproteins over a small ligand dose range. These results demonstrate the ability of lipoproteins VLDL, LDL and HDL to inhibit TLR responses towards bacterial-ligands and bacteria. Presence of lipoproteins was found to modulate the MAMP-induced cytokine release by primary human monocytes measured as changes in the release of IL-6, TNFα, GM-CSF and IFNγ. Using TLR2 and TLR4-reporter cells, lipoproteins were found to inhibit TLR responses with differences in affinity and kinetics. These data establish a role for lipoproteins as

  15. Mechanism and kinetics of the NOCO reaction on Rh

    Science.gov (United States)

    Zhdanov, V. P.; Kasemo, B.

    During the past 15 years, the NOCO reaction on Rh has attracted considerable attention of the researchers working in academic and applied surface science. The practical importance of this reaction is connected with its relevance for environmental chemistry. From the point of view of academic studies, the NOCO reaction on Rh is of interest because it represents one of the simplest examples from the class of catalytic reactions occurring via decomposition of adsorbed species. At present, the detailed kinetic data for this reaction are available both for single-crystal and supported Rh, at ultrahigh vacuum (UHV) conditions and also at realistic pressures. For this reason, the NOCO reaction on Rh has become one of the major testing platforms for a microscopic, surface-science based approach to heterogeneous catalysis. The present review shows how far the progress in this field has come. In particular, the review describes in detail the evolution of the ideas for the mechanism of the reaction and also presents the data for the elementary reaction steps, obtained primarily on Rh(1 1 1) at UHV conditions. Then, the possibility of using these data for simulation of the reaction kinetics at moderate pressures, P NO ⋍ P CO ⋍ 0.01 bar, is discussed. The technological aspects of application of Rh in the automotive exhaust systems are surveyed as well, but only briefly.

  16. The Suzuki Reaction in Aqueous Media Promoted by P, N Ligands

    Directory of Open Access Journals (Sweden)

    Phillip W. Gingrich

    2011-07-01

    Full Text Available The synthesis and structure of palladium complexes of trisubstituted PTA derivatives, PTAR3, are described. Water-soluble phosphine ligands 1,3,5-triaza-7-phosphaadmantane (PTA, tris(aminomethylphosphine trihydrobromide, tri(aminomethyl phosphine, 3,7-dimethyl-1,5,7-triaza-3-phosphabicyclo[3,3,1]nonane (RO-PTA, 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane (DAPTA, lithium 1,3,5-triaza-7-phosphaadamantane-6-carboxylate (PTA-CO2Li, 2,4,6-triphenyl-1,3,5-triaza-7-phosphatricyclo [3.3.1.1]decane, and 2,4,6-triphenyl-1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane were used as ligands for palladium catalyzed Suzuki reactions in aqueous media. RO-PTA in combination with palladium acetate or palladium chloride was the most active catalyst for Suzuki cross coupling of aryl bromides and phenylboronic acid at 80 °C in 1:1 water:acetonitrile. The activity of Pd(II complexes of RO-PTA is comparable to PPh2(m-C6H4SO3Na (TPPMS and P(m-C6H4SO3Na3 (TPPTS and less active than tri(4,6-dimethyl-3-sulfonatophenylphosphine trisodium salt (TXPTS. Activated, deactivated, and sterically hindered aryl bromides were examined, with yields ranging from 50% to 90% in 6 h with 5% palladium precatalyst loading. X-ray crystal structures of (RO-PTAPdCl2, (PTAR32PdCl2 (R = Ph, p-tert-butylC6H5, and PTAR3 (R = p-tert-butylC6H5 are reported.

  17. DME Dissociation Reaction on Platinum Electrode Surface : A Quantitative Kinetic Analysis by In Situ IR Spectroscopy

    OpenAIRE

    Zhang, Yi; Tong, Yujin; Lu, Leilei; Osawa, Masatoshi; Ye, Shen

    2010-01-01

    The kinetics of electrocatalytic dissociation reaction of dimethyl ether (DME) on a platinum (Pt) polycrystalline electrode in an acidic solution yielding carbon monoxide (CO) has been quantitatively analyzed by in situ IR spectroscopy in the potential region between 100 and 500 mV (vs reversible hydrogen electrode). A two-step consecutive reaction model, an initial dehydrogenation step followed by a CO formation step, is proposed for the dissociation process of the DME molecule. The mechanis...

  18. 1,3-Dicarbonyl compounds as phosphine-free ligands for Pd-catalyzed Heck and Suzuki reactions

    Institute of Scientific and Technical Information of China (English)

    Xin Cui; Juan Li; Lei Liu; Qing Xiang Guo

    2007-01-01

    Some 1,3-dicarbonyl compounds (such as pentane-2,4-dione and 3-oxo-N-phenylbutanamide) were found to constitute highly efficient, yet low-priced and phosphine-free ligands for the Pd-catalyzed Heck and Suzuki reactions of aryl bromides and iodides with very high turnover numbers (ca.103-104).

  19. Synthesis of novel chiral tridentate Schiff-base ligands and their applications in catalytic asymmetric Henry reaction.

    Science.gov (United States)

    Qiang, Gen-Rong; Shen, Tian-Hua; Zhou, Xiao-Cong; An, Xiao-Xia; Song, Qing-Bao

    2014-12-01

    A series of chiral tridentate Schiff-bases were prepared and used as ligands in the catalytic asymmetric Henry reaction. Under the optimal conditions, a variety of arylaldehydes were smoothly converted into corresponding adducts with high yields (up to 98%) and excellent enantioselectivities (up to 97% ee).

  20. Studies of Reaction Kinetics of Methane Hydrate Dissocation in Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, George J.; Seol, Yongkoo; Kneafsey, Timothy J.

    2005-03-10

    The objective of this study is the description of the kinetic dissociation of CH4-hydrates in porous media, and the determination of the corresponding kinetic parameters. Knowledge of the kinetic dissociation behavior of hydrates can play a critical role in the evaluation of gas production potential of gas hydrate accumulations in geologic media. We analyzed data from a sequence of tests of CH4-hydrate dissociation by means of thermal stimulation. These tests had been conducted on sand cores partially saturated with water, hydrate and CH4 gas, and contained in an x-ray-transparent aluminum pressure vessel. The pressure, volume of released gas, and temperature (at several locations within the cores) were measured. To avoid misinterpreting local changes as global processes, x-ray computed tomography scans provided accurate images of the location and movement of the reaction interface during the course of the experiments. Analysis of the data by means of inverse modeling (history matching ) provided estimates of the thermal properties and of the kinetic parameters of the hydration reaction in porous media. Comparison of the results from the hydrate-bearing porous media cores to those from pure CH4-hydrate samples provided a measure of the effect of the porous medium on the kinetic reaction. A tentative model of composite thermal conductivity of hydrate-bearing media was also developed.

  1. Asymmetric hydrogenation with highly active IndolPhos-Rh catalysts: kinetics and reaction mechanism

    NARCIS (Netherlands)

    Wassenaar, J.; Kuil, M.; Lutz, M.; Spek, A.L.; Reek, J.N.H.

    2010-01-01

    The mechanism of the IndolPhos-Rh-catalyzed asymmetric hydrogenation of prochiral olefins has been investigated by means of X-ray crystal structure determination, kinetic measurements, high-pressure NMR spectroscopy, and DFT calculations. The mechanistic study indicates that the reaction follows an

  2. Investigation of Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics and Computational Fluid Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, Francine [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Agblevor, Foster [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Klein, Michael [Univ. of Delaware, Newark, DE (United States); Sheikhi, Reza [Northeastern Univ., Boston, MA (United States)

    2015-12-31

    A collaborative effort involving experiments, kinetic modeling, and computational fluid dynamics (CFD) was used to understand co-gasification of coal-biomass mixtures. The overall goal of the work was to determine the key reactive properties for coal-biomass mixed fuels. Sub-bituminous coal was mixed with biomass feedstocks to determine the fluidization and gasification characteristics of hybrid poplar wood, switchgrass and corn stover. It was found that corn stover and poplar wood were the best feedstocks to use with coal. The novel approach of this project was the use of a red mud catalyst to improve gasification and lower gasification temperatures. An important results was the reduction of agglomeration of the biomass using the catalyst. An outcome of this work was the characterization of the chemical kinetics and reaction mechanisms of the co-gasification fuels, and the development of a set of models that can be integrated into other modeling environments. The multiphase flow code, MFIX, was used to simulate and predict the hydrodynamics and co-gasification, and results were validated with the experiments. The reaction kinetics modeling was used to develop a smaller set of reactions for tractable CFD calculations that represented the experiments. Finally, an efficient tool was developed, MCHARS, and coupled with MFIX to efficiently simulate the complex reaction kinetics.

  3. Interfacial reaction kinetics of coated SiC fibers with various titanium alloys

    Science.gov (United States)

    Gundel, D. B.; Wawner, F. E.

    1991-01-01

    The kinetics of the reaction between the silicon carbide fibers and the titanium-based alloy matrix was investigated at temperatures from 800 to 1000 C for several titanium-based alloys (including Ti-1100 alloy and BETA 21S) and unalloyed Ti, reinforced with coated silicon carbide fiber SCS-6. The reaction zone growth kinetics was studied by exposing vacuum encapsulated samples to temperatures from 700 to 1000 C for times up to 150 hrs, followed by SAM observations of samples which were polished perpendicular to the fiber axis and etched. It was found that the reaction zone growth kinetics of the alpha (hcp) and beta (bcc) phases of unalloyed titanium reacting with SCS-6 fibers exhibited different values of the apparent activation energy and of the preexponential factor. Additions of other metals to Ti was found to slow down the reaction kinetics. Among the alloys studied, the Ti-1100 was the slowest reacting conventional alloy and the Ti-14Al-21Nb (in wt pct) was the slowest overall.

  4. Atmospheric chemistry of CF3COOH. Kinetics of the reaction with OH radicals

    DEFF Research Database (Denmark)

    Møgelberg, T.E.; Nielsen, O.J.; Sehested, J.;

    1994-01-01

    Two different experimental techniques were used to study the kinetics of the reaction of OH radicals with trifluoroacetic acid, CF3COOH. Using a pulse radiolysis absolute rate technique, rate constants at 315 and 348 K were determined to be (1.6 +/- 0.4) x 10(-13) and (1.5 +/- 0.2) x 10(-13) cm3...

  5. Employing Magnetic Levitation to Monitor Reaction Kinetics and Measure Activation Energy

    Science.gov (United States)

    Benz, Lauren; Cesafsky, Karen E.; Le, Tran; Park, Aileen; Malicky, David

    2012-01-01

    This article describes a simple and inexpensive undergraduate-level kinetics experiment that uses magnetic levitation to monitor the progress and determine the activation energy of a condensation reaction on a polymeric solid support. The method employs a cuvette filled with a paramagnetic solution positioned between two strong magnets. The…

  6. Investigation of Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics and Computational Fluid Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, Francine [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Agblevor, Foster [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Klein, Michael [Univ. of Delaware, Newark, DE (United States); Sheikhi, Reza [Northeastern Univ., Boston, MA (United States)

    2015-09-30

    A collaborative effort involving experiments, kinetic modeling, and computational fluid dynamics (CFD) was used to understand co-gasification of coal-biomass mixtures. The overall goal of the work was to determine the key reactive properties for coal-biomass mixed fuels. Sub-bituminous coal was mixed with biomass feedstocks to determine the fluidization and gasification characteristics of hybrid poplar wood, switchgrass and corn stover. It was found that corn stover and poplar wood were the best feedstocks to use with coal. The novel approach of this project was the use of a red mud catalyst to improve gasification and lower gasification temperatures. An important results was the reduction of agglomeration of the biomass using the catalyst. An outcome of this work was the characterization of the chemical kinetics and reaction mechanisms of the co-gasification fuels, and the development of a set of models that can be integrated into other modeling environments. The multiphase flow code, MFIX, was used to simulate and predict the hydrodynamics and co-gasification, and results were validated with the experiments. The reaction kinetics modeling was used to develop a smaller set of reactions for tractable CFD calculations that represented the experiments. Finally, an efficient tool was developed, MCHARS, and coupled with MFIX to efficiently simulate the complex reaction kinetics.

  7. Parallel Kinetic Resolution of Racemic Aldehydes by Use of Asymmetric Horner-Wadsworth-Emmons Reactions

    DEFF Research Database (Denmark)

    Pedersen, Torben Møller; Jensen, Jakob Feldthusen; Humble, Rikke Eva

    2000-01-01

    A racemic aldehyde can undergo parallel kinetic resolution (PKR) by simultaneous reaction with two different chiral phosphonates, differing either in the structure of the chiral auxiliary or in the structure of the phosphoryl group (i.e., one (E)- and one (Z)-selective reagent). This strategy all...

  8. An Inexpensive Kinetic Study: The Reaction of FD&C Red #3 (Erythrosin B) with Hypochlorite

    Science.gov (United States)

    Henary, Maher M.; Russell, Arlene A.

    2007-01-01

    Kinetics constitutes a core topic in both the lecture and laboratory components of lower- level chemistry courses. While textbook examples can ignore issues of time, temperature and safety, the laboratory can not. Reactions must occur slowly enough to be detected by students, occur rapidly enough for data collection in the few hours assigned to a…

  9. Employing Magnetic Levitation to Monitor Reaction Kinetics and Measure Activation Energy

    Science.gov (United States)

    Benz, Lauren; Cesafsky, Karen E.; Le, Tran; Park, Aileen; Malicky, David

    2012-01-01

    This article describes a simple and inexpensive undergraduate-level kinetics experiment that uses magnetic levitation to monitor the progress and determine the activation energy of a condensation reaction on a polymeric solid support. The method employs a cuvette filled with a paramagnetic solution positioned between two strong magnets. The…

  10. Marcus Theory: Thermodynamics CAN Control the Kinetics of Electron Transfer Reactions

    Science.gov (United States)

    Silverstein, Todd P.

    2012-01-01

    Although it is generally true that thermodynamics do not influence kinetics, this is NOT the case for electron transfer reactions in solution. Marcus Theory explains why this is so, using straightforward physical chemical principles such as transition state theory, Arrhenius' Law, and the Franck-Condon Principle. Here the background and…

  11. Estimating kinetic parameters of complex catalytic reactions using a curve resolution based method

    NARCIS (Netherlands)

    Cruz, S.C.; Rothenberg, G.; Westerhuis, J.A.; Smilde, A.K.

    2008-01-01

    A Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) based algorithm is used to extract kinetic parameters from on-line FT - NIR data of a series of Heck reactions between iodobenzene and n-butyl acrylate (NBA), measured at different temperatures with different catalysts. Four

  12. On the graph and systems analysis of reversible chemical reaction networks with mass action kinetics

    NARCIS (Netherlands)

    Rao, Shodhan; Jayawardhana, Bayu; Schaft, Arjan van der

    2012-01-01

    Motivated by the recent progresses on the interplay between the graph theory and systems theory, we revisit the analysis of reversible chemical reaction networks described by mass action kinetics by reformulating it using the graph knowledge of the underlying networks. Based on this formulation, we

  13. Toward a Kinetic Model for Acrylamide Formation in a Glucose-Asparagine Reaction System

    NARCIS (Netherlands)

    Knol, J.J.; Loon, W.A.M.; Linssen, J.P.H.; Ruck, A.L.; Boekel, van M.A.J.S.

    2005-01-01

    A kinetic model for the formation of acrylamide in a glucose-asparagine reaction system is pro-posed. Equimolar solutions (0.2 M) of glucose and asparagine were heated at different tempera-tures (120-200 C) at pH 6.8. Besides the reactants, acrylamide, fructose, and melanoidins were quantified after

  14. A novel reactor for determination of kinetics for solid catalyzed gas reactions

    NARCIS (Netherlands)

    Borman, P.C.; Borman, P.C.; Bos, A.N.R.; Bos, A.N.R.; Westerterp, K.R.

    1994-01-01

    A novel perfectly mixed laboratory reactor for determining kinetics of heterogeneously catalyzed gas-phase reactions has been developed. Perfect mixing is achieved by circulating the gas in the reactor using an axial flow impeller in a well streamlined enclosure. Pellets are fixed in a rectangular

  15. Variable elimination in chemical reaction networks with mass-action kinetics

    DEFF Research Database (Denmark)

    Feliu, Elisenda; Wiuf, C.

    2012-01-01

    We consider chemical reaction networks taken with mass-action kinetics. The steady states of such a system are solutions to a system of polynomial equations. Even for small systems the task of finding the solutions is daunting. We develop an algebraic framework and procedure for linear elimination...

  16. The renneting of milk : a kinetic study of the enzymic and aggregation reactions

    NARCIS (Netherlands)

    Hooydonk, van A.C.M.

    1987-01-01

    The rennet-induced clotting of milk was studied under various conditions. The kinetics of the enzymic and aggregation reactions was analysed separately and, where possible, related to the physico-chemical properties of the casein micelle and its environment.

    The effects of important

  17. A Molecular Reaction Cycle with a Solvatochromic Merocyanine Dye: An Experiment in Photochemistry, Kinetics, and Catalysis.

    Science.gov (United States)

    Abdel-Kader, M. H.; Steiner, U.

    1983-01-01

    Three experiments using merocyanine M suitable as an integrated laboratory experience for undergraduates are described. Experiments demonstrate: complete molecular cycle composed of photochemical, thermal, and protolytic reaction steps; kinetics of cis-trans isomerization of the dye; and mechanism of base catalysis for thermal isomerization of the…

  18. Asymmetric hydrogenation with highly active IndolPhos-Rh catalysts: kinetics and reaction mechanism

    NARCIS (Netherlands)

    Wassenaar, J.; Kuil, M.; Lutz, M.; Spek, A.L.; Reek, J.N.H.

    2010-01-01

    The mechanism of the Indol- Phos–Rh-catalyzed asymmetric hydrogenation of prochiral olefins has been investigated by means of X-ray crystal structure determination, kinetic measurements, high-pressure NMR spectroscopy, and DFT calculations. The mechanistic study indicates that the reaction follows a

  19. Asymmetric hydrogenation with highly active IndolPhos-Rh catalysts: kinetics and reaction mechanism

    NARCIS (Netherlands)

    Wassenaar, J.; Kuil, M.; Lutz, M.; Spek, A.L.; Reek, J.N.H.

    2010-01-01

    The mechanism of the IndolPhos-Rh-catalyzed asymmetric hydrogenation of prochiral olefins has been investigated by means of X-ray crystal structure determination, kinetic measurements, high-pressure NMR spectroscopy, and DFT calculations. The mechanistic study indicates that the reaction follows an

  20. Kinetic Study of the Reaction between Tert-butyl Hydrazine and Nitrous Acid

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The kinetic study of the reaction between tert-butyl hydrazine(TBH)and nitrous acid in nitric acid system is performed by spectrophotometry. The effect of some factors such as the concentration of TBH, the concentration of nitric acid, ionic strength, temperature and the

  1. Modelling and simulation of a transketolase mediated reaction: Sensitivity analysis of kinetic parameters

    DEFF Research Database (Denmark)

    Sayar, N.A.; Chen, B.H.; Lye, G.J.

    2009-01-01

    In this paper we have used a proposed mathematical model, describing the carbon-carbon bond format ion reaction between beta-hydroxypyruvate and glycolaldehyde to synthesise L-erythrulose, catalysed by the enzyme transketolase, for the analysis of the sensitivity of the process to its kinetic par....... (C) 2009 Elsevier B.V. All rights reserved....

  2. A novel reactor for determination of kinetics for solid catalyzed gas reactions

    NARCIS (Netherlands)

    Borman, P.C.; Bos, A.N.R.; Westerterp, K.R.

    1994-01-01

    A novel perfectly mixed laboratory reactor for determining kinetics of heterogeneously catalyzed gas-phase reactions has been developed. Perfect mixing is achieved by circulating the gas in the reactor using an axial flow impeller in a well streamlined enclosure. Pellets are fixed in a rectangular o

  3. A Gas-Kinetic Scheme for Multimaterial Flows and Its Application in Chemical Reaction

    Science.gov (United States)

    Lian, Yongsheng; Xu, Kun

    1999-01-01

    This paper concerns the extension of the multicomponent gas-kinetic BGK-type scheme to multidimensional chemical reactive flow calculations. In the kinetic model, each component satisfies its individual gas-kinetic BGK equation and the equilibrium states of both components are coupled in space and time due to the momentum and energy exchange in the course of particle collisions. At the same time, according to the chemical reaction rule one component can be changed into another component with the release of energy, where the reactant and product could have different gamma. Many numerical test cases are included in this paper, which show the robustness and accuracy of kinetic approach in the description of multicomponent reactive flows.

  4. Prediction of Reaction Kinetic of Al- Doura Heavy Naphtha Reforming Process Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Ramzy H. Saihod

    2015-07-01

    Full Text Available In this study, genetic algorithm was used to predict the reaction kinetics of Iraqi heavy naphtha catalytic reforming process located in Al-Doura refinery in Baghdad. One-dimensional steady state model was derived to describe commercial catalytic reforming unit consisting of four catalytic reforming reactors in series process. The experimental information (Reformate composition and output temperature for each four reactors collected at different operating conditions was used to predict the parameters of the proposed kinetic model. The kinetic model involving 24 components, 1 to 11 carbon atoms for paraffins and 6 to 11 carbon atom for naphthenes and aromatics with 71 reactions. The pre-exponential Arrhenius constants and activation energies were determined after fine tuning of the model results with experimental data. The input to the optimization is the compositions for 21 components and the temperature for the effluent stream for each one of the four reactors within the reforming process while the output of optimization is 142 predicted kinetic parameters for 71 reactions within reforming process. The differential optimization technique using genetic algorithm to predict the parameters of the kinetic model. To validate the kinetic model, the simulation results of the model based on proposed kinetic model was compared with the experimental results. The comparison between the predicted and commercially results shows a good agreement, while the percentage of absolute error for aromatics compositions are (7.5, 2, 8.3, and 6.1% and the temperature absolute percentage error are (0.49, 0.5, 0.01, and 0.3% for four reactors respectively.

  5. Bench-scale Kinetics Study of Mercury Reactions in FGD Liquors

    Energy Technology Data Exchange (ETDEWEB)

    Gary Blythe; John Currie; David DeBerry

    2008-03-31

    This document is the final report for Cooperative Agreement DE-FC26-04NT42314, 'Kinetics Study of Mercury Reactions in FGD Liquors'. The project was co-funded by the U.S. DOE National Energy Technology Laboratory and EPRI. The objective of the project has been to determine the mechanisms and kinetics of the aqueous reactions of mercury absorbed by wet flue gas desulfurization (FGD) systems, and develop a kinetics model to predict mercury reactions in wet FGD systems. The model may be used to determine optimum wet FGD design and operating conditions to maximize mercury capture in wet FGD systems. Initially, a series of bench-top, liquid-phase reactor tests were conducted and mercury species concentrations were measured by UV/visible light spectroscopy to determine reactant and byproduct concentrations over time. Other measurement methods, such as atomic absorption, were used to measure concentrations of vapor-phase elemental mercury, that cannot be measured by UV/visible light spectroscopy. Next, a series of bench-scale wet FGD simulation tests were conducted. Because of the significant effects of sulfite concentration on mercury re-emission rates, new methods were developed for operating and controlling the bench-scale FGD experiments. Approximately 140 bench-scale wet FGD tests were conducted and several unusual and pertinent effects of process chemistry on mercury re-emissions were identified and characterized. These data have been used to develop an empirically adjusted, theoretically based kinetics model to predict mercury species reactions in wet FGD systems. The model has been verified in tests conducted with the bench-scale wet FGD system, where both gas-phase and liquid-phase mercury concentrations were measured to determine if the model accurately predicts the tendency for mercury re-emissions. This report presents and discusses results from the initial laboratory kinetics measurements, the bench-scale wet FGD tests, and the kinetics modeling

  6. Photo-kinetics of photoinduced transformation reaction of methylene green with titanium trichloride in different solvents

    Science.gov (United States)

    Nadeem, Syed Muhammad Saqib; Saeed, Rehana

    2017-08-01

    The photo-kinetics of photoinduced transformation reaction of methylene green and titanium trichloride was investigated in water and different aqueous-alcoholic solvents. The reaction is pseudo-first order, dependent only on the concentration of titanium trichloride at fixed concentration of methylene green. The effect of water and aqueous-alcoholic solvents was studied in the acidic range from 4 to 7. It was observed that the quantum yield (φ) of reaction increased with increase in polarity of the solvent. The quantum yield (φ) was high in acidic condition and decreased with further increase in acidity. The quantum yield (φ) increased sharply with increase in concentration of titanium trichloride while it almost remained unaffected by change in concentration of methylene green. The addition of ions increased the quantum yield (φ) of reaction. The increase in temperature decreased the rate and quantum yield (φ) of reaction. An electron transfer mechanism for the reaction has been proposed in accordance with the kinetics of reaction. The absence of any reaction intermediate was confirmed by spectroscopic investigations. Activation energy ( E a) was calculated by Arrhenius relation. Thermodynamic parameters such as activation energy ( E a), enthalpy change (Δ H), free energy change (Δ G) and entropy change (Δ S) were also evaluated.

  7. SurfKin: an ab initio kinetic code for modeling surface reactions.

    Science.gov (United States)

    Le, Thong Nguyen-Minh; Liu, Bin; Huynh, Lam K

    2014-10-05

    In this article, we describe a C/C++ program called SurfKin (Surface Kinetics) to construct microkinetic mechanisms for modeling gas-surface reactions. Thermodynamic properties of reaction species are estimated based on density functional theory calculations and statistical mechanics. Rate constants for elementary steps (including adsorption, desorption, and chemical reactions on surfaces) are calculated using the classical collision theory and transition state theory. Methane decomposition and water-gas shift reaction on Ni(111) surface were chosen as test cases to validate the code implementations. The good agreement with literature data suggests this is a powerful tool to facilitate the analysis of complex reactions on surfaces, and thus it helps to effectively construct detailed microkinetic mechanisms for such surface reactions. SurfKin also opens a possibility for designing nanoscale model catalysts.

  8. Thermodynamic and Kinetic Studies on the SiH + XH3 (X=N, P) Reactions

    Institute of Scientific and Technical Information of China (English)

    Wei Jiang SI; hu Ping ZHUO; Guan Zhi JU

    2004-01-01

    Based on the quantum chemical study of the silylidyne insertion reaction with NH3 or PH3, the general statistical thermodynamics and Eyring transition state theory with Wigner correction are used to compute the changes of thermodynamic functions, equilibrium constants, A factors and rate constants of the two reactions in the temperature range 200-2000K. The results show that both of these reactions are thermodynamically dominant at low temperatures and kinetically favored at higher temperatures. The comparison between these two reactions shows that the SiH reaction with NH3 is more exothermic than SiH with PH3, while the rate constant of SiH reaction with NH3 is lower than that of SiH with PH3 at the same temperature.

  9. Study of Kinetics of Complexation Reaction of Co2+ with 2-benzoylpyridine-4-phenyl-3-thiosemicarbazone and Kinetic spectrophotometric Determination of Cobalt%Co2+与BPPT络合反应动力学及动力学光谱法测定钴

    Institute of Scientific and Technical Information of China (English)

    BINGOL,Haluk; ATALAY,Tevfik

    2006-01-01

    Kinetics of complexation reaction of Co2+ with 2-benzoylpyridine-4-phenyl-3-thiosemicarbazone (BPPT)was spectrophotometrically examined at 421 nm. The ligand that is developed for a simple kinetic-spectrophotometric determination of Co2+ is based on 1:2 complex formation between Co2+ and BPPT. The complexation reaction was carried out in ethanol-water medium at 25 ℃. Kinetic and activation parameters of the complexation reaction were calculated, and the rate equation and the reaction mechanism were proposed. The calibration graph is linear in the concentration range of 0.10~2.91 mg·L-1 for the tangent method. The species that caused interference were investigated.

  10. Versatile method for AFM-tip functionalization with biomolecules: fishing a ligand by means of an in situ click reaction

    Science.gov (United States)

    Kumar, Rakesh; Ramakrishna, Shivaprakash N.; Naik, Vikrant V.; Chu, Zonglin; Drew, Michael E.; Spencer, Nicholas D.; Yamakoshi, Yoko

    2015-04-01

    A facile and universal method for the functionalization of an AFM tip has been developed for chemical force spectroscopy (CFS) studies of intermolecular interactions of biomolecules. A click reaction between tripod-acetylene and an azide-linker-ligand molecule was successfully carried out on the AFM tip surface and used for the CFS study of ligand-receptor interactions.A facile and universal method for the functionalization of an AFM tip has been developed for chemical force spectroscopy (CFS) studies of intermolecular interactions of biomolecules. A click reaction between tripod-acetylene and an azide-linker-ligand molecule was successfully carried out on the AFM tip surface and used for the CFS study of ligand-receptor interactions. Electronic supplementary information (ESI) available: Experimental details with synthesis and characterization of compounds. Procedures for modifications of Au surfaces and AFM tips. AFM images and full PM-IRRAS spectra of modified surfaces. Detailed procedure for QCM measurement. A table showing ligand-receptor interaction probability. NMR, IR and MS charts. See DOI: 10.1039/c5nr01495f

  11. Reaction between Chromium(III) and EDTA Ions: an Overlooked Mechanism of Case Study Reaction of Chemical Kinetics.

    Science.gov (United States)

    Cerar, Janez

    2015-01-01

    Widely cited and accepted explanation of reaction mechanism of the case study reaction of chemical kinetics between Cr(III) ions and ethylenediaminetetraacetic acid (EDTA) contradicts modern chromium(III) coordination chemistry data. Absorption UV and visible light spectra were recorded during the reaction between aqueous solution of Cr(NO(3))(3) and EDTA in order to obtain new information about this reaction. Analysis of the spectra showed that only very small fraction of intermediates may be present in solution during the course of the reaction. The reaction scheme was established and according to it calculations based on a simplified model were carried out. Literature data for constants were used if known, otherwise, adjusted values of their sound estimates were applied. Reasonable agreement of the model calculations with the experimental data was obtained for pH values 3.8 and 4.5 but the model failed to reproduce measured rate of reaction at pH 5.5, probably due to the use of the oversimplified model.

  12. Enantioselective Cu-II-Catalyzed Diels-Alder and Michael Addition Reactions in Water Using Bio-Inspired Triazacyclophane-Based Ligands

    NARCIS (Netherlands)

    Albada, H. Bauke; Rosati, Fiora; Coquiere, David; Roelfes, Gerard; Liskamp, Rob M. J.

    2011-01-01

    A triazacyclophane (TAC) scaffold decorated with three histidine amino acid residues was used as a tridentate ligand in asymmetric copper(II)-catalysed Diels-Alder and Michael addition reactions in water. Enantiomeric excesses up to 55% were obtained in Diels-Alder reactions using ligands in which t

  13. Enantioselective Cu-II-Catalyzed Diels-Alder and Michael Addition Reactions in Water Using Bio-Inspired Triazacyclophane-Based Ligands

    NARCIS (Netherlands)

    Albada, H. Bauke; Rosati, Fiora; Coquiere, David; Roelfes, Gerard; Liskamp, Rob M. J.

    A triazacyclophane (TAC) scaffold decorated with three histidine amino acid residues was used as a tridentate ligand in asymmetric copper(II)-catalysed Diels-Alder and Michael addition reactions in water. Enantiomeric excesses up to 55% were obtained in Diels-Alder reactions using ligands in which

  14. Coherent chemical kinetics as quantum walks. I. Reaction operators for radical pairs.

    Science.gov (United States)

    Chia, A; Tan, K C; Pawela, Ł; Kurzyński, P; Paterek, T; Kaszlikowski, D

    2016-03-01

    Classical chemical kinetics uses rate-equation models to describe how a reaction proceeds in time. Such models are sufficient for describing state transitions in a reaction where coherences between different states do not arise, in other words, a reaction that contains only incoherent transitions. A prominent example of a reaction containing coherent transitions is the radical-pair model. The kinetics of such reactions is defined by the so-called reaction operator that determines the radical-pair state as a function of intermediate transition rates. We argue that the well-known concept of quantum walks from quantum information theory is a natural and apt framework for describing multisite chemical reactions. By composing Kraus maps that act only on two sites at a time, we show how the quantum-walk formalism can be applied to derive a reaction operator for the standard avian radical-pair reaction. Our reaction operator predicts the same recombination dephasing rate as the conventional Haberkorn model, which is consistent with recent experiments [K. Maeda et al., J. Chem. Phys. 139, 234309 (2013)], in contrast to previous work by Jones and Hore [J. A. Jones and P. J. Hore, Chem. Phys. Lett. 488, 90 (2010)]. The standard radical-pair reaction has conventionally been described by either a normalized density operator incorporating both the radical pair and reaction products or a trace-decreasing density operator that considers only the radical pair. We demonstrate a density operator that is both normalized and refers only to radical-pair states. Generalizations to include additional dephasing processes and an arbitrary number of sites are also discussed.

  15. On the Mathematical Structure of Balanced Chemical Reaction Networks Governed by Mass Action Kinetics

    CERN Document Server

    van der Schaft, Arjan; Jayawardhana, Bayu

    2011-01-01

    Motivated by recent progress on the interplay between graph theory, dynamics, and systems theory, we revisit the analysis of chemical reaction networks described by mass action kinetics. For reaction networks possessing a thermodynamic equilibrium we derive a compact formulation exhibiting at the same time the structure of the complex graph and the stoichiometry of the network, and which admits a direct thermodynamical interpretation. This formulation allows us to easily characterize the set of equilibria and their stability properties. Furthermore, we develop a framework for interconnection of chemical reaction networks. Finally we discuss how the established framework leads to a new approach for model reduction.

  16. Recombinant Escherichia coli GMP reductase: kinetic, catalytic and chemical mechanisms, and thermodynamics of enzyme-ligand binary complex formation.

    Science.gov (United States)

    Martinelli, Leonardo Krás Borges; Ducati, Rodrigo Gay; Rosado, Leonardo Astolfi; Breda, Ardala; Selbach, Bruna Pelegrim; Santos, Diógenes Santiago; Basso, Luiz Augusto

    2011-04-01

    Guanosine monophosphate (GMP) reductase catalyzes the reductive deamination of GMP to inosine monophosphate (IMP). GMP reductase plays an important role in the conversion of nucleoside and nucleotide derivatives of guanine to adenine nucleotides. In addition, as a member of the purine salvage pathway, it also participates in the reutilization of free intracellular bases. Here we present cloning, expression and purification of Escherichia coli guaC-encoded GMP reductase to determine its kinetic mechanism, as well as chemical and thermodynamic features of this reaction. Initial velocity studies and isothermal titration calorimetry demonstrated that GMP reductase follows an ordered bi-bi kinetic mechanism, in which GMP binds first to the enzyme followed by NADPH binding, and NADP(+) dissociates first followed by IMP release. The isothermal titration calorimetry also showed that GMP and IMP binding are thermodynamically favorable processes. The pH-rate profiles showed groups with apparent pK values of 6.6 and 9.6 involved in catalysis, and pK values of 7.1 and 8.6 important to GMP binding, and a pK value of 6.2 important for NADPH binding. Primary deuterium kinetic isotope effects demonstrated that hydride transfer contributes to the rate-limiting step, whereas solvent kinetic isotope effects arise from a single protonic site that plays a modest role in catalysis. Multiple isotope effects suggest that protonation and hydride transfer steps take place in the same transition state, lending support to a concerted mechanism. Pre-steady-state kinetic data suggest that product release does not contribute to the rate-limiting step of the reaction catalyzed by E. coli GMP reductase.

  17. Reaction of Tris(cyclopentadienyl)uranium compounds with amines, azides, and related ligands

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, R.K.

    1989-12-01

    The trivalent uranium compound, (MeC{sub 5}H{sub 4}){sub 3}U(thf), serves as a one- or two-electron reducing agent towards azides, RN{sub 3}. These reactions produce either the uranium(IV) azide, (MeC{sub 5}H{sub 4}){sub 3}UN{sub 3}, or uranium(V) imides, (MeC{sub 5}H{sub 4}){sub 3}UNR. The role of steric and electronic effects upon this reaction has been investigated using several series of azides. For Me{sub 3}XN{sub 3}, the imides are produced when X = C or Si, both products are formed when X = Ge, and the azide is produced when X = Sn. For Ph{sub 3}XN{sub 3}, the azide is produced when X = C or Sn. For Ph{sub 3-x}CH{sub 3}N{sub 3}, the imide is produced when x = 2 and both compounds are produced when x = 1. For substituted phenylazides, RC{sub 6}H{sub 4}N{sub 3}, only the imides are produced. The magnetic properties of uranium diimides, ((MeC{sub 5}H{sub 4}){sub 3}U){sub 2}({mu}-NRN), were investigated. Several uranium(III) amines, (MeC{sub 5}H{sub 4}){sub 3}U(NH{sub 2}R), were produced from (MeC{sub 5}H{sub 4}){sub 3}U(thf) and RNH{sub 2}, and NH{sub 3} was found to be a better ligand towards (MeC{sub 5}H{sub 4}){sub 3}U than is PMe{sub 3}.

  18. Reaction of Tris(cyclopentadienyl)uranium compounds with amines, azides, and related ligands

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, R.K.

    1989-12-01

    The trivalent uranium compound, (MeC{sub 5}H{sub 4}){sub 3}U(thf), serves as a one- or two-electron reducing agent towards azides, RN{sub 3}. These reactions produce either the uranium(IV) azide, (MeC{sub 5}H{sub 4}){sub 3}UN{sub 3}, or uranium(V) imides, (MeC{sub 5}H{sub 4}){sub 3}UNR. The role of steric and electronic effects upon this reaction has been investigated using several series of azides. For Me{sub 3}XN{sub 3}, the imides are produced when X = C or Si, both products are formed when X = Ge, and the azide is produced when X = Sn. For Ph{sub 3}XN{sub 3}, the azide is produced when X = C or Sn. For Ph{sub 3-x}CH{sub 3}N{sub 3}, the imide is produced when x = 2 and both compounds are produced when x = 1. For substituted phenylazides, RC{sub 6}H{sub 4}N{sub 3}, only the imides are produced. The magnetic properties of uranium diimides, ((MeC{sub 5}H{sub 4}){sub 3}U){sub 2}({mu}-NRN), were investigated. Several uranium(III) amines, (MeC{sub 5}H{sub 4}){sub 3}U(NH{sub 2}R), were produced from (MeC{sub 5}H{sub 4}){sub 3}U(thf) and RNH{sub 2}, and NH{sub 3} was found to be a better ligand towards (MeC{sub 5}H{sub 4}){sub 3}U than is PMe{sub 3}.

  19. Kinetics and Mechanism of the Exothermic First-stage Decomposition Reaction of Dinitroglycoluril

    Institute of Scientific and Technical Information of China (English)

    ZHAO,Feng-Qi(赵凤起); HU,Rong-Zu(胡荣祖); CHEN,Pei(陈沛); LUO,Yang(罗阳); GAO,Sheng-Li(高胜利); SONG,Ji-Rong(宋纪蓉); SHI,Qi-Zhen(史启祯)

    2004-01-01

    Under linear temperature increase condition, the thermal behavior, mechanism and kinetic parameters of the exothermic decomposition reaction of the title compound have been studied by means of DSC and IR. The initial stage of the mechanism was proposed. The empirical kinetic model function in differential form, apparent activation energy and pre-exponential constant of the exothermic decomposition reaction are α 0.526, 207.0 kJ·mol-1 and 1018.49 s-1, respectively. The critical temperature of thermal explosion of the compound is 252.87 ℃. The values of △S≠, △H≠ and △G≠ of the reaction are 128.4 J·mol-1·K-1, 218.9 kJ·mol-1 and 152.7 kJ·mol-1, respectively.

  20. Extended kinetic model of real-time polymerase chain reaction process

    Science.gov (United States)

    Fedorov, A. A.; Sochivko, D. G.; Varlamov, D. A.; Kurochkin, V. E.

    2016-11-01

    Real-time polymerase chain reaction (real-time PCR) is the main molecular genetic method used for qualitative and quantitative analysis of specific nucleic acid sequences in many areas of biomedical research. Theoretical study of pCr models allows to estimate the influence of various reaction components and parameters, and to determine the unknown parameter values by approximating the experimental real-time PCR curves. An extended kinetic model of real-time PCR is presented. The model takes into account the enzyme activity based on Michaelis-Menten kinetics, the hybridization of complementary DNA fragments, the presence of a fluorescent probe used for detection of the reaction products, and the temperature dependence of primers and probe hybridization.

  1. Kinetic study of free fatty acid esterification reaction catalyzed by recoverable and reusable hydrochloric acid.

    Science.gov (United States)

    Su, Chia-Hung

    2013-02-01

    The catalytic performance and recoverability of several homogeneous acid catalysts (hydrochloric, sulfuric, and nitric acids) for the esterification of enzyme-hydrolyzed free fatty acid (FFA) and methanol were studied. Although all tested catalysts drove the reaction to a high yield, hydrochloric acid was the only catalyst that could be considerably recovered and reused. The kinetics of the esterification reaction catalyzed by hydrochloric acid was investigated under varying catalyst loading (0.1-1M), reaction temperature (303-343K), and methanol/FFA molar ratio (1:1-20:1). In addition, a pseudo-homogeneous kinetic model incorporating the above factors was developed. A good agreement (r(2)=0.98) between the experimental and calculated data was obtained, thus proving the reliability of the model. Furthermore, the reusability of hydrochloric acid in FFA esterification can be predicted by the developed model. The recoverable hydrochloric acid achieved high yields of FFA esterification within five times of reuse.

  2. A hydrodynamics-reaction kinetics coupled model for evaluating bioreactors derived from CFD simulation.

    Science.gov (United States)

    Wang, Xu; Ding, Jie; Guo, Wan-Qian; Ren, Nan-Qi

    2010-12-01

    Investigating how a bioreactor functions is a necessary precursor for successful reactor design and operation. Traditional methods used to investigate flow-field cannot meet this challenge accurately and economically. Hydrodynamics model can solve this problem, but to understand a bioreactor in sufficient depth, it is often insufficient. In this paper, a coupled hydrodynamics-reaction kinetics model was formulated from computational fluid dynamics (CFD) code to simulate a gas-liquid-solid three-phase biotreatment system for the first time. The hydrodynamics model is used to formulate prediction of the flow field and the reaction kinetics model then portrays the reaction conversion process. The coupled model is verified and used to simulate the behavior of an expanded granular sludge bed (EGSB) reactor for biohydrogen production. The flow patterns were visualized and analyzed. The coupled model also demonstrates a qualitative relationship between hydrodynamics and biohydrogen production. The advantages and limitations of applying this coupled model are discussed.

  3. New method for spectrophotometric determination of quinones and barbituric acid through their reaction. A kinetic study

    Science.gov (United States)

    Medien, H. A. A.

    1996-11-01

    A new and sensitive spectrophotometric method is described for the determination of p-benzoquinone, p-chloranil and 1.4-naphthoquinone. The method is based on the reaction between quinones and barbituric acid, by which a color is developed with maximum absorption between 485 and 555 nm in 50% methyl alcohol-water mixture. The absorption of the product obeys Beer's law within the concentration range 0.025-05 mM of orginal quinone. The kinetics of the reaction between p-benzoquinone and barbituric acid was studied in a range of methyl alcohol-water mixtures. The reaction follows overall second order kinetics, first order in each of the reactants. The rate increases with increasing dielectric constant. The method was applied for determination of barbituric acid with p-benzoquinone in the concentration range of 0.025-0.345 mM. Other barbiturates do not interfere.

  4. Hydrolysis of Surfactants Containing Ester Bonds: Modulation of Reaction Kinetics and Important Aspects of Surfactant Self-Assembly

    Science.gov (United States)

    Lundberg, Dan; Stjerndahl, Maria

    2011-01-01

    The effects of self-assembly on the hydrolysis kinetics of surfactants that contain ester bonds are discussed. A number of examples on how reaction rates and apparent reaction orders can be modulated by changes in the conditions, including an instance of apparent zero-order kinetics, are presented. Furthermore, it is shown that the examples on…

  5. Charge-Transfer Effects in Ligand Exchange Reactions of Au25 Monolayer-Protected Clusters.

    Science.gov (United States)

    Carducci, Tessa M; Blackwell, Raymond E; Murray, Royce W

    2015-04-16

    Reported here are second-order rate constants of associative ligand exchanges of Au25L18 nanoparticles (L = phenylethanethiolate) of various charge states, measured by proton nuclear magnetic resonance at room temperature and below. Differences in second-order rate constants (M(-1) s(-1)) of ligand exchange (positive clusters ∼1.9 × 10(-5) versus negative ones ∼1.2 × 10(-4)) show that electron depletion retards ligand exchange. The ordering of rate constants between the ligands benzeneselenol > 4-bromobenzene thiol > benzenethiol reveals that exchange is accelerated by higher acidity and/or electron donation capability of the incoming ligand. Together, these observations indicate that partial charge transfer occurs between the nanoparticle and ligand during the exchange and that this is a rate-determining effect in the process.

  6. The kinetic model for slow photoinduced electron transport in the reaction centers of purple bacteria

    Science.gov (United States)

    Serdenko, T. V.; Barabash, Y. M.; Knox, P. P.; Seifullina, N. Kh.

    2016-06-01

    The present work is related to the investigation of slow kinetics of electron transport in the reaction centers (RCs) of Rhodobacter sphaeroides. Experimental data on the absorption kinetics of aqueous solutions of reaction centers at different modes of photoexcitation are given. It is shown that the kinetics of oxidation and reduction of RCs are well described by the sum of three exponential functions. This allows to suggest a two-level kinetic model for electron transport in the RC as a system of four electron-conformational states which correspond to three balance differential equations combined with state equation. The solution of inverse problem made it possible to obtain the rate constant values in kinetic equations for different times and intensities of exciting light. Analysis of rate constant values in different modes of RC excitation allowed to suggest that two mechanisms of structural changes are involved in RC photo-oxidation. One mechanism leads to the increment of the rate of electron return, another one—to its drop. Structural changes were found out to occur in the RCs under incident light. After light was turned off, the reduction of RCs was determined by the second mechanism.

  7. Macroscopic kinetics of pentameric ligand gated ion channels: comparisons between two prokaryotic channels and one eukaryotic channel.

    Science.gov (United States)

    Laha, Kurt T; Ghosh, Borna; Czajkowski, Cynthia

    2013-01-01

    Electrochemical signaling in the brain depends on pentameric ligand-gated ion channels (pLGICs). Recently, crystal structures of prokaryotic pLGIC homologues from Erwinia chrysanthemi (ELIC) and Gloeobacter violaceus (GLIC) in presumed closed and open channel states have been solved, which provide insight into the structural mechanisms underlying channel activation. Although structural studies involving both ELIC and GLIC have become numerous, thorough functional characterizations of these channels are still needed to establish a reliable foundation for comparing kinetic properties. Here, we examined the kinetics of ELIC and GLIC current activation, desensitization, and deactivation and compared them to the GABAA receptor, a prototypic eukaryotic pLGIC. Outside-out patch-clamp recordings were performed with HEK-293T cells expressing ELIC, GLIC, or α1β2γ2L GABAA receptors, and ultra-fast ligand application was used. In response to saturating agonist concentrations, we found both ELIC and GLIC current activation were two to three orders of magnitude slower than GABAA receptor current activation. The prokaryotic channels also had slower current desensitization on a timescale of seconds. ELIC and GLIC current deactivation following 25 s pulses of agonist (cysteamine and pH 4.0 buffer, respectively) were relatively fast with time constants of 24.9 ± 5.1 ms and 1.2 ± 0.2 ms, respectively. Surprisingly, ELIC currents evoked by GABA activated very slowly with a time constant of 1.3 ± 0.3 s and deactivated even slower with a time constant of 4.6 ± 1.2 s. We conclude that the prokaryotic pLGICs undergo similar agonist-mediated gating transitions to open and desensitized states as eukaryotic pLGICs, supporting their use as experimental models. Their uncharacteristic slow activation, slow desensitization and rapid deactivation time courses are likely due to differences in specific structural elements, whose future identification may help uncover mechanisms underlying p

  8. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV ? gas phase reactions of organic halogen species

    OpenAIRE

    2007-01-01

    International audience; This article, the fourth in the series, presents kinetic and photochemical data sheets evaluated by the IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. It covers the gas phase and photochemical reactions of organic halogen species, which were last published in 1997, and were updated on the IUPAC website in 2006. The article consists of a summary sheet, containing the recommended kinetic parameters for the evaluated reactions, and four appen...

  9. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I - gas phase reactions of Ox, HOx, NOx and SOx species

    OpenAIRE

    2004-01-01

    This article, the first in the series, presents kinetic and photochemical data evaluated by the IUPAC Subcommittee on GasKinetic Data Evaluation for Atmospheric Chemistry. It covers the gas phase and photochemical reactions of Ox, HOx, NOx and SOx species, which were last published in 1997, and were updated on the IUPAC website in late 2001. The article consists of a summary sheet, containing the recommended kinetic parameters for the evaluated reactions, and five appendi...

  10. Construction of an antimyoglobin single-chain variable fragment with rapid reaction kinetics.

    Science.gov (United States)

    Jang, Jun-Hyuck; Kim, Dong-Hyung; Paek, Se-Hwan; Woo, Eui-Jeon; Kim, Young-Wan

    2016-01-01

    Antibodies with rapid reaction kinetics (high association and dissociation rates), named reversible antibodies, are used to perform continuous monitoring of sensitive disease biomarkers. In cases of acute myocardial infarction (AMI), continuous monitoring and early diagnosis are important. Human myoglobin (Myo) is a useful biomarker for AMI during the early stage after the onset of symptoms. In this study, a single-chain variable fragment (scFv) specific to Myo was derived from an IgG antibody that has rapid reaction kinetics. Enzyme-linked immunosorbent assay revealed that recombinant scFv exhibited 3.8-fold reduced affinity compared with the parent IgG antibody based on the antibody concentration necessary for 50% of the maximum signal. The scFv retained the rapid reaction kinetic mode with average kon and koff of 2.63 × 10(5) M(-1) Sec(-1) and 3.25 × 10(-3) Sec(-1) , respectively, which were reduced to 10- and 2.3-fold compared with those of the parent antibody. The equilibrium constant for the association of the scFv (KA = 8.09 × 10(7) M(-1) ) was 4.6-fold lower than that of its parent IgG antibody. This scFv may be a starting point for further mutagenesis/kinetic and structural analyses providing valuable insight into the mechanism of reversible antibodies.

  11. Kinetic modeling of mechanisms of industrially important organic reactions in gas and liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Vahteristo, K.

    2010-07-01

    -trans and skeletal isomerization. Minor side reaction were dimerization and fragmentation. Monomolecular and bimolecular reaction mechanisms for skeletal isomerization explained experimental results almost equally well. Pseudohomogeneous kinetic parameters of reactions 1 and 2 were estimated by usual least squares fitting. Concerning reactions 3 and 4 kinetic parameters were estimated by the leastsquares method, but also the possible cross-correlation and identifiability of parameters were determined using Markov chain Monte Carlo (MCMC) method. Finally using MCMC method, the estimation of model parameters and predictions were performed according to the Bayesian paradigm. According to the fitting results suggested reaction mechanisms explained experimental results rather well. When the possible cross-correlation and identifiability of parameters (Reactions 3 and 4) were determined using MCMC method, the parameters identified well, and no pathological cross-correlation could be seen between any parameter pair. (orig.)

  12. Theoretical Study on the Kinetics of Electron Transfer for Bond-breaking Reaction

    Institute of Scientific and Technical Information of China (English)

    XING,Yu-Mei(邢玉梅); ZHOU,Zheng-Yu(周正宇); GAO,Hong-Wei(高洪伟)

    2002-01-01

    To test the theory of dissociative electron transfer, a simple model describing the kinetics of electron transfer bond-breaking reactions was used. The Hamiltonian of the system was given.The homogeneous and heterogeneous kinetic data fit reasonably well with an activation-driving force relatiobship derived from the Marcus quadratic theory. In the heterogeneous case, there is a good agreement between the theoretical calculation amd the experimental result, while in the homogeneous case, a good a greement is only observed for the tertiary halides. This is due to the stability of tertiary radical resulting from the sterical effect.

  13. Kinetic analysis of the reactions of hypobromous acid with protein components

    DEFF Research Database (Denmark)

    Pattison, David I; Davies, Michael Jonathan

    2004-01-01

    in proteins isolated from patients with atherosclerosis, asthma, and cystic fibrosis, implicating the production of HOX in these diseases. The quantitative significance of these findings requires knowledge of the kinetics of reaction of HOX with protein targets, and such data have not been previously...... are more, and Cys and Met much less, important targets for HOBr than HOCl. Kinetic models have been developed to predict the targets of HOX attack on proteins and free amino acids. Overall, these results shed light on the mechanisms of cell damage induced by HOX and indicate, for example, that the 3-chloro...

  14. Determination of Carbohydrazide and Kinetics of Condensation reaction of Carbohydrazide with Malachite Green by Spectrophotometry

    Institute of Scientific and Technical Information of China (English)

    伍涛; 张同来; 陈红艳; 张建国

    2005-01-01

    The kinetics of the condensation reaction of malachite green and carbohydrazide was studied by spectrophotometry in aqueous solution in the temperature range of 15.0-22.0℃. The reaction was found to be second-order overall, first-order with respect to each reactant. The effect of ionic strength on the reaction has negative salt effect in the range of 0.2-1.0 mol·L-1. A mechanism of the reaction between malachite green and carbohydrazide was proposed, and the rate equation derived from the mechanism can explain all experimental observations properly. Based on this reaction, a method of determining the content of carbohydrazide in the concentration range of (0.02-0.5) )<10-3 mol·L-1 was proposed.

  15. Computer-aided molecular design of solvents for accelerated reaction kinetics.

    Science.gov (United States)

    Struebing, Heiko; Ganase, Zara; Karamertzanis, Panagiotis G; Siougkrou, Eirini; Haycock, Peter; Piccione, Patrick M; Armstrong, Alan; Galindo, Amparo; Adjiman, Claire S

    2013-11-01

    Solvents can significantly alter the rates and selectivity of liquid-phase organic reactions, often hindering the development of new synthetic routes or, if chosen wisely, facilitating routes by improving rates and selectivities. To address this challenge, a systematic methodology is proposed that quickly identifies improved reaction solvents by combining quantum mechanical computations of the reaction rate constant in a few solvents with a computer-aided molecular design (CAMD) procedure. The approach allows the identification of a high-performance solvent within a very large set of possible molecules. The validity of our CAMD approach is demonstrated through application to a classical nucleophilic substitution reaction for the study of solvent effects, the Menschutkin reaction. The results were validated successfully by in situ kinetic experiments. A space of 1,341 solvents was explored in silico, but required quantum-mechanical calculations of the rate constant in only nine solvents, and uncovered a solvent that increases the rate constant by 40%.

  16. Differential scanning calorimetry and reaction kinetics studies of {gamma} + {alpha}{sub 2} Ti aluminide

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, R.K., E-mail: rohitkumar_gupta@vssc.gov.in [Vikram Sarabhai Space Centre, ISRO, Trivandrum 695 022 (India); Pant, Bhanu [Vikram Sarabhai Space Centre, ISRO, Trivandrum 695 022 (India); Agarwala, Vijaya [Indian Institute of Technology Roorkee, Roorkee 247 667 (India); Sinha, P.P. [Vikram Sarabhai Space Centre, ISRO, Trivandrum 695 022 (India)

    2012-12-14

    Reaction synthesis method for titanium aluminide processing consists of an exothermic reaction among alloying elements present and primarily between titanium and aluminium particles at specific temperature range. Study of this reaction helps in understanding the process of aluminide formation. Differential scanning calorimetry (DSC) study is the suitable method to study such reactions. In the present work, five different alloy mixtures based on Ti48Al2Cr2Nb0.1B are prepared and DSC study is carried out. Onset temperature, peak temperature and completion temperature of the major exothermic reaction is analyzed at different heating rates. Further, kinetics of the reaction is studied using Johnson-Mehl-Avrami equation. Activation energy and Avrami parameter are calculated and compared with the reported works on binary alloy. It has been observed that exothermic reaction is triggered by melting of aluminium. Boron assists in increasing the enthalpy of reaction by boride formation. Primary reaction product is found to be TiAl{sub 3}. Activation energy as well as Avrami parameter is found to have marginal variation due to small change in alloying elements in different alloys and due to heating rates in the same alloy. -- Highlights: Black-Right-Pointing-Pointer Reaction kinetics studies of Ti-aluminide alloy powder mixtures carried out. Black-Right-Pointing-Pointer Five compositions studied through non-isothermal differential scanning calorimetry. Black-Right-Pointing-Pointer Effect of minor boron addition and role of Ti particle size is noted. Black-Right-Pointing-Pointer Activation energies using JMA equations are between 169.5 and 192.49 kJ mol{sup -1}.

  17. Genome-scale Metabolic Reaction Modeling: a New Approach to Geomicrobial Kinetics

    Science.gov (United States)

    McKernan, S. E.; Shapiro, B.; Jin, Q.

    2014-12-01

    Geomicrobial rates, rates of microbial metabolism in natural environments, are a key parameter of theoretical and practical problems in geobiology and biogeochemistry. Both laboratory- and field-based approaches have been applied to study rates of geomicrobial processes. Laboratory-based approaches analyze geomicrobial kinetics by incubating environmental samples under controlled laboratory conditions. Field methods quantify geomicrobial rates by observing the progress of geomicrobial processes. To take advantage of recent development in biogeochemical modeling and genome-scale metabolic modeling, we suggest that geomicrobial rates can also be predicted by simulating metabolic reaction networks of microbes. To predict geomicrobial rates, we developed a genome-scale metabolic model that describes enzyme reaction networks of microbial metabolism, and simulated the network model by accounting for the kinetics and thermodynamics of enzyme reactions. The model is simulated numerically to solve cellular enzyme abundance and hence metabolic rates under the constraints of cellular physiology. The new modeling approach differs from flux balance analysis of system biology in that it accounts for the thermodynamics and kinetics of enzymatic reactions. It builds on subcellular metabolic reaction networks, and hence also differs from classical biogeochemical reaction modeling. We applied the new approach to Methanosarcina acetivorans, an anaerobic, marine methanogen capable of disproportionating acetate to carbon dioxide and methane. The input of the new model includes (1) enzyme reaction network of acetoclastic methanogenesis, and (2) representative geochemical conditions of freshwater sedimentary environments. The output of the simulation includes the proteomics, metabolomics, and energy and matter fluxes of M. acetivorans. Our simulation results demonstrate the predictive power of the new modeling approach. Specifically, the results illustrate how methanogenesis rates vary

  18. Deciphering the kinetic binding mechanism of dimeric ligands using a potent plasma-stable dimeric inhibitor of postsynaptic density protein-95 as an example

    DEFF Research Database (Denmark)

    Chi, Celestine N; Bach, Anders; Gottschalk, Marie

    2010-01-01

    addressed the kinetic mechanism of interaction of such bivalent ligands. We have investigated the binding interaction of a recently identified potent plasma-stable dimeric pentapeptide and PDZ1-2 of postsynaptic density protein-95 (PSD-95) using protein engineering in combination with fluorescence...

  19. Oxygen equilibria and ligand binding kinetics of erythrocruorins from two burrowing polychaetes of different modes of life, Marphysa sanguinea and Diopatra cuprea

    DEFF Research Database (Denmark)

    Weber, Roy E.; Bonaventura, J.; Sullivan, B.;

    1978-01-01

    Oxygen equilibria, ligand-binding kinetics and some other physicochemical properties are reported for erythrocruorins of two intertidal polychaetes:Marphysa sanguinea, which inhabits simple, relatively stagnant burrows, andDiopatra cuprea, which inhabits impermeable, parchment-like tubes that are...

  20. Michaelis-Menten kinetics in shear flow: Similarity solutions for multi-step reactions.

    Science.gov (United States)

    Ristenpart, W D; Stone, H A

    2012-03-01

    Models for chemical reaction kinetics typically assume well-mixed conditions, in which chemical compositions change in time but are uniform in space. In contrast, many biological and microfluidic systems of interest involve non-uniform flows where gradients in flow velocity dynamically alter the effective reaction volume. Here, we present a theoretical framework for characterizing multi-step reactions that occur when an enzyme or enzymatic substrate is released from a flat solid surface into a linear shear flow. Similarity solutions are developed for situations where the reactions are sufficiently slow compared to a convective time scale, allowing a regular perturbation approach to be employed. For the specific case of Michaelis-Menten reactions, we establish that the transversally averaged concentration of product scales with the distance x downstream as x(5/3). We generalize the analysis to n-step reactions, and we discuss the implications for designing new microfluidic kinetic assays to probe the effect of flow on biochemical processes.

  1. Kinetics and mechanism of the reaction of gold(III chloride complexes with formic acid

    Directory of Open Access Journals (Sweden)

    Pacławski K.

    2015-01-01

    Full Text Available In this work, the results of kinetic studies of the redox reaction of gold(III chloride complexes ([AuCl4]- with formic acid, are presented. Obtained data suggest the complex character of the reaction which leads to the [AuCl2]- and [AuCl3(COOH]- ions formation as intermediates. In the pH range over 2.5, the final product of the reaction is metallic gold. From the analysis of kinetic data, the rate limiting step is found to be the gold metallic phase formation. The stage of Au(III reduction is relatively fast with the second-order rate constant equal to 61.8 M-1s-1 at temperature 50ºC. The rate of the studied reaction depends on the temperature, reactants concentration and chloride ions concentration. As a result of the data analysis, the scheme of the reaction path has been suggested. Also, the values of enthalpy and entropy of activation for the reaction have been determined.

  2. Sensitivity of Polar Stratospheric Ozone Loss to Uncertainties in Chemical Reaction Kinetics

    Science.gov (United States)

    Kawa, S. Randolph; Stolarksi, Richard S.; Douglass, Anne R.; Newman, Paul A.

    2008-01-01

    Several recent observational and laboratory studies of processes involved in polar stratospheric ozone loss have prompted a reexamination of aspects of our understanding for this key indicator of global change. To a large extent, our confidence in understanding and projecting changes in polar and global ozone is based on our ability to simulate these processes in numerical models of chemistry and transport. The fidelity of the models is assessed in comparison with a wide range of observations. These models depend on laboratory-measured kinetic reaction rates and photolysis cross sections to simulate molecular interactions. A typical stratospheric chemistry mechanism has on the order of 50- 100 species undergoing over a hundred intermolecular reactions and several tens of photolysis reactions. The rates of all of these reactions are subject to uncertainty, some substantial. Given the complexity of the models, however, it is difficult to quantify uncertainties in many aspects of system. In this study we use a simple box-model scenario for Antarctic ozone to estimate the uncertainty in loss attributable to known reaction kinetic uncertainties. Following the method of earlier work, rates and uncertainties from the latest laboratory evaluations are applied in random combinations. We determine the key reactions and rates contributing the largest potential errors and compare the results to observations to evaluate which combinations are consistent with atmospheric data. Implications for our theoretical and practical understanding of polar ozone loss will be assessed.

  3. Nitro-fatty acid reaction with glutathione and cysteine. Kinetic analysis of thiol alkylation by a Michael addition reaction.

    Science.gov (United States)

    Baker, Laura M S; Baker, Paul R S; Golin-Bisello, Franca; Schopfer, Francisco J; Fink, Mitchell; Woodcock, Steven R; Branchaud, Bruce P; Radi, Rafael; Freeman, Bruce A

    2007-10-19

    Fatty acid nitration by nitric oxide-derived species yields electrophilic products that adduct protein thiols, inducing changes in protein function and distribution. Nitro-fatty acid adducts of protein and reduced glutathione (GSH) are detected in healthy human blood. Kinetic and mass spectrometric analyses reveal that nitroalkene derivatives of oleic acid (OA-NO2) and linoleic acid (LNO2) rapidly react with GSH and Cys via Michael addition reaction. Rates of OA-NO2 and LNO2 reaction with GSH, determined via stopped flow spectrophotometry, displayed second-order rate constants of 183 M(-1)S(-1) and 355 M(-1)S(-1), respectively, at pH 7.4 and 37 degrees C. These reaction rates are significantly greater than those for GSH reaction with hydrogen peroxide and non-nitrated electrophilic fatty acids including 8-iso-prostaglandin A2 and 15-deoxy-Delta(12,14)-prostaglandin J2. Increasing reaction pH from 7.4 to 8.9 enhanced apparent second-order rate constants for the thiol reaction with OA-NO2 and LNO2, showing dependence on the thiolate anion of GSH for reactivity. Rates of nitroalkene reaction with thiols decreased as the pKa of target thiols increased. Increasing concentrations of the detergent octyl-beta-d-glucopyranoside decreased rates of nitroalkene reaction with GSH, indicating that the organization of nitro-fatty acids into micellar or membrane structures can limit Michael reactivity with more polar nucleophilic targets. In aggregate, these results reveal that the reversible adduction of thiols by nitro-fatty acids is a mechanism for reversible post-translational regulation of protein function by nitro-fatty acids.

  4. Ureaphosphanes as hybrid, anionic or supramolecular bidentate ligands for asymmetric hydrogenation reactions

    NARCIS (Netherlands)

    Meeuwissen, J.; Detz, R.; Sandee, A. J.; de Bruin, B.; Siegler, M. A.; Spek, A.L.; Reek, J.N.H.

    2010-01-01

    We report the coordination behavior of ureaphosphane ligand 1-[2-(diphenylphosphanyl)ethyl]-3-phenylurea (L1) towards different rhodium precursor complexes. Depending on the nature of the anion and the ligand/metal ratio, L1 acts either as a hybrid P,O-coordinating chelate, as an anionic P,N-coordin

  5. Lattice based Kinetic Monte Carlo Simulations of a complex chemical reaction network

    Science.gov (United States)

    Danielson, Thomas; Savara, Aditya; Hin, Celine

    Lattice Kinetic Monte Carlo (KMC) simulations offer a powerful alternative to using ordinary differential equations for the simulation of complex chemical reaction networks. Lattice KMC provides the ability to account for local spatial configurations of species in the reaction network, resulting in a more detailed description of the reaction pathway. In KMC simulations with a large number of reactions, the range of transition probabilities can span many orders of magnitude, creating subsets of processes that occur more frequently or more rarely. Consequently, processes that have a high probability of occurring may be selected repeatedly without actually progressing the system (i.e. the forward and reverse process for the same reaction). In order to avoid the repeated occurrence of fast frivolous processes, it is necessary to throttle the transition probabilities in such a way that avoids altering the overall selectivity. Likewise, as the reaction progresses, new frequently occurring species and reactions may be introduced, making a dynamic throttling algorithm a necessity. We present a dynamic steady-state detection scheme with the goal of accurately throttling rate constants in order to optimize the KMC run time without compromising the selectivity of the reaction network. The algorithm has been applied to a large catalytic chemical reaction network, specifically that of methanol oxidative dehydrogenation, as well as additional pathways on CeO2(111) resulting in formaldehyde, CO, methanol, CO2, H2 and H2O as gas products.

  6. Impedance spectroscopy and conductometric biosensing for probing catalase reaction with cyanide as ligand and inhibitor.

    Science.gov (United States)

    Bouyahia, Naima; Hamlaoui, Mohamed Larbi; Hnaien, Mouna; Lagarde, Florence; Jaffrezic-Renault, Nicole

    2011-02-01

    In this work, a new biosensor was prepared through immobilization of bovine liver catalase in a photoreticulated poly (vinyl alcohol) membrane at the surface of a conductometric transducer. This biosensor was used to study the kinetics of catalase-H(2)0(2) reaction and its inhibition by cyanide. Immobilized catalase exhibited a Michaelis-Menten behaviour at low H(2)0(2) concentrations (biosensor response by increasing cyanide concentration was linear up to 50μM, with a cyanide detection limit of 6μM. In parallel, electrochemical characteristics of the catalase/PVA biomembrane and its interaction with cyanide were studied by cyclic voltammetry and impedance spectroscopy. Addition of the biomembrane onto the gold electrodes induced a significant increase of the interfacial polarization resistance R(P). On the contrary, cyanide binding resulted in a decrease of Rp proportional to KCN concentration in the 4 to 50μM range. Inhibition coefficient I(50) calculated by this powerful label-free and substrate-free technique (24.3μM) was in good agreement with that determined from the substrate-dependent conductometric biosensor (24.9μM).

  7. CP: AN INVESTIGATION OF COEFFICIENT OF THERMAL EXPANSION, DECOMPOSITION KINETICS, AND REACTION TO VARIOUS STIMULI

    Energy Technology Data Exchange (ETDEWEB)

    Weese, R K; Burnham, A K; Fontes, A T

    2005-03-23

    The properties of pentaamine (5-cyano-2H-tetrazolato-N2) cobalt (III) perchlorate (CP), which was first synthesized in 1968, continues to be of interest for predicting behavior in handling, shipping, aging, and thermal cook-off situations. We report coefficient of thermal expansion (CTE) values over four specific temperature ranges, decomposition kinetics using linear heating rates, and the reaction to three different types of stimuli: impact, spark, and friction. The CTE was measured using a Thermal Mechanical Analyzer (TMA) for samples that were uniaxially compressed at 10,000 psi and analyzed over a dynamic temperature range of -20 C to 70 C. Using differential scanning calorimetry, DSC, CP was decomposed at linear heating rates of 1, 3, and 7 C/min and the kinetic triplet calculated using the LLNL code Kinetics05. Values are also reported for spark, friction, and impact sensitivity.

  8. On the ultrafast kinetics of the energy and electron transfer reactions in photosystem I

    Energy Technology Data Exchange (ETDEWEB)

    Slavov, Chavdar Lyubomirov

    2009-07-09

    The subject of the current work is one of the main participants in the light-dependent phase of oxygenic photosynthesis, Photosystem I (PS I). This complex carries an immense number of cofactors: chlorophylls (Chl), carotenoids, quinones, etc, which together with the protein entity exhibit several exceptional properties. First, PS I has an ultrafast light energy trapping kinetics with a nearly 100% quantum efficiency. Secondly, both of the electron transfer branches in the reaction center are suggested to be active. Thirdly, there are some so called 'red' Chls in the antenna system of PS I, absorbing light with longer wavelengths than the reaction center. These 'red' Chls significantly modify the trapping kinetics of PS I. The purpose of this thesis is to obtain better understanding of the above-mentioned, specific features of PS I. This will not merely cast more light on the mechanisms of energy and electron transfer in the complex, but also will contribute to the future developments of optimized artificial light-harvesting systems. In the current work, a number of PS I complexes isolated from different organisms (Thermosynechococcus elongatus, Chlamydomonas reinhardtii, Arabidopsis thaliana) and possessing distinctive features (different macroorganisation, monomers, trimers, monomers with a semibelt of peripheral antenna attached; presence of 'red' Chls) is investigated. The studies are primarily focused on the electron transfer kinetics in each of the cofactor branches in the PS I reaction center, as well as on the effect of the antenna size and the presence of 'red' Chls on the trapping kinetics of PS I. These aspects are explored with the help of several ultrafast optical spectroscopy methods: (i) time-resolved fluorescence ? single photon counting and synchroscan streak camera; and (ii) ultrafast transient absorption. Physically meaningful information about the molecular mechanisms of the energy trapping in PS I is

  9. Rational Design and Synthesis of [5]Helicene-Derived Phosphine Ligands and Their Application in Pd-Catalyzed Asymmetric Reactions

    Science.gov (United States)

    Yamamoto, Kosuke; Shimizu, Takashi; Igawa, Kazunobu; Tomooka, Katsuhiko; Hirai, Go; Suemune, Hiroshi; Usui, Kazuteru

    2016-11-01

    A series of novel optically active [5]helicene-derived phosphine ligands (L1, with a 7,8-dihydro[5]helicene core structure- and L2, with a fully aromatic [5]helicene core structure) were synthesized. Despite their structural similarities, L1 and L2 exhibit particularly different characteristics in their use as chiral ligands. L1 was highly effective in the asymmetric allylation of indoles with 1,3-diphenylallyl acetate (up to 99% ee), and in the etherification of alcohols (up to 96% ee). In contrast, L2 was highly effective in the stereocontrol of helical chirality in Suzuki-Miyaura coupling (SMC) reaction (up to 99% ee). Density functional theory analysis was employed to propose a model that accounts for the origin of the enantioselectivity in these reactions.

  10. Shear-induced reaction-limited aggregation kinetics of brownian particles at arbitrary concentrations.

    Science.gov (United States)

    Zaccone, Alessio; Gentili, Daniele; Wu, Hua; Morbidelli, Massimo

    2010-04-07

    The aggregation of interacting brownian particles in sheared concentrated suspensions is an important issue in colloid and soft matter science per se. Also, it serves as a model to understand biochemical reactions occurring in vivo where both crowding and shear play an important role. We present an effective medium approach within the Smoluchowski equation with shear which allows one to calculate the encounter kinetics through a potential barrier under shear at arbitrary colloid concentrations. Experiments on a model colloidal system in simple shear flow support the validity of the model in the concentration range considered. By generalizing Kramers' rate theory to the presence of shear and collective hydrodynamics, our model explains the significant increase in the shear-induced reaction-limited aggregation kinetics upon increasing the colloid concentration.

  11. Constrained reaction volume approach for studying chemical kinetics behind reflected shock waves

    KAUST Repository

    Hanson, Ronald K.

    2013-09-01

    We report a constrained-reaction-volume strategy for conducting kinetics experiments behind reflected shock waves, achieved in the present work by staged filling in a shock tube. Using hydrogen-oxygen ignition experiments as an example, we demonstrate that this strategy eliminates the possibility of non-localized (remote) ignition in shock tubes. Furthermore, we show that this same strategy can also effectively eliminate or minimize pressure changes due to combustion heat release, thereby enabling quantitative modeling of the kinetics throughout the combustion event using a simple assumption of specified pressure and enthalpy. We measure temperature and OH radical time-histories during ethylene-oxygen combustion behind reflected shock waves in a constrained reaction volume and verify that the results can be accurately modeled using a detailed mechanism and a specified pressure and enthalpy constraint. © 2013 The Combustion Institute.

  12. Heterogeneous photocatalysis of real textile wastewater: evaluation of reaction kinetics and characterization.

    Science.gov (United States)

    Sahoo, Chittaranjan; Gupta, Ashok K; Pillai, Indu M Sasidharan

    2012-01-01

    Real textile wastewater collected from the cotton dyeing bath of a fabric dyeing and finishing plant was subjected to heterogeneous photocatalysis using Ag(+) doped TiO(2) under UV irradiation in a batch reactor. The photocatalysts were characterized by FESEM, XRD, EDS, FTIR, DRS and BET analyses. The kinetics of the reaction was also evaluated. Colour removal was more than 88%, 94% and 99%, respectively for undiluted, 2 times diluted and 5 times diluted wastewater with Ag(+) doped TiO(2) (2.5 g/L) after UV irradiation for 360 minutes. The COD removal for undiluted, 2 times diluted and 5 times diluted wastewater was 47%, 70% and 92%, respectively under similar conditions. The reaction followed Langmuir-Hinshelwood pseudo first order kinetic model and the data fitted well to polynomial regression analysis.

  13. Chemo-Marangoni convection driven by an interfacial reaction: pattern formation and kinetics.

    Science.gov (United States)

    Eckert, K; Acker, M; Tadmouri, R; Pimienta, V

    2012-09-01

    A combined study devoted to chemo-Marangoni convection and the underlying kinetics is presented for a biphasic system in which surfactants are produced in situ by an interfacial reaction. The pattern formation studied in a Hele-Shaw cell in both microgravity and terrestrial environments initially shows an ensemble of chemo-Marangoni cells along a nearly planar interface. Soon, a crossover occurs to periodic large-scale interfacial deformations which coexist with the Marangoni cells. This crossover can be correlated with the autocatalytic nature of the interfacial reaction identified in the kinetic studies. The drastic increase in the product concentration is associated with an enhanced aggregate-assisted transfer after the critical micellar concentration is approached. In this context, it was possible to conclusively explain the changes in the periodicity of the interfacial deformations depending on the reactant concentration ratio.

  14. Revisiting the Kinetics and Mechanism of the Tetrathionate-Hypochlorous Acid Reaction in Nearly Neutral Medium

    Science.gov (United States)

    Varga, Dénes; Horváth, Attila K.

    2009-11-01

    The tetrathionate-hypochlorous acid reaction has been investigated in nearly neutral medium at I = 0.5 M ionic strength and T = 25.0 ± 0.1 °C in dihydrogen-phosphate-hydrogen-phosphate buffer by UV-vis spectrophotometry. In excess of hypochlorous acid, the stoichiometry was found to be S4O62- + 7HOCl + 3H2O → 4SO42- + 7Cl- + 13H+, but in excess of tetrathionate colloidal sulfur precipitates. On the basis of the simultaneous evaluation of the kinetic curves, a nine-step kinetic model with four fitted and five fixed rate coefficients is proposed. Analogous oxidation reactions of tetrathionate are also compared and discussed.

  15. Kinetics based reaction optimization of enzyme catalysed reduction of formaldehyde to methanol with synchronous cofactor regeneration

    DEFF Research Database (Denmark)

    Marpani, Fauziah Binti; Sárossy, Zsuzsa; Pinelo, Manuel

    2017-01-01

    regeneration using either glucose dehydrogenase (System I) or xylose dehydrogenase (System II). A mathematical model of the enzyme kinetics was employed to identify the best reaction set-up for attaining optimal cofactor recycling rate and enzyme utilization efficiency. Targeted process optimization...... experiments were conducted to verify the kinetically modelled results. Repetitive reaction cycles were shown to enhance the yield of CH3 OH, increase the total turnover number (TTN) and the biocatalytic productivity rate (BPR) value for both system I and II whilst minimizing the exposure of the enzymes......Enzymatic reduction of carbon dioxide (CO2 ) to methanol (CH3 OH) can be accomplished using a designed set-up of three oxidoreductases utilizing reduced pyridine nucleotide (NADH) as cofactor for the reducing equivalents electron supply. For this enzyme system to function efficiently a balanced...

  16. Reaction kinetics and modeling of photoinitiated cationic polymerization of an alicyclic based diglycidyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Harikrishna, R., E-mail: r.harikrishna@ncl.res.in [Polymer Science and Engineering Division, National Chemical Laboratory, Pune 411008 (India); Ponrathnam, S. [Polymer Science and Engineering Division, National Chemical Laboratory, Pune 411008 (India); Tambe, S.S. [Chemical Engineering and Process Development Division, National Chemical Laboratory, Pune 411008 (India)

    2014-01-01

    Highlights: • Photocationic polymerization of alicyclic based diglycidyl ether was carried out. • Kinetic parameters were influenced by gelation and diffusional restrictions. • Applicability of autocatalytic model was established by nonlinear regression. • System showed higher activation energy than cycloaliphatic and aromatic diepoxides. -- Abstract: Photoinitiated cationic polymerization of cycloaliphatic diepoxides had received tremendous attention, while studies with lesser polymerizable diglycidyl ethers are comparatively less reported. The present work deals with the photoinitiated cationic polymerization of cyclohexane dimethanol diglycidyl ether followed by estimation of kinetic parameters. The effects of concentration of photoinitiator and temperature on curing performance were studied using photo differential scanning calorimeter or photo DSC with polychromatic radiation. It was observed that the rate of polymerization as well as ultimate conversion increased with increasing concentration of photoinitiator and temperature. The influences of gelation as well as diffusional restrictions have remarkable effect on cure performance. The kinetic parameters as per autocatalytic kinetic model were studied by Levenberg–Marquardt nonlinear regression method instead of conventional linear method for obtaining more accurate values of apparent rate constant. It was observed that the model fits with data from initial stages to almost towards the end of the reaction. The activation energy was found to be higher than the values reported for more reactive cycloaliphatic diepoxides. The value of pre-exponential factor increased with increase in activation energy showing influence of gelation at early stages of reaction.

  17. Purification and characterization of Fab fragments with rapid reaction kinetics against myoglobin.

    Science.gov (United States)

    Song, Hyung-Nam; Kim, Dong-Hyung; Park, Sung-Goo; Lee, Myung Kyu; Paek, Se-Hwan; Woo, Eui-Jeon

    2015-01-01

    Myoglobin is an early biomarker for acute myocardial infarction. Recently, we isolated the antibody IgG-Myo2-7ds, which exhibits unique rapid reaction kinetics toward human myoglobin antigen. Antibodies with rapid dissociation kinetics are thought to be premature IgG forms that are produced during the early stage of in vivo immunization. In the present study, we identified the epitope region of the IgG-Myo2-7ds antibody to be the C-terminal region of myoglobin, which corresponds to 144-154 aa. The Fab fragment was directly purified by papain cleavage and protein G affinity chromatography and demonstrated kinetics of an association constant of 4.02 × 10(4) M(-1) s(-1) and a dissociation constant of 2.28 × 10(-2) s(-1), which retained the unique reaction kinetics of intact IgG-Myo2-7ds antibodies. Because a rapid dissociation antibody can be utilized for antibody recycling, the results from this study would provide a platform for the development of antibody engineering in potential diagnostic areas such as a continuous monitoring system for heart disease.

  18. Inhibition of Homo-coupling of Arylboronic Acids in Ligand Free Pd(Ⅱ)-Catalyzed Suzuki Reaction

    Institute of Scientific and Technical Information of China (English)

    TAO,Xiao-Chun; ZHANG,Yue-Ping; HE,Tian-Xiong; SHEN,Dong

    2007-01-01

    A series of solvents were examined for the ligand free Pd(Ⅱ)-catalyzed Suzuki reaction of 4-bromotoluene with phenylboronic acid. It was found that the PdCl2/i-PrOH system could efficiently inhibit the homo-coupling of phenylboronic acid and give a cross-coupling product in high yields. The substrates with a wide variety of functional groups were tolerated in the system. A possible mechanism for this system was proposed.

  19. Ion-neutral gas reactions in a collision/reaction cell in inductively coupled plasma mass spectrometry: Correlation of ion signal decrease to kinetic rate constants

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Patrick J. [Trace Element Research Laboratory, School of Earth Sciences, The Ohio State University, 125 S. Oval Mall, Columbus, OH 43210 (United States); Department of Chemistry, The Ohio State University, 120 18th Avenue, Columbus, OH 43210 (United States); Olesik, John W., E-mail: olesik.2@osu.edu [Trace Element Research Laboratory, School of Earth Sciences, The Ohio State University, 125 S. Oval Mall, Columbus, OH 43210 (United States)

    2015-03-01

    Reaction gas flow rate dependent Ar{sub 2}{sup +} and Ar{sup +} signals are correlated to fundamental kinetic rate coefficients. A simple calculation, assuming that gas exits the reaction cell due only to effusion, is described to estimate the gas pressure in the reaction cell. The value of the product of the kinetic rate constant and the ion residence time in the reaction cell can be determined from experimental measurement of the decrease in an ion signal as a function of reaction gas flow rate. New kinetic rate constants are determined for the reaction of CH{sub 3}F with Ar{sup +} and Ar{sub 2}{sup +}. - Highlights: • How to determine pressure and the product of the kinetic rate constant times the ion residence time in reaction cell • Relate measured ICP-DRC-MS signals versus gas flow rate to kinetic rate constants measured previously using SIFT-MS • Describe how to determine previously unmeasured kinetic rate constants using ICP-DRC-MS.

  20. High-affinity multivalent wheat germ agglutinin ligands by one-pot click reaction

    Directory of Open Access Journals (Sweden)

    Henning S. G. Beckmann

    2012-06-01

    Full Text Available A series of six mono-, di-, and trivalent N,N’-diacetylchitobiose derivatives was conveniently prepared by employing a one-pot procedure for Cu(II-catalyzed diazo transfer and Cu(I-catalyzed azide–alkyne cycloaddition (CuAAC starting from commercially available amines. These glycoclusters were probed for their binding potencies to the plant lectin wheat germ agglutinin (WGA from Triticum vulgaris by an enzyme-linked lectin assay (ELLA employing covalently immobilized N-acetylglucosamine (GlcNAc as a reference ligand. IC50 values were in the low micromolar/high nanomolar range, depending on the linker between the two disaccharides. Binding enhancements β up to 1000 for the divalent ligands and 2800 for a trivalent WGA ligand, compared to N,N’-diacetylchitobiose as the corresponding monovalent ligand, were observed. Molecular modeling studies, in which the chitobiose moieties were fitted into crystallographically determined binding sites of WGA, correlate the binding enhancements of the multivalent ligands with their ability to bind to the protein in a chelating mode. The best WGA ligand is a trivalent cluster with an IC50 value of 220 nM. Calculated per mol of contained chitobiose, this is the best WGA ligand known so far.

  1. Castor oil transesterification reaction: A kinetic study and optimization of parameters

    Energy Technology Data Exchange (ETDEWEB)

    Ramezani, K. [Fuel Cell Research Laboratory, Green Research Center, Iran University of Science and Technology, Tehran (Iran); Rowshanzamir, S. [Fuel Cell Research Laboratory, Green Research Center, Iran University of Science and Technology, Tehran (Iran); School of Chemical Engineering, Iran University of Science and Technology, Tehran (Iran); Eikani, M.H. [Department of Chemical Industries, Iranian Research Organization for Science and Technology (IROST), Tehran (Iran)

    2010-10-15

    In this paper, parameters affecting castor oil transesterification reaction were investigated. Applying four basic catalysts including NaOCH{sub 3}, NaOH, KOCH{sub 3} and KOH the best one with maximum biodiesel yield was identified. Using Taguchi method consisting four parameters and three levels, the best experimental conditions were determined. Reaction temperature (25, 65 and 80 C), mixing intensity (250, 400 and 600 rpm), alcohol/oil ratio (4:1, 6:1 and 8:1) and catalyst concentration (0.25, 0.35 and 0.5%) were selected as experimental parameters. It was concluded that reaction temperature and mixing intensity can be optimized. Using the optimum results, we proposed a kinetic model which resulted in establishing an equation for the beginning rate of transesterification reaction. Furthermore, applying ASTM D 976 correlation, minimum cetane number of produced biodiesel was determined as 37.1. (author)

  2. Morphological impact on the reaction kinetics of size-selected cobalt oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bartling, Stephan, E-mail: stephan.bartling@uni-rostock.de; Meiwes-Broer, Karl-Heinz; Barke, Ingo [Department of Physics, University of Rostock, Universitätsplatz 3, D-18051 Rostock (Germany); Pohl, Marga-Martina [Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT), Albert-Einstein-Str. 29a, D-18059 Rostock (Germany)

    2015-09-21

    Apart from large surface areas, low activation energies are essential for efficient reactions, particularly in heterogeneous catalysis. Here, we show that not only the size of nanoparticles but also their detailed morphology can crucially affect reaction kinetics, as demonstrated for mass-selected, soft-landed, and oxidized cobalt clusters in a 6 nm to 18 nm size range. The method of reflection high-energy electron diffraction is extended to the quantitative determination of particle activation energies which is applied for repeated oxidation and reduction cycles at the same particles. We find unexpectedly small activation barriers for the reduction reaction of the largest particles studied, despite generally increasing barriers for growing sizes. We attribute these observations to the interplay of reaction-specific material transport with a size-dependent inner particle morphology.

  3. Single-Site Palladium(II) Catalyst for Oxidative Heck Reaction: Catalytic Performance and Kinetic Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Hui; Li, Mengyang; Zhang, Guanghui; Gallagher, James R.; Huang, Zhiliang; Sun, Yu; Luo, Zhong; Chen, Hongzhong; Miller, Jeffrey T.; Zou, Ruqiang; Lei, Aiwen; Zhao, Yanli

    2015-01-01

    ABSTRACT: The development of organometallic single-site catalysts (SSCs) has inspired the designs of new heterogeneous catalysts with high efficiency. Nevertheless, the application of SSCs in certain modern organic reactions, such as C-C bond formation reactions, has still been less investigated. In this study, a single-site Pd(II) catalyst was developed, where 2,2'-bipyridine-grafted periodic mesoporous organosilica (PMO) was employed as the support of a Pd(II) complex. The overall performance of the single-site Pd(II) catalyst in the oxidative Heck reaction was then investigated. The investigation results show that the catalyst displays over 99% selectivity for the product formation with high reaction yield. Kinetic profiles further confirm its high catalytic efficiency, showing that the rate constant is nearly 40 times higher than that for the free Pd(II) salt. X-ray absorption spectroscopy reveals that the catalyst has remarkable lifetime and recyclability.

  4. Initiation and Modification of Reaction by Energy Addition: Kinetic and Transport Phenomena

    Science.gov (United States)

    1993-10-01

    MODIFICATION OF REACTION BY ENERGY ADDITION: KINETIC AND TRANSPORT PHENOMENA by Francis E. Fendell and Mau-Song Chou Center for Propulsion Technology...TA - A2 L AUHOWAC - F49620-90-C-0070 Francis E. Fendell and Mau-Song Chou 7. PEMOS101IG ORGANIZATION NAME(S AND...a gaseous mixture is more pertinent for the supersonic-combustor applications of interest to the Air Force (compare Figs. 1 and 2) (Carrier, Fendell

  5. KINETIC MODEL FOR DIFFUSION-CONTROLLED INTERMOLECULAR REACTION OF HOMOGENOUS POLYMER UNDER STEADY SHEAR

    Institute of Scientific and Technical Information of China (English)

    Meng-ge Liu; Wei Yu; Chi-xing Zhou

    2006-01-01

    The kinetic model for diffusion-controlled intermolecular reaction of homogenous polymer under steady shear was theoretically studied. The classic formalism and the concept of conformation ellipsoids were integrated to get a new equation, which directly correlates the rate constant with shear rate. It was found that the rate constant is not monotonic with shear rate. The scale of rate constant is N-1.5 (N is the length of chains), which is in consistent with de Gennes's result.

  6. Kinetic Model Reconstruction of Phytoplankton Light-Dependent Reactions and Implementation Towards Membrane Constraints

    OpenAIRE

    Basilio, Andrew

    2017-01-01

    Phytoplankton photosynthesis accounts for much of the oxygen present in the world, which can affect many different global systems. Additionally, understanding phytoplankton photosynthesis and other metabolic processes are important because of their potential to be engineered for human purposes. In this thesis, I constructed a computational kinetic model of the light-dependent photosynthetic reactions of phytoplankton using the MASS Toolbox, an in-house computational tool developed by the UCSD...

  7. Fischer-Tropsch Reaction Kinetics of Cobalt Catalyst in Supercritical Phase

    Institute of Scientific and Technical Information of China (English)

    Abdullah Irankhah; Ali Haghtalab; Ebrahim Vasheghani Farahani; Kambiz Sadaghianizadeh

    2007-01-01

    Fischer-Tropsch synthesis under supercritical phase condition was examined in a continuous and a high-pressure fixed bed reactor by employing a cobalt catalyst (Co-Ru/γ-Al2O3). An integral reactor model involving Fischer-Tropsch reaction kinetics in the supercritical fluid n-hexane was used to describe the overall performance. On the basis of Langmuir-Hinshelwood-Hougen-Watson (LHHW) model, the reaction rate constants were obtained for the rate equations of CO conversion to CH4 formation under supercritical conditions.

  8. Kinetics of the First Order Autocatalytic Decomposition Reaction of Nitrocellulose (13.86% N)

    Institute of Scientific and Technical Information of China (English)

    GUO,Peng-Jiang(郭鹏江); HU,Rong-Zu(胡荣祖); NING,Bin-Ke(宁斌科); YANG,Zheng-Quan(杨正权); SONG,Ji-Rong(宋纪蓉); SHI,Qi-Zhen(史启祯); LU,Gui-E(路桂娥); JIANG,Jin-You(江劲勇)

    2004-01-01

    The kinetics of the first order autocatalytic decomposition reaction of nitrocellulose (NC, 13.86% N) was studied by using DSC. The results show that the DSC curve for the initial 50% of conversion degree of NC can be described by the first order autocatalytic equation dy/dt=-1016.3exp(-181860/RT)y-1016.7exp(-173050)y(1-y) and that for the latter 50% conversion degree of NC described by the reaction equations dy/dt=-1016.4exp(-154820/RT)y(n=1) and dy/dt=-1016.9exp(-155270/RT)y2.80(n≠1).

  9. Fundamental kinetics and mechanistic pathways for oxidation reactions in supercritical water

    Science.gov (United States)

    Webley, Paul A.; Tester, Jefferson W.

    1988-01-01

    Oxidation of the products of human metabolism in supercritical water has been shown to be an efficient way to accomplish the on-board water/waste recycling in future long-term space flights. Studies of the oxidation kinetics of methane to carbon dioxide in supercritical water are presented in this paper in order to enhance the fundamental understanding of the oxidation of human waste compounds in supercritical water. It is concluded that, although the elementary reaction models remain the best hope for simulating oxidation in supercritical water, several modifications to existing mechanisms need to be made to account for the role of water in the reaction mechanism.

  10. Reaction kinetics for synthesis of sec-butyl alcohol catalyzed by acid-functionalized ionic liquid

    Institute of Scientific and Technical Information of China (English)

    Ting Qiu; Wenli Tang; Chenggang Li; Chengming Wu; Ling Li

    2015-01-01

    The acid-functionalized ionic liquid ([HSO3Pmim]HSO4) was synthesized by a two-step method. Nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FT-IR) show that the synthesis method is feasible and high purity of ionic liquid can be obtained. Using [HSO3Pmim]HSO4 as the catalyst, we studied the reaction kinetics of synthesizing sec-butyl alcohol from sec-butyl acetate and methanol by transesterification in a high-pressure batch reactor. The effects of temperature, initial molar ratio of methanol to ester, and catalyst concentration on the conversion of sec-butyl acetate were studied. Based on its possible reaction mechanism, a ho-mogeneous kinetic model was established. The results show that the reaction heatΔH is 10.94 × 103 J·mol−1, so the reaction is an endothermic reaction. The activation energies Ea+and Ea−are 60.38 × 103 and 49.44 × 103 J·mol−1, respectively.

  11. Reaction mechanism and kinetics of the NCN +NO reaction: Comparison of theory and experiment

    Science.gov (United States)

    Huang, Chih-Liang; Tseng, Shiang Yang; Wang, Tzu Yi; Wang, Niann S.; Xu, Z. F.; Lin, M. C.

    2005-05-01

    The rate constants for the NCN +NO reaction have been measured by laser photolysis/laser-induced fluorescence technique in the temperature range of 254-353K in the presence of He (40-600Torr) and N2 (30-528Torr) buffer gases. The NCN radical was produced from the photodissociation of NCN3 at 193nm and monitored with a dye laser at 329.01nm. The reaction was found to be strongly positive-pressure dependent with negative-temperature dependence, as was reported previously. The experimental data could be reasonably accounted for by dual-channel Rice-Ramsperger-Kassel-Marcus calculations based on the predicted potential-energy surface using the modified Gaussian-2 method. The reaction is predicted to occur via weak intermediates, cis- and trans-NCNNO, in the A″2 state which crosses with the A'2 state containing more stable cis- and trans-NCNNO isomers. The high barriers for the fragmentation of these isomers and their trapping in the A'2 state by collisional stabilization give rise to the observed positive-pressure dependence and negative-temperature effect. The predicted energy barrier for the fragmentation of the cis-NCNNO (A'2) to CN +N2O also allows us to quantitatively account for the rate constant previously measured for the reverse process CN +N2O→NCN+NO.

  12. Kinetics and corrosion products of aqueous nitrate reduction by iron powder without reaction conditions control

    Institute of Scientific and Technical Information of China (English)

    FAN Xiaomeng; GUAN Xiaohong; MA Jun; AI Hengyu

    2009-01-01

    Although considerable research has been conducted on nitrate reduction by zero-valent iron powder (Fe0), these studies were mostly operated under anaerobic and invariable pH conditions that was unsuitable for practical application.Without reaction conditions (dissolved oxygen or reaction pH) control, this study aimed at subjecting the kinetics of denitrification by microscale Fe0 (160-200 mesh) to analysis the factors affecting the denitrification of nitrate and the composition of iron reductive products coating upon the iron surface.Results of the kinetics study have indicated that a higher initial concentration of nitrate would yield a greater reaction rate constant.Additional test results showed that the reduction rate of nitrate increased with increasing Fe0 dosage.The reaction can be described as a pseudo-first order reaction with respect to nitrate concentration or Fe0 dosage.Experimental results also suggested that nitrate reduction by microscale Fe0 without reaction condition control primarily was an acid-driven surface-mediated process, and the reaction order was 0.65 with respect to hydrogen ion concentration.X-ray diffractometry and X-ray photoelectron spectroscopy indicated that a black coating, consisted of Fe2O3, Fe3O4 and FeO(OH), was formed on the surface of iron grains as an iron corrosion product when the system initial pH was lower than 5.The proportion of FeO(OH) increased as reaction time went on, whereas the proportion of Fe3O4 decreased.

  13. Kinetics of reaction of gold nanoparticles following partial removal of stabilizers

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Anushree [Indian Institute of Technology Guwahati, Department of Chemistry (India); Das, Subhojit [National Institute of Technology, Department of Chemistry (India); Paul, Anumita, E-mail: anumita@iitg.ernet.in; Chattopadhyay, Arun, E-mail: arun@iitg.ernet.in [Indian Institute of Technology Guwahati, Department of Chemistry (India)

    2015-06-15

    Citrate-stabilized gold nanoparticles (Au NPs) of 17-nm diameter were allowed to react following partial depletion of the stabilizer using dialysis. Kinetics of the reaction was investigated by following time-dependent changes in the visible extinction spectrum. Thus, surface plasmon resonance peak (SPR) of isolated Au NPs (reactant) at 522 nm decreased, while SPR peak due to product—which was agglomerated Au NPs—occurring at 600 nm increased with time. The reaction followed first-order kinetics with respect to concentration of reactant (Au NP) with a rate constant on the order of (2.10 ± 0.34) × 10{sup −3} min{sup −1}. Further, product concentration correspondingly increased with time. Transmission electron microscopy investigation indicated the presence of individual NPs, along with agglomerated structures in the beginning of reaction—the extent of which increased with time, rather than the formation of smaller agglomerates. A model has been proposed based on reaction of individual NPs with agglomerated structures which accounted for the observed kinetics.

  14. Kinetics and reaction pathways of total acid number reduction of cyclopentane carboxylic acid using subcritical methanol

    Directory of Open Access Journals (Sweden)

    Mandal Pradip C.

    2016-09-01

    Full Text Available Cyclopentane carboxylic acid (CPCA is a model compound of Naphthenic acids (NAs. This objective of this paper is to discover total acid number (TAN reduction kinetics and pathways of the reaction between CAPA and subcritical methanol (SubC-MeOH. The experiments were carried out in an autoclave reactor at temperatures of 180-220°C, a methanol partial pressure (MPP of 3 MPa, reaction times of 0-30 min and CPCA initial gas phase concentrations of 0.016-0.04 g/mL. TAN content of the samples were analyzed using ASTM D 974 techniques. The reaction products were identified and quantified with the help of GC/MS and GC-FID respectively. Experimental results reveal that TAN removal kinetics followed first order kinetics with an activation energy of 13.97 kcal/mol and a pre-exponential factor of 174.21 s-1. Subcritical methanol is able to reduce TAN of CPCA decomposing CPCA into new compounds such as cyclopentane, formaldehyde, methyl acetate and 3-pentanol.

  15. Amide as an efficient ligand in the palladium-catalyzed Suzuki coupling reaction in water/ethanol under aerobic conditions

    Institute of Scientific and Technical Information of China (English)

    Hai Yang Liu; Kun Wang; Hai Yan Fu; Mao Lin Yuan; Hua Chen; Rui Xiang Li

    2011-01-01

    Amide, which is derived from proline and is inexpensive and air-stable, has been synthesized and characterized by 1H NMR,13C NMR, and MS. It was found to be an efficient ligand in the palladium-catalyzed Suzuki cross-coupling reaction. In the Pd/amide catalytic system, aryl bromides can be coupled with phenylboronic acid in ethanol/water (1:2;v/v) in excellent yields even with a low Pd loading of 0.01 mol%. Moreover, the scope of the reaction is broad, and a wide variety of functional groups are tolerant.

  16. Synthesis of a new opioid ligand having the oxabicyclo[3.2.1]octane skeleton using a new rearrangement reaction.

    Science.gov (United States)

    Watanabe, Akio; Fujii, Hideaki; Nakajima, Mayumi; Hasebe, Ko; Mochizuki, Hidenori; Nagase, Hiroshi

    2009-05-01

    An attempt to prepare a trimer having the 1,3,5-trioxazatriquinane skeleton led to discovery of a novel rearrangement reaction that afforded a compound with an oxabicyclo[3.2.1]octane skeleton whose reaction mechanism was proposed. On the basis of this mechanism, we synthesized the rearranged product from a dimethyl acetal intermediate in excellent yield. The compound with an oxabicyclo[3.2.1]octane skeleton showed high affinity for mu and kappa but not delta opioid receptor types. The compound expected to be a key intermediate for novel kappa selective ligands.

  17. Ce0.98Pd0.02O2-: Recyclable, ligand free palladium(II) catalyst for Heck reaction

    Indian Academy of Sciences (India)

    S R Sanjaykumar; Bhaskar Devu Mukri; Satish Patil; Giridhar Madras; M S Hegdea

    2011-01-01

    Palladium substituted in cerium dioxide in the form of a solid solution, Ce0.98 Pd0.02 O1.98 is a new heterogeneous catalyst which exhibits high activity and 100% trans-selectivity for the Heck reactions of aryl bromides including heteroaryls with olefins. The catalytic reactions work without any ligand. Nanocrystalline Ce0.98 Pd0.02 O1.98 is prepared by solution combustion method and Pd is in +2 state. The catalyst can be separated, recovered and reused without significant loss in activity.

  18. Surface Reaction Kinetics of Steam- and CO2-Reforming as Well as Oxidation of Methane over Nickel-Based Catalysts

    OpenAIRE

    Karla Herrera Delgado; Lubow Maier; Steffen Tischer; Alexander Zellner; Henning Stotz; Olaf Deutschmann

    2015-01-01

    An experimental and kinetic modeling study on the Ni-catalyzed conversion of methane under oxidative and reforming conditions is presented. The numerical model is based on a surface reaction mechanism consisting of 52 elementary-step like reactions with 14 surface and six gas-phase species. Reactions for the conversion of methane with oxygen, steam, and CO2 as well as methanation, water-gas shift reaction and carbon formation via Boudouard reaction are included. The mechanism is implemented i...

  19. Reaction kinetics of metal deposition via surface limited red-ox replacement of underpotentially deposited metal monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Gokcen, Dincer; Bae, Sang-Eun [Electrical and Computer Engineering, University of Houston, Houston, TX 772004-4005 (United States); Brankovic, Stanko R., E-mail: Stanko.Brankovic@mail.uh.edu [Electrical and Computer Engineering, University of Houston, Houston, TX 772004-4005 (United States); Chemical and Biomolecular Engineering, University of Houston, Houston, TX 772004-4005 (United States); Chemistry Department, University of Houston, Houston, TX 772004-4005 (United States)

    2011-06-30

    The study of the kinetics of metal deposition via surface limited red-ox replacement of underpotentially deposited metal monolayers is presented. The model system was Pt submonolayer deposition on Au(1 1 1) via red-ox replacement of Pb and Cu UPD monolayers on Au(1 1 1). The kinetics of a single replacement reaction was studied using the formalism of the comprehensive analytical model developed to fit the open circuit potential transients from deposition experiments. The practical reaction kinetics parameters like reaction half life, reaction order and reaction rate constant are determined and discussed with their relevance to design and control of deposition experiments. The effects of transport limitation and the role of the anions/electrolyte on deposition kinetics are investigated and their significance to design of effective deposition process is discussed.

  20. Kinetic study of the reaction of chlorine atoms with hydroxyacetone in gas-phase

    Science.gov (United States)

    Stoeffler, Clara; Joly, Lilian; Durry, Georges; Cousin, Julien; Dumelié, Nicolas; Bruyant, Aurélien; Roth, Estelle; Chakir, Abdelkhaleq

    2013-12-01

    In this letter the kinetics of the reaction of hydroxyacetone CH3C(O)CH2OH with Cl atoms is investigated using the relative rate technique. Experiments are carried out in a 65 L multipass photoreactor in the temperature range of 281-350 K. A mid-infrared spectrometer based on a quantum cascade laser in external cavity emitting at 9.5 μm is used to analyze the reactants. The determined rate coefficient for the investigated reaction is (1.7 ± 0.3) × 10-11exp(381.5 ± 57.3/T). The results are presented and discussed in terms of precision and compared with those obtained previously. The impact of Cl atoms on the atmospheric life time of hydroxyacetone is also discussed. Developing analytical techniques to quantify this compound in the atmosphere. Several methods of measurement have been used including the technique of proton transfer mass spectrometry (PTR-MS) [2] and derivatization with a chemical agent such as dinitrophenylhydrazine (DNPH) [3,4] followed by GC/MS or HPLC analyses. The HA amount in the troposphere was found to be in the order of a few hundred parts per trillion by volume [4], Performing laboratory experiments in order to study the HA reactivity with atmospheric oxidants. The first study on the kinetic of the reaction between OH radicals and HA was made by Dagault et al. [5] whose work was performed at room temperature by flash photolysis-resonance fluorescence. The determined rate constant implies a lifetime of a few days for HA relative to oxidation by OH radicals. Orlando et al. performed mechanistic and kinetics studies of the reaction of HA with OH radicals and Cl atoms at room temperature using a relative method [6]. Products detection was performed using FTIR spectroscopy. Moreover, these authors studied the photolysis of HA to determine its quantum yield and UV absorption spectrum. These studies showed that HA is principally removed from the atmosphere by reaction with OH radicals. Kinetic studies of the reaction of OH radicals with HA as a

  1. Statistical deduction and experimental verification on kinetic equations for the curing reactions of epoxy resins/amines

    Institute of Scientific and Technical Information of China (English)

    CHEN Ping; LU Zu-shun; YU Da-shu; HU Li-jiang

    2005-01-01

    Based on three typical mechanisms (second-order, third-order and competitive mechanisms) for the curing reactions of the epoxy resins with amines, a pair of the kinetic equations (for primary and secondary aminations) was presented to explain the uniformity and relationship among the three different kinetic mechanisms of the reactions. The presented macro-equations were deduced from the kinetic micro-equations by the statistics method. And the constitutive equations were verified by experimental data at different reaction times and temperatures (95℃, 60℃ and 39℃), taking diglycidyl ether of bisphenol A (DGEBA) /ethyleneamine (EA) as a model.

  2. A Microscale Approach to Chemical Kinetics in the General Chemistry Laboratory: The Potassium Iodide Hydrogen Peroxide Iodine-Clock Reaction

    Science.gov (United States)

    Sattsangi, Prem D.

    2011-01-01

    A microscale laboratory for teaching chemical kinetics utilizing the iodine clock reaction is described. Plastic pipets, 3 mL volume, are used to store and deliver precise drops of reagents and the reaction is run in a 24 well plastic tray using a total 60 drops of reagents. With this procedure, students determine the rate of reaction and the…

  3. Electronic Effects versus Distortion Energies During Strain-Promoted Alkyne-Azide Cycloadditions: A Theoretical Tool to Predict Reaction Kinetics

    NARCIS (Netherlands)

    Garcia-Hartjes, J.; Dommerholt, J.; Wennekes, T.; Delft, van F.L.; Zuilhof, H.

    2013-01-01

    Second-order reaction kinetics of known strain-promoted azide–alkyne cycloaddition (SPAAC) reactions were compared with theoretical data from a range of ab initio methods. This produced both detailed insights into the factors determining the reaction rates and two straightforward theoretical tools t

  4. Kinetics of diamond-silicon reaction under high pressure-high temperature conditions

    Science.gov (United States)

    Pantea, Cristian

    In this dissertation work, the kinetics of the reaction between diamond and silicon at high pressure-high temperature conditions was investigated. This study was motivated by the extremely limited amount of information related to the kinetics of the reaction in diamond-silicon carbide composites formation. It was found that the reaction between diamond and melted silicon and the subsequent silicon carbide formation is a two-stage process. The initial stage is a result of direct reaction of melted silicon with carbon atoms from the diamond surface, the phase boundary reaction. Further growth of SiC is much more complicated and when the outer surfaces of diamond crystals are covered with the silicon carbide layer it involves diffusion of carbon and silicon atoms through the SiC layer. The reaction takes place differently for the two regions of stability of carbon. In the graphite-stable region, the reaction between diamond and melted silicon is associated with the diamond-to-graphite phase transition, while in the diamond-stable region there is no intermediary step for the reaction. The data obtained at HPHT were fitted by the Avrami-Erofeev equation. It was found that the reaction is isotropic, the beta-SiC grown on different faces of the diamond crystals showing the same reaction rate, and that the controlling mechanism for the reaction is the diffusion. In the graphite-stable region the activation energy, 402 kJ/mol is slightly higher than in the diamond-stable region, 260 kJ/mol, as the reaction between diamond and melted silicon is associated with the diamond-to-graphite phase transition, which has higher activation energy. In the diamond-stable region, the calculated activation energy is higher for micron size diamond powders (≈260 kJ/mol), while for nanocrystalline diamond powders a lower value of 170 kJ/mol was obtained. This effect was attributed to nanocrystalline structure and strained bonds within grain boundaries in SiC formed from nanosize diamond

  5. Intermolecular C-H activation with an Ir-METAMORPhos piano-stool complex--multiple reaction steps at a reactive ligand.

    Science.gov (United States)

    Oldenhof, S; Lutz, M; van der Vlugt, J I; Reek, J N H

    2015-10-21

    Substrate activation by means of a reactive ligand is a topic of much interest. Herein we describe a stoichiometric anti-Markovnikov C-N bond formation involving ligand reactivity in multiple steps along the reaction coordinate, including ligand assisted substrate (de)protonation and C-N bond formation, as illustrated by a combined experimental, spectroscopic and computational study. This affords a highly unusual four-membered iridacycle bearing an exo-cyclic C=C double bond.

  6. Kinetic substrate quantification by fitting the enzyme reaction curve to the integrated Michaelis-Menten equation.

    Science.gov (United States)

    Liao, Fei; Tian, Kao-Cong; Yang, Xiao; Zhou, Qi-Xin; Zeng, Zhao-Chun; Zuo, Yu-Ping

    2003-03-01

    The reliability of kinetic substrate quantification by nonlinear fitting of the enzyme reaction curve to the integrated Michaelis-Menten equation was investigated by both simulation and preliminary experimentation. For simulation, product absorptivity epsilon was 3.00 mmol(-1) L cm(-1) and K(m) was 0.10 mmol L(-1), and uniform absorbance error sigma was randomly inserted into the error-free reaction curve of product absorbance A(i) versus reaction time t(i) calculated according to the integrated Michaelis-Menten equation. The experimental reaction curve of arylesterase acting on phenyl acetate was monitored by phenol absorbance at 270 nm. Maximal product absorbance A(m) was predicted by nonlinear fitting of the reaction curve to Eq. (1) with K(m) as constant. There were unique A(m) for best fitting of both the simulated and experimental reaction curves. Neither the error in reaction origin nor the variation of enzyme activity changed the background-corrected value of A(m). But the range of data under analysis, the background absorbance, and absorbance error sigma had an effect. By simulation, A(m) from 0.150 to 3.600 was predicted with reliability and linear response to substrate concentration when there was 80% consumption of substrate at sigma of 0.001. Restriction of absorbance to 0.700 enabled A(m) up to 1.800 to be predicted at sigma of 0.001. Detection limit reached A(m) of 0.090 at sigma of 0.001. By experimentation, the reproducibility was 4.6% at substrate concentration twice the K(m), and A(m) linearly responded to phenyl acetate with consistent absorptivity for phenol, and upper limit about twice the maximum of experimental absorbance. These results supported the reliability of this new kinetic method for enzymatic analysis with enhanced upper limit and precision.

  7. Macroscopic kinetics of pentameric ligand gated ion channels: comparisons between two prokaryotic channels and one eukaryotic channel.

    Directory of Open Access Journals (Sweden)

    Kurt T Laha

    Full Text Available Electrochemical signaling in the brain depends on pentameric ligand-gated ion channels (pLGICs. Recently, crystal structures of prokaryotic pLGIC homologues from Erwinia chrysanthemi (ELIC and Gloeobacter violaceus (GLIC in presumed closed and open channel states have been solved, which provide insight into the structural mechanisms underlying channel activation. Although structural studies involving both ELIC and GLIC have become numerous, thorough functional characterizations of these channels are still needed to establish a reliable foundation for comparing kinetic properties. Here, we examined the kinetics of ELIC and GLIC current activation, desensitization, and deactivation and compared them to the GABAA receptor, a prototypic eukaryotic pLGIC. Outside-out patch-clamp recordings were performed with HEK-293T cells expressing ELIC, GLIC, or α1β2γ2L GABAA receptors, and ultra-fast ligand application was used. In response to saturating agonist concentrations, we found both ELIC and GLIC current activation were two to three orders of magnitude slower than GABAA receptor current activation. The prokaryotic channels also had slower current desensitization on a timescale of seconds. ELIC and GLIC current deactivation following 25 s pulses of agonist (cysteamine and pH 4.0 buffer, respectively were relatively fast with time constants of 24.9 ± 5.1 ms and 1.2 ± 0.2 ms, respectively. Surprisingly, ELIC currents evoked by GABA activated very slowly with a time constant of 1.3 ± 0.3 s and deactivated even slower with a time constant of 4.6 ± 1.2 s. We conclude that the prokaryotic pLGICs undergo similar agonist-mediated gating transitions to open and desensitized states as eukaryotic pLGICs, supporting their use as experimental models. Their uncharacteristic slow activation, slow desensitization and rapid deactivation time courses are likely due to differences in specific structural elements, whose future identification may help uncover

  8. Polycyclic aromatic hydrocarbon (PAH) formation from benzyl radicals: a reaction kinetics study.

    Science.gov (United States)

    Sinha, Sourab; Raj, Abhijeet

    2016-03-21

    The role of resonantly stabilized radicals such as propargyl, cyclopentadienyl and benzyl in the formation of aromatic hydrocarbons such as benzene and naphthalene in the high temperature environments has been long known. In this work, the possibility of benzyl recombination to form three-ring aromatics, phenanthrene and anthracene, is explored. A reaction mechanism for it is developed, where reaction energetics are calculated using density functional theory (B3LYP functional with 6-311++G(d,p) basis set) and CBS-QB3, while temperature-dependent reaction kinetics are evaluated using transition state theory. The mechanism begins with barrierless formation of bibenzyl from two benzyl radicals with the release of 283.2 kJ mol(-1) of reaction energy. The further reactions involve H-abstraction by a H atom, H-desorption, H-migration, and ring closure to gain aromaticity. Through mechanism and rate of production analyses, the important reactions leading to phenanthrene and anthracene formation are determined. Phenanthrene is found to be the major product at high temperatures. Premixed laminar flame simulations are carried out by including the proposed reactions for phenanthrene formation from benzyl radicals and compared to experimentally observed species profiles to understand their effects on species concentrations.

  9. Kinetics of barium sulphate reaction crystallization in crystallizers with internal circulation

    Directory of Open Access Journals (Sweden)

    J. Koralewska

    2008-06-01

    Full Text Available Kinetic calculation results describing the observed nucleation and growth rates of barium sulphate crystals precipitated in an integrated reaction-crystallization process in a barium sulphate-ammonium chloride-water system are presented and analyzed. The scope of experiments included two continuous model DTM-type crystallizers (Draft Tube Magma with internal circulation of the suspension forced by a liquid jet-pump device responsible for stable and intensive enough ascending/descending flow of BaSO4 crystal magma in a mixing chamber. For comparison purposes the experimental data corresponding to a continuous DT (Draft Tube crystallizer with propeller agitator are presented and discussed. The various types of laboratory crystallizers used were fed with concentrated water solution of barium chloride (of 10 or 24 mass % and - in a stoichiometric proportion - crystalline ammonium sulphate, assuming isothermal (348 K and hydrodynamic (average residence time of suspension in a crystallizer: 900 s process conditions. The observed nucleation and growth rates of barium sulphate crystals were estimated on the basis of crystal size distributions (CSDs using convenient calculation scheme derived for an MSMPR (Mixed Suspension Mixed Product Removal model approach. Considering the experimental population density distribution courses, a size-dependent growth (SDG phenomenon was taken into account in the kinetic calculations. Five SDG kinetic models recommended in the accessible literature were used for kinetic parameter values estimation. It was proved statistically, that Rojkowski’s two SDG models (hyperbolic and exponential best suit for our own experimental data description. The experimental data presented can be practically applied for improving the constructions of liquid jet-pump DTM crystallizers recommended for reaction crystallization of sparingly soluble inorganic salts (especially for high concentrations of reaction substrates in the modern

  10. Kinetics of the Reaction Between Ozone and Cationic Red X-GRL

    Institute of Scientific and Technical Information of China (English)

    赵伟荣; 史惠祥; 汪大翚

    2003-01-01

    The ozonation of Cationic Red X-GRL in a semi-batch reactor was studied with variation of the gas flow rate, initial Cationic Red X-GILL concentration, temperature, and pH value. By the evaluation of the liquid mass transfer coefficient, the interfacial area, and the stoichiometric ratio between ozone and Cationic Red X-GRL, the rate constants and the kinetic regime of the reaction between ozone and Cationic Red X-GRL were investigated by applying the experimental data to a model based on the film mass transfer theory. The results obtained support a second order overall reaction, first order with respect to both ozone and dye, and the rate constants were correlated by a modified Arrhenius Equation of temperature and pH value with activation energy of 18.06kJ·mo1-1. Hatta number of the reaction was found to he between 0.026 and 0.041, it indicates that the reaction occurs in the liquid bulk,corresponding to the slow kinetic regime.

  11. Reaction Kinetics of Ozonation of Trichloroethylene and Benzene in Gas and Liquid Phases

    Institute of Scientific and Technical Information of China (English)

    钟理; KuoChiane-Hai

    2000-01-01

    The kinetics of ozonation reactions of trichloroethylene (TCE) and benzene in gas and liquid phases at 101.3 kPa and 298 K was investigated in this paper. The ozonation of TCE is first order with respect to the ozone concentration and one and half order to TCE in the gas phase with the average rate constant 57.30 (mol·L-1 )-l.5·s-1,and the TCE ozonation in aqueous medium is first order with respect to both ozone and trichloroethylene with the average rate constant 6.30 (mol·L-1)-l·s-1. The ozonation of benzene in the gas phase is first order in ozone but independent of the benzene concentration with the average reaction rate constant 0.0011s-1. The overall kinetics of reaction between ozone and benzene in aqueous solution is found to be first order with one-half order in both ozone and bezene, with the average reaction rate constant 2.67s-1. It is found that the ozonation rate of pallutants is much quicker than that of self-decomposition of ozone in both gas and aqueous phase.

  12. Reaction Kinetics of Ozonation of Trichloroethylene and Benzene in Gas and Liquid Phase

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The kinetics of ozonation reactions oftrichloroethylene (TCE) and benzene in gas and liquid phases at101.3 kPa and 298 K was investigated in this paper. The ozonation ofTCE is first order with respect to the ozone concentration and one andhalf order to TCE in the gas phase with the average rate constant 57.30(mol*L-1)-1.5 *s-1, and the TCE ozonation inaqueous medium is first order with respect to both ozone andtrichloroethylene with the average rate constant 6.30(mol*L-1)-1 *s-1. The ozonation of benzene inthe gas phase is first order in ozone but independent of the benzeneconcentration with the average reaction rate constant 0.0011 s-1.The overall kinetics of reaction between ozone and benzene in aqueoussolution is found to be first order with one-half order in both ozoneand bezene, with the average reaction rate constant 2.67 s-1. Itis found that the ozonation rate of pallutants is much quicker than that ofself-decomposition of ozone in both gas and aqueous phase.

  13. APOLLO: A computer program for the calculation of chemical equilibrium and reaction kinetics of chemical systems

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, H.D.

    1991-11-01

    Several of the technologies being evaluated for the treatment of waste material involve chemical reactions. Our example is the in situ vitrification (ISV) process where electrical energy is used to melt soil and waste into a ``glass like`` material that immobilizes and encapsulates any residual waste. During the ISV process, various chemical reactions may occur that produce significant amounts of products which must be contained and treated. The APOLLO program was developed to assist in predicting the composition of the gases that are formed. Although the development of this program was directed toward ISV applications, it should be applicable to other technologies where chemical reactions are of interest. This document presents the mathematical methodology of the APOLLO computer code. APOLLO is a computer code that calculates the products of both equilibrium and kinetic chemical reactions. The current version, written in FORTRAN, is readily adaptable to existing transport programs designed for the analysis of chemically reacting flow systems. Separate subroutines EQREACT and KIREACT for equilibrium ad kinetic chemistry respectively have been developed. A full detailed description of the numerical techniques used, which include both Lagrange multiplies and a third-order integrating scheme is presented. Sample test problems are presented and the results are in excellent agreement with those reported in the literature.

  14. APOLLO: A computer program for the calculation of chemical equilibrium and reaction kinetics of chemical systems

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, H.D.

    1991-11-01

    Several of the technologies being evaluated for the treatment of waste material involve chemical reactions. Our example is the in situ vitrification (ISV) process where electrical energy is used to melt soil and waste into a glass like'' material that immobilizes and encapsulates any residual waste. During the ISV process, various chemical reactions may occur that produce significant amounts of products which must be contained and treated. The APOLLO program was developed to assist in predicting the composition of the gases that are formed. Although the development of this program was directed toward ISV applications, it should be applicable to other technologies where chemical reactions are of interest. This document presents the mathematical methodology of the APOLLO computer code. APOLLO is a computer code that calculates the products of both equilibrium and kinetic chemical reactions. The current version, written in FORTRAN, is readily adaptable to existing transport programs designed for the analysis of chemically reacting flow systems. Separate subroutines EQREACT and KIREACT for equilibrium ad kinetic chemistry respectively have been developed. A full detailed description of the numerical techniques used, which include both Lagrange multiplies and a third-order integrating scheme is presented. Sample test problems are presented and the results are in excellent agreement with those reported in the literature.

  15. Searching out the hydrogen absorption/desorption limiting reaction factors: Strategies allowing to increase kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Zeaiter, Ali, E-mail: ali.zeaiter@femto-st.fr; Chapelle, David; Nardin, Philippe

    2015-10-05

    Highlights: • A macro scale thermodynamic model that simulates the response of a FeTi-X hydride tank is performed, and validated experimentally. • A sensibility study to identify the most influent input variables that can changes very largely the reaction rate. - Abstract: Hydrogen gas has become one of the most promising energy carriers. Main breakthrough concerns hydrogen solid storage, specially based on intermetallic material use. Regarding the raw material abundance and cost, the AB type alloy FeTi is an auspicious candidate to store hydrogen. Its absorption/desorption kinetics is a basic hindrance to common use, compared with more usual hydrides. First, discussions based on literature help us identifying the successive steps leading to metal hydriding, and allow to introduce the physical parameters which drive or limit the reaction. This analysis leads us to suggest strategies in order to increase absorption/desorption kinetics. Attention is then paid to a thermofluidodynamic model, allowing to describe a macroscopic solid storage reactor. Thus, we can achieve a simulation which describes the overall reaction inside the hydrogen reactor and, by varying the sub-mentioned parameters (thermal conductivity, the powder granularity, environment heat exchange…), we attempt to hierarchy the reaction limiting factors. These simulations are correlated to absorption/desorption experiments for which pressure, temperature and hydrogen flow are recorded.

  16. Golden rule kinetics of transfer reactions in condensed phase: The microscopic model of electron transfer reactions in disordered solid matrices

    Energy Technology Data Exchange (ETDEWEB)

    Basilevsky, M. V.; Mitina, E. A. [Photochemistry Center, Russian Academy of Sciences, 7a, Novatorov ul., Moscow (Russian Federation); Odinokov, A. V. [Photochemistry Center, Russian Academy of Sciences, 7a, Novatorov ul., Moscow (Russian Federation); National Research Nuclear University “MEPhI,” 31, Kashirskoye shosse, Moscow (Russian Federation); Titov, S. V. [Karpov Institute of Physical Chemistry, 3-1/12, Building 6, Obuha pereulok, Moscow (Russian Federation)

    2013-12-21

    The algorithm for a theoretical calculation of transfer reaction rates for light quantum particles (i.e., the electron and H-atom transfers) in non-polar solid matrices is formulated and justified. The mechanism postulated involves a local mode (an either intra- or inter-molecular one) serving as a mediator which accomplishes the energy exchange between the reacting high-frequency quantum mode and the phonon modes belonging to the environment. This approach uses as a background the Fermi golden rule beyond the usually applied spin-boson approximation. The dynamical treatment rests on the one-dimensional version of the standard quantum relaxation equation for the reduced density matrix, which describes the frequency fluctuation spectrum for the local mode under consideration. The temperature dependence of a reaction rate is controlled by the dimensionless parameter ξ{sub 0}=ℏω{sub 0}/k{sub B}T where ω{sub 0} is the frequency of the local mode and T is the temperature. The realization of the computational scheme is different for the high/intermediate (ξ{sub 0} < 1 − 3) and for low (ξ{sub 0}≫ 1) temperature ranges. For the first (quasi-classical) kinetic regime, the Redfield approximation to the solution of the relaxation equation proved to be sufficient and efficient in practical applications. The study of the essentially quantum-mechanical low-temperature kinetic regime in its asymptotic limit requires the implementation of the exact relaxation equation. The coherent mechanism providing a non-vanishing reaction rate has been revealed when T→ 0. An accurate computational methodology for the cross-over kinetic regime needs a further elaboration. The original model of the hopping mechanism for electronic conduction in photosensitive organic materials is considered, based on the above techniques. The electron transfer (ET) in active centers of such systems proceeds via local intra- and intermolecular modes. The active modes, as a rule, operate beyond the

  17. The kinetics of substitution reaction of oxydiacetate and thiodiacetate copper(II) complexes with 1,10-phenanthroline and 2,2’-bipyridine

    Indian Academy of Sciences (India)

    Joanna Pranczk; Dagmara Jacewicz; Dariusz Wyrzykowski; Aleksandra Tesmar; Lech Chmurzyński

    2015-10-01

    The kinetics of substitution reactions of the CuODA and CuTDA binary complexes (ODA = oxydiacetate, TDA = thiodiacetate) with 1,10-phenanthroline (phen) and 2,2’-bipyridine (bipy) were studied in aqueous and DMSO solutions. These reactions were monitored spectrometrically using the stopped-flow method in the UV range. The studies were carried out at three temperatures - 298.15, 303.15 and 308.15 K. The concentrations of the binary complexes were kept within the range of 0.2–0.5 mmol L−1, whereas the concentration of phen or bipy was constant = 0.05 mmol L−1. The values of the reaction rate constants were calculated based on the A → B reaction model. A linear relationship of the rate of the substitution reaction versus the concentration of the binary complex as well as temperature was observed. The impact of the type of the primary (ODA and TDA) and auxiliary ligands (phen and bipy) as well as the effect of solvent on the rate of substitution reaction have been discussed.

  18. Surfkin: A program to solve transient and steady state heterogeneous reaction kinetics

    Energy Technology Data Exchange (ETDEWEB)

    COLTRIN,MICHAEL E.; WIXOM,RYAN R.; DANDY,DAVID S.

    2000-05-01

    Heterogeneous chemical reactions occurring at a gas/surface interface are fundamental in a variety of important applications, such as combustion, catalysis, chemical vapor deposition and plasma processing. Detailed simulation of these processes may involve complex, coupled fluid flow, heat transfer, gas-phase chemistry, in addition to heterogeneous reaction chemistry. This report documents the Surfkin program, which simulates the kinetics of heterogeneous chemical reactions. The program is designed for use with the Chemkin and Surface Chemkin (heterogeneous chemistry) programs. It calculates time-dependent or steady state surface site fractions and bulk-species production/destruction rates. The surface temperature may be specified as a function of time to simulate a temperature-programmed desorption experiment, for example. This report serves as a user's manual for the program, explaining the required input and format of the output. Two detailed example problems are included to further illustrate the use of this program.

  19. Kinetic study of CO2 reaction with CaO by a modified random pore model

    Directory of Open Access Journals (Sweden)

    Nouri S.M.M.

    2016-03-01

    Full Text Available In this work, a modified random pore model was developed to study the kinetics of the carbonation reaction of CaO. Pore size distributions of the CaO pellets were measured by nitrogen adsorption and mercury porosimetry methods. The experiments were carried out in a thermogravimeter at different isothermal temperatures and CO2 partial pressures. A fractional concentration dependency function showed the best accuracy for predicting the intrinsic rate of reaction. The activation energy was determined as 11 kcal/mole between 550–700°C. The effect of product layer formation was also taken into account by using the variable product layer diffusivity. Also, the model was successfully predicted the natural lime carbonation reaction data extracted from the literature.

  20. Kinetic characteristics of continuous flow polymerase chain reaction chip: A numerical investigation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Continuous flow PCR (polymerase chain reaction) chip holds impressive advantages compared to micro chamber PCR chip. In order to have better understanding of kinetic characteristics of continuous flow PCR chip, a comprehensive mathematical model is presented in this paper, including melting, annealing and extension phases of a typical PCR process which has the essence of a convection-diffusion-reaction system. Using this model, we can simulate the PCR process in series of reaction cycles. Numerical results show that the average sample velocity plays a significant role in affecting the amplification efficiency. Also, appropriate combination of the PCR mixture is important for high-quality DNA amplification. Giving a large initial DNA concentration range, the continuous flow PCR scheme holds excellent real-time detection ability theoretically. The present numerical model bridges the temperature distribution to the real DNA amplification, and thereby is able to successfully predict continuous flow PCR properties which are important for the chip design.

  1. Reaction Rates and Kinetic Isotope Effects of H$_2$ + OH $\\rightarrow$ H$_2$O + H

    CERN Document Server

    Meisner, Jan

    2016-01-01

    We calculated reaction rate constants including atom tunneling of the reaction of dihydrogen with the hydroxy radical down to a temperature of 50 K. Instanton theory and canonical variational theory with microcanonical optimized multidimensional tunneling (CVT/$\\mu$OMT) were applied using a fitted potential energy surface [J. Chem. Phys. 138, 154301 (2013)]. All possible protium/deuterium isotopologues were considered. Atom tunneling increases at about 250 K (200 K for deuterium transfer). Even at 50 K the rate constants of all isotopologues remain in the interval $ 4 \\cdot 10^{-20}$ to $4 \\cdot 10^{-17}$ cm$^3$ s$^{-1}$ , demonstrating that even deuterated versions of the title reaction are possibly relevant to astrochemical processes in molecular clouds. The transferred hydrogen atom dominates the kinetic isotope effect at all temperatures.

  2. Copper(I) complexes with trispyrazolylmethane ligands: synthesis, characterization, and catalytic activity in cross-coupling reactions.

    Science.gov (United States)

    Haldón, Estela; Álvarez, Eleuterio; Nicasio, M Carmen; Pérez, Pedro J

    2012-08-01

    Three novel Cu(I) complexes bearing tris(pyrazolyl)methane ligands, Tpm(x), have been prepared from reactions of equimolar amounts of CuI and the ligands Tpm, (HC(pz)(3)), Tpm*, (HC(3,5-Me(2)-pz)(3)), and Tpm(Ms), (HC(3-Ms-pz)(3)). X-ray diffraction studies have shown that the Tpm and Tpm(Ms) derivatives exhibit a 2:1 Cu:ligand ratio, whereas the Tpm* complex is a mononuclear species in nature. The latter has been employed as a precatalyst in the arylation of amides and aromatic thiols with good activity. The synthesis of a Tpm*Cu(I)-phthalimidate, a feasible intermediate in this catalytic process, has also been performed. Low temperature (1)H NMR studies in CDCl(3) have indicated that this complex exists in solution as a mixture of two, neutral and ionic forms. Conductivity measurements have reinforced this proposal, the ionic form predominating in a very polar solvent such as DMSO. The reaction of Tpm*Cu(I)-phthalimidate with iodobenzene afforded the expected C-N coupling product in 76% yield accounting for its role as an intermediate in this transformation.

  3. A global reaction route mapping-based kinetic Monte Carlo algorithm

    Science.gov (United States)

    Mitchell, Izaac; Irle, Stephan; Page, Alister J.

    2016-07-01

    We propose a new on-the-fly kinetic Monte Carlo (KMC) method that is based on exhaustive potential energy surface searching carried out with the global reaction route mapping (GRRM) algorithm. Starting from any given equilibrium state, this GRRM-KMC algorithm performs a one-step GRRM search to identify all surrounding transition states. Intrinsic reaction coordinate pathways are then calculated to identify potential subsequent equilibrium states. Harmonic transition state theory is used to calculate rate constants for all potential pathways, before a standard KMC accept/reject selection is performed. The selected pathway is then used to propagate the system forward in time, which is calculated on the basis of 1st order kinetics. The GRRM-KMC algorithm is validated here in two challenging contexts: intramolecular proton transfer in malonaldehyde and surface carbon diffusion on an iron nanoparticle. We demonstrate that in both cases the GRRM-KMC method is capable of reproducing the 1st order kinetics observed during independent quantum chemical molecular dynamics simulations using the density-functional tight-binding potential.

  4. Kinetics and reaction mechanism of yeast alcohol dehydrogenase with long-chain primary alcohols.

    Science.gov (United States)

    Schöpp, W; Aurich, H

    1976-01-01

    Kinetic studies of yeast alcohol dehydrogenase with NAD+ and ethanol, hexanol or decanol as substrates invariably result in non-linear Lineweaver-Burk plots if the alcohol is the variable substrate. The kinetic coefficients determined from secondary plots are consistent with an 'equilibrium random-order' mechanism for extremely low alcohol concentrations and for all alcohols, the transformation of the ternary complexes being the rate-limiting step of the reaction. This mechanism also applies to long-chain substrates at high concentrations, whereas the rate of the ethanol-NAD+ reaction at high ethanol concentrations is determined by the dissociation of the enzyme-NADH complex. The dissociation constants for the enzyme-NAD+ complex and for the enzyme-alcohol complexes obtained from the kinetic quotients satisfactorily correspond to the dissociation constants obtained by use of other techniques. It is suggested that the non-linear curves may be attributed to a structural change in the enzyme itself, caused by the alcohol. PMID:183740

  5. A novel approach to modeling the reaction kinetics of tetracycline antibiotics with aqueous ozone.

    Science.gov (United States)

    Hopkins, Zachary R; Blaney, Lee

    2014-01-15

    Tetracycline antibiotics represent one of the most successful classes of pharmaceuticals and are extensively used around the world for human and veterinary health. Ozone-based processes have emerged as a selective water treatment process for many pharmaceuticals. The primary objective of this study was to determine the reaction kinetics for transformation of five tetracycline antibiotics (i.e., chlortetracycline, doxycycline, oxytetracycline, rolitetracycline, and tetracycline) by ozone across the pH2 to 9 range. The apparent second-order rate constant for tetracycline was on the order of 1-6 × 10(4) M(-1) s(-1) at low pH, and 0.6-2.0 × 10(6) M(-1) s(-1) at near neutral pH. The apparent second-order rate constants did not fit a conventional pKa-based model, presumably due to the complex acid/base speciation of tetracycline antibiotics. A model that considers the net charge on tetracycline molecules in solution provided a nice fit to experimental data for all five tetracyclines. The five tetracycline antibiotics demonstrated similar reaction kinetics with ozone, and a cumulative analysis of all kinetics data provides a baseline model for other tetracycline compounds. The ozone exposure required for complete transformation of tetracycline antibiotics (10(-5) M-s) is well below that achieved during ozone disinfection processes (10(-3) M-s), indicating that ozone is an effective treatment for tetracycline antibiotics.

  6. Kinetics of the gas phase reactions of nitrate radicals with dimethylphenols

    Science.gov (United States)

    Bardini, P.; Thuener, L.; Wenger, J.

    2003-04-01

    Aromatic hydrocarbons such as benzene, toluene and the xylenes (BTX) are amongst the most important categories of atmospheric pollutants. These chemicals are emitted into the atmosphere from fuel and solvent usage and have a large impact on air quality. In addition to being highly toxic primary pollutants, aromatic compounds possess high photochemical reactivity and make a major contribution to the formation of oxidants, such as ozone and nitrates, in the troposphere. The atmospheric degradation of the aromatics is mainly initiated by gas-phase reaction with hydroxyl radicals and produces a range of products including dimethylphenols. The secondary atmospheric chemistry of these very reactive oxygenated species is largely unknown. In order to assess the environmental impact of dimethylphenols it is necessary to understand the kinetics and mechanisms for their atmospheric degradation. Kinetics studies have previously been performed on the reaction of dimethylphenols with the major daytime oxidising species, the hydroxyl (OH) radical. The objective of this work is to investigate the reactions of dimethylphenols with the major night-time oxidising species, the nitrate radical. Experiments are carried out in custom-built large volume atmospheric simulation chambers using gas chromatography and mass spectrometry for chemical analysis. Rate coefficients for the reactions have been determined using the relative rate technique and used to calculate lifetimes for these species in the atmosphere. The results indicate that reaction with nitrate radicals is a major atmospheric loss process for dimethylphenols. Preliminary data concerning the products of these reactions and also the extent of secondary organic aerosol formation has also been obtained. This data is used to access the atmospheric impact of xylene oxidation products and to provide valuable information on their pollution forming potential.

  7. Low-temperature Kinetic Studies of OH Radical Reactions Relevant to Planetary Atmospheres

    Science.gov (United States)

    Townsend, T. M.; Antiñolo, M.; Ballesteros, B.; Jimenez, E.; Canosa, A.

    2011-05-01

    In the solar system, the temperature (T) of the atmosphere of giant planets or their satellites is only several tens of Kelvin (K). The temperature of the tropopause of Titan (satellite of Saturn) and the surface of Mars is 70 K and 210 K, respectively. In the Earth's atmosphere, T decreases from 298 K (surface) to 210 K close to the T-inversion region (tropopause). The principal oxidants in the Earth's lower atmosphere are ozone, the hydroxyl (OH) radical and hydrogen peroxide. A number of critical atmospheric chemical problems depend on the Earth's oxidising capacity, which is essentially the global burden of these oxidants. In the interstellar clouds and circumstellar envelopes, OH radicals have also been detected. As the chemistry of atmospheres is highly influenced by temperature, the knowledge of the T-dependence of the rate coefficients for OH-reactions (k) is the key to understanding the underlying molecular mechanisms. In general, these reactions take place on a short temporal scale. Therefore, a detection technique with high temporal resolution is required. Measurements of k at low temperatures can be achieved by maintaining a thermalised environment using either cryogenic cooling (T>200 K) or supersonic gas expansion with a Laval nozzle (several tens of K). The pulsed laser photolysis technique coupled with laser induced fluorescence detection has been widely used in our laboratory to determine the rate coefficients of OH-reactions with different volatile organic compounds, such as alcohols (1), saturated and unsaturated aliphatic aldehydes (2), linear ketones (3), as a function of temperature (260 350 K). An experimental system based on the CRESU (Cinetique de Reaction en Ecoulement Supersonique Uniforme or Reaction Kinetics in a Uniform Supersonic Flow) technique is currently under construction. This technique will allow the performance of kinetic studies of OH-reactions of astrophysical interest at temperatures lower than 200 K.

  8. Kinetics of Reaction Between Tc(Ⅶ) and Monomethylhydrazine or Dimethylhydroxylamine in Nitric Acid Medium Containing Plutonium

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The chemical reaction kinetics research of Tc(Ⅶ) with monomethylhydrazine or dimethylhydroxy-lamine in nitric acid medium demonstrated that Tc(Ⅶ) hardly reacts with the salt-free reagents during the

  9. Kinetic studies on the Rhizomucor miehei lipase catalyzed esterification reaction of oleic acid with 1-butanol in a biphasic system

    NARCIS (Netherlands)

    Kraai, G.N.; Winkelman, J.G.M.; de Vries, Johannes; Heeres, H.J.

    2008-01-01

    The kinetics of the esterification of oleic acid with 1 -butanol catalyzed by free Rhizomucor miehei lipase in a biphasic system was studied in a batch reactor. The reaction appeared to proceed via a Ping Pong bi-bi mechanism with I -butanol inhibition. The kinetic constants of the model were

  10. Kinetic studies on the Rhizomucor miehei lipase catalyzed esterification reaction of oleic acid with 1-butanol in a biphasic system

    NARCIS (Netherlands)

    Kraai, G.N.; Winkelman, J.G.M.; de Vries, Johannes; Heeres, H.J.

    2008-01-01

    The kinetics of the esterification of oleic acid with 1 -butanol catalyzed by free Rhizomucor miehei lipase in a biphasic system was studied in a batch reactor. The reaction appeared to proceed via a Ping Pong bi-bi mechanism with I -butanol inhibition. The kinetic constants of the model were determ

  11. Kinetic stabilization against the oxidation reaction induced by a silaalkane cage in a thiophene-bridged molecular gyroscope.

    Science.gov (United States)

    Setaka, Wataru; Ohmizu, Soichiro; Kira, Mitsuo

    2014-02-01

    Macrocage molecules with a bridged rotor have been synthesized as molecular gyroscopes. The kinetics of the oxidation reaction of the thiophene-bridged molecular gyroscope, whose thiophene ring was bridged inside a silaalkane cage, was investigated. A remarkable kinetic stabilization against the oxidation of the thiophene moiety induced by the molecular cage framework was observed.

  12. Characterization of excited-state reactions with instant spectra of fluorescence kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Tomin, Vladimir I., E-mail: tomin@apsl.edu.pl; Ushakou, Dzmitryi V.

    2015-10-15

    Comprehensible knowledge of the excited-state proton transfer processes in organic compounds is overwhelmingly important not only for physics, but also chemistry and Life Sciences, since they play a key role in main processes of photosynthesis and functioning of biological organisms. Moreover compounds with Excited-State Intramolecular Proton Transfer (ESIPT) are in the focus of the interest of scientists throughout the world, because dual fluorescence spectra of such objects corresponding to two forms of molecular structure (normal and photoproduct) are very sensitive to characteristics of molecular microenvironment. This property allows to use such substances as fluorescent probes for diverse applications in chemistry and Life Sciences. But at the same time studying of proton transfer processes is not simple, because this process is characterized by extremely fast times (on picoseconds time scale and less order) and very often contribution of reverse reactions is essentially complicates an interpretation of observed properties of dual fluorescence. Hence, understanding of a role of reversible reactions is crucial for a comprehensive description of all processes accompanying excited state reactions. We discuss new approach for treatment ESIPT reaction on the basis of experimentally measured instant spectra of dual fluorescence and temporal behavior of ratiometric signal of normal to tautomer form intensities. Simple analytical expressions show in transparent way how to distinguish a degree of reverse reaction contribution to ratiometric signal. A validation of the approach under consideration is fulfilled with two different flavonols – 3-hydroxyflavone and 4′-(Dimethylamino)-3-hydroxyflavone – representing two extreme cases in affecting reversible reaction on dual emission. A comparing of new approach and traditional method when we analyze kinetics of separate the N* and T* fluorescence bands decays, has been carried out. - Highlights: • The excited

  13. Reaction kinetic model for a recent co-produced water treatment technology

    Institute of Scientific and Technical Information of China (English)

    Abdulwahab M Ali Tuwati; Maohong Fan; Mark A. Bentley

    2011-01-01

    With the increasing demand for fossil based energy and implementation of progressively strict environmental pollution control standards, treatment of a large amount of co-produced waters (CPWs) from fossil based energy production has become increasingly important.Removal of bicarbonate with H2SO4 has been recently studied as a simple and cost-effective method to decrease the alkalinity of CPWs.The present work investigates the kinetics of the reaction between H2SO4 and NaHCO3, which could provide the base for scaling-up the CPW treatment technology.Based on the measured quantity change of the CO2 gas generated from the reaction between H2SO4 and NaHCO3 with time under specified initial reaction conditions, the reaction orders with respect to H2SO4 and NaHCO3 were determined.Experiments were also conducted within the temperature of 15-30℃ to find various global rate coefficients of the reaction to calculate the activation energy and the pre-exponential factor of the empirical Arrhenius form of the bicarbonate removal reaction,which are 197.7 kJ/mol and 3.13× 1034 (mol-3.7×L3.7×sec-1), respectively.

  14. Removal of Hg~0 with sodium chlorite solution and mass transfer reaction kinetics

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The absorption behavior of Hg0 was studied experimentally by using sodium chlorite solution(NaClO2) as the absorbent in a bubble reactor.Primary influencing factors on removal efficiency of Hg0 such as NaClO2 concentration,pH,reaction temperature and the concentration of Hg0 were investigated.The results indicated that 72.91% of Hg0 removal efficiency could be achieved in acidic NaClO2 solution.The removal mechanism of Hg0 was proposed by analyzing of Hg2+ concentration in ab-sorption solution after reaction and comparing the electrode potentials between NaClO2 species and Hg2+/Hg0.The experimental results of mass transfer-reaction kinetics on oxidation of Hg0 by NaClO2 solution showed that with the increase of NaClO2 concentration and the decrease of pH value,the enhancement factor(E) and ratio of KG(Hg0)/kG(Hg0) increased and the liquid phase mass transfer resistance decreased,which is benefit to the mass transfer adsorption reaction.Although the increase of reaction temperature could improve the enhancement factor(E),but the ratio of KG(Hg0)/kG(Hg0) decreased;as a result,the liquid phase mass transfer resistance increased,therefore,the reaction rate for removal of Hg0 decreased.

  15. Dynamics and Kinetics Study of "In-Water" Chemical Reactions by Enhanced Sampling of Reactive Trajectories.

    Science.gov (United States)

    Zhang, Jun; Yang, Y Isaac; Yang, Lijiang; Gao, Yi Qin

    2015-11-12

    High potential energy barriers and engagement of solvent coordinates set challenges for in silico studies of chemical reactions, and one is quite commonly limited to study reactions along predefined reaction coordinate(s). A systematic protocol, QM/MM MD simulations using enhanced sampling of reactive trajectories (ESoRT), is established to quantitatively study chemical transitions in complex systems. A number of trajectories for Claisen rearrangement in water and toluene were collected and analyzed, respectively. Evidence was found that the bond making and breaking during this reaction are concerted processes in solutions, preferentially through a chairlike configuration. Water plays an important dynamic role that helps stabilize the transition sate, and the dipole-dipole interaction between water and the solute also lowers the transition barrier. The calculated rate coefficient is consistent with the experimental measurement. Compared with water, the reaction pathway in toluene is "narrower" and the reaction rate is slower by almost three orders of magnitude due to the absence of proper interactions to stabilize the transition state. This study suggests that the "in-water" nature of the Claisen rearrangement in aqueous solution influences its thermodynamics, kinetics, as well as dynamics.

  16. Kinetics and activation thermodynamics of methane monooxygenase compound Q formation and reaction with substrates.

    Science.gov (United States)

    Brazeau, B J; Lipscomb, J D

    2000-11-07

    The transient kinetics of formation and decay of the reaction cycle intermediates of the Methylosinus trichosporium OB3b methane monooxygenase (MMO) catalytic cycle are studied as a function of temperature and substrate type and deuteration. Kinetic evidence is presented for the existence of three intermediates termed compounds O, P, and P forming after the addition of O(2) to diferrous MMO hydroxylase (H(r)) and before the formation of the reactive intermediate compound Q. The Arrhenius plots for these reactions are linear and independent of substrate concentration and type, showing that substrate does not participate directly in the oxygen activation phase of the catalytic cycle. Analysis of the transient kinetic data revealed only small changes relative to the weak optical spectrum of H(r) for any of these intermediates. In contrast, large changes in the 430 nm spectral region are associated with the formation of Q. The decay reaction of Q exhibits an apparent first-order concentration dependence for all substrates tested, and the observed rate constant depends on the substrate type. The kinetics of the decay reaction of Q yield a nonlinear Arrhenius plot when methane is the substrate, and the rates in both segments of the plot increase linearly with methane concentration. Together these observations suggest that at least two reactions with a methane concentration dependence, and perhaps two methane molecules, are involved in the decay process. When CD(4) is used as the substrate, a large isotope effect and a linear Arrhenius plot are observed. Analogous plots for all other MMO substrates tested (e.g., ethane) are linear, and no isotope effect for deuterated analogues is observed. This demonstrates that a step other than C-H bond breaking is rate limiting for alternative MMO substrates. A two step Q decay mechanism is proposed that provides an explanation for the lack of an isotope effect for alternative MMO substrates and the fact that rate of oxidation of

  17. Kinetic, structural, and reaction engineering studies of inorganic-organic sol-gel copolymers

    Science.gov (United States)

    Rankin, Stephen Edward

    stress at the free surface---problems which may be addressed with design calculations. Finally, this thesis extends quantitative kinetic modeling to copolymerization of pairs of alkoxysilanes. More kinetic parameters must be determined for these systems. To do so, the extent of copolymerization is determined indirectly by the dependence on composition of reaction rates in a semibatch reactor. These copolymerization models allow optimization of copolymer homogeneity and molecular structure by reactor design.

  18. Characterization of endothelial nitric-oxide synthase and its reaction with ligand by electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Tsai, A L; Berka, V; Chen, P F; Palmer, G

    1996-12-20

    Electron paramagnetic resonance was used to characterize the heme structure of resting endothelial nitric-oxide synthase (eNOS), eNOS devoid of its myristoylation site (G2A mutant), and their heme complexes formed with 16 different ligands. Resting eNOS and the G2A mutant have a mixture of low spin and high spin P450-heme with widely different relaxation behavior and a stable flavin semiquinone radical identified by EPR as a neutral radical. This flavin radical showed efficient electron spin relaxation as a consequence of dipolar interaction with the heme center; P1/2 is independent of Ca2+-calmodulin and tetrahydrobiopterin. Seven of the 16 ligands led to the formation of low spin heme complexes. In order of increasing rhombicity they are pyrimidine, pyridine, thiazole, L-lysine, cyanide, imidazole, and 4-methylimidazole. These seven low spin eNOS complexes fell in a region between the P and O zones on the "truth diagram" originally derived by Blumberg and Peisach (Blumberg, W. E., and Peisach, J. (1971) in Probes and Structure and Function of Macromolecules and Membranes (Chance, B., Yonetani, T., and Mildvan, A. S., eds) Vol. 2, pp. 215-229, Academic Press, New York) and had significant overlap with complexes of chloroperoxidase. A re-definition of the P and O zones is proposed. As eNOS and chloroperoxidase lie closer than do eNOS and P450cam on the truth diagram, it implies that the distal heme environment in eNOS resembles chloroperoxidase more than P450cam. In contrast, 4-ethylpyridine, 4-methylpyrimidine, acetylguanidine, ethylguanidine, 2-aminothiazole, 2amino-4,5-dimethylthiazole, L-histidine, and 7-nitroindazole resulted in high spin heme complexes of eNOS, similar to that observed with L-arginine. This contrasting EPR behavior caused by families of ligands such as imidazole/L-histidine or thiazole/2-aminothiazole confirms the conclusion derived from parallel optical and kinetic studies. The ligands resulting in the low spin complexes bind directly to the

  19. Correction: Reaction mechanisms in ionic liquids: the kinetics and mechanism of the reaction of O,O-diethyl (2,4-dinitrophenyl) phosphate triester with secondary alicyclic amines.

    Science.gov (United States)

    Pavez, Paulina; Millán, Daniela; Morales, Javiera; Rojas, Mabel; Céspedes, Daniel; Santos, José G

    2016-01-28

    Correction for 'Reaction mechanisms in ionic liquids: the kinetics and mechanism of the reaction of O,O-diethyl (2,4-dinitrophenyl) phosphate triester with secondary alicyclic amines' by Paulina Pavez et al., Org. Biomol. Chem., 2016, DOI: 10.1039/c5ob02128f.

  20. Kinetic studies of overlapping pyrolysis reactions in industrial waste activated sludge.

    Science.gov (United States)

    Yang, Xiaoyi; Jiang, Zhenpeng

    2009-07-01

    A sludge pyrolytic kinetics model was established in this study. Two types of sewage sludge from different industrial wastewater treatment plant produced different DTG (Derivative Thermogravimetry) shapes with an overlapping pattern. The multi-heating rate method was conducted to evaluate the kinetics for obtaining reasonable pyrolysis mechanisms and DTG curves were divided into several peaks using the Lorentz fitting method based on the composition of the sludge and the desire for precision. The peaks formed corresponded to the pyrolysis reactions of volatile matter, microbe cells, proteins, inorganic substances and char respectively, which can be reasonably explained based on the results from the flue gas analyzer and the chemical analysis. Two types of sewage sludge were found to have similar pyrolysis mechanisms. Reasonable reasons were also given to explain the distortion and lag observed in the DTG curves and pyrolysis mechanism.

  1. HTP kinetics studies on isolated elementary combustion reactions over wide temperature ranges

    Energy Technology Data Exchange (ETDEWEB)

    Fontijn, A.; Adusei, G.Y.; Hranisavlevic, J.; Bajaj, P.N. [Rensselaer Polytechnic Institute, Troy, NY (United States)

    1993-12-01

    The goals of this project are to provide accurate data on the temperature dependence of the kinetics of elementary combustion reactions, (i) for use by combustion modelers, and (ii) to gain a better fundamental understanding of, and hence predictive ability for, the chemistry involved. Experimental measurements are made mainly by using the pseudo-static HTP (high-temperature photochemistry) technique. While continuing rate coefficient measurements, further aspects of kinetics research are being explored. Thus, starting from the data obtained, a method for predicting the temperature dependence of rate coefficients of oxygen-atom olefin experiment and confirms the underlying mechanistic assumptions. Mechanistic information of another sort, i.e. by product analysis, has recently become accessible with the inauguration of our heated flow tube mass spectrometer facility; early results are reported here. HTP experiments designed to lead to measurements of product channels by resonance fluorescence have started.

  2. Investigation of the effect of organic solvents on kinetic parameters in metal catalyzed reactions

    Directory of Open Access Journals (Sweden)

    GORDANA A. MILOVANOVIC

    2000-03-01

    Full Text Available The effects of acetone and acetonitrile on the kinetic parameters of azorubin S oxidation by hydrogen peroxide catalyzed by manganese(II, pyrocatechol violet oxidation by hydrogen peroxide catalyzed by copper(II, and carminic acid oxidation by hydrogen peroxide catalyzed by copper(II and activated by bifenox, were examined. It was established that the examined solvents exhibit various effects on the kinetic parameters of the above said reactions. In a11 instances a change in the solvent concentration effects both the anthalpy and the entropy contributions to the free activation energy during the transition of the system into the active state, as well as the constant of the active complex formed at this point.

  3. Stability analysis of a PFTR reactor for a first order kinetic reaction using the Lyapunov functionals

    Directory of Open Access Journals (Sweden)

    Héctor Armando Durán Peralta

    2010-04-01

    Full Text Available The stability of reactors having encompassing concentration and temperature parameters, such as continuous flow stirred tank reactors (CSTR, has been widely explored in the literature; however, there are few papers about the stability of tubular reactor having distributed spatial concentration and temperature parameters such as the plow flow tubular reactor (PFTR. This paper analyses the stability of isothermal and non-isothermal PFTR reactors using the Lyapunov functional method. The first order kinetic reaction was selected because one of this paper’s oblectives was to apply Lyapunov functionals to stability analysis of distributed parameter reactors (technique used in electrical engineering systems’ stability analysis. The stability analysis revealed asymptotically stable tempe- rature and concentration profiles for isothermal PFTR, non-isothermal PFTR with kinetic constant independent of temperature and adiabatic non-isothermal PFTR. Analysis revealed an asymptotically stability region for the heat exchange reactor and an uncertain region where it may have oscillations.

  4. Thermodynamic and Kinetic Response of Microbial Reactions to High CO2

    Science.gov (United States)

    Jin, Qusheng; Kirk, Matthew F.

    2016-01-01

    Geological carbon sequestration captures CO2 from industrial sources and stores the CO2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO2 concentration. This study uses biogeochemical modeling to explore the influence of CO2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses. PMID:27909425

  5. Study on the reaction kinetics in pulsed RF discharges under RIE conditions

    Science.gov (United States)

    Baggerman, Jacobus Antonius Gijsbertus

    1993-10-01

    In the present-day electronics industry, reactive ion etching (RIE) is a technique widely used to etch thin films anisotropically. The subject of this thesis is the determination of (reaction) kinetics of rf discharges under RIE conditions. Special attention is given to determining quantitatively the rise and decay of densities and energy distributions of plasma particles. A production-type RIE reactor was used for all experiments. In chapter 2 the ion density is determined by LIF spectroscopy in a model (N2) discharge under RIE conditions. Chapter 3 concerns energy-flux density measurements on the various parts of the etch reactor in contact with a 30 Pa nitrogen rf discharge. Chapter 4 concerns the etch mechanism of various organic polymers in oxygen and argon of discharges under RIE conditions studied by performing energy-flux density and ion-flux density measurements on the powered electrode. The polymers of interest are a novolac-based photoresist, polyimide and polymethylmethacrylate (PMMA). The density and the reaction kinetics of ground-state methylidyne (CH radical) are determined by LIF in order to determine whether small molecules in addition to atoms are sputtered from the polymer surface. In chapter 5 a model is set up in which diffusion of CH from the substrate into the gas phase and chemical reactions in the gas phase are taken into account.

  6. Understanding the reaction of nuclear graphite with molecular oxygen: Kinetics, transport, and structural evolution

    Science.gov (United States)

    Kane, Joshua J.; Contescu, Cristian I.; Smith, Rebecca E.; Strydom, Gerhard; Windes, William E.

    2017-09-01

    For the next generation of nuclear reactors, HTGRs specifically, an unlikely air ingress warrants inclusion in the license applications of many international regulators. Much research on oxidation rates of various graphite grades under a number of conditions has been undertaken to address such an event. However, consequences to the reactor result from the microstructural changes to the graphite rather than directly from oxidation. The microstructure is inherent to a graphite's properties and ultimately degradation to the graphite's performance must be determined to establish the safety of reactor design. To understand the oxidation induced microstructural change and its corresponding impact on performance, a thorough understanding of the reaction system is needed. This article provides a thorough review of the graphite-molecular oxygen reaction in terms of kinetics, mass and energy transport, and structural evolution: all three play a significant role in the observed rate of graphite oxidation. These provide the foundations of a microstructurally informed model for the graphite-molecular oxygen reaction system, a model kinetically independent of graphite grade, and capable of describing both the observed and local oxidation rates under a wide range of conditions applicable to air-ingress.

  7. Mass action realizations of reaction kinetic system models on various time scales

    Energy Technology Data Exchange (ETDEWEB)

    Hangos, K M; Szederkenyi, G, E-mail: hangos@scl.sztaki.hu, E-mail: szeder@scl.sztaki.hu [Process Control Research Group, Computer and Automation Reseach Institute, Kende u. 13-17, H-1111 Budapest (Hungary)

    2011-01-01

    Complex chemical reaction networks often exhibit different dynamic behaviour on different time scales. A combined approach is proposed in this work for determining physically meaningful mass action realizations of complex chemical reaction networks that describe its dynamic behaviour on different time scales. This is achieved by appropriately reducing the detailed overall mass action kinetic scheme using quasi steady state assumptions fit to the particular time scale, and then searching for an optimal realization using mixed integer linear programing. Furthermore, the relationship between the properties (reversibility, deficiency, stability) of the obtained realizations of the same system on different time scales are also investigated and related to the same properties of the detailed overall model. It is shown that the reduced models obtained by quasi steady state assumptions may show exotic nonlinear behaviour, such as oscillations, when the original detailed is globally asymptotically stable. The proposed methods are illustrated by using a simple Michaelis-Menten type reaction kinetic example. The simplified versions of the well known Brusselator model have also been investigated and presented as a case study.

  8. Kinetics and mechanism of the reaction of sodium azide with hypochlorite in aqueous solution.

    Science.gov (United States)

    Betterton, Eric A; Lowry, Joe; Ingamells, Robin; Venner, Brad

    2010-10-15

    Production of toxic sodium azide (NaN(3)) surged worldwide over the past two decades to meet the demand for automobile air bag inflator propellant. Industrial activity and the return of millions of inflators to automobile recycling facilities are leading to increasing release of NaN(3) to the environment so there is considerable interest in learning more about its environmental fate. Water soluble NaN(3) could conceivably be found in drinking water supplies so here we describe the kinetics and mechanism of the reaction of azide with hypochlorite, which is often used in water treatment plants. The reaction stoichiometry is: HOCl + 2N(3)(-) = 3N(2) + Cl(-) + OH(-), and proceeds by a key intermediate chlorine azide, ClN(3), which subsequently decomposes by reaction with a second azide molecule in the rate determining step: ClN(3) + N(3)(-) --> 3N(2) + Cl(-) (k = 0.52+/-0.04 M(-1) s(-1), 25 degrees C, mu = 0.1 M). We estimate that the half-life of azide would be approximately 15 s at the point of chlorination in a water treatment plant and approximately 24 days at some point downstream where only residual chlorine remains. Hypochlorite is not recommended for treatment of concentrated azide waste due to formation of the toxic chlorine azide intermediate under acidic conditions and the slow kinetics under basic conditions.

  9. Thermodynamic and kinetic response of microbial reactions to high CO2

    Directory of Open Access Journals (Sweden)

    Qusheng Jin

    2016-11-01

    Full Text Available Geological carbon sequestration captures CO2 from industrial sources and stores the CO2 in subsurface reservoirs, a viable strategy for mitigating global climate change. In assessing the environmental impact of the strategy, a key question is how microbial reactions respond to the elevated CO2 concentration. This study uses biogeochemical modeling to explore the influence of CO2 on the thermodynamics and kinetics of common microbial reactions in subsurface environments, including syntrophic oxidation, iron reduction, sulfate reduction, and methanogenesis. The results show that increasing CO2 levels decreases groundwater pH and modulates chemical speciation of weak acids in groundwater, which in turn affect microbial reactions in different ways and to different extents. Specifically, a thermodynamic analysis shows that increasing CO2 partial pressure lowers the energy available from syntrophic oxidation and acetoclastic methanogenesis, but raises the available energy of microbial iron reduction, hydrogenotrophic sulfate reduction and methanogenesis. Kinetic modeling suggests that high CO2 has the potential of inhibiting microbial sulfate reduction while promoting iron reduction. These results are consistent with the observations of previous laboratory and field studies, and highlight the complexity in microbiological responses to elevated CO2 abundance, and the potential power of biogeochemical modeling in evaluating and quantifying these responses.

  10. Pressure-dependent kinetics of initial reactions in iso-octane pyrolysis.

    Science.gov (United States)

    Ning, HongBo; Gong, ChunMing; Li, ZeRong; Li, XiangYuan

    2015-05-07

    This study focuses on the studies of the main pressure-dependent reaction types of iso-octane (iso-C8H18) pyrolysis, including initial C-C bond fission of iso-octane, isomerization, and β-scission reactions of the alkyl radicals produced by the C-C bond fission of iso-octane. For the C-C bond fission of iso-octane, the minimum energy potentials are calculated at the CASPT2(2e,2o)/6-31+G(d,p)//CAS(2e,2o)/6-31+G(d,p) level of theory. For the isomerization and the β-scission reactions of the alkyl radicals, the optimization of the geometries and the vibrational frequencies of the reactants, transition states, and products are performed at the B3LYP/CBSB7 level, and their single point energies are calculated by using the composite CBS-QB3 method. Variable reaction coordinate transition state theory (VRC-TST) is used for the high-pressure limit rate constant calculation and Rice-Ramsperger-Kassel-Marcus/master equation (RRKM/ME) is used to calculate the pressure-dependent rate constants of these channels with pressure varying from 0.01-100 atm. The rate constants obtained in this work are in good agreement with those available from literatures. We have updated the rate constants and thermodynamic parameters for species involved in these reactions into a current chemical kinetic mechanism and also have improved the concentration profiles of main products such as C3H6 and C4H6 in the shock tube pyrolysis of iso-octane. The results of this study provide insight into the pyrolysis of iso-octane and will be helpful in the future development of branched paraffin kinetic mechanisms.

  11. Reactions of the CN Radical with Benzene and Toluene: Product Detection and Low-Temperature Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Trevitt, Adam J.; Goulay, Fabien; Taatjes, Craig A.; Osborn, David L.; Leone, Stephen R.

    2009-12-23

    Low temperature rate coefficients are measured for the CN + benzene and CN + toluene reactions using the pulsed Laval nozzle expansion technique coupled with laser-induced fluorescence detection. The CN + benzene reaction rate coefficient at 105, 165 and 295 K is found to be relatively constant over this temperature range, 3.9 - 4.9 x 10-10 cm3 molecule-1 s-1. These rapid kinetics, along with the observed negligible temperature dependence, are consistent with a barrierless reaction entrance channel and reaction efficiencies approaching unity. The CN + toluene reaction is measured to have a slower rate coefficient of 1.3 x 10-10 cm3 molecule-1 s-1 at 105 K. At room temperature, non-exponential decay profiles are observed for this reaction that may suggest significant back-dissociation of intermediate complexes. In separate experiments, the products of these reactions are probed at room temperature using synchrotron VUV photoionization mass spectrometry. For CN + benzene, cyanobenzene (C6H5CN) is the only product recorded with no detectable evidence for a C6H5 + HCN product channel. In the case of CN + toluene, cyanotoluene (NCC6H4CH3) constitutes the only detected product. It is not possible to differentiate among the ortho, meta and para isomers of cyanotoluene because of their similar ionization energies and the ~;; 40 meV photon energy resolution of the experiment. There is no significant detection of benzyl radicals (C6H5CH2) that would suggest a H-abstraction or a HCN elimination channel is prominent at these conditions. As both reactions are measured to be rapid at 105 K, appearing to have barrierless entrance channels, it follows that they will proceed efficiently at the temperatures of Saturn?s moon Titan (~;;100 K) and are also likely to proceed at the temperature of interstellar clouds (10-20 K).

  12. Thermochemical Properties and Non-isothermal Decomposition Reaction Kinetics of N-Guanylurea Dinitramide (GUDN)

    Institute of Scientific and Technical Information of China (English)

    ZHAO, Feng-Qi(赵凤起); CHEN, Pei(陈沛); YUAN, Hong-An(袁宏安); GAO, Sheng-Li(高胜利); HU, Rong-Zu(胡荣祖); SHI, Qi-Zhen(史启祯)

    2004-01-01

    The constant-volume combustion energy,(△) cU(GUDN, s, 298.15 K), enthalpy of solution in acetic ether,(△)solHm(I) and kinetic behavior of the exothermic decomposition reaction of the title compound (GUDN) are determined by a precise rotating bomb calorimeter, a Calvet microcalorimeter and DSC, respectively. Its standard enthalpy of combustion,(△)cHm(I) (GUDN, s, 298.15 K), standard enthalpy of formation,(△)fHm(I) (GUDN, s, 298.15 K) and kinetic parameters of the exothermic main decomposition reaction in a temperature-programmed mode [the apparent activation energy (Ea) and pre-exponential factor (A)] are calculated. The values of (△)cU(GUDN, s, 298.15 K), (△)cHm(I)(GUDN, s, 298.15 K),(△)fHm(I) (GUDN, s, 298.15 K) and (△)solHm(I)of GUDN are (-7068.64±2.37) J·g-1, (-1467.66±0.50) kJ·mol-1, (-319.76±0.58) kJ·mol-1 and (165.737±0.013) kJ·mol-1, respectively. The kinetic model function in integral form and the value of and A of the exothermic main decomposition reaction of GUDN are 220.20 kJ·mol-1 and 1021.18 s-1, respectively. The critical temperature of thermal explosion of GUDN is 217.6 ℃

  13. Synthesis of Dendrimer-supported Chiral Bis(oxazoline) Ligands and Their Applications in Aldol Reaction via Aqueous Media

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-min; YANG Bai-yuan; ZHANG Yi-li; QU Xue; FAN Qing-hua

    2004-01-01

    Chiral bis(oxazoline) ligands have been applied in many enatioselective reactions.Recently, studies of the immobilization of bis(oxazoline) on both soluble and insoluble supports have been of great interest. Among the different methods to anchor the homogeneous catadysts, a soluble, polymer-supported catalyst usually achieves higher stereoselectivity and activity because the catalysis can be separated and recycled via simple methods such as solvent precipitation.Dendrimers are highly branched macromolecules having precisely defined molecular structures with nano-scale size. Compared with soluble polymer supports, the dendrimer architecture may offer better control of the deposition of the catalytic species in soluble polymer-based catalysts. Therefore,such catalysts may fill the gap between homogeneous and heterogeneous catalysis and combine the advantages of both.In this paper, we report the synthesis of bis(oxazoline)-centered dendrimers and their application in Mukaiyama aldol reaction in aqueous media. It was found that the dendritic chiral bis(oxazolines)showed the similar reactivities and enantioselectivities in the asymmetric copper-catalyzed aldol reaction in aqueous media in comparison to the corresponding small molecular ligands.

  14. Binding equilibrium and kinetics of membrane-anchored receptors and ligands in cell adhesion: Insights from computational model systems and theory.

    Science.gov (United States)

    Weikl, Thomas R; Hu, Jinglei; Xu, Guang-Kui; Lipowsky, Reinhard

    2016-09-02

    The adhesion of cell membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. In this article, we review recent results from simulations and theory that lead to novel insights on how the binding equilibrium and kinetics of these proteins is affected by the membranes and by the membrane anchoring and molecular properties of the proteins. Simulations and theory both indicate that the binding equilibrium constant [Formula: see text] and the on- and off-rate constants of anchored receptors and ligands in their 2-dimensional (2D) membrane environment strongly depend on the membrane roughness from thermally excited shape fluctuations on nanoscales. Recent theory corroborated by simulations provides a general relation between [Formula: see text] and the binding constant [Formula: see text] of soluble variants of the receptors and ligands that lack the membrane anchors and are free to diffuse in 3 dimensions (3D).

  15. Use of molecular beams for kinetic measurements of chemical reactions on solid surfaces

    Science.gov (United States)

    Zaera, Francisco

    2017-05-01

    In this review we survey the contributions that molecular beam experiments have provided to our understanding of the dynamics and kinetics of chemical interactions of gas molecules with solid surfaces. First, we describe the experimental details of the different instrumental setups and approaches available for the study of these systems under the ultrahigh vacuum conditions and with the model planar surfaces often used in modern surface-science experiments. Next, a discussion is provided of the most important fundamental aspects of the dynamics of chemical adsorption that have been elucidated with the help of molecular beam experiments, which include the development of potential energy surfaces, the determination of the different channels for energy exchange between the incoming molecules and the surface, the identification of adsorption precursor states, the understanding of dissociative chemisorption, the determination of the contributions of corrugation, steps, and other structural details of the surface to the adsorption process, the effect to molecular steering, the identification of avenues for assisting adsorption, and the molecular details associated with the kinetics of the uptake of adsorbates as a function of coverage. We follow with a summary of the work directed at the determination of kinetic parameters and mechanistic details of surface reactions associated with catalysis, mostly those promoted by late transition metals. This discussion we initiate with an overview of what has been learned about simple bimolecular reactions such as the oxidation of CO and H2 with O2 and the reaction of CO with NO, and continue with the review of the studies of more complex systems such as the oxidation of alcohols, the conversion of organic acids, the hydrogenation and isomerization of olefins, and the oxidative activation of alkanes under conditions of short contact times. Sections 6 and 7 of this review deal with the advances made in the use of molecular beams with

  16. Struvite Precipitation and Phosphorous Removal from Urine Synthetic Solution: Reaction Kinetic Study

    Directory of Open Access Journals (Sweden)

    Marwa Saied Shalaby

    2015-03-01

    Full Text Available Phosphorus, like oil, is a non-renewable resource that must be harvested from finite resources in the earth’s crust. An essential element for life, phosphorus is becoming increasingly scarce, contaminated, and difficult to extract. Struvite or magnesium ammonium phosphate (MgNH4PO4.6H2O is a white, crystalline phosphate mineral that can be used as a bio-available fertilizer. The main objective of this research is to indicate the most important operating parameters affecting struvite precipitation by means of chemical reaction kinetics. The present study explores struvite precipitation by chemical method under different starting molar ratios, pH and SSR. It is shown that an increase of starting Mg: PO4: NH4 with respect to magnesium (1.6:1:1 strongly influences the growth rate of struvite and so the efficiency of the phosphate removal. This was attributed to the effect of magnesium on the struvite solubility product and on the reached supersaturation Super Saturation Ratio at optimum starting molar ratio and pH. It was also shown, by using chemical precipitation method that the determined Super Saturation Ratio (SSR values of struvite, at 8, 8.5, 9, 9.5 and 10 are 1.314, 4.29, 8.89, 9.87 and 14.89 respectively are close to those presented in the literature for different origins of wastewater streams. The results show that SSR , pH, and starting molar ratio strongly influences the kinetics of precipitation and so phosphorous removal to reach 93% removal percent , 5.95 mg/lit as a minimum PO4 remained in solution, and 7.9 gm precipitated struvite from feed synthetic solution of 750 ml . The product was subjected to chemical analysis by means of EDIX-FTIR, SEM and XRD showing conformity with published literature. First-order kinetics was found to be sufficient to describe the rate data. The rates increased with increasing pH and so SSR and the apparent rate constants for the reaction were determined. © 2015 BCREC UNDIP. All rights reserved

  17. Kinetics of the Esterification Reaction Catalyzed by Lipase in W/O Microemulsions of Alkyl Polyglucoside

    Institute of Scientific and Technical Information of China (English)

    Jin Ling CHAI; Shou Qing WANG; Gan Zuo LI; Qing XU; Yan Hong GAO

    2004-01-01

    A novel kinetic mechanism of esterification reaction of 1-hexanoic acid with 1-butanol, catalyzed by lipase, was studied in water-in-oil microemulsions. The microemulsions were formed by alkyl polyglucoside C10G1.54 /1-butanol / cyclohexane/phosphate buffer solution. The result shows that when the ratio of mol concentration of 1-butanol to 1-hexanoic acid is about 3.0, the initial rate V0 get the maximum values. This phenomenon was explained by the modified fishlike phase diagrams.

  18. Understanding kinetic solvent effects on hydrogen abstraction reactions from carbon by the cumyloxyl radical.

    Science.gov (United States)

    Bietti, Massimo; Martella, Roberto; Salamone, Michela

    2011-11-18

    A kinetic study of the hydrogen abstraction reactions from tetrahydrofuran (THF) and cyclohexane (CHX) by the cumyloxyl radical was carried out in different solvents. With THF, a 4.5-fold decrease in rate constant (k(H)) was observed on going from isooctane to 2,2,2-trifluoroethanol. An opposite behavior was observed with CHX, where k(H) increased by a factor 4 on going from isooctane to 2,2,2-trifluoroethanol. The important role of substrate structure and of the solvent hydrogen bond donor ability is discussed.

  19. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume IV – gas phase reactions of organic halogen species

    Directory of Open Access Journals (Sweden)

    R. Atkinson

    2008-08-01

    Full Text Available This article, the fourth in the series, presents kinetic and photochemical data sheets evaluated by the IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. It covers the gas phase and photochemical reactions of organic halogen species, which were last published in 1997, and were updated on the IUPAC website in 2006/07. The article consists of a summary sheet, containing the recommended kinetic parameters for the evaluated reactions, and four appendices containing the data sheets, which provide information upon which the recommendations are made.

  20. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species

    Directory of Open Access Journals (Sweden)

    R. Atkinson

    2006-01-01

    Full Text Available This article, the second in the series, presents kinetic and photochemical data evaluated by the IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. It covers the gas phase and photochemical reactions of Organic species, which were last published in 1999, and were updated on the IUPAC website in late 2002, and subsequently during the preparation of this article. The article consists of a summary table of the recommended rate coefficients, containing the recommended kinetic parameters for the evaluated reactions, and eight appendices containing the data sheets, which provide information upon which the recommendations are made.

  1. Kinetics of the benzyl + O(3P) reaction: a quantum chemical/statistical reaction rate theory study.

    Science.gov (United States)

    da Silva, Gabriel; Bozzelli, Joseph W

    2012-12-14

    The resonance stabilized benzyl radical is an important intermediate in the combustion of aromatic hydrocarbons and in polycyclic aromatic hydrocarbon (PAH) formation in flames. Despite being a free radical, benzyl is relatively stable in thermal, oxidizing environments, and is predominantly removed through bimolecular reactions with open-shell species other than O(2). In this study the reaction of benzyl with ground-state atomic oxygen, O((3)P), is examined using quantum chemistry and statistical reaction rate theory. C(7)H(7)O energy surfaces are generated at the G3SX level, and include several novel pathways. Transition state theory is used to describe elementary reaction kinetics, with canonical variational transition state theory applied for barrierless O atom association with benzyl. Apparent rate constants and branching ratios to different product sets are obtained as a function of temperature and pressure from solving the time-dependent master equation, with RRKM theory for microcanonical k(E). These simulations indicate that the benzyl + O reaction predominantly forms the phenyl radical (C(6)H(5)) plus formaldehyde (HCHO), with lesser quantities of the C(7)H(6)O products benzaldehyde, ortho-quinone methide, and para-quinone methide (+H), along with minor amounts of the formyl radical (HCO) + benzene. Addition of O((3)P) to the methylene site in benzyl produces a highly vibrationally excited C(7)H(7)O* adduct, the benzoxyl radical, which can β-scission to benzaldehyde + H and phenyl + HCHO. In order to account for the experimental observation of benzene as the major reaction product, a roaming radical mechanism is proposed that converts the nascent products phenyl and HCHO to benzene + HCO. Oxygen atom addition at the ortho and para ring sites in benzyl, which has not been previously considered, is shown to lead to the quinone methides + H; these species are less-stable isomers of benzaldehyde that are proposed as important combustion intermediates, but

  2. Mechanism and kinetics of the reaction NO3 + C2H4.

    Science.gov (United States)

    Nguyen, Thanh Lam; Park, Jaehee; Lee, Kyungjun; Song, Kihyung; Barker, John R

    2011-05-19

    The reaction of NO(3) radical with C(2)H(4) was characterized using the B3LYP, MP2, B97-1, CCSD(T), and CBS-QB3 methods in combination with various basis sets, followed by statistical kinetic analyses and direct dynamics trajectory calculations to predict product distributions and thermal rate constants. The results show that the first step of the reaction is electrophilic addition of an O atom from NO(3) to an olefinic C atom from C(2)H(4) to form an open-chain adduct. A concerted addition reaction mechanism forming a five-membered ring intermediate was investigated, but is not supported by the highly accurate CCSD(T) level of theory. Master-equation calculations for tropospheric conditions predict that the collisionally stabilized NO(3)-C(2)H(4) free-radical adduct constitutes 80-90% of the reaction yield and the remaining products consist mostly of NO(2) and oxirane; the other products are produced in very minor yields. By empirically reducing the barrier height for the initial addition step by 1 kcal mol(-1) from that predicted at the CBS-QB3 level of theory and treating the torsional modes explicitly as one-dimensional hindered internal rotations (instead of harmonic oscillators), the computed thermal rate constants (including quantum tunneling) can be brought into very good agreement with the experimental data for the overall reaction rate constant.

  3. Kinetics and Thermodynamic Studies of Depolymerization of Nylon Waste by Hydrolysis Reaction

    Directory of Open Access Journals (Sweden)

    D. B. Patil

    2014-01-01

    Full Text Available Depolymerization reaction of nylon waste was carried out by hydrolysis reaction. Yield of depolymerization products was up to 72.20% for a two-hour reaction time. The products obtained were characterized by melting point and FTIR spectra. The values obtained for dibenzoyl derivative of hexamethylenediamine (DBHMD agreed with those of the pure substance. Chemical kinetics of this reaction shows that it is a first-order reaction with respect to hexamethylenediamine (HMD concentration with velocity constant 7.32×10-3 min−1. The energy of activation and Arrhenius constant obtained by Arrhenius plot were 87.22 KJg−1 and 0.129, respectively. The other thermodynamic parameters such as enthalpy of activation (ΔH‡ and entropy of activation (ΔS‡ and free energy of activation were 5975.85 J and −270.86 J·K−1·mol−1 and 101.59 KJ·mol−1, respectively.

  4. Supercritical water oxidation of quinazoline: Reaction kinetics and modeling.

    Science.gov (United States)

    Gong, Yanmeng; Guo, Yang; Wang, Shuzhong; Song, Wenhan; Xu, Donghai

    2017-03-01

    This paper presents a first quantitative kinetic model for supercritical water oxidation (SCWO) of quinazoline that describes the formation and interconversion of intermediates and final products at 673-873 K. The set of 11 reaction pathways for phenol, pyrimidine, naphthalene, NH3, etc, involved in the simplified reaction network proved sufficient for fitting the experimental results satisfactorily. We validated the model prediction ability on CO2 yields at initial quinazoline loading not used in the parameter estimation. Reaction rate analysis and sensitivity analysis indicate that nearly all reactions reach their thermodynamic equilibrium within 300 s. The pyrimidine yielding from quinazoline is the dominant ring-opening pathway and provides a significant contribution to CO2 formation. Low sensitivity of NH3 decomposition rate to concentration confirms its refractory nature in SCWO. Nitrogen content in liquid products decreases whereas that in gaseous phase increases as reaction time prolonged. The nitrogen predicted by the model in gaseous phase combined with the experimental nitrogen in liquid products gives an accurate nitrogen balance of conversion process.

  5. The efficiency of driving chemical reactions by a physical non-equilibrium is kinetically controlled.

    Science.gov (United States)

    Göppel, Tobias; Palyulin, Vladimir V; Gerland, Ulrich

    2016-07-27

    An out-of-equilibrium physical environment can drive chemical reactions into thermodynamically unfavorable regimes. Under prebiotic conditions such a coupling between physical and chemical non-equilibria may have enabled the spontaneous emergence of primitive evolutionary processes. Here, we study the coupling efficiency within a theoretical model that is inspired by recent laboratory experiments, but focuses on generic effects arising whenever reactant and product molecules have different transport coefficients in a flow-through system. In our model, the physical non-equilibrium is represented by a drift-diffusion process, which is a valid coarse-grained description for the interplay between thermophoresis and convection, as well as for many other molecular transport processes. As a simple chemical reaction, we consider a reversible dimerization process, which is coupled to the transport process by different drift velocities for monomers and dimers. Within this minimal model, the coupling efficiency between the non-equilibrium transport process and the chemical reaction can be analyzed in all parameter regimes. The analysis shows that the efficiency depends strongly on the Damköhler number, a parameter that measures the relative timescales associated with the transport and reaction kinetics. Our model and results will be useful for a better understanding of the conditions for which non-equilibrium environments can provide a significant driving force for chemical reactions in a prebiotic setting.

  6. Monomeric Cu(Ⅱ) Complex Containing Chiral Phase-transfer Catalyst as Ligand and Its Asymmetrically Catalytic Reaction

    Institute of Scientific and Technical Information of China (English)

    QU Zhi-Rong; XIONG Ren-Gen

    2008-01-01

    The thermal treatment of CuCl2 with N-(4'-vinylbenzyl)cinchonidinitim chloride(L1)afforded a monomeric discrete homochiral copper(Ⅱ)complex N-4'-(vinylbenzyl)cinchonidinium trichlorocoprate(Ⅱ)(1).Their applications to the enantioselectively catalytic alkylation reaction of N-(diphenylmethylidene)glycine tert-butyl ester(3)show that the higher ee value observed in catalyst 1 than that in the corresponding free ligand L1 is probably due to the rigidity enhancement after the coordination of N atom of quinoline ring to the copper ion.

  7. Kinetics of the epoxy–thiol click reaction initiated by a tertiary amine: Calorimetric study using monofunctional components

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, Roi Meizoso; Amarelo, Tánia Carballeira [Gairesa, Outeiro 1, Lago (Valdoviño), 15551 A Coruña (Spain); Abuin, Senen Paz, E-mail: senen@gairesa.com [Gairesa, Outeiro 1, Lago (Valdoviño), 15551 A Coruña (Spain); Soulé, Ezequiel R. [Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), J. B. Justo 4302, 7600 Mar del Plata (Argentina); Williams, Roberto J.J., E-mail: williams@fi.mdp.edu.ar [Institute of Materials Science and Technology (INTEMA), University of Mar del Plata and National Research Council (CONICET), J. B. Justo 4302, 7600 Mar del Plata (Argentina)

    2015-09-20

    Graphical abstract: - Highlights: • Reaction kinetics of a monoepoxy and a monothiol was studied by DSC. • Benzyldimethylamine (BDMA) was used as initiator. • Reaction exhibited a long induction period followed by a fast autocatalytic rate. • A mechanistic kinetic model provided a reasonable fitting of the kinetic behavior. • The formulation simulates the behavior of room-temperature-cure commercial epoxies. - Abstract: An analysis of the kinetics of the epoxy–thiol reaction in a model stoichiometric system of monofunctional reagents, 3-mercaptopropionate (BMP) and phenylglycidylether (PGE) is reported. Benzyldimethylamine (BDMA) was employed as initiator in amounts ranging from 0.5 to 2 wt%. These formulations showed a kinetic behavior qualitatively similar to that of commercial adhesives and coatings formulated for a room-temperature cure. Isothermal DSC scans revealed the existence of a relatively long induction period preceding a fast autocatalytic reaction step. Dynamic DSC scans showed that the reaction was shifted to a lower temperature range by increasing the storage period of the initial formulation at 20 °C. This unusual kinetic behavior could be modeled assuming that thiolate anions, slowly generated during the induction period, initiated a fast autocatalytic propagation/proton transfer reaction. The kinetic model included a pseudo-steady state for the initiator concentration and an equilibrium reaction between epoxy and OH groups generated by reaction. A reasonable fitting of isothermal and dynamic DSC runs was achieved in a broad range of temperatures and amine concentrations. In particular, both the length of the induction time and the effect of the storage period were correctly predicted.

  8. Mechanism and kinetics for the reaction of O(3P) with DMSO: A theoretical study

    Science.gov (United States)

    Mandal, Debasish; Bagchi, Sabyasachi; Das, Abhijit K.

    2012-11-01

    Mechanism and kinetics for the reaction of DMSO with O(3P) have been investigated by M06-2X/MG3S, CBS-QB3 and G4MP2 methods. Four possible reaction pathways are identified. Among them, the O(3P) addition to S-atom followed by CH3 elimination is almost exclusive. Four pre-reactive complexes have been located. AIM theory is used to determine the nature of interactions in these complexes. Considering the formation of pre-reactive complex, the rate constant for major pathway is calculated using transition state theory applied to a two-step mechanism. Enthalpies of formation at 298.15 K (ΔfH°298.15) have been calculated using the composite CBS-QB3, G4MP2 and G3B3 methods.

  9. Kinetics of the elementary act of electrochemical reactions at the semiconductor--electrolyte solution interface

    CERN Document Server

    Kovalenko, Sergii

    2013-01-01

    In the framework of the quantum-mechanical theory of elementary act of non-adiabatic electrochemical reactions, it is carried out the calculation of the discharge current of ions at the semiconductor--electrolyte solution interface using the model of isotropic spherically symmetric band. It is shown that our results generalize the well-known formulae for the current density obtained by R.R. Dogonadze, A.M. Kuznetsov, and Yu.A. Chizmadzhev [R.R. Dogonadze, A.M. Kuznetsov, and Yu.A. Chizmadzhev, The kinetics of some heterogeneous reactions at semiconductor--electrolyte interface, Zhur. Fiz. Khim. 38 (1964) 1195--1202]. The average densities of states in the valence band and the conduction band of the semiconductor electrode in the heterogeneous charge transfer are found.

  10. Origin of fatty acid synthesis - Thermodynamics and kinetics of reaction pathways

    Science.gov (United States)

    Weber, Arthur L.

    1991-01-01

    The primitiveness of contemporary fatty acid biosynthesis was evaluated by using the thermodynamics and kinetics of its component reactions to estimate the extent of its dependence on powerful and selective catalysis by enzymes. Since this analysis indicated that the modern pathway is not primitive because it requires sophisticated enzymatic catalysis, an alternative pathway of primitive fatty acid synthesis is proposed that uses glycolaldehyde as a substrate. In contrast to the modern pathway, this primitive pathway is not dependent on an exogenous source of phosphoanhydride energy. Furthermore, the chemical spontaneity of its reactions suggests that it could have been readily catalyzed by the rudimentary biocatalysts available at an early stage in the origin of life.

  11. Kinetic studies of the decom position reaction of adducts of dinuclear Fe( Ⅱ )/O2

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Kinetic studies of the decomposition reaction of dinuclear Fe( Ⅱ ) adducts [Fe2(N-Et-HPTB){O2P(OPh)2}](CIO4)2 (1)and [Fe2(N-Et-HPTB) {O2P(Ph)2}] (CIO4)2 (2) with O2 have been carried out at low temperature using UV-vis spectra. The decomposition reaction of Fe( Ⅱ)/O2 adducts was first-order in the experimental conditions, and the activation parameters were obtained. △H¢ = 85.62 kJ @ mol-1, △S≠= 19.43 J @ mol-1 @ K-1 for compound (1) and △H¢ = 97.97 kJ @ mol-1,△S≠ = 55.68 J @ mol-1 @ K-1 for compound (2). These results are similar to those of dioxygen adducts of other metals complexes and natural enzymes such as methane monooxygenase (MMOH).

  12. Kinetics of the Gas-Phase Reaction of OH with Chlorobenzene

    Science.gov (United States)

    Bryukov, Mikhail G.; Knyazev, Vadim D.; Gehling, William M.; Dellinger, Barry

    2009-09-01

    The kinetics of the reaction of hydroxyl radicals with chlorobenzene was studied experimentally using a pulsed laser photolysis/pulsed laser induced fluorescence technique over a wide range of temperatures, 298-670 K, and at pressures between 13.33 and 39.92 kPa. The bimolecular rate constants demonstrate different behavior at low and high temperatures. At room temperature, T = 298.8 ± 1.5 K, the rate constant is equal to (6.02 ± 0.34) × 10-13 cm3 molecule-1 s-1; at high temperatures (474-670 K), the rate constant values are significantly lower and have a positive temperature dependence that can be described by an Arrhenius expression k1(T) = (1.01 ± 0.35) × 10-11 exp[(-2490 ± 170 K)/T] cm3 molecule-1 s-1. This behavior is consistent with the low-temperature reaction being dominated by reversible addition and the high-temperature reaction representing abstraction and addition-elimination channels. The potential energy surface of the reaction was studied using quantum chemical methods, and a transition state theory model was developed for all reaction channels. The temperature dependences of the high-temperature rate constants obtained in calculations using the method of isodesmic reactions for transition states (IRTS) and the CBS-QB3 method are in very good agreement with experiment, with deviations smaller than the estimated experimental uncertainties. The G3//B3LYP-based calculated rate constants are in disagreement with the experimental values. The IRTS-based model was used to provide modified Arrhenius expressions for the temperature dependences of the rate constant for the abstraction and addition-elimination (Cl replacement) channels of the reaction.

  13. Thermochemistry and Kinetic Analysis of the Unimolecular Oxiranyl Radical Dissociation Reaction: A Theoretical Study.

    Science.gov (United States)

    Wang, Heng; Bozzelli, Joseph W

    2016-07-04

    Oxirane structures are important in organic synthesis, and they are important initial products in the oxidation reactions of alkyl radicals. The thermochemical properties (enthalpy of formation, entropy, and heat capacity) for the reaction steps of the unimolecular oxiranyl radical dissociation reaction are determined and compared with the available literature. The overall ring opening and subsequent steps involve four types of reactions: β-scission ring opening, intramolecular hydrogen transfer, β-scission hydrogen elimination, and β-scission methyl radical elimination. The enthalpies of formation of the transition states are determined and evaluated using six popular Density Functional Theory (DFT) calculation methods (B3LYP, B2PLYP, M06, M06-2X, ωB97X, ωB97XD), each combined with three different basis sets. The DFT enthalpy values are compared with five composite calculation methods (G3, G4, CBS-QB3, CBS-APNO, W1U), and by CCSD(T)/aug-cc-pVTZ. Kinetic parameters are determined versus pressure and temperature for the unimolecular dissociation pathways of an oxiranyl radical, which include the chemical activation reactions of the ring-opened oxiranyl radical relative to the ring-opening barrier. Multifrequency quantum Rice Ramsperger Kassel (QRRK) analysis is used to determine k(E) with master equation analysis for falloff. The major overall reaction pathway at lower combustion temperatures is oxiranyl radical dissociation to a methyl radical and carbon monoxide. Oxiranyl radical dissociation to a ketene and hydrogen atom is the key reaction path above 700 K.

  14. Gas-phase thermolysis reaction of formaldehyde diperoxide. Kinetic study and theoretical mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Jorge, Nelly Lidia [Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Av. Las Palmeras 4, 18100 Armilla, Granada (Spain); Area de Quimica Fisica Facultad de Ciencias Exactas y Naturales y Agrimensura, UNNE, Avda. Libertad 5460, 3400 Corrientes (Argentina); Romero, Jorge Marcelo [Area de Quimica Fisica Facultad de Ciencias Exactas y Naturales y Agrimensura, UNNE, Avda. Libertad 5460, 3400 Corrientes (Argentina); Grand, Andre [INAC, SCIB, Laboratoire ' Lesions des Acides Nucleiques' , UMR CEA-UJF E3, CEA-Grenoble, 17 Rue des Martyrs, 38054 Grenoble cedex 9 (France); Hernandez-Laguna, Alfonso, E-mail: ahlaguna@ugr.es [Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Av. Las Palmeras 4, 18100 Armilla, Granada (Spain)

    2012-01-17

    Highlights: Black-Right-Pointing-Pointer Kinetic and mechanism of the gas-phase thermolysis of tetroxane were determined. Black-Right-Pointing-Pointer Gas chromatography and computational potential energy surfaces were performed. Black-Right-Pointing-Pointer A mechanism in steps looked like the most probable mechanism. Black-Right-Pointing-Pointer A spin-orbit coupling appeared at the singlet and triple diradical open structures. Black-Right-Pointing-Pointer A non-adiabatic crossing from the singlet to the triplet state occurred. - Abstract: Gas-phase thermolysis reaction of formaldehyde diperoxide (1,2,4,5-tetroxane) was performed in an injection chamber of a gas chromatograph at a range of 463-503 K. The average Arrhenius activation energy and pre-exponential factor were 29.3 {+-} 0.8 kcal/mol and 5.2 Multiplication-Sign 10{sup 13} s{sup -1}, respectively. Critical points and reaction paths of the ground singlet and first triplet potential energy surfaces (PES) were calculated, using DFT method at BHANDHLYP/6-311+G{sup Asterisk-Operator Asterisk-Operator} level of the theory. Also, G3 calculations were performed on the reactant and products. Reaction by the ground-singlet and first-triplet states turned out to be endothermic and exothermic, respectively. The mechanism in three steps seemed to be the most probable one. An electronically non-adiabatic process appeared, in which a crossing, at an open diradical structure, from the singlet to the triplet state PES occurred, due to a spin-orbit coupling, yielding an exothermic reaction. Theoretical kinetic constant coming from the non- adiabatic transition from the singlet to the triplet state agrees with the experimental values.

  15. Strange Kinetics of the C(2)H(6) + CN Reaction Explained.

    Science.gov (United States)

    Georgievskii, Yuri; Klippenstein, Stephen J

    2007-05-17

    In this paper, we employ state of the art quantum chemical and transition state theory methods in making a priori kinetic predictions for the abstraction reaction of CN with ethane. This reaction, which has been studied experimentally over an exceptionally broad range of temperature (25-1140 K), exhibits an unusually strong minimum in the rate constant near 200 K. The present theoretical predictions, which are based on a careful consideration of the two distinct transition state regimes, quantitatively reproduce the measured rate constant over the full range of temperature, with no adjustable parameters. At low temperatures, the rate-determining step for such radical-molecule reactions involves the formation of a weakly bound van der Waals complex. At higher temperatures, the passage over a subthreshold saddle point on the potential energy surface, related to the formation and dissolution of chemical bonds, becomes the rate-determining step. The calculations illustrate the changing importance of the two transition states with increasing temperature and also clearly demonstrate the need for including accurate treatments of both transition states. The present two transition state model is an extension of that employed in our previous work on the C2H4 + OH reaction [J. Phys. Chem. A 2005, 109, 6031]. It incorporates direct ab initio evaluations of the potential in classical phase space integral based calculations of the fully coupled anharmonic transition state partition functions for both transition states. Comparisons with more standard rigid-rotor harmonic oscillator representations for the "inner" transition state illustrate the importance of variational, anharmonic, and nonrigid effects. The effects of tunneling through the "inner" saddle point and of dynamical correlations between the two transition states are also discussed. A study of the kinetic isotope effect provides a further test for the present two transition state model.

  16. Kinetics and mechanism of interaction of some bioactive ligands with cis-diaqua(cis-1,2-diaminocyclohexane)platinum(II) in aqueous medium

    Indian Academy of Sciences (India)

    P Karmakar; S Ray; S Mallick; B K Bera; A Mandal; S Mondal; A K Ghosh

    2013-09-01

    The substitution reaction of cis-[Pt(cis-dach)(H2O)2]2+ (where `dach’ is cis-1,2-diaminocyclohexane) with 2-thiouracil (S, N), 1,2-cyclohexanedionedioxime (N, N) and acetylacetone (O, O) were studied in aqueous solution in 0.10 M NaClO4 under pseudo-first order conditions as a functions of concentration, pH and temperature using UV-Vis spectrophotometry. The substitution reaction proceeds via rapid outer sphere association complex formation, followed by two slow consecutive steps. The first of these involves ligand-assisted deaquation, while second involves chelation as the second aqua ligand is displaced. The association equilibrium constant (KE) for the outer sphere complex formation has been evaluated together with rate constants for the two subsequent steps. The rate constants increase with increasing ligand concentration and the evaluated activation parameters for all reactions suggest an associative substitution mechanism for both the aqua ligand substitution processes. The product of the reaction has been characterized by IR, NMR and ESI-MS spectral analysis; which throws more light on the mechanistic behaviour of platinum(II) antitumour complexes.

  17. Material Balance And Reaction Kinetics Modeling For Penex Isomerization Process In Daura Refinery

    Directory of Open Access Journals (Sweden)

    Hamadi Adel Sharif

    2017-01-01

    Full Text Available Penex Deisohexanizer isomerization of light straight run naphtha is a significant process for petroleum refining and proved to be effective technology to produce gasoline components with a high octane number. Modeling of the chemical kinetic reactions is an important tool because it is a better tool for optimization of the experimental data into parameters used for industrial reactors. The present study deals on the isomerization process in Daura refinery. Material balance calculations were done mathematically on the unit for the kinetics prediction purpose. A kinetic mathematical model was derived for the prediction rate constants K1 and K2 and activation energy Ea at operating temperatures range 120-180°C. According to the model, the results show that with increasing of temperature leads to increased K1 directly, where the K2 values proportional inversely. The activation energy results show that Ea1(nC6

  18. Cholesterol photo-oxidation: A chemical reaction network for kinetic modeling.

    Science.gov (United States)

    Barnaba, Carlo; Rodríguez-Estrada, Maria Teresa; Lercker, Giovanni; García, Hugo Sergio; Medina-Meza, Ilce Gabriela

    2016-12-01

    In this work we studied the effect of polyunsaturated fatty acids (PUFAs) methyl esters on cholesterol photo-induced oxidation. The oxidative routes were modeled with a chemical reaction network (CRN), which represents the first application of CRN to the oxidative degradation of a food-related lipid matrix. Docosahexaenoic acid (DHA, T-I), eicosapentaenoic acid (EPA, T-II) and a mixture of both (T-III) were added to cholesterol using hematoporphyrin as sensitizer, and were exposed to a fluorescent lamp for 48h. High amounts of Type I cholesterol oxidation products (COPs) were recovered (epimers 7α- and 7β-OH, 7-keto and 25-OH), as well as 5β,6β-epoxy. Fitting the experimental data with the CRN allowed characterizing the associated kinetics. DHA and EPA exerted different effects on the oxidative process. DHA showed a protective effect to 7-hydroxy derivatives, whereas EPA enhanced side-chain oxidation and 7β-OH kinetic rates. The mixture of PUFAs increased the kinetic rates several fold, particularly for 25-OH. With respect to the control, the formation of β-epoxy was reduced, suggesting potential inhibition in the presence of PUFAs.

  19. PROPERTIES OF CP: COEFFICIENT OF THERMAL EXPANSION, DECOMPOSITION KINETICS, AND REACTION TO SPARK, FRICTION AND IMPACT

    Energy Technology Data Exchange (ETDEWEB)

    Weese, R K; Burnham, A K

    2005-09-28

    The properties of pentaamine (5-cyano-2H-tetrazolato-N2) cobalt (III) perchlorate (CP), which was first synthesized in 1968, continues to be of interest for predicting behavior in handling, shipping, aging, and thermal cook-off situations. We report coefficient of thermal expansion (CTE) values over four specific temperature ranges, decomposition kinetics using linear and isothermal heating, and the reaction to three different types of stimuli: impact, spark, and friction. The CTE was measured using a Thermal Mechanical Analyzer (TMA) for samples that were uniaxially compressed at 10,000 psi and analyzed over a dynamic temperature range of -20 C to 70 C. Differential scanning calorimetry, DSC, was used to monitor CP decomposition at linear heating rates of 1-7 C min{sup -1} in perforated pans and of 0.1-1.0 C min{sup -1} in sealed pans. The kinetic triplet was calculated using the LLNL code Kinetics05, and predictions for 210 and 240 C are compared to isothermal thermogravimetric analysis (TGA) experiments. Values are also reported for spark, friction, and impact sensitivity.

  20. Oxidation of ferrous nitrilotriacetic acid with oxygen : A model for oxygen mass transfer parallel to reaction kinetics

    NARCIS (Netherlands)

    Demmink, JF; Beenackers, AACM

    1997-01-01

    The kinetics of the reaction of ferrous chelate of nitrilotriacetic acid (NTA) and gaseous oxygen were studied in a stirred-cell reactor. The initial concentration of ferrous chelate was 0.100 kmol/m(3). Other reaction conditions include 293

  1. Overall kinetics of heterogeneous elemental mercury reactions on TiO2 sorbent particles with UV radiation

    Science.gov (United States)

    A system consisting of a photochemical reaction was used to evaluate the kinetic parameters, such as reaction order and rate constant for the elemental mercury uptake by TiO2 in the presence of uv irradiation. TiO2 particles generated by an aerosol route were used in a fixed bed...

  2. Kinetics and mechanism of the chain reaction between N-phenyl-1,4-benzoquinone monoimine and thiophenol

    Science.gov (United States)

    Varlamov, V. T.; Gadomsky, S. Ya.

    2017-05-01

    The kinetics of the reaction between N-phenyl-1,4-benzoquinone monoimine (quinone monoimine) and thiophenol is studied in chlorobenzene at 343 K. The reaction has the same mechanism proposed earlier for a similar reaction involving N,N'-diphenyl-1,4-benzoquinone diimine (quinone diimine). This mechanism has two paths: chain and nonchain. An important difference between the kinetics of the two reactions is the apparent reversible nature of the chain reaction in the quinone monoimine + thiophenol system. This nature reveals itself when the concentrations of thiophenol are comparable to or slightly higher than the concentrations of quinone imine. In light of this, kinetic research is conducted under conditions where the concentrations of thiophenol are significantly higher than those of quinone monoimine, allowing us to simplify the kinetic features and obtain interpretable data. The rate constants of the reaction's elementary steps are estimated and found to be three to five times lower for the reaction involving quinone monoamine than for the one involving quinone diimine. Both reactions have relatively short chains whose lengths do not exceed several tens of units.

  3. Oxidation of ferrous nitrilotriacetic acid with oxygen : A model for oxygen mass transfer parallel to reaction kinetics

    NARCIS (Netherlands)

    Demmink, J.F; Beenackers, A.A C M

    1997-01-01

    The kinetics of the reaction of ferrous chelate of nitrilotriacetic acid (NTA) and gaseous oxygen were studied in a stirred-cell reactor. The initial concentration of ferrous chelate was 0.100 kmol/m(3). Other reaction conditions include 293

  4. Light-Induced Copper(II) Coordination by a Bicyclic Tetraaza Chelator through a Ligand-to-Metal Charge-Transfer Reaction

    DEFF Research Database (Denmark)

    Holm-Jørgensen, Jacob Rørdam; Jensen, Mikael; Bjerrum, Morten J.

    2011-01-01

    To enable utilization of the broad potential of copper isotopes in nuclear medicine, rapid and robust chelation of the copper is required. Bowl adamanzanes (bicyclic tetraaza ligands) can form kinetically stable copper complexes, but they are usually formed at low rates unless high pH values...

  5. Microwave treatment of dairy manure for resource recovery: Reaction kinetics and energy analysis.

    Science.gov (United States)

    Srinivasan, Asha; Liao, Ping H; Lo, Kwang V

    2016-12-01

    A newly designed continuous-flow 915 MHz microwave wastewater treatment system was used to demonstrate the effectiveness of the microwave enhanced advanced oxidation process (MW/H2O2-AOP) for treating dairy manure. After the treatment, about 84% of total phosphorus and 45% of total chemical oxygen demand were solubilized with the highest H2O2 dosage (0.4% H2O2 per %TS). The reaction kinetics of soluble chemical oxygen demand revealed activation energy to be in the range of 5-22 kJ mole(-1). The energy required by the processes was approximately 0.16 kWh per liter of dairy manure heated. A higher H2O2 dosage used in the system had a better process performance in terms of solids solubilization, reaction kinetics, and energy consumption. Cost-benefit analysis for a farm-scale MW/H2O2-AOP treatment system was also presented. The results obtained from this study would provide the basic knowledge for designing an effective farm-scale dairy manure treatment system.

  6. Reaction kinetics of alkenone and n-alkane thermal alteration at seismic timescales

    Science.gov (United States)

    Rabinowitz, H. S.; Polissar, P. J.; Savage, H. M.

    2017-01-01

    Recent experiments and field observations have indicated that biomarker molecules can react over short timescales relevant to seismic slip, thereby making these compounds a useful tool in studying temperature rise in fault zones. However, short-timescale biomarker reaction kinetics studies have previously focused on compounds that have already experienced burial heating. Here, we present a set of hydrous pyrolysis experiments on Pleistocene-aged shallow marine sediment to develop the reaction kinetics of long-chain alkenone destruction, change in the alkenone unsaturation ratio (U37k'), and change in the n-alkane chain length distribution. Our results show that biomarker thermal maturity provides a useful method for detecting temperature rise in the shallow reaches of faults, such as subduction zone trench environments. Through the course of our work, we also noted the alteration of total alkenone concentrations and U37k' values in crushed sediments stored dry at room temperature for durations of months to years but not in the solvent extracts of these materials. This result, though parenthetical for our work in fault zones, has important implications for proper storage of sedimentary samples to be used for alkenone paleotemperature and productivity analysis.

  7. Ground reaction forces and lower-limb joint kinetics of turning gait in typically developing children.

    Science.gov (United States)

    Dixon, Philippe C; Stebbins, Julie; Theologis, Tim; Zavatsky, Amy B

    2014-11-28

    Turning is a common locomotor task essential to daily activity; however, very little is known about the forces and moments responsible for the kinematic adaptations occurring relative to straight-line gait in typically developing children. Thus, the aims of this study were to analyse ground reaction forces (GRFs), ground reaction free vertical torque (TZ), and the lower-limb joint kinetics of 90° outside (step) and inside (spin) limb turns. Step, spin, and straight walking trials from fifty-four typically developing children were analysed. All children were fit with the Plug-in Gait and Oxford Foot Model marker sets while walking over force plates embedded in the walkway. Net internal joint moments and power were computed via a standard inverse dynamics approach. All dependent variables were statistically analysed over the entire curves using the mean difference 95% bootstrap confidence band approach. GRFs were directed medially for step turns and laterally for spin turns during the turning phase. Directions were reversed and magnitudes decreased during the approach phase. Step turns showed reduced ankle power generation, while spin turns showed large TZ. Both strategies required large knee and hip coronal and transverse plane moments during swing. These kinetic differences highlight adaptations required to maintain stability and reorient the body towards the new walking direction during turning. From a clinical perspective, turning gait may better reveal weaknesses and motor control deficits than straight walking in pathological populations, such as children with cerebral palsy, and could potentially be implemented in standard gait analysis sessions.

  8. A study of redox kinetic in silicate melt; Etude cinetique des reactions d'oxydoreduction dans les silicates

    Energy Technology Data Exchange (ETDEWEB)

    Magnien, V

    2005-12-15

    The aim of this thesis is to understand better iron redox reactions and mechanisms in silicate glasses and melts. Particular interest has been paid to the influence of temperature and chemical composition. For this purpose, the influence of alkali element content, iron content and network formers on the kinetics of redox reactions has been determined through XANES and Raman spectroscopy experiments performed either near the glass transition or above the liquidus temperature. As a complement, electrical conductivity and RBS spectroscopy experiments have been made to characterize the diffusivity of the species that transport electrical charges and the reaction morphology, respectively. Temperature and composition variations can induce changes in the dominating redox mechanism. At a given temperature, the parameters that exert the strongest influence on redox mechanisms are the presence or lack of divalent cations and the existing decoupling between the mobility of network former and modifier elements. Near Tg, the diffusion of divalent cations, when present in the melt, controls the kinetics of iron redox reactions along with a flux of electron holes. Composition, through the degree of polymerization and the silicate network structure, influences the kinetics and the nature of the involved cations, but not the mechanisms of the reaction. Without alkaline earth elements, the kinetics of redox reactions are controlled by the diffusion of oxygen species. With increasing temperatures, the diffusivities of all ionic species tend to become similar. The decoupling between ionic fluxes then is reduced so that several mechanisms become kinetically equivalent and can thus coexist. (author)

  9. Kinetic limit for incubation period of primary phase produced by the combination reaction between two solid heterogeneous pure metals

    Institute of Scientific and Technical Information of China (English)

    XIONG diangTao; LI JingLong; ZHANG FuSheng; LIN Xin; HUANG WeiDong

    2008-01-01

    An irreversible thermodynamics model was constructed to study the combination reaction of two heterogeneous pure metals in diffusion bonding based on the theorem of minimum entropy production and the Curie principle. The correlation between the irreversible reaction and diffusion was discussed, which provided the kinetic inevitability of an incubation period of a primary phase. The analytical de-scriptions of the incubation period and the kinetically critical grain size of the pri-mary phase were deduced. Comparison of the experimental results of AI/Mo inter-facial reaction with the calculations indicated that the performed theoretical analy-sis was reliable.

  10. Kinetics of microbially mediated reactions: dissimilatory sulfate reduction in saltmarsh sediments (Sapelo Island, Georgia, USA)

    Science.gov (United States)

    Roychoudhury, Alakendra N.; Van Cappellen, Philippe; Kostka, Joel E.; Viollier, Eric

    2003-04-01

    A sediment disk reactor was tested in once flow-through mode to retrieve kinetic parameters for the Monod rate law that describes sulfate reduction. The experimental method was compared with a previously described procedure by the authors where a sediment plug-flow reactor was operated in a recirculation mode. In recirculation mode, accumulation of metabolic byproducts in certain cases may result in negative feedback, thus preventing accurate determination of kinetic information. The method described in this article provides an alternative to the recirculation sediment plug-flow-through reactor technique for retrieving kinetic parameters of microbially mediated reactions in aquatic sediments. For sulfate reduction in a saltmarsh site, a maximum estimate of the half-saturation concentration, Ks, of 204±26 μM and a maximum reaction rate, Rm, of 2846±129 nmol cm( wet sediment ) 3 d-1 was determined. The Ks value obtained was consistent with the one estimated previously (K s=240±20 μM) from a different site within the same saltmarsh mud flat using a recirculating reactor. From the Rm value and reduction rates determined using 35SO 42- incubation experiments, we infer that sulfate reduction is limited in the field. Substrate availability is not the main contributor for the limitation, however. Competition from other microbes, such as iron reducers affects the activity of sulfate reducers in the suboxic to anoxic zones, whereas aerobes compete in the oxic zone. High sulfide concentration in the pore water may also have acted as a toxin to the sulfate reducers in the field.

  11. Modified landfill gas generation rate model of first-order kinetics and two-stage reaction

    Institute of Scientific and Technical Information of China (English)

    Jiajun CHEN; Hao WANG; Na ZHANG

    2009-01-01

    This investigation was carried out to establish a new domestic landfill gas (LFG) generation rate model that takes into account the impact ofleachate recirculation. The first-order kinetics and two-stage reaction (FKTSR) model of the LFG generation rate includes mechanisms of the nutrient balance for biochemical reaction in two main stages. In this study, the FKTSR model was modified by the introduction of the outflow function and the organic acid conversion coefficient in order to represent the in-situ condition of nutrient loss through leachate. Laboratory experiments were carried out to simulate the impact of leachate recirculation and verify the modified FKTSR model. The model calibration was then calculated by using the experimental data. The results suggested that the new model was in line with the experimental data. The main parameters of the modified FKTSR model, including the LFG production potential (L0), the reaction rate constant in the first stage (K1), and the reaction rate constant in the second stage (K2) of 64.746 L, 0.202 d-1, and 0.338 d-1,respectively, were comparable to the old ones of 42.069 L,0.231 d-1, and 0.231 d-1. The new model is better able to explain the mechanisms involved in LFG generation.

  12. Rapid kinetic methods to dissect steroidogenic cytochrome P450 reaction mechanisms.

    Science.gov (United States)

    Yoshimoto, Francis K; Auchus, Richard J

    2016-07-01

    All cytochrome P450 enzyme reactions involve a catalytic cycle with several discreet physical or chemical steps. This cycle ends with the formation of the reactive heme iron-oxygen complex, which oxygenates substrate. While the steps might be very similar for each P450 enzyme, the rates of each step varies tremendously for each enzyme and sometimes even for different reactions catalyzed by the same enzyme. For example, the rate-limiting step for most bacterial P450 enzymes, with turnover numbers over 1000s(-1), is the second electron transfer. In contrast, steroidogenic P450s from eukaryotes catalyze much slower reactions, with turnover numbers of ∼5-250min(-1); therefore, assumptions about kinetic properties for the mammalian P450 enzymes based on the bacterial enzymes are tenuous. In order to dissect the rates for individual steps, special techniques that isolate individual steps and/or single turnovers are required. This article will review the theoretical principles and practical considerations for several of these techniques, with illustrative published examples. The reader should gain an appreciation for the appropriate methods used to interrogate particular steps in the P450 reaction cycle.

  13. Kinetics of the reaction between H{sup ·} and superheated water probed with muonium

    Energy Technology Data Exchange (ETDEWEB)

    Alcorn, Chris D. [Department of Chemistry and Biochemistry, Mount Allison University, Sackville, New Brunswick E4L 1G8 (Canada); Brodovitch, Jean-Claude [Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 (Canada); Percival, Paul W. [Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6 (Canada); TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada); Smith, Marisa [Department of Chemistry and Biochemistry, Mount Allison University, Sackville, New Brunswick E4L 1G8 (Canada); Ghandi, Khashayar, E-mail: kghandi@mta.ca [Department of Chemistry and Biochemistry, Mount Allison University, Sackville, New Brunswick E4L 1G8 (Canada)

    2014-05-19

    Highlights: • Rate constants for reactions of H with water resolve a controversy. • H reacts with superheated water via two channels. • The findings have important implications for the safety of some nuclear power reactors. - Abstract: Safe operation of supercritical water-cooled reactors requires knowledge of the kinetics of transient species formed by the radiolysis of water in the range 300–650 °C. Using muonium, it is possible to study aqueous H{sup ·} atom chemistry over this temperature range. An important reaction to study is that of the H{sup ·} atom with water itself, because it is a potential source of molecular H{sub 2}. The concentration of H{sub 2} is important to plant coolant chemistry, as H{sub 2} is currently added to suppress oxidative corrosion in CANDU reactors. The reaction of muonium with H{sub 2}O and D{sub 2}O was studied experimentally up to 450 °C, and also via quantum chemical computations to investigate possible isotope effects. Our results suggest that although the H{sup ·} atom abstraction from H{sub 2}O is important at temperatures above 300 °C, the electron-producing channel (H{sup ·} + H{sub 2}O ⇌ H{sub 3}O{sup +} + e{sub aq}{sup -}) is significant at temperatures up to 300 °C, and becomes the dominant reaction channel at lower temperatures.

  14. Immobilization of denatured DNA to macroporous supports: II. Steric and kinetic parameters of heterogeneous hybridization reactions.

    Science.gov (United States)

    Bünemann, H

    1982-11-25

    The accessibility of immobilized DNA has been shown to depend more crucially on the method of immobilization than on the type of support used for fixation. When sonicated denatured DNA is coupled via diazotization or via cyanogen bromide reaction to solid Sephadex G-25 and Cellex 410 or to macroporous Sephacryl S-500 and Sepharose C1-6B its accessibility varies from 100 to 24 percent. Generally the loss of accessibility is linked to a depression of the melting temperature of DNA helices formed on the support. This correlation shows a characteristic course for a particular coupling method. DNA coupled under denaturing conditions may become totally inaccessible when only 3 percent of its bases are involved in the covalent linkage. Kinetic experiments with sonicated E.coli DNA have shown that the rate constants for renaturation or hybridization reactions are very similar for DNA immobilized by different methods to solid or macroporous supports. Generally the second order rate constant for a heterogeneous reaction (between mobile and immobilized DNA) is about one order of magnitude smaller than that of the analogous homogeneous reaction (in solution).

  15. Identification of a Critical Intermediate in Galvanic Exchange Reactions by Single-Nanoparticle Resolved Kinetics

    Science.gov (United States)

    Smith, Jeremy George; Jain, Prashant

    2014-06-01

    The realization of common materials transformations in nanocrystalline systems is fostering the development of novel nanostructures and allowing a deep look into the atomistic mechanisms involved. Galvanic corrosion is one such transformation. We studied galvanic replacement within individual metal nanoparticles by using plasmonic spectroscopy. This proved to be a powerful approach to studying materials transformations in the absence of ensemble averaging. Individual nanoscale units act as domains that can be interrogated optically in isolation, whereas the averaging of all such domains provides a bulk reaction trajectory. Single-nanoparticle reaction trajectories showed that a Ag nanoparticle exposed to Au3+ makes an abrupt transition into a nanocage structure. The transition is limited by a critical structural event, which we identified by electron microscopy to comprise the formation of a nanosized void, similar to the pitting process commonly observed in the corrosion of metals. Trajectories also revealed a surprisingly strong nonlinearity of the reaction kinetics, which we explain by a model involving the critical coalescence of vacancies into a growing void. The critical void size for galvanic exchange to spontaneously proceed was found to be 20 atomic vacancies. In the future we hope to extend this approach to examine a wide variety of materials transformations and chemical reactions.

  16. [Distribution model of aluminum species in drinking water basing on the reaction kinetics].

    Science.gov (United States)

    Wang, Wen-dong; Yang, Hong-wei; Wang, Xiao-chang; Jiang, Jing; Zhu, Wan-peng; Jiang, Zhan-peng

    2010-04-01

    The effects of excess aluminum on water distribution system and human health were mainly attributable to the presences of some aluminum species in drinking water. A prediction model for the concentrations of aluminum species was developed using three-layer front feedback artificial neural network method. Results showed that the reaction rates of both inorganic monomeric aluminum and soluble aluminum varied with reaction time and water quality parameters, such as water temperature, pH, total aluminum, fluoride, phosphate and silicate. Their reaction orders were both three. The reaction kinetic parameters of inorganic monomeric aluminum and soluble aluminum could be predicted effectively applying artificial neural network; the correlation coefficients of k and 1/C0(2) between calculated value and predicted value were both greater than 0.999. Aluminum species prediction results in the drinking water of City M showed that when the concentration of total aluminum was less than 0.05 mg x L(-1), the relative prediction error was large for inorganic monomeric aluminum. When the concentration of total aluminum was above 0.05 mg x L(-1), the model could predict inorganic monomeric aluminum and soluble aluminum concentrations effectively, with relative prediction errors of +/- 15% and +/- 10% respectively.

  17. Contribution of convection and diffusion to the cascade reaction kinetics of β-galactosidase/glucose oxidase confined in a microchannel.

    Science.gov (United States)

    Wu, Zeng-Qiang; Li, Zhong-Qiu; Li, Jin-Yi; Gu, Jing; Xia, Xing-Hua

    2016-05-25

    The spatial positioning of enzymes and mass transport play crucial roles in the functionality and efficiency of enzyme cascade reactions. To fully understand the mass transport regulating kinetics of enzyme cascade reactions, we investigated the contribution of convective and diffusive transports to a cascade reaction of β-galactosidase (β-Gal)/glucose oxidase (GOx) confined in a microchannel. β-Gal and GOx are assembled on two separated gold films patterned in a polydimethylsiloxane (PDMS) microchannel with a controllable distance from 50 to 100 μm. Experimental results demonstrated that the reaction yield increases with decreasing distance between two enzymes and increasing substrate flow rate. Together with the simulation results, we extracted individual reaction kinetics of the enzyme cascade reaction and found that the reaction rate catalyzed by β-Gal occurred much faster than by GOx, and thus, the β-Gal catalytic reaction showed diffusion controll, whereas the GOx catalytic reaction showed kinetic controll. Since the decrease in the enzymes distance shortens the transport length of intermediate glucose to GOx, the amount of glucose reaching GOx will be increased in the unit time, and in turn, the enzyme cascade reaction yield will be increased with decreasing the gap distance. This phenomenon is similar to the intermediates pool of tricarboxylic acid (TCA) cycle in the metabolic system. This study promotes the understanding of the metabolic/signal transduction processes and active transport in biological systems and promises to design high performance biosensors and biofuel cells systems.

  18. Kinetics of low-temperature transitions and a reaction rate theory from non-equilibrium distributions

    Science.gov (United States)

    Aquilanti, Vincenzo; Coutinho, Nayara Dantas; Carvalho-Silva, Valter Henrique

    2017-03-01

    This article surveys the empirical information which originated both by laboratory experiments and by computational simulations, and expands previous understanding of the rates of chemical processes in the low-temperature range, where deviations from linearity of Arrhenius plots were revealed. The phenomenological two-parameter Arrhenius equation requires improvement for applications where interpolation or extrapolations are demanded in various areas of modern science. Based on Tolman's theorem, the dependence of the reciprocal of the apparent activation energy as a function of reciprocal absolute temperature permits the introduction of a deviation parameter d covering uniformly a variety of rate processes, from those where quantum mechanical tunnelling is significant and d 0, corresponding to the Pareto-Tsallis statistical weights: these generalize the Boltzmann-Gibbs weight, which is recovered for d = 0. It is shown here how the weights arise, relaxing the thermodynamic equilibrium limit, either for a binomial distribution if d > 0 or for a negative binomial distribution if d kinetics, where transport phenomena accelerate processes as the temperature increases; (ii) the sub-Arrhenius kinetics, where quantum mechanical tunnelling propitiates low-temperature reactivity; (iii) the anti-Arrhenius kinetics, where processes with no energetic obstacles are rate-limited by molecular reorientation requirements. Particular attention is given for case (i) to the treatment of diffusion and viscosity, for case (ii) to formulation of a transition rate theory for chemical kinetics including quantum mechanical tunnelling, and for case (iii) to the stereodirectional specificity of the dynamics of reactions strongly hindered by the increase of temperature. This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'.

  19. Reaction kinetics and critical phenomena: iodination of acetone in isobutyric acid + water near the consolute point.

    Science.gov (United States)

    Hu, Baichuan; Baird, James K

    2010-01-14

    The rate of iodination of acetone has been measured as a function of temperature in the binary solvent isobutyric acid (IBA) + water near the upper consolute point. The reaction mixture was prepared by the addition of acetone, iodine, and potassium iodide to IBA + water at its critical composition of 38.8 mass % IBA. The value of the critical temperature determined immediately after mixing was 25.43 degrees C. Aliquots were extracted from the mixture at regular intervals in order to follow the time course of the reaction. After dilution of the aliquot with water to quench the reaction, the concentration of triiodide ion was determined by the measurement of the optical density at a wavelength of 565 nm. These measurements showed that the kinetics were zeroth order. When at the end of 24 h the reaction had come to equilibrium, the critical temperature was determined again and found to be 24.83 degrees C. An Arrhenius plot of the temperature dependence of the observed rate constant, k(obs), was linear over the temperature range 27.00-38.00 degrees C, but between 25.43 and 27.00 degrees C, the values of k(obs) fell below the extrapolation of the Arrhenius line. This behavior is evidence in support of critical slowing down. Our experimental method and results are significant in three ways: (1) In contrast to in situ measurements of optical density, the determination of the optical density of diluted aliquots avoided any interference from critical opalescence. (2) The measured reaction rate exhibited critical slowing down. (3) The rate law was pseudo zeroth order both inside and outside the critical region, indicating that the reaction mechanism was unaffected by the presence of the critical point.

  20. KINETIC MODELING OF TRANSESTERFICATION REACTION FOR BIODIESEL PRODUCTION USING HETEROGENEOUS CATALYST

    Directory of Open Access Journals (Sweden)

    N. JAYA,

    2011-04-01

    Full Text Available Biodiesel derived from renewable plant sources is monoalkyl esters of long chain fatty acids which fall in the carbon range of C12-C22. It has similar properties as mineral diesel. Various processes exist to convert vegetable oils into biodiesel. Transesterification of such vegetable oils using alcohol in the catalytic environment is most commonly used method for producing biodiesel. The equilibrium conversion of triglycerides is affected by various factors namely feed Quality (like free fatty acid content, water content etc.,type of alcohol used, molar ratio of alcohol to triglycerides, type of catalyst, amount of catalyst, reaction temperature, reaction time and stirring rates. The present work reports on the characterization of cotton seed oil and production of biodiesel. This study also reports on the optimal operating parameter for cotton seed oil inbatch reactor. The main thrust of present work was to study the kinetics, modeling and simulation of anionic ion exchange resin catalyzed transesterification of cotton seed oil. Experiments were carried out in batch reactor to generate kinetic data and a kinetic model was developed. The effect of temperature, catalyst concentration and molar ratio of methanol to triglycerides and stirring rates were investigated. A few fuel properties were alsomeasured for biodiesel to observe its competitiveness with onventional diesel fuel. The equilibrium conversions of triglycerides were observed to be in the range of 85%. It was also observed that higher conversion was achieved at 6:1 molar ratio of ethanol to oil, 2 wt.% of anionic resin catalyst ,temperature at 338 K, reaction time of 180 minutes with stirring speed 10 Hz. Model parameters such as order, activation energy and rate constants were calculated, the overall activation energy was also estimated. The rate constants werefound to increase with an increase in temperature and catalyst concentration. Various simulations were also carried out at

  1. New Oxime Ligand with Potential for Proton-Coupled Electron-Transfer Reactions

    DEFF Research Database (Denmark)

    Deville, Claire; Sundberg, Jonas; McKenzie, Christine Joy

    Proton-coupled electron-transfer (PCET) is found in a range of oxidation-reduction reactions in biology.1 This mechanism is of interest for applications in energy conversion processes. The PCET reaction has been shown to be facilitated when the proton is transferred to an intramolecular basic sit...

  2. Kinetic identification of protein ligands in a 51,200 small-molecule library using microarrays and a label-free ellipsometric scanner

    Science.gov (United States)

    Landry, James P.; Proudian, Andrew P.; Malovichko, Galina; Zhu, Xiangdong

    2013-02-01

    Drug discovery begins by identifying protein-small molecule binding pairs. Afterwards, binding kinetics and biofunctional assays are performed, to reduce candidates for further development. High-throughput screening, typically employing fluorescence, is widely used to find protein ligands in small-molecule libraries, but is rarely used for binding kinetics measurement because: (1) attaching fluorophores to proteins can alter kinetics and (2) most label-free technologies for kinetics measurement are inherently low-throughput and consume expensive sensing surfaces. We addressed this need with polarization-modulated ellipsometric scanning microscopes, called oblique-incidence reflectivity difference (OI-RD). Label-free ligand screening and kinetics measurement are performed simultaneously on small-molecule microarrays printed on relatively inexpensive isocyanate-functionalized glass slides. As a microarray is reacted, an OI-RD microscope tracks the change in surface-bound macromolecule density in real-time at every spot. We report progress applying OI-RD to screen purified proteins and virus particles against a 51,200-compound library from the National Cancer Institute. Four microarrays, each containing 12,800 library compounds, are installed in four flow cells in an automated OI-RD microscope. The slides are reacted serially, each giving 12,800 binding curves with ~30 sec time resolution. The entire library is kinetically screened against a single probe in ~14 hours and multiple probes can be reacted sequentially under automation. Real-time binding detection identifies both high-affinity and low-affinity (transient binding) interactions; fluorescence endpoint images miss the latter. OI-RD and microarrays together is a powerful high-throughput tool for early stage drug discovery and development. The platform also has great potential for downstream steps such as in vitro inhibition assays.

  3. Reaction kinetics of hydrogen abstraction reactions by hydroperoxyl radical from 2-methyltetrahydrofuran and 2,5-dimethyltetrahydrofuran.

    Science.gov (United States)

    Chakravarty, Harish Kumar; Fernandes, Ravi X

    2013-06-20

    Highly accurate rate parameters for H-abstraction reactions by HO2 radicals are needed for development of predictive chemical kinetic models for ignition. In this article, we report the rate coefficients for reaction of hydroperoxyl radical (HO2) with 2-methyltetrahydrofuran (MTHF) and 2,5-dimethyltetrahydrofuran (DMTHF) computed employing CBS-QB3 and CCSD(T)/cc-pVTZ//B3LYP/cc-pVTZ level of theory in the temperature range of 500-2000 K. Conventional transition state theory (CTST) with hindered rotor approximation for low frequency torsional modes and RRHO (rigid-rotor harmonic oscillator) approximation for all other vibrational modes is employed to evaluate the high pressure rate constants as a function of temperature. Rate constant of each individual hydrogen abstraction channel is taken into account to calculate the overall rate constant. Three-parameter Arrhenius expressions have been obtained by fitting to the computed rate constants of all abstraction channels between 500 and 2000 K. Eight transition states have been identified for MTHF and four for slightly more stable trans-DMTHF. Intrinsic reaction coordinates (IRC) calculations were performed to verify the connectivity of all the transition states (TSs) with reactants and products. One dimensional Eckart's asymmetrical method has been used to calculate quantum mechanical tunneling effect. Results of the theoretically calculated rate coefficients indicate that the hydrogen abstraction by HO2 from the C2 carbon of both MTHF and DMTHF is the most dominant path among all reaction pathways attributed to its lowest barrier height. The total rate coefficients of the MTHF and DMTHF with HO2 at CCSD(T)/cc-pVTZ//B3LYP/cc-pVTZ level of theory are k(T) = 8.60T(3.54) exp(-8.92/RT) and k(T)= 3.17T(3.63) exp(-6.59/RT) cm(3) mol(-1) s(-1), respectively. At both the level of theories, the predicted total abstraction rate constant for DMTHF is found to be higher as compared to that of MTHF over an entire temperature range

  4. The Reaction of Crotonic Anhydride with Scots and Corsican Pine: Investigation of Kinetic Profiles and Determination of Activation Energies

    OpenAIRE

    Özmen, Nilgül; ÇETİN, Nihat Sami

    2014-01-01

    The kinetics of the reaction of crotonic anhydride with Scots pine (Pinus sylvestris) and Corsican pine (Pinus nigra) using pyridine as catalyst/solvent was investigated and activation energies for the initial reaction determined. Activation energies were calculated from the Arrhenius equation using rate data obtained from time-course experiments repeated at several temperatures. In one method, reaction constants (k) were determined experimentally, while in the other method initial rates were...

  5. Suzuki偶联反应中钯配合物催化剂的研究进展%Research Progress in Palladium Ligand Catalysts on Suzuki Coupling Reaction

    Institute of Scientific and Technical Information of China (English)

    李瑞; 白雪峰

    2011-01-01

    Suzuki偶联反应是在零价钯配合物催化剂的催化下,芳基硼酸与卤代芳烃进行的交叉偶联反应,可以高效、高选择性地构建C-C键.钯配合物催化剂对Suzuki偶联反应的活性和选择性起着决定性的影响,是研究Suzuki偶联反应的关键.对含有膦配体、N-卡宾配体、亚胺配体、胺配体和其它配体的钯配合物催化剂催化效果进行了综述.%Suzuki coupling reactions are a kind of reactions between organic arylboronic acid and aryl halides to construct C-C bond over the ze-ro-valent palladium catalysts with high efficiency and selectivity. Palladium ligand catalysts, which are the key of study on Suzuki coupling reaction, play an important role in the activity of Suzuki coupling reaction. The catalytic properties of phosphine ligand, N-heterocyclic carbine ligand, inline ligand, amine ligand and other ligands of palladium complex are summarized.

  6. Thermal behaviors, nonisothermal decomposition reaction kinetics, thermal safety and burning rates of BTATz-CMDB propellant.

    Science.gov (United States)

    Yi, Jian-Hua; Zhao, Feng-Qi; Wang, Bo-Zhou; Liu, Qian; Zhou, Cheng; Hu, Rong-Zu; Ren, Ying-Hui; Xu, Si-Yu; Xu, Kang-Zhen; Ren, Xiao-Ning

    2010-09-15

    The composite modified double base (CMDB) propellants (nos. RB0601 and RB0602) containing 3,6-bis (1H-1,2,3,4-tetrazol-5-yl-amino)-1,2,4,5-tetrazine (BTATz) without and with the ballistic modifier were prepared and their thermal behaviors, nonisothermal decomposition reaction kinetics, thermal safety and burning rates were investigated. The results show that there are three mass-loss stages in TG curve and two exothermic peaks in DSC curve for the BTATz-CMDB propellant. The first two mass-loss stages occur in succession and the temperature ranges are near apart, and the decomposition peaks of the two stages overlap each other, inducing only one visible exothermic peak appear in DSC curve during 350-550 K. The reaction mechanisms of the main exothermal decomposition processes of RB0601 and RB0602 are all classified as chemical reaction, the mechanism functions are f(alpha)=(1-alpha)(2), and the kinetic equations are dalpha/dt = 10(19.24)(1-alpha)(2)e(-2.32x10(4)/T) and dalpha/dt = 10(20.32)(1-alpha)(2)e(-2.32x10(4)/T). The thermal safety evaluation on the BTATz-CMDB propellants was obtained. With the substitution of 26% RDX by BTATz and with the help of the ballistic modifier in the CMDB propellant formulation, the burning rate can be improved by 89.0% at 8 MPa and 47.1% at 22 MPa, the pressure exponent can be reduced to 0.353 at 14-20 MPa.

  7. Thermal behaviors, nonisothermal decomposition reaction kinetics, thermal safety and burning rates of BTATz-CMDB propellant

    Energy Technology Data Exchange (ETDEWEB)

    Yi Jianhua [Xi' an Modern Chemistry Research Institute, Xi' an 710065 (China); Zhao Fengqi, E-mail: yiren@nwu.edu.cn [Xi' an Modern Chemistry Research Institute, Xi' an 710065 (China); Wang Bozhou; Liu Qian; Zhou Cheng; Hu Rongzu [Xi' an Modern Chemistry Research Institute, Xi' an 710065 (China); Ren Yinghui [School of Chemical Engineering, Northwest University, Xi' an 710069 (China); Xu Siyu [Xi' an Modern Chemistry Research Institute, Xi' an 710065 (China); Xu, Kang-Zhen [School of Chemical Engineering, Northwest University, Xi' an 710069 (China); Ren Xiaoning [Xi' an Modern Chemistry Research Institute, Xi' an 710065 (China)

    2010-09-15

    The composite modified double base (CMDB) propellants (nos. RB0601 and RB0602) containing 3,6-bis (1H-1,2,3,4-tetrazol-5-yl-amino)-1,2,4,5-tetrazine (BTATz) without and with the ballistic modifier were prepared and their thermal behaviors, nonisothermal decomposition reaction kinetics, thermal safety and burning rates were investigated. The results show that there are three mass-loss stages in TG curve and two exothermic peaks in DSC curve for the BTATz-CMDB propellant. The first two mass-loss stages occur in succession and the temperature ranges are near apart, and the decomposition peaks of the two stages overlap each other, inducing only one visible exothermic peak appear in DSC curve during 350-550 K. The reaction mechanisms of the main exothermal decomposition processes of RB0601 and RB0602 are all classified as chemical reaction, the mechanism functions are f({alpha}) = (1 - {alpha}){sup 2}, and the kinetic equations are d{alpha}/dt=10{sup 19.24}(1-{alpha}){sup 2}e{sup -2.32x10{sup 4/T}} and d{alpha}/dt=10{sup 20.32}(1-{alpha}){sup 2}e{sup -2.43x10{sup 4/T}}. The thermal safety evaluation on the BTATz-CMDB propellants was obtained. With the substitution of 26% RDX by BTATz and with the help of the ballistic modifier in the CMDB propellant formulation, the burning rate can be improved by 89.0% at 8 MPa and 47.1% at 22 MPa, the pressure exponent can be reduced to 0.353 at 14-20 MPa.

  8. Sensitivity of polar stratospheric ozone loss to uncertainties in chemical reaction kinetics

    Directory of Open Access Journals (Sweden)

    S. R. Kawa

    2009-06-01

    Full Text Available The impact and significance of uncertainties in model calculations of stratospheric ozone loss resulting from known uncertainty in chemical kinetics parameters is evaluated in trajectory chemistry simulations for the Antarctic and Arctic polar vortices. The uncertainty in modeled ozone loss is derived from Monte Carlo scenario simulations varying the kinetic (reaction and photolysis rate parameters within their estimated uncertainty bounds. Simulations of a typical winter/spring Antarctic vortex scenario and Match scenarios in the Arctic produce large uncertainty in ozone loss rates and integrated seasonal loss. The simulations clearly indicate that the dominant source of model uncertainty in polar ozone loss is uncertainty in the Cl2O2 photolysis reaction, which arises from uncertainty in laboratory-measured molecular cross sections at atmospherically important wavelengths. This estimated uncertainty in JCl2O2 from laboratory measurements seriously hinders our ability to model polar ozone loss within useful quantitative error limits. Atmospheric observations, however, suggest that the Cl2O2 photolysis uncertainty may be less than that derived from the lab data. Comparisons to Match, South Pole ozonesonde, and Aura Microwave Limb Sounder (MLS data all show that the nominal recommended rate simulations agree with data within uncertainties when the Cl2O2 photolysis error is reduced by a factor of two, in line with previous in situ ClOx measurements. Comparisons to simulations using recent cross sections from Pope et al. (2007 are outside the constrained error bounds in each case. Other reactions producing significant sensitivity in polar ozone loss include BrO+ClO and its branching ratios. These uncertainties challenge our confidence in modeling polar ozone depletion and projecting future changes in response to changing halogen

  9. Sensitivity of polar stratospheric ozone loss to uncertainties in chemical reaction kinetics

    Directory of Open Access Journals (Sweden)

    M. L. Santee

    2009-11-01

    Full Text Available The impact and significance of uncertainties in model calculations of stratospheric ozone loss resulting from known uncertainty in chemical kinetics parameters is evaluated in trajectory chemistry simulations for the Antarctic and Arctic polar vortices. The uncertainty in modeled ozone loss is derived from Monte Carlo scenario simulations varying the kinetic (reaction and photolysis rate parameters within their estimated uncertainty bounds. Simulations of a typical winter/spring Antarctic vortex scenario and Match scenarios in the Arctic produce large uncertainty in ozone loss rates and integrated seasonal loss. The simulations clearly indicate that the dominant source of model uncertainty in polar ozone loss is uncertainty in the Cl2O2 photolysis reaction, which arises from uncertainty in laboratory-measured molecular cross sections at atmospherically important wavelengths. This estimated uncertainty in JCl2O2 from laboratory measurements seriously hinders our ability to model polar ozone loss within useful quantitative error limits. Atmospheric observations, however, suggest that the Cl2O2 photolysis uncertainty may be less than that derived from the lab data. Comparisons to Match, South Pole ozonesonde, and Aura Microwave Limb Sounder (MLS data all show that the nominal recommended rate simulations agree with data within uncertainties when the Cl2O2 photolysis error is reduced by a factor of two, in line with previous in situ ClOx measurements. Comparisons to simulations using recent cross sections from Pope et al. (2007 are outside the constrained error bounds in each case. Other reactions producing significant sensitivity in polar ozone loss include BrO + ClO and its branching ratios. These uncertainties challenge our confidence in modeling polar ozone depletion and projecting future changes in response to changing halogen

  10. Reaction Kinetics of LiOH· H2O and CO2 Improved with Composite Silica Gel of Lanthanum Chloride

    Institute of Scientific and Technical Information of China (English)

    Zhao Zhuo; Fu Pingfeng; Wang Jingxin

    2007-01-01

    Reaction kinetics of LiOH·H2O and C·2 within a closed system were studied under the adsorption of water vapor by composite silica gel of lanthanum chloride. At the reaction temperature of 273~323K and initial CO2 pressures of 40~100kPa, reaction kinetics obeyed the Erofeev model. The reaction rate decreased slightly while the initial CO2 pressure reduced. When the reaction occurred at 273~299K, the reaction rate was so low that it was almost independent of the reaction temperature. However, as the temperature rose up to 300~323K, LiOH·H2O dehydrated its crystal water, and both the dehydrated and reaction-generated water were evaporated from solid reactant. For the dehydration rate increased, the reaction rate also increased as the reaction temperature rose. While the temperature was higher than 323K, the reaction apparent activation energy of LiOH·H2O and CO2, was higher than 52.5kJ·mol-1 and close to 61.4kJ·mol-1 of the LiOH·H2O dehydrated enthalpy variable at 298K, in which anhydrous LiOH was the major reactant and showed the reaction characteristics of LiOH crystals.

  11. Ligand design for enhanced stereoselectivity in the electron-transfer reactions between nickel(IV) bis(oxime-imine) complexes and (Co(edta))/sup 2 -/

    Energy Technology Data Exchange (ETDEWEB)

    Martone, D.P.; Osvath, P.; Lappin, A.G.

    1987-09-23

    A number of derivatives of the sexidentate bis(oxime-imine) ligand 3,14-dimethyl-4,7,10,13-tetraazahexadeca-3,13-diene-2,15-dione dioxime, Me/sub 2/L(1)H/sub 2/, have been prepared in which the methyl groups on the oxime-imine chromophores are replaced by more bulky phenyl groups, MePhL(1)H/sub 2/ and PhMeL(1)H/sub 2/, or chiral (S) methyl (L(2)) and benzyl (L(3)) groups are attached on the amine backbone at the 5- and 12-positions. Nickel(II) complexes of the ligands can be oxidized to the corresponding nickel(III) and nickel(IV) derivatives, and the effect of changing ligand structure on the reduction potentials of the complexes is small. Self-exchange rate constants for the nickel(IV)/nickel(III) change have been estimated from the rates of the cross-reactions between (Ni/sup III/MePhL(1))/sup +/ and (Ni/sup III/PhMeL(1))/sup +/ and their chiral (5S, 12S)-dimethyl nickel(IV) derivatives to be 8 x 10/sup 5/ and 4 x 10/sup 6/ M/sup -1/ s/sup -1/, respectively, at 25/sup 0/C and 0.1 M ionic strength. The kinetics and mechanisms of reduction of (Ni/sup IV/MePhL(1))/sup 2 +/ and (Ni/sup IV/PhMeL(1))/sup 2 +/ and (Co(edta))/sup 2 -/ have also been investigated. Stereoselectivity in the oxidation of (Co(edta))/sup 2 -/ by nickel(IV) has been investigated by using these chiral complexes, and in all cases the preferred isomer of the product (Co(edta))/sup -/ is ..delta.. with enantiomeric excesses of 7%, 21%, 22%, and 46% for the complexes (Ni/sup IV/PhMeL(2))/sup 2 +/, (Nk/sup IV/MePhL(2))/sup 2 +/, (Ni/sup IV/Me/sub 2/L(3))/sup 2 +/, and (Ni/sup IV/MePhL(3))/sup 2 +/, respectively. 32 references, 5 figures, 4 tables.

  12. Kinetics and mechanisms of the reaction of air with nuclear grade graphites: IG-110

    Science.gov (United States)

    Loren Fuller, E.; Okoh, Joseph M.

    1997-02-01

    The work presented in this report is part of an ongoing effort in the microgravimetric evaluation of the intrinsic reaction parameters for air reactions with graphite over the temperature range of 450 to 750°C. Earlier work in this laboratory addressed the oxidation/etching of H-451 graphite by oxygen and steam. This report addresses the air oxidation of the Japanese formulated material, IG-110. Fractal analysis showed that each cylinder was remarkably smooth, with an average value, D, the fractal dimension of 0.895. The activation energy, Ea, was determined to be 187.89 kJ/mol indicative of reactions occurring in the zone II kinetic regime and as a result of the porous nature of the cylinders. IG-110 is a microporous solid. The low initial reaction rate of 9.8×10 -5 at 0% burn-off and the high value (764.9) of Φ, the structural parameter confirm this. The maximum rate, 1.35×10 -3 g/m 2s, was measured at 34% burn-off. Reactions appeared to proceed in three stages and transition between them was smooth over the temperature range investigated. Both Ea and ln A did not vary with burn-off. The value of Δ S, the entropy of activation, was -41.4 eu, suggesting oxygen adsorption through an immobile transition state complex. Additional work is recommended to validate the predictions that will be made in relation to accident scenarios for reactors such as the modular high temperature gas-cooled reactor where fine grained graphites such as IG-110 could be used in structural applications.

  13. Oxidation of triclosan by ferrate: Reaction kinetics, products identification and toxicity evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Yang Bin [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Ying Guangguo, E-mail: guang-guo.ying@csiro.au [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Zhao Jianliang; Zhang Lijuan; Fang Yixiang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Nghiem, Long Duc [School of Civil Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia)

    2011-02-15

    Research highlights: {yields} Triclosan reacted rapidly with ferrate. {yields} Oxidation resulted in a decrease in algal toxicity. {yields} No inhibition of algae growth from ferrate. - Abstract: The oxidation of triclosan by commercial grade aqueous ferrate (Fe(VI)) was investigated and the reaction kinetics as a function of pH (7.0-10.0) were experimentally determined. Intermediate products of the oxidation process were characterized using both GC-MS and RRLC-MS/MS techniques. Changes in toxicity during the oxidation process of triclosan using Fe(VI) were investigated using Pseudokirchneriella subcapitata growth inhibition tests. The results show that triclosan reacted rapidly with Fe(VI), with the apparent second-order rate constant, k{sub app}, being 754.7 M{sup -1} s{sup -1} at pH 7. At a stoichiometric ratio of 10:1 (Fe(VI):triclosan), complete removal of triclosan was achieved. Species-specific rate constants, k, were determined for reaction of Fe(VI) with both the protonated and deprotonated triclosan species. The value of k determined for neutral triclosan was 6.7({+-}1.9) x 10{sup 2} M{sup -1} s{sup -1}, while that measured for anionic triclosan was 7.6({+-}0.6) x 10{sup 3} M{sup -1} s{sup -1}. The proposed mechanism for the oxidation of triclosan by the Fe(VI) involves the scission of ether bond and phenoxy radical addition reaction. Coupling reaction may also occur during Fe(VI) degradation of triclosan. Overall, the degradation processes of triclosan resulted in a significant decrease in algal toxicity. The toxicity tests showed that Fe(VI) itself dosed in the reaction did not inhibit green algae growth.

  14. Kinetics of reactions of the Actinomadura R39 DD-peptidase with specific substrates.

    Science.gov (United States)

    Adediran, S A; Kumar, Ish; Nagarajan, Rajesh; Sauvage, Eric; Pratt, R F

    2011-01-25

    The Actinomadura R39 DD-peptidase catalyzes the hydrolysis and aminolysis of a number of small peptides and depsipeptides. Details of its substrate specificity and the nature of its in vivo substrate are not, however, well understood. This paper describes the interactions of the R39 enzyme with two peptidoglycan-mimetic substrates 3-(D-cysteinyl)propanoyl-D-alanyl-D-alanine and 3-(D-cysteinyl)propanoyl-D-alanyl-D-thiolactate. A detailed study of the reactions of the former substrate, catalyzed by the enzyme, showed DD-carboxypeptidase, DD-transpeptidase, and DD-endopeptidase activities. These results confirm the specificity of the enzyme for a free D-amino acid at the N-terminus of good substrates and indicated a preference for extended D-amino acid leaving groups. The latter was supported by determination of the structural specificity of amine nucleophiles for the acyl-enzyme generated by reaction of the enzyme with the thiolactate substrate. It was concluded that a specific substrate for this enzyme, and possibly the in vivo substrate, may consist of a partly cross-linked peptidoglycan polymer where a free side chain N-terminal un-cross-linked amino acid serves as the specific acyl group in an endopeptidase reaction. The enzyme is most likely a DD-endopeptidase in vivo. pH-rate profiles for reactions of the enzyme with peptides, the thiolactate named above, and β-lactams indicated the presence of complex proton dissociation pathways with sticky substrates and/or protons. The local structure of the active site may differ significantly for reactions of peptides and β-lactams. Solvent kinetic deuterium isotope effects indicate the presence of classical general acid/base catalysis in both acylation and deacylation; there is no evidence of the low fractionation factor active site hydrogen found previously in class A and C β-lactamases.

  15. Dehydriding reaction kinetic mechanism of MgH2-Nb2O5 by Chou model

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Chou model was used to investigate the dehydriding reaction kinetic mechanism of MgH2-Nb2O5 hydrogen storage materials at 573 K.A new conception,"characteristic absorption/desorption time(yc)"was introduced to characterize the reaction rate.The fitting results show that for the hydrogen desorbing mechanism.the surface penetration iS the rate.controlling step.The mechanism remains the same even when the original particle size of Nb2O5 is before ball milling(BM)or when the BM time changes.And tc indicates that the desorption rate of MgH2-Nb2O5 will be faster than that of MgH2-Nb2O5 by BM.The dehydriding reaction rate of MgH2-Nb2O5(micro particle)BMed for 50 h is 4.76 times faster than that of the MgH2-Nb2O5(micro particle)BMed for 0.25 h,while the dehydriding reaction rate of MgH2-Nb2O5(nano particle)BMed for 50 h is only 1.1 8 times as that of the MgH2-Nb2O5 (nano particle)BMed for 0.25 h.The dehydriding reaction rate of the BMed MgH2-Nb2O5(nano particle)is 1-9 times faster than that of the BMed MgH2-Nb2O5(micro particle).

  16. Thermal Behavior,Nonisothermal Decomposition Reaction Kinetics of Mixed Ester Double-base Gun Propellants

    Institute of Scientific and Technical Information of China (English)

    YI Jian-hua; ZHAO Feng-qi; XU Si-yu; GAO Hong-xu; HU Rong-zu

    2008-01-01

    The thermal decomposition behavior and nonisothermal reaction kinetics of the double-base gun propellants containing the mixed ester of triethyleneglycol dinitrate(TEGDN) and nitroglycerin(NG) were investigated by thermogravimetry(TG) and differential thermogravimetry(DTG),and differential scanning calorimetry(DSC) under the high-pressure dynamic ambience.The results show that the thermal decomposition processes of the mixed nitric ester gun propellants have two mass-loss stages.Nitric ester evaporates and decomposes in the first stage,and nitrocellulose and centralite Ⅱ(C2) decompose in the second stage.The mass loss,the DTG peak points,and the terminated temperatures of the two stages are changeable with the difference of the mass ratio of TEGDN to NG.There is only one obvious exothermic peak in the DSC curves under the different pressures.With the increase in the furnace pressure,the peak temperature decreases,and the decomposition heat increases.With the increase in the content of TEGDN,the decomposition heat decreases at 0.1 Mpa and rises at high pressure.The variety of mass ratio of TEGDN to NG makes few effect on the exothermic peak temperatures in the DSC curves at different pressures.The kinetic equation of the main exothermal decomposition reaction of the gun propellant TG0601 was determined as:da/dt-=1021.59(1-a)3e-2.60×104/T The reaction mechanism of the process can be classified as chemical reaction.The critical temperatures of the thermal explosion(Tbe and Tbp) obtained from the onset temperature(Te) and the peak temperature(Tp) are 456.46 and 473.40 K,respectively.△S≠,△H≠,and △G≠of the decomposition reaction are 163.57 J·mol-1·K-1,209.54 kJ·mol-1,and 133.55kJ·mol-1,respectively.

  17. Determination of kinetics of the karl Fischer reaction based on coulometry and true potentiometry.

    Science.gov (United States)

    Cedergren, A

    1996-03-01

    A new measurement technique based on a combination of coulometry and zero-current potentiometry is described for determination of the kinetics of rapidly reacting Karl Fischer (KF) reagents. This makes it possible to determine the order as well as the rate constant for large variations in the concentrations of iodine and water present during a titration. It was shown that for imidazole-based methanolic reagents exposed to a large variation in the concentration of water, the KF reaction is first order with respect to iodine, sulfur dioxide, and water only for reagents in which the concentration of nonprotonated imidazole is very low. The rate constant determined for such a reagent (1 M imidazole, 0.8 M sulfur dioxide, 0.1 M iodine) was equal to that reported earlier in the literature. Regions showing first-order kinetics were also found for low concentrations of water when imidazole concentrations up to 2 mol/L were used, provided that these reagents had a quotient [Im](free)/[ImH(+)] around 4. In the interval 2-8 mol/L of imidazole, the order of the reaction with respect to iodine was, in most cases, one-half, while it was changed to between one-half and one with respect to water. The rate of the KF reaction was found to increase by nearly 5 orders of magnitude for a reagent in which the concentration of nonprotonated imidazole was increased from 0 (rate constant equal to 2.6 × 10(3) L(2) mol(-)(2) s(-)(1)) to about 7 mol/L. For most of these reagents, a recovery rate close to 100% was attained. A high concentration of nonprotonated imidazole in combination with a high concentration of sulfur dioxide could, however, lead to a change in stoichiometry of the KF reaction when larger amounts of water were determined (250 μg of water added to 3.4 mL of reagent solution). A reaction scheme is proposed which might explain this change in stoichiometry observed for some reagent compositions. By use of the described most rapidly reacting reagents, it was shown to be

  18. The determination of the kinetic parameters of electrochemical reaction in chemical power sources: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yanhui; Wu, Jun; Li, Decheng; Zheng, Junwei [The Institute of Chemical Power Sources, Soochow (Suzhou) University, Suzhou 215006 (China); Chen, Ying [Max-Planck-Institut fuer Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Duesseldorf (Germany); Ju, Hua [School of Urban Rail Transportation, Soochow (Suzhou) University, Ganjiang East Road 178, Suzhou 215021 (China)

    2010-06-15

    The derivation and proposal of major electrochemical techniques used to determine and calculate the electrochemical kinetic parameters is basically based on the electrochemical reaction taking place at liquid/solid or liquid/liquid interface in which all the reactants and products are soluble in liquid aqueous solution or liquid mercury electrode, or are volatile gas. Such electrochemical reaction system is classical and traditional (ERS1). Recently, the electrochemical behavior of some materials used as the active electrode materials in chemical power sources has attracted much attention. In chemical power source systems, either reactant or product, or both are insoluble. This kind of electrochemical reaction system (ERS2) is slightly different from ERS1. The application of these electrochemical techniques/equations to chemical power sources' system requires carefulness. The misuse of these electrochemical techniques can be easily found in the literatures and some of them even lead to a wrong conclusion. In this review, almost all the electrochemical techniques to measure the exchange current and diffusion coefficient were compiled for reference to the readers, including pulse step, electrochemical impedance, alternating cyclic voltammetry, etc. The necessary requirements/conditions to apply these techniques have been briefly discussed and some simple examples were also discussed for a better understanding. (author)

  19. Kinetics of the high-temperature combustion reactions of dibutylether using composite computational methods

    KAUST Repository

    Rachidi, Mariam El

    2015-01-01

    This paper investigates the high-temperature combustion kinetics of n-dibutyl ether (n-DBE), including unimolecular decomposition, H-abstraction by H, H-migration, and C{single bond}C/C{single bond}O β-scission reactions of the DBE radicals. The energetics of H-abstraction by OH radicals is also studied. All rates are determined computationally using the CBS-QB3 and G4 composite methods in conjunction with conventional transition state theory. The B3LYP/6-311++G(2df,2pd) method is used to optimize the geometries and calculate the frequencies of all reactive species and transition states for use in ChemRate. Some of the rates calculated in this study vary markedly from those obtained for similar reactions of alcohols or alkanes, particularly those pertaining to unimolecular decomposition and β-scission at the α-β C{single bond}C bond. These variations show that analogies to alkanes and alcohols are, in some cases, inappropriate means of estimating the reaction rates of ethers. This emphasizes the need to establish valid rates through computation or experimentation. Such studies are especially important given that ethers exhibit promising biofuel and fuel additive characteristics. © 2014.

  20. Kinetic behavior of the reaction between hydroxyl radical and the SV40 minichromosome

    Energy Technology Data Exchange (ETDEWEB)

    Ly, A. [Department of Radiology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0610 (United States); Aguilera, J.A. [Department of Radiology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0610 (United States); Milligan, J.R. [Department of Radiology, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0610 (United States)]. E-mail: jmilligan@ucsd.edu

    2007-06-15

    Aqueous solutions containing the minichromosomal form of the virus SV40 and the radical scavenger DMSO were subjected to {gamma}-irradiation, and the resulting formation of single-strand breaks (SSB) was quantified. Under the irradiation conditions, most SSBs were produced as a consequence of hydroxyl radical ( {sup {center_dot}}OH) reactions. By controlling the competition between DMSO and the viral DNA substrate for {sup {center_dot}}OH, we are able to estimate the rate coefficient for the reaction of {sup {center_dot}}OH with the SV40 minichromosome. The results cannot be described adequately by homogeneous competition kinetics, but it is possible to describe the rate coefficient for the reaction as a function of the scavenging capacity of the solution. The experimentally determined rate coefficient lies in the range 1x10{sup 9}-2x10{sup 9} L mol{sup -1} s{sup -1} at 10{sup 7} s{sup -1}, and increases with increasing scavenging capacity.

  1. Inverse problem analysis for identification of reaction kinetics constants in microreactors for biodiesel synthesis

    Science.gov (United States)

    Pontes, P. C.; Naveira-Cotta, C. P.

    2016-09-01

    The theoretical analysis for the design of microreactors in biodiesel production is a complicated task due to the complex liquid-liquid flow and mass transfer processes, and the transesterification reaction that takes place within these microsystems. Thus, computational simulation is an important tool that aids in understanding the physical-chemical phenomenon and, consequently, in determining the suitable conditions that maximize the conversion of triglycerides during the biodiesel synthesis. A diffusive-convective-reactive coupled nonlinear mathematical model, that governs the mass transfer process during the transesterification reaction in parallel plates microreactors, under isothermal conditions, is here described. A hybrid numerical-analytical solution via the Generalized Integral Transform Technique (GITT) for this partial differential system is developed and the eigenfunction expansions convergence rates are extensively analyzed and illustrated. The heuristic method of Particle Swarm Optimization (PSO) is applied in the inverse analysis of the proposed direct problem, to estimate the reaction kinetics constants, which is a critical step in the design of such microsystems. The results present a good agreement with the limited experimental data in the literature, but indicate that the GITT methodology combined with the PSO approach provide a reliable computational algorithm for direct-inverse analysis in such reactive mass transfer problems.

  2. Copper(II) complexes with peptides based on the second cell binding site of fibronectin: metal coordination and ligand exchange kinetics.

    Science.gov (United States)

    Pizzanelli, Silvia; Forte, Claudia; Pinzino, Calogero; Magrì, Antonio; La Mendola, Diego

    2016-02-07

    Copper(ii) complexes with short peptides based on the second cell binding site of fibronectin, PHSFN and PHSEN, have been characterized by potentiometric, UV-vis, CD, EPR and NMR spectroscopic methods. The histidine imidazole nitrogen is the anchoring site for the metal ion binding. Thermodynamic and spectroscopic evidence is given that the side chain oxygen donor atom of glutamyl residue in Ac-PHSEN-NH2 is also involved in the binding up to physiological pH. To determine ligand exchange kinetic parameters after the imidazole nitrogen anchoring, proton relaxation enhancement NMR data have been collected for the two hydrogen atoms of the imidazole ring in the temperature range 293-315 K at pH 5.2 and globally treated within different kinetic models for ligand exchange. The best fitting model involves two steps. In the first one, which is slow, a water molecule disengages a carbonyl or a carboxylate group coordinated to the metal ion in the complex formed by PHSFN or PHSEN, respectively. This stage is one order of magnitude slower for PHSEN, due to entropic effects. In the second step, which is fast, the complex just formed exchanges with the ligand. In this step, no appreciable differences are found for the two cases examined.

  3. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species

    OpenAIRE

    2006-01-01

    This article, the second in the series, presents kinetic and photochemical data evaluated by the IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry. It covers the gas phase and photochemical reactions of Organic species, which were last published in 1999, and were updated on the IUPAC website in late 2002, and subsequently during the preparation of this article. The article consists of a summary table of the recommended rate coefficients, containing the...

  4. Reactions and crystal structures of heterodinuclear complexes R3Sn-M(CO)5(M=Mn,Re)with some nitrogen ligands

    Institute of Scientific and Technical Information of China (English)

    Yong Qiang Ma; Ning Yin; Wen Jing Peng; Jing Li

    2009-01-01

    Absttact:Some reactions of R3SnMCO5M=Mn,Rewith CH3CN or pyridine were investigated to give complexes R3SnMnCO3LL'or R3SnMnCO4L by a facile mild method.X-ray diffractions analyses show that, in contrast to the phosphine ligand occupying in axial position, nitrogen ligands occupy equatorial position.

  5. Esterification with ethanol to produce biodiesel from high acidity raw materials. Kinetic studies and analysis of secondary reactions

    Energy Technology Data Exchange (ETDEWEB)

    Pisarello, M.L.; Dalla Costa, B.; Mendow, G.; Querini, C.A. [Instituto de Investigaciones en Catalisis y Petroquimica (INCAPE)-(FIQ-UNL, CONICET), Santiago del Estero 2654-Santa Fe, S3000AOJ (Argentina)

    2010-09-15

    In this work, the esterification reaction of free fatty acids (FFA) in sunflower oil, coconut oil and concentrated FFA, with ethanol, methanol and ethanol 96%, using homogeneous acid catalysts to produce biodiesel is studied. Kinetic parameters are estimated with a simplified model, and then used to predict the reaction behavior. Reactions other than the reversible esterification are considered to explain the behavior that this system displays. Such reactions are the triglycerides conversion by acid catalyzed transesterification and hydrolysis. In addition, we include kinetic studies of the reaction that occur between the sulphuric acid and methanol (or ethanol), forming mono and dialkylsulphates. This reaction produces water and consumes methanol (or ethanol), and consequently has a direct impact in the esterification reaction rate and equilibrium conversion. The concentration of sulphuric acid decreases to less than 50% of the initial value due to the reaction with the alcohol. A minimum in the acidity due to the free fatty acids as a function of time was clearly observed during the reaction, which has not been reported earlier. This behavior is related to the consecutive reactions that take place during the esterification of FFA in the presence of triglycerides. The phase separation due to the presence of water, which is generated during the reaction, is also studied. (author)

  6. Correlation of Impact Conditions, Interface Reactions, Microstructural Evolution, and Mechanical Properties in Kinetic Spraying of Metals: A Review

    Science.gov (United States)

    Kim, Jaeick; Lee, Changhee

    2016-09-01

    In the past, most studies into kinetic spraying technology focused on basic research, but a large portion of current research is devoted to industrial applications of the technology. To advance, however, studies about industrial applications of kinetic spraying require profound understanding of the scientific foundations of the kinetic spray process. Nevertheless, no one has yet provided a well-organized summary of the correlations among impact conditions, interface reactions, microstructural evolution, and mechanical properties across the whole field of kinetic spraying technology. This paper provides such an overview of these correlations for kinetic spraying of metals. For each correlation, the interactions between the given conditions and the material properties of the metal feedstock powder are the most influential. These interactions are so complicated that it is difficult to systematically classify all cases into certain types. Nonetheless, we try to explain and summarize the critical factors and their roles in each relationship.

  7. Correlation of Impact Conditions, Interface Reactions, Microstructural Evolution, and Mechanical Properties in Kinetic Spraying of Metals: A Review

    Science.gov (United States)

    Kim, Jaeick; Lee, Changhee

    2016-12-01

    In the past, most studies into kinetic spraying technology focused on basic research, but a large portion of current research is devoted to industrial applications of the technology. To advance, however, studies about industrial applications of kinetic spraying require profound understanding of the scientific foundations of the kinetic spray process. Nevertheless, no one has yet provided a well-organized summary of the correlations among impact conditions, interface reactions, microstructural evolution, and mechanical properties across the whole field of kinetic spraying technology. This paper provides such an overview of these correlations for kinetic spraying of metals. For each correlation, the interactions between the given conditions and the material properties of the metal feedstock powder are the most influential. These interactions are so complicated that it is difficult to systematically classify all cases into certain types. Nonetheless, we try to explain and summarize the critical factors and their roles in each relationship.

  8. Mechanism and Kinetics Analysis of NO/SO2/N2/O2 Dissociation Reactions in Non-Thermal Plasma

    Institute of Scientific and Technical Information of China (English)

    WANG Xinliang; LI Tingting; WEI Dongxiang; WEI Yanli; GU Fan

    2008-01-01

    The kinetics mechanism of the dissociation reactions in a NO/SO2/N2/O2 system was investigated in consideration of energetic electrons' impacts on a non-thermal plasma. A model was derived from the Boltzmann equation and molecule collision theory to predict the dissociation reaction rate coefficients. Upon comparison with available literature, the model was confirmed to be acceptably accurate in general. Several reaction rate coefficients of the NO/SO2/N2/O2 dissociation system were derived according to the Arrhenius formula. The activation energies of each plasma reaction were calculated by quantum chemistry methods. The relation between the dissociation reaction rate coefficient and electron temperature was established to describe the importance of each reaction and to predict relevant processes of gaseous chemical reactions. The sensitivity of the mechanism of NO/SO2/N2/O2 dissociation reaction in a non-thermal plasma was also analysed.

  9. Kinetics and mechanism of reactions of the drug tiopronin with platinum(IV) complexes.

    Science.gov (United States)

    Huo, Shuying; Shi, Hongmei; Liu, Dongzhi; Shen, Shigang; Zhang, Jiong; Song, Changying; Shi, Tiesheng

    2013-08-01

    Tiopronin, a synthetic thiol-containing drug being used in treatments of cystinuria and certain types of rare arthritis, is also a hepatoprotective and a detoxifying agent. Many analytical methods have been developed based on its redox chemistry with metal ions/complexes, but the kinetic and mechanistic aspects are poorly understood. In this work, the oxidation of tiopronin by cisplatin prodrug and a model compound, cis-[Pt(NH3)2Cl4] and trans-[PtCl2(CN)4](2-), was investigated. The oxidation kinetics was followed by a stopped-flow spectrophotometer over a wide pH range under the pseudo first-order conditions of [Tiopronin]≫[Pt(IV)]. Time-resolved spectra were also recorded for both Pt(IV) complexes, enabling to establish an overall second-order rate law: -d[Pt(IV)]/dt=k'[Tiopronin][Pt(IV)], where k' pertains to observed second-order rate constants. Under the kinetic conditions, tiopronin was oxidized to form the tiopronin-disulfide exclusively as identified by mass spectrometry. A reaction mechanism was proposed, involving parallel reductions of the Pt(IV) complexes by the three protolytic tiopronin species as rate-determining steps. The rate constants for the rate-determining steps were derived. The fully deprotonated tiopronin is about 4×10(4) more reactive than its corresponding thiol form for both Pt(IV) complexes; the huge reactivity difference orchestrates closely with the fact that the nucleophilicity of thiolate is much higher than the corresponding thiol. Hence, the attack of the sulfur atom in thiol/thiolate of tiopronin on the axially-coordinated chloride in the Pt(IV) complexes is nucleophilic in nature in the rate-determining steps, resulting in a bridge formation and a subsequent bridged electron-transfer. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Decolorization kinetics of Procion H-exl dyes from textile dyeing using Fenton-like reactions.

    Science.gov (United States)

    Ntampegliotis, K; Riga, A; Karayannis, V; Bontozoglou, V; Papapolymerou, G

    2006-08-10

    The decolorization kinetics of three commercially used Procion H-exl dyes was studied using a Fenton-like reagent. The effect of the major system parameters (pH, concentration of H(2)O(2) and Fe(3+) and initial dye concentration) on the kinetics was determined. For comparison, the effect of the use of UV irradiated Fenton-like reagent and of Fenton reagent on the kinetics was also examined. In addition, mineralization rates and the biodegradability improvement as well as the effect of the addition of Cl(-), CO(3)(2-) or HCO(3)(-) on the decolorization rates was studied. The reactions were carried out in a 300 ml stirred cylindrical reactor with the capability of UV irradiation. The dye half-life time goes through a minimum with respect to the solution pH between 3 and 4. It also exhibits a broad minimum with respect to Fe(3+) and H(2)O(2) at molar ratios of H(2)O(2)/Fe(3+) from about 100 to 10. The addition of CO(3)(2-) and HCO(3)(-) substantially reduces the decolorization rates, while this effect is significantly less pronounced with Cl(-). At an optimum range of parameters, the mineralization rate (TOC reduction) is very slow for the Fenton-like process (TOC decrease from an initial 49.5 to 41.1 mg/l after 30 min and to only 35.2 mg/l after 600 min), but it increases significantly for the photo-Fenton-like process (to TOC values of 39.7 and 11.4 mg/l, respectively). The biodegradability, as expressed by the BOD/COD ratio, increases significantly from an initial value of 0.11-0.55 for the Fenton-like and to 0.72 for the photo-Fenton-like processes.

  11. Kinetic analysis of the translocator protein positron emission tomography ligand [{sup 18}F]GE-180 in the human brain

    Energy Technology Data Exchange (ETDEWEB)

    Feeney, Claire [Imperial College London, Division of Brain Sciences, Hammersmith Hospital Campus, London (United Kingdom); Hammersmith Hospital, Computational, Cognitive and Clinical Neuroimaging Laboratory, London (United Kingdom); Scott, Gregory; Raffel, Joel; Roberts, S.; Coello, Christopher; Jolly, Amy; Searle, Graham; Goldstone, A.P.; Nicholas, Richard S.; Gunn, Roger N.; Sharp, David J. [Imperial College London, Division of Brain Sciences, Hammersmith Hospital Campus, London (United Kingdom); Brooks, David J. [Imperial College London, Division of Brain Sciences, Hammersmith Hospital Campus, London (United Kingdom); Aarhus University, Institute of Clinical Medicine, Aarhus (Denmark); Trigg, William [GE Healthcare Ltd, Amersham (United Kingdom)

    2016-11-15

    PET can image neuroinflammation by targeting the translocator protein (TSPO), which is upregulated in activated microglia. The high nonspecific binding of the first-generation TSPO radioligand [{sup 11}C]PK-11195 limits accurate quantification. [{sup 18}F]GE-180, a novel TSPO ligand, displays superior binding to [{sup 11}C]PK-11195 in vitro. Our objectives were to: (1) evaluate tracer characteristics of [{sup 18}F]GE-180 in the brains of healthy human subjects; and (2) investigate whether the TSPO Ala147Thr polymorphism influences outcome measures. Ten volunteers (five high-affinity binders, HABs, and five mixed-affinity binders, MABs) underwent a dynamic PET scan with arterial sampling after injection of [{sup 18}F]GE-180. Kinetic modelling of time-activity curves with one-tissue and two-tissue compartment models and Logan graphical analysis was applied to the data. The primary outcome measure was the total volume of distribution (V{sub T}) across various regions of interest (ROIs). Secondary outcome measures were the standardized uptake values (SUV), the distribution volume and SUV ratios estimated using a pseudoreference region. The two-tissue compartment model was the best model. The average regional delivery rate constant (K{sub 1}) was 0.01 mL cm{sup -3} min{sup -1} indicating low extraction across the blood-brain barrier (1 %). The estimated median V{sub T} across all ROIs was also low, ranging from 0.16 mL cm{sup -3} in the striatum to 0.38 mL cm{sup -3} in the thalamus. There were no significant differences in V{sub T} between HABs and MABs across all ROIs. A reversible two-tissue compartment model fitted the data well and determined that the tracer has a low first-pass extraction (approximately 1 %) and low V{sub T} estimates in healthy individuals. There was no observable dependency on the rs6971 polymorphism as compared to other second-generation TSPO PET tracers. Investigation of [{sup 18}F]GE-180 in populations with neuroinflammatory disease is needed

  12. Kinetics of solid-gas reactions characterized by scanning AC nano-calorimetry with application to Zr oxidation

    Science.gov (United States)

    Xiao, Kechao; Lee, Dongwoo; Vlassak, Joost J.

    2014-10-01

    Scanning AC nano-calorimetry is a recently developed experimental technique capable of measuring the heat capacity of thin-film samples of a material over a wide range of temperatures and heating rates. Here, we describe how this technique can be used to study solid-gas phase reactions by measuring the change in heat capacity of a sample during reaction. We apply this approach to evaluate the oxidation kinetics of thin-film samples of zirconium in air. The results confirm parabolic oxidation kinetics with an activation energy of 0.59 ± 0.03 eV. The nano-calorimetry measurements were performed using a device that contains an array of micromachined nano-calorimeter sensors in an architecture designed for combinatorial studies. We demonstrate that the oxidation kinetics can be quantified using a single sample, thus enabling high-throughput mapping of the composition-dependence of the reaction rate.

  13. A Detailed Chemical Kinetic Reaction Mechanism for Oxidation of Four Small Alkyl Esters in Laminar Premixed Flames

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, C K; Pitz, W J; Westmoreland, P R; Dryer, F L; Chaos, M; Osswald, P; Kohse-Hoinghaus, K; Cool, T A; Wang, J; Yang, B; Hansen, N; Kasper, T

    2008-02-08

    A detailed chemical kinetic reaction mechanism has been developed for a group of four small alkyl ester fuels, consisting of methyl formate, methyl acetate, ethyl formate and ethyl acetate. This mechanism is validated by comparisons between computed results and recently measured intermediate species mole fractions in fuel-rich, low pressure, premixed laminar flames. The model development employs a principle of similarity of functional groups in constraining the H atom abstraction and unimolecular decomposition reactions in each of these fuels. As a result, the reaction mechanism and formalism for mechanism development are suitable for extension to larger oxygenated hydrocarbon fuels, together with an improved kinetic understanding of the structure and chemical kinetics of alkyl ester fuels that can be extended to biodiesel fuels. Variations in concentrations of intermediate species levels in these flames are traced to differences in the molecular structure of the fuel molecules.

  14. Kinetic investigation of a solvent-free, chemoenzymatic reaction sequence towards enantioselective synthesis of a β-amino acid ester.

    Science.gov (United States)

    Strompen, Simon; Weiss, Markus; Ingram, Thomas; Smirnova, Irina; Gröger, Harald; Hilterhaus, Lutz; Liese, Andreas

    2012-06-01

    A solvent-free, chemoenzymatic reaction sequence for the enantioselective synthesis of β-amino acid esters has been kinetically and thermodynamically characterized. The coupled sequence comprises a thermal aza-Michael addition of cheap starting materials and a lipase catalyzed aminolysis for the kinetic resolution of the racemic ester. Excellent ee values of >99% were obtained for the β-amino acid ester at 60% conversion. Kinetic constants for the aza-Michael addition were obtained by straightforward numerical integration of second-order rate equations and nonlinear fitting of the progress curves. A different strategy had to be devised for the biocatalytic reaction. Initially, a simplified Michaelis-Menten model including product inhibition was developed for the reaction running in THF as an organic solvent. Activity based parameters were used instead of concentrations in order to facilitate the transfer of the kinetic model to the solvent-free system. Observed solvent effects not accounted for by the use of thermodynamic activities were incorporated into the kinetic model. Enzyme deactivation was observed to depend on the ratio of the applied substrates and also included in the kinetic model. The developed simple model is in very good agreement with the experimental data and allows the simulation and optimization of the solvent-free process.

  15. Programming chemical kinetics: engineering dynamic reaction networks with DNA strand displacement

    Science.gov (United States)

    Srinivas, Niranjan

    Over the last century, the silicon revolution has enabled us to build faster, smaller and more sophisticated computers. Today, these computers control phones, cars, satellites, assembly lines, and other electromechanical devices. Just as electrical wiring controls electromechanical devices, living organisms employ "chemical wiring" to make decisions about their environment and control physical processes. Currently, the big difference between these two substrates is that while we have the abstractions, design principles, verification and fabrication techniques in place for programming with silicon, we have no comparable understanding or expertise for programming chemistry. In this thesis we take a small step towards the goal of learning how to systematically engineer prescribed non-equilibrium dynamical behaviors in chemical systems. We use the formalism of chemical reaction networks (CRNs), combined with mass-action kinetics, as our programming language for specifying dynamical behaviors. Leveraging the tools of nucleic acid nanotechnology (introduced in Chapter 1), we employ synthetic DNA molecules as our molecular architecture and toehold-mediated DNA strand displacement as our reaction primitive. Abstraction, modular design and systematic fabrication can work only with well-understood and quantitatively characterized tools. Therefore, we embark on a detailed study of the "device physics" of DNA strand displacement (Chapter 2). We present a unified view of strand displacement biophysics and kinetics by studying the process at multiple levels of detail, using an intuitive model of a random walk on a 1-dimensional energy landscape, a secondary structure kinetics model with single base-pair steps, and a coarse-grained molecular model that incorporates three-dimensional geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Our findings are consistent with previously measured or inferred rates for

  16. Kinetic and Reaction Pathway Analysis in the Application of Botulinum Toxin A for Wound Healing

    Directory of Open Access Journals (Sweden)

    Frank J. Lebeda

    2012-01-01

    Full Text Available A relatively new approach in the treatment of specific wounds in animal models and in patients with type A botulinum toxin is the focus of this paper. The indications or conditions include traumatic wounds (experimental and clinical, surgical (incision wounds, and wounds such as fissures and ulcers that are signs/symptoms of disease or other processes. An objective was to conduct systematic literature searches and take note of the reactions involved in the healing process and identify corresponding pharmacokinetic data. From several case reports, we developed a qualitative model of how botulinum toxin disrupts the vicious cycle of muscle spasm, pain, inflammation, decreased blood flow, and ischemia. We transformed this model into a minimal kinetic scheme for healing chronic wounds. The model helped us to estimate the rate of decline of this toxin's therapeutic effect by calculating the rate of recurrence of clinical symptoms after a wound-healing treatment with this neurotoxin.

  17. Mitigating the Hook Effect in Lateral Flow Sandwich Immunoassays Using Real-Time Reaction Kinetics.

    Science.gov (United States)

    Rey, Elizabeth G; O'Dell, Dakota; Mehta, Saurabh; Erickson, David

    2017-05-02

    The quantification of analyte concentrations using lateral flow assays is a low-cost and user-friendly alternative to traditional lab-based assays. However, sandwich-type immunoassays are often limited by the high-dose hook effect, which causes falsely low results when analytes are present at very high concentrations. In this paper, we present a reaction kinetics-based technique that solves this problem, significantly increasing the dynamic range of these devices. With the use of a traditional sandwich lateral flow immunoassay, a portable imaging device, and a mobile interface, we demonstrate the technique by quantifying C-reactive protein concentrations in human serum over a large portion of the physiological range. The technique could be applied to any hook effect-limited sandwich lateral flow assay and has a high level of accuracy even in the hook effect range.

  18. A simplified kinetic model for the side reactions occurring during the enzymatic synthesis of ampicillin

    Directory of Open Access Journals (Sweden)

    A.L.O. Ferreira

    2000-12-01

    Full Text Available This work presents a kinetic study of the side reactions of the ampicillin enzymatic synthesis, from phenylglycine methyl ester and 6-aminopenicillanic acid using penicillin G acylase immobilized on agarose. A Michaelis-Menten model with competitive inhibition was fitted to initial rates of ester and antibiotic hydrolysis, at pH 6.5 and 25ºC. Inherent kinetic parameters were estimated for low enzymatic loads, to assure that diffusional resistance was not important. It was observed that ampicillin inhibits the hydrolysis of PGME, but the inhibitory effect of the ester on ampicillin hydrolysis was almost negligible. The obtained parameters were: k cat1= 0.025 mM/UI min, Km1 = 155.4mM, K AE = 16.18mM, k cat2= 4.67x10-3 mM/UI min, Km2 = 11.47, K EA = 0.68 mM. Parameter values are in the range reported in the literature, except for Km1, which is much higher. The large confidence interval for this parameter denotes that the model presents low sensitivity with respect to it.

  19. Reaction kinetics and validity of BOD test for domestic wastewater released in marine ecosystems.

    Science.gov (United States)

    Dhage, Shivani S; Dalvi, Amita A; Prabhu, Damodar V

    2012-09-01

    With urbanization of coastal cities, marine pollution is becoming a severe problem. The rates of biodegradation, decomposition, and ratification of pollutants get slowed down due to salinity. The higher temperatures prevalent in tropical regions significantly affect reaction rates. Multiple factors influence the rate of biodegradation, making the process complex. Hence, prediction and evaluation of the assimilative capacity of the marine environment due to wastewater discharges is becoming a difficult task. Biochemical oxygen demand (BOD) is a wet oxidation process, which follows first-order kinetics. The values of kinetic rate constants are expected to differ with varying salinities and temperatures. Research is carried out using glucose-glutamic acid and domestic wastewater to evaluate the impact of salinity on biodegradation of carbonaceous waste at 20°C and 27°C. The findings confirm the hypothesis of slow biodegradation of carbonaceous organic matter in marine waters. An inverse relationship between rate of biodegradation and salinity was observed. BOD exertion at 20°C (5 days) and 27°C (3 days) for the marine environment is comparable at selected salinities thereby confirming the validity of BOD test of shorter duration at elevated temperature.

  20. UV-induced photocatalytic degradation of aqueous acetaminophen: the role of adsorption and reaction kinetics.

    Science.gov (United States)

    Basha, Shaik; Keane, David; Nolan, Kieran; Oelgemöller, Michael; Lawler, Jenny; Tobin, John M; Morrissey, Anne

    2015-02-01

    Nanostructured titania supported on activated carbon (AC), termed as integrated photocatalytic adsorbents (IPCAs), were prepared by ultrasonication and investigated for the photocatalytic degradation of acetaminophen (AMP), a common analgesic and antipyretic drug. The IPCAs showed high affinity towards AMP (in dark adsorption studies), with the amount adsorbed proportional to the TiO2 content; the highest adsorption was at 10 wt% TiO2. Equilibrium isotherm studies showed that the adsorption followed the Langmuir model, indicating the dependence of the reaction on an initial adsorption step, with maximum adsorption capacity of 28.4 mg/g for 10 % TiO2 IPCA. The effects of initial pH, catalyst amount and initial AMP concentration on the photocatalytic degradation rates were studied. Generally, the AMP photodegradation activity of the IPCAs was better than that of bare TiO2. Kinetic studies on the photocatalytic degradation of AMP under UV suggest that the degradation followed Langmuir-Hinshelwood (L-H) kinetics, with an adsorption rate constant (K) that was considerably higher than the photocatalytic rate constant (k r), indicating that the photocatalysis of AMP is the rate-determining step during the adsorption/photocatalysis process.